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ABSTRACT 

Background: Value-based frameworks link costs with health outcomes and are considered in drug 

reimbursement, suggesting the increasing need to estimate commercial performance of novel drugs in 

relation to demonstrating cost-effectiveness.  

Objective: To develop a value-based drug development framework and evaluate a commercialization 

strategy for a phase 1 drug candidate for hypoglycemia in type 1 diabetes (T1D). 

Methods: A value-based real options analysis (VB-ROA) framework was developed to incorporate payer 

and for-profit investor perspectives by integrating cost-effectiveness analysis (CEA) with real options 

analysis (ROA). The framework was applied to commercially evaluate a phase 1 drug candidate to 

prevent hypoglycemia. 

The VB-ROA framework was constructed in two stages:  

1. Value-based price was estimated using headroom analysis based a Markov model assuming a US 

payers’ willingness to pay (WTP, λ) of $50,000 per quality-adjusted life year (QALY) and 

payers’ discount rate (rd) of 3%. The drug candidate’s target product profile (TPP) was based on 

clinician reports on meaningful health improvements. 

2. ROA via the binomial lattice option pricing model (BOPM) using revenues based on value-based 

pricing and a cost of capital (rc) of 13.2%. 

Data to populate model parameters were gathered from published clinical, regulatory, and market data. 

Results: The value-based drug price was $5,178 (95% CI $4,437, $5,956) per year per patient. The phase 

1 development option value was $0 (V0,1). The development strategy could be abandoned or revised, 

which may involve partnering non-profit institutions. If successful, the development option for phase 2 is 

$67 Million (V1,1) or $0 (V1,2). If development leads to regulatory approval, the option value to launch 

ranges from $8,716 Million (V7,1) to $127 Million (V7,8). Sensitive parameters to option value include 
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investors’ cost of capital (rc), drug price, development risks (θt), market share, λ, health-related quality of 

life (HRQoL) weights, and the relative risk of non-severe hypoglycemia (RRNSHday & RRNSHnoc). 

Conclusions: The VB-ROA framework aligns patient, payer, and investor incentives to assess the impact 

of clinical and cost-effectiveness parameters on the commercial potential of novel drugs, which further 

enables the development novel drugs that are affordable for payers and patients, while profitable for 

investors.  
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LAY SUMMARY 

Healthcare costs are rising due to high drug prices. There is increasing pressure from payers (e.g., 

private insurers) to set drug prices based on health benefits experienced by patients. Commercialization 

strategies for early-stage drug candidates did not adequately consider payer needs. To develop affordable 

products, a value-based drug development framework that combines the needs of corporate investors and 

payers was made by assessing a drug’s commercial potential using revenues based on prices that align 

with its health benefits. This framework was used to evaluate a drug candidate for hypoglycemia. Results 

suggest it is unlikely to be an attractive for-profit investment with its current development strategy. The 

strategy could be revised for improved performance (i.e., patient outcomes and cost-savings), or financing 

sourced from non-profit partnerships. This framework also serves as a tool to collaborate between the 

pharmaceutical industry and payers in effective reimbursement discussions.   
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CHAPTER 1. INTRODUCTION 

The need to improve decision-making in the healthcare sector is explained in Chapter 1. This 

thesis builds upon research in the fields of drug development, finance, and health economics, which is 

described in Chapter 2. A value-based drug development decision framework combining headroom and 

real options analyses was developed through discussions with subject-matter experts in the fields of early-

stage drug development (Dr. Richard Liggins), health economics (Dr. Dean Regier), and corporate 

finance (Dr. Ron Giammarino). 

 Challenges in healthcare 

  Healthcare systems are challenged to provide patients with access to quality medical care in a 

sustainable manner. 1,2 2017 healthcare spending for US and Canada, respectively, was $3.5 trillion USD 

and $253.5 billion CDN, making up 11.1% and 17.9% of its gross domestic product (GDP). 3,4 Spending 

continues to increase in both OECD countries by approximately 4% annually from 2017 to 2018.3,4 

Increase in spending often does not translate to better access to care, nor better quality of care. In 

Canada, wait times have increased by 113% since 1993 to a median waiting time of 19.8 weeks.5 In the 

US, 28 million (MM) people remain uninsured and healthcare expenditures are projected to grow 

annually by 5.6% from 2016 to 2025 and eventually make up 20% of GDP.6 The increase in expenditures 

impacts patients through insurance premium increases. In 2017, 37% of US insured adults had difficulty 

affording premiums, and close to 14 million Americans failed to receive necessary medical care due to 

costs.6  

In Canada, 70% ($177.5 billion) of total health expenditure is covered through public-sector 

funding, with the remaining funded through private insurance or out-of-pocket payments.7 In the US, 

household health care spending (e.g., out-of-pocket, insurance premiums) constituted 28% ($ 980 billion) 

of total health spending in 2017. Canadian hospital spending contributed to 28.3% ($71.74 billion) of 
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total healthcare spending, whereas, drugs spending make up 15.7% ($39.8 billion).7 US healthcare 

spending contributed 10% ($333.4 billion) to retail drug prescriptions.4  

Both Canada and the US experienced increases in spending for prescription drugs due to the 

higher cost of novel therapeutics and increased consumption.4,7,8 The pharmaceutical industry has been 

criticized for the high price for novel therapies.9 Overall branded prescription drug prices has increased by 

62.1% from 2014 to 2018 (Figure 1). In comparison, generic drug prices decreased by 36.9% and cost of 

household goods rose by 7.4% within the same timeframe.8  

Novel therapeutics developed for oncology and rare genetic diseases continue to increase in price 

to unaffordable levels. The cost of a year of life gained with cancer treatment has been increasing by 

$8,500 per year as a result of increasing prices for oncology drugs.8 Gene-based therapies such as 

Strimvelis and Glybera have been priced at $665 thousand and $1 million USD per treatment.10,11 In fact, 

due to price, Glybera was voluntarily taken out of the market by UniQure a year after receiving regulatory 

approval.10 

 

Figure 1: Overall prescription price index.Source: Express Scripts (2018).8 
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 Declining productivity and profitability in drug development 

Even with high drug prices to increase profit margins, the return on investment is low and the 

pharmaceutical industry is struggling to be productive with their drug development resources. The 

number of newly approved drugs per billion US dollars spent on research and development (R&D) 

reduced by 50% every 9 years from 1950 – 2010 (Figure 2).12 Development cost per novel drug increased 

to $2 billion USD, while the output of novel therapies remain stagnant. 13–15 

 

Figure 2: Overall trend in R&D efficiency (1950-2010, inflation adjusted).Source: Scannell et al 

(2012).12 

It has been previously reported that up to 30% of drug candidates are abandoned after health 

economic assessments.16,17 Recent industry performance has been poor where only 34% of newly 

approved drugs met or exceeded its sales expectations18, which resulted in an estimated investment return 

of 3.7%.19 Revenue projections of newly approved therapies tend to be exaggerated, where 43% of 

forecasts were overestimated by 40%.20,21  
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Figure 3: Frequency of drugs excluded from reimbursement by US payers.CVS Caremark and 

Express Scripts are the two largest pharmacy benefit managers in the US. Source: 

Cohen et al., 2017.22 

 

There could be many reasons attributed to the low productivity in R&D spending. Attributable 

factors include: changes in regulatory landscape, increase in clinical trial costs and timelines, as well as 

higher reimbursement requirements for cost-effectiveness.14 Although drug companies have pricing 

power due to patent rights, there is increasing pressure from payers to lower prices as they struggle to 

contain rising healthcare costs. From 1998 to 2008, the UK’s National Institute for Health and Care 

Excellence (NICE) granted restricted or no market access to approximately 60% of approved drugs from 

the top ten pharmaceutical companies.23  

Payer requirements have the potential to increasingly influence profitability of drug products. An 

empirical study shows that 239 drug products were in the excluded from drug formularies provided by 

two of the largest US-based pharmacy benefit managers (Figure 3).22  
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 Value-based healthcare 

One possible contribution to the increase in reimbursement delays and rejections is the increasing 

adoption of value-based healthcare.2 Value-based healthcare aims to maximize the value extracted 

through healthcare spending in terms of patient outcomes at a population level. In an effort to contain 

healthcare costs, both public and private payers are increasingly embracing value-based reimbursement 

strategies such as performance-based risk sharing arrangements, especially for oncology and diabetes 

treatments.1,24–26 These payment models involve agreements where reimbursement levels (i.e. price) 

correspond to drug performance at improving health and economic outcomes in a defined patient 

population.27,28  

According to the ISPOR Performance-Based Risk Sharing Arrangements Good Practices Task 

Force (2013)28, value-based reimbursement agreements have the following key characteristics: 

1. Post-approval data collection agreements between payers and manufacturers on patient 

outcomes that underlie reimbursement structure. 

2. Data collection (e.g., post-approval real world studies) is intended to address uncertainty 

in a drug’s cost-effectiveness pertaining to the target population compared with usual 

care. 

3. Price, level of reimbursement, and product revenue are linked to patient health outcomes 

via options to renegotiate coverage, or individual performance guarantees, etc. 

Value-based reimbursement agreements can be segmented into those that aim to 1) better manage 

utilization in the real world and 2) to provide coverage with evidence development (Figure 4)27,28. The 

former aims to link drug performance and reimbursement at the individual patient level through “outcome 

guarantees” (i.e., payment for responders only), “conditional treatment continuation” (i.e., payments of 

conditional use subject to change based on clinical end points), and money back guarantees. The latter 
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aims to provide drug coverage while evidence on clinical and economic value is further developed either 

while patients participate in clinical trials or broader coverage conditional on additional data collection 

(post-approval surveillance). 

 

Figure 4: A taxonomy of value-based arrangements.28 

There have always been uncertainties regarding the economic and clinical performance of new 

drugs. Payers bear the risk of a product that performs poorly, whereas drug development firms bear the 

commercial risks of R&D investments.29 Value-based reimbursement contracts benefits payers by 

reducing financial risks associated with uncertainty in drug performance.28 Such agreements enable 

pharmaceutical firms to better estimate future revenues using evidence on clinical efficacy. This suggests 

that the profitability of novel drugs will increasingly be tied to the drug’s cost-effectiveness at improving 

patient health outcomes. Therefore, it will be increasingly important to incorporate payer perspectives 

throughout the development process when making decisions to invest in the R&D of novel 

therapies.23,26,30 

Incorporating payer perspectives throughout the drug development process requires the adoption 

of a value-based framework at the beginning stages of development. Headroom analysis is a method that 

aims to support development decisions while considering reimbursement by calculating the monetary 

value that the new treatment can command based on payers’ requirements for ‘value-for-money’. The 
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calculated headroom has been proposed as an indicator for a drug’s potential commercial success in 

context to reimbursement.31  

 Collaborative healthcare decision-making 

The US has implemented value-based payment schemes for select Medicare plans since 201025,32  

with mixed or inconclusive results1,25,28,32. Although value-based reimbursement has the potential to 

transform healthcare delivery and improve its performance, there are key challenges centered on a lack of 

cooperation across payers and drug manufacturers.25,28,32–34 Common issues underlying the lack of 

collaboration can be summarized as follows33,34: 

1. Lack of digital infrastructure to measure and collected outcomes data.  

2. Misaligned stakeholder values including agreeing on outcome measures and the incentives 

needed to offset the cost of implementing value-based agreements. 

3. Lack of trust and accountability between payers and drug manufacturers. 

To advance healthcare quality through innovative technologies, stakeholders across the healthcare 

sector need to take collaborative approaches to develop and implement them. What is lacking to facilitate 

this effort is a framework that captures the perspective and needs of each stakeholder group. Private-

public partnerships have emerged in translational research to improve early-stage R&D productivity, 

especially in under-served markets35–37. Similar partnership models between payers and drug 

manufacturers that enable shared decision-making earlier in the development process can better enable 

value-based healthcare delivery.  

 Objective and aims 

The objective of my thesis is to develop a value-based drug development decision framework to 

enable the development of cost-effective therapies by integrating the perspectives of payer and industry 

decision-makers. A value-based real options analysis (VB-ROA) framework was developed by 
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integrating cost-effectiveness (payer perspective) and real options analysis (industry perspective), which 

was applied to evaluate an early-stage drug development decision for a phase 1 drug candidate. This 

research was approached with the following specific aims: 

1. Develop a value-based drug development decision framework informed through literature on 

health economic evaluation supporting payer reimbursement; and drug development 

(investment) decisions. [Chapter 2] 

2. Calculate the value-based price of an early-stage (phase 1) drug candidate that prevents 

hypoglycemia for a US type 1 diabetes population through cost-effectiveness analysis 

(headroom method). [Chapter 3] 

3. Value the option for a drug manufacturer to develop the SSTR2a drug candidate by inputting 

the value-based price into a binomial option pricing model informed through published 

evidence. [Chapter 4] 

We begin by describing the development of the VB-ROA framework and proceed to apply the 

framework to analyze the decision to finance the development of a phase 1 drug candidate aimed at 

preventing hypoglycemia for type 1 diabetes (T1D) patients in the US.  
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CHAPTER 2. VB-ROA FRAMEWORK DEVELOPMENT 

A value-based real options analysis (VB-ROA) framework was developed through a review of 

published literature on major health economic and financial valuation models, which identified that 

payers use cost-effectiveness analysis to inform reimbursement decisions25,28 and drug development 

decisions are informed through financial valuation models30,38–41. The VB-ROA was constructed by 

nesting a cost-effectiveness model within real options analysis by using a value-based price (VBP) to 

estimate the financial benefits of a drug development project (Figure 11). The analysis was performed 

through the perspective of US-based payers and for-profit investors (incl. drug manufacturers). The 

following overview of the theoretical concepts underlying the VB-ROA framework is provided below:  

• Cost-effectiveness analysis (Section 2.1), 

• Drug development process (Section 2.2), 

• Headroom analysis for value-based pricing (Section 2.3),  

• Real options analysis to support development decisions (Section 2.4).  

Section 2.5 describes the VB-ROA framework in detail and how it is constructed to support 

development decisions on early-stage technologies. 

 Cost-effectiveness analysis (payer perspective) 

Private (e.g., pharmacy benefit managers) and public (e.g., healthcare systems) payers reimburse 

health services and products (e.g., drug therapies) on behalf of the population under their care. 

Reimbursement agreements between payers and drug manufacturers involve negotiations on drug prices 

and corresponding payment terms. When making these arrangements, payers apply cost-effectiveness 

analysis (CEA)25,28,29. CEA compares the costs associated with providing patients access to treatment 

against the health benefits it provides.  
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Health benefits can be measured in different ways, but typically considers life years gained in 

terms of quantity and quality.  The quality-adjusted life year (QALY) is a health outcome measure that 

combines the number of life years gained with the quality of those life years (Equation 1).  Quality of life 

is incorporated into the QALY by adjusting the number of life-years gained with health-related quality of 

life (HRQoL) weights. HRQoL weights are typically anchored on 0 and 1, where 0 is death and 1 is 

perfect health.42 The QALY has been widely applied in health technology assessments, which allows 

treatments from different disease indication to be easily compared.42 Other outcome measures (e.g., 

adverse events forgone) can be applied depending on payer preferences and jurisdiction-specific priority 

setting processes.43 

𝑄𝐴𝐿𝑌 = [𝐻𝑅𝑄𝑜𝐿] × [# 𝑜𝑓 𝑙𝑖𝑓𝑒 𝑦𝑒𝑎𝑟𝑠 𝑔𝑎𝑖𝑛𝑒𝑑] 

Equation 1: Quality-adjusted life year (QALY) calculationsby adjusting the gain in life years with 

health-related quality of life (HRQoL) weights. 

CEA modeling requires data on health outcomes, survival, disease epidemiology, resource use, 

costs, and patient quality-of-life measurements.43 The model calculates the incremental cost (ΔCost) of 

gaining an incremental QALY (ΔQALY) when using a drug product to treat a population of patients that 

would benefit from it42,43. To solve for these incremental values, CEA compares two (or more) treatment 

pathways where the target population receives either new treatment(s) or usual care. Within each 

treatment pathway, CEA projects patient outcomes gained, and healthcare expenditures incurred by the 

target population over a defined time horizon to calculate total costs and QALYs. Future costs and health 

benefits are discounted into present value terms using the payers’ discount rate (rd). The ΔCost and 

ΔQALY are calculated by subtracting the total costs (Costnew treatment) and QALYs (QALYnew treatment) of the 

population receiving new treatment from the total costs (Costusual care) and QALYs (QALYusual care) of the 

population receiving usual care (Equation 2).42–44  
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𝐶𝑜𝑠𝑡𝑛𝑒𝑤 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 − 𝐶𝑜𝑠𝑡𝑢𝑠𝑢𝑎𝑙 𝑐𝑎𝑟𝑒

𝑄𝐴𝐿𝑌𝑛𝑒𝑤 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 − 𝑄𝐴𝐿𝑌𝑢𝑠𝑢𝑎𝑙 𝑐𝑎𝑟𝑒
=

𝛥𝐶𝑜𝑠𝑡

𝛥𝑄𝐴𝐿𝑌
= 𝐼𝐶𝐸𝑅 

𝐼𝐶𝐸𝑅 < 𝜆 

Equation 2: Incremental cost-effectiveness ratio (ICER)and its application to inform 

reimbursement decision based on payers’ WTP (λ). 

The incremental cost-effectiveness ratio (ICER) combines ΔCost (numerator) with ΔQALY 

(denominator) to a single measure that is used to assess if a drug product is providing payers adequate 

‘value-for money’ (Equation 2). From an economic perspective, value relates to what people are willing 

to pay.45 For drug reimbursement, the value of a healthcare technology corresponds to payers’ willingness 

to pay (λ, WTP) for an incremental gain in population health (ΔQALY). Payers’ λ varies across disease 

indications and countries. In the UK, NICE has published a range of acceptable λ values between $26,000 

to $40,000 USD (20,000 € to 30,000 €).46 In the US, λ has been cited as typically between $50,000 to 

$150,000 USD per QALY [1 to 3 times national gross domestic product (GDP) per capita] as per World 

Health Organization’s (WHO) recommendations.47,48  

Estimated ICERs need to be less than λ for payers to reimburse a new drug therapy (Equation 2), 

but a single estimate does not mean the drug will always generate a cost-effective outcome. There is 

uncertainty in the information used to populate the cost-effectiveness model, therefore, there is 

uncertainty in the reimbursement decision. In order to evaluate the level of uncertainty in the ICER 

estimate, simulation techniques can be applied to generate a distribution of ICER estimates.  

The simulated ICER estimates can be plotted on a cost-effectiveness plane to assess cost-

effectiveness under uncertainty (Figure 5). The cost-effectiveness plane is a graphical representation of 

cost-effectiveness, where the horizontal and vertical axis represents the ΔQALY and ΔCost, respectively. 

There are four quadrants that make up the cost-effectiveness plane that have different indications for cost-

effectiveness (Figure 5). ICER estimates that are plotted in quadrants 1 and 3 are negative, whereas 

quadrants 2 and 4 are positive. It is important to note that negative ICER estimates do not imply cost-
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effectiveness. Negative ICER estimates can be attributed to negative ΔCosts or ΔQALYs (see Quadrant 1 

and 3 of Figure 5).  

 

Figure 5: Cost-effectiveness plane.ΔQALY: incremental quality-adjusted life years, ΔCost: 

incremental costs, λ: payers’ willingness to pay for incremental QALY. Quadrants 1 

and 3 contain negative ICERs and quadrants 2 and 4 have positive ICERs. ICER point 

estimates 3, 4, and 5 are cost-effective (<λ), where as ICERs 1, 2, and 6 are not cost-

effective (>λ). 

The λ is represented through the slope (red dotted line) where ICERs below the slope are 

considered cost-effective and ICERs above are considered not cost-effective. The proportion of ICER 

estimates that lie below λ corresponds to the probability of the new treatment being cost-effective based 

on the payers’ WTP.  
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Cost-effectiveness can also be expressed as incremental net monetary benefit, which converts the 

health benefit of the ICER into a single monetary value (Equation 3). An incremental cost that is negative 

implies that the new treatment has a cost-saving effect. The monetary value of the incremental gain in 

health benefit is determined by λ. A positive net monetary benefit (NMB) implies that the new treatment 

adds a net positive return and is considered cost-effective. A negative NMB implies the new treatment is 

not cost-effective.  

NMB = ∆QALY × λ −  ∆Cost 

Equation 3: Calculating Net monetary benefit from cost-effectiveness analysis.NMB: net monetary 

benefit, ΔQALY: incremental quality-adjusted life years, ΔCost: incremental costs, λ: 

payers’ willingness to pay for incremental QALY. 

The net monetary benefit can be calculated for each simulated ΔCosts and ΔQALYs using a 

range of λ thresholds to evaluate the uncertainty of the new treatment being cost-effective over usual care. 

This graphical representation of uncertainty of the CEA is referred to as the cost-effectiveness 

acceptability curve (CEAC) and is shown in Figure 6. As the payers’ WTP threshold increases in value, 

the probability of the new treatment being cost-effective increases. 
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Figure 6: Sample cost-effectiveness acceptability curve. λ: Payers’ willingness to pay threshold for 

a QALY. 

Reimbursement decisions assume budgetary constraints exist for payers where financing one drug 

therapy will require spending less on other therapies. As such, λ reflects the payers’ opportunity cost of 

displacing funds for one treatment program to reimburse another42. The capital budget to reimburse 

healthcare services is funded through taxes (public healthcare) and insurance premiums (private 

healthcare) collected from the population that is under the payers’ care. Given that these budgets are 

limited, funds need to be rationed across a range of disease indications and distributed across the medical 

needs of the entire population. Therefore, reimbursement decisions coming from a payer perspective not 

only consider cost-effectiveness but also budgetary constraints.  

 Drug development 

The drug development process can be viewed as a series of stage-gates with binary outcomes 

(go/no go), where each successive stage in development depends on the likelihood of passing through the 

gate at the previous stage (Figure 8).16,38 Drug development begins with preclinical research to discover 
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promising drug candidates followed by three successive clinical trials to assess their safety and efficacy. 

Decision-makers review evidence generated from respective R&D studies to support their go/no go 

decisions throughout the development process. Regulatory authorities (e.g., FDA, Health Canada, 

European Medicines Agency) review the scientific evidence generated from preclinical and clinical 

studies for market approval decisions. Upon regulatory approval, further cost-effectiveness evidence is 

required to support reimbursement of the final product. 

Drug development projects are characterized by long investment time frames, low probabilities of 

success, and high costs. The probability of successfully bringing an early-stage drug candidate to market 

is 4-7%, where the underlying reasons for attrition are due to lack of efficacy (56%), safety (28%), 

changing strategies (7%), commercial reasons (5%), and operational challenges (5%).15 Bringing a 

preclinical drug to market can take 10 years to complete and can cost from $1.4 to $2.9 billion USD.13,15 

Patent rights for novel technologies function to reward investors for bearing the risks with drug 

development, and annual sales of successful drugs can reach up to $20 billion USD (Figure 7).49–51 
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Figure 7: Top global drug sales in 2017 and 2018.Source: Urquhart, 2019.50 

 

There are commercial (e.g., market size, growth) and technical risks in drug development.16,38 

Technical risks are associated with regulatory approval, which require drug companies to demonstrate the 

safety & efficacy of the drug in development. Technical uncertainties are de-risked as the drug candidate 

progresses through clinical trials. Phase 1 studies evaluate the safety profile of the drug, and phase 2 and 3 

studies assess clinical efficacy.16,38  
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Figure 8: Drug development model from phase 1 to market launch. St: cost to finance 

development phase, θt: probability of successfully passing development phase. Costs13, 

length of trials52 and probabilities of success53 were taken from published literature. 

Commercial risks are associated with market factors that influence profits including competitor 

threats, market size, growth rate, and pricing. Much of the mentioned commercial uncertainties are 

sensitive to the reimbursement status of the drug product. Drug reimbursement status can include the 

following: 1) adopt, 2) adopt with performance-based agreement, 3) adopt with further evidence 4) 

decline and seek further evidence.54 A drug’s reimbursement status will likely impact a drug 

manufacturer’s revenue (e.g., market size) and costs (e.g., to fund post-approval studies). Therefore, payer 

requirements should be considered when estimating commercial value. 

 Value-based pricing and headroom analysis 

The value-based price (VBP) is the maximum price a drug manufacturer can charge payers while 

meeting their cost-effectiveness requirements, which can be estimated through headroom analysis. 

Headroom analysis is a form of cost-effectiveness analysis (CEA) that estimates the maximum price that 
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can be charged in which the treatment will be cost-effective for payers based on their willingness to pay 

(i.e., λ) for health outcomes.39 

Headroom analysis is an extension of cost-effectiveness analysis to support drug development 

decisions.31,55 It is a method that quantifies the potential of a new technology at improving current clinical 

practice in terms of health outcomes and costs.39,56 Headroom analysis considers λ, the effectiveness gap 

(ΔQALY = QALYnew treatment – QALYusual care), and net additional costs or savings (ΔCost# = ΔCostnew 

treatment – ΔCostusual care) from using the new treatment compared to usual care. The effectiveness gap is the 

increase in the effectiveness of a new technology compared to the reference standard (e.g., usual care).  

Importantly, the cost of purchasing the new treatment (i.e., new drug price) is not considered in 

headroom analysis.31,39,56,56 By doing so, the calculated net monetary benefit (i.e., headroom) reflects 

payers’ views on the value of the new treatment due to downstream improvements in health outcomes and 

changes in healthcare costs compared with usual care. If price of the new treatment is greater than the 

calculated headroom value, then the new treatment will not be cost-effectiveness.  

𝐻𝑒𝑎𝑑𝑟𝑜𝑜𝑚 ≤ 𝜆𝛥𝑄𝐴𝐿𝑌 − 𝛥𝐶𝑜𝑠𝑡# 

𝑉𝐵𝑃𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 = 𝐻𝑒𝑎𝑑𝑟𝑜𝑜𝑚 

𝑉𝐵𝑃𝑎𝑛𝑛𝑢𝑎𝑙 =
𝑟𝑑(𝐻𝑒𝑎𝑑𝑟𝑜𝑜𝑚)

1 − (1 + 𝑟𝑑)−𝑇
 

Equation 4: Calculating the value-based price through headroom analysis. ΔCost#: healthcare 

costs without new treatment costs, rd: discount rate used in cost-effectiveness model, 

T: number of years on therapy 

Headroom can be interpreted as the maximum monetary amount that drug manufacturers can 

charge per patient over the course of their treatment while being cost-effective based on payers’ WTP for 

health outcomes. We refer to this estimate as the cumulative value-based price (VBPcumulative), which can 

be annualized (VBPannual) using the annuity formula (Equation 4). An annuity is a financial product that 

pays out a fixed stream of payments to individuals over a defined period. The annual payments made by 
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payers during the period where patients are treated can be viewed as an annuity provided to the drug firm 

until the treatment is complete.  

 Real options analysis to support development decisions 

Drug manufacturers primarily rely on funding from for-profit investors – e.g. shareholders – to 

finance drug development projects.40 Drug development decisions therefore focus on maximizing 

shareholder wealth in terms of free cash flow (FCF), which is calculated according to Equation 5. 

Estimates of FCF can be determined using financial valuation techniques.16,30,38–41 Scientific, 

epidemiological, and clinical literature, along with regulatory and market data, are considered when 

evaluating the risk-reward profiles of drug development programs.16,38  

𝐹𝐶𝐹 = 𝐶𝑎𝑠ℎ 𝑓𝑟𝑜𝑚 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 − 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠 

Equation 5: Free cash flow (FCF) calculation. 

The financial valuation models commonly used to support drug development decisions are risk-

adjusted net present value (rNPV) and real options analysis, where the former is more widely adopted 

because it is simpler to analyze and understand.16,30,38 As described in Equation 6, the risk-adjusted net 

present value (rNPV) approach takes the sum of forecasted FCFs that have been discounted by investors’ 

cost-of-capital (r, opportunity cost of the investment) and drug development risks (θ, e.g., clinical trial 

success).30,57  

𝑟𝑁𝑃𝑉 =  ∑
𝜃𝑡𝐹𝐶𝐹𝑡

(1 + 𝑟)𝑡

𝑇

𝑡=1

 

Equation 6: Formula for risk-adjusted net present value (rNPV).θ: probability of passing 

development phase, t: time, FCF: free cash flow, r: investors’ cost-of capital. 

In general, the rNPV method is said to underestimate the value of an early-stage drug 

candidate.16,30,58 Even though most rNPV estimates for early-stage drug candidates are negative, for-profit 
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investors continue to invest and profit from them.38,59 This suggests that the rNPV method is not useful in 

supporting decisions for early-stage development projects. 

The limitation of the traditional rNPV method is that it does not sufficiently consider the 

following:  

1) Payer requirements for cost-effectiveness26,40,55,  

2) Flexibility (optionality) of drug development (i.e., management has options to stop or continue 

development)16,38,  

3) Uncertainty in the market value of the drug candidate30.  

To address the 1st limitation, headroom analysis can be applied to assess commercial viability of 

early-stage drug candidates by estimating a value-based price that meets payer requirements for cost-

effectiveness. The 2nd and 3rd limitation can be addressed using method of real options, which applies the 

Black-Scholes60 option pricing to inform management decisions61. Real options analysis can be used to 

inform a wide variety of management decisions and is particularly useful when dealing with high levels of 

uncertainty and decision flexibility, such as R&D investments. 16,38,49,58,62,63  Schwartz and Moon (2000)62 

applies the real options approach to develop a partial differential equation to value of R&D projects, as 

well as investment policy (i.e., under what conditions to invest in the project). Other real option models 

using partial differential equations have been developed by Schwartz to support R&D investment 

decisions.49,64 Kellogg (2000)58 among others16,30,38,63 have applied the binomial option pricing model to 

inform pharmaceutical R&D investment decisions.  

A real option is a choice made available to a management team of a company regarding 

investment decisions16,38,58,59. In context to drug development, real options analysis evaluates the option 

that management has on the drug development project rather than the NPV of the drug candidate itself. 

Options are non-obligatory contractual rights to buy or sell an asset (e.g., drug candidate) at a pre-

specified price up to a certain expiry date (decision node). Each decision can be viewed as a call option, 
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which is the right to finance the next stage in development. The option value for a drug development 

decision considers the market value of the drug candidate with the required capital investment to continue 

to the next development stage.  

With every option, management can decide whether or not to continue investing in developing 

the drug candidate. Real options analysis assumes that management would only go forward with 

development (i.e., exercise the call option) if the drug candidate is expected to generate a profit (i.e., 

positive FCF). Incorporating this rule-based logic is how decision flexibility (optionality) is priced into 

option value.  

Decisions to invest in drug development projects are structured around clinical trials (Figure 8). 

Investors have options to continue financing development in light of new evidence generated from the 

previous phase, which can significantly change the estimated market value of the drug candidate49,58,63. 

Real options analysis acknowledges that the underlying market value of the drug candidate changes based 

on new medical (e.g., clinical trials) and market data (e.g., competition, patient demographics). A measure 

of volatility is incorporated to estimate upper and lower market value estimates (Figure 10, top). Option 

value therefore considers both the upper and lower estimates using risk-free probabilities based on the 

risk-free interest rate. 

A simple example comparing rNPV and real option valuation methods is illustrated in Figure 9. 

Suppose management is faced with a decision to invest $5 MM to develop a phase 3 drug candidate. The 

market demand for the drug is stochastic and, if approved, the risk-adjusted market value can be either 

$40 MM or $10 MM. To realize this value, the drug product must be launched at a cost of $20 MM. The 

rNPV method does not consider decision flexibility and assumes the drug will be launched even if it is 

expected to generate a loss of -$10 MM. In reality, management would avoid incurring a loss by not 

launching the drug if new information gained through phase 3 trials indicated a negative financial 

outcome. By not launching the drug at t=1, the company is in a net neutral position of $0 (V1,2) rather than 
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incurring a loss of -$20 MM (rNPV1,2). This adjustment for decision flexibility in real options valuation 

makes this drug development project a profitable venture, whereas the rNPV estimate does not. 

 

Figure 9: Comparing real option value (V) and risk-adjusted net present value (rNPV). Phase 3 

trials cost: $5 MM, launch cost: $20 MM, market value at launch: $40 MM or $10 MM, 

t: time, p: probability. 

In this example, the two valuation methods lead to different recommendations. The rNPV method 

calculates a loss of -$5 MM and supports a decision to forgo investment (no go), whereas the real option 

method estimates a net gain of $5 MM and supports the decision to invest. This difference in valuation 

estimates are primarily driven by incorporating decision flexibility in the real options valuation method 

but not for rNPV. For early-stage drug development projects, there are a series of decisions management 

teams must make as a drug candidate transitions from one phase to the next. This series of decisions can 

be incorporated through the binomial option pricing model (BOPM). 

2.4.1 Binomial option pricing model 

The binomial option pricing model was previously applied to value early-stage biotechnology 

companies by Kellogg et al.58 The BOPM structures the investment in early-stage drug candidates into a 

series of call options referred to as compounded options16,30,58,63. The general rule-based logic pertaining 

to options is shown in Equation 7. The value of an option on an asset (e.g., drug) now is based on what 

the asset will be worth in the future. The BOPM considers decision flexibility. We assume that 
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management will only invest in development if the risk-adjusted market value of a drug candidate (θtAt,k) 

is greater than the development cost (St, i.e., capital expenditures) for a particular phase. The 

corresponding option value is the net positive difference between θtAt,k and St. If θtAt,k < St, then 

management will forgo investment and the option is valued at $0. 

Vt,k = Max[(Ѳ𝑡At,k −  St), 0] 

Equation 7: Binomial option pricing model algorithm.Project value (A) is adjusted by the expected 

probability (θ) of clinical development success at each phase and subtracted by 

development cost (St). Options are valued at every time point (t) and every scenario 

(k) within each time point and is based on the future value at the next stage. 

For early-stage drug candidates, management has series of decisions (Vt,k) to make throughout the 

development process. At every decision node along the development process, management has newly 

generated evidence on the technology along with the option (Vt) to continue or halt development.  The 

newly generated evidence is assumed to increase or decrease the market value of the drug by a measure of 

volatility (σ) that reflects the uncertainty in the market value of the underlying drug candidate (At,k). The 

possible market values (At,k) the drug candidate can attain increases exponentially with time as a result of 

incorporating uncertainty in market value (Figure 10).  
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Figure 10: Asset and option values in a binomial lattice. The market value of the drug development 

project (asset) can be adjusted upwards (u) or downwards (d) based on a volatility 

measure (σ). Options values (Vt,k) are estimated based on the market value (At,k), 

development costs (St, capital expenditures), and risks (θt). Ph: development phase, 

NDA: new drug application. 

Options (Vt) are exercised at a specified expiry date (i.e., the decision node). Exercising the 

option to continue investment allows management to gain new information about the drug candidate, as 

well as the rights on the option to finance the next development phase.16 For example, if a decision was 

made to finance phase 3 development (i.e., V3,k was exercised), positive results provides decision-makers 

the option (V6,k) to file a new drug application (NDA). Similarly, investing in phase 2 clinical trials (V1,k) 
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buys the option to acquire the future option to invest in phase 3 trials (V3,k). These are referred to as 

iterated compound options, nested options, or multi-stage options.30  

The option (Vt) to invest or disinvest in a drug development project considers the financial 

benefits generated from the approved drug and the capital expenditures required to sell it on the 

market.16,38,62 To calculate option value, the market value of the drug candidate (At, Asset value) must first 

be estimated at every time point and adjusted by corresponding development risks (θt). The market value 

of the drug candidate (At) is based on the profits from future sales revenues (Equation 8). The risk-

adjusted market value of the drug candidate (Atθt) is then compared against the capital expenditure (St) 

required to determine if exercising the option will generate positive FCF. It is important to note that in the 

BOPM, the FCF to calculate the market value of the drug candidate (At) excludes capital expenditures 

pertaining to drug development (St) because they are considered later when calculating option value (Vt).  

𝐴𝑡 =  ∑
𝐹𝐶𝐹𝑡

(1 + 𝑟𝑐)𝑡
 

𝑇

𝑡=0

 

Equation 8: Calculating the market value of the drug development project. The drug development 

project or drug candidate is valued by taking the present value of future free cash 

flows (FCFs) generated from sales revenues that are projected out until time T and 

adjusted by the investors’ cost of investment capital (rc). 

The binomial option pricing model is a simplification of the Black-Scholes60 option pricing model 

and requires similar assumptions including perfect liquidity, no arbitrage, and a constant risk-free rate (rf).  

The option pricing model assumes that the market value on the underlying asset (At) is log-normally 

distributed, which is how the volatility measure is derived.16,58,63. Although some assumptions cannot be 

met in a real options context (e.g., perfect liquidity), the model can still be applied to inform management 

decisions.16,30,63  
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u = eσ√∆t 

d = 1/𝑢 

Equation 9: Upward (u) and downward (p) asset price (At,k) adjustments using σ. 

The model assumes that the market value of the drug candidate (At) fluctuates in a Brownian 

motion (σt, volatility), and its upper and low limits are represented through a binomial lattice (Figure 10). 

The market value can move upwards (u) and downwards (d) according to a measure of volatility (σ) that 

represents the log-normal standard deviation in the market value of the drug candidate (Equation 9).58 

This volatility measure can be estimated in reference publicly-listed firms with comparable 

products.16,58,63 The different scenarios (k) of market values at each time point (t) represent the distribution 

of market values the drug candidate (At) can command throughout the development process. 

The BOPM projects the upper and lower market values of a drug candidate (At) at every possible 

scenario (k) and time point (t) up until product launch. From product launch onward, the market value of 

the drug is assumed to be more predictable given that the drug has received market approval. Sales 

revenues projected from the start of drug launch are discounted back to the initial decision point with the 

investors’ cost-of-capital (rc). From there, the market value at t0 is adjusted by the upward and downward 

factor up until product launch (t7) to provide the range of possible values throughout the development 

process where decisions need to be made. 

Using the range of market value estimates for the terminal nodes, options are priced starting from 

the terminal decision nodes (V7,t) of the binomial lattice based on their corresponding asset values (A7,t). 

In this example, the terminal options are based on the decision to invest in launching the approved drug at 

Year 7 (Figure 10). An example is shown in Equation 10. 
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𝑉7,1 = 𝑀𝑎𝑥 [(100% × 𝐴7,1 − $94.3),  0] 

Equation 10: Example option value (V7,1) calculation at a terminal decision node. 

Once all options are valued at each terminal node (Year 7), the preceding series of options in 

Year 6 are priced recursively from options in Year 7 as described in Equation 11. This means that all 

preceding options from the terminal options can be viewed as nested options.30 The value of a nested 

option considers two future option values (e.g., V6,1 can change to V7,1 or V7,2) based on the upward or 

downward change in the market value of the drug candidate.  

𝑉𝑡,𝑘 =  𝑀𝑎𝑥 (Ѳ𝑡[𝑉𝑡+1, 𝑘 ∗ 𝑝 + 𝑉𝑡+1, 𝑘+1 ∗ (1 − 𝑝)]𝑒−𝑟𝑓∗√𝞓𝑡 − 𝑆𝑡 , 0) 

Equation 11: Calculating options on future options (i.e., nested options). Nested options are based 

on a risk-free probability (p) of realizing two possible option values (upper and lower 

value) using the risk-free rate (rf). 

Future options have a risk-neutral probability (p) of realizing a higher value, or a lower value 

with a probability of 1-p. Risk-neutral probabilities are probabilities that does not consider risks by using 

the risk-free rate (rf). Risk-neutral probabilities (p) are applied to value options under the assumption of 

no arbitrage and that option values are independent of investors’ risk preferences.58 The probability of a 

future option having a higher value is calculated as described in Equation 12. All option values are 

adjusted for development and commercialization risks (Ѳ𝑡), as well as time value of money using the risk-

free rate (rf). This iterated valuation process is repeated until the initial option (V0,1) is priced. 

p (risk − neutral probability) =
𝑒−𝑟𝑓∗√𝞓𝑡 − 𝑑

𝑢 − 𝑑
 

Equation 12: Calculating the risk-neutral probability of an option being valued higher (u) or lower 

(d) in the future using the risk-free rate (rf). 

The objective of the BOPM is to value the initial option to invest in development – not 

necessarily to value future options. However, the initial option value is estimated recursively based the 



 

28 

range of terminal market values of the drug candidate (At,k) when it is ready for launch. This implies that 

the BOPM assumes the drug candidate completes development and launches when estimating the 

terminal market values.  The estimated options after the initial decision node are valid only if the drug 

candidate passes through every development phase and is financed regardless of profitability, which is 

further discussed in Chapter 5.  

 Value-based real options analysis framework 

The market for medical care is dynamic due to uncertainties, in part, involving the effectiveness 

of the treatment, pricing, the health of the patient population, market conditions, the payers’ willingness 

to pay, and the wealth of a nation.65 The volatility in the market value of the drug candidate also involves 

such uncertainties and should be captured when evaluating in pharmaceutical R&D projects. We propose 

a decision framework that integrates real options and cost-effectiveness analyses to better consider the 

uncertainties underlying the healthcare market when evaluate drug development and commercialization 

strategies. We refer to this as the value-based real options analysis (VB-ROA) framework (Figure 11). 

The VB-ROA framework leverages cost-effectiveness analysis to better consider economic drivers of 

drug value. The VB-ROA framework considers the uncertainties underlying the healthcare market 

through the volatility (σ) estimate used to express the variance in the market value of the drug candidate.   

The VB-ROA framework supports decisions from an industry perspective to develop cost-

effective therapies that meet the needs of payers while ensuring profitability for drug manufacturers. The 

VB-ROA framework was constructed in two stages: 

1. Value-based drug price (VBP) was estimated using headroom analysis derived from a 

probabilistic Markov model assuming a payer WTP of $50,000 per quality-adjusted life year 

(QALY) and 3% discount rate (rd) [Chapter 3]. 

2. Real options analysis (ROA) via the binomial lattice option pricing model was conducted to 

inform go/no go investment decisions using the VBP to forecast revenues discounted at a cost 
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of capital (rc) of 15% and adjusted for clinical development risks (θt). The stochastic variable 

(σ) underlying the option value is based on the value-based price, as well as uncertainties in 

market size and operating costs [Chapter 4]. 
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Figure 11: Overview of the value-based real option analysis (VB-ROA). The framework considers the perspectives of patients (orange), 

payers (grey), and for-profit investors/drug manufacturers (blue). 
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VB-ROA considers time value of money and health outcomes, where costs, health outcomes, and 

profits that are predicted to occur in the future are valued less than those that occur in the present. Cost 

and health outcomes are discounted to present value terms using the payers’ discount rate of 3% (rd). 

Using a price estimated on headroom analysis functions to constrain revenue projections on cost-

effectiveness limits (i.e., payer’s WTP per incremental health outcome). The size of the market as well as 

any changes to its growth and penetration should be in line with the prevalence and incidence of the 

patient population used in headroom analysis.  

The volatility of the market value of a drug candidate is difficult to measure in practice given that 

they are innovative technologies with no precedent cases. Volatility can be estimated in reference to the 

financial history of comparable early-stage biotech companies. Comparability should consider the disease 

indication and the patient population the technology is targeted towards. If market data is unavailable, 

then estimates can be derived through interviews with subject-matter experts (e.g., industry executives) 

through probability elicitation methods.66,67 

Annual financial reports of comparable companies and industry data should be referenced to 

estimate costs and revenues. Model parameters for the probability of development phase success and the 

capital expenditures required to finance each phase can be estimated from published studies on drug 

productivity trends. The value of this framework is that it offers decision-makers with a means to 

collectively consider diverse types of information as well as perspectives that are pertinent to drug 

development success.  

The final output of the model is the option value to finance the development of a drug candidate 

based on the profitability of the drug when sold at the cost-effective price. A positive option value 

suggests that going forward with the development will generate a positive net present value (NPV) under 

a value-based price. A worthless option suggests that investing in development will lead to negative 
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returns. The model tracks the drug development project in terms of future profits and cost-effectiveness 

outcomes to ensure the needs of both payers and for-profit shareholders/investors are satisfied. 
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CHAPTER 3. VALUE-BASED PRICE FOR AN EARLY-STAGE DRUG 

THAT PREVENTS HYPOGLYCEMIA 

 Study Objective 

The study objective is to quantify the value-based price (VBP) of a phase 1 drug candidate (i.e., 

SSTR2a therapy) aimed at preventing hypoglycemia through an early cost-effectiveness analysis method 

(i.e., headroom analysis) from the United States (U.S.) payer perspective. In the next chapter, we use the 

VBP to project revenues in a financial valuation model (i.e., real options analysis) that informs drug 

development decisions. 

 Introduction 

3.2.1 Clinical background 

Cost-effectiveness analysis (CEA) has yet to be applied to supporting drug development decisions 

for early-stage technologies aimed at preventing hypoglycemia for type 1 diabetes (T1D) patients. Over 

1.3 million people in the US suffer from T1D68–70, a chronic disease that typically requires intensive 

insulin therapy (i.e., ≥ 3 insulin injections daily) due to the autoimmune-mediated destruction of 

pancreatic islet β-cells that prevents normal secretion of endogenous insulin.71 A frequent and significant 

risk to the insulin dependent T1D patient population is hypoglycemia: a condition with abnormally low 

blood glucose levels partly due to glucagon counter-regulatory deficiencies.71–73 In the US, up to 10% of 

deaths among people with type 1 diabetes are related to hypoglycemia.74,75  

Hypoglycemia may be symptomatic or asymptomatic, where symptomatic hypoglycemia can be 

further segmented into severe and non-severe cases. Hypoglycemic symptoms include cognitive 

impairments (e.g., autonomic, neuroglycopenic, general malaise) that can lead to seizure, coma, and 

death, depending on severity.76,77 T1D patients undergoing intensive insulin therapy are at risk of severe 

hypoglycemia – a life threatening event that can cause seizure, coma, and death.78,79 Hypoglycemia occurs 

in the daytime or evening (nocturnal). Nocturnal hypoglycemia (NH) occurs during sleeping hours (i.e., 
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12:00 AM to 6:00 AM) and accounts for 15% to 50% of all cases.80,81 NH is more difficult to treat due to 

the inability to detect and manage low glucose levels while asleep.  

Hypoglycemia can also be categorized in terms of blood glucose (BG) levels experienced73. Level 

1 hypoglycemia occurs when blood glucose levels drop between 3.0 – 3.9 mM. Level 2 hypoglycemia is a 

clinically meaningful outcome that occurs when BG drops below 3.0 mM. Level 3 hypoglycemia (i.e., 

severe hypoglycemia) occurs when symptoms are so severe that the patient requires 3rd party assistance to 

restore euglycemia and alleviate symptoms.  

Recurrent hypoglycemia that is poorly managed can cause patients to have impaired awareness of 

hypoglycemia (IAH), which occurs as a result of reduced symptomatic and hormonal responses to 

hypoglycemia.72,77,81–85 Approximately 20% of the T1D population have IAH, which increases their risk 

of severe hypoglycemia by 6-fold.82 Reported rates of severe (Level 3) hypoglycemic events are low 

relative to the overall rate of hypoglycemia in T1D (up to 1.59 episodes per person-year), but has a 

significant impact on individual patients’ quality of life and can even lead to death. In comparison, non-

severe events (Level 2) are more frequent (40 to 137 events per person-year), but have a lesser impact 

patients’ quality of life on a per event basis.81,83,86 Nonetheless, preventing non-severe hypoglycemia is 

important to prevent future severe events that have a greater impact on patient health-related quality of 

life (HRQoL) and hospital costs.87  

 



 

35 

 

 

Figure 12: Trends in diabetes prevalence (1980-2014) by country income category. Source World 

Health Organization, 2016.88 

 

The economic cost of diabetes in the US comprised 20% of all healthcare expenditures ($327 

billion) in 2017.89 This was a 26% increase from 2012 ($260 billion) due to gradual increases diabetes 

prevalence (Figure 12) and cost of insulin therapies.88,89 Hypoglycemia has a significant impact on the 

overall cost of diabetes management including direct (e.g., ambulance services, emergency admissions, 

hospitalizations, physician visits, increased blood glucose measurements) and indirect (e.g., work 

productivity losses) costs.77,90 A 2015 study estimated that costs to manage severe hypoglycemia for US-

based T1D patients with IAH were in between $4.9 to $12.7 billion per year.91 

Although no preventative treatment for hypoglycemia exists, improvements in glucose 

monitoring, insulin delivery systems, and insulin-based pharmacotherapies are available to reduce the risk 

of occurrence for diabetic populations at risk of hypoglycemia. A clinical trial study, the HypoAna 

trial80,92, reported a relative risk reduction of 0.29 (95% CI 0.19-0.84) and 0.06 (95% CI 0.02-0.10) in 

non-severe and severe hypoglycemia, respectively, when comparing the effect of insulin analogues vs. 

human insulin for a T1D cohort with recurrent severe hypoglycemia or IAH. Non-insulin adjunct 
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therapies with insulin treatment exist to preserve pancreatic islet β-cell functions, but evidence to support 

widespread clinical adoption is weak.93  

3.2.2 Somatostatin receptors and hypoglycemia 

Somatostatin is a small peptide hormone that is dysregulated in insulin dependent diabetes. The 

hormone binds onto somatostatin receptors found on pancreatic alpha cells, which functions to inhibit the 

release of glucagon, and subsequently, glucose. Suppressing glucagon secretion in the pancreas has been 

shown to prevent recovery from hypoglycemia.94,95 A somatostatin receptor type 2 antagonist (SSTR2a) 

functions to block the native hormone from the docking onto somatostatin receptors along the surface of 

pancreatic alpha cells. Preclinical studies have shown that blocking the somatostatin type 2 receptors can 

reverse the dysregulated glucagon system by enabling the release of glucagon to simulate the liver to 

release glucose.94–97 

It is hypothesized that developing an SSTR2a that prevents hypoglycemia can improve patient 

health outcomes and reduce healthcare expenditures associated T1D. Patient health-related quality of life 

is likely to improve due to the reductions in hypoglycemia98, as well as reduce the amount of healthcare 

resources spent on managing unwanted symptoms. The relevance of our choice to evaluate an SSTR2a 

technology using the VB-ROA framework is supported by an existing commercial development of a 

therapeutic in this category.   

Zucara Therapeutics Inc. is a biotechnology company that is currently developing a novel peptide 

that targets somatostatin type 2 receptors to prevent hypoglycemia in people with diabetes, with an initial 

focus on nocturnal hypoglycemia. The SSTR2a is a first-in-class drug candidate currently in preparation 

to enter phase 1 clinical trials.86  This technology area is at the correct stage of development to reflect the 

utility of the VB-ROA framework, facing the risks and uncertainties of a novel first-in-class agent in early 

stage development. 
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As drug candidates prepare for phase 1 studies, decision-makers in drug development need to 

evaluate the commercial and economic viability of the product to support the decision to continue 

development as well as construct development strategies. Estimating the future value-based price of a 

SSTR2a drug would help define the rationale to develop this early-stage technology. 

 Methods 

The value-based price was enumerated via headroom analysis using a Markov model (Figure 13). 

Markov models are used to assess long-term cost-effectiveness of therapies for chronic diseases, such as 

cancer and diabetes.  It is an analytic framework that is commonly used in decision analysis and economic 

evaluations of healthcare interventions.99 They are stochastic processes where simulated patients move 

from one health state to another based on transition probabilities. The Markov model health states must be 

mutually exclusive and collectively exhaustive such that each individual patient in the model can be in 

only one state at any given time.  

Markov models without tunnel states are memoryless, which means that the transition probability 

from the one state to another is not conditional on the previous health state.99,100 Simulated individuals 

either move between health states or stay in the same state at discrete time intervals (i.e., cycles). The 

time spent in a particular health state is associated with a cost and a health outcome, which are aggregated 

for the patient population over subsequent cycles. The incremental costs and effects are compared against 

λ to assess cost-effectiveness. 

Headroom analysis applies cost-effectiveness analysis to calculate the incremental monetary 

value (i.e., headroom) gained from using a new therapy compared to usual care that takes the perspective 

of payers. The headroom can be interpreted as the maximum amount that drug manufacturers can charge 

payers for the drug to be cost-effective. 
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3.3.1 Target product profile  

Although an early stage product in this new therapeutic category is currently in development, the 

performance targets for the product considered here was developed more generally, with assumptions 

developed from benchmark data from literature sources. This headroom analysis assumed a target product 

profile (TPP) for the SSTR2a drug candidate as described in Table 1. TPPs facilitate communication 

between drug manufacturers and stakeholders regarding drug labelling claims.101 The TPP for the 

SSTR2a treatment was developed using assumptions based published literature and publicly available 

information, where possible.  

The main value proposition of an SSTR2a treatment is its ability to reduce the frequency of 

symptomatic hypoglycemia (i.e., non-severe daytime, non-severe nocturnal, and severe hypoglycemia). 

Therefore, the indication was assumed to be for symptomatic hypoglycemia and the target population was 

T1D patients with a recent event. The target reductions in symptomatic hypoglycemia were based on the 

observed efficacy of usual care (i.e., basal-bolus insulin) and a report published by the American Diabetes 

Association Workgroup on Hypoglycemia outlining clinical meaningful improvements in managing 

hypoglycemia for T1D patients.102 The improvements in patient HRQoL were also included as secondary 

clinical endpoints given the association between hypoglycemia and patient quality of life outcomes.98 
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Table 1: Target product profile for an SSTR2a drug candidate aimed at preventing 

hypoglycemia for type 1 diabetes patients. 

Description Target Product Characteristics 

Indication Adjunct to insulin therapy to prevent symptomatic hypoglycemia (i.e., daytime, 

nocturnal, and severe) for type 1 diabetes patients. 

Patient population type 1 diabetes patients with recent episode(s) of symptomatic hypoglycemia  

Route of administration Subcutaneous injection 

Dosage form Solution for once-daily injection 

Pharmacokinetics Suitable half-life to allow for daily administration 

Target endpoints1 Relative risk of 0.469 (0.357, 0.616) non-severe symptomatic (Level 2, <3.0 

mmol/L) and 0.774 (0.141, 1.458) severe hypoglycemia (Level 3)  

Secondary outcome measures Patient quality of life (EQ-5D), impaired hypoglycemia awareness (IAH, Gold 

score) 

1Relative risk reported as mean (95% CI). 

The SSTR2a was assumed to be a peptide, as the majority of drugs acting on this target including 

approved agents for other indications (e.g. octreotide) and a preclinical compound shown to prevent 

hypoglycemia in animal models96,97 are cyclic octapeptides.  Given this, the drug formulation (dosage 

form) was assumed to be in a solution form for subcutaneous injection similar to insulin therapies. The 

dosage form was assumed to allow for once-daily administration.  These product characteristics are also 

similar to Zucara’s intended approach to SSTR2a clinical development.103  

3.3.2 Model structure 

The cost-effectiveness model was constructed in compliance to best practice guidelines, where 

possible.104–107 The model structure was informed through a review of previously published cost-

effectiveness models on insulin analogue therapies for T1D patients that considered hypoglycemia as part 

of their analysis.108,109 Markov models were mostly used given that it is a chronic condition and the 

technologies have long-term health benefits. Model structures for diabetes vary in complexity where 

simple models have two states and others that are more complex.108 For example, the CORE Diabetes 

model is comprised of 17 inter-dependent sub-models that each have several health states nested within it 

to simulate diabetes progression and several comorbidities.110  
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In this study, the cost-effectiveness model for headroom analysis was constructed using a Markov 

model with state-dependent transition probabilities as shown in Figure 13. Memory was not incorporated 

into the Markov model through tunnel states due to the lack of evidence and data needed to populate the 

model. The Markov model has a 1-year cycle length and consists of three health states: T1D with IAH 

(state 1, S1), T1D without IAH (state 2, S2), and the terminal state of death (state 3, D). Health states S1 

and S2 are a stratification of the T1D population based on IAH prevalence reported in literature, which is 

approximately 20% of the T1D population.82 Therefore, the model starts with 20% of the T1D population 

with IAH (S1) and 80% without IAH.  

 

 

Figure 13: Markov model schematic for the headroom analysis. Patient population was segmented 

into two groups with different health states where one segment has IAH (S1) and the 

other does not (S2). 

The model begins with a clinical decision to treat patients with either usual care (basal-bolus 

insulin, T0), or a new treatment (basal-bolus insulin with SSTR2a as adjunctive therapy, Tx). Both 

treatment pathways have the same number of health states. At the start of every cycle, simulated patients 

either remain in the same health state or transition into the terminal state of death (D) using transition 



 

41 

 

probabilities. Transition probabilities to enter the terminal state of death were estimated using US age-

specific mortality data111 and the relative risk of death for T1D patients compared to the general 

population112 (Table 2). Patients that transition to death remain in the absorbing state and do not incur any 

costs or changes in QALYs. The model assumed no state transitions between states S1 and S2 due to the 

lack of empirical data (Figure 13). 

The model simulates incremental differences in health benefits (ΔQALY) and costs (ΔCost#) 

associated with managing T1D and hypoglycemia across two treatment alternatives: insulin therapy (T0 – 

usual care) vs insulin therapy with SSTR2a (Tx – new treatment). Health states S1 and S2 track costs and 

health outcomes pertaining to living with T1D (e.g., daily insulin therapy, blood glucose measurements), 

as well as, managing symptomatic hypoglycemic events (i.e., non-severe daytime, non-severe nocturnal, 

and severe events). Other complications associated with hypoglycemia (e.g., cardiovascular, neuropathy) 

were not considered in this model because the assumed value proposition of the therapy was to prevent 

hypoglycemia and improve patient HRQoL outcomes while reducing healthcare costs due to symptomatic 

events.   

Incremental costs (ΔCost#) between the two treatment alternatives were from the perspective of 

US payers. The model considers only direct medical costs pertaining to T1D, which includes costs for 

insulin therapy and managing hypoglycemic symptoms as shown in Table 3. However, the costs 

associated with new treatment were not included in the analysis per the headroom method.39,56  

Incremental effectiveness was measured in quality-adjusted life years (ΔQALY). The analysis 

used the QALY as the primary outcome measure given that a majority of CEA for insulin analogues 

measured effectiveness in terms of QALYs.108 It is assumed that all patients have the same baseline 

HRQoL measure at the start of the model. For every hypoglycemic event encountered, patients’ baseline 

quality of life are adjusted by HRQoL deductions associated with a single occurrence of hypoglycemia.  
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Costs and health benefits were adjusted by a payers’ discount rate (rd) of 3% per year, as per US 

guidelines by the second panel on cost effectiveness (case 1).107 A lifetime horizon was chosen for the 

baseline model, which was assumed to be 40 years. We assumed a lifespan that ends by 85 years of age, 

and the average age of patients were 45 years old based on clinical trial data used for the model.  

The primary outcome is the value-based price derived from the calculated headroom (Equation 

4). The value-based price is based on payer willingness-to-pay threshold (λ) of $50,000 USD per QALY 

gained, which is a common threshold used in other CEA of T1D studies.108 Statements of commercial 

viability are based on price comparisons of similar treatments, as well as subsequent financial valuation 

analysis of the business opportunity (see Chapter 4).  

3.3.3 Clinical parameters 

The clinical model for T1D was constructed using data found in published literature as 

summarized in Table 2. The transition probabilities from health states S1 and S2 to death (D) were 

calculated by using age-specific mortality statistics published in the 2014 US Census111, which were 

adjusted by the relative risk of mortality for T1D patients relative to the general population reported in a 

meta-analysis by Lung et al. (2014)112. 

To populate data pertaining to patient-level disease trajectory (i.e., hypoglycemia incidence) and 

insulin therapy, we referenced two clinical trials that assessed efficacy of insulin analogues to manage 

blood glucose and hypoglycemia for T1D patients. As a result, clinical parameters across states S1 and S2 

differed in terms of hypoglycemia rates (Table 2A) and insulin treatment doses (Table 3B). To model 

T1D patients with IAH (S1), we referenced the HypoAna trial92,113, which is a multicenter, prospective, 

and randomized study that evaluated the effectiveness of insulin analogues for a T1D cohort that either 

had impaired awareness (38%) or were fully unaware (56%) of hypoglycemic symptoms. For T1D 

patients without IAH (S2), we referenced the BEGIN BB T1 trial114, which is a multinational clinical trial 
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comparing the efficacy of insulin analogues for a T1D cohort with no recent severe hypoglycemic events 

and are not considered to have IAH.  

Health benefits were measured in terms of the QALY metric, which ranges from 1 (perfect) to 0 

(death). HRQoL weights were obtained from a time trade-off survey by Evans et al (2013)115 that asked 

the general population to trade off a portion of their remaining lifespan for improvements in the current 

quality of life. For every occurrence of symptomatic hypoglycemia, there is a reduction from a patient’s 

baseline quality of life. All patients in the model had a baseline HRQoL measure of 0.844 along with 

HRQoL weight deductions that correspond to a single hypoglycemic event with different severities (Table 

2D).115  

Table 2: Summary of clinical parameters inputted into the cost-effectiveness analysis. 

Clinical Parameters Mean 

(95% CI) 

Distribution 

Assumed 

Hyperparameters 
 

Source 

A. Hypoglycemia Incidence (events/person-year) 

T1D with IAH (S1) 

Non-Severe Hypoglycemia     

Daytime 53 Gamma α: 4530 

β: 0.0117 

113 

Nocturnal 6.4 Gamma α: 545 

β: 0.0117 

113 

Severe Hypoglycemia 1.18 Gamma α: 93 

β: 0.0127 

92 

T1D without IAH (S2) 

Non-Severe Hypoglycemia     

Daytime 39.46 Gamma α: 2846 

β: 0.0139 

114 

Nocturnal 5.93 Gamma α: 428 

β: 0.0139 

114 
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Clinical Parameters Mean 

(95% CI) 

Distribution 

Assumed 

Hyperparameters 
 

Source 

Severe Hypoglycemia 0.39 Gamma α: 28 

β: 0.0139 

114 

B. Health State Transition Rates     

Relative Risk of Mortality 3.82 

(3.41, 4.29) 

Log-normal N/A 111, 112 

C. Relative Risk of Hypoglycemic Events (SoC & SSTR2a vs. SoC) for S1 and S2 

Non-Severe Hypoglycemia 

(Daytime & Nocturnal) 

0.469 

(0.357, 0.616) 

Log-normal N/A 102,116 

Severe Hypoglycemia 0.774 

(0.414, 1.458) 

Log-normal N/A 102,116 

D. HRQoL Weights for S1 and S2 

Base Quality of Life 0.844 

(0.839, 0.848) 

Gamma α: 684127 

β: 0.00000123 

115 

Non-Severe Hypoglycemia     

Daytime -0.005 

(-0.004, -0.006) 

Gamma α: 384.16 

β: 0.0000130 

115 

Nocturnal -0.007 

(-0.005, -0.009) 

Gamma α: 188 

β: 0.0000372 

115 

Severe Hypoglycemia -0.055 

(-0.046, -0.065) 

Gamma α: 465 

β: 0.000117 

115 

Given there is no clinical evidence on the SSTR2a’s safety and effectiveness in humans, we 

defined a counterfactual (i.e., hypothetical scenario for drug performance in terms of HRQoL and 

quantity of life) based on benchmarks of minimally required effectiveness set by the American Diabetes 

Association (ADA) Workgroup on Hypoglycemia. The effectiveness of the new treatment (i.e., SSTR2a) 

compared to usual care (e.g., basal-bolus insulin) was assumed to be the same for patients with (S1) and 

without IAH (S2). Treatment effectiveness was measured in terms of relative risks (RR), which is a ratio 
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of hypoglycemia incidence rates (incidencenewtreatment/incidenceusual care). To quantify hypoglycemia 

incidence in the population receiving new treatment, hypoglycemia incidence for those receiving usual 

care were adjusted with the RR of SSTR2a. 

According to the ADA, a clinically meaningful improvement in hypoglycemia management 

compared to standard care is a 10 – 20% reduction in severe and ≥ 30% reduction in non-severe 

hypoglycemic events.102 To represent the effectiveness pertaining to standard of care, we referenced a 

clinical trial by Davies et al (2016) that evaluated the efficacy of newer insulin analogues (i.e., insulin 

degludec) against older analogues (i.e., insulin detemir).116 The reported relative risks (RR) from Davies 

et al (2016) were adjusted by the benchmark reductions in hypoglycemic events (i.e., 10% NSH and 30% 

SH), which gave a RR of 0.469 (95% CI 0.357, 0.616) and 0.774 (95% CI 0.414, 1.458) for non-severe 

and severe hypoglycemia, respectively (Table 2C). 

3.3.4 Cost parameters 

Costs were estimated based on data gathered from published literature and adjusted to 2018 US 

dollars. Only direct costs from a payer perspective were considered in the model, which includes 

healthcare resources associated with managing symptoms of hypoglycemia and basal-bolus insulin 

therapy (Table 3). Insulin costs were calculated based on the daily insulin dosage reported in the 

HypoAna trial92,113 and BEGIN BB T1 trial114 and prices of insulin detemir and insulin aspart reported by 

Thomas Reuters.117  

Expected costs for hypoglycemia were calculated based on US healthcare budget impact studies, 

which include frequency and likelihood (%) of occurrences, as well as actual costs.118–120 Each cost item 

was adjusted with the probability of consuming these healthcare resources, and the expected costs were 

inputted into the model. The per event cost of non-severe hypoglycemia costs include an average of 3.9 

extra blood glucose tests and a 13% chance of a general physician visit.  
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Costs for severe hypoglycemia were based on the assumption that the events required medical 

attention, not merely assistance from another person. This included the following cost items: ER 

admission, ambulance, inpatient, outpatient, general physician consultations, and nursing services. 

Glucagon injection costs were excluded when estimating SH event costs based on the approach taken in 

an economic impact study by Foos et al (2015).118 The study included glucagon injections for SH only 

when it required assistance from another person (e.g., oral ingestion of carbohydrate sugars), but excluded 

when the SH required medical attention (e.g., physician visits, ambulance, emergency).118  

 

Table 3: Direct healthcare costs for hypoglycemic events and insulin therapy. 

Costs ($USD) Frequency Mean (SD) %RSD Distribution Hyperparameters Source 

A. Adverse Events 

Non-Severe Hypoglycemia (Daytime & Nocturnal) 

Visit to GP 13.7% $51.00 N/A N/A N/A 118 

Extra Blood 

Glucose Test 

3.9 times $1.22 N/A N/A N/A 118 

Severe Hypoglycemia 

ER Admission 17.0% $139.00 

($217.67) 

818% Gamma α: 0.0149 

β: 1781 

118,120 

Ambulance 21.3% $214.00 N/A N/A N/A 118 

Inpatient 24.0% $4,171.00 

($12,805.17) 

1136% Gamma α: 0.00775 

β: 145452 

118,120 

Outpatient 20.0% $325.00 

($471.42) 

644% Gamma α: 0.0241 

β: 3036 

118,120 

Visit to GP 26.0% $51.00 N/A N/A N/A 118 

Nurse 13.0% $43.00 N/A N/A N/A 118 

B. Insulin Usage (IU/kg/day)      

T1D with IAH (S1)       

Insulin Detemir N/A 23.9 (12.0) N/A Gamma α: 3.9667 92,113 
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Costs ($USD) Frequency Mean (SD) %RSD Distribution Hyperparameters Source 

β: 6.0251 

Insulin Aspart N/A 24.9 (13.4) N/A Gamma α: 3.4529 

β: 7.2112 

92,113 

T1D without IAH (S2) 

Insulin Detemir N/A 27.3 (1.3) N/A Gamma α: 420.25 

β: 0.065073 

114 

Insulin Aspart N/A 42.0 (2.0) N/A Gamma α: 441 

β: 0.095286 

114 

Insulin Cost (per unit)       

Insulin Detemir N/A 0.15 N/A N/A N/A 117 

Insulin Aspart N/A 0.18 N/A N/A N/A 117 

Injection 

Needles 

N/A 0.30 N/A N/A N/A 117 

Blood Glucose 

Test 

N/A 1.63 N/A N/A N/A 119 

N/A: not available due to lack of data 

 

3.3.5 Sensitivity analysis 

A number of sensitivity analyses were performed. We examined one-way sensitivity of model 

parameters regarding patient-level disease trajectory, costs, effectiveness, WTP, and discount rate by 

modulating the inputted parameters by ± 50%. For costs, we examined the sensitivity of costs pertaining 

to severe and non-severe hypoglycemia. Insulin costs were not sensitive to the value-based price since it 

does not change ΔCost as insulin costs are equal across treatment groups. In terms of effectiveness, we 

evaluated the sensitivity of inputs for IAH prevalence, HRQoL decrements for every hypoglycemic event, 

and the effectiveness (RR) of the SSTR2a therapy at reducing hypoglycemia incidence. 

Deterministic sensitivity analyses informing alternate scenarios important to decision-makers 

were conducted. These scenarios pertain to productivity costs, IAH prevalence, and hypoglycemia 
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incidence. Productivity costs are typically not included when using a payer perspective, but can be 

considered when taking a societal perspective as recommended as a 2nd base case by the 2nd panel on cost 

effectiveness.107 Expected productivity costs for every NH and NSH event were estimated to be $12.33 

and $24.40, respectively, using wages published by US Labor Statistics in 2017 and cost data published in 

literature.108,121 

Scenarios considered IAH prevalence diagnosed through different methods derived by Gold122, 

Clarke123, and Pedersen-Bjergaard124, along with corresponding SH incidence125. Although IAH 

prevalence is generally regarded as 20% based on the Gold criteria, different diagnosis methods have led 

to differences in IAH prevalence and corresponding SH incidence. Lin et al reported IAH prevalence in a 

T1D cohort using the Gold, Clarke, and Pedersen-Bjergaard questionnaires, which were 33.3%, 43.7% 

and 77.0%, respectively125. IAH or hypoglycemia unawareness identified by the Gold, Clarke, and 

Pedersen-Bjergaard method were associated with 6, 4.63 and 5.83-fold increases in risk of severe 

hypoglycemia, respectively. 

Further scenarios inputting NH incidence measured through different methods were included in 

the analysis. Incidence of NH varies considerably depending on the measurement methods [self-

monitoring blood glucose (SMBG) vs continuous-glucose monitoring (CGM)] used to detect events.80 

Nocturnal hypoglycemia has been under-reported in studies using SMBG tests, and the HypoAna study 

observed that CGM data reported 17 times more non-severe nocturnal hypoglycemia than SMBG 

methods.80 SMBG requires patients to make sparse measurements of their blood glucose levels, whereas 

CGM is a medical device that takes continuous measurements of plasma glucose levels. CGM enables 

patients to take glucose measurements during sleep and SMBG measurements are limited to when the 

patient is conscious, which suggests SMBG is likely to be under-reporting NH incidence.   

Probabilistic analysis was conducted on the model using distributions for model parameters as 

recommended by Briggs et al (2006)126,127. To estimate the joint effect of parameter uncertainty on the 
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value-based price, a Monte Carlo simulation of 10,000 draws was performed. The use of Markov Model 

Monte Carlo simulations to estimate posterior probability distribution of the value-based price and other 

model outputs requires a Bayesian approach128. Bayesian statistics interprets probability as a degree of 

belief in an event based on prior knowledge regarding an event. Since Bayesian statistics was applied, the 

uncertainty of the value-based price and other outputs were reported in terms of 95% credible intervals 

and standard deviation. For a 95% credible interval, the true value has a 95% probability of being within 

the interval. 

Relative risks were assumed to be log-normally distributed since it is the standard assumption in 

epidemiological literature that the natural log of relative risk has a normal distribution.129–131 Relative risk 

(RR) estimates used in the model include: 1) RR of hypoglycemia (non-severe symptomatic daytime, 

nocturnal, and severe) in T1D patients on SSTR2a compared to usual care, and 2) RR of death in T1D 

patients compared to the general population.  

Gamma distributions were assigned to represent uncertainty in cost-related parameters and 

hypoglycemia incidence rates as these parameters have intervals of 0 to infinity and are right-

skewed.126,132 HRQoL weights were also assigned a gamma distribution according to NICE guidelines.133 

HRQoL weights are constrained within negative infinity (lower limit) and 1 (upper limit). Therefore, 

weights (w) were transformed into decrements (1-w) and fitted into a gamma distribution. 

The CEAC was not generated for this analysis. This is because it is assumed that the new drug is 

always more effective and more cost-efficient. The estimated ICER will always be cost-effective because 

the any cost associated with the new treatment (e.g., drug price) is not considered in headroom 

analysis.56,134 Rather, the headroom analysis calculates the added value of using the new therapy, which 

can be used to estimate a cost-effective drug price. 
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 Results 

The characteristics of the patient cohort simulated from our model were taken from the referenced 

RCT studies and are summarized in Table 4. The cohorts representing T1D patients with (S1) and without 

(S2) IAH were similar across most clinical characteristics including age, body mass index, and HbA1c 

levels. 

Table 4: Patient cohort baseline characteristics. 

Stratified patient cohort – Mean (SD) S1: No IAH114 S2: IAH92,113 

Female (%) 44 37 

Age (years) 41.7 (14.4) 54.7 (12.9) 

Body mass index (kg/m2) 23.7 (3.4) 25.0 (3.8) 

HbA1c (%) 8.0 (0.9) 8.0 (1.0) 

Duration of T1DM (years) 14.4 (9.7) 30.1 (13.2) 

Treated with basal-bolus insulin regimen Yes Yes 

Impaired Awareness of Hypoglycemia No Yes 

 

Using the input parameter data from Table 2 & Table 3, the model recorded the ranges of 

parameter estimates used in a Monte Carlo simulation (Table 5). The expected mean (95% C.I.) cost for 

every severe hypoglycemic event was simulated to be $257.21 (95% CI $77.36, $1,814.69). The cost for 

every non-severe hypoglycemic event, which includes a visit to a general physician and extra blood 

glucose tests, remained static at $12.62 given there was no reported variance to reference. 

The baseline model simulated the mean (95% CI) annual cost of insulin therapy for T1D with 

(S1) and without (S2) IAH to be $4,312.98 (95% CI $4,019.20, $4,622.54) and $ 2,970.86 (95% CI 

$1,237.29, $5,515.11), respectively. Differences in annual insulin costs are driven by differences in daily 

insulin dose requirements.  However, lifetime insulin costs across treated and untreated groups were 

comparable. Lifetime insulin costs of $82,950.84 (95% CI $75,803.97, $92,142.09) for those on new 

treatment and $81,149.05 (95% CI $74,008.87, $90,344.42) for patients given usual care.  
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Table 5. Summary of simulated model inputs. HRQoL: health-related quality of life, RR: 

relative risk, T1D: type 1 diabetes. 

  Mean SD 

95% Credible Interval 

Lower Limit Upper Limit 

Model Inputs         

Costs parameters ($USD) 

Annual cost of insulin therapy (incl. basal-bolus insulin, injection needles, and SMBG tests)  

T1D with IAH (S1) $      4,312.98 $        153.17 $         4,019.20 $      4,622.54 

T1D without IAH (S2) $      2,970.86 $    1,116.19 $         1,237.29 $      5,515.11 

Cost per hypoglycemic event 

Non-Severe (Daytime & Nocturnal) $            12.62 N/A N/A N/A 

Severe $          257.21 $      1,178.44 $               77.36 $       1,814.69 

Effectiveness (RR) of new treatment 

Non-Severe Daytime 0.470  0.033  0.408  0.538  

Non-Severe Nocturnal 0.470  0.032  0.411  0.536  

Severe 0.781  0.127  0.566  1.060  

HRQoL weights     

Baseline  0.844 0.001 0.842 0.846 

Non-Severe Daytime -0.005 0.000 -0.006 -0.005 

Non-Severe Nocturnal -0.007 0.001 -0.008 -0.006 

Severe -0.055 0.003 -0.060 -0.050 

Hypoglycemic incidence (events/person-year) 
   

Tx (new treatment)     

T1D with IAH (S1)     

Non-Severe Daytime 24.91 1.78 21.57 28.56 

Non-Severe Nocturnal 3.01 0.25 2.55 3.51 

Severe 0.92 0.18 0.62 1.32 

T1D without IAH (S2)     

Non-Severe Daytime 18.55 1.34 16.05 21.28 

Non-Severe Nocturnal 2.79 0.24 2.36 3.27 

Severe 0.30 0.08 0.18 0.48 
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  Mean SD 

95% Credible Interval 

Lower Limit Upper Limit 

T0 (usual care)     

T1D with IAH (S1)     

Non-Severe Daytime 53.00 0.79 51.45 54.56 

Non-Severe Nocturnal 6.40 0.27 5.88 6.94 

Severe 1.18 0.12 0.96 1.44 

T1D without IAH (S2)     

Non-Severe Daytime 39.46 0.74 38.01 40.89 

Non-Severe Nocturnal 5.93 0.29 5.38 6.51 

Severe 0.39 0.07 0.26 0.55 

Mortality     

Hazard Ratio (Death|T1D) 3.82 N/A 3.41 4.29 

1negative values indicate savings in costs from using the new intervention.  

N/A: not available, T1D: type 1 diabetes, HRQoL: health-related quality of life, N/A: variance estimates not 

available. All costs are in 2018 USD 

 

3.4.1 Value-based price of an SSTR2a drug that prevents hypoglycemia 

The mean (95% CI) value-based price for our SSTR2a treatment was estimated to be $5,180 

(95% CI $4,437, $5,956) per year per patient (Figure 14 & Table 6). This was based on an expected 

headroom of $119,728 (95% CI $102,569, $1,374,673), which is the maximum value realized by payers 

for every patient using the new drug over a lifetime horizon (mean of 40 years). The headroom was 

calculated from λ of $50,000 USD, expected incremental per-patient effectiveness (ΔQALY) of 2.31 

(95% CI 1.99, 2.64) QALYs, and cost-savings (ΔCost#) of $3,999 (95% CI $3,016, $5,745) over the 

patient lifetime.  
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Figure 14: Probability distribution of the annual value-based price. Mean (95% C.I.): $5,178 (95% 

CI $ 4,437, $ 5,956), top: histogram, bottom: boxplot. 

The incremental gain in QALY of 2.31 (95% CI 1.99, 2.64) is attributed to the lower occurrences 

of hypoglycemia as a result of being treated with the SSTR2a. Compared to usual care, each patient on 

the new treatment avoids, on average, 2.0 (95% CI 0, 4.12) severe, 52.5 (95% CI 44.9, 59.9) nocturnal, 

and 367.7 (95% CI 319.7, 411.8) non-severe daytime hypoglycemic episodes over their lifetime. For 

every occurrence of hypoglycemia, T1D patients’ baseline HRQoL weights, which was 0.844 (95% CI 

0.842, 0.846), was adjusted by a disutility weight of -0.005 (95% CI -0.006, -0.005), -0.007 (95% CI -

0.008, -0.005), and -0.055 (95% CI -0.060, -0.050) for non-severe daytime, nocturnal, and severe events, 

respectively. 
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Table 6: Value-based price and headroom analysis results for the SSTR2a drug candidate. 

  Mean SD 

95% Credible Interval 

Lower Limit Upper Limit 

Model Outputs         

Value-Based Price ($USD/year) $      5,179.73 $        398.11 $         4,437.39 $      5,956.05 

Headroom $  119,728.36 $    9,202.17 $     102,569.27 $  137,672.81 

ΔCost -$      3,999.19 $    2,815.62 -$         5,744.93 -$      3,016.23 

Tx (new treatment) $ 89,438.32 $ 9,328.40 $ 81,083.14 $ 102,995.68 

T0 (usual care) $ 93,437.51 $ 11,404.93 $ 84,758.00 $ 108,545.27 

ΔQALY 2.31 0.17 1.99 2.64 

Tx (new treatment) 11.54 0.19 11.16 11.90 

T0 (usual care) 9.23 0.21 8.80 9.64 

Frequency of hypoglycemia     

ΔNon-Severe Daytime 367.7 23.5 319.7 411.8 

Tx (new treatment) 326.1 23.4 282.5 374.0 

T0 (usual care) 693.8 11.4 671.7 716.3 

ΔNon-Severe Nocturnal 52.5 3.8 45.0 59.9 

Tx (new treatment) 46.6 3.7 39.7 54.3 

T0 (usual care) 99.1 4.0 91.5 107.0 

ΔSevere 2.3 0.2 2.0 2.6 

Tx (new treatment) 7.0 1.4 4.7 10.2 

T0 (usual care) 9.0 1.1 7.1 11.2 

 

Decreases in hypoglycemic events also translate to reduced costs with managing hypoglycemia. 

Payers save $5,800.98 ($4,813.09, $7,531.64) on costs per patient lifetime as a result of avoiding 

$5,303.24 ($4683.71, $5,869.18) non-severe and $ 497.74 ($49.86, $2,196.29) severe hypoglycemic 

event-related costs.  Overall costs were reduced since the cost of the new treatment is not considered in 

headroom analysis and no downstream costs increases were encountered in the model. 
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3.4.2 One-way sensitivity analysis 

Figure 15 summarizes results from a one-way sensitivity analysis where model inputs used in the 

base case were adjusted by ± 50% to observe its effect on the value-based price. Results indicate that 

payers’ WTP (λ) was the most sensitive model parameter as a 50% adjustment would change the value-

based price by ± 47%. Parameters corresponding to non-severe daytime hypoglycemic events [NSH 

(Day)] were the next most sensitive to the value-based price given its frequency was the highest compared 

to other forms of hypoglycemia. In particular, the value-based price was sensitive to parameters for NSH 

(Day) on HRQoL decrements (± 37%), baseline incidence for T1D patients without IAH (± 29%), and 

SSTR2a treatment effectiveness (± 34%).  

Other remaining parameters exhibited a ≤ 11% impact on the value-based price after modulating 

the input values by ± 50%. Parameters associated with T1D patients with IAH (S2) were less sensitive to 

the price than T1D without IAH (S2) because the proportion of the T1D population with IAH is 4 times 

less than those without IAH. Parameters associated with nocturnal and severe hypoglycemia are not as 

sensitive to price as daytime events due to differences in the lower recorded frequencies in which they 

occur. Notwithstanding, the rate of reported nocturnal events can vary greatly depending on the method of 

detection.80  
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Figure 15: Tornado plot of one-way sensitivity analysis (± 50%) on value-based price. Base case 

value-based price is $5,369.30. T1D: type 1 diabetes, SH: severe hypoglycemia, NSH 

(Day): non-severe daytime hypoglycemia, NSH (Noc): non-severe nocturnal 

hypoglycemia, IAH: impaired awareness of hypoglycemia, HRQoL: health-related 

quality of life, RR: relative risk, WTP: willingness to pay. 

It is important to note that the sensitivity profile of the model parameters would change if our 

inputs for the baseline analysis differed. For example, the sensitivity of NH incidence would be much 

greater if CGM-reported incidence rates were used, which would make it more sensitive to the value-

based price. Likewise, the sensitivity of clinical parameters for IAH and SH would be greater using the 

higher documented rates.   

3.4.3 Scenario analysis 

Scenario analysis using CGM-recorded nocturnal hypoglycemia incidence was performed to 

compare against the base case that uses data from a study using SMBG to monitor glucose levels. The 

HypoDE study135 monitored glucose levels of T1D patients using CGM technologies, and the reported 

frequency of NH was approximately 5 times more than what was reported using SMBG tests in the 
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HypoAna study113. Using the NH incidence derived from the HypoDE study increases the incremental 

gain in patient outcomes (QALYs) and cost savings by 1.43 (i.e., 3.76 - 2.32) QALYs and $ 2585.23 (i.e., 

$8,576.18 - $6,170.95) (Table 7). This leads to a value-based price of $8,582.81, which corresponds to a 

$3,213.51 increase from the base case price of $5,269.30. 

Table 7: Point estimates for base case and scenario analysis of value-based price. 

  

  

T0 Tx ∆ (Tx – T0)  

Headroom 

($) 

 

QALY (yrs) Cost ($) 
QALY 

(yrs) 
Cost ($) 

∆QALY 

(yrs) 
∆Cost ($) 

VBP 

($/year) 

Base case 

Mean (95% 

CI) 

9.23  

(8.80, 9.64) 

93,437.51 

 (84,758.00, 

108,545.27) 

11.54  

(11.16, 

11.90) 

89,438.32  

(81,083.14, 

102,995.68) 

2.31  

(1.99, 

2.64) 

-3,999.19  

(-5,744.93, 

-3,016.23) 

119,728.36  

(102,569.27, 

137,672.81) 

5,179.73  

(4,437.39, 

5,956.05) 

CGM-recorded NH incidence 

HypoDE135  6.53 107,739.34  10.29 97,181.35  3.76 -10,557.99 198,389.81 8,582.81 

HypoAna113  -1.87 122,886.91  6.34 104,285.56  8.22 -18,601.35 429,493.89 18,580.93 

IAH prevalence & SH incidence125 

Gold 8.63 110,868.21 11.13 100,306.34 2.51 -10,561.86 135,848.99 5,850.10 

Clarke 8.53 108,215.80 11.10 97,642.15 2.56 -10,573.66 138,772.37 6,003.62 

Pedersen-

Bjergaard  
7.39 119,687.01 10.33 104,563.72 2.94 -15,123.28 162,156.05 7,015.26 

Productivity 

costs108,121  
9.23 123,800.40 11.55 104,713.99 2.32 -19,086.41 135,223.82 5,850.10 

Further scenario analysis considered IAH prevalence diagnosed through different methods 

derived by Gold122, Clarke123, and Pedersen-Bjergaard124. There are also corresponding increases in SH 

incidence for T1D patients with IAH. Lin et al.125 reported IAH prevalence in a T1D cohort using the 

Gold, Clarke, and Pedersen-Bjergaard questionnaires, which were 33.3%, 43.7% and 77.0%, respectively. 

IAH or hypoglycemia unawareness identified by the Gold, Clarke, and Pedersen-Bjergaard method were 

associated with 6, 4.63 and 5.83-fold increases in risk of severe hypoglycemia, respectively. This led to 

gains of incremental gains in QALYs and cost-savings between the ranges of 2.51 to 2.94 QALYs and 
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$10,561.86 to $15,123.28, respectively (Table 7). The corresponding value-based price is estimated to be 

between $5,850.10 and $7,015.26, depending on the method used to diagnose IAH. 

By including productivity costs for every non-severe daytime or nocturnal hypoglycemic event, 

the incremental gain from cost-savings grows by $11,113.66 (i.e., $19,086.41 - $7,972.75) from the base 

case, and increases the value-based price to $5,850.10 per year (Table 7).  

Given the uncertainty in a range of important model inputs, we used conservative estimates for 

the base case analysis.  Therefore, the different scenarios on model inputs pertaining to hypoglycemia 

incidence, IAH prevalence, and costs, all increase the value-based price of the SSTR2a drug product. 

Other scenarios pertaining to the model time horizon, would likely increase the value-based price. The 

model time horizon assumes all patients enter the model 44 years based on the mean age of the patient 

cohorts in the clinical trials that were used in the model. However, the onset of type 1 diabetes occur 

before 40 years of age and peaks at around 14 years.136,137 This suggests that true time horizon of the 

drug’s cost-effectiveness is longer than 40 years, which would translate to a higher value-based price. 

 Discussion 

The value-based pricing model can be used as a tool to evaluate a drug candidate in reference to 

its target product profile and other available evidence found from various sources (e.g., market data, 

clinical databases). Prices are associated with profits for shareholders, affordability for payers, and 

accessibility to patients. Given the implications of drug prices across these stakeholders, prices should be 

set such that the therapy is accessible to patients while satisfying investors’ expectations and payers’ cost-

effectiveness requirements.  

The value-based price (VBP) of a SSTR2a drug that reduces severe and non-severe hypoglycemia 

occurrences by 10% and 30% in the US T1D population, respectively, was estimated to be $5,179.73 (95 

CI $4,437.39, $5,956.05) per year. The estimated VBP is 8% higher than the listed wholesale price of 

Victoza – a comparable therapeutic (GLP-1 agonist that increases endogenous insulin levels) that has an 
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average wholesale price of $4774.00 annually119. Victoza’s global sales revenue for 2017 was $3.49 

billion USD (23.2 DKK billion)138. This suggests a potentially successful drug development campaign.  

However, decision-makers must weigh the benefits from sales revenue against the costs and 

development risks throughout the drug development process. In addition, expectations on revenue, costs 

and risks are dynamic, which necessitates consideration of decision flexibility in the investment. In order 

to consider these additional factors, financial valuation via real options analysis can be performed to 

estimate the FCF from investing in a drug candidate. Using the value-based price for such analysis will 

assess whether the developing a cost-effective therapy can lead to a positive FCF outcome. This analysis 

will be performed in the following chapter to complete the VB-ROA framework.  

The most sensitive model parameter on the VBP was the payer’s willingness to pay (λ) for a gain 

in QALY. In the US, λ typically ranges from $50,000 to $180,000 per QALY. Although there are no 

approved treatments that specifically prevents hypoglycemia, there are many competing technologies to 

better control glucose levels, which in turn may reduce the risk of hypoglycemia139. This suggests that 

payers may be more price sensitive in the diabetes space given the high number of comparable treatments 

they would be able to consider. In order to be conservative, the model used the lower end 

($50,000/QALY) of the WTP range.  

Non-severe daytime hypoglycemia was shown to have greatest cumulative disease burden and 

healthcare costs over the lifetime of the model. On a per event basis, severe hypoglycemia has a greater 

impact on HRQoL outcomes and is costlier than non-severe events. However, non-severe daytime 

hypoglycemia occurs 45 and 100 times more frequently than severe hypoglycemia for T1D patients with 

or without IAH, respectively. Based on base case results, reducing the frequency of non-severe 

hypoglycemia would be an important outcome to consider in development and commercialization 

strategies. 
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Nocturnal hypoglycemia leads to loss in productivity the following day, and poses a greater risk 

compared to daytime events for IAH and severe hypoglycemia. NH is more burdensome than non-severe 

daytime events; however, in this analysis, daytime events had a greater impact on the value-based price. 

This finding was attributed to the greater frequency of daytime events compared to nocturnal. However, 

the differences in frequency may be attributed to difficulty in measuring glucose levels during sleep. The 

clinical trials referenced in the model did not use continuous glucose monitoring (CGM) monitors so 

nocturnal events are likely to have been under reported.  

3.5.1 Limitations 

 There are several limitations to this analysis that potentially underestimates the value-based price. 

We assumed the average age of T1D patients was 44 years based on the patient cohort characteristics of 

the HypoAna and BEGIN BB trials that were referenced to populate the clinical model. However, the 

highest T1D incidence is observed is at 14 years of age136,137, which suggests that the lifetime horizon was 

underestimated along with the corresponding ΔQALY, ΔCost, and value-based price. 

T1D is a chronic disease that comes with micro- and macrovascular complications that result in 

considerable morbidity affecting the organ system (e.g., heart, liver, etc.), which can be further 

exacerbated due to hypoglycemia140. More complicated state-transition models exist to capture the effects 

of different co-morbidities (e.g., CORE Diabetes model110). We decided to go forward with the simple 

model as the objective of this analysis was to estimate the price of an SSTR2a treatment based on its 

performance on reducing hypoglycemia and its direct impact on costs and patient quality of life.  

Hypoglycemia-induced diabetes complications were not considered based on the assumption that 

co-morbidities would be similar across treatment groups. This assumption underestimates ΔCost and 

ΔQALY because the model does not consider costs and HRQoL implications associated with any co-

morbidities. Mortality rates would increase due to co-morbidities, but the model adjusted mortality by the 

RR of death for T1D patients compared to the general population. 
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The impact of SH on the value-based price is likely to have been underestimated. While there is 

clinical evidence that severe hypoglycemia is associated with worsening long term health outcomes, 

including increased mortality72,74, these impacts were not considered in this model because it involves 

other comorbidities that were not modeled. This limits the model from assessing the impact of death from 

severe hypoglycemia in relation to the gains in QALYs. Also, cost per severe hypoglycemic event was 

undervalued as it did not consider the expected cost of glucagon treatment, which can be administered as 

rescue therapy.72 Costs pertaining to glucagon treatment in response to severe hypoglycemia was 

excluded from our analysis as we only considered hypoglycemia requiring medical attention as opposed 

to needing non-medical assistance.118 This was based on an economic analysis performed by Foos et al. 

(2015)118 where glucagon treatment costs were excluded because the analysis only considered severe 

hypoglycemia requiring medical attention. Glucagon costs ($55 per event) were considered when 

assistance is provided outside of a clinical setting.   

Although the model was based on a US population, the RCTs referenced in this analysis were 

studies that did not include US clinical sites. This is a limitation because the characteristics of different 

populations (e.g., socioeconomic, age demographic, diet) may impact the frequency of hypoglycemia, 

insulin requirements, and its response to the novel treatment. The HypoAna trial was based in Denmark, 

and the BEGIN BB T1 study included clinical sites in the Japan (41%), UK (15%), India (13%), Finland 

(10%), Italy (10%), Brazil (5%), and Macedonia (6%). We assumed the patient cohort in these studies are 

comparable to the US population in terms of insulin dose requirements and hypoglycemia rates because 

the studies were generally based on patient cohorts from developed countries. 

The RCTs used in the model relied on SMBG tests and patient diaries or questionnaires to 

confirm hypoglycemic events, rather than use CGM-based measurements. This leads to variations in 

reported rates of hypoglycemic events, where CGM-based measurements detect higher occurrence of 

hypoglycemia. There is a need for studies using CGM technologies to detect hypoglycemia as they 
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provide more accurate rates of occurrences, especially for nocturnal hypoglycemia.  This suggests that 

using data generated through SMBG test methods underestimates hypoglycemia incidence.  

Reported results were sensitive to relative rates of hypoglycemia events, as well as the disutility 

associated with these events. We relied on results from a short-term (26-week) clinical trial to model 

long-term effectiveness of the T1D population in the S2 health state.114 The S1 health state was modelled 

using a longer term study (2-year).92,113 Longer-term follow-up studies would be useful in better 

determining the incidence of non-severe and severe hypoglycemia in T1D patients with and without IAH. 

Also, data on long-term impact of hypoglycemic events on quality of life, clinical outcomes, and costs 

need to be better quantified to support the model’s long time horizon. 

As with any early-stage drug candidate that has yet to conduct clinical trials, there is no evidence 

regarding real world effectiveness. Assumptions on the SSTR2a’s performance were based on clinical 

experts’ views of what constitutes a clinically meaningful difference between new vs standard therapies. 

We assumed that the target product profile of the SSTR2a would meet the requirements for a clinical 

meaningful impact on reducing hypoglycemic events. The reduction in relative risk for non-severe 

daytime hypoglycemia was the same for nocturnal episodes under the assumption that the drug’s effect 

would have equal impact on all non-severe events regardless of time of day. As SSTR2a technologies are 

developed, and clinical data begins to define the performance of this class of product, the new inputs can 

be incorporated for analysis and the model will gradually become more accurate. 

The value-based pricing model was also sensitive to IAH prevalence as seen through the scenario 

analysis. We assumed IAH prevalence as static, but it may be dynamic and increase with age, which 

suggests that our assumptions on IAH underestimates the value-based price. IAH prevalence T1D patients 

with IAH are unable to detect hypoglycemia as they are desensitized to its symptoms; therefore, the 

frequency of non-severe episodes that would impact patient quality of life would be less. The model 

inputs suggest that those with IAH have higher frequencies of all types of hypoglycemia, and each 
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occurrence has a negative impact on patient HRQoL. One must acknowledge that a non-severe event 

where no symptoms are detected, due to IAH, would also mean that there would be no impact on patient 

HRQoL for that occurrence. This means that our model may over-count the number of non-severe 

hypoglycemic cases that impact patient HRQoL for the T1D cohort with IAH.  

Because of the limitations to the model outlined above, a conservative approach to making 

assumptions was adopted, which likely results in underestimating the true value-based price. However, 

this decision analytic model was not intended to calculate the exact cost-effective price, nor was it to 

consider every aspect of the disease with exact precision. Rather, this model simplifies reality such that 

decision-makers can evaluate the potential value of an early-stage drug candidate. Although an exact 

estimate is difficult to calculate given that lack of data on important parameters, such as the drug’s 

efficacy, this model can be used to understand the parameters important to the value-based price for this 

particular drug candidate. Identifying these parameters can help with designing development strategies, 

and adjusting the TPP parameters or clinical assumptions, that better track the commercial value of the 

drug candidate while having a greater consideration for cost-effectiveness requirements. 
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CHAPTER 4. VB-ROA OF A PHASE 1 DRUG CANDIDATE 

 Introduction 

Hypoglycemia is a contributing factor to poor glucose management and can cause complications 

and death for people with diabetes. Zucara Therapeutics is a Canadian life sciences company with the 

objective of developing the first once-daily therapeutic to prevent hypoglycemia in people with diabetes 

undergoing insulin therapy.103 

Current available therapies are reactive (e.g., glucagon injections) where patients experiencing 

hypoglycemia are rescued from the symptoms. As described in Section 3.2.2, the technology regulates a 

hormone in the pancreas called somatostatin, which is dysregulated in the insulin-dependent diabetes 

population. Improved regulation of somatostatin brought about through the SSTR2a can function to 

restore the ability to release more glucose into the bloodstream when levels are low. 

Similar to Zucara’s therapeutic asset, our case example assumed an SSTR2a that is currently in 

pre-clinical development and is in preparation for phase 1 clinical trials. However, many of the data 

inputted into the model were derived from published sources with no affiliation with Zucara Therapeutics. 

In Chapter 3, we developed a target product profile (TPP) for SSTR2a that reduces non-severe 

symptomatic and severe hypoglycemic cases by 30% and 10%, respectively, compared to usual care. The 

TPP (Table 1) was used to perform headroom analysis to estimate a cost-effective price based on the US 

T1D population and a λ of $50,000 per QALY. The resulting value-based price for an SSTR2a with the 

TPP, as shown in Table 1, was $5,178 (95% CI $4,437, $5,956) per year per patient (Figure 14 & Table 

5). 

Most of the value in early-stage biotech firms can be explained by future expectations on the 

technologies being developed.16,38,58,63 The estimated value-based price can serve as an indicator for future 

commercial success and be used to support development decisions. However, there are many other 

variables that are not been considered in headroom analysis that is important for early-stage drug 
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development decision-making including: development costs, operating costs, probability of development 

success, along with revenues, market size and growth rates. In order to consider these variables, a real 

options analysis using the binomial option pricing model (BOPM) was conducted using the value-based 

price. 

The BOPM is well-suited to consider evaluate drug development projects as it is able to consider 

the decision flexibility inherent in drug development, as well as uncertainty in the market value of the 

drug.16,38,49,58,62,63 The flexibility component of the BOPM assumes that management will only continue 

investing into development when commercial outcomes look positive. Uncertainty in the market potential 

of the drug is considered by using a measures of volatility to project a range of upper and lower estimates 

that are structured into a binomial lattice. 

 Study Objective 

The objective of this study is to assess the commercial potential of developing an SSTR2a drug 

candidate based on the estimated annual value-based price of $5,178 (95% CI $4,437, $5,956). To do so, 

the value-based price will be used to estimate future sales revenues and compare them against 

corresponding drug development costs and risks through a real options analysis via the BOPM. 

 Methods 

The second step of the VB-ROA framework involves incorporating the estimated VBP into the 

binomial option pricing model, which considers the commercial parameters summarized Table 9 and 

Table 11. First, we estimated the range of market values for the SSTR2a drug candidate (At) based the 

VBP (Section 4.3.1). Second, we price the options (Vt) using the binomial option pricing model that 

compares the development cost (St) against the estimated market values (At) adjusted for development 

risk (θt) (Section 4.3.2). Finally, we performed a one-way sensitivity analysis to identify model 

parameters that were most sensitive to option value. 
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4.3.1 Market value of the SSTR2a drug candidate 

The drug candidate’s market value (At) is the net present value of projected yearly free cash flows 

(FCFs) by subtracting future revenues from costs (Equation 8). Sales revenues and operating costs were 

projected until patent expiry16,38, which was assumed to be 10 years. The patenting process for drug 

development typically begins at the pre-clinical phase, and once approved, is granted market exclusivity 

for 20 years. Since it takes about 10 years to develop a drug from the pre-clinical stage, we assumed that 

there were only 10 years of patent life remaining once the drug launches. 

Operating costs are day-to-day expenses related to business operations, which included 

manufacturing (COGS), sales & distribution, and general administrative expenses (Table 8). The 2018 US 

tax rate of 21%141 was applied to estimate after-tax operating profits. Development costs (i.e., capital 

expenditures, St) were not considered when estimating the market value of the underlying technology as 

these costs are built into the model when pricing the options. We assumed the development cost estimates 

were adjusted for tax shields. 

Operating costs were set based on % of revenue calculated from historical financial statements 

from a comparable company in the diabetes space: Novo Nordisk – a large pharmaceutical company with 

80% of their revenues generated through their products in diabetes care (Table 9).138 Although not 

considered an early-stage company, the operating costs are effective once the drug has been approved and 

launched, which can be comparable to more established firms.   
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Table 8: Breakdown of variables to calculate asset value. 

Variables Source and/or description of variables 

A Asset value – i.e., profit generated after bringing the drug candidate to market 

rc Investors’ cost of capital – typically around 15% for early-stage drug development 

projects 

Profit Equals revenue, less operating costs and tax 

   Operating Cost Includes cost of goods sold (COGS), sales and distribution costs, general and 

administration expenses (G&A) 

   Revenue Price × quantity sold 

      Quantity Market size × penetration rate (%) × market growth rate 

         Market size Estimated using disease prevalence data 

         Penetration rate Estimated from market data from industry grey literature 

         Market growth rate Estimated using disease incidence data, or industry grey literature 

         Terminal growth rate Estimated from market data from industry grey literature 

Revenues were estimated by multiplying the quantity of units sold with the price per unit (Table 

8). The quantity of units sold requires estimations on market size and penetration rates. A T1D prevalence 

estimate of 1.3 million based on published data was applied to project the market size for the drug.68–70 Of 

the entire T1D population in the US, we assumed those who have recently encountered nocturnal 

hypoglycemia would be in the market for the treatment, which was approximately 40%.83 The growth in 

market size was assumed to be 5.2% per year based on forecasts estimated by GlobalData142 using 

published prevalence68 and incidence data83.   

Revenues were expected to change with time, where sales typically grow until it reaches its peak 

rate, and then decrease once the patent expires.16,38 To date, there is no therapeutic drug that prevents 

hypoglycemia, which means that the SSTR2a would be a first-in-class prophylactic therapy to specifically 

for hypoglycemia as an indication. Therefore, the peak market penetration rate was set based on historical 

sales performance for other first-in-class drugs, which was estimated to be 40%.21 To simplify the 

analysis, we assumed initial market penetration rate of 1% with straight-line growth to peak market 

capture over a 10-year timespan. An empirical study by Bauer and Fischer (2000)143 has shown that the 
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time to peak sales for first-in-class drugs range between 8 to 10 years. After 10 years from launch, we 

assumed patent expiry and set a terminal growth rate of -3% based on estimates for biologics drugs 

enteric generic competition.144  

Table 9: Summary of commercial parameter inputs for the binomial option pricing method. 

T1D: type 1 diabetes, NH: nocturnal hypoglycemia. 

Commercial Parameters Mean (95% CI) Source 

Profits (At)    

Revenues   

Price (per patient per year) $5,179.73  

($4,437.39, $5,956.05) 

Table 5 

Market Size   

T1D prevalence 1.3 MM 68 

Proportion (%) with NH 40% 

(39.4%, 41.7%) 

83 

T1D incidence (%) 5.2% 142 

Terminal growth (%) -3.0% 144 

Market Penetration Rate    

Initial rate (%) 1% N/A 

Peak rate (%) 40% (1st to market) 21 

Costs   

Operating costs Mean (SE)   

Cost of goods sold (COGS) 15.9% (0.8%) 138 

Sales & Distribution 26.2% (1.1%) 138 

General Administration (G&A) 3.7% (0.3%) 138 

Other rates   

Discount rate (rd)  13.2% 

(10.3%, 16.1%) 

145 

Tax rate 21% 145 

N/A: not available due to lack of data. 

 The binomial structure follows 1-year time intervals, and all annual cash flow projections were 

discounted using a 13.2% cost-of-capital (i.e., discount rate for the asset value). The referenced cost-of-

capital was derived using financial data of small biotechnology firms from 2006 to 2008 and estimated by 
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Harrington (2012) using the capital asset pricing model (CAPM) framework.145 The cash flows are 

discounted to the initial decision node at t0.  

Table 10: Binomial option pricing method input parameters for asset values (At,k). u: upward 

adjustment factor, d: downward adjustment factor, p: risk-neutral probability. 

BOPM Parameters Input Values 

Project volatility (σ) 26% 

u 1.30 

d 0.77 

p (risk-neutral probability) 53% 

 

The estimated A0,1 was used to populate the possible market value scenarios of the underlying 

drug candidate based on a σ of 26%, which was estimated by computing the log-normal annual stock 

returns of the selected comparable company (Novo Nordisk) from 1981 to 2018.146 The volatility estimate 

translates to annual upside and downside adjustments to market value of 130% and 77%, respectively 

(Table 10). The market value at t0 is then adjusted using the upward weight to estimate for A1,1 and the 

downward weight to estimate A2,2. This process is repeated for each scenario (k) until the terminal 

timepoint (Year 7).  

4.3.2 Calculating option value 

To solve for option value (Vt) at a particular decision node, the estimated market value (At) of the 

drug candidate was adjusted by the corresponding probability of passing the development stage (θt), and 

then subtracted by the capital expenditures (St) required to finance it (Equation 7). Options are contingent 

upon passing the prior development stage, therefore, the option value is adjusted for development risk. 

The terminal options (V7) were first calculated using the terminal market values (A7) as described in 

Equation 10. If the calculation leads to a negative value, then the option is not exercised and is valued at 

$0. If the calculation is positive, then the option is exercised and its value is the difference between the 
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risk-adjusted market value of the underlying technology and the cost to finance the next development 

phase (i.e., A7θ7 – S7). 

Table 11: Drug development parameters for BOPM. NDA: new drug application, BLA: biological 

license application. 

Development 

Parameters 

Length (t) Probability 

of Success 

(θt) 

Capital Expenditures (St) Source 

Phase 1  1 year 63.2% $27.93 ($3.31) 13,52,53 

Phase 2 2 years 29.0% $64.70 ($7.29) 13,52,53 

Phase 3 3 years 56% $281.98 ($37.65) 13,52,53 

NDA/BLA 1 year 72.7% $2.4 52,53,147 

Product Launch 1 year 100% $94.3 ($63.5, $125.1) 148 

The drug development parameters used to calculate option value are shown in Table 11. Clinical 

development costs were estimated in reference to DiMasi et al. (2016)13 and adjusted to 2018 terms using 

a 2% inflation rate. The average duration of each phase was taken from data published by Llano et al. 

(2016).52 The cost to submit an NDA was taken from information published by the US FDA.147 Drug 

product launch costs were taken from a published grey literature.148 Risks associated with clinical 

development are considered by including probability of clinical trial success published by Hay et al 

(2014).53 

Once the terminal options are calculated, all preceding options are solved recursively using a risk-

free probability of 53% based on a risk-free rate of 5% according to Equation 11. All options were 

discounted using the risk-free rate of 5%.  

4.3.3 Sensitivity analysis 

One-way sensitivity analysis on the option value for phase 1 development (V0,1) was performed 

by adjusting VB-ROA model input parameters by ± 50%. To determine the impact of drug development 

parameters with respect to option value, we assessed estimates on capital expenditures (i.e., clinical 

development costs, NDA and market launch costs) and probabilities of development success. Sensitivity 
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to commercial inputs were assess by modulating model parameters pertaining to operating costs (i.e., 

COGS, G&A, Sales and distribution), revenues (i.e., drug price, T1D prevalence and incidence, terminal 

growth rate, market penetration rate, % with recent NH), volatility (σ) of the underlying asset, and the 

cost-of-capital. Finally, the sensitivity of cost-effectiveness parameters to option value was assessed by 

evaluating clinical parameters (HRQoL, hypoglycemia incidence, treatment effect), cost parameters (i.e., 

hypoglycemia management costs), and the discount rate to adjust costs and QALYs into present value 

terms. 

 Results 

4.4.1 Base case  

The estimated mean (95% CI) market value of the drug candidate at the initial decision node to 

invest in phase 1 clinical trials was $1,396.90 Million (MM), which was derived using the inputs 

summarized from Table 9 to Table 11. After the successful completion of phase 1 trials, the 

corresponding market value of the drug candidate has an upper and lower estimate of $1,073.75 MM 

(A1,2) and $1,817.31 MM (A1,1), respectively. After phase 2 trials, the market value is estimated to range 

from $634.42 MM (A3,4) to $3,075.77 MM (A3,1). If we assume development continues until it reaches the 

launch phase, the market value of the SSTR2a drug candidate will reach anywhere between $227.47 MM 

(A7,8) to $8,716.31 MM (A7,1). 

Real option values at different decision nodes throughout the development process are reported in 

the bottom of Figure 17. The option value to invest in phase 1 development was estimated to be $0 (V0,1) 

based on the development cost of $27.93 MM and the risk-adjusted option value at t=1 being either $0 

MM (V1,2) or $67.32 MM (V1,1). This suggests that if phase 1 development is funded and trial results 

successfully pass, the option on the drug candidate to undergo phase 2 development can be valued at 

either $0 MM (V1,2) or $67.32 MM (V1,1).  
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Figure 16: Distribution in the market value of the drug candidate (At,k) over the development time horizon (yr 7). 

 

 

 

 

 

 

 

Project Value (At,k, $Million)

Decision Node Preclinical/Ph 1 Ph 1/2 Ph 2/3 Ph 3/NDA NDA/Launch
t (years) 0 1 2 3 4 5 6 7                    

A 7,1

A 6,1 8,810.61$ 

A 5,1 6,772.41$ A 7,2

A 4,1 5,205.71$ A 6,2 5,205.71$ 

A 3,1 4,001.45$ A 5,2 4,001.45$ A 7,3

A 2,1 3,075.77$ A 4,2 3,075.77$ A 6,3 3,075.77$ 

A 1,1 2,364.24$ A 3,2 2,364.24$ A 5,3 2,364.24$ A 7,4

A 0,1 1,817.31$ A 2,2 1,817.31$ A 4,3 1,817.31$ A 6,4 1,817.31$ 

1,396.90$ A 1,2 1,396.90$ A 3,3 1,396.90$ A 5,4 1,396.90$ A 7,5

1,073.75$ A 2,3 1,073.75$ A 4,4 1,073.75$ A 6,5 1,073.75$ 

825.35$    A 3,4 825.35$    A 5,5 825.35$    A 7,6

634.42$    A 4,5 634.42$    A 6,6 634.42$    

487.66$    A 5,6 487.66$    A 7,7

374.84$    A 6,7 374.84$    

288.13$    A 7,8

221.47$    

Capital Expenditure, St 27.93$           64.70$           -$               281.98$         -$               -$               2.40$             94.30$           

Probability of Success, θt 63% 100% 29% 100% 100% 56% 73% 100.00%
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Figure 17: Real option values (Vt,k) after adjusting for clinical development risks (θt,k). 

 

 

Option Value (Vt,k, $Million)

Decision Node Preclinical/Ph 1 Ph 1/2 Ph 2/3 Ph 3/NDA NDA/Launch

t (years) 0 1 2 3 4 5 6 7                    

V 7,1

V 6,1 8,716.31$ 

V 5,1 4,855.93$ V 7,2

V 4,1 2,083.33$ V 6,2 5,111.41$ 

V 3,1 1,594.81$ V 5,2 2,841.44$ V 7,3

V 2,1 937.64$    V 4,2 1,216.19$ V 6,3 2,981.47$ 

V 1,1 192.36$    V 3,2 928.27$    V 5,3 1,651.19$ V 7,4

V 0,1 67.32$      V 2,2 425.29$    V 4,3 703.85$    V 6,4 1,723.01$ 

-$         V 1,2 78.15$      V 3,3 534.45$    V 5,4 947.93$    V 7,5

-$         V 2,3 122.57$    V 4,4 401.13$    V 6,5 979.45$    

17.95$      V 3,4 301.76$    V 5,5 532.42$    V 7,6

-$         V 4,5 222.27$    V 6,6 540.12$    

164.27$    V 5,6 286.91$    V 7,7

116.59$    V 6,7 280.54$    

141.86$    V 7,8

127.17$    
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The two possible option values prior to the decision to launch phase 2 trials is based on the 

estimated value of future options at t=3 along with the cost and probability of passing phase 2 clinical 

trials. If the drug candidate passes through phase 2 trials, the option value to invest in phase 3 trials ranges 

from $0 MM (V3,4) to $937.64 MM (V3,1). Since the option values prior to the successful completion of 

phase 3 trials can be $0, management needs to carefully evaluate their options to ensure a positive 

financial return. 

Options valued at $0 indicate that the costs to fund the respective stages in development are 

greater than the risk-adjusted financial benefits from commercializing the drug candidate. The decision 

flexibility in option valuation limits the downside to $0 and prevents negative investment returns from 

occurring. The value in decision flexibility is dependent on management behaving rationally, which is to 

forgo financing development when evidence suggests the commercial potential of the drug candidate does 

not appear to outweigh the immediate cost of development.  

Option values after the drug candidate passes phase 3 trials (i.e., V4 to V6) are estimated to always 

be positive. This is because much of the development risk has passed and the remaining cost to complete 

development are marginal compared to earlier phases. Upon successful phase 3 trials, the option value to 

apply for a new drug application (NDA) ranges from $141.63 MM (V6,7) to $4,855.93 MM (V6,1). 

Similarly, the option value to proceed toward product launch is projected to generate a positive financial 

return that ranges from $127.17 MM (V7,8) to $8,716.31 MM (V7,1). This indicates that options available 

after successfully passing phase 3 clinical trials should always be exercised. 

4.4.2 One-way sensitivity analysis 

One-way sensitivity analysis on the option value for phase 1 development (V0,1) is summarized in 

Figure 18. In general, ‘Commercial & Epidemiological’ model inputs were most sensitive to option value 

(Vt,k) with the cost of capital (rc) for the investment having the greatest effect. Aside from cost of capital, 

model parameters directly involved in calculating revenues [e.g., ‘Drug Price’, ‘T1D Prevalence’, ‘Recent 
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NH (%)’] had equal effects on option value. The option value is also sensitive to peak market share and 

T1D incidence because revenue calculations consider the growth in patient population, as well as, 

changes in market share where we assume straight-line growth. In terms of operating costs, 

manufacturing costs (COGS) and ‘Sales and Distribution’ costs were also shown to influence option 

value. The volatility (σ) of the underlying asset was found to not be sensitive to option value relative to 

other commercial parameters. 

Model parameters for clinical development were found to influence option value. Probabilities 

around successfully completing phase 3 trials (θ6) and receiving regulatory approval upon NDA 

submission (θ7) exhibited greater sensitivity to option value compared to success rates for earlier 

development stages (i.e., θ0 to θ5). For development costs (i.e., capital expenditures), clinical trial costs 

were more sensitive to option value than development costs after market approval. Relative to clinical 

development risks, inputs pertaining to development costs were less sensitive to option value. A further 

discussion on non-profit funding mechanisms to advance early-stage drug candidates is described in 

Section 4.5.  
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Figure 18: One-way sensitivity analysis results on the VB-ROA of an SSTR2a drug candidate. 

T1D: type 1 diabetes, COGS: cost of goods sold (manufacturing costs), G&A: general 

and administrative costs, NDA: new drug application, WTP: willingness to pay, RR: 

relative rate, NSH: non-severe hypoglycemia, Noc: nocturnal, SH: severe hypoglycemia, 

NH: Nocturnal hypoglycemia, HRQoL: health-related quality of life, Ph: phase, IAH: 

impaired awareness of hypoglycemia, NDA: new drug application, σ: asset value 

volatility. 

Five cost-effectiveness parameters used to estimate the value-based drug price were sensitive to 

the option value to invest in phase 1 development (Figure 18). Payers’ λ exhibited the greatest sensitivity. 

In general, cost-effectiveness parameters associated with non-severe hypoglycemia [i.e., HRQoL weights, 
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event rates, relative risk (RR) of events of the reference drug] exhibited greater sensitivity than inputs 

related to severe hypoglycemia. Of all the levels of hypoglycemia, the event rates for non-severe daytime 

hypoglycemia for T1D patients with IAH were the only parameters sensitive to option value. 

 Discussion 

We assume that decisions to continue or halt development will be during times when new 

evidence has been generated from the completion of clinical trials. Although options were valued every 

year in the development process, the value of the initial option (V0,1) is the primary result that 

management should consider supporting the decision to invest in phase 1 trials for the SSTR2a drug 

candidate. The option to fund phase 1 clinical development (V0,1) using the VB-ROA framework indicates 

that the drug candidate is unlikely to generate a net positive investment return due to the high level of 

unresolved development risks. As a result, management would likely forgo investment, which results in a 

net $0 option value.  

Phase 1 drug candidates may be too early in the development process for profit-seeking investors 

to fully absorb the development risks and costs. The option value for the phase 1 drug candidate was 

derived recursively from option values in the future. This implies that future option values can be realized 

if the drug candidate progresses through the development process. Although the scenario evaluated is not 

profitable prior to entering phase 2, future options (V1 to V7) in which V0,1 is based upon can be positive. 

This suggests that there is the potential for the drug candidate, as defined, to become commercially viable 

investment in the future. Also, the development strategy can be refined (i.e. focusing the TPP and other 

model inputs that can be controlled by the developer or funder), which could produce a more profitable 

option value for Phase 1 development. Once the drug candidate passes phase 3 development, the 

corresponding future option values are estimated to always generate a positive FCF outcome for 

investors.  
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To address funding gaps to commercialize early-stage biomedical technologies, private-public 

partnerships have been established to function as a catalyst to de-risk at the earliest stages in 

development.35–37,149 It is important to note that investment decisions made by public funders (e.g., 

government, charity funds) are not necessarily profit-driven. Some of these funders may be driven by 

philanthropic, social, or policy motives. Under this different framework, public funds may fund drug 

development initiatives that are unlikely to generate a profit given the risks and costs involved. This is a 

common occurrence for the funding of very early stage (discovery) health research which is in large part 

funded by national government granting agencies (e.g. CIHR, NIH).  Other non-profit funders may still 

consider profitability of opportunities for investment; however, their requirements for returns may be 

different, which could reflect a difference in cost of capital from these sources. Funding from these 

sources may be combined into partnerships with for-profit investors. 

In fact, the potential for non-profit investors to participate in development of medications for 

Type 1 diabetes patients is evidenced by the presence of groups such as the Juvenile Diabetes Research 

Foundation (JDRF) and The Helmsley Charitable Trust who are active in supporting research to improve 

the health of these individuals.  As an example, Zucara Therapeutics150 has developed their preclinical 

SSTR2a drug candidate with investment from a group of not-for-profit funders (The Helmsley Charitable 

Trust151, Juvenile Diabetes Research Fund (JDRF) 152, MaRS Innovation153, adMare Bioinnovations154, 

and accel-rx). Each of these funding sources has investment motives that not only consider the value of 

opportunities but also reflects the mandate of their organization. For example, the JDRF’s mandate is 

focused on advancing ways to better treat and prevent T1D.152 The Helmsely Charitable Trust aims to 

improve lives by supporting broad health-based initiatives including T1D.151 Organizations like adMare 

Bioinnovations154, MaRS Innovation153, and Accel-Rx155, have a mandate to promote economic growth 

and advance health by enabling the development of early-stage health science technologies.   
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4.5.1 Limitations 

There are limitations to this model that underestimate the real option value to develop the phase 1 

SSTR2a drug candidate. The VB-ROA model considers a broad range of inputs spanning 

epidemiological, clinical, regulatory, and market data. For early-stage technologies, empirical data for 

many of these inputs are limited, therefore, conservative assumptions were made where necessary.  

The market value of the phase 1 drug candidate may have been underestimated due to 

conservative assumptions made for corresponding model inputs. The model assumed the market share 

began at 1% and increased in a straight-line manner until it reaches its peak. Financial valuation estimates 

for early-stage drugs are sensitive to the projected time to reach peak sales because revenues are 

discounted to account for ‘time value of money’. A recent empirical study on the time to peak sales for 

pharmaceutical drugs suggest that the timeline has shortened from 8 to 10 years to 5 to 6 years, which 

suggests that the market value of the underlying drug candidate may have been undervalued. A 5 year 

time to peak sales would have a corresponding option value for phase 1 development to be at $16 MM, 

which supports the decision to invest in the technology.  

Parameters pertaining to clinical development (i.e., length of phases, costs and risks) were taken 

from empirical studies examining the pharmaceutical industry as a whole, which may not reflect the true 

timelines, costs, and uncertainties pertaining to commercializing an SSTR2a treatment for hypoglycemia. 

However, these inputs are unique and should be estimated by management based on the clinical 

development plan. The market value of the drug candidate (At,k) may have been underestimated based on 

the inputs used pertaining to revenues. The uncertainty in the drug price was discussed previously in 

Chapter 3. The market size was calculated under the assumption that the target population were US-based 

T1D patients who have had a recent nocturnal hypoglycemia incident.  

The study considered only the cohort experiencing nocturnal hypoglycemia, as this approach is at 

least initially validated by a company (Zucara) developing a SSTR2a technology for this market 



 

80 

segment.156 However, this does not mean the SSTR2a treatment will only be sought after by patients 

experiencing nocturnal hypoglycemia, and the market could be expanded to T1D patients who require 

improved management of hypoglycemia during the day. Furthermore, the size of the market only 

considers T1D patients, but if the SSTR2a therapy could benefit all insulin-dependent diabetics at risk for 

hypoglycemia (including a portion of the T2D population), this scenario, with significantly larger market 

size, could create a positive option value for development. This is an example of how this model can be 

used to test a set of inputs (including TPP) to assess the merits of one strategy or another in developing a 

given technology, in this case SSTR2a. 

Although there are uncertainties within the VB-ROA model that limit its accuracy, the analysis 

enables decision-makers to understand the importance of certain parameters at dictating the commercial 

value of the drug development project. Parameters that were identified as sensitive to option value can 

then be prioritized to enable commercialization strategies that enable efficiencies in drug development.  
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CHAPTER 5. IMPLICATIONS AND CONCLUSIONS 

The VB-ROA framework supports a collective decision-making approach to enable the development 

of cost-effective therapies that meets payer requirements for cost-effectiveness, as well as profitability 

requirements for drug manufacturers. Real options analysis considers the trade-off between immediate 

investments needed against the future financial profits generated, along with risks inherent in the drug 

development process. We ensure the financial benefits are constrained within payer requirements for cost-

effectiveness by applying the value-based price when projecting future profits from drug 

commercialization. The VB-ROA framework considers the risks associated with drug development by 

adjusting the projected profits by the probability of passing each development phase. 

 Sensitivity analysis on VB-ROA to construct development strategies to ‘fail faster’ 

Performing sensitivity analysis on the VB-ROA framework not only assesses uncertainty around 

the development decision, but also identifies key parameters with the greatest impact on overall FCF of 

drug development projects. By identifying these parameters, decision-makers can prioritize development 

efforts and focus on generating evidence on the most sensitive parameters. This enables development 

strategies that can quickly validate drug candidates for commercial and economic viability, and further 

the effort to fail fast and limit lost resources to unsuccessful drug development projects.  

In this case analysis, the VB-ROA model results identifies that parameters associated with patient 

quality of life (e.g., HRQoL weights, adverse event rates) and payer’s WTP for health outcomes were just 

as important (if not more) to option value than clinical development parameters. This suggests that early-

stage development efforts need to include reimbursement considerations. Also, the analysis suggests that 

reducing adverse events that are non-severe is more important to option value than severe events. This is 

due to the fact that non-severe events occur much more frequently to a greater proportion of T1D patients 

than severe events. Therefore, clinical development efforts should aim to maximize the reduction of non-

severe hypoglycemia. 
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 The need for risk-sharing drug development partnerships 

The occurrence of financially worthless options (i.e., valued at $0) for early-stage drug candidates 

is primarily due to investors’ cost-of-capital. Drug manufacturers can increase the final drug price above 

its value-based price in order to generate a profit (i.e., positive FCF). This reflects the difficulty in relying 

solely on for-profit drug manufacturers to commercialize novel drugs that are cost-effective. This also 

highlights the need for drug manufacturers to collaborate with non-profit entities (e.g., government or 

charitable funds) to share the risks in bringing novel and cost-effective drugs to market.35–37  

The SSTR2a drug candidate may not generate a positive value prior to starting phase 1 

development, but it may generate a positive option value from phase 2 onward. Drug manufacturers 

should not be expected to finance projects that are not going to generate profits since their primary aim is 

to increase shareholder value. Non-profit organizations have mandates that are not geared towards profits. 

While their investment principles may include an assessment of an opportunity’s profitability, it must also 

be evaluated in its ability to fulfill the mandate, be it for example improving the quality of life of patients 

suffering from diseases with no available therapies, or other public policy-related outcomes.  

Furthermore, a not-for-profit investor may have quite different requirements for return, demands 

for cost of capital and timelines for investment such that modeled VB-ROA outcomes for these investors 

could be different than those for for-profit drug manufacturers, for a given investment opportunity.  For-

profit companies and not-for profit investors must establish effective partnerships to enable funding of 

technology development from both sides at the appropriate stages of development. Investment agreements 

could include future provisions to limit drug prices to cost-effective levels if the drug candidate is 

successfully brought to market. 
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 Further applications of the VB-ROA framework 

The VB-ROA framework was applied as a tool to inform commercial decision-making (i.e., for-

profit drug development). However, the model can also be used to inform payer decisions concerning 

reimbursement. A standardized decision framework that is validated by both the industry and payer 

communities can enable more effective negotiations between the two parties and develop fair outcome-

based agreements. Collective frameworks, such as the VB-ROA, can be used as a tool to better enable 

collaborations between industry and payers earlier in the product development cycle. By doing so, the 

drug commercialization process can involve an earlier dialogue with payers where information can be 

communicated in a manner that better explains its implication across both stakeholders. 

 Limitations to the VB-ROA framework 

The main limitation in the VB-ROA framework is in its inherent complexity, which may limit its 

adoption by decision-makers, as it appears to be a ‘black box’. However, one should acknowledge that 

drug development is a complicated process with many important considerations that warrants the need of 

subject matter experts in a variety of fields. Currently, the development process considers these variables 

separately as it moves along each stage, which has led to inefficiencies in resource spending. This has led 

to the development of novel drugs that are unaffordable to patients, or late-stage drug candidates that are 

not commercialized because of economic viability. In order to address these inefficiencies, decision-

makers must aim to comprehensively understand all variables pertinent to the development of cost-

effective therapies. 

Another limitation to the model is the vast amount of evidence needed to conduct the VB-ROA. 

Many of the required inputs do not exist for early-stage drug candidates, such as inputs associated with 

clinical efficacy. That is not to say that decision-makers do not consider these variables when investing in 

early-stage drug candidates because the evidence is not available. Decision-makers make assumptions on 
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what level of clinical effectiveness is needed in order for the drug to address an unmet medical need. For 

many of these inputs, careful assumptions need to be made in order for the model to be valid and reliable. 

 Conclusions 

The healthcare sector is unique in that there is a wealth of peer-reviewed literature to support 

industry, medical, and policy decisions. However, this, coupled with long and expensive development 

pathways for drug development, with significant risk, makes it difficult for decision-makers to consider 

the vast amount of information as they evaluate their options. Traditionally, decision-makers from 

different backgrounds (e.g., clinical, regulatory, commercial) work in a segmented manner that may lead 

to drug development inefficiencies.  

The VB-ROA framework enables decision-makers to consider the vast variety of information 

spanning different areas of research (clinical, epidemiological, financial, and business) into a single 

decision model. By doing so, the analysis can assess risks associated with market approval as well as 

market access.  

The VB-ROA framework has suggested that drug manufacturers should not proceed in the 

development of the phase 1 candidate, as defined, to prevent hypoglycemia for T1D in the US. However, 

the model also shows that the drug can be valuable to drug manufacturers in the future once it has been 

further de-risked. The model can also be used to inform development strategy, in that a range of input 

values may be evaluated.  This could inform refinement of the product’s TPP or development path to 

forge an opportunity that would attract investment even in the early stage.  Use of this model, or 

refinement of this model, can be used to inform both investment decisions, but also the framing of the 

investment opportunity itself, ideally improving the quality of both the technology and the investment.   

Collaboration and funding from partnerships of for-profit and not-for-profit investors are needed 

to bring early-stage technologies to market in a cost-effective manner.  Strategies and tools such as the 

VB-ROA framework to enable these partnerships should be investigated Further research is also needed 
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to identify partnership agreements between the pharmaceutical industry and payers to further advance the 

development of cost-effective and novel therapies.  
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