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Abstract 

Conceptual design is a crucial phase in the Design Development Process (DDP) of complex 

mechatronic systems. Yet, the available design support is not adequate for the Conceptual Design 

Development Process (CDDP), let alone the entire DDP. Typically, linear methodology, called the 

V-model, is used in the software development life cycle (SDLC) for the DDP. The developed DDP 

can as well aid in addressing the customer requirements properly according to the degree of detail 

that is sought. Also, a Conceptual Integrated Model (CIM) can describe products from different 

viewpoints and can be developed to aid the simulation-based design. 

The primary focus of the present thesis is the conceptual design phase. The thesis proposes 

a hierarchical DDP, where the V-model process is expanded into multiple layers. These layers 

assist in providing increased flexibility to the DDP, in which each design phase is subjected to a 

separate and independent integration and evaluation. Through this approach, the required functions 

can be realized, and the lengthy iteration loops, due to incompatible subsystems, are avoided. The 

second key objective of the present thesis is to develop a CIM for formal concept modeling using 

the modeling language SysML with generic design functional libraries. The first set of design 

libraries are the FB libraries, which aid in the development of the functional structure. The second 

set of design libraries are Amesim simulation software elements, which help establish the concept 

simulation models. Also, the challenges of the transformation and exchange of information 

between a descriptive modeling language – SysML – and a multi-physics modeling language – 

Amesim – are explored. The last key objective of the present thesis is the use of fuzzy measures 

and fuzzy integrals for the evaluation of the non-functional requirements of the conceptual design 

phase, where Sugeno lamda-measures are employed to address the uncertainty of the requirements. 
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The present research is conducted starting with a descriptive study for the development of 

a design concept model, concept simulation, and concept evaluation of an industrial fish cutting 

machine, which falls into the category of complex mechatronic systems. The evaluation of the 

approach focuses on improving the quality of the conceptual design. 
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Lay Summary 

The development of the design process is crucial for the modeling and design of 

mechatronic systems. This dissertation addresses many challenges in the design process of a 

mechatronic system especially in the early stage of the design. A multi-layer design process is 

developed to improve the flexibility and responsiveness of the process. It facilitates the data 

management between different levels of the design process. The development, improves the 

modeling of the system functions in SysML to increase the modeling formality. An algorithm is 

developed to automatically generate structural models from functional models. Finally, an 

evaluation scheme is presented to simultaneously evaluate all conflicting criteria. 
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Chapter 1: Introduction 

1.1 Mechatronics and Integrated Design 

The term “mechatronics” was coined in 1969 in Yasakawa Electric Corporation, Chiyoda-

Ku, Tokyo, by senior engineer Tetsuro Mori. The word is composed of mecha from mechanics 

and tronics from electronics, which refers to the combination of mechanics and electronics. After 

the 1980s, the meaning has broadened to encapsulate computer technologies and software as an 

integrated part [1]. Nowadays, other disciplines such as optics, thermodynamics (including heat 

transfer), hydraulics, and pneumatics are involved in the development of mechatronic systems. 

Hence, a mechatronic system is regarded as a multi-domain (or multi-physics) and complex 

system. One definition of a mechatronic system is that it is a synergistic combination of precision 

mechanical, electrical, control, and systems engineering, for the design of products and 

manufacturing processes [2]. Other literature describes the mechatronic approach as a multi-

disciplinary design methodology that solves the functions, primarily of mechanically oriented 

products through, the synergistic spatial and functional integration of mechanical, electronic, and 

information processing subsystems [3]. Mechatronic systems are becoming increasingly 

significant in many industries today, such as the automotive and manufacturing industries, in 

addition to modern consumer products. Typical examples include autofocusing cameras, engine 

management systems, food processing machines, anti-lock braking system (ABS) of automobiles, 

active suspension systems, and industrial robots. 

Compared to purely mechanical solutions, mechatronic-system solutions can offer 

increased functional scope and quality through the integration of various disciplines. In the 

traditional electromechanical design, the mechanical domain is addressed first, which involves 

material properties (density, strength, deformability, etc.) and geometry (size, shape, etc.) of the 
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mechanical structure. Subsequently, the electrical domain, which involves electrical components 

(sensors, actuators, amplifiers, and other hardware), interconnectivity, and communications are 

addressed. Finally, a controller is integrated and tuned to rectify any shortcomings in the resulting 

design to add additional reliability [4]. In this design, tasks are not executed before the previous 

ones have been completed [5], [6]. 

In recent years, increased attention has been given to the development of the conceptual 

phase design processes for mechatronic systems, because the highest influence on the final design 

in the development process occurs during the conceptual development phase [7]. Fig. 1-1 shows 

the fundamental difference between design optimization and conceptual design generation. 

Performing possible improvements and optimization in the early design stage can make a 

significant impact on the success of a product. About 75% of the cost of a product is set during the 

conceptual phase [8]. The importance of the conceptual design phase stems from the realization 

that the level of overall design innovation and the quality are determined through this activity. 

Moreover, the type of technology and the concept of the design that satisfy the customer needs are 

specified during the conceptual design phase. In summary, the conceptual design phase may be 

viewed as the most critical phase of the product design life-cycle because the decisions made there 

have the greatest impact in the overall design process. 

1.2 Challenges in the Design of Mechatronic Systems 

Historical data show an increase in the complexity of the development of mechatronic 

products. This data points to a growth in the developed systems in terms of the number of 

functions, components, and interactions, as shown in Fig. 1-2. 



3 

 

 

Figure 1-1: The difference between design optimization and the conceptual design 

 

Figure 1-2: Historical data on the increase of system complexity 

Design
Optimization

Design Variables

“G
oo

dn
es

s”



4 

 

This design development complexity presents growing challenges for companies that 

demand technical solutions. We recognize two types of problems that can contribute to the rise of 

the design development complexity in mechatronic systems: they need to overcome (a) process-

based problems, and (b) design data-related problems [9], [10]. 

1.2.1 Process-based Problems 

These problems can be defined as “the coordination and synchronization of the discipline-

specific development process, the coherence, and interactions between different disciplines and 

comprehensive integration across all disciplines” [9]. An additional challenge related to the 

process-based problem is the increased rate of dynamism due to high, and rapid market demands. 

Consequently, the traditional approaches are reaching their limit and are often too rigid to handle 

the large number of rapid design changes efficiently. Therefore, the development of design 

methodologies for the Design Development Process (DDP) to facilitate the integration of multiple 

domains has attracted considerable attention. 

In the traditional sequential design, after the system is built, it is typically difficult and 

somewhat costly to change a parameter or a component. Also, the design optimality will be hard 

to achieve even with a perfect controller. Furthermore, there may exist a lack of compatibility and 

efficient matching between components and subsystems. This incompatibility arises from the 

dynamic interactions between components and subsystems, which cannot be appropriately taken 

into consideration in a sequential design scenario. 

A key characteristic of a mechatronic system is the presence of different physical 

subsystems such as mechanical, electronic, and computer technologies that are integrated. An 

important effect of this integration is the creation of product innovations through the synergetic 

interaction between various engineering domains. Hence, DDP requires multidisciplinary and 
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holistic solutions that are able to realize such systems. Nonetheless, the established DDP suffers 

from considerable deficiencies in managing process-based problems. Nowadays, companies are 

struggling with new challenges in mechatronic system design, which require the use of innovative 

design processes. These challenges make it difficult to manage the development process that 

concerns increased quality, and reduced development costs and time [9]. 

In most cases, the process of design development during the conceptual phase still performs 

the involved discipline in a separate and isolated fashion [11]. Since the conceptual design phase 

is crucial in the design of mechatronic systems, as discussed in Section 1.1, the associated work is 

heavily based on the Conceptual Design Development Process (CDDP). Consequently, the 

process-based problem discussed here will consider challenges such as: the coherence and 

interactions between different disciplines, the comprehensive integration across all disciplines, and 

the lack of flexibility in DDP. 

Although investigators and the application sector have put some effort in addressing these 

challenges, some challenges still remain, such as [9]: 

• The standard practice in industry still involves the traditional, sequential design process. 

• There is a lack of support tools for the synchronization of different disciplines in the design 

development process. 

• The coordination among the activities and tasks in the conceptual phase and the other 

phases of the product design development process is not sufficiently supported. 

• The complex coherences and interactions between the disciplines are only considered in a 

later development phase. 

• A flexible organizational structure is needed. The structure should be able to adapt to the 

rapid changes in the requirements. 



6 

 

• Different ways to encapsulate the increased demands of the customers and stakeholders 

throughout the development process need to be developed. 

• Current development processes are not adequate to respond to the rapid changes in 

customer requirements. 

1.2.2 Design Data-related Problems 

The data that are created throughout the DDP of mechatronic products need to be properly 

managed. Product models are used to support the product data management (PDM), in which all 

the pertained information is accessed, stored, served, and reused by stakeholders [10]. Computer-

based tools used for the support of product data have always been developed for a specific 

discipline such as Computer-aided Technologies (CAx), Electrical/Electronic Engineering 

Solutions (EES), Computer-aided Software Engineering (CASE), and Product Lifecycle 

Management (PLM) [9]. These tools often produce data about the product model and product 

structure that may be incompatible with one another. 

In addition, the target of a design is to meet the requirements and needs of the customers 

and stakeholders using technical solutions in a rapid and satisfactory manner. At the same time, 

economic efficiency must be acceptable. The degree of satisfaction of the customer dominates the 

extent to which the product solves the specific problem. Also, the framework conditions of project 

development are subject to increased uncertainty and dynamism, which represent a challenging 

trend. For example, stakeholders are less and less able to explicitly express their needs or product 

requirements [12], [13], available development time [14], and the functional scope and 

interdependencies of the functions among themselves [15]. 

Therefore, the diversity of data from different disciplines brings challenges, which include 

the following: 
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• It is difficult to show, understand, and construct the interdisciplinary and functional 

relationships between various systems and components. 

• Increasing the efficiency of directing and organizing the design development process can 

be achieved by using the information extracted from product models. 

• Conceptual Integrated Model (CIM) that models the dynamic behavior of different 

multidisciplinary systems, functions, and components are not adequately realized. 

• Different classes of customer requirements should be properly addressed in the 

corresponding phases of the development process. 

• The imprecision and incompleteness of the design requirements pose challenges in the 

product data analysis and exchange. 

• Developing methodologies to evaluate the conflicting requirements of different customer 

should be further investigated. 

1.3 Requirements of Mechatronic System Integration 

Mechatronic systems have displayed success in developing complex and advanced 

products thanks primarily to the close integration and collaboration of mechanical engineering, 

electronics, and computer science. Mechatronic systems are characterized by being 

multidisciplinary, highly complex, and are subject to rapid changes and conflicting requirements. 

Therefore, specific requirements need to be met and suitable procedures have to be followed in 

their development. 

A practical approach to managing the mentioned problems is through the exploration of 

the conceptual design phase of the DDP and CIM. This phase is particularly important because the 

decisions that are taken in this design phase, and the data management have the highest impact on 

the rest of the design decisions. Moreover, the conceptual phase addresses the abstract, concept, 
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function, behavior, and the general form of the designed components and systems, which creates 

increased ability to address the multidisciplinary design. Also, this phase of design has the 

advantage of increased availability of design freedom. In addition, there are other challenges, 

which are related to the design in this phase. However, we believe that addressing the mentioned 

problems during the concept development is an effective approach to tackle the increase of the 

design complexity and the number of functions, components, and interactions. 

In order to manage the high complexity in the design of a mechatronic system, several key 

requirements need to be addressed, which are indicated next. 

1.3.1 Conceptual Process-based Requirements 

The development of increasingly mechatronic products presents designers with new 

challenges that require the use of adapted processes and methods. These challenges have created 

a new and growing demand for a comprehensive process model. This model should encapsulate a 

holistic view of the process while facilitating the cooperation and coordination of the involved 

disciplines. It can be represented as a general structure with specific guidelines for designers to 

ultimately satisfy the needs and requirements of the customers. Inexperienced designers tend to 

start with a preliminary concept and proceed towards the detailed design without proper utilization 

of the design freedom. Such an approach has a high possibility of leading to inferior design 

selections. Therefore, the current practice is to generate different conceptual design alternatives, 

which can help find a good solution [16]. This approach can reduce the expense of time and cost 

of the development process. 

Decision making is used to evaluate the conceptual design alternatives in different levels 

of detail in an iterative matter. The iteration should provide a less expensive design in a particular 

cycle than in the previous cycle. The early analysis and simulation of different design alternatives 
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are essential even in the absence of rigid mathematical parameters and the presence of various 

indefinite constraints [17]. Applying an extensive evaluation scheme to the design development 

process may result in a fewer number of iterations. One way to satisfy that condition is to subject 

each phase to a separate and independent evaluation scheme. Also, an approach to systematically 

guide and organize the mechatronic design process of products can ultimately reduce the cost, 

time, effort, and needed resources of the development. 

These requirements can be summarized as follows: 

• The development of advanced approaches to organize, manage, and guide DDP is 

necessary.  

• An increase in the flexibility of the DDP of mechatronic products is required in order to 

increase the evaluation capability and the level of satisfaction of the customer 

requirements. 

• Different engineering disciplines should be integrated at the beginning of the DDP. 

• A solution-neutral, and domain-independent specification, description, and definition, in 

the early development stages should be supported. 

1.3.2 Conceptual Data-based Requirements 

The data of product models are used to describe the links, connections, and interfaces of 

product elements and functions of various domains, and in different levels of detail. The necessity 

of viewing the integrated and complete mechatronic system alongside the interfaces and 

connections between the associated different disciplines, throughout the entire DDP of the system, 

is essential. Also, a common language is necessary in order to enable traceability and reasoning 

between different components and functions of the designed system. 
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Model-based Systems Engineering (MBSE) is a multidisciplinary approach to help 

understand the context and specification for satisfying the specified customer requirements by 

developing a system solution in response to different needs of the stakeholders [18]. Aspects of 

MBSE include behavioral analysis, system architecture, requirement traceability, performance 

analysis, system simulation, testing, and so on. [19]. System Modeling Language (SysML) is an 

extension of MBSE and can be utilized as a computational model of a mechatronic product. 

Other relevant key factors include the uncertain and limited knowledge about the product 

design and customer requirements, and the lack of communication between components and 

subsystems, which need to be properly addressed. Therefore, the following criteria need to be 

fulfilled: 

• The development of early design stage modeling is needed for CIM that moves beyond 

geometry to replace paper-based modeling methods [20]. 

• CIM should allow representation of the product’s behavior in an integrated 

multidisciplinary system. The data model should illustrate the details of the individual 

disciplines to support the design, analysis, and evaluation of the overall system. 

• The models must display abstract mapping of the product functions, activities and 

components, and their dependencies. They should also provide information about the 

internal changes between the disciplines to aid in the product’s development process. 

• The models may also be able to contain meta-model information, in which the traceability, 

and reasoning between systems, sub-systems and components are permitted. 

• Data of the product model should be used in the advancement, guiding, and organization 

of the process development models. 
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• New approaches and methods should be investigated to increase the confidence of the 

models in the presence of a lack of information and communication. 

• CIM should be able to transfer the stored information and knowledge to and from other 

models (e.g., simulation or behavioral models) for further computational analysis and 

simulation. 

Library-based Support for the Conceptual Design 

Sources of knowledge and information are essential to assist mechatronic CIM. There is a 

large body of knowledge for designers that is captured from past designs, which can help during 

the design activities of ever-increasing mechatronic design problems [21]. Knowledge and 

knowledge modeling are used to aid the conceptual design phase; as opposed to geometrical 

modeling, which is used to support the detail design phase. Knowledge reuse is essential to achieve 

the targets of systems engineering vision 2025 [22], [23]. 

 Design libraries are an important resource to support product modeling, in which all 

conceptual design knowledge is captured and classified into different categories [24]. For example, 

the systematic reuse of such libraries in object-oriented software development is widely used, 

where the libraries offer basic support of various functionalities [25]. One way to support the 

design libraries is by classifying the captured knowledge to categories; for example, functional 

libraries [26], behavioral libraries [27], form libraries [28] and so on. 

Several requirements are listed below to improve the usage of libraries in engineering 

design: 

• The design libraries should raise the formality, in which systematic guidance for the design 

through the reuse of clearly defined items from the libraries can be further investigated. 
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• The use of the design libraries to further support the CIM. Some examples are automatic 

model generation, compatibility and consistency checking, or the evaluation of design 

alternatives. 

1.3.3 Multi-criteria Evaluation 

The elimination of different design alternatives in an early stage without using extensive 

details of the system is a desirable practice. However, the extensive search space of design 

alternatives makes the identification of design concepts a tedious process. 

The dynamic interactions of different components and subsystems degrade the 

performance of the overall mechatronic product, if not taken into account during design. It exists 

because of the lack of compatibility and improper matching between components and subsystems, 

and these are not usually taken into consideration when evaluating the design solutions. 

Design criteria requirements provide a measure of how well the system should function or 

behave. In the same context, the design specifications may include system attributes, and 

constraints. Determining the design criteria requirements is done after reviewing the design tasks 

and customer needs, and on performing a requirement analysis. The attributes and sub-attributes 

selected in this manner have to be operational in order to identify how well each conceptual design 

solution meets the design requirements. Therefore, the following points should be addressed: 

• The design evaluation should take into account the complexity of both, correlations 

between system requirements and interactions between multidisciplinary subsystems. 

• Efficient and effective methods are needed to decrease the design optimization time and 

computational costs, which result due to the presence of many design variables and a vast 

search space. 
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1.4 Research Objectives 

The main objective of the present research is to support the design of mechatronic systems 

by improving the CDDP and CIM. The proposed development of the conceptual design phase is 

built upon a general reconstruction of the DDP, which is termed the “Macro-level development 

process.” Specifically, the design phases are broken into separate phases, in which each phase is 

guided by independent modeling, simulation, and evaluation schemes. At the same time, the 

systematic design guidelines and formality will be maintained. This modification will increase the 

flexibility of the development process, leading to the following key advantages: 

• The ability to consider diverse requirements of stakeholders, in which the level of detail of 

the requirements is properly incorporated. 

• The reduction of the processing time and the resource costs can be achieved by minimizing 

the development cycles and interactions. 

The development of the conceptual design phase will be investigated further, which will include 

the formulation of the “conceptual macro-level development process.” The present thesis will 

address three aspects of development investigation: concept design and modeling, run-time 

concept integration and simulation, and concept analysis and evaluation. 

In the present work, Model-based System Engineering (MBSE) will be heavily used for 

the development of the “conceptual micro-level development process” through the System 

Modeling Language (SysML). The goal is to develop an integrated tree-based concept modeling 

approach in SysML. The developed model will improve the consistency checking and traceability 

with respect to the computational support and the ability to display different levels of model details. 

An implementation of different design libraries into the model will be developed in order to 

increase the formality and minimize the errors. We believe that DDP controls the design and 
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provides baselines that coordinate the design efforts. CIM provides a suitable structure for solving 

design problems and can integrate involved customers in the DDP to ensure the developed system 

is viable throughout the product life cycle. 

A seamless, logical, and systematic transformation of the model between different 

modeling environments will be established, where knowledge extraction will be performed 

between a descriptive modeling environment and a simulation modeling environment. The first 

environment supports the abstract level modeling where functional libraries [26] will be introduced 

and implemented. The second environment supports the concept level simulation where behavioral 

libraries [27] will be introduced and implemented. 

Finally, a formal approach for the evaluation of conceptual design alternatives of 

mechatronic systems will be developed. It will be a general approach that covers a wide range of 

systems within the umbrella of mechatronic systems. Also, it will be able to incorporate multiple 

criteria in the design evaluation together with an intuitive aggregation method. The developed 

approach is built on the concept of Mechatronic Design Quotient (MDQ) [29] and enhances the 

application and tools for the developed concept. 

1.5 Contributions and the Organization of the Thesis 

The main contributions of the present dissertation may be summarized as follows: 

1. A multi-layer design process structure for mechatronic systems, based on the V-model, is 

developed. Compared with the other design processes, the presented framework maintains the 

systematism, increases the flexibility, and improves the integration and evaluation capabilities. 

In addition, the proposed structure adequately addresses the customer requirements at different 

levels of detail. The multi-layer nature of the process allows the designer to revisit the 

requirements in every phase of the process. 
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2. This work introduces “Interconnection Classifications” for modeling the communication data 

that take place between and within the various activities in the early phase of the design 

process. These activities are the requirements modeling, the functional modeling, and the 

structural modeling. The communication data are computationally modeled in UML. The data 

modeling provides a common terminology and language between different design teams. This 

helps to reduce the information misuse in an early design phase. 

3. The development of a library of functions in SysML, to support the functional modeling, is 

presented. This library is used to support the modeling of the functional model in SysML. Such 

support would increase the reusability and consistency of the model. Also, the usage of the 

library helps in the adaptation of the model to modifications. Compared to other existing work, 

the present work improves the formality of the SysML model through the utilization of SysML 

diagrams, such as Block Definition Diagram (BDD), and Internal Block Diagram (IBD) for 

the modeling. 

4. An algorithm is developed that enables an automatic transformation between functional models 

and structural models. In addition, the algorithm ensures the satisfaction of the customer 

requirements during the model transformation. This requires a precise algorithm description of 

the requirement model, functional model and structural model. The support of simulation 

libraries is exploited. The synthesizer algorithm dissects the simulation library components 

and matches the interfaces of these components with the corresponding functions. The 

advantage of the synthesizer algorithm is that it increases the model accuracy according to the 

requirements, and eliminates any biased selections. This work illustrates the utilization of the 

algorithm in generating different kinematic behaviors of two functional sub-models. 
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5. An evaluation methodology scheme is developed for mechatronic systems. The proposed 

methodology is used to evaluate different design solutions. It takes into account the interactions 

between different design heterogeneous components. In addition, the conflicts in the design 

criteria are considered. This work proposes an Individual Performance Indicator to reveal the 

behavior of different simulation outputs with respect to the criteria. Lamda-measures are 

employed to calculate the weights of interaction between the criteria. Finally, the Mechatronic 

Design Quotient is used to aggregate all the criteria, with their weights and the individual 

performance indicators. 

The overall result of these contributions is the development of an integrated, unified, systematic, 

and unique systems. The presented design process conserves the systematism. Functional 

modeling in SysML provides a domain-independent system model. The evaluation methodology 

scheme produces integrated and unique systems. 

The rest of the present dissertation has the following structure: 

Chapter 2 introduces different system engineering approaches for mechatronic design 

processes. More details of Axiomatic design and the different V-model variations are provided. 

Model-based system engineering is presented with the focus on UML and SysML. Function-

Behavior-State model framework is discussed in this chapter, and their different corresponding 

knowledge libraries are introduced. It presents different model representations and model 

transformations that are used during the conceptual design process. Finally, the chapter discusses 

the design evaluation of mechatronic systems. 

Chapter 3 introduces an overview of the developed design process methodology and the 

details of the design process model. The chapter first presents the proposed macro-level design 

process model, where the multi-layer V-model design process is described. Second, the chapter 
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discusses the proposed micro-level design process model, in which the characteristics of the design 

tasks and activities within the macro-level design process are given. These two models are based 

on Model-based System Engineering for supporting the integrated development process of a 

mechatronic system. The chapter demonstrates the presented design methodology through an 

industrial fish cutting machine, which investigates the rationalization of the choices of the current 

solutions. 

Chapter 4 discusses the details of the micro-level process model, where the underlying 

organization of the different design activities in the concept and modeling sub-process phase are 

defined; specifically, requirement modeling, functional modeling, and structural modeling. 

Moreover, the chapter describes the relationships between different design activities, which 

introduces the proposed interconnection classifications; namely, Allocation, Type, Class, 

Conversion, and Confidence. A case study is presented where these interconnection classifications 

are implemented. 

Chapter 5 describes the modeling approach of the conceptual phase in SysML. In 

particular, the functional modeling and its library, i.e., the Functional Basis, which provide 

additional reinforcement for the conceptual design development phase, are presented. It introduces 

a computational modeling approach for the functional model in SysML, in which the Block 

Definition Diagram is utilized. The representation of the functions and ports in SysML is also 

discussed, where a library of functions is developed. Finally, the chapter presents an 

implementation of the proposed functional modeling approach in SysML, as a case study. 

Chapter 6 describes how structural modeling is established, where a set of 

components/subsystems are interrelated. It illustrates the development of an algorithm for 

transforming the functional model into a simulation model. The chapter describes this 
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transformation, which requires an algorithmic description of the requirement model, functional 

model, the simulation model including the simulation library, and simulation components. Then, 

the principles and the algorithm of the proposed simulation synthesizer are presented. This 

synthesizer is demonstrated in a case study of an electro-mechanical conveyer system. 

Chapter 7 presents a developed evaluation scheme for the evaluation of conceptual design 

solutions of mechatronic systems. The underlying principles of the evaluation indicator, which is 

based on the Mechatronic Design Quotient (MDQ), are demonstrated. The chapter describes how 

the interaction between different design criteria is addressed, even in the presence of insufficient 

information. The proposed framework for the system evaluation is given, and it is demonstrated 

in a case study. 

Chapter 8 concludes the dissertation by summarizing the main research contributions. It 

also discusses the possible directions for future research. 
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Chapter 2: Background and Related Work 

An overview of the thesis topic and important related work of the research are presented in 

this chapter. It begins with the available models for a design process and the design methodologies 

for mechatronic systems, with a focus on the conceptual design phase and its importance. The 

system engineering approach is then introduced, which includes a description of MBSE and 

SysML. 

2.1 Design Process of a Mechatronic System 

A design of a system can be considered as an interplay between what we want to achieve 

in the system and how we want to achieve it [30]. To go from what to how, the designer is 

challenged by many conflicts, trade-offs, and risks. A designed product is not created just in a 

single big step, but rather in many small steps, which must be precisely defined, and their interfaces 

must be precisely described. The resulting sequence of steps is called a " design process" [31]. 

Designing a new product progresses through a sequence of steps, which can be used as guidelines 

for the designer. The overall process steps are referred to as the "Design Development Process" 

(DDP) [31]. It summarizes several activity steps to achieve the intended result, starting from the 

product concept to the finished product. In general, the DDP can be described as the process of 

organizing and developing a plan to transform a concept into a final product. The development of 

the design process itself is often very complex, depending on the objectives and the complexity of 

the designed product. Decisions taken during the DDP of a product will impact on the design of 

the product. As discussed in section 1.2.1, the essential functions of mechatronic products, in 

contrast to traditional electro-mechanical engineering products, are characterized by the 

“integrated” interaction of mechanical, electrical and information technology subsystems. The 
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development of mechatronic products thus requires the goal-oriented and efficient integration, 

specifically collaboration, of the involved disciplines in the DDP. 

Since the end of the nineteenth century, efforts have been made to systematize the design 

process of a system and to carry it out in a targeted manner. As a consequence, a design 

methodology was developed [32]. Since the 1940s, many research outcomes have been published 

on methodological designs of mechanical engineering products, in both Europe and the USA [33], 

[34]. Significant challenges in the development of new products today arise through the continuous 

development of associated technologies. Therefore, several DDPs of products that describe these 

steps have been proposed. In order to manage the challenges during product development, 

especially in mechatronics, a structured, systematic and goal-oriented approach in product design 

and development is needed, leading to high-quality results [35]–[38]. 

2.2 System Engineering Approaches 

In the late 1950s and the early 1960s, System Engineering (SE) has been used as an 

approach for multidisciplinary and concurrent design of complex systems [39]. A concurrent (or, 

integrated) design process is a way to decrease the process development process time and to 

manage the synergy of a multidisciplinary design [40] while simultaneously addressing all 

physical domains (e.g., mechanical, electrical, fluid, and thermal) of the problem [4]. SE is a 

science that is applicable to the design, development, and maintenance of highly complex products 

such as trains, cars, airplanes, power plants, and manufacturing processes. The goal is to analyze 

and combine all the behaviors of the system into an efficiently functioning design. In the SE 

context, a system can be defined as “a set of elements that interact to achieve a stated purpose” 

[41]. Systems can be classified into four main characteristics: Closed/open systems, 

Natural/human-made/human-modified systems, Physical/conceptual systems, and 
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Precedented/unprecedented systems. A wide variety of combination of system characteristics can 

lead to many types of systems, each of which would have different properties [41]. 

SE relies on a system-centered thinking to solve problems. It seeks to develop a system 

based on an initial abstract model of the system with input and output quantities, a system 

environment, and an initially-unknown inner life. On this basis, an attempt is made to develop a 

fundamental understanding of all internal and external interactions of the considered problem 

(system) [42]. SE enables a transparent process across the entire development cycle. SE is a cross-

functional approach, and a means to enable the successful realization of a requirement-based 

system. It focuses on defining the customer needs and the required functionality early in the design 

development process, documenting the requirements, and then proceeding with the design 

synthesis and the design validation, while taking into account all aspects of the product lifecycle. 

SE considers both economic and technical needs of all customers, to provide a high quality product 

that meets the user needs [43]. 

The work in the present dissertation is heavily built based on the SE approach while 

considering multidisciplinary aspects of the system early in the development process. The system 

characteristics applied in the present work concern open and physical systems that are human-

made/modified largely from available elements. 

Since the 1980s, different design process models have been used for SE; for example, a 

waterfall model [44], spiral model [45], and V-model [46], to handle the increased complexity of 

mechatronic systems. These approaches are still inefficient as they do not account for integration 

of different physical domains in an early stage of the design process – the conceptual design [17]. 

The development of new approaches for abstract modeling and evaluation of the associated 
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concepts at an early stage of the design process is needed. In the next section, an overview of some 

common system engineering design approaches is discussed. 

2.2.1 Systematic Design Approach 

Widely acknowledged engineering design guidelines developed by Phal and Beitz 

characterize the design phases into four stages: product planning and clarification, conceptual 

design, embodiment design, and detailed design [17], [37]. This approach has been included in 

design textbooks [16], [36]. Table 2-1 summaries the associated activates in each phase. 

Table 2-1: Activates During Design Development Process. 

Design Phase Activates 

Product Planning 
• Market analysis 
• Finding and selecting product ideas 
• Defining the intended functionality and 

requirements of the product 

Conceptual Design 

• Establishing detailed functionality 
• Identifying solutions to functions 
• Combining solutions into working structures 
• Selecting combinations of solutions 
• Developing principal solution variants 
• Evaluating variants 

Embodiment Design 

• Identifying product layouts and form 
• Finding solutions to auxiliary functions 
• Developing detailed and compatible layouts for 

main and auxiliary functionality 
• Evaluating and optimizing the design 

Detailed Design 

• Finalizing layout and creating drawings 
• Developing assembly drawings 
• Completing production documents 
• Checking documents for compliance, 

completeness, and correctness 
 

For the potential success in the design of a mechatronic system, a systematic approach is 

necessary for the early stages of the product development process, where the emphasis is on 
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modeling and model analysis. In this context, the aim is to realize products that always meet the 

desired performance requirements despite the presence of a wide variety of external influencing 

factors. Earlier customer involvement will enhance the interactions with customers and customer 

integration. The customer-oriented development of individual products poses considerable 

challenges such as continued change of the internal and external framework conditions, and the 

customer requirements, during the design process. These challenges lead to a further increase in 

the complexity of the development process, in which the main focus is on the development of 

products whose functional fulfillment is ensured despite a wide variety of influences [47]. 

2.2.2 Axiomatic Design 

Suh [30], [38] has attempted to establish a product development methodology based on a 

system of axioms. Every design process involves four different areas: the customer area, the 

functional area, the physical area, and the process area (Fig. 2-1). A set of variables characterizes 

each of these areas. In the customer area, this information encapsulates the desired product 

properties {CNs}. When entering the functional area, the desired product properties must be 

translated into functional requirements {FRs} and boundary conditions {BCs}. In the physical 

domain, design parameters {DPs} must then be defined that will fulfill the functional requirements 

while complying with the boundary conditions of the product. The design process is completed by 

developing appropriate manufacturing processes for the product, which are defined by process 

variables {PVs}. 
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Figure 2-1: Four areas of the design process. 

Suh has described the transitions between the areas of the design process mathematically 

with the help of a matrix formulation. For example, to determine the design parameters {DPs} of 

the system from the functional requirements {FRs}, the following "design equation" is applied: 

{𝑭𝑹𝒔} = [𝑨]{𝑫𝑷𝒔}																																																																																									(2-1) 

The design matrix [A] uniquely associates the design parameters of a given solution with the 

functional requirements, and it takes the following three forms: 

[𝑨] = Z
𝑨𝟏𝟏 𝑨𝟏𝟐 𝑨𝟏𝟑
𝑨𝟐𝟏 𝑨𝟐𝟐 𝑨𝟐𝟑
𝑨𝟑𝟏 𝑨𝟑𝟐 𝑨𝟑𝟑

^ “Coupled Design”                                     (2-2) 

[𝑨] = Z
𝑨𝟏𝟏 𝟎 𝟎
𝟎 𝑨𝟐𝟐 𝟎
𝟎 𝟎 𝑨𝟑𝟑

^ “Uncoupled Design”                                 (2-3) 

[𝑨] = Z
𝑨𝟏𝟏 𝟎 𝟎
𝑨𝟐𝟏 𝑨𝟐𝟐 𝟎
𝑨𝟑𝟏 𝑨𝟑𝟐 𝑨𝟑𝟑

^ “Decoupled Design”                                 (2-4)                    

They are the, "coupled design," which has a general matrix, "uncoupled design," which has a 

diagonal matrix, and "decoupled design," which has a triangular matrix. While in an "uncoupled 

design" each design parameter DP is uniquely linked to a functional requirement FR, "coupled 

design" and "decoupled design" have dependencies between the design parameters, which make 

the fulfillment of the functional requirements difficult or impossible. 

"Axiomatic Design" appears like a rather independent and methodological approach. This 

is due to the mathematical forms that are built to describe the relationships between the domains. 
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However, it is not clear from the approach how the mathematical connection between the 

functional requirements and the design parameters are realized for a complex system. 

2.2.3 Variations of V-Model 

The difficulties in planning and implementing mechatronic development processes arise 

mainly from the large number of sequential and parallel dependencies that must be considered 

simultaneously. The Association of German Engineers (VDI) developed formal guidelines for the 

design of technical systems [48]. Different evolvements of the guidelines have been developed for 

specific tasks. For example, VDI 2221 [49] is intended only for mechanical systems, and VDI 

2422 [50] is for mechatronic systems controlled by a microcontroller. VDI Guideline 2206 [50] 

has been developed to support the cross-domain development of mechatronic systems, especially 

in the early phase of the system design. Mainly three elements are used for this purpose; namely, 

the general problem-solving cycle as a micro-cycle, the V-model as a macro-cycle, and predefined 

process blocks for recurring work steps. V is meant to be used as a management tool, which shows 

the relationship between design activities and test activities. It is a practical way to represent the 

development process, and it is adopted from system engineering. However, simplistic 

straightforward use of V as a process model may lead to design defects, and inability to consider 

changes to customer needs during the product development. Therefore, Van Brussel has suggested 

an integrated (or concurrent) engineering approach that takes into account all involved physical 

disciplines from the beginning [51]. This basic idea is also found in [52] and in the VDI guideline 

2206 [53]. 

 The essence of the macro-level process of the V-model is generic and, therefore, some 

studies have suggested applying multiple macro-level cycles [54]–[58]. For instance, in [54] 

Gausemeier and Moehringer propose multiple macro-level layers that represent the degree of 
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product maturity. Each cycle has the same micro-level process with different level of detail. The 

first cycle represents “laboratory samples,” the second cycle represents “early prototypes,” and the 

third cycle represents “preproduction product.” However, the number of macro-level cycles and 

degree of maturity can vary depending on the application. Vasic and Lazarevic [55] developed a 

different level of maturity representation, namely “laboratory specimen,” “functional specimen,” 

and “pilot-run product,” [59] proposed the W-model, where two V-models are connected side by 

side forming a W-shaped structure, hence the name W-model. The macro-level development 

process includes five design phases: “system analysis,” “specific solutions and dependency 

analysis,” “virtual system integration,” “Model analysis and detailed development,” and “system 

integration.” The extra element in this form that is not present in the regular V-model form is the 

addition of the central part, the “virtual system integration,” which increases the capabilities of 

cross-domain integration and verification.  

 Several additional developments have been made to the micro-level processes of the V-

models. [53] proposes a customized micro-level process of the guidelines for the development of 

mechatronic systems controlled by a programmable logic controller (PLC), which enabled the 

inclusion of further sufficient process guidelines. The developed method was tailored only for 

machines controlled by PLC. There, the domain-specific design neglected the electrical domain 

and was developed for modeling and design of 3D CAD, and for PLC programming environment 

only. [60] developed a micro-level process that comprised four phases: Requirement engineering, 

Functional design, Logical design, and Physical design – RFLP. However, since a separate 

specialized computational software manages each phase, the data exchange between different tools 

and the other domains remains a challenge. 
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2.2.4 Model-based System Engineering (MBSE) 

An approach relevant to the development of mechatronic products in a systems engineering 

framework is "Model-based Systems Engineering" (MBSE). It has drawn increased attention 

recently as it is recognized as a powerful methodology for the design of complex mechatronic 

systems [61]. A model in the context of MBSE refers to an abstract representation of a system, 

sub-system, or component, to raise the level of understanding of the real system. 

In MBSE, system models are placed at the center of development and is used for managing 

the SE process of all phases of system development (specification, development, integration, 

validation), which represents a view that is different from the traditional, document-based 

development. In the MBSE, the development process is an iterative sequence of activities for the 

development and creation of increasingly detailed models or an overarching system model over 

time [62]. 

The MBSE approach is becoming an increasingly important means in the development of 

mechatronic products [63]. There are a variety of approaches to the model-based development of 

mechatronic systems with different emphases such as the modeling of components [64], 

knowledge management [65], the support of architecture development [66], and the management 

of models [67]. Another significant benefit of the MBSE approach is its use for improving the 

coordination and communication between different disciplines in the domain-specific design phase 

of the development process. By working on the communication between the integrated system 

models, information about the current state of development is always available for all disciplines. 

Moreover, when changes occur, their effects on the other subsystem models are detectable, and 

hence the overall transparency and understanding of the system is increased. The current research 
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activities on MBSE are focused on the early development process, with additional support for 

functional requirement, and dependency modeling. 

There exist a large number of process models, methods and tools for supporting model-

based development of a system. The system is usually modeled using UML (Unified Modeling 

Language) and System Modeling Language (SysML). They have widely used modeling languages 

for the aid of the MBSE, which are provided by the Object Management Group’s System Modeling 

Language [68]. MagicDraw [69] is a computational software that enables the modeling language 

UML, and SysML, which comes with extensions for system simulation [70]. However, there is 

still a lack of recognition and practice of MBSE in industry, which points to the need for further 

development of MBSE with regard to usability [71]. Also, there is a demand to integrate MBSE 

with analysis tools to support dynamic analysis. 

UML and SysML 

UML (Unified Modeling Language) is a semiformal, graphical language that is used in 

software development. Its use ranges from modeling to analysis of software programs. It facilitates 

map structures, architectures, system behavior, and the interaction with other systems through 

diagrams. Essential components of these diagrams are objects and classes. They contain specific 

attributes and methods and thus form the basis of the modeling language. 

An object is generally a graphical representation of an object. It can be a model of real 

facts, things, or concepts. It has specific characteristics and reacts to defined requests with a given 

behavior. A class describes a collection of objects with the same properties (attributes), common 

functionality (methods), common relationships to other objects, and common semantics. All 

objects of a class have the same attributes but different attribute values [43]. 
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UML is an object-oriented modeling language which that facilitates mapping of all the 

necessary aspects of a software program. In addition to the representation of all models, there are 

fixed definitions of all interfaces and connections. However, the reactive level of control 

engineering is not supported. Besides, UML cannot be regarded as a cross-domain language in 

system development. 

While UML is intended for software development, SysML addresses system engineering 

and thus the holistic and cross-disciplinary modeling of technical systems. SysML is a semi-

formal, graphical language for the modeling, analysis, and verification of systems. It is based on 

UML but different with regard to diagram types. Specifically, UML diagrams are reused and 

extended by it, as shown in Fig. 2-2 [68]. For this purpose, some adjustments and extensions to 

the UML have been made; for example, incorporation of  classes called blocks. 

 

Figure 2-2: Relationship between UML and SysML. 

SysML aims to provide a language that facilitates capturing of all different aspects of 

information about a system in an integrated model. It would increase the communication between 

different aspects of the model, and it decreases the ambiguity between the languages of the 

designers and the stakeholders. It aims to capture functional, behavioral and performance models, 
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and also capture the structural topology of the system, the parts of the system and how they are 

interconnected. Moreover, SysML incorporates requirements explicitly so that the extraction of 

information about the system can be realized. 

SysML is composed of nine types of diagrams, which enable the description of various 

aspects of structure, requirements, and behavior. Fig. 2-3 shows different types of diagrams, some 

of which have been adopted unchanged from UML and others have been extended and partially 

renamed. 

 

Figure 2-3: Taxonomy of SysML diagram 

At the top of the hierarchy, there is a system diagram, and it is decomposed into four 

categories: Requirement diagram, Behaviour diagram, Structure diagram, and Parametric diagram. 

Requirement diagram allows the description of functional and non-functional requirements. In 

addition, the existing relationships between different requirements and the system can be specified 

and explicitly modeled. It can greatly help manage the requirements since they are represented as 

a part of the system. Moreover, constraints can be added, and requirements become constraints on 

the properties of the system. 
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The behavior can be modeled in SysML with four different diagram types. Use case 

diagrams can be employed to describe the interactions of all users or external devices with the 

developed system. State machine diagrams represent possible states of the system and state 

transitions. The criteria for transitioning between states and the causes or triggers of these 

transitions between states can be specified. Sequence diagrams concern logical ordering. They 

describe scenarios and sequences of events, and how the system components should interact with 

each other. An activity diagram describes the system processes including input and output data 

and represents flows of activities that can be tied to system elements in order to add a function or 

property to the element, to perform another operation on another part of the system. Furthermore, 

a decomposition of the activities is possible to derive a kind of functional hierarchy. These types 

of diagrams are very powerful in describing such aspects as the concept of operations. Use case 

analysis is mostly focused on early concept development or stakeholder requirements, addressing 

such questions as: how are they going to interface with the system, where do they drive value, and 

how does the user interact with the system? 

A structure model is based on blocks that describe the structure and relevant structural 

configurations and properties of the developed system. Structure model also describes the 

decomposition of the system and the parts that make up the system; for example, logical 

decomposition and physical decomposition. Block definition diagrams define the structure of the 

system and the logical or physical decomposition. It describes the relationships between different 

blocks, their associations, generalizations, and dependencies. For example, if the system is a 

spacecraft and it has various sub-systems, then, it could be decomposed logically, as a thermal 

sub-system, a structure sub-system, ADCS sub-system or it could be decomposed physically, as 

solar arrays, instruments, thrusters, and so on. Internal block diagrams establish the relationship 
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and the ties with the interfaces between the blocks (components) through ports, connectors, and 

flows. They can have varying different levels of abstraction. Parametric diagrams are a sub-

diagram type of the internal block diagram in order to impose mathematical or logical constraints 

on the interfaces and build up the infrastructure computation in the model. The parametric 

diagrams can be modeled to define the relationships between the properties of different blocks 

(e.g., physical laws). The packaging diagram is focused on the organization of the model and 

displaying the scope of the system. 

These diagrams can be cross-connected into what is called “the four pillars of the system,” 

which are based on four basic principles represented by the following diagrams: requirements, 

behavior, structure, and parametric. It is illustrated in the example shown in Fig. 2-4 [72]. 

The first cross-connector that joins these diagrams is “Allocation.” Behavior diagrams, 

e.g., activity diagrams or sequence diagrams, can allocate a specific behavioral activity to a 

structure block and add behavioral constraints. These will be embodied within partitions called 

“Swimlanes.” The partitions represent structural elements, and they have the responsibility of 

executing the behavior within the partition. The next cross-domain connecting element is the 

satisfy relationship. This relationship is performed between the requirement diagram and the 

structure diagram. It is shown on the structure diagram, e.g., block definition diagram, as a call-

out notation, which indicates that this particular structural subsystem or element is meant to satisfy 

a specific requirement. As mentioned previously, the block definition diagram allows adding 

values, functionalities, and attributes to the block. Value binding property allows to link these 

values and bound them into a set of equations that are expressed in the parametric diagram and 

create parameter constraints. Finally, requirements can be verified through interactions. These 
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interactions would run a test experiment based on the values in the model and be able to conclude 

if the system’s values still satisfy the given requirements. 

 

Figure 2-4: Relationships between different SysML diagrams. 

Although, these diagrams are the way to define the system and its interfaces within the 

model, they are not the model themselves. They can create links between diagrams in such a way 

that if a change takes place in one diagram, it will propagate to the rest of the diagrams that have 

a connection to the first change. So, it is similar to a database for the whole model that encompasses 

all the information as opposed to having many isolated block diagrams. 

SysML can map the complete design of a complex system, but it is limited to three aspects. 

A large number of diagrams and constructs are only roughly predefined and do not always allow 
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a clear or even intuitive use. Also, a large number of constructs can sometimes be used in any 

manner. The training is therefore done with much effort. The specification of an advanced 

mechatronic system and its information processing and reasoning, which lead to behavioral 

changes, is not directly addressed. Concerning the system design focus, functional decomposition 

is only possible with additional effort. However, the function hierarchy derived in this way is not 

primarily intended for solution finding. 

2.3 Function-Behavior-State (FBS) 

Although the terms function, behavior, and structure have been used in the past, it is not 

until 1990 when they were clarified and used to define a framework for modeling and representing 

the functionality of a system [73], [74]. In the FBS framework, function represents the functions 

that the system performs; structure represents the physical elements of the solution, and behavior 

acts as the relationship between function and structure. In the design synthesis, the behaviour is 

derived from a function in order to obtain a design solution. When a solution is defined, its 

behavior is determined to evaluate if it reaches the intended functionality. The FBS framework can 

also be used as a methodology for the analysis of the design process, through the representation of 

the evolution of the design state from the analysis of the design procedures [60]. 

In general, there are two approaches in the FBS design [75]. In the first approach, the 

functions are related to the behaviors of an element; next, these behaviors are related to the 

physical-structural descriptions of the elements. It was developed by Gero [60], who proposed the 

design model Function-Behavior-Structure (Function - Behavior - Structure), and by Umeda et al. 

[73], who proposed the design model Function-Behavior-State (Function - Behavior - State). This 

first approach considers behavior as a key concept and determines a clear ontological order: objects 

have their physical structure. This structure, in interaction with a physical environment, invokes 



35 

 

the behaviors of the objects, and then, the behaviors determine the functions of the objects [76]. In 

the second approach, the functions of the objects are modeled in terms of inputs and outputs, and 

these functions are directly related to the physical-structural descriptions of the objects [77]. It is 

also known as Functional Modeling because it considers behavior as a mathematical representation 

of the states of objects [26], [77]. Further discussion on FM is given in the next section. 

2.3.1 Functional Modeling (FM) 

In this dissertation, the term function is used analogous to the concept of function that 

represents a formulation of the design task on an abstract level. Here, the function is described as 

a statement that represents the general and intended relationship between input and output 

quantities of the system, without having to indicate any particular form [37].  A Functional Model 

(FM) in systems engineering and software engineering is a representation of functions (activities, 

processes, operations). The purpose of FM is to describe the functions and processes that help to 

discover the needed information and identify opportunities, and also to establish a basis for 

determining the product. Product function can be used as a link to the development of new 

innovative solutions [78]. Since the design process represents the solution to set tasks, the product 

function is considered the central structuring agent for the abstraction of the design task and the 

solution. 

FM provides a high-level system view specifying the functionality of the product from the 

product description, where functional modeling is the specification of models that describe the 

function, and the functional relationships as objects and relations to the development process. Also, 

functional modeling can be used to describe the procedure in the design process for designing the 

sub-functions. Through functional product modeling, a solution-independent and abstract 

representation of a task to be created can be represented [79]. For this reason, function modeling 
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is considered when modeling in a conceptual level, where functions can be drawn from the 

realization of different customer requirements [80]. This abstraction of the basic concepts using 

the product function is used in many areas of engineering and is supported by suitable development 

tools, especially in electrical, electronic, hydraulic, pneumatic and software developments. 

Although there are different definitions of functional modeling, this term can be defined as 

in system engineering, which states what the system must do, which typically specifies a function 

or behavior [81]. It is the designer’s task to analyze the customer requirements and then incorporate 

the requirement into the main function. FM represents the link between the human design intention 

and the designed system. Therefore, there is a coexistence of different FM structures due to the 

subjectivity of the design’s purpose, action, and behavior with external interactions [82]. 

2.3.2 Knowledge Base and Design Libraries 

The design development process requires the provision and linking of different sources of 

knowledge, especially in the early stages of design development. In the context of the realization 

of innovative products, the provision and evaluation of related knowledge play a critical role. 

Effective use of knowledge resources is a key factor that influences design innovation. According 

to [83], the design knowledge may consist of: (a) an implicit knowledge, obtained through the 

acquired experience [84], and (b) an explicit knowledge derived from previous methods, design 

models, strategies or projects. 

Design knowledge can support MBSE by incorporating the system knowledge into SysML 

as libraries [20]. These libraries can significantly support the modeling capability through the 

integration of the knowledge reuse into the united modeling representations of SysML [85]. 

Commonly in object-oriented software development, the designer is provided with a collection of 

libraries of basic software functionalities for reuse [25]. 
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 [86] claims that it is faster to adapt existing components or design elements in a new design 

than to start from scratch, and this will reduce the design time. The goal of design reuse is to make 

use of existing designs, either by reusing the whole design, which shortens the design time or by 

changing or updating the design, which takes less time. In addition to reducing the modeling time, 

design reuse has the potential of significantly saving time and cost savings in downstream 

assembly, engineering, manufacturing processes, and sales [87]. Existing designs have the 

advantage that they have already proven themselves in the market and has quality that is accepted 

by the customer [88]. It is estimated that the performance of the product can be improved by about 

20% in this manner [89]. 

 The evaluation and reuse of the mentioned solution modules require a high degree of 

multidisciplinary and up-to-date knowledge of the most important relationships. Therefore, the 

reuse of a third-party external knowledge base can be enabled, which is discussed next. 

2.3.2.1 The Functional Basis (FB) 

Functional Basis (FB) is important because of the need for a consistent approach to 

accurately represent and connect between abstract functions [90]. FB is a method that is widely 

used to increase the formality of the design process [91]. Functional modeling is created to reduce 

ambiguity in the level of modeling of an object, and it requires formal methods. Therefore, FB 

discriminates between the meaning of functions and flows. In FB, functions are represented by a 

graphical transformation between the input and the output flows. The flows are divided into three 

essential types: material, energy, and signal. The primary function is represented by a black box 

with inputs and outputs, which indicates the flow of the system. The inputs and outputs of a 

function/sub-function correspond to the boundary interactions. By splitting the overall function 

into sub-functions and assigning the input and output variables to the sub-functions, a functional 
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structure is formed by which different levels of abstraction can be represented in a hierarchal 

manner [92]. Taking into account the cause and effect relationship of individual sub-functions, an 

assignment of solutions to the respective sub-functions takes place in the subsequent construction 

steps [92]. Then, a distinction can be made as to whether solution components, which are already 

present can be used for the realization of a particular function, or first, the function has to be 

developed further to be captured by solution components [28]. 

FM contains controlled vocabulary in a design knowledge repository, which consists of 53 

functions (in a verb form) and 45 flows (in a noun form). Each function and flow are structured in 

a three-level hierarchical taxonomy [91]. The most abstract forms are at the highest level, which 

is called “primary class,” e.g., branch, channel, or convert for functions, and energy, material, and 

signal for flows. The next level is called “secondary class” and contains more detailed functions 

and flows. For example, separate is a secondary level of the branch, and solid is a secondary level 

of material. Caldwell et al. [93]–[96] investigated the use of FB and concluded, through an 

empirical evaluation, that the two levels of taxonomy can provide the most descriptive information. 

Moreover, free language can be incorporated with FB for a better description of the functional 

model, especially for the description of flows [97]. 

2.3.2.2 Simcenter Amesim 

Simcenter Amesim [27] is an integrated, scalable simulation platform for mechatronic 

systems. It allows to virtually assess and optimize the mechatronic system’s behavior and 

performance throughout the development cycle as well as during its usage. The modeling level is 

most suited for simulating the entire system by describing the power exchange between 

components, and it is well suited for design in the system level. Amesim includes more than 5000 
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ready-to-use multi-physics and multi-domain library models for mechanical, electric, thermal, 

control, hydraulic, pneumatic, and chemical simulation. 

This level of modeling is adaptable, so it can cover different physical domains and different 

applications. The theoretical framework of this system modeling level is bond graph theory [98]. 

The modeling approach considers the power exchange between components while respecting the 

balance equations of physics. The modeling approach is based on the connection of elementary 

models by using power links. This method, which is called a multiport approach, makes it possible 

to associate different modeling assumptions in the same graphical representation, which affords 

good representation of the technology [98]. The analytical model has the form of ODEs (Ordinary 

Differential Equations) or DAEs (Differential Algebraic Equations). 

For mechatronics, an integrated system-level performance simulation process is crucial. It 

is only by applying such a process that the development complexity of a mechatronic product can 

be handled in a timely, cost-effective and qualitative manner. Existing designs usually contain 

accurate calculations of the costs and the required design times. By providing up-to-date 

information about previously used design components, time can be saved and the accuracy of 

estimating new projects can be increased. 

2.4 Simulation Model Transformation 

Simulation-driven design can be defined as “a design process where decisions related to 

the behavior and the performance of the design in all major phases of the process are significantly 

supported by computer-based product modeling and simulation” [99]. In the DDP, different 

simulation methods are used for the digital validation of products, which can be classified 

according to their level of fidelity. In the late stages of DDP, for example, embodiment design and 

detail design, the computational support is widely integrated. For example, Siemens NX [100] and 
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CATIA [101] are well-known Computer-Aided Design software (CAD) that are used for part 

modeling and assembly, in which these models are subjected to further analysis. Electrical analysis 

is done through electronic design automation (EDA), for example by using AGNISYS [102]. It 

would cause a consistency disagreement between different units because of the design 

independence [58]. Therefore, data management is needed to govern the information between 

these different tools. Also, early stages of DDP lack computational support tools [103]. Moreover, 

systematic methods are needed to translate from a descriptive environment, for example, 

conceptual design, to a parametric environment, for example, detail design. 

FM provides a functional structure that only represents a functional descriptive process of 

how the product will operate, in which solutions are independent of any physical forms. A major 

emphasis of the integration with external analysis tools is the integration of an informational and 

descriptive model with an analytical model and to enable the transformation of information from 

the descriptive model to the analytical model. SysML does not have built-in analysis capabilities, 

and it cannot run a model or calculate equations. However, the tools that are implemented in the 

system can provide those analysis capabilities built into the tools as opposed to the SysML 

language. For example, in the parametric diagram, a system of equations can be generated, which 

can then be solved. 

The formalization of FBS (as addressed in section 2.3.1) has been established, where 

functions are transformed into behaviors. Then, with the use of computational support, simulation 

models are created. These high-level simulation models can roughly specify a system of linked 

parameters that satisfy the functional requirements. These parameters determine the superior and 

inferior designs within this range of parameters. 
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 Accurate and detailed simulation models are becoming increasingly complex and time-

consuming. An economic simulation is only possible through low fidelity models. Besides, the 

current practice is to evaluate several different high-level simulation models quickly and perform 

an early elimination process. At an early stage, a set of equations that describe the system’s high-

level behavior is established, with the support of model reuse integrated into the design 

environment, which requires a minimum of analysis [104]. It can facilitate the following aspects: 

significant evaluation of the design models at an early stage, high-level, cross-architecture, and 

multi-domain analysis, and consistent transition to the detail design [105]. 

2.5 Evaluation of Mechatronic Design 

Conceptual design solutions must be achieved without violating the design constraints. 

Engineers encounter many challenges when making design decisions because design constraints 

might be conflicting. 

In [106] Grabisch applied multi-criteria decision making by using a fuzzy integral. He 

showed that the traditional weighted average technique merely assumes independent criteria and 

therefore, a well-established methodology was needed to model interactions between criteria. He 

presented Choquet and Sugeno integrals to overcome this problem. However, a drawback of that 

approach is the growing number of coefficients. Marichal [107] introduced an axiomatic approach 

for criteria interaction and aggregation in Choquet integrals. He illustrated the behavioral analysis 

of aggregation with different interactions by using simple examples. De Silva [108] and [4] 

proposed a design objective function called Mechatronic Design Quotient or MDQ, which 

addresses the dynamic interaction between components and subcomponents of a mechatronic 

system by using separate design indices to express the design criteria for the subcomponents. MDQ 

is used to achieve optimal performance by aggregating these indices (design criteria) into the MDQ 
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and optimizing it. In [109] Labreuche and Grabisch addressed the preference of decision making 

over each criterion and interaction of criteria using a utility function. They introduced two new 

terms: intra-criteria and inter-criteria information. The difficulty of intra-criteria arises from the 

need for precise prior knowledge of the aggregation function. In [110] Labreuche addressed the 

construction of a Choquet integral and the value functions without considering multi-criteria 

decision-making. He investigated the value and capacity of the evaluation function. The basic idea 

was, if we were to alter criterion 𝑖, while the other criteria are kept fixed, then the weight of 

criterion 𝑗 changes when its value is equal to the value of criterion 𝑖. This method enables the 

construction of a sequence of corresponding values on different criteria. Behbahani and de Silva 

in [111] used the aggregation of Mechatronic Design Quotient (MDQ) to develop a new 

mechatronic system methodology for the conceptual design stage. They used a nonlinear fuzzy 

measure through the Choquet integral, which has an advantage over the weighted average, as it 

takes into account interactions between criteria. To validate their work, they presented a case study 

of designing a manipulator of an industrial fish-cutting machine called the Iron Butcher. The 

exponential growth of the number of fuzzy measures was an issue. In [112] Xia et al. extended the 

work of Behbahani and de Silva where he addressed the problem of the growth of fuzzy measures. 

The 2nd order Choquet integral was introduced. It allows modeling of the interaction among criteria 

while remaining operational and straightforward. Later Gao and de Silva applied estimation 

distribution algorithms for constrained optimization problems [113]. 
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Chapter 3: A Systematic Model-based Process of Conceptual Design 

Development 

This chapter presents the approach of design process modeling for the present 

development. In the beginning, an overview of the design process methodology is introduced, 

followed by the details of the design process model. Next, the proposed macro-level design process 

model is presented, followed by a micro-level design process model. Both methodologies are based 

on Model-based System Engineering for the support of the integrated development process of 

mechatronic systems. In the former model, the multi-layer V-model design process is presented, 

and in the later model, the characteristics of the design tasks and activities within the macro-level 

design process are given. 

Finally, a case study of an industrial fish cutting machine is given to demonstrate the 

presented design methodology, which the rationalization of the choices of the current solution is 

investigated. 

3.1 Integrated Design Process Methodology 

As discussed in Chapter 2, the challenges, which the designers encounter in the design of 

multi-disciplinary complex systems require integrated design methodologies. However, for an 

optimal and integrated design development process, the two main types of problems that must be 

overcome are “process-based problems” and “design-data related problems.” 

After analyzing these problems, two aspects of the integrated design approaches are 

investigated. The first aspect is the “macro-level design process,” which describes the general 

development process guidelines of the design phases and activities. [10] classifies the “macro-

level design process” into macro-level collaboration and macro-level interface. The macro-level 
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process focuses on the collaboration of different homogenous disciplines and guidance for the 

design activities. Macro-level interface explores the compatibilities of the components/sub-

systems interfaces. 

The second aspect of the integrated design approach is the “micro-level design process.” 

This process is categorized into: micro-level collaboration and micro-level interface [10]. Micro-

level collaboration examines the communications of the engineers and designers regarding 

different views of the design. It also includes the data exchange between the engineers and the 

stakeholders. The micro-level interface allows engineers from different disciplines to share 

information or data during the design process, through formal or informal interactions. 

The present work utilizes the System Engineering (SE) approach to support the integrated 

design of complex mechatronic systems. A combination of approaches is used for the modeling of 

the “Macro-level design process.” The first approach employs the V-model [48] as a 

comprehensive process model to guide and direct the general structure of the design process, and 

give a holistic view of the process. The second approach exercises the systematic design approach 

presented by Phal and Beitz [37] to represent the level of detail of the development process. 

Therefore, the “macro-level process” here is based on the V-model, but its phases are amplified 

based on the systematic design of Phal and Beitz to better manage the complexity. It is useful in 

managing the issues of the macro-level collaboration and macro-level interface, where the 

combination of the two methods provides a faster response to the dynamic changes of the design 

process, and the integration capabilities are enhanced. For the development of the “micro-level 

design process,” SysML is utilized so as to represent all the aspects/activities of the system. Also, 

it describes the links, connections, and interfaces of the system. Therefore, it facilitates the 
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collaboration and coordination between different engineers. Moreover, it provides a common 

language, which enables traceability between the various components/sub-systems and functions. 

In the next section the developed integrated design development process is introduced. 

3.1.1 Macro-level Design Process 

The macro-level DDP model that is developed in the present work reconciles the general 

structure of the V-model as described in VDI guideline 2206 [53], [54]. It represents a general 

flow of the activities of the design process of mechatronic systems, complementary to which are 

the existing guidelines, especially VDI 2221 [48], [49], and VDI 2422 [50]. The main reasons for 

selecting the V-model from the domain of software engineering for use in mechatronic systems 

are the following: 

• The V-shape strictly enforces the top-down approach (system design) and the bottom-up 

approach (system integration). 

• The presence of permanent verification/validation of the requirements and functions on the 

left side is essential during the system integration on the right side. 

• It has usage practicality and acceptance when industries use it for the design of mechatronic 

products and systems [54]. 

The VDI guidelines establish a parallel design for each engineering discipline, and then the 

discipline-specific sub-systems are integrated into the overall system. Some issues arise as a result 

of the integration of the discipline-specific sub-systems/components. They include the lack of 

communication of data during the parallel development process [58]. Moreover, the general 

structure of the V-model suffers from the structure rigidity, which makes it difficult to implement 

any changes mid-way. Therefore, the present dissertation proposes an additional extension to the 

existing V-model. Specifically, it develops and adds more organization and transparency to the 
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DDP, increases its flexibility, reduces the design search space, reduces the number of design 

iterations, and supports sub-system integration [114]. 

Macro-cycles According to the Degree of Details 

The macro-level DDP of the V-model may be defined as generic procedure steps for use 

as a management tool. The model provides an overview of the project cycle and the way to relate 

different development activities at several phases with the corresponding integration development 

activities throughout the system life-cycle. It is necessary for complex mechatronic systems to go 

through several cycles within the macro-level in a systematic manner in order to properly prevent 

design defects and accurately consider the customer needs during the development process. 

Therefore, the present work exploits the VDI 2206 for the macro-level and combines it with the 

design methodology by Pahl and Beitz [37] to represent the degree of detail. The design 

methodology of Pahl and Beitz is preferred because of its level of detail and its use in product 

design [115]. This combination increases the systemization and organization of the development 

process. It elevates the validation/verification capability, amplifies the design cycles, and responds 

more appropriately and accurately to rapid changes of the customer and market requirements. 

Each cycle of the V-model represents a stage of the design process, as described by Pahl 

and Beitz. Fig. 3-1 shows the proposed V-model with different design cycle phases, which 

represent the level of detail. 

The process model results from the combination of the V-model 2206 guidelines to 

symbolize the general structure. The Pahl and Beitz design methodology describes each cycle of 

the V’s. Specifically, the breakdown of the layers is divided into four main phases: product 

planning, conceptual design, embodiment design, and detail design. The design process begins 

with the identification of the requirements. The design process activities then start with the inner 
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V-model, going down from the left-hand side and then up from the right-hand side. If the output 

of the inner V-model meets the corresponding requirements, then it goes to the next phase 

“Conceptual Design.” Otherwise, an iteration process would be carried out until the output of the 

inner cycle meets the corresponding requirements. The verification and validation test enforced in 

each phase will significantly reduce the number of iterations in the later phase. Therefore, the 

overall development costs and the time-to-market can be greatly reduced. This cycle is repeated 

throughout all the sub-V-models until the final product is developed through the outer V-model. 

 

Figure 3-1: The proposed conceptual macro-level process. 
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Throughout the first cycle, the designed mechatronic product undergoes a market analysis 

to help find and select product ideas. The intended functionality and specifications are then 

defined. These specifications and functions are elaborated in detail in the second cycle, describing 

the product functionality, in order to identify solutions that fulfill the required functions. These 

solutions are then used to develop working structures for the product. In particular, combinations 

of solutions are developed into principal solution variants, which are evaluated before they 

undergo the third cycle. The form and layout are identified in the third cycle. Auxiliary functions 

are also defined, and design solutions that satisfy these functions are found. Then, detailed and 

compatible layouts for the primary and auxiliary functions are developed. This cycle ends with the 

evaluation and optimization of the design. In the final cycle, assembly drawings are developed and 

the production documentation is completed. 

One advantage of this model structure is that each stage is subjected to rigorous tests of 

compatibility, verification, and validation. Furthermore, the model is adaptable to dynamic 

changes of the customer requirements, which resolve the problem of rigidity of the V-model. 

Additionally, the granularity of the requirements can be incorporated into the proposed model quite 

appropriately, as shown in Fig. 3-1, since the reality is that customers provide more accurate and 

detailed product requirements as the design process progresses. Moreover, the proposed 

enhancement of the V-model is developed based on a typical and accepted system engineering 

approach that is used by industries in the context of mechatronic systems. 

The V-model and other tools and methods that are used for the support of the design 

development of a mechatronic system [116] primarily addresses analysis, and there is no specific 

support for the synthesis of the device components [115]. Hence, combining the VDI 2206 
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guidelines with a well-accepted design methodology such as that by Pahl and Beitz is desirable for 

extending the industrial application of the V-model methodology. 

The next sub-section presents the macro-level process cycle of the proposed multi-layer V-

model, for the conceptual design process. 

3.1.2 Conceptual Macro-level Process 

The details of the conceptual macro-level process cycle, which describes the procedure 

patterns of the conceptual design phase, is discussed in this section. Researches in the automotive 

industry [117] indicate that there exist issues related to the integration of the discipline-specific 

sub-systems. These issues result from addressing the integration of the sub-system in the later 

stages of DDP. As a consequence, the design process becomes inefficient with respect to cost and 

time. Also, the information provided from the domain-specific partial solution does not optimally 

satisfy system integration. 

In an attempt to improve the integration of different disciplines associated with a 

mechatronic product, the proposed conceptual macro-level process cycle incorporates the virtual 

integration and simulation in an early phase of the design process – the conceptual design phase. 

Therefore, it enhances the capabilities of concept analysis and evaluation. 

The early concept design process of a product involves three stages:  a general descriptive 

stage, a virtual simulation stage, and an extensive analysis and evaluation stage. The enhanced V-

model focusing on the conceptual design process cycle comprises three segments: the left-hand 

side of the V-model represents “Concept design and modeling,” the bottom of the V-model 

portrays “Run-time concept integration and simulation,” and the right-hand side of the V-model 

depicts “Concept analysis and evaluation.” The proposed conceptual macro-level process cycle of 

the V-model is shown in Fig. 3-2. 
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Figure 3-2: The proposed conceptual micro-level process. 

3.1.2.1 General Descriptive Sub-process Phase 

In the general descriptive sub-process phase, the concept design and modeling are 

conducted, where a description of domain-spanning solution concepts is defined. It utilizes the 

model-based design approach for the development of a CIM, in which functional, physical, logical, 

and structural characteristics are represented as different views of the designed product. The 

description of this sub-process phase uses flexible graphical modeling languages in order to 

thoroughly describe the solution concepts. This technique supports the integration of different 

disciplines in the domain-specific environment [118], by providing constructive information, i.e., 

multidisciplinary interface information. Other techniques include customizing the system into 

structured modules in order to reduce complexity [119], and early modeling and concept 

simulation [120]. 
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Different phases of the concept design and modeling sub-process are modeled and 

described using schemes diagrams and semantics that include developed requirements, functions, 

or generic structures, each of which is modeled with a different graphical language. The product 

description models enhance clarity, since they should be understandable by all persons involved 

in the modeling process. The challenges arising from the links between different views of the 

product models are addressed, and relationships between different views are developed. 

CIM contains all the information necessary to describe a product from different viewpoints, 

which can be stored, accessed and reused more conveniently and can replace paper-based methods. 

However, the models arising at the description level cannot be interpreted and executed in their 

entirety by the computer. 

3.1.2.2 Concept Integration and Simulation Sub-process Phase 

The second sub-process phase of the conceptual macro-level process comprises virtual 

integration and simulation. Those activities provide a consistency check for the system model, 

which is developed in an object-oriented or component/sub-system-oriented manner. For example, 

the physical laws of the system must be complete and consistent, and they are not only stored but 

also executed in the model. 

The degree of detail is more abstract, from which generalized components can be 

constructed and simulated, for example using a component library. These simulation models are 

used to gain insight into the first set of conceptual ideas, which describe the product components 

and their behavior and provide a high-quality content. Also, they provide further understanding of 

the system. For example, some parameters need to be set, which might be neglected during the 

sub-process of concept design and modeling development. 
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The boundary between descriptive, function-oriented models and simulation models is 

abstract, and it is challenging to manage the virtual integration of them. Direct mapping to link the 

two sub-process models would be very complex due to the scope of the simulation models. The 

transformation of a concept model into a concept simulation model would require connecting the 

relationships between various components that are used, in order to complete the virtual 

integration. Then, a system of equations which constrain the properties of components has to be 

created to assure product properties, since these components carry the relevant domain 

information. These equations and constraints can roughly determine the set of parameter values 

that are required to satisfy the functional requirements. These values can be an upper limit, a lower 

limit or a range of acceptable values. 

Additionally, the design sub-process phase enables the development of control system 

strategies in parallel with the development of the integration process. 

3.1.2.3 Extensive Evaluation Sub-process Phase 

The third sub-process phase constitutes the development of an extensive and 

comprehensive set of evaluation techniques. Generation and evaluation of a design solution are 

two tightly interconnected phases of the conceptual design. Effective evaluation of possible 

conceptual choices is the key condition in the conceptual design stage. 

Design evaluation assesses how well the design solutions will function or behave against a 

set of non-functional requirements. In this context, non-functional requirements may include 

criteria, attributes, and constraints, for example, non-parametric constraints. Determining the non-

functional requirements is done after reviewing the design tasks and customer needs and 

performing the requirement analysis, which is done during the first inner cycle of the V-model – 

product planning. The selected attributes and sub-attributes have to be operational in order to 
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identify how well each conceptual design solution meets the design requirements expressed by the 

attributes and sub-attributes. 

The multi-criteria design evaluation index MDQ, which stands for Mechatronic Design 

Quotient [29], is used in the present work to evaluate conceptual design solutions. Cost, weight, 

quality, and flexibility are examples of non-functional requirements. Once the non-functional 

requirements are obtained, their relative importance is determined subjectively for the evaluation 

of the conceptual design solutions. The Analytical Hierarchy Process (AHP) and the pairwise 

comparison can be utilized to ensure the consistency of the weights. AHP is a Multi-criteria 

Decision Making (MCDM) technique that is used to assist the decision-makers in solving complex 

problems as well as handling multiple conflicting and subjective criteria. 

Product development processes generally have an iterative character, since problem-

solving initially requires a great deal of information, which is gradually reduced by repeating 

certain steps several times. The results of the conceptual design macro-level process cycle are 

solution concepts, which are analyzed and evaluated against a set of customer/non-functional 

requirements. The intended functions also have to be fulfilled. To help with the subsequent design 

cycle – the embodiment macro-level process cycle, requires results at a lower level of abstraction, 

and thus a network of specified parameters is identified. Therefore, a fewer number of iteration 

cycles are needed and consequently the design time-to-market, cost, and resources are reduced. 

The micro-level process involves the development of the design model activities in the 

concept design and modeling sub-process and the relationships between them. Chapter 4 gives 

more details of the micro-level process model. 



54 

 

3.2 Case Study System 

The reconfiguration and the design of the Iron Butcher (IB)—an automated fish cutting 

machine, is used in the present investigation as a case study to evaluate the validity of the proposed 

methodologies. This case-study system is described in the present section. The fish cutting 

machine has been developed in the industrial automation lab (IAL) of the University of British 

Columbia. The machine automatically cuts the head of fish accurately while minimizing the 

manual operation and the wastage of fish meat [121]. The Iron Butcher has many functions and 

sub-systems, including: an electromechanical conveying system, a hydraulic system, and a 

pneumatic system, as shown in Fig. 3-3. 

 
Figure 3-3: Iron butcher. 

 The electro-mechanical conveyor system falls into the category of a mechatronic system. 

In the present case study, this system, which is used to transport fish from the feeding station to 

the cutting station, is considered. Conveyor systems are widely used in fish processing machines 

in order to provide intermittent motion for the fish during transportation, inspection, and 
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processing. A 3-phase AC induction motor (Fig. 3-4 (a)) is connected to a variable-diameter pulley 

(VDP) to compensate for any speed variations of the motor. The VDP is connected to a gearbox 

to increase the torque and decrease the velocity. A mechanical linkage is used to convert the 

rotational motion to the translational motion of the conveyor, thereby moving its sliding 

mechanism horizontally. The intermittent motion profile is planned in such a way that the cutter 

has sufficient time to cut the head of each fish with minimum meat wastage, when the fish is 

stationary. Furthermore, the fish has to be held firmly during the transportation and cutting 

operations. It is done through several fixtures (fingers) that fold or stay open according to the cycle 

of motion (Fig. 3-4 (b)). 

 
Figure 3-4: Conveyor system; (a) AC induction motor (left), (b) Sliding mechanism (right) 

 
The motion cycle of the conveyor system has a continuous motion segment and a dwell 

(stationary period). Specifically, there is an acceleration from rest and deceleration to rest (and 

possible constant-speed motion in between these two segments). There are many acceleration 

profiles such as constant, trapezoidal, and sinusoidal. Sinusoidal acceleration/deceleration profile 

is commonly used for indexing systems because it provides minimal jerk (rate of change of 

acceleration) as shown in Fig. 3-5. The cost is mostly attributed to the drive system and the speed 

controller. 
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Figure 3-5: The acceleration profile of the conveyor system. 
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Chapter 4: Micro-level Process Model 

The details of the micro-level process model are presented in this chapter. It defines the 

underlying organization of the different design activities in the phase of concept and modeling 

sub-process. Moreover, the relationships between the design activities are described. The design 

activities considered here incorporate specific model information that is derived from an overall 

model, to cover different aspects of the system. From the model-based design point of view, 

various design phases throughout the life-cycle of an engineering system need models with 

relevant objectives and details [122]. In the conceptual design phase, this model information is 

more general and abstract, which considers different characteristics of the design process, such as 

hierarchical decomposition and modularity. 

An exchange of process models takes place between the macro-level process and the micro-

level process, in order to maintain the relationships between different activities systematically and 

efficiently. 

4.1 Concept Design and Modeling Sub-process Phase 

The design activities that take place in the left wing of the V of the conceptual design will 

refine the task of conceptual modeling. The aim here is to generate innovative conceptual design 

solutions that satisfy the customer’s functional and non-functional requirements. These activities 

can be represented as requirement modeling, functional modeling, and structural modeling, as 

shown in Fig. 4-1. Each of these represents a specific aspect of the stage of conceptual modeling 

and design. The next section describes these activities. 
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Figure 4-1: Details of the phase of concept design and modeling sub-process. 

4.1.1 Requirement Modeling 

For a mechatronic product, the technical and economical product requirements play a 

decisive role since they define the goal of the development task. Therefore, it is necessary to taken 

into account the prior-defined requirements for the product. 

The requirements define the desired properties of the product to be developed, and they 

limit the available solution space to only what meets the requirements. The product task must be 

specified, in which the intended requirements are described in general terms, i.e., without 

anticipating specific future solutions. Also, they must be formulated in a solution-neutral manner. 

System modeling should ensure efficient management of the requirements to guarantee their 

fulfillment. Utilizing a modeling tool for requirement modeling is generally preferred. It can help 

in incorporating this information in the product model, which provides a formalized knowledge 
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base at this stage [43]. The first requirement can be derived from the overall description of the 

product task. 

Requirements can be initiated both externally and internally, for example, by stakeholders 

and engineers, during the development process. However, usually, requirements do not contain all 

the required information at the beginning of the design. So, a continuous process to obtain 

information and coordination with the client is necessary. For example, detailed requirements may 

not be available at the conceptual design phase, and designers may obtain the needed requirements 

at another more detailed design phase. 

The initial requirements will lead to more detailed requirements, and these requirements 

can be further decomposed to create a hierarchy of requirements. Every requirement must be 

properly clarified at the beginning so that additions and changes would be reduced to ae bare 

minimum, in order to save time, capacities and costs. Depending on the level of detail, the 

requirements may be applicable to the overall system, the sub-systems/components, or the 

interconnections between the subsystems/components. 

Requirements can be categorized into four groups: Global requirements, Cumulative 

requirements, Specific requirements, and Interconnected requirements. They are clarified below. 

1- Global requirements are those that must be applied to every single sub-system/component; 

for example, lead must not be used in any sub-system/component of the system. 

2- Cumulative requirements are those that account for the degree of participation of various 

sub-systems/components in the overall system; for example, the overall cost of the system 

must be less than the sum of separate costs of the individual sub-systems/components. 

3- Specific requirements are the requirements that are relevant to a particular sub-

system/component; for example, electromagnetic pulse protection (or shielding) 
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requirement is relevant to the electrical sub-system, or lubrication requirement is relevant 

to the moving parts in the mechanical sub-system. 

4- Interconnected requirements are those that are influenced by other requirements. For 

example, the energy consumption requirement, which is a measure of the system 

performance, is related to the dynamic properties of the system; for example, the maximum 

mass and the required driving force. The mass and the required force requirements can be 

determined independently. Therefore, through the physical relationships between the mass, 

the required force, and the energy consumption, the system performance requirement can 

be determined [122]. 

A hierarchical structure at different levels of detail should be established for requirement 

modeling. Consequently, the functional model can be constructed following the hierarchical 

structure of the requirement model. System Modeling Language (SysML) can be utilized for the 

modeling of the hierarchical Requirement structure, and for implementation of the relationships. 

4.1.2 Functional Modeling 

A function is a statement of the task or role of the system, which shows the relationship 

between the available input and the desired output, without having to indicate any particular form 

[32]. It represents the functions that the system performs. It also provides a formulation of the 

design task on an abstract level. It typically specifies a function or behavior; for example, water 

heating or energy conversion. Starting from the list of requirements, abstracting must formulate 

the essential problem and derive the overall function. This concept is adopted in the present 

dissertation, from past work [32], [35], [123], [124]. In most cases the overall function is very 

complex and must, therefore, be subdivided into sub-function, which creates a function structure. 
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A Functional Model (FM) is a representation of functions (activities, processes, 

operations). The modeling of the functions of the objects is followed in the present work according 

to [125], where the function description is in terms of inputs and outputs, and the functions are 

then directly related to the physical structure. The purpose of FM is to describe the functions so as 

to facilitate discovery of the needed information to help identify opportunities and to establish a 

basis for determining the product. Product function can be used as a link to the development of 

new innovative solutions [78]. Two aspects can determine the degree of functional integration for 

the formation of a product function: first, with regard to the functional structure, and second, with 

regard to the number of functions that are realized. The degree of functional integration improves 

the customer benefits, provided that the realization of the product, and at the same time, the given 

requirements are met. In products with a high degree of functional integration, there exists a great 

potential for creative innovation. 

Functional structures are considered as graphical representation of functional models. 

Usually, a given product does not have a unique structural representation, which is one of the 

frequent criticism of the functional model even with the support of a systematic methodology 

 [122]. As an attempt to help overcome this problem, a hierarchical structure for the functional 

model of the product under consideration is used. [126] developed a computer-based support for 

the concept development phase to facilitate the data management aspects of the product models. 

SysML was utilized to model the different types of ports of the functional model. [92] proposes a 

functional decomposition technique, which is based on the function interfaces. Moreover, the 

decomposition of the hierarchical structure must be derived in order to fulfill the desired 

requirements and help serve the intended design task. Therefore, proper relationships between 

requirements and functions must be established. Despite that different modeling methods have 
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been proposed to help engineers/designers in the modeling of the functional structure, for example, 

APTE, and IDEF. However, these methods are not suitable for representation of the hierarchical 

structure [127]. 

In the present work, the hierarchical functional structure of the functional model of the 

designed product is developed using the system modeling language SysML. More details are found 

in Chapter 5. 

4.1.3 Structural Modeling 

After performing functional modeling and decomposing the functional structure, the 

designer should come up with conceptual design solutions. First, a component, a set of 

components/sub-system, or sub-systems that represent instantiations of the physical forms or 

objects that satisfy each sub-function, should be identified [28]. These form solutions are then 

combined within the solution environment to form the complete structure of the final form of the 

product [128] - conceptual design solutions. A large number of conceptual design solutions are 

generated in this manner, which will be evaluated against the relevant requirements. A significant 

challenge in the conceptual design phase is the complexity of obtaining the sub-systems in the 

presence of incomplete information, such as the parametric values. For example, a sub-function 

“Convert Electrical Energy to Mechanical Energy” does not indicate a parameter value, size, or 

shape. Electric motors are sub-system instantiations that can describe the behavior of a sub-

function. The transformation from the functional structure to the sub-systems requires engineering 

expertise, experience and judgment; however, the transformation may not be one to one. Several 

sub-systems or physical component instantiations may satisfy a specific function. So, depending 

on the case and the function type, one function may need the satisfaction of more than one sub-

system. On the other hand, one sub-system might satisfy more than one function. 
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Any major component type should be as general as possible but sufficiently specific to 

allow the user to build a clear abstraction of the component that can be used during the conceptual 

design. [127] suggests that the structural model should exhibit the decomposed sub-functions, so 

that the consistency can be maintained. Therefore, a complete structural model is achieved by 

decomposing the sub-systems, in which the decomposition process is applied recursively. 

Now, we encounter such questions as: how can we appropriately construct a structural 

model hierarchy, and at what level of detail? At first, the sub-system should be as general as 

possible, and at the same time, sufficiently specific to provide a proper yet abstract definition of 

what function the sub-system accomplishes. Then, the decomposition process is continued until 

two conditions are met: Completeness and Exclusivity [28]. Completeness ensures that a set of 

decomposed components completely provide all the necessary parts of the parent sub-system. 

Exclusivity indicates the independence of the functionality of the sub-systems. Based on these 

criteria, the lowest level of the structural decomposition can be obtained by the standard 

components from handbooks, past design solutions [127], or simulation components, as presented 

in Chapter 6. 

4.2 Realization of Consistency between Macro- and Micro-level Processes 

Design development of a system is based on an interplay between the conceptual macro-, 

and micro-level processes of the system. Generally, in the beginning, the design process has a high 

level of uncertainty because the most significant properties of the principal design solutions are 

unknown [122]. The macro-level process manages the development of the design and gives an 

overview of the design activities, where the multi-layer V-model represents the development 

process. The type of macro-level development process has a significant impact on the design 
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activities of the micro-level process [122]. Therefore, these two processes have to be developed 

simultaneously. 

The micro-level process utilizes a model-based design approach for the development of the 

CIM, in which requirements, functions, and structures are represented as different model views of 

the designed product. CIM contains all the information that is necessary to describe a product from 

different viewpoints, where the information is stored, accessed and reused more conveniently. 

However, the exchange of information between different views of the model is essential in order 

to allow an adequate transition from system models to domain-specific models. This transition of 

information requires a collaboration between different model views of the product, described by 

the CIM, with the process model represented by CDDP. This exchange of information between 

the two processes is shown in Fig. 4-2. 

 

Figure 4-2: The development of the design process. 

According to [129], two types of integrations are relevant in the design of mechatronic 

systems. An integration that is related to the process and the product, which needs a high-level 

collaboration between engineers and also among different design disciplines [129]. It is directly 

related to process-based problems – section 1.2.1. The present work contributes to the development 

of a design process that facilitates the involvement of various engineers. However, since the 

present focus is on the conceptual design phase, only the relationships between different model 

views of the CIM of the product are considered. 

Product Model
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On the other hand, the integration associated with the product will require functional and 

physical integration. The present work presents an interface model that enables the exchange of 

information between different model views, which addresses the design data-related problems – 

see section 1.2.2. 

The next section describes the development of the transitions between the macro- and 

micro-level processes. 

4.2.1 Transition from Macro-level Process to Micro-level Process 

The macro-level process is utilized to organize the exchange of information between 

different views of the CIM. Also, a hierarchical structure is established for each view of the model 

to maintain the consistency of the information, and to allow the exchange of information at 

different levels of abstraction. This process also determines the model granularity, which describes 

the level of detail that a model has been subdivided into. This entire process would enable an 

efficient evaluation of the transition from the customer model perspective to the engineer model 

perspective of CIM, which facilitates the progression from the conceptual design phase to the detail 

design phase. 

This process of information exchange between different CIM views is represented in the 

macro-level process model in two ways. First, the functional model hierarchy should correspond 

to the requirement model hierarchy, for requirement tracking. Second, the structural model 

hierarchy should correspond to both requirement model hierarchy and functional model hierarchy 

for requirement and functional tracking, as shown in Fig. 4-3. 
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Figure 4-3: Information exchange between the product model and the process model. 

 This arrangement supports the exchange of information by enabling traceability between 

different model views, which can be visually depicted. For example, the functional model is 

extended to form a V-shape so it can exchange information with the requirement model. In the 

same manner, the structural model is extended to exchange information with both the functional 

model and the requirement model. Also, it facilitates the functional integration and the structural 

integration. 

 However, the exchange of information might not be one to one, or they must have the same 

level of abstraction. For example, the cost requirement from one abstraction level of the 

requirement model might encapsulate components at multiple levels of detail. Also, each model 

view is allowed to generate multiple levels of abstraction without the need to exchange information 
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with other model views. It can be concluded that different model views would make the exchange 

of information challenging and difficult. Therefore, an Interconnection Model is developed for the 

three model views. They are discussed in detail in the following section. 

4.2.2 Transition from Macro-level Process to Micro-level Process 

The micro-level process is developed to model different types of information. However, a 

common language for interconnections is required for effective communication between different 

model views. Therefore, the present dissertation develops an Interconnection model to facilitate 

modeling the process activities within and between different model views of the CIM. It also 

advances the synchronization between macro- and micro-level processes. Besides, customers and 

engineers from different domains benefit from the model by getting insight on the information 

activities. The Unified Modeling Language (UML) is used to graphically represent the process 

activities through Classes. 

An interconnection is defined by two interfaces, and the interconnection starts from one 

interface and ends at the other interface. Interfaces are regarded as one of the most powerful tools 

in system management [130]. In mechatronic systems, interconnections are used to describe the 

interactions between the internal components of the model view, i.e., a function with another 

function, or components between different model views, i.e., a requirement with a function. 

Therefore, in order to represent the information with a shared language, interconnection 

classifications are presented now. 

4.2.3 Interconnection Classifications 

The interconnection classifications are: Allocation, Type, Class, Conversion, and 

Confidence. These classifications support the macro-level and micro-level processes 

simultaneously by providing standard representations of the interconnections throughout the 
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conceptual design and modeling sub-process. In addition, they enable easier collaboration among 

engineers from different disciplines. 

4.2.3.1 “Allocation” Interconnection 

An allocation interconnection indicates where the interconnection modeling takes place. 

There are two types of allocation interconnection: 

1. Internal interconnection: It describes the interrelationships between different elements 

within a model view in CIM, i.e., the connection of a requirement element to another 

requirement element. 

2. External interconnection: This interconnection occurs between the elements of different 

model views of the CIM and within the CDDP, i.e., functional elements and structural 

elements. 

4.2.3.2 “Type” Interconnection 

This interconnection classification is categorized as an internal allocation interconnection. 

It expresses where within different model views of the CIM, the interconnection modeling 

activities occur. There are three internal types of interconnection: Requirement inner 

interconnection, Functional inner interconnection, and Structural inner interconnection. 

4.2.3.3 “Class” Interconnection 

The Class interconnection shows which type of information is transferred through each 

type inner interconnection. Therefore, different class interconnection models are proposed for the 

three type inner interconnections. They are described as follows: 
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4.2.3.3.1 “Class” Interconnection for Requirement Inner Interconnection 

The classifications of interconnections describe the information exchange in the 

requirement model. They assist proper handling of the requirements and the relationships between 

them. The interconnection classes in the requirement modeling activity are listed below. 

1- Containment interconnections: These express the relationships of parent requirements with 

two or more child requirements. They help in managing the decomposition process of the 

requirements until all the child requirements are satisfied with a corresponding function or 

a group of functions. As a result, the parent requirements are satisfied as well. 

2- Derive interconnections: These interconnections correspond to the requirements at the next 

level of the requirement hierarchy, or the same level of the requirement hierarchy but at a 

different level of abstraction. The relationships developed by these interconnections are 

assigned between two requirements generated by different engineers from different 

disciplines. For example, requirements developed by domain-specific engineers are 

connected through the derive interconnections to the requirements developed by system 

engineers. This interconnection incorporates additional considerations of detailed 

implementation. 

4.2.3.3.2 “Class” Interconnection for Functional Inner Interconnection 

According to [26], [91], different flows in the functional model are prescribed by the functional 

Basis (FB), in which the flows are divided into material, energy, and signal. They represent the 

essential information that is exchanged between different functions. Therefore, a proper 

interconnection should govern these different types of flows. Three classes of the interconnection 

in the functional modeling activity are: 
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1. Material interconnections 

2. Energy interconnections 

3. Signal interconnections 

These interconnections maintain the flows of the FB and enforce the consistency rules. For 

example, a mechanical energy interconnection has to have similar beginning and ending ports in 

order for the interconnection to take place. 

4.2.3.3.3 “Class” Interconnection for Structural Inner Interconnection 

In structural modeling, graph-based modeling tools such as bond graphs and linear graphs, are 

used due to their structural nature and the characteristics of an object-oriented language. They use 

a declarative language, in which objects contain equations and, therefore, the structural model is 

defined by its set of equations. The objects are interconnected in order to establish relations 

between the states, using state variables. These interconnections can take the form of classes of: 

1. Power interconnection: It represents the flow of power (i.e., rate of change of energy) 

between the structural elements. It uses the power variable, which is the product of the two 

variables: effort 𝑒 and flow 𝑓. Using a unified language, Power interconnections enable 

energy flow between different engineering domains (e.g., mechanical domain, electrical 

domain, thermal domain, fluid domain). 

2. Control interconnection: It represents a signal connection, which requires much less power 

than a Power interconnection, because it transmits communication signals. It transmits a 

communication signal, from one structural element to another element, providing 

information for control, drive, and so on.  
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4.2.3.4 “Conversion” Interconnection 

The other category of interconnections is the external allocation interconnection. They 

describe how the model view is converted into another view within the CDDP. Since the source 

and the target of a flow through interconnections are not defined, the directions of the 

interconnections are important to determine the source and target of the flow between the different 

model views within the CDDP. These interconnections are directional because they are assigned 

according to their operational directions. 

1. R to F: The first conversion class concerns interconnections between requirements and 

functions. These relationships describe which requirements are fulfilled by which function 

or group of functions. For example, a sub-function “Measure breakdown voltage” may be 

related to the “Security requirement” in order to resolve a breakdown condition. As another 

example, a sub-function “Provide a translational/rotational motion” may be related to the 

“maintenance requirement” to satisfy the usability condition. These relationships help keep 

track of the requirements throughout the design process. 

2. F to S: This conversion interconnection is used to describe how a function or a set of 

functions are related to structural components, which are simulation components and are 

described in detail in Chapter 6. The basis of this interconnection is port-modeling of 

energy and signal flows of the functional model, and the abstraction description of its 

functions. On the other hand, the structural components and their ports are developed and 

dissected to make feasible the interconnection matching. 

3. F to R: This conversion relationship describes the interconnections of functions to 

requirements. Specifically, it describes how an implementation of a function satisfies one 
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or more requirements. In some cases, a group of functions might be clustered to describe 

how to satisfy one or more requirements. 

4. S to R: This conversion of the interconnections is between requirements and forms. These 

relationships are mapped directly from the requirement modeling activity to the structural 

modeling activity, where they by-pass the functional modeling. This conversion of the 

relationships is not always formulated. It is only shown when more detailed descriptions 

such as constraints, need to be specified. For example, “The heating unit should have low 

power consumption,” can remove “Gas Burner,” “Electric element,” and “House heat 

supply” selections and keep “Solar.” Furthermore, this interconnection is used to determine 

the network of parameter values of components, for example, maximum and minimum 

values or a range of values. Also, it eliminates the candidate components that violate any 

requirements. 

Note: The two conversion interconnections R to S, and S to F were discarded since they do not 

have a significant impact on the conceptual design process. 

4.2.3.5 “Confidence” Interconnection Classification 

Confidence interconnection provides a description of the degree of certainty of the 

interconnection. It can be expressed in three levels: High, normal, and low. When an 

interconnection with high confidence is made by an engineer, for example a domain engineer, this 

high certainty can be taken into account when reviewed by another engineer, for example a system 

engineer. 

Classifications are defined in a constraint language, where the description of the language 

has the characteristics of Object Constraint Language (OCL). OCL is typically used as a 

navigation language for a graph-based model. It provides precise expressions that are free of 
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ambiguities of a natural language, and the complexity of mathematics. The representation of 

Conversion interconnection classification in OCL is as follows: 

inv ConversionDetail: 
self.requirement_link->size()=1 then self.function_link->size()=1   implies 
Interconnection.conversion=Conversion::R_to_F and 
self.function_link->size()=1 then self.structure_link->size()=1    implies 
Interconnection.conversion=Conversion::F_to_S and 
self.function_link->size()=1 then self.requirement_link->size()=1   implies 
Interconnection.conversion=conversion::F_to_R and 
self.structure_link->size()=1  then self.requirement_link->size()=1   implies 
Interconnection.conversion=conversion::S_to_R 

In this language, requirement_link, function_link, and structure_link describe the 

conversion characteristics between requirement, functional, and structure models, respectively. 

The operation size() represents the multiplicity of the conversion interconnection. 

4.2.4 Interconnection Model in UML for Complex Mechatronic Systems 

The proposed interconnection model is developed using UML, and OCL syntax, and is 

used as shown in Fig 4-4. It facilitates the representation of process activities between different 

models throughout the development process. There it provides a standard description for the 

interconnection that does not provide room for ambiguous interpretation between the project team 

and the discipline engineers. 

The attribute name stores the name of the interface to differentiate from others, which 

makes it easy to trace changes. The attributes allocate, type, class, conversion, and confidence 

represent the interconnection classifications. The visibility attribute defines the accessibility of the 

information of the interconnection by other users, domain engineers, or stakeholders. There are 

three modes are given: Public, Private, and Protected. Parameter is a separate UML class that 

defines the parameter values in an interconnection. Different cases of parameter definition can be 

applied. The exact value can be applied; however, in many cases, the application of the parameters 
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is based on intervals of values, for example, between a maximum value and a minimum value. In 

other cases, only limit values are applied. Configuration exhibits the operation approach, and 

OCL defines it. Moreover, an interconnection can be decomposed into sub-interconnections. 

Therefore, an interconnection can be an aggregate of separate interconnections. 

 

Figure 4-4: Interconnection model in MML class diagram. 

4.3 Case Study Implementation 

This section investigates the implementation of the proposed interconnection model on an 

electro-mechanical conveyor system. A sub-system of an industrial fish processing machine. The 

development of the conceptual phase of the system takes place in three stages; requirement 
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modeling, functional modeling, and structural modeling. A practical implementation of the 

proposed model is to be examined and evaluated for all the conceptual development phases. 

4.3.1 First Stage 

Requirements are presented in the Requirement Diagram [20]. The requirement elements 

are identified as modeling objects. A hierarchal structure is established to facilitate the 

interconnection between requirement elements and elements from other models, as presented in 

section 2.2.1. 

The main requirements are allocated at a higher level of the hierarchy, where they are 

decomposed into more detailed sub-requirements. Depending on the level of abstraction, more 

than one hierarchy can be structured to improve flexibility. However, this would increase 

informality, ambiguity, and complexity. Therefore, the interconnection model is established 

between these elements. An advantage of the interconnection model as represented in Fig. 4-4 is 

that it is standardized across all the modeling views of the sub-process phase. An example of an 

established implemented interconnection model in requirement modeling is given in Fig. 4-5. 

The left side of Fig. 4-5 gives an excerpt of the requirement model of the Conveyor System. 

One example of a requirement element is system Operation, which is broken into the sub-

requirements: Operator, Input Power, and Driving System. Instances of the Relationship UML 

object are generated to model this relationship. These instances have all the classifications 

presented in Fig. 4-4. However, only the relevant classifications are defined for each corresponding 

interconnection. For example, in Fig. 4-5, two instances of the Relationship UML object are 

shown. These instances have similar classifications, such as allocation: Internal, confidence: 

Normal, type: Requirement, and visibility: Public. On the other hand, two classifications are 
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dissimilar: name and r_Class. The name is described in an editor with free language, whereas the 

r_Class is a selection between Containment and Derive. 

 

Figure 4-5: The implementation of the interconnection model in the requirement model. 

In comparison to other modeling representations, standard Requirement tables can provide 

valuable information and arrangement for the requirement elements. However, such representation 

of requirements does not benefit from the support relations among the requirement elements that 

are integrated into the same model [20]. 
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4.3.2 Second Stage 

The development of the hierarchical structure of the Functional Model is done according 

to the hierarchical structure of the Requirement model. This development process requires the 

generation of the intended functions with multiple levels of abstraction, in which the exchange of 

information is necessary. The relationships between different functions in the Functional Model 

can be modeled with the interconnection model, as shown in Fig. 4-6. 

The functional model is represented in two different diagrams in SysML. Details are given 

in section 5.3.2. Block Definition Diagram (BDD) demonstrates the relationships between the 

parent functions. Also, it supports the hierarchical construction of parent functions with their child 

functions. On the other hand, Internal Block Diagram (IBD) supports the nested-network structure, 

where the relationships between the parent functions and the child functions are established. Fig. 

4-6 shows the interconnection model is implemented in both diagrams of the functional model of 

the conveyor system. For example, the BDD shows the function Translate, which is obtained in 

correspondence with requirement Speed. An instance of this relationship UML object is 

developed, which defines all the information of this relationship, such as allocation: External, 

confidence: Normal, name: from Speed to Translate, and visibility: Public. Similarly, the 

interconnection model is established in the IBD between the two functions: Translate and Export. 

The interconnection model has the following information: allocation: Internal, confidence: 

Normal, name: from Translate to Export, Type: Functional, and visibility: Public. 
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Figure 4-6: The interconnection model in the functional model – BDD diagram (left), and IBD diagram (right). 

4.3.3 Third Stage 

This stage involves the establishment of structural models according to the requirement, 

and functional models. It entails the generation of various system solutions that satisfy the 

customer needs. The simulation models are created from a collection of a large library of Amesim 

simulation components [27]. The conditions of the integration are discussed in detail in Chapter 6. 

These structural models are a part of the concept and model sub-system, where they contribute to 

the development of the CIM. Therefore, the application of the interconnection model is considered, 

which facilitates the traceability capability of the process. 

Fig. 4-7 illustrates an excerpt of the structural model of the electro-mechanical conveyor 

system, showing the implementation of the interconnection model. One example is the relationship 

between a Geneva wheel and a mass, in which power information is exchanged. Such an 
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interconnection model develops the following: allocation: Internal, confidence: Normal, name: 

from Geneva Wheel to Mass, s_Class: Power, Type: Structure, visibility: Public. 

 

Figure 4-7: The implementation of the interconnection model in the structural model. 

4.4 Discussion 

The increased complexity of mechatronic systems poses a challenge in terms of model-

based and computational support for the conceptual design phase. Interconnection modeling helps 

to facilitate the complexity of the modeling and they need to be defined formally for all the model 

views of the conceptual development process. The implementation of the proposed approach was 

demonstrated in a case study. Different aspects need to be considered for a justifiable evaluation 

of the approach. 

The syntax used classes classes from the Unified Modeling Language (UML), which can 

model different model views, i.e., requirement modeling, functional modeling, and structural 

modeling. Therefore, the scope and scalability of the approach can cover situations from simple to 
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complex applications. Also, the approach gives a good overview representation of the 

interconnections. Moreover, since the approach uses a drag-and-drop method of the classes, it 

allows flexibility to modify and adapt to address new problems. 

The degree of interaction with the designer is an additional aspect to be considered. The 

unified language shared between the different designers from the different domains gives the 

approach a very high degree of freedom. In addition, it contributes to enhance the understanding 

of the product, where all the details of the interconnections are visually represented. 

Finally, this approach has the capability to represent state transformation between the 

different model views. For example, conversion interconnection identifies they type, and direction 

of element transformation, i.e., from Requirement modeling to Functional modeling. 

Future work includes the investigation of developing interconnections library elements for 

a wide range of application to be re-used when modeling. This will greatly reduce the modeling 

effort and time. 
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Chapter 5: A Library-based Concept Design Modeling Approach in SysML 

5.1 Introduction 

A rapidly increasing complexity of the mechatronic system correspondingly increases the 

complexity of the design processes. It led to the need for evolved methods to support the phase of 

conceptual design development of a mechatronic product. Computational methods are necessary 

to enhance the necessary support, particularly through model-based conceptual design. For 

example, [20] expresses the need for further improvements in model-based and computational 

support for conceptual design development. 

The functional modeling provides additional reinforcement to the conceptual design 

development phase, which enable the understanding and representation of the product 

functionality. It is a way to describe the product based on its goal, and not on the technical 

implementation [131]. The nature of functional modeling, as a domain-independent and solution-

independent approach, assists in enhancing the communication and understanding between 

different engineering domains, and across the entire conceptual development process. However, 

since functional modeling has not been introduced for the computational support, but rather for 

paper-based methods [20], the introduction of a suitable modeling language is necessary. 

Furthermore, generating a functional model is a highly subjective and challenging process. This 

capability is provided through SysML, which is a standardized, graphical, and general-purpose 

modeling language [68]. It addresses systems engineering through a holistic modeling approach. 

Therefore, it has a high potential in providing a standard language for functional modeling and 

facilitates the implementation of computational support. Nevertheless, due to the language 

informality of SysML, different modeling interpretations are available for computational 

functional modeling. Various modeling approaches have their strengths and weaknesses, which 
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depend on the particular application and design intent. Different functional modeling has been 

suggested, including flow-oriented, relational, and network structure [131]. 

The functional Basis (FB) is an accepted and widely used supplementary library for the 

functional modeling that increases the modeling systematism, consistency, accuracy, and 

formality. Therefore, the modeling approach in SysML is able to integrate the Functional Basis 

(FB) library into the modeling implementation. 

 The present work takes advantage of SysML for the functional modeling of complex 

mechatronic systems, and to integrate it into the CDDP to allow traceability. A flow-oriented 

modeling approach is developed in SysML through structural diagrams. In addition, a compatible 

FB library is modeled to enable re-use of functions and consistency checking. Functional 

benchmark protocols are conducted to express the strengths and weaknesses of the developed 

approach compared to other existing approaches, particularly related to the network structure. The 

followed comparison criteria are: representation characteristics, modeling and cognition 

dimensions, and enabled reasoning activities as suggested by [132]. It contributes to the 

development of the CIM, where the focus is on the functional modeling activity and its 

implementation in the concept design and modeling sub-system. 

5.2 Background and Related Work 

Object-oriented system engineering (OOSEM) [72] is an extension of the system 

engineering approach, as indicated in section 2.2. It makes use of an object-oriented method for 

system modeling processes. Functional modeling (FM) has been integrated into system modeling 

as a way to guide the logical structure. In system engineering, FM is a representation of functions 

to describe the process of identifying innovative solutions [78]. Functional structure is the 

graphical representation of functional models, where different functional and structural 
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representations can be developed for a given product [122]. A widely used representation is the 

hierarchical structure, in which functions are decomposed into sub-functions. The work in [133] 

clarifies the ambiguities in the representation of functions. In this case, two representations of 

functions were identified: Semantics, and syntactic. Kruse et al. in [134] have performed a 

comparison between two structural representations of functions in SysML for the modeling of a 

Hydrokeratome. Computational support for FM has been developed in [20], where SysML 

language was used for FM in the Activity Diagram. The description of the diagram was based on 

the flow of Energy, Materials, and signals in a network manner. [131] proposed another functional 

representation, where the hierarchical structure was maintained for FM in the Block Definition 

Diagram. This way, the tracking ability connection between different model was clearly expressed. 

In [135], Wölkl has developed a computational knowledge base in SysML to support model-based 

conceptual design. The functions and flow taxonomies of the National Institute of Standards and 

Technology (NIST) Functional Basis were defined and transferred in a SysML compatible 

language and a model library was built. [23] refined the FB library of Wölkl, in SysML, where 

additional extension packages and containments were set-up. 

The present work formalizes the preliminary work of [131]. Consistent syntax and 

semantics are provided, and compatible FB libraries are developed to enable model reusability. 

This work addresses the functional modeling aspect of CIM. 

5.3 Function Modeling Approach in SysML 

This section introduces a functional modeling approach in SysML, which describes the 

designed product from a function-oriented point of view. Design libraries are developed for the 

functional modeling phase of CIM. The general approach followed here is based on the MBSE 

principles, where the design principles of CDDP and CIM, as presented in detail in Chapter 2, are 
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followed. In previous studies such as [20], [23], [80], the functional modeling was described by 

the Activity Diagram, as these diagrams are powerful in representing the concept of operation. 

However, considering the nature of FM, different modeling representations can co-exist [82]. 

Taking advantage of the capability of the computational modeling language SysML, Structure 

Diagram can also be utilized for the representation of FM [131]. 

Extending the work to formalize the representation in SysML is needed. The incorporation 

of a knowledge-base to support the representation, in the form of reusable libraries, has an added 

value in facilitating the process. The aim here is to provide a structural, comprehensive, and 

efficient functional representation of FM to support the conceptual design phase that can be 

integrated into the overall proposed CDDP and CIM. Case tool MagicDraw is a computational 

modeling tool from NoMagic, Inc. [69], which is used for modeling UML/SysML in the present 

work. 

5.3.1 Structural Syntax Representation 

The model representation that is exercised here for the functional model structure is a 

combination of a tree-based and nested-network structures. This model can be integrated into the 

CDDP, where the Requirement Modeling is used to develop the Functional Model [134]. In 

SysML, the main diagrams in Structure diagram are Block Definition Diagram (BDD) and 

Internal Block Diagram (IBD). IBD can be developed into a Parametric Diagram. BDD is 

composed of Blocks and Connectors. 

For the functional model context, Blocks in BDD are used to model system functions, 

which provides a unifying concept of a function element (also known as; nodes, verbs, or 

transformation). Whereas, Connectors represent a flow element (also known as; edges, or nouns). 
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The hierarchical structure of the FM is developed in the BDD, in which the relationships between 

the Requirement Modeling and the Functional Modeling can be explicitly represented. 

At this point, the FM flows are not yet modeled. Only the relationships between the parents 

or more abstract functions with the children functions are described through Compositions. After 

the establishment of the function elements, the relationships between these function elements are 

established. Each parent, in the FM element in BDD, can develop an internal view of its 

components or children elements via the IBD. A nested-network structure of the FM function 

elements is developed in IBD, where these elements are interconnected relative to each other. 

These interconnections may reveal additional FM elements for any missing functions in the 

network structure. Furthermore, the connections between these function elements in IBD represent 

the FM flows, which have different characteristics. 

Ports and Connectors are used to model the Functions and Flows in IBD. The consistency 

of the flows between any adjacent FM elements should be ensured. Therefore, port representations 

for the function elements in IBD have to be developed in order to identify these connections and 

to ensure consistency. 

Port Representations 

The flow representations here are according to the definitions of the Functional Basis (FB), 

as given in section 2.3.2.1. Three representations of the flows are: material, energy, and signal. 

Therefore, three types of ports in SysML are introduced to model the interaction of flows and 

functions according to the FB. Connectors are used to connect parts, and they need ports to specify 

the details of the interconnections. These ports are represented as a black box interface on the 

parts. 
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The first type of ports in IBD is flow ports, which is employed to model the energy flow. 

Flow ports contain the flow direction and the flow properties, in which more description can be 

used for any additional information about the incoming or outgoing flows. Full ports can represent 

the flow of materials between the connected function elements. Full ports can characterize a part 

of the system, which can handle incoming and outgoing items. Finally, proxy ports are used for 

the modeling of signals. They provide access to/from features of its associated Parts, which serves 

as a proxy for the internal parts. The representation of FB functions in IBD is shown in Fig. 5-1. 

 

Figure 5-1: Representations of FB Function Class in IBD SysML. 

5.3.2 Development of Functional Library Modeling 

Based on the work of [23], [135], different modeling directions are developed here, with 

more details and refinement. Functional Basis taxonomies as presented in [26], are incorporated 
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into SysML. The approach followed here defines two libraries, one for functions and the other for 

flows. The functional model structure is then established by combining elements from the two 

libraries, in which the elements are ready for reuse. For the proposed functional library modeling, 

an extension of SysML in the form of stereotypes is established. A stereotype is a specialized 

SysML block that allows the expansion of SysML by introducing new vocabulary to add more 

flexibility. Fig. 5-2 shows an overview of the defined stereotypes. 

Two Metaclass are used for the definition of the stereotypes, Block and Ports. The Block 

Metaclass defines <<ElementaryFunction>> and <<BasicFlow>> stereotypes. In the present 

work, these stereotypes are determined by using SysML Blocks. There is an additional <<User-

definedFunciton>> stereotype, and it can be used for functions, which are not elementary [23]. 

This stereotype is intended for functions that require more descriptions to satisfy the requirements. 

<<User-definedFunciton>> can be broken down into any number of <<ElementaryFunction>> or 

<<User-definedFunciton>>. On the other hand, <<FlowPort>>, <<FullPort>>, and 

<<ProxyPort>> stereotypes are used for modeling the points where Functions and Flows interact. 

 

Figure 5-2: Defined stereotypes in the function library. 



88 

 

The first step in the implementation of the functional basis in SysML is to define the library 

content, where a hierarchal structure is adopted in SysML BDD similar to the structure of FM. 

Figure 5-3, shows the implementation of the flows from the FB, where SysML Blocks are used to 

model the corresponding FB flows [23]. The cascading of the SysML flow blocks follows a tree-

like arrangement, with each SysML Block having a stereotype <<BasicFlow>>. 

The top level of the hierarchy has the element RootFlow, which is represented as a parent 

element. The names of SysML Blocks are similar to those of the flow FB. In addition, the level of 

the hierarchy is also indicated from the tag value of the stereotype <<BasicFlow>>. These SysML 

Blocks are connected together with the links generalization. It means that each FB flow in the 

lower level of the tree inherits the properties of its parents. For example, the FB flow “Liquid” is 

transferred into SysML structure in the secondary hierarchical level, and it inherits the Material 

properties. 

 

Figure 5-3: Transformation of FB flow into SysML Library. 
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Similar to the FB flows, the transformation of the functions of the FB is also presented in 

Fig. 5-4. The same tree-like structure is followed for the modeling of the FB functions in SysML, 

where the top level of the hierarchy is defined by the element RootFunction and the elements in 

the structure are connected with generalizations to inherit the properties of the parent elements. 

Each FB function transferred to SysML Block shows the stereotype <<BasicFunction>> with a 

tagged value representing the hierarchy level in the structure. For example, the FB function 

Remove has a hierarchy level of Tertiary, which inherently carries the properties Separate and 

Branch. 

 

Figure 5-4: Transformation of FB functions into SysML. 

Further refinements for the modeling of the FB functions in SysML are developed, with 

reference to prior work [135]. The interfaces of each FB functions are also modeled in SysML 

Block, where SysML Ports represent them. The information about the number and types of all the 
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incoming and outgoing flows in each FM functions are implicitly provided in the FB. This 

information is given in the form of a descriptive language. 

Fig. 5-5 shows two examples, where the ports of the FB functions “Distribute” and 

“Transfer” are derived from the description. “Distribute” is a secondary-level FB function, as 

indicated in the stereotype tagged value. The associated flows can be derived from the FB 

description, which allows the flow of any material, energy, or signal. 

Fig. 5-5 shows how the three types of flows are modeled using the three introduced Ports 

<<FlowPort>>, <<FullPort>>, and <<ProxyPort>>. In the same manner, “Transmit” is modeled 

in the tertiary hierarchical level, and is described as “To move energy from one place to another.” 

Therefore, only the <<FlowPort>> stereotype is used for modeling the associated flows, as shown 

in Fig. 5-5. 

Standard Functional Modeling (FM) technique is well established for the support of 

systematic product development [132], and it covers all the points of modeling principles. 

Therefore, all the views that are identified as modeling principles should also be covered with an 

appropriate SysML syntax. Table 5-1 presents a comparison between the functional model, 

modeling principles, and the SysML representation. 
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Figure 5-5: Examples of how definitions of functions are implemented in SysML. 
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Table 5-1: Comparison of Functional, Modeling, and SysML modeling representations. 

Functional 
modeling Modeling principle SysML representation 

Function 
structure Tree-based Network-

type BDD IBD 

Function Node Block Part 

Flow Edge Directed 
composition Connectors 

Differentiated 
flows for 
material, 

energy and 
signal 

Not available 

Typed edge 
visually: 
(double, 
plain and 
dashed) 

Not available Information 
about the flow 

Decomposition Sub graph 
principle 

Not 
available BDD Not available 

Black box Black box principle Block with 
ports Part with ports 

Predefined 
flow Interaction point Port Port 

Scope of 
function 
structure 

Control volume Diagram frame 

Flow direction Directed edge Directed 
composition Connectors 

 

5.3.3 SysML Functional Model Usage with the Library Support 

The use of SysML to support a systematic design approach is illustrated now, in the form 

of a case study. The modeling steps and the method of utilizing the function library are shown. 

First, the main system functions are defined based on their satisfaction of requirements. The 

general functions are decomposed into further sub-functions as more detailed requirements need 

to be satisfied. Each of these functions and sub-functions is modeled as a black box in the form of 

SysML Blocks. More abstract functions are defined as user-defined functions. More detailed 

functions are modeled from the <<ElematryFunction>> library. The inputs and outputs of each 
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functions or sub-functions are defined from the <<BasicFlow>> library. Fig. 5-6 provides a 

visualization of the definition of the main function of the present case study, where an excerpt of 

the requirement is shown and it is used to create the user-defined function “Develop a Conveyor 

System.” 

 

Figure 5-6: Excerpt of developing requirements in BDD. 

The main function is, then, decomposed into sub-functions, and some are further 

decomposed into more sub-functions. This decomposition process is determined by the 

requirement satisfaction. However, the creation of sub-functions should follow the general rules 

of verb and noun, where the flow of energy, material, and signal should be maintained as in [92]. 

The representation of the flows in the <<ElementaryFunction>> is based on the FB description of 

functions, where additional flows can be added. 

The functions “Supply_1,” “supply_2,” “Drive the System,” and “Characterize the 

Motion” are sub-functions of the main function “Develop a Conveyor System.” It is seen that 

“Develop a Conveyor System,” “Drive the System,” and “Characterize the Motion” are <<User-
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definedFunction>>, whereas “Supply_1” and “supply_2” are <<ElementarFunction>>. Therefore, 

“Drive the System” and “Characterize the Motion” are decomposed into further sub-functions. In 

SysML, ports are represented from the <<BasicFlow>> library to << ElementaryFunction>> 

elements. Each << ElementaryFunction>> SysML Block in BDD is expanded into IBD, where the 

energy, material, and signal ports are assigned. Fig. 5-7 also shows the implementation of 

<<BasicFlow>> to the function. Here, it is named “Human Energy,” which is transferred to 

“Convert_3” <<ElementaryFunction>>. 

 

Figure 5-7: Excerpt of the flows representation based on the FB description. 

After the completion of the hierarchical structure, the details about the interconnections 

between these functions or sub-functions are determined. The hierarchy is established based on a 

nested-network structure. First, parent <<User-definedFunciton>>/<< ElementaryFunction>> 

SysML Blocks develop an IBD diagram inside it. All the associated children SysML Blocks of the 

parent are present inside the IBD with their ports already defined. The interconnections are then 
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established honoring the material, energy, and signal flow type relationship between the children 

SysML Blocks. An example elementary function is described in Fig. 5-8. 

 

Figure 5-8: The nested-network of the function Drive the System is shown in IBD. 

An IBD diagram is established inside the parent BDD. All the children sub-functions with 

their <<BasicFlow>> ports are automatically instantiated inside the IBD diagram in the form of 

SysML parts. Then, the interconnections between different SysML parts with each other, and the 

interconnections between SysML parts with their environment are created. Here, an IBD diagram 

is opened inside “Drive the System” SysML Block. The <<ElementaryFunction>> “Actuate” is 

shown inside the IBD diagram. Also, the <<BasicFlow>> ports “Transfer” is presented in the IBD 

diagram. Finally, Fig 5-8 displays the interconnections between different parts in the IBD diagram 

and with the environment, where the <<BasicFlow>> ports of the parent function “Drive the 

System” are determined. 
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A special case can be discussed, where the pre-defined number of ports are not adequate 

to describe the complete network of interconnections. In other words, some SysML parts have no 

connection with any of the SysML parts in the IBD. For example, a function has a defined 

pneumatic output flow port, but there are no pneumatic input flow ports defined within the IBD 

diagram. Two solutions are suggested. One is to define a custom <<User-definedFunction>> in 

the IBD diagram to extend the library of flows. The other is to interconnect any un-defined ports 

to the environment, in which the parent <<ElementaryFunction>> is re-defined as a <<User-

definedFunction>>. The process of defining the nested-network type structure of each parent takes 

a bottom-up approach. The main function, therefore, should include all parents and children 

functions in its IBD diagram, each of which describing the interrelationships. 

Fig. 5-9 shows how “Drive the System,” “Condition,” and “Supply_1” are identified inside 

the IBD diagram of the main function “Develop a Conveyor System.” Also, it is indicated that the 

sub-functions of “Drive the System” and “Condition” are already stored inside the corresponding 

sub-function of the IBD diagram. 

In addition to port definition constraint, SysML IBD provides the diagram constraint, 

which can be advantageous during modeling. The proper port type must be satisfied when the 

structure interconnection takes place in IBD, where the port type of one interconnection must be 

consistent with the port type of the other end. Fig 5-10 shows an indication of inconsistency when 

the “signal” port type is connected with “material,” and “material” port type is connected to 

“energy” port type, in the form of warning messages. 
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Figure 5-9: The development of FB functions from BDD to IBD. 

 

Figure 5-10: Port definition constraints. 
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5.4 Discussion 

This chapter developed a computational functional model in SysML to solve some 

problems of conventional models. In particular, the development and integration of the design 

library into the SysML functional model, as presented by [131], was conducted to add the library-

reuse capability. Other work that utilized the activity diagram for the functional model 

representation (e.g., [135]), are not included in the present work. 

Due to the free nature of the SysML modeling language, some evaluation criteria for the 

modeling approach in the present work are considered as in [132]. For the representation 

characteristics, the hierarchal structure in BDD provided a comprehensive functional structure 

overview and also the representation of the model within the CDDP, which allowed the 

demonstration of the relationships with other aspects of the CIM model views. Moreover, the 

presentation of the IBD showed the interconnection between different function elements. 

However, the introduction of the library would limit the usage of the models to mechatronic 

systems, which limited the model scalability when addressing complex problems. Flexibility, on 

the other hand, is improved, where the library element reuse can help in the adaptation of the model 

to further modification. 

Model consistency and model validation were expanded. For example, the support for the 

introduction of pre-defined ports with their defined number and the presence of flow type checking 

would improve the model consistency and model validation. Alternatively, the indexing ability, 

which is a description of model binding, and knowledge accessibility are decreased because of the 

development of two diagram representations. The cognitive dimension characteristics represent 

the degree of interaction with the designer, which is high in the presented model since the 

functional and requirement structures are represented in one model. Also, the development of the 
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process model conventions, as presented in Chapter 4, together with the “pick-n-drop” functions 

from the library, increases the criterion closeness of mapping, which is related to the intuitive 

nature of the resulting model, reduces the criterion error-proneness, and increases the criterion 

hidden dependencies. 

From another point of view, error-proneness increases with the introduction of the library 

and ports, since the tracking of all the changes of the ports types and function decomposition 

becomes more challenging. Furthermore, the abstraction gradient, which indicates the maximum 

and minimum levels of abstraction, is limited to the <<ElementaryFunction>> being selected from 

the library. 

Finally, in enabling the reasoning characteristics, state transformations criterion is 

discussed. SysML model development in BDD, and IBD can be incorporated in functional 

modeling. However, they do not fully support dynamic modeling and state transformation [72]. 

Therefore, the model presented here does not have any reasoning capabilities. 
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Chapter 6: A Library-based Concept Design Approach 

6.1 Introduction and Motivation 

Once the functional modeling is completed, structural modeling has to be developed. A 

structure is a description of how the components or sub-systems of a system are interrelated. These 

components or sub-systems represent the instantiations of the physical forms or objects of the 

system, which are introduced according to their fulfillment of the corresponding sets of functions. 

Therefore, preliminary topologies of the designed product or system have to be generated, and this 

process is called structural modeling. This contributes to the development of the CIM, where better 

management of the design date-related problems can be achieved. 

These topologies should be simple but sufficiently complete to provide the necessary 

information to allow model evaluation and evolvement. Consequently, the need for system-level 

simulation support is crucial, which can shorten the design cycle significantly [104]. Developing 

a structural model that represents the behavior of the system is required to facilitate system-level 

simulation. System-level simulation serves as a virtual prototype, where the behavior of the 

equivalent physical prototype should be modeled as accurately as possible. In this way, the 

designer is able to perform simulations instead of physical experiments, which makes the design 

process less expensive. 

However, complex mechatronic systems require advanced capability of computational 

support tools, and these tools must be established to advance the CIM process. Support for model-

based design and simulation has been developed mostly in the detailed design phase [136]–[138] 

since domain engineers determine the exact engineering specifications for a design. In addition, 

systems are modeled more precisely for discipline-specific domains, and this process is supported 

by discipline-specific simulation tools. For example, Computer-Aided Design (CAD) and 
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Computer-Aided Engineering (CAE) tools are particularly intended for mechanical engineers. 

Electronic Design Automation (EDA) and wire harness design tools are mainly intended for 

electronic engineers. 

Unfortunately, these tools of modeling and simulation cannot be just combined to perform 

system-level simulation [139] because of the different nature of different engineering domains and 

also the compatibilities of different simulation tools. Existing system-level simulation tools for 

mechatronic systems are general and stand-alone, and are not integrated with DDP or CDDP [104]. 

The present work develops a system-level synthesis methodology for the CDDP of mechatronic 

systems. It automatically transforms the view of the CIM from a technology-independent model 

to a structural model that represents the behavior of the system, because the functions are 

intimately related to the system structure [139]. The developed model view has the following 

characteristics: 

Port-based modeling standards: Port-based modeling standards are developed, in which a 

designer selects the candidate simulation components by mapping between the inputs and outputs 

of the functions or a set of functions and components of the structure. The interactions between 

the interconnecting components can be defined by connecting the ports of the subcomponents. 

Physical modeling paradigm: In the physical modeling approach, components are 

representable by mathematical-graphical objects. These objects are topologically interconnected 

by rules based on the exchange of power through the connections to form the governing equations. 

The present modeling paradigm supports multi-physics simulation, in which different 

engineering domains are modeled and simulated in an integrated manner under a single simulation 

environment. This results in lower costs in the physical tests through of using more simple and 

fewer hardware prototypes. 
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Design catalogs: Designers are required to use design knowledge that provides the details 

of object functionalities, from available behavior simulation libraries [140]. Proper development 

of a simulation library is essential in order to facilitate the mapping between the solution object 

candidates to functions, via object ports. 

Reconfigurability: Granularity of the system-level simulation model is defined at a limited 

level of accuracy. As the CDDP develops through iterative cycles, the complexity of the model 

grows with components, and the model accuracy increases without the need to remodel the 

complete system. Additional components for the control system may have to be introduced and 

integrated in order to fill the gaps of the system mechanics. 

Automatic synthesis: A high-level system synthesis methodology is introduced. It 

advances the development of the transformation between two different model views of the CIM, 

which is integrated within the CDDP by utilizing the functional model, to create the structural 

model. In this way, the synthesizer is able to develop a system of equations automatically, which 

describe the behavior of the system. 

A system-level simulation model development algorithm is introduced. It allows an 

automatic generation of model synthesis that represents the topological structure of the simulation 

model. Also, the values of the network of parameters that fulfill the functional requirements are 

roughly determined; particularly the lower and upper bound values and the acceptable range of 

values. 

Traceability capability: The algorithm enables the capability of traceability during the 

synthesis process following the presented methodology (see Fig. 4-1). It allows automatic 

information exchange between different model views of the CIM through the CDDP (see Fig. 4-

3), which is the tracing of the structural model to functional and requirement models. 
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6.2 Background and Related Work 

The development of structural-based design, also called architecture-based design [138] 

and platform-based design [141], in CDDP provides a high-level of structural abstraction, in which 

the functional model is utilized to transfer the model view into representations of multiple 

behavioral architectures. The shortcoming in the existing structural modeling developments is that 

they are locked to a particular implementation in making the design decisions [142]. Also, the 

modeling capabilities are unable to represent physical components and their interactions as 

computational components [138]. 

The process of transforming a functional model of a product into its structural model is a 

development process, as described in [32], [123]. The developed methodology is based on 

characterizing the product by three levels of abstraction: form, function, and behavior [37], as 

shown in Fig. 6-1. 

 

Figure 6-1: Relation between form, function, and behavior. 

The first level of abstraction is the function level, where the design tasks are formulated 

into functions. These functions are decomposed and modeled into a different level of detail – see 

section 2.3.1. In the second level of abstraction, those function descriptions are directly related to 

the structural descriptions of the object. They describe the form of the physical embodiment of the 

object, particularly the structural level, as indicated in section 4.1.1.3. The third level of abstraction 

Behavior
Analysis

Function

Form
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characterizes the behavior of the system, which is derived from the forms of the objects. This 

behavior is verified to see if it matches the developed functional and non-functional requirements, 

where mathematical models represent the behavior. The design verifications are established by 

carrying out simulation and analysis of these models. 

Simulation tools and languages have been utilized heavily in many industries for the 

development of complex systems through improved design processes [104], [139]. They have 

proven to be effective and economical in design, validation, and testing the systems. Virtual 

analysis of the system will reduce the need for physical prototyping, where the dynamic behavior 

of the system can be predicted at a high degree of certainty and under a variety of conditions. 

However, many ongoing research activities still address the development of activities such as 

model validation, different specific-domain simulation tool integration, and utilization of virtual 

reality technology to enhance the visualization. The present work seeks to simplify the model 

formulation process, in which system-level simulations can be conducted to facilitate the 

identification of system-level problems. 

Modeling and simulation packages can differ according to their characteristics such as 

graph-based or language-based, multi-domain or single-domain, and declarative or procedural 

modeling. Modelica [143] is a language-based modeling methodology based on the bond-graph 

approach, where the language can be described as typed, declarative, equation-based, and textual. 

The modeling methodology is non-casual and uses object-oriented construct, which was inspired 

by software development for modeling physical systems to describe their dynamic behavior. It has 

the following characteristics: 



105 

 

Multi-domain: The modeling language is adequate to model different engineering domains 

such as electrical, mechanical, thermal, and fluid. Therefore, it is suited for modeling complex 

mechatronic systems 

Object-oriented: General class concepts are defined with a strongly typed language. 

Declarative language: Equations and mathematical functions allow acausal (non-causal) 

modeling, in which the internals of sub-models can be completely encapsulated. The acausality 

makes Modelica library classes more reusable than traditional classes that contain assignment 

statements where the input-output causality is fixed. 

Modelica language has been implemented in several open-access and commercial 

simulation tools such as Simcenter Amesim from LMS [27]. Amesim has a built-in graphical editor 

that can graphically represent different mathematical equation systems, which describe the 

component behavior (see section 2.1.3.2.2). Amesim is based on a 1D, lumped-parameter, time-

domain simulation platform software. This means the geometry of each component is not directly 

resolved. Hence, it can be used as a unified environment of system-level simulation for complex 

mechatronic systems, because it provides a systematic means of cataloging and classifying 

component design knowledge that is organized in libraries. The individual components are 

represented by standard symbols used in the engineering field; for example, ISO symbols for 

hydraulic components. Also, the libraries are classified according to the engineering domains. 

Amesim is still widely used for the modeling and simulation of multi-domain systems [144]–[147]. 

However, the identification of model components has to be done according to the design 

specifications represented by functions. Therefore, the selection of components that have 

correspondence with functions, is practiced 
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The work of [28], [148], [149] used the identification of structural components by structural 

mapping. Kurtoglu [28] used graph grammar for automated generation of a configuration flow 

graph. This means components are found in a library structure parallel to the functional basis. 

[148], [149] utilized Triple Graph Grammar (TGG). With structural mapping, having unique, 

redundant-free models is not guaranteed, whereby a component embodying two functions can be 

placed in more than one location in the library structure. An alternate component selection from a 

library would be achieved through the identification of inputs and outputs from a mapping matrix. 

[23], [150] developed a system-level model integration based on SysML to overcome the 

SysML inability of not being able to support the simulation of behavioral models. Therefore, 

extensions are made to transform between the hybrid models in SysML to executable simulation 

models in Simulink/Simscape, and Amesim simulation environment, respectively. The capability 

of automatic simulation model generation was not developed in their work, and therefore required 

a manual selection of components. 

[138], [139] established algorithms for automatic and semi-automatic simulation model 

generation of cyber-physical systems. The transformation of the simulation models was done 

according to the functional model development, and two levels of synthesis were presented: 

architecture synthesis algorithm and simulation synthesis algorithm. This method increased the 

computational cost, and the complexity of the algorithm is 𝑂(𝑁 ∗ 𝑀 ∗ 𝐾), 

where: 

𝑁: the total number of architecture components in the architecture library 

𝑀: the total number of architecture templates in the architecture library 

𝐾: the number of functions in the functional model 
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Their work primarily focused on the development of the architectural library for the 

automotive industry. Therefore, a goal of the present work is to develop an algorithm for automatic 

simulation components synthesis, to reduce the computational cost and also to broaden the 

application to other industries such as the food processing machinery industry. 

6.3 Functional Model 

The development of an algorithm for transforming the functional model into a simulation 

model requires an algorithmic description of the model. Therefore, the functional model and the 

simulation model are algorithmically described next. 

Definition 6-1. A functional model is a labeled, directed, multigraph 𝐹 =

(𝑉, 𝐸, 𝑠, 𝑡, 𝐿k, 𝐿l, 𝑃). Each node 𝑣m(n,o) ∈ 𝑉 represents a function, and has a defined input port 𝑝r ∈

𝑃 and output port 𝑝s ∈ 𝑃. Each edge 𝑒(m,t) ∈ 𝐸 represents a flow from a function  𝑣m(n,o) ∈ 𝑉 to a 

function  𝑣t(u,v) ∈ 𝑉. The mappings of the node source and node target of each 𝑒(m,t) ∈ 𝐸 are 

represented by 𝑠:	𝑒(m,t) ∈ 𝐸	 → 	𝑝s ∈ 𝑃	𝑜𝑓	𝑣m(n,o) ∈ 𝑉 and 𝑡:	𝑒(m,t) ∈ 𝐸	 → 	𝑝y ∈ 𝑃	𝑜𝑓	𝑣t(u,v) ∈ 𝑉, 

respectively. 𝐿k, and 𝐿l are the vocabulary from the Functional Basis Language. 

The functional basis (FB) – see section 2.3.3.1 – defines vocabulary, syntax, and semantics 

of the functions, constituting the functional library, which is encoded into 𝑉, 𝐸. For example, a 

node 𝑣t(n,o) ∈ 𝑉 is labeled 𝑙 {𝑣t(n,o)| = 𝑐𝑜𝑛𝑣𝑒𝑟𝑡 and a flow 𝑒(m,t) ∈ 𝐸 is labeled 𝑙�𝑒(m,t)� =

𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙	𝑒𝑛𝑒𝑟𝑔𝑦. By checking the compatibility of the target mapping of 𝑒(m,t) ∈ 𝐸, 𝑡t and the 

input mapping port of 𝑣t(n,o) ∈ 𝑉, 𝑝r, we can achieve a 𝑐𝑜𝑛𝑣𝑒𝑟𝑡	𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙	𝑒𝑛𝑒𝑟𝑔𝑦 signature.  

Definition 6-2. A set of requirements 𝑅��$ = {𝑅�, 𝑅�, 𝑅�, … } represent the user-defined set 

of requirements, where the properties are described in general terms. 
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6.4 Simulation Models 

Functions are allocated to candidate simulation components from Simcenter Amesim [27] 

simulation library, which constitutes a simulation model. 

Definition 6-3. A simulation library 𝑆ym�  is represented as a collection of simulation 

components 𝑆m, 𝑆ym� = {𝑆�, 𝑆�, 𝑆�,… }. The simulation components are classified into up to 40 sub-

libraries, such as Control, Electrical, Mechanical, Fluid, and Thermal sub-libraries. These sub-

libraries are developed through engineering services in partnership with customers. 

Definition 6-4. A simulation component is 𝑆m = {𝑃, 𝐼, 𝑃𝑎𝑟, 𝐶𝐸, 𝑆𝐿, 𝐶𝑜𝑛𝑠}. Here 𝑃 =

{𝑃l, 𝑃�} includes energy ports PE and signal ports PS. The energy ports are input ports and output 

ports: 𝑃l = {𝑃lmr, 𝑃l��$}. 𝑃l is also classified according to the energy domains: 𝑃l =

{𝑃ll, 𝑃��l, 𝑃��l, 𝑃�l}. They incorporate the conservation of energy law, which is defined by 

conjugate variables that represent effort 𝑒 and flow 𝑓. Also, 

𝑃ll = ports for electrical energy = Current 𝑖(𝑡) and Voltage 𝑉(𝑡) 

𝑃��l = ports for mechanical rotational energy =Angular velocity 𝜔(𝑡) and Torque 𝑇(𝑡) 

𝑃��l  = ports for mechanical translational energy = Velocity 𝑣(𝑡) and Force 𝐹(𝑡) 

𝑃�l = ports for hydraulic energy = Volume flow rate 𝜑(𝑡) and Pressure 𝑃(𝑡) 

The signal ports are input ports and output ports: 𝑃� = {𝑃�mr, 𝑃���$}. Here, 𝑃� are signal ports that 

require minimum power, and are used to communicate a drive action to a component. Signal ports 

may include data buses and embedded controllers. Each simulation component 𝑆m contains: 

parameter values 𝑃𝑎𝑟, constitutive equations 𝐶𝐸, internal parameters 𝐼, a list of constraints 𝐶𝑜𝑛𝑠𝑡, 

and is classified within a sub-library 𝑆𝐿. 
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Definition 6-5. A simulation model 𝑆s�� has strongly typed simulation components 

𝑠m(r,s), from the simulation library 𝑆ym�  and connectors 𝑐(��(n,o),��(u,v))
∈ 𝐶. The simulation 

components are connected through their defined power ports from  𝑝s ∈ 𝑃l���  of simulation 

component 𝑠m(r,s) to  𝑝y ∈ 𝑃l�n of simulation component 𝑠t(y,�) , where the connectors impose 

algebraic constraints on the port; for example, Kirchoff voltage and current laws in electrical 

circuits. 

6.5 Synthesizer Principles 

The simulation components need to be established for the model. Each component 

embodies an equation and a corresponding code, which represents the mathematical description of 

the component. A set of equations are developed in order to complete the model. These equations 

define the behavior of the system, by interconnecting the simulation components. Modeling is 

based on bond graph principles [98], [151], where the power transmission is defined as the product 

of effort and flow. 

To achieve the automatic generation of a complete model, the synthesizer algorithm 

identifies components from a model library to satisfy the associated functional model. The 

selection of the simulation components from the library requires input and output direct mapping 

to match the input and output of a function/group of functions. The challenge here is defining 

appropriate inputs and outputs for the contents of the model library [135]. Therefore, the 

synthesizer is able to capture the energy and signal port information of the functions that are stored 

in the object ports in the IBD idb of SysML functional model. This information contains the 

description of the incoming and outgoing flows from and to the functions from the FB reconciled 
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flow set [152]. The synthesizer matches and stores the corresponding power conjugate 

complements of each type of flow, as given in table 6-1 [152]. 

Table 6-1: Power conjugate complements for the energy class of flows. 

Class 
(Primary) Secondary Tertiary Power Conjugate Complements 

      Effort analogy Flow analogy 
Energy   Effort Flow 
 Human  Force Velocity 

 Acoustic  Pressure Particle velocity 
 Biological  Pressure Volumetric flow 

 Chemical  Affinity Reaction rate 
 Electrical  Electromotive force Current 

 Electromagnetic  Effort Flow 
  Optical Intensity Velocity 

  Solar Intensity Velocity 
 Hydraulic  Pressure Volumetric flow 

 Magnetic  
Magnetomotive 
force 

Magnetic flux 
rate 

 Mechanical  Effort Flow 
  Rotational Torque Angular velocity 

  Translational Force Linear velocity 
 Pneumatic  Pressure Mass flow 

 Radioactive/Nuclear  Intensity Decay rate 
  Thermal   Temperature Heat transfer 

 

Embodiments of the component behaviors that satisfy the functions are, then, identified by 

matching the input and outputs of the correspondent power conjugate complements. These 

components are then connected through their energy ports by using connectors. Since the 

functional model consists of functions 𝑉 and flows 𝐸, port matching solves the flows 𝐸 

compatibility. Also, it generates many simulation components, which leads to a growth of the 

solutions space. This creates difficulty in identifying good or optimal solutions. In order to limit 

the search space, the functions 𝑉; for example, convert, store, should also be addressed. 
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Commercial simulation libraries provide an extensive source of re-usable, pre-existing, 

system-level simulation components. However, synthesizing the simulation components based on 

matching the flow of power ports will lead to the challenges mentioned earlier. Therefore, 

developing the synthesizer to incorporate compatibility matching between the functions 𝑉 of the 

functional model to the simulation components, is necessary. The library of heterogeneous 

simulation components have to be developed to enable a systematic classification of the functions 

𝑉. This would link the gap between the functions 𝑉 and behaviors, support the formalization of 

the simulation component library, and facilitate better and reliable mappings. 

6.6 Behavioral Component Library Development 

 The behavioral component library is organized according to the functional basis-reconciled 

function set 𝐿k [152]. It contains elements from Simcenter Amesim [27], which are defined based 

on abstraction ports, similar to [153]. These abstraction ports are established between the bond 

graph elements and the functions from the functional set 𝐿k. The underlying modeling principles 

of Simcenter Amesim modeling environment are bond graphs [98], [151], which are based on the 

energy flow of different domains. Table 6-2 presents the state variables in different domains, which 

may include effort 𝑒, flow 𝑓, their time integrals, momentum 𝑝, and displacement 𝑞, depending 

on the physical element, in different engineering domains. 

Table 6-2: Domain-specific state variables. 

Energy 
domain 

Effort 𝑒 Flow 𝑓 Momentum 𝑝 Displacement 𝑞 

Name Symbol Unit Name Symbol Unit Name Symbol Unit Name Symbol Unit 

Mechanical 
translational Force 𝐹 𝑁 Velocity 𝑣 𝑚 𝑠⁄  Linear 

Momentum 𝑃 𝑁𝑠 Linear 
displacement 𝑥 𝑚 

Mechanical 
rotational Torque 𝑇 𝑁𝑚 Angular 

velocity 𝜔 1 𝑠⁄  Angular 
Momentum 𝐿 𝑁𝑚𝑠 Angle 𝛼 𝑟𝑎𝑑 

Electrical Voltage 𝑈 𝑉 Current 𝐼 𝐴 Flux 
Linkage 𝜆 𝑉𝑠 Charge 𝑄 𝐴 
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The mathematical operations that represent the relationships between the state variables 

and their time integrals represent the physics of different bond graph elements, as shown in Fig. 

6-2 [154]. 

 

Figure 6-2: Tetrahedron of state. 

These elements, specifically, Resister (R), Capacitor (C), Inertia/Inductance (I), 

Transformer (TF), and Gyrator (GY), will embody functions, and they provide the basis for the 

matching of functions 𝑉 and simulation components 𝑆m. 

The structure and organization of the library are based on the functional set 𝐿k. A function 

𝑣m ∈ 𝐿k constitutes a bond graph element, which represents a relationship between two state 

variables. They are used to identify a family of simulation components. Consequently, all of the 

component families from different sub-libraries are stored in the function 𝑣m. The complete list of 

the assigned ports according to bond graph elements is found in [153]. 

 Definition 6-6: A simulation component family 𝑆§  represents a group of components from 

the same domain that share the same behavior and interfaces but they have different levels of 

detail. For example, a function 𝑣m that represents a decrease from the functional set 𝐿k is assigned 

to bond-graph element Resistor (R), since R dissipates power. Also, R provides the relationship 

between effort 𝑒 and flow 𝑓 using equation (6-1), where 𝑘 is a lumped parameter that describes 

the linear relationship: 
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𝒆 = 𝒌. 𝒇																																																																																																													(6-1)  

From the simulation library, friction component family from the Pneumatic sub-library is 

identified and stored in the decrease library, as shown in Fig. 6-3. 

 

Figure 6-3: Frictions family from Pneumatic sub-library is to be stored in decrease library. 

For illustration, the input and output power flows of a simulation component pn_capilar 

(the top right component) has the following description: 

In the pneumatic capillary, the flow path is assumed to be between parallel plates. The 
length of this clearance flow path is assumed constant. The pressure in Pa and temperature in K 
are input at each port and the mass flow rate in g/s and the enthalpy flow rate in J/s are computed 
and output at both these ports. 

This description is illustrated in Fig. 6-4, which shows that the input power is Pressure 

(effort 𝑒) and the output power is mass flow rate (flow 𝑓), and they satisfy equation (6-1). 

 

Figure 6-4: The energy flow of a pneumatic capillary. 

 pressure
Pa mass flow rate

g/s
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Synthesizer Algorithm 

Definition 6-7: A mapping from a functional model 𝐹 to simulation component family 𝑆§  

is a set of 2-tuples 𝑚m = {< 𝑣m(n,o), 𝑠§� >}, where 𝑣m(n,o) ∈ 𝑉(𝐹) and 𝑠§� ∈ 𝑆§ . When 	𝑚m = {<

𝑣m(n,o), ∅ >}, 𝑆§�  is defined as is ∅ does not exist in 𝑚m. 	𝑚��$ = {𝑚�,𝑚�,… } represents all 

combinations of mappings between 𝑣m(n,o)  and 𝑆§ . 

The synthesizer algorithm 1 generates simulation models 𝑆s�� for the functional model 𝐹. 

It follows four steps: the dissection of the component simulation families 𝑠§� ∈ 𝑆ym� , mapping 

between the functions 𝑣m ∈ 𝑉(𝐹) and component simulation families 𝑠§� ∈ 𝑆ym� , identification of 

the range of parameters for 𝑠§� ∈ 𝑆ym� , and generation of simulation models 𝑆s��. First, lines 4-18 

of algorithm 1 examine the ports of the simulation component families 𝑠§� ∈ 𝑆ym�  and classify the 

energy and signal ports. They also identify whether the flows and signals are incoming or outgoing, 

in which the energy incoming flows are decided based on the effort state variables. Furthermore, 

the synthesizer links each incoming and outgoing energy port to its corresponding FB flow set, as 

described in definition 6-4. The synthesizer takes into account the presence of more than one 

incoming and outgoing signal and energy port. Lines 19-29 of algorithm 1 utilize the information 

stored in each simulation component families, i.e., the internal state equations, to derive FB 

function set in each component, similar to [153]. Second, lines 30-39 of algorithm 1 create full 

mapping 𝑚��$ between all the functions 𝑣m from the functional model 𝐹, and the the simulation 

component families 𝑆§ . This process takes two steps: first, the incoming and outgoing ports of each 

function 𝑣m ∈ 𝑉(𝐹) are examined and a search in the component simulation library 𝑆ym�  is 

conducted to look for the same port types. Second, all possible candidates are subjected to a 

pruning process, where their FB functional set should match FB functional set of the function 𝑣m. 
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This is important in order to achieve a correlation between the functions and simulation 

components. Third, in lines 41-45 of algorithm 1, all the mapped simulation component libraries 

are investigated against the set of customer requirements 𝑅��$ to identify the network of 

parameters, specifically the range value or the upper and lower limits. Also, a component mapping 

is eliminated together with its corresponding function 𝑣m if it contradicts any requirement from the 

requirement set 𝑅��$. Fourth, in lines 47-59 of algorithm 1, the generation of different simulation 

models takes place. Each simulation component library in each mapping 𝑚m is subjected to 

compatibility port matching with each simulation component library in each other mapping 𝑚t. 

The incoming and outgoing ports of a component are connected to compatible ports of another 

component. The unconnected ports of the connected components are then connected to other 

compatible ports of the other components. Finally, a simulation model is generated and stored in 

the simulation model 𝑆s��. 

Synthesizer Algorithm 1 
     Input: F: A functional model imported from SysML Internal Block Diagram IBD 
     Input: R: User requirements from Requirement Diagram RD 𝑅��$ 
     Input: 𝑆ym� : Simulation library with abstraction ports identification 
     Input: 𝑚��$: A set of mapping from 𝑉 ∈ 𝐹 to 𝑆§ ∈ 𝑆ym�  
     Output: 𝑆s��: A set of simulation models 
1   𝑆��$ = ∅ 
2   𝑚s�� = ∅ 
3   For each 𝑠§� ∈ 𝑆ym� do 
4 For each 𝑝t(𝑠§�) do 
5  If 𝑝t = 𝑃l  then 
6   If 𝑒𝑓𝑓𝑜𝑟𝑡(𝑝t) is entering then 
7    𝑝t = 𝑒�𝑝t� 
8    𝑝t = 𝑝t ∪ 𝑃mr  
9   Else 
10    𝑝t = 𝑒�𝑝t� 
11    𝑝t = 𝑝t ∪ 𝑃��$  
12  Else 𝑝t = 𝑃� then 
13   If 𝑃� is entering then 
14    𝑝t = 𝑃� 
15    𝑝t = 𝑝t ∪ 𝑃mr  
16   Else 
17    𝑝t = 𝑃� 
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18    𝑝t = 𝑝t ∪ 𝑃��$  
19 For each 𝑝l�n�(𝑠§�) do 
20  For each 𝑝l�nv(𝑠§�) do 
21   If 𝑝l�n� = 𝑝l�nv  then 
22    𝑠§� → ∅ 
23   Else 
24    If 𝑒(𝑝l�n�) = 𝑒(𝑝l�nv) then 
25     𝑠§� → "𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡, 𝑝𝑟𝑒𝑣𝑒𝑛𝑡, 𝑖𝑛ℎ𝑖𝑏𝑖𝑡, 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒, 𝑠𝑡𝑜𝑟𝑒, 𝑠𝑢𝑝𝑝𝑙𝑦" 
26    Else 
27     𝑠§� → "𝑐𝑜𝑛𝑣𝑒𝑟𝑡" 
28  For each 𝑝l���v(𝑠§�) do 
29   𝑠§� → "𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡, 𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡, 𝑐𝑜𝑛𝑣𝑒𝑟𝑡, " 
19 For each 𝑝l����(𝑠§�) do 
20  For each 𝑝l���v(𝑠§�) do 
21   If 𝑝l���� = 𝑝l���v then 
22    𝑠§� → ∅ 
23   Else 
24    If 𝑒(𝑝l����) = 𝑒(𝑝l���v) then 
25     𝑠§� → "𝑠𝑡𝑜𝑟𝑒, 𝑠𝑢𝑝𝑝𝑙𝑦" 
26    Else 
27     𝑠§� → "𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒, 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒, 𝑐𝑜𝑛𝑣𝑒𝑟𝑡" 
28  For each 𝑝l�nv(𝑠§�) do 
29   𝑠§� → "𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒, 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒, 𝑐𝑜𝑛𝑣𝑒𝑟𝑡" 
30   For each 𝑣m(n,o) = 𝑉(𝐹) do 
31 𝑚m = ∅ 
32 𝑚m = 𝑚m × {< 𝑣m(n,o) , ∅ >} 
33 For each 𝑠§� ∈ 𝑆ym� do 
34  For each 𝑝mrv(𝑠§�) do 
35   If 𝑝mrv = 𝑃r then 
36    For each 𝑝��$u(𝑠§�) do 
37     If 𝑝��$u = 𝑃s then 
38      If 𝑣 {𝑣m(n,o)

| = 𝑠§�  then 
39       𝑚m = 𝑚m × {< 𝑣m(n,o) , 𝑠§� >} 
40 𝑚��$ = 𝑚��$ ∪ 𝑚m 
41   For each 𝑚m ∈ 𝑚��$ do 
42 For each 𝑠§� ∈ 𝑚m do 
43  Store the network of parameters from the requirement set 𝑅��$ 
44  If 𝐶𝑜𝑛𝑠𝑡�(𝑠§�) contradicts with any of the requirement set 𝑅��$ then 
45   𝑚m = 𝑚m < 𝑣m(n,o) , 𝑠§� > 
46   𝑆s�� = ∅ 
47   For each 𝑚m ∈ 𝑚��$ do 
48 For each 𝑠§� ∈ 𝑆ym�(𝑣m) do 

49  For each 𝑝��$v {𝑠§�| = ∅ do 
50   For each 𝑚y ∈ 𝑚��$ do 
51    For each 𝑠§o ∈ 𝑆ym�(𝑣y) do 
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52     For each 𝑝mrn�𝑠§o� = ∅ do 
53      𝑝��$v(𝑠§�) → 𝑝mrn(𝑠§v) 
54  For each 𝑝mrv {𝑠§�| = ∅ do 
55   For each 𝑚y ∈ 𝑚��$ do 
56    For each 𝑠§o ∈ 𝑆ym�(𝑣y) do 
57     For each 𝑝��$n�𝑠§o� = ∅ do 
58      𝑝��$v(𝑠§�) → 𝑝mrn(𝑠§v) 
59 𝑆s�� = 𝑆s�� ∪ 𝑠§�  
60   Return 𝑆s��  
 

6.7 Case Study 

The case study of an electro-mechanical conveyor system is used now to demonstrate the 

utilization of the function-to-simulation model synthesizer. Conveyor systems are widely used in 

fish processing machines in order to provide an intermittent motion for the fish during 

transportation, inspection, and processing. The intermittent motions are commonly used in 

indexing and sequencing [155]. Indexing motion is mostly needed in the industry to move products 

in step-by-step patterns and processing by a stationary device. This motion allows an automated 

line to stop the product in a predetermined location for defined time, in order to complete a specific 

task within a specified time period while the product is kept stationary. The assigned tasks and 

operations performed on the object include cutting, inspection, and assembly. For the particular 

case study that is provided in this section, the motion profile is planned in such a way that a cutter 

is used to cut the head of a fish, while the fish is kept stationary. Therefore, different kinematic 

behavioral concepts are developed for the indexing system, which present how to capture the 

behavior aspect of the FM through multi-domain simulation model representations. The present 

case study is not intended to provide a detailed kinematic analysis but, rather, develop different 

design configurations through the synthesis of simulation components. 
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6.7.1 Synthesis of Simulation Models 

The simulation models enable domain engineers to validate their sub-systems in software- 

and hardware-in-the-loop simulations, and to perform performance comparisons across various 

architectures. Since the synthesizer is based on the functional model, the functional description is 

essential in this process, where it describes the product from the functional point-of-view. Two 

functional sub-systems are considered: the driving system and the motion mechanism system. 

These sub-systems are represented as shown in Fig. 6-5, according to definition 6-1. 
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Figure 6-5: Driving system functional sub-system (top) and motion mechanism functional sub-system 

(bottom). 
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Each function 𝑣m in the sub-functional model is represented with its associated ports 𝑝m and 

the defined vocabulary 𝐿Ã�. Moreover, each flow 𝑒m is expressed with the corresponding outgoing 

and incoming functions 𝑣m, and defined vocabulary 𝐿��. The ports 𝑝 of each source 𝑠��  of a flow 𝑒m 

must match the ports 𝑝s of the outgoing function 𝑣m. Similarly, the ports 𝑝 of each target 𝑡��  of a 

flow 𝑒m must match the ports 𝑝r of the incoming function 𝑣t. For example, the function 𝑣�.¾ is 

defined from FB 𝐿Ã³.¿ as Convert: “To change from one form of a flow […] to another.” Therefore, 

three incoming ports 𝑝�n¿.³ , 𝑝�n¿.¼ , 𝑝�n¿.½ , and outgoing ports 𝑝�o¿.³
, 𝑝�o¿.¼

, 𝑝�o¿.½
 are assigned. 

These ports can be compatible with any type of source or target flows. Notice that the synthesizer 

identifies the information stored in the simulation component, as shown in Fig. 6-6. 

 

Figure 6-6: The simulation component of a DC motor. 

First, in the simulation component 𝑠m, each port 𝑝m is examined, which represents the power 

conjugate complements. Thus, from table 6-1, the ports are defined according to the FB. 

Furthermore, the input, and output flows are determined with respect to the direction of the effort 

variable. The ports of the simulation component are then described as follows: 𝑠mÒ³ expresses the 

𝑝"#$%&'
Rotational	Mechanical	Energy

𝑒9"#$/𝑓9<=

𝑝<=''
Electrical	Energy

𝑒>"#$/𝑓><=

𝑒9"#$ = 𝑘. 𝑓><=
⇒ Convert
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effort state variable torque leaving the port, and the flow state variable angular velocity entering 

the port. Hence, the port can be defined as a Rotational mechanical energy leaving the port 

𝑝��$ÓÔÕ . Similarly: 

𝑠mÒ¼ = 𝑝mrÕÕ 

𝑠mÒ½ = 𝑝mrÕÕ 

𝑠mÒ¿ = 𝑝mrÖÕ 

𝑠mÒÇ = 𝑝��$ÓÔÕ  

The ratio of the output to the input effort variable is determined from equation (6-1), which 

dictates the embodied function, here, Convert. Full mappings between the function 𝑣�.¾ and the 

simulation component library 𝑠ym�  is developed, and they are shown in table 6-3. 

The targets of the incoming flows to the function 𝑣�.¾ should then match the input ports 𝑝r 

of the simulation component family 𝑠ym�� . Equivalently, the sources of the outgoing flows from the 

function 𝑣�.¾ should match the output ports 𝑝s of the simulation component family 𝑠ym�� . Here, the 

flow 𝑒�.Å(Ä³.½,Ä³.¿) = 𝐸𝑙𝑐𝑡𝑟𝑖𝑐𝑎𝑙	𝐸𝑛𝑒𝑟𝑔𝑦 is entering the function 𝑣�.¾ through the port 𝑡(�³.Ç) = 𝑝�r¿.½. 

On the other hand, the flow 𝑒�.Æ(Ä³.¿,ÄÇ) = 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙	𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙	𝐸𝑛𝑒𝑟𝑔𝑦 is leaving the function 

𝑣�.¾ through the port 𝑠(�³.É) = 𝑝�s¿.½
. Therefore, the mapping contains only the simulation 

component families, with their incoming and outgoing ports matching with 𝑝�r¿.½ =

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙	𝐸𝑛𝑒𝑟𝑔𝑦 and 𝑝�s¿.½
= 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙	𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙	𝐸𝑛𝑒𝑟𝑔𝑦. 
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Table 6-3: Mapping generation of the function convert from the simulation component library. 

   
𝑠ym�³ = DC Machines 𝑠ym�¼= Functional Devices 𝑠ym�½= Synchronous Machines 

Electro Motors and Drives 

 
𝑠ym�¿= Pumps 

Hydraulic Component Design 

 
𝑠ym�Ç= Pumps, Motors 

Thermal-Hydraulic 

 
𝑠ym�É= Specific components 

Thermal-Hydraulic Component Design 

 
𝑠ym�Ð= Compressors and Motors 

Pneumatic 

 
𝑠ym�Ï= Electro-mechanical Actuator family 

Electro-mechanical 

 
𝑠ym�×= Generators 

Automotive Electrical 

 
𝑠ym�³Ø= Compressor, Turbine, and Pump 

Two-phase Flow 
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𝑠ym�³³= Specific components 
Pneumatic Component Design 

 
𝑠ym�³¼= Pump, Compressor, Turbine 

Gas Mixture 

 
𝑠ym�³½= Electrodes, Electroyles 

Electrochemistry 

 
𝑠ym�³½= Compressors, Turbines 

Gas Turbine 

 
𝑠ym�³¿= Power Generator 

Aeronautics and Space 

 
𝑠ym�³Ç= Liquid propulsion 

 

At this point, the simulations components 𝒔𝒍𝒊𝒃𝟏= DC Machine, 𝒔𝒍𝒊𝒃𝟐= Functional Devices, 

𝒔𝒍𝒊𝒃𝟑= Synchronous Machines, and 𝒔𝒍𝒊𝒃𝟗= Generators are selected. On the left of Fig. 6-7, the 

mappings of the simulation components 𝑠� ∈ 𝑠ym�½(left) and 𝑠Æ ∈ 𝑠ym�³Ø (right), with the function 

𝑣�.¾ are shown. 
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Figure 6-7: Port mappings of two of the simulation components - Synchronous Machines (left), and Liquid 

Propulsion (right) - with the function convert. 

6.7.2 Kinematic Behavior 

In the present case study, different solutions are developed using the synthesizer. The sub-

functional model 𝐹���É describes the kinematic behavior of the motion mechanism of the conveyor 

system, as shown in Fig. 6-5 (bottom). The function 𝑣Æ.�= Convert has an incoming flow 𝑒Æ.�= 

Rotational Mechanical Energy and an outgoing flow 𝑒Æ.�= Translational Mechanical Energy. 

Similarly, the function 𝑣Æ.�= Translate has two incoming flows, 𝑒Æ.�= Solid Material and 𝑒Æ.�= 

Translational Mechanical Energy, and one outgoing flow 𝑒Æ.¾= Solid Material. The expected 

kinematic behavior of the sub-model is a continuous cycle motion that goes through periods of 

acceleration, deceleration, and dwell, with the assumption that the input rotational motion speed is 

kept constant. The net energy of the indexer is also estimated to be zero, since the energy required 

by the system in the acceleration period should, theoretically, equal to the energy removed by the 

𝒗𝟏.𝟒 𝒑𝟏𝒏𝟒.𝟏
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𝒆𝟏.𝟓 𝒗𝟏.𝟑,𝒗𝟏.𝟒
Electrical Energy

𝒆𝟏.𝟔 𝒗𝟏.𝟒,𝒗𝟓
Rotational Mechanical
Energy
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system in the deceleration period, assuming there is no frictional loss. Fig. 6-8 shows three Amesim 

simulation models generated based on the functional design intent. 

 

Figure 6-8: Generated Amesim simulation models of Simple Crank (top left), Cam and follower (top left), and 

Geneva Wheel (bottom). 

These models represent the conversion of the rotational motion into linear intermittent 

motion through three different mechanisms: an ideal crank, a cam and follower, and a Geneva 

wheel. These models assume there is no frictional losses or inertia, and they have almost perfectly 

efficient motion transformation. Also, in the case of the cam and follower, the contact between the 

cam with the follower is ideal, providing continuous contact. These kinematic concepts meet the 
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target functionality with its incoming and outgoing flows. In two scenarios shown in Fig.6-8 upper 

left and upper right, springs are used to accelerate and decelerate the drive shaft. When the spring 

is fully pressed, the potential energy is stored. Its release causes a motion acceleration. When the 

spring starts to extend, it decelerates the motion until the spring is fully extended, and this cycle 

of energy exchange continues. The irregularity of the mechanical element, specifically the cam, 

can provide the required intermittent motion of the indexer. In Fig. 6-8 (bottom), the circular 

motion of the Geneva Wheel is represented by a rotation of two rotating bodies, in which one is 

the driving body and the other is the driven body. The driven body has four slots, where a pin in 

the driving body is to be inserted inside the slots, one at a time, causing the intermittent motion. 

Fig. 6-9 shows the dynamic motion behavior of the indexer for the indicated three concepts. 

 

Figure 6-9: The dynamic motion behaviors of the indexer for the three concepts. 
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When evaluating these behaviors against the expected motion behavior, we find the motion 

profile of the indexer with the simple crank mechanism has no dwell motion, where the 

predetermined operation is minimal. However, a sufficient dwell period can be obtained with the 

cam and follower mechanism, and the Geneva wheel mechanism. The motion profile of the Geneva 

wheel mechanism shows the circular motion of the driven body in degrees, which exhibits a stair-

like motion behavior. The net energy of the system is shown in Fig. 6-10. 

 

Figure 6-10: The net energy of the indexer for the three concepts. 

These obtained patterns represent the net energy consumptions of the three models. In the 

case of the simple crank mechanism, and the cam and follower mechanism, it should be noted 

there is almost an identical net energy consumption in the motion of the indexer in one direction 

and also in the opposite direction. However, in the case of the Geneva wheel, we observe that there 

is a higher energy consumption at the beginning of the operation and the energy consumption then 
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decreases. This results from the extra energy that is required to move the driven body at the start 

of the motion. The simulation results of the generated conceptual models provide a preliminary 

insight into their dynamic behavior, which corresponds to the first evaluation of these concepts. 
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Chapter 7: Process Design Methodology Using the Mechatronic Design 

Quotient (MDQ) 

7.1 Introduction 

The applications of multi-criteria optimization have roots in many fields such as business, 

management, economics, logistics, and engineering. A key objective in them is to obtain optimal 

decisions in the presence of two or more possibly conflicting objectives and possibly involving 

multiple physical domains. The term Pareto optimality concerns an optimal solution that considers 

all objectives of optimization simultaneously. 

An important engineering application of multi-criteria optimization is the design of 

physical systems, where the design evaluation requires taking into account the correlation between 

various system requirements. For some practical, and technical considerations, the traditional, 

sequential design approach for multi-domain (multi-physics) systems separates the overall system 

into several sub-systems that are treated sequentially according to the different domains. 

Therefore, the optimization process is conducted using only one perspective at a time. This has 

serious drawbacks, particularly due to the dynamic interactions (or coupling) that exist among 

different domains [4]. For example, Valdez et al. [156] did a comparison study between concurrent 

and sequential optimization methodologies for the design of serial manipulators with the objectives 

to find the best geometrical and control parameters. Three metaheuristics were compared. 

Specifically, Ominioptimizer, BUMDA, and CMA-ES were used for three types of optimization 

problems: Statics, Kinematics, and Dynamics, with the focus on comparing a dynamic 

optimization model. They observed that the sequential method finds optimum lengths for the static 

model, which are not optimal for the dynamic model; therefore, the overall design is not optimal 
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even if the optimal control gains are found by modifying the arm length leads or modifying the 

model masses and the manipulator dynamics. 

Hence, a high potential exists for developing integrated (concurrent) design and evaluation 

schemes for mechatronic systems, resulting in lower efficiency and cost, and improved component 

compatibility. Furthermore, the performance quality of the design solutions in the early stages of 

design development of a mechatronic system should be evaluated in an integrated manner, where 

the presence of some incomplete information, particularly concerning different physical domains, 

is recognized. 

7.2 System Model Evaluation 

Determining the functionality of a design should be objectively evaluated by comparing 

the performance capabilities of the system with the corresponding system specifications and 

customer requirements. The performance description of the system should incorporate product 

components and their behavior. At this point of the CDDP, the concept analysis and evaluation 

sub-process take place on the right side of the V-model, as shown in Fig 3-2, for the evaluation of 

the CIM. The degree of detail of the CIM is abstract, due to the incorporation of instantiations of 

generalized integrated components from different disciplines. 

The V-model sub-process of the CDDP incorporates virtual integration and simulation in 

an early phase to enhances the concept analysis and evaluation capabilities, and incorporate 

different disciplines with respect to their functional and structural specifications, as shown in Fig. 

4-1. After the development of the integrated system, where different structures are presented as 

conceptual design solutions – see Chapter 6 -- further understanding of each solution is required. 

Each design solution is described by a set of interrelated instantiated physical forms of objects. 

The behavior variables of the considered design solution 𝑌(𝑡) is a function of environment 
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variables 𝑈(𝑡) and design parameters/variables 𝑋(𝑡), as shown in Fig. 7-1. Performance 

evaluation through modeling and simulation involves describing the dynamic behavior of the 

system computationally, while considering the interactions of the interrelated components. 

 

Figure 7-1: : Conceptual design solution model. 

7.2.1 Individual Performance Indicator 

In order to present the performance of a system, indicators are required that represent the 

behavior of the time-varying system variables. These variables can be characterized using system 

parameters that describe generalized constant properties such as max/min values, averaging, and 

variances, over a defined period of time [3]. The use of mathematical concepts is necessary to 

appropriately represent a wide range of variations of these properties over entire time histories. 

The required parameters can be experimentally chosen later, during the system validation. An 

underlying mathematical concept is expressed here as an individual performance indicator 

(IPI), where the derived parameters of a conceptual solution are predicted. These parameters are 

represented using a generalized distance metric, which assigns a non-negative value to all pairs of 

elements in a metric space [3] as follows: 
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 Definition 7-1: Individual performance indicator 

Let 𝑌 be any set of behavior variables of a system. An individual performance indicator is 

a map 𝐼: 𝑌 × 𝑌	 → 	ℝ, and it has the following properties of 𝑦�, 𝑦�, 𝑦� 	∈ 𝑌: 

Identity metric: 𝑰(𝒚𝟏, 𝒚𝟐) = 𝟎 ⇔ 𝒚𝟏 = 𝒚𝟐                                                       (7-1) 

Symmetry: 𝑰(𝒚𝟏, 𝒚𝟐) = 𝑰(𝒚𝟐, 𝒚𝟏)                                                              (7-2) 

Triangle inequality: 𝑰(𝒚𝟏, 𝒚𝟐) ≤ 𝑰(𝒚𝟏, 𝒚𝟑) + 𝑰(𝒚𝟑, 𝒚𝟐)                                         (7-3) 

Therefore, it can be verified that: 

𝑰(𝒚𝟏, 𝒚𝟐) ≥ 𝟎                                                                          (7-4) 

7.2.2 Aggregated Performance Indicator 

Non-functional requirements can be defined to indicate how well the system should 

perform or how the system should behave. They determine the design criteria or constraints on the 

system functions or behaviors. These criteria or constraints are identified by carrying out a 

requirement analysis based on the customer needs and a thorough understanding of the design 

tasks. Some design sub-functions might share the same criteria or constraints and others might not, 

depending on the design goals. Typical design criteria or constraints contain cost, efficiency, 

reliability, size, complexity, speed, weight, payload, and so on. Some of these measures may take 

an analytical form while some others may be qualitative and fuzzy and may involve human 

perception. The interaction may be present among these criteria or constraints. In order to find 

relationships and correlations between the design criteria or constraints, multi-criteria decision 

making that may involve both qualitative and quantitative criteria is required. The next step after 

obtaining the non-functional requirements is to calculate the weights for different criteria, as a 

means to evaluate the conceptual design solutions. 

These criteria are, then, related to some of the variables/components of the considered 

system. an engineer with the necessary expertise and experience will properly address and 
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determine these relationships. Also, the design process methodology might dictate the kind of 

relationship the designer is required to follow. Specifically, some criteria are associated with the 

input parameters, where the design specification can be determined accordingly. Another form of 

this association is the selection of the design components according to the criteria, where these 

components come with their parametric values [92], [112], [157], [158]. Usually, these input 

values are stationary and, therefore, do not represent the dynamic behavior of the system. On the 

other hand, in [159], the design criteria were associated with the behavior variables of the dynamic 

system. The advantage of this association is that the interactions between different 

multidisciplinary components/sub-systems are taken into account. 

Mechatronic Design Quotient (MDQ) 

Mechatronic Design Quotient (MDQ) was first proposed by de Silva [4], [108]. It is an 

aggregated performance indicator for the evaluation of multi-domain (Multiphysics) and multi-

criteria systems possibly involving both qualitative and quantitative considerations, which is 

utilized for the concurrent (integrated) design of mechatronic systems to optimize the overall 

design, using unified (analogous) approaches for various physical domains. This indicator is also 

used as an evaluation scheme of different design alternatives of different proposed conceptual 

solutions that are generated in the conceptual design development process. 

The weights of the criteria express the degree of satisfaction of each one, and accordingly, 

a partial score would be assigned. For 𝑛 criteria, and 𝑚 constraints, the MDQ indicator aggregates 

the scores of each 𝑛 criterion as: 

𝑴𝑫𝑸(𝒔) = 𝑨(𝒘𝟏, 𝒘𝟐,… , 𝒘𝒏).ä𝒓𝒊(𝒔)
𝒎

𝒊æ𝟏

																																																															(7-5) 
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where 𝐴 is an aggregator operator, 𝑠 is a design solution, 𝑤m is weight represented by a partial 

score between zero to one of the 𝑖$%criterion, and 𝑟m(𝑠) is a function indicating whether a constraint 

has been met, which is equal to 1 if the 𝑖$%has been satisfied, and zero, otherwise. 

 For a finite set of criteria 𝐶 = {𝑐�, 𝑐�,… , 𝑐r} in a multicriteria evaluation of a design 

solution, a key consideration in the aggregation of these criteria is the interactions that may exist 

between them. The nonlinear Fuzzy integrals such as Choquet and Sugeno integrals have an 

advantage over the traditional method of linear weighted average, particularly because the fuzzy 

integrals can model the criteria interactions [51]. Therefore, not only the weighting of criterion is 

considered, but also for each subset of criteria, there are 𝑔: 2ê → [0,1] weighting factors that must 

satisfy: 

𝒈(∅) = 𝟎																																																																																								(7-6) 

𝒈(𝑪) = 𝟏																																																																																								(7-7) 

𝒊𝒇	𝑨 ⊆ 𝑩 ⊆ 𝑪, 𝒕𝒉𝒆𝒏	𝒈(𝑨) ≤ 𝒈(𝑩) ≤ 𝟏																																																													(7-8) 

Different types of interaction take place between these criteria. They are indicated in Table 

7-1. 

7.3 Approach Description 

The non-functional requirements determine the design criteria or constraints that are 

imposed on the behavior of the system, which requires the understanding of the basic requirements 

of the design goals. The evolution of the design criteria formulation therefore encapsulates a wide 

range of features. For the mechatronic design of systems, some general objectives may include the 

following [160]: 

• Component matching 

• Efficiency 
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• Reliability 

• Stability 

• Accuracy 

In practice, reasoning and requirement analysis are performed to incorporate or remove some 

criteria depending on their importance in the design problem. 

Table 7-1: The types of relationships between different criteria. 

Type of 
Interaction Description Relationship 

Positive 
Correlation 

Criteria 𝑖 and 𝑗 combined have 
weights higher than the weights 
of their interactions 

𝒈(𝒊𝒋) < 𝒈(𝒊) + 𝒈(𝒋)															(7-9) 

Negative 
Correlation 

Criteria 𝑖 and 𝑗 combined have 
weights lower than the weights 
of their interactions 

𝒈(𝒊𝒋) > 𝒈(𝒊) + 𝒈(𝒋)															(7-10) 

Veto Effect A good score in criterion 𝑖 
results in a bad global score 𝑔(𝐴) ≈ 0																	(7-11) 

Pass Effect A good score in criterion 𝑖 
results in a good global score 𝑔(𝐴) ≈ 1																	(7-12) 

Substitutiveness 
Criteria 𝑖 and 𝑗 are parallel and, 
therefore, they are independent 
and interchangeable 

(𝐶) ≈ ó
𝑔(𝐴 ∪ 𝑖)
𝑔(𝐴 ∪ 𝑗)ô < 𝐺(𝐶 ∪ 𝑖 ∪ 𝑗), 𝐴

⊆ 𝐶
\𝑖, 𝑗																		(7-13) 

Complementarity 
Criteria 𝑖 and 𝑗 are prerequisites 
for each other to achieve good 
global satisfaction 

𝑔(𝐶) < ø
𝑔(𝐴 ∪ 𝑖)
𝑔(𝐴 ∪ 𝑗)

ù ≈ 𝐺(𝐶 ∪ 𝑖 ∪ 𝑗), 𝐴

⊆ 𝐶\𝑖, 𝑗																(7-14) 
 

 Fig. 7-2 illustrates the process methodology developed in the present work for obtaining 

the MDQ for a given conceptual design solution. The process methodology consists of top-down 

and a bottom-up stages. The bottom-top stage is where the conceptual design solution model is 

established and, consequently, the behavior variables are developed. The top-down stage starts 

with conducting the need analysis and acquiring the customer requirements, where the design 

criteria are developed accordingly. Each of the design criteria is assigned a weighting factor, which 
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represents its degree of importance. Sugeno 𝜆-measure [161], [162] is then calculated to address 

the correlation between different design criteria. 

 

Figure 7-2: Process methodology for obtaining the Mechatronic Design Quotient (MDQ). 

The formulation of the IPI is carried out next by linking the design criteria to the behavior 

variables using a mathematical concept. The process methodology continues to determine the 

aggregated performance indicator through the MDQ, where the weights of different criteria along 

with the weights of their interaction are integrated into the MDQ. The details of the proposed 

process methodology are given next. 

 For a given mechatronic system design, a vector of 𝑞 customer requirements 𝐶 =

û𝑐�, 𝑐�,… , 𝑐üý is given which is defined by the stakeholders. Also, a set of 𝑝 design criteria 𝑅 =

{𝑟�, 𝑟�,… , 𝑟Ò} is identified to fulfill the design requirements. 
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The evaluation of the performance of a conceptual solution is carried out for establishing 

the IPI. After identifying the design criteria vector, it is linked to the behavior variable vector 𝑌 =

{𝑦�, 𝑦�,… , 𝑦s}, which represents different dynamic behaviors of the system. This association 

determines the reference values of the corresponding behavior, for example, max value, min value, 

and average. 

 Consequently, the performance metrics are decided according to the distance of each 

variable and the reference for the specific time period, using the following equation: 

                                               (7-15) 

where: 

𝑖t: performance indicator for the 𝑗$%  criterion represented between zero to one 

𝐼: metrics vector of the time period between 𝑡þ and 𝑡§ 

𝑠�(𝑡t): a function that represents a constraint violation, which is equal to 0 if the 𝑘$% constraint 

has been violated and 1 otherwise. 

To appropriately describe the time-varying behavior, a sufficient number of observations 

is required - 𝑦�𝑡t�, 𝑗 = 1,…𝑛, 𝑛 ≫ 1. The resulting IPI vector is then obtained as 𝐼 = û𝑖�, 𝑖�, … , 𝑖üý. 

Each of these criteria is assigned a weighting factor that is represented by a fuzzy measure, 

which is typically assigned by expert designers. However, to address the correlation between 

different criteria, fuzzy measures are also assigned for each subset of the criteria. For example, the 

fuzzy measures to be assigned to five criteria would involve 2Å=32 subset of criteria. The number 

increases exponentially when incorporating more criteria, which presents a challenge in assigning 
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these fuzzy measures. Therefore, the Sugeno 𝜆-measure is introduced, which determines the 

subsets of fuzzy measures using a function. 

For two subsets 𝐴 and 𝐵 of the universe 𝑋, such that: 𝐴 ⊆ 𝑋 and 𝐴 ⊆ 𝑋, Sugeno 𝜆-measure 

is measured as: 

𝒈𝝀(𝑨 ∪ 𝑩) = 𝒈𝝀(𝑨) + 𝒈𝝀(𝑩) + 𝝀𝒈𝝀(𝑨)𝒈𝝀(𝑩)                                         (7-16) 

And 𝜆 is obtained by: 

                                                                  (7-17) 

where: 

𝜆 is the Sugeno measure, in which 𝜆 > −1. That means:  and 𝑔m is a notation for the fuzzy 

measure 𝑔(𝑐m) 

 After obtaining the weights of different criteria and their interactions, they are integrated 

with the IPI using the MDQ, which is an aggregated indicator of the system performance with 

respect to their weighted criteria. The integration method used to address the overall performance 

is the fuzzy integral – see section 7.2.1.1. To compute the global score of each design solution, the 

following equation is used: 

                                                (7-18) 

where: 

𝑖� is the individual performance indicator of the 𝑘$% performance behavior 

𝜇�  is the density value (fuzzy measure) of the 𝑘$% criterion 

𝜋 is a permutation index to order the set, such that  
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𝑐� is the 𝑘$% criterion 

𝐴� gives the order of the information sources:  

 A higher value of MDQ indicates a better level of performance of the design solution with 

reference to the design criteria. 

7.4 Case Study 

In this section, the approach developed in the present work will be applied to an electro-

mechanical conveyor system that falls within the category of a mechatronic system. The system is 

used to transport fish from the feeding station to the cutting station (see Fig. 7-3). It is composed 

of three subsystems: an electric motor, a PID controller and a simple crank mechanism. The 

proposed process methodology for evaluating the conceptual design solutions is used to show the 

possible optimal design configuration, in which the time-to-market is decreased. 

 

Figure 7-3: An industrial fish processing machine—Intelligent Iron Butcher. 

The following are the design requirements. 
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• Efficiency: The average power losses are to be minimized 

• Speed of response: The rotational velocity of the crank shaft is to reach the specified value 

of 10	 %&'
()*

 in less than 1 second 

• Reliability: The overshoot of the system should be reduced 

• Stability: The settling time should be maintained at a minimum 

One generated conceptual design solution is shown in Fig. 7-4. This system is modeled 

using Amesim – see Chapter 6. Therefore, a system of differential algebraic equations, which 

associate the behavior variables, the environment variables, and the design parameters are handled 

and solved by Amesim. The list of design variables is described in table 7-2. 

 

Figure 7-4: Generated Amesim simulation models of Simple Crank. 
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Table 7-2: The list of design variables. 

 

The design variables 𝑋 are: 

𝑿 = {𝑲, 𝑻𝒊, 𝑻𝒅, 𝑰, 𝑹𝒂}                                                                              (7-19) 

The vector of behavior variables has been limited to the needed electric power 𝑃-(W) and 

the rotational velocity of the motor shaft 𝜔s(rad s3 ). Accordingly, the vector 𝑌 is defined by: 

𝒀(𝒕) = {𝝎𝒎(𝒕), 𝑷𝒘(𝒕)}                                                                            (7-20) 

  A fuzzy measure is assigned to each subset of criteria. The remaining four criteria: 

“Efficiency”, “Speed of Response”, “Reliability”, and “Stability” form 2¾ = 16 subsets of 

criteria. Therefore, they make the criteria vector - 𝐶 = {𝑐�	"Efficiency", 𝑐�	Speed	of	Response",	

c3	"Reliability",	c4"𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦"}. These criteria need 16 fuzzy measures using the ordinary 

Choquet integral (two of them are self-evident: 𝑤(∅) = 0, and 𝑤(𝐶) = 1). The fuzzy measures 

are typically assigned by expert designers. The fuzzy measures used in this case study are 

obtained from [111] since the engineering system is the same and the criteria are similar. The 

fuzzy measures are as follows: 𝑤(𝑐�) =0.35, 𝑤(𝑐�) = 0.18, 𝑤(𝑐�) = 0.52, 𝑤(𝑐¾) = 0.60. 

The Sugeno 𝜆-measure is used to calculate the interaction between different criteria, as in 

equations (7-16) and (7-17). First, 𝜆 is calculated using equation (7-17): 

 

 

Design parameter/variable Name Default value Design domain
PID Gain constant K 10 [10, 50]
PID integration constant (s) T i 20 [10, 50]
PID drivation constant (s) Td 5 [2, 10]

Motor inertia (kg.m2) I 50 [10, 60]
Armature winding resistance (ohm) Ra 1 [1, 8]

1

1 (1 )
n

i

i

gl l
=

+ = +Õ

1 (1 (0.35)) (1 (0.18)) (1 (.52)) (1 (0.60))l l l l l+ = + ´ + ´ + ´ +



141 

 

Four roots are found: 

 

Therefore, the correct choice is  

Accordingly, using equation (7-16), we find the weights of the interactions, as: 

, , , , 

, . 

 Next, the IPI evaluation is performed, in which it shows the effect of the variations of the 

design parameters on the dynamic performance. Fig. 7-5 shows the output behavior of the system 

simulation, where the angular velocity (left), and the output power (right) are presented. 

  

Figure 7-5: Angular velocity output (left), and power output (right). 

By conducting the design exploration process, one can study the effect of the design 

paramters. IPI represents the individual performance indicator of each of the design criteria. It can 

be used for the analyzing the effect of the design variables on the criteria. This is able to give an 

insight into the design configuration and how they affect the system. 

1

2

3

4

0
-0.8257
- 5.588 2.97i
- 5.588 2.97i

l
l
l
l

=
=
= +
= -

0.8257l = -

1 2( , ) -0.0033w c c = 1 3( , ) -0.0274w c c = 1 4( , ) -0.0364w c c = 2 3( , ) -0.0072w c c =

2 4( , ) -0.0096w c c = 3 4( , ) -0.0804w c c =
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Fig. 7-6 shows how IPI can be used to show to variations of the efficiency criteria with the 

variations of the Motor inertia (kg.m2) and with all the other design parameters constant. It can be 

seen that the efficiency of the system decreases as the value of the inertial increases. The efficiency 

was evaluated at different values of the motor inertia (10 kg.m2, 20 kg.m2, 30 kg.m2, 40 kg.m2, 50 

kg.m2, 60 kg.m2). 

Likewise, the speed of response criteria was evaluated at different variations of the PID 

gain constant (K) and with all the other design parameters constant. Fig. 7-7 shows that as the 

value of K increases, the speed of response evaluation increase as well. The different values of the 

gain constant that were computed are 10, 20, 30, 40, and 50. A penalty value was assigned to the 

output of the rotational velocity of the shaft if the speed shaft did not reach the specified value of 

10 rad sec3 . Therefore, the negative values indicate inability to comply with the condition. 

Fig. 7-8, shows that the evaluation of the reliability criteria decreases as the value of the 

Armature winding resistance (ohm) increases, and with all the other deign variables kept constant. 

The values of the Armature winding resistance that were taken are 1 ohm, 4 ohms, 6 ohms, and 8 

ohms. Finally, the stability criteria were evaluated with different variations of PID integration 

constant (Ti). As shown in Fig. 7-9, the increase of the value of the PID integration constant leads 

to a decrease of the evolution of the stability. The PID integration constant values were: 10, 20, 

30, 40, and 50. With all the other design variables constant. 
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Figure 7-6: Efficiency variations as a function of motor 

inertia (kg.m2) 

 

Figure 7-7: Speed of response variations as a function of 

PID gain constant (K) 

 

Figure 7-8: Reliability variations as a function of 

Armature winding resistance (ohm) 

 

Figure 7-9: Stability variations as a function of PID 

integration constant (Ti) 

 Next, the MDQ evaluation is conducted, which represents a global evaluation index to all 

the presented criteria. It has an advantage of the ability to calculate the interactions between these 

criteria and take them into account when performing the evaluation. Each design alternative is 

formulated according various values of the design parameters. The following steps are to be 

followed: 

1. The IPI is evaluated according to the corresponding values of the design variables. 
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2. Each design criterion is assigned a partial scores, which represent the importance of the 

design criteria. 

3. Sugeno 𝜆-measure can be used to calculate the partial scores between all the design criteria. 

4. MDQ is used to aggregate all the partial scores of the all the criteria, as well as the partial 

score of between the criteria. 

The result of the MDQ evaluation index is shown in Table 7-3. 

Table 7-3: MDQ evaluation of design alternatives 

 # 1 # 2 # 3 # 4 # 5 
PID Gain constant 10 20 30 40 50 
PID integration constant (s) 20 20 30 40 40 
PID derivation constant (s) 50 40 30 20 10 
Motor inertia (kg.m2) 50 50 50 50 50 
Armature winding resistance (ohm) 1 2 4 6 8 
Efficiency (c1) 0.730 0.612 0.781 0.657 0.824 
Speed of Response (c2) 0.554 0.467 0.512 0.471 0.587 
Reliability (c3) 0.788 0.646 0.741 0.609 0.911 
Stability (c4) 0.519 0.624 0.697 0.773 0.646 
Global score 0.654 0.579 0.621 0.601 0.703 

 

The best design configuration of the system is #5, which corresponds to design variables 

of PID gain constant of 50, PID integral constant of 40, PID derivative constant of 10, motor inertia 

of 50 kg.m2, and armature winding resistance of 8 ohms. 

This case study demonstrated a design exploration based on MDQ. The better 

configurations were identified; in which they help in the multi-disciplinary optimization of the 

mechatronic system. 
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Chapter 8: Conclusions and Future Work 

8.1 Conclusions 

This dissertation developed a design framework for a mechatronic system through the 

improvement of the Conceptual Design Development Process (CDDP) and the Conceptual 

Integrated Model (CIM). Two main types of problems were addressed: process-based problems 

and design data-related problems. System engineering approach was considered for the design and 

development of a mechatronic system in the conceptual design phase through Unified Modeling 

Language (UML) and System Modeling Language (SysML). 

First, an integrated design process methodology was developed. In this process, a multi-

layer V-model was proposed for a micro-level design process. The details of the characteristics of 

the design tasks and activities were presented. A case study of an industrial fish cutting machine 

was presented to demonstrate the application of the developed design methodology. 

The details of the micro-level process model were explored, where the underlying 

organization of different design activities in the concept and modeling sub-process phase is 

defined. This work proposed Interconnection Classifications for the modeling of the 

communication data between different design activities within the macro-level process. A case 

study was presented, in which these interconnection classifications were implemented. 

The functional modeling in the conceptual design phase was investigated. In particular, the 

implementation of the functional modeling and its library, specifically the Functional Basis, in 

SysML was proposed. It introduced the modeling of the functions and their ports, and the 

development of the library through the Block Definition Diagram. The implementation of the 

proposed functional modeling approach in SysML was demonstrated using a case study. 
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An algorithm was developed that described different modeling views and their activities in 

the concept and modeling phase. Also, the algorithm was developed to transform the functional 

model into a simulation model, computationally. This required a precise algorithm description of 

the requirement model, the functional model, the simulation model including its simulation library, 

and the simulation components, which was explored. The synthesizer principles and the algorithm 

were presented, which were illustrated using a case study. 

Finally, methodology was proposed for the evaluation of conceptual design solutions of 

mechatronic systems. The underlying principles of the evaluation indicator were based on the 

Mechatronic Design Quotient (MDQ). Also, Sugeno 𝜆-measure was proposed to compute the 

subsets of the fuzzy measures, to solve the exponential growth of the fuzzy measures that are 

assigned. 

8.2 Possible Future Work 

This dissertation developed a framework for the conceptual design of a mechatronic 

system. The main focus was the development of the CDDP and its activities. Further research may 

be done on the optimization of detailed design utilizing the same multi-layer V-model structure. 

The modeling of the data exchange in the micro-level that takes place between different 

design activities of the micro-level may be further investigated. In particular, the decomposition 

of these data could be established and the granularity should be determined. 

The utilization of artificial intelligence (AI) tools and machine learning approaches to 

create a framework that simultaneously analyzes and learns from successful product designs, 

should be investigated. In the same context, Machine Health Monitoring System (MHM) can be 
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employed to provide continuous improvements for the design process by identifying the design 

weaknesses. Also, methodology for automatic selection of components for the design library, may 

be developed. 
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