
Development of a Multi-layer V-model Design Process and
Computational Tools for Mechatronic Conceptual Design

by

Hani Balkhair

B.Sc., Umm Al-Qura University, 2002
M. Sc., University of Victoria, 2011

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES
(Mechanical Engineering)

The University of British Columbia
(Vancouver)

November 2019

© Hani Balkhair, 2019

ii

The following individuals certify that they have read, and recommend to the Faculty of Graduate
and Postdoctoral Studies for acceptance, the dissertation entitled:

Development of a Multi-layer V-model Design Process and Computational Tools for
Mechatronic Conceptual Design

submitted by Hani Balkhair in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

in Mechanical Engineering

Examining Committee:

Dr. Clarence W. de Silva, Mechanical Engineering
Supervisor

Dr. Ryozo Nagamune, Mechanical Engineering
Supervisory Committee Member

Dr. Dana Grecov, Mechanical Engineering
University Examiner

Dr. José Martí, Electrical and Computer Engineering
University Examiner

iii

Abstract

Conceptual design is a crucial phase in the Design Development Process (DDP) of complex

mechatronic systems. Yet, the available design support is not adequate for the Conceptual Design

Development Process (CDDP), let alone the entire DDP. Typically, linear methodology, called the

V-model, is used in the software development life cycle (SDLC) for the DDP. The developed DDP

can as well aid in addressing the customer requirements properly according to the degree of detail

that is sought. Also, a Conceptual Integrated Model (CIM) can describe products from different

viewpoints and can be developed to aid the simulation-based design.

The primary focus of the present thesis is the conceptual design phase. The thesis proposes

a hierarchical DDP, where the V-model process is expanded into multiple layers. These layers

assist in providing increased flexibility to the DDP, in which each design phase is subjected to a

separate and independent integration and evaluation. Through this approach, the required functions

can be realized, and the lengthy iteration loops, due to incompatible subsystems, are avoided. The

second key objective of the present thesis is to develop a CIM for formal concept modeling using

the modeling language SysML with generic design functional libraries. The first set of design

libraries are the FB libraries, which aid in the development of the functional structure. The second

set of design libraries are Amesim simulation software elements, which help establish the concept

simulation models. Also, the challenges of the transformation and exchange of information

between a descriptive modeling language – SysML – and a multi-physics modeling language –

Amesim – are explored. The last key objective of the present thesis is the use of fuzzy measures

and fuzzy integrals for the evaluation of the non-functional requirements of the conceptual design

phase, where Sugeno lamda-measures are employed to address the uncertainty of the requirements.

iv

The present research is conducted starting with a descriptive study for the development of

a design concept model, concept simulation, and concept evaluation of an industrial fish cutting

machine, which falls into the category of complex mechatronic systems. The evaluation of the

approach focuses on improving the quality of the conceptual design.

v

Lay Summary

The development of the design process is crucial for the modeling and design of

mechatronic systems. This dissertation addresses many challenges in the design process of a

mechatronic system especially in the early stage of the design. A multi-layer design process is

developed to improve the flexibility and responsiveness of the process. It facilitates the data

management between different levels of the design process. The development, improves the

modeling of the system functions in SysML to increase the modeling formality. An algorithm is

developed to automatically generate structural models from functional models. Finally, an

evaluation scheme is presented to simultaneously evaluate all conflicting criteria.

vi

Preface

All the presented work in this dissertation was conducted by Hani Balkhair in the Industrial

Automation Laboratory (IAL) at the University of British Columbia (UBC), Vancouver. The work

was under the direct supervision and guidance of Dr. Clarence W. de Silva, Professor of

Mechanical Engineering at UBC. Dr. de Silva proposed and supervised the overall research

project, provided research facilities in IAL, and revised dissertation and other publications.

Chapter 4 addressed the modeling challenges of the design data, in which it proposed

“interconnection classifications.” Part of this chapter has been published in [H. Balkhair and C.

W. de Silva, “Data management for multidisciplinary mechatronic systems,” International Journal

of Emerging Technologies and Innovative Research, ISSN:2349-5162, Vol. 5, Issue 8, pp. 46–50,

August 2018]. Hani Balkhair was responsible for the development of the concept formulation,

experiment validation, and manuscript composition. Clarence W. de Silva supervised the project

and revised the manuscript.

Chapter 5 discussed functional modeling and their different representations in the System

Modeling Language “SysML.” Libraries of functions were developed in Block Definition Diagram

“BDD,” and the implementations of the libraries in SysML were addressed. A manuscript based

on this chapter was submitted to a journal. The main author was Hani Balkhair, who was

responsible for the development of the different modeling representations in SysML, experiment

validation, and manuscript composition. The co-author was Clarence W. de Silva, who supervised

the project and revised the manuscript.

Chapter 7 investigated the evaluation of the different design solutions. An evaluation

scheme was proposed and was based on the Mechatronic Design Quotient (MDQ). Part of this

chapter was published in [H. Balkhair and C. W. de Silva, “A systematic approach for functional

vii

decomposition of mechatronic system design using mechatronic design quotient (MDQ),” in the

Proceedings of the 9th International Conference on Computer Science & Education (ICCSE), pp.

135–139, 2014]. Hani Balkhair was responsible for the development of the concept formulation,

experiment validation, and manuscript composition. Clarence W. de Silva supervised the project

and revised the manuscript.

viii

Table of Contents

Abstract ... iii

Lay Summary .. v

Preface .. vi

Table of Contents ...viii

List of Tables ..xiii

List of Figures .. xiv

Nomenclature .. xvii

Glossary .. xix

Acknowledgments .. xxi

Chapter 1: Introduction ... 1

1.1 Mechatronics and Integrated Design .. 1

1.2 Challenges in the Design of Mechatronic Systems ... 2

1.2.1 Process-based Problems ... 4

1.2.2 Design Data-related Problems .. 6

1.3 Requirements of Mechatronic System Integration .. 7

1.3.1 Conceptual Process-based Requirements .. 8

1.3.2 Conceptual Data-based Requirements .. 9

Library-based Support for the Conceptual Design .. 11

1.3.3 Multi-criteria Evaluation .. 12

1.4 Research Objectives ... 13

1.5 Contributions and the Organization of the Thesis ... 14

Chapter 2: Background and Related Work ... 19

ix

2.1 Design Process of a Mechatronic System ... 19

2.2 System Engineering Approaches .. 20

2.2.1 Systematic Design Approach .. 22

2.2.2 Axiomatic Design .. 23

2.2.3 Variations of V-Model ... 25

2.2.4 Model-based System Engineering (MBSE) .. 27

UML and SysML ... 28

2.3 Function-Behavior-State (FBS) .. 34

2.3.1 Functional Modeling (FM) ... 35

2.3.2 Knowledge Base and Design Libraries ... 36

2.3.2.1 The Functional Basis (FB) .. 37

2.3.2.2 Simcenter Amesim ... 38

2.4 Simulation Model Transformation ... 39

2.5 Evaluation of Mechatronic Design ... 41

Chapter 3: A Systematic Model-based Process of Conceptual Design Development 43

3.1 Integrated Design Process Methodology .. 43

3.1.1 Macro-level Design Process ... 45

Macro-cycles According to the Degree of Details .. 46

3.1.2 Conceptual Macro-level Process .. 49

3.1.2.1 General Descriptive Sub-process Phase .. 50

3.1.2.2 Concept Integration and Simulation Sub-process Phase 51

3.1.2.3 Extensive Evaluation Sub-process Phase .. 52

3.2 Case Study System .. 54

x

Chapter 4: Micro-level Process Model ... 57

4.1 Concept Design and Modeling Sub-process Phase ... 57

4.1.1 Requirement Modeling ... 58

4.1.2 Functional Modeling .. 60

4.1.3 Structural Modeling ... 62

4.2 Realization of Consistency between Macro- and Micro-level Processes 63

4.2.1 Transition from Macro-level Process to Micro-level Process 65

4.2.2 Transition from Macro-level Process to Micro-level Process 67

4.2.3 Interconnection Classifications ... 67

4.2.3.1 “Allocation” Interconnection .. 68

4.2.3.2 “Type” Interconnection ... 68

4.2.3.3 “Class” Interconnection.. 68

4.2.3.3.1 “Class” Interconnection for Requirement Inner Interconnection 69

4.2.3.3.2 “Class” Interconnection for Functional Inner Interconnection 69

4.2.3.3.3 “Class” Interconnection for Structural Inner Interconnection 70

4.2.3.4 “Conversion” Interconnection .. 71

4.2.3.5 “Confidence” Interconnection Classification .. 72

4.2.4 Interconnection Model in UML for Complex Mechatronic Systems 73

4.3 Case Study Implementation ... 74

4.3.1 First Stage .. 75

4.3.2 Second Stage .. 77

4.3.3 Third Stage .. 78

4.4 Discussion ... 79

xi

Chapter 5: A Library-based Concept Design Modeling Approach in SysML 81

5.1 Introduction ... 81

5.2 Background and Related Work .. 82

5.3 Function Modeling Approach in SysML .. 83

5.3.1 Structural Syntax Representation .. 84

Port Representations .. 85

5.3.2 Development of Functional Library Modeling .. 86

5.3.3 SysML Functional Model Usage with the Library Support 92

5.4 Discussion ... 98

Chapter 6: A Library-based Concept Design Approach ... 100

6.1 Introduction and Motivation ... 100

6.2 Background and Related Work .. 103

6.3 Functional Model ... 107

6.4 Simulation Models ... 108

6.5 Synthesizer Principles .. 109

6.6 Behavioral Component Library Development .. 111

Synthesizer Algorithm ... 114

6.7 Case Study ... 117

6.7.1 Synthesis of Simulation Models ... 118

6.7.2 Kinematic Behavior ... 123

Chapter 7: Process Design Methodology Using the Mechatronic Design Quotient (MDQ) .. 128

7.1 Introduction ... 128

7.2 System Model Evaluation .. 129

xii

7.2.1 Individual Performance Indicator ... 130

7.2.2 Aggregated Performance Indicator ... 131

Mechatronic Design Quotient (MDQ) .. 132

7.3 Approach Description .. 133

7.4 Case Study ... 138

Chapter 8: Conclusions and Future Work .. 145

8.1 Conclusions ... 145

8.2 Possible Future Work ... 146

Bibliography .. 148

xiii

List of Tables

Table 2-1: Activates During Design Development Process. ... 22

Table 5-1: Comparison of Functional, Modeling, and SysML modeling representations. 92

Table 6-1: Power conjugate complements for the energy class of flows. 110

Table 6-2: Domain-specific state variables. ... 111

Table 6-3: Mapping generation of the function convert from the simulation component library.

 ... 121

Table 7-1: The types of relationships between different criteria. .. 134

Table 7-2: The list of design variables. .. 140

Table 7-3: MDQ evaluation of design alternatives ... 144

xiv

List of Figures

Figure 1-1: The difference between design optimization and the conceptual design 3

Figure 1-2: Historical data on the increase of system complexity ... 3

Figure 2-1: Four areas of the design process. ... 24

Figure 2-2: Relationship between UML and SysML. ... 29

Figure 2-3: Taxonomy of SysML diagram... 30

Figure 2-4: Relationships between different SysML diagrams. .. 33

Figure 3-1: The proposed conceptual macro-level process. .. 47

Figure 3-2: The proposed conceptual micro-level process. .. 50

Figure 3-3: Iron butcher. ... 54

Figure 3-4: Conveyor system; (a) AC induction motor (left), (b) Sliding mechanism (right) 55

Figure 3-5: The acceleration profile of the conveyor system. ... 56

Figure 4-1: Details of the phase of concept design and modeling sub-process. 58

Figure 4-2: The development of the design process. .. 64

Figure 4-3: Information exchange between the product model and the process model. 66

Figure 4-4: Interconnection model in MML class diagram. ... 74

Figure 4-5: The implementation of the interconnection model in the requirement model. 76

Figure 4-6: The interconnection model in the functional model – BDD diagram (left), and IBD

diagram (right). ... 78

Figure 4-7: The implementation of the interconnection model in the structural model. 79

Figure 5-1: Representations of FB Function Class in IBD SysML. .. 86

Figure 5-2: Defined stereotypes in the function library. ... 87

Figure 5-3: Transformation of FB flow into SysML Library. ... 88

xv

Figure 5-4: Transformation of FB functions into SysML. .. 89

Figure 5-5: Examples of how definitions of functions are implemented in SysML. 91

Figure 5-6: Excerpt of developing requirements in BDD. .. 93

Figure 5-7: Excerpt of the flows representation based on the FB description. 94

Figure 5-8: The nested-network of the function Drive the System is shown in IBD. 95

Figure 5-9: The development of FB functions from BDD to IBD. ... 97

Figure 5-10: Port definition constraints. .. 97

Figure 6-1: Relation between form, function, and behavior. .. 103

Figure 6-2: Tetrahedron of state. ... 112

Figure 6-3: Frictions family from Pneumatic sub-library is to be stored in decrease library. ... 113

Figure 6-4: The energy flow of a pneumatic capillary. ... 113

Figure 6-5: Driving system functional sub-system (top) and motion mechanism functional sub-

system (bottom). ... 118

Figure 6-6: The simulation component of a DC motor. .. 119

Figure 6-7: Port mappings of two of the simulation components - Synchronous Machines (left),

and Liquid Propulsion (right) - with the function convert. ... 123

Figure 6-8: Generated Amesim simulation models of Simple Crank (top left), Cam and follower

(top left), and Geneva Wheel (bottom). ... 124

Figure 6-9: The dynamic motion behaviors of the indexer for the three concepts. 125

Figure 6-10: The net energy of the indexer for the three concepts. ... 126

Figure 7-1: : Conceptual design solution model. .. 130

Figure 7-2: Process methodology for obtaining the Mechatronic Design Quotient (MDQ)....... 135

Figure 7-3: An industrial fish processing machine—Intelligent Iron Butcher. 138

xvi

Figure 7-4: Generated Amesim simulation models of Simple Crank. 139

Figure 7-5: Angular velocity output (left), and power output (right). 141

Figure 7-6: Efficiency variations as a function of motor inertia (kg.m2) 143

Figure 7-7: Speed of response variations as a function of PID gain constant (K) 143

Figure 7-8: Reliability variations as a function of Armature winding resistance (ohm) 143

Figure 7-9: Stability variations as a function of PID integration constant (Ti) 143

xvii

Nomenclature

𝒄𝒌 the 𝑘$% criterion

𝒆(𝒊,𝒋) flow from port 𝑖 to port 𝑗

𝒈𝒊 notation for the fuzzy measure

𝒊𝒌 the individual performance indicator of the 𝑘$% performance behavior

𝑰 motor inertia (kg.m2)

𝒌 PID Gain constant

𝒎𝒔𝒆𝒕 set of mapping between functions and simulation components

𝒑𝒏 input/output port 𝑛

PE energy port

PS signal port

𝑷𝑬𝑬 ports for electrical energy = Current 𝑖(𝑡) and Voltage 𝑉(𝑡)

𝑷𝑴𝑹𝑬 ports for mechanical rotational energy =Angular velocity 𝜔(𝑡) and Torque 𝑇(𝑡)

𝑷𝑴𝑻𝑬 ports for mechanical translational energy = Velocity 𝑣(𝑡) and Force 𝐹(𝑡)

𝑷𝑯𝑬 ports for hydraulic energy = Volume flow rate 𝜑(𝑡) and Pressure 𝑃(𝑡)

𝑹𝒔𝒆𝒕 set of requirements

𝑹𝒂 armature winding resistance (ohm)

𝑺𝒊 simulation component 𝑖

𝑺𝒍𝒊𝒃 simulation library

𝑺𝒇 simulation component family

𝑺𝒎𝒐𝒅 simulation models

𝑻𝒊 PID integration constant (s)

xviii

𝑻𝒅 PID drivation constant (s)

𝝀 Sugeno measure

𝝁𝒌 the density value (fuzzy measure) of the 𝑘$% criterion

𝝅 a permutation index

xix

Glossary

ABS Anti-lock Braking System

AHP Analytical Hierarchy

BC Boundary Conditions

BDD Block Definition Diagram

CAD Computer-aided Design

CAE Computer-aided Engineering

CDDP Conceptual Design Development Process

CIM Conceptual Integrated Model

CN Customer Needs

DDP Design Development Process

DP Design Parameters

EDA Electronic Design Automation

FB Functional Basis

FBS Function-Behavior-State

FM Functional Model

FR Functional Requirements

IBD Internal Block Diagram

IPI Individual Performance Indicator

MBSE Model-based Systems Engineering

MCDM Multi-criteria Decision Making

MDQ Mechatronic Design Quotient

NIST National Institute of Standards and Technology

xx

OCL Object Constraint Language

OOSEM Object-oriented System Engineering

PV Process Variables

RFLP Requirement-Functional-Logical-Physical

SDLC Software Development Life Cycle

SE System Engineering

SysML System Modeling Language

TGG Triple Graph Grammar

UML Unified Modeling Language

VDI Association of German Engineers

xxi

Acknowledgments

I would like to express my profound gratitude to my research supervisor, Professor

Clarence W. de Silva, for his supervision, knowledge, guidance, advice and inspiration throughout

my entire research program at the University of British Columbia. I truly appreciate all the support

and advice that he provided throughout the years.

 I wish to thank all my colleagues in the Industrial Automation Laboratory (IAL), Dr. Roland

Haoxiang Lang, Dr. Edward Yanjun Wang, Dr. Yunfei Zhang, Mr. Shan Xiao, Dr. Muhammad

Tufail Khan, Dr. Lili Meng, Dr. Min Xia, Dr. Shujun Gao, Ms. Pegah Maghsoud, Dr. Yu Du, Dr.

Teng Li, Dr, Jiahong Chen, Mr. Zhuo Chen, Mr. Tongxin Shu, Mr. Sheikh Tanvir, Mr, Bilal Riaz,

Mr. Fan Yang, Mr. Lucas Falch, Ms. Swapna Premasiri, and Mr. Hiroshan Gunawardane for their

friendship and help on both academic affairs and personal life.

 Additionally, I would like to acknowledge the financial support for the research through the

research grants from Natural Sciences and Engineering Research Council (NSERC) of Canada, the

Canada Foundation for Innovation (CFI), the British Columbia Knowledge Development fund

(BCKDF), and the Tier 1 Canada Research Chair in Mechatronics and Industrial Automation held

by Dr. Clarence W. de Silva. In addition, I would like to thank the Ministry of Higher Education

of Saudi Arabia for their granted scholarship, and the financial support throughout my academic

program.

 Finally, I want to thank my lovely wife, Zainab Daghistani, and my two daughters; Fatimah

and Batool. Also, the thanks are extended to my mother, my brother, and my other family members

for their continuous support and encouragement.

1

Chapter 1: Introduction

1.1 Mechatronics and Integrated Design

The term “mechatronics” was coined in 1969 in Yasakawa Electric Corporation, Chiyoda-

Ku, Tokyo, by senior engineer Tetsuro Mori. The word is composed of mecha from mechanics

and tronics from electronics, which refers to the combination of mechanics and electronics. After

the 1980s, the meaning has broadened to encapsulate computer technologies and software as an

integrated part [1]. Nowadays, other disciplines such as optics, thermodynamics (including heat

transfer), hydraulics, and pneumatics are involved in the development of mechatronic systems.

Hence, a mechatronic system is regarded as a multi-domain (or multi-physics) and complex

system. One definition of a mechatronic system is that it is a synergistic combination of precision

mechanical, electrical, control, and systems engineering, for the design of products and

manufacturing processes [2]. Other literature describes the mechatronic approach as a multi-

disciplinary design methodology that solves the functions, primarily of mechanically oriented

products through, the synergistic spatial and functional integration of mechanical, electronic, and

information processing subsystems [3]. Mechatronic systems are becoming increasingly

significant in many industries today, such as the automotive and manufacturing industries, in

addition to modern consumer products. Typical examples include autofocusing cameras, engine

management systems, food processing machines, anti-lock braking system (ABS) of automobiles,

active suspension systems, and industrial robots.

Compared to purely mechanical solutions, mechatronic-system solutions can offer

increased functional scope and quality through the integration of various disciplines. In the

traditional electromechanical design, the mechanical domain is addressed first, which involves

material properties (density, strength, deformability, etc.) and geometry (size, shape, etc.) of the

2

mechanical structure. Subsequently, the electrical domain, which involves electrical components

(sensors, actuators, amplifiers, and other hardware), interconnectivity, and communications are

addressed. Finally, a controller is integrated and tuned to rectify any shortcomings in the resulting

design to add additional reliability [4]. In this design, tasks are not executed before the previous

ones have been completed [5], [6].

In recent years, increased attention has been given to the development of the conceptual

phase design processes for mechatronic systems, because the highest influence on the final design

in the development process occurs during the conceptual development phase [7]. Fig. 1-1 shows

the fundamental difference between design optimization and conceptual design generation.

Performing possible improvements and optimization in the early design stage can make a

significant impact on the success of a product. About 75% of the cost of a product is set during the

conceptual phase [8]. The importance of the conceptual design phase stems from the realization

that the level of overall design innovation and the quality are determined through this activity.

Moreover, the type of technology and the concept of the design that satisfy the customer needs are

specified during the conceptual design phase. In summary, the conceptual design phase may be

viewed as the most critical phase of the product design life-cycle because the decisions made there

have the greatest impact in the overall design process.

1.2 Challenges in the Design of Mechatronic Systems

Historical data show an increase in the complexity of the development of mechatronic

products. This data points to a growth in the developed systems in terms of the number of

functions, components, and interactions, as shown in Fig. 1-2.

3

Figure 1-1: The difference between design optimization and the conceptual design

Figure 1-2: Historical data on the increase of system complexity

Design
Optimization

Design Variables

“G
oo

dn
es

s”

4

This design development complexity presents growing challenges for companies that

demand technical solutions. We recognize two types of problems that can contribute to the rise of

the design development complexity in mechatronic systems: they need to overcome (a) process-

based problems, and (b) design data-related problems [9], [10].

1.2.1 Process-based Problems

These problems can be defined as “the coordination and synchronization of the discipline-

specific development process, the coherence, and interactions between different disciplines and

comprehensive integration across all disciplines” [9]. An additional challenge related to the

process-based problem is the increased rate of dynamism due to high, and rapid market demands.

Consequently, the traditional approaches are reaching their limit and are often too rigid to handle

the large number of rapid design changes efficiently. Therefore, the development of design

methodologies for the Design Development Process (DDP) to facilitate the integration of multiple

domains has attracted considerable attention.

In the traditional sequential design, after the system is built, it is typically difficult and

somewhat costly to change a parameter or a component. Also, the design optimality will be hard

to achieve even with a perfect controller. Furthermore, there may exist a lack of compatibility and

efficient matching between components and subsystems. This incompatibility arises from the

dynamic interactions between components and subsystems, which cannot be appropriately taken

into consideration in a sequential design scenario.

A key characteristic of a mechatronic system is the presence of different physical

subsystems such as mechanical, electronic, and computer technologies that are integrated. An

important effect of this integration is the creation of product innovations through the synergetic

interaction between various engineering domains. Hence, DDP requires multidisciplinary and

5

holistic solutions that are able to realize such systems. Nonetheless, the established DDP suffers

from considerable deficiencies in managing process-based problems. Nowadays, companies are

struggling with new challenges in mechatronic system design, which require the use of innovative

design processes. These challenges make it difficult to manage the development process that

concerns increased quality, and reduced development costs and time [9].

In most cases, the process of design development during the conceptual phase still performs

the involved discipline in a separate and isolated fashion [11]. Since the conceptual design phase

is crucial in the design of mechatronic systems, as discussed in Section 1.1, the associated work is

heavily based on the Conceptual Design Development Process (CDDP). Consequently, the

process-based problem discussed here will consider challenges such as: the coherence and

interactions between different disciplines, the comprehensive integration across all disciplines, and

the lack of flexibility in DDP.

Although investigators and the application sector have put some effort in addressing these

challenges, some challenges still remain, such as [9]:

• The standard practice in industry still involves the traditional, sequential design process.

• There is a lack of support tools for the synchronization of different disciplines in the design

development process.

• The coordination among the activities and tasks in the conceptual phase and the other

phases of the product design development process is not sufficiently supported.

• The complex coherences and interactions between the disciplines are only considered in a

later development phase.

• A flexible organizational structure is needed. The structure should be able to adapt to the

rapid changes in the requirements.

6

• Different ways to encapsulate the increased demands of the customers and stakeholders

throughout the development process need to be developed.

• Current development processes are not adequate to respond to the rapid changes in

customer requirements.

1.2.2 Design Data-related Problems

The data that are created throughout the DDP of mechatronic products need to be properly

managed. Product models are used to support the product data management (PDM), in which all

the pertained information is accessed, stored, served, and reused by stakeholders [10]. Computer-

based tools used for the support of product data have always been developed for a specific

discipline such as Computer-aided Technologies (CAx), Electrical/Electronic Engineering

Solutions (EES), Computer-aided Software Engineering (CASE), and Product Lifecycle

Management (PLM) [9]. These tools often produce data about the product model and product

structure that may be incompatible with one another.

In addition, the target of a design is to meet the requirements and needs of the customers

and stakeholders using technical solutions in a rapid and satisfactory manner. At the same time,

economic efficiency must be acceptable. The degree of satisfaction of the customer dominates the

extent to which the product solves the specific problem. Also, the framework conditions of project

development are subject to increased uncertainty and dynamism, which represent a challenging

trend. For example, stakeholders are less and less able to explicitly express their needs or product

requirements [12], [13], available development time [14], and the functional scope and

interdependencies of the functions among themselves [15].

Therefore, the diversity of data from different disciplines brings challenges, which include

the following:

7

• It is difficult to show, understand, and construct the interdisciplinary and functional

relationships between various systems and components.

• Increasing the efficiency of directing and organizing the design development process can

be achieved by using the information extracted from product models.

• Conceptual Integrated Model (CIM) that models the dynamic behavior of different

multidisciplinary systems, functions, and components are not adequately realized.

• Different classes of customer requirements should be properly addressed in the

corresponding phases of the development process.

• The imprecision and incompleteness of the design requirements pose challenges in the

product data analysis and exchange.

• Developing methodologies to evaluate the conflicting requirements of different customer

should be further investigated.

1.3 Requirements of Mechatronic System Integration

Mechatronic systems have displayed success in developing complex and advanced

products thanks primarily to the close integration and collaboration of mechanical engineering,

electronics, and computer science. Mechatronic systems are characterized by being

multidisciplinary, highly complex, and are subject to rapid changes and conflicting requirements.

Therefore, specific requirements need to be met and suitable procedures have to be followed in

their development.

A practical approach to managing the mentioned problems is through the exploration of

the conceptual design phase of the DDP and CIM. This phase is particularly important because the

decisions that are taken in this design phase, and the data management have the highest impact on

the rest of the design decisions. Moreover, the conceptual phase addresses the abstract, concept,

8

function, behavior, and the general form of the designed components and systems, which creates

increased ability to address the multidisciplinary design. Also, this phase of design has the

advantage of increased availability of design freedom. In addition, there are other challenges,

which are related to the design in this phase. However, we believe that addressing the mentioned

problems during the concept development is an effective approach to tackle the increase of the

design complexity and the number of functions, components, and interactions.

In order to manage the high complexity in the design of a mechatronic system, several key

requirements need to be addressed, which are indicated next.

1.3.1 Conceptual Process-based Requirements

The development of increasingly mechatronic products presents designers with new

challenges that require the use of adapted processes and methods. These challenges have created

a new and growing demand for a comprehensive process model. This model should encapsulate a

holistic view of the process while facilitating the cooperation and coordination of the involved

disciplines. It can be represented as a general structure with specific guidelines for designers to

ultimately satisfy the needs and requirements of the customers. Inexperienced designers tend to

start with a preliminary concept and proceed towards the detailed design without proper utilization

of the design freedom. Such an approach has a high possibility of leading to inferior design

selections. Therefore, the current practice is to generate different conceptual design alternatives,

which can help find a good solution [16]. This approach can reduce the expense of time and cost

of the development process.

Decision making is used to evaluate the conceptual design alternatives in different levels

of detail in an iterative matter. The iteration should provide a less expensive design in a particular

cycle than in the previous cycle. The early analysis and simulation of different design alternatives

9

are essential even in the absence of rigid mathematical parameters and the presence of various

indefinite constraints [17]. Applying an extensive evaluation scheme to the design development

process may result in a fewer number of iterations. One way to satisfy that condition is to subject

each phase to a separate and independent evaluation scheme. Also, an approach to systematically

guide and organize the mechatronic design process of products can ultimately reduce the cost,

time, effort, and needed resources of the development.

These requirements can be summarized as follows:

• The development of advanced approaches to organize, manage, and guide DDP is

necessary.

• An increase in the flexibility of the DDP of mechatronic products is required in order to

increase the evaluation capability and the level of satisfaction of the customer

requirements.

• Different engineering disciplines should be integrated at the beginning of the DDP.

• A solution-neutral, and domain-independent specification, description, and definition, in

the early development stages should be supported.

1.3.2 Conceptual Data-based Requirements

The data of product models are used to describe the links, connections, and interfaces of

product elements and functions of various domains, and in different levels of detail. The necessity

of viewing the integrated and complete mechatronic system alongside the interfaces and

connections between the associated different disciplines, throughout the entire DDP of the system,

is essential. Also, a common language is necessary in order to enable traceability and reasoning

between different components and functions of the designed system.

10

Model-based Systems Engineering (MBSE) is a multidisciplinary approach to help

understand the context and specification for satisfying the specified customer requirements by

developing a system solution in response to different needs of the stakeholders [18]. Aspects of

MBSE include behavioral analysis, system architecture, requirement traceability, performance

analysis, system simulation, testing, and so on. [19]. System Modeling Language (SysML) is an

extension of MBSE and can be utilized as a computational model of a mechatronic product.

Other relevant key factors include the uncertain and limited knowledge about the product

design and customer requirements, and the lack of communication between components and

subsystems, which need to be properly addressed. Therefore, the following criteria need to be

fulfilled:

• The development of early design stage modeling is needed for CIM that moves beyond

geometry to replace paper-based modeling methods [20].

• CIM should allow representation of the product’s behavior in an integrated

multidisciplinary system. The data model should illustrate the details of the individual

disciplines to support the design, analysis, and evaluation of the overall system.

• The models must display abstract mapping of the product functions, activities and

components, and their dependencies. They should also provide information about the

internal changes between the disciplines to aid in the product’s development process.

• The models may also be able to contain meta-model information, in which the traceability,

and reasoning between systems, sub-systems and components are permitted.

• Data of the product model should be used in the advancement, guiding, and organization

of the process development models.

11

• New approaches and methods should be investigated to increase the confidence of the

models in the presence of a lack of information and communication.

• CIM should be able to transfer the stored information and knowledge to and from other

models (e.g., simulation or behavioral models) for further computational analysis and

simulation.

Library-based Support for the Conceptual Design

Sources of knowledge and information are essential to assist mechatronic CIM. There is a

large body of knowledge for designers that is captured from past designs, which can help during

the design activities of ever-increasing mechatronic design problems [21]. Knowledge and

knowledge modeling are used to aid the conceptual design phase; as opposed to geometrical

modeling, which is used to support the detail design phase. Knowledge reuse is essential to achieve

the targets of systems engineering vision 2025 [22], [23].

 Design libraries are an important resource to support product modeling, in which all

conceptual design knowledge is captured and classified into different categories [24]. For example,

the systematic reuse of such libraries in object-oriented software development is widely used,

where the libraries offer basic support of various functionalities [25]. One way to support the

design libraries is by classifying the captured knowledge to categories; for example, functional

libraries [26], behavioral libraries [27], form libraries [28] and so on.

Several requirements are listed below to improve the usage of libraries in engineering

design:

• The design libraries should raise the formality, in which systematic guidance for the design

through the reuse of clearly defined items from the libraries can be further investigated.

12

• The use of the design libraries to further support the CIM. Some examples are automatic

model generation, compatibility and consistency checking, or the evaluation of design

alternatives.

1.3.3 Multi-criteria Evaluation

The elimination of different design alternatives in an early stage without using extensive

details of the system is a desirable practice. However, the extensive search space of design

alternatives makes the identification of design concepts a tedious process.

The dynamic interactions of different components and subsystems degrade the

performance of the overall mechatronic product, if not taken into account during design. It exists

because of the lack of compatibility and improper matching between components and subsystems,

and these are not usually taken into consideration when evaluating the design solutions.

Design criteria requirements provide a measure of how well the system should function or

behave. In the same context, the design specifications may include system attributes, and

constraints. Determining the design criteria requirements is done after reviewing the design tasks

and customer needs, and on performing a requirement analysis. The attributes and sub-attributes

selected in this manner have to be operational in order to identify how well each conceptual design

solution meets the design requirements. Therefore, the following points should be addressed:

• The design evaluation should take into account the complexity of both, correlations

between system requirements and interactions between multidisciplinary subsystems.

• Efficient and effective methods are needed to decrease the design optimization time and

computational costs, which result due to the presence of many design variables and a vast

search space.

13

1.4 Research Objectives

The main objective of the present research is to support the design of mechatronic systems

by improving the CDDP and CIM. The proposed development of the conceptual design phase is

built upon a general reconstruction of the DDP, which is termed the “Macro-level development

process.” Specifically, the design phases are broken into separate phases, in which each phase is

guided by independent modeling, simulation, and evaluation schemes. At the same time, the

systematic design guidelines and formality will be maintained. This modification will increase the

flexibility of the development process, leading to the following key advantages:

• The ability to consider diverse requirements of stakeholders, in which the level of detail of

the requirements is properly incorporated.

• The reduction of the processing time and the resource costs can be achieved by minimizing

the development cycles and interactions.

The development of the conceptual design phase will be investigated further, which will include

the formulation of the “conceptual macro-level development process.” The present thesis will

address three aspects of development investigation: concept design and modeling, run-time

concept integration and simulation, and concept analysis and evaluation.

In the present work, Model-based System Engineering (MBSE) will be heavily used for

the development of the “conceptual micro-level development process” through the System

Modeling Language (SysML). The goal is to develop an integrated tree-based concept modeling

approach in SysML. The developed model will improve the consistency checking and traceability

with respect to the computational support and the ability to display different levels of model details.

An implementation of different design libraries into the model will be developed in order to

increase the formality and minimize the errors. We believe that DDP controls the design and

14

provides baselines that coordinate the design efforts. CIM provides a suitable structure for solving

design problems and can integrate involved customers in the DDP to ensure the developed system

is viable throughout the product life cycle.

A seamless, logical, and systematic transformation of the model between different

modeling environments will be established, where knowledge extraction will be performed

between a descriptive modeling environment and a simulation modeling environment. The first

environment supports the abstract level modeling where functional libraries [26] will be introduced

and implemented. The second environment supports the concept level simulation where behavioral

libraries [27] will be introduced and implemented.

Finally, a formal approach for the evaluation of conceptual design alternatives of

mechatronic systems will be developed. It will be a general approach that covers a wide range of

systems within the umbrella of mechatronic systems. Also, it will be able to incorporate multiple

criteria in the design evaluation together with an intuitive aggregation method. The developed

approach is built on the concept of Mechatronic Design Quotient (MDQ) [29] and enhances the

application and tools for the developed concept.

1.5 Contributions and the Organization of the Thesis

The main contributions of the present dissertation may be summarized as follows:

1. A multi-layer design process structure for mechatronic systems, based on the V-model, is

developed. Compared with the other design processes, the presented framework maintains the

systematism, increases the flexibility, and improves the integration and evaluation capabilities.

In addition, the proposed structure adequately addresses the customer requirements at different

levels of detail. The multi-layer nature of the process allows the designer to revisit the

requirements in every phase of the process.

15

2. This work introduces “Interconnection Classifications” for modeling the communication data

that take place between and within the various activities in the early phase of the design

process. These activities are the requirements modeling, the functional modeling, and the

structural modeling. The communication data are computationally modeled in UML. The data

modeling provides a common terminology and language between different design teams. This

helps to reduce the information misuse in an early design phase.

3. The development of a library of functions in SysML, to support the functional modeling, is

presented. This library is used to support the modeling of the functional model in SysML. Such

support would increase the reusability and consistency of the model. Also, the usage of the

library helps in the adaptation of the model to modifications. Compared to other existing work,

the present work improves the formality of the SysML model through the utilization of SysML

diagrams, such as Block Definition Diagram (BDD), and Internal Block Diagram (IBD) for

the modeling.

4. An algorithm is developed that enables an automatic transformation between functional models

and structural models. In addition, the algorithm ensures the satisfaction of the customer

requirements during the model transformation. This requires a precise algorithm description of

the requirement model, functional model and structural model. The support of simulation

libraries is exploited. The synthesizer algorithm dissects the simulation library components

and matches the interfaces of these components with the corresponding functions. The

advantage of the synthesizer algorithm is that it increases the model accuracy according to the

requirements, and eliminates any biased selections. This work illustrates the utilization of the

algorithm in generating different kinematic behaviors of two functional sub-models.

16

5. An evaluation methodology scheme is developed for mechatronic systems. The proposed

methodology is used to evaluate different design solutions. It takes into account the interactions

between different design heterogeneous components. In addition, the conflicts in the design

criteria are considered. This work proposes an Individual Performance Indicator to reveal the

behavior of different simulation outputs with respect to the criteria. Lamda-measures are

employed to calculate the weights of interaction between the criteria. Finally, the Mechatronic

Design Quotient is used to aggregate all the criteria, with their weights and the individual

performance indicators.

The overall result of these contributions is the development of an integrated, unified, systematic,

and unique systems. The presented design process conserves the systematism. Functional

modeling in SysML provides a domain-independent system model. The evaluation methodology

scheme produces integrated and unique systems.

The rest of the present dissertation has the following structure:

Chapter 2 introduces different system engineering approaches for mechatronic design

processes. More details of Axiomatic design and the different V-model variations are provided.

Model-based system engineering is presented with the focus on UML and SysML. Function-

Behavior-State model framework is discussed in this chapter, and their different corresponding

knowledge libraries are introduced. It presents different model representations and model

transformations that are used during the conceptual design process. Finally, the chapter discusses

the design evaluation of mechatronic systems.

Chapter 3 introduces an overview of the developed design process methodology and the

details of the design process model. The chapter first presents the proposed macro-level design

process model, where the multi-layer V-model design process is described. Second, the chapter

17

discusses the proposed micro-level design process model, in which the characteristics of the design

tasks and activities within the macro-level design process are given. These two models are based

on Model-based System Engineering for supporting the integrated development process of a

mechatronic system. The chapter demonstrates the presented design methodology through an

industrial fish cutting machine, which investigates the rationalization of the choices of the current

solutions.

Chapter 4 discusses the details of the micro-level process model, where the underlying

organization of the different design activities in the concept and modeling sub-process phase are

defined; specifically, requirement modeling, functional modeling, and structural modeling.

Moreover, the chapter describes the relationships between different design activities, which

introduces the proposed interconnection classifications; namely, Allocation, Type, Class,

Conversion, and Confidence. A case study is presented where these interconnection classifications

are implemented.

Chapter 5 describes the modeling approach of the conceptual phase in SysML. In

particular, the functional modeling and its library, i.e., the Functional Basis, which provide

additional reinforcement for the conceptual design development phase, are presented. It introduces

a computational modeling approach for the functional model in SysML, in which the Block

Definition Diagram is utilized. The representation of the functions and ports in SysML is also

discussed, where a library of functions is developed. Finally, the chapter presents an

implementation of the proposed functional modeling approach in SysML, as a case study.

Chapter 6 describes how structural modeling is established, where a set of

components/subsystems are interrelated. It illustrates the development of an algorithm for

transforming the functional model into a simulation model. The chapter describes this

18

transformation, which requires an algorithmic description of the requirement model, functional

model, the simulation model including the simulation library, and simulation components. Then,

the principles and the algorithm of the proposed simulation synthesizer are presented. This

synthesizer is demonstrated in a case study of an electro-mechanical conveyer system.

Chapter 7 presents a developed evaluation scheme for the evaluation of conceptual design

solutions of mechatronic systems. The underlying principles of the evaluation indicator, which is

based on the Mechatronic Design Quotient (MDQ), are demonstrated. The chapter describes how

the interaction between different design criteria is addressed, even in the presence of insufficient

information. The proposed framework for the system evaluation is given, and it is demonstrated

in a case study.

Chapter 8 concludes the dissertation by summarizing the main research contributions. It

also discusses the possible directions for future research.

19

Chapter 2: Background and Related Work

An overview of the thesis topic and important related work of the research are presented in

this chapter. It begins with the available models for a design process and the design methodologies

for mechatronic systems, with a focus on the conceptual design phase and its importance. The

system engineering approach is then introduced, which includes a description of MBSE and

SysML.

2.1 Design Process of a Mechatronic System

A design of a system can be considered as an interplay between what we want to achieve

in the system and how we want to achieve it [30]. To go from what to how, the designer is

challenged by many conflicts, trade-offs, and risks. A designed product is not created just in a

single big step, but rather in many small steps, which must be precisely defined, and their interfaces

must be precisely described. The resulting sequence of steps is called a " design process" [31].

Designing a new product progresses through a sequence of steps, which can be used as guidelines

for the designer. The overall process steps are referred to as the "Design Development Process"

(DDP) [31]. It summarizes several activity steps to achieve the intended result, starting from the

product concept to the finished product. In general, the DDP can be described as the process of

organizing and developing a plan to transform a concept into a final product. The development of

the design process itself is often very complex, depending on the objectives and the complexity of

the designed product. Decisions taken during the DDP of a product will impact on the design of

the product. As discussed in section 1.2.1, the essential functions of mechatronic products, in

contrast to traditional electro-mechanical engineering products, are characterized by the

“integrated” interaction of mechanical, electrical and information technology subsystems. The

20

development of mechatronic products thus requires the goal-oriented and efficient integration,

specifically collaboration, of the involved disciplines in the DDP.

Since the end of the nineteenth century, efforts have been made to systematize the design

process of a system and to carry it out in a targeted manner. As a consequence, a design

methodology was developed [32]. Since the 1940s, many research outcomes have been published

on methodological designs of mechanical engineering products, in both Europe and the USA [33],

[34]. Significant challenges in the development of new products today arise through the continuous

development of associated technologies. Therefore, several DDPs of products that describe these

steps have been proposed. In order to manage the challenges during product development,

especially in mechatronics, a structured, systematic and goal-oriented approach in product design

and development is needed, leading to high-quality results [35]–[38].

2.2 System Engineering Approaches

In the late 1950s and the early 1960s, System Engineering (SE) has been used as an

approach for multidisciplinary and concurrent design of complex systems [39]. A concurrent (or,

integrated) design process is a way to decrease the process development process time and to

manage the synergy of a multidisciplinary design [40] while simultaneously addressing all

physical domains (e.g., mechanical, electrical, fluid, and thermal) of the problem [4]. SE is a

science that is applicable to the design, development, and maintenance of highly complex products

such as trains, cars, airplanes, power plants, and manufacturing processes. The goal is to analyze

and combine all the behaviors of the system into an efficiently functioning design. In the SE

context, a system can be defined as “a set of elements that interact to achieve a stated purpose”

[41]. Systems can be classified into four main characteristics: Closed/open systems,

Natural/human-made/human-modified systems, Physical/conceptual systems, and

21

Precedented/unprecedented systems. A wide variety of combination of system characteristics can

lead to many types of systems, each of which would have different properties [41].

SE relies on a system-centered thinking to solve problems. It seeks to develop a system

based on an initial abstract model of the system with input and output quantities, a system

environment, and an initially-unknown inner life. On this basis, an attempt is made to develop a

fundamental understanding of all internal and external interactions of the considered problem

(system) [42]. SE enables a transparent process across the entire development cycle. SE is a cross-

functional approach, and a means to enable the successful realization of a requirement-based

system. It focuses on defining the customer needs and the required functionality early in the design

development process, documenting the requirements, and then proceeding with the design

synthesis and the design validation, while taking into account all aspects of the product lifecycle.

SE considers both economic and technical needs of all customers, to provide a high quality product

that meets the user needs [43].

The work in the present dissertation is heavily built based on the SE approach while

considering multidisciplinary aspects of the system early in the development process. The system

characteristics applied in the present work concern open and physical systems that are human-

made/modified largely from available elements.

Since the 1980s, different design process models have been used for SE; for example, a

waterfall model [44], spiral model [45], and V-model [46], to handle the increased complexity of

mechatronic systems. These approaches are still inefficient as they do not account for integration

of different physical domains in an early stage of the design process – the conceptual design [17].

The development of new approaches for abstract modeling and evaluation of the associated

22

concepts at an early stage of the design process is needed. In the next section, an overview of some

common system engineering design approaches is discussed.

2.2.1 Systematic Design Approach

Widely acknowledged engineering design guidelines developed by Phal and Beitz

characterize the design phases into four stages: product planning and clarification, conceptual

design, embodiment design, and detailed design [17], [37]. This approach has been included in

design textbooks [16], [36]. Table 2-1 summaries the associated activates in each phase.

Table 2-1: Activates During Design Development Process.

Design Phase Activates

Product Planning
• Market analysis
• Finding and selecting product ideas
• Defining the intended functionality and

requirements of the product

Conceptual Design

• Establishing detailed functionality
• Identifying solutions to functions
• Combining solutions into working structures
• Selecting combinations of solutions
• Developing principal solution variants
• Evaluating variants

Embodiment Design

• Identifying product layouts and form
• Finding solutions to auxiliary functions
• Developing detailed and compatible layouts for

main and auxiliary functionality
• Evaluating and optimizing the design

Detailed Design

• Finalizing layout and creating drawings
• Developing assembly drawings
• Completing production documents
• Checking documents for compliance,

completeness, and correctness

For the potential success in the design of a mechatronic system, a systematic approach is

necessary for the early stages of the product development process, where the emphasis is on

23

modeling and model analysis. In this context, the aim is to realize products that always meet the

desired performance requirements despite the presence of a wide variety of external influencing

factors. Earlier customer involvement will enhance the interactions with customers and customer

integration. The customer-oriented development of individual products poses considerable

challenges such as continued change of the internal and external framework conditions, and the

customer requirements, during the design process. These challenges lead to a further increase in

the complexity of the development process, in which the main focus is on the development of

products whose functional fulfillment is ensured despite a wide variety of influences [47].

2.2.2 Axiomatic Design

Suh [30], [38] has attempted to establish a product development methodology based on a

system of axioms. Every design process involves four different areas: the customer area, the

functional area, the physical area, and the process area (Fig. 2-1). A set of variables characterizes

each of these areas. In the customer area, this information encapsulates the desired product

properties {CNs}. When entering the functional area, the desired product properties must be

translated into functional requirements {FRs} and boundary conditions {BCs}. In the physical

domain, design parameters {DPs} must then be defined that will fulfill the functional requirements

while complying with the boundary conditions of the product. The design process is completed by

developing appropriate manufacturing processes for the product, which are defined by process

variables {PVs}.

24

Figure 2-1: Four areas of the design process.

Suh has described the transitions between the areas of the design process mathematically

with the help of a matrix formulation. For example, to determine the design parameters {DPs} of

the system from the functional requirements {FRs}, the following "design equation" is applied:

{𝑭𝑹𝒔} = [𝑨]{𝑫𝑷𝒔}																																																																																									(2-1)

The design matrix [A] uniquely associates the design parameters of a given solution with the

functional requirements, and it takes the following three forms:

[𝑨] = Z
𝑨𝟏𝟏 𝑨𝟏𝟐 𝑨𝟏𝟑
𝑨𝟐𝟏 𝑨𝟐𝟐 𝑨𝟐𝟑
𝑨𝟑𝟏 𝑨𝟑𝟐 𝑨𝟑𝟑

^ “Coupled Design” (2-2)

[𝑨] = Z
𝑨𝟏𝟏 𝟎 𝟎
𝟎 𝑨𝟐𝟐 𝟎
𝟎 𝟎 𝑨𝟑𝟑

^ “Uncoupled Design” (2-3)

[𝑨] = Z
𝑨𝟏𝟏 𝟎 𝟎
𝑨𝟐𝟏 𝑨𝟐𝟐 𝟎
𝑨𝟑𝟏 𝑨𝟑𝟐 𝑨𝟑𝟑

^ “Decoupled Design” (2-4)

They are the, "coupled design," which has a general matrix, "uncoupled design," which has a

diagonal matrix, and "decoupled design," which has a triangular matrix. While in an "uncoupled

design" each design parameter DP is uniquely linked to a functional requirement FR, "coupled

design" and "decoupled design" have dependencies between the design parameters, which make

the fulfillment of the functional requirements difficult or impossible.

"Axiomatic Design" appears like a rather independent and methodological approach. This

is due to the mathematical forms that are built to describe the relationships between the domains.

25

However, it is not clear from the approach how the mathematical connection between the

functional requirements and the design parameters are realized for a complex system.

2.2.3 Variations of V-Model

The difficulties in planning and implementing mechatronic development processes arise

mainly from the large number of sequential and parallel dependencies that must be considered

simultaneously. The Association of German Engineers (VDI) developed formal guidelines for the

design of technical systems [48]. Different evolvements of the guidelines have been developed for

specific tasks. For example, VDI 2221 [49] is intended only for mechanical systems, and VDI

2422 [50] is for mechatronic systems controlled by a microcontroller. VDI Guideline 2206 [50]

has been developed to support the cross-domain development of mechatronic systems, especially

in the early phase of the system design. Mainly three elements are used for this purpose; namely,

the general problem-solving cycle as a micro-cycle, the V-model as a macro-cycle, and predefined

process blocks for recurring work steps. V is meant to be used as a management tool, which shows

the relationship between design activities and test activities. It is a practical way to represent the

development process, and it is adopted from system engineering. However, simplistic

straightforward use of V as a process model may lead to design defects, and inability to consider

changes to customer needs during the product development. Therefore, Van Brussel has suggested

an integrated (or concurrent) engineering approach that takes into account all involved physical

disciplines from the beginning [51]. This basic idea is also found in [52] and in the VDI guideline

2206 [53].

 The essence of the macro-level process of the V-model is generic and, therefore, some

studies have suggested applying multiple macro-level cycles [54]–[58]. For instance, in [54]

Gausemeier and Moehringer propose multiple macro-level layers that represent the degree of

26

product maturity. Each cycle has the same micro-level process with different level of detail. The

first cycle represents “laboratory samples,” the second cycle represents “early prototypes,” and the

third cycle represents “preproduction product.” However, the number of macro-level cycles and

degree of maturity can vary depending on the application. Vasic and Lazarevic [55] developed a

different level of maturity representation, namely “laboratory specimen,” “functional specimen,”

and “pilot-run product,” [59] proposed the W-model, where two V-models are connected side by

side forming a W-shaped structure, hence the name W-model. The macro-level development

process includes five design phases: “system analysis,” “specific solutions and dependency

analysis,” “virtual system integration,” “Model analysis and detailed development,” and “system

integration.” The extra element in this form that is not present in the regular V-model form is the

addition of the central part, the “virtual system integration,” which increases the capabilities of

cross-domain integration and verification.

 Several additional developments have been made to the micro-level processes of the V-

models. [53] proposes a customized micro-level process of the guidelines for the development of

mechatronic systems controlled by a programmable logic controller (PLC), which enabled the

inclusion of further sufficient process guidelines. The developed method was tailored only for

machines controlled by PLC. There, the domain-specific design neglected the electrical domain

and was developed for modeling and design of 3D CAD, and for PLC programming environment

only. [60] developed a micro-level process that comprised four phases: Requirement engineering,

Functional design, Logical design, and Physical design – RFLP. However, since a separate

specialized computational software manages each phase, the data exchange between different tools

and the other domains remains a challenge.

27

2.2.4 Model-based System Engineering (MBSE)

An approach relevant to the development of mechatronic products in a systems engineering

framework is "Model-based Systems Engineering" (MBSE). It has drawn increased attention

recently as it is recognized as a powerful methodology for the design of complex mechatronic

systems [61]. A model in the context of MBSE refers to an abstract representation of a system,

sub-system, or component, to raise the level of understanding of the real system.

In MBSE, system models are placed at the center of development and is used for managing

the SE process of all phases of system development (specification, development, integration,

validation), which represents a view that is different from the traditional, document-based

development. In the MBSE, the development process is an iterative sequence of activities for the

development and creation of increasingly detailed models or an overarching system model over

time [62].

The MBSE approach is becoming an increasingly important means in the development of

mechatronic products [63]. There are a variety of approaches to the model-based development of

mechatronic systems with different emphases such as the modeling of components [64],

knowledge management [65], the support of architecture development [66], and the management

of models [67]. Another significant benefit of the MBSE approach is its use for improving the

coordination and communication between different disciplines in the domain-specific design phase

of the development process. By working on the communication between the integrated system

models, information about the current state of development is always available for all disciplines.

Moreover, when changes occur, their effects on the other subsystem models are detectable, and

hence the overall transparency and understanding of the system is increased. The current research

28

activities on MBSE are focused on the early development process, with additional support for

functional requirement, and dependency modeling.

There exist a large number of process models, methods and tools for supporting model-

based development of a system. The system is usually modeled using UML (Unified Modeling

Language) and System Modeling Language (SysML). They have widely used modeling languages

for the aid of the MBSE, which are provided by the Object Management Group’s System Modeling

Language [68]. MagicDraw [69] is a computational software that enables the modeling language

UML, and SysML, which comes with extensions for system simulation [70]. However, there is

still a lack of recognition and practice of MBSE in industry, which points to the need for further

development of MBSE with regard to usability [71]. Also, there is a demand to integrate MBSE

with analysis tools to support dynamic analysis.

UML and SysML

UML (Unified Modeling Language) is a semiformal, graphical language that is used in

software development. Its use ranges from modeling to analysis of software programs. It facilitates

map structures, architectures, system behavior, and the interaction with other systems through

diagrams. Essential components of these diagrams are objects and classes. They contain specific

attributes and methods and thus form the basis of the modeling language.

An object is generally a graphical representation of an object. It can be a model of real

facts, things, or concepts. It has specific characteristics and reacts to defined requests with a given

behavior. A class describes a collection of objects with the same properties (attributes), common

functionality (methods), common relationships to other objects, and common semantics. All

objects of a class have the same attributes but different attribute values [43].

29

UML is an object-oriented modeling language which that facilitates mapping of all the

necessary aspects of a software program. In addition to the representation of all models, there are

fixed definitions of all interfaces and connections. However, the reactive level of control

engineering is not supported. Besides, UML cannot be regarded as a cross-domain language in

system development.

While UML is intended for software development, SysML addresses system engineering

and thus the holistic and cross-disciplinary modeling of technical systems. SysML is a semi-

formal, graphical language for the modeling, analysis, and verification of systems. It is based on

UML but different with regard to diagram types. Specifically, UML diagrams are reused and

extended by it, as shown in Fig. 2-2 [68]. For this purpose, some adjustments and extensions to

the UML have been made; for example, incorporation of classes called blocks.

Figure 2-2: Relationship between UML and SysML.

SysML aims to provide a language that facilitates capturing of all different aspects of

information about a system in an integrated model. It would increase the communication between

different aspects of the model, and it decreases the ambiguity between the languages of the

designers and the stakeholders. It aims to capture functional, behavioral and performance models,

30

and also capture the structural topology of the system, the parts of the system and how they are

interconnected. Moreover, SysML incorporates requirements explicitly so that the extraction of

information about the system can be realized.

SysML is composed of nine types of diagrams, which enable the description of various

aspects of structure, requirements, and behavior. Fig. 2-3 shows different types of diagrams, some

of which have been adopted unchanged from UML and others have been extended and partially

renamed.

Figure 2-3: Taxonomy of SysML diagram

At the top of the hierarchy, there is a system diagram, and it is decomposed into four

categories: Requirement diagram, Behaviour diagram, Structure diagram, and Parametric diagram.

Requirement diagram allows the description of functional and non-functional requirements. In

addition, the existing relationships between different requirements and the system can be specified

and explicitly modeled. It can greatly help manage the requirements since they are represented as

a part of the system. Moreover, constraints can be added, and requirements become constraints on

the properties of the system.

SysML
Diagram

Parametric
Diagram

Structure
Diagram

Requirement
Diagram

Behavior
Diagram

Package
Diagram

Internal
Block

Diagram

Block
Definition
Diagram

Use Case
Diagram

State
Machine
Diagram

Sequence
Diagram

Activity
Diagram

31

The behavior can be modeled in SysML with four different diagram types. Use case

diagrams can be employed to describe the interactions of all users or external devices with the

developed system. State machine diagrams represent possible states of the system and state

transitions. The criteria for transitioning between states and the causes or triggers of these

transitions between states can be specified. Sequence diagrams concern logical ordering. They

describe scenarios and sequences of events, and how the system components should interact with

each other. An activity diagram describes the system processes including input and output data

and represents flows of activities that can be tied to system elements in order to add a function or

property to the element, to perform another operation on another part of the system. Furthermore,

a decomposition of the activities is possible to derive a kind of functional hierarchy. These types

of diagrams are very powerful in describing such aspects as the concept of operations. Use case

analysis is mostly focused on early concept development or stakeholder requirements, addressing

such questions as: how are they going to interface with the system, where do they drive value, and

how does the user interact with the system?

A structure model is based on blocks that describe the structure and relevant structural

configurations and properties of the developed system. Structure model also describes the

decomposition of the system and the parts that make up the system; for example, logical

decomposition and physical decomposition. Block definition diagrams define the structure of the

system and the logical or physical decomposition. It describes the relationships between different

blocks, their associations, generalizations, and dependencies. For example, if the system is a

spacecraft and it has various sub-systems, then, it could be decomposed logically, as a thermal

sub-system, a structure sub-system, ADCS sub-system or it could be decomposed physically, as

solar arrays, instruments, thrusters, and so on. Internal block diagrams establish the relationship

32

and the ties with the interfaces between the blocks (components) through ports, connectors, and

flows. They can have varying different levels of abstraction. Parametric diagrams are a sub-

diagram type of the internal block diagram in order to impose mathematical or logical constraints

on the interfaces and build up the infrastructure computation in the model. The parametric

diagrams can be modeled to define the relationships between the properties of different blocks

(e.g., physical laws). The packaging diagram is focused on the organization of the model and

displaying the scope of the system.

These diagrams can be cross-connected into what is called “the four pillars of the system,”

which are based on four basic principles represented by the following diagrams: requirements,

behavior, structure, and parametric. It is illustrated in the example shown in Fig. 2-4 [72].

The first cross-connector that joins these diagrams is “Allocation.” Behavior diagrams,

e.g., activity diagrams or sequence diagrams, can allocate a specific behavioral activity to a

structure block and add behavioral constraints. These will be embodied within partitions called

“Swimlanes.” The partitions represent structural elements, and they have the responsibility of

executing the behavior within the partition. The next cross-domain connecting element is the

satisfy relationship. This relationship is performed between the requirement diagram and the

structure diagram. It is shown on the structure diagram, e.g., block definition diagram, as a call-

out notation, which indicates that this particular structural subsystem or element is meant to satisfy

a specific requirement. As mentioned previously, the block definition diagram allows adding

values, functionalities, and attributes to the block. Value binding property allows to link these

values and bound them into a set of equations that are expressed in the parametric diagram and

create parameter constraints. Finally, requirements can be verified through interactions. These

33

interactions would run a test experiment based on the values in the model and be able to conclude

if the system’s values still satisfy the given requirements.

Figure 2-4: Relationships between different SysML diagrams.

Although, these diagrams are the way to define the system and its interfaces within the

model, they are not the model themselves. They can create links between diagrams in such a way

that if a change takes place in one diagram, it will propagate to the rest of the diagrams that have

a connection to the first change. So, it is similar to a database for the whole model that encompasses

all the information as opposed to having many isolated block diagrams.

SysML can map the complete design of a complex system, but it is limited to three aspects.

A large number of diagrams and constructs are only roughly predefined and do not always allow

34

a clear or even intuitive use. Also, a large number of constructs can sometimes be used in any

manner. The training is therefore done with much effort. The specification of an advanced

mechatronic system and its information processing and reasoning, which lead to behavioral

changes, is not directly addressed. Concerning the system design focus, functional decomposition

is only possible with additional effort. However, the function hierarchy derived in this way is not

primarily intended for solution finding.

2.3 Function-Behavior-State (FBS)

Although the terms function, behavior, and structure have been used in the past, it is not

until 1990 when they were clarified and used to define a framework for modeling and representing

the functionality of a system [73], [74]. In the FBS framework, function represents the functions

that the system performs; structure represents the physical elements of the solution, and behavior

acts as the relationship between function and structure. In the design synthesis, the behaviour is

derived from a function in order to obtain a design solution. When a solution is defined, its

behavior is determined to evaluate if it reaches the intended functionality. The FBS framework can

also be used as a methodology for the analysis of the design process, through the representation of

the evolution of the design state from the analysis of the design procedures [60].

In general, there are two approaches in the FBS design [75]. In the first approach, the

functions are related to the behaviors of an element; next, these behaviors are related to the

physical-structural descriptions of the elements. It was developed by Gero [60], who proposed the

design model Function-Behavior-Structure (Function - Behavior - Structure), and by Umeda et al.

[73], who proposed the design model Function-Behavior-State (Function - Behavior - State). This

first approach considers behavior as a key concept and determines a clear ontological order: objects

have their physical structure. This structure, in interaction with a physical environment, invokes

35

the behaviors of the objects, and then, the behaviors determine the functions of the objects [76]. In

the second approach, the functions of the objects are modeled in terms of inputs and outputs, and

these functions are directly related to the physical-structural descriptions of the objects [77]. It is

also known as Functional Modeling because it considers behavior as a mathematical representation

of the states of objects [26], [77]. Further discussion on FM is given in the next section.

2.3.1 Functional Modeling (FM)

In this dissertation, the term function is used analogous to the concept of function that

represents a formulation of the design task on an abstract level. Here, the function is described as

a statement that represents the general and intended relationship between input and output

quantities of the system, without having to indicate any particular form [37]. A Functional Model

(FM) in systems engineering and software engineering is a representation of functions (activities,

processes, operations). The purpose of FM is to describe the functions and processes that help to

discover the needed information and identify opportunities, and also to establish a basis for

determining the product. Product function can be used as a link to the development of new

innovative solutions [78]. Since the design process represents the solution to set tasks, the product

function is considered the central structuring agent for the abstraction of the design task and the

solution.

FM provides a high-level system view specifying the functionality of the product from the

product description, where functional modeling is the specification of models that describe the

function, and the functional relationships as objects and relations to the development process. Also,

functional modeling can be used to describe the procedure in the design process for designing the

sub-functions. Through functional product modeling, a solution-independent and abstract

representation of a task to be created can be represented [79]. For this reason, function modeling

36

is considered when modeling in a conceptual level, where functions can be drawn from the

realization of different customer requirements [80]. This abstraction of the basic concepts using

the product function is used in many areas of engineering and is supported by suitable development

tools, especially in electrical, electronic, hydraulic, pneumatic and software developments.

Although there are different definitions of functional modeling, this term can be defined as

in system engineering, which states what the system must do, which typically specifies a function

or behavior [81]. It is the designer’s task to analyze the customer requirements and then incorporate

the requirement into the main function. FM represents the link between the human design intention

and the designed system. Therefore, there is a coexistence of different FM structures due to the

subjectivity of the design’s purpose, action, and behavior with external interactions [82].

2.3.2 Knowledge Base and Design Libraries

The design development process requires the provision and linking of different sources of

knowledge, especially in the early stages of design development. In the context of the realization

of innovative products, the provision and evaluation of related knowledge play a critical role.

Effective use of knowledge resources is a key factor that influences design innovation. According

to [83], the design knowledge may consist of: (a) an implicit knowledge, obtained through the

acquired experience [84], and (b) an explicit knowledge derived from previous methods, design

models, strategies or projects.

Design knowledge can support MBSE by incorporating the system knowledge into SysML

as libraries [20]. These libraries can significantly support the modeling capability through the

integration of the knowledge reuse into the united modeling representations of SysML [85].

Commonly in object-oriented software development, the designer is provided with a collection of

libraries of basic software functionalities for reuse [25].

37

 [86] claims that it is faster to adapt existing components or design elements in a new design

than to start from scratch, and this will reduce the design time. The goal of design reuse is to make

use of existing designs, either by reusing the whole design, which shortens the design time or by

changing or updating the design, which takes less time. In addition to reducing the modeling time,

design reuse has the potential of significantly saving time and cost savings in downstream

assembly, engineering, manufacturing processes, and sales [87]. Existing designs have the

advantage that they have already proven themselves in the market and has quality that is accepted

by the customer [88]. It is estimated that the performance of the product can be improved by about

20% in this manner [89].

 The evaluation and reuse of the mentioned solution modules require a high degree of

multidisciplinary and up-to-date knowledge of the most important relationships. Therefore, the

reuse of a third-party external knowledge base can be enabled, which is discussed next.

2.3.2.1 The Functional Basis (FB)

Functional Basis (FB) is important because of the need for a consistent approach to

accurately represent and connect between abstract functions [90]. FB is a method that is widely

used to increase the formality of the design process [91]. Functional modeling is created to reduce

ambiguity in the level of modeling of an object, and it requires formal methods. Therefore, FB

discriminates between the meaning of functions and flows. In FB, functions are represented by a

graphical transformation between the input and the output flows. The flows are divided into three

essential types: material, energy, and signal. The primary function is represented by a black box

with inputs and outputs, which indicates the flow of the system. The inputs and outputs of a

function/sub-function correspond to the boundary interactions. By splitting the overall function

into sub-functions and assigning the input and output variables to the sub-functions, a functional

38

structure is formed by which different levels of abstraction can be represented in a hierarchal

manner [92]. Taking into account the cause and effect relationship of individual sub-functions, an

assignment of solutions to the respective sub-functions takes place in the subsequent construction

steps [92]. Then, a distinction can be made as to whether solution components, which are already

present can be used for the realization of a particular function, or first, the function has to be

developed further to be captured by solution components [28].

FM contains controlled vocabulary in a design knowledge repository, which consists of 53

functions (in a verb form) and 45 flows (in a noun form). Each function and flow are structured in

a three-level hierarchical taxonomy [91]. The most abstract forms are at the highest level, which

is called “primary class,” e.g., branch, channel, or convert for functions, and energy, material, and

signal for flows. The next level is called “secondary class” and contains more detailed functions

and flows. For example, separate is a secondary level of the branch, and solid is a secondary level

of material. Caldwell et al. [93]–[96] investigated the use of FB and concluded, through an

empirical evaluation, that the two levels of taxonomy can provide the most descriptive information.

Moreover, free language can be incorporated with FB for a better description of the functional

model, especially for the description of flows [97].

2.3.2.2 Simcenter Amesim

Simcenter Amesim [27] is an integrated, scalable simulation platform for mechatronic

systems. It allows to virtually assess and optimize the mechatronic system’s behavior and

performance throughout the development cycle as well as during its usage. The modeling level is

most suited for simulating the entire system by describing the power exchange between

components, and it is well suited for design in the system level. Amesim includes more than 5000

39

ready-to-use multi-physics and multi-domain library models for mechanical, electric, thermal,

control, hydraulic, pneumatic, and chemical simulation.

This level of modeling is adaptable, so it can cover different physical domains and different

applications. The theoretical framework of this system modeling level is bond graph theory [98].

The modeling approach considers the power exchange between components while respecting the

balance equations of physics. The modeling approach is based on the connection of elementary

models by using power links. This method, which is called a multiport approach, makes it possible

to associate different modeling assumptions in the same graphical representation, which affords

good representation of the technology [98]. The analytical model has the form of ODEs (Ordinary

Differential Equations) or DAEs (Differential Algebraic Equations).

For mechatronics, an integrated system-level performance simulation process is crucial. It

is only by applying such a process that the development complexity of a mechatronic product can

be handled in a timely, cost-effective and qualitative manner. Existing designs usually contain

accurate calculations of the costs and the required design times. By providing up-to-date

information about previously used design components, time can be saved and the accuracy of

estimating new projects can be increased.

2.4 Simulation Model Transformation

Simulation-driven design can be defined as “a design process where decisions related to

the behavior and the performance of the design in all major phases of the process are significantly

supported by computer-based product modeling and simulation” [99]. In the DDP, different

simulation methods are used for the digital validation of products, which can be classified

according to their level of fidelity. In the late stages of DDP, for example, embodiment design and

detail design, the computational support is widely integrated. For example, Siemens NX [100] and

40

CATIA [101] are well-known Computer-Aided Design software (CAD) that are used for part

modeling and assembly, in which these models are subjected to further analysis. Electrical analysis

is done through electronic design automation (EDA), for example by using AGNISYS [102]. It

would cause a consistency disagreement between different units because of the design

independence [58]. Therefore, data management is needed to govern the information between

these different tools. Also, early stages of DDP lack computational support tools [103]. Moreover,

systematic methods are needed to translate from a descriptive environment, for example,

conceptual design, to a parametric environment, for example, detail design.

FM provides a functional structure that only represents a functional descriptive process of

how the product will operate, in which solutions are independent of any physical forms. A major

emphasis of the integration with external analysis tools is the integration of an informational and

descriptive model with an analytical model and to enable the transformation of information from

the descriptive model to the analytical model. SysML does not have built-in analysis capabilities,

and it cannot run a model or calculate equations. However, the tools that are implemented in the

system can provide those analysis capabilities built into the tools as opposed to the SysML

language. For example, in the parametric diagram, a system of equations can be generated, which

can then be solved.

The formalization of FBS (as addressed in section 2.3.1) has been established, where

functions are transformed into behaviors. Then, with the use of computational support, simulation

models are created. These high-level simulation models can roughly specify a system of linked

parameters that satisfy the functional requirements. These parameters determine the superior and

inferior designs within this range of parameters.

41

 Accurate and detailed simulation models are becoming increasingly complex and time-

consuming. An economic simulation is only possible through low fidelity models. Besides, the

current practice is to evaluate several different high-level simulation models quickly and perform

an early elimination process. At an early stage, a set of equations that describe the system’s high-

level behavior is established, with the support of model reuse integrated into the design

environment, which requires a minimum of analysis [104]. It can facilitate the following aspects:

significant evaluation of the design models at an early stage, high-level, cross-architecture, and

multi-domain analysis, and consistent transition to the detail design [105].

2.5 Evaluation of Mechatronic Design

Conceptual design solutions must be achieved without violating the design constraints.

Engineers encounter many challenges when making design decisions because design constraints

might be conflicting.

In [106] Grabisch applied multi-criteria decision making by using a fuzzy integral. He

showed that the traditional weighted average technique merely assumes independent criteria and

therefore, a well-established methodology was needed to model interactions between criteria. He

presented Choquet and Sugeno integrals to overcome this problem. However, a drawback of that

approach is the growing number of coefficients. Marichal [107] introduced an axiomatic approach

for criteria interaction and aggregation in Choquet integrals. He illustrated the behavioral analysis

of aggregation with different interactions by using simple examples. De Silva [108] and [4]

proposed a design objective function called Mechatronic Design Quotient or MDQ, which

addresses the dynamic interaction between components and subcomponents of a mechatronic

system by using separate design indices to express the design criteria for the subcomponents. MDQ

is used to achieve optimal performance by aggregating these indices (design criteria) into the MDQ

42

and optimizing it. In [109] Labreuche and Grabisch addressed the preference of decision making

over each criterion and interaction of criteria using a utility function. They introduced two new

terms: intra-criteria and inter-criteria information. The difficulty of intra-criteria arises from the

need for precise prior knowledge of the aggregation function. In [110] Labreuche addressed the

construction of a Choquet integral and the value functions without considering multi-criteria

decision-making. He investigated the value and capacity of the evaluation function. The basic idea

was, if we were to alter criterion 𝑖, while the other criteria are kept fixed, then the weight of

criterion 𝑗 changes when its value is equal to the value of criterion 𝑖. This method enables the

construction of a sequence of corresponding values on different criteria. Behbahani and de Silva

in [111] used the aggregation of Mechatronic Design Quotient (MDQ) to develop a new

mechatronic system methodology for the conceptual design stage. They used a nonlinear fuzzy

measure through the Choquet integral, which has an advantage over the weighted average, as it

takes into account interactions between criteria. To validate their work, they presented a case study

of designing a manipulator of an industrial fish-cutting machine called the Iron Butcher. The

exponential growth of the number of fuzzy measures was an issue. In [112] Xia et al. extended the

work of Behbahani and de Silva where he addressed the problem of the growth of fuzzy measures.

The 2nd order Choquet integral was introduced. It allows modeling of the interaction among criteria

while remaining operational and straightforward. Later Gao and de Silva applied estimation

distribution algorithms for constrained optimization problems [113].

43

Chapter 3: A Systematic Model-based Process of Conceptual Design

Development

This chapter presents the approach of design process modeling for the present

development. In the beginning, an overview of the design process methodology is introduced,

followed by the details of the design process model. Next, the proposed macro-level design process

model is presented, followed by a micro-level design process model. Both methodologies are based

on Model-based System Engineering for the support of the integrated development process of

mechatronic systems. In the former model, the multi-layer V-model design process is presented,

and in the later model, the characteristics of the design tasks and activities within the macro-level

design process are given.

Finally, a case study of an industrial fish cutting machine is given to demonstrate the

presented design methodology, which the rationalization of the choices of the current solution is

investigated.

3.1 Integrated Design Process Methodology

As discussed in Chapter 2, the challenges, which the designers encounter in the design of

multi-disciplinary complex systems require integrated design methodologies. However, for an

optimal and integrated design development process, the two main types of problems that must be

overcome are “process-based problems” and “design-data related problems.”

After analyzing these problems, two aspects of the integrated design approaches are

investigated. The first aspect is the “macro-level design process,” which describes the general

development process guidelines of the design phases and activities. [10] classifies the “macro-

level design process” into macro-level collaboration and macro-level interface. The macro-level

44

process focuses on the collaboration of different homogenous disciplines and guidance for the

design activities. Macro-level interface explores the compatibilities of the components/sub-

systems interfaces.

The second aspect of the integrated design approach is the “micro-level design process.”

This process is categorized into: micro-level collaboration and micro-level interface [10]. Micro-

level collaboration examines the communications of the engineers and designers regarding

different views of the design. It also includes the data exchange between the engineers and the

stakeholders. The micro-level interface allows engineers from different disciplines to share

information or data during the design process, through formal or informal interactions.

The present work utilizes the System Engineering (SE) approach to support the integrated

design of complex mechatronic systems. A combination of approaches is used for the modeling of

the “Macro-level design process.” The first approach employs the V-model [48] as a

comprehensive process model to guide and direct the general structure of the design process, and

give a holistic view of the process. The second approach exercises the systematic design approach

presented by Phal and Beitz [37] to represent the level of detail of the development process.

Therefore, the “macro-level process” here is based on the V-model, but its phases are amplified

based on the systematic design of Phal and Beitz to better manage the complexity. It is useful in

managing the issues of the macro-level collaboration and macro-level interface, where the

combination of the two methods provides a faster response to the dynamic changes of the design

process, and the integration capabilities are enhanced. For the development of the “micro-level

design process,” SysML is utilized so as to represent all the aspects/activities of the system. Also,

it describes the links, connections, and interfaces of the system. Therefore, it facilitates the

45

collaboration and coordination between different engineers. Moreover, it provides a common

language, which enables traceability between the various components/sub-systems and functions.

In the next section the developed integrated design development process is introduced.

3.1.1 Macro-level Design Process

The macro-level DDP model that is developed in the present work reconciles the general

structure of the V-model as described in VDI guideline 2206 [53], [54]. It represents a general

flow of the activities of the design process of mechatronic systems, complementary to which are

the existing guidelines, especially VDI 2221 [48], [49], and VDI 2422 [50]. The main reasons for

selecting the V-model from the domain of software engineering for use in mechatronic systems

are the following:

• The V-shape strictly enforces the top-down approach (system design) and the bottom-up

approach (system integration).

• The presence of permanent verification/validation of the requirements and functions on the

left side is essential during the system integration on the right side.

• It has usage practicality and acceptance when industries use it for the design of mechatronic

products and systems [54].

The VDI guidelines establish a parallel design for each engineering discipline, and then the

discipline-specific sub-systems are integrated into the overall system. Some issues arise as a result

of the integration of the discipline-specific sub-systems/components. They include the lack of

communication of data during the parallel development process [58]. Moreover, the general

structure of the V-model suffers from the structure rigidity, which makes it difficult to implement

any changes mid-way. Therefore, the present dissertation proposes an additional extension to the

existing V-model. Specifically, it develops and adds more organization and transparency to the

46

DDP, increases its flexibility, reduces the design search space, reduces the number of design

iterations, and supports sub-system integration [114].

Macro-cycles According to the Degree of Details

The macro-level DDP of the V-model may be defined as generic procedure steps for use

as a management tool. The model provides an overview of the project cycle and the way to relate

different development activities at several phases with the corresponding integration development

activities throughout the system life-cycle. It is necessary for complex mechatronic systems to go

through several cycles within the macro-level in a systematic manner in order to properly prevent

design defects and accurately consider the customer needs during the development process.

Therefore, the present work exploits the VDI 2206 for the macro-level and combines it with the

design methodology by Pahl and Beitz [37] to represent the degree of detail. The design

methodology of Pahl and Beitz is preferred because of its level of detail and its use in product

design [115]. This combination increases the systemization and organization of the development

process. It elevates the validation/verification capability, amplifies the design cycles, and responds

more appropriately and accurately to rapid changes of the customer and market requirements.

Each cycle of the V-model represents a stage of the design process, as described by Pahl

and Beitz. Fig. 3-1 shows the proposed V-model with different design cycle phases, which

represent the level of detail.

The process model results from the combination of the V-model 2206 guidelines to

symbolize the general structure. The Pahl and Beitz design methodology describes each cycle of

the V’s. Specifically, the breakdown of the layers is divided into four main phases: product

planning, conceptual design, embodiment design, and detail design. The design process begins

with the identification of the requirements. The design process activities then start with the inner

47

V-model, going down from the left-hand side and then up from the right-hand side. If the output

of the inner V-model meets the corresponding requirements, then it goes to the next phase

“Conceptual Design.” Otherwise, an iteration process would be carried out until the output of the

inner cycle meets the corresponding requirements. The verification and validation test enforced in

each phase will significantly reduce the number of iterations in the later phase. Therefore, the

overall development costs and the time-to-market can be greatly reduced. This cycle is repeated

throughout all the sub-V-models until the final product is developed through the outer V-model.

Figure 3-1: The proposed conceptual macro-level process.

Product
Planning

Conceptual
Design

Embodiment
Design

Detail
Design

Access

Requirements Iteration

Degree of detailDegree of detail

48

Throughout the first cycle, the designed mechatronic product undergoes a market analysis

to help find and select product ideas. The intended functionality and specifications are then

defined. These specifications and functions are elaborated in detail in the second cycle, describing

the product functionality, in order to identify solutions that fulfill the required functions. These

solutions are then used to develop working structures for the product. In particular, combinations

of solutions are developed into principal solution variants, which are evaluated before they

undergo the third cycle. The form and layout are identified in the third cycle. Auxiliary functions

are also defined, and design solutions that satisfy these functions are found. Then, detailed and

compatible layouts for the primary and auxiliary functions are developed. This cycle ends with the

evaluation and optimization of the design. In the final cycle, assembly drawings are developed and

the production documentation is completed.

One advantage of this model structure is that each stage is subjected to rigorous tests of

compatibility, verification, and validation. Furthermore, the model is adaptable to dynamic

changes of the customer requirements, which resolve the problem of rigidity of the V-model.

Additionally, the granularity of the requirements can be incorporated into the proposed model quite

appropriately, as shown in Fig. 3-1, since the reality is that customers provide more accurate and

detailed product requirements as the design process progresses. Moreover, the proposed

enhancement of the V-model is developed based on a typical and accepted system engineering

approach that is used by industries in the context of mechatronic systems.

The V-model and other tools and methods that are used for the support of the design

development of a mechatronic system [116] primarily addresses analysis, and there is no specific

support for the synthesis of the device components [115]. Hence, combining the VDI 2206

49

guidelines with a well-accepted design methodology such as that by Pahl and Beitz is desirable for

extending the industrial application of the V-model methodology.

The next sub-section presents the macro-level process cycle of the proposed multi-layer V-

model, for the conceptual design process.

3.1.2 Conceptual Macro-level Process

The details of the conceptual macro-level process cycle, which describes the procedure

patterns of the conceptual design phase, is discussed in this section. Researches in the automotive

industry [117] indicate that there exist issues related to the integration of the discipline-specific

sub-systems. These issues result from addressing the integration of the sub-system in the later

stages of DDP. As a consequence, the design process becomes inefficient with respect to cost and

time. Also, the information provided from the domain-specific partial solution does not optimally

satisfy system integration.

In an attempt to improve the integration of different disciplines associated with a

mechatronic product, the proposed conceptual macro-level process cycle incorporates the virtual

integration and simulation in an early phase of the design process – the conceptual design phase.

Therefore, it enhances the capabilities of concept analysis and evaluation.

The early concept design process of a product involves three stages: a general descriptive

stage, a virtual simulation stage, and an extensive analysis and evaluation stage. The enhanced V-

model focusing on the conceptual design process cycle comprises three segments: the left-hand

side of the V-model represents “Concept design and modeling,” the bottom of the V-model

portrays “Run-time concept integration and simulation,” and the right-hand side of the V-model

depicts “Concept analysis and evaluation.” The proposed conceptual macro-level process cycle of

the V-model is shown in Fig. 3-2.

50

Figure 3-2: The proposed conceptual micro-level process.

3.1.2.1 General Descriptive Sub-process Phase

In the general descriptive sub-process phase, the concept design and modeling are

conducted, where a description of domain-spanning solution concepts is defined. It utilizes the

model-based design approach for the development of a CIM, in which functional, physical, logical,

and structural characteristics are represented as different views of the designed product. The

description of this sub-process phase uses flexible graphical modeling languages in order to

thoroughly describe the solution concepts. This technique supports the integration of different

disciplines in the domain-specific environment [118], by providing constructive information, i.e.,

multidisciplinary interface information. Other techniques include customizing the system into

structured modules in order to reduce complexity [119], and early modeling and concept

simulation [120].

Conceptual
SolutionsRequirements Iteration

Run-time concept
integration and

simulation

51

Different phases of the concept design and modeling sub-process are modeled and

described using schemes diagrams and semantics that include developed requirements, functions,

or generic structures, each of which is modeled with a different graphical language. The product

description models enhance clarity, since they should be understandable by all persons involved

in the modeling process. The challenges arising from the links between different views of the

product models are addressed, and relationships between different views are developed.

CIM contains all the information necessary to describe a product from different viewpoints,

which can be stored, accessed and reused more conveniently and can replace paper-based methods.

However, the models arising at the description level cannot be interpreted and executed in their

entirety by the computer.

3.1.2.2 Concept Integration and Simulation Sub-process Phase

The second sub-process phase of the conceptual macro-level process comprises virtual

integration and simulation. Those activities provide a consistency check for the system model,

which is developed in an object-oriented or component/sub-system-oriented manner. For example,

the physical laws of the system must be complete and consistent, and they are not only stored but

also executed in the model.

The degree of detail is more abstract, from which generalized components can be

constructed and simulated, for example using a component library. These simulation models are

used to gain insight into the first set of conceptual ideas, which describe the product components

and their behavior and provide a high-quality content. Also, they provide further understanding of

the system. For example, some parameters need to be set, which might be neglected during the

sub-process of concept design and modeling development.

52

The boundary between descriptive, function-oriented models and simulation models is

abstract, and it is challenging to manage the virtual integration of them. Direct mapping to link the

two sub-process models would be very complex due to the scope of the simulation models. The

transformation of a concept model into a concept simulation model would require connecting the

relationships between various components that are used, in order to complete the virtual

integration. Then, a system of equations which constrain the properties of components has to be

created to assure product properties, since these components carry the relevant domain

information. These equations and constraints can roughly determine the set of parameter values

that are required to satisfy the functional requirements. These values can be an upper limit, a lower

limit or a range of acceptable values.

Additionally, the design sub-process phase enables the development of control system

strategies in parallel with the development of the integration process.

3.1.2.3 Extensive Evaluation Sub-process Phase

The third sub-process phase constitutes the development of an extensive and

comprehensive set of evaluation techniques. Generation and evaluation of a design solution are

two tightly interconnected phases of the conceptual design. Effective evaluation of possible

conceptual choices is the key condition in the conceptual design stage.

Design evaluation assesses how well the design solutions will function or behave against a

set of non-functional requirements. In this context, non-functional requirements may include

criteria, attributes, and constraints, for example, non-parametric constraints. Determining the non-

functional requirements is done after reviewing the design tasks and customer needs and

performing the requirement analysis, which is done during the first inner cycle of the V-model –

product planning. The selected attributes and sub-attributes have to be operational in order to

53

identify how well each conceptual design solution meets the design requirements expressed by the

attributes and sub-attributes.

The multi-criteria design evaluation index MDQ, which stands for Mechatronic Design

Quotient [29], is used in the present work to evaluate conceptual design solutions. Cost, weight,

quality, and flexibility are examples of non-functional requirements. Once the non-functional

requirements are obtained, their relative importance is determined subjectively for the evaluation

of the conceptual design solutions. The Analytical Hierarchy Process (AHP) and the pairwise

comparison can be utilized to ensure the consistency of the weights. AHP is a Multi-criteria

Decision Making (MCDM) technique that is used to assist the decision-makers in solving complex

problems as well as handling multiple conflicting and subjective criteria.

Product development processes generally have an iterative character, since problem-

solving initially requires a great deal of information, which is gradually reduced by repeating

certain steps several times. The results of the conceptual design macro-level process cycle are

solution concepts, which are analyzed and evaluated against a set of customer/non-functional

requirements. The intended functions also have to be fulfilled. To help with the subsequent design

cycle – the embodiment macro-level process cycle, requires results at a lower level of abstraction,

and thus a network of specified parameters is identified. Therefore, a fewer number of iteration

cycles are needed and consequently the design time-to-market, cost, and resources are reduced.

The micro-level process involves the development of the design model activities in the

concept design and modeling sub-process and the relationships between them. Chapter 4 gives

more details of the micro-level process model.

54

3.2 Case Study System

The reconfiguration and the design of the Iron Butcher (IB)—an automated fish cutting

machine, is used in the present investigation as a case study to evaluate the validity of the proposed

methodologies. This case-study system is described in the present section. The fish cutting

machine has been developed in the industrial automation lab (IAL) of the University of British

Columbia. The machine automatically cuts the head of fish accurately while minimizing the

manual operation and the wastage of fish meat [121]. The Iron Butcher has many functions and

sub-systems, including: an electromechanical conveying system, a hydraulic system, and a

pneumatic system, as shown in Fig. 3-3.

Figure 3-3: Iron butcher.

 The electro-mechanical conveyor system falls into the category of a mechatronic system.

In the present case study, this system, which is used to transport fish from the feeding station to

the cutting station, is considered. Conveyor systems are widely used in fish processing machines

in order to provide intermittent motion for the fish during transportation, inspection, and

55

processing. A 3-phase AC induction motor (Fig. 3-4 (a)) is connected to a variable-diameter pulley

(VDP) to compensate for any speed variations of the motor. The VDP is connected to a gearbox

to increase the torque and decrease the velocity. A mechanical linkage is used to convert the

rotational motion to the translational motion of the conveyor, thereby moving its sliding

mechanism horizontally. The intermittent motion profile is planned in such a way that the cutter

has sufficient time to cut the head of each fish with minimum meat wastage, when the fish is

stationary. Furthermore, the fish has to be held firmly during the transportation and cutting

operations. It is done through several fixtures (fingers) that fold or stay open according to the cycle

of motion (Fig. 3-4 (b)).

Figure 3-4: Conveyor system; (a) AC induction motor (left), (b) Sliding mechanism (right)

The motion cycle of the conveyor system has a continuous motion segment and a dwell

(stationary period). Specifically, there is an acceleration from rest and deceleration to rest (and

possible constant-speed motion in between these two segments). There are many acceleration

profiles such as constant, trapezoidal, and sinusoidal. Sinusoidal acceleration/deceleration profile

is commonly used for indexing systems because it provides minimal jerk (rate of change of

acceleration) as shown in Fig. 3-5. The cost is mostly attributed to the drive system and the speed

controller.

56

Figure 3-5: The acceleration profile of the conveyor system.

O
ut

pu
t s

ha
ft

 a
cc

el
er

at
io

n
(d

eg
re

e/
s2

)
Acceleration Deceleration Stop

57

Chapter 4: Micro-level Process Model

The details of the micro-level process model are presented in this chapter. It defines the

underlying organization of the different design activities in the phase of concept and modeling

sub-process. Moreover, the relationships between the design activities are described. The design

activities considered here incorporate specific model information that is derived from an overall

model, to cover different aspects of the system. From the model-based design point of view,

various design phases throughout the life-cycle of an engineering system need models with

relevant objectives and details [122]. In the conceptual design phase, this model information is

more general and abstract, which considers different characteristics of the design process, such as

hierarchical decomposition and modularity.

An exchange of process models takes place between the macro-level process and the micro-

level process, in order to maintain the relationships between different activities systematically and

efficiently.

4.1 Concept Design and Modeling Sub-process Phase

The design activities that take place in the left wing of the V of the conceptual design will

refine the task of conceptual modeling. The aim here is to generate innovative conceptual design

solutions that satisfy the customer’s functional and non-functional requirements. These activities

can be represented as requirement modeling, functional modeling, and structural modeling, as

shown in Fig. 4-1. Each of these represents a specific aspect of the stage of conceptual modeling

and design. The next section describes these activities.

58

Figure 4-1: Details of the phase of concept design and modeling sub-process.

4.1.1 Requirement Modeling

For a mechatronic product, the technical and economical product requirements play a

decisive role since they define the goal of the development task. Therefore, it is necessary to taken

into account the prior-defined requirements for the product.

The requirements define the desired properties of the product to be developed, and they

limit the available solution space to only what meets the requirements. The product task must be

specified, in which the intended requirements are described in general terms, i.e., without

anticipating specific future solutions. Also, they must be formulated in a solution-neutral manner.

System modeling should ensure efficient management of the requirements to guarantee their

fulfillment. Utilizing a modeling tool for requirement modeling is generally preferred. It can help

in incorporating this information in the product model, which provides a formalized knowledge

Conceptual
SolutionsRequirements Iteration

Run-time concept
integration and

simulation

Requirements
modeling

Functional
modeling

Structural
modeling

59

base at this stage [43]. The first requirement can be derived from the overall description of the

product task.

Requirements can be initiated both externally and internally, for example, by stakeholders

and engineers, during the development process. However, usually, requirements do not contain all

the required information at the beginning of the design. So, a continuous process to obtain

information and coordination with the client is necessary. For example, detailed requirements may

not be available at the conceptual design phase, and designers may obtain the needed requirements

at another more detailed design phase.

The initial requirements will lead to more detailed requirements, and these requirements

can be further decomposed to create a hierarchy of requirements. Every requirement must be

properly clarified at the beginning so that additions and changes would be reduced to ae bare

minimum, in order to save time, capacities and costs. Depending on the level of detail, the

requirements may be applicable to the overall system, the sub-systems/components, or the

interconnections between the subsystems/components.

Requirements can be categorized into four groups: Global requirements, Cumulative

requirements, Specific requirements, and Interconnected requirements. They are clarified below.

1- Global requirements are those that must be applied to every single sub-system/component;

for example, lead must not be used in any sub-system/component of the system.

2- Cumulative requirements are those that account for the degree of participation of various

sub-systems/components in the overall system; for example, the overall cost of the system

must be less than the sum of separate costs of the individual sub-systems/components.

3- Specific requirements are the requirements that are relevant to a particular sub-

system/component; for example, electromagnetic pulse protection (or shielding)

60

requirement is relevant to the electrical sub-system, or lubrication requirement is relevant

to the moving parts in the mechanical sub-system.

4- Interconnected requirements are those that are influenced by other requirements. For

example, the energy consumption requirement, which is a measure of the system

performance, is related to the dynamic properties of the system; for example, the maximum

mass and the required driving force. The mass and the required force requirements can be

determined independently. Therefore, through the physical relationships between the mass,

the required force, and the energy consumption, the system performance requirement can

be determined [122].

A hierarchical structure at different levels of detail should be established for requirement

modeling. Consequently, the functional model can be constructed following the hierarchical

structure of the requirement model. System Modeling Language (SysML) can be utilized for the

modeling of the hierarchical Requirement structure, and for implementation of the relationships.

4.1.2 Functional Modeling

A function is a statement of the task or role of the system, which shows the relationship

between the available input and the desired output, without having to indicate any particular form

[32]. It represents the functions that the system performs. It also provides a formulation of the

design task on an abstract level. It typically specifies a function or behavior; for example, water

heating or energy conversion. Starting from the list of requirements, abstracting must formulate

the essential problem and derive the overall function. This concept is adopted in the present

dissertation, from past work [32], [35], [123], [124]. In most cases the overall function is very

complex and must, therefore, be subdivided into sub-function, which creates a function structure.

61

A Functional Model (FM) is a representation of functions (activities, processes,

operations). The modeling of the functions of the objects is followed in the present work according

to [125], where the function description is in terms of inputs and outputs, and the functions are

then directly related to the physical structure. The purpose of FM is to describe the functions so as

to facilitate discovery of the needed information to help identify opportunities and to establish a

basis for determining the product. Product function can be used as a link to the development of

new innovative solutions [78]. Two aspects can determine the degree of functional integration for

the formation of a product function: first, with regard to the functional structure, and second, with

regard to the number of functions that are realized. The degree of functional integration improves

the customer benefits, provided that the realization of the product, and at the same time, the given

requirements are met. In products with a high degree of functional integration, there exists a great

potential for creative innovation.

Functional structures are considered as graphical representation of functional models.

Usually, a given product does not have a unique structural representation, which is one of the

frequent criticism of the functional model even with the support of a systematic methodology

 [122]. As an attempt to help overcome this problem, a hierarchical structure for the functional

model of the product under consideration is used. [126] developed a computer-based support for

the concept development phase to facilitate the data management aspects of the product models.

SysML was utilized to model the different types of ports of the functional model. [92] proposes a

functional decomposition technique, which is based on the function interfaces. Moreover, the

decomposition of the hierarchical structure must be derived in order to fulfill the desired

requirements and help serve the intended design task. Therefore, proper relationships between

requirements and functions must be established. Despite that different modeling methods have

62

been proposed to help engineers/designers in the modeling of the functional structure, for example,

APTE, and IDEF. However, these methods are not suitable for representation of the hierarchical

structure [127].

In the present work, the hierarchical functional structure of the functional model of the

designed product is developed using the system modeling language SysML. More details are found

in Chapter 5.

4.1.3 Structural Modeling

After performing functional modeling and decomposing the functional structure, the

designer should come up with conceptual design solutions. First, a component, a set of

components/sub-system, or sub-systems that represent instantiations of the physical forms or

objects that satisfy each sub-function, should be identified [28]. These form solutions are then

combined within the solution environment to form the complete structure of the final form of the

product [128] - conceptual design solutions. A large number of conceptual design solutions are

generated in this manner, which will be evaluated against the relevant requirements. A significant

challenge in the conceptual design phase is the complexity of obtaining the sub-systems in the

presence of incomplete information, such as the parametric values. For example, a sub-function

“Convert Electrical Energy to Mechanical Energy” does not indicate a parameter value, size, or

shape. Electric motors are sub-system instantiations that can describe the behavior of a sub-

function. The transformation from the functional structure to the sub-systems requires engineering

expertise, experience and judgment; however, the transformation may not be one to one. Several

sub-systems or physical component instantiations may satisfy a specific function. So, depending

on the case and the function type, one function may need the satisfaction of more than one sub-

system. On the other hand, one sub-system might satisfy more than one function.

63

Any major component type should be as general as possible but sufficiently specific to

allow the user to build a clear abstraction of the component that can be used during the conceptual

design. [127] suggests that the structural model should exhibit the decomposed sub-functions, so

that the consistency can be maintained. Therefore, a complete structural model is achieved by

decomposing the sub-systems, in which the decomposition process is applied recursively.

Now, we encounter such questions as: how can we appropriately construct a structural

model hierarchy, and at what level of detail? At first, the sub-system should be as general as

possible, and at the same time, sufficiently specific to provide a proper yet abstract definition of

what function the sub-system accomplishes. Then, the decomposition process is continued until

two conditions are met: Completeness and Exclusivity [28]. Completeness ensures that a set of

decomposed components completely provide all the necessary parts of the parent sub-system.

Exclusivity indicates the independence of the functionality of the sub-systems. Based on these

criteria, the lowest level of the structural decomposition can be obtained by the standard

components from handbooks, past design solutions [127], or simulation components, as presented

in Chapter 6.

4.2 Realization of Consistency between Macro- and Micro-level Processes

Design development of a system is based on an interplay between the conceptual macro-,

and micro-level processes of the system. Generally, in the beginning, the design process has a high

level of uncertainty because the most significant properties of the principal design solutions are

unknown [122]. The macro-level process manages the development of the design and gives an

overview of the design activities, where the multi-layer V-model represents the development

process. The type of macro-level development process has a significant impact on the design

64

activities of the micro-level process [122]. Therefore, these two processes have to be developed

simultaneously.

The micro-level process utilizes a model-based design approach for the development of the

CIM, in which requirements, functions, and structures are represented as different model views of

the designed product. CIM contains all the information that is necessary to describe a product from

different viewpoints, where the information is stored, accessed and reused more conveniently.

However, the exchange of information between different views of the model is essential in order

to allow an adequate transition from system models to domain-specific models. This transition of

information requires a collaboration between different model views of the product, described by

the CIM, with the process model represented by CDDP. This exchange of information between

the two processes is shown in Fig. 4-2.

Figure 4-2: The development of the design process.

According to [129], two types of integrations are relevant in the design of mechatronic

systems. An integration that is related to the process and the product, which needs a high-level

collaboration between engineers and also among different design disciplines [129]. It is directly

related to process-based problems – section 1.2.1. The present work contributes to the development

of a design process that facilitates the involvement of various engineers. However, since the

present focus is on the conceptual design phase, only the relationships between different model

views of the CIM of the product are considered.

Product Model

Process Model

65

On the other hand, the integration associated with the product will require functional and

physical integration. The present work presents an interface model that enables the exchange of

information between different model views, which addresses the design data-related problems –

see section 1.2.2.

The next section describes the development of the transitions between the macro- and

micro-level processes.

4.2.1 Transition from Macro-level Process to Micro-level Process

The macro-level process is utilized to organize the exchange of information between

different views of the CIM. Also, a hierarchical structure is established for each view of the model

to maintain the consistency of the information, and to allow the exchange of information at

different levels of abstraction. This process also determines the model granularity, which describes

the level of detail that a model has been subdivided into. This entire process would enable an

efficient evaluation of the transition from the customer model perspective to the engineer model

perspective of CIM, which facilitates the progression from the conceptual design phase to the detail

design phase.

This process of information exchange between different CIM views is represented in the

macro-level process model in two ways. First, the functional model hierarchy should correspond

to the requirement model hierarchy, for requirement tracking. Second, the structural model

hierarchy should correspond to both requirement model hierarchy and functional model hierarchy

for requirement and functional tracking, as shown in Fig. 4-3.

66

Figure 4-3: Information exchange between the product model and the process model.

 This arrangement supports the exchange of information by enabling traceability between

different model views, which can be visually depicted. For example, the functional model is

extended to form a V-shape so it can exchange information with the requirement model. In the

same manner, the structural model is extended to exchange information with both the functional

model and the requirement model. Also, it facilitates the functional integration and the structural

integration.

 However, the exchange of information might not be one to one, or they must have the same

level of abstraction. For example, the cost requirement from one abstraction level of the

requirement model might encapsulate components at multiple levels of detail. Also, each model

view is allowed to generate multiple levels of abstraction without the need to exchange information

Conceptual
SolutionsRequirements Iteration

Requirements
modeling

Structural
modeling

Functional
modeling

Run-time concept
integration and

simulation

Requirement modeling

Functional modeling

Structural modeling

67

with other model views. It can be concluded that different model views would make the exchange

of information challenging and difficult. Therefore, an Interconnection Model is developed for the

three model views. They are discussed in detail in the following section.

4.2.2 Transition from Macro-level Process to Micro-level Process

The micro-level process is developed to model different types of information. However, a

common language for interconnections is required for effective communication between different

model views. Therefore, the present dissertation develops an Interconnection model to facilitate

modeling the process activities within and between different model views of the CIM. It also

advances the synchronization between macro- and micro-level processes. Besides, customers and

engineers from different domains benefit from the model by getting insight on the information

activities. The Unified Modeling Language (UML) is used to graphically represent the process

activities through Classes.

An interconnection is defined by two interfaces, and the interconnection starts from one

interface and ends at the other interface. Interfaces are regarded as one of the most powerful tools

in system management [130]. In mechatronic systems, interconnections are used to describe the

interactions between the internal components of the model view, i.e., a function with another

function, or components between different model views, i.e., a requirement with a function.

Therefore, in order to represent the information with a shared language, interconnection

classifications are presented now.

4.2.3 Interconnection Classifications

The interconnection classifications are: Allocation, Type, Class, Conversion, and

Confidence. These classifications support the macro-level and micro-level processes

simultaneously by providing standard representations of the interconnections throughout the

68

conceptual design and modeling sub-process. In addition, they enable easier collaboration among

engineers from different disciplines.

4.2.3.1 “Allocation” Interconnection

An allocation interconnection indicates where the interconnection modeling takes place.

There are two types of allocation interconnection:

1. Internal interconnection: It describes the interrelationships between different elements

within a model view in CIM, i.e., the connection of a requirement element to another

requirement element.

2. External interconnection: This interconnection occurs between the elements of different

model views of the CIM and within the CDDP, i.e., functional elements and structural

elements.

4.2.3.2 “Type” Interconnection

This interconnection classification is categorized as an internal allocation interconnection.

It expresses where within different model views of the CIM, the interconnection modeling

activities occur. There are three internal types of interconnection: Requirement inner

interconnection, Functional inner interconnection, and Structural inner interconnection.

4.2.3.3 “Class” Interconnection

The Class interconnection shows which type of information is transferred through each

type inner interconnection. Therefore, different class interconnection models are proposed for the

three type inner interconnections. They are described as follows:

69

4.2.3.3.1 “Class” Interconnection for Requirement Inner Interconnection

The classifications of interconnections describe the information exchange in the

requirement model. They assist proper handling of the requirements and the relationships between

them. The interconnection classes in the requirement modeling activity are listed below.

1- Containment interconnections: These express the relationships of parent requirements with

two or more child requirements. They help in managing the decomposition process of the

requirements until all the child requirements are satisfied with a corresponding function or

a group of functions. As a result, the parent requirements are satisfied as well.

2- Derive interconnections: These interconnections correspond to the requirements at the next

level of the requirement hierarchy, or the same level of the requirement hierarchy but at a

different level of abstraction. The relationships developed by these interconnections are

assigned between two requirements generated by different engineers from different

disciplines. For example, requirements developed by domain-specific engineers are

connected through the derive interconnections to the requirements developed by system

engineers. This interconnection incorporates additional considerations of detailed

implementation.

4.2.3.3.2 “Class” Interconnection for Functional Inner Interconnection

According to [26], [91], different flows in the functional model are prescribed by the functional

Basis (FB), in which the flows are divided into material, energy, and signal. They represent the

essential information that is exchanged between different functions. Therefore, a proper

interconnection should govern these different types of flows. Three classes of the interconnection

in the functional modeling activity are:

70

1. Material interconnections

2. Energy interconnections

3. Signal interconnections

These interconnections maintain the flows of the FB and enforce the consistency rules. For

example, a mechanical energy interconnection has to have similar beginning and ending ports in

order for the interconnection to take place.

4.2.3.3.3 “Class” Interconnection for Structural Inner Interconnection

In structural modeling, graph-based modeling tools such as bond graphs and linear graphs, are

used due to their structural nature and the characteristics of an object-oriented language. They use

a declarative language, in which objects contain equations and, therefore, the structural model is

defined by its set of equations. The objects are interconnected in order to establish relations

between the states, using state variables. These interconnections can take the form of classes of:

1. Power interconnection: It represents the flow of power (i.e., rate of change of energy)

between the structural elements. It uses the power variable, which is the product of the two

variables: effort 𝑒 and flow 𝑓. Using a unified language, Power interconnections enable

energy flow between different engineering domains (e.g., mechanical domain, electrical

domain, thermal domain, fluid domain).

2. Control interconnection: It represents a signal connection, which requires much less power

than a Power interconnection, because it transmits communication signals. It transmits a

communication signal, from one structural element to another element, providing

information for control, drive, and so on.

71

4.2.3.4 “Conversion” Interconnection

The other category of interconnections is the external allocation interconnection. They

describe how the model view is converted into another view within the CDDP. Since the source

and the target of a flow through interconnections are not defined, the directions of the

interconnections are important to determine the source and target of the flow between the different

model views within the CDDP. These interconnections are directional because they are assigned

according to their operational directions.

1. R to F: The first conversion class concerns interconnections between requirements and

functions. These relationships describe which requirements are fulfilled by which function

or group of functions. For example, a sub-function “Measure breakdown voltage” may be

related to the “Security requirement” in order to resolve a breakdown condition. As another

example, a sub-function “Provide a translational/rotational motion” may be related to the

“maintenance requirement” to satisfy the usability condition. These relationships help keep

track of the requirements throughout the design process.

2. F to S: This conversion interconnection is used to describe how a function or a set of

functions are related to structural components, which are simulation components and are

described in detail in Chapter 6. The basis of this interconnection is port-modeling of

energy and signal flows of the functional model, and the abstraction description of its

functions. On the other hand, the structural components and their ports are developed and

dissected to make feasible the interconnection matching.

3. F to R: This conversion relationship describes the interconnections of functions to

requirements. Specifically, it describes how an implementation of a function satisfies one

72

or more requirements. In some cases, a group of functions might be clustered to describe

how to satisfy one or more requirements.

4. S to R: This conversion of the interconnections is between requirements and forms. These

relationships are mapped directly from the requirement modeling activity to the structural

modeling activity, where they by-pass the functional modeling. This conversion of the

relationships is not always formulated. It is only shown when more detailed descriptions

such as constraints, need to be specified. For example, “The heating unit should have low

power consumption,” can remove “Gas Burner,” “Electric element,” and “House heat

supply” selections and keep “Solar.” Furthermore, this interconnection is used to determine

the network of parameter values of components, for example, maximum and minimum

values or a range of values. Also, it eliminates the candidate components that violate any

requirements.

Note: The two conversion interconnections R to S, and S to F were discarded since they do not

have a significant impact on the conceptual design process.

4.2.3.5 “Confidence” Interconnection Classification

Confidence interconnection provides a description of the degree of certainty of the

interconnection. It can be expressed in three levels: High, normal, and low. When an

interconnection with high confidence is made by an engineer, for example a domain engineer, this

high certainty can be taken into account when reviewed by another engineer, for example a system

engineer.

Classifications are defined in a constraint language, where the description of the language

has the characteristics of Object Constraint Language (OCL). OCL is typically used as a

navigation language for a graph-based model. It provides precise expressions that are free of

73

ambiguities of a natural language, and the complexity of mathematics. The representation of

Conversion interconnection classification in OCL is as follows:

inv ConversionDetail:
self.requirement_link->size()=1 then self.function_link->size()=1 implies
Interconnection.conversion=Conversion::R_to_F and
self.function_link->size()=1 then self.structure_link->size()=1 implies
Interconnection.conversion=Conversion::F_to_S and
self.function_link->size()=1 then self.requirement_link->size()=1 implies
Interconnection.conversion=conversion::F_to_R and
self.structure_link->size()=1 then self.requirement_link->size()=1 implies
Interconnection.conversion=conversion::S_to_R

In this language, requirement_link, function_link, and structure_link describe the

conversion characteristics between requirement, functional, and structure models, respectively.

The operation size() represents the multiplicity of the conversion interconnection.

4.2.4 Interconnection Model in UML for Complex Mechatronic Systems

The proposed interconnection model is developed using UML, and OCL syntax, and is

used as shown in Fig 4-4. It facilitates the representation of process activities between different

models throughout the development process. There it provides a standard description for the

interconnection that does not provide room for ambiguous interpretation between the project team

and the discipline engineers.

The attribute name stores the name of the interface to differentiate from others, which

makes it easy to trace changes. The attributes allocate, type, class, conversion, and confidence

represent the interconnection classifications. The visibility attribute defines the accessibility of the

information of the interconnection by other users, domain engineers, or stakeholders. There are

three modes are given: Public, Private, and Protected. Parameter is a separate UML class that

defines the parameter values in an interconnection. Different cases of parameter definition can be

applied. The exact value can be applied; however, in many cases, the application of the parameters

74

is based on intervals of values, for example, between a maximum value and a minimum value. In

other cases, only limit values are applied. Configuration exhibits the operation approach, and

OCL defines it. Moreover, an interconnection can be decomposed into sub-interconnections.

Therefore, an interconnection can be an aggregate of separate interconnections.

Figure 4-4: Interconnection model in MML class diagram.

4.3 Case Study Implementation

This section investigates the implementation of the proposed interconnection model on an

electro-mechanical conveyor system. A sub-system of an industrial fish processing machine. The

development of the conceptual phase of the system takes place in three stages; requirement

75

modeling, functional modeling, and structural modeling. A practical implementation of the

proposed model is to be examined and evaluated for all the conceptual development phases.

4.3.1 First Stage

Requirements are presented in the Requirement Diagram [20]. The requirement elements

are identified as modeling objects. A hierarchal structure is established to facilitate the

interconnection between requirement elements and elements from other models, as presented in

section 2.2.1.

The main requirements are allocated at a higher level of the hierarchy, where they are

decomposed into more detailed sub-requirements. Depending on the level of abstraction, more

than one hierarchy can be structured to improve flexibility. However, this would increase

informality, ambiguity, and complexity. Therefore, the interconnection model is established

between these elements. An advantage of the interconnection model as represented in Fig. 4-4 is

that it is standardized across all the modeling views of the sub-process phase. An example of an

established implemented interconnection model in requirement modeling is given in Fig. 4-5.

The left side of Fig. 4-5 gives an excerpt of the requirement model of the Conveyor System.

One example of a requirement element is system Operation, which is broken into the sub-

requirements: Operator, Input Power, and Driving System. Instances of the Relationship UML

object are generated to model this relationship. These instances have all the classifications

presented in Fig. 4-4. However, only the relevant classifications are defined for each corresponding

interconnection. For example, in Fig. 4-5, two instances of the Relationship UML object are

shown. These instances have similar classifications, such as allocation: Internal, confidence:

Normal, type: Requirement, and visibility: Public. On the other hand, two classifications are

76

dissimilar: name and r_Class. The name is described in an editor with free language, whereas the

r_Class is a selection between Containment and Derive.

Figure 4-5: The implementation of the interconnection model in the requirement model.

In comparison to other modeling representations, standard Requirement tables can provide

valuable information and arrangement for the requirement elements. However, such representation

of requirements does not benefit from the support relations among the requirement elements that

are integrated into the same model [20].

77

4.3.2 Second Stage

The development of the hierarchical structure of the Functional Model is done according

to the hierarchical structure of the Requirement model. This development process requires the

generation of the intended functions with multiple levels of abstraction, in which the exchange of

information is necessary. The relationships between different functions in the Functional Model

can be modeled with the interconnection model, as shown in Fig. 4-6.

The functional model is represented in two different diagrams in SysML. Details are given

in section 5.3.2. Block Definition Diagram (BDD) demonstrates the relationships between the

parent functions. Also, it supports the hierarchical construction of parent functions with their child

functions. On the other hand, Internal Block Diagram (IBD) supports the nested-network structure,

where the relationships between the parent functions and the child functions are established. Fig.

4-6 shows the interconnection model is implemented in both diagrams of the functional model of

the conveyor system. For example, the BDD shows the function Translate, which is obtained in

correspondence with requirement Speed. An instance of this relationship UML object is

developed, which defines all the information of this relationship, such as allocation: External,

confidence: Normal, name: from Speed to Translate, and visibility: Public. Similarly, the

interconnection model is established in the IBD between the two functions: Translate and Export.

The interconnection model has the following information: allocation: Internal, confidence:

Normal, name: from Translate to Export, Type: Functional, and visibility: Public.

78

Figure 4-6: The interconnection model in the functional model – BDD diagram (left), and IBD diagram (right).

4.3.3 Third Stage

This stage involves the establishment of structural models according to the requirement,

and functional models. It entails the generation of various system solutions that satisfy the

customer needs. The simulation models are created from a collection of a large library of Amesim

simulation components [27]. The conditions of the integration are discussed in detail in Chapter 6.

These structural models are a part of the concept and model sub-system, where they contribute to

the development of the CIM. Therefore, the application of the interconnection model is considered,

which facilitates the traceability capability of the process.

Fig. 4-7 illustrates an excerpt of the structural model of the electro-mechanical conveyor

system, showing the implementation of the interconnection model. One example is the relationship

between a Geneva wheel and a mass, in which power information is exchanged. Such an

79

interconnection model develops the following: allocation: Internal, confidence: Normal, name:

from Geneva Wheel to Mass, s_Class: Power, Type: Structure, visibility: Public.

Figure 4-7: The implementation of the interconnection model in the structural model.

4.4 Discussion

The increased complexity of mechatronic systems poses a challenge in terms of model-

based and computational support for the conceptual design phase. Interconnection modeling helps

to facilitate the complexity of the modeling and they need to be defined formally for all the model

views of the conceptual development process. The implementation of the proposed approach was

demonstrated in a case study. Different aspects need to be considered for a justifiable evaluation

of the approach.

The syntax used classes classes from the Unified Modeling Language (UML), which can

model different model views, i.e., requirement modeling, functional modeling, and structural

modeling. Therefore, the scope and scalability of the approach can cover situations from simple to

80

complex applications. Also, the approach gives a good overview representation of the

interconnections. Moreover, since the approach uses a drag-and-drop method of the classes, it

allows flexibility to modify and adapt to address new problems.

The degree of interaction with the designer is an additional aspect to be considered. The

unified language shared between the different designers from the different domains gives the

approach a very high degree of freedom. In addition, it contributes to enhance the understanding

of the product, where all the details of the interconnections are visually represented.

Finally, this approach has the capability to represent state transformation between the

different model views. For example, conversion interconnection identifies they type, and direction

of element transformation, i.e., from Requirement modeling to Functional modeling.

Future work includes the investigation of developing interconnections library elements for

a wide range of application to be re-used when modeling. This will greatly reduce the modeling

effort and time.

81

Chapter 5: A Library-based Concept Design Modeling Approach in SysML

5.1 Introduction

A rapidly increasing complexity of the mechatronic system correspondingly increases the

complexity of the design processes. It led to the need for evolved methods to support the phase of

conceptual design development of a mechatronic product. Computational methods are necessary

to enhance the necessary support, particularly through model-based conceptual design. For

example, [20] expresses the need for further improvements in model-based and computational

support for conceptual design development.

The functional modeling provides additional reinforcement to the conceptual design

development phase, which enable the understanding and representation of the product

functionality. It is a way to describe the product based on its goal, and not on the technical

implementation [131]. The nature of functional modeling, as a domain-independent and solution-

independent approach, assists in enhancing the communication and understanding between

different engineering domains, and across the entire conceptual development process. However,

since functional modeling has not been introduced for the computational support, but rather for

paper-based methods [20], the introduction of a suitable modeling language is necessary.

Furthermore, generating a functional model is a highly subjective and challenging process. This

capability is provided through SysML, which is a standardized, graphical, and general-purpose

modeling language [68]. It addresses systems engineering through a holistic modeling approach.

Therefore, it has a high potential in providing a standard language for functional modeling and

facilitates the implementation of computational support. Nevertheless, due to the language

informality of SysML, different modeling interpretations are available for computational

functional modeling. Various modeling approaches have their strengths and weaknesses, which

82

depend on the particular application and design intent. Different functional modeling has been

suggested, including flow-oriented, relational, and network structure [131].

The functional Basis (FB) is an accepted and widely used supplementary library for the

functional modeling that increases the modeling systematism, consistency, accuracy, and

formality. Therefore, the modeling approach in SysML is able to integrate the Functional Basis

(FB) library into the modeling implementation.

 The present work takes advantage of SysML for the functional modeling of complex

mechatronic systems, and to integrate it into the CDDP to allow traceability. A flow-oriented

modeling approach is developed in SysML through structural diagrams. In addition, a compatible

FB library is modeled to enable re-use of functions and consistency checking. Functional

benchmark protocols are conducted to express the strengths and weaknesses of the developed

approach compared to other existing approaches, particularly related to the network structure. The

followed comparison criteria are: representation characteristics, modeling and cognition

dimensions, and enabled reasoning activities as suggested by [132]. It contributes to the

development of the CIM, where the focus is on the functional modeling activity and its

implementation in the concept design and modeling sub-system.

5.2 Background and Related Work

Object-oriented system engineering (OOSEM) [72] is an extension of the system

engineering approach, as indicated in section 2.2. It makes use of an object-oriented method for

system modeling processes. Functional modeling (FM) has been integrated into system modeling

as a way to guide the logical structure. In system engineering, FM is a representation of functions

to describe the process of identifying innovative solutions [78]. Functional structure is the

graphical representation of functional models, where different functional and structural

83

representations can be developed for a given product [122]. A widely used representation is the

hierarchical structure, in which functions are decomposed into sub-functions. The work in [133]

clarifies the ambiguities in the representation of functions. In this case, two representations of

functions were identified: Semantics, and syntactic. Kruse et al. in [134] have performed a

comparison between two structural representations of functions in SysML for the modeling of a

Hydrokeratome. Computational support for FM has been developed in [20], where SysML

language was used for FM in the Activity Diagram. The description of the diagram was based on

the flow of Energy, Materials, and signals in a network manner. [131] proposed another functional

representation, where the hierarchical structure was maintained for FM in the Block Definition

Diagram. This way, the tracking ability connection between different model was clearly expressed.

In [135], Wölkl has developed a computational knowledge base in SysML to support model-based

conceptual design. The functions and flow taxonomies of the National Institute of Standards and

Technology (NIST) Functional Basis were defined and transferred in a SysML compatible

language and a model library was built. [23] refined the FB library of Wölkl, in SysML, where

additional extension packages and containments were set-up.

The present work formalizes the preliminary work of [131]. Consistent syntax and

semantics are provided, and compatible FB libraries are developed to enable model reusability.

This work addresses the functional modeling aspect of CIM.

5.3 Function Modeling Approach in SysML

This section introduces a functional modeling approach in SysML, which describes the

designed product from a function-oriented point of view. Design libraries are developed for the

functional modeling phase of CIM. The general approach followed here is based on the MBSE

principles, where the design principles of CDDP and CIM, as presented in detail in Chapter 2, are

84

followed. In previous studies such as [20], [23], [80], the functional modeling was described by

the Activity Diagram, as these diagrams are powerful in representing the concept of operation.

However, considering the nature of FM, different modeling representations can co-exist [82].

Taking advantage of the capability of the computational modeling language SysML, Structure

Diagram can also be utilized for the representation of FM [131].

Extending the work to formalize the representation in SysML is needed. The incorporation

of a knowledge-base to support the representation, in the form of reusable libraries, has an added

value in facilitating the process. The aim here is to provide a structural, comprehensive, and

efficient functional representation of FM to support the conceptual design phase that can be

integrated into the overall proposed CDDP and CIM. Case tool MagicDraw is a computational

modeling tool from NoMagic, Inc. [69], which is used for modeling UML/SysML in the present

work.

5.3.1 Structural Syntax Representation

The model representation that is exercised here for the functional model structure is a

combination of a tree-based and nested-network structures. This model can be integrated into the

CDDP, where the Requirement Modeling is used to develop the Functional Model [134]. In

SysML, the main diagrams in Structure diagram are Block Definition Diagram (BDD) and

Internal Block Diagram (IBD). IBD can be developed into a Parametric Diagram. BDD is

composed of Blocks and Connectors.

For the functional model context, Blocks in BDD are used to model system functions,

which provides a unifying concept of a function element (also known as; nodes, verbs, or

transformation). Whereas, Connectors represent a flow element (also known as; edges, or nouns).

85

The hierarchical structure of the FM is developed in the BDD, in which the relationships between

the Requirement Modeling and the Functional Modeling can be explicitly represented.

At this point, the FM flows are not yet modeled. Only the relationships between the parents

or more abstract functions with the children functions are described through Compositions. After

the establishment of the function elements, the relationships between these function elements are

established. Each parent, in the FM element in BDD, can develop an internal view of its

components or children elements via the IBD. A nested-network structure of the FM function

elements is developed in IBD, where these elements are interconnected relative to each other.

These interconnections may reveal additional FM elements for any missing functions in the

network structure. Furthermore, the connections between these function elements in IBD represent

the FM flows, which have different characteristics.

Ports and Connectors are used to model the Functions and Flows in IBD. The consistency

of the flows between any adjacent FM elements should be ensured. Therefore, port representations

for the function elements in IBD have to be developed in order to identify these connections and

to ensure consistency.

Port Representations

The flow representations here are according to the definitions of the Functional Basis (FB),

as given in section 2.3.2.1. Three representations of the flows are: material, energy, and signal.

Therefore, three types of ports in SysML are introduced to model the interaction of flows and

functions according to the FB. Connectors are used to connect parts, and they need ports to specify

the details of the interconnections. These ports are represented as a black box interface on the

parts.

86

The first type of ports in IBD is flow ports, which is employed to model the energy flow.

Flow ports contain the flow direction and the flow properties, in which more description can be

used for any additional information about the incoming or outgoing flows. Full ports can represent

the flow of materials between the connected function elements. Full ports can characterize a part

of the system, which can handle incoming and outgoing items. Finally, proxy ports are used for

the modeling of signals. They provide access to/from features of its associated Parts, which serves

as a proxy for the internal parts. The representation of FB functions in IBD is shown in Fig. 5-1.

Figure 5-1: Representations of FB Function Class in IBD SysML.

5.3.2 Development of Functional Library Modeling

Based on the work of [23], [135], different modeling directions are developed here, with

more details and refinement. Functional Basis taxonomies as presented in [26], are incorporated

87

into SysML. The approach followed here defines two libraries, one for functions and the other for

flows. The functional model structure is then established by combining elements from the two

libraries, in which the elements are ready for reuse. For the proposed functional library modeling,

an extension of SysML in the form of stereotypes is established. A stereotype is a specialized

SysML block that allows the expansion of SysML by introducing new vocabulary to add more

flexibility. Fig. 5-2 shows an overview of the defined stereotypes.

Two Metaclass are used for the definition of the stereotypes, Block and Ports. The Block

Metaclass defines <<ElementaryFunction>> and <<BasicFlow>> stereotypes. In the present

work, these stereotypes are determined by using SysML Blocks. There is an additional <<User-

definedFunciton>> stereotype, and it can be used for functions, which are not elementary [23].

This stereotype is intended for functions that require more descriptions to satisfy the requirements.

<<User-definedFunciton>> can be broken down into any number of <<ElementaryFunction>> or

<<User-definedFunciton>>. On the other hand, <<FlowPort>>, <<FullPort>>, and

<<ProxyPort>> stereotypes are used for modeling the points where Functions and Flows interact.

Figure 5-2: Defined stereotypes in the function library.

88

The first step in the implementation of the functional basis in SysML is to define the library

content, where a hierarchal structure is adopted in SysML BDD similar to the structure of FM.

Figure 5-3, shows the implementation of the flows from the FB, where SysML Blocks are used to

model the corresponding FB flows [23]. The cascading of the SysML flow blocks follows a tree-

like arrangement, with each SysML Block having a stereotype <<BasicFlow>>.

The top level of the hierarchy has the element RootFlow, which is represented as a parent

element. The names of SysML Blocks are similar to those of the flow FB. In addition, the level of

the hierarchy is also indicated from the tag value of the stereotype <<BasicFlow>>. These SysML

Blocks are connected together with the links generalization. It means that each FB flow in the

lower level of the tree inherits the properties of its parents. For example, the FB flow “Liquid” is

transferred into SysML structure in the secondary hierarchical level, and it inherits the Material

properties.

Figure 5-3: Transformation of FB flow into SysML Library.

89

Similar to the FB flows, the transformation of the functions of the FB is also presented in

Fig. 5-4. The same tree-like structure is followed for the modeling of the FB functions in SysML,

where the top level of the hierarchy is defined by the element RootFunction and the elements in

the structure are connected with generalizations to inherit the properties of the parent elements.

Each FB function transferred to SysML Block shows the stereotype <<BasicFunction>> with a

tagged value representing the hierarchy level in the structure. For example, the FB function

Remove has a hierarchy level of Tertiary, which inherently carries the properties Separate and

Branch.

Figure 5-4: Transformation of FB functions into SysML.

Further refinements for the modeling of the FB functions in SysML are developed, with

reference to prior work [135]. The interfaces of each FB functions are also modeled in SysML

Block, where SysML Ports represent them. The information about the number and types of all the

90

incoming and outgoing flows in each FM functions are implicitly provided in the FB. This

information is given in the form of a descriptive language.

Fig. 5-5 shows two examples, where the ports of the FB functions “Distribute” and

“Transfer” are derived from the description. “Distribute” is a secondary-level FB function, as

indicated in the stereotype tagged value. The associated flows can be derived from the FB

description, which allows the flow of any material, energy, or signal.

Fig. 5-5 shows how the three types of flows are modeled using the three introduced Ports

<<FlowPort>>, <<FullPort>>, and <<ProxyPort>>. In the same manner, “Transmit” is modeled

in the tertiary hierarchical level, and is described as “To move energy from one place to another.”

Therefore, only the <<FlowPort>> stereotype is used for modeling the associated flows, as shown

in Fig. 5-5.

Standard Functional Modeling (FM) technique is well established for the support of

systematic product development [132], and it covers all the points of modeling principles.

Therefore, all the views that are identified as modeling principles should also be covered with an

appropriate SysML syntax. Table 5-1 presents a comparison between the functional model,

modeling principles, and the SysML representation.

91

Figure 5-5: Examples of how definitions of functions are implemented in SysML.

92

Table 5-1: Comparison of Functional, Modeling, and SysML modeling representations.

Functional
modeling Modeling principle SysML representation

Function
structure Tree-based Network-

type BDD IBD

Function Node Block Part

Flow Edge Directed
composition Connectors

Differentiated
flows for
material,

energy and
signal

Not available

Typed edge
visually:
(double,
plain and
dashed)

Not available Information
about the flow

Decomposition Sub graph
principle

Not
available BDD Not available

Black box Black box principle Block with
ports Part with ports

Predefined
flow Interaction point Port Port

Scope of
function
structure

Control volume Diagram frame

Flow direction Directed edge Directed
composition Connectors

5.3.3 SysML Functional Model Usage with the Library Support

The use of SysML to support a systematic design approach is illustrated now, in the form

of a case study. The modeling steps and the method of utilizing the function library are shown.

First, the main system functions are defined based on their satisfaction of requirements. The

general functions are decomposed into further sub-functions as more detailed requirements need

to be satisfied. Each of these functions and sub-functions is modeled as a black box in the form of

SysML Blocks. More abstract functions are defined as user-defined functions. More detailed

functions are modeled from the <<ElematryFunction>> library. The inputs and outputs of each

93

functions or sub-functions are defined from the <<BasicFlow>> library. Fig. 5-6 provides a

visualization of the definition of the main function of the present case study, where an excerpt of

the requirement is shown and it is used to create the user-defined function “Develop a Conveyor

System.”

Figure 5-6: Excerpt of developing requirements in BDD.

The main function is, then, decomposed into sub-functions, and some are further

decomposed into more sub-functions. This decomposition process is determined by the

requirement satisfaction. However, the creation of sub-functions should follow the general rules

of verb and noun, where the flow of energy, material, and signal should be maintained as in [92].

The representation of the flows in the <<ElementaryFunction>> is based on the FB description of

functions, where additional flows can be added.

The functions “Supply_1,” “supply_2,” “Drive the System,” and “Characterize the

Motion” are sub-functions of the main function “Develop a Conveyor System.” It is seen that

“Develop a Conveyor System,” “Drive the System,” and “Characterize the Motion” are <<User-

94

definedFunction>>, whereas “Supply_1” and “supply_2” are <<ElementarFunction>>. Therefore,

“Drive the System” and “Characterize the Motion” are decomposed into further sub-functions. In

SysML, ports are represented from the <<BasicFlow>> library to << ElementaryFunction>>

elements. Each << ElementaryFunction>> SysML Block in BDD is expanded into IBD, where the

energy, material, and signal ports are assigned. Fig. 5-7 also shows the implementation of

<<BasicFlow>> to the function. Here, it is named “Human Energy,” which is transferred to

“Convert_3” <<ElementaryFunction>>.

Figure 5-7: Excerpt of the flows representation based on the FB description.

After the completion of the hierarchical structure, the details about the interconnections

between these functions or sub-functions are determined. The hierarchy is established based on a

nested-network structure. First, parent <<User-definedFunciton>>/<< ElementaryFunction>>

SysML Blocks develop an IBD diagram inside it. All the associated children SysML Blocks of the

parent are present inside the IBD with their ports already defined. The interconnections are then

95

established honoring the material, energy, and signal flow type relationship between the children

SysML Blocks. An example elementary function is described in Fig. 5-8.

Figure 5-8: The nested-network of the function Drive the System is shown in IBD.

An IBD diagram is established inside the parent BDD. All the children sub-functions with

their <<BasicFlow>> ports are automatically instantiated inside the IBD diagram in the form of

SysML parts. Then, the interconnections between different SysML parts with each other, and the

interconnections between SysML parts with their environment are created. Here, an IBD diagram

is opened inside “Drive the System” SysML Block. The <<ElementaryFunction>> “Actuate” is

shown inside the IBD diagram. Also, the <<BasicFlow>> ports “Transfer” is presented in the IBD

diagram. Finally, Fig 5-8 displays the interconnections between different parts in the IBD diagram

and with the environment, where the <<BasicFlow>> ports of the parent function “Drive the

System” are determined.

96

A special case can be discussed, where the pre-defined number of ports are not adequate

to describe the complete network of interconnections. In other words, some SysML parts have no

connection with any of the SysML parts in the IBD. For example, a function has a defined

pneumatic output flow port, but there are no pneumatic input flow ports defined within the IBD

diagram. Two solutions are suggested. One is to define a custom <<User-definedFunction>> in

the IBD diagram to extend the library of flows. The other is to interconnect any un-defined ports

to the environment, in which the parent <<ElementaryFunction>> is re-defined as a <<User-

definedFunction>>. The process of defining the nested-network type structure of each parent takes

a bottom-up approach. The main function, therefore, should include all parents and children

functions in its IBD diagram, each of which describing the interrelationships.

Fig. 5-9 shows how “Drive the System,” “Condition,” and “Supply_1” are identified inside

the IBD diagram of the main function “Develop a Conveyor System.” Also, it is indicated that the

sub-functions of “Drive the System” and “Condition” are already stored inside the corresponding

sub-function of the IBD diagram.

In addition to port definition constraint, SysML IBD provides the diagram constraint,

which can be advantageous during modeling. The proper port type must be satisfied when the

structure interconnection takes place in IBD, where the port type of one interconnection must be

consistent with the port type of the other end. Fig 5-10 shows an indication of inconsistency when

the “signal” port type is connected with “material,” and “material” port type is connected to

“energy” port type, in the form of warning messages.

97

Figure 5-9: The development of FB functions from BDD to IBD.

Figure 5-10: Port definition constraints.

98

5.4 Discussion

This chapter developed a computational functional model in SysML to solve some

problems of conventional models. In particular, the development and integration of the design

library into the SysML functional model, as presented by [131], was conducted to add the library-

reuse capability. Other work that utilized the activity diagram for the functional model

representation (e.g., [135]), are not included in the present work.

Due to the free nature of the SysML modeling language, some evaluation criteria for the

modeling approach in the present work are considered as in [132]. For the representation

characteristics, the hierarchal structure in BDD provided a comprehensive functional structure

overview and also the representation of the model within the CDDP, which allowed the

demonstration of the relationships with other aspects of the CIM model views. Moreover, the

presentation of the IBD showed the interconnection between different function elements.

However, the introduction of the library would limit the usage of the models to mechatronic

systems, which limited the model scalability when addressing complex problems. Flexibility, on

the other hand, is improved, where the library element reuse can help in the adaptation of the model

to further modification.

Model consistency and model validation were expanded. For example, the support for the

introduction of pre-defined ports with their defined number and the presence of flow type checking

would improve the model consistency and model validation. Alternatively, the indexing ability,

which is a description of model binding, and knowledge accessibility are decreased because of the

development of two diagram representations. The cognitive dimension characteristics represent

the degree of interaction with the designer, which is high in the presented model since the

functional and requirement structures are represented in one model. Also, the development of the

99

process model conventions, as presented in Chapter 4, together with the “pick-n-drop” functions

from the library, increases the criterion closeness of mapping, which is related to the intuitive

nature of the resulting model, reduces the criterion error-proneness, and increases the criterion

hidden dependencies.

From another point of view, error-proneness increases with the introduction of the library

and ports, since the tracking of all the changes of the ports types and function decomposition

becomes more challenging. Furthermore, the abstraction gradient, which indicates the maximum

and minimum levels of abstraction, is limited to the <<ElementaryFunction>> being selected from

the library.

Finally, in enabling the reasoning characteristics, state transformations criterion is

discussed. SysML model development in BDD, and IBD can be incorporated in functional

modeling. However, they do not fully support dynamic modeling and state transformation [72].

Therefore, the model presented here does not have any reasoning capabilities.

100

Chapter 6: A Library-based Concept Design Approach

6.1 Introduction and Motivation

Once the functional modeling is completed, structural modeling has to be developed. A

structure is a description of how the components or sub-systems of a system are interrelated. These

components or sub-systems represent the instantiations of the physical forms or objects of the

system, which are introduced according to their fulfillment of the corresponding sets of functions.

Therefore, preliminary topologies of the designed product or system have to be generated, and this

process is called structural modeling. This contributes to the development of the CIM, where better

management of the design date-related problems can be achieved.

These topologies should be simple but sufficiently complete to provide the necessary

information to allow model evaluation and evolvement. Consequently, the need for system-level

simulation support is crucial, which can shorten the design cycle significantly [104]. Developing

a structural model that represents the behavior of the system is required to facilitate system-level

simulation. System-level simulation serves as a virtual prototype, where the behavior of the

equivalent physical prototype should be modeled as accurately as possible. In this way, the

designer is able to perform simulations instead of physical experiments, which makes the design

process less expensive.

However, complex mechatronic systems require advanced capability of computational

support tools, and these tools must be established to advance the CIM process. Support for model-

based design and simulation has been developed mostly in the detailed design phase [136]–[138]

since domain engineers determine the exact engineering specifications for a design. In addition,

systems are modeled more precisely for discipline-specific domains, and this process is supported

by discipline-specific simulation tools. For example, Computer-Aided Design (CAD) and

101

Computer-Aided Engineering (CAE) tools are particularly intended for mechanical engineers.

Electronic Design Automation (EDA) and wire harness design tools are mainly intended for

electronic engineers.

Unfortunately, these tools of modeling and simulation cannot be just combined to perform

system-level simulation [139] because of the different nature of different engineering domains and

also the compatibilities of different simulation tools. Existing system-level simulation tools for

mechatronic systems are general and stand-alone, and are not integrated with DDP or CDDP [104].

The present work develops a system-level synthesis methodology for the CDDP of mechatronic

systems. It automatically transforms the view of the CIM from a technology-independent model

to a structural model that represents the behavior of the system, because the functions are

intimately related to the system structure [139]. The developed model view has the following

characteristics:

Port-based modeling standards: Port-based modeling standards are developed, in which a

designer selects the candidate simulation components by mapping between the inputs and outputs

of the functions or a set of functions and components of the structure. The interactions between

the interconnecting components can be defined by connecting the ports of the subcomponents.

Physical modeling paradigm: In the physical modeling approach, components are

representable by mathematical-graphical objects. These objects are topologically interconnected

by rules based on the exchange of power through the connections to form the governing equations.

The present modeling paradigm supports multi-physics simulation, in which different

engineering domains are modeled and simulated in an integrated manner under a single simulation

environment. This results in lower costs in the physical tests through of using more simple and

fewer hardware prototypes.

102

Design catalogs: Designers are required to use design knowledge that provides the details

of object functionalities, from available behavior simulation libraries [140]. Proper development

of a simulation library is essential in order to facilitate the mapping between the solution object

candidates to functions, via object ports.

Reconfigurability: Granularity of the system-level simulation model is defined at a limited

level of accuracy. As the CDDP develops through iterative cycles, the complexity of the model

grows with components, and the model accuracy increases without the need to remodel the

complete system. Additional components for the control system may have to be introduced and

integrated in order to fill the gaps of the system mechanics.

Automatic synthesis: A high-level system synthesis methodology is introduced. It

advances the development of the transformation between two different model views of the CIM,

which is integrated within the CDDP by utilizing the functional model, to create the structural

model. In this way, the synthesizer is able to develop a system of equations automatically, which

describe the behavior of the system.

A system-level simulation model development algorithm is introduced. It allows an

automatic generation of model synthesis that represents the topological structure of the simulation

model. Also, the values of the network of parameters that fulfill the functional requirements are

roughly determined; particularly the lower and upper bound values and the acceptable range of

values.

Traceability capability: The algorithm enables the capability of traceability during the

synthesis process following the presented methodology (see Fig. 4-1). It allows automatic

information exchange between different model views of the CIM through the CDDP (see Fig. 4-

3), which is the tracing of the structural model to functional and requirement models.

103

6.2 Background and Related Work

The development of structural-based design, also called architecture-based design [138]

and platform-based design [141], in CDDP provides a high-level of structural abstraction, in which

the functional model is utilized to transfer the model view into representations of multiple

behavioral architectures. The shortcoming in the existing structural modeling developments is that

they are locked to a particular implementation in making the design decisions [142]. Also, the

modeling capabilities are unable to represent physical components and their interactions as

computational components [138].

The process of transforming a functional model of a product into its structural model is a

development process, as described in [32], [123]. The developed methodology is based on

characterizing the product by three levels of abstraction: form, function, and behavior [37], as

shown in Fig. 6-1.

Figure 6-1: Relation between form, function, and behavior.

The first level of abstraction is the function level, where the design tasks are formulated

into functions. These functions are decomposed and modeled into a different level of detail – see

section 2.3.1. In the second level of abstraction, those function descriptions are directly related to

the structural descriptions of the object. They describe the form of the physical embodiment of the

object, particularly the structural level, as indicated in section 4.1.1.3. The third level of abstraction

Behavior
Analysis

Function

Form

104

characterizes the behavior of the system, which is derived from the forms of the objects. This

behavior is verified to see if it matches the developed functional and non-functional requirements,

where mathematical models represent the behavior. The design verifications are established by

carrying out simulation and analysis of these models.

Simulation tools and languages have been utilized heavily in many industries for the

development of complex systems through improved design processes [104], [139]. They have

proven to be effective and economical in design, validation, and testing the systems. Virtual

analysis of the system will reduce the need for physical prototyping, where the dynamic behavior

of the system can be predicted at a high degree of certainty and under a variety of conditions.

However, many ongoing research activities still address the development of activities such as

model validation, different specific-domain simulation tool integration, and utilization of virtual

reality technology to enhance the visualization. The present work seeks to simplify the model

formulation process, in which system-level simulations can be conducted to facilitate the

identification of system-level problems.

Modeling and simulation packages can differ according to their characteristics such as

graph-based or language-based, multi-domain or single-domain, and declarative or procedural

modeling. Modelica [143] is a language-based modeling methodology based on the bond-graph

approach, where the language can be described as typed, declarative, equation-based, and textual.

The modeling methodology is non-casual and uses object-oriented construct, which was inspired

by software development for modeling physical systems to describe their dynamic behavior. It has

the following characteristics:

105

Multi-domain: The modeling language is adequate to model different engineering domains

such as electrical, mechanical, thermal, and fluid. Therefore, it is suited for modeling complex

mechatronic systems

Object-oriented: General class concepts are defined with a strongly typed language.

Declarative language: Equations and mathematical functions allow acausal (non-causal)

modeling, in which the internals of sub-models can be completely encapsulated. The acausality

makes Modelica library classes more reusable than traditional classes that contain assignment

statements where the input-output causality is fixed.

Modelica language has been implemented in several open-access and commercial

simulation tools such as Simcenter Amesim from LMS [27]. Amesim has a built-in graphical editor

that can graphically represent different mathematical equation systems, which describe the

component behavior (see section 2.1.3.2.2). Amesim is based on a 1D, lumped-parameter, time-

domain simulation platform software. This means the geometry of each component is not directly

resolved. Hence, it can be used as a unified environment of system-level simulation for complex

mechatronic systems, because it provides a systematic means of cataloging and classifying

component design knowledge that is organized in libraries. The individual components are

represented by standard symbols used in the engineering field; for example, ISO symbols for

hydraulic components. Also, the libraries are classified according to the engineering domains.

Amesim is still widely used for the modeling and simulation of multi-domain systems [144]–[147].

However, the identification of model components has to be done according to the design

specifications represented by functions. Therefore, the selection of components that have

correspondence with functions, is practiced

106

The work of [28], [148], [149] used the identification of structural components by structural

mapping. Kurtoglu [28] used graph grammar for automated generation of a configuration flow

graph. This means components are found in a library structure parallel to the functional basis.

[148], [149] utilized Triple Graph Grammar (TGG). With structural mapping, having unique,

redundant-free models is not guaranteed, whereby a component embodying two functions can be

placed in more than one location in the library structure. An alternate component selection from a

library would be achieved through the identification of inputs and outputs from a mapping matrix.

[23], [150] developed a system-level model integration based on SysML to overcome the

SysML inability of not being able to support the simulation of behavioral models. Therefore,

extensions are made to transform between the hybrid models in SysML to executable simulation

models in Simulink/Simscape, and Amesim simulation environment, respectively. The capability

of automatic simulation model generation was not developed in their work, and therefore required

a manual selection of components.

[138], [139] established algorithms for automatic and semi-automatic simulation model

generation of cyber-physical systems. The transformation of the simulation models was done

according to the functional model development, and two levels of synthesis were presented:

architecture synthesis algorithm and simulation synthesis algorithm. This method increased the

computational cost, and the complexity of the algorithm is 𝑂(𝑁 ∗ 𝑀 ∗ 𝐾),

where:

𝑁: the total number of architecture components in the architecture library

𝑀: the total number of architecture templates in the architecture library

𝐾: the number of functions in the functional model

107

Their work primarily focused on the development of the architectural library for the

automotive industry. Therefore, a goal of the present work is to develop an algorithm for automatic

simulation components synthesis, to reduce the computational cost and also to broaden the

application to other industries such as the food processing machinery industry.

6.3 Functional Model

The development of an algorithm for transforming the functional model into a simulation

model requires an algorithmic description of the model. Therefore, the functional model and the

simulation model are algorithmically described next.

Definition 6-1. A functional model is a labeled, directed, multigraph 𝐹 =

(𝑉, 𝐸, 𝑠, 𝑡, 𝐿k, 𝐿l, 𝑃). Each node 𝑣m(n,o) ∈ 𝑉 represents a function, and has a defined input port 𝑝r ∈

𝑃 and output port 𝑝s ∈ 𝑃. Each edge 𝑒(m,t) ∈ 𝐸 represents a flow from a function 𝑣m(n,o) ∈ 𝑉 to a

function 𝑣t(u,v) ∈ 𝑉. The mappings of the node source and node target of each 𝑒(m,t) ∈ 𝐸 are

represented by 𝑠:	𝑒(m,t) ∈ 𝐸	 → 	𝑝s ∈ 𝑃	𝑜𝑓	𝑣m(n,o) ∈ 𝑉 and 𝑡:	𝑒(m,t) ∈ 𝐸	 → 	𝑝y ∈ 𝑃	𝑜𝑓	𝑣t(u,v) ∈ 𝑉,

respectively. 𝐿k, and 𝐿l are the vocabulary from the Functional Basis Language.

The functional basis (FB) – see section 2.3.3.1 – defines vocabulary, syntax, and semantics

of the functions, constituting the functional library, which is encoded into 𝑉, 𝐸. For example, a

node 𝑣t(n,o) ∈ 𝑉 is labeled 𝑙 {𝑣t(n,o)| = 𝑐𝑜𝑛𝑣𝑒𝑟𝑡 and a flow 𝑒(m,t) ∈ 𝐸 is labeled 𝑙�𝑒(m,t)� =

𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙	𝑒𝑛𝑒𝑟𝑔𝑦. By checking the compatibility of the target mapping of 𝑒(m,t) ∈ 𝐸, 𝑡t and the

input mapping port of 𝑣t(n,o) ∈ 𝑉, 𝑝r, we can achieve a 𝑐𝑜𝑛𝑣𝑒𝑟𝑡	𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙	𝑒𝑛𝑒𝑟𝑔𝑦 signature.

Definition 6-2. A set of requirements 𝑅��$ = {𝑅�, 𝑅�, 𝑅�, … } represent the user-defined set

of requirements, where the properties are described in general terms.

108

6.4 Simulation Models

Functions are allocated to candidate simulation components from Simcenter Amesim [27]

simulation library, which constitutes a simulation model.

Definition 6-3. A simulation library 𝑆ym� is represented as a collection of simulation

components 𝑆m, 𝑆ym� = {𝑆�, 𝑆�, 𝑆�,… }. The simulation components are classified into up to 40 sub-

libraries, such as Control, Electrical, Mechanical, Fluid, and Thermal sub-libraries. These sub-

libraries are developed through engineering services in partnership with customers.

Definition 6-4. A simulation component is 𝑆m = {𝑃, 𝐼, 𝑃𝑎𝑟, 𝐶𝐸, 𝑆𝐿, 𝐶𝑜𝑛𝑠}. Here 𝑃 =

{𝑃l, 𝑃�} includes energy ports PE and signal ports PS. The energy ports are input ports and output

ports: 𝑃l = {𝑃lmr, 𝑃l��$}. 𝑃l is also classified according to the energy domains: 𝑃l =

{𝑃ll, 𝑃��l, 𝑃��l, 𝑃�l}. They incorporate the conservation of energy law, which is defined by

conjugate variables that represent effort 𝑒 and flow 𝑓. Also,

𝑃ll = ports for electrical energy = Current 𝑖(𝑡) and Voltage 𝑉(𝑡)

𝑃��l = ports for mechanical rotational energy =Angular velocity 𝜔(𝑡) and Torque 𝑇(𝑡)

𝑃��l = ports for mechanical translational energy = Velocity 𝑣(𝑡) and Force 𝐹(𝑡)

𝑃�l = ports for hydraulic energy = Volume flow rate 𝜑(𝑡) and Pressure 𝑃(𝑡)

The signal ports are input ports and output ports: 𝑃� = {𝑃�mr, 𝑃���$}. Here, 𝑃� are signal ports that

require minimum power, and are used to communicate a drive action to a component. Signal ports

may include data buses and embedded controllers. Each simulation component 𝑆m contains:

parameter values 𝑃𝑎𝑟, constitutive equations 𝐶𝐸, internal parameters 𝐼, a list of constraints 𝐶𝑜𝑛𝑠𝑡,

and is classified within a sub-library 𝑆𝐿.

109

Definition 6-5. A simulation model 𝑆s�� has strongly typed simulation components

𝑠m(r,s), from the simulation library 𝑆ym� and connectors 𝑐(��(n,o),��(u,v))
∈ 𝐶. The simulation

components are connected through their defined power ports from 𝑝s ∈ 𝑃l��� of simulation

component 𝑠m(r,s) to 𝑝y ∈ 𝑃l�n of simulation component 𝑠t(y,�) , where the connectors impose

algebraic constraints on the port; for example, Kirchoff voltage and current laws in electrical

circuits.

6.5 Synthesizer Principles

The simulation components need to be established for the model. Each component

embodies an equation and a corresponding code, which represents the mathematical description of

the component. A set of equations are developed in order to complete the model. These equations

define the behavior of the system, by interconnecting the simulation components. Modeling is

based on bond graph principles [98], [151], where the power transmission is defined as the product

of effort and flow.

To achieve the automatic generation of a complete model, the synthesizer algorithm

identifies components from a model library to satisfy the associated functional model. The

selection of the simulation components from the library requires input and output direct mapping

to match the input and output of a function/group of functions. The challenge here is defining

appropriate inputs and outputs for the contents of the model library [135]. Therefore, the

synthesizer is able to capture the energy and signal port information of the functions that are stored

in the object ports in the IBD idb of SysML functional model. This information contains the

description of the incoming and outgoing flows from and to the functions from the FB reconciled

110

flow set [152]. The synthesizer matches and stores the corresponding power conjugate

complements of each type of flow, as given in table 6-1 [152].

Table 6-1: Power conjugate complements for the energy class of flows.

Class
(Primary) Secondary Tertiary Power Conjugate Complements

 Effort analogy Flow analogy
Energy Effort Flow
 Human Force Velocity

 Acoustic Pressure Particle velocity
 Biological Pressure Volumetric flow

 Chemical Affinity Reaction rate
 Electrical Electromotive force Current

 Electromagnetic Effort Flow
 Optical Intensity Velocity

 Solar Intensity Velocity
 Hydraulic Pressure Volumetric flow

 Magnetic
Magnetomotive
force

Magnetic flux
rate

 Mechanical Effort Flow
 Rotational Torque Angular velocity

 Translational Force Linear velocity
 Pneumatic Pressure Mass flow

 Radioactive/Nuclear Intensity Decay rate
 Thermal Temperature Heat transfer

Embodiments of the component behaviors that satisfy the functions are, then, identified by

matching the input and outputs of the correspondent power conjugate complements. These

components are then connected through their energy ports by using connectors. Since the

functional model consists of functions 𝑉 and flows 𝐸, port matching solves the flows 𝐸

compatibility. Also, it generates many simulation components, which leads to a growth of the

solutions space. This creates difficulty in identifying good or optimal solutions. In order to limit

the search space, the functions 𝑉; for example, convert, store, should also be addressed.

111

Commercial simulation libraries provide an extensive source of re-usable, pre-existing,

system-level simulation components. However, synthesizing the simulation components based on

matching the flow of power ports will lead to the challenges mentioned earlier. Therefore,

developing the synthesizer to incorporate compatibility matching between the functions 𝑉 of the

functional model to the simulation components, is necessary. The library of heterogeneous

simulation components have to be developed to enable a systematic classification of the functions

𝑉. This would link the gap between the functions 𝑉 and behaviors, support the formalization of

the simulation component library, and facilitate better and reliable mappings.

6.6 Behavioral Component Library Development

 The behavioral component library is organized according to the functional basis-reconciled

function set 𝐿k [152]. It contains elements from Simcenter Amesim [27], which are defined based

on abstraction ports, similar to [153]. These abstraction ports are established between the bond

graph elements and the functions from the functional set 𝐿k. The underlying modeling principles

of Simcenter Amesim modeling environment are bond graphs [98], [151], which are based on the

energy flow of different domains. Table 6-2 presents the state variables in different domains, which

may include effort 𝑒, flow 𝑓, their time integrals, momentum 𝑝, and displacement 𝑞, depending

on the physical element, in different engineering domains.

Table 6-2: Domain-specific state variables.

Energy
domain

Effort 𝑒 Flow 𝑓 Momentum 𝑝 Displacement 𝑞

Name Symbol Unit Name Symbol Unit Name Symbol Unit Name Symbol Unit

Mechanical
translational Force 𝐹 𝑁 Velocity 𝑣 𝑚 𝑠⁄ Linear

Momentum 𝑃 𝑁𝑠 Linear
displacement 𝑥 𝑚

Mechanical
rotational Torque 𝑇 𝑁𝑚 Angular

velocity 𝜔 1 𝑠⁄ Angular
Momentum 𝐿 𝑁𝑚𝑠 Angle 𝛼 𝑟𝑎𝑑

Electrical Voltage 𝑈 𝑉 Current 𝐼 𝐴 Flux
Linkage 𝜆 𝑉𝑠 Charge 𝑄 𝐴

112

The mathematical operations that represent the relationships between the state variables

and their time integrals represent the physics of different bond graph elements, as shown in Fig.

6-2 [154].

Figure 6-2: Tetrahedron of state.

These elements, specifically, Resister (R), Capacitor (C), Inertia/Inductance (I),

Transformer (TF), and Gyrator (GY), will embody functions, and they provide the basis for the

matching of functions 𝑉 and simulation components 𝑆m.

The structure and organization of the library are based on the functional set 𝐿k. A function

𝑣m ∈ 𝐿k constitutes a bond graph element, which represents a relationship between two state

variables. They are used to identify a family of simulation components. Consequently, all of the

component families from different sub-libraries are stored in the function 𝑣m. The complete list of

the assigned ports according to bond graph elements is found in [153].

 Definition 6-6: A simulation component family 𝑆§ represents a group of components from

the same domain that share the same behavior and interfaces but they have different levels of

detail. For example, a function 𝑣m that represents a decrease from the functional set 𝐿k is assigned

to bond-graph element Resistor (R), since R dissipates power. Also, R provides the relationship

between effort 𝑒 and flow 𝑓 using equation (6-1), where 𝑘 is a lumped parameter that describes

the linear relationship:

113

𝒆 = 𝒌. 𝒇																																																																																																													(6-1)

From the simulation library, friction component family from the Pneumatic sub-library is

identified and stored in the decrease library, as shown in Fig. 6-3.

Figure 6-3: Frictions family from Pneumatic sub-library is to be stored in decrease library.

For illustration, the input and output power flows of a simulation component pn_capilar

(the top right component) has the following description:

In the pneumatic capillary, the flow path is assumed to be between parallel plates. The
length of this clearance flow path is assumed constant. The pressure in Pa and temperature in K
are input at each port and the mass flow rate in g/s and the enthalpy flow rate in J/s are computed
and output at both these ports.

This description is illustrated in Fig. 6-4, which shows that the input power is Pressure

(effort 𝑒) and the output power is mass flow rate (flow 𝑓), and they satisfy equation (6-1).

Figure 6-4: The energy flow of a pneumatic capillary.

 pressure
Pa mass flow rate

g/s

114

Synthesizer Algorithm

Definition 6-7: A mapping from a functional model 𝐹 to simulation component family 𝑆§

is a set of 2-tuples 𝑚m = {< 𝑣m(n,o), 𝑠§� >}, where 𝑣m(n,o) ∈ 𝑉(𝐹) and 𝑠§� ∈ 𝑆§ . When 	𝑚m = {<

𝑣m(n,o), ∅ >}, 𝑆§� is defined as is ∅ does not exist in 𝑚m. 	𝑚��$ = {𝑚�,𝑚�,… } represents all

combinations of mappings between 𝑣m(n,o) and 𝑆§ .

The synthesizer algorithm 1 generates simulation models 𝑆s�� for the functional model 𝐹.

It follows four steps: the dissection of the component simulation families 𝑠§� ∈ 𝑆ym� , mapping

between the functions 𝑣m ∈ 𝑉(𝐹) and component simulation families 𝑠§� ∈ 𝑆ym� , identification of

the range of parameters for 𝑠§� ∈ 𝑆ym� , and generation of simulation models 𝑆s��. First, lines 4-18

of algorithm 1 examine the ports of the simulation component families 𝑠§� ∈ 𝑆ym� and classify the

energy and signal ports. They also identify whether the flows and signals are incoming or outgoing,

in which the energy incoming flows are decided based on the effort state variables. Furthermore,

the synthesizer links each incoming and outgoing energy port to its corresponding FB flow set, as

described in definition 6-4. The synthesizer takes into account the presence of more than one

incoming and outgoing signal and energy port. Lines 19-29 of algorithm 1 utilize the information

stored in each simulation component families, i.e., the internal state equations, to derive FB

function set in each component, similar to [153]. Second, lines 30-39 of algorithm 1 create full

mapping 𝑚��$ between all the functions 𝑣m from the functional model 𝐹, and the the simulation

component families 𝑆§ . This process takes two steps: first, the incoming and outgoing ports of each

function 𝑣m ∈ 𝑉(𝐹) are examined and a search in the component simulation library 𝑆ym� is

conducted to look for the same port types. Second, all possible candidates are subjected to a

pruning process, where their FB functional set should match FB functional set of the function 𝑣m.

115

This is important in order to achieve a correlation between the functions and simulation

components. Third, in lines 41-45 of algorithm 1, all the mapped simulation component libraries

are investigated against the set of customer requirements 𝑅��$ to identify the network of

parameters, specifically the range value or the upper and lower limits. Also, a component mapping

is eliminated together with its corresponding function 𝑣m if it contradicts any requirement from the

requirement set 𝑅��$. Fourth, in lines 47-59 of algorithm 1, the generation of different simulation

models takes place. Each simulation component library in each mapping 𝑚m is subjected to

compatibility port matching with each simulation component library in each other mapping 𝑚t.

The incoming and outgoing ports of a component are connected to compatible ports of another

component. The unconnected ports of the connected components are then connected to other

compatible ports of the other components. Finally, a simulation model is generated and stored in

the simulation model 𝑆s��.

Synthesizer Algorithm 1
 Input: F: A functional model imported from SysML Internal Block Diagram IBD
 Input: R: User requirements from Requirement Diagram RD 𝑅��$
 Input: 𝑆ym� : Simulation library with abstraction ports identification
 Input: 𝑚��$: A set of mapping from 𝑉 ∈ 𝐹 to 𝑆§ ∈ 𝑆ym�
 Output: 𝑆s��: A set of simulation models
1 𝑆��$ = ∅
2 𝑚s�� = ∅
3 For each 𝑠§� ∈ 𝑆ym� do
4 For each 𝑝t(𝑠§�) do
5 If 𝑝t = 𝑃l then
6 If 𝑒𝑓𝑓𝑜𝑟𝑡(𝑝t) is entering then
7 𝑝t = 𝑒�𝑝t�
8 𝑝t = 𝑝t ∪ 𝑃mr
9 Else
10 𝑝t = 𝑒�𝑝t�
11 𝑝t = 𝑝t ∪ 𝑃��$
12 Else 𝑝t = 𝑃� then
13 If 𝑃� is entering then
14 𝑝t = 𝑃�
15 𝑝t = 𝑝t ∪ 𝑃mr
16 Else
17 𝑝t = 𝑃�

116

18 𝑝t = 𝑝t ∪ 𝑃��$
19 For each 𝑝l�n�(𝑠§�) do
20 For each 𝑝l�nv(𝑠§�) do
21 If 𝑝l�n� = 𝑝l�nv then
22 𝑠§� → ∅
23 Else
24 If 𝑒(𝑝l�n�) = 𝑒(𝑝l�nv) then
25 𝑠§� → "𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡, 𝑝𝑟𝑒𝑣𝑒𝑛𝑡, 𝑖𝑛ℎ𝑖𝑏𝑖𝑡, 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒, 𝑠𝑡𝑜𝑟𝑒, 𝑠𝑢𝑝𝑝𝑙𝑦"
26 Else
27 𝑠§� → "𝑐𝑜𝑛𝑣𝑒𝑟𝑡"
28 For each 𝑝l���v(𝑠§�) do
29 𝑠§� → "𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡, 𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡, 𝑐𝑜𝑛𝑣𝑒𝑟𝑡, "
19 For each 𝑝l����(𝑠§�) do
20 For each 𝑝l���v(𝑠§�) do
21 If 𝑝l���� = 𝑝l���v then
22 𝑠§� → ∅
23 Else
24 If 𝑒(𝑝l����) = 𝑒(𝑝l���v) then
25 𝑠§� → "𝑠𝑡𝑜𝑟𝑒, 𝑠𝑢𝑝𝑝𝑙𝑦"
26 Else
27 𝑠§� → "𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒, 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒, 𝑐𝑜𝑛𝑣𝑒𝑟𝑡"
28 For each 𝑝l�nv(𝑠§�) do
29 𝑠§� → "𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒, 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒, 𝑐𝑜𝑛𝑣𝑒𝑟𝑡"
30 For each 𝑣m(n,o) = 𝑉(𝐹) do
31 𝑚m = ∅
32 𝑚m = 𝑚m × {< 𝑣m(n,o) , ∅ >}
33 For each 𝑠§� ∈ 𝑆ym� do
34 For each 𝑝mrv(𝑠§�) do
35 If 𝑝mrv = 𝑃r then
36 For each 𝑝��$u(𝑠§�) do
37 If 𝑝��$u = 𝑃s then
38 If 𝑣 {𝑣m(n,o)

| = 𝑠§� then
39 𝑚m = 𝑚m × {< 𝑣m(n,o) , 𝑠§� >}
40 𝑚��$ = 𝑚��$ ∪ 𝑚m
41 For each 𝑚m ∈ 𝑚��$ do
42 For each 𝑠§� ∈ 𝑚m do
43 Store the network of parameters from the requirement set 𝑅��$
44 If 𝐶𝑜𝑛𝑠𝑡�(𝑠§�) contradicts with any of the requirement set 𝑅��$ then
45 𝑚m = 𝑚m < 𝑣m(n,o) , 𝑠§� >
46 𝑆s�� = ∅
47 For each 𝑚m ∈ 𝑚��$ do
48 For each 𝑠§� ∈ 𝑆ym�(𝑣m) do

49 For each 𝑝��$v {𝑠§�| = ∅ do
50 For each 𝑚y ∈ 𝑚��$ do
51 For each 𝑠§o ∈ 𝑆ym�(𝑣y) do

117

52 For each 𝑝mrn�𝑠§o� = ∅ do
53 𝑝��$v(𝑠§�) → 𝑝mrn(𝑠§v)
54 For each 𝑝mrv {𝑠§�| = ∅ do
55 For each 𝑚y ∈ 𝑚��$ do
56 For each 𝑠§o ∈ 𝑆ym�(𝑣y) do
57 For each 𝑝��$n�𝑠§o� = ∅ do
58 𝑝��$v(𝑠§�) → 𝑝mrn(𝑠§v)
59 𝑆s�� = 𝑆s�� ∪ 𝑠§�
60 Return 𝑆s��

6.7 Case Study

The case study of an electro-mechanical conveyor system is used now to demonstrate the

utilization of the function-to-simulation model synthesizer. Conveyor systems are widely used in

fish processing machines in order to provide an intermittent motion for the fish during

transportation, inspection, and processing. The intermittent motions are commonly used in

indexing and sequencing [155]. Indexing motion is mostly needed in the industry to move products

in step-by-step patterns and processing by a stationary device. This motion allows an automated

line to stop the product in a predetermined location for defined time, in order to complete a specific

task within a specified time period while the product is kept stationary. The assigned tasks and

operations performed on the object include cutting, inspection, and assembly. For the particular

case study that is provided in this section, the motion profile is planned in such a way that a cutter

is used to cut the head of a fish, while the fish is kept stationary. Therefore, different kinematic

behavioral concepts are developed for the indexing system, which present how to capture the

behavior aspect of the FM through multi-domain simulation model representations. The present

case study is not intended to provide a detailed kinematic analysis but, rather, develop different

design configurations through the synthesis of simulation components.

118

6.7.1 Synthesis of Simulation Models

The simulation models enable domain engineers to validate their sub-systems in software-

and hardware-in-the-loop simulations, and to perform performance comparisons across various

architectures. Since the synthesizer is based on the functional model, the functional description is

essential in this process, where it describes the product from the functional point-of-view. Two

functional sub-systems are considered: the driving system and the motion mechanism system.

These sub-systems are represented as shown in Fig. 6-5, according to definition 6-1.

𝐹���³ =

⎩
⎪⎪
⎨

⎪⎪
⎧

⎣
⎢
⎢
⎢
⎢
⎡
𝑣�.�

{»³n³.³
,»³n³.¼

,»³n³.½
,»³o³.³

,»³o³.¼
,»³o³.½|

𝑣�.�
{»³n¼.³

,»³n¼.¼
,»³n¼.½

,»³o¼.³
,»³o¼.¼

,»³o¼.½|

𝑣�.�
{»³n½.³

,»³n½.¼
,»³n½.½

,»³o½.³
,»³o½.¼

,»³o½.½|

𝑣�.¾
{»³n¿.³

,»³n¿.¼
,»³n¿.½

,»³o¿.³
,»³o¿.¼

,»³o¿.½|⎦
⎥
⎥
⎥
⎥
⎤

,

⎣
⎢
⎢
⎢
⎡
𝐿Ã³.³ = 𝐶𝑜𝑛𝑣𝑒𝑟𝑡�
𝐿Ã³.¼ = 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟
𝐿Ã³.½ = 𝐴𝑐𝑢𝑎𝑡𝑒
𝐿Ã³.¿ = 𝐶𝑜𝑛𝑣𝑒𝑟𝑡� ⎦

⎥
⎥
⎥
⎤
,

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑒�.�(Ä¼,Ä³.³)
𝑒�.�(Ä½,Ä³.¼)
𝑒�.�(Ä³.³,Ä³.½)
𝑒�.¾(Ä³.¼,Ä³.½)
𝑒�.Å(Ä³.½,Ä³.¿)
𝑒�.Æ(Ä³.¿,ÄÇ) ⎦

⎥
⎥
⎥
⎥
⎥
⎤

,

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝐿�³.³ = 𝐻𝑢𝑚𝑎𝑛	𝐸𝑛𝑒𝑟𝑔𝑦
𝐿�³.¼ = 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙	𝐸𝑛𝑒𝑟𝑔𝑦
𝐿�³.½ = 𝐶𝑜𝑛𝑡𝑟𝑜𝑙	𝑆𝑖𝑔𝑛𝑎𝑙

𝐿�³.¿ = 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙	𝐸𝑛𝑒𝑟𝑔𝑦
𝐿�³.Ç = 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙	𝐸𝑛𝑒𝑟𝑔𝑦

𝐿�³.É = 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙	𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙	𝐸𝑛𝑒𝑟𝑔𝑦⎦
⎥
⎥
⎥
⎥
⎥
⎤

,

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑠(�³.³) = 𝑝s¼
𝑠(�³.¼) = 𝑝s½
𝑠(�³.½) = 𝑝�s³.³
𝑠(�³.¿) = 𝑝�s¼.½
𝑠(�³.Ç) = 𝑝�s½.½
𝑠(�³.É) = 𝑝�s¿.½⎦

⎥
⎥
⎥
⎥
⎥
⎤

,

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑡(�³.³) = 𝑝�r³.½
𝑡(�³.¼) = 𝑝�r¼.½
𝑡(�³.½) = 𝑝�r½.³
𝑡(�³.¿) = 𝑝�r½.½
𝑡(�³.Ç) = 𝑝�r¿.½
𝑡(�³.É) = 𝑝rÇ ⎦

⎥
⎥
⎥
⎥
⎥
⎤

,

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑝�r³.³
𝑝�r³.¼
𝑝�r³.½
𝑝�r¼.³
𝑝�r¼.¼
𝑝�r¼.½
𝑝�r½.³
𝑝�r½.¼
𝑝�r½.½
𝑝�r¿.³
𝑝�r¿.¼
𝑝�r¿.½
𝑝rÇ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

,

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑝s¼
𝑝s½
𝑝�s³.³
𝑝�s³.¼
𝑝�s³.½
𝑝�s¼.³
𝑝�s¼.¼
𝑝�s¼.½
𝑝�s½.³
𝑝�s½.¼
𝑝�s½.½
𝑝�s¿.³
𝑝�s¿.¼
𝑝�s¿.½⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎭
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎫

𝐹���É =

⎩
⎪
⎨

⎪
⎧
Z
𝑣Æ.�

{»Én³.³
,»Én³.¼

,»Én³.½
,»Éo³.³

,»Éo³.¼
,»Éo³.½|

𝑣Æ.�
{»Én¼.³

,»Én¼.¼
,»Én¼.½

,»Éo¼.³
,»Éo¼.¼

,»Éo¼.½|

^ , Í
𝐿ÃÉ.³ = 𝐶𝑜𝑛𝑣𝑒𝑟𝑡�
𝐿ÃÉ.¼ = 𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒Î ,

⎣
⎢
⎢
⎢
⎡
𝑒Æ.�(ÄÇ,ÄÉ.³)
𝑒Æ.�(ÄÏ,ÄÉ.¼)
𝑒Æ.�(ÄÉ.³,ÄÉ.¼)
𝑒Æ.¾(ÄÉ.½,ÄÐ) ⎦

⎥
⎥
⎥
⎤
,

Z
𝑣Æ.�

{»Én³.³
,»Én³.¼

,»Én³.½
,»Éo³.³

,»Éo³.¼
,»Éo³.½|

𝑣Æ.�
{»Én¼.³

,»Én¼.¼
,»Én¼.½

,»Éo¼.³
,»Éo¼.¼

,»Éo¼.½|

^ , Í
𝐿ÃÉ.³ = 𝐶𝑜𝑛𝑣𝑒𝑟𝑡_1
𝐿ÃÉ.¼ = 𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒Î ,

⎣
⎢
⎢
⎢
⎡
𝑒Æ.�(ÄÇ,ÄÉ.³)
𝑒Æ.�(ÄÏ,ÄÉ.¼)
𝑒Æ.�(ÄÉ.³,ÄÉ.¼)
𝑒Æ.¾(ÄÉ.½,ÄÐ) ⎦

⎥
⎥
⎥
⎤
,

⎭
⎪
⎬

⎪
⎫

Figure 6-5: Driving system functional sub-system (top) and motion mechanism functional sub-system

(bottom).

119

Each function 𝑣m in the sub-functional model is represented with its associated ports 𝑝m and

the defined vocabulary 𝐿Ã�. Moreover, each flow 𝑒m is expressed with the corresponding outgoing

and incoming functions 𝑣m, and defined vocabulary 𝐿��. The ports 𝑝 of each source 𝑠�� of a flow 𝑒m

must match the ports 𝑝s of the outgoing function 𝑣m. Similarly, the ports 𝑝 of each target 𝑡�� of a

flow 𝑒m must match the ports 𝑝r of the incoming function 𝑣t. For example, the function 𝑣�.¾ is

defined from FB 𝐿Ã³.¿ as Convert: “To change from one form of a flow […] to another.” Therefore,

three incoming ports 𝑝�n¿.³ , 𝑝�n¿.¼ , 𝑝�n¿.½ , and outgoing ports 𝑝�o¿.³
, 𝑝�o¿.¼

, 𝑝�o¿.½
 are assigned.

These ports can be compatible with any type of source or target flows. Notice that the synthesizer

identifies the information stored in the simulation component, as shown in Fig. 6-6.

Figure 6-6: The simulation component of a DC motor.

First, in the simulation component 𝑠m, each port 𝑝m is examined, which represents the power

conjugate complements. Thus, from table 6-1, the ports are defined according to the FB.

Furthermore, the input, and output flows are determined with respect to the direction of the effort

variable. The ports of the simulation component are then described as follows: 𝑠mÒ³ expresses the

𝑝"#$%&'
Rotational	Mechanical	Energy

𝑒9"#$/𝑓9<=

𝑝<=''
Electrical	Energy

𝑒>"#$/𝑓><=

𝑒9"#$ = 𝑘. 𝑓><=
⇒ Convert

120

effort state variable torque leaving the port, and the flow state variable angular velocity entering

the port. Hence, the port can be defined as a Rotational mechanical energy leaving the port

𝑝��$ÓÔÕ . Similarly:

𝑠mÒ¼ = 𝑝mrÕÕ

𝑠mÒ½ = 𝑝mrÕÕ

𝑠mÒ¿ = 𝑝mrÖÕ

𝑠mÒÇ = 𝑝��$ÓÔÕ

The ratio of the output to the input effort variable is determined from equation (6-1), which

dictates the embodied function, here, Convert. Full mappings between the function 𝑣�.¾ and the

simulation component library 𝑠ym� is developed, and they are shown in table 6-3.

The targets of the incoming flows to the function 𝑣�.¾ should then match the input ports 𝑝r

of the simulation component family 𝑠ym�� . Equivalently, the sources of the outgoing flows from the

function 𝑣�.¾ should match the output ports 𝑝s of the simulation component family 𝑠ym�� . Here, the

flow 𝑒�.Å(Ä³.½,Ä³.¿) = 𝐸𝑙𝑐𝑡𝑟𝑖𝑐𝑎𝑙	𝐸𝑛𝑒𝑟𝑔𝑦 is entering the function 𝑣�.¾ through the port 𝑡(�³.Ç) = 𝑝�r¿.½.

On the other hand, the flow 𝑒�.Æ(Ä³.¿,ÄÇ) = 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙	𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙	𝐸𝑛𝑒𝑟𝑔𝑦 is leaving the function

𝑣�.¾ through the port 𝑠(�³.É) = 𝑝�s¿.½
. Therefore, the mapping contains only the simulation

component families, with their incoming and outgoing ports matching with 𝑝�r¿.½ =

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙	𝐸𝑛𝑒𝑟𝑔𝑦 and 𝑝�s¿.½
= 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙	𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙	𝐸𝑛𝑒𝑟𝑔𝑦.

121

Table 6-3: Mapping generation of the function convert from the simulation component library.

𝑠ym�³ = DC Machines 𝑠ym�¼= Functional Devices 𝑠ym�½= Synchronous Machines

Electro Motors and Drives

𝑠ym�¿= Pumps

Hydraulic Component Design

𝑠ym�Ç= Pumps, Motors

Thermal-Hydraulic

𝑠ym�É= Specific components

Thermal-Hydraulic Component Design

𝑠ym�Ð= Compressors and Motors

Pneumatic

𝑠ym�Ï= Electro-mechanical Actuator family

Electro-mechanical

𝑠ym�×= Generators

Automotive Electrical

𝑠ym�³Ø= Compressor, Turbine, and Pump

Two-phase Flow

122

𝑠ym�³³= Specific components
Pneumatic Component Design

𝑠ym�³¼= Pump, Compressor, Turbine

Gas Mixture

𝑠ym�³½= Electrodes, Electroyles

Electrochemistry

𝑠ym�³½= Compressors, Turbines

Gas Turbine

𝑠ym�³¿= Power Generator

Aeronautics and Space

𝑠ym�³Ç= Liquid propulsion

At this point, the simulations components 𝒔𝒍𝒊𝒃𝟏= DC Machine, 𝒔𝒍𝒊𝒃𝟐= Functional Devices,

𝒔𝒍𝒊𝒃𝟑= Synchronous Machines, and 𝒔𝒍𝒊𝒃𝟗= Generators are selected. On the left of Fig. 6-7, the

mappings of the simulation components 𝑠� ∈ 𝑠ym�½(left) and 𝑠Æ ∈ 𝑠ym�³Ø (right), with the function

𝑣�.¾ are shown.

123

Figure 6-7: Port mappings of two of the simulation components - Synchronous Machines (left), and Liquid

Propulsion (right) - with the function convert.

6.7.2 Kinematic Behavior

In the present case study, different solutions are developed using the synthesizer. The sub-

functional model 𝐹���É describes the kinematic behavior of the motion mechanism of the conveyor

system, as shown in Fig. 6-5 (bottom). The function 𝑣Æ.�= Convert has an incoming flow 𝑒Æ.�=

Rotational Mechanical Energy and an outgoing flow 𝑒Æ.�= Translational Mechanical Energy.

Similarly, the function 𝑣Æ.�= Translate has two incoming flows, 𝑒Æ.�= Solid Material and 𝑒Æ.�=

Translational Mechanical Energy, and one outgoing flow 𝑒Æ.¾= Solid Material. The expected

kinematic behavior of the sub-model is a continuous cycle motion that goes through periods of

acceleration, deceleration, and dwell, with the assumption that the input rotational motion speed is

kept constant. The net energy of the indexer is also estimated to be zero, since the energy required

by the system in the acceleration period should, theoretically, equal to the energy removed by the

𝒗𝟏.𝟒 𝒑𝟏𝒏𝟒.𝟏
,𝒑𝟏𝒏𝟒.𝟐

,𝒑𝟏𝒏𝟒.𝟑
,𝒑𝟏𝒎𝟒.𝟏

,𝒑𝟏𝒎𝟒.𝟐
,𝒑𝟏𝒎𝟒.𝟑

𝒆𝟏.𝟓 𝒗𝟏.𝟑,𝒗𝟏.𝟒
Electrical Energy

𝒆𝟏.𝟔 𝒗𝟏.𝟒,𝒗𝟓
Rotational Mechanical
Energy

𝒕 𝒆𝟏.𝟓 = 𝒑𝟏𝒏𝟒.𝟑

𝒑𝒐𝒖𝒕𝑴𝑹𝑬

𝒑𝒊𝒏𝑬𝑬

𝒔 𝒆𝟏.𝟔 = 𝒑𝟏𝒎𝟒.𝟑

𝒑𝒐𝒖𝒕𝑴𝑹𝑬

𝒑𝒊𝒏𝑷𝑵

124

system in the deceleration period, assuming there is no frictional loss. Fig. 6-8 shows three Amesim

simulation models generated based on the functional design intent.

Figure 6-8: Generated Amesim simulation models of Simple Crank (top left), Cam and follower (top left), and

Geneva Wheel (bottom).

These models represent the conversion of the rotational motion into linear intermittent

motion through three different mechanisms: an ideal crank, a cam and follower, and a Geneva

wheel. These models assume there is no frictional losses or inertia, and they have almost perfectly

efficient motion transformation. Also, in the case of the cam and follower, the contact between the

cam with the follower is ideal, providing continuous contact. These kinematic concepts meet the

125

target functionality with its incoming and outgoing flows. In two scenarios shown in Fig.6-8 upper

left and upper right, springs are used to accelerate and decelerate the drive shaft. When the spring

is fully pressed, the potential energy is stored. Its release causes a motion acceleration. When the

spring starts to extend, it decelerates the motion until the spring is fully extended, and this cycle

of energy exchange continues. The irregularity of the mechanical element, specifically the cam,

can provide the required intermittent motion of the indexer. In Fig. 6-8 (bottom), the circular

motion of the Geneva Wheel is represented by a rotation of two rotating bodies, in which one is

the driving body and the other is the driven body. The driven body has four slots, where a pin in

the driving body is to be inserted inside the slots, one at a time, causing the intermittent motion.

Fig. 6-9 shows the dynamic motion behavior of the indexer for the indicated three concepts.

Figure 6-9: The dynamic motion behaviors of the indexer for the three concepts.

126

When evaluating these behaviors against the expected motion behavior, we find the motion

profile of the indexer with the simple crank mechanism has no dwell motion, where the

predetermined operation is minimal. However, a sufficient dwell period can be obtained with the

cam and follower mechanism, and the Geneva wheel mechanism. The motion profile of the Geneva

wheel mechanism shows the circular motion of the driven body in degrees, which exhibits a stair-

like motion behavior. The net energy of the system is shown in Fig. 6-10.

Figure 6-10: The net energy of the indexer for the three concepts.

These obtained patterns represent the net energy consumptions of the three models. In the

case of the simple crank mechanism, and the cam and follower mechanism, it should be noted

there is almost an identical net energy consumption in the motion of the indexer in one direction

and also in the opposite direction. However, in the case of the Geneva wheel, we observe that there

is a higher energy consumption at the beginning of the operation and the energy consumption then

127

decreases. This results from the extra energy that is required to move the driven body at the start

of the motion. The simulation results of the generated conceptual models provide a preliminary

insight into their dynamic behavior, which corresponds to the first evaluation of these concepts.

128

Chapter 7: Process Design Methodology Using the Mechatronic Design

Quotient (MDQ)

7.1 Introduction

The applications of multi-criteria optimization have roots in many fields such as business,

management, economics, logistics, and engineering. A key objective in them is to obtain optimal

decisions in the presence of two or more possibly conflicting objectives and possibly involving

multiple physical domains. The term Pareto optimality concerns an optimal solution that considers

all objectives of optimization simultaneously.

An important engineering application of multi-criteria optimization is the design of

physical systems, where the design evaluation requires taking into account the correlation between

various system requirements. For some practical, and technical considerations, the traditional,

sequential design approach for multi-domain (multi-physics) systems separates the overall system

into several sub-systems that are treated sequentially according to the different domains.

Therefore, the optimization process is conducted using only one perspective at a time. This has

serious drawbacks, particularly due to the dynamic interactions (or coupling) that exist among

different domains [4]. For example, Valdez et al. [156] did a comparison study between concurrent

and sequential optimization methodologies for the design of serial manipulators with the objectives

to find the best geometrical and control parameters. Three metaheuristics were compared.

Specifically, Ominioptimizer, BUMDA, and CMA-ES were used for three types of optimization

problems: Statics, Kinematics, and Dynamics, with the focus on comparing a dynamic

optimization model. They observed that the sequential method finds optimum lengths for the static

model, which are not optimal for the dynamic model; therefore, the overall design is not optimal

129

even if the optimal control gains are found by modifying the arm length leads or modifying the

model masses and the manipulator dynamics.

Hence, a high potential exists for developing integrated (concurrent) design and evaluation

schemes for mechatronic systems, resulting in lower efficiency and cost, and improved component

compatibility. Furthermore, the performance quality of the design solutions in the early stages of

design development of a mechatronic system should be evaluated in an integrated manner, where

the presence of some incomplete information, particularly concerning different physical domains,

is recognized.

7.2 System Model Evaluation

Determining the functionality of a design should be objectively evaluated by comparing

the performance capabilities of the system with the corresponding system specifications and

customer requirements. The performance description of the system should incorporate product

components and their behavior. At this point of the CDDP, the concept analysis and evaluation

sub-process take place on the right side of the V-model, as shown in Fig 3-2, for the evaluation of

the CIM. The degree of detail of the CIM is abstract, due to the incorporation of instantiations of

generalized integrated components from different disciplines.

The V-model sub-process of the CDDP incorporates virtual integration and simulation in

an early phase to enhances the concept analysis and evaluation capabilities, and incorporate

different disciplines with respect to their functional and structural specifications, as shown in Fig.

4-1. After the development of the integrated system, where different structures are presented as

conceptual design solutions – see Chapter 6 -- further understanding of each solution is required.

Each design solution is described by a set of interrelated instantiated physical forms of objects.

The behavior variables of the considered design solution 𝑌(𝑡) is a function of environment

130

variables 𝑈(𝑡) and design parameters/variables 𝑋(𝑡), as shown in Fig. 7-1. Performance

evaluation through modeling and simulation involves describing the dynamic behavior of the

system computationally, while considering the interactions of the interrelated components.

Figure 7-1: : Conceptual design solution model.

7.2.1 Individual Performance Indicator

In order to present the performance of a system, indicators are required that represent the

behavior of the time-varying system variables. These variables can be characterized using system

parameters that describe generalized constant properties such as max/min values, averaging, and

variances, over a defined period of time [3]. The use of mathematical concepts is necessary to

appropriately represent a wide range of variations of these properties over entire time histories.

The required parameters can be experimentally chosen later, during the system validation. An

underlying mathematical concept is expressed here as an individual performance indicator

(IPI), where the derived parameters of a conceptual solution are predicted. These parameters are

represented using a generalized distance metric, which assigns a non-negative value to all pairs of

elements in a metric space [3] as follows:

1

2

()
()

()

()n

u t
u t

U t

u t

æ ö
ç ÷
ç ÷=
ç ÷
ç ÷
è ø

!

1

2

()
()

()

()m

y t
y t

Y t

y t

æ ö
ç ÷
ç ÷=
ç ÷
ç ÷
è ø

!

()1 2() () () () T
kX t x t x t x t= "

Structural Design
Solution model of

CIM

Environmental variables Behavior variables

Design parameters/variables

131

 Definition 7-1: Individual performance indicator

Let 𝑌 be any set of behavior variables of a system. An individual performance indicator is

a map 𝐼: 𝑌 × 𝑌	 → 	ℝ, and it has the following properties of 𝑦�, 𝑦�, 𝑦� 	∈ 𝑌:

Identity metric: 𝑰(𝒚𝟏, 𝒚𝟐) = 𝟎 ⇔ 𝒚𝟏 = 𝒚𝟐 (7-1)

Symmetry: 𝑰(𝒚𝟏, 𝒚𝟐) = 𝑰(𝒚𝟐, 𝒚𝟏) (7-2)

Triangle inequality: 𝑰(𝒚𝟏, 𝒚𝟐) ≤ 𝑰(𝒚𝟏, 𝒚𝟑) + 𝑰(𝒚𝟑, 𝒚𝟐) (7-3)

Therefore, it can be verified that:

𝑰(𝒚𝟏, 𝒚𝟐) ≥ 𝟎 (7-4)

7.2.2 Aggregated Performance Indicator

Non-functional requirements can be defined to indicate how well the system should

perform or how the system should behave. They determine the design criteria or constraints on the

system functions or behaviors. These criteria or constraints are identified by carrying out a

requirement analysis based on the customer needs and a thorough understanding of the design

tasks. Some design sub-functions might share the same criteria or constraints and others might not,

depending on the design goals. Typical design criteria or constraints contain cost, efficiency,

reliability, size, complexity, speed, weight, payload, and so on. Some of these measures may take

an analytical form while some others may be qualitative and fuzzy and may involve human

perception. The interaction may be present among these criteria or constraints. In order to find

relationships and correlations between the design criteria or constraints, multi-criteria decision

making that may involve both qualitative and quantitative criteria is required. The next step after

obtaining the non-functional requirements is to calculate the weights for different criteria, as a

means to evaluate the conceptual design solutions.

These criteria are, then, related to some of the variables/components of the considered

system. an engineer with the necessary expertise and experience will properly address and

132

determine these relationships. Also, the design process methodology might dictate the kind of

relationship the designer is required to follow. Specifically, some criteria are associated with the

input parameters, where the design specification can be determined accordingly. Another form of

this association is the selection of the design components according to the criteria, where these

components come with their parametric values [92], [112], [157], [158]. Usually, these input

values are stationary and, therefore, do not represent the dynamic behavior of the system. On the

other hand, in [159], the design criteria were associated with the behavior variables of the dynamic

system. The advantage of this association is that the interactions between different

multidisciplinary components/sub-systems are taken into account.

Mechatronic Design Quotient (MDQ)

Mechatronic Design Quotient (MDQ) was first proposed by de Silva [4], [108]. It is an

aggregated performance indicator for the evaluation of multi-domain (Multiphysics) and multi-

criteria systems possibly involving both qualitative and quantitative considerations, which is

utilized for the concurrent (integrated) design of mechatronic systems to optimize the overall

design, using unified (analogous) approaches for various physical domains. This indicator is also

used as an evaluation scheme of different design alternatives of different proposed conceptual

solutions that are generated in the conceptual design development process.

The weights of the criteria express the degree of satisfaction of each one, and accordingly,

a partial score would be assigned. For 𝑛 criteria, and 𝑚 constraints, the MDQ indicator aggregates

the scores of each 𝑛 criterion as:

𝑴𝑫𝑸(𝒔) = 𝑨(𝒘𝟏, 𝒘𝟐,… , 𝒘𝒏).ä𝒓𝒊(𝒔)
𝒎

𝒊æ𝟏

																																																															(7-5)

133

where 𝐴 is an aggregator operator, 𝑠 is a design solution, 𝑤m is weight represented by a partial

score between zero to one of the 𝑖$%criterion, and 𝑟m(𝑠) is a function indicating whether a constraint

has been met, which is equal to 1 if the 𝑖$%has been satisfied, and zero, otherwise.

 For a finite set of criteria 𝐶 = {𝑐�, 𝑐�,… , 𝑐r} in a multicriteria evaluation of a design

solution, a key consideration in the aggregation of these criteria is the interactions that may exist

between them. The nonlinear Fuzzy integrals such as Choquet and Sugeno integrals have an

advantage over the traditional method of linear weighted average, particularly because the fuzzy

integrals can model the criteria interactions [51]. Therefore, not only the weighting of criterion is

considered, but also for each subset of criteria, there are 𝑔: 2ê → [0,1] weighting factors that must

satisfy:

𝒈(∅) = 𝟎																																																																																								(7-6)

𝒈(𝑪) = 𝟏																																																																																								(7-7)

𝒊𝒇	𝑨 ⊆ 𝑩 ⊆ 𝑪, 𝒕𝒉𝒆𝒏	𝒈(𝑨) ≤ 𝒈(𝑩) ≤ 𝟏																																																													(7-8)

Different types of interaction take place between these criteria. They are indicated in Table

7-1.

7.3 Approach Description

The non-functional requirements determine the design criteria or constraints that are

imposed on the behavior of the system, which requires the understanding of the basic requirements

of the design goals. The evolution of the design criteria formulation therefore encapsulates a wide

range of features. For the mechatronic design of systems, some general objectives may include the

following [160]:

• Component matching

• Efficiency

134

• Reliability

• Stability

• Accuracy

In practice, reasoning and requirement analysis are performed to incorporate or remove some

criteria depending on their importance in the design problem.

Table 7-1: The types of relationships between different criteria.

Type of
Interaction Description Relationship

Positive
Correlation

Criteria 𝑖 and 𝑗 combined have
weights higher than the weights
of their interactions

𝒈(𝒊𝒋) < 𝒈(𝒊) + 𝒈(𝒋)															(7-9)

Negative
Correlation

Criteria 𝑖 and 𝑗 combined have
weights lower than the weights
of their interactions

𝒈(𝒊𝒋) > 𝒈(𝒊) + 𝒈(𝒋)															(7-10)

Veto Effect A good score in criterion 𝑖
results in a bad global score 𝑔(𝐴) ≈ 0																	(7-11)

Pass Effect A good score in criterion 𝑖
results in a good global score 𝑔(𝐴) ≈ 1																	(7-12)

Substitutiveness
Criteria 𝑖 and 𝑗 are parallel and,
therefore, they are independent
and interchangeable

(𝐶) ≈ ó
𝑔(𝐴 ∪ 𝑖)
𝑔(𝐴 ∪ 𝑗)ô < 𝐺(𝐶 ∪ 𝑖 ∪ 𝑗), 𝐴

⊆ 𝐶
\𝑖, 𝑗																		(7-13)

Complementarity
Criteria 𝑖 and 𝑗 are prerequisites
for each other to achieve good
global satisfaction

𝑔(𝐶) < ø
𝑔(𝐴 ∪ 𝑖)
𝑔(𝐴 ∪ 𝑗)

ù ≈ 𝐺(𝐶 ∪ 𝑖 ∪ 𝑗), 𝐴

⊆ 𝐶\𝑖, 𝑗																(7-14)

 Fig. 7-2 illustrates the process methodology developed in the present work for obtaining

the MDQ for a given conceptual design solution. The process methodology consists of top-down

and a bottom-up stages. The bottom-top stage is where the conceptual design solution model is

established and, consequently, the behavior variables are developed. The top-down stage starts

with conducting the need analysis and acquiring the customer requirements, where the design

criteria are developed accordingly. Each of the design criteria is assigned a weighting factor, which

135

represents its degree of importance. Sugeno 𝜆-measure [161], [162] is then calculated to address

the correlation between different design criteria.

Figure 7-2: Process methodology for obtaining the Mechatronic Design Quotient (MDQ).

The formulation of the IPI is carried out next by linking the design criteria to the behavior

variables using a mathematical concept. The process methodology continues to determine the

aggregated performance indicator through the MDQ, where the weights of different criteria along

with the weights of their interaction are integrated into the MDQ. The details of the proposed

process methodology are given next.

 For a given mechatronic system design, a vector of 𝑞 customer requirements 𝐶 =

û𝑐�, 𝑐�,… , 𝑐üý is given which is defined by the stakeholders. Also, a set of 𝑝 design criteria 𝑅 =

{𝑟�, 𝑟�,… , 𝑟Ò} is identified to fulfill the design requirements.

1

2

()
()

()

()n

u t
u t

U t

u t

æ ö
ç ÷
ç ÷=
ç ÷
ç ÷
è ø

!

1

2

()
()

()

()m

y t
y t

Y t

y t

æ ö
ç ÷
ç ÷=
ç ÷
ç ÷
è ø

!

()1 2() () () () T
kX t x t x t x t= "

Structural Design
Solution model of

CIM

Environmental variables Behavior variables

Design parameters/variables

1

2

p

r
r

R

r

æ ö
ç ÷
ç ÷= ç ÷
ç ÷ç ÷
è ø

!

1

2

q

c
c

C

c

æ ö
ç ÷
ç ÷= ç ÷
ç ÷ç ÷
è ø

!

1

2

q

w
w

W

w

æ ö
ç ÷
ç ÷= ç ÷
ç ÷ç ÷
è ø

!

1

2

2

()
()

()

()q

w c
w c

W c

w c

æ ö
ç ÷
ç ÷= ç ÷
ç ÷ç ÷
è ø

!
l

1

2

q

i
i

I

i

æ ö
ç ÷
ç ÷= ç ÷
ç ÷ç ÷
è ø

!

1

2

q

f
f

FM

f

æ ö
ç ÷
ç ÷= ç ÷
ç ÷ç ÷
è ø

!

Requirements Criteria

Criteria weights

IPI Fuzzy Measurs

Criteria and interaction
weights

Lamda

MDQ

136

The evaluation of the performance of a conceptual solution is carried out for establishing

the IPI. After identifying the design criteria vector, it is linked to the behavior variable vector 𝑌 =

{𝑦�, 𝑦�,… , 𝑦s}, which represents different dynamic behaviors of the system. This association

determines the reference values of the corresponding behavior, for example, max value, min value,

and average.

 Consequently, the performance metrics are decided according to the distance of each

variable and the reference for the specific time period, using the following equation:

 (7-15)

where:

𝑖t: performance indicator for the 𝑗$% criterion represented between zero to one

𝐼: metrics vector of the time period between 𝑡þ and 𝑡§

𝑠�(𝑡t): a function that represents a constraint violation, which is equal to 0 if the 𝑘$% constraint

has been violated and 1 otherwise.

To appropriately describe the time-varying behavior, a sufficient number of observations

is required - 𝑦�𝑡t�, 𝑗 = 1,…𝑛, 𝑛 ≫ 1. The resulting IPI vector is then obtained as 𝐼 = û𝑖�, 𝑖�, … , 𝑖üý.

Each of these criteria is assigned a weighting factor that is represented by a fuzzy measure,

which is typically assigned by expert designers. However, to address the correlation between

different criteria, fuzzy measures are also assigned for each subset of the criteria. For example, the

fuzzy measures to be assigned to five criteria would involve 2Å=32 subset of criteria. The number

increases exponentially when incorporating more criteria, which presents a challenge in assigning

0[,] 0 1

()
((),) (1) ()

f

t j n
j ref

j j ref k jt t t t kref

y t y
i I y t y s t

y

=

Î
= =

-
= = -å Õ

137

these fuzzy measures. Therefore, the Sugeno 𝜆-measure is introduced, which determines the

subsets of fuzzy measures using a function.

For two subsets 𝐴 and 𝐵 of the universe 𝑋, such that: 𝐴 ⊆ 𝑋 and 𝐴 ⊆ 𝑋, Sugeno 𝜆-measure

is measured as:

𝒈𝝀(𝑨 ∪ 𝑩) = 𝒈𝝀(𝑨) + 𝒈𝝀(𝑩) + 𝝀𝒈𝝀(𝑨)𝒈𝝀(𝑩) (7-16)

And 𝜆 is obtained by:

 (7-17)

where:

𝜆 is the Sugeno measure, in which 𝜆 > −1. That means: and 𝑔m is a notation for the fuzzy

measure 𝑔(𝑐m)

 After obtaining the weights of different criteria and their interactions, they are integrated

with the IPI using the MDQ, which is an aggregated indicator of the system performance with

respect to their weighted criteria. The integration method used to address the overall performance

is the fuzzy integral – see section 7.2.1.1. To compute the global score of each design solution, the

following equation is used:

 (7-18)

where:

𝑖� is the individual performance indicator of the 𝑘$% performance behavior

𝜇� is the density value (fuzzy measure) of the 𝑘$% criterion

𝜋 is a permutation index to order the set, such that

1

1 (1)
n

i

i

gl l
=

+ = +Õ

1
1

n
i

i
g

=

>å

1
1
(() ())

k

m

K K
k

MDQ i A Ap µ µ -
=

= -å

1 2
() () ()

m
i c i c i cp p p³ ³ ³

138

𝑐� is the 𝑘$% criterion

𝐴� gives the order of the information sources:

 A higher value of MDQ indicates a better level of performance of the design solution with

reference to the design criteria.

7.4 Case Study

In this section, the approach developed in the present work will be applied to an electro-

mechanical conveyor system that falls within the category of a mechatronic system. The system is

used to transport fish from the feeding station to the cutting station (see Fig. 7-3). It is composed

of three subsystems: an electric motor, a PID controller and a simple crank mechanism. The

proposed process methodology for evaluating the conceptual design solutions is used to show the

possible optimal design configuration, in which the time-to-market is decreased.

Figure 7-3: An industrial fish processing machine—Intelligent Iron Butcher.

The following are the design requirements.

1 2
{ , , , }

mkA c c cp p p=

Secondary camera Primary
camera

Vertical
cutter
blade

Discharge
hopper

Electro-hydraulic
manipulator

139

• Efficiency: The average power losses are to be minimized

• Speed of response: The rotational velocity of the crank shaft is to reach the specified value

of 10	 %&'
()*

 in less than 1 second

• Reliability: The overshoot of the system should be reduced

• Stability: The settling time should be maintained at a minimum

One generated conceptual design solution is shown in Fig. 7-4. This system is modeled

using Amesim – see Chapter 6. Therefore, a system of differential algebraic equations, which

associate the behavior variables, the environment variables, and the design parameters are handled

and solved by Amesim. The list of design variables is described in table 7-2.

Figure 7-4: Generated Amesim simulation models of Simple Crank.

140

Table 7-2: The list of design variables.

The design variables 𝑋 are:

𝑿 = {𝑲, 𝑻𝒊, 𝑻𝒅, 𝑰, 𝑹𝒂} (7-19)

The vector of behavior variables has been limited to the needed electric power 𝑃-(W) and

the rotational velocity of the motor shaft 𝜔s(rad s3). Accordingly, the vector 𝑌 is defined by:

𝒀(𝒕) = {𝝎𝒎(𝒕), 𝑷𝒘(𝒕)} (7-20)

 A fuzzy measure is assigned to each subset of criteria. The remaining four criteria:

“Efficiency”, “Speed of Response”, “Reliability”, and “Stability” form 2¾ = 16 subsets of

criteria. Therefore, they make the criteria vector - 𝐶 = {𝑐�	"Efficiency", 𝑐�	Speed	of	Response",	

c3	"Reliability",	c4"𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦"}. These criteria need 16 fuzzy measures using the ordinary

Choquet integral (two of them are self-evident: 𝑤(∅) = 0, and 𝑤(𝐶) = 1). The fuzzy measures

are typically assigned by expert designers. The fuzzy measures used in this case study are

obtained from [111] since the engineering system is the same and the criteria are similar. The

fuzzy measures are as follows: 𝑤(𝑐�) =0.35, 𝑤(𝑐�) = 0.18, 𝑤(𝑐�) = 0.52, 𝑤(𝑐¾) = 0.60.

The Sugeno 𝜆-measure is used to calculate the interaction between different criteria, as in

equations (7-16) and (7-17). First, 𝜆 is calculated using equation (7-17):

Design parameter/variable Name Default value Design domain
PID Gain constant K 10 [10, 50]
PID integration constant (s) T i 20 [10, 50]
PID drivation constant (s) Td 5 [2, 10]

Motor inertia (kg.m2) I 50 [10, 60]
Armature winding resistance (ohm) Ra 1 [1, 8]

1

1 (1)
n

i

i

gl l
=

+ = +Õ

1 (1 (0.35)) (1 (0.18)) (1 (.52)) (1 (0.60))l l l l l+ = + ´ + ´ + ´ +

141

Four roots are found:

Therefore, the correct choice is

Accordingly, using equation (7-16), we find the weights of the interactions, as:

, , , ,

, .

 Next, the IPI evaluation is performed, in which it shows the effect of the variations of the

design parameters on the dynamic performance. Fig. 7-5 shows the output behavior of the system

simulation, where the angular velocity (left), and the output power (right) are presented.

Figure 7-5: Angular velocity output (left), and power output (right).

By conducting the design exploration process, one can study the effect of the design

paramters. IPI represents the individual performance indicator of each of the design criteria. It can

be used for the analyzing the effect of the design variables on the criteria. This is able to give an

insight into the design configuration and how they affect the system.

1

2

3

4

0
-0.8257
- 5.588 2.97i
- 5.588 2.97i

l
l
l
l

=
=
= +
= -

0.8257l = -

1 2(,) -0.0033w c c = 1 3(,) -0.0274w c c = 1 4(,) -0.0364w c c = 2 3(,) -0.0072w c c =

2 4(,) -0.0096w c c = 3 4(,) -0.0804w c c =

142

Fig. 7-6 shows how IPI can be used to show to variations of the efficiency criteria with the

variations of the Motor inertia (kg.m2) and with all the other design parameters constant. It can be

seen that the efficiency of the system decreases as the value of the inertial increases. The efficiency

was evaluated at different values of the motor inertia (10 kg.m2, 20 kg.m2, 30 kg.m2, 40 kg.m2, 50

kg.m2, 60 kg.m2).

Likewise, the speed of response criteria was evaluated at different variations of the PID

gain constant (K) and with all the other design parameters constant. Fig. 7-7 shows that as the

value of K increases, the speed of response evaluation increase as well. The different values of the

gain constant that were computed are 10, 20, 30, 40, and 50. A penalty value was assigned to the

output of the rotational velocity of the shaft if the speed shaft did not reach the specified value of

10 rad sec3 . Therefore, the negative values indicate inability to comply with the condition.

Fig. 7-8, shows that the evaluation of the reliability criteria decreases as the value of the

Armature winding resistance (ohm) increases, and with all the other deign variables kept constant.

The values of the Armature winding resistance that were taken are 1 ohm, 4 ohms, 6 ohms, and 8

ohms. Finally, the stability criteria were evaluated with different variations of PID integration

constant (Ti). As shown in Fig. 7-9, the increase of the value of the PID integration constant leads

to a decrease of the evolution of the stability. The PID integration constant values were: 10, 20,

30, 40, and 50. With all the other design variables constant.

143

Figure 7-6: Efficiency variations as a function of motor

inertia (kg.m2)

Figure 7-7: Speed of response variations as a function of

PID gain constant (K)

Figure 7-8: Reliability variations as a function of

Armature winding resistance (ohm)

Figure 7-9: Stability variations as a function of PID

integration constant (Ti)

 Next, the MDQ evaluation is conducted, which represents a global evaluation index to all

the presented criteria. It has an advantage of the ability to calculate the interactions between these

criteria and take them into account when performing the evaluation. Each design alternative is

formulated according various values of the design parameters. The following steps are to be

followed:

1. The IPI is evaluated according to the corresponding values of the design variables.

-500

0

500

1000

1500

2000

2500

3000

0 20 40 60 80

Ef
fic

ie
nc

y
(W

)

Motor inertia (kg.m2)

The efficiency criteria

-40
-35
-30
-25
-20
-15
-10

-5
0
5

10

0 10 20 30 40 50 60

Sp
ee

d
of

 re
sp

on
se

 (s
)

PID Gain constant (K)

Speed of response criteria

0
2
4
6
8

10
12

0 2 4 6 8 10

Re
lia

bi
lit

y
(%

)

Armature winding resistance (ohm)

The reliability criteria

0
1
2
3
4
5
6

0 10 20 30 40 50 60

St
ab

ili
ty

 (s
)

PID integration constant (Ti)

The stability criteria

144

2. Each design criterion is assigned a partial scores, which represent the importance of the

design criteria.

3. Sugeno 𝜆-measure can be used to calculate the partial scores between all the design criteria.

4. MDQ is used to aggregate all the partial scores of the all the criteria, as well as the partial

score of between the criteria.

The result of the MDQ evaluation index is shown in Table 7-3.

Table 7-3: MDQ evaluation of design alternatives

 # 1 # 2 # 3 # 4 # 5
PID Gain constant 10 20 30 40 50
PID integration constant (s) 20 20 30 40 40
PID derivation constant (s) 50 40 30 20 10
Motor inertia (kg.m2) 50 50 50 50 50
Armature winding resistance (ohm) 1 2 4 6 8
Efficiency (c1) 0.730 0.612 0.781 0.657 0.824
Speed of Response (c2) 0.554 0.467 0.512 0.471 0.587
Reliability (c3) 0.788 0.646 0.741 0.609 0.911
Stability (c4) 0.519 0.624 0.697 0.773 0.646
Global score 0.654 0.579 0.621 0.601 0.703

The best design configuration of the system is #5, which corresponds to design variables

of PID gain constant of 50, PID integral constant of 40, PID derivative constant of 10, motor inertia

of 50 kg.m2, and armature winding resistance of 8 ohms.

This case study demonstrated a design exploration based on MDQ. The better

configurations were identified; in which they help in the multi-disciplinary optimization of the

mechatronic system.

145

Chapter 8: Conclusions and Future Work

8.1 Conclusions

This dissertation developed a design framework for a mechatronic system through the

improvement of the Conceptual Design Development Process (CDDP) and the Conceptual

Integrated Model (CIM). Two main types of problems were addressed: process-based problems

and design data-related problems. System engineering approach was considered for the design and

development of a mechatronic system in the conceptual design phase through Unified Modeling

Language (UML) and System Modeling Language (SysML).

First, an integrated design process methodology was developed. In this process, a multi-

layer V-model was proposed for a micro-level design process. The details of the characteristics of

the design tasks and activities were presented. A case study of an industrial fish cutting machine

was presented to demonstrate the application of the developed design methodology.

The details of the micro-level process model were explored, where the underlying

organization of different design activities in the concept and modeling sub-process phase is

defined. This work proposed Interconnection Classifications for the modeling of the

communication data between different design activities within the macro-level process. A case

study was presented, in which these interconnection classifications were implemented.

The functional modeling in the conceptual design phase was investigated. In particular, the

implementation of the functional modeling and its library, specifically the Functional Basis, in

SysML was proposed. It introduced the modeling of the functions and their ports, and the

development of the library through the Block Definition Diagram. The implementation of the

proposed functional modeling approach in SysML was demonstrated using a case study.

146

An algorithm was developed that described different modeling views and their activities in

the concept and modeling phase. Also, the algorithm was developed to transform the functional

model into a simulation model, computationally. This required a precise algorithm description of

the requirement model, the functional model, the simulation model including its simulation library,

and the simulation components, which was explored. The synthesizer principles and the algorithm

were presented, which were illustrated using a case study.

Finally, methodology was proposed for the evaluation of conceptual design solutions of

mechatronic systems. The underlying principles of the evaluation indicator were based on the

Mechatronic Design Quotient (MDQ). Also, Sugeno 𝜆-measure was proposed to compute the

subsets of the fuzzy measures, to solve the exponential growth of the fuzzy measures that are

assigned.

8.2 Possible Future Work

This dissertation developed a framework for the conceptual design of a mechatronic

system. The main focus was the development of the CDDP and its activities. Further research may

be done on the optimization of detailed design utilizing the same multi-layer V-model structure.

The modeling of the data exchange in the micro-level that takes place between different

design activities of the micro-level may be further investigated. In particular, the decomposition

of these data could be established and the granularity should be determined.

The utilization of artificial intelligence (AI) tools and machine learning approaches to

create a framework that simultaneously analyzes and learns from successful product designs,

should be investigated. In the same context, Machine Health Monitoring System (MHM) can be

147

employed to provide continuous improvements for the design process by identifying the design

weaknesses. Also, methodology for automatic selection of components for the design library, may

be developed.

148

Bibliography

[1] J. E. Carryer, R. M. Ohline, and T. W. Kenny, Introduction to Mechatronic Design, Prentice
Hall, 2011.

[2] G. C. Onwubolu, Mechatronics: Principles and Applications, Elsevier Butterworth-
Heinemann, 2005.

[3] K. Janschek, Mechatronic Systems Design: Methods, Models, Concepts, Springer Science
& Business Media, 2011.

[4] C. W. de Silva, Mechatronics: An Integrated Approach, CRC Press, 2005.
[5] A. A. Cabrera M. J. Foeken, O. A. Tekin, K. Woestenenk, M. S. Erden, B. de Schutter, M.

J. L. van Tooren, R. Babuska, F. J. A. M. van Houten, and T. Tomiyama, "Towards
automation of control software: A review of challenges in mechatronic design,” Journal of
Mechatronics, vol. 20, no. 8, pp. 876–886, 2010.

[6] D. Shetty and R. A. Kolk, Mechatronics System Design, PWS Publishing company, 1997.
[7] K. Ehrlenspiel, A. Kiewert, U. Lindemann, and M. S. Hundal, Cost-efficient Design,

Springer, 2007.
[8] E. Kroll, S. S. Condoor, and D. G. Jansson, Innovative Conceptual Design: Theory and

Application of Parameter Analysis, Cambridge University Press, 2001.
[9] M. Abramovici and F. Bellalouna, “Integration and complexity management within the

mechatronics product development,” in the Proceedings of the 14th CIRP conference on Life
Cycle Engineering, pp. 113–118, 2007.

[10] C. Zheng, M. Bricogne, J. Le Duigou, and B. Eynard, “Survey on mechatronic engineering:
A focus on design methods and product models,” Journal of Advanced Engineering
Informatics, vol. 28, no. 3, pp. 241–257, 2014.

[11] I. Crnkovic, U. Asklund, and A. P. Dahlqvist, Implementing and Integrating Product Data
Management and Software Configuration Management, Artech House, 2003.

[12] E. Von Hippel, “‘Sticky information’ and the locus of problem solving: implications for
innovation,” Journal of Management Science, vol. 40, no. 4, pp. 429–439, 1994.

[13] S. Thomke, Learning by experimentation: Prototyping and testing, C. Loch, S. Kavadias,
Handbook of New Product Development Management, Elsevier Butterworth-Heinemann, p.
401, 2007.

[14] S. Minderhoud and P. Fraser, “Shifting paradigms of product development in fast and
dynamic markets,” Journal of Reliability Engineering & System Safety, vol. 88, no. 2, pp.
127–135, 2005.

[15] T. S. Schmidt and K. Paetzold, “Agilität als Alternative zu traditionellen Standards in der
Entwicklung physischer Produkte: Chancen und Herausforderungen,” in the Proceedings of
the 27th Symposium Design for X (DFX), pp. 5-6, Jesteburg, Germany, October 2016.

[16] D. G. Ullman, The Mechanical Design Process, McGraw-Hill Science/Engineering/Math,
2002.

[17] R. Sell, Model Based Mechatronic Systems Modeling Methodology in Conceptual Design
Stage, PhD Dissertation, Tallinn University of Technology, 2007.

[18] M. Eigner, T. Gilz, and R. Zafirov, "Interdisciplinary product development-model based
systems engineering," PLMportal, 2017, [Online]. available:

 http://www.plmportal.org/en/research-detail/interdisciplinary-product-development-
model-basedsystems-engineering.html [Accessed: December 13, 2018].

149

[19] L. E. Hart, “Introduction to model-based system engineering (MBSE) and SysML,” in
Delaware Valley International council on Systems Engineering Chapter Meeting, 2015.

[20] S. Wölkl and K. Shea, “A computational product model for conceptual design using
SysML,” in the Proceedings of ASME 29th Computer and Information in Engineering
Conference, 2009.

[21] Y. Nemoto, F. Akasaka, and Y. Shimomura, “A knowledge management method for
supporting conceptual design of product-service systems,” in the Proceedings of ASME 18th
Design for Manufacturing and the Life Cycle Conference, 2013.

[22] B. Beihoff, C. Oster, S. Friedenthal, C. J. J. Paredis, D. Kemp, H. Stoewer, D. Nichols, and
J. Wade, “A world in motion: Systems engineering vision 2025,” International Council on
Systems Engineering, 2014.

[23] B. Kruse, A Library-Based Concept Design Approach for Multi-Disciplinary Systems in
SysML, PhD Dissertation, ETH Zurich, 2017.

[24] A. Qamar, An Integrated Approach Towards Model-based Mechatronic Design, KTH Royal
Institute of Technology, 2011.

[25] M. L. Griss, “Software reuse architecture, process, and organization for business success,”
in the Proceedings of the 8th Israeli Conference on Computer Systems and Software
Engineering, pp. 86–89 1997.

[26] J. Hirtz, R. B. Stone, D. A. McAdams, S. Szykman, and K. L. Wood, “A functional basis
for engineering design: Reconciling and evolving previous efforts,” Journal of Research in
Engineering Design, vol. 13, no. 2, pp. 65–82, 2002.

[27] Siemens PLM Software, “Simcenter - System simulations solutions,” Simcenter Amesim
Libraries, 2018.

[28] T. Kurtoglu, A Computational Approach to Innovative Conceptual Design, PhD
Dissertation, The University of Texas at Austin, 2007.

[29] C. W. de Silva, “Sensory information acquisition for monitoring and control of intelligent
mechatronic systems,” International Journal of Information Acquisition, vol. 1, no. 01, pp.
89–99, 2004.

[30] N. P. Suh, Axiomatic Design: Advances and Applications, Oxford University Press, 2001.
[31] ISO 9000, “Quality management systems - Fundamentals and vocabulary,” European

Standard, 2005.
[32] G. Pahl and W. Beitz, Engineering Design: A Systematic Approach, Springer Science &

Business Media, 2007.
[33] H. R. Buhl, Creative Engineering Design, Wiley-Blackwell, 1960.
[34] E. V. Krick, An Introduction to Engineering and Engineering Design, Wiley & Sons, Inc.,

1969.
[35] K. N. Otto, and K. L. Wood, Product Design: Techniques in Reverse Engineering and New

Product Development, Prentice Hall, 2001.
[36] K. T. Ulrich, Product Design and Development. McGraw-Hill Education, 2003.
[37] W. Beitz and G. Pahl, Engineering Design: A Systematic Approach, Springer Science &

Business Media, 1996.
[38] N. P. Suh, Axiomatic Design as A Basis for Universal Design Theory, Shaker Verlag, pp.

3–24, 1998.
[39] B. S. Blanchard, System Engineering Management, John Wiley & Sons, 2004.

150

[40] J. M. Torry-Smith, N. H. Mortensen, and S. Achiche, “A proposal for a classification of
product-related dependencies in development of mechatronic products,” Journal of
Research in Engineering Design, vol. 25, no. 1, pp. 53–74, 2014.

[41] C. Haskins, K. Forsberg, M. Krueger, D. Walden, and D. Hamelin, “Systems engineering
handbook,” International Council on Systems Engineering, 2006.

[42] J. Dewey, How we think, Dover Publications, 1997.
[43] T. Weilkiens, Systems Engineering with SysML/UML: Modeling, Analysis, Design,

Elsevier, 2011.
[44] B. W. Boehm, Software Engineering Economics, Prentice-hall, vol. 197, 1981.
[45] B. W. Boehm, “A spiral model of software development and enhancement,” IEEE

Transactions on Computers, vol. 21, no. 5, pp. 61–72, 1988.
[46] K. Forsberg, and H. Mooz, “System engineering for faster, cheaper, better,” in International

Council on Systems Engineering Symposium, vol. 9, pp. 924–932, 1998.
[47] P. B. Crosby, Quality is Free: The Art of Making Quality Certain, McGraw-Hill, 1979.
[48] VDI Guideline, “2221: Systematic approach to the design of technical systems and

products,” Verlag des Vereins Deutscher Ingenieure, vol. 2221, 1993.
[49] J. Jänsch and H. Birkhofer, “The development of the guideline VDI 2221-the change of

direction,” in the Proceedings Design, the 9th International Design Conference, Dubrovnik,
Croatia, 2006.

[50] VDI-Gesellschaft, “Systematical development of devices controlled by microelectronics,”
The Association of German Engineers VDI, 1994.

[51] H. M. van Brussel, “Mechatronics-A powerful concurrent engineering framework,”
IEEE/ASME Transactions on Mechatronics, vol. 1, no. 2, pp. 127–136, 1996.

[52] R. Isermann, “Modeling and design methodology for mechatronic systems,” IEEE/ASME
Transactions on Mechatronics, vol. 1, no. 1, pp. 16–28, 1996.

[53] J. Bathelt, A. Jonsson, C. Bacs, S. Dierssen, and M. Meier, “Applying the new VDI design
guideline 2206 on mechatronic systems controlled by a PLC,” in the Proceedings ICED, the
15th International Conference on Engineering Design, p. 2601, 2005.

[54] J. Gausemeier and S. Moehringer, “New guideline VDI 2206 - A flexible procedure model
for the design of mechatronic systems,” in the Proceedings ICED, the 14th International
Conference on Engineering Design, 2003.

[55] V. S. Vasić and M. P. Lazarević, “Standard industrial guideline for mechatronic product
design,” FME Transactions, vol. 36, no. 3, pp. 103–108, 2008.

[56] D. Hofmann, M. Kopp, and B. Bertsche, “Development in mechatronics-Enhancing
reliability by means of a sustainable use of information,” in the Proceedings of IEEE/ASME
International Conference, Advanced Intelligent Mechatronics (AIM), pp. 1263–1268, 2010.

[57] J. Gausemeier, R. Dumitrescu, S. Kahl, and D. Nordsiek, “Integrative development of
product and production system for mechatronic products,” Journal of Robotics and
Computer-Integrated Manufacturing, vol. 27, no. 4, pp. 772–778, 2011.

[58] G. Barbieri, C. Fantuzzi, and R. Borsari, “A model-based design methodology for the
development of mechatronic systems,” Journal of Mechatronics, vol. 24, no. 7, pp. 833–
843, 2014.

[59] R. Nattermann and R. Anderl, “The W-model-Using systems engineering for adaptronics,”
Journal of Procedia Computer. Science, vol. 16, pp. 937–946, 2013.

151

[60] J. Lefèvre, S. Charles, M. Bosch-Mauchand, B. Eynard, and E. Padiolleau,
“multidisciplinary modeling and simulation for mechatronic design,” Journal of Design
Research, vol. 9, pp. 127-144, 2012.

[61] J. Fisher, “Model-based systems engineering: A new paradigm,” Insight, vol. 1, no. 3, pp.
3–16, 1998.

[62] J. A. Estefan, “Survey of model-based systems engineering (MBSE) methodologies,”
Incose MBSE Focus Group, vol. 25, no. 8, pp. 1–12, 2007.

[63] N. A. Tepper, Exploring the Use of Model-based Systems Engineering (MBSE) to Develop
Systems Architectures in Naval Ship Design, Defense Technical Information Center, 2010.

[64] K. Thramboulidis, “Challenges in the development of mechatronic systems: The
mechatronic component,” in the Proceedings of IEEE International Conference of
Emerging Technologies and Factory Automation, pp. 624–631, 2008.

[65] N. Adamsson, Interdisciplinary Integration in Complex Product Development: Managerial
Implications of Embedding Software in Manufactured Goods, KTH Royal Institute of
Technology, 2007.

[66] H. Anacker, R. Dorociak, R. Dumitrescu, and J. Gausemeier, “Integrated tool-based
approach for the conceptual design of advanced mechatronic systems,” in the Proceedings
of IEEE International Systems Conference (SysCon), pp. 506–511, 2011.

[67] J. El-Khoury, A Model Management and Integration Platform for Mechatronics Product
Development, KTH Royal Institute of Technology, 2006.

[68] Object Management Group, “OMG systems modeling language (OMG SysMLTM),” 2008.
[69] No Magic, Inc., “Unified modeling language (UML), SysML, UPDM, SOA, business

process modeling tools,” [Online]. Available: https://www.nomagic.com/. [Accessed:
February 27, 2018].

[70] N. Magic, Inc., “Cameo simulation toolkit,” 2011.
[71] J. E. Kasser, “Seven systems engineering myths and the corresponding realities,” in the

Proceedings of the Systems Engineering Test and Evaluation Conference, 2010.
[72] S. Friedenthal, A. Moore, and R. Steiner, “A practical guide to SysML: The systems

modeling language,” Morgan Kaufmann, 2014.
[73] Y. Umeda, H. Takeda, T. Tomiyama, and H. Yoshikawa, “Function, behaviour, and

structure,” Applications of Artificial Intelligence in Engineering, vol. 1, pp. 177–194, 1990.
[74] J. S. Gero, “Design prototypes: A knowledge representation schema for design,” AI

Magazine, vol. 11, no. 4, pp. 26, 1990.
[75] B. Chandrasekaran, “Representing function: Relating functional representation and

functional modeling research streams,” Journal of Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, vol. 19, no. 2, pp. 65–74, 2005.

[76] B. Bennett and C. Fellbaum, “Behavior of a technical artifact: An ontological perspective
in engineering,” in the Proceedings of 4th International Conference in Frontiers in Artificial
Intelligence and Applications, vol. 150, pp. 214-225, 2006.

[77] S. Szykman, J. W. Racz, and R. D. Sriram, “The representation of function in computer-
based design,” in the Proceedings of the 11th ASME Design Engineering Technical
Conferences, 1999.

[78] M. N. Saunders, C. C. Seepersad, and K. Hölttä-Otto, “The characteristics of innovative,
mechanical products,” Journal of Mechanical Design, vol. 133, no. 2, pp. 021009, 2011.

152

[79] A. Albers and C. Zingel, “Challenges of model-based systems engineering: A study towards
unified term understanding and the state of usage of SysML,” in the Proceedings of the 23rd
CIRP Design Conference, Smart Product Engineering, pp. 83–92, 2013.

[80] B. Kruse, C. Münzer, S. Wölkl, A. Canedo, and K. Shea, “A model-based functional
modeling and library approach for mechatronic systems in SysML,” in the Proceedings of
the 32nd ASME Computers and Information in Engineering Conference, pp. 1217–1227,
2012.

[81] A. Sofer, et. al., “Guide to the systems engineering body of knowledge (SEBoK) v. 1.4,”
IEEE Computer Society Press, 2015.

[82] P. E. Vermaas, “The coexistence of engineering meanings of function: four responses and
their methodological implications,” Journal of Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, vol. 27, no. 3, pp. 191–202, 2013.

[83] I. Reymen, Improving Design Processes Through Structured Reflection: A Domain-
Independent Approach, Technische Universiteit Eindhoven, 2001.

[84] V. Hubka and W. E. Eder, Theory of Technical Systems: A Total Concept Theory for
Engineering Design. Springer Science & Business Media, 2012.

[85] R. Reil, “What makes model-based systems engineering transformational?” Insight, vol. 18,
no. 3, pp. 16–17, 2015.

[86] H. Mili, A. Mili, S. Yacoub, and E. Addy, Reuse-based Software Engineering: Techniques,
Organization, and Controls. Wiley-Interscience, 2001.

[87] C. Jackson and M. Buxton, The Design Reuse Benchmark Report: Seizing the Opportunity
to Shorten Product Development, Aberd. Group, 2007.

[88] E. Girczyc and S. Carlson, “Increasing design quality and engineering productivity through
design reuse,” in Proceedings of the 30th international Design Automation Conference, pp.
48–53, 1993.

[89] A. H. B. Duffy and A. F. Ferns, “An analysis of design reuse benefits,” In the Proceedings
of the 12th International Conference on Engineering Design, pp. 799-804, 1998.

[90] R. M. Arlitt, R. B. Stone, and I. Y. Tumer, “Impacts of function-related research on
education and industry,” Impact of Design Research on Industrial Practice, Springer, pp.
77–99, 2016.

[91] R. B. Stone and K. L. Wood, “Development of a functional basis for design,” Journal of
Mechanical Design, vol. 122, no. 4, pp. 359–370, 2000.

[92] H. Balkhair and C. W. de Silva, “A systematic approach for functional decomposition of
mechatronic system design using mechatronic design quotient (MDQ),” in the Proceedings
of the 9th International Conference on Computer Science & Education (ICCSE), pp. 135–
139, 2014.

[93] B. W. Caldwell, Evaluating the Use of Functional Representations for Ideation in
Conceptual Design, PhD Dissertation, Clemson University, 2011.

[94] B. W. Caldwell, C. Sen, G. M. Mocko, J. D. Summers, and G. M. Fadel, “Empirical
examination of the functional basis and design repository,” Design Computing and
Cognition, Springer, pp. 261–280, 2008.

[95] B. W. Caldwell, C. Sen, G. M. Mocko, and J. D. Summers, “An empirical study of the
expressiveness of the functional basis,” Journal of Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, vol. 25, no. 3, pp. 273–287, 2011.

153

[96] C. Sen, B. W. Caldwell, J. D. Summers, and G. M. Mocko, “Evaluation of the functional
basis using an information theoretic approach,” Journal of Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, vol. 24, no. 1, pp. 87–105, 2010.

[97] C. Sen, J. D. Summers, and G. M. Mocko, “Topological information content and
expressiveness of function models in mechanical design,” Journal of Computing and
Information Science in Engineering, vol. 10, no. 3, pp. 031003, 2010.

[98] W. Borutzky, “Bond graph modeling and simulation of multidisciplinary systems–an
introduction,” Journal of Simulation Modeling Practice and Theory, vol. 17, no. 1, pp. 3–
21, 2009.

[99] U. Sellgren, Simulation-driven Design: Motives, Means, and Opportunities, KTH Royal
Institute of Technology, 1999.

[100] Siemens PLM Software, “Siemens NX,” [Online]. Available:
https://www.plm.automation.siemens.com/en/products/nx/. [Accessed: March 10, 2018].

[101] CATIATM - Dassault Systèmes®, “3D Modeling Solutions,” [Online]. Available:
https://www.3ds.com/products-services/catia/. [Accessed: March 07, 2018].

[102] Agnisys, “Best Products & Services for System,” Verilog / UVM, 2017.
[103] C. Münzer, Constraint-Based Methods for Automated Computational Design Synthesis of

Solution Spaces, PhD Dissertation, ETH Zurich, 2015.
[104] C. J. Paredis, A. Diaz-Calderon, R. Sinha, and P. K. Khosla, “Composable models for

simulation-based design,” Engineering with Computers, vol. 17, no. 2, pp. 112–128, 2001.
[105] A. Canedo and J. H. Richter, “Architectural design space exploration of cyber-physical

systems using the functional modeling compiler,” Journal of Procedia CIRP, vol. 21, pp.
46–51, 2014.

[106] M. Grabisch, “The application of fuzzy integrals in multicriteria decision making,”
European Journal of Operational Research, vol. 89, no. 3, pp. 445–456, 1996.

[107] J. L. Marichal, “An axiomatic approach of the discrete Choquet integral as a tool to
aggregate interacting criteria,” IEEE Transactions on Fuzzy Systems, vol. 8, no. 6, pp. 800–
807, 2000.

[108] C. W. de Silva, “Sensing and information acquisition for intelligent mechatronic systems,”
in Proceedings of the Symposium on Information Transition, Chinese Academy of Science,
Hefei, pp. 9–18, 2003.

[109] C. Labreuche and M. Grabisch, “The Choquet integral for the aggregation of interval scales
in multicriteria decision making,” Fuzzy Sets Systems, vol. 137, no. 1, pp. 11–26, 2003.

[110] C. Labreuche, “Construction of a Choquet integral and the value functions without any
commensurateness assumption in multi-criteria decision making.,” in the Proceedings of
the 7th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT),
pp. 90–97, 2011.

[111] S. Behbahani and C. W. de Silva, “Mechatronic Design Quotient as the Basis of a New
Multicriteria Mechatronic Design Methodology,” IEEE/ASME Transactions on
Mechatronics, vol. 12, no. 2, pp. 227–232, 2007.

[112] M. Xia, Application of Machine Health Monitoring in Design Optimization of Mechatronic
Systems,” University of British Columbia, 2017.

[113] S. Gao and C. W. de Silva, “Estimation distribution algorithms on constrained optimization
problems,” Applied Mathematics and Computation, vol. 339, pp. 323–345, 2018.

[114] B. Prasad, Concurrent Engineering Fundamentals, Prentice Hall, 1996.

154

[115] R. R. B. Abd, P. Udo, and S. Ralf, “Systematic mechatronic design of a piezo-electric
brake,” Guidelines for a Decision Support Method Adapted to NPD Processess, 2007.

[116] G. A. David and B. H. Michael, Introduction to Mechatronics and Measurement Systems.
McGraw Hill, 2007.

[117] P. iViP Association, “Mechatronic process integration (MPI),” Abschlussbericht ProSTEP
IViP, 2009.

[118] J. Gausemeier, M. Flath, and S. Moehringer, “Modeling and evaluation of principle
solutions of mechatronic systems, exemplified by tyre pressure control in automotive
systems,” in the Proceedings of Symposium of Design for X, pp. 541–548, 2000.

[119] X. Liu-Henke, J. Lückel, and K.-P. Jäker, “Development of an active suspension/tilt system
for a mechatronic railway carriage,” IFAC Proceedings Voume., vol. 33, no. 26, pp. 283–
288, 2000.

[120] R. Sinha, C. J. Paredis, V.-C. Liang, and P. K. Khosla, “Modeling and simulation methods
for design of engineering systems,” Journal of Computing and Information Science in
Engineering, vol. 1, no. 1, pp. 84–91, 2001.

[121] C. W. De Silva, Mechatronics: A Foundation Course. CRC press, 2010.
[122] P. Hehenberger, “Perspectives on hierarchical modeling in mechatronic design,” Advanced

Engineering Informatics, vol. 28, no. 3, pp. 188–197, 2014.
[123] S. D. Eppinger and K. T. Ulrich, Product Design and Development, McGraw-Hill

Education, 1995.
[124] C. L. Dym, P. Little, E. J. Orwin, and E. Spjut, Engineering Design: A Project-based

Introduction. John Wiley and sons, 2009.
[125] S. Szykman, J. W. Racz, and R. D. Sriram, “The representation of function in computer-

based design,” in the Proceedings of the 11th ASME Design Engineering Technical
Conferences, International Conference on Design Theory and Methodology, 1999.

[126] H. Balkhair and C. W. de Silva, “Data Management for Multidisciplinary Mechatronic
Systems,” International Journal of Emerging Technologies and Innovative Research, vol.
5, no. 8, pp. 46–50, Aug. 2018.

[127] C. Zheng, P. Hehenberger, J. Le Duigou, M. Bricogne, and B. Eynard, “Multidisciplinary
design methodology for mechatronic systems based on interface model,” Research in
Engineering Design, vol. 28, no. 3, pp. 333–356, 2017.

[128] U. Lindemann, M. Maurer, and T. Braun, Structural complexity management: an approach
for the field of product design. Springer Science & Business Media, 2008.

[129] C. Zheng, Design and Integration of Multi-disciplinary Interfaces: Method and Modelling
Language for Mechatronic Systems Engineering, Université de Technologie de Compiègne,
2015.

[130] J. Blyler, “Interface management,” IEEE Instrumentation and Measurement Magazine, vol.
7, no. 1, pp. 32–37, 2004.

[131] M. Eigner, T. Gilz, and R. Zafirov, “Proposal for functional product description as part of a
plm solution in interdisciplinary product development,” in the Proceedings of the 12th
Design, International Design Conference, 2012.

[132] J. D. Summers, C. Eckert, and A. K. Goel, “Function in engineering: benchmarking
representations and models,” Journal of Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, vol. 31, no. 4, pp. 401–412, 2017.

155

[133] Y.-M. Deng, “Function and behavior representation in conceptual mechanical design,”
Journal of Artificial Intelligence for Engineering Design, Analysis and Manufacturing, vol.
16, no. 5, pp. 343–362, 2002.

[134] B. Kruse, T. Gilz, K. Shea, and M. Eigner, “Systematic comparison of functional models in
sysml for design library evaluation,” Journal of Procedia CIRP, vol. 21, pp. 34–39, 2014.

[135] S. J. Wölkl, Model Libraries for Conceptual Design, Ph. D. thesis, Munich, Germany:
Technische Universität München, 2013.

[136] H. Komoto and T. Tomiyama, “A framework for computer-aided conceptual design and its
application to system architecting of mechatronics products,” Computer-Aided Design, vol.
44, no. 10, pp. 931–946, 2012.

[137] S. Uckun, Meta II: Formal Co-verification of Correctness of Large-scale Cyber-physical
Systems During Design, Palo Alto Research Center, Technical Report, pp. 1–43, 2011.

[138] A. Canedo, J. Wan, and M. A. Al Faruque, “Functional modeling compiler for system-level
design of automotive cyber-physical systems,” in the Proceedings of IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pp. 39–46, 2014.

[139] J. Wan, A. Canedo, and M. A. Al Faruque, “Functional model-based design methodology
for automotive cyber-physical systems,” IEEE Systems Journals, vol. 11, no. 4, pp. 2028-
2039, 2017.

[140] B. Kruse and K. Shea, “Design library solution patterns in SysML for concept design and
simulation,” in the Proceedings of the 26th Design Conference, Procedia CIRP, vol. 50, pp.
695–700, 2016.

[141] A. S. Vincentelli, “Defining platform-based design,” EE Design, EE Times, 2002.
[142] A. Bhave, B. H. Krogh, D. Garlan, and B. Schmerl, “View consistency in architectures for

cyber-physical systems,” in the Proceedings of IEEE/ACM International Conference on
Cyber-Physical Systems (ICCPS), pp. 151–160, 2011.

[143] H. Elmqvist et al., “ModelicaTM-A unified object-oriented language for physical systems
modeling,” Tutorial and Rational, vol. 1, 1999.

[144] M. Han, Y. Song, W. Zhao, Y. Cheng, and J. Xiang, “Simulation and optimization of
synchronization control system for cfetr water hydraulic manipulator based on AMEsim,”
Journal of Fusion Energy, vol. 34, no. 3, pp. 566–570, 2015.

[145] M. J. Zhang, “Die forming simulation of pm parts based on AMESim,” Key Engineering
Materials, vol. 667, pp. 47–53, 2016.

[146] M. Häggström, Thermal Modelling of A Truck Gearbox, Independent thesis Advanced level,
Luleå University of Technology, 2017.

[147] M. A. A. Siddique, W.-S. Kim, S.-Y. Beak, Y.-J. Kim, and C.-H. Choi, “Simulation of
hydraulic system of the rice transplanter with AMESim software,” The American Society of
Agricultural and Biological Engineers Annual International Meeting, 2018.

[148] Y. Cao, Y. Liu, and C. J. Paredis, “System-level model integration of design and simulation
for mechatronic systems based on SysML,” Journal of Mechatronics, vol. 21, no. 6, pp.
1063–1075, 2011.

[149] Y. Cao, Y. Liu, H. Fan, and B. Fan, “SysML-based uniform behavior modeling and
automated mapping of design and simulation model for complex mechatronics,” Journal of
Computer-Aided Design, vol. 45, no. 3, pp. 764–776, 2013.

[150] B. Chabibi, A. Douche, A. Anwar, and M. Nassar, “Integrating SysML with simulation
environments (Simulink) by model transformation approach,” in the Proceedings of IEEE

156

25th International Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE), pp. 148–150, 2016.

[151] J. F. Broenink, “Introduction to physical systems modelling with bond graphs,” SiE
Whitebook on Simulation Methodologies, vol. 31, 1999.

[152] J. Hirtz, R. B. Stone, D. A. McAdams, S. Szykman, and K. L. Wood, “A functional basis
for engineering design: reconciling and evolving previous efforts,” Research in Engineering
Design, vol. 13, no. 2, pp. 65–82, 2002.

[153] B. Helms, H. Schultheiss, and K. Shea, “Automated mapping of physical effects to functions
using abstraction ports based on bond graphs,” Journal of Mechanical Design, vol. 135, no.
5, p. 051006, 2013.

[154] H. Paynter, “Analysis and design of engineering systems,” Massachusetts Institute of
Technology, 1961.

[155] D. B. Dooner, A. Palermo, and D. Mundo, “An intermittent motion mechanism
incorporating a geneva wheel and a gear train,” Transaction Canadian Society of
Mechanical Engineering, vol. 38, no. 3, pp. 359–372, 2014.

[156] S. I. Valdez, S. Botello-Aceves, H. M. Becerra, and E. E. Hernández, “Comparison between
a concurrent and a sequential optimization methodology for serial manipulators using
metaheuristics,” IEEE Transactions on Industrial Informatics, vol. 14, no. 7, pp. 3155-3165,
2018.

[157] R. X. Lu, C. W. de Silva, M. H. Ang, J. A. Poo, and H. Corporaal, “A new approach for
mechatronic system design: Mechatronic design quotient (MDQ),” in the Proceedings of
IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 911–915
2005.

[158] S. Behbahani, Practical and Analytical Studies on the Development of Formal Evaluation
and Design Methodologies for Mechatronic Systems, PhD Dissertation, University of
British Columbia, 2007.

[159] M. Hammadi, J. Y. Choley, O. Penas, A. Riviere, J. Louati, and M. Haddar, “A new multi-
criteria indicator for mechatronic system performance evaluation in preliminary design
level,” in the Proceedings of the 9th France-Japan & 7th Europe-Asia Congress on
Mechatronics (MECATRONICS)-13th International Workshop on Research and Education
in Mechatronics (REM), pp. 409–416, 2012.

[160] C. W. de Silva, Mechatronic systems: Devices, Design, Control, Operation and Monitoring,
CRC press, 2007.

[161] H. T. Nguyen, V. Kreinovich, J. Lorkowski, and S. Abu, “Why sugeno λ-measures,” in
Proceedings of IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–7,
2015.

[162] A. K. Singh, “Signed lambda-measures on effect algebras,” Proceedings of the National
Academy of Science, Indian Section A: Physical Science, pp. 1–7, 2018.

