
Error-free stable computation with polymer-supplemented
chemical reaction networks

by

Allison Yeu Yang Tai

B.Sc., University of British Columbia, 2016

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Bioinformatics)

The University of British Columbia

(Vancouver)

November 2019

c© Allison Yeu Yang Tai, 2019

The following individuals certify that they have read, and recommend to the Fac-
ulty of Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

Error-free stable computation with polymer-supplemented chemical re-
action networks

submitted by Allison Yeu Yang Tai in partial fulfillment of the requirements for
the degree of Master of Science in Bioinformatics.

Examining Committee:

Anne Condon, Computer Science
Supervisor

David Kirkpatrick, Computer Science
Supervisory Committee Member

Raymond Ng, Computer Science
Supervisory Committee Member

Steven Jones, Medical Genetics and Molecular Biology Biochemistry
Additional Examiner

ii

Abstract

When disallowing error, traditional chemical reaction networks are very limited in

computational power: Angluin et al. and Chen et al. showed that only semilinear

predicates and functions are stably computable by CRNs. Qian et al. and others

have shown that polymer-supplemented chemical reaction networks are capable

of Turing-universal computation. However, their model requires that inputs are

loaded onto the polymers at protocol initialization, in contrast with the traditional

convention that inputs are represented by counts of molecules in solution. Here, we

show that polymer-supplemented chemical reaction networks can stably simulate

Turing-universal computations even with solution-based inputs. However, such

simulations use a unique ”leader” polymer per input type and thus involve many

slow bottleneck reactions. We further refine the polymer-supplemented chemical

reaction network model to allow for clone polymers, that is, multiple functionally-

identical copies of a polymer, and provide an illustrative example of how bottleneck

reactions can be reduced in this new model.

iii

Lay summary

In this paper, we design algorithms for the chemical reaction networks that lever-

ages the additional power of polymers to compute functions and simulate powerful

computational models that cannot be done traditionally. In particular, we demon-

strate that we can simulate these functions and models in an error-free manner,

meaning that our algorithm arrives at the correct answer every single time. This is

not possible with the traditional chemical reaction network model, which is capa-

ble of computing only a very limited class of functions and predicates. Chemical

reaction networks use molecules and their reactions to perform computation, by

using a finite set of molecular species and a specified input to generate an output

that corresponds to the answer. We also suggest methods to speed up some of the

algorithms we design, by allowing multiple copies of each polymer species to exist

simultaneously.

iv

Preface

This thesis is the original, independent work of the author, A. Tai, with input on

ideas and writing from A. Condon. A version of the document body was published

as conference proceedings for DNA 25 [Tai A, Condon A. Error-free stable com-

putation withpolymer-supplemented chemical reaction networks. DNA Computing

and Molecular Programming, 197-218, 2019].

v

Table of contents

Abstract . iii

Lay summary . iv

Preface . v

Table of contents . vi

List of tables . viii

List of figures . ix

Acknowledgments . xi

1 Introduction . 1
1 Contributions and highlights . 3

2 Related work . 4

2 Polymer-supplemented chemical reaction networks 6

3 Stable, Turing-universal computation by sequential psCRNs with
leader polymers . 11

4 Faster computation of Square by threaded psCRNs with clone poly-
mers . 21

5 psCRN time complexity analysis and simulation 30

vi

6 Conclusions and future work . 36

Bibliography . 38

vii

List of tables

Table 3.1 Instruction abstractions of psCRN reactions. The decrement

dec(σ) instruction can complete only if the σ -polymer has length

is at least 1. 13

viii

List of figures

Figure 5.1 (a) Simulation of Algorithm 1: Sequential-n2-psCRN, with

fast-forwarding and input n on X-polymer, n = 100. (b) Sim-

ulation of Algorithm 1: Sequential-n2-psCRN, with input de-

tection and loading, n = 100. Each line in the plots shows the

count of the outputs as a function of the number of interac-

tions, with the blue line being the count of output species Y

finally released into solution, while the red line shows the size

of the Yint polymer. By interaction, we mean a collision of two

molecular species in the system, which may or may not result

in a reaction. 34

Figure 5.2 Plotting simulation runtimes as a function of initial species

count n for (a) Algorithm 1: Sequential-n2-psCRN starting

with pre-loaded input (b) Algorithm 1: Sequential-n2-psCRN

with input detection and loading. Each blue marker plots a sin-

gle simulation, showing the number of interactions required for

protocol completion as a function of the initial count of input

species X . In both cases, data was fitted with an equation of

form cx4, where (a) c = 78.4, and (b) c = 99.2. 34

ix

Figure 5.3 Comparing runtimes of Algorithm 1: Sequential-n2-psCRN

(red) to Algorithm 4: Threaded-n2blognc-psCRN (blue) with

fast-forwarding, where (a) n = 128, and (b) n = 2i, i ∈ [3,7].

We plot the average number of interactions over five different

simulations for each input count n. Sequential data was fitted

with an equation of form cx4, c = 50.3. Threaded data was

fitted with an equation of form cx3 logx, c = 267. 35

x

Acknowledgments

Thank you to my supervisor, Anne Condon, for her support with ideas and feed-

back throughout my degree, and for helping me with the technical aspects of the

writing. I also thank my committee for their valuable feedback and insight while

preparing this thesis.

xi

Chapter 1

Introduction

The logical, cause-and-effect nature of chemical reactions has long been recog-

nized for its potential to carry information and make decisions. Indeed, biological

systems exploit interacting digital molecules to perform many important processes.

Examples include inheritance with DNA replication, passing information from the

nucleus to the cytoplasm using messenger RNA, or activating different cellular

states through signal transduction cascades. Chemical reaction networks (CRNs)

exploit these capabilities to perform molecular computations, using a finite set of

molecular species (including designated input and output species) and reactions.

Reactions among molecules in a well-mixed solution correspond to computation

steps. CRN models may use mass-action kinetics, where the dynamics of the reac-

tions are governed by ordinary differential equations, or stochastic kinetics, where

the choice of reaction and length of time between reactions depends on counts of

molecular species. We focus on stochastic CRNs in this work.

Stochastic CRNs using unbounded molecular counts are Turing-universal [19],

but have a non-zero chance of failure. One challenge is that CRNs are unable to

detect the absence of a molecule, and therefore when all molecules of a particu-

lar species have been processed. For example, when trying to simulate a counter

machine, if their count of a species corresponds to a counter value, then a test-for-

zero instruction needs to detect when all molecules have been depleted, i.e., their

count is zero. Indeed, while the error of a CRN simulation of Turing-universal

computation can be made arbitrarily small, it can never reach zero [9].

1

Error-free CRNs include those that exhibit stable computation: the output can

change as long as it eventually converges to the correct answer; and committing

computation: the presence of a designated “commit” species indicates that the out-

put is correct and does not change subsequently. The class of predicates stably

computable by CRNs is limited to semilinear predicates [3], and functions com-

putable by committing CRNs are just the constant functions [9].

Cummings et al. [11] introduced the notion of limit-stable computation, which

relaxes the stability requirement. In a computation of a limit-stable CRN, the out-

put may change repeatedly, but the probability of changing the output from its cor-

rect value goes to zero in the limit. Cummings et al. show that any halting counter

machine can be simulated by a limit-stable CRN. Their construction involves re-

peated simulations of a counter machine, resetting the counter values each time,

along with slowing down any error-prone reactions each time they occur. They

show that the computational power then becomes equivalent to that of a Turing

machine with the ability to change its output a finite number of times, capable of

deciding predicates in the class ∆0
2 of limit-computable functions.

From these insights, we can see that CRN computations that produce the cor-

rect answer with probability 1 are still severely limited. We ask, ”Is there any way

to extend CRNs to work around the lack of ability to detect absence?” Qian et al.

[17] gave a promising answer to this question by introducing a CRN model that

is supplemented by polymers that behave as stacks, onto which monomers can be

pushed and popped. Most importantly, this extended model allows for the stack

base unit ⊥ to be used as a reactant in implementing a ”stack empty” operation.

Indeed, Qian et al. use this operation in an error-free simulation of a stack ma-

chine. The resulting protocol, however, requires that the entire input is pre-loaded

onto one of the stacks, a large change from traditional CRNs which assumes the

inputs are well-mixed in a solution.

Motivated by the work of Qian et al., we wish to go one step further: Is Turing-

universal stable computation by polymer-supplemented CRNs (psCRNs) possible

when the input is represented by counts of monomers in a well-mixed solution? In-

tuitively, if input monomers can be loaded on to a polymer, absence of that species

from the system could be detected by emptiness of the polymer, and thus circum-

vent a significant barrier to error-free, Turing-universal computation. The obvious

2

obstacle is that it seems impossible to guarantee that all inputs are loaded on the

polymer before computation can begin, if we can’t reliably check for absence of

inputs in the environment. At first glance, the logic appears circular, but we show

that indeed stable Turing-universal computation is possible, and also present ideas

for speeding up such computations.

In the rest of this chapter we describe our four main contributions and review

related work. Chapter 2 introduces our polymer CRN models, Chapters 3, 4, and

5 describe our results, and Chapter 6 concludes with a summary and directions for

future work.

1 Contributions and highlights

Stable counter machine simulation using CRNs with leader polymers. We design

a polymer-supplemented CRN (psCRN) that unlike Qian et al., performs error-

free Turing universal computation without requiring all inputs to be pre-loaded on

polymers. To this end, instead of a binary stack machine, we simulate a schema

that depends on unary counters. We do this by designing a protocol simulating a

counter machine that performs computations assuming perfect loading of inputs,

then add a mechanism that forces the simulation to continuously restart as long as

inputs still exist in solution, only stopping once all inputs have been loaded onto

their respective polymers. Therefore the protocol then completes successfully if

and only if the last simulation began with all inputs properly loaded. Our scheme

is similar to the error correction scheme of Cummings et al. in how we restart

the simulation multiple times, but leverages polymers to ensure stable computation

with 0 probability of error. Our polymer simulation of counter machines, and thus

Turing-universal computation, uses a unique polymer per input species, as well as

a “program counter” to ensure that execution of reactions follows the proper order.

These molecules each have a count of one and so in the parlance of traditional

CRNs, serve as “leaders”. As a consequence, the simulation has a high number

of so-called bottleneck reactions, which involve two leader reactants. Bottleneck

reactions are undesirable because they are slow.

3

Clone polymers can help reduce bottleneck reactions. To reduce the number bot-

tleneck reactions, we propose a CRN polymer model with no limit on the number

of polymers of a given species, other than the limit posed by the volume of the

system. In addition to type-specific increment, decrement and jump-if-empty oper-

ations (which are applied to one polymer of a given species), polymer stubs can be

created or destroyed. We call such polymers “clones.” We illustrate the potential of

psCRNs with clone polymers to reduce bottleneck reactions, by describing psCRN

to compute f (n) = n2blgnc (which is the same as n2 when n is a power of 2).

Abstractions for expressing CRN multi-threading and synchronization. Our CRN

for f (n) = n2blgnc uses threading to ensure that polymer reactions can happen asyn-

chronously, and uses a ”leader” polymer for periodic synchronization. To describe

our psCRN, we develop threading abstractions for psCRNs with clone polymers.

Time complexity and a simulator for CRNs with clone polymers. To test the cor-

rectness of our psCRNs and evaluate their running times, we developed a custom

CRN simulator designed to support clone polymers and their associated reactions.

Underlying our simulator is a stochastic model of psCRN kinetics that is a natural

extension of traditional stochastic CRNs and population protocols. We also use

this model to analyze the expected time complexities of our psCRNs examples in

this paper, showing how speedups are possible with clone polymers.

2 Related work
Soloveichik et al. [18] demonstrated how Turing-universal computation is possible

with traditional stochastic CRNs, achieving arbitrarily small (but non-zero) error

probability. For the CRN model without polymers Cummings et al. [11] showed

how to reset computations so as to correct error and achieve limit-stable computa-

tion (which is weaker than stable computation).

In order to understand the inherent energetic cost of computation, Bennett

[4, 5] envisioned a polymer-based chemical computer, capable of simulating Tur-

ing machines in a logically reversible manner. Qian et al. [17] introduced a stack-

supplemented CRN model in which inputs are pre-loaded on stacks, and showed

4

how the model can stably simulate stack machines. Johnson et al.[15] introduce a

quite general linear polymer reaction network (PRN) model, allowing for arbitrary

growth from both ends of a polymer as well as for polymers to have monomers

of multiple types. With this model, they can simulate not only the original DNA

stack machine model from Qian et al., which we also focus on, but copy-tolerant

Turing Machines and microtubule dynamics. However, as the focus of their re-

search is on simulation and verification, and does not address the issues raised in

our work, namely achieving stable computation without pre-loaded inputs and re-

ducing bottleneck reactions. Cardelli et al. [6] also demonstrated Turing-universal

computation using polymers, using process algebra systems, but these systems are

not stochastic. Jiang et al. [14] also worked on simulating computations with

mass-action chemical reactions, using a chemical clock to synchronize reactions

and minimize errors.

Lakin et al. [16] described polymerizing DNA strand displacement (DSD)

systems, and showed how to model and verify stack machines at the DSD level.

They also simulated their stochastic systems using a “just-in-time” extension of

Gillespie’s algorithm. Their model has a single complex to represent a stack. Rec-

ognizing limitations of this, they noted that “it would be desirable to invent an

alternative stack machine design in which there are many copies of each stack

complex...”, which is what we do in this paper. They propose that updates to stacks

could perhaps be synchronized using a clock signal such as that proposed by Jiang

et al. [14]. In contrast, our synchronization mechanism is based on detection of

empty polymers.

The population protocol (PP) model introduced by Angluin et al. [1], which

is closely related to the CRN model, focuses on pairwise-interacting agents that

can change state. In Angluin et al.’s model, agents in a PP are finite-state. An

input to a computation is encoded in the agents’ initial states; the number of agents

equals the input size. Any traditional CRN can be transformed into a PP and vice

versa. Chatzigiannakis et al. [7] expand the n agents to be Turing machines, then

examine what set of predicates such protocols can stably compute using O(logn)

memory. Although the memory capacity of our polymers can surpass O(logn),

polymer storage access is constrained to be that of a counter or stack, unlike the

model of Chatzigiannakis et al.

5

Chapter 2

Polymer-supplemented chemical
reaction networks

A polymer-supplemented stochastic chemical reaction network (psCRN) models

the evolution of interacting molecules in a well-mixed volume, when monomers

can form polymers. We aim for simplicity in our definitions here, providing just

enough capability to communicate our key ideas. Many aspects of our definitions

can be generalized, for example by allowing multiple monomer species in a poly-

mer, or double-end polymer extensibility, as is done in the work of Johnson et al.

[15], Lakin et al. [16], Qian et al. [17], and others.

Reactions. A traditional CRN describes reactions involving molecules whose species

are given by a finite set Σ. A reaction

r+ r′ −−→ p+ p′ (2.1)

describes what happens when at most one each of species r,r′ ∈ Σ are picked to be

reactant molecules: they produce molecules of species p ∈ Σ and p′ ∈ Σ. In our

model, exactly one of r, r′ and one of p, p′ can be null, so each reaction has at

least one, but at most two, reactants and products. When both r, r′ are not null, a

single r molecule and single r′ are assumed to have interacted or collided, and the

reaction is bimolecular. Otherwise we say the non-null molecule decomposes into

6

p, p′, one of which may be null, and the reaction is unimolecular. We assume that

for all valid reactions, the multi-sets {r,r′} and {p, p′} are not equal, that for any r

and r′, there is at most one reaction with reactants of species r and r′. For now we

do not ascribe a rate constant to a reaction; we will do that in Chapter 5.

Polymer-supplemented chemical reaction networks (psCRNs) also have reac-

tions pertaining to polymers. A designated subset Σ(m) of Σ is a set of monomers. A

polymer of type σ ∈ Σ(m), which we also call a σ -polymer, is a string ⊥σ σ i, i≥ 0;

its length is i and we say that the polymer is empty if its length is 0. We call ⊥σ

a stub and let ⊥= {⊥σ | σ ∈ Σ(m)} ⊂ Σ. [16, 17]. Polymer reactions also involve

molecules in a set A = {Aσpush | σ ∈ Σ(m)}∪{Aσpop | σ ∈ Σ(m)} of guard molecules,

where A ⊆ Σ−Σ(m). Generally, for each σ ∈ Σ(m) there are two polymer reactions,

corresponding to σ -push and σ -pop, respectively:

[⊥σ . . .]+σ −−→ [⊥σ . . .σ]+Aσpush

[⊥σ . . .σ]+Aσpop −−→ [⊥σ . . .]+σ

A σ -push consumes a single monomer σ and a σ -polymer of length i to generate

a guard Aσpush and a σ -polymer of length i+ 1. A σ -pop instead does almost the

reverse, consuming a single guard Aσpop and a σ -polymer of length i to generate a

monomer σ along with a σ -polymer of length i−1. We cover the details of these

reactions in the section discussing configurations.

Configurations. A configuration specifies how many molecules of each species

are in the system at a specified time, keeping track also of the lengths of all σ -

polymers. Formally, a configuration is a mapping c : Σ∪ {⊥σ σ i | i ≥ 1} → N,

where N is the set of nonnegative integers. We let c([⊥σ . . .]) denote total number

of σ -polymers in the system at a given time (including stubs) and let c([⊥σ . . .σ])

denote the total number of σ -polymers in the system that have length at least 1.

With respect to configuration c, we say that a molecule of species σ ∈ Σ is a leader

if c(σ) = 1.

A reaction of type (2.1) is applicable to configuration c if, when r 6= r′, c(r)≥ 1

and c(r′) ≥ 1, and when r = r′, c(r) ≥ 2. If the reaction is applied to c, a new

configuration c′ is reached, in which the counts of r and r′ decrease by 1 (when

7

r = r′ the count of r decreases by 2), the counts of p and p′ increase by 1 (when

p = p′ the count of p increases by 2), and all other counts remain unchanged.

We also for now add a special restriction to all σ -polymer molecules: the only

reactions they can be involved in are σ -pushes, σ -pops, and bimolecular reactions

where they are not consumed or generated, such as Li +⊥σ −−→ Lk +⊥σ . At the

same time, we enforce that c0([⊥σ . . .]) = 1 for all [⊥σ . . .], restricting the total

number of any σ -polymer to be 1, meaning every polymer in the system is a leader

polymer. We defer the case of clone polymers, where ∃[⊥σ . . .], c([⊥σ . . .])> 1, to

Chapter 4.

Under the above, a σ -push is applicable if and only if c(σ)> 0. The result of

applying a σ -push reaction is that c(σ) decreases by 1, c(Aσpush) increases by 1 and

also for some i ≥ 0 such that c(⊥σ σ i) = 1, c(⊥σ σ i) is set to 0 and c(⊥σ σ i+1) is

set to 1.

On the other hand, a σ -pop is applicable if and only if c([⊥σ])= 0 and c(Aσpop)>

0. This differs significantly from the traditional pops seen when computing with

stacks, as unlike there, where only the stack itself is required for the pop, the pres-

ence of at least one Aσpop is absolutely necessary. Similarly, the result of applying

a σ -pop reaction is that c(σ) increases by 1, c(Aσpop) decreases by 1, and for some

i≥ 1 such that c(⊥σ σ i) = 1, c(⊥σ σ i) is set to 0 while c(⊥σ σ i−1) is set to 1.

Intuitively, after these reactions, the length of the σ -polymer in the system ei-

ther grows or shrinks by 1, and correspondingly, the count of Aσpush either increases

by 1, or Aσpop decreases by 1.

If c′ results from the application of some reaction to c, we write c→ c′ and say

that c′ is directly reachable from c. We say that c′ is reachable from c if for some

k ≥ 0 and configurations c1,c2, . . . ,ck,

c→ c1→ c2 . . .→ ck→ c′.

Computations and stable computations. We’re interested in CRNs that compute,

starting from some initial configuration c0 that contains an input. For simplicity,

we focus on CRNs that compute functions f : Nk→ N. For example, the function

may be Square, namely f (n) = n2.

8

In a function-computing psCRN, the input n = (n1, . . . ,nk) ∈Nk is represented

by counts of species in a designated set I = {X1,X2, . . . ,Xk}⊆ Σ(m) and the output

is represented by the count of a different designated species Y ∈ Σ(m). In the initial

configuration c0 = c0(n), the initial counts of the input species Xi is ni, 1 ≤ i ≤ k,

and the counts of all species other than the input species, including polymers and

guard molecules, is 0, with the exception that there may be some leader molecules

or polymers present. A leader molecule can function as a program counter, for

example.

A computation of a psCRN is a sequence of configurations starting with an

initial configuration c0, such that each configuration (other than the first) is directly

reachable from its predecessor.

Let C be a psCRN, and let c be a configuration of C . We say that c is stable

if for all configurations c′ reachable from c, c(Y) = c′(Y), where Y is the output

species. The psCRN stably computes a given function f : Nk→ N if on any input

n ∈ Nk, for any configuration c reachable from c0(n), a stable configuration c′ is

reachable from c and moreover, c′(Y) = f (n). Finally if psCRN C stably computes

a given predicate, we say that C is committing if C has a special “commit” species

LH such that for all n ∈ Nk, for any configuration c reachable from c0(n) that

contains species LH , if c′ is reachable from c then c′ also contains LH and c′(Y) =
f (n).

To summarize, a polymer-supplemented chemical reaction network (psCRN)

function computer is a 9-tuple C = (Σ,Σ(m),I ,⊥,A ,R,L), where

− Σ(m) ⊆ Σ is the set of monomer types,

− I ⊆ Σ is the set of input types,

− ⊥= {⊥σ | σ ∈ Σ(m)} is the set of stub types,

− A = {Aσpush | σ ∈ Σ(m)∪{Aσpop | σ ∈ Σ(m)} is the set of guard types,

− the sets Σ(m), ⊥, and A are disjoint,

−L ⊆ Σ is the set of initial leader species,

− Σ contains the sets Σ(m),I ,⊥,A and L ,

− Σ also contains Y , and LH , the output, and commit species types, and

−R is a set of reactions, including σ -push and σ -pop for all σ ∈ Σ(m).

9

Bottleneck reactions. In our CRN algorithms of Chapter 3, many reactions in-

volve a sole leader ”state” molecule, or program counter, that reacts with a sole

leader polymer. Such reactions, in which the count of both reactants are 1, are of-

ten described as bottleneck reactions [8]. As explained in Chapter 5, in a stochastic

CRN that executes in a well-mixed system with volume V , the expected time for

such a reaction is Θ(V) [18]. Our motivation for the clone polymer model in Chap-

ter 4 is to explore how to compute with polymers in a way that significantly reduces

bottleneck reactions.

10

Chapter 3

Stable, Turing-universal
computation by sequential
psCRNs with leader polymers

Here we describe how psCRNs with leader polymers can stably simulate counter

machines, thereby achieving Turing-universal computation. Before doing so, we

first introduce psCRN “pseudocode” which is convenient for describing psCRN

algorithms. Then, as an illustration, we describe a psCRN to compute the Square

function f (n) = n2, under a special condition: we “fast-forward” from initial con-

figuration c0 to some configuration cs where all input-loading onto polymers has

finished, meaning ∀σ ∈ Σ(m), c(σ) = 0, and only run the protocol starting from

that configuration.

We then describe afterwards how to guarantee that we can reach this special

configuration cs, by coupling it with a simple counter machine simulation that

builds strongly on Cummings et al. [11]’s register machine illustration. Note

that although our method, like theirs, relies on re-simulating the protocol multiple

times, we only re-simulate one final time after we reach cs, upon which the prob-

ability of error drops to 0, thus achieving stable computation, while Cummings et

al. must keep repsimulating indefinitely, with the error of the simulations falling

over time, but never reaching 0.

11

Sequential psCRN pseudocode. Following earlier work [2, 11, 17, 18], we de-

scribe a psCRN program as a set of instructions. Because one instruction must

finish before moving on to the next, we call these sequential psCRNs. Correspond-

ing to each instruction number i is a molecular “program counter” species Li ∈ Σ.

One copy of L1 is initially present, and no other Li′ for i′ 6= i is initially present.

The instructions inc(σ) and dec(σ) of Table 3.1 increase and decrease the

length of a σ -polymer by 1, respectively, making it possible to use the polymers

as counters. The inc instruction produces a σ which is then pushed on to the

σ -polymer. In order to ensure that the push and pop reactions happen only within

the inc() and dec() reactions, the inc(σ) operation generates the guard Aσpush ,

which we convert into a separate molecule Iσ ∈ Σ−Σ(m) that cannot be used to pop

polymers before the instruction execution completes, while the dec(σ) instruction

changes Iσ into Aσpop in order to reduce the length of a σ -polymer by 1. When

a psCRN executes instructions of Table 3.1, starting from an initial configuration

in which there is no polymer of length greater than 0, then we have the following

invariant:

Invariant: Upon completion of any instruction, the sum of the count

of Iσ , Aσpush , and Aσpop equals the length of the σ -polymer.

Even more specifically, within this chapter, by using only dec(σ) and inc(σ)

to pop and push σ onto polymers, upon the completion of any instruction, c(Aσpush)

and c(Aσpop) are always 0, and therefore the sum of the count of Iσ equals the

length of the σ -polymer. Note that a σ -polymer is empty (has a length of 0) if and

only if a stub ⊥σ is present in the system. Therefore assuming that our invariant

holds, the leader σ -polymer is not empty if and only if at least one Iσ molecule

is in the system. Therefore the jump-if-empty instruction is very useful in

ensuring that the program counter advances properly: a danger is that when the

σ -polymer is empty, any dec(σ) instructions cannot proceed and may cause an

algorithm to stall. The jump-if-empty(σ ,k) instruction provides a way to first

check whether the σ -polymer is empty, and if not, dec(σ) can safely be used. The

create and destroy instructions provide a way to create and destroy copies

of a species. While often more than one reaction is needed to implement one

instruction, all will have completed when the instruction has completed and the

12

program counter is set to the number of the next instruction to be executed in the

pseudocode.

i: inc(σ) Li −−→ L∗i +σ

σ + [⊥σ . . .]−−→ Aσpush + [⊥σ . . .σ]

L∗i +Aσpush −−→ Li+1 + Iσ

i: dec(σ) Li + Iσ −−→ L∗i +Aσpop

Aσpop + [⊥σ . . .σ]−−→ σ + [⊥σ . . .]
L∗i + σ −−→ Li+1

i: jump-if Li +⊥σ −−→ Lk +⊥σ

-empty(σ ,k) Li + Iσ −−→ Li+1 + Iσ

i: goto(k) Li −−→ Lk

i: create(σ) Li −−→ Li+1 +σ

i: destroy(σ) Li + σ −−→ Li+1

i: halt Li −−→ LH

Table 3.1: Instruction abstractions of psCRN reactions. The decrement
dec(σ) instruction can complete only if the σ -polymer has length is at
least 1.

Pseudocode instructions may also be function calls, where a function is it-

self a sequence of instructions expressed as pseudocode. Suppose again that there

is a leader σ -polymer and also a leader σ ′-polymer in the system. Then the

add-to(σ ,σ ′) function (using a temporary τ-polymer) extends the length of the

σ ′-polymer by the length of the σ -polymer. Another useful function is flush(σ)

which decrements the (leader) σ -polymer until its length is 0. A third function,

release-output(σ), is useful to “release” molecules on a (leader) σ -polymer

as Y molecules into the solution. This function uses an additional special leader

Y ′-polymer which is empty in the initial configuration, and whose length at the end

of the function equals the number of released Y molecules. The Y ′ molecule will

be useful later, when we address how a psCRN can be restarted (and should not be

used elsewhere in the code).

13

i: add-to(σ ,σ ′) i : goto(i.1)

i.1: jump-if-empty(σ , i.6)

i.2: dec(σ)

i.3: inc(σ ′)

i.4: inc(τ)

i.5: goto(i.1)

i.6: jump-if-empty(τ, i.10)

i.7: dec(τ)

i.8: inc(σ)

i.9: goto(i.6)

i.10: goto(i+1)

i: flush(σ) i: goto(i.1)

i.1: jump-if-empty(σ , i+1)

i.2: dec(σ)

i.3: goto(i.1)

i: release-output(σ) i: goto(i.1)

i.1 jump-if-empty(σ , i+1)

i.2 dec(σ)

i.3 inc(Y ′)

i.4 create(Y)

i.5 goto(i.1)

Numbering of function instructions. For clarity, we use i.1, i.2, and so on to la-

bel the lines of a function called from line i of the main program. Upon such a

function call, the CRN’s program counter first changes from Li to Li.1. The pro-

gram counter is restored to Li+1 upon completion of the function’s instructions,

e.g., via a goto(i+1) instruction or a jump-if-empty(σ , i+1) instruction. If

one function fB is called from line a.b of another function fA, the program counter

labels would be a.b.1, a.b.2 and so on, and so the label “i” in the function descrip-

tion should be interpreted as “a.b”. In this case, when the function fB completes,

control is passed back to line a.(b+ 1) of function fA; that is, the “goto(i+ 1)”

14

statement should be interpreted as “goto(a.(b+ 1))”. Also for clarity, we use

special labeling of instructions in a few special places, such as the restart function

below, in which instructions are labeled S1, S2 and so on.

psCRNs with fast-forwarding. As noted in the introduction, a challenge in achiev-

ing stable computation with psCRNs is detecting the absence of inputs. To build

up to our methods for addressing this challenge, we first ignore this issue, fast-

forwarding to a new configuration cs directly reachable from c0. By this we mean

that if the input contains ni molecules of a given species Xi, then in configuration

cs there is a unique Xi-polymer of length ni. Furthermore, there are ni copies of the

molecule IXi in the system. Intuitively, the configuration cs is one that would be

reached if ni inc(Xi) operations were performed from an initial configuration with

no inputs and an empty Xi-polymer, for every input species Xi.

A committing, sequential psCRN with fast-forwarding for Square. Our psCRN

for the Square function f (n) = n2 has one input species X and one output species

Y , and Σ(m) = {X ,X ′,X ′′,Yint ,Y ′,τ}. In the fast-forwarded configuration, the input

is represented as the length n of a leader X-polymer, and the count of IX is n. The

only other molecules in the initial configuration are the leader program counter

L1, and stubs ⊥X ′ , ⊥X ′′ , ⊥Yint , and ⊥Y ′ , and ⊥τ . Note that instead of using the X-

polymer directly, we first copy it to the X ′-polymer in a line not numbered as part

of the main program, line P. The distinction will become useful when we remove

the assumption of fast-forwarding later. The psCRN has a loop (implemented using

jump-if-empty and goto) that executes n times, adding n to an intermediate

Yint-polymer each time. When the loop completes, the output is released from the

Yint-polymer in the form of Y , so that the number of Y ’s in solution is n2, and the

psCRN halts. The halting state is in effect a committing state, since no transition

is possible from LH .

Committing Turing-universal computation by psCRNs with fast-forwarding. Turing-

universal computation is possible with a two counters machine (2CM). To simulate

a halting 2CM that computes function f :Nk→N using unary counters, we create a

15

Algorithm 1 Sequential-n2-psCRN, with input n on X-polymer.

P: add-to(X ,X ′)
1: add-to(X ′,X ′′)
2: jump-if-empty(X ′,6)
3: dec(X ′)
4: add-to(X ′′,Yint)
5: goto(2)
6: release-output(Yint)
7: halt

psCRN has 2 unary counters R′1,R
′
2, where R′1 contains the input n in unary, while

R′2 is initially 0. Throughout the simulation of the counter machine, the psCRN

has exactly one R′1-polymer and one R′2 polymer, to represent the aforementioned

unary counters. In addition, there is one additional polymer, a Y ′-polymer, which

is initially empty and is used by the release-output function. A two counters

machine program is a sequence of instructions, where instructions can increment

a counter; decrement a non-empty counter; test if a counter is empty (0) and jump

to a new instruction if so, or halt. Table 3.1 already shows how all four of these

instructions can be implemented using a psCRN. We assume in what follows that

these are the only instructions used by the psCRN simulator. At the end, the output

is stored on counter R′1, then released into solution, using release-output(R′1),

once the machine being simulated reaches its halt state.

We assume that release-output(R′1) is the only function call of the 2CM

simulator.

Stable, Turing-universal computation by psCRNs. We now handle the case where

we start from initial configuration c0, where the input is represented as counts

of molecules instead. That is, in the initial configuration of the psCRN all poly-

mers are empty, including the R′1 and R′2-polymers; instead, we have n copies of

molecule R1 in solution, and a new R1-polymer that is not directly part of the 2CM

simulation for them to be loaded on. Our scheme uses the R1-push reaction to load

inputs. Note that here, R1 counter, although not used by the 2CM simulator for

computation, serves a very important role as a back-up counter: it is used to restore

the value of R′1 in case the simulation began too early, before input loading finishes.

16

We will demonstrate how, by adding CRNs to detect input-loading and to restart

the simulator in this case. Once all inputs are loaded, and the protocol starts one

final time, the system is never subsequently restarted. Overall our simulation has

four components:

• Input loading: This is done as R1-push, which can happen at any time until

all inputs are loaded. Recall that the R1-push reaction is

[⊥R1 . . .]+R1 −−→ [⊥R1 . . .R1]+AR1 push

Each such reaction generates a guard molecule AR1 which, as explained be-

low, triggers input detection.

• Two counters machine (2CM) simulation: Algorithm 2 shows the simu-
lator. This psCRN program has a “prelude” line P, that copies the inputs on
the R1-polymer to the R′1-polymer. Then starting from line numbered 1, the sim-
ulation does the computation as described before using the R′1 and R′2-polymers.
Upon completion of the computation, the output is released from counter R′2, and
the simulator halts (produces theLH species).

Algorithm 2 Sequential-2CM-psCRN.

P: add-to(R1,R′1)
1: // Rest of psCRN simulation pseudocode here, using
2: // R′1 and R′2

: . . .
: // ending with release-output(R′2) function and halt instruction.

• Input detection: This is triggered by the presence of an active guard molecule
AR′1 push

. For each value i of the main program counter, after the prelude add-to,
as well as for LH , we have the following reactions, where S1 is the first number
of the restart pseudocode (see below). The reactions convert the guard AR1 push

molecule into a molecule, IR1 , since the input molecule is now loaded, and also
changes the program counter to LS1, which triggers restart.

Li +AR1 push −−→ LS1 + IR1 ,

LH +AR1 push −−→ LS1 + IR1

17

LH is no longer a committing species, since it may change to LS1.

Line P is a function call to add-to(R1,R′1), which executes intructions numbered
P.1 through P.11 of add-to. Input detection is only done at line P.2, the first
jump-if-empty instruction:

LP.2 +AR1 push −−→ LP.2 + IR1

It does not trigger a restart, but simply converts the guard molecule AR1 push into IR1 .

• Restart: Restart happens a number of times that is exactly the total input length
n1 + n2 + . . .nk, since each input molecule is detected by the system exactly once,
generating one guard molecule. The counters R′1 and R′2 are flushed, and any out-
puts that have been released in solution are destroyed, assuming that the number of
outputs released into the solution was tracked by some Y ′ counter, as before. Then
the program counter is set to line P of the simulator (leader molecule LP). Algorithm
3 shows the restart pseudocode.

Algorithm 3 Restart

S1: flush(R′1)
S2: flush(R′2)
S3: destroy-output()
S4: goto(P)

i: destroy-output() i: goto(i.1)

i.1: jump-if-empty(Y ′,i.5)

i.2: dec(Y ′)

i.3: destroy(Y)

i.4: goto(i.1)

i.5: goto(i+1)

Correctness of Algorithm 2: Sequential-RM-psCRN. We claim that our complete

2CM simulator stably computes the same function as the counter machine. (We

note that no “fairness” assumption regarding the order in which reactions happen

is necessary to show stability, since stability is a “reachability” requirement.)

18

The delicate part of the simulation lies in the instruction on line P, which copies

input counter R1 to R′1.

Unlike the previous chapter, the using the R1-push reaction for input loading

means that the count of IR1 is no longer guaranteed to equal the length of the

(leader) R1-polymer. Instead, we have that IR1 is less than or equal to the length

of the R1-polymer. This is because when input monomer R1 is pushed onto its

polymer, the AR1 push guard molecule is produced, not the IR1 molecule, and the AR1

molecule is not converted to IR1 until input detection happens.

This delay in converting AR1 push and generating IR1 can cause the jump-if-empty

instruction numbered P4.2 in the add-to function to stall, when there is no IR1 and

also no ⊥R1 (since the R1-polymer is not empty due to input loading). In this case,

the input detection reaction (introduced above)

LP.2 +AR1 push −−→ LP.2 + IR1

will convert AR1 push to IR1 . This averts stalling, since jump-if-empty can pro-

ceed using IR1 . The subsequent lines of the add-to(R1,R′1) code can then proceed.

Once line P has completed, the correctness of the psCRN simulation of the

2CM, using the copies R′1 and R′2, is not affected by input loading. Input loading

and input detection can also proceed. These are the only viable reactions from the

“halting” state LH , and so eventually (since the RM machine being simulated is

a halting machine), on any sufficiently long computation path, all inputs must be

loaded and detected. Input detection after the prelude phase produces a “missing”

Iσ molecule and triggers a restart. The restart flushes all counters used by the

simulator, and also, using the Y -polymer, destroys any outputs in solution. (Since

restart is triggered only when the program counter is at a line of the main program,

restart does not interrupt execution of the release-output function.) A new

simulation is then started at line P, ensuring that any inputs that have been loaded

since the last detect are copied to the simulator’s input counters R′1.

Once all inputs have been detected, the invariant is restored and the simula-

tor proceeds correctly, producing the correct output. This correct output is never

subsequently changed, and so the computation is stable.

19

Bottleneck reactions. In our sequential psCRNs, both inc(σ) and dec(σ) con-

tain bottleneck reactions, and so add-to(σ ,σ ′) has Θ(|σ |) bottleneck reactions.

Thus the psCRN for Square has Θ(n2) bottleneck reactions. In the next chapter we

show how to compute a close variant of the Square function with fewer bottleneck

reactions, using clone polymers rather than leader polymers.

20

Chapter 4

Faster computation of Square by
threaded psCRNs with clone
polymers

Configurations when considering clone polymers. Previously we enforced that

∀[⊥σ ...], c([⊥σ ...]) = 1 by enforcing that the only reactions involving polymers

were σ -pushes and σ -pops. Now, we will remove this requirement, and let c([⊥σ ...])

be any non-negative integer. We do this by introducing two new instructions:

create-polymer(σ) and destroy-polymer(σ).

i: create-polymer(σ) Li −−→ Li+1 +⊥σ

i: destroy-polymer(σ) Li +⊥σ −−→ Li+1

create-polymer(σ) generates an empty polymer while destroy-polymer(σ)

consumes a empty polymer. For simplicity, we also enforce that the initial con-

figuration c0 of any psCRN contain no polymers, that is, ∀[⊥σ ...], c0([⊥σ ...]) =

0, and so any polymers that are needed must be explicitly created during com-

putation: for the polymer-dependent functions we introduced in Chapter 3, we

add create-polymer and destroy-polymer as needed. As an example,

add-to(σ ,σ ′) now requires

create-polymer(τ) before line i.1 and create-polymer(τ) before line

21

i.10.

With this, the mechanics of the σ -pushes and σ -pops also change. Now, the

result of a σ -push is the same except that for exactly one i≥ 1 such that c[⊥σ σ i]>

0, c[⊥σ σ i+1] increases by 1, while c[⊥σ σ i] decreases by 1. In the same way,

the result of a σ -pop now has that for exactly one i ≥ 1 such that c[⊥σ σ i] > 0,

c[⊥σ σ i−1] increases by 1, while c[⊥σ σ i] decreases by 1. Intuitively, the length of

some arbitrary σ -polymer in the system either grows or shrinks by one, and many

σ -polymers may be present in the system simultaneously.

As we will see in Chapter 5, the time complexity of σ -pops and σ -pushes

are now different as they are no longer always simple bottleneck reactions; this

is due to the fact that all clone polymers are indistinguishable to the system: in

both cases, the affected polymer is chosen nondeterministically from among the

clones. Exactly how the polymer is chosen is not important in the context of stable

computation, as long as every σ -polymer with positive count in c has positive

probability of being chosen. For example, the polymer could be chosen uniformly

at random, consistent with the model of Lakin and Phillips [16], and in this work,

this is what we assume.

These modifications mean that inc(σ) and dec(σ) instructions can now

operate on any of the many functionally-identical clone σ -polymers that may be in

this system, rather than just a single leader polymer, and thus reduce the number of

mandatory bottleneck reactions. Now we demonstrate the increased power arising

from these changes, using the function f (n) = n2blgnc as an example, and focus

only on a system that has been fast-forwarded. Input detection and loading can be

layered on, in a manner similar to Chapter 3.

Under these conditions, we start with a single Y -polymer of length n, and we

wish to create a total of 2blgnc Y -polymers, whose lengths sum to n2blgnc. Algo-

rithm 4 proceeds in blgnc rounds (lines 6-9), doubling the number of Y ’s on each

round. To keep track of the Y molecules, we introduce a distributed σ -counter data

structure, and use it with σ = Y . The data structure consists of σ -polymers that

we call σ -thread-polymers, plus a thread-polymer counter Tσ , which is a leader

polymer whose length, |Tσ |, is the number of σ -thread-polymers. The value of this

distributed counter is the total length of all σ -thread-polymers. We explain below

how operations on this distributed counter work.

22

Algorithm 4 Threaded-n2blognc-psCRN.
P1: create-polymer(H)
P2: add-to(X ,H)
P3: create-distributed-counter(Y)
P4: add-thread-polymer(Y ,1)
P5: add-to(X ,Y)

1: halve(H)
2: jump-if-empty(H,5)
3: double(Y)
4: goto(1)
5: halt

Algorithm 4 counts the number of rounds using a leader H-polymer, whose

length is halved on each round. The halve function is fairly straightforward to

implement, using instructions and functions already introduced in Chapter 3.

i: halve(H) i: goto(i.1)

i.1: create-polymer(H ′)

i.2: add-to(H,H ′)

i.3: jump-if-empty(H ′, i.9)

i.4: dec(H ′)

i.5: dec(H)

i.6: jump-if-empty(H ′, i.9)

i.7: dec(H ′)

i.8: goto(i.3)

i.9: destroy-polymer(H ′)

i.10: goto(i+1)

The double(σ) function of Algorithm 4 is where we leverage our distributed

Y -counter (with σ = Y). Recall that a distributed σ -counter data structure consists

of a set of clone σ -polymers, which we call σ -thread-polymers, plus a thread-

polymer counter Tσ , which is a leader polymer whose length is the number of σ -

thread-polymers. The double function first creates two other distributed counters

τ and τ ′ (lines i.1 and i.2), and gives each the same number of thread-polymers

as σ , namely |Tσ | thread-polymers (lines i.3 and i.4), all of which are empty. The

23

heart of double (line i.5) transfers the contents of the distributed σ -counter to

τ and τ ′, emptying and destroying all σ -thread-polymers in the process. It then

creates double the original number of (empty) σ -thread-polymers (lines i.6 and

i.7; note that the number of threads of τ is the original value of |Tσ |). It finally

transfers the τ and τ ′ polymers back to σ (lines i.8 and i.9), thereby doubling σ .

i: double(σ) i.1 create-distributed-counter(τ)

i.2 create-distributed-counter(τ ′)

i.3 add-thread-polymers(τ , Tσ)

i.4 add-thread-polymers(τ ′, Tσ)

i.5 transfer(σ , τ , τ ′)

i.6 add-thread-polymers(σ , Tτ)

i.7 add-thread-polymers(σ , Tτ ′)

i.8 transfer(τ , σ)

i.9 transfer(τ ′, σ)

i.10 destroy-distributed-counter(τ)

i.11 destroy-distributed-counter(τ ′)

i.12 goto(i+1)

Next are details of instructions used to create an empty distributed counter, and

to add empty threads to the counter. Again, these are all straightforward sequential

implementations (no threads), using leader polymers to keep track of counts.

24

i: create-distributed-counter(σ) i: goto(i.1)

// Creates an empty counter i.1 create-polymer(Tσ)

// with zero polymers i.2 goto(i+1)

i add-thread-polymers(σ ,T) i goto(i.1)

// Adds |T | empty i.1: create-polymer(Temp)

// thread-polymers to the i.2: add-to(T ,Temp)

// distributed σ -counter, i.3: jump-if-empty(Temp, i.8)

// where T is a counter i.4: dec(Temp)

i.5: create-polymer(σ)

i.6: inc(Tσ)

i.7: goto(i.3)

i.8: destroy-polymer(Temp)

i.9: goto(i+1)

i add-thread-polymer(σ ,1) i goto(i.1)

// Adds one empty i.1: create-polymer(σ)

// thread-polymer to the i.2: inc(Tσ)

// distributed σ -counter i.3: goto(i+1)

The transfer function transfers the value of a distributed σ -counter to two

other distributed counters called τ and τ ′. In line i.2 of transfer, function

create-threads creates Tσ identical ”thread” program counters, Lt . Once

again this is straightforward, using a leader polymer to keep track of counts. All of

the thread program counters execute the thread-transfer function in line i.4

of transfer, thereby reducing bottleneck reactions (details below). The “main”

program counter, now at line i.4 of the transfer function, can detect when all

threads have completed, because each decrements Thread-Count exactly once, and

so Thread-Count has length zero exactly when all threads have completed. At

that point, the main program counter progresses to line i.5, destroying the thread

program counters using the destroy-threads function (not shown, but uses

the destroy function to destroy each single thread).

The function transfer(σ ,τ), not shown but used in double, is the same as

transfer(σ ,τ ,τ ′), except the call to thread-transfer does not include τ ′

and the ”inc(τ ′)” line is removed in the implementation of thread-transfer.

25

i: transfer(σ ,τ,τ ′) i: goto(i.1)

// transfer σ to i.1: create-polymer(Thread-Count)

// both τ and τ ′ i.2: create-threads(Tσ , Lt)

i.3: add-to(Tσ , Thread-Count)

i.4: loop-until-empty(Thread-Count, i.5)

thread-transfer(σ ,τ,τ ′,Thread-Count)

i.5: destroy-threads(Lt)

i.6: destroy-polymer(Thread-Count)

i.7: goto(i+1)

i: create-threads(Tσ ,Lt) i: goto(i.1)

// create Tσ thread i.1: create-polymer(Temp)

// program counters, Lt i.2: add-to(Tσ , Temp)

i.3: jump-if-empty(Temp, i.7)

i.4 dec(Temp)

i.5 create(Lt)

i.6 goto(i.3)

i.7: destroy-polymer(Temp)

i.8: goto(i+1)

i : loop-until-empty(σ ,k) Li +⊥σ −−→ Lk +⊥σ

Finally, we describe how threads work in thread-transfer. The threadon()

instruction executes |Tσ | times, one per copy of Lt , thereby creating |Tσ | Lt1 pro-

gram counters that execute computation “threads”. Using the instruction

dec-until-destroy-polymer, each thread repeatedly (zero or more times)

decrements one of the σ -thread-polymers and then increments both τ and τ ′. This

continues until the thread finds an empty σ -thread-polymer, i.e., the stub ⊥σ , in

which case it destroys the stub and moves to line t.5. The dec(σ) and inc(σ)

functions of Chapter 3 work exactly as specified, even when applied to distributed

counters. A key point is that the threads work “clonely” with the thread-polymers;

it is not the case that each thread “owns” a single thread-polymer. Accordingly,

one thread may do more work than another, but in the end all thread-polymers are

empty.

26

A thread exits the dec-until-destroy-polymer loop by destroying ex-

actly one σ -polymer. Since at the start of thread-transfer the number of

σ -thread-polymers equals the number of thread program counters, all thread pro-

gram counters eventually reach line t.5, and there are no σ -thread-polymers once

all threads have reached line t.5 of the code. At line t.5, each thread decrements

Thread-Count, and then stalls at line t.6. Moreover, once all threads have reached

line t.6, polymer ThreadCount is empty. At this point, the program counter for

transfer changes from line i.4 to line i.5, and all thread program counters are

destroyed.

i: thread-transfer

(σ ,τ ,τ ′,Thread-Count) i: threadon()

t.1: dec-until-destroy-polymer(σ , t.5)

t.2: inc(τ)

t.3: inc(τ ′)

t.4: goto(t.1)

t.5: dec(Thread-Count)

t.6:

i: threadon(): Li +Lt −−→ Li +Lt.1

i: dec-until-destroy

-polymer(σ ,k) Li + Iσ −−→ L∗i +Aσ

Aσ + [⊥σ . . .σ]−−⇀↽−− σ + [⊥σ . . .]

L∗i +σ −−→ Li+1

Li +⊥σ −−→ L∗∗i
L∗∗i + ITσ

−−→ L∗∗∗i +ATσ

ATσ
+ [⊥Tσ

. . .Tσ]−−⇀↽−− Tσ + [⊥Tσ
. . .]

L∗∗∗i +Tσ −−→ Lk

Correctness. We claim that on any input n ≥ 0, as long as it’s been loaded be-

forehand on a leader X-polymer using inc(X), Algorithm 4: Threaded-n2blgnc-

27

psCRN eventually halts with the value of the distributed-Y -counter being f (n) =

n2blognc.

The algorithm creates and initializes H to be a polymer of length n (lines 1-2),

and the Y -distributed-counter to have a single polymer-thread of length n (lines

3-5). When n = 0, H is empty, so from line 6 the algorithm jumps to line 10 and

halts, with the value of Y being f (0) = 0 as claimed.

Suppose that n > 0. Reasoning about the halve function is straightforward,

since it is fully sequential. We claim that in each round of the algorithm (lines 6-9),

lines 7 and 8 complete successfully, with |H| halving (that is, |H| → b|H|/2c) in

line 7, and with both the value of Y and |TY |, the number of Y -thread-polymers,

doubling in line 8. As a result, |H|= 0 after blgnc rounds and the algorithm halts

with value(Y) = f (n).

Correctness of the double function is also straightforward to show, if we

show that the transfer(σ ,τ,τ ′) (and the transfer(σ ,τ) variant) works cor-

rectly.

Line i.4 is the core of transfer. We show that line i.4 does complete, that is,

Thread-Count does become empty, that execution of line i.4 increases the values

of distributed counters τ and τ ′ by the value of σ (while leaving the number of τ-

and τ ′-thread-polymers unchanged), and also changes value(σ) and the number of

σ -thread-polymers to 0.

The loop-if-empty instruction ensures that the main program counter must

stay at line i.4 of function transfer until Thread-Count is empty. Meanwhile,

this main program counter can also activate threads using the threadon() func-

tion, that is, change the thread program counters from Lt to Lt.1. From line i.2 of

transfer, the number of such thread program counters is |Tσ |.
Each of these program counters independently executes thread-transfer.

At line t.1, either (i) a dec(σ) is performed (first three reactions of

dec-until-destroy-polymer), or (ii) a σ -polymer-thread is destroyed and

the polymer-thread-count Tσ is decremented (last four reactions). In case (i),

both τ and τ ′ are incremented (lines t.2 and t.3), and the thread goes back to the

dec-until-destroy-polymer instruction. In case (ii), the thread moves to

line t.4, decrements Thread-Count exactly once, and moves to line t.5.

Because the number of threads equals the value of Thread-Count at the start

28

of the loop-until-empty (line i.4), and because the main program counter can’t

proceed beyind line i.4 of the transfer function until Thread-Count is zero, all

threads must eventually be turned on each of these threads must reach line t.4 and

must decrement Thread-Count. Only then can the main program counter proceed

to line i.5 of transfer. This in turn means that each thread must destroy a

σ -polymer-thread. Since the number of σ -polymer-threads, |Tσ |, equals Thread-

Count, all threads are destroyed (and the Tσ -polymer is empty) upon completion

of thread-transfer.

Bottleneck reactions. In each round, the halve(σ) function decreases the length

of the H-polymer by a factor of 2, starting from n initially. Each decrement or

increment of the H-polymer includes a bottleneck reaction, so there are Θ(n) bot-

tleneck reactions in total, over all rounds. The double function creates 2l thread-

polymers in round l, for a total of Θ(n) thread-polymers over all rounds. The

transfer function creates 2l threads in round l and similarly destroys 2l threads,

and copies a polymer of length 2l , so again has Θ(n) bottleneck reactions over all

rounds. The reactions in thread-transfer are not bottleneck reactions (ex-

cept in round 1); we analyze these in the next chapter.

29

Chapter 5

psCRN time complexity analysis
and simulation

We follow the stochastic model of Soloveichik et al [18] for well-mixed, closed

systems with fixed volume V . To achieve a fixed volume, we make two new as-

sumptions. First, that all our reactions are bimolecular, of the form r+ r′→ p+ p′,

by adding a blank molecule B as a second reactant r′ to each reaction with only

a single reactant r, and as a second product p′ to each reaction with only a single

product p. Second, that every psCRN initializes with sufficient numbers of B such

that the psCRN can reach its final committing state. In addition, we assume that all

reactions have rate constant 1.

Then when in configuration c, the propensity of reaction R : r+ r′→ p+ p′ is

c(r)c(r′)/V if r 6= r′, and is
(c(r)

2

)
/V if r = r′. Let ∆(c) be the sum of all reaction

propensities, when in configuration c. When a reaction occurs in configuration c,

the probability that it is reaction R is the propensity of R divided by ∆(c), and the

expected time for a reaction is 1/∆(c). When the only applicable reaction is a bot-

tleneck reaction, and the volume V is Θ(n2), the expected time for this bottleneck

reaction is Θ(n2). Soloveichik et al [18] consider CRNs without polymers, but the

same stochastic model is used by Lakin et al. [16] and Qian et al. [17], where the

reactants r or r′ (as well as the products) may be polymers.

30

Expected time complexity of Algorithm 1: Sequential-n2-psCRN. This psCRN

has n rounds, with Θ(n) instructions per round; for example, the copy of length n

in each round has n inc instructions. So the total number of instructions executed,

over all rounds is Θ(n2); moreover, there are Θ(n2) inc(σ) instruction overall.

The program’s instructions execute sequentially, that is, the ith instruction com-

pletes before the (i+ 1)st instruction starts, so the total expected time is the sum

of the expected times of the individual instructions. Each instruction involves a

constant number of reactions. Some instructions involve bottleneck reactions; for

example, the push reaction of the inc instruction is a bottleneck reaction. So an

execution of the program involves Θ(n2) bottleneck reactions. Each of these takes

Θ(n2) time, so the overall expected time is Θ(n4).

Expected time complexity of Algorithm 4: Threaded-n2blognc-psCRN. We noted

earlier that Algorithm 4 has Θ(n) non-threaded instructions, and in fact Θ(n) bot-

tleneck instructions. These take expected time Θ(n3) overall, since the time for

each is Θ(V) = Θ(n2).

Now, consider the threaded function, thread-transfer. In round l,1 ≤
l ≤ blgnc, thread-transfer has 2l threads, and pushes n2l Y monomers on

to 2l clone Y -polymers. Since each Y -push reaction is independent and is equally

likely to increment each of the 2l Y -polymers, the expected number of molecules

per polymer is n. Using Chernoff tail bounds, we can show that all polymers have

length in the range [n/2,2n] with all but negligibly small probability for large n.

Chernoff Tail Bounds [10] Consider N independent trials, each with the same

success probability, such that the total number of successes is X and the expected

number of successes is µ . Then for 0 < δ ≤ 1,

(a) P[X ≤ (1−δ)µ]≤ exp(− δ 2µ

2), and

(b) P[X ≥ (1+δ)µ]≤ exp(− δ 2µ

3).

For a given polymer, let X be the number of increments to that polymer. For

the upper tail bound, and setting δ = 1,µ = n we have:

P(X ≥ (1+δ)µ)≤ e−
δ2

2+δ
µ = P(X ≥ 2n)≤ e−

n
3 . (5.1)

31

Since this bound holds for any given polymer, and since there are at most n poly-

mers, the probability that some polymer has length greater than 2n is at most ne−
n
3 ,

which is exponentially small in n.

For the lower tail bound, setting δ = 1/2,µ = n we have:

P(X ≤ (1−δ)µ)≤ eµδ 2/2 = P(X ≤ n/2)≤ e−
n
8 , (5.2)

and so the probability that all polymers have length at least n/2 is at least 1−ne−
n
8 .

Assume that all polymers have length in the range n/2 and 2n. During the

first ≥ n/2 of the thread-transfer decrements in round l, the count of each

of the reactants is 2l: one program counter per thread and 2l polymers in total.

So the expected time for each of these decrements is Θ(V/22l). Pessimistically,

all decrements would happen to the same polymer, whose length could be as lit-

tle as n/2 by our assumption above, and so there are 2l − 1 polymers and threads

available for the next decrements, 2l − 2 polymers and threads available for the

next Θ(n) decrements after that once a second polymer is depleted, and so on.

On top of that, the polymers would be decremented in increasing order of length,

as the later in a round a polymer is decremented, the longer each decrement is

expected to take. Therefore the expected time for a polymer to be decremented

when there are j polymers left is Θ(V n/ j2). Then the total expected time for

round l is O(V n∑
2l

j=1(1/ j2)) = Θ(nV). Multiplying by blgnc, the number of

rounds, and noting that V = Θ(n2), we have that the total expected time for the

thread-transfer over all rounds is Θ(n3 logn), given that all polymers have

length in the range n/2 and 2n.

When our assumption does not hold, in the worst case, all Y -increments and

Y -decrements happen to a single Y -polymer. In this case each Y -decrement be-

comes a bottleneck reaction, taking time Θ(n2). As the number of Y -decrements

during round l is Θ(n2l), the total number of Y -pops across all rounds must be

Θ(n∑
lgn−1
i=0 2i) = Θ((2lgn − 1)n) = Θ(n2). This means the worst-case time for

thread-transfer over all rounds becomes Θ(n4), the same as Algorithm 1.

Finally, since the probability that our assumption does not hold is exponentially

small in n, we have that the total expected time for the thread-transfer over

all rounds is Θ(n3 logn).

32

Simulator. To test the correctness of our protocols, we developed a custom CRN

simulator, implemented in Python, designed to support clone polymers. The simu-

lator uses a slightly modified version of Gibson and Bruck’s next reaction method

[12], which itself is an extension of Gillespie’s algorithm [13]. We redefine what a

single “species” is from the algorithm’s point of view, classifying all σ -polymers

as one species, and track polymer lengths separately.

Interestingly, simulation of our stable, sequential psCRN with input detection

for Square appears to take only constant factor extra time compared to the com-

mitting, fast-forwarded sequential psCRN (see both Figures 5.1 and 5.2). This is

because each of the n error detection steps, and subsequent restart, is expected to

happen in O(n2) time, which is negligible compared to the Θ(n4) expected running

time of the psCRN when fast-forwarding is assumed. On the other hand, compar-

ing the runtimes of our sequential versus threaded algorithms shows that we gain

significant speed from the parallelization (Figure 5.3). For all simulations, curve

fitting was performed using the scipy package.

33

(a) (b)

Figure 5.1: (a) Simulation of Algorithm 1: Sequential-n2-psCRN, with fast-
forwarding and input n on X-polymer, n = 100. (b) Simulation of
Algorithm 1: Sequential-n2-psCRN, with input detection and loading,
n = 100. Each line in the plots shows the count of the outputs as a func-
tion of the number of interactions, with the blue line being the count of
output species Y finally released into solution, while the red line shows
the size of the Yint polymer. By interaction, we mean a collision of two
molecular species in the system, which may or may not result in a reac-
tion.

(a) (b)

Figure 5.2: Plotting simulation runtimes as a function of initial species count
n for (a) Algorithm 1: Sequential-n2-psCRN starting with pre-loaded
input (b) Algorithm 1: Sequential-n2-psCRN with input detection and
loading. Each blue marker plots a single simulation, showing the num-
ber of interactions required for protocol completion as a function of the
initial count of input species X . In both cases, data was fitted with an
equation of form cx4, where (a) c = 78.4, and (b) c = 99.2.

34

(a)

(b)

Figure 5.3: Comparing runtimes of Algorithm 1: Sequential-n2-psCRN (red)
to Algorithm 4: Threaded-n2blognc-psCRN (blue) with fast-forwarding,
where (a) n = 128, and (b) n = 2i, i ∈ [3,7]. We plot the average num-
ber of interactions over five different simulations for each input count
n. Sequential data was fitted with an equation of form cx4, c = 50.3.
Threaded data was fitted with an equation of form cx3 logx, c = 267.

35

Chapter 6

Conclusions and future work

In this work, we’ve expanded the computing model of stochastic chemical reaction

networks with polymers, by considering inputs that are represented as monomers

in solution, as well as clone polymers that facilitate distributed data structures and

threaded computation. We’ve shown that stable, error-free Turing-universal com-

putation is possible in the monomer input model, by introducing an error-correction

scheme that takes advantage of the ability to check for empty polymers. We’ve il-

lustrated how programming with clone polymers can provide speed-ups, compared

with using leader polymers only, and how leader polymers can be used for syn-

chronization purposes by CRNs with clone polymers.

There are many interesting directions for future work. First, we have shown

how to use clone polymers to get a speed-up for the Square problem, but we have

not shown that such a speed-up is not possible without the use of clone polymers.

Is it possible to show lower bounds on the time complexity of problems when

only leader polymers are available? Or, could bottleneck reactions be reduced by

a psCRN computing Square? Second, our faster psCRN for Square with clone

polymers still uses leader polymers for synchronization. Is the speed-up possible

even without the use of leader polymers? More generally, how can synchroniza-

tion be achieved in leaderless psCRNs? Are there faster psCRNs, with or without

leader polymers? It would be very interesting to know what problems have sta-

ble psCRNS that use no leaders, but can use clone polymers. Finally, it would be

valuable to have more realistic models of reaction propensities for psCRN mod-

36

els. Underlying the model in this paper is the assumption that the extensible ends

of polymers are well-mixed in solution, along with other monomeric molecules

in the system. This seems implausible, in practice, since steric hindrance could

isolate a long polymer’s extensible end from other reactants, for example. In gen-

eral, subunits that are close by on the polymer would also be close by in solution,

which could increase the chances of certain interactions from happening, while

decreasing the chances of other ones. Research into this area would at least en-

tail building running simple simulations of how polymers interact with monomers

and each other in solution, to build a new model that accounts for these aspects

of polymer behaviour. We expect that our contributions of correctness and thread-

ing would remain relevant even with an updated model, with the focus being more

sophisticated runtime analysis for psCRN programs.

37

Bibliography

[1] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta.
Computation in networks of passively mobile finite-state sensors.
Distributed Computing, pages 235–253, Mar. 2006. → page 5

[2] D. Angluin, J. Aspnes, and D. Eisenstat. Fast computation by population
protocols with a leader. In Dolev S. (eds) Distributed Computing (DISC),
Lecture Notes in Computer Science, volume 4167, pages 61–75. Springer,
Berlin, Heidelberg, 2006. → page 12

[3] D. Angluin, J. Aspnes, and D. Eisenstat. Stably computable predicates are
semilinear. In PODC ’06: Proceedings of the twenty-fifth annual ACM
symposium on Principles of distributed computing, pages 292–299, New
York, NY, USA, 2006. ACM Press. → page 2

[4] C. Bennett. Logical reversibility of computation. IBM journal of Research
and Development, 17(6):525–532, 1973. → page 4

[5] C. Bennett. The thermodynamics of computation - a review. International
Journal of Theoretical Physics, 21(12):905–940, 1981. → page 4

[6] L. Cardelli and G. Zavattaro. Turing universality of the biochemical ground
form. Mathematical. Structures in Comp. Sci., 20(1):45–73, Feb. 2010.
ISSN 0960-1295. → page 5

[7] I. Chatzigiannakis, O. Michail, S. Nikolaou, A. Pavlogiannis, and P. G.
Spirakis. Passively mobile communicating machines that use restricted
space. In Proceedings of the 7th ACM ACM SIGACT/SIGMOBILE
International Workshop on Foundations of Mobile Computing, FOMC ’11,
pages 6–15, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0779-6.
→ page 5

[8] H.-L. Chen, R. Cummings, D. Doty, and D. Soloveichik. Speed faults in
computation by chemical reaction networks. In F. Kuhn, editor, Distributed

38

Computing, pages 16–30, Berlin, Heidelberg, 2014. Springer Berlin
Heidelberg. ISBN 978-3-662-45174-8. → page 10

[9] H.-L. Chen, D. Doty, and D. Soloveichik. Deterministic function
computation with chemical reaction networks. Natural Computing, 13(4):
517–534, Dec 2014. → pages 1, 2

[10] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis
based on the sum of observations. The Annals of Mathematical Statistics,
pages 493–507, 1952. URL http://www.jstor.org/stable/2236576. → page 31

[11] R. Cummings, D. Doty, and D. Soloveichik. Probability 1 computation with
chemical reaction networks. Natural Computing, 15(2):245–261, 2014. →
pages 2, 4, 11, 12

[12] M. A. Gibson and J. Bruck. Efficient exact stochastic simulation of chemical
systems with many species and many channels. The Journal of Physical
Chemistry A, 104(9):1876–1889, 2000. → page 33

[13] D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions.
The Journal of Physical Chemistry, 81(25):2340–2361, 1977. → page 33

[14] H. Jiang, M. Riedel, and K. Parhi. Synchronous sequential computation with
molecular reactions. In Proceedings of the 48th Design Automation
Conference, DAC ’11, pages 836–841, New York, NY, USA, 2011. ACM.
→ page 5

[15] R. Johnson and E. Winfree. Verifying polymer reaction networks using
bisimulation. 2014. URL
http://www.dna.caltech.edu/Papers/Polymers2014-VEMDP.pdf. → pages
5, 6

[16] M. R. Lakin and A. Phillips. Modelling, simulating and verifying
Turing-powerful strand displacement systems. In L. Cardelli and W. Shih,
editors, DNA Computing and Molecular Programming, pages 130–144,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. → pages
5, 6, 7, 22, 30

[17] L. Qian, D. Soloveichik, and E. Winfree. Efficient Turing-universal
computation with DNA polymers. In Proceedings of the 16th international
conference on DNA computing and molecular programming, pages 123–140,
Berlin, Heidelberg, 2010. Springer-Verlag. → pages 2, 4, 6, 7, 12, 30

39

http://www.jstor.org/stable/2236576
http://www.dna.caltech.edu/Papers/ Polymers2014-VEMDP.pdf

[18] D. Soloveichik, M. Cook, E. Winfree, and J. Bruck. Computation with finite
stochastic chemical reaction networks. Natural Computing, 7(4):615–633,
Dec 2008. → pages 4, 10, 12, 30

[19] D. Soloveichik, M. Cook, E. Winfree, and J. Bruck. Computation with finite
stochastic chemical reaction networks. Natural Computing, 7(4):615–633,
2008. → page 1

40

	Abstract
	Lay summary
	Preface
	Table of contents
	List of tables
	List of figures
	Acknowledgments
	1 Introduction
	1 Contributions and highlights
	2 Related work

	2 Polymer-supplemented chemical reaction networks
	3 Stable, Turing-universal computation by sequential psCRNs with leader polymers
	4 Faster computation of Square by threaded psCRNs with clone polymers
	5 psCRN time complexity analysis and simulation
	6 Conclusions and future work
	Bibliography

