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Abstract

Datacenters have become commonplace computing environments used to offload

applications from distributed local machines to centralized environments. Datacen-

ters offer increased performance and efficiency, reliability and security guarantees,

and reduced costs relative to independently operating the computing equipment.

The growing trend over the last decade towards server-side (cloud) computing in

the datacenter has resulted in increasingly higher demands for performance and ef-

ficiency. Graphics processing units (GPUs) are massively parallel, highly efficient

accelerators, which can provide significant improvements to applications with am-

ple parallelism and structured behavior. While server-based applications contain

varying degrees of parallelism and are economically appealing for GPU accelera-

tion, they often do not adhere to the specific properties expected of an application

to obtain the benefits offered by the GPU.

This dissertation explores the potential for using GPUs as energy-efficient

accelerators for traditional server-based applications in the datacenter through a

software-hardware co-design. It first evaluates a popular key-value store server

application, Memcached, demonstrating that the GPU can outperform the CPU

by 7.5× for the core Memcached processing. However, the core processing of a

networking application is only part of the end-to-end computation required at the

server. This dissertation then proposes a GPU-accelerated software networking

framework, GNoM, which offloads all of the network and application processing

to the GPU. GNoM facilitates the design of MemcachedGPU, an end-to-end

Memcached implementation on contemporary Ethernet and GPU hardware.

MemcachedGPU achieves 10 Gbit line-rate processing at the smallest request

size with 95-percentile latencies under 1.1 milliseconds and efficiencies under 12
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microjoules per request. GNoM highlights limitations in the traditional GPU pro-

gramming model, which relies on a CPU for managing GPU tasks. Consequently,

the CPU may be unnecessarily involved on the critical path, affecting overall

performance, efficiency, and the potential for CPU workload consolidation. To

address these limitations, this dissertation proposes an event-driven GPU program-

ming model and set of hardware modifications, EDGE, which enables any device

in a heterogeneous system to directly manage the execution of pre-registered

GPU tasks through interrupts. EDGE employs a fine-grained GPU preemption

mechanism that reuses existing GPU compute resources to begin processing

interrupts in under 50 GPU cycles.
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Lay Summary

This dissertation explores the potential to improve the performance, efficiency, and

cost of datacenter computing through the use of highly parallel and efficient hard-

ware accelerators, specifically graphics processing units. However, the types of

applications that typically reside in a datacenter are often not considered to be

well suited for graphics processing units. This dissertation explores how a pop-

ular datacenter application performs on contemporary graphics processing units,

highlighting sizable improvements over traditional datacenter hardware. This dis-

sertation then proposes a general software framework for accelerating datacenter

applications on graphics processing units, recognizing that all of the computation

from receiving a request to sending the reply must be accounted for to achieve

the full benefits of the efficient parallel computing hardware. Finally, this dis-

sertation identifies limitations with contemporary graphics processing units and

proposes hardware and software enhancements to further improve the usability,

performance, and efficiency of graphics processing units in the datacenter.
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Chapter 1

Introduction

Enter the age of computing. Over the past few decades, modern computing sys-

tems have rapidly integrated themselves deeply into many aspects of life, rang-

ing from driving research, progressing modern science and medicine, exploring

the universe, and managing the world’s economy, to playing games, watching our

favourite shows, and staying connected with family and friends. Regardless of the

task, there is an ever increasing need for higher performance and efficiency.

Improvements in performance enable new classes of applications not previ-

ously before possible. Take machine learning and deep learning, for example. In

1957, Cornell Aeronautical Laboratory introduced the concepts of the perceptron

and neural networks used for pattern recognition [151]. However, it was nearly 50

years later before deep learning for pattern recognition began its rise [72]. Fast-

forward to today where large tech companies such as Google [90], Amazon [8],

Oracle [138], Microsoft [120], and Facebook [51] employ machine learning and

deep learning in many of their computing centers and products. A large contrib-

utor to this accelerated growth in deep learning is the improvements in micropro-

cessor performance. However, these performance improvements must be met with

increases in energy efficiency to remain feasible as computing systems continue to

scale up and scale out [20].
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1.1 Computing Trends
Traditionally, the rapid performance improvements of integrated-circuits (IC) in

microprocessors has been driven by two main factors: Moore’s law [121] and Den-

nard Scaling [43]. Moore’s law states that the number of transistors on an IC will

double roughly every 18-24 months, whereas Dennard states that voltage and cur-

rent, and hence dynamic power, is proportional to the dimensions of the transistor.

The combination of these factors enables the transistor switching frequency (clock

frequency) on ICs to increase without increasing dynamic power and enables more

transistors to fit on an IC within similar size and power constraints. As a result,

general-purpose central processing units (CPUs) have enjoyed consistent improve-

ments in single-threaded performance from generation to generation.

However, Dennard scaling has begun to break down over the last decade as

we approach the physical limits of transistor sizes and other factors, such as the

increasing contribution of transistor leakage current, reduce the ability to continue

decreasing power proportionally with smaller transistor sizes. Consequently, pow-

ering and cooling the larger number and higher density of transistors on ICs are

becoming prohibitively more expensive (referred to as the “power wall” [15, 122])

and has limited the opportunity to continue increasing the clock frequency as a

means to improve performance. This has driven many architectural enhancements

to utilize the additional transistors, such as exploiting instruction-level parallelism

(ILP) through out-of-order processing and branch prediction, to further improve

single-threaded performance. While effective, there is only so much parallelism

that can be extracted from single-threaded programs, which, along with high mem-

ory latencies, limits the potential gains from ILP. This has motivated the micro-

processor industry to transition towards parallel computing architectures, such as

chip-multiprocessors (CMPs), to combat the diminishing returns in single-threaded

optimizations [98].

CMPs consist of multiple independent CPU cores integrated on a single chip,

typically sharing portions of the memory system and input/output (I/O) interfaces

to communicate with each other and the outside world. CMPs enabled many

new opportunities to improve performance over single core systems. Multiple

programs can operate concurrently on different cores in a form of spatial mul-
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titasking, instead of temporal multitasking on a single core, or individual pro-

grams can explicitly define parallel sections of the code to be handled by mul-

tiple threads across different cores using parallel application program interfaces

(APIs) [19, 84, 94, 109, 133, 137]. Operating systems – privileged system software

responsible for the control, management, and security of microprocessor systems

– efficiently schedule programs and threads to multiple cores to improve overall

system throughput relative to single core systems. Modern CMPs commonly have

on the order of 10s of cores and may consist of multiple homogeneous cores, such

as Intel’s x86 Core-i architectures [167], or heterogeneous cores, such as ARM’s

big.LITTLE architecture [14]. The trend for adding more cores has continued to

push forward as transistor sizes decrease. For example, Intel’s Xeon E7 processors

contain 24 cores and can be combined in multi-socket server systems for up to 192

cores [81].

However, recent concerns about “dark silicon”, in which only a fraction of a

chip can be actively utilized within a given power envelope [48, 66, 118], have in-

troduced challenges with multicore scaling to improve performance. This has lead

to an increasing focus on specialized accelerators and massively multi-core sys-

tems, such as graphics processing units (GPU), field-programmable gate-arrays

(FPGA), and application-specific integrated-circuits (ASIC). Such architectures

can provide very high levels of performance and efficiency for specific classes

of applications, but may give up the flexibility and programmability inherent in

general-purpose processors. ASICs are at the extreme end of this scale, providing

dedicated hardware solutions to specific operations and applications at the cost of

generality and programmability. In contrast to general-purpose processors, which

often require multiple steps to perform a single operation to maintain a level of

generality, ASICs can directly implement the operation efficiently in hardware.

However, while ASICs may contain a level of programmability, they are tied to a

specific class of applications and cannot easily evolve with the application. Addi-

tionally, ASICs require hardware design and implementation, which increase the

complexity and cost relative to software-only solutions.

FPGAs, on the other hand, fall in the middle of the scale as reprogrammable

hardware devices. Internally, FPGAs contain many reconfigurable hardware

blocks capable of implementing any logic function, dedicated hardware blocks,

3



I/O blocks, and a reconfigurable interconnection fabric for connecting these

components [7, 113, 114, 180]. The FPGA architecture enables high levels of

performance and efficiency for certain applications, but the reprogrammability

reduces the benefits relative to ASICS [100]. FPGAs are programmed using

hardware design languages (HDL), such as Verilog or VHDL, and can be repro-

grammed to evolve with changing applications. However, programming in an

HDL is still considerably more difficult than programming in software [154] and

reprogramming times can be on the order of milliseconds to seconds [142, 147],

which imposes challenges when implementing multitasking on FPGAs. While the

ease of programming has improved on recent FPGAs with support for higher-level

software languages through high-level synthesis (HLS), such as OpenCL [36] and

CUDA [142], current HLS solutions tend to achieve improvements in developer

productivity by trading off the quality of results [12].

GPUs, the focus of this dissertation, are massively multi-threaded, many-core,

throughput-oriented architectures traditionally designed to accelerate graphics

applications. Graphics processing often involves performing multiple thousands

of similar and independent computations on different pixels, resulting in large

amounts of data-level parallelism (DLP). GPUs exploit this parallelism by

concurrently executing multiple independent operations on a single-instruction,

multiple-data (SIMD) architecture to provide significant gains in performance and

efficiency. Fortunately, this property of high DLP is not exclusive to graphics

applications. Over the past decade, GPUs have evolved into general-purpose

GPUs (GPGPU), increasing the scope of applications that can benefit from the

GPU’s high-efficiency architecture to non-graphics applications with sufficient

DLP. Contemporary GPGPUs are programmed in high-level, parallel software

languages, such as CUDA or OpenCL.

At their core, GPGPUs consist of hundreds to thousands of small, low-

frequency, in-order cores grouped together into SIMD processing engines,

commonly referred to as streaming multiprocessors (SMs) or compute units (CU),

and high-bandwidth memory (the GPGPU architecture and programming model

are described in detail in Section 2.1). Unlike CPUs, which aim to improve

performance through high clock frequencies and aggressive ILP optimizations,

GPUs focus on exploiting fine-grained multi-threading (FGMT). Assuming
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Table 1.1: Comparing GPU and CPU theoretical performance and efficiency
over previous architecture generations. The GPU values were obtained
from an NVIDIA whitepaper [131]. The CPU value were obtained from
Intel processor specifications [83] and calculated using: FLOPS = num-
ber of cores × peak clock frequency × flops per cycle.

Architecture (Year) IC fab. TDP GFLOPS GFLOPS/W

GPU NVIDIA Volta (’17)
12nm
FFN

300 15,700 52.3

GPU NVIDIA Pascal (’16)
16nm
Fin-
FET+

300 10,600 35.3

GPU NVIDIA Maxwell (’15) 28nm 250 6,800 27.2
GPU NVIDIA Kepler (’13) 28nm 235 5,000 21.3

CPU Intel 8th gen core i9 (’18) 14nm 45 921.6 20.5
CPU Intel 8th gen core i7 (’18) 14nm 45 825.6 18.3
CPU Intel 7th gen core i7 (’17) 14nm 45 524.8 11.7
CPU Intel 6th gen core i7 (’16) 14nm 45 473.6 10.5

ample amounts of structured parallelism in the application, FGMT can hide the

effects of long latency operations by seamlessly switching between thousands

of concurrently operating GPU thread contexts. Coupled with the lower clock

frequency, FGMT trades off single-threaded performance with high throughput

processing to improve overall performance and energy-efficiency.

Consider the comparison in Table 1.1, which presents the theoretical peak per-

formance and energy-efficiency of different NVIDIA GPUs and Intel CPUs across

multiple generations. The table also presents the IC fabrication process and year

the processor was released. Performance is measured in billions of single-precision

floating-point operations per second (GFLOPS) and energy-efficiency is measured

in peak GFLOPS versus the thermal design power (TDP) (GFLOPS/W). As can

be seen, the latest NVIDIA Volta GPU (GV100) provides over 17× the compute

throughput and 2.6× higher energy-efficiency than the latest Intel CPU (Core i9-

8950HK). While the Volta has a superior technology fabrication process, even the

Maxwell and Kepler architectures with twice the transistor size are able to provide

higher performance and energy-efficiency than the latest Intel CPU. However, there
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are many limitations in the properties of applications that can actually benefit from

GPU acceleration, which introduces challenges with exploiting the available paral-

lelism offered by the GPU architecture. This dissertation argues that the perceived

bar for the types of applications that can obtain benefits from the GPU is often too

high and that GPUs should be considered as efficient accelerators for a broader

class of applications. Specifically, this dissertation explores the potential for us-

ing GPUs to improve the performance and efficiency of datacenter applications

containing ample request-level (packet-level) parallelism, using Memcached [115]

(Section 2.2) as an example.

1.2 GPUs and the Datacenter
The initial applications to pioneer the road for GPGPU computing belonged to the

domain of scientific and high-performance computing (HPC) and were able to at-

tain large performance improvements using GPUs [59]. These types of applications

are highly structured and well suited for the GPU’s SIMD architecture. Further-

more, the GPU is able to match these high levels of performance with efficiency. In

fact, as of June 2017, GPUs were used as accelerators in all ten of the top ten most

efficient supercomputers (GFLOPS/W), as indicated by the Green500 list [165],

while also appearing in two out of the top five supercomputers (TFLOPS) [166].

However, HPC represents a relatively small segment of the overall computing mar-

ket. According to the IDC, in 2015 the overall server market, such as those found

in a datacenter (described below), had revenues of $55.1 billion [78] compared to

$11.4 billion for HPC servers [25, 53], which has been a consistent trend over the

previous six years ($43.2 billion [76] for the overall server marked compared to

$8.6 billion [77] for HPC in 2009). Consequently, improving the performance and

efficiency of datacenter applications can have significant economic benefits.

Modern datacenters are massive buildings containing thousands of servers,

memory, non-volatile storage, network hardware, and power and cooling systems.

Server-side (“cloud”) computing in datacenters has become an increasingly popu-

lar computing environment with the growth in Internet services and provides many

benefits relative to independently managing custom computing resources [20].

Datacenters offer large amounts of computing potential, services, scalability,
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security, and reliability guarantees, which enable vendors and customers to easily

deploy, manage, and tailor the computing environment to their applications’

needs. Services such as Software-as-a-Service (SaaS), Platform-as-a-Service

(PaaS), and Infrastructure-as-a-Service (IaaS) provide varying levels of control

for, and support of, the software and hardware resources within the datacenter [6].

Additionally, computing resources can be shared across multiple applications,

known as workload consolidation, which improves efficiency through higher

utilization and reduces costs for both vendors and customers [20, 105].

Datacenters also simplify the development and maintenance of software. Soft-

ware vendors can frequently and transparently distribute updates to applications

running in the datacenter on known software and hardware configurations, instead

of distributing updates to a variety of different types of client hardware and soft-

ware systems [20]. Furthermore, existing applications tend to be frequently up-

dated and new datacenter applications with varying processing requirements are

rapidly deployed, referred to as workload churn, which places generality and flexi-

bility requirements on the hardware resources to be able to support the continuously

evolving applications.

Together, the hardware resources in the datacenter can consume tens of

megawatts [20]. Reducing energy consumption is therefore a key concern for

datacenter operators. At the same time, typical datacenter workloads often

have strict performance requirements, which makes obtaining higher energy

efficiency through “wimpy” nodes [11] that give up single-threaded performance

nontrivial [73, 147]. Additionally, high workload churn introduces challenges

with deploying high-efficiency ASICs to accelerate datacenter applications, as

the hardware has been specifically designed for a certain class of applications.

Consequently, datacenters have traditionally relied on general-purpose processors

as the main computing resources. Recently, however, the use of specialized

processors in the datacenter to address performance and efficiency limitations has

been growing. For example, Facebook’s Big-Basin [103] utilizes racks of tightly

coupled discrete GPUs for improving machine learning performance; Google uses

GPUs [39] and custom Tensor Processing Units (TPU) [90] for improving machine

learning performance; and Microsoft uses FPGAs for Bing web search [147] and

hardware microservices [27], such as encryption [29]. Along with an increase
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in specialized accelerators, datacenters have begun to shift towards rack-scale

computing [82], where communicating components in a disaggregated computing

[107] system reside in separate racks to increase utilization and efficiency. In

such an environment, applications reserve only the resources they require (e.g.,

computing resources, accelerators, memory, storage), as opposed to underutilizing

over-provisioned servers. In order to be effective, the communication overhead

between components in separate racks must be minimized.

As highlighted above, GPUs are becoming commonplace accelerators in data-

centers. One of the key reasons for this is the GPU’s ability to provide very high

levels of performance and energy-efficiency. However, the classes of applications

taking advantage of the GPUs are limited and, for example, frequently marketed

towards machine learning and scientific computing [61]. While these applications

have been the driving force for the inclusion of GPUs in the datacenter, there is

a large fraction of more traditional datacenter applications, such as web services

and databases, that are not often considered for GPU acceleration. This disserta-

tion asks the question, can these types of network-centric applications also benefit

from the high performance and efficiency provided by contemporary GPUs? These

types of server applications typically contain large amounts of thread-level (TLP)

or request-level (RLP) parallelism [98]. For example, Facebook uses an in-memory

web caching service, Memcached [115], to alleviate network traffic to expensive

backing databases, which is responsible for handling billions of network requests

per second (RPS) across multiple servers [124]. This results in significant amounts

of parallelism across network requests. However, there are many challenges with

exploiting this available parallelism on contemporary GPUs due to the irregular

behavior associated with the network-centric server applications.

First, while multiple network requests may perform the same high-level opera-

tion in parallel, such as retrieving a piece of data from the server, there may be dras-

tically different types or amounts of operations performed within the request. For

example, varying network packet sizes can result in a different number of iterations

to process, or different packet contents may trigger additional levels of processing.

This leads to decreased utilization and efficiency on the GPU’s SIMD architecture

(Chapter 2 and Chapter 3). Second, the data access patterns across multiple similar

network requests can not be known a priori and may be highly distributed across
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the GPU’s memory. This decreases the memory bandwidth utilization, reducing

both performance and efficiency (Chapter 2 and Chapter 3). Third, network-

based server applications tend to have strict latency constraints [41], which is com-

plicated by the GPU’s high-throughput oriented architecture with relatively low

single-threaded performance. Additionally, GPUs require large amounts of parallel

computation to provide the high levels of performance and efficiency. This trans-

lates to network request batching, and hence increased latency, when accelerating

network requests on the GPU (Chapter 4). Fourth, because network requests are

coming off of the network, an efficient framework is required to manage the data

and computation movement across communicating components within the hetero-

geneous environment (Chapter 4). Fifth, network packet processing in current

operating systems can contribute to a large fraction of the total end-to-end network

application latency. Without also considering the network processing, the benefits

of using a GPU for the remaining application processing are limited by Amdahl’s

law (a measure of the total potential performance gains given the fraction of total

computation able to be parallelized) (Chapter 4). Finally, contemporary GPUs are

considered as offload accelerators, which traditionally rely on the CPU for manag-

ing the launching and completion of GPU tasks. As a result, even if the GPU is

responsible for all of the network and application processing, the CPU must still

be involved on the critical path using the standard GPU programming interfaces.

This increases programming complexity, reduces performance and efficiency, and

unnecessarily reduces the ability for the CPU to concurrently work on other tasks

(Chapter 5). Each of these challenges must be addressed to obtain any benefits

from GPU acceleration of datacenter applications.

1.3 Thesis Statement
This dissertation explores the potential to utilize GPUs as energy-efficient acceler-

ators for server-based applications in the datacenter through a software-hardware

co-design. Datacenters are important and ubiquitous computing environments with

strict requirements for high performance, high efficiency, and generality. While

general-purpose GPUs are capable of providing significant gains in both perfor-

mance and efficiency for certain applications, traditional server-based applications
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do not often adhere to the specific properties expected of an application to obtain

the benefits offered by the GPU. This dissertation highlights that the GPU can be

used to accelerate such applications through a top-down approach – evaluating the

behavior of a popular datacenter application (Memcached) on contemporary GPU

hardware and proposing a full end-to-end software stack for accelerating network

services on contemporary GPUs – and a bottom-up approach – proposing a novel

hardware mechanism and modifications to the GPGPU programming model to im-

prove the independence, efficiency, and programmability of GPUs in a heteroge-

neous system, such as the datacenter.

This dissertation first performs a detailed characterization and evaluation of

Memcached, a high-performance distributed key-value store application, on con-

temporary GPUs. Compared to traditional GPGPU applications, Memcached is

highly irregular in terms of control flow and data access patterns. From an ini-

tial evaluation, it might reasonably appear that such an application would perform

poorly on a GPU. This dissertation highlights that even in light of the irregular

behavior, an application such as Memcached can be redesigned to take advantage

of the GPU’s high computational capacity and memory bandwidth to achieve im-

provements in request throughput. Additionally, this dissertation assists with un-

derstanding the potential SIMD utilization of an irregular application on a GPU,

prior to actually spending the time to implement the application on a GPU, through

the use of a custom control-flow simulator.

However, the actual server application processing is only part of the full end-

to-end processing required to service a network request. For example, the network

packet processing is performed in the operating system on the CPU prior to the

server application. As a result, the gains achieved by offloading only the applica-

tion processing to the GPU are limited by Amdahl’s law. This dissertation pro-

poses a complete end-to-end software framework, GPU Network offload Manager

(GNoM), for offloading both the network and server application processing to the

GPU. GNoM addresses many of the challenges with achieving high-throughput,

low-latency, and energy-efficient processing on the GPU’s throughput-oriented ar-

chitecture, facilitating the development of server-based applications on contempo-

rary GPU and Ethernet hardware.

Using GNoM, this dissertation proposes MemcachedGPU, an end-to-end im-
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plementation of Memcached on a GPU. Multiple components in Memcached are

redesigned to better fit the GPU’s architecture and communicating components

in a heterogeneous environment. MemcachedGPU is evaluated on both high-

performance and lower power GPUs and is capable of reaching 10 Gbps line-rate

processing with the smallest Memcached request size (over 13 million requests

per second (MRPS)) at efficiencies under 12 uJ per request. Furthermore, Mem-

cachedGPU provides a 95-percentile round-trip time (RTT) latency under 1.1ms

at peak throughputs. Together, GNoM and MemcachedGPU highlight the GPU’s

potential for accelerating such server-based applications.

GNoM aims to offload all of the network and application processing to the

GPU. However, contemporary GPUs are often considered as second-class comput-

ing resources, which require interactions with the host CPU to manage the launch-

ing and completion of tasks on the GPU. As a result, even if all of the required end-

to-end processing can be performed on the GPU, the CPU is still required to handle

I/O and control between GPU and other third-party devices, such as the network

interface. This dissertation proposes an event-driven GPU programming model and

corresponding hardware modifications, EDGE, to enable any device in a heteroge-

neous system to manage the execution of GPU tasks. EDGE pre-registers tasks on

the GPU and utilizes fine-grained preemption to execute privileged threads capable

of triggering the execution of these tasks. EDGE exposes the GPU’s interrupt inter-

face to completely bypass the CPU, which improves performance and efficiency,

reduces system complexity, and frees up the CPU to work on other tasks. This

dissertation also proposes a new GPU barrier instruction, the wait-release barrier,

which blocks GPU threads indefinitely until being released by the privileged GPU

threads in response to an event. The wait-release barriers can help to reduce the

overheads of persistently running GPU software frameworks, which continuously

poll in-memory work queues for new tasks.

1.4 Contributions
This dissertation makes the following contributions:

1. It argues that GPU’s should be considered as accelerators for datacenter

network services with ample request-level parallelism by contrasting a pro-
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grammer’s intuition of an application’s potential execution behavior on a

GPU with the actual behavior, highlighting that the appearance of irregular

control-flow and data-access patterns do not necessarily result in negative

performance on a GPU.

2. It describes the methodology used to port Memcached to run on integrated

CPU-GPU and discrete GPU architectures, focussing on GPU-only perfor-

mance with minimal modifications to Memcached’s internal implementation

and data structures.

3. It characterizes and evaluates Memcached on both integrated CPU-GPU and

discrete GPU architectures. To provide deeper insights, this dissertation

evaluates the behavior of Memcached on a cycle-accurate GPGPU simu-

lator [1].

4. It presents the initial design of a control flow simulator, CFG-Sim, which can

assist GPGPU developers in understanding the potential GPU SIMD utiliza-

tion of an application prior to actually porting the application to a GPU.

5. It presents GNoM (GPU Network Offload Manager), a software system for

efficient UDP network and application processing on GPUs, and evaluates

the feasibility of achieving low-latency, high-throughput (10 GbE line-rate),

and energy-efficient processing at any request size on commodity Ethernet

and GPU hardware.

6. It describes the design of MemcachedGPU, an accelerated key-value store

that leverages GNoM to run efficiently on a GPU, and addresses the chal-

lenges associated with partitioning a key-value store across heterogeneous

processors. Compared to the initial GPU version of Memcached, Mem-

cachedGPU optimizes for both throughput and latency in a full end-to-end

design. Additionally, this dissertation compares MemcachedGPU against

prior accelerated Memcached implementations.

7. It explores the potential for workload consolidation on GPUs during varying

client demands while maintaining a level of QoS for a higher priority GPU

network-based application.
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8. It highlights the limitations with contemporary GPUs being considered as

second-class computing resources and discusses the need for increased inde-

pendence of such accelerators to improve performance and efficiency in the

datacenter. To this end, this dissertation proposes EDGE, an event-driven

programming model, API, and corresponding GPU hardware modifications

to enable increased GPU independence for applications that primarily use

the GPU.

9. It proposes and evaluates a fine-grained, warp-level (Section 2.1.1) GPU

interrupt and preemption mechanism, which triggers a set of privileged GPU

warps (PGWs) from any device in a heterogeneous system through EDGE

for initiating and managing tasks internally on the GPU.

10. It proposes a new GPU barrier instruction, the wait-release barrier, which

halts the execution of specific GPU threads indefinitely until being released

by an event, and highlights the benefits of the wait-release barrier to reduce

the polling overheads of a persistent GPU thread style of programming.

11. It evaluates EDGE in a multiprogrammed environment and highlights the

ability to achieve the performance and simplicity of the baseline CUDA pro-

gramming model with the flexibility of software-only workarounds aimed to

increase the independence of GPUs.

1.5 Organization
The rest of this dissertation is organized as follows:

• Chapter 2 discusses the relevant background information for this disserta-

tion, such as the GPU architecture and programming models evaluated in

this study, the Memcached key-value store application, networking, and the

event-driven programming model.

• Chapter 3 presents the initial evaluation into porting Memcached, an irreg-

ular key-value store datacenter application, to both integrated and discrete

GPU hardware, and provides deeper insights into the behavior of Mem-

cached on a GPU via a GPGPU simulator.
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• Chapter 4 tackles the challenges with implementing Memcached on a

GPU in a complete end-to-end system. This chapter proposes GNoM, a

software framework for accelerating both network and application pro-

cessing for network-based applications on contemporary GPU hardware.

This chapter then presents the end-to-end design and implementation

of MemcachedGPU, which utilizes GNoM to achieve 10 GbE line-rate

processing for any Memcached packet size on both high-performance and

low-power discrete GPUs. This chapter also highlights the potential for

workload consolidation on GPUs in the datacenter while maintaining a level

of QoS for high-priority network applications.

• Chapter 5 identifies limitations with the current system and architectural

support for considering GPUs as first-class computing resources in a het-

erogeneous environment, which rely on the CPU to act as the middleman for

control and task management. This chapter proposes EDGE, an event-driven

programming model and corresponding modifications to the GPU architec-

ture, to enable third-party devices in a heterogeneous environment to directly

manage tasks on the GPU.

• Chapter 6 discusses the related work for this dissertation.

• Chapter 7 concludes this dissertation and discusses directions for future

work.
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Chapter 2

Background

This chapter presents the relevant background information for this dissertation.

It first describes the GPU programming model, details two GPU architectures

evaluated throughout this research, and discusses irregularities that arise in the

GPU thread control-flow and memory systems. This chapter then discusses GPU

system-level frameworks and current support for interrupts on GPUs. Next, this

chapter details a key-value store application, Memcached, which is evaluated

throughout this dissertation. Finally, this chapter provides an overview of the

relevant networking and event-driven programming background.

2.1 Graphics Processing Units (GPUs)
This section details the contemporary GPU programming model and GPU archi-

tectures assumed in this dissertation.

2.1.1 GPU Programming Model

GPUs are high throughput-oriented offload accelerators traditionally designed

for graphics. GPUs have since evolved into general-purpose processors, namely

general-purpose graphics processing units (GPGPUs), capable of providing

high-throughput, energy-efficient processing for data parallel software, such as

high-performance computing (HPC). In this dissertation, the terms GPUs and

GPGPUs are used interchangeably.
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Non-graphics applications are written in C-like language, such as CUDA [133]

or OpenCL [94]. In this dissertation, both NVIDIA and AMD GPUs are evaluated.

The terminology is defined for both vendors in the form NVIDIA term [AMD term].

GPU applications consist of two main components, a host (CPU) component and

a device (GPU) component. In this dissertation, both host and CPU, and device

and GPU, are used interchangeably. The CPU is responsible for communicating

data and control with the GPU (through a GPU driver running on the CPU) via

the application programming interfaces (APIs) provided by CUDA and OpenCL.

Asynchronous operations enable overlapping data communication and (parallel)

task execution through multiple streams [command queues], which are mapped to

physical hardware queues on the GPU. Data communication, which is discussed

in more detail below, can occur explicitly through memory copies or implicitly

through direct memory access (DMA) from either the CPU or GPU. The GPU

is responsible for executing user-defined parallel sections of code, called kernels,

which perform the actual application processing on the GPU. In this dissertation,

kernel and compute kernel are used interchangeably.

GPUs support a single-instruction, multiple-thread (SIMT) execution model,

in which groups of scalar threads execute instructions in lock-step. SIMT ar-

chitectures improve energy efficiency by amortizing the instruction fetch and de-

code logic, and memory operations, across multiple threads. Similar to single-

instruction, multiple-data (SIMD), SIMT processes the same instructions concur-

rently over multiple different data elements. Unlike SIMD, SIMT enables threads

to take different paths through the application’s control-flow graph (CFG), which

is described more below. In this dissertation, SIMD and SIMT are both used to

refer to the GPU’s SIMT architecture, which contains a SIMD pipeline capable of

executing subsets of SIMD lanes.

GPU kernels contain a hierarchy of threads, which define boundaries for com-

munication and levels of task scheduling. GPU threads [work items] are grouped

into warps [wavefronts], which execute instructions in a lock-step SIMT fashion.

Typical warp sizes are 32 or 64 threads. Warps are further grouped into cooper-

ative thread arrays (CTAs) [work groups]. CTAs are also referred to as thread

blocks. CTAs are the main schedulable unit of work on the GPU. CTAs are then

grouped into grids [NDRanges], which form the main work for the kernel. CTAs

16



are dispatched as a unit to a streaming multiprocessor (SM or SMX) [Stream core],

whereas individual warps within the CTA are scheduled independently on the cor-

responding SM. When a kernel is launched, the size and dimension of the kernel is

defined. Threads within a CTA can communicate via fast on-chip scratch pad mem-

ory, shared [local] memory, whereas threads in different CTAs must communicate

through slower off-chip global memory. Additionally, warps within a CTA can

perform efficient synchronization through GPU hardware barriers, whereas warps

in different CTAs must implement their own form of synchronization via global

memory 1.

2.1.2 GPU Architecture

This section presents an overview of the AMD (Chapter 3) and NVIDIA (Chapter

4 and Chapter 5) GPU architectures evaluated in this dissertation.

Figure 2.1 presents a high-level view of an AMD-like GPU architecture as-

sumed in this research [9] 2. The GPU consists of multiple compute units, each

containing one or more stream cores. The stream cores contain multiple processing

elements, which perform the actual SIMD computations, branch units to manage

thread control flow, general purpose registers, and a memory interface to the caches

and the global memory controller. The number of processing elements is typically

equal to, or a factor of, the warp/wavefront size (32 or 64). An Ultra-Threaded

Dispatch Processor (UTDP) manages the scheduling of kernels and work groups

to the compute units. Each compute unit is also connected to on-chip, read-only L1

instruction and data caches, on-chip local data stores (LDS) for scratchpad memory

and intra work item communication, and on-chip, read-only L2 caches for images

and constant data.

The compute units are connected to a memory controller to service requests

to off-chip constant and global memory. AMD provides both discrete GPUs and

integrated GPUs. Discrete GPUs are physically separate units connected to the

host machine via a connection bus, such as the peripheral component intercon-

nect express (PCIe) bus. Integrated GPUs are collocated on the same physical

1The latest NVIDIA GPUs enable synchronization across multiple CTAs [131].
2The architecture presented here corresponds to the time that the study in Chapter 3 that was

performed (2012).
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Figure 2.1: High-level view of an AMD-like GPU architecture assumed in
this dissertation.

die as the CPU, sharing a common global memory. Each type of GPU, discrete

and integrated, have benefits and drawbacks. Discrete GPUs tend to have sig-

nificantly higher processing capabilities, have their own high-bandwidth physical

GPU global memory, and have their own power and cooling systems. However, the

separate memory requires data to be explicitly copied between the CPU and GPU

or directly accessed across the PCIe bus, which increases complexity and reduces

potential performance benefits. On the other hand, integrated GPUs tend to trade

off lower processing capabilities with lower power consumption, and remove the

need for data to be copied between physical memories over the PCIe bus, since

both the CPU and GPU share the same physical memory. Chapter 3 evaluates

both discrete and integrated GPUs.
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Figure 2.2 presents a high-level view of an NVIDIA-like GPU architecture in-
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fluenced by two NVIDIA Patents [87, 155] and academic research [17, 174]. The

illustrated GPU contains multiple streaming multiprocessors (SMXs), each with

their own control logic, warp schedulers, SIMD processing cores, on-chip L1 in-

struction and data caches, on-chip shared scratchpad memory for intra-CTA com-

munication, large register files, and thread/warp contexts. Each SMX is connected

to an off-chip shared L2 cache via an interconnect. The L2 cache is connected to a

memory controller for managing requests to high-bandwidth, off-chip global GPU

memory.

The host communicates data and kernels with the GPU over PCIe through a set

of hardware managed CUDA streams, allowing for concurrently operating asyn-

chronous tasks. NVIDIA’s Hyper-Q [134] enables up to 32 independent hardware

streams, which depending on the level of resource contention, can perform up to

32 independent concurrent operations. These hardware queues may be stored in a

front-end I/O unit, which receives PCIe packets from the host.

The functionality of the Kernel Metadata Structure (KMD), Kernel Manage-

ment Unit (KMU), and Kernel Distributor Unit (KDU) (Figure 2.2) are best de-

scribed through an example of launching a kernel on the GPU. The CPU first

passes the kernel parameters, kernel metadata (kernel grid and CTA dimensions,

shared memory requirements, and stream identifier), and a function pointer to the

actual kernel code to the GPU driver running on the CPU. The GPU driver then

configures the kernel parameter memory and KMD (structure storing the kernel

metadata), and launches the task into the hardware queue corresponding to the

specified stream in the GPU’s front-end. Internally, the KMU stores pointers to the

KMDs waiting to execute in a pending kernel queue (PKQ). The KDU stores the

KMDs for the actively running kernels. KMDs are loaded into the KDU from the

KMU when a free spot is available. Finally, the SMX scheduler configures and

distributes CTAs from the KDU to the SMXs based on available resources for the

CTA contexts. The CTA resources consist of thread/warp/CTA contexts, registers,

and shared memory. The first resource to be depleted dictates the maximum num-

ber of CTAs able to run concurrently on an SMX. Note that a CTA from another

kernel, which has different resource requirements, may be able to concurrently run

on the same SMX if it does not require more resources than are available. Current

NVIDIA GPUs support up to 32 concurrently running kernels and 1024 pending
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kernels.

2.1.3 GPU Memory Transfers

Discrete GPUs have physically separate, high-bandwidth GPU memory. Tradi-

tional GPU programs perform explicit data transfers between the CPU and GPU

memory through the CUDA API and stream interface. More recent GPUs, such as

NVIDIA’s Pascal and Volta GPUs, support unified memory, which enables implicit

memory copies via virtual memory demand paging [126, 131]. However, explic-

itly managing memory is still beneficial from a performance standpoint. Signifi-

cant losses in end-to-end performance can occur with large data transfers or a large

number of small data transfers between the host and device [62], because the time

required to transfer data increases linearly with the amount of data needing to be

transferred [32]. PCIe 2.x and 3.x with an x16 connection can transfer data at 8

GB/s and 16 GB/s respectively [145], which can be one to two orders of magni-

tude lower than current GPU DRAM bandwidths (e.g., 900 GB/s on the NVIDIA

Volta architecture [131]). On the other hand, integrated GPUs avoid the necessity

for explicit memory copies to GPU memory since they share the physical DRAM

with the CPU 3. However, this comes at the cost of lower GPU bandwidth due to

sharing resources with the CPU and a lower bandwidth memory architecture.

Furthermore, the separate GPU memory traditionally requires that an external

device, such as a network interface controller (NIC) or field-programmable gate

array (FPGA), first copy the data to CPU memory and then from CPU memory

to GPU memory. GPUDirect [128] removes this requirement by enabling remote

direct memory access (RDMA) from a third-party device directly to GPU memory,

completely bypassing CPU memory. This is achieved by exposing the GPU’s page

table and mapping an RDMA-able portion of the GPU’s memory into the external

device’s memory space. However, while GPUDirect solves the issue of the data-

path bypassing the CPU, the control-path is still required to go through the GPU

driver running on the CPU.

Chapter 4 and Chapter 5 discuss the challenges with control-path dependence

on the CPU in more detail.
3Mapping and un-mapping operations may be required to ensure the data the GPU is accessing is

coherent with any CPU updates.
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2.1.4 CUDA Dynamic Parallelism

CUDA Dynamic Parallelism (CDP) [127] enables GPU threads to launch sub-

kernels directly on the GPU. CDP exploits nested irregular parallelism in GPU

applications, where there may be a varying degree of parallelism throughout the

kernel. For example, graph search algorithms may have a varying and unknown

number of nodes to visit at each stage, requiring a different number of threads

at each stage. CDP can also be used to avoid round trip kernel launches to/from

the CPU by allowing GPU threads to internally launch and synchronize kernels.

CDP exposes an API to manage the dynamic resource allocation, launching, and

synchronization of children kernels in a parent kernel. Similar to host-launched

kernels, GPU-launched children kernels are inserted into hardware queues in the

KMU for managing pending kernels. However, the flexibility in CDP for any GPU

thread to configure and manage sub-kernels has been shown to have high over-

heads [174, 175], which can significantly limit the performance benefits compared

to the baseline where the CPU launches tasks on the GPU.

2.1.5 Kernel Priority and Kernel Preemption

Based on an NVIDIA patent [155], the GPU maintains multiple different

queues/lists for storing pending kernels (KMD pointers) to be executed on the

GPU. Both host-launched and device-launched kernels can specify a priority

associated with the kernel, which may be implemented by assigning different

queues different priorities in the KMU. Children kernels in CDP inherit their

parent kernel’s priority. The KDU can then select a KMD to launch based on a

given priority selection algorithm.

Kernel priority can aid the choice of deciding which kernel to schedule next

when enough free resources are available. However, while GPUs have long sup-

ported preemption for graphics applications, GPUs have traditionally only sup-

ported spatial multitasking for GPGPU applications, not temporal multitasking via

preemption and context switching. The lack of temporal multitasking results in

large, long running GPU applications that consume all GPU resources to block

other kernels from running. This occurs even if a pending kernel has a higher prior-

ity than the large long running kernel. NVIDIA has recently proposed fine-grained,
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instruction-level preemption for GPGPU applications in their newest GPU archi-

tectures [126, 131]. However, unlike CPUs, context switching a full GPU kernel

can be very expensive, in terms of computing cycles, due to the large amounts of

state to save (e.g., register files and shared memory). Additionally, recent research

has proposed multiple optimizations to reduce preemption overheads to better sup-

port GPU preemption and multitasking [33, 92, 143, 157, 162, 176].

GPU preemption is discussed in more detail in Chapter 5.

2.1.6 Current GPU Interrupt Support

An NVIDIA patent [155] presents an exception handling mechanism that enables

the GPU to handle internal exceptions (e.g., arithmetic errors), traps (e.g., threads

hitting a breakpoint when debugging) or external interrupts (e.g., cuda-gdb inter-

acting with the GPU or a kill signal from the host CPU). The patent describes

a global interrupt mechanism, which minimizes the design and verification com-

plexity – when an interrupt or exception occurs, all warps running on an SM are

interrupted and transition from their current code to an interrupt handler. Only

the warp(s) responsible for the exception/interrupt actually processes the interrupt,

while all other warps immediately return to their original execution. However, all

warps from all active CTAs on an SM must temporarily pause their execution to test

the exception, which can reduce performance if only a subset of warps are required

to service the interrupt/exception. An AMD Graphics Cores Next (GCN) Archi-

tecture white paper [10] also describes scalar cores within the Compute Units that

are responsible for handling GPU interrupts, which is useful for supporting GPU

debugging.

As previously described, discrete GPUs are typically connected to the host

CPU via a PCIe bus and contain an I/O and front-end unit to communicate over the

PCIe connection (Figure 2.2). As of PCI 3.0, the CPU and external devices can

interact with PCIe devices through Message Signaled Interrupts (MSI-X), which

support up to 2048 different interrupts. Unlike traditional interrupts that rely on

specific interrupt wires, MSI-X treats interrupts as special PCIe packets. As such,

any device that can communicate over PCIe is (in theory) able to send and trigger

GPU interrupts. To the best of our knowledge, no GPU manufacturer has published
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an API for enabling programmers to take advantage of the ability to send interrupts

to the GPU directly from a user-space application.

GPU interrupts are discussed more in Chapter 5.

2.1.7 GPU Persistent Threads

Persistent threads (PT) are an alternative technique for programming and launching

tasks on the GPU. PT pre-configures and launches a large number of continuously

running persistent CTAs (pCTAs) on the GPU, which poll for new tasks from in-

memory work queues to perform the application processing [63]. This increases

the application’s control of the task and thread scheduling, effectively replacing the

CUDA driver and the GPU’s hardware kernel and CTA schedulers with a user-level

software GPU task scheduler that is independent from the CPU. As such, PT also

enables any device in the heterogeneous system to initiate a task on the GPU by

simply writing into a work queue in the GPU’s memory. The polling pCTAs can

then identify the arrival of a new task and begin the actual kernel processing for

the corresponding task. For this to work, each pCTA must be sized appropriately

to accommodate the maximum task size that may be scheduled, which results in

underutilized resources for smaller tasks.

There are multiple different techniques for implementing PT on GPUs [96,

182]. For example, there can be a single global work queue, which requires syn-

chronization between all pCTAs, or local per-pCTA work queues, which limits

contention at the cost of load imbalances. Additionally, all pCTAs may be respon-

sible for both polling the work queue and performing the actual kernel processing,

or separate pCTAs may be responsible for polling the work queues and passing

the tasks to a separate set of pCTAs for the actual kernel processing (a form of

prefetching to overlap reading the work queues and processing the tasks). Each

design provides a trade-off in the number of threads synchronizing on the shared

work queues and the amount of resources available for performing the kernel pro-

cessing.

Persistent threads are evaluated further in Chapter 5.
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2.1.8 GPU Architectural Irregularities

This section describes two key performance irregularities that are inherent to the

GPU architecture: branch divergence and memory divergence.

Branch Divergence

As previously described, scalar GPU threads are grouped together into warps. In

an application without any conditional control flow operations, such as conditional

branches, the warp is able to make forward progress through the code while exe-

cuting instructions for each thread in parallel. This follows the normal SIMD exe-

cution model. However, if conditional branches are introduced into the code, it is

possible for a subset of the threads in a warp to take the branch while the remaining

threads do not. While all threads in a warp previously executed the same instruc-

tions, now only a subset of threads in the warp execute the same instructions. This

is known as branch divergence [110, 119, 172]. Branch divergence can occur any

number of times and, in the worst case, each thread in a warp executes a different

instruction. Consequently, threads that are not executing a given instruction result

in idle lanes in the SIMD hardware, which lowers the SIMD utilization. To handle

branch divergence, GPUs contain a hardware component similar to the SIMT stack

described by Fung et al. [172, 173]. An example highlighting the SIMT stack is

shown in Figure 2.3 and is described below. The SIMT stack can be used to track

the active threads at various points throughout the program’s execution. An active

thread refers to a GPU thread within a warp that is currently executing instructions.

A thread becomes inactive if it takes a branch that diverges away from the other

threads in the warp.

Each entry on the SIMT stack contains a bit-mask representing the active

threads (work items) in a warp (wavefront), with the top element in the stack (TOS)

signifying the subset of threads to execute. The SIMT stack also records the cur-

rent program counter (CPC) and a re-convergence program counter (RPC). The

CPC specifies the instruction that the active threads on a corresponding stack entry

will execute once it becomes the TOS. As the threads in the TOS entry execute

the instructions, the CPC is incremented accordingly. The other counter, the RPC,

specifies the immediate post-dominator (IPDOM) instruction. The IPDOM is de-
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Figure 2.3: SIMT execution example.

fined as the closest instruction in the program that all paths leaving the branch must

go through before exiting the function. As such, the IPDOM is the earliest instruc-

tion that all threads in the warp are guaranteed to execute the same instruction.

The SIMT stack uses the RPC to specify where the active and inactive threads can

rejoin. Once the active subset of threads reaches the RPC, the TOS is popped from

the stack and the GPU starts executing the new TOS.

Figure 2.3 shows an example of the SIMT execution flow when executing a

piece of code taken from a hash function in a popular key-value store application,

Memcached. Memcached is discussed in detail in Section 2.2. The corresponding

section of Memcached’s CFG is shown on the left. The CFG is also annotated

with the actual branch probabilities extracted from multiple Memcached runs. For

simplicity, in this example there are six threads (work items) per warp (wavefront).

Snapshots of the SIMT stack are shown at different points throughout execution on

the right.

A GPU scalar thread is represented by a vertical column in the middle of Figure

2.3 (labeled 0 through 5). Active threads are indicated by black arrows and inactive

threads are indicated by white arrows. The ovals represent basic blocks in the CFG,

which signify a portion of code with single entry and exit points that ensure no
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further branch divergence. Hence, once execution starts at the beginning of a basic

block, it will always continue until the end of the basic block. Without branch

divergence, the minimum number of basic blocks required to reach H from A is

four (A→C→ G→ H) and the maximum is five (A→ B→ D/E→ F/G→ H).

At the beginning, all of the threads in the warp are set to active and execute the

instructions at block A. At the first branch, threads 0-3 go to block B while threads

4-5 go to block C; the corresponding entries are pushed onto the SIMT stack. The

re-convergence point for each thread split is set to the IPDOM block H, which is

the first point where all threads must pass through, regardless of the branches taken

or not taken in this CFG. Additionally, the previous TOS’s CPC is set to H, which

indicates that all threads will resume concurrent execution at H. The next step is

to execute a subset of the original warp until reaching a re-convergence point. This

is achieved by executing the threads at the new TOS. Threads 4-5 execute basic

block C (T=1) and G (T=2) before reaching the re-convergence point H. The TOS

is popped off and execution switches to threads 0-3 at B (T=3). Here, the threads

split again, removing its current entry from the SIMT stack and pushing two new

entries onto the stack for basic blocks D and E (T=4). Threads 1-3 execute basic

blocks E (T=4) and G (T=5) until reaching the re-convergence point H (T=6),

which pops the TOS and switches execution to thread 0 (T=7) to execute basic

block D prior to reaching H (T=8). At this point (T=8) all of the threads in the

warp are at the re-convergence point H and resume concurrent execution.

Assuming all the basic blocks have the same number of instructions, the SIMD

efficiency in this example is approximately 46% and executes nine blocks in total

(four more than the maximum number of basic blocks under no branch divergence).

Also, block G is executed twice, resulting in more instructions being issued than

necessary.

Thus, to achieve the highest performance from the GPU, it is desirable to have

as little branch divergence as possible.

Memory Divergence

Memory accesses are another property of GPUs directly affected by the grouping

of threads in a warp. If the instruction being executed by all threads is a memory-
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Figure 2.4: GPU memory request coalescing.

access operation, such as a load or a store, each thread will generate a memory

request to be handled by the memory system. Assuming each memory request

is for a data object in a different region of memory, all requests will be handled

separately. This phenomenon is referred to as memory divergence. However, if

the requested data from threads in a warp lies within a given range, such as the

size of a cache line or the size of data returned from a memory request (i.e. high

data locality between threads in a warp), the memory requests falling into one of

these common regions can be coalesced into a single request. This can significantly

reduce the amount of traffic on the memory system.

Consider the example in Figure 2.4. In this example, there are two warps,

Warp 0 and Warp 1, each containing two threads, Thread 0-1 and Thread 2-3 re-

spectively. Each thread in Warp 0 executes a load instruction LD-0 and each thread

in Warp 1 executes a load instruction LD-1. On the first load instruction, LD-0,

Thread 0 loads in A and Thread 1 loads in B. Because both data objects lay in a

single cache line, the two memory requests can be coalesced into a single mem-

ory request. As a result, if the request misses in the cache, only a single memory

request will be sent to the lower level cache or memory system. However, on the

second load instruction, LD-1, Thread 3 sends a memory request for D, which

falls into a separate cache line from Thread 2’s memory request to C. Thus, two

physical memory requests will be generated. If one of the memory requests hits

in the cache while the other memory request misses in the cache, all threads in the

warp will be stalled until the last memory request is serviced. Extending this to
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real applications, typically containing 32 threads per warp (or 64 work-items per

wavefront) and hundreds of warps per kernel, un-coalesced memory requests can

generate large amounts of memory traffic to the memory system and significantly

affect performance.

Thus, to achieve the highest performance from the GPU, it is desirable to limit

the amount of memory divergence.

2.2 Memcached
This section details the main application evaluated in this dissertation, Mem-

cached [115]. Memcached is a general-purpose, scale-out, high-performance,

in-memory, key-value caching system used to improve the performance of

distributed databases in server applications by caching recently queried data in
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main memory. This alleviates the amount of traffic required to be serviced by the

back-end databases, which access non-volatile storage or other external sources.

These expensive I/O operations can significantly reduce overall performance

and increase power consumption. Memcached is used by many popular network

services such as Facebook, YouTube, Twitter, Wikipedia, Flickr, and others [115].

A high-level view of how Memcached fits into the existing web and storage

tiers in a datacenter is shown in Figure 2.5. Memcached acts as a look-aside

cache. Requests are first sent to the Memcached servers and either (1) the data

is available and is returned to the requesting server or (2) the requesting server is

notified of the cache miss and is responsible for querying the back-end database

for the missing data, which is then stored into the Memcached system.

Internally, Memcached implements the key-value store as a hash table. Mem-

cached uses an asynchronous networking event notification library, Libevent [112],

which removes the loop-based events in event-driven networks to increase perfor-

mance. All of the Memcached data resides in volatile system memory, which re-

sults in fast accesses compared to storing on disk. Memcached implements a scale-

out, distributed architecture by combining main memory from individual servers

into a large pool of virtual memory. This aggregation of memory effectively pro-

vides a much larger memory space that scales linearly with the number of servers

in the system. Each server is fully disconnected from the other servers in the pool,

meaning that no communication takes places between the servers. All communi-

cation is done between the client and one or more servers, which greatly simplifies

the overall system design. Furthermore, Memcached has no reproduction of data,

logging, or protection from failure. As the data is stored in memory, a system fail-

ure results in the loss of data. Thus, it is the responsibility of the application to

implement any failure recovery mechanisms.

Memcached provides a simple key-value store interface to store (SET), modify

(DELETE, UPDATE), and retrieve (GET) data from the hash table. The key-value

pair and corresponding metadata (e.g., size of key/value, last access time, expiry

time, flags) is referred to as an item. All of the Memcached operations require

two hashes of the keys. The first hash selects which server the corresponding re-

quest should be directed to (based on a pre-configured mapping of keys to servers)

and the second hash selects the appropriate entry in the hash table. Hash-chaining
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is used in the event of collisions on write operations and a linear traversal of the

linked-list chain is used on read operations when necessary. To avoid expensive

memory allocations for every write request, Memcached uses a custom memory

allocator from pre-allocated memory slabs to allocate memory for items. To reduce

memory fragmentation, Memcached allocates multiple memory slabs with differ-

ent fixed-size entries. The hash table stores pointers to items stored in the memory

slabs. Memcached uses a global Least Recently Used (LRU) eviction protocol to

keep the most up-to-date data cached in main memory. Items are evicted on write

operations if the write exceeds the available memory limit. A time-out period can

be added to an item to specify when this item’s lifetime is over, regardless of its

current usage. This time-out period has precedence over the LRU eviction proto-

col; items whose timers have expired are first evicted, followed by the LRU items.

Facebook Memcached deployments typically perform modify operations over

TCP connections, where it is a requirement that the data be successfully stored

in the cache, whereas retrieve operations can use the UDP protocol [124]. Since

Memcached acts as a look-aside cache, dropped GET requests can be classified as

cache misses (requiring queries to the back-end database) or the client application

can replay the Memcached request. However, excessive packet drops mitigate the

benefits of using the caching layer, requiring a certain level of reliability of the

underlying network for UDP to be effective.

2.3 Network Interfaces and Linux Networking
A network interface controller (NIC) is hardware component in a computer system

responsible for receiving and sending network packets with other external com-

puter systems. The NIC is connected to the host (CPU) either through an inte-

grated bus on the motherboard or via a connection bus, such as PCIe. Network

packets enter hardware RX (receive) queues at the NIC, which are copied to pre-

allocated, DMA-able RX ring buffers (driver packet queues), typically residing in

CPU memory. The NIC then sends interrupts to notify the CPU of one or more

pending RX packets, or the CPU can poll the NIC to check for pending packets.

To mitigate high interrupt rates when receiving packets, the Linux kernel uses a

hybrid interrupt and polling approach, NAPI (New API). In NAPI, the NIC notifies
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the Linux kernel when a packet arrives via an interrupt. The Linux kernel registers

the notification, disables future interrupts from the NIC, and schedules a polling

routine to run at a later time. The polling routine then services multiple received

packets from the NIC up to some pre-defined threshold. The NIC driver copies the

packets from the RX ring buffers to Linux Socket Buffers (SKBs) to be processed

by the host Operating System (OS), returns the corresponding RX buffers back to

the NIC to receive future packets, and re-enables interrupts. When transmitting

(TX) packets, the Linux kernel copies packets into DMA-able TX ring buffers and

notifies the NIC of the packet to send. The NIC copies the packet into internal TX

queues and then transmits the packet on an outgoing link.

Optimizations such as direct NIC access (DNA) can reduce memory copies by

allowing user-space applications to directly access the RX and TX ring buffers.

This removes the requirement for the Linux kernel to perform additional memory

copies to SKBs to process the packet. The user-space application is presented

with the raw packet and is responsible for performing any packet processing. In

Chapter 4, we expand on this technique by using NVIDIA GPUDirect [135] to

directly copy the packet data from the NIC to RX buffers stored in GPU memory,

which removes the requirement for the CPU to explicitly copy the packet from

CPU memory to GPU memory. Another common optimization in modern NICs is

receive side scaling (RSS), which enables the NIC to install packet filters to direct

specific packets to specific CPU cores. Packet filters can be installed through the

NIC’s driver API. We also expand on this technique in Chapter 4 to filter certain

packets to the GPU, while all other packets still go through the standard Linux

kernel network flow on the CPU.

2.4 Event and Interrupt-Driven Programming
Event or interrupt-driven programming is an alternative style of programming com-

pared to threads. Threads execute a program and can perform synchronous, asyn-

chronous, blocking, and non-blocking operations. Synchronous blocking opera-

tions stall the thread until some condition is satisfied and the thread can resume

execution. Asynchronous non-blocking operations immediately return, regard-

less of whether the operation completed successfully or not, which requires ad-
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ditional logic to retry an operation if required. Threads require careful partitioning

of resources or synchronization on shared resources. In event-driven program-

ming, programs are broken down into fine-grained pieces of code, callbacks, or

event handlers, responsible for performing specific operations in response to I/O

events [37, 54, 140]. The event handlers can be called either in a continuously

running event loop or triggered via interrupts. Event-driven programming can re-

duce the challenges with concurrency and synchronization of thread-based pro-

gramming, while also achieving high performance. In Chapter 5, we explore

interrupt-driven GPU events, which enables any device in a heterogeneous system

to directly manage the execution of GPU tasks independently from the CPU.
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Chapter 3

Evaluating a Key-Value Store
Application on GPUs

This chapter performs an initial evaluation of a widely used key-value store dat-

acenter application, Memcached (Section 2.2), on discrete and integrated AMD

GPUs. GPUs have consistently proven to deliver positive results in scientific and

high-performance computing (HPC), as demonstrated by their use in several top

supercomputers [165, 166]. This chapter argues that the GPU’s highly-parallel

and efficient architecture also makes them strong candidates for non-HPC applica-

tions with ample parallelism as well. The family of applications considered in this

dissertation are network-based datacenter workloads. Many datacenter workloads

contain large amounts of thread-level or request-level parallelism [98]. This paral-

lelism stems from the fact that the server is required to process multiple different

network requests, potentially at high request rates. If the requests are independent,

they can be processed concurrently. However, at first glance these workloads may

not seem suitable to run on GPUs due to the existence of irregular control-flow and

memory access patterns, since the application does not dictate the type, ordering,

or rate of requests that arrive at the server. The main goal of this chapter is to

quantify and evaluate the potential for GPUs to accelerate such irregular applica-

tions. To this end, this chapter evaluates the discrepancies between a programmer’s

reasonable intuition on how an irregular application may perform on a GPU and

the actual achievable performance. This chapter then explores the challenges in
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porting a popular datacenter application, Memcached, to OpenCL and provides a

detailed analysis into Memcached’s behaviour on discrete and integrated GPUs.

To gain greater insight, this chapter also evaluates Memcached’s performance on a

cycle-accurate GPU simulator. On the integrated CPU+GPU system, we observe

up to 7.5× increase in throughput relative to a single CPU core when executing the

key-value look-up handler on the GPU. Section 3.4.1 discusses a multi-core CPU

comparison.

HPC applications are known to efficiently utilize the underlying GPU hardware

to achieve high performance [59]. As discussed in Section 2.1, high GPU perfor-

mance is possible with ample data-level parallelism to enable a large number of

threads to execute in parallel, structured control-flow to maximize the SIMD effi-

ciency of the GPU pipeline, and structured memory access patterns to maximize

the utilization of the GPU’s high memory bandwidth. Additionally, the time to

transfer application data to the GPU should either be short relative to the applica-

tion’s GPU processing time, or the application should be well structured to overlap

the communication of data with the computation for another GPU kernel. When

performing an initial analysis of an application to accelerate on a GPU, many pro-

grammers may look for similar characteristics to existing applications with proven

high performance on GPUs. This can lead a programmer to disregard applications

that appear to deviate from these characteristics, eliminating some applications

from consideration that actually have the potential to perform well on a GPU.

Datacenter (server) applications are a family of highly parallel and econom-

ically appealing applications that fall under this category of not appearing to be

strong candidates for GPU acceleration. Server applications represent a larger class

of applications than HPC, but one that is unstructured. For example, a web server is

responsible for receiving incoming network requests, processing the request, and

sending the response back out to the network. Assuming each network request

performs a similar task on different data, there may be large amounts of avail-

able request-level parallelism. We define request-level parallelism as the ability to

operate on multiple independent requests in parallel. However, the specific oper-

ations to perform may differ slightly between network request types or based on

the data within the network request. Additionally, the data access patterns may be

dependent on the data within the network request, which limits the ability to ex-

35



ploit memory coalescing on GPUs. For these reasons, it is challenging to quickly

determine how such an application would perform on a GPU.

We focus on Memcached (Section 2.2) as a representative example of a dat-

acenter application with high performance requirements. Memcached is a highly

memory-intensive application, with the main purpose of storing and retrieving data

objects in memory to service a network request. A typical Memcached server may

be responsible for handling hundreds of thousands to tens of millions of requests

per second (RPS). As a result, there may be a large number of Memcached requests

needing to be processed at a given time. Assuming Memcached’s requests are in-

dependent and that each request can be handled concurrently by a separate thread,

a reasonable expectation might be that each thread exhibits independent and irregu-

lar behaviour. Specifically, depending on the type of request (GET, SET, UPDATE,

DELETE), each request may perform a completely different set of operations, or

within the same type of request, different operations may be performed depending

on the data which is being operated on. Additionally, since the access patterns of

each request can not be known a priori, the data accessed in the request packet,

hash table, or corresponding memory slab can certainly not be expected to exhibit

high locality, leading to memory divergence. Furthermore, on a discrete GPU with

isolated memory spaces, special care must be taken to ensure that the CPU and

GPU maintain a coherent view of memory. For example, either the Memcached

data structures must be partitioned between the devices, such that only a single

device accesses each data structure, or potentially large data transfers are required

between the CPU and GPU memory on every kernel launch. As such, from an

initial evaluation of Memcached, a programmer may conclude that there is little

potential for any benefits from GPU acceleration.
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Figure 3.1: Control Flow Graph (CFG) from Memcached’s Jenkins hash
function.
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Performing a deeper analysis into Memcached’s code and runtime behaviour,

we find that its control flow and memory access patterns are indeed dependent on

the input data in the network requests. For example, Memcached’s hash function,

key comparison, and hash collision resolution technique may result in a differ-

ent number of iterations or different operations between requests depending on

the request data, potentially leading to branch divergence. Recall that SIMD effi-

ciency refers to the fraction of scalar GPU threads that actually execute together

in lockstep relative to the maximum number of threads capable of executing to-

gether (Section 2.1.8). Consider the control flow graph (CFG) corresponding to

Memcached’s key hash function (Jenkins Hash [86]), as shown in Figure 3.1. This

hash function contains multiple fine-grained branches and loops, which are com-

pletely dependent on the format and length of the key to be hashed. If each of these

branches is equally likely based on the input data, and each GPU thread is respon-

sible for hashing a different key, the threads may take different paths through the

CFG, resulting in low SIMD efficiency.

However, in most cases the probability of taking or not taking each branch

is not equal. For example, branches may be responsible for handling errors, un-

aligned memory accesses, or handling special cases, which occur relatively infre-

quently. Without evaluating the runtime behaviour of the application, especially

after tuning the code for the GPU’s SIMD architecture, it is challenging to know

the actual achievable SIMD efficiency. To this end, we perform an initial evalua-

tion, which compares an estimation of the SIMD efficiency of Memcached to the

actual achieved SIMD efficiency of Memcached on a GPU. The results are pre-

sented in Figure 3.2, where Actual is the actual SIMD efficiency and Expected is

the estimated SIMD efficiency if all code paths through the CFG are equally likely.

The actual SIMD efficiency was measured on the GPGPU-Sim GPU simulator af-

ter implementing Memcached in OpenCL (Section 3.4.2) and the estimated SIMD

efficiency is measured using a custom control-flow simulator (Section 3.2). On

average, Memcached’s actual SIMD efficiency is approximately 2.7× higher than

a naive assumption of equal branch probabilities in the code-path may suggest.

These results are explained in greater detail in Section 3.4.

The rest of this chapter is organized as follows: Section 3.1 describes how

Memcached was ported to the GPU, Section 3.2 presents the GPU control-flow
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Figure 3.2: Memcached SIMD efficiency: Expected vs. Actual.

simulator, CFG-Sim, Section 3.3 describes the methodology and environment

used to perform this study, Section 3.4 presents a characterization and evalua-

tion of Memcached on hardware and GPGPU-Sim, and Section 3.5 summarizes

this chapter.

3.1 Porting Memcached
This section describes the relevant implementation details of Memcached, design

decisions, and modifications made to Memcached to offload the read (GET) request

handler to the GPU. This section also describes the corresponding changes made

to the host (CPU) code to efficiently interact and communicate with the GPU, as

well as update entries in the hash table (SETs).

3.1.1 Offloading GET Requests

In our GPU implementation of Memcached, we focused on accelerating the read

requests on the GPU while leaving the write requests to be handled by the CPU.

Berezecki et al. [24] observe that read requests far outnumber write requests in

real-world scenarios running Memcached in Facebook. The large composition of

read requests in the total network traffic indicates high temporal locality, which is

a key component in achieving the most out of the caching tier. Since Memcached
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acts as a look-aside cache, write requests occur when a read request misses in the

cache. Berezecki et al. also conducted experiments showing that write requests

have negligible effects on read performance. From this, it is reasonable to assume

that the read requests will have the most significant impact on total performance,

and thus have the greatest benefit – in terms of overall system performance – from

being accelerated on the GPU. Note that by partitioning the application between the

CPU and GPU, special care must be taken to ensure that common data structures

accessed by both CPU and GPU are kept coherent.

There are multiple levels of computation required for the end-to-end (receive-

to-send) processing of a Memcached request. Before the user-level Memcached

application receives the packet, the network request is first received by the network

driver and processed by the operating system (OS). The OS processing consists of

buffer management, network protocol handling (e.g., TCP or UDP), and the deliv-

ery of the packet data to the corresponding user-level application. The user-level

Memcached application then decodes and performs the appropriate Memcached

operation. Finally, a new network packet is constructed to send the response back

to the initiator of the Memcached request through the OS and network driver. In

this chapter, we focus only on the specific user-level application processing re-

quired to handle the Memcached request.

To take advantage of the massive amounts of available parallelism provided

by the GPU, we exploit request-level parallelism in Memcached requests by as-

signing each GPU work item to process a single GET request. GET requests are

batched into groups of requests on the host (CPU), transferred to the device on a

kernel launch, and processed in parallel on the device (GPU). Batching requests

results in a trade-off between throughput and latency. Requests are queued un-

til a configurable number of requests has been batched together, which increases

the latency per-request. However, the GPU’s throughput-oriented architecture pro-

vides the potential to processes more requests in parallel within a given amount

of time than the CPU can process sequentially, increasing the request throughput.

However, this could have a significant impact on request latency under low traffic

loads to the servers. A simple solution is to add a timeout, such that no request

remains queued in a pending batch over a certain amount of time. This timeout

value could be statically configured or dynamically determined based on the cur-
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Figure 3.3: GPU GET Payload object. The original Memcached Connection
object contains a large amount of information about the current Mem-
cached connect, the requesting client network information, and the cur-
rent state of the Memcached request. The GPU Payload object contains
a much smaller subset of the relevant information required to process
the GET request on the GPU.

rent traffic rates.

For each GET request, the work item performs common key-value look-up

operations. These operations consist of computing the hash of the request’s key,

accessing the appropriate entry in the hash table using the resulting hash value,

and comparing the request’s key with the key – or multiple keys in the event of

hash collisions – residing at that hash table location. If the keys match, the value

corresponding to that key is returned to the requesting client. In this work, we

assume that the requests have already been directed to the correct Memcached

server, and thus the hash performed on the GPU corresponds to the second hash

mentioned in Section 2.2.

When Memcached receives a request from a client via the network, it first

creates a connection object that contains all information required to process any

requests during the lifetime of this connection. The client is then able to send
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requests through this connection to be handled by the Memcached server. These

connections contain significant overhead when considering the amount of infor-

mation required to process the actual Memcached request on the GPU, such as the

network/Memcached protocol used and client information. To reduce the amount

of data being sent to the GPU, we created a Memcached request payload data

object that contains a subset of the connection information required to process a

GET request, such as information about the search key and a pointer to the corre-

sponding item if found. The Memcached GET payload object is shown in Figure

3.3. The original Memcached connection object is 528 Bytes, whereas the GET

payload object is only 20 Bytes, which significantly reduces the amount of data to

transfer on each GET request batch. On each GET request, we allocate and assign

a payload object to the requesting connection and batch these payload objects to be

transferred to the GPU.

3.1.2 Memory Management

To manage the data allocated and accessed in Memcached, we implemented a dy-

namic memory manager on the host CPU. This memory manager is used to store

all of the data that needs to be visible to both the host and the device; it replaces

the malloc and free system calls originally used in Memcached for any shared data

structures with custom memory allocation calls. Depending on the system being

used (discrete or integrated GPU), the allocated buffers reside in different memory

regions on the host or device. On the discrete system, the buffers are allocated in

the regular host memory space and transferred to the device when necessary. On

the integrated AMD Fusion systems, however, these buffers are allocated in pinned

memory to take advantage of the zero-copy memory regions, where data can be

allocated on either the CPU or the GPU and accessed directly by both with varying

bandwidth and latencies, as described below.

There are two types of zero-copy memory spaces available: the host-visible

device memory and the device-visible host memory. As the names suggest, each

memory space is targeted towards a specific device, but accessible from both. In

either case, both memory spaces are allocated from pinned host memory, a subset

of the host’s memory space, at system boot time. Pinned memory locks pages
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in physical memory, preventing the pages from being swapped out. The device-

visible host memory is optimized for access by the host, whereas the host-visible

device memory is optimized for the device [9]. The device-visible host memory

is cacheable on the host, which enables the host to access the memory at its full

bandwidth. However, this limits the device’s memory bandwidth as all memory

requests must go through the host’s cache coherency protocol. The host-visible

device memory, on the other hand, is a subset of the pinned host memory that is

un-cacheable on the host. As this memory region is not bound by any coherency

protocols, it can be directly accessed by the device at its full bandwidth. However,

this limits the host’s bandwidth to access the shared memory. As our main goal is

to accelerate GET requests on the GPU, we used the host-visible device memory

to minimize the data access time on the GPU.

3.1.3 Separate CPU-GPU Address Space

At the time of this study, while current AMD fusion hardware shared a physical

memory region between the host and device, it did not share a common unified

address space. The implication of this is that the virtual addresses returned by

our custom mem alloc function on the host, corresponding to the physical location

in host-visible device memory, is not the same as the virtual address seen on the

device, even though it corresponds to the same physical location. Thus, complex

data structures consisting of many multiple-level pointers can not simply be de-

referenced on the device.

What is common between the host and device when allocating memory, how-

ever, is the offset of each memory object from the start of the allocated memory

region. For example, a memory object that is 32KB from the start of the memory

region seen on the host is also 32KB from the start of the memory region seen on

the device. Using this property, we pass the virtual address pointing to the start of

the memory region seen by the host as an argument to the Memcached kernel and

calculate the offset between this host memory buffer and the start of the memory

region seen by the device. A macro is used to subtract this offset from every mem-

ory de-reference on the device: translate(address,o f f set). The inverse operation

is applied to all pointers set on the device, inverse translate(gpu address,o f f set),
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such as the return value for the corresponding item pointer on a GET request. This

ensures that both the host and device access the same physical memory locations.

Gelado et al. [60] implement a similar technique by either ensuring that the vir-

tual pointers returned to the shared memory region are the same or by maintaining

address mappings between the host and device. Using this offset-based address

translation technique reduces the complexity for programmers by eliminating the

need to traverse and reconstruct data structures that contain multiple nested point-

ers on the device, such as linked lists or tree structures.

3.1.4 Read-only Data

With the exception of the Memcached data structures written to with the results of

the GET requests, such as the GET request payload objects, the majority of data

structures between successive kernel launches are read-only when processing GET

requests in Memcached. The AMD hardware evaluated in this chapter provides

various hardware components, such as read-only caches, that can significantly de-

crease data access time. Where possible, we allocate data in read-only buffers to

take advantage of the buffer’s high-bandwidth, low-latency memory accesses.

3.1.5 Memory Layout

Using our custom dynamic memory manager, we can allocate data in specific lay-

outs to take advantage of the GPU’s memory-coalescing property discussed in Sec-

tion 2.1.8. Two data structures that are guaranteed to be accessed by all work items

with known access patterns on the GPU are the payloads and the keys correspond-

ing to each payload. As introduced in Section 3.1.1, the payload contains a pointer

to the request key, the length of the key, and a pointer to the item being requested.

Each work item is assigned a single payload corresponding to a single GET re-

quest. Depending on the architecture, 32-bit or 64-bit, the size of each payload is

only 12 bytes or 20 bytes respectively. With a wavefront size of 64 work items and

a cache line size of 128 bytes, these 64 memory requests could be reduced to six

or ten memory requests respectively to retrieve the same amount of data. There-

fore, we ensure that the GET request payload objects are allocated contiguously in

memory by allocating them in a separate dedicated buffer.
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Figure 3.4: Contiguous memory layout.

To access the payloads, each work item requires only a pointer to the start of

the payload buffer and uses its global work item ID to access the appropriate index

in the payload array. This same technique is applied to the keys corresponding to

the payloads, such that when each work item dereferences the pointer to the key,

the keys will reside nearby in memory. Figure 3.4 shows how the connections,

payloads, and keys are allocated and laid out in the different memory buffers.

3.1.6 SETs and GETs

As described in Section 3.1.1, this work focusses on accelerating GET requests

on the GPU, while leaving SET requests to be processed on the CPU. This results

in a requirement for synchronization between the CPU and GPU to ensure coher-

ent accesses to the shared resources between the two devices. The purpose of this

chapter is to understand the potential for the GPU to accelerate workloads that

exhibit irregular behaviour. As such, evaluating the impacts of fine-grained syn-

chronization between accesses and updates to the shared data structures is beyond

the scope of this chapter and is considered in Chapter 4. Instead, we implement

a coarse-grained synchronization in which SETs and GETs are batched separately

and processed sequentially and independently. For example, as requests arrive at
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the GPU Memcached server, GET requests are inserted into a pending batch and

SET requests are processed immediately. As long as no GET request batch is

currently being processed on the GPU, SET requests are able to proceed without

requiring synchronization with the GPU. However, once a batch of GET requests is

launched on the GPU, all SET requests are blocked until the GET request batch has

completed processing on the GPU. This ensures that the data is not being updated

while a GET batch is being concurrently processed on the GPU.

However, this coarse-grained synchronization has two limitations: (1) unnec-

essary blocking of SET requests that may be independent of all concurrent GET

requests and (2) out-of-order execution of SET and GET requests. For (1), SET

requests may be able to tolerate longer latencies than GET requests, since the re-

questing application does not depend on the result of the SET to continue making

progress. For (2), Memcached has weak request ordering requirements. In the

baseline Memcached, requests may be handled by multiple different CPU threads.

Each thread acquires locks on shared resources, such as the hash table, prior to ac-

cessing or updating the resource. As such, it is possible for SET and GET requests

to be reordered in the baseline Memcached between the time when the request was

received at the server and when the request was processed, depending on which

thread acquires the lock first. Consequently, the client application cannot rely on a

strict ordering of Memcached requests. While our implementation does not break a

requirement on request ordering, it does increase the chance of reordering requests.

3.2 Control-Flow Simulator (CFG-Sim)
Along with evaluating the behavior of Memcached on GPUs, we are also interested

in understanding (1) how a programmer’s intuition about how an application might

perform on a GPU compares with how the application actually performs on a GPU,

and (2) what are the effects of branch probabilities relative to correlated branch

outcomes (described below) within GPU work items in a wavefront. To address

these questions, we look to analyzing an application’s control flow behavior.

We designed a stand-alone control-flow simulator, CFG-Sim, that simulates

the behavior of a wavefront through an application’s control-flow graph (CFG).

The CFG can be generated either from a CPU version or an existing GPU version
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of the application. Each branch in the application’s CFG is annotated with an

outcome probability. The branch probabilities can be set randomly, set based on

intuition about the program’s behavior, or set from actual branch probabilities

extracted from profiling the application. At each branch, the simulated active

work items generate a random number and compare it with the threshold outcome

probability at that branch to determine if the branch will be taken or not. A SIMT

stack (Section 2.1.8) handles tracking branch divergence, re-convergence, and

deciding which work items to execute at a given time. The overall SIMD efficiency

is measured for each iteration through the application’s CFG and averaged across

multiple iterations, as shown in Equation 3.1. In this equation, E(SIMDE f f ) is

the expected SIMD efficiency returned by CFG-Sim; N is the total number of

iterations to perform through the application’s CFG; CFj is the set of basic blocks

that were traversed by CFG-Sim on the jth iteration through the application’s

CFG; #BBi is the number of instructions in basic block i; ami is the number of

work items active at basic block i calculated by CFG-Sim; and finally WFsize is the

total number of work items in a wavefront.

E(SIMDE f f ) =
1
N

N

∑
j=1

∑i∈CFj(#BBi× ami
WFsize

)

∑i∈CFj #BBi
(3.1)

An estimate of the expected SIMD efficiency from CFG-Sim can be useful

when performing an initial analysis to decide whether an application may bene-

fit from GPU acceleration. Prior to writing any code for the GPU, a programmer

can gain better insight into the average SIMD efficiency estimated to result on the

hardware. CFG-Sim takes three input files: a DOT file [58] containing the infor-

mation required to generate the control-flow graph, a file containing the number of

instructions per basic block (specified in the DOT file format), and a file containing

the estimated outcome probabilities for each branch in the application.

However, the branch probabilities themselves may not be enough to accurately

simulate the SIMD efficiency of an application. Consider an application that is

already ported to run on a GPU. After profiling the execution, it is possible to have
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a SIMD efficiency of 100% with a branch outcome probability of 50% for every

branch. This occurs if every work item in a wavefront takes the same path through

the CFG, but alternates between different paths every execution. We refer to this

property where work items in a wavefront move through the CFG together as cor-

related branches. Correlated branches may occur because the application was pro-

grammed for the GPU to maximize SIMD efficiency or because of different phases

during the application’s execution. This correlation among branches is currently

not accounted for in CFG-Sim and is left to future work (Section 7.2.1). Despite

this, by extracting Memcached’s actual branch probabilities from a cycle accurate

GPGPU Simulator, GPGPU-Sim (described in Section 3.3), and using them as

input to CFG-Sim, we found that the estimated SIMD efficiency is within 1.3%

of the actual SIMD efficiency of Memcached measured by running the application

through GPGPU-Sim. One such application that requires modelling branch corre-

lation to accurately estimate the SIMD efficiency is Ray Tracer, which is discussed

in Section 3.4.2.

3.3 Experimental Methodology
This section describes the experimental methodology followed in this chapter.

3.3.1 Hardware and Simulation Frameworks

We performed experiments on three configurations of GPUs and accelerated pro-

cessing units (APUs): a high-performance discrete graphics card (AMD Radeon

HD 5870), a low-power AMD Fusion APU (Zacate E-350 [AMD Radeon HD

6310]), and a mid-to-high-end AMD Fusion APU (Llano A8-3850 [AMD Radeon

HD 6550D]). The terms APU and integrated GPU are used interchangeably. The

discrete GPU is connected to the host CPU via PCIe and has a physically sepa-

rate graphics memory from the CPU’s main memory. The integrated GPUs are

integrated on the same die as the host CPU and share a common memory. The dis-

crete GPU was chosen to show potential upper bounds on compute performance,

while the low-power AMD Fusion APU provides insight into the performance ca-

pabilities of such integrated systems with shared memory. The mid-to-high-end

AMD Fusion APU falls in the middle of these two systems, combining the higher
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Table 3.1: GPU hardware specifications.

Name
AMD
Radeon
HD 5870

Llano A8-
3850 (AMD
Radeon HD
6550D) AMD
Fusion

Zacate E-
350 (AMD
Radeon HD
6310) AMD
Fusion

Engine Speed (MHz) 850 600 492
# Compute Units (CU) 20 5 2

# Stream Cores 320 80 16
# Processing Elements 1,600 400 80

Peak Gflops (single-precision) 2,720 480 78.72
# of Vector Registers/CU 16,384 16,384 16,384

LDS Size/CU (kB) 32 32 32
Constant Cache / GPU (kB) 48 16 4

L1 Cache / CU (kB) 8 8 8
L2 Cache / GPU (kB) 512 128 64

DRAM Bandwidth (GB/sec) 153.6 29.9 17.1
DDR3 Memory Speed (MHz) 1,000 933 533

Table 3.2: CPU hardware specifications.

Name Llano A8-3850 Zacate E-350
# x86 Cores 4 2
CPU Clock 2.9 GHz 1.6 GHz

TDP 100W 18W
L2 $ / core 1MB 512 KB

compute performance with the benefits of the APU’s shared memory space. The

hardware specifications for these GPUs are outlined in Table 3.1. Table 3.2 pro-

vides additional information about the CPUs used in this study.

At the time of this study, the Linux drivers for the AMD Fusion system did not

support zero-copy buffers. To access the Windows AMD SDK and the required

Linux libraries for Memcached, we used Cygwin [28] to run Memcached on the

AMD Fusion systems. One issue with Cygwin is its inability to access all provided

GPU hardware counters. This significantly limited the amount and variety of data
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we were able to collect from Memcached on the hardware. To gain additional

information about Memcached’s behavior on a GPU, we profiled Memcached on

GPGPU-Sim [17], a cycle-accurate GPGPU Simulator.

Although the GPU architecture modeled by GPGPU-Sim differs from the phys-

ical hardware analyzed at the time this study was performed (Table 3.1) 1, such

as in its use of a VLIW unit, we do not believe that this is an issue because the

architecture resembles AMD’s future GPU architecture [74]. Furthermore, many

of the properties evaluated in this study, such as SIMD efficiency, memory diver-

gence, and cache sensitivity, are relevant to any GPU architecture with a SIMD

pipeline, data caches, and the ability to coalesce memory accesses. GPGPU-Sim

simulates Parallel Thread Execution (PTX) code, a pseudo-assembly intermediate

language used in NVIDIA GPUs. Table 3.3 presents the configurations used in

GPGPU-Sim.

Control-Flow Simulator

In the current version of the control-flow simulator (CFG-Sim), we assume that the

outcome of each work item’s branches are independent of any other work items

within the same wavefront. As such, we do not consider correlated branch out-

comes between work items in a wavefront. Additionally, loops are treated as reg-

ular branches, which can impact the estimated SIMD efficiency. For example, a

loop may be known to be taken 100 times before work items begin exiting the

loop. However, setting the branch probability to p( 1
100) does not result in the same

branch outcome distribution as having both a fixed and probabilistic portion to

loop branches. While CFG-Sim could be modified to include optimizations such

as loop branches, it would require additional information about the behaviour of

the application obtained through profiling or static analysis.

For a set of given branch probabilities, we ensure that the SIMD efficiency

results converge by averaging 100K iterations through the application’s control-

flow graph.

1GPGPU-Sim models NVIDIA-like GPUs whereas this study evaluates AMD GPUs.
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Table 3.3: GPGPU-Sim configuration.

Config Name Config Value
# Streaming Multiprocessors 30

Warp Size 32
SIMD Pipeline Width 8

Number of Threads / Core 1024
Number of Registers / Core 16384

Shared Memory / Core 16KB
Constant Cache Size / Core 8KB
Texture Cache Size / Core 32KB, 64B line, 16-way assoc.

Number of Memory Channels 8
L1 Data Cache 32KB, 128B line, 8-way assoc.

L2 Unified Cache 512k, 128B line, 8-way assoc.
Compute Core Clock 1300 MHz
Interconnect Clock 650 MHz

Memory Clock 800 MHz
DRAM request queue capacity 32

Memory Controller Out of Order (FR-FCFS)
Branch Divergence Method PDOM [172]

Warp Scheduling Policy Loose Round Robin
GDDR3 Memory Timing tCL=10 tRP=10 tRC=35

tRAS=25 tRCD=12 tRRD=8
Memory Channel BW 8 (Bytes/Cycle)

3.3.2 Assumptions and Known Limitations

Throughout this study, we assume requests are independent of each other. Thus,

all GET (read) operations will view the most up-to-date data in Memcached. As

discussed in Section 3.1.6, SET and GET requests may complete out-of-order

with higher probability than the baseline Memcached, due to the batching of GET

requests.

The size of memory accessible by the AMD GPUs and APUs evaluated in this

study is limited. On the APU, each zero-copy buffer can be a maximum of 64

MB, with a system total of 128 MB [9]. This poses various problems for memory-

intensive applications, such as Memcached, that require large amounts of memory
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to be effective. This problem would be eliminated with a larger region of pinned

memory available to the GPU and an appropriate interface to allocate and access

the additional memory. Indeed, the industry has addressed the limited memory

capacities available in previous graphics cards. For example, at the time this study

was performed, AMD had already announced at the 2011 AMD Fusion Developer

Summit (AFDS) that future AMD GPUs and APUs will support accessing CPU

virtual memory [42]. The current HSA specification [55] requires that compliant

HSA systems support access to shared system memory across devices through a

unified virtual address space. Current NVIDIA GPUs [131] also support unified

virtual memory, which enables transparent access for the same virtual address on

both the CPU and GPU, as well as virtual memory paging from CPU memory to

GPU memory.

Batching requests inherently increases the latency to process the requests. Of-

floading requests to the GPU in batches can help to reduce the total system-queuing

latency if the CPU throughput becomes the bottleneck when experiencing high

incoming request rates. Assuming the GPU can process requests with higher

throughput than the CPU, the GPU would be able to drain the pending request

queues faster than the CPU. While some applications may not be able to tolerate

the increased latency impact of batching large numbers of requests (as is done in

this study), we expect we could achieve many of the benefits while using smaller

batch sizes. Chapter 4 evaluates batching fewer requests at a time to reduce the

queuing latency, while launching multiple batches concurrently to maintain high

throughput.

We initially profiled Memcached to locate sections of code that contribute to

the majority of Memcached GET request processing and would benefit from run-

ning in parallel on the GPU. This revealed that a majority of execution time for

GET requests is actually spent in I/O and network stack processing. The key-value

lookup is the next-highest contributor to the overall execution time of Memcached.

Thus, in this chapter we focused our efforts on porting the key-value lookup han-

dler to the GPU. Chapter 4 evaluates offloading portions of the network stack to

the GPU as well.
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3.3.3 Validation and Metrics

To verify that the GPU version of Memcached returns the correct results, we first

process a batch of GET requests on the CPU using the baseline version of Mem-

cached, and then process the same batch of GET requests on the GPU. On comple-

tion of the GPU kernel, we compare the results from the CPU and GPU to ensure

the correct items were found.

The execution times on the CPU were recorded using a fine-grained time stamp

counter (TSC) that records the sequential look-up times for the batch of requests.

When timing the CPU, all data was allocated in a cacheable memory region. For

each GPU execution, we recorded the kernel execution times using the AMD APP

Profiler tool (v. 2.3). We also verified that the comparison with the TSC timer was

valid by timing the kernel execution time on the Llano A8-3850 system immedi-

ately before the kernel launch and immediately after the clFinish synchronization

function.

3.3.4 WikiData Workload

We simulated request traffic to our GPU Memcached server using a large input

file consisting of HTTP read and write requests. Specifically, we used portions of

Wikipedia workload traces [169], referred to as WikiData, to stimulate our applica-

tion. These workload traces were recorded by Wikipedia’s front-end proxy caches

and, in total, contain billions of HTTP requests.

Memcached’s front-end host code was modified to process the requests from

the WikiData trace files instead of processing incoming requests from the network.

The HTTP read and write requests are converted into Memcached GET and SET

requests respectively. A configurable number of requests are processed on the

CPU prior to offloading work to the GPU to set up the environment and to warm

up Memcached’s hash table and memory slabs. Once the setup phase completes,

SET requests are handled immediately on the host and GET requests are placed

into a buffer until the configurable number of GET requests have been received.

Once a GET request batch has been launched on the GPU, SET requests are stalled

until the GET request batch completes.
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3.4 Experimental Results
This section presents our experimental results evaluating Memcached on both in-

tegrated and discrete GPUs, and a software GPU simulator. We first present the

hardware results, then discuss the SIMD efficiency analysis using CFG-Sim, and

finally present an evaluation of Memcached on GPGPU-Sim.

3.4.1 Hardware Evaluation

Memcached was run on the three GPU configurations introduced in the previous

section, with the performance measured via hardware counters through AMD App

Profiler. Both the AMD Radeon HD 5870 and the Llano A8-3850 (AMD Radeon

6550D) are compared against a single Llano x86 CPU core, while the Zacate E-350

system was compared against a single Zacate x86 CPU core.

We also evaluated Memcached’s key-value look-up performance on a multi-

threaded CPU implementation (using Linux pthreads). As shown in Table 3.2, the

Llano and Zacate systems contain four and two cores respectively. In this exper-

iment, we evenly partitioned the GET request batch between one, two, and four

threads. Each thread performed the same key-value look-up operations on a dif-

ferent sub-batch of GET requests in parallel, and the time was measured for the

last thread to complete its portion of the requests. From this experiment, we found

that two threads had approximately the same throughput as a single thread, and

four threads reduced the performance relative to a single thread, even on the 4-core

Llano. As described in Section 3.3, this work was evaluated on Windows us-

ing Cygwin. Consequently, the lack of multi-threaded performance improvements

may be attributed to Cygwin’s pthread support. Additionally, Memcached’s CPU

implementation contains global locks, for example, to protect access to the hash

table entries and the global LRU queue for managing item evictions, which seri-

alize portions of the key-value look-up operation between GET requests, reducing

the potential for linear speed-ups with additional cores. For these reasons, our re-

sults in this Chapter compare the GPU performance against a single CPU thread,

which was the highest measured throughput on the CPU. An ideal multi-threaded

CPU performance can be estimated by multiplying the measured throughputs by

the number of cores on the corresponding system. However, as shown below, the

54



GPU is still able to outperform the estimated ideal CPU throughputs. Furthermore,

the next chapter (Section 4.4.2) evaluates end-to-end multi-threaded Memcached

CPU performance, which shows approximately a 2× increase in throughput when

increasing from one to four threads and a steep drop-off in throughput after adding

more threads than the number of cores. Hence, we believe that the GPU results

presented in this section are representative of the GPU’s ability to outperform the

CPU-version of Memcached.

Figure 3.5a presents the average speed-up, in terms of key-value look-ups

per second (LPS), for each GPU configuration normalized to the CPU’s execution

time. Because these results do not include any data transfer times, they explicitly

highlight the computational performance benefits when performing Memcached’s

key-value look-up on the GPU relative to the CPU. Even with the potential for ir-

regular control-flow and memory-access patterns present in Memcached, the AMD

Radeon HD 5870 is able to perform the key-value look-up on a batch of 38, 400

GET requests approximately 33× faster, the Llano A8-3850 7.5× faster, and the

Zacate E-350 4.5× faster than their CPU counterparts. We hypothesize that the

performance improvements are largely a result of the increased computational and

memory-level parallelism. As will be discussed further in Section 3.4.2, the SIMD

efficiency of our Memcached implementation is approximately 40%, which in-

dicates that a non-negligible number of the GET requests’ key-value lookup in-

structions are executing in parallel. Furthermore, because Memcached is a highly

memory-intensive application, the GPU’s high memory-level parallelism enables

multiple in-flight memory requests from different work items to be processed con-

currently. While CPU threads must wait for a memory request to return from the

cache or memory before continuing to operate on the requested data, the GPU can

simply switch to another wavefront to perform any computations or initiate addi-

tional memory requests.

However, the results in Figure 3.5a ignore any data transfer times, which need

to be considered when measuring the full end-to-end performance of a GPU appli-

cation, especially for a streaming application such as Memcached. Including the

data transfer times results in a large overall performance decrease on the discrete

system, as can be seen in Figure 3.5b. The execution time is measured from im-

mediately before the data transfer to the GPU is initiated to immediately after the
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Figure 3.5: Memcached speed-up vs. a single core CPU on the discrete and
integrated GPU architectures. Each batch of GET requests contained
38,400 requests/batch.

data transfer from the GPU is completed. Overlapping the data transfers with com-

putation from another batch of GET requests can reduce the overall data transfer
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overheads, however, the latency for the request batch is still negatively impacted.

Additionally, given the large request batch sizes (38,400 requests/batch), the in-

coming request rate would need to be high enough to have another batch of GET

requests available once the previous request batches have completed transferring

data and have started processing. The APUs have close to zero transfer time due to

the shared memory space. These data transfer times are small, but non-zero, due

to the mapping and un-mapping operations, which are required to ensure that the

data the GPU is accessing is coherent with any CPU updates. Although the total

compute power of the APUs is far less than the high-performance discrete AMD

Radeon GPU, the ability to fully eliminate the transfer of data allows these devices

to outperform the AMD Radeon HD 5870. Further optimizations to reduce the

amount of data transferred to and from the GPU for each GET request are required

to reclaim some of the computational performance benefits of the discrete GPUs.

This is discussed further in Chapter 4.

Request Batching

Whenever considering batch processing, there is always a trade-off between

throughput and latency. Specifically, as the number of queued requests increases,

the time taken to process these requests also increases. The reason is two-fold.

First, the requests sit in the batch queue for a longer period of time until processing

begins. Second, the GPU takes longer to process a larger batch. With more

requests to process concurrently, more active wavefronts are executing concur-

rently. This places higher contention on shared resources, such as the compute

units and the memory system. While this increases the total system throughput,

it also increases the per-work item processing latency. We measured the impact

on request throughput and latency on the AMD Radeon HD 5870 by varying the

batch request size and recording the average time taken to process that batch of

requests. Figure 3.6 presents these results normalized to an initial batch size of

1,024 requests, excluding data transfer times. Also shown in Figure 3.6a is a

0.5ms latency reference line. Berezecki et al. [24] indicate that a 1ms delay for a

complete Memcached request processing, including network transfer and network

processing time, is a reasonable maximum tolerable latency. The data shown

57



0

2

4

6

8

10

12

14

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

N
o

rm
a

li
ze

d
 L

a
te

n
cy

Requests / Batch

Normalized Latency Latency - 0.5ms

(a) Normalized latency.

0

1

2

3

4

5

6

7

8

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

Requests / Batch

Normalized Throughput

(b) Normalized throughput.

Figure 3.6: Throughput and latency while varying the request batch size on
the AMD Radeon HD 5870 (normalized to 1,024 requests/batch).
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Figure 3.7: Speed-up of AMD Radeon HD 5870 and Llano A8-3850 vs. the
Llano A8-3850 CPU at different request batch sizes.

in Figure 3.6 measures only the Memcached key-value lookup time. The large

spike in throughput from 1-5× in Figure 3.6b is caused by the minimal increase

in latency, approximately 1.3×, while increasing the number of requests/batch

by 7.5× (1,024 → 7,680). This results in the behavior shown by the throughput,

corresponding to the initial increase in latency, which begins to level off and

fluctuates between 6× and 7× the throughput at 1,024 requests per batch.

This behaviour suggests that the GPU is underutilized when the request batch

size is less than approximately 20,000. Assuming that a theoretical incoming re-

quest rate can be set to match any level of throughput, selecting a batch size of

approximately 8,000 requests per batch qualitatively provides the maximum ra-

tio of throughput to latency, whereas a batch size around 30,000 requests achieves

most of the peak measured throughput. As will be discussed in Chapter 4, multiple

smaller request batches can also be executed concurrently to improve the balance

of throughput and latency.

Another property of batch processing to consider is how the performance be-

tween the GPU and CPU varies when the request batch size is increased. These
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results are presented in Figure 3.7 for both the AMD Radeon HD 5870 and the

Llano A8-3850 when compared to a single CPU core on the Llano A8-3850 sys-

tem. Both architectures show a large initial increase in performance when the

batch size is increased from small values. Similar to the throughput behavior seen

in Figure 3.6b, the speed-up compared to the CPU begins to level out on both ar-

chitectures around 40,000 requests/batch. Again, these results are excluding data

transfer times. Including the data transfers results in the integrated Llano GPU

achieving higher overall performance relative to the CPU than the discrete Radeon

GPU.

Data Transfer

In applications with large amounts of data needing to be transferred to and from the

device, such as Memcached, transfer time can dominate the overall execution time

of the kernel. Figure 3.8 shows the contribution of the execution time and data

transfer times as a percentage of the overall execution time for each GPU when

operating on a GET request batch size of 23,040 requests/batch. We optimisti-
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cally selected the minimum amount of data that must be transferred to and from

the device: the requests to be processed and the results of the requests respectively.

Assuming cyclic 2 transfer of data, more than 98% of the overall execution time

is spent transferring data for the discrete AMD Radeon HD 5870. These values

were recorded assuming that none of the data could have been modified on the host

between successive kernel launches, thus ensuring all data in the device memory

is valid. Therefore, on kernel launch, the only data that must be transferred are the

requests themselves; upon completion of the kernel, all of the results must be trans-

ferred back to the host. A more realistic assumption is that an unknown amount

of data could have been modified between kernel launches, thus invalidating a por-

tion of the data on the device and requiring explicit tracking and transfers of the

modified data on every kernel launch. Tracking which data was modified could be

avoided by pessimistically transferring all of the data on every kernel launch, how-

ever, this cyclic memory transfer model that transfers data regardless of whether it

has been modified is sub-optimal.

Others [21, 104, 161, 168] have proposed solutions to this challenge (e.g., im-

plementing frameworks to automatically and acyclically transfer modified data to

the device or requiring programmer annotation of the code to specify memory re-

gions to be explicitly managed) to reduce the impact data transfers have on per-

formance. With the introduction of CPU-GPU architectures that share a physical

memory space, such as the AMD Fusion systems, this transfer time can be virtu-

ally eliminated. As can be seen in Figure 3.8, the majority of the overall execution

time for the Llano A8-3850 and Zacate E-350 systems is spent performing useful

work, rather than waiting for the data transfer to complete. Being able to reduce

the time required to transfer data, either by using an architecture with a unified

memory space or using a method to reduce the transfer overhead, is crucial when

porting an application requiring large data transfers to the GPU.

3.4.2 Simulation Evaluation

This section attempts to gain additional insight into the performance of Memcached

on a GPU using simulation frameworks. Unless otherwise stated, the data pre-

2Cyclic refers to transferring data before and after successive kernel launches, whereas acyclic
data transfer overlaps data transfer with the kernel execution [161]
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Figure 3.9: Example control-flow graph with an error handling branch from
B to K. Each basic block contains the basic block identifier and the
number of instructions in that basic block (Basic Block ID-# Instruc-
tions). All branches have a non-zero branch outcome probability except
for B to K, which is never taken.

sented in this section is either collected from CFG-Sim discussed in Section 3.2 or

the baseline GPGPU-Sim configuration presented in Section 3.3.
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SIMD Efficiency of Memcached

As previously discussed, in single-instruction, multiple-data (SIMD) architectures,

such as GPUs, groups of work items in a wavefront must execute instructions to-

gether in lock-step. If a work item branches away from the other work items in

its wavefront, the GPU executes the two sub-groups separately, requiring more cy-

cles than if they were executed together [9]. This reduces overall SIMD efficiency.

Combining Memcached’s complex control-flow graph, which contains multiple

nested conditional branches, with the level of uncertainty in branch outcomes, one

can reasonably expect Memcached to have poor SIMD efficiency, directly resulting

in poor performance on the GPU. Although pessimistic, an initial view of the sys-

tem might be that each branch outcome has an equal probability (50% not-taken

and 50% taken). In many applications, this might be an unreasonable assump-

tion; however, many of the branches in Memcached depend on input data, such

as the length of the request key, that can vary greatly between requests. Without

additional analysis, it is unclear to what extent these data dependent branches will

impact branch divergence and, hence, SIMD efficiency. Assuming equal branch

probability is marginally better than the worst case, where the thread groupings

deterministically split in half at each branch.

After performing further analysis of the application, such as manually inspect-

ing or profiling the application, certain branches may be reasoned to occur rarely

or never (e.g., error handling or dead code). These branches can be removed from

the analysis by forcing the work items to take a certain path (the path known to

be always taken), since their inclusion would negatively bias the expected SIMD

efficiency of the system. For example, consider the CFG in Figure 3.9 with a

similar structure identified within Memcached. In this example, each ellipse con-

tains the basic block identifier and the number of instructions in that basic block

(Basic Block-# Instructions). Also note that the branch from B to K may be some

error checking code, which should never, or rarely, occur during normal execution.

There are two main issues here. First if we assume equal branch probabilities for

all basic blocks, the estimated SIMD efficiency will be unnecessarily lower since

work items will never actually diverge at B. Second, when work items diverge at

A, their re-convergence point is set to the immediate post dominator (IPDOM) K,
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Figure 3.10: SIMD efficiency.

since this is the first basic block which all work items must execute. As a result,

work items that diverge at A or C will all execute J, a large basic block, sepa-

rately even though all work items will actually go through J, which further lowers

the SIMD efficiency. The first issue can be solved by forcing all branches known

to never be taken to have zero probability (see Augmented below), while the sec-

ond issues requires either dynamically identifying early re-convergence points or

removing the zero-branch from the CFG (left to future work).

Simulating the control-flow behavior of a single thread grouping with the con-

trol flow simulator (CFG-Sim) (Section 3.3), we can compare Memcached’s SIMD

efficiency with these initial views of how the application might behave on a GPU,

resulting in the data in Figure 3.10. This figure compares the overall SIMD effi-

ciency of Memcached’s actual execution (Act) with the pessimistic view that all

branches have equal outcome probabilities (Pes). In this experiment, there are 32

work items per wavefront. Each bin in the graph represents the fraction of total

program execution in which the specified number of scalar threads were concur-

rently executing. For Memcached (MC), the SIMD efficiency with Pes is much

lower than Act, where significantly more of the execution time contains only 1-4

work items in a wavefront.
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We then improve on this pessimistic view by optimizing away all branch paths

that are never taken during normal execution (Augmented - Aug) by setting the

branch probability to 0%, and compare the recorded SIMD efficiency with the ac-

tual execution. All other branches remain at equal branch probabilities. Although

there is an improvement, the SIMD efficiency of the actual execution of Mem-

cached still outperforms the estimated behavior.

Using the actual branch probabilities measured from GPGPU-Sim for Mem-

cached in CFG-Sim, instead of the equal branch probabilities, the estimated SIMD

efficiency from CFG-Sim is within 1.3% of the actual SIMD efficiency, which

highlights the potential for CFG-Sim to accurately estimate the SIMD efficiency.

We extend this analysis to applications known to perform well on the GPU,

such as Mummer (MUM) and Raytracer (RAY), and measure how these results

compare when similar assumptions are applied, which is also shown in Figure 3.10.

Although MUM exhibits a relatively low SIMD efficiency, GPUs tend to have more

memory bandwidth than CPUs, which can result in higher throughput on memory-

limited applications even in the presence of significant control flow-divergence.

This is a similar behaviour as measured in Memcached. However, the theoretical

results in RAY perform significantly worse than the actual results. This is caused

by high correlations between work items’ branch outcomes within a wavefront.

Although each branch outcome may have a relatively random probability, each

work item is biased by the results of the other work item within the group.

The main takeaway from this experiment is that while an application may con-

tain many data-dependent branches, which can lead to irregular control flow on a

GPU, further analysis of the application is required to understand the actual attain-

able SIMD efficiency on a GPU, since branch outcomes can be far from random

and branch outcomes may be correlated between work items.

Effect of Memcached on the Memory System

Memcached’s key-value retrieval algorithm places a significant amount of stress on

the memory system. Figure 3.11 shows the misses per 1,000 instructions (MPKI)

for Memcached with a variety of L1 data cache configurations ranging from a small

8KB, 8-way set associative cache to a large 1MB full associative cache. This data
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L1 data cache configurations and two idealized memory systems.

shows that Memcached has some exploitable locality and that the working set of

our simulated configuration fits in a 256KB cache. The remaining 10 MPKI are

caused by cold start misses.

Figure 3.12 shows the performance of Memcached on GPGPU-Sim with a
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number of L1 global data cache configurations and two variations of an idealized

memory system. Performance is presented as a percentage of peak IPC (when

every SIMD lane is active for every GPU cycle). Increasing the cache size results

in a continuous performance improvement up to 256KB, beyond which it levels

off. This result indicates that Memcached is a cache-sensitive workload. Further

investigation of the source code reveals that two instructions receive a significant

reduction in latency when cache size increases. These instructions are the loads

performed inside the key comparison loop which compares the input key and a key

found in the hashtable. This loop accesses memory sequentially, resulting in a high

cache hit rate when the cache is large enough to capture the working set.

The 1MB fully associative (FA) configuration suffers only from cold-start

misses. The No Memory Latency (No Mem Latency) data point models a system

in which requests can be processed in a single cycle, but each compute core

can send only one request per cycle to the global memory system. These two

data points enable us to measure the amount of touched-once data loaded by the

Memcached kernel. Since the No Mem Latency model places a very low penalty

on loading data into the cache, one cycle, the difference between these two data

points accounts for the speedup relative to a cache large enough to hold the entire

working set after incurring the cold-start load penalty. Increasing from no cache

to a cache that captures all the kernel’s locality takes the IPC from less than 1%

of the peak to 12%, and removing the cold-start misses achieves 21% of the peak

IPC. This suggests that Memcached contains a high fraction of touched-once

data. This was verified by measuring the number of accesses to each L1 cache

line prior to eviction in the 1M cache configuration. While the No Mem Latency

configuration removes the penalty for cache misses, a large number of memory

requests may cause contention in the memory system, resulting in performance

loss. The No Memory Stalls configuration sends memory requests though the

pipeline as fast as they are generated without any blocking. No Memory Stalls

results in an additional 12% increase in performance over the No Memory Latency

system. This result tells us that Memcached spends a large fraction of its execution

time with a backed-up queue of memory requests waiting to access the memory

system. If wavefronts do not stall on memory, then the overall performance is

largely limited by SIMD efficiency. The performance of the non-stalling memory
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Figure 3.13: Memory requests generated per instruction for each static PTX
instruction.

system is 33% of peak, while the measured SIMD efficiency of Memcached is

∼40%. This 7% discrepancy can be attributed to idle cycles when some cores take

longer than others to complete the kernel.

Figure 3.13 illustrates the amount of memory divergence in Memcached (using

AerialVision [13]). It presents the average number of global memory requests

generated for each static PTX assembly instruction. In our GPGPU-Sim baseline

configuration the maximum Y-value for each bar is 32 (all 32 lanes of the wavefront

generate a request) and the minimum is two (because requests are coalesced per

half-wavefront in GPGPU-Sim). A well-behaved GPU application will attempt to

minimize this number and limit the stress on the memory system. From this graph

we can see that many memory instructions do not fully coalesce their accesses into

two requests. The bulk of the program’s execution time is spent between PTX lines

157 and 253, where the instructions request between seven and 23 cache lines each

on average. Further analysis of the Memcached code revealed that the main reason

these instructions do not request closer to 32 lines is that Memcached’s SIMD

efficiency also drops during this phase, resulting in fewer active lanes, and hence

fewer possible memory requests to be coalesced on each memory instruction. As

a result, a relatively small amount of code repeatedly generates a large number of
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Figure 3.14: Performance of Memcached at various wavefront sizes (normal-
ized to a warp size of 8).

memory accesses, which backs up the memory-request queue, leading to decreases

in performance.

The preceding data indicates that the inclusion of an L1 data cache is critical to

the performance of Memcached. Processing more than one memory request per cy-

cle (e.g., through a multi-banked L1 data cache) would also improve performance

because it allows the backed-up memory-request queue to empty sooner.

Effect of Wavefront Size on Performance

Figure 3.14 shows the performance of our modified Memcached on the base-

line GPGPU-Sim simulator when varying wavefront lengths. The performance

is normalized to a wavefront length of eight. A smaller wavefront length limits

the amount of underutilized hardware resources when work items in the wavefront

diverge, however, a larger wavefront length improves the maximum achievable per-

formance as more instructions can execute per cycle and increases the number of

memory requests potentially able to be coalesced. This data shows that there is an

18% decrease in performance between a wavefront size of eight and 64. This indi-

cates that Memcached’s SIMD efficiency is a limiting factor even in the presence

of excessive memory stalls.
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3.5 Summary
This chapter presents an initial characterization and evaluation of Memcached on

both GPU hardware and GPU simulation frameworks. We identified many chal-

lenges with porting an application with irregular control-flow and memory access

behaviour, as well as large data requirements, to a GPU system. We presented our

solutions to address these challenges and mitigate their impact on performance,

such as request batching, specific data structure layouts in memory to maximize

memory coalescing, and reducing the CPU-GPU data transfer sizes. While this

chapter focusses on Memcached, we believe that the presented methodology of

batching user network requests for processing on a throughput-efficient device can

be generalized such that other server-type applications with ample request-level

parallelism could take advantage of this framework. We then presented an analysis

using a GPU control-flow simulator, CFG-Sim, and a cycle-accurate GPGPU sim-

ulator, GPGPU-Sim, to gain additional insight into the behavior of Memcached on

a GPU. From this analysis, we conclude that irregular applications, such as Mem-

cached, should not be immediately disregarded when considering porting them to a

GPU. Even though the SIMD efficiency may be lower than traditional GPU appli-

cations, we find that Memcached’s SIMD efficiency is approximately 2.7× higher

than a naive assumption of equal branch probabilities in the code-path may suggest.

This, coupled with the GPU’s high memory-level parallelism, enables Memcached

to achieve a sizeable speedup over the baseline CPU implementation. We observed

that the AMD Llano A8-3850 and Zacate E-350 integrated fusion GPUs outper-

formed their respective CPUs by factors of ∼7.5× and ∼4.5× respectively. We

also showed that the discrete GPU system was able to significantly outperform

the CPU when data transfers are ignored. However, when including data transfer

times, results are hindered by the data transfer overheads of the large Memcached

request batches.

In this chapter, we focussed solely on accelerating the key-value lookup portion

of Memcached on a GPU. While this is the largest contributor to the Memcached

user-level request processing, other portions of the full Memcached request pro-

cessing, such as the network processing overheads and data movement, contribute

to the majority of the end-to-end processing time. In the next chapter, we address
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these issues by enabling the direct communication of Memcached data between the

network interface and GPU, and offloading the network processing to the GPU.
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Chapter 4

Memcached GPU

The previous chapter (Chapter 3) evaluated the potential for accelerating irregular

datacenter-based applications, such as Memcached, on contemporary integrated

and discrete GPUs. However, Chapter 3 focussed specifically on accelerating

Memcached’s key-value look-up on the GPU, with all of the other required net-

working and Memcached request processing remaining on the CPU. While the

key-value look-up accounts for the core operations and the majority of user-space

processing time for a Memcached request, when considering all of the operations

required for the end-to-end network request processing, the key-value look-up re-

sults in a relatively small fraction of the overall processing. This is highlighted in

Figure 4.1 and Figure 4.2, which present a fine-grained breakdown of the total

Memcached processing time for a single GET request, including Memcached op-

erations and Linux system calls, and a coarse-grained breakdown of Memcached

versus Linux kernel processing time, including Linux network processing, respec-

tively. The execution breakdown was measured for a single request using Intel

VTune [80]. As a result, some of the Linux kernel overheads that may be amor-

tized over multiple network requests are not captured in this analysis. Figure 4.1

shows the portions of the GET request processing that was accelerated in Chapter

3, indicated by the red boxes, which contribute to the majority of the user-space

processing. However, as can be seen in Figure 4.2, the overall majority of pro-

cessing time for a single GET request is spent in the Linux Kernel (e.g., Linux

network stack) compared to the actual user-space Memcached processing (∼10%).
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Figure 4.1: Breakdown of the baseline Memcached request processing time
for a single GET request on the CPU.

Furthermore, a large portion of the Memcached user-space processing is also spent

parsing the Memcached request and building the response packets. This chapter

explores offloading the complete end-to-end processing for Memcached requests

to the GPU, including the network packet processing.

To this end, we implement and evaluate an end-to-end version Memcached on

commodity GPU and Ethernet hardware, MemcachedGPU. Memcached is a scale-

out workload, typically partitioned across multiple server nodes. In this Chapter,

we focus on using the GPU to scale-up the throughput of an individual server node.

We exploit request-level parallelism through batching to process multiple concur-

rent requests on the massively parallel GPU architecture, and task-level parallelism

within a single request to improve request latency. While the previous chapter and

other works have evaluated batch processing of network requests on GPUs, such
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Figure 4.2: End-to-end breakdown of user-space and Linux Kernel process-
ing for a single GET request on the CPU.

as HTTP [3], or database queries [18, 179], they focus solely on the application

processing, which depending on the application, can be a small subset of the total

end-to-end request processing. In contrast, this chapter describes the design and

implementation of a complete software GPU network offload management frame-

work, GNoM 1, that incorporates UDP network processing on the GPU in-line

with the application processing (Figure 4.3). GNoM provides a software layer for

efficient management of GPU tasks and network traffic communication directly

between the network interface (NIC) and GPU.

This is the first work to perform all of the Memcached read request processing

and UDP network processing on the GPU. We address many of the challenges as-

1Code for GNoM and MemcachedGPU is available at https://github.com/tayler-
hetherington/MemcachedGPU.
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sociated with a full system network service implementation on heterogeneous sys-

tems, such as efficient data partitioning, data communication, and synchronization.

Many of the core Memcached data structures are modified to improve scalability

and efficiency, and are partitioned between the CPU and GPU to maximize perfor-

mance and data storage. This requires synchronization mechanisms to maintain a

consistent view of the application’s data. The techniques presented in this chap-

ter can be generalized to other network services that require both CPU and GPU

processing on shared data structures.

This chapter also tackles the challenges with achieving low-latency network

processing on throughput-oriented accelerators. GPUs provide high throughput

by running thousands of scalar threads in parallel on many small cores. GNoM

achieves low latency by constructing fine-grained batches, such as 512 requests,

and launching multiple batches concurrently on the GPU through multiple paral-

lel hardware communication channels. Compared to the previous chapter, which

evaluated batch sizes of tens of thousands of requests, the small batch sizes here

minimize batching delay and processing latency. At 10 Gbps with the smallest

Memcached request size (96 bytes), the smaller batches result in requests being

launched on the GPU every ∼40µs, keeping the GPU resources occupied to im-

prove throughput while reducing the average request batching delay to under 20µs.

This chapter is organized as follows: Section 4.1 presents GNoM, a software

framework for UDP network and application processing on GPUs; Section 4.2 de-

scribes the design of MemcachedGPU, an accelerated end-to-end key-value store,

which leverages GNoM to efficiently run on a GPU; Section 4.3 presents the ex-

perimental methodology in this chapter; Section 4.4 evaluates the feasibility of

achieving low-latency, 10 Gbit line-rate processing at all request sizes on com-

modity Ethernet and throughput-oriented GPU hardware; Section 4.4.4 explores

the potential for workload consolidation on GPUs running on servers in a data-

center during varying client demands, while maintaining a level of quality of ser-

vice (QoS) for a GPU networking application; and finally Section 4.4.6 compares

MemcachedGPU against prior Memcached implementations.
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4.1 GPU Network Offload Manager (GNoM)
GNoM is a CPU-GPU software framework that enables high-throughput and low-

latency processing of (UDP) network packets on the GPU. This section addresses

some of the challenges with achieving this goal and presents the software architec-

ture of GNoM that facilitated the design and implementation of MemcachedGPU.

While we focus on accelerating Memcached using the GNoM framework, we be-

lieve that many parts of the design, such as the efficient packet data movement

and GPU task management, can be generalized to support other applications in the

domain of high-throughput, UDP request/response-type applications.

4.1.1 Request Batching

Request batching in GNoM is done per request type (GET, SET, UPDATE,

DELETE) to reduce control flow divergence among GPU threads. While intra-

request control flow divergence still exists (as discussed in Chapter 3), the

high-level operations within each request type are the same (e.g., hashing the

request key or accessing the hashtable). The previous chapter evaluated large batch

sizes (e.g., 30K+ requests/batch) to maximize the GPU’s utilization and request

throughput. However, large batch sizes negatively impact request latency, since

requests will be queued longer and per-request processing will be longer. Smaller

batch sizes minimize batching latency, however, increase the GPU kernel launch

overhead and lower GPU resource utilization, which reduces overall throughput.

In this chapter, we evaluate the use of smaller batch sizes, but overlap multiple

such smaller batches to reduce the impact on throughput. We empirically find

that 512 requests per batch provides a good balance of throughput and latency

(Section 4.4.3). As discussed in Section 2.1.2, NVIDIA GPUs support up to 32

concurrently running kernels via Hyper-Q. Assuming that the GPU has enough

resources to support all 32 GNoM kernels, a batch size of 512 requests enables

16K requests to be processed concurrently.

While MemcachedGPU’s main focus is in accelerating a single request type

for batching, GET requests, workloads with many different request types could

batch requests at finer granularities. For example, multiple smaller batches could

be constructed at the warp-level of 32 requests and launched together on the GPU
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Figure 4.3: GNoM packet flow and main CUDA kernel. The figure contains
the three main components, the NIC, CPU, and GPU, and the corre-
sponding GNoM software frameworks that run on each device. The
solid black arrows represent data flow, the dashed black errors repre-
sent metadata flow (e.g., interrupts, packet pointers), the double black
arrows represent packet data and packet metadata, the solid grey arrows
represent GPU thread control flow, and the dashed grey lines represent
GPU synchronization instructions.
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to perform different tasks [22] in parallel. MemcachedGPU does support other

Memcached request types, such as SET UPDATE, and DELETE, however, the

current version implements these requests in individual batches of a single warp.

Batching and accelerating these requests types are left to future work.

4.1.2 Software Architecture

GNoM is composed of two main software frameworks that cooperate to balance

throughput and latency for network services on GPUs: GNoM-host (CPU) and

GNoM-dev (GPU). At a high-level, GNoM-host is responsible for interacting with

the NIC, performing any pre/post-GPU data processing, and for GPU task manage-

ment. GNoM-dev (GPU) is responsible for the main UDP packet and application-

level processing. Figure 4.3 presents the GNoM software architecture, along with

the interactions between the NIC, CPU, and GPU in GNoM, as well as the main

CUDA kernel for GNoM-dev. RX (receive) packets are DMA-ed directly to the

GPU’s global memory using GPUDirect (Section 2.1.2). Only metadata describ-

ing the request batch is sent to the CPU. This metadata is described further below.

We focus on accelerating the RX path in GNoM. While GNoM can implement a

similar TX (transmit) path using GPUDirect, MemcachedGPU uses a third party

CPU Linux network bypass service, PF RING [125], to accelerate the TX path

on the CPU. This decision was driven by the design of MemcachedGPU in which

the main data structures used to populate the response packets are stored in CPU

memory (Section 4.2). This design decision increases the total amount of storage

available for Memcached, which is important for the effectiveness of a Memcached

server (Section 4.2.2). However, this also requires CPU post processing, which de-

creases the total system energy-efficiency (Section 4.4).

The rest of this section describes GNoM-host and GNoM-dev in detail.

GNoM-host

GNoM-host provides task management and I/O support for the GPU. GNoM-host

is required because current GPUs cannot directly receive control information or

interrupts from other third party devices in a heterogeneous system through the

standard CUDA interface. We evaluate this limitation further in Chapter 5. Other
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Figure 4.4: Software architecture for GNoM-host (CPU).

work has explored the reverse direction of GPUs communicating to third party

devices, for example, by having the GPU write to the doorbell register on a NIC

[183] to indicate when data is available to send. However, on current systems, third

party devices must go through the GPU driver to initiate work on the GPU, which

requires assistance from the CPU. A workaround for this is to use persistent GPU

threads, which are described in Section 2.1.7. For GNoM, this limitation restricts

the NIC from being able to directly initiate tasks on the GPU, even though the

packet data is already in GPU memory. As a result, the CPU acts as a middleman

between the NIC and GPU. GNoM-host is responsible for efficiently managing

metadata movement between the NIC and GPU, managing tasks on the GPU, and
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performing any post-processing tasks required prior to sending response packets.

As described above, all packet data is directly copied to the GPU memory from the

NIC. To accomplish these tasks, GNoM-host is composed of three software com-

ponents: a modified Intel IXGBE network driver (v3.18.7), GNoM-ND, a custom

Linux kernel module, GNoM-KM, and a user-level software framework, GNoM-

user, which are described below. Figure 4.4 highlights the interaction between

these three components. In the following sections, any reference to # refers to

Figure 4.4.

GNoM-KM and GNoM-ND

GNoM-KM is a custom Linux kernel module, which provides an interface between

the NIC driver (GNoM-ND) and user-space application (GNoM-user). GNoM-

KM includes hooks for GNoM-user to communicate indirectly with the NIC via

GNoM-ND, such as configuring the NIC for use with GNoM, retrieving new request

batches, and recycling completed batches of request buffers to the NIC. Multiple

steps are required to initialize and configure GNoM.

GNoM-KM first allocates pinned, un-pageable GPU memory using GPUDi-

rect to store incoming RX packets, referred to in this work as GPU RX Buffers

(GRXB). A total of 220MB is allocated for the GRXBs, partitioned into 32 - 2KB

buffers per 64KB GPU page. 220MB is the maximum amount of pinnable GPU

memory one can allocate for GPUDirect on the NVIDIA Tesla K20c at the time this

study was performed. However, future NVIDIA GPUs (starting from the NVIDIA

K40) increased the amount of pinnable GPU memory that can be access across the

PCIe to 16GB [183]. The limited pinnable memory on the GPUs evaluated in this

study reduces the peak obtainable throughput, which is discussed further below.

Evaluating GNoM on newer GPUs with increased support for RDMA-accessible

memory is left to future work. GNoM-KM allocates the GRXBs and registers them

with GNoM-ND. The GRXBs are maintained in a circular queue in GNoM-ND 8

and can be in one of three states: free, registered, or busy. Free buffers are not allo-

cated to either device (NIC or GPU) and are waiting to be registered with the NIC.

Registered buffers are registered with the NIC, waiting for a new RX packet to fill

the buffer. Busy buffers contain a valid RX packet and are either waiting or actively
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being processed on the GPU. GNoM-KM also allocates a secondary circular buffer

2 for storing batches of GRXBs which have been populated by GNoM-ND, but

not yet consumed by GNoM-user (described in more detail below).

The NIC is then configured in GNoM-ND. The NIC evaluated in this study (In-

tel 82599 10GbE) contains multiple hardware RX queues and supports hardware

packet filtering and receive side scaling (RSS) [67]. RSS enables RX hardware

queues to be mapped to different CPU processors such that incoming packets can

be distributed across processors to increase performance. The NIC can apply a

hardware packet filter to steer packets to the different RX queues. We make use of

this feature by assigning one of the RX hardware queues to be a GPU queue. In

a multi-GPU system, multiple GPU packet filters could be installed to distribute

packets across GPUs. GNoM-ND installs a hardware packet filter for a range of

UDP ports to be processed by the GPU, such that any packet that matches the filter

is directed to the GPU RX queue. GNoM-ND ensures that the GRXBs allocated by

GNoM-KM are only registered with the GPU RX queue, which enables packet data

to flow directly from the NIC to the GPU’s memory. Another benefit of this orga-

nization is that all other network traffic not destined for the GPU is steered towards

the non-GPU RX queues, which flows through the baseline Linux networking stack

on the CPU.

Similar to the baseline Linux networking stack, GNoM uses Linux NAPI to

mitigate the impact of high interrupt rates by scheduling a polling routine to service

the received packets. As the packet rate increases, and consequently the rate of

interrupts from the NIC increases, GNoM-ND disables any further interrupts for

received packets and schedules a polling routine. At a later time, the polling routine

is run, which queries the NIC for a specified number of packets to service. If there

are fewer packets than this threshold, the polling routine is completed. Otherwise,

the polling routine is rescheduled to service the remaining packets.

To reduce memory copies for packet data, the GRXBs hold the packets

throughout their lifetime on the server, recycling them to the NIC for new packets

only when the full processing is complete. This differs from the baseline Linux

network driver flow, which recycles the RX buffers immediately to the NIC after

copying the packets into Linux SKBs for further processing in the Linux kernel.

In this case, the GRXBs acts as both the RX buffers and the Linux SKBs. As such,
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GNoM requires significantly more pinned memory than the baseline network flow

to ensure that a GRXB is available to store incoming packets. In contrast, the

baseline Linux network driver flow can have small amount of pinned memory for

the RX buffers and a large amount of pageable memory for the Linux SKBs.

A packet drop occurs in GNoM when GRXBs are not recycled quickly enough

to accommodate newly received packets. The time to recycle packets is directly

impacted by the time to process the packet on the CPU and GPU. As as result, along

with increasing the request throughput in GNoM, we must also aim to minimize

the request processing latency such that we always have a free GRXB for a new

packet. If more GRXBs cannot be allocated, then the client’s packet send rate

must be reduced accordingly to avoid dropping packets on the GPU server. We

evaluate the improvement in system throughput when the number of GRXBs can

be arbitrarily increased through an offline study, where packets are read directly

from system memory instead of from the network (Section 4.4.5).

GNoM-ND has two main responsibilities when receiving new packets from the

network. First, GNoM-ND DMAs the incoming packets to the GRXBs directly in

GPU memory, indicated by the solid black RX arrow from the NIC to the GPU

in Figure 4.3 (labelled RX GPUDirect). Second, GNoM-ND constructs metadata

describing the batch of GPU packets 1 and passes the batch metadata to GNoM-

KM once a batch is fully populated and ready for GPU processing 2 . The GRXB

batch is stored in a circular queue in GNoM-KM. If a GRXB batch is not yet ready

in GNoM-KM when a GNoM-user thread issues a read request for a new batch

of GRXBs, the thread is blocked. When GNoM-ND transfers the GRXB batch to

GNoM-KM, any waiting threads are notified, which resumes blocked threads to

consume the new batch of packets. The GRXB batch metadata is then copied from

kernel-space to user-space 3 and a batch ID is stored in GNoM-KM to perform a

sanity check when the corresponding batch is recycled.

We found that the NIC populates the GRXBs in the order that they were reg-

istered to the NIC. As such, the batch metadata only requires a pointer to the first

packet (GRXB) and the total number of packets in the batch to identify all packets

in the batch. Note that this requires all GRXBs to have the same size. With this op-

timization, the amount of data needing to be transferred to GNoM-user and across

the PCIe to the GPU is reduced from 4KB (512 packets, 8 bytes per GRXB pointer)
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to 12B (8 bytes for the first GRXB pointer and 4 bytes for the packet counter 2).

Once the packets have completed processing on the GPU and CPU, the GRXBs

must be recycled back to the NIC to be able to receive new packets. GNoM-KM

provides an interface for the GNoM-user threads to recycle GRXBs to GNoM-ND

6 . GNoM-KM performs a sanity check 7 to ensure that the GRXB batch is valid

and then GNoM-ND marks the GRXBs as free prior to registering them back with

the NIC 8 .

GNoM-User

GNoM-user consists of pre-processing (GNoM-pre) and post-processing (GNoM-

post) user-level threads (See Figure 4.3 and Figure 4.4). GNoM-pre retrieves

request batch metadata from GNoM-KM 3 , performs application specific mem-

ory copies to the GPU, launches CUDA kernels that perform the network service

processing on the batch of requests, and constructs CUDA events to detect when

the GPU processing completes 4 . For MemcachedGPU, GNoM-pre transfers the

GRXB metadata describing the current batch (pointer to the first GRXB and the

number of packets in this batch), a timestamp for this batch, and a pointer to the

GPU memory to store the response packets. GNoM uses CUDA streams to overlap

processing of multiple small batches to provide a better trade-off between packet

latency and throughput.

GNoM-post 5 polls CUDA events waiting for the GPU network service pro-

cessing to complete, populates the response packets with application specific data,

and transmits the response packets using PF RING. For MemcachedGPU, this con-

sists of copying the item’s value, corresponding to the Memcached key in the origi-

nal GET request, from the Memcached memory slabs in CPU memory to the TXBs

(PF RING transmit buffers) in CPU memory for each packet in the batch. The

PF RING buffers are then sent out the NIC. Finally, GNoM-post recycles the now

free GRXBs back to GNoM-ND for future RX packets 6 . As will be discussed in

Section 4.4.3, the performance of GNoM is highly dependent on the rate at which

GNoM-post threads are able to complete the post-processing tasks and recycle the

GRXBs. We empirically find that four GNoM-post threads are required to achieve

2While a 4 byte counter is unnecessary given that the batch size is 512 packets, there is little
performance benefits when transferring small data sizes across the PCIe bus.
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10 GbE line-rate throughput with the smallest Memcached packet sizes. However,

the polling nature of GNoM-post threads negatively impacts energy-efficiency.

Non-GPUDirect (NGD)

GPUDirect is currently only supported on the high-performance NVIDIA Tesla

and Quadro GPUs. As previously discussed, GPUDirect minimizes the amount

of data which first needs to be copied to CPU memory prior to being copied to

the GPU memory by directly transferring packet data to GPU memory from the

NIC. To evaluate MemcachedGPU on lower power, lower cost GPUs, we also im-

plemented a non-GPUDirect (NGD) framework. NGD uses PF RING [125] to

receive and batch Memcached packets in host memory before copying the request

batches to the GPU. NGD uses the same GNoM-user and GNoM-dev framework;

however, GNoM-KM and GNoM-ND are replaced by PF RING. Section 4.4.3

evaluates NGD on the NVIDIA Tesla K20c and GTX 750Ti GPUs.

GNoM-dev

The lower portion of Figure 4.3 illustrates the GNoM CUDA kernel for UDP

packet and network service processing (e.g., MemcachedGPU GET request pro-

cessing). Once a network packet has been parsed (UDP processing stage), the

network service can operate in parallel with the response packet generation since

they are partially independent tasks. Similar to Singe [22], we make use of warp

specialization via conditional operators on warp IDs to perform multiple different

independent, but related tasks on different warps within the same thread block. In

GNoM, the number of GPU threads launched per packet is configurable (Mem-

cachedGPU uses two threads). GNoM-dev leverages additional helper threads to

perform parallel tasks related to a single network service request, exploiting both

packet level and task level parallelism to improve response latency and throughput.

GNoM-dev groups warps into main and helper warps. Main warps perform

the network service processing (e.g., Memcached GET request processing) while

helper warps perform the UDP processing and response packet header construc-

tion. The main and helper warps also cooperatively load RX data and store TX

data (e.g., response packet headers and any application specific data, such as point-
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ers to Memcached items in CPU memory) between shared and global memory

efficiently through coalesced memory accesses. This requires CUDA synchroniza-

tion barriers ( syncthreads) to ensure that the main and helper warps maintain a

consistent view of the packet data in shared memory. The UDP processing stage

verifies that the packet is for the network service and verifies the IP checksum.

While most of the response packet header can be constructed in parallel with the

network service processing, the packet lengths and IP checksum are updated after

to include any application dependent values. For example, the length of the Mem-

cached item value is not known until after the Memcached hash table has been ac-

cessed and the corresponding entry is retrieved (network service processing stage).

After synchronizing, all warps cooperatively update the response packets with any

application dependent data and then proceed to copy the response packet data and

any application specific data (e.g., pointers to Memcached items in CPU memory)

from shared memory to global memory to be processed by the GNoM-post threads

on the CPU.

4.2 MemcachedGPU
This section presents the design of MemcachedGPU and discusses the modifica-

tions required to achieve low latency and high throughput processing on the GPU.

4.2.1 Memcached and Data Structures

As previously mentioned, in typical Memcached deployments [124], GET requests

comprise a large fraction of traffic when hit-rates are high (e.g., 99.8% for Face-

book’s USR pool [16]). Hence in MemcachedGPU, we focus on accelerating

Memcached GET requests and leave the majority of SET request processing on

the CPU.

Memcached data structures accessed by both GET and SET requests include

the hash table to store pointers to Memcached items, memory slabs to store the

Memcached items and values, and a least-recently-used (LRU) queue for selecting

key-value pairs to evict from the hash table when Memcached runs out of mem-

ory on a SET. Memcached keys can be an order of magnitude smaller than value

sizes (e.g., 31B versus 270B for Facebook’s APP pool [16]), placing larger storage
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requirements on the Memcached item values.

These data structures need to be efficiently partitioned between the CPU and

GPU due to smaller GPU DRAM capacity versus CPUs found on typical Mem-

cached deployments and to ensure high performance and scalability. In Mem-

cachedGPU, we place the hash table containing keys and item pointers in GPU

memory, while the Memcached item values stored in the memory slabs remain

in CPU memory. This partitioning ensures that the majority of data structures

accessed for GET request processing are stored in GPU memory, which helps to

minimize request processing latency. This partitioning is highlighted in Figure 4.5.
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GET Requests

At a high level, GET requests perform a look-up in a hash table and return the cor-

responding Memcached item if found. MemcachedGPU performs the main GET

request operations on the GPU. This includes parsing the GET request, extracting

the key from the GET request packet, hashing the key, and accessing the hash table

to retrieve the corresponding item pointer. Aside from the item values, all of the

Memcached data structures accessed by GET requests are stored in GPU global

memory. MemcachedGPU uses the same Bob Jenkin’s lookup3 hash function [86]

included in the baseline Memcached to hash the key. GET requests completely by-

pass the CPU and access the hash table on the GPU as described in Section 4.2.2.

Each GET request is handled by a separate GPU thread, resulting in memory di-

vergence on almost every hash table access. This is because each request should,

based on the efficacy of the hashing function, be hashed to different parts of the

hash table. However, the small number of active GPU threads and the GPU’s

high degree of memory-level parallelism mitigates the impact of memory diver-

gence on performance. As such, multiple memory requests can be in-flight and

processed concurrently. Additionally, when possible, GNoM stores packet data in

GPU shared memory, which improves performance. After the GPU processing is

complete, GNoM-post receives a list of Memcached response packet headers and

corresponding item value pointers for each GET request (assuming the GET re-

quest hit in the hash table). Finally, GNoM-post copies the item value for each

packet in the batch from CPU memory into a response packet (TXB) to be sent

across the network.

SET Requests

While the main focus of MemcachedGPU is on accelerating GET requests, SET

requests must also interact with the GPU to update the hash table. SET requests

require special attention to ensure consistency between CPU and GPU Memcached

data structures. In MemcachedGPU, SET requests follow the standard Memcached

flow over TCP through the Linux network stack and Memcached code on the CPU.

They update the hash table with the new or updated entry by launching a simple

SET request handler on the GPU.
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SET requests first allocate the item data in the Memcached memory slabs in

CPU memory and then update the GPU hash table. This ordering ensures that

subsequent GET requests are guaranteed to find valid CPU item pointers in the

GPU hash table – a GET request will only encounter a entry in the hash table

which holds a valid item stored in CPU memory. Another consequence of this

ordering is that both SET and UPDATE requests are treated the same since the hash

table has not been probed for a hit before allocating the new Memcached item. An

UPDATE request simply acts as a SET that evicts and replaces the previous item

with the new item. As such, the previous item is freed from CPU memory if the

SET request returns that an existing entry corresponding to this SET request’s key

was found in the hash table.

SET requests update the GPU hash table entries, introducing a race condition

between GET requests and other SET requests. Section 4.2.2 describes a GPU

locking mechanism to ensure exclusive access for SET requests, while maintain-

ing shared access for GET requests. As GET requests typically dominate request

distributions, we have used a simple implementation in which each SET request

is launched as a separate kernel and processed by a single warp. Aside from the

usage of the TCP protocol, there is no fundamental reason why SET requests could

not follow a similar flow as the GET requests in the GNoM framework. At a mini-

mum, SET requests can be batched on the CPU (after flowing through the standard

Linux protocol) and processed concurrently on the GPU. Accelerating SET re-

quests through batch processing, potentially requiring a reliable network protocol,

is left to future work.

Additionally, because SET requests and GET requests are handled by separate

CPU threads, another race condition exists when a GET request attempts to access

a Memcached item’s value in CPU memory concurrently with a SET request. Sec-

tion 4.2.3 addresses this race condition between dependent SET and GET requests.

4.2.2 Hash Table

This section presents the modifications to the baseline Memcached hash table to

enable low-latency and high-throughput processing on the GPU while minimizing

the impact on the hash table hit rate.

88



Hash Table Design

The baseline Memcached implements a dynamically sized hash table with hash

chaining on collisions. A collision refers to the case where different values are

hashed to the same entry and are caused by having a finite number of entries in

the hash table. A hash table with hash chaining resolves collisions by dynamically

allocating new entries and linking them into existing linked lists (chains) at con-

flicting hash table entries. This ensures that all items will be stored as long as the

system has enough memory. However, depending on the rate of collisions, a long

chain of entries may need to be traversed to find the correct entry.

This hash table design is a poor fit for GPUs for two main reasons. First,

dynamic memory allocation on current GPUs can significantly degrade perfor-

mance [75]. Second, hash chaining creates a non-deterministic number of elements

to be searched between requests when collisions are high. This can degrade SIMD

efficiency when chain lengths vary, since each GPU thread handles a separate re-

quest. In this case, some threads may find their request in the first entry in the chain

but are blocked waiting for any other threads which have to traverse a long chain

to find their entry.

The above observations drive the hash table design in MemcachedGPU, which

implements a fixed-size set-associative hash table, similar to [26, 106]. We select

a set size of 16-ways (see Section 4.4.1). We also evaluated a modified version of

hopscotch hashing [68] that evicts an entry if the hopscotch bucket is full instead

of rearranging entries. This improves the hit-rate over a set-associative hash table

by 1-2%; however, the peak GET request throughput is lower due to additional

synchronization overheads. Specifically, the hopscotch hash table requires locking

on every entry since no hopscotch group is unique, whereas in MemcachedGPU,

the set-associative hash table requires locking only on each set.

Each hash table entry contains a header and the physical key (Figure 4.5). The

header contains a valid flag, a last accessed timestamp, the length of the key, the

length of the corresponding item value, and a pointer to the item in CPU memory.

MemcachedGPU also adopts an optimization from [52, 106] that includes a small

8-bit hash of the key in every header. When traversing the hash table set, the 8-bit

hashes are first compared to identify potential matches. The full key is compared
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only if the key hash matches, reducing both control flow and memory divergence.

Hash Table Collisions and Evictions

The baseline Memcached uses a global lock to protect access to a global LRU

queue for managing item evictions. On the GPU, global locks would require se-

rializing all GPU threads for every Memcached request, resulting in low SIMD

efficiency and poor performance. Other works [124, 177] also addressed the bot-

tlenecks associated with global locking in CPU implementations of Memcached.

Instead of a global LRU, we manage a local LRU per hash table set, such

that GET and SET requests only need to update the timestamp of the hash table

entry. The intuition is that the miss rate of a set-associative cache is similar to a

fully associative cache for high enough associativity [144]. Whereas hash chaining

allocates a new entry on a collision, collisions in MemcachedGPU are resolved by

finding a free entry or evicting an existing entry within the hash table set. This

introduces an additional eviction condition to Memcached, which previously only

occurred when the maximum amount of item storage has been exceeded. While

a set-associative hash table was also proposed in [26, 106], we expand on these

works by evaluating the impact of the additional evictions on hit-rates compared

to the baseline Memcached hash table with hash chaining in Section 4.4.1. We

find that the additional evictions result in a decrease in hit-rate of approximately

0.01% to 3.6% for different key access distributions. This indicates that a global

LRU replacement policy is not necessary to effectively capture the locality.

SET requests search a hash table set for a matching, invalid, or expired entry.

If the SET misses and no free entries are available, the LRU entry in this hash table

set is evicted. GET requests traverse the entire set until a match is found or the end

of the set is reached. This places an upper bound, the set size, on the worst case

number of entries each GPU thread traverses, which mitigates the impact on SIMD

efficiency relative to hash chaining. If the key is found, the CPU value pointer is

recorded to later populate the response packet.
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Storage Limitations

As previously described, the hash table is partitioned from the value storage due

to the relatively smaller GPU DRAM capacity versus CPUs. This static hash table

places an upper bound on the maximum amount of key-value storage. Consider

a high-end NVIDIA Tesla K40c with 12GB of GPU memory. GNoM and Mem-

cachedGPU consume ∼240MB of GPU memory for data structures such as the

GRXBs, response buffers, and SET request buffers. This leaves ∼11.75GB for the

GPU hash table and the lock table (described in Section 4.2.2). The hash table

entry headers are a constant size, however, the key storage can be varied depending

on the maximum size. For example, the hash table storage increases from 45 mil-

lion to 208.5 million entries when decreasing from a maximum key size of 250B

to 32B. From [16], typical key sizes are much smaller than the maximum size,

leading to fragmentation in the static hash table if each entry is allocated for the

worst case maximum size.

If a typical key size distribution is known, however, multiple different hash

tables with fixed-size keys can be allocated to reduce fragmentation. For example,

[16] provides key and value size distributions for the Facebook ETC workload

trace. If we create five hash tables with static key entries of 16, 32, 64, 128, and

250B with each size determined by the provided key distribution (0.14%, 44.17%,

52.88%, 2.79%, and 0.02% respectively), this enables a maximum of 157 million

entries for a 10GB hash table. Using the average value size of 124B for ETC, this

static partitioning on the GPU would enable indexing a maximum of 19.2GB of

value storage in CPU memory compared to only 5.5GB when allocating for the

worst case key size.

While there’s a trend for growing GPU DRAM sizes, integrated GPUs may

remove this limitation with access to far more DRAM than discrete GPUs. Our

results on a low-power GPU (Section 4.4.3) and integrated GPUs (Chapter

3) suggest that integrated GPUs may be able to achieve high throughputs in

MemcachedGPU and are an important alternative to explore for GNoM and

MemcachedGPU.
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GPU Concurrency Control

Aside from updating the timestamps, GET requests do not modify the hash table

entries. Thus, multiple GET requests can access the same hash table entry con-

currently as they are guaranteed to have similar timestamp values 3. Furthermore,

Memcached has a relaxed requirement on request ordering. As such, the race con-

dition between concurrent updates to the timestamp from GET requests can be

safely ignored. However, SET requests require exclusive access since they actu-

ally modify the hash table entries. To handle this, we employ a multiple reader

(shared), single writer (exclusive) spin lock for each hash table set using CUDA

atomic compare and exchange (CAS), increment, and decrement instructions. The

GPU locks are also implemented as test-and-test-and-set to reduce the number of

atomic instructions. The shared lock ensures that threads performing a GET re-

quest in a warp will never block each other, whereas the exclusive lock ensures

exclusive access for SET requests to modify a hash table entry.

For SET requests, a single thread per warp acquires an exclusive lock for the

hash table set. The warp holds on to the lock until the SET request hits in one of

the hash table entries, locates an empty or expired entry, or evicts the LRU item for

this set. The remaining threads in the warp are used to perform a coalesced store

of the key into the hash table.

The hash table locks are maintained in a lock table residing in GPU global

memory. The size of the lock table is dictated by the size of the hash table and the

number of sets, with one lock entry per hash table set. Due to the high ratio of GET

requests to SET requests, it would also be possible to have a smaller lock table,

since GET requests obtain shared locks which do not block other GET requests.

4.2.3 Post GPU Race Conditions on Eviction

While the CPU item allocation order (Section 4.2.1) and GPU locking mechanism

(Section 4.2.2) ensure correct access to valid items in CPU memory, a race con-

dition still exists in GNoM-post for SET requests that evict items conflicting with

concurrent GET requests. This race condition exists because separate CPU threads

3GPU request processing latency is on the order of hundreds of microseconds. Hence, requests
being concurrently processed on the GPU either belong to the same request batch or to a request
batch launched at a similar point in time.
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Figure 4.6: Race condition between dependent SET and GET requests in
MemcachedGPU.

handle post GPU processing for GET and SET requests. Consider the example in

Figure 4.6. Here, a GET request is accessing an item, X , which is concurrently

being evicted by a SET request occurring later in time on the GPU. In this exam-

ple, the GET request obtains the shared lock for the hash table set corresponding

to item X and correctly retrieves the CPU item pointer from the GPU hash table.

At a later time, the SET request obtains the exclusive lock for X and evicts X from

the hash table. Any subsequent GET requests will correctly miss on X . However,

the requests are then returned to the CPU for post processing on separate threads.

As such, it is possible that the SET request thread responsible for evicting the item

deletes the item value storage prior to when the GET request reads X’s value to

populate the response packet, as shown on the right side of Figure 4.6. This may

result in the GET request accessing stale or garbage data.

Removing the race condition requires preserving the order seen by the GPU

on the CPU. To accomplish this, each GNoM-post thread maintains a global com-

pletion timestamp (GCT), which records the timestamp of the most recent GET

request batch to complete sending its response packets. This is the same times-

tamp used to update the hash table entry’s last accessed time. If a SET request

needs to evict an item, it records the last accessed timestamp of the to-be evicted
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Table 4.1: Server and client configurations.

Server Client
Linux kernel 3.11.10 3.13.0

CPU Intel Core i7-4770K AMD A10-5800K
Memory 16 GB 16 GB
Network
Interface

Intel X520-T2 10Gbps 82599
(modified driver v3.18.7)

Intel X520-T2 10Gbps
82599 (driver v3.18.20)

item from the GPU hashtable. After updating the GPU hash table, the SET request

polls all GNoM-post GCT’s on the CPU and stalls until they are all greater than

its eviction timestamp before evicting the item. This ensures that all GET requests

prior to the SET request have completed sending the response packets before the

SET completes, preserving the order seen by the GPU. This stalling does not im-

pact future GET requests since the SET allocates a new item prior to updating the

hash table. Thus all GET requests occurring after the SET will correctly access the

updated item. We have verified this mechanism by arbitrarily stalling GET request

batches in GNoM-post while concurrently sending SET requests to update items

conflicting with the GET requests, and ensuring the SET stalls until all conflicting

GET requests complete.

An alternative method is to lazily delete items from the CPU Memcached value

storage. Upon evicting an item from the GPU hash table, the SET request can add

the evict operation to a queue on the CPU. At a later time, a separate CPU thread

or SET request thread can clean up the items in this queue. The delay before

garbage collecting the queue does not need to be long, since the only potential

race condition candidates are those that accessed the GPU hash table prior to the

corresponding SET request updated it, which should completely shortly following

the SET request. As such, this delay could be set to a multiple of the worst case

end-to-end GET request processing latency.

4.3 Experimental Methodology
This section presents our experimental methodology for evaluating GNoM, Mem-

cachedGPU, and the modifications to the hash table design.
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Table 4.2: Server NVIDIA GPUs.

GPU Tesla K20c Titan GTX 750Ti
Architecture (28 nm) Kepler Kepler Maxwell

TDP 225 W 250 W 60 W
Cost (2015) $2700 $1000 $150

# CUDA cores 2496 2688 640
Memory size (GDDR5) 5 GB 6 GB 2 GB

Peak SP throughput 3.52 TFLOPS 4.5 TFLOPS 1.3 TFLOPS
Core frequency 706 MHz 837 MHz 1020 MHz

Memory bandwidth 208 GB/s 288 GB/s 86.4 GB/s

4.3.1 GNoM and MemcachedGPU

Unless stated otherwise, all of the hardware experiments in this chapter are run

between a single Memcached server and client directly connected via two CAT6A

Ethernet cables; one used for transmit and the other for receive. The main system

configurations for the server and client systems are presented in Table 4.1. The

GPUs evaluated in this chapter are shown in Table 4.2, all using CUDA 5.5. The

high-performance NVIDIA Tesla K20c is evaluated using GNoM, which supports

GPUDirect, and the low-power NVIDIA GTX 750Ti is evaluated using NGD. All

three GPUs are evaluated in the offline limit study (Section 4.4.5). While Chap-

ter 3 evaluated integrated AMD GPUs, this chapter focusses on discrete NVIDIA

GPUs. Aside from the usage of GPUDirect on the Tesla K20c, there is no funda-

mental reason why GNoM would not also be beneficial on lower-power integrated

GPUs. Additionally, our experiments in Section 5.6 highlight the potential for

low-power discrete GPUs to achieve high performance with GNoM, and hence an

important direction for future work is to evaluate integrated GPUs.

MemcachedGPU was implemented on top of Memcached v1.4.15. The hash

table is configured as a 16-way set-associative hash table with 8.3 million entries

assuming the maximum Memcached key-size. Note that this is only ∼46% of the

maximum possible hash table size on the Tesla K20c given the 5GB global mem-

ory space and storage for the other GNoM and MemcachedGPU data structures.

The hash table associativity was selected based on an offline hash table analysis
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(Section 4.4.1) and an empirical performance analysis on the GPU.

The client system generates Memcached requests through the Memaslap mi-

crobenchmark included in libMemcached v1.0.18 [4]. Memaslap is used to stress

MemcachedGPU with varying key-value sizes at different request rates. As de-

scribed in more detail below (Section 4.3.2), we evaluate the effectiveness of

the hash table modifications in MemcachedGPU on more realistic workload traces

with different types of request distributions in Section 4.4.1 (zipfian, latest, and

random distributions). The Memcached ASCII protocol is used with a minimum

key size of 16 bytes (packet size of 96 bytes). The ASCII protocol places more

stress on MemcachedGPU than the binary protocol, since this requires string pro-

cessing and impacts the packet sizes. Larger Memcached value sizes impact both

the CPU response packet fill rate and network response rate. However, we find

that GNoM becomes network bound, not CPU bound, as value sizes increase. In

our experiments, the larger value sizes result in larger packet sizes, which reduces

the number of packets required to saturate the network bandwidth; hence lower

processing requirements from MemcachedGPU. Thus, the smallest value size of 2

bytes is chosen to stress per packet overheads. Similarly, the smallest Memcached

key size of 16 bytes is chosen in any experiments aimed at stressing GNoM and

MemcachedGPU.

The single client system is unable to send, receive, and process the minimum

sized Memcached packets at 10 Gbps with the Memaslap microbenchmark. As

such, we created a custom client Memcached stressmark using PF RING zero-

copy [125] for sending and receiving network requests at 10 Gbps, and replay

traces of SET and GET requests generated from Memaslap. With this method,

the request ordering and key distributions are maintained with those generated by

Memaslap, but are replayed at a much higher throughput. The MemcachedGPU

server is initially warmed up with 1.3 million key-value pairs through TCP SET

requests. Then, we send GET requests over UDP. However, processing all of the

response packets on the client system still limits our send rate to∼6 Gbps. To over-

come this, we used a technique similar to [106], which forcefully drops response

packets at the client using hardware packet filters at the NIC to sample a subset of

packets. Using this technique, the client sends all of the packets to the server at the

specified send rate and the server still performs all of the required per-packet op-
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erations. The client NIC filter allows a subset of packets to flow back to the client

for response processing, while the rest are dropped. The total number of received

response packets are the sum of those received by the client and those dropped.

Thus, our end-to-end latency experiments at high request rates measure a subset of

the total response packets. However, because packets are processed in batches on

the server, if we ensure that the subset of measured packets are distributed through-

out a batch, these will be a good representation of all packets. If we instead create

a static set of Memcached requests to repeatedly send to the server (e.g., 512 dif-

ferent requests), we are able to send and receive at the full rate at the client, since

this frees up processing cycles on the client that were previously used to prepare

each send packet. We use this static request technique to measure packet drop rates

at the client more accurately. All other experiments use the Memaslap generated

traces, as described above.

Power is measured using the Watts Up? Pro ES plug load meter [164] and mea-

sures the total system wall power for all configurations. An issue with PCIe BAR

memory allocation between the BIOS and NVIDIA driver on the server system at

the time this study was conducted restricted the NVIDIA Tesla K20c and NVIDIA

GTX 750Ti GPUs from being installed in isolation. We measured the idle power

of the Tesla K20c (18W) and GTX 750Ti (6.5W) using the wall power meter and

the nvidia-smi tool. This inactive GPU idle power was subtracted from the total

system power when running experiments on the other GPU. For example, when

running an experiment on the Tesla K20c, the GTX 750TI’s idle power of 6.5W

was subtracted from the measured system power to calculate the total power. The

GTX Titan did not have this issue and could be installed in isolation.

4.3.2 Hash-Sim (Hash Table Simulator)

To evaluate the impact of modifying the hash table structure, collision mechanism,

and hash table eviction management in MemcachedGPU compared to the base-

line Memcached hash table, we designed an offline hash table simulator, hash-sim.

Hash-sim measures the hit rate for a trace of key-value GET and SET requests,

which provides a platform for directly comparing different hash table and hash

collision techniques. As in the baseline Memcached, a GET request miss triggers a
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corresponding SET request for that item in hash-sim. Hash-sim uses the same Bob

Jenkin’s lookup3 hash function [86] included in the baseline Memcached.

We use a modified version of the Yahoo! Cloud Serving Benchmark (YCSB)

[34] provided by MemC3 [52] to generate three Memcached request traces with

different item access distributions: Zipfian, Latest, and Uniform. In the Zipfian

(zipf) distribution, specific items are accessed much more frequently than other

items. The Latest distribution is similar to the zipf distribution, except that the most

recently inserted items are more popular. With Zipfian, the popularity of items are

not affected by the insertion of new items. Finally, the Uniform distribution selects

items at uniform random.

Hash-sim is single threaded, so no concurrency control is required. As such,

the purpose of Hash-sim is not to measure the performance or scalability of the

different hash table techniques in terms of lookups per unit time, but instead to

measure the ability of the hash table to maximize the hit rate under different request

distributions, hash table sizes, and eviction techniques. The hash table performance

is considered independently from Hash-sim.

Lastly, MemcachedGPU implements a statically sized hash table to avoid dy-

namic memory allocation or resizing the hash table on the GPU. This differs from

the baseline Memcached hash table with hash chaining, as well as other hashing

techniques, which expand the hash table when hash chains become too long or a

free hash table entry cannot be located when inserting an item. As a result, evic-

tions occur in the hash table once the maximum number of items has been stored

or a free entry is unavailable. As will be described further in Section 4.4.1, we

evaluate global and local least recently used (LRU) techniques for managing item

evictions. Global LRU considers all items in the hash table for eviction. Local

LRU considers a subset of items in the hash table for eviction depending on the

hash table structure and collision resolution technique.

4.4 Experimental Results
This section presents our evaluation of the Memcached hash table modifications,

MemcachedGPU, GNoM, the non-GPUDirect (NGD) version of GNoM, and an

offline limit study of GNoM and MemcachedGPU. Different experiments are per-

98



formed in simulation environments or on real hardware, as described in Section

4.3. If not explicitly mentioned, the experiment is evaluated on hardware.

4.4.1 Hash Table Evaluation

We first evaluate the impact of our modifications to the Memcached hash table on

the GET request hit rate. The hash table modifications are required to improve

the performance and scalability on GPU SIMD architectures. Every miss in the

Memcached hash table results in an expensive access to the backing database and a

potential SET request to update the hash table with the missing entry 4. Thus, it is

important to minimize the miss rate relative to the baseline Memcached hash table

with hash chaining. Using Hash-sim (Section 4.3.2), we evaluate and compare

the hit rate for multiple different hash table structures and techniques for handling

collisions, which are more GPU-friendly than the baseline hash chaining technique.

In addition to the hit-rate, each technique presents multiple trade-offs, for example,

in the impact of the load factor on performance, requirement for dynamic memory

allocation, worst-case number of accesses for GET requests, worst-case number of

operations required to store an item, and concurrency control, which are important

aspects to consider. Furthermore, some techniques may be better suited for the

GPU’s SIMD architecture than others.

Specifically, we evaluate four different hash table techniques and compare them

with hash chaining:

• Hash chaining (HC): The default hash table technique used in the baseline

Memcached. Keys are hashed and the item is inserted directly into the corre-

sponding hash table entry. On a hash table collision, a new entry is dynam-

ically allocated and linked into the hash table entry via a linked list. When

searching for an item, the entire (potentially long) chain must be searched for

the corresponding entry. A global least-recently used (LRU) queue is main-

tained to handle hash table evictions, such that all items in the hash table are

considered for eviction based on their global ordering of usage. In our im-

plementation, hash chaining is always able to store the maximum number of

4This is dependent on the application’s implementation, as the application is responsible for man-
aging when to store items in the hash table.
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items in the hash table, which is equal to the size of the hash table, regardless

of the number of collisions on a given entry.

• Set-associative (SA): The fixed-size hash table technique used in Mem-

cachedGPU (similar to that proposed in [106] for CPUs and [26] for

FPGAs). This technique is equivalent to a regular set-associative cache,

which results in fast look-ups and insertions. The hash table is broken down

into multiple hash table sets, which consist of a fixed number of hash table

entries (the set size). Each hash value now corresponds to multiple hash

table entries, which need to be searched for a matching or free entry. Only

the fixed set size needs to be traversed when searching for an item. Items

are inserted into an empty entry in the corresponding hash set. If no empty

entries are available, an item must be evicted. A local LRU is maintained per

hash table set, such that an eviction only selects from the items belonging to

the hash table set corresponding to the hash value for a given key.

• Hopscotch (HS) [68]: Each entry in the hopscotch hash table has a cor-

responding hopscotch bucket, which consists of H consecutive entries. As

such, each hash table entry/group overlaps with H-1 other hopscotch groups.

When searching for an item, only the fixed hopscotch group size must be

searched. When trying to insert an element into the hash table to entry X,

similar to linear probing, consecutive entries are searched from X until a free

entry is found at index Y. If the distance between the free entry at Y and X

is less than H-1, the item is directly inserted into that entry in the hash table,

otherwise the hash table must be reorganized to make room for the new value

within X and X+(H-1) (the hopscotch group size). This is achieved by per-

forming a linear search to find the first free entry and then iteratively moving

hash table entries to the free location in their hopscotch group in a reverse

direction from X+Y to X until we can insert X in its hopscotch group. If no

free entries are found or the entries can not be reorganized, the hash table

must be resized or an item must be evicted. In our implementation, we limit

the search size to 512 entries such that for any given insertion, the search is

limited between X and X+512 for a free entry. If no free entries are found,

then the LRU item in the hopscotch group for item X (X to X+H) is evicted
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and the item is directly inserted into this entry.

• Strided linear probing (SLP): Linear probing is similar to hash chaining,

except that the chain consists of the consecutive hash table entries instead

of dynamically allocated entries. In the strided implementation, each hash

table entry contains N additional entries with some stride S. When inserting

an item at entry X, we search from X to X+(N×S) to find a free entry. For

example, if an item maps to the entry at X, the next entry is at X+S, and the

last entry in the group is at X+(N×S). Similar to hopscotch hashing, each

group overlaps with multiple different groups. Similar to the set-associative

hash table, the hash table is not reorganized when no free entries are found.

Instead, the LRU item belonging to the group entry X is evicted and the new

item is inserted. When searching for an item, only the fixed-size group needs

to be searched.

• Cuckoo hashing (CU) [141]: In Cuckoo hashing, each item can map to two

different hash table entries. Two hash functions are used to select these en-

tries. We follow the same methodology as MemC3 [52], which generates the

first hash value using the baseline Memcached’s Bob Jenkin’s hash function,

and performs a set of operations on the first hash index, using the hash con-

stant from MurmerHash2, to generate the second hash index. When search-

ing for a item, only the two entries need to be accessed, which limits the

number of hash table accesses for GET requests. However, when insert-

ing an item into the hash table, if the two entries are not empty, the hash

table needs to be reorganized. This is achieved by recursively traversing

each item’s alternative hash table entry until a free entry is found, and then

moving the items to the alternative hash entry in a reverse direction until

one of the two entries for the current item is now free. Similar to our hop-

scotch hashing implementation, we limit this search to 512 entries. If no

free entries are found within 512 searches, we evict the LRU item within

this chain of items and reorganize the hash table accordingly. MemC3 [52]

includes an additional optimization, which combines Cuckoo hashing with

the set-associative hash table. Here, each hash table entry consists of four

entries. We did not evaluate this optimization, but it should be noted that the
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performance measured in this section will be lower than that achievable in

MemC3’s implementation.

For each hash table implementation, we fix the maximum number of key-value

items to store, independent of the size of the corresponding values for each key.

Hash chaining is always able to store the maximum number of elements as a new

entry is dynamically allocated on a hash collision. Evictions only occur when the

maximum number of items have been stored in the hash table. For all other hash

table techniques, evictions may occur even with fewer elements than the maximum

due to the conflict resolution techniques. This results in additional evictions com-

pared to hash chaining, which needs to be minimized to reduce any extra expensive

accesses to the back-end databases. MICA [106] also proposed an enhancement to

avoid hash table evictions by including overflow bins, which are used to store items

when the main sets overflow. An error is returned if no such overflow bins are avail-

able. MICA refers to hash tables with evictions as lossy and hash tables without

evictions as lossless. In this work, we only consider lossy versions of hash tables

due to the GPU’s limited DRAM capacity and the expectation that the hash table

can be sized large enough to capture the application’s temporal locality.

For each workload distribution, we generate a runtime trace of 10 million key-

value pairs with 95% GET requests and 5% SET requests. The hash tables are first

warmed up using a load trace of all SET requests, and then the hit-rate is measured

on a separate transaction trace. The hash tables are configured as follows: the hash

chaining (HC) hash table can store any number of items in each chain, up to the

maximum size of the hash table; the hopscotch (HS) hash table has a hopscotch

group of 16 entries and a maximum search size of 512 entries for the linear probe;

the strided linear probe (SLP) hash table has a group of 16 entries with a stride of 4

entries; The set associative (SA) hash table has a set size of 16 entries; finally, the

cuckoo (CU) hash table has two entries per item (corresponding to the two hash

functions) and a maximum depth of 512 for the recursive reorganization.

Figure 4.7a, Figure 4.7b, and Figure 4.7c measure the hit-rate for the five

hash tables under the Zipfian (Zipf), Latest (Lat), and Uniform (Uni) distributions

respectively. The x-axis shows different hash table capacities from 2 million en-

tries to 16 million entries. With a request trace working size of 10 million items,
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Figure 4.7a: Zipfian: Comparing the hit rate for different hash table tech-
niques and sizes under the Zipfian request distribution. The request
trace working size is 10 million entries.

HC is always achieve 100% hit-rate when the hash table is larger than 10 million

entries, equivalent to a fully-associative cache. However, this may result in long

hash chains based on the collision rate. There are three notable points from this

experiment. First, the hash tables perform much better on the Zipf and Lat distri-

butions than Uni. Since the hash tables implement a LRU eviction policy, the most

most frequently accessed items are prevented from commonly becoming the LRU

item. Similarly, Lat performs better than Zipf, as the most recently added item be-

comes the most frequently accessed item. Uni, however, suffers from low hit rates

with smaller hash table sizes, as there is no temporal locality in the trace.

Second, all hash tables achieve similar hit rates to HC. For all hash table sizes

less than the working set, HS, SLP, and SA achieve over 99% of the hit rate of

HC on average, while CU averages over 97% of the HC hit rate. The difference

between the techniques is most noticeable at a hash table size close to the working

set size (e.g., 8 million entries compared to 10 million entries). As noted above,
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Figure 4.7b: Latest: Comparing the hit rate for different hash table tech-
niques and sizes under the Latest request distribution. The request
trace working size is 10 million entries.

CU can benefit from adding a small set (e.g., four entries) to each hash table entry;

however, we did not evaluate this enhancement. In our experiments, HS was the

best performing alternative. Similar to SLP and SA, HS contains multiple possible

entries per hash value (16). However, unlike these techniques, HS is also able to

reorganize the hash table when the local group becomes full, hence avoiding an

eviction on the collision. CU is also able to reorganize the hash table, but we found

that limiting the potential candidate entries for each item to two, instead of 16, was

a limiting factor. While there is some loss in hit rate relative to HC, these results

highlight that for the dataset evaluated, there is little benefit to maintain global LRU

and global evictions over the local counterparts. As real workloads tend to follow

a Zipfian-like distribution [34], where some items are accessed very frequently,

while most others are accessed infrequently, we believe that this property will hold

for other workloads.

Lastly, while SA is not the best performing alternative, it is able to achieve a
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Figure 4.7c: Uniform Random: Comparing the hit rate for different hash ta-
ble techniques and sizes under the Uniform Random request distribu-
tion. The request trace working size is 10 million entries.

hit rate within 96.6% - 99.99% of HC across the different distributions and hash

table sizes. Furthermore, SA contains two main benefits over the alternatives. First,

SA simplifies the locking mechanism required under concurrent accesses (Section

4.2.2) compared to the other hash table techniques. In SA, each set contains a

single lock. As such, only a single lock needs to be acquired when accessing all

elements in a set. This is possible since there is a one-to-many mapping between

each hash table set and entry - each entry only belongs to a single set, while a

single lock can lock all entries within that set. However, hash table entries in HS,

SLP, and CU belong to multiple different overlapping groups, requiring acquiring

multiple locks when accessing the group of entries corresponding to a given item.

This increases the chance of threads in a warp blocking other threads, leading to

reduced SIMD efficiency and performance. Additionally, the storage requirements

for the locks are reduced in SA, since there are fewer sets than individual entries or

overlapping groups. Second, SA achieves fast insertions even under high collision
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Figure 4.8: Miss-rate versus hash table associativity and size compared to
hash chaining for a request trace with a working set of 10 million re-
quests following the Zipf distribution.

rates. HS and CU require searching and reorganizing multiple entries in an attempt

to avoid evicting an item from the hash table. While this can improve the storage

efficiency under high collision rates, it comes at the cost of increased complexity

and insertion times. From Figure 4.7a, Figure 4.7b, and Figure 4.7c, we see that

the improvements in the hit rate of these techniques are small compared to SA.

As a result of the above experiments, we selected the set associative as the hash

table for MemcachedGPU.

Next, we evaluate the miss rate of SA with different set sizes and hash table

sizes under the Zipf distribution. The same request trace used in the previous ex-

periment, with 10 million requests containing 95% GET and 5% SET requests, is

used to evaluate the miss rate. The results are shown in Figure 4.8 and are com-

pared to HC, which is equivalent to a fully associative hash table. For example,

with a maximum hash table size of 8 million entries, SA has a 21.2% miss-rate

with 1-way (direct mapped) and 10.4% miss-rate with 16-ways. HC achieves a

0% miss-rate when the hash table size is larger than the request trace (dotted line

at 10 million entries) since it is able to allocate a new entry for all new key-value

pairs. At smaller hash table sizes, none of the configurations are able to effectively

capture the locality in the request trace, resulting in comparable miss-rates. As the
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Figure 4.9: Impact of Linux Kernel bypass for GET requests vs. the baseline
Memcached v1.5.20.

hash table size increases, increasing the associativity decreases the miss-rate. At

16-ways for all sizes, SA achieves a minimum of 95.4% of the HC hit-rate for the

Zipf distribution. The other distributions follow similar trends with different abso-

lute miss-rates. However, increasing the associativity also increase the worst-case

number of entries to search on an access to the hash table. From experimentation,

we empirically find that an associativity of 16-ways provides a good balance of

storage efficiency and performance.

4.4.2 Impact of Linux Kernel Bypass

MemcachedGPU uses GNoM on receive and PF RING on transmit to bypass both

the Linux kernel and libevent (used by default for Memcached). To understand

the impact of this optimization in isolation, we evaluate PF RING for both re-

ceive and transmit in the baseline Memcached v1.5.20 running only on the CPU.

Others have attained higher throughputs for Memcached on CPU-only systems us-

ing many other optimizations [52, 105, 106, 177]. We compare MemcachedGPU

against published results in Section 4.4.6.

Figure 4.9 measures the improvement in throughput and energy-efficiency of

bypassing the Linux kernel over the baseline Memcached using PF RING. No

other optimizations were applied. Removing the Linux network stack results in
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Table 4.3: GET request throughput and drop rate at 10 GbE.

Key Size 16 B 32 B 64 B 128 B
Tesla drop rate server 0.002% 0.004% 0.003% 0.006%
Tesla drop rate client 0.428% 0.033% 0.043% 0.053%
Tesla MRPS/Gbps 12.92/9.92 11.14/9.98 8.66/9.98 6.01/10

Maxwell-NGD drop rate
server

0.47% 0.13% 0.05% 0.02%

Maxwell-NGD MRPS/Gbps 12.86/9.87 11.06/9.91 8.68 10 6.01/10

a minimum improvement in both throughput and energy-efficiency over the base-

line of 1.5X at 4 threads, and a maximum of 1.5 MRPS and 12.3 KRPS/W (1.9X)

at 2 threads. Adding threads to the Kernel bypass has a larger increase in energy

consumption relative to the increase in throughput, resulting in the continuously

decreasing energy-efficiency. Increasing the number of threads beyond number of

cores (4) results in a drop in throughput and energy-efficiency for both configura-

tions. These results highlight that while bypassing the Linux kernel can provide a

sizeable increase in performance and energy-efficiency, additional optimizations to

the core Memcached implementation are required to continue improving efficiency

and scalability.

4.4.3 MemcachedGPU Evaluation

Next, we evaluate the full end-to-end MemcachedGPU on the high-performance

NVIDIA Tesla K20c (Tesla) using GNoM with GPUDirect, and on the low-power

NVIDIA GTX 750Ti (Maxwell) using the non-GPUDirect (NGD) framework

(Section 4.1.2). Throughput is measured in millions of requests per second

(MRPS) and energy-efficiency is measured in thousands of requests per second

per Watt (KRPS/W). For latency experiments, the 8 byte Memcached header

is modified to contain the client’s send timestamp and measures the request’s

complete round trip time (RTT).

Throughput: Memcached typically uses UDP for GET requests and tolerates

dropped packets by treating them as misses in the caching layer. However, exces-

sive packet dropping mitigates the benefits of using Memcached. We measure the
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packet drop rate at the server and client for packet traces of 500 million requests

with equal length keys at peak throughputs, averaging over three runs. The impact

of having different key lengths on SIMD efficiency is discussed later in this sec-

tion. As shown in Table 4.3, MemcachedGPU is able to processes packets near

10 GbE line-rate for any Memcached request size with server packet drop rates

< 0.006% (GNoM) and < 0.5% (NGD). The client drop rates are measured using

the static trace described in Section 4.3 with no packet loss at the server. Increasing

to the full 13 MRPS at 16B keys increases the server drop rate due to the latency

to process the packets and recycle the limited number of GRXBs to the NIC for

new RX packets. As a result, there are no available GRXBs when a new packet

arrives and the NIC drops the packet accordingly. In Section 4.4.5 we evaluate the

peak throughputs of MemcachedGPU assuming an unlimited number of GRXBs

through an offline analysis.

RTT Latency: For many scale-out workloads, such as Memcached, the longest

latency tail request dictates the total latency of the task [41]. While the GPU is a

throughput-oriented accelerator, we find that it can provide reasonably low laten-

cies under heavy throughput. Figure 4.10 measures the mean and 95-percentile

(p95) client-visible RTT versus request throughput for 512 requests per batch on

the Tesla using GNoM and NGD, and the Maxwell using NGD. Recall that NGD

must copy the packet from the NIC to CPU memory and then from CPU memory

to GPU memory. As expected, GNoM has lower latencies than NGD (55-94% at

p95 on the Tesla) by reducing the number of memory copies on packet RX with

GPUDirect. The latency increases as the throughput approaches the 10 GbE line-

rate, with the p95 latencies approaching 1.1ms with GNoM and 1.8ms with NGD.

We also evaluated a smaller batch size of 256 requests on GNoM and found that

it provided mean latencies between 83-92% of 512 requests per batch when less

than 10 MRPS, while limiting peak throughput and slightly increasing the mean

latency by∼2% at 12 MRPS. Although the smaller request batch sizes reduces the

batching and potentially the kernel processing latency, it also increases the kernel

launching and post processing overhead as these tasks are amortized over fewer

packets. At lower throughputs (< 4 MRPS), we can see the effects of the batching

delay on the p95 RTT (Figure 4.10b). For example, at 2 MRPS with a batch size

of 512 requests, the average batching delay per request is already 128µs, compared
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Figure 4.10: Mean and 95-percentile round trip time (RTT) latency versus
throughput for Tesla GPU with GNoM and NGD, and Maxwell with
NGD.
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Figure 4.11: Total system and GPU power (left axis) and total system energy-
efficiency (right axis) versus throughput for MemcachedGPU and
GNoM on the NVIDIA Tesla K20c. The total system energy-efficiency
for the Maxwell system is also shown at the peak throughput with two
GNoM-post threads. The number of GNoM-post threads are shown
above the graph, with 1 thread for 1.1 to 7.6 MRPS, 2 threads for 10.1
to 12.8 MRPS, and 4 threads for 12.9 MRPS.

to 32µs at 8 MRPS. While not shown here, a simple timeout mechanism can be

used to reduce the impact of batching at low request rates by launching partially

full batches of requests. The GNoM GPU kernel can either reduce the size of the

kernel or use conditional operations to mask off unused threads accordingly.

Energy-Efficiency: Figure 4.11 plots the average power consumption, both

the full system power and GPU power, and the full system energy-efficiency of

MemcachedGPU and GNoM on the Tesla K20c at increasing request rates. The

total system energy-efficiency for the Maxwell system is also shown at the peak

throughput with two GNoM-post threads. The Tesla K20c power increases by less

than 35% when increasing the throughput by∼13X (1 to 13 MRPS), leading to the

steady increase in energy-efficiency. The jumps in system power at 10.1 and 12.9
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MRPS are caused by adding GNoM-post threads for post processing and recycling

the GRXBs fast enough to maintain low packet drop rates at the higher throughputs.

However, increasing the number of GNoM-post threads from two to four decreases

energy-efficiency as the system power is increased by 9% while the throughput has

a much smaller improvement. At peak throughputs, the low-power GTX 750Ti

using NGD consumes 73% of the total system power consumed by the Tesla K20c

using GNoM (151.4 W at 84.8 KRPS/W). These results highlight the importance

of the CPU-side framework in contemporary systems for handling higher request

rates, as well as the negative impact that including additional CPU resources has

on energy-efficiency. Furthermore, placing increased load on the CPU reduces the

potential for CPU workload consolidation and reduces the peak GPU performance,

since the CPU may not be able to keep up with the requirements from multiple

tasks (Chapter 5).

The Tesla K20c consumes roughly one third of the total system power. Note

that the peak GPU power of 71W is less than 32% of the K20c’s TDP (225W),

suggesting low utilization of the total GPU resources. This also contributes to why

the lower-power, lower-performance GTX 750Ti is able to handle the high request

rates. The Tesla K20c system has an idle power of 84W without any GPUs. Thus,

GNoM-host consumes roughly 15%, 25%, and 33% of the total system power when

using one, two, or four GNoM-post threads respectively. Much of this is an artifact

of GPUs being offload-accelerators, which rely on the CPU to communicate with

the outside world. This leaves large opportunities to further improve the energy-

efficiency of GNoM through additional hardware I/O and system software support

for the GPU.

Branch Divergence: Next, we evaluate the impact of branch divergence on

performance in MemcachedGPU, which stems from each GPU thread handling a

separate GET request. For example, differences in key lengths, potential hits on

different indices in the hash table set, or misses in the hash table can all cause GPU

threads to perform a different number of iterations or execute different blocks of

code at a given time. Each of these scenarios reduce the SIMD efficiency and con-

sequently performance. Figure 4.12 plots the average peak throughput as a fraction

of the theoretical peak throughput for a given key length distribution. We find that

the throughput performs within 99% of the theoretical peak, regardless of the key
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Figure 4.12: Impact of varying the key length mixture and hit-rate on round
trip time (RTT) latency (left axis) and throughput (right axis) for Mem-
cachedGPU and GNoM on the NVIDIA Tesla K20c. RTT latency is
measured at 4 MRPS. Throughput is shown as the average fraction of
peak throughput (at 10 Gbps) obtained for a given key distribution.
The key distributions are broken down into four sizes (16B, 32B, 64B,
and 128B) and the labels indicate the percentage of keys with the cor-
responding length.

distribution. That is, even when introducing branch divergence, MemcachedGPU

becomes network bound before compute bound.

Figure 4.12 also plots the average RTT for GET requests at 4 MRPS under

different distributions of key lengths and at 100% and 85% hit-rates. Note that this

experiment still consists of 100% GET requests. The results match the intuition

that because there is no sorting of key lengths to batches, the latency should fall

somewhere between the largest and smallest key lengths in the distribution. For

example, 50% 16 byte and 50% 32 byte keys have an average RTT between 100%

16 byte and 100% 32 byte key distributions. If there are large variations in key
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Table 4.4: Concurrent GETs and SETs on the Tesla K20c.

GET MRPS (% peak) 7 (54) 8.8 (68) 9.7 (74) 10.6 (82) 11.7 (90)
SET KRPS (% peak) 21.1 (66) 18.3 (57) 18 (56) 16.7 (52) 15.7 (49)
SET:GET Ratio 0.3% 0.21% 0.19% 0.16% 0.13%
Server Drop Rate 0% 0.26% 3.1% 7.5% 8.8%

lengths and tight limits on RTT, the system may benefit from a pre-sorting phase

by key length such that each request batch contains similar length keys. This could

help reduce RTT for smaller requests, however, the maximum throughput is still

limited by the network.

Typical Facebook Memcached deployments have hit-rates between 80-

99% [16]. Figure 4.12 also measures the impact on RTT under 85% and 100%

hit-rates. As can be seen, there is little variation between average RTT with

different hit-rates. While reducing the hit-rate forces more threads to traverse the

entire hash table set (16 entries), the traversal requires a similar amount of work

compared to performing the key comparison on a potential hit.

GETs and SETs: While the main focus of MemcachedGPU is on accelerating

GET requests, we also evaluate the throughput of the current naive SET request

handler and its impact on concurrent GET requests. SET requests are sent over

TCP for the same packet trace as the GETs to stress conflicting locks and update

evictions. The maximum SET request throughput is currently limited to 32 KRPS

in MemcachedGPU, ∼32% of the baseline. This is a result of the naive SET han-

dler described in Section 4.2.1, which serializes SET requests. However, this is

not a fundamental limitation of MemcachedGPU as, similar to GET requests, SET

requests could also be batched together on the CPU prior to updating the GPU

hash table. Unlike GET requests, however, each SET requests would need to be

serialized or processed per GPU warp instead of per thread to avoid potential dead-

locks on the exclusive locks (Section 4.2.2). Improving SET support is left to

future work. Table 4.4 presents the GET and SET request throughputs, result-

ing SET:GET ratio, and server packet drop rate of MemcachedGPU on the Tesla

K20c. As the GET request rate increases, the SET rate drops due to contention for

GPU resources. The low peak SET request throughput limits the SET:GET ratio
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to <0.5% for higher GET request rates. The average server packet drop rate ap-

proaches 10% when increasing GET throughput to 90% of the peak, which limits

the effectiveness of MemcachedGPU. GET requests at ∼9 MRPS maintains com-

parable drop rates to the peak throughput, while also handling 0.26% SET requests.

4.4.4 Workload Consolidation on GPUs

Workload consolidation, running multiple workloads concurrently on the same

hardware, improves datacenter utilization and efficiency [20]. While specialized

hardware accelerators, such as ASICs or FPGAs, can provide high efficiency for

single applications, they may reduce the flexibility gained by general-purpose

accelerators, such as GPUs. For example, long reconfiguration times of re-

programmable hardware, milliseconds to seconds [142, 147], may mitigate the

benefits gained by the accelerator when switching between applications. In this

section, we evaluate the potential for workload consolidation on GPUs, which

may provide advantages over other hardware accelerators in the datacenter.

However, at the time of this study, the evaluated GPUs do not support preemp-

tive [163] or spatial [2] multitasking for GPU computing although they do support

preemptive multitasking for graphics [132]. When multiple CUDA applications

run concurrently, their individual CUDA kernel launches contend for access to the

GPU and, depending on resource constraints, are granted access in a first-come,

first-serve basis by the NVIDIA driver. Large CUDA kernels with many CTAs

may consume all of the GPU resources, blocking other CUDA kernels from run-

ning until completed. However, we can potentially exploit this property through a

simple approach to enable finer grained multitasking by splitting a single CUDA

kernel into multiple kernels with fewer CTAs.

We study a hypothetical low-priority background task (BGT) that performs a

simple vector multiplication in global memory requiring a total of 256 CTAs with

1024 threads each to complete. The low-priority BGT is divided into many smaller

short running kernel launches, which can be interleaved with MemcachedGPU pro-

cessing. This creates a two-level, software/hardware CTA scheduler. For example,

if we reduce the background task to 16 CTAs per kernel, we require 16 separate

kernel launches to complete all 256 CTAs in the task (16 CTAs / kernel launch ×
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Figure 4.13: Client RTT (avg. 256 request window) during BGT execution
for an increasing number of fine-grained kernel launches.

16 kernel launches = 256 CTAs).

We run MemcachedGPU using GNoM on the Tesla K20c at a lower GET re-

quest throughput of 4 MRPS using 16 byte keys. After some time, the BGT is

launched concurrently on the same GPU, varying the number of CTAs per kernel

launch. Figure 4.13 measures the average client RTT during the BGT execution.

The average RTT is computed on a window of 256 GET request responses at the

client. Without the BGT, MemcachedGPU has an average RTT < 300µs. With 256

CTAs (1 background task kernel launch), the BGT consumes the GPU resources

causing a large disruption in the Memcached RTT. Even after the BGT completes

with 256 CTAs (around 32ms), MemcachedGPU takes over 20ms to return back to

the original average RTT. As the number of CTAs per kernel is reduced, the impact

of the BGT on MemcachedGPU reduces significantly. For example, at 16 CTAs

per kernel, the RTT experiences a short disruption for ∼2.4ms during the initial
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BGT kernel launch with a maximum average RTT of ∼1.5ms during this time, and

then returns back to under 300µs while the BGT is executing. The other BGT con-

figurations show multiple spikes in the RTT corresponding to the launches of the

subsequent BGT kernels. It is interesting to note that 4 BGT launches (64 CTAs

per kernel) results in a saw tooth RTT instead of the sharp spikes in RTT seen in

the other configurations; however, we did not investigate the cause of this further.

While decreasing the size of BGT kernel launches reduces the impact on Mem-

cachedGPU’s RTT, increasing the number of BGT kernel launches also increases

the BGT execution time. Figure 4.14 measures the BGT execution time with and

without MemcachedGPU, as well as the maximum average RTT seen by Mem-

cachedGPU during the BGT execution. At 4 MRPS, MemcachedGPU has very

little impact on the BGT execution time due to its low resource utilization and

small kernel launches. As the number of BGT kernels increases (more smaller

BGT kernel launches), the execution time also increases due to the introduction of
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Figure 4.15: Offline GNoM throughput - 16B keys, 96B packets.

the software CTA scheduler and contention with competing kernel launches. How-

ever, the impact on MemcachedGPU RTT decreases much faster. At 16 CTAs per

kernel, the BGT execution time is increased by ∼50% versus 256 CTAs, while the

MemcachedGPU RTT is reduced by over 18×. Allowing for an increase in the

lower-priority BGT completion time, GNoM is able to provide reasonable QoS to

MemcachedGPU while running other applications on the same GPU.

4.4.5 MemcachedGPU Offline Limit Study

In this section, we evaluate an offline, in-memory framework that reads network

request traces directly from CPU memory to evaluate the peak performance and

efficiency of GNoM and MemcachedGPU, independent of the network. The same

GNoM framework described in Section 4.1.2 is used to launch the GPU kernels

(GNoM-pre), perform GPU UDP and GET request processing (GNoM-dev), and

populate dummy response packets upon kernel completion (GNoM-post). How-

ever, unlike the actual GNoM framework, which uses GPUDirect to transfer pack-

118



0 

50 

100 

150 

200 

250 

300 

350 

400 

Network Only MemcachedGPU 

Av
g.

 L
at

en
cy

 (u
s)

 
Tesla K20c GTX Titan GTX 750 Ti 

Figure 4.16: Offline GNoM processing latency - 16B keys, 96B packets.

ets from the NIC to the GPU one at a time as they arrive, the offline framework

reads packets from CPU memory and bulk transfers request batches to the GPU

across the PCIe bus. The same packet trace used in Section 4.4.3, with the min-

imum key size of 16 bytes to stress GNoM, is used in the offline evaluation. We

also evaluate a simple Network Only, ping-like GPU kernel, which only performs

the UDP network processing operations (no Memcached processing). The network

only kernel also uses the same 96B packets. This experiment highlights the peak

performance of GNoM.

Figure 4.15, Figure 4.16, and Figure 4.17 present the offline throughput,

latency, and energy-efficiency of MemcachedGPU for the three GPUs in Table

4.2 respectively. As shown in Figure 4.15, Each GPU achieves over 27 MRPS

(∼21.5 Gbps), suggesting that the GPUs are capable of handling over 2× the re-

quest throughput measured in the online evaluations. The network only kernel is

able to further increase this up to 39 MRPS on the GTX 750Ti. Assuming the PCIe

bus is not a bottleneck, achieving this high throughput would require additional 10
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Figure 4.17: Offline GNoM energy-efficiency - 16B keys, 96B packets.

GbE NICs or higher throughput NICs, and removing the limitation on the amount

of pin-able GPU memory to allocate more GRXBs for the increased request rate.

The latency in Figure 4.16 measures the time prior to copying the packets

from the CPU to GPU and after populating the dummy response packets at peak

throughputs. The network only measurements highlight the latency contributed by

the GNoM framework and the network packet parsing and response packet gener-

ation code, which accounts for roughly 50% of the total processing latency. An

interesting result of this study was that the low-power GTX 750Ti reduced the av-

erage MemcachedGPU batch latency compared to the Tesla K20c by∼25%, while

also slightly improving peak throughput. This improvement can be attributed to

many of the different architectural optimizations in Maxwell over Kepler [136]

and to the properties of the MemcachedGPU application in a GPU environment.

MemcachedGPU is a memory bound application as there are many memory oper-

ations with little processing per packet. While the Tesla K20c has higher memory
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bandwidth than the GTX 750Ti, the available GPU memory bandwidth is not op-

timally used since each GPU thread handles a separate packet, which reduces the

opportunities for memory coalescing within a warp. Thus, providing little bene-

fit to the Tesla’s higher memory bandwidth. Although the Tesla K20c has 2.6×
more CUDA cores capable of processing more request batches concurrently, the

GTX 750Ti has a ∼61% higher core clock frequency, which can process warps

faster. Additionally, the low processing requirements per packet further reduces

the benefits of the higher computational throughput GPUs.

Finally, the energy-efficiency in Figure 4.17 measures the system wall power

at the peak throughputs. As the packets are being read from memory instead of

from the NIC, the wall power does not account for the power consumed by the

NICs. As such, we also add the TDP for the additional NICs required to support

the increased throughput. For MemcachedGPU, the GTX 750Ti is able to process

over 27% and 43% more GET requests per watt than the Tesla K20c and GTX

Titan respectively.

4.4.6 Comparison with Previous Work

This section compares MemcachedGPU against reported results in prior work. Ta-

ble 4.5 highlights the main points of comparison for MemcachedGPU against

multi-core CPUs [52, 106], an FPGA [26, 85], and an implementation solely using

a GPU for the key hashing [44]. Results not provided in the published work or

not applicable are indicated by ”–”. The cost-efficiency (KRPS/$) only considers

the purchase cost of the CPU and the corresponding accelerator at the time of this

study (2015), if applicable. All other costs are assumed to be the same between

systems. The last column in Table 4.5 presents the year the processor was released

and the process technology (nm).

Table 4.5 also presents our results for the vanilla CPU Memcached and vanilla

CPU Memcached using PF RING to bypass the Linux network stack. No other

optimizations were applied to the baseline Memcached. These results highlight that

while bypassing the Linux network stack can increase performance and energy-

efficiency, additional optimizations to the core Memcached implementation are

required to continue improving efficiency and scalability.
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Table 4.5: Comparing MemcachedGPU with previous work.

Platform MRPS Lat. (µs) KRPS/W KRPS/$ Year / nm
MemcGPU Tesla
(online) 12.9-13

m <800,
p95<1100

62 4.3 ’14/28

MemcGPU Tesla
(online) 9 p95 < 500 45 3 ’14/28

MemcGPU GTX
750Ti (NGD on-
line)

12.85
m <830,
p95<1800

84.8 25.7 ’14/28

MemcGPU GTX
750Ti (offline) 28.3 – 127.3 56.6 ’14/28

Vanilla Memc - 4
threads

0.93
p95<677
- 0.5
MRPS

6.6 2.67 ’13/22

Vanilla Memc +
PF RING- 2 threads

1.82
p95<607
- 1 MRPS

15.89 5.2 ’13/22

Flying Memc [44] 1.67 m < 600 8.9 2.6 ’13/28
MICA - 2x Intel
Xeon E5-2680 (on-
line,4 NICs) [106]

76.9 p95 < 80 – 22 ’12/32

MICA - 2x Intel
Xeon E5-2680 (of-
fline) [106]

156
(avg. of
uni. &
skew.)

– – 44.5 ’12/32

MemC3 - 2x Intel
Xeon L5640 [106]

4.4 – – 12.9 ’10/32

FPGA [26, 85] 13.02 3.5-4.5 106.7 1.75 ’13/40

Aside from MICA [106], MemcachedGPU improves or matches the through-

put compared to all other systems. However, an expected result of batch processing

on a throughput-oriented accelerator is an increase in request latency. The CPU

and FPGA process requests serially, requiring low latency per request to achieve

high throughput. The GPU instead processes many requests in parallel to increase

throughput. As such, applications with very low latency requirements may not be

a good fit for the GPU. However, even near 10 GbE line-rate MemcachedGPU
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achieves a 95-percentile RTT under 1.1ms and 1.8ms on the Tesla K20c (GNoM)

and GTX 750Ti (NGD) respectively.

MemcachedGPU is able to closely match the throughput of an optimized FPGA

implementation [26, 85] at all key and value sizes, while achieving 79% of the

energy-efficiency on the GTX 750Ti. Additionally, the high cost of the Xilinix Vir-

tex 6 SX475T FPGA (e.g., $7100+ on digikey.com) may enable MemcachedGPU

to improve cost-efficiency by up to 14.7× on the GTX 750Ti ($150). While an

equivalent offline study to Section 4.4.5 is not available for the FPGA, the work

suggests that the memory bandwidth is tuned to match the 10 GbE line-rate, poten-

tially limiting additional scaling on the current architecture. This provides promise

for the low-power GTX 750Ti GPU in the offline analysis, which may be able

to further increase throughput and energy-efficiency up to 2.2× and 1.2× respec-

tively. Furthermore, the GPU can provide other benefits over the FPGA, such as

ease of programming and a higher potential for workload consolidation (Section

4.4.4).

Flying Memcache [44] uses the GPU to perform the Memcached key hash

computation, while all other network and Memcached processing remains on the

CPU. GNoM and MemcachedGPU work to remove additional serial CPU process-

ing bottlenecks in the GET request path, enabling 10 GbE line-rate processing at

all key/value sizes. Flying Memcache provides peak results for a minimum value

size of 250B. On the Tesla K20c with 250B values, MemcachedGPU improves

throughput and energy-efficiency by 3× and 2.6× respectively, with the through-

put scaling up to 7.8× when using 2B values.

The state-of-the-art CPU Memcached implementation, MICA [106], achieves

the highest throughput of all systems on a dual 8-core Intel Xeon system with four

dual-port 10 GbE NICs. Similar to MemcachedGPU, MICA makes heavy modi-

fications to Memcached and bypasses the Linux network stack to improve perfor-

mance, some of which were adopted in MemcachedGPU (Section 4.2). Additional

modifications, such as the log based value storage, could also be implemented in

MemcachedGPU. MICA’s results include GETs and SETs (95:5 ratio) whereas

the MemcachedGPU results consider 100% GET requests, however, MICA also

modified SETs to run over UDP, which may limit the effectiveness in practice. Ad-

ditionally, MICA requires modifications to the Memcached client to achieve peak
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throughputs, reducing to ∼44% peak throughput without this optimization. In the

online NGD framework, the GTX 750Ti may improve cost-efficiency over MICA

by up to 17%. MICA presents an offline limit study of their data structures with-

out any network transfers or network processing, reaching high throughputs over

150 MRPS. In contrast, all of the UDP packet data movement and processing is

still included in the offline MemcachedGPU study (Section 4.4.5); however, UDP

packets are read from CPU memory instead of over the network. In the offline

analysis, the GTX 750Ti may improve cost-efficiency over MICA up to 27%. We

were not able to compare the energy-efficiency of MemcachedGPU with MICA as

no power results were presented.

A state-of-the-art GPU key-value store, Mega-KV [184], was published after

the work in this study, which achieves very high performance on a multi-CPU,

multi-GPU, multi-NIC server (e.g., 120+ MRPS). Mega-KV only performs the

key-value look-up on the GPU, all other processing is on the CPU. Additionally,

Mega-KV uses the AES SSE instruction for the hash function (instead of in soft-

ware), smaller minimum sized keys, and a compact key-value protocol indepen-

dent from Memcached’s ASCII protocol. Mega-KV is discussed further in Section

6.1.1.

4.5 Summary
This chapter presented GNoM, a GPU-accelerated networking framework, which

enables high-throughput, network-centric applications to exploit massively paral-

lel GPUs to execute both network packet processing and application code. This

framework allows a single GPU-equipped datacenter node to service network re-

quests at ∼10 GbE line-rates, while maintaining acceptable latency even while

processing lower-priority, background batch jobs. Using GNoM, this chapter de-

scribed an implementation of Memcached, MemcachedGPU. MemcachedGPU is

able to achieve ∼10 GbE line-rate processing at all request sizes, using only 16.1

µJ and 11.8 µJ of energy per request, while maintaining a client visible p95 RTT

latency under 1.1 ms and 1.8 ms on a high-performance NVIDIA Tesla GPU and

low-power NVIDIA Maxwell GPU respectively. We also performed an offline

limit study and highlight that MemcachedGPU may be able to scale up to 2× the
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throughput and 1.5× the energy-efficiency on the low-power NVIDIA Maxwell

GPU. We believe that future GPU-enabled systems, which are more tightly inte-

grated with the network interface and less reliant on the CPU for I/O, will enable

higher performance and lower energy per request.

Overall, this chapter demonstrates the potential to exploit the efficient paral-

lelism of contemporary GPUs for network-oriented datacenter services. However,

a large portion of the GNoM framework presented here, specifically GNoM-host

(GNoM-KM, GNoM-ND, and GNoM-user), is only required because current GPUs

cannot directly receive control information or interrupts from other third party de-

vices in a heterogeneous system through any standard interfaces. As a result, the

CPU acts as a middleman responsible for handling the task management and con-

trol information between a third party device and the GPU. This increases the

latency for launching and handling the completion of GPU tasks, decreases the

energy-efficiency, increases complexity, and reduces the potential for the CPU to

work on other useful tasks. In the next chapter (Chapter 5), we propose modifi-

cations to the existing GPU architecture and programming model to enable third

party devices to launch tasks directly on the GPU.
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Chapter 5

EDGE: Event-Driven GPU
Execution

The previous chapter explored the potential for using GPUs as efficient accelera-

tors for network applications in the datacenter. It highlighted that by offloading

both the UDP network processing and Memcached processing to the GPU in mi-

cro batches, MemcachedGPU could obtain high throughput, low latency, and high

energy efficiency on commodity Ethernet and GPU hardware. However, while

the GPU is responsible for the main processing (UDP packet parsing, Memcached

processing, and UDP response packet generation), and the network data is trans-

ferred directly to the GPU from the network interface (GPUDirect), a complex

host framework, GNoM-host, is required to manage the interactions between the

network interface (NIC) and the GPU. GNoM-host acts as the middleman between

communicating devices, and is a result of a centralized CPU + Operating System

(OS) design, where the CPU is typically responsible for handling IO and managing

control between devices in a heterogeneous system.

This is not a unique property of GNoM or MemcachedGPU. Many other re-

cent works utilize GPUs to accelerate tasks spanning multiple heterogeneous de-

vices. For example, GPUNet [96], GPURdma [38], GASSP [170], and Pack-

etShader [65], accelerate GPU network processing applications interacting with

the CPU and NICs. Other works implement FPGA-GPU-CPU pipelined tasks for

high-throughput processing tasks such as cardiac optical mapping [116] and pedes-
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trian detection [23]. Each of these works require a CPU and/or GPU software run-

time framework to orchestrate the communication of control between an external

device (NIC/FPGA) and the GPU. This chapter 1 explores how to increase the inde-

pendence and control of the GPU to enable third-party devices in a heterogeneous

environment to manage the execution of GPU tasks without interacting with the

CPU on the critical path or requiring CPU/GPU polling software frameworks.

5.1 Motivation for Increased GPU Independence
Figure 5.1 shows a comparison of three systems, in which the same streaming

GPU task is launched repeatedly to process data provided by an external device.

Examples of such applications are listed above. The CPU invokes the same GPU

kernel with different parameters describing the new data to process; however, the

CPU has little to no involvement in the application processing.

In the baseline CUDA programming model, Figure 5.1(a), the CPU is respon-

sible for transferring data to the GPU, configuring the GPU task, and launching the

task on the GPU through one or more CUDA streams (referred to as the Baseline

in this chapter). Under the baseline, if an external device wants to initiate work

on the GPU, it can directly transfer data to the GPU using GPUDirect; however,

control is communicated with the CPU on both ends of the task. This is equivalent

to the GNoM software framework described in Chapter 4. On the front end, the

CPU must wait for work to arrive, either through interrupts or polling, configure

the task for the GPU, and launch the task on the GPU. On the back end, the CPU

must wait for the GPU task to complete, again either through interrupts or polling,

handle the response, and communicate the response back to the device initiating

the work on the GPU. The inclusion of such a CPU software framework for han-

dling IO and managing control of the GPU when the CPU is not the initiator of

the work has many drawbacks. First, the latency to launch tasks and handle the

responses is increased. Second, including the CPU in the critical path increases the

total system energy consumption. Third, the ability for the CPU to work on other

useful tasks is reduced. This is especially important in the datacenter environment,

1A modified version of the material presented in this chapter was later published in the Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT) 2019 [71].
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Figure 5.1: Example of the data and control flow when an external device
launches tasks on the GPU for the baseline CUDA streams, Persistent
Threads (PT), and EDGE.

where workload consolidation is used to increase utilization and efficiency, and to

reduce total costs. Lastly, running any other work concurrently on the CPU can

impact the end-to-end performance of the GPU task by increasing the task launch

and completion latency.

128



0	
0.5	
1	

1.5	
2	

2.5	
3	

3.5	
4	

4.5	
5	

5.5	

Memory	Bound	 Compute	Bound	

Th
ro
ug
hp

ut
	L
os
s	(
X)
	

CPU	 GPU	

Figure 5.2: Evaluating the loss in throughput for CPU compute and mem-
ory bound applications (Spec2006) when running concurrently with and
a GPU networking applications. The GPU’s reliance on the CPU to
launch kernels leads to inefficiencies for both devices.

Consider the experiment in Figure 5.2, which evaluates the performance for

a set of memory and compute bound CPU tasks (Spec2006) concurrently running

with a GPU UDP network ping (GPU-ping) benchmark under the baseline CUDA

system. GPU-ping receives packets directly from an Ethernet NIC in GPU mem-

ory via GPU-Direct. It employs a CPU framework, GNoM-host, to handle NIC

interrupts, manage the launch and completion of GPU kernels, and send the re-

sponse packets to the NIC. Relative to running either application in isolation, the

CPU memory and compute bound applications run 1.17× and 1.19× slower with

GPU-ping, while the peak GPU-ping packet rate is reduced by 4.83× and 2.54×,

respectively. This is a direct result of requiring the CPU to manage control of

the GPU on the critical path of the streaming GPU application. As such, there is a

need for enabling external devices to efficiently communicate both data and control

directly with the GPU.

Persistent threads (PT) are an alternative technique for programming and

129



0	

1	

2	

3	

4	

5	

6	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

Large	Kernel	 Small	Kernel	 Active	Idle	

Ex
ec
ut
io
n	
Ti
m
e	
(X
)	

Po
w
er
	(X

)	
Power	 Execution	Time	
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launching tasks on the GPU and are discussed in more detail in Section 2.1.7.

With PT and RDMA, data and control is able to flow directly into the GPU’s

memory and software schedulers, relaxing the requirement for the CPU to be

involved, as shown in Figure 5.1(b). However, the increased flexibility of

PT, enabled by the software thread schedulers, can impact performance and

energy efficiency depending on the size of kernels and the rate at which tasks

are launched. PT also increases the code complexity, as the programmer is now

responsible to implement the task launching, task scheduling, and synchronization

logic. Additionally, by definition PT indefinitely consumes GPU resources for

the persistent CTAs (pCTAs), which limits the potential for other kernels to

concurrently use the GPU. As described in Section 2.1.5, recent proposals for

GPU preemption [33, 92, 126, 131, 143, 157, 162, 176] can enable the pCTAs to

be preempted. However, preempting and resuming the pCTAs reduces the benefits

of having GPU threads continuously polling for work.
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Furthermore, with PT the GPU’s software scheduler threads are constantly

polling for new work (red execution bars in Figure 5.1(b)), which can impact

energy efficiency under varying task rates. Consider the example in Figure 5.3,

which evaluates the power and performance of a CTA-level PT framework relative

to the baseline GPU system performing a continuous stream of multiple matrix

multiplications on two matrix sizes; small (2 CTAs / kernel) and large (120 CTAs /

kernel). With the large kernel, PT is not able to take advantage of the GPU’s hard-

ware CTA schedulers, since this is now handled in software. As a result, less time

is used for performing the matrix multiplication to perform the scheduling tasks,

which lowers power by 45%, but increases execution time by 5.58×, consequently

increasing energy. PT perform very well with small kernels, since the overheads

for kernel launching and scheduling in the baseline system are higher relative to the

amount of work to perform. This enables PT to spend more time performing the

matrix multiplication, which increases power by 20%, but significantly decreases

execution time by 2.9×, hence lowering energy. Finally, the polling nature of PT

increases power consumption by 13% when no tasks are pending, relative to a GPU

without PT in a high power state (p2), indicated by Active Idle.

Each technique described above poses a trade-off between the amount of con-

trol a GPU has and the efficiency it can provide. As such, there is a need for a

technique that achieves the performance and complexity of the baseline CUDA

model with the flexibility of the persistent thread model. This chapter proposes

an event-driven GPU execution technique, EDGE, which is a form of GPU active

messaging [46]. Event-driven programming is an alternative style of programming

compared to threads, where programs are broken down into fine-grained pieces of

code, callbacks, or event handlers, responsible for performing specific operations

in response to IO events [37, 54, 140]. The event handlers can be triggered via

interrupts or called in a continuously running event loop. The motivation behind

EDGE is that by enabling GPU kernels to be triggered by external events, any

device in a heterogeneous system can launch work on the GPU without requiring

CPU interaction or GPU polling software frameworks. This can improve perfor-

mance, efficiency, and server utilization, while reducing complexity.

The resulting control and data flow for EDGE is shown in Figure 5.1(c). Here,

the CPU is required only to initialize the kernel once and then both the data and
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control is transferred directly from the external device to the GPU, removing the

CPU from the critical path and freeing it up to work on other tasks.

Additionally, this chapter proposes a new form of CTA barrier, the wait-release

barrier, which enables running CTAs to halt execution indefinitely until another

CTA releases the barrier in response to some external event. This is useful to help

reduce the polling overheads of the persistent GPU thread style of programming,

while retaining the benefits of having persistent CTAs ready to immediately begin

processing the kernel.

The following section discusses the various design alternatives and require-

ments for supporting event-driven execution on a GPU.

5.2 Supporting Event-Driven GPU Execution
EDGE has three main requirements. First, the GPU needs to know which code

to execute and which data to operate on for a given event. In the baseline CUDA

model, a user-level CPU process passes the task and parameter information to the

GPU driver via the CUDA API, which configures the GPU kernel and transfers it

to the GPU to be executed. However, the GPU driver runs in the operating sys-

tem (kernel) space, which introduces a dependence on the CPU for configuring

and launching GPU tasks. Alternatively, in-memory user-level work submission

queues provide a mechanism for configuring the GPU kernel without operating in

the privileged kernel space or requiring the use of a device-specific API. With in-

memory work queues, the initiator of the GPU task writes the task to run and the

input parameters directly to pre-defined memory locations using regular store in-

structions. Once notified of the pending task (described below), the GPU can read

this information, configure the task, and then execute the task. Additionally, user-

level work queues support independently configuring and triggering GPU kernels

concurrently from different processes or devices. There have been multiple dif-

ferent proposals for using in-memory, user-level work queues for communicating

tasks with the GPU to improve multi-process support, reduce GPU kernel launch

latency, or interact directly with GPU threads, such as NVIDIA’s Multi-process

Service (MPS) [129], the Heterogeneous Systems Architecture (HSA) [55], and

the persistent GPU thread frameworks described above. In-memory work submis-
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sion/completion queues are also used to enable a CPU to communicate with exter-

nal devices, such as NVME [49]. As such, EDGE utilizes in-memory work queues

to communicate tasks and data from a third-party device with the GPU, which is

described in Section 5.4.1.

Second, there must be a method to notify the GPU of a pending task and sched-

ule that task on the GPU. Assuming in-memory, user-level work queues are used

to submit tasks to the GPU, there are multiple different techniques to achieve this.

In MPS, a CPU daemon process identifies when tasks have been submitted to the

work queues and launches the task on the GPU from the CPU. While this reduces

the requirements of the user-level process for launching the task (i.e., the user-level

process does not need to communicate with the GPU driver through the CUDA

API), it still requires the CPU to communicate the task with the GPU via the dae-

mon MPS process. In PT, persistent GPU threads poll the in-memory work queues

to identify when new work is available. As discussed above, this polling can have

negative impacts on performance, efficiency, and complexity . In HSA, a “Packet

Processor” handles packets inserted into the work queues and initiates the task on

the GPU. The HSA Programmer’s Reference Manual [55] states that the Packet

Processor is generally a hardware unit and may reside on either the device initiat-

ing the task (e.g., the CPU) or the device where the task will run (e.g., the GPU).

The device initiating the task writes into a “doorbell register” associated with the

work queue to notify the Packet Processor that a new task is available. In the con-

text of a GPU, for example, the Packet Processor could be a dedicated hardware

unit or a small scalar processor residing on the GPU. A dedicated hardware unit

would provide a low-latency and high-efficiency path for identifying when a new

task is available and for scheduling the task to be executed on the GPU. However,

a dedicated hardware unit would also limit the types of operations that can be per-

formed on an event. On the other hand, a small GPU-resident, scalar processor

would provide the flexibility to implement any type of operation with additional

hardware overheads. Depending on the GPU architecture, such scalar cores may

already exist on the GPU [10].

In EDGE, we explore an alternative technique, which exploits the abundance of

available computing resources on the GPU, the streaming multiprocessors (SMs),

to act as the Packet Processor. Similar to PT, GPU threads are used to read the
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in-memory work queues to configure and launch the GPU task, referred to as priv-

ileged GPU warps (PGW). However, unlike PT, PGWs are launched in response

to an external event instead of continuously polling the in-memory work queues.

To support the scheduling of PGWs, EDGE exposes a light-weight, warp-level

preemption mechanism on the GPU that can be triggered by any device in the

system. PGWs can implement a set of OS-like abstractions to increase the inde-

pendence of the GPU, such as launching internal GPU kernels or ensuring fairness

between competing tasks, and can be initiated via interrupts or writes to doorbell

registers. The PGWs can also be used to release any persistent CTAs blocked on

the proposed wait-release barriers to reduce the overheads of PT polling. Using the

software PGWs to launch event kernels, which may require preemption to begin ex-

ecuting, trades off generality for performance (e.g., when compared to a dedicated

hardware unit). In EDGE, we also consider the possibility of using a dedicated

hardware unit to trigger the execution of event kernels, which would significantly

reduce the event kernel scheduling latency. PGWs and the warp-level preemption

mechanism are described in Section 5.3.

Finally, the latency to trigger events on the GPU should be minimized. In

EDGE, we make the observation that GPU kernels in a streaming application

typically have similar, if not identical, configurations. For example, the Mem-

cachedGPU kernel performs the same task (key-value lookup), on the same number

of packets, with the same set of parameters pointing to different buffers in memory

populated by the NIC. In a cardiac optical mapping application [116], the FPGA

triggers the same GPU image processing kernel on different images with the same

dimensions. However, all of the kernel configuration parameters must be speci-

fied for every GPU kernel launch. EDGE exploits this opportunity by providing

a platform to register pre-configured event kernels with the GPU. Event kernels

are associated with an ID, which can be specified by the device initiating the task

through an interrupt or doorbell register. If the format of the next kernel and the

location of the next kernel’s parameters are known a priori, event kernels can be

efficiently scheduled from the PGWs with little to no additional information aside

from the event kernel ID. Event kernels are discussed in Section 5.4.

Previous work, XTQ [101], has also evaluated active messaging for GPUs

to reduce GPU kernel launch overheads by modifying Infiniband NICs to sup-
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port the HSA user-level in-memory work queues via remote direct memory access

(RDMA). In XTQ, the complexity is pushed to the Infiniband NIC, such that any

remote agent can directly write to the HSA user-level work queues via the Infini-

band NIC to launch a task on an HSA-enabled GPU without requiring interaction

with the CPU. In contrast, EDGE pushes this complexity to the GPU, such that any

external device capable of interacting with the GPU can launch a task directly on

the GPU. EDGE also explores using PGWs as the Packet Processor for managing

the launching of tasks submitted to user-level in-memory work queues. XTQ is

described further in Chapter 6.

The next sections describe the GPU interrupt mechanism, GPU privileged

warps, fine-grained warp-level preemption, event kernels, and the wait-release

barriers in more detail.

5.3 GPU Interrupts and Privileged GPU Warps
As described in the previous section, EDGE explores utilizing privileged GPU

warps (PGW) to perform higher level operations, such as internally scheduling

tasks on the GPU or releasing CTA barriers, corresponding to an external event.

However, a mechanism is required to initiate the execution of the PGWs to avoid

continuous polling, as is done in PT. In this section, we present the design of a GPU

interrupt architecture and propose modifications to the current GPU architecture to

efficiently support fine-grained, warp-level GPU preemption to trigger the PGWs.

Interrupts provide a simple path for any device in a heterogeneous system to

signal an event to the GPU. While traditional interrupts require dedicated inter-

rupt lines, message signaled interrupts (MSI) are an alternative in-band method of

sending interrupts over the same bus used to communicate with a device, support-

ing significantly more interrupt handlers. For example, PCIe, the communication

bus typically used with discrete GPUs, supports up to 2048 different interrupts

through MSI-X 2. As such, any device that can send a message to the GPU over

PCIe can also signal a variety of interrupts on the GPU.

While interrupts provide a mechanism for signalling devices of an event, in-

terrupts can negatively impact tail latencies. For example, consider a distributed

2MSI-X is supported in PCIe 3.0 and higher.
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networking or map-reduce task, which spawns off multiple different operations in

parallel to solve a given problem. A delay in one of the parallel operations will

delay the entire task [40]. As such, it is desirable to maintain low and predictable

delays. A single interrupt on a traditional CPU running an OS results in multiple

operations: an interrupt is received by an interrupt controller (IC), a CPU core is

selected and notified of the interrupt, any application running on the interrupt core

must be temporarily suspended, the core jumps to an interrupt descriptor table in

the OS, which queries the IC to perform the corresponding task for the interrupt,

and finally the interrupt is either processed in place or scheduled to be processed

at a later time. Each of these operations introduces uncertainty into the latency

for a task dependent on an interrupt. As a result, applications with low latency

requirements typically resort to some form of polling, which can negatively im-

pact energy under low task rates. However, there are fundamental differences in

the GPU’s hardware and software compared to a CPU that can mitigate these chal-

lenges. First, GPUs contains hundreds of cores and thousands of thread contexts,

each potentially capable of handling an interrupt. At any given time, there may

be a free thread context available to process an interrupt without requiring context

switching (necessary on a CPU to handle an interrupt when currently processing

another task), even if another application is currently running on the GPU. Second,

current GPUs are offload accelerators that rely on hardware task schedulers, instead

of an OS, to improve performance. As such, the latency from receiving an interrupt

to running the interrupt service routine (ISR) may be reduced. Finally, GPUs are

throughput oriented architectures, which are designed to tolerate long latency in-

structions by running multiple warps concurrently. Assuming that a warp selected

to handle an interrupt is not blocking any other warps (e.g., at a synchronization

barrier), the GPU application can still make progress through other concurrently

running warps, whereas on a CPU, the interrupted task may be blocked from mak-

ing progress during the interrupt processing.

In EDGE, we propose a fine-grained warp-level preemption mechanism, initi-

ated by a GPU interrupt (or write to a doorbell register), that reduces the impact

on concurrently running tasks and enables any warp to be a candidate for handling

an external event. To use this mechanism, EDGE reserves certain interrupt vec-

tors for user-space processing, such that any device can directly signal the GPU
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Figure 5.4: EDGE interrupt partitioning.

to begin work corresponding to a specific interrupt vector. EDGE also supports

timer interrupts, which are useful for scheduling tasks that need to run periodi-

cally. Timer interrupts could be used to, for example, support time multiplexing of

GPU resources as a method to coalesce interrupts, or to reduce the external device

complexity by removing the need for the device to send an interrupt to initiate work

by scheduling regular queries to the in-memory work queues.

5.3.1 Interrupt Partitioning and Granularity

Similar to the Linux interrupt handling mechanism, EDGE is designed with a no-

tion of a top-half and bottom-half [35], as shown in Figure 5.4. The top-half is a

privileged piece of code capable of performing a programmable set of operations.

It is responsible for determining the cause of the interrupt and for configuring and

scheduling the user-defined operation, the bottom-half, accordingly by triggering

the launch of a GPU kernel, referred to as an event kernel (Section 5.4.1). This

partitioning keeps latency low for the immediate processing stages of the interrupt,

while enabling the GPU to defer the scheduling of the interrupt handler’s bottom-

half, which may require considerably more processing with a configurable priority.

Additionally, once scheduled, the bottom-half event kernel can utilize the efficient

hardware kernel and thread schedulers like any other kernel, which minimizes the

modifications required to the GPU architecture to support EDGE.

EDGE reduces the impact of processing control messages within the GPU

through fine-grained, warp-level interrupt handling. GPUs contain multiple SMXs

and warp contexts, which can all be candidates to handle the interrupt. For ex-

ample, the NVIDIA GeForce 1080 Ti supports up to 64 warps per SMX, with 28

SMXs, for a total of 1792 warp contexts. If all warps are occupied, a single warp

must be preempted; however, if a free warp context is available, no preemption
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is required. The ability for the interrupt to be processed by an idle or underuti-

lized SMX can reduce the impact on concurrently running GPU kernels, as well as

reduce the latency to schedule and process the interrupt (Section 5.6.1).

5.3.2 Privileged GPU Warp Selection

The PGW is similar to any other warp in the GPU, with the main difference be-

ing that it does not belong to a user-level kernel or CTA – it is a system-level

warp. The anticipated operations to be performed by the PGW (the ISR) are in-

herently sequential, such as launching an event kernel or releasing CTA barriers.

Consequently, the SIMD aspects of the warp may go underutilized, indicating that

a dedicated hardware unit or scalar processor may be more appropriate. However,

using an existing GPU warp to handle these operations removes the need for ad-

ditional hardware and enables future operations that may benefit from the SIMD

architecture. Additionally, the current proposed ISR operations for the PGW re-

quire minimal processing, which mitigate the inefficiencies of using a warp for

sequential processing.

When an external or internal event is triggered, EDGE must select a PGW warp

to handle the event. We consider four possibilities for selecting a PGW: (1) utiliz-

ing dedicated hardware for the interrupt warp context (Dedicated); (2) reserving

existing warp contexts (Reserved); (3) selecting a free warp context ((Free)); and

(4) preempting a running warp context with some selection policy (e.g., Oldest or

Newest warp).

Qualitatively, the trade-offs between these approaches are as follows: (1)

Adding dedicated hardware for PGWs or adding small scalar cores on the GPU

guarantees that the interrupt can run immediately (i.e., no preemption is required

as dedicated computing resources are always available to process an interrupt).

However, this requires additional hardware resources for managing the PGW and

CTA contexts (e.g., program counter, special registers, SIMT stack, local memory)

or for any specialized processing units. For example, AMD’s Graphics Cores

Next (CGN) Architecture describes scalar cores integrated within the Compute

Units, which could be used to process an event. Furthermore, as described

above, the sequential nature of the PGW ISR operations could limit the additional
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hardware required, while still reusing the existing SIMD execution pipeline and

warp schedulers. For example, the PGW may not require a SIMT stack to track

divergent warp threads, wide register-file to support warp-wide register accesses,

CTA barrier management, or special thread / CTA dimension registers. While

the hardware overheads may not be high, this chapter focuses on exploring the

potential for reusing the existing GPU computing resources.

(2) Reserving specific warp contexts from the existing set of warps for PGWs

achieves the performance benefits of additional dedicated PGW resources without

any of the hardware overheads. However, reserving PGW resources reduces the

amount of available parallelism that an application can exploit by the number of

warps reserved for the PGWs. In such a case, applications that fully utilize the

GPU resources will be negatively affected, even when the PGW is not executing.

(3) If there are unused warp contexts available, for example, due to a GPU

application underutilizing the GPU resources, selecting a free warp does not re-

quire additional hardware for the PGW context, does not permanently reduce the

parallelism available to an application, nor does it delay the time to schedule the

PGW. However, a free warp context may not be available if one or more active

GPU applications fully utilize the GPU’s resources, which would require blocking

the PGW until a free warp becomes available.

(4) Lastly, preempting a running warp enables the interrupt handler to run once

the running warp has been properly halted and preempted, does not require addi-

tional hardware for the PGW context, and only temporarily reduces the available

thread contexts available to an application. However, preempting a running warp

increases the latency to schedule the PGW and requires additional hardware to sup-

port the warp-level preemption. The selection policy of a PGW to preempt, referred

to as the victim warp, is important to minimize both the latency to preempt to the

victim warp and the impact on the runtime of the victim warp’s CTA. In this disser-

tation, we evaluate selecting the oldest and newest warp within a CTA as the victim

warp. The evaluation of more complex victim warp selection policies, which also

increase the hardware complexity of EDGE, is left to future work. Section 5.6.1

evaluates and compares the different PGW selection policies and highlights that

EDGE can achieve similar performance by preempting running warps instead of

adding dedicated PGW hardware or reserving existing warps for the PGWs.
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The main challenge with interrupting a running warp is minimizing the latency

required to preempt the warp, which is discussed further in the following section.

5.3.3 Privileged GPU Warp Preemption

EDGE preempts warps at an instruction granularity, meaning that it does not wait

for a warp in a CTA to complete all of its instructions before preempting. Instead,

the warp is preempted as soon as possible. This minimizes the latency to pre-

empt a running warp at the cost of increased preemption complexity. To correctly

save a warp’s context and minimize complexity, any pending (un-executed) instruc-

tions are first flushed from the pipeline prior to starting the ISR. Depending on the

state of the victim warp to preempt for a PGW, or the instructions currently in the

pipeline, the victim warp preemption latency can be quite large. The terms “victim

warp preemption latency” and “ISR scheduling latency” are used interchangeably

in this dissertation.

We identify four main causes for large victim warp preemption latencies: (1)

low scheduling priority for the victim warp, (2) pending instructions in the instruc-

tion buffer (i-buffer), (3) victim warps waiting at barriers, and (4) in-flight loads.

(1) To ensure that the victim warp completes its current instructions promptly, the

victim warp’s priority is temporarily increased. This overrides the GPU’s current

warp scheduling policy, such as greedy-than-oldest (GTO) or round robin, and

schedules the victim warp as soon as it is ready until all in-flight instructions have

completed.

(2) Flushing any non-issued instructions from the i-buffer limits how many

instructions the PGW needs to wait for before being able to preempt the victim

warp. This can further increase the execution time of the victim warp, if the flushed

instructions are evicted from the instruction cache before being restored. However,

assuming the victim warp is not the final warp in the CTA, the GPU’s FGMT

mitigates the impact by hiding the instruction fetch latency through executing other

warps.

(3) A victim warp waiting at a barrier is a perfect candidate for interrupting,

since the warp is currently sitting idle waiting for other warps in the CTA to hit the

barrier. As such, preempting this warp may not impact the CTA’s progress. How-
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ever, special care needs to be taken to ensure that the victim warp is conditionally

re-inserted into the barrier when the ISR completes depending on if the barrier has

been released or not.

(4) Finally, in-flight load instructions can be dropped and replayed for victim

warps, which significantly decreases the variability in preempting a running warp,

since load instructions potentially have a much higher latency than ALU opera-

tions. Dropping loads involves releasing the miss-status holding register (MSHR)

entry for the pending load, releasing the registers reserved in the scoreboard, and

rolling back the program counter to the dropped load instruction such that the vic-

tim warp re-executes the load instruction once being rescheduled after the ISR.

Additionally, a register is required to store the address of the dropped load to iden-

tify and discard the load when it has returned from the memory subsystem. The

load can still be safely inserted into the cache, which decreases the latency to replay

the load.

Section 5.6.1 evaluates the impact of applying the above victim warp flushing

techniques on the ISR scheduling latency.

Preemption requires saving the victim warp’s state prior to switching to the

PGW and requires restoring the victim warp’s state after the PGW completes.

When preempting a running victim warp context, the PGW can make use of the

victim warp’s SIMT stack to save the program counter and warp divergence state,

since the SIMT stack already contains the full history of the victim warp’s execu-

tion state. Then, a new entry for the PGW’s ISR can be pushed onto the victim

warp’s SIMT stack to configure the PGW’s execution state. When the ISR com-

pletes, an interrupt return function can pop the PGW’s entry off of the SIMT stack

to resume execution of the interrupted victim warp. Additionally, any registers used

by the PGW must be saved and restored. We allocate a small region of global mem-

ory per SM to save the victim warp’s registers. This could also be implemented as

a small on-chip buffer to reduce the PGW preemption latency.

5.3.4 Privileged GPU Warp Priority

Along with minimizing the time to schedule a PGW, the ISR runtime should be

minimized. This reduces the latency to begin performing the actual task for the
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Figure 5.5: Interrupt controller logic (reference Figure 5.7).

corresponding event and reduces the amount of time the victim warp is blocked

from performing its original task. In Section 5.6.1, we evaluate two techniques for

minimizing the ISR runtime: prioritizing the PGW’s instruction fetch and schedul-

ing, and reserving its entries in the instruction cache. The ISR code can be very

small, requiring only a few entries in the instruction cache. For example, the cur-

rent ISR implementation in EDGE occupies only three cache lines. We find that

the ISR execution time is significantly reduced when the PGW never misses in the

instruction cache.
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5.3.5 Interrupt Flow

Figure 5.5 presents the high-level EDGE interrupt controller logic, which is im-

plemented in hardware. The numbers in this figure indicate which parts of the GPU

hardware shown in Figure 5.7 are responsible for performing the operation. The

interrupt controller is split into a global interrupt controller (G-IC) and per-SMX

local (L-IC) interrupt controllers. When an interrupt is received by the G-IC, it first

checks if this is an EDGE interrupt or a GPU-wide interrupt. If an EDGE interrupt,

an SMX is selected to service the interrupt based on a selection policy, such as sim-

ple round-robin or a more complex policy that selects the SMX with the most free

resources. The GIC then pushes the interrupt metadata, such as the event KMD

described in Section 5.4.2, into a queue in the SMX’s L-IC. At this point the SMX

and L-IC are responsible for processing the interrupt and the G-IC can safely clear

the interrupt. Additionally, because each SMX has its own L-IC, there is no con-

tention between concurrently running interrupts on different SMXs. The selected

SMX then selects a victim warp to interrupt based on the available hardware and

PGW selection policy (Section 5.3.2). If the victim warp is currently active, it is

flushed through the pipeline using the techniques described in Section 5.3.3. Next,

a PGW entry is pushed onto the victim warp’s SIMT stack with the interrupt vector

PC. Finally, the PGW priority for instruction fetch and scheduling is increased to

minimize the total ISR runtime.

Figure 5.6 presents the software ISR flow performed by the PGW. The ISR first

saves any registers that will be overwritten, if necessary. Depending on the number

of registers required for the PGW, additional hardware for dedicated PGW registers

could also be added to avoid saving the victim warp’s registers. The PGW then

communicates with the L-IC to determine the cause of the interrupt and proceed

accordingly. Section 5.4 discusses the operations that the ISR may perform to

orchestrate event-driven GPU execution.

5.3.6 Interrupt Architecture

Figure 5.7 presents the modifications to the current GPU architecture required

to support fine-grained, warp-level preemption initiated by interrupts. The G-IC

7 , which is part of the GPU front-end 3 , requires logic to identify the EDGE
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interrupt and select an SMX L-IC 8 to process the interrupt. The SMX selection

policy could take many factors into account, such as identifying the SMX with the

lightest load or with free warps available to avoid warp preemption, or use a more

simple policy, such as round-robin. The interrupt is then forwarded to an SMX L-

IC. Enabling this division between G-IC and L-IC requires new connections 9 , or

can make use of the existing connections between the SMX scheduler and SMXs.

The L-IC requires control registers to store the PC corresponding to the GPU’s

interrupt vector 10 , which may be able to use the existing IC metadata registers.

The L-IC also maintains pending interrupt queue 13 for interrupts assigned to it,

which in EDGE, contains metadata describing the event kernel to launch (Section

5.4.2). In the steady state, with 28 SMXs and a single pending interrupt queue

entry, the ISRs can at most take 28× as long as the interrupt period. The correct

depth of the pending interrupt queue depends on the distribution of the arrival rate

of interrupts. The L-IC requires logic for identifying and selecting a victim warp

for the PGW 11 based on some policy (free, newest, oldest, etc), which can poten-

tially make use of the existing warp scheduler logic. Once selected, the L-IC needs

to flush the victim warp 12 . The logic for the victim warp flushing optimizations

(Section 5.3.3) includes modifications to the warp scheduler to prioritize individ-

ual warp scheduling, manipulating valid bits to flush entries from the instruction
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by [87, 111, 155, 175]. EDGE components are shown in green.

buffer, invalidating MSHR entries (or equivalent structure for in-flight loads), a

victim warp ID register to identify and drop in-flight loads, and a register to in-

dicate if a victim warp should return to a warp barrier after completing the ISR.

EDGE also requires logic to lock instruction cache entries for the ISR. Finally, the
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pending interrupt queue in each SMX requires 168B to store four pending events.

The PGW communicates information about the interrupt with the L-IC as a

memory-mapped component via load and store instructions to special addresses.

In our implementation, EDGE reserves certain memory addresses to access the

components described above, such as the pending interrupt queue. This API could

also be implemented using specialized instructions.

5.4 Event-Driven GPU Execution
GPU interrupts and the PGW warp-level preemption mechanism provide a path

for initiating and managing tasks on the GPU without requiring CPU intervention.

However, supporting this form of GPU task execution has several requirements.

Specifically, external devices need to be able to specify which work to perform,

what data to perform the work on, and determine when work has completed execu-

tion on the GPU. To address these requirements, this section proposes a new type

of GPU kernel, the event kernel, a host API for pre-configuring event kernels and

corresponding data, GPU hardware structures for storing the event kernel meta-

data, and user-level work queues to communicate task initiation and completion.

This section also proposes a new form of CTA barrier instruction, the wait-release

barrier, which enables CTAs to halt execution until an external event releases the

barrier through a PGW. Wait-release barriers are useful for persistent-thread style

programming models to avoid continuously polling external memory for new tasks.

5.4.1 Event Kernels

An event kernel is a user-defined GPU kernel, which is launched internally by

a PGW running on the GPU in response to an internal or external event. Once

launched, an event kernel is identical to any normal GPU kernel. In a traditional

GPU environment, the CPU is required to configure and launch every GPU kernel.

EDGE relaxes this requirement if the same kernel is repeatedly launched on differ-

ent input data (e.g., a network processing kernel when a group of packets arrive).

In such cases, the kernel needs to be configured only once and an external device

can directly trigger the execution of this kernel without unnecessarily involving

the CPU. The following section describes how EDGE enables an event kernel to
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concurrently support multiple kernel parameter memories to communicate with an

external device.

Event Submission and Completion Queues

In current deployed systems, the host communicates data to the GPU through

global and kernel parameter memory (which may be separate or part of the same

physical memory). Large input and output buffers are stored in global memory,

while the kernel parameter memory stores pointers to these buffers. The host CPU

configures and communicates these buffers with the GPU through the GPU driver

when launching a kernel. EDGE exploits the fact that the same event kernel will

have the same parameter memory structure (i.e., the same type, number, and order

of parameters), but works on different data. As such, the parameter memory could

be pre-configured, removing the need to repeatedly configure it on the CPU from

the critical path.

To communicate data and task status with the GPU, EDGE implements a pair

of in-memory circular queues, called the event submission queue (ESQ) and event

completion queue (ECQ), shown in Figure 5.8. These queues are similar to those

used in persistent threads, NVIDIA MPS [129], and HSA [55] as a mechanism for

launching tasks and managing task completion. However, unlike NVIDIA MPS

and HSA, the ESQ and ECQ are tailored to a specific event kernel structure, as

described below. The ESQ is stored in GPU memory and the ECQ is stored in
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external memory (e.g, CPU memory or a third-party device’s memory). Each ESQ

entry (ESQe) contains a list of kernel parameters corresponding to a specific event

kernel, optional event kernel metadata, and a pointer to the corresponding ECQ en-

try (ECQe) to signify the completion of an event. When launching an event kernel,

the PGW simply sets the event kernel parameter memory to the current ESQe in the

ISR (Figure 5.6). Since the event kernel parameter memory is pre-initialized, sub-

sequent event kernels only need to update the kernel parameter memory to the next

ESQe. Other required information, such as the event kernel dimensions, are al-

ready known from the event kernel pre-registration process. The ESQe can also be

configured to store optional event kernel metadata (e.g., kernel dimensions), such

that each event kernel structure can be dynamic between invocations. We refer to

this as a modifyable event kernel. The PGW is responsible for updating the event

kernel metadata (KMD) structure with the optional metadata specified in the ESQe.

However, dynamically configuring the event kernels increases the ISR runtime, as

the ESQe are stored in global GPU memory. There is a one-to-one mapping be-

tween an ESQe and ECQe, which the GPU uses to signal event kernel completion.

The size of an ESQe is dictated by the number and size of kernel parameters. The

size of an ECQe is 4 bytes. The number of entries in the circular queues dictates

the maximum number of in-flight events.

EDGE provides an API for registering an event kernel and allocating the ESQ

(Table 5.1), which is described in more detail in Section 5.4.1. EDGE is respon-

sible for allocating the ESQ in GPU memory based on the structure of event kernel

parameters and maximum number of in-flight events, which are specified by the

CPU during event kernel registration. A pointer to the ESQ is returned to the CPU.

The CPU is then responsible for allocating the ECQ in external device memory,

pre-allocating the GPU input/output buffers, assigning the corresponding ECQe

pointers, and setting the kernel parameters (GPU buffer pointers and any constant

parameters) in each ESQe. Note that this requires pre-allocating kernel parameters

for all possible in-flight event kernels (size of the ESQ). The CPU then communi-

cates this information (ESQ and ECQ) with the external device that will launch the

tasks on the GPU.

The external device maintains a single head and tail pointer for both the ESQ

and ECQ to manage event kernel launching and completion (Figure 5.8). To
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launch an event kernel, the external device checks the status of the head in the

ECQ. If free, the kernel parameters in the ESQe at head can be filled with the data

for the next event kernel. The external device then sends an interrupt to the GPU,

which triggers the execution of the next event kernel on the GPU, and increments

head. The queue is full if incrementing head reaches the tail. The external de-

vice uses the tail to identify when an event kernel has completed and the output

buffers contain valid data. This is indicated by Done in an ECQe, which is up-

dated by the GPU through an ECQe pointer specified in the ESQe. The external

device is responsible for consuming the output buffers, setting the ECQe to free,

and incrementing the tail to the next in-flight event.

As described, the proposed structure of the ESQ and ECQ results in in-order

task submission and completion; the external device can not push a new request

into the head of the ESQ until the corresponding tail in the ECQ is free. This

limitation could be removed by adding complexity to the external device and GPU,

for example, by having the GPU send interrupts to the external device to signal

event completion. Note that the GPU is invoked only once a valid event has been

configured at the head and an interrupt has been issued. As such, the GPU requires

only a head pointer to keep track of the next ESQe to process, while the ECQe to

signal completion is specified in the ECQ.

Event Kernel Priority and Preemption

As described in the previous section, the PGWs begin execution via warp-level pre-

emption when no free warp contexts are available to process the interrupt. How-

ever, event kernels launched by the PGWs are regular GPU kernels, which are

usually much larger than a single warp and make use of the baseline GPU hard-

ware task/thread schedulers. Consequently, if other kernels are currently occupying

the GPU, the event kernels will be blocked until sufficient resources are available.

Similar to existing host and GPU-launched kernels, the priority of an event kernel

is configurable. This can enable high-priority tasks to maintain a level of QoS in

an environment where other GPU tasks are run concurrently. Furthermore, EDGE

may use many recently proposed preemption and context switching mechanisms,

either existing [126] or research-based [33, 92, 143, 157, 162, 176], to enable a
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edgeEventId = edgeRegisterEvent<<<paramType0,... paramTypeN>>>(
kernelPointer, &eventQueuePointer,
gridDimensions, blockDimensions,
sharedMemorySize, maxNumOfEvents,
priority, isModifyable)

edgeUnregisterEvent(eventId)
edgeScheduleEvent(eventId)
EDGE GPU MSI-X Interrupt (eventId)
edgeReleaseBarrier()

Table 5.1: EDGE API extensions.

higher priority event kernel to preempt a lower priority host launched GPU kernel

or other lower priority event kernel.

We evaluate two variations of CTA draining preemption for event kernels, P1

and P2, which are modified versions of the mechanism proposed in [162]. These

preemption mechanisms partially preempt a running kernel by blocking any non-

event kernel CTA launches until enough resources are available to begin executing

the event kernel. In P1, once the event kernel has scheduled all of its CTAs, any

non-event kernel CTAs may be scheduled when enough resources are available.

However, in P2, scheduling any non-event kernel CTAs is completely blocked until

the event kernel completes. P2 places a higher priority on the event kernel than P1.

Event Kernel API

Table 5.1 presents extensions to the GPGPU API (e.g., CUDA or OpenCL) re-

quired to support EDGE. These functions enable the CPU to register an event ker-

nel with the GPU, configure the parameter memory for the ESQ, and trigger or

schedule event kernel launches.

Registering an event kernel is similar to launching a kernel through the baseline

CUDA API. The main differences are that the kernel launch is delayed by storing

the kernel metadata structure on the GPU, which consists of the kernelPointer to

specify the GPU kernel function to execute for this event, the kernel dimensions

(gridDimensions and blockDimensions) to specify the shape of the event kernel,

and the sharedMemorySize to specify the amount of shared memory required by
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the event kernel. Additionally, the parameter memory structure is provided instead

of passing actual parameters, indicated by paramType# in the angle brackets. This

enables EDGE to allocate the correct size for each ESQe. The priority of the event

kernel is set through priority. The event kernel can also be marked as modifyable

via the isModifyable flag, as described previously. The event registration allocates

the ESQ as described in Section 5.4.1, with the total size of the queue being spec-

ified by the maximum number of in-flight event kernels (maxNumOfEvents) and

the size of the event kernel parameters, and is returned in eventQueuePointer. The

CPU is required to configure each ESQe accordingly, which consists of allocating

the necessary CUDA buffers in GPU-accessible memory and updating the buffer

pointers in the ESQ. All interactions with the ESQ are performed through generic

memory accesses. Finally, the corresponding edgeEventId is returned, which is re-

quired to specify which event kernel to trigger on an interrupt, as described below.

An event kernel and the corresponding ESQ can be freed through edgeUnregis-

terEvent(edgeEventId).

Once registered and configured, any device capable of sending MSI-X

interrupts can trigger the event kernel by sending an interrupt message with

the edgeEventId as the interrupt identifier. EDGE also provides an alternative

path to trigger an event kernel directly from the CPU through edgeSched-

ulEvent(edgeEventId), which launches the event kernel corresponding to the

edgeEventId using the ESQ interface.

The function, edgeReleaseBarrier() is described in Section 5.4.3.

5.4.2 EDGE Architecture

Returning to Figure 5.7, we present the modifications to the baseline GPU ar-

chitecture required to support EDGE, indicated by the components in green. The

main additional hardware components for supporting GPU launched event kernels

are the storage buffers for the Pending Interrupt Queue 13 in the L-IC, the Event

Kernel Table (EKT) 15 , and the Event Kernel Queue (EKQ) 19 in the KMU 4 .

The ESQ and ECQ (not shown here) are stored in global GPU memory and external

device memory accordingly, as previously described.

Each entry in the EKT 15 stores a pre-allocated event KMD 2 , a single bit,
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M, to indicate if the event kernel is modifyable, and metadata to describe the ESQ.

The metadata consists of the ESQ-base pointer, ESQ-head pointer, ESQ-size, and

the last ESQ entry, ESQ-end. ESQ-head is initialized to ESQ-base. When the G-IC

transfers an interrupt to an L-IC 9 , the corresponding event KMD is read from the

EKT 15 and transferred 17 into the Pending Interrupt Queue in the L-IC 13 . The

ESQ-head is then automatically incremented by ESQ-size via a hardware adder 16

and is stored back into ESQ-head in the EKT entry. ESQ-head is reset to ESQ-base

when exceeding the allocated region, ESQ-end, which implements the logic for the

circular ESQ on the GPU in hardware. The EKT simplifies the process of launch-

ing a kernel from the GPU, since the next event kernel is already configured at the

next ESQ-head. Storing the event’s KMD locally in the Pending Interrupt Queue

13 enables multiple SMXs to process different instances of the same event kernel

concurrently, since each SMX is working on an event with unique parameter mem-

ory. Additionally, this enables the SMX to modify a local copy of the event KMD,

if the event kernel is marked as modifyable, without requiring synchronization.

The EKQ 19 is a hardware queue in the KMU 4 responsible for queuing

pending event KMDs until there is a free entry in the KD 5 to begin executing

the event kernels. This queue is similar to the existing host and device-launched

queues [87]. There can be any number of EKQs, each with different priorities

relative to other event, host, or device-launched queues.

In our proposed implementation, the EKT 7 is modeled as a small on chip

buffer with a single read/write port. Each row contains five 8-byte values for the

kernel pointer and parameter buffer pointers, six 4-byte values for the kernel di-

mension, a 2-byte value for the shared memory, and a single modifyable bit, for a

total width of 529 bits. Assuming a size of 32 entries (enabling a max of 32 differ-

ent event kernels), the total storage overhead of the single GPU EKT is 2.1KB, less

than 1% of a single SMX’s register file. The EKT also requires a single 8B adder

and comparator to implement the logic for the circular buffers in hardware.

5.4.3 Wait-Release Barrier

Aside from indefinitely consuming the majority of GPU resources, an inefficiency

with the persistent GPU threads (PT) style of programming is that GPU threads
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continuously poll global memory to query for new tasks to perform or responses to

remote procedure calls (RPC). If the incoming task rate is high or the RPC process-

ing latency is low, polling can have little effect on efficiency. However, long wait-

ing times for persistent CTAs (pCTA) result in repeated unsuccessful reads from

global memory, which can lower efficiency over the traditional kernel launching.

An attractive, and obvious, alternative to polling is to instead have the GPU threads

block until work is available. This maintains the benefit of not requiring a full new

GPU kernel to be launched when work is available, while removing the unneces-

sary reads to global memory, at the cost of increased latencies for identifying when

work is available. Current GPUs support warp-level barriers, which block the exe-

cution of warps until all warps in a CTA have reached the barrier. However, there

are currently no methods for blocking all warps in a CTA or blocking GPU threads

until some external condition is met.

To address this, we propose the wait-release barrier, a special set of

CTA barrier instructions that block all warps in a CTA at the wait barrier

instruction ( wait threads()) until a subsequent release barrier instruction

( release threads()) is performed. While the wait-release barrier itself could be

easily implemented in current GPUs, there is still the challenge of how to notify

the CTA that it should be released if all warps are currently waiting at the barrier.

This can be solved with the PGWs described in Section 5.3. A special interrupt

vector is reserved for the wait-release barrier. Instead of continuously polling

global work queues for new tasks, each persistent CTA (pCTA) can check the

global work queue once and, if no tasks are available, block at a wait-release

barrier. Pseudo examples of a baseline persistent GPU thread implementation and

a persistent GPU thread implementation using the wait-release barrier are shown

in Example 1 and Example 2, respectively. With the wait-release barrier, the con-

tinuous polling of the in-memory work queue is guarded with the wait threads()

barrier instruction. At some later time when work is available, the external device

can configure the task in the global work queue and trigger a GPU interrupt to

release any pending wait-release barriers to check for the new work. While not

shown here, a PGW executes the corresponding release threads() instruction in

response to the external event. The CPU can also release the wait-release barriers

through the edgeReleaseBarrier() API shown in Table 5.1.
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Example 1 Pseudo example of a baseline persistent GPU thread implementation.

1: while (true) {
2: if (tid == CTA_SCHEDULER_TID) {
3: // Spin for work to become available
4: while(no_work_available()) { }
5: // Configure task for the pCTA
6: ...
7: }
8: __syncthreads();
9:
10: // Specific kernel processing
11: ...
12:
13: if (tid == CTA_SCHEDULER_TID) {
14: signal_task_complete();
15: }
16: __syncthreads();
17: }

Example 2 Pseudo example of a persistent GPU thread implementation using the
wait-release barrier.

1: __shared__ bool work_available = false;
2: while (true) {
3: // Spin for work to become available
4: while (!work_available) {
5: __wait_threads(); // Wait-release barrier
6: if (tid == CTA_SCHEDULER_TID &&
7: !no_work_available()) {
8: work_avilable = true;
9: // Configure task for the pCTA
10: ...
11: }
12: __syncthreads();
13: }
14:
15: // Specific kernel processing
16: ...
17:
18: if (tid == CTA_SCHEDULER_TID) {
19: signal_task_complete();
20: work_available = false;
21: }
22: __syncthreads();
23: }
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Depending on the application, there may be multiple pCTAs waiting at differ-

ent wait-release barriers at any given time. While there are opportunities to opti-

mize the selection of which barriers are released and how many barriers to release

per interrupt, we opt for simplicity by releasing all pending wait-release barriers

(even across concurrent kernels). The application logic does not need to change

beyond adding the wait threads() prior to querying the global work queue and

minor restructuring to avoid SIMD deadlocks. When an interrupt releases all wait-

ing pCTAs from a wait-release barrier, each pCTA must recheck the global work

queue to see if a new task is available. Additionally, the external device logic does

not need to increase complexity by specifying a specific pCTA to release. How-

ever, a drawback of releasing all waiting pCTAs is additional accesses to the global

work queue, since only a subset of the pCTAs will get to process the new task.

To avoid potential race conditions, in which an interrupt releases a wait-release

barrier before a pCTA has hit the barrier, we implement the wait-release barrier as

a level-sensitive barrier – the wait-release barrier is only relocked after all warps in

a pCTA have passed through it. Thus, if a release operation occurs and no pCTA

is waiting at a wait-release barrier, the barrier is unlocked until a full pCTA passes

through it, meaning that the pCTA will then check the global memory queue to find

if a pending task is available.

The wait-release barrier could be extended to support multiple different barri-

ers. For example, similar to event kernels, wait-release barriers could be registered

with the GPU and an ID could be returned. One or more barrier IDs could be passed

to the GPU kernel such that within or between kernels, different CTAs could block

on different wait-release barriers. The interrupt or edgeReleaseBarrier() API could

be modified to include the wait-release barrier ID accordingly. However, this would

require additional hardware to maintain the mappings between a given wait-release

barrier ID and the CTAs that are waiting at that barrier, and to notify a subset of

wait-release barriers. Improving the granularity of the wait-release barrier is left to

future work.
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Component Configuration
GPU SMX frequency 700MHz
SMXs 16
Max threads per SMX 2048
Max CTAs per SMX 64
Register File size per SMX 65536
Shared memory size per SMX 48KB
L1 $ size per SMX 64KB
L2 $ size 1MB
Memory Configuration Gem5 fused
GPU Warp Scheduler Base Greedy-then-Oldest
Gem5 CPU model O3CPU

Table 5.2: Gem5-GPU configuration.

5.5 Experimental Methodology
EDGE is implemented in Gem5-GPU v2.0 [146] with GPGPU-Sim v3.2.2 [17].

Gem5-GPU was modified to include support for CUDA streams, concurrent ker-

nel execution, concurrent CTA execution from different kernels per SM from the

CUDA Dynamic Parallelism (CDP) changes in GPGPU-Sim [174], and kernel ar-

gument memory using Gem5’s Ruby memory system. The Gem5-GPU configura-

tion used in this work is listed in Table 5.2.

We modified the baseline architecture to include a timing model for the G-IC

and L-IC, PGW selection, victim warp flushing, interrupt vector logic, and inter-

rupt service routine (ISR). The event kernel table is modeled as an on-chip buffer,

which is read by the G-IC using the event kernel ID as the address to select an

event KMD to send to an L-IC. Similar to CDP, event kernels are launched from

the GPU into a separate event kernel hardware queue, which can specify different

priorities relative to the host-launched kernel queues. However, unlike CDP, there

is no need for the GPU to dynamically allocate argument buffers or configure the

kernel to launch, since the event kernels are pre-configured by the host CPU and

stored in the event kernel table. Additionally, there is no requirement to set up par-

ent/child mappings for the event kernels as in CDP, which reduces the overheads

of launching event kernels relative to child kernels in CDP. Gem5-GPU’s CUDA
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runtime library was extended with the EDGE API in Table 5.1 to enable configu-

ration and management of events on the GPU. The PGW communicates with the

L-IC via load/store instructions to special reserved addresses.

The proposed wait-release barrier instructions are implemented as in-line PTX

assembly using the previously unsupported bar.sync # in GPGPU-Sim to model

the wait barrier (bar.sync 1) and the release barrier (bar.sync 2). In the full system,

we expect that these instructions would instead be implemented by modifying the

CUDA compiler to support the proposed wait and release barrier instructions.

The benchmarks evaluated in this chapter are taken from Rodinia [31], two

convolution kernels from Cuda-convnet [99] using a layer configuration similar to

LeNet [102], and a GPU networking application, MemcachedGPU, as described

in Chapter 4. The Rodinia benchmarks are Back Propagation (BACKP), Breadth

First Search (BFS), Heart Wall (HRTWL), Hot Spot (HOTSP), K-Means (KMN),

LU Decomposition (LUD), Speckle Reducing Anisotropic Diffusion (SRAD), and

Streamcluster (SC). The size of the input data used in these benchmarks was se-

lected to ensure that the GPU was fully utilized given the benchmark’s implementa-

tion, such that an interrupt warp is not optimistically biased to having free resources

available due to undersized inputs. The convolution kernels from Cuda-convnet

are filterActs YxX color and filterActs YxX sparse. Finally, the MemcachedGPU

kernel evaluated is the GET kernel using 16B keys, 2B values, and 512 requests

per batch. The hash table size is set to 16k entries, and is warmed up with 8k SETs.

Any hardware measurements presented in this work are run on an Intel Core

i7-2600K CPU with an NVIDIA GeForce GTX 1080 Ti, using CUDA 8.0 and

driver v375.66. CPU timing measurements were recorded using the TSC reg-

isters and GPU power was measured using the NVIDIA Management Library

(NVML) [130].

5.6 Experimental Results
This section first evaluates the interrupt warp architecture and then evaluates how

the PGWs can be used to initiate the execution of event kernels and support the

wait-release barriers.
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Figure 5.9: Percentage of cycles a free warp context is available for a PGW.
This limits the amount of time a warp must be preempted to schedule
the PGW.

5.6.1 GPU Interrupt Support

PGW Resource Requirements

Like any other warp, a PGW requires a hardware context to execute, such as reg-

isters and a program counter. If the GPU is underutilized by any currently run-

ning kernels, there may be enough free hardware resources (warp contexts) avail-

able to execute the PGW without requiring a running warp be preempted. GPUs

have a range of resources (registers, thread contexts, shared memory) that are used

in varying amounts by warps and CTAs. The amount of parallelism achievable

on the GPU depends on which resources have the highest demand relative to the

amount available. Previous work has shown that applications may underutilize

GPU resources, which can benefit GPU multiprogramming through resource par-

titioning/sharing [176, 181]. We also measure the same behavior from many GPU

applications. As a result, a GPU application may not be able to schedule an ad-

ditional CTA due to insufficient resources, however, the PGW’s limited resource

requirements may still be able to make use of the remaining fragmented resources.

For example, assume we have a GPU kernel X that uses a large amount of shared

memory, but does not require many threads. The GPU CTA schedulers dispatch
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Figure 5.10: Average register utilization of Rodinia benchmarks on Gem5-
GPU. Register utilization is measured for each cycle and averaged
across all cycles of the benchmark’s execution.

CTAs to SMXs until launching an additional CTA from X will exceed the shared

memory size. The remaining CTAs from X must block until previous CTAs com-

plete. Even though X is blocked, there are still unused warp contexts and registers

available, which can be used by other GPU applications with low shared mem-

ory requirements. To measure this opportunity, we first profiled the Rodinia and

Convolution benchmarks to identify the fraction of cycles where there are enough

resources to support a PGW (free PGW context that does not require preempting

a running warp) in Figure 5.9. As shown, the fraction of cycles a free PGW is

available varies between applications, with the average around 50%. While not

shown here, a cycle-by-cycle analysis highlights that a kernel goes through mul-

tiple phases with varying resource utilization, for example, as warps from a CTA

begin to complete and a subsequent CTA has not yet been launched. These results

highlight that there are sufficient opportunities to exploit underutilized resources

for executing PGWs instead of preempting a running warp or requiring additional

dedicated hardware to service the interrupt.

Furthermore, while an application may use all of the available thread contexts,

it may still underutilize the large per-SMX register files, which limits the amount

of resources needed to be saved on preemption. Figure 5.10 highlights the aver-
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age register utilization (averaged over all cycles of the benchmark’s execution) for

the Rodinia and Convolution benchmarks on the Gem5-GPU simulator. We find

that the evaluated benchmarks use ∼60% of the available registers. A PGW only

requires 0.4% of an SMX register file (8 registers * 32 threads/warp = 256 / 65536

registers, assuming a full warp’s worth of registers need to be reserved for the sin-

gle thread in the PGW), which provides an opportunity to utilize the free registers

instead of requiring register saving/restoring in the software ISR.

PGW Preemption Latency and Runtime

A key design goal for supporting interrupts on any system is low and predictable

latency. However, this can be challenging to achieve when preemption is required

and the to-be-preempted victim warp can be in any given state of execution in the

pipeline. As such, the latency to preempt a running victim warp must be mini-

mized. For any of the dedicated interrupt warp policies (Section 5.3.2), the pre-

emption latency is zero since we always have a free interrupt warp context or hard-

ware unit available to begin processing the interrupt immediately. Similarly, if

EDGE includes a small hardware unit to launch the event kernel in response to an

external event/interrupt, instead of using a PGW, the event kernel can be imme-

diately transferred to the Event Kernel Table ( 15 in Figure 5.7). However, pre-

empting a running warp requires flushing the victim warp’s instructions from the

pipeline. For ALU operations, as modeled in GPGPU-Sim, this can range from 4

to 330 cycles depending on the operation being performed and the precision. Long-

latency memory operations, for example, load instructions that miss in the cache

and must access DRAM, can take on the order of 1000’s of cycles. Naively waiting

for the victim warp to flush the pipeline results in unacceptably high scheduling la-

tencies. Figure 5.11a measures the average victim warp preemption latency for

interrupts that require preemption. We evaluate two victim warp selection policies,

Newest and Oldest, where the most or least recently launched warps are selected

to preempt, respectively. As our baseline GPU warp scheduler uses a greedy-then-

oldest (GTO) policy, the oldest warp selection techniques tend to have a much

lower preemption latency (∼4×) because the oldest warps are prioritized over the

newest warps and are the first to complete. As such, the PGW selection technique
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(a) Average preemption stall cycles without the victim warp flushing optimizations.
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(b) Breakdown of preemption stalls for two victim warp selection policies (Left: Newest, Right:
Oldest).

Figure 5.11: Interrupt warp preemption stall cycles.

alone can have a large impact on scheduling latency, which ranges from 2k-8k

cycles on average (or 2.9-11.4 µs at 700 MHz) for the two warp selection poli-

cies. These are relatively high latencies before the PGW is even be able to begin

executing the ISR.

Figure 5.11b measures the breakdown of causes for scheduling stalls. Pipeline

means that a warp instruction is in the pipeline, Scoreboard means that the instruc-

tion has registers reserved in the scoreboard, Load indicates the warp is waiting for
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in-flight loads, I$-Miss an instruction cache miss, and Barrier and Mem Barrier

indicate that warps are waiting at thread or memory barriers respectively. These

scheduling stall conditions are not mutually exclusive. For example, an in-flight

load instruction also has a register reserved in the scoreboard. The trend for Oldest

policy is very similar - the selected victim warp to preempt is waiting for load in-

structions to complete. The Newest policy leads to more diverse outcomes, such as

waiting for thread barriers. This is a result of some evaluated benchmarks having

thread barriers near the start of the kernel. For example, the initial portion of the

CONV1/2 benchmarks load data from global memory to shared memory and then

wait at a barrier. Selecting the newest warp tends to fall into this phase of the ker-

nel, whereas the oldest warps are performing the convolution operation on the data

in shared memory. Evaluating methods to optimize the warp scheduling to reduce

preemption latency is an area for future work.

Figure 5.12 measures the reduction in preemption latency when applying each

of the optimization techniques for victim warp flushing discussed in Section 5.3.3.

Note the log scale y-axis. The average preemption latency is reduced by 35.9×
and 33.7× for the Oldest and Newest policies respectively. At 700MHz, the pre-

emption latency is ∼70ns (50 cycles) and ∼314ns (220 cycles) respectively. For

Oldest, the largest benefit comes from dropping and replaying load instructions,

which is explained by the large fraction of stalls on pending loads in Figure 5.11b.

For Newest, many benchmarks are also stalled on barrier instructions. Only ap-

plying the barrier skipping, however, does not result in a large reduction in Figure

5.12 because BFS and SC, which are not blocked on thread barriers and have a

large preemption latencies, dominate the average calculation. After reducing the

preemption latency with the other optimizations, such as replaying loads, thread

barriers result in a larger contribution to the average preemption latency, which is

highlighted by the large improvement with all optimizations applied.

Along with the PGW scheduling latency, the ISR runtime should be minimized

to quickly process the interrupt and reduce the impact on performance of any con-

currently running tasks. We find that by prioritizing the PGW’s instruction fetch

and warp scheduling over other concurrently running kernels, the ISR runtime can

be reduced by 55% on average. However, depending on the rate and duration of

interrupts, prioritizing a PGW can negatively impact other concurrently running
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Figure 5.12: Preemption stall cycles with the victim warp flushing optimiza-
tions applied averaged across the Rodinia and Convolution Bench-
marks. Base is the baseline preemption latency without any optimiza-
tions applied (Figure 5.11a). Barrier Skip immediately removes a
victim warp if waiting at a barrier. Victim High Priority sets the victim
warp’s instruction fetch and scheduling priority to the highest. Flush
I-Buffer flushes any pending instructions from the victim warp’s in-
struction buffer. Replay Loads drops any in-flight loads from the vic-
tim warp and replays them when the victim warp is rescheduled after
the ISR completes.

kernels’ performance.

Impact of PGW on Concurrently Running Kernels

Figure 5.13 measures the impact of running a PGW on the IPC of concurrently

executing kernels under the different PGW selection policies (Section 5.3.2), dif-

ferent interrupt rates (Slow/Fast), and different ISR durations (Short/Long). Slow

and Fast interrupts are generated every 10k and 1.5k GPU cycles respectively. In

these experiments, the ISR runtime is varied by iterating a delay loop. Additionally,

the ISR does not actually launch an event kernel. With the delay loop, the aver-

age measured runtimes for Short and Long are ∼15× and ∼212× longer than the
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Figure 5.13: Average impact of the PGW selection, interrupt rate, and ISR
duration on concurrent tasks’ IPC (x-axis labels are <interrupt rate>-
<interrupt duration>).

actual average ISR runtime measured in Section 5.6.2, respectively. All preemp-

tion and runtime optimizations described earlier are applied to the victim warp and

PGW. When the ISR is short, the PGW has very little impact on the background

task, regardless of the selection policy. However, reserving a warp for the PGW in

the Reserved policy, hence reducing the amount of available parallelism to other

tasks, does have a relatively higher impact on running tasks. When the ISR runs

for a much longer time, the impact on the background task becomes much larger.

The Dedicated and Reserved policies have slightly less of an impact on the back-

ground task than the preemption policies (Oldest/Newest), since running warps are

not preempted indefinitely. Even though the Reserved policy continually reserves

a warp context, all of the background task warps are able to make progress while

the PGW is running. These results highlight that the impact on a background task

is more due to sharing of execution cycles with the prioritized PGW than stalling

the execution of a given warp. Furthermore, since the ISR runtime for Short is

15× longer than the measured actual ISR, the PGW and ISR have little impact

on the performance of concurrently running kernels. As such, from the perspec-

tive of concurrently running applications, there is little benefit to having dedicated

resources for the PGW.
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Figure 5.14: Impact on the Convolution kernel’s IPC when reserving re-

sources for the PGW and MemcachedGPU GET kernel.

5.6.2 Event Kernels

In this section, we evaluate event-driven kernels in EDGE by highlighting a mul-

tiprogrammed use-case for EDGE where the GPU is executing long running ker-

nels for training a deep neural network (DNN), while also using the GPU to ser-

vice a higher-priority network kernel, such as MemcachedGPU. Specifically, we

evaluate launching multiple Memcached kernels, MEMC, through the EDGE flow

with varying request rates, while performing a single Convolution kernel, CONV1,

through the standard CUDA flow. We evaluate different prioritization techniques,

P1 and P2 (Section 5.4.1), for sharing the GPU between the low and high priority

kernels.

In addition to the different event kernel priorities, P1 and P2, we also evaluate

different hardware reservation techniques for the event kernels to spatially share

the GPU resources between concurrent kernels, such as reserving CTAs or entire

SMXs. We first measure the impact on IPC of the CONV1 kernel when reserving

hardware resources only for event kernels, but without running any event kernels.

SM-N reserves N SMXs for an event kernel, which can not be used for the CONV1

kernel. CTA-N reserves N CTAs per SMX for the event kernel. Finally, I$-Reserve

reserves entries for the ISR in the instruction cache (Section 5.3.4). Figure 5.14

highlights that there is negligible impact on performance when reserving the ISR
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Figure 5.15: Average ISR runtime with CONV1 and MEMC kernels at vary-
ing MEMC launch rate relative to a standalone ISR. The runtime is
measured with and without reserving the instruction cache entries for
the ISR (i$-Reserve) and for both the P1 and P2 event kernel priorities.
The ISR requires three entries in the instruction cache.

i$ lines, reserving 1-2 CTAs for the event kernel, or even reserving up to 6 SMXs.

Rogers et al. [149] have identified similar behavior where performance can ac-

tually increase when reducing the kernel’s parallelism (by limiting the number of

active warps per SMX) due to improved cache access patterns. However, as we

continue to decrease the number of SMXs available for the CONV1 kernel, the

performance starts to drop. With 50% of the SMXs, CONV1’s performance drops

to 85%. Note that the performance for CONV1 does not drop linearly with the

amount of compute resources removed, which suggests that the performance of

CONV1 is memory bound.

In the following experiments, we launch multiple MEMC kernels at different

packet rates, 2.5 MRPS and 4 MRPS, while running a single background Convo-

lution kernel, CONV1. Figure 5.15 measures the ISR runtime slowdown for the

different launch rates, priority levels, and with the ISR instruction cache entries re-

served or not (three lines), relative to the ISR running in isolation. Without reserv-

ing the instruction cache entires for the ISR, the PGW ISR runtime is significantly

increased (∼100-200×) relative to running in isolation. A large contributor to this
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Figure 5.16: Runtime of the Convolution and Memcached kernels at differ-
ent request rates and resource reservation techniques, relative to the
isolated kernel runtimes, and average normalized turnaround time.

is that the multiple concurrently running kernels occupy the instruction cache, con-

tinuously evicting the ISR’s cache lines. However, when reserving entries in the

instruction cache for the ISR, the ISR runtime for P1 is reduced by 20-45× de-

pending on the packet rate. With P2 at 4 MRPS, the higher packet rate causes

MEMC kernels to be launched quicker (and overlapping), which limits the amount

of time the CONV1 kernel can execute, hence reducing contention on the instruc-

tion cache. However, at 2.5 MRPS, CONV1 is able to resume execution, which

results in a 80× reduction in ISR runtime when reserving instruction cache entries.

This data highlights that reserving instruction cache entries for the ISR is neces-

sary to improve ISR performance when there is contention with shared resources

between concurrent tasks, such as the memory system. Since the ISR does not

have a large code footprint, a small on-chip buffer could also be included to store

the ISR’s code to avoid reducing the instruction cache size for other GPU kernels.

Figure 5.16 measures the performance of MEMC and CONV1 when launching

multiple MEMC tasks under the different launch rates (2.5 and 4 MRPS), priority

levels (P1 and P2), and event kernel resource reservation techniques, relative to a
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single MEMC and single CONV kernel run in isolation. For example, CONV 2.5

MRPS measures the performance of the CONV1 kernel (relative to CONV1 in iso-

lation) while MEMC is running at 2.5 MRPS (relative to MEMC in isolation). We

also measure the average normalized turnaround time (ANTT) [50] of the CONV1

and MEMC kernels. There is a large variation in the throughput of MEMC kernels

per convolution kernel ranging from 2-10 for 2.5 MRPS and 2-70 for 4 MRPS for

the different priority policies. The performance of CONV1 also varies widely. For

example, SM-1 at P2 runs 70 MEMC kernels before CONV1 completes, but at a

13.1X slowdown in CONV1. The large slowdowns for CONV1 with P2 are caused

by the higher priority placed on the MEMC kernel. Whenever a MEMC kernel is

pending or running, the CONV1 kernel is blocked. At 4 MRPS, the MEMC ker-

nels arrive at the GPU more frequently, which significantly reduces the CONV1

kernel’s ability to run.

The ANTT takes into account the number of kernels that execute on the GPU

concurrently and the slowdown of each kernel relative to being run in isolation. An

ANTT of 1 is ideal. With P1, the CONV1 kernel is able to continue scheduling

CTAs alongside MEMC, which impacts the MEMC throughput drastically, result-

ing in a high ANTT between 2.9 and 6. However, as the reserved resources are

increased and higher priority is given to MEMC (P2), we measure a large reduc-

tion in ANTT to 1.44 at BASE P2 and 1.15 at SM-8 P2. The significant improve-

ments in ANTT between the P1 and P2 priorities indicate that spatial multitasking

alone may not be enough to maximize the overall system throughput due to con-

tention on other shared resources, such as the memory system. This is highlighted

in Figure 5.16, where both CONV1 and MEMC are memory bound applications.

For example, even with SM-8 in P1, the ANTT is ∼2× higher than BASE in P2.

While SM-8 reserves half of the GPU’s SMXs for MEMC, the P1 priority allows

the CONV1 CTAs to continue running on the remaining 8 CTAs while MEMC is

running, which slows down both the CONV1 and MEMC kernels. In P2, however,

all of the CONV1 CTAs are blocked until the MEMC kernel completes, which,

even with no resources reserved for the MEMC kernel, enables the MEMC kernel

to complete faster.

These results highlight the potential to maintain a high quality of service (QoS)

for high-priority event kernels, while concurrently processing a lower-priority
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background application to improve GPU utilization. Additionally, with EDGE, the

CPU is not required to manage the launching or completion of the event kernels,

freeing it up to work on other tasks or enter a lower power state.

5.6.3 Wait-Release Barrier

Finally, we evaluate the second use-case of the PGWs for event-driven GPU ex-

ecution: the wait-release barrier. Specifically, we evaluate the benefits provided

by the wait-release barrier compared to a persistent thread environment (PT) to

control GPU execution. For these experiments, we set up a PT framework with

local CTA-level work queues, where each persistent CTA (pCTA) has its own en-

tries in the work queue to avoid any contention with other pCTAs. There are 16

pCTAs in total, one per SMX. Each pCTA is responsible for checking the work

queue for available work and then performing the corresponding kernel. For this

experiment, we use an empty kernel with no actual processing, such that only the

PT and PGW overheads are measured. For PT, each pCTA continuously polls the

work queue in global memory for new work. We then modified the PT framework

to include a wait-release barrier prior to checking the memory queue for work in

the polling loop. Each pCTA blocks on a wait-release barrier until an interrupt is

received, which releases all blocked pCTAs. Once released, each pCTA checks the

work queue for work and continues to process the empty kernel if available, or re-

turns to the wait-release barrier if not. Note that this naive implementation releases

all pending wait-release barriers (16 pCTAs), which results in a larger number of

queries to the work queue than necessary.

Due to the polling nature of PT, when no work is available, we expect an in-

crease in the total global load memory traffic and number of dynamic warp instruc-

tions to query the work queue. Figure 5.17 measures the reduction in global load

traffic when guarding the work queue with a wait-release barrier for three different

interrupt coalescing sizes, where an interrupt is generated for every 1 (WRB-1), 8

(WRB-8), and 32 (WRB-32) pCTA tasks inserted into the global work queue. We

also vary the launch frequency of each pCTA task from as fast as possible (Launch

delay == 0) to a larger delay (Launch delay == 100). Here, the delay corresponds

to the number of iterations of an empty delay loop performed on the CPU before
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Figure 5.17: GPU global load instructions issued relative to Persistent
Threads (PT).

launching the next GPU task. When the launch frequency is high, triggering an in-

terrupt to release the wait-release barrier for every pCTA task results in additional

global loads due to the PGW running on all 16 SMXs to release the blocked pC-

TAs, and only a single task being available to process. When the launch frequency

is decreased or when the wait-release barrier request coalescing is increased, wait-

release barrier results in a significant decrease in global load traffic. For example,

even when the CPU is pushing tasks to the GPU as quickly as possible in a loop,

triggering an interrupt every eight tasks results in a 20% reduction in global load

traffic. Furthermore, when a delay is introduced in between task launches, having

an interrupt per task results in a large reduction in global load traffic. As the launch

delay is increased, the impact of coalescing interrupts on the total task latency is

reduced further. The main takeaway from this experiment is not the absolute value

of the relative improvements, but instead the ability for the event-driven program-

ming model and wait-release barriers to reduce the GPU global load traffic under

variable task rates.

In addition to global load traffic, blocking the pCTAs from continuously polling

will impact the number of dynamically executed instructions. Figure 5.18 mea-

sures the effect on dynamic issued warp instructions on the GPU for the same ex-

periment as above. In the baseline PT, each pCTA has a single warp spin-looping
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Figure 5.18: Dynamic warp instructions issued relative to Persistent Threads
(PT).

on the work queue. However, wait-release barrier stalls all warps in the pCTA

when waiting at the barrier, which can reduce the amount of unnecessary warp

instructions used for polling. This can be seen by the large reductions in the num-

ber of dynamic instructions when the launching delay and interrupt coalescing are

increased. Similar to the number of global loads, there can be an increase in the

number of dynamic warp instructions with wait-release barrier when the launch

frequency is high or interrupt coalescing is low due to the increased number of

PGWs running the ISR on the GPU than tasks being launched. This is very appar-

ent with WRB-1 at 0 launch delay, which increases the total number of dynamic

warp instructions by 13.7× compare to PT, since there is no kernel processing and

16× the number of required PGWs are launched for every new task.

An obvious enhancement to the current wait-release barrier implementation

would be to selectively release only the number of pCTAs required to service the

new tasks, or release the specific pCTA waiting for the result of an RPC. This would

require modifying the PT framework to have a shared global work queue with

synchronization locks, as well as a global structure for recording which pCTAs are

currently blocked at a wait-release barrier as candidates to release on an interrupt.
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Evaluating these enhancements is left to future work.

Lastly, the use of the PGW to release the wait-release barriers increases the

latency for the pCTA to identify when a task is available to process. This increase

in latency is equal to the PGW ISR runtime, which as shown in Section 5.6.2, is

dependent on the other kernels being concurrently run with the ISR.

5.7 Summary
This chapter proposes EDGE, a novel event-driven programming model consisting

of a set of hardware mechanisms and software APIs that can increase the inde-

pendence of specialized processors, such as GPUs, from their reliance on CPUs.

EDGE makes use of a fine-grained warp-level preemption mechanism, which ini-

tiates the execution of privileged GPU warps (PGWs) that can launch work inter-

nally on the GPU from any device in a heterogeneous system without involving

the CPU. This can help to reduce task launching latency from an external device

and free up the CPU to either work on other tasks or enter a lower power state to

improve efficiency. The PGWs can also be used to support a new form of CTA

barrier, the wait-release barrier, which enables running CTAs to block indefinitely

until a PGW releases the barrier in response to some external event. This is useful,

for example, to reduce the polling overheads of the persistent GPU thread style of

programming.

The PGW requires GPU resources to operate. We evaluated several techniques

for efficiently selecting, flushing, and preempting a warp from concurrently run-

ning applications, such that the time to schedule and process an interrupt with a

PGW is minimized. On a set of GPU benchmarks, we found that there is a free

warp context available for a PGW 50% of the time, on average. When no free

warp contexts are available, we showed that the evaluated flushing optimizations

can reduce the average PGW preemption latency up to ∼36× (to <50 cycles) on

the Gem5-GPU simulator.

While traditional GPU kernels require a host CPU to configure and launch

each kernel, with EDGE, the host CPU pre-allocates and configures GPU event

kernels a single time and utilizes the PGWs as a mechanism to internally launch

any subsequent GPU tasks via standard memory operations and interrupts. By
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removing interference between the CPU and GPU, we estimate that EDGE can in-

crease CPU throughput by 1.17× and GPU networking throughput by 3.7× when

running SPEC2006 on the CPU in parallel with a networking application, Mem-

cachedGPU, on the GPU.
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Chapter 6

Related Work

This chapter discusses and contrasts the key related works with the research pre-

sented in this dissertation. This chapter is partitioned into two high-level sections,

which describe related work on using the GPU to accelerate server-based appli-

cations and network processing in Section 6.1, and related work on event-driven

GPU execution and improving GPU system support in Section 6.2.

6.1 Related Work for Accelerating Server Applications
and Network Processing on GPUs

The work performed in Chapter 3 and Chapter 4 focuses on improving the perfor-

mance and efficiency of Memcached, a server-based application, using GPUs, and

on using GPUs to accelerate network processing. This section is further partitioned

between these two categories.

6.1.1 Memcached and Server-based Applications

Many prior works have looked at improving the throughput and scalability of Mem-

cached or other general key-value store applications, through software or hardware

modifications. While much of the focus in this dissertation is on Memcached, one

of the long term goals of our research is to provide a general framework for accel-

erating high-throughput network services on GPUs. Many of these works propose

optimizations that are complementary to our work and can be evaluated to pro-
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vide additional improvements to the performance and efficiency of Memcached on

GPUs using GNoM. This section summarizes and contrasts a set of key related

works with this dissertation.

Concurrent with our work in Chapter 3, Berezecki et al. [24] presents a many-

core architecture, the Tilera TILEPro64 64-core CPU, used to accelerate Mem-

cached. In their work, different parts of Memcached are modified to run on indi-

vidual processors, such as network workers, hash-table processes, TCP and UDP

cores, and the operating system itself. Although the focus of their work and ours is

similar (i.e., accelerating Memcached on a many-core architecture), our work dif-

fers in the method of achieving this goal, focusing on the feasibility of running such

an application on a GPU and providing a detailed characterization of Memcached

on hardware and on a simulator.

Andersen et al. [11] propose a log-structured data store system that utilizes

lower power/performance (wimpy) CPUs and flash memory to maintain perfor-

mance and reduce power consumption for key-value store applications. This is

effective for key-value store applications, such as Memcached, in which large

amounts of computation are replaced with long I/O operations and network la-

tencies that are not significantly affected by low clock frequencies. The use of

multiple wimpy cores with an optimized memory system to improve the efficiency

of memory-bound applications is also similar to the use of GPUs in our work,

which contain large numbers of small in-order cores and high-bandwidth mem-

ory. However, the GPU architecture is able to provide high levels of computational

throughput for structured compute-bound applications, whereas the wimpy cores

may not be able to efficiently scale-up performance for other types of compute-

intensive applications.

Wiggins et al. [177] improve the scalability of Memcached on CPUs through a

set of software enhancements. This work removes the global cache lock overheads

in Memcached. Specifically, this work evaluates striped locking on the baseline

hash-chaining hash table and a bagging LRU mechanism to replace the global lock

with atomic CAS instructions. Our work also proposes removing the global locks

on the hash table and LRU management; however, our work evaluates an alternative

set-associative hash table and per-set shared/exclusive locking mechanism, which

reduces complexity and significantly improves performance and energy-efficiency
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on the GPU architecture.

Fan et al. [52] evaluate a set of software enhancements to improve the perfor-

mance and memory efficiency of Memcached on a CPU. Memc3 proposes a novel

optimistic cuckoo hashing mechanism with set associative cuckoo entries, which

improves memory efficiency over the baseline Memcached and efficiently supports

concurrent accesses to the hash table. This is achieved by separating the cuckoo

path discovery phase from the update phase and only updating a single key move

at a time, removing the opportunity for false misses when reorganizing the hash

table. In Memc3, writes to the hash table are serialized, but reads can operate

concurrently with writes. This enables a set of optimizations to further improve

the performance of Memcached, such as replacing the global LRU queue with an

approximate LRU based on the CLOCK replacement algorithm, and the use of

optimistic locking to avoid expensive synchronization overheads on shared data

structures. In our work, we also evaluate modifications to the hash table, proposing

a more GPU-friendly set-associative hash table, which maintains similar read per-

formance but improves write performance. Furthermore, our set-associative cache

uses per-set exclusive locks on writes, which supports concurrent write requests.

Our work also evaluates approximate LRU policies, which consider local LRU per

hash table set instead of per memory slab, reducing the complexity compared to

Memc3. MemcachedGPU borrows an optimization from Memc3, which compares

small hashes of the key to avoid expensive key comparisons to reduce branch diver-

gence among GPU threads. Overall, MemcachedGPU improves the read request

throughput over Memc3.

Lim et al. [106] propose a state of the art in-memory key-value store applica-

tion, MICA, on CPUs. MICA rethinks the design of a key-value store application,

such as Memcached, to improve scalability under parallel access. MICA achieves

very high throughputs on the order of 75 MRPS for 8B keys (half the minimum size

evaluated in Chapter 4), using two 8-core CPUs with four 10 Gbps NICs (eight

ports). MICA partitions keys across cores to improve locality and reduce interfer-

ence between parallel cores. MICA can operate in exclusive-read, exclusive-write

mode, which removes the need for synchronization as only a single core operates

on a partition, or concurrent-read, exclusive write mode, which uses optimistic

locking to reduce the synchronization overheads. The value storage is completely
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redesigned from Memcached, which includes an efficient append only log struc-

ture, similar to log structures used in flash memory (e.g., FAWN [11]), for their

lossy key-value store design and efficient memory allocators with segregated fits

for their lossless key-value store design. Similar to MemcachedGPU, the hash

table is implemented as a set-associative cache. Also similar to MemcachedGPU,

MICA reduces the UDP networking overheads through direct NIC access and user-

level network processing (using Intel DPDK [79]). Furthermore, to take advantage

of the sharded key-space across cores, MICA uses RSS support in modern NICs

to direct requests to the specific core responsible for that key. However, this re-

quires the client application to be modified to include knowledge of the server-side

key-space partitioning; dropping throughput by 55-60% without this optimization.

MICA represents the high-end for CPU performance on key-value store applica-

tions, taking a holistic approach to redesign all aspects of the application to take

advantage of multiple different hardware and software features available on con-

temporary CPUs and NICs. In contrast, our work explores how the GPU, a stranger

to this type of streaming network application, can be used to achieve high levels

of performance and efficiency, while minimizing the modifications to Memcached

(e.g., only the hash table and eviction mechanisms are modified – the value storage,

hashing mechanism, Memcached protocol, and client application remain the same).

We believe that by taking a similar approach of fully redesigning a key-value store

specific to a GPU, as well as including additional NIC and GPU hardware, the per-

formance and efficiency of MemcachedGPU could be significantly improved. This

is left to future work.

Blott et al. [26] evaluate the potential for accelerating Memcached on FPGAs.

Other works by Lim et al. [108] and Chalamalasetti et al. [30] also evaluate using

FPGAs for Memcached; however, Blott achieves the highest performance. In [26],

the FPGA is able to achieve 10Gbps processing for all Memcached key sizes,

extremely low latencies under 4.5 uS per request, and high efficiencies of 106.7

KRPS/W. This is achieved by pipelining requests through a dedicated hardware

path on the FPGA architecture. Given the low request latency and high efficiency,

the FPGA is a strong candidate for accelerating such workloads. Similar to Mem-

cachedGPU, this work proposes a set-associative based hash table with local LRU

management on the FPGA. Istvan et al. [85] expands on the description of the
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FPGA hash table. However, in Chapter 4 we show that we can achieve simi-

lar throughputs at significantly lower costs on a lower power GPU. Additionally,

while the FPGA architecture enables high performance and energy-efficiency, the

flexibility of the general-purpose GPU architecture (e.g., ease of programming,

multitasking) may outweigh some of the efficiency gains in a datacenter environ-

ment, where workload consolidation is necessary to improve server utilization and

reduce costs.

Nishtala et al. [124] describe enhancements to improve Memcached at Face-

book. As presented, their Memcached deployment is the largest in the world,

responsible for handling billions of requests per second. They propose multiple

enhancements to improve both the scalability of Memcached across servers, as

well as improve the performance of an individual server. Many of the scalabil-

ity improvements are complementary to our work, such as reducing the request

latency through request batching (multi-GET), request parallelization (multiple

Memcached servers), client sliding request windows (similar to TCP), replication

across pools of Memcached servers (within and across regions) to reduce latency

and improve efficiency and consistency, or adaptive slab allocators for item value

storage. Other enhancements, such as using UDP over TCP for GET requests and

using fine-grained locking mechanisms, are explored in our work.

Other works, such as Jose et al. [88, 89] and Dragojevic et al. [45], identify

limitations with the networking overheads in Memcached and evaluate the use of

RDMA over Infiniband and Ethernet network hardware, respectively, to improve

Memcached performance. Jose et al. [88] propose an efficient unified commu-

nication runtime (UCR), containing enhancements to the RDMA connection es-

tablishment and support for active messaging over RDMA, to enable middleware

applications to efficiently utilize RDMA capable interconnects. They then propose

multiple modifications to Memcached to support UCR on Infiniband NICs. Jose

et al. [89] propose a hybrid reliable connection and unreliable datagram protocol

on top of UCR, and a set of enhancements to support the hybrid communication

mechanism. Similar to the use of UDP over TCP, they find that the performance

and scalability of Memcached with Infiniband can be improved with such hybrid

communication mechanisms. FaRM [45] propose multiple modifications to Mem-

cached to support RDMA primitives and distributed memory management across
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a cluster of RDMA enabled Memcached servers on Ethernet hardware. FaRM also

addresses locking issues in Memcached. Similar to our work, FaRM evaluates a

new type of hash table (associative hopscotch hashing) to better support the un-

derlying hardware changes. In contrast to our work, which reduces the network

overheads by accelerating UDP network processing on the GPU, these works or-

thogonally reduce the network overheads through the use of different networking

mechanisms/hardware.

Following our initial analysis of Memcached on GPUs in Chapter 3, other

works have evaluated using GPUs to accelerate Memcached. For example, Dim-

itris et al. [44] propose Flying Memcached, which uses the GPU for performing the

key hash, while all other processing remains on the CPU. Flying Memcache also

addresses the networking bottlenecks in Memcached, achieving sizeable improve-

ments in throughput by performing the UDP network processing in user-space on

the CPU. In contrast, our work performs all Memcached GET request and UDP

network processing on the GPU, addressing many of the challenges associated

with a full system implementation of a GPU networking application. Furthermore,

our work improves throughput and efficiency over Flying Memcache.

Concurrent with the work in Chapter 4, Zhang et al. [184] also propose using

GPUs to accelerate in-memory key-value stores. They use two 8-core CPUs, two

dual-port 10 GbE NICs (max. 40 Gbps), and two NVIDIA GTX 780 GPUs to

achieve throughputs over 120 MRPS. In contrast to MemcachedGPU, these results

use a smaller minimum key size (8B vs. 16B), use a compact key-value protocol

independent from the Memcached ASCII protocol, perform the hashing function

using AES SSE instructions, and batch multiple requests and responses into sin-

gle network requests through multi-GETs to reduce per-packet network overheads.

However, for GET requests, the GPU is only used to perform a parallel lookup

for the corresponding CPU key-value pointer in a GPU Cuckoo hash table. All

other processing, including UDP network processing, request parsing, key hash-

ing, and key comparisons, are done on the CPU. In contrast, the goal of our work

was to achieve 10 GbE line-rate performance for all key-value sizes while perform-

ing all of the UDP network processing and GET request processing on the GPU.

We believe that MemcachedGPU could achieve sizable improvements in perfor-

mance and efficiency when modifying the Memcached packet format and hashing
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mechanism to be more GPU-friendly. We have not yet evaluated the potential for

additional scaling of GNoM and MemcachedGPU using a more powerful CPU with

multiple NICs and GPUs.

Prior and concurrent work have evaluated accelerating other types of traditional

server workloads on GPUs, such as HTTP workloads by agrawal et al. [3], or

databased queries by Bakkum et al. [18] and Wu et al. [179]. Similar to our work,

these works highlight the benefits of exploiting request level parallelism on the

GPU through batching requests with similar behavior. However, these works focus

solely on the workload specific processing, which can limit the potential end-to-end

performance improvements gained by the GPU. In contrast, our work considers a

complete end-to-end system implementation, which performs both the network and

application processing on the GPU. Evaluating how GNoM could be generalized

to support accelerating the network path for these GPU server applications is an

interesting direction for future work.

A core operation when processing a GET request is the hash. Because our

focus was parallelizing independent requests, the hash algorithm is computed by

each GPU thread (work item) individually. Massively parallel hashing algorithms,

such as the one implemented by Al-Kiswany et al. [5] in StoreGPU, provide sig-

nificant performance increases when the data being hashed is large. However, the

keys hashed in this study were all less than 128 bytes and would not benefit from

the efficient divide-and-conquer techniques proposed in their work.

6.1.2 GPU Networking

This section discusses some of the key prior works related to networking and

packet-based processing on GPUs.

Related work by Kim et al. [96] present GPUnet, a networking layer and socket

level API for GPU applications. Similar to GNoM, GPUnet improves the support

for applications requiring networking I/O on GPU accelerators. GPUnet provides

a mechanism for GPU threads (specifically CTAs) to send and receive network

requests directly from the GPU, which is achieved through persistently running

CPU and GPU software frameworks. The GPU initiates network requests (send or

receive) by sending RPCs to the CPU threads, which carry out the requested oper-
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ation and return the results to the request CTAs. In contrast, our work maintains

the GPU offload accelerator abstraction by launching GPU network kernels in re-

sponse to network events, removing the need for persistent GPU kernels. Further-

more, GPUnet is designed for Infiniband hardware and is directed towards more

traditional GPU applications, such as image processing and matrix multiplication.

The current cost of Infiniband hardware is a large contributor to the restricted usage

outside of HPC. Our work instead targets commodity Ethernet hardware typically

used in datacenters, which requires processing network packets in software, and

evaluates a non-traditional GPU application, Memcached.

Following the work in Chapter 4, Daoud et al. [38] (GPUrdma) expand on

GPUnet to completely bypass the CPU for sending and receiving network packets

to/from the Infiniband NIC. This is achieved through the use of persistently running

GPU kernels that directly write to the Infiniband NIC’s doorbell register for send-

ing packets and directly receive notifications of incoming packets through memory

writes by the Infiniband NIC. GPUrdma is evaluated on network ping-pong and

multi-matrix-vector product applications. In contrast, our work focuses on acceler-

ating the end-to-end processing for a more complex server-based application using

Ethernet NICs, requiring UDP packet processing on the GPU, and does not rely on

the use of persistent kernels, which enables more opportunities for GPU workload

consolidation during varying traffic demands. Furthermore, EDGE can improve

efficiency by removing the CPU from any GPU task management and removing

the requirement for persistent GPU kernels.

Other works have also evaluated packet acceleration on GPUs such as Packet-

Shader by Han et al. [65], GASPP by Basiliadis et al. [170], and Network Balanc-

ing Act (NBA) by Kim et al. [95]. Similar to GNoM, these works exploit packet-

level parallelism through batching on the massively parallel GPU architecture, re-

quiring a host framework to efficiently manage tasks and data movement with the

GPU. PacketShader [65] implements a high-performance software router frame-

work on GPUs to accelerate the lower-level network layer, such as packet forward-

ing and encryption, whereas GNoM and MemcachedGPU presented in this work

focus on transport and application levels.

GASSP [170] is the first work to evaluate stateful packet processing (TCP) on

GPUs and highlights the ability for the GPU to achieve significant performance im-
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provements over a GPU-based implementation where the packet processing occurs

on the CPU. In contrast to our work, GASSP requires larger batch sizes (increases

packet latency), uses main CPU memory for storing packets (does not make use of

GPUDirect), and evaluates GASSP on packet processing based applications, such

as firewalls, intrusion detection, and encryption. Using the insights from GASPP

to support stateful packet processing in GNoM is an interesting direction for future

work (Section 7.2).

NBA [95] proposes a software-based packet processing framework that em-

ploys a modular approach, following the Click [97] programming model. NBA

abstracts the low-level architecture-specific optimizations in modern NICs, CPUs,

and GPUs, and load balances network traffic between heterogeneous devices to

reduce programming complexity and maximize performance without manual opti-

mizations. Similar to our work, NBA bypasses the Linux kernel network process-

ing; however, NBA transfers packets to CPU memory using Intel’s DPDK instead

of directly transferring to the GPU (as is done in GNoM for direct GPU processing).

NBA proposes abstractions to offloadable accelerators (e.g., GPU), which specify

a CPU-side function, GPU-side function, and the required input/output data. The

NBA framework handles data transfers and kernel invocations internally (if of-

floading to the accelerator is expected to improve performance), and provides opti-

mizations to support data reuse between offloadable elements. Similar to GASPP,

NBA is a packet processing framework and is evaluated on individual packet pro-

cessing applications, such as packet filtering, encryption, and pattern matching.

In contrast, our work takes a holistic approach starting from the application layer

and optimizing the end-to-end network flow for such applications on the GPU -

performing both the network processing and application processing concurrently

on the GPU. Furthermore, our work proposes enhancements to the GPU hardware

and programming model to improve support for future networking applications.

Combining insights from our work and NBA could be useful to improve the GPU

offload performance in a modular packet processing framework on heterogeneous

systems when the choice of offload accelerator is known (or can be predicted) in

advance.
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6.2 Related Work on Event-Driven GPU Execution and
Improving GPU System Support

This section presents the related work with Chapter 4 and Chapter 5. Some of the

works discussed in the previous section are included in the context of this section

as well.

The mechanisms employed by EDGE to communicate tasks between a device

and the GPU to support event-driven execution are similar to in-memory submis-

sion/completion queues that enable a CPU to communicate with external devices,

such as NVME [49]. NVIDIA’s Multi-process service [129], HSA [55], and per-

sistent GPU threads [63] also propose using user-level, in-memory work queues

for communicating tasks with the GPU to improve multi-process support, reduce

kernel launch latency, or improve GPU independence from the CPU and GPU hard-

ware task schedulers. MPS and HSA require a separate runtime environment (e.g.,

CPU daemon process, hardware unit, or scalar processor) to recognize when work

has been submitted into the work queues, for example, via writes to global mem-

ory or doorbell registers. EDGE proposes using privileged GPU warps (PGW) on

the existing GPU vector compute resources for processing new tasks inserted into

the in-memory work queues. The PGWs can be initiated by interrupts or writes

to doorbell registers. Additionally, EDGE avoids the re-configuration of kernels

through event kernels.

LeBeane et al. [101] present the closest related work to EDGE, Extended Task

Queuing (XTQ), which proposes active messages for heterogeneous systems over

Infiniband networks using remote direct memory access (RDMA). This work has

the same goal of removing the CPU from the critical path for launching tasks on the

GPU from remote machines. XTQ focuses on integrated CPU/GPU systems, such

as AMD’s Accelerated Processing Units (APU), which utilize HSA and HSA’s

user-level command queues to launch GPU tasks from the user space, instead of

interacting with the GPU driver and OS on the CPU. As described in Section 5.4.1,

the EDGE event submission/completion queues are similar to those used in HSA,

and hence similar to XTQ. XTQ proposes enhancements to the Infiniband NIC

to construct XTQ active messages that can trigger GPU tasks via the HSA work

queues. XTQ registers GPU kernels with the Infiniband NIC, such that the RDMA
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write operations only need to specify a kernel ID to launch the corresponding task

on the GPU. This is similar to EDGE, which registers event kernels with the GPU

and uses a kernel ID to specify which event kernel to launch on an event. The

main difference between XTQ and EDGE is that XTQ pushes the extensions to

the NIC and requires HSA-enabled GPUs, whereas EDGE pushes the extensions

directly to the GPU. As such, EDGE requires only that the GPU and external device

are able to communicate with each other via shared memory and that the external

device can be configured to send specific interrupt IDs to the GPU or write to

specific addresses in GPU memory (e.g., doorbell registers). This enables devices

other than a NIC, such as an FPGA, to utilize the same EDGE API to launch

event kernels directly on the GPU instead of requiring a similar XTQ framework

per device on top of HSA. Lastly, the HSA user-level work queues, as described

in XTQ, use an HSA Command Processor (CP) to recognize when the doorbell

registers have been written to to begin processing the new task in the user-level

work queue. However, it is not clear exactly what the CP is in their evaluation, for

example, a hardware unit, a small scalar processor residing on the GPU, a CPU

daemon software framework as in NVIDIA’s MPS, or some other mechanism. In

EDGE, we explore a specific implementation of the CP, the PGW, which utilizes

existing GPU vector compute resources and fine-grained warp-level preemption

mechanisms to efficiently process tasks in the user-level work queues.

Recent work by Suzuki et al. [160] also propose an event-driven GPU program-

ming model, GLoop, consisting of GPU callback functions invoked on events, such

as a file read completion. Similar to GPUnet [96] and GPUfs [158], GLoop em-

ploys persistent CPU and GPU runtime event loops, which continuously poll for

RPC events from either device, or require re-launching kernels from the host upon

RPC completion. Unlike these works, GLoop enables multiple different GPU ap-

plications to concurrently execute on the same persistent thread-like framework by

efficiently scheduling callbacks from different applications. While event kernels

can be thought of as callback functions, EDGE’s privileged GPU warp architecture

and fine-grained warp-level preemption mechanism can remove the requirement

for continuously running GPU event loops, while minimizing the impact on per-

formance required to re-launch full kernels. For example, the GPU-side event loops

described in these works could be implemented directly by a PGW, or as an event

184



kernel launched by a PGW.

NVIDIA announced enhancements to GPUDirect RDMA with GPUDirect

Async [153], which expose parts of the networking flow to CUDA streams to

remove the CPU from the critical path when scheduling kernels in response

to network events on Infiniband hardware. With GPUDirect Async, the CPU

pre-launches a GPU networking kernel in a CUDA stream and configures the

corresponding network receive buffers in GPU memory. The GPU kernel is

asynchronously executed when receiving the network packets directly from the

Infiniband NIC. This removes the GPU kernel launch from the CPU on the net-

work critical path and enables the CPU to enter an idle state earlier while waiting

for the packet receive, not just during the GPU kernel processing. GPUDirect

Async has a similar goal as EDGE for removing the CPU from the critical path by

pre-registering the GPU kernel; however, GPUDirect Async requires configuring

every kernel launch, whereas EDGE reuses the same event kernel registration

for subsequent network event-driven kernels. Additionally, the GPU kernel in

GPUDirect Async returns control back to a waiting CPU thread on completion,

whereas EDGE enables completely removing the CPU from any pre or post kernel

processing by supporting direct communication to and from external devices in

the system.

Multiple works have evaluated preemption/context switching, multiprogram-

ming, and priority mechanisms on GPUs [33, 92, 117, 143, 157, 162, 176, 178,

183]. Zeno et al. [183] propose an I/O-Driven preemption mechanism for GPUs,

GPUpIO, which removes the spin locking on persistent CTAs waiting for long I/O

operations. Instead, persistent CTAs initiate self-preemption after executing ex-

pensive I/O or RPC operations (e.g., network operations in GPUnet [96] or file op-

erations in GPUfs [158]) through a set of software checkpoint-restore operations.

When the I/O or RPC operation completes, the CTA context is restored in software

to resume execution following the operation that initiated preemption. GPUpIO

also makes the case for adding hardware support to yield running CTAs, similar

to existing CPU mechanisms. Tanasic et al. [162] propose two kernel preemption

mechanisms, explicit context switching (requires saving and restoring thread con-

texts) and SM draining (blocks new CTAs and waits for currently executing CTAs

to complete), support for multiple kernel execution, and corresponding architec-
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tural enhancements. Park et al. [143] propose a collaborative and configurable

approach to minimize GPU kernel preemption overheads depending on the kernel

and active CTAs’ states; consisting of the context switching and SM draining tech-

niques proposed in [162], and an additional SM flushing technique, which drops

and replays CTAs from idempotent kernels. Kato et al. [92] propose a CPU runtime

engine for managing kernel priorities by breaking up large memory transfers and

adding a priority-aware software kernel scheduling layer prior to launching kernels

on the GPU. Wu et al. [178] propose FLEP, a compilation and runtime software

framework for transforming GPU kernels into preemptable kernels to enable tem-

poral and spatial multitasking. This is achieved by breaking the kernel down into

CTA-level tasks (similar to persistent threads) and having the CPU runtime sched-

ule CTAs from different kernels depending on given priorities and policies. Chen

et al. [33] propose Effisha, a similar framework to FLEP, which applies compiler

transformations to the CPU and GPU application and includes CPU/CPU runtimes

to work on CTA-level tasks in a persistent thread style fashion. Wang et al. [176]

propose simultaneous multikernel (SMK), a fine-grained dynamic kernel sharing

mechanism on GPUs. SMK includes a partial preemption mechanism, which pre-

empts CTAs one at a time to enable fine-grained sharing of GPU resources while

preempting a running kernel. SMK also exploits heterogeneity between kernel re-

source requirements to enable fair resource allocation and sharing of SM resources

for concurrent kernel execution, and proposes a fair warp scheduler mechanism to

allocate a fair number of cycles between competing concurrent kernels. Shieh et

al. [157] propose a kernel preemption mechanism, Dual-Kernel, which co-executes

a preempting kernel’s CTAs with the preempted kernel’s CTAs by selectively pre-

empting CTAs one at a time until enough resources are available to run a CTA

from the new kernel. Dual-Kernel aims to minimize preemption latency, through-

put overhead, and resource fragmentation while preemption is occurring. Lastly,

Menon et al. [117] propose iGPU, a set of compiler, ISA, and hardware extensions

that enable preemption support and speculative execution on GPUs. iGPU identi-

fies and exploits sparse idempotent regions to minimize the impact on re-executing

GPU threads and minimize the amount of state required to be saved/restored on a

context switch.

Throughout this dissertation, we propose and evaluate different forms of
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preemption and GPU resource sharing techniques related to the works described

above. In Chapter 4, we evaluated a technique to enable fine-grained GPU

multi-tasking between a high-priority Memcached kernel and lower-priority

background task by splitting the background task into groups of CTA-level

sub-tasks and adding a software scheduler to manage the execution of these

sub-tasks. This reduces the ability for larger low-priority tasks to monopolize

the GPU resources, enabling other, potentially higher-priority, tasks to interleave

their execution of CTAs on the GPU and reduce the latency to wait for available

GPU resources. FLEP [178] and Effisha [33] expand on this technique with a

general CPU and GPU software framework for transforming GPU applications

to support this CTA-level programming paradigm across multiple concurrent

applications, which is used to enable low overhead preemption. In Chapter 5,

we evaluate two forms of preemption to support the PGW and high-priority event

kernel execution. Unlike previous work, which focus on kernel and CTA-level

preemption, we propose fine-grained warp-level preemption to support executing

the PGWs based on an I/O or external event. This has a unique set of challenges,

since the running application is only partially preempted to execute the small

PGW task, which requires very low preemption latencies. EDGE also evaluates

a form of partial CTA draining for event kernels (similar to [162]), where CTAs

are blocked only until enough resources are available to begin executing the event

kernel. For the application evaluated, Memcached, the individual event kernels

require significantly fewer resources than are available on the GPU. As such, we

evaluate a partial preemption mechanism, which preempts only as many resources

as required to execute the event kernels. This reduces the latency to execute the

high-priority event kernel and reduces the amount of state to be saved/restored

from the preempted kernel. Additionally, by suspending the execution of the back-

ground (preempted) kernel, instead of fully saving/restoring it, EDGE improves

performance for the higher-priority event kernel, while minimizing the preemption

latency and impact on the background kernel. If the event kernels are expected

to be much larger, requiring full preemption of a running kernel, the techniques

described in prior work could be employed. Furthermore, the interrupt and PGW

techniques in EDGE can be used to initiate preemption in a multiprogrammed

environment instead of support from the CPU driver, self-preempting CTAs, GPU
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persistent thread runtime, or compiler specified preemption points.

Multiple works have evaluated using CPU/GPU persistent thread runtimes for

for fine-grained kernels and GPU I/O [33, 38, 96, 158, 178, 182, 183]. Silberstein et

al. [158] propose a POSIX-like API and software framework, GPUfs, for GPU pro-

grams to access the host’s file system. GPUfs belongs to the same family of work

as GPUnet, GPUrdma, and GPUpIO described above. GPUfs issues CTA-level

file operations to a CPU polling framework, which performs the I/O operation and

returns the results back to the polling CTA. EDGE was initially designed for sup-

porting external task launches, not necessarily for the CPU RPC operations in these

works. However, the mechanisms proposed in EDGE, such as the wait-release

barrier and PGW, could be used to avoid polling while waiting for long-latency

I/O operations. Yeh et al. [182] propose Pagoda, a CPU-GPU persistent runtime

framework that manages GPU tasks and resources at the warp-level, instead of at

the CTA-level as most other persistent thread frameworks, to improve performance

and efficiency for very small GPU tasks. Persistent thread frameworks can also be

used to reduce the GPU’s dependence on a CPU for GPU task management, as any

device can communicate control information via the in-memory persistent thread

task queues. However, if task launch rates are low, the GPU polling threads reduce

energy-efficiency. Furthermore, the GPU polling threads monopolize the GPU re-

sources, removing the ability for other GPU tasks to use the standard CUDA in-

terface and GPU hardware task scheduling mechanisms. In contrast, EDGE aims

to remove the requirement for persistent GPU-side runtimes through our proposed

PGW framework, which use the fine-grained warp-level preemption mechanisms

and pre-registered event kernels to reduce kernel launch overheads and dependence

on a CPU for initiating GPU tasks.

There are many other works that have pushed towards evolving GPUs as first-

class computing resources to support efficient GPU multiprogramming [64, 91, 93,

152, 156, 159, 171]. These works are related to the overarching goals of this dis-

sertation for improving system-software support on GPUs. Rossbach et al. [152]

propose PTask, a set of OS abstractions to support a dataflow programming model

for accelerators, which enables the OS to provide fairness and isolation guarantees

from a single management point. PTask also abstracts away many of the low-level

GPU programming complexities. Kato et al. [93] propose Gdev, an OS GPU re-
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source management runtime, which unifies interactions with the GPU from both

user-space and OS applications. Gdev virtualizes GPU resources for efficient and

isolated multi-tasking, and supports sharing memory across GPU contexts. Suzuki

et al. [159] propose GPUvm, which virtualizes the GPU at the Hypervisor for

efficient multi-tasking support in enterprise and cloud computing environments.

GPUvm aggregates GPU management in the Hypervisor to remove direct virtual

machine access, requiring several techniques and optimizations to virtualize GPU

memory management, page mappings, communication channels, and task sched-

ulers. Shi et al. [156] propose virtualizing the GPU across virtual machines at the

host OS using the standard CUDA runtime, which intercepts and redirects CUDA

calls from guest OSes to the GPU. Vijaykumar et al. [171] propose Zorua, a compil-

er/software/hardware virtualization framework, which virtualizes GPU resources

internally on the GPU (e.g., threads, registers, and scratchpad memory) to improve

programmability, portability, and performance. Zorua lends itself to supporting

multitasking and preemption by efficiently managing shared GPU resources at a

fine-grained level. Kato et al. [91] present an OS framework for efficiently man-

aging GPU resources, such as GPU communication channels, kernel contexts, and

memory. This work also discusses multiple different challenges to support GPU

resource management in the OS, providing insights for future research directions.

The works described above are complimentary or orthogonal to the work in

this dissertation. Many of the virtualization or resource management techniques

could be integrated with GNoM to enable efficient sharing of the network inter-

face and GPU resources for high-priority event kernels. While the event kernels

proposed in EDGE enable direct task management from external devices using the

GPU, the OS could be involved in configuring fair resource allocation for different

event kernels. The PGW provides support for executing privileged software rou-

tines directly on the GPU and can be used to provide higher-level scheduling and

resource sharing decisions in software running directly on the GPU SMs. Further-

more, the host OS (with greater visibility into the multitasking environment) and

PGWs (with tighter integration with the GPU hardware) can cooperatively work

together to guide scheduling decisions between concurrently executing kernels.
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Chapter 7

Conclusions and Future Work

This chapter concludes the dissertation and discusses potential directions for future

research.

7.1 Conclusions
Datacenters are important and ubiquitous computing environments with strict re-

quirements for high performance, efficiency, and generality. With the decline

in single-threaded performance scaling and power concerns surrounding multi-

core scaling, the computing industry has looked towards alternative, heteroge-

neous systems to continue improving performance and efficiency; for example,

heterogeneous CPU cores, specialized application-specific hardware designs, re-

programmable hardware systems, or parallel accelerators. Graphics processing

units (GPUs) are an example of a massively parallel architecture capable of provid-

ing high levels of performance and efficiency for applications with large amounts

of structured parallelism, such as high-performance computing and scientific ap-

plications. GPUs have recently made their way into the datacenter, commonly

acting as accelerators for machine learning algorithms. However, there are other

classes of applications with ample parallelism running on servers in the datacenter,

such as server-based network applications, that are not typically considered as be-

ing strong candidates to offload to the GPU. Server applications belong to a class

of highly economical and irregular applications. Accelerating server applications
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on energy-efficient architectures can significantly lower power consumption, and

hence cost, in the datacenter. Actually obtaining the potential benefits provided

by the GPU in a heterogeneous environment, however, is challenging for multiple

different reasons related to both the GPU architecture and system-level integration.

The evolution of the GPGPU has largely been driven by the requirements of

applications using these accelerators. For example, there has been a large body

of research highlighting the need for reducing the impact of branch divergence on

GPUs based on a growing number of GPU applications with irregular control-flow

behavior [47, 56, 57, 123, 148, 150]. As a result, the latest NVIDIA Volta GPU

has introduced thread-level execution states [131] to address limitations with han-

dling irregular control-flow behavior in previous GPU architectures. While these

optimizations achieve lower performance or efficiency relative to highly regular

applications, they help to improve the support for more irregular applications that

may benefit from some, but not all, parts of the GPU’s parallel architecture. This

dissertation follows a similar approach to explore the potential for using GPUs

as energy-efficient accelerators for more traditional server-based applications in

the datacenter through a software-hardware co-design – first understanding the be-

havior of network services on contemporary GPU hardware, and then evaluating

enhancements to the GPU’s architecture and system-level integration to better sup-

port these classes of applications.

From the software side, this dissertation evaluates a popular key-value network

service, Memcached, on contemporary GPU hardware. This analysis highlights

that an application with irregular control and memory access patterns can still

achieve sizeable improvements in performance and efficiency on a GPU. How-

ever, the actual application processing is only a portion of the required end-to-end

processing for a network request. To this end, this dissertation proposes a com-

plete end-to-end software framework for accelerating both the network (GNoM)

and application (MemcachedGPU) processing on contemporary GPU and Ethernet

hardware. This process exposed multiple challenges and limitations with imple-

menting such a framework in existing systems, which can not be easily solved

through software alone. From the hardware side, this dissertation proposes modi-

fications to the GPU architecture and programming model (EDGE) to reduce the

GPU’s dependence on a centralized component (e.g., the CPU) in a heterogeneous
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environment. This is a step towards considering the GPU as a first-class computing

resource. We expect that as the number of GPU applications with similar compute

and communication requirements grows, targeted optimizations to the GPU’s ar-

chitecture and system-support can further improve the GPU’s ability to provide

significant improvements in performance and efficiency.

While much of this dissertation focuses on a single application, Memcached,

the main goals of this dissertation are not specifically to highlight whether the GPU

is the best architecture to accelerate Memcached. Rather, this dissertation exposes

the potential of the GPU to provide benefits to applications outside of the traditional

high-performance scientific computing space, such as those found in a datacenter

environment. These types of applications can have varying levels of complexity

and irregular behavior, which as presented in this dissertation, may be able to ben-

efit from different parts of the GPU’s parallel architecture (e.g., the large number of

parallel computing resources, the SIMD execution engines, or the high-bandwidth

memory systems). However, each application is different. Consequently, whether

or not the GPU will be able to provide any improvements in performance or effi-

ciency still needs to be evaluated on a case-by-case basis, or common properties

need to be identified with applications already known to perform well on a GPU.

This dissertation argues that an application is not guaranteed to perform poorly

on a GPU just because the application does not adhere to the strict characteristics

apparent in traditional GPGPU applications, using a highly irregular application,

Memcached, as an example. We hope that the insights gained and the systems de-

veloped in this dissertation (such as the methodology employed to effectively port

Memcached to the GPU, the NIC/CPU/GPU GNoM software framework, or the

EDGE GPU programming model) will help to enable future server-based applica-

tions, or applications requiring communication between heterogeneous devices, to

benefit from GPU acceleration.

Chapter 3 [69] presents an initial analysis into the behavior of Memcached on

both integrated and discrete GPU hardware, as well as on a software GPU simu-

lation framework. This chapter identifies multiple challenges with porting such an

application with irregular control flow and data access patterns to contemporary

GPUs, and proposes a set of optimizations to mitigate the impact of this irregular

behavior on the potential performance and efficiency gains from the GPU. On an
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integrated GPU system, which does not require data transfers to a separate physical

memory space, we show that the GPU can outperform the CPU by a factor of 7.5×
for the core Memcached key-value lookup operation. Additionally, this chapter

demonstrates how an application performs on the GPU relative to a programmer’s

intuition of the potential performance. To this end, this chapter describes a GPU

control-flow simulator, CFG-Sim, which can help to estimate the SIMD efficiency

of an application prior to actually porting the application to a GPU. For Mem-

cached, we found that the actual SIMD efficiency is approximately 2.7× higher

than a naive assumption of equal branch probabilities in the code-path may sug-

gest.

Chapter 4 identifies multiple limitations with considering only the application

processing when offloading a networking application to the GPU and tackles many

of the challenges with performing both the network and application processing on

the GPU. Furthermore, this chapter explores how to efficiently orchestrate the com-

munication and computation between the GPU, NIC, and CPU when implement-

ing an end-to-end GPU networking application. To this end, this chapter proposes

GNoM (GPU Networking Offload Manager), a CPU-GPU software framework for

accelerating UDP network and application processing on contemporary GPU and

Ethernet hardware. GNoM constructs small batches of network requests (e.g., 512

requests) and pipelines multiple concurrent request batches to the GPU to over-

lap the communication and computation of network batches on the GPU. Using

GPUDirect, the network request data is directly transferred from the NIC to the

GPU; however, a CPU software framework is required to handle the network IO

and GPU task management. This chapter also describes the design and implemen-

tation of MemcachedGPU, an accelerated key-value store, which leverages GNoM

to run efficiently on a GPU. Many of the internal data structures in Memcached are

redesigned to better fit the GPU’s architecture and communicating components in

a heterogeneous environment. GNoM and MemcachedGPU are evaluated on high-

performance and low-power GPUs and are capable of reaching 10 Gbps line-rate

processing with the smallest Memcached request size (over 13 million requests

per second (MRPS)) at efficiencies under 12 uJ per request. Furthermore, Mem-

cachedGPU provides a 95-percentile round-trip time (RTT) latency under 1.1ms at

the peak throughputs. Together, GNoM and MemcachedGPU highlight the GPU’s
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potential for accelerating such network/server-based applications.

Chapter 5 makes the observation that the CPU software framework portion

of GNoM is required on contemporary GPU systems, even if no part of the ap-

plication processing requires the CPU. This is a result GPUs being second-class

computing resources, which rely on a host CPU to manage IO and the launching/-

completion of tasks on the GPU. This chapter explores how to reduce the GPU’s

dependency on a host CPU for control management, without the use of continu-

ously running GPU software frameworks, such as persistent threads, to enable any

device in a heterogeneous system to efficiently execute tasks on a GPU. Specifi-

cally, this chapter proposes a novel event-driven GPU programming model, EDGE,

which pre-registers GPU kernels (event kernels) to be launched by an external de-

vice. EDGE implements extensions to the CUDA API and requires minimal mod-

ifications to the GPU architecture to support storing and initiating the execution

of GPU event kernels. We evaluate the opportunity to use existing GPU warps as

a mechanism for launching the GPU event kernels internally on the GPU. EDGE

exposes the GPU’s interrupt interface to external devices in a heterogeneous sys-

tem to trigger the execution of privileged GPU warps (PGW), capable of launching

event kernels on the GPU, similar to CUDA dynamic parallelism (CDP). Unlike

CDP, event kernels do not require dynamic configuration, which can significantly

reduce the kernel launching latency. This chapter also proposes a fine-grained,

warp-level preemption mechanism to reduce the PGW scheduling latency when

the GPU does not have enough free resources available to immediately execute the

PGW. We show that for a set of GPU benchmarks, a free warp context is avail-

able for a PGW 50% of the time on average, and that the preemption latency for a

PGW, when no free warp contexts are available, can be reduced up to ∼36× (to ∼
50 GPU cycles) with the proposed warp flushing optimizations over simply wait-

ing for a warp to complete. Furthermore, by reducing the interference between the

CPU and GPU, we estimate that EDGE could increase CPU throughput by 1.17×
and GPU networking throughput by 3.7× when running workloads on the CPU

(SPEC2006) in parallel with a networking application, such as MemcachedGPU,

on the GPU.
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7.2 Future Research Directions
This section discusses directions for potential future research based on the work

performed in this dissertation.

7.2.1 Control-Flow Simulator

Section 3.2 presented a control-flow simulator, CFG-Sim, that simulates the be-

havior of a warp (wavefront) through an application’s control-flow graph (CFG),

to estimate the SIMD efficiency of the application when executed on a GPU. As

described, this simulator considers the branch probabilities (taken or not taken)

and applies this probability independently to each thread in a warp when flowing

through the CFG. This is not a problem if each thread’s execution is independent of

all other threads in a warp. However, if the branch outcome for a thread is depen-

dent on the other thread’s in a warp, referred to here as correlated branches, then

CFG-Sim may estimate a much lower SIMD efficiency than will actually result

when the code is executed on a GPU. The impact of correlated branches can be

seen in the Rodinia application, Ray Tracer, presented in Section 3.4.2. Consider

the code in Example 3. In this example, the warp size is 32 threads (as in NVIDIA

GPUs). The even warps will execute the code at block A, whereas the odd warps

will execute the code at block B. If there are an even number of warps, the SIMD

efficiency will be 100% and the branch probability will appear to be 50% (half of

the threads execute A, the other half execute B). However, in CFG-Sim a branch

probability of 50% will be applied to each thread, resulting in an estimated SIMD

efficiency of roughly 50%.

Example 3 Example of correlated branches on branch probabilities.

1: int tid = threadIdx.x
2: if (tid % 64 < 32) { // Warp size is 32 threads
3: // A
4: else {
5: // B
6: }

Loops pose a similar challenge. Consider the code in Example 4. For each
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thread in this example, the branch is taken nine times and not taken one time. Thus

the branch probability appears to be 90%. CFG-Sim will apply a branch probability

of 90% to each thread on each iteration, which results in a SIMD efficiency lower

than the actual SIMD efficiency of 100%.

Example 4 Example of loops on branch probabilities

1: for (unsigned i=0; i<9; ++i) {
2: // C
3: }

Another challenge with estimating SIMD efficiency occurs when branch out-

comes are data dependent. Consider the code in Example 5. Here, all threads in a

thread block will iterate through loop together; however, the number of iterations

is dependent on external data. Consequently, the number of times that the threads

will execute the code block D is not known a priori, which complicates the cal-

culation of the final SIMD efficiency estimation. For example, the overall SIMD

efficiency can be quite different if block D is only 10% of the static code in the

GPU kernel, but 90% of the dynamic code.

Example 5 Example of data dependency on branch probabilities

1: N = global_buffer[blockIdx.x]
2: for (unsigned i=0; i<N; ++i) {
3: // D
4: }

To generalize across multiple types of applications, CFG-Sim must consider

these types of correlated branches when estimating the SIMD efficiency. How-

ever, identifying correlated branches in CPU code is challenging since the code

has likely not been written for highly parallel execution or may be highly depen-

dent in input data. An interesting research direction would be to understand how

CFG-Sim could be improved to support branches related to parallel execution, the

underlying GPU architecture, and data dependence.
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7.2.2 Evaluating GNoM on Additional Applications and Integrated
GPUs

The GNoM framework presented in Chapter 4 is evaluated on a single server appli-

cation, MemcachedGPU, and a network-only GPU ping benchmark. GNoM should

also be able to efficiently accelerate other existing GPU network packet processing

applications, where different GPU threads are responsible for processing different

network packets, such as IPv4/6 forwarding or packet encryption/authentication

(e.g., IPSec). An obvious direction for future research is to evaluate additional ap-

plications that can take advantage of GNoM to accelerate the network flow from

the network card directly to the GPU. MemcachedGPU was designed and evaluated

for very small network packet sizes to stress the GNoM framework. Evaluating ap-

plications with larger packets should also benefit from GNoM. Additionally, the

latency per Memcached kernel is relatively short, which results in larger end-to-

end improvements when using GNoM to reduce these overheads. It would be in-

teresting to evaluate how GNoM compares to the baseline network flow when the

GPU kernel runtime is much longer. Furthermore, MemcachedGPU highlighted

a specific requirement for the partitioning of computation between the CPU and

GPU, for example, to fill the response packets with the corresponding Memcached

item values on a hit in the hash table, prior to sending the response packets over

the network. Other applications may place drastically different requirements on

the amount and type of CPU and GPU processing, which could require rethinking

parts of the GNoM design to efficiently support a wide range of applications.

Chapter 3 highlighted that while discrete GPUs have higher computational

capacity, the ability to remove data transfers between the CPU and GPU resulted

in higher overall performance from integrated GPUs. GNoM was developed and

evaluated on discrete GPUs mainly due to the existence of GPUDirect, which en-

abled the NIC to transfer RX packets directly to the physical memory on high-

performance discrete GPUs. The integrated GPU’s memory could also be mapped

into the NIC for direct packet transfers; however, discrete GPUs were selected

for an initial evaluation due to the potential for higher performance when memory

transfer overheads are reduced (as shown in Chapter 3). In GNoM, the GPU still

transfers response packets on the TX path to the CPU to forward to the NIC. This is
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not an inherent limitation of GNoM 1, but was instead a design decision to improve

performance on contemporary hardware. Specifically, this enabled GNoM to make

use of the CPU’s larger memory space for storing the Memcached values without

incurring additional transfers across the PCIe. Based on the results for a lower pow-

er/performance discrete GPU in Chapter 4, evaluating GNoM on integrated GPUs

could further improve the efficiency for applications, such as MemcachedGPU,

which currently require partitioning parts of the application across the CPU and

GPU due to GPU memory capacity limitations. Additionally, unlike Chapter 3,

which evaluated large batches of packets (e.g., 20k+ packets), GNoM works on

much smaller batches of packets (512 packets), which places lower requirements

on the GPU’s computational capacity.

7.2.3 Larger GPU Networking Kernels

GNoM and MemcachedGPU were designed to support a single GPU thread per

network packet 2. Many potential GPU networking applications could require sig-

nificantly more GPU threads to execute the kernel. For example, consider a GPU

networking application that performs facial recognition on a network packet con-

taining image data. Such an application requires multiple GPU threads to effi-

ciently complete the task for a single network packet. Additionally, the larger ker-

nel size requires fewer (potentially zero) network packets to be batched together to

improve the GPU’s throughput. Supporting these types of applications would re-

quire modifications to GNoM to handle multiple GPU threads per network packet

and partition the threads between application and network processing.

7.2.4 Stateful GPU Network Processing

GNoM currently supports stateless UDP network processing. Stateless packet pro-

cessing simplifies the processing requirements, as there is no hand-shaking be-

tween client and server, and no additional protocol mechanisms, such as flow con-

trol. Thus, the GPU client simply receives the packet, processes the packet, and

sends the response. If the packet is dropped for any reason along the end-to-end

1We also implemented and evaluated an equivalent direct GPU-to-NIC TX path.
2As described in Chapter 4, two GPU threads are actually launched per packet to overlap parallel

network and application processing tasks within the GPU kernel.
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path from/to the client, it is the responsibility of the client to re-transmit the packet.

GASSP [170] is the first work to evaluate stateful packet processing (TCP) on

GPUs and highlights the ability for the GPU to achieve significant performance

improvements over a GPU-based implementation where the packet processing oc-

curs on the CPU. GASSP requires larger batch sizes (increases packet latency),

uses main CPU memory for storing packets (does not make use of GPUDirect),

and evaluates GASSP on packet processing based applications, such as firewalls,

intrusion detection, and encryption. An interesting research direction would be to

understand how the insights gained from both GNoM and GASSP could improve

the performance of stateful GPU packet processing and accelerate higher levels of

the application layer on a GPU.

7.2.5 Accelerating Operating System Services on GPUs

This dissertation evaluates the potential for offloading a portion of the network

stack to the GPU to improve the performance and efficiency of GPU network-

ing applications. Since the network application itself is also running on the GPU,

accelerating an Operating System (OS) service, such as the network stack, has a di-

rect impact on reducing the latency of the critical path between the NIC and GPU.

A much more open-ended research direction would be to explore additional OS

services, potentially those which have no existing interactions with the GPU, that

could benefit from GPU acceleration.

7.2.6 Networking Hardware Directly on a GPU

The GNoM framework proposed in this dissertation considers a heterogeneous sys-

tem in which the NIC is a physically separate component from the CPU and GPU,

and is connected via an interconnect bus, such as PCIe. As highlighted in Chap-

ter 6, many works have shown the potential for the GPU to improve the perfor-

mance and efficiency of networking applications. From an architectural viewpoint,

it would be interesting to evaluate how network interfaces (such as Ethernet ports)

could be directly integrated into the GPU architecture, and how the network inter-

face could be modified to better suit the GPU’s vector architecture. For example,

one of the inefficiencies of current packet processing on GPUs is due to the packet
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layout in memory. If each GPU thread processes a separate packet, as in GNoM,

every memory access will lead to memory divergence (GNoM tries to reduce the

effects by loading packets into shared memory). However, a dedicated NIC on a

GPU could rearrange (swizzle) the packet header contents in hardware such that

the GPU threads can better take advantage of memory coalescing. An initial evalu-

ation into the packet header swizzling technique shows up to 2.4× improvement in

throughput for a GPU IPv4/6 forwarding applications. Furthermore, an integrated

GPU-NIC architecture could significantly reduce the latency for ingesting and pro-

cessing packets in GPU memory with separate GPU threads. Including network

hardware directly on the GPU would also increase the requirement for a mecha-

nism to independently and efficiently launch GPU kernels internally on the GPU,

such as EDGE and the PGWs.

7.2.7 Scalar Processors for GPU Interrupt Handling

Chapter 5 explores how existing warps running on the GPU’s SIMD pipeline can

be used to handle interrupts to internally launch GPU kernels in response to an

external event. However, the interrupt processing, as described in this chapter, is

inherently sequential and could also be efficiently processed by a scalar proces-

sor. A direction for future research would be to evaluate how simple scalar cores

integrated on the GPU die, such as scalar control processors [139] or the scalar

units in AMD Compute Units [10], could be used to improve the performance and

efficiency of interrupt handling for launching internal event kernels on the GPU.

7.2.8 GPU Wait-Release Barriers

Chapter 5 introduced a new type of CTA barrier, the wait-release barrier, which

blocks all warps in a CTA indefinitely until a release barrier instruction is per-

formed. The current implementation constructs wait-release barrier sets using IDs

and releases all wait-release barriers belonging to the same set simultaneously. If

multiple CTAs are concurrently blocked on the same wait-release barrier set, they

will all be released regardless of the number of tasks pushed to the GPU. This re-

duces performance and efficiency, as only a subset of the released CTAs may find

a valid a task to perform, while the rest are unnecessarily released from the wait-
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release barrier and will immediately return to blocking. An area for future work

would be to explore how to efficiently support targeted releasing of wait-release

barriers. This would likely require data structures to track the status of running

and blocked CTAs, and a dedicated mechanism for communicating information

to these CTAs from the PGW responsible for releasing a blocked CTA. Addition-

ally, given that a single PGW releases the wait-release barrier, the PGW could be

used to remove synchronization on a single global work queue by distributing the

pending tasks to local per-CTA work queues. The PGW could also be used for

load-balancing the tasks across CTAs.

7.2.9 Rack-Scale Computing

Datacenters have recently started to shift towards rack-scale computing architec-

tures [82], where components in a disaggregated computing [107] system reside

in physically separate racks. In such a computing environment, only the resources

that are actually required are allocated to the application. This increases the utiliza-

tion of hardware resources in the datacenter by minimizing the amount of unused

hardware resources that are indirectly reserved by application. An example of this

would be an application that is allocated a full server based on its compute require-

ments, but only requires 50% of the storage resources installed in this server. In

a rack-scale architecture, this application could be allocated the required compute

resources from one rack and the required storage resources from another, leaving

the unused storage resources to be allocated for another application. However, if

we consider a GPU networking application, which only requires the network inter-

face and GPU, a CPU still needs to be allocated to handle the control path from

the network interface to the GPU. The EDGE framework proposed in Chapter 5

removes this dependency on the CPU for GPU task management in a single sys-

tem; however, an interesting research direction would be to understand how such

a framework may also be used in a disaggregated rack-scale environment. For ex-

ample, NVIDIA’s Pascal and Volta GPUs support virtual memory demand paging

through unified memory [126, 131], which places a requirement on the CPU (and

CPU memory) for tasks other than strictly control management.
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