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Abstract

Video question answering is the task of automatically answering questions about

videos. Apart from direct practical interest, it provides a good way to benchmark

our progress on various tasks in video understanding. A successful algorithm must

ground objects of interest and model relationships among them in both the spa-

tial and temporal domains jointly. We show that the existing state-of-the-art ap-

proaches, which are based on Convolutional Neural Networks or Recurrent Neural

Networks, are not effective at joint reasoning in both spatial and temporal domains.

Moreover, they are short-sighted and struggle with long-range dependencies in

videos. To address these challenges, we present a novel spatio-temporal reasoning

neural module that models complex multi-entity relationships in space and long-

term dependencies in time. Our model captures both time-changing object inter-

actions and action dynamics of individual objects in an effective way. We evaluate

our module on two benchmark datasets which require spatio-temporal reasoning:

TGIF-QA and SVQA. We achieve state-of-the-art performance on both datasets.

More significantly, we achieve substantial improvements in some of the most chal-

lenging question types, like counting, which demonstrate the effectiveness of our

proposed spatio-temporal relational module.
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Lay Summary

Video question answering is an important task in computer vision, which aims to

automatically answer questions about videos. Apart from direct practical interest,

it provides a good way to benchmark our progress towards different tasks in video

understanding. A major challenge for this task is that many challenging queries

require long-range reasoning in both spatial and temporal domains. Existing tech-

niques struggle to model long-range sequences and do not incorporate effective

prior knowledge for joint spatio-temporal reasoning. In this thesis, we propose an

end-to-end approach that uses relational networks to jointly perform long-range

spatial and temporal reasoning in videos: spatio-temporal relational reasoning. In

doing so, we capture the time-evolving object-interactions between multiple ob-

jects and the time-evolving action-dynamics of individual objects. We show the

effectiveness of our approach on two benchmark datasets and achieve state-of-the-

art performance.
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Chapter 1

Introduction

Perceiving and understanding video data is vital to human intelligence. It is crucial

to every day-to-day activity ranging from low-level tasks like eating to high-level

tasks like driving. Similarly, the machines which aim to emulate these activities

need to perceive and make sense of time-evolving visual data. It must single out

objects of interest and understand their relationships at various levels of abstrac-

tion. Moreover, it must do so in a hierarchical manner building relationships of

relationships in both spatial and temporal domains. Towards this goal, the task of

video understanding has been proposed and is an active area of research in com-

puter vision literature.

In contrast to individual images, which require reasoning in the spatial domain,

videos require joint reasoning over both spatial and temporal domains. Due to the

richness of the problem, it is being studied as different sub-tasks, each differing

in terms of simplifying assumptions used to tame the problem. For instance, Ac-

tivity Recognition [10, 43] aims to classify the short and trimmed video among a

vocabulary of activities. Temporal Action Localisation [40, 47] aims to temporally

localize activities in a possibly longer video. More recently, Video Question An-

swering [8, 13, 17, 51] aims to answer various types of natural-language questions

about a video.

Video Question Answering (aka VideoQA) is arguably the most challenging

among video tasks since it may contain a myriad of queries, including those en-

compassing other video understanding tasks. Each of the many possible natural-
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language questions, encapsulated by a smaller set of queries, can be seen as be-

longing to one of the sub-tasks in video understanding. Hence, it is arguably a

more general and challenging among other speci�c video understanding tasks. For

instance, simpler questions, similar to image question answering (ImageQA), in-

volve attribute identi�cation in a single frame of a video [32, 34]. More complex

questions, similar to activity recognition and localization, require looking at multi-

ple frames in a local temporal region [13, 34]. The most complex questions require

recognizing activities across time, counting them or reasoning about their temporal

order [13, 41].

A generic VideoQA algorithm must learn to ground objects of interest in video

and reason about their interactions in both the spatial and temporal domains. Con-

ceptually, a VideoQA algorithm can be broken into three different sub-tasks. First,

the algorithm should understand the intent of the query from the natural language

description of the question. Second, it should compute relationships which are rel-

evant to the query in the spatial domain. Finally, it should reason how these spatial

relations evolve in the temporal domain. For instance, consider the question and

the sequence of frames in Figure 1.1. To answer, the algorithm considers spatial re-

lations among all possible object-pairs in each frame individually. In the case of the

blue cylinder and sphere, these are calculated asfar in the �rst frame,close and

very close in the subsequent frames. Having done that, it needs to reason how

these spatial relationships change in the temporal domain. This leads to identifying

the correct interpretation that cylinder and sphere aregetting close . Having

observed these spatio-temporal relationships among all possible object-pairs, the

algorithm can �gure out the correct answer which is a sphere in this case.

Traditional approaches use 3D Convolutional Neural Network (CNN) [30, 47],

Long Short Term Memory Unit (LSTM) [26, 51], or attention [8, 13, 48] to model

such relationships. Although successful, they are limited in capacity. For in-

stance, 3D CNNs are useful for identifying local spatio-temporal action events,

demonstrated by success in Activity Recognition datasets, however, they strug-

gle in modeling long-range temporal relationships [46, 54]. Similarly, LSTM-

based approaches, although known to do well in long-range text sequences, strug-

gle to model videos [8, 23]. This is because, unlike text, videos contain longer

and information-richer sequences of spatial data, which LSTMs, or their spatial-
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Figure 1.1: The �gure shows a question and selected frames of a video in
SVQA dataset [41]. We show individual spatial-relations among rel-
evant objects, which arefar , close and closer . The change of
spatial-relations over time corresponds to the temporal-relation which is
getting close . Having observed these temporal-relations among
object-pairs, the algorithm can infer the answer –Sphere .

attention variants, cannot model naturally and effectively. More importantly, these

network architectures do not provide an effective way to model videos and need to

learn relational reasoning from scratch which is inef�cient and data-hungry [38].

In this work, we leverage and extend relational networks [31] to model spatio-
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temporal relationships in videos. Relational networks are designed and provide

effective prior knowledge to effectively model relationships among its inputs. The

ability to reason is embedded right in the formulation of relational networks, just

like the ability to reason about sequences is encoded in LSTMs. Previously, re-

lational reasoning has been used effectively in image question answering [38] and

activity recognition [54]. However, it was limited to either the spatial or the tempo-

ral domain individually. Inspired by these two works, we present spatio-temporal

relational networks which can perform joint relational reasoning in both spatial and

temporal domains.

Contributions: We make several contributions in this work. First, we present a

novel general-purpose neural network module which acts as an effective prior for

spatio-temporal relational reasoning in videos. This allows us to capture object-

interactions and how they change over time. Second, we present Global Context

Encoder LSTM to model action-dynamics of individual objects with global context

at timet. Hence, our approach captures both spatio-temporal relations (capturing

object-interactions) and action-dynamics (capturing how individual objects change

over time) in videos. To our knowledge, this is the �rst attempt to perform joint

spatio-temporal reasoning using relational networks. Third, we show the effective-

ness of our proposed Spatio-Temporal Relational Network on a variety of VideoQA

tasks, which include both real-world (TGIF-QA [13]) and synthetic (SVQA [41])

datasets. Our approach achieves state-of-the-art results on both these datasets. Fi-

nally, we show substantial improvement in the challenging counting task that re-

quires capturing spatio-temporal dynamics in different parts of a video. Also, to

the best of our knowledge, this is the �rst attempt to approach VideoQA using

relational networks.

1.1 Problem De�nition

We are addressing the problem of video question answering (VQA) in this work.

More formally, the input consists of a video, consisting of a sequence of frames;

a question, consisting of a sequence of words; and optionally �ve different answer

options. The task is to answer the question based on the information present in the

video. The exact type of output depends on the speci�c task in the video question

4



Figure 1.2: Figure shows different question-types used in this work (illus-
trations taken from TGIF-QA dataset). Note that all questions in the
SVQA dataset are open-ended word type.

answering dataset. Here are the possible options:

1. Multiple Choice: The output consists of picking the correct option among a

set of �ve possibilities.

2. Open-ended word: The output consists of picking the correct word in the

entire vocabulary.

3. Open-ended number: The output consists of predicting a number like the

count of events in a video.

We model the �rst two tasks as a classi�cation problem and the last task as a re-

gression problem. Irrespective of the type of output, the model needs to understand

what is being asked in the question and reason over relevant parts of the video to

arrive at the answer. Here are some of the desired properties of the model:

� Robust to various ways (natural language descriptions) of describing the

same query in a video.

� Able to deal with different length of videos and identify objects of interest

to reason over them.
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� It should be able to identify the correct answer irrespective of the type of

question-answering task.

� Able to deal with different viewpoints of camera and zoom levels in videos.

The task of video question answering is inherently dif�cult due to several rea-

sons. First, video question answering may contain questions about many different

sub-tasks like classi�cation, counting, or even grounding. To succeed, the same

VQA algorithm must do well on all these tasks. Second, unlike images which

require reasoning in the only spatial dimension, videos require joint reasoning in

both spatial and temporal dimensions. Hence, traditional architectures like CNNs

and LSTMs, which are designed to explicitly reason only in one domain, are not

the best choices when used off the shelf in the case of videos. The 3D alternative

of the 2D CNNs are narrow-sighted and are only able to focus on a short part of

a video at a time. Similarly, LSTMs are known to struggle for long sequences,

especially in case of videos which contain long information-rich frames instead

of sequences of words. Third, training a neural network architecture for videos is

resource-intensive in terms of memory, time and computation power. For instance,

in comparison to images, typically a video dataset size is 100 times (order of ter-

abytes) and the corresponding neural network model has 100X more parameters

(and takes 3-4 days to converge). Fourth, videos can be very diverse with differ-

ent lengths, event-speed, number of objects, frame-rate, resolution, camera angle,

etc. Amongst this diversity, the algorithm needs to focus on the relevant parts and

capture both the local and the global detail. Consider as an example a video with a

human clapping. While the local information may signify hands moving closer or

farther, only when the algorithm sees the larger picture (global information), it can

understand that it is a clapping video. All these factors make the general problem

of video question answering very challenging.

1.1.1 Scope

We limit the scope of our problem by making several simplifying assumptions.

First, we tame the computational complexity by uniformly sampling 35-40 frames,

effectively reducing the frame rate. Second, in both of our datasets, we only have

trimmed videos consisting of a few seconds. This simpli�es the problem of irrele-
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vant areas in the start and the end of a video. With these assumptions, we reduce

the size of our dataset to one terabytes. Third, the set of possible answers is limited

by either the number of available options or the size of the vocabulary or numbers

from 0-9. Fourth, we only consider a limited number of tasks out of all possibili-

ties in the general problem of video question answering problem. Speci�cally, we

only consider tasks in the TFIF-QA and the SVQA dataset which are limited to

counting, transition, comparison, exists, query, etc. They do not contain tasks like

grounding of events or verifying the order of events. Fifth, we assume the avail-

ability of a standard pre-trained 2D and 3D CNNs (ResNet[12] and C3D[43]) to

extract features vectors.

1.1.2 Data

We validate the importance of joint spatio-temporal reasoning using two video

question answering datasets, namely TGIF-QA [13] and SVQA [41]. These datasets

have been carefully chosen as they contain complex questions requiring spatio-

temporal reasoning in videos. This is in contrast to many other VideoQA datasets

like LSMDC-QA [35] which are image-centric, merely querying about visual con-

cepts like color, objects, and locations [13]. Also, we would like to clarify the

rationale behind choosing Video Question Answering as opposed to other video

understanding tasks like Activity Recognition (used in a closely related work [54]).

While activity recognition requires spatio-temporal reasoning, it is limited to “rec-

ognizing actions” which are usually localized to a short sequence of frames. On

the other hand, miscellaneous VQA tasks require more elaborate and long-term

reasoning over both spatial and temporal domains. For instance, the Count task

requires the network to recognize all possible actions of interest and then compute

the sum to arrive at the answer. Hence, the proposed video question answering

datasets are a better judge for evaluating spatio-temporal reasoning in Videos.

TGIF-QA [13] is a large-scale dataset containing 165K QA pairs collected from

71K real-world animated Tumblr GIFs. The questions are categorized into four

separate tasks. 1) Repeating Action (Action) aims to name the event that happened

a speci�c number of times in the video. This is a multiple-choice task where the

7



correct answer is one of the �ve available options (Fig 4.1a). 2) State Transition

(Trans), similarly, is a multiple-choice task with �ve options. Questions ask about

state transitions like facial expressions (from happy to sad), among others (Fig

4.1b). 3) FrameQA is an open-ended task which, similar to image-QA, can be

answered by looking at one of the ”appropriate” frames in the video. However,

the range of possible answers spans the entire vocabulary (Fig 4.1c). 4) Repetition

Count (Count) aims to count the number of times a given event happens in the

video. This is an open-ended task and answers lie in a range of integers: 0 to 10

(Fig 4.1d).

SVQA [41] is synthetically generated dataset designed to control and minimize

language biases in existing videoQA datasets. It contains 120K questions asked

on 12K videos with moving objects like sphere, cylinder or cube (Fig 4.2). Simi-

lar to FrameQA, answers span the entire vocabulary. Questions are compositional

and require a series of reasoning steps (like comparison and arithmetic) in both

the spatial and the temporal domains. Questions are further categorized into ex-

ist, count, integer comparison, attribute comparison and query subtypes. Since the

exact train-val-test subsets of the SVQA dataset are not readily available, we ran-

domly sample a new split similar to Table 1 of Song [41]. In comparison to TGIF-

QA, it contains more complex questions requiring more elaborate spatio-temporal

reasoning. However, unlike real-world GIFs in TGIF-QA, it contains perceptually-

simpler scenes consisting of a few synthetic objects. These two datasets are well

suited for our task because they contain well-formed questions that require com-

plex spatio-temporal reasoning.

1.2 Method Outline

The input to our model consists of a sequence of frames (f vtgT
t= 1) in the form of

a video, and a sequence of words (f wigL
i= 1) in the form of aquestion; where T

is the length of the video and L is the length of the question. Optionally, in case

of multiple-choice questions, it also consists of �ve separate sequences of words

(f c j
kg

Sk
j= 1) representinganswer-options; whereSk is the corresponding sequence

length andk 2 [0,4]. The block diagram of our approach is shown in Figure 1.3.

8



Figure 1.3: The �gure shows the block diagram of our proposed model. First,
we extract features using pre-trained CNNs (shown in green). The video
features are passed to Spatial Relation Module (SRM) and Global Con-
text Encoder LSTM (GCE) which models object interactions and action
dynamics. Finally, the output of SRM and GCE are passed to Tem-
poral Relation Module (TRM) to model relationships in time. Finally,
these are passed to Answer Encoder to obtain the answer. Separately,
we encode the question and answer-options using the Question/ Answer
Encoder LSTM which is passed to SRM, GCE and TRM modules to
condition on the question.

There are �ve main components: (a) Question/ Answer Encoder LSTM (b) Spatial

Relation Module (SRM), (c) Global Context Encoder LSTM (GCE), and (d) Tem-

poral Relations Module (TRM) (e) Answer Decoder Module. As a preprocessing

step, we extract appearance (f AtgT
t= 1 2 R7� 7� 2048) and motion (f MtgT

t= 1 2 R4096)

features using pretrained ResNet-152 [12] (res5c) and C3D [43] (f c6), respec-

tively. Further, we use a Downscale CNN to reduce the size of feature vector from

f AtgT
t= 1 2 R7� 7� 2048 to f OtgT

t= 1 2 R3� 3� 256.

We use the Question Encoder LSTM and the Answer Encoder LSTM to en-

code the question and answer options (if available) respectively. The output of the

Question/ Answer Encoder LSTM is used as the question encodingg to condi-
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tion the output of other modules. The Spatial Relation Module takes appearance

features (f AtgT
t= 1) as input and computes spatial relations among various objects.

This can be seen as modeling object interactions in each frame individually. The

Global Context Encoder LSTM takes motion features (f MtgT
t= 1) as input and cap-

tures action-dynamics with global context at time t. Finally, the Temporal Re-

lation Module takes the concatenated SRM-encoding (ft) and the GCE-encoding

(r t) as input and computes how the spatial-relations and action-dynamics change

over time. This corresponds to modeling temporal changes in both the interactions

among different objects and the motion-dynamics of individual objects. Apart from

the video features, the SRM, TRM and GCE modules also take the question/ an-

swer encoding (g) as input to conditions their output on the query. The output (Y)

of the TRM is passed to the Answer Decoder Module which generates the answer.

In the case of multiple-choice and open-ended word questions, we use classi�ca-

tion while in the case of open-ended number questions regression is used (details

in section 3.3).

1.3 Thesis Organization

We have organized the thesis as follows: We present the background and related

work in Chapter 2. In this chapter, we start with presenting background on existing

question answering systems and their limitations. We then discuss the state-of-the-

art methods to solve the problem of video question answering. We also review the

background material on relational networks and their applications. In Chapter 3,

we describe our Spatio-Temporal Relation Network (STRN) and de�ne each com-

ponent in detail. Additionally, we discuss the necessary details for implementa-

tion, training, and inference. In Chapter 4, we present the experimental results. We

present a comparison of our approach with the state-of-the-art methods on the two

videoQA datasets. Also, we present an ablation study to highlight the importance

of joint spatio-temporal relational reasoning. Finally, in Chapter 5, we highlight

our main contributions and discuss future directions to conclude the thesis.
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Chapter 2

Related Work

Our work on video question answering is related to the rich literature of visual

question answering, video analysis, and relational networks. First, we review re-

cent successes on image question answering and discuss the challenges in extend-

ing it to video question answering. In particular, we discuss what makes videos

more challenging. Then, we review existing literature on video analysis, espe-

cially on capturing spatio-temporal relationships. Finally, we describe relational

networks in detail as part of the background material.

2.1 Visual Question Answering

2.1.1 Image Question Answering

Image question answering [1], also known as visual question answering, is the task

of answering queries about images. It has been a popular area for research for

computer vision researchers over the past few years [6, 11, 24]. Typical questions

focus on identifying attributes, counting objects or reasoning about their spatial-

relations. Overall, question answering is a fairly complex task involving a com-

bination of visual perception, language understanding, and deductive reasoning.

Earliest methods use end-to-end neural networks to learn a mapping from input

images and questions, directly to answers. In particular, a typical approach extracts

image features from the last layer of the convolutional neural networks pre-trained

11



on object recognition datasets. Questions are fed word-by-word into recurrent neu-

ral networks to obtain �xed-length feature vectors as question representation. The

question and the image features are then jointly embedded, followed by a multi-

class classi�cation to arrive at the answer [7, 25, 32]. However, since the image

and question are separately encoded, their representations tend to encode irrelevant

information which hurts performance.

As a remedy, the visual attention mechanism [49] was proposed to allow se-

lective focusing on parts of the image relevant to answer the question. Chen [3]

proposed a con�gurable convolutional kernel, derived from the question semantics,

which can be used to identify relevant image features. Yang [42] proposed multiple

steps of attention in a stacked manner for improved reasoning. Lu [22] proposed

co-attention between the question and image, which also attends to relevant words

in the question in addition to relevant areas in the image. Another successful ap-

proach, Fukri [6] proposed multimodal compact bi-linear pooling (MCB), which

ef�ciently combined the image and question features to predict attention.

Despite the fact that black-box neural network approaches can deliver impres-

sive VQA performance, they have been argued to exploit dataset-speci�c biases

rather than doing structured reasoning. This has been corroborated by poor gen-

eralization on the CLEVR dataset, a diagnostic dataset containing queries ranging

from simple perception tasks to complex logical and spatial reasoning tasks[11].

As a remedy, various approaches were proposed which used neural networks to

obtain discrete representations, allowing incorporation of symbolic-reasoning pri-

ors. For instance, Johnson et al. [15] proposed to infer a speci�c chain of reasoning

(called program) from a given question and use it to build a custom neural network

architecture, by assembling modules. Yi [50], apart from the question, also inferred

the structured scene representation of the image. This allowed them to obtain the

answer by executing the program directly on the scene representation using a de-

terministic symbolic executor, a very effective prior. However, these approaches

depend on discrete representations (programs or structured scene representation)

which are hard to obtain in the case of real-world data.

Alternatively, Santoro [38] proposed relational networks and achieved state-of-

the-art and superhuman performance on the CLEVR dataset. Relational networks

inherently provide effective prior knowledge to learn relations among spatial ele-
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ments of an image. This allows better reasoning, however, it was limited in the

spatial domain. We extend this work to videos and propose a model which does

joint relational reasoning in both the spatial and the temporal domain.

2.1.2 Video Question Answering

Video question answering, a relatively newer problem, is the task of answering

natural language questions on videos. A video consists of a sequence of frames

representing complex interactions and manipulations of objects that evolve over

time. Unlike image question answering, which is con�ned to spatial reasoning,

it focuses on queries which require joint reasoning in both spatial and temporal

domain. These may include identifying a single activity spanning a few contigu-

ous frames, or more generally multiple such activities and inferring relationships

between them.

Despite signi�cant successes, existing methods in image question answering

do not naturally extend to videos as they fail to capture the temporal aspect. For

instance, simple baselines which average the CNN feature representation of indi-

vidual frames do not give satisfactory performance. By averaging, they loses both

crucial details and temporal order among different frames. Similarly, the use of at-

tention to attend to the most relevant frame or predicting an answer based on each

frame separately makes sense only for shallow queries which requires looking at

only one frame to answer the question. The earliest approaches [26, 48, 51] used

LSTMs to capture temporal order among frames of a video. First, they extracted

feature vectors for each frame independently from the �nal layer of a pre-trained

convolutional neural network. Then they passed these feature vectors through an

LSTM to model temporal dependency, and optionally, leveraged temporal attention

to selectively attend to important frames in a video. These approaches modeled

temporal reasoning through a combination of LSTM and attention but lacked any

spatial reasoning.

Jang [13] proposed an architecture which utilized both spatial and temporal at-

tention. Apart from the �nal-layer CNN features, they also extracted convolution

features maps. A spatial-attention mechanism was used to selectively attend to im-

portant regions in CNN feature maps. The attended convolutional vectors, along
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with the �nal-layer CNN feature vectors are passed into an LSTM, followed by

a temporal attention mechanism. Another approach [52] proposed a hierarchical

spatio-temporal attention network which jointly learns the representation of se-

quentially critical frame with the targeted objects. It allows multi-step reasoning

for re�ning the joint representation of the spatio-temporal attentional video and the

textual question. They employ an object generator to produce a set of candidate

regions and used spatial attention to automatically localize targeted regions in each

frame according to the question. The attended representations are further attended

by an attentional GRU, which learns order sensitive representation of the relevant

frames. Similarly, Zhou [53] employs hierarchical attention context network to

model hierarchically sequential questions and multi-step reasoning. Again, they

use a combination of long short-term memory (LSTM) unit and a multi-stream

spatio-temporal attention network to learn a joint representation of the video and

the question. Although these approaches allowed spatio-temporal reasoning, how-

ever, it is limited in terms of modeling long-range temporal dependencies. They are

attributed to recurrent neural networks (RNN) and its variants like long short-term

memory (LSTM) units [8, 23]. First, LSTMs are ineffective with long sequences

of data, and videos are usually composed of long sequences of frames. Second,

LSTMs struggled to model information-rich frames vectors, which contained more

detailed information in comparison to text-data vectors.

To address this problem, Song [41] proposed a more granular spatial-attention

and a modi�ed-GRU incorporating a temporally-attended hidden state transfer.

The spatial attention mechanism is designed to address crucial and multiple log-

ical sub-tasks embedded in the questions like '�lter shape', 'query color', etc.

The GRU-based temporal attention captures long-term temporal dependencies to

gather all relevant visual cues. Another set of approaches used memory networks

[8, 17, 27] to handle long-term dependencies. Memory networks provide explicit

memory representation for each token in the sequence, which can be read and re-

placed. Providing memory representations aids long short-term memory (LSTM)

units to recover information in long sequences. Moreover, multi-step attention

allows iterative reasoning over memory representations, useful for question an-

swering tasks. Gao [8] used a co-memory attention. First, they extract motion

and appearance features by using a two-stream network. Then, they used a 1D
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convolution-deconvolution network to build multi-level contextual facts with the

same temporal resolution but a different contextual range. Finally, they use two

memory networks, each for appearance and motion. Their method incorporates a

co-memory attention mechanism which takes motion cues for appearance atten-

tion generation and appearance cues for motion attention generation. Li [20] used

a self-attention based technique to exploit global dependencies among words of a

question and frames of a video. They used a positional self-attention and calculated

attention at each position by attending to all positions within the same sequence.

This allows capturing global dependencies of question and temporal information

in the video. Further, they utilized co-attention to attend to both the question and

the video simultaneously. An important aspect of this approach is that it avoids the

use of recurrent neural networks (RNN), and hence requires less computation time

and achieves better performance.

Although modi�ed-GRU [41], co-attention [8], and self-attention [20] per-

formed better than pure LSTM-based approaches, however, they still had to learn

relational reasoning from scratch. The ability to compute arbitrary relations is es-

sential to question answering tasks. LSTMs, memory networks, and self-attention

based techniques do not model the ability to compute relations explicitly. Instead,

they learn it implicitly using supervised data, which is inef�cient and data-hungry.

Our approach takes a different route and uses relational networks which provide

effective prior knowledge for performing relational reasoning. Moreover, our ap-

proach allows joint relational reasoning in both spatial and temporal domains.

This allows capturing complex spatio-temporal relationships and hence, it is data-

ef�cient and outperforms the above techniques.

2.2 Video Understanding

Video understanding is one of the fundamental problems in computer vision. In the

recent years, many related sub-tasks including Activity Recognition [10, 43], Tem-

poral Action Localisation [40, 47], Dense Video Captioning [19, 55], and Video

Question Answering [8, 13, 17, 51] have been active area of research. A signi�cant

part of research deals with developing robust spatio-temporal features, which rep-

resent how spatial elements interact and change over time. Earliest attempts were
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centered around hand-designed representations based on histograms and pyramids

[4, 5, 18, 37, 45]. Encouraged by the success of deep learning techniques for still

images, many attempts focused on extracting features for each frame of the video

separately using pre-trained CNNs and then integrating temporal information us-

ing mean-pooling [9] or recurrent neural networks (RNNs) [26, 48, 51]. However,

mean-pooling is prone to losing temporal order and detailed information in frames

and RNNs are known to struggle with long sequences, especially when they con-

tain information-rich frames [8, 23]. Alternately, 3D convolutional networks [2]

were proposed which allowed reasoning in both spatial and temporal domains. The

4D kernel consumes a set of RGB frames in a small temporal window and learns

spatio-temporal patterns over a local region in the video. 3D convolutional net-

works (3D CNNs) and many of its variants [30, 44] achieved strong performance on

many video understanding tasks like action recognition [43], action detection [40],

and video captioning [28]. Despite the success, 3D CNNs struggle to achieve good

performance on challenging datasets, where long-range spatio-temporal reasoning

is required. This is due to the limited size of the temporal window in convolutional

kernels.

As a remedy, a recent work by Wang [46] models videos as space-time graphs

where nodes represent regions of interest in the video. The nodes, which are gen-

erated by region proposal networks, are connected by either appearance similarity

or spatio-temporal proximity. Finally, given the graph representation, they perform

reasoning and inference on the graph using graph neural networks (GNNs) [39].

This technique facilitates modeling temporal shape dynamics and functional rela-

tionships between humans and objects. The utility of this approach was shown on

two benchmark Activity Recognition datasets. This approach is similar to ours as it

explicitly models spatio-temporal relationships. However, they use Graph Neural

Networks (GNNs) which depend on structured data like bounding boxes extracted

using Region Proposal Networks (RPNs) [33]. In comparison, our approach use

relation networks (RNs) which are �exible and can work with a broad range of un-

structured inputs like raw RGB values, CNN and LSTM outputs. Moreover, RNs

are simpler, more exclusively focused on relational reasoning and easily integrable

within broader architectures.

16



2.3 Relational Reasoning

Relational reasoning is the ability to reason about relationships among entities. It

is central to general intelligent behavior and is essential to answer complex ques-

tions in VQA tasks. Relation networks (RN), �rst introduced by Roposo [31], are

designed by constraining the functional form of neural networks such that the abil-

ity to reason about relations is baked right in its architecture. Hence, relational

reasoning is inherent to relation networks (RN) without needing to be learned from

data. Santoro [38] de�ned the relation network as a composite function below:

RN(O) = ff

 

å
i, j

gq (oi ,o j )

!

(2.1)

where the input consists of a set of objects,O = o1,o2, ..oi , ..o j , ..on; and functions

gq and ff are general purpose functions (e.g. neural networks) with learnable

parametersq and f . The functiongq computes arbitrary relations between any

two input objectsoi ,o j . The functionff reasons over the computed relations and

combines them into desired output. As stated in Santoro [38], relation networks

have following strengths.

1. Infer relations: The RNs consider potential relations among all possible

object pairs (oi ,o j ), and they learn these relations by learning the parameters

of the relation functiongq from data.

2. Data ef�ciency: The RNs learns relations for all possible object pairs(oi ,o j )

using the same relation functiongq . This ensures greater generalization and

less over�tting.

3. Invariant : The summation in Eq. 2.1 makes the computed relations order

invariant. Hence the output captures relations which are generally represen-

tative of the set of object pairs.

Roposo [31] and Santoro [38] showed the effectiveness of relation networks on

scene description data and image question answering, respectively. They demon-

strated that even the powerful CNNs or MLPs struggle to solve questions which
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require relational reasoning. However, when augmented with relational networks

(RNs), they achieve superhuman performance even in complex datasets like CLEVR

[14]. Zhou [54] extended relational networks to the temporal domain and intro-

duced Temporal Relational Networks (TRNs) for videos. They de�ne the temporal

relation network (TRN) as a composite function below:

T2(V) = hf

 

å
i< j

gq ( fi , f j )

!

(2.2)

where the input is the video, represented by a set ofn frames,V = f1, f2, ..fn. The

gq and ff functions are the usual relation and reasoning functions, respectively.

However, unlike the relation network (RN), in a temporal relation network, we

only consider pairs which are temporally ordered in time. This is enforced by the

i < j condition in the summation operation in Eq. 2.2. TRN computes temporal re-

lationships among video frames and achieved the state-of-the-art result in Activity

Recognition datasets.

Our work is different from the above networks in two main ways. First, we

show the effectiveness of relational networks in a more challenging setting: Video

Question Answering, where interesting events may occur at different parts of the

video. Second, and more importantly, we model joint spatio-temporal relation-

ships, unlike [38] and [54] which work either in spatial or temporal domains indi-

vidually.
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Chapter 3

Approach

Video Question Answering is a very challenging task which requires joint reason-

ing in both spatial and temporal domains. It requires looking at multiple spatial

elements in a frame, �nding relationships among them, and observing how these

relationships evolve over time. Moreover, these relationships may span long se-

quences of frames which are hard to model using an LSTM. Our proposed Spatial-

Temporal Relational Network (STRN) uses relational networks in both spatial and

temporal domain to model multi-entity and long-term relationships in videos.

The overall architecture of our Spatio-Temporal Relational Network (STRN)

is shown in Figure 3.1. The input consists of a video, a question and optionally

answer-options (only in the case of multiple-choice questions). We extract appear-

ance (f AtgT
t= 1 2 R7� 7� 2048) and motion (f MtgT

t= 1 2 R4096) features from the video

using a pre-trained ResNet-152 [12] (res5c) and a pre-trained C3D [43] (f c6), re-

spectively, where T is the sequence length. The question and answer options (when

available) are encoded using two separate two-layer LSTMs, named as the Ques-

tion Encoder LSTM and the Answer Encoder LSTM, respectively.

Following this, we pass the video features and the question/ answer encod-

ing to the proposed spatio-temporal relational network, which consists of three

main components: (a) Spatial Relation Module (SRM), (b) Global Context En-

coder LSTM (GCE), and (c) Temporal Relations Module (TRM). The Spatial Re-

lation Module takes appearance features (f AtgT
t= 1) as input and computes spatial

relations among various objects. This can be seen as modeling object interactions
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in each frame individually. The Global Context Encoder LSTM takes motion fea-

tures (f MtgT
t= 1) as input and captures action-dynamics of individual objects with

global context at time t. Finally, the Temporal Relation Module takes the concate-

nated SRM-encoding (ft) and the GCE-encoding (r t) as input and computes how

the spatial-relations and action-dynamics change over time. This corresponds to

modeling temporal changes in both the interactions among different objects and

the motion-dynamics of individual objects. The output encoding (Y) of the STRM

module is passed to the Answer Decoder Module which produces an answer. The

exact form depends on the speci�c question-answering task (Section 3.3). In the

case of multiple-choice questions, we classify into one of �ve available options.

Similarly, in the case of open-ended word questions, classi�cation is used to pre-

dict one of the words in the vocabulary. On the other hand, regression is used to

predict the actual number in case of open-ended number questions. The details are

explained in the sections below.

3.1 Text and Visual Representation

Question and Answer representation: Both the question and answer consist of a

sequence of words in a vocabulary. We represent each word as a 300D vector using

the GloVe word embedding [29] pretrained using the Common Crawl dataset. We

denote the question and the answer byqiNi= 1 andaiMi= 1, where M, N are respective

sequence lengths. Similar to previous work [13], we encode the question and each

of the answer options (when available) using the Question Encoder LSTM and the

Answer Encoder LSTM, respectively. The �nal encoding is denoted asg.

Visual representation: We extract appearance and motion information from a

video using ResNet-152 [12] and C3D [43], pre-trained on ImageNet 2012 classi-

�cation dataset [36] and Sport1M dataset [16], respectively. The appearance fea-

tures, denoted asf AtgT
t= 1 2 R7� 7� 2048, are extracted from theres5c layer of the

pre-trained ResNet-152 [12]. For computational reasons, we downscale these CNN

feature maps using aDownscale CNNand denote the resultant feature descriptor as

f OtgT
t= 1 2 R3� 3� 256. It can be seen as capturing possible objects representations

in respective areas of the original image corresponding to 3� 3 locations in the
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Figure 3.1: Spatio-temporal Relational Network architecture. The Spatial
Relations Module (top) models arbitrary spatial-relations among all pos-
sible groups of objects for each frame individually. The Global Context
Encoder LSTM (bottom left) models the action-dynamics with global
context at timet. The concatenated output of these modules is then
fed to the Temporal Relations Module (bottom right) which computes
temporal relations among a temporally-ordered group of frames. Notice
that, for simplicity, we have shown object-groups as pairs, however, in
general they can be more than two.

CNN feature maps. Similarly, we extract motion features from thef c6 layer of a

pre-trained C3D [43], denoted byf MtgT
t= 1 2 R4096where T is the sequence length.

3.2 Spatio-temporal Relational Network

Inspired by relational networks [38, 54], we encode the ability to model spatio-

temporal relationships right in the formulation of STRN. Hence, it acts as an

effective prior for situations which require joint reasoning over both spatial and

temporal domains. The input consists of an ordered temporal sequence of spatial
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frame-descriptorsf OtgT
t= 1, where eachOt containsL spatial object-representations

f oxgL
x= 1. In general, the spatial frame-descriptors can be any representation of in-

terest. It can be structured in the case of bounding boxes or unstructured in the

case of CNN feature maps. In this work, we use CNN feature maps (f OtgT
t= 1 2

R3� 3� 256) which we obtain from ResNet-152 features (f AtgT
t= 1 2 R7� 7� 2048) us-

ing a Downscale-CNN layer (see Figure 3.1). Givenf OtgT
t= 1, we de�ne the basic-

STRN as a composite function below:

STRN B(O) = hT
b

 

å
a< b

gT
a ( fa, fb)

!

(3.1)

ft = hS
f

 

å
a,b

gS
q (oa,ob)

!

(3.2)

Equation (3.2) corresponds to SRM and is responsible for computing spatial re-

lations (ft) for eachOt = f oxgL
x= 1. In particular, spatial-relation functiongS

q in-

fers whether and how the two inputs are related to each other. The relations are

computed for all possible input combinationsoa,ob 2 f Otg. The individual object-

object relations are then agglomerated and reasoned over by the functionhS
f . In

a similar way, Equation (3.1) corresponds to TRM and computes the temporal re-

lations among a sequence of ordered inputsf ftgT
t= 1 obtained fromf OtgT

t= 1 us-

ing Equation (3.2). The temporal-relation functiongT
a computes the individual

frame-frame relations, which are agglomerated, and reasoned over by the func-

tion hT
b . Hence, the combination of Equations (3.1) and (3.2) models the temporal

relations among the spatial relations, achieving spatio-temporal relational reason-

ing. In other words, STRNB models the interactions among objects and how they

evolve over time. Following previous work [38, 54], we use fully-connected layers

to represent the functionsgT
a ,hT

b ,gS
q , andhS

f , which are parameterized bya ,b ,q,

andf .

Capturing Action Dynamics: In STRN B, we used thefi 's in Equation (3.1)

to be spatial relations, which helped us model evolving object interactions. How-

ever, apart from interactions, some queries may also inquire about changes in mo-

tion (or appearance) of individual objects. In order to capture action-dynamics, we
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leverage motion features (f MtgT
t= 1 2 R4096), which represent course motion infor-

mation corresponding to each object in a video [43]. However, both C3D and Flow

features are known to encode only short-term temporal information [46]. Hence,

we additionally make use of a Global Context Encoder LSTM to capture long-

term global context. Instead of using only the SRM-encoding, we consider the

concatenation of the SRM-encoding (ft) and the GCELSTM-encoding (r t) while

computing temporal relations. The resultant model, STRNGC, captures both the

interactions among object-groups and the action-dynamics of individual objects

with global-context.

STRN GC(O) = hT
b

 

å
a< b

gT
a (Wa,Wb)

!

(3.3)

r t = LSTM(Mt ,r t� 1) (3.4)

whereWt is obtained by concatenatingft (Eq. 3.2) andr t (Eq. 3.4),r t is the

hidden state of the Global Context Encoder LSTM at timet andMt is thetth motion

embedding.

Conditioning and Multi-scale Relations: For tasks like video question an-

swering, different questions may require different types of relations. Hence, we

model dependence on questions by conditioning the relation-functionsgT
a , andgS

q

to obtain query-speci�c variants. For instance, functionsgT
a ( fa, fb), andgS

q (oa,ob)

transform togT
a ( fa, fb,g), andgS

q (oa,ob,g), whereg is the question encoding ob-

tained through a text-encoder LSTM, similar to one used in Jang [13].

Additionally, inspired by multi-scale temporal relational networks [54], instead

of computing relations among only two possible frames/objects at a time, we gen-

eralize the relation-functionsgT
a ( fa, fb,g), andgS

q (oa,ob,g) to consider multiple

frames/objects:gT
a ( fa, fb, ..fm,g), andgS

q (oa,ob, ..on,g), for m frames andn ob-

jects, respectively. Then, we consider multiple relation-functions each specializing

to capture relationships for a given value of(m,n) frames/ objects at a time. This

allows modelling relationships at multiple scales. We de�ne theM multi-scale,N

multi-object Spatio-Temporal Relational Network (STRN) as:
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STRN S(O,m,n) = hT
b

 

å
a< b..< m

gT
a (Wa,Wb, ..Wm,g)

!

(3.5)

ft = hS
f

 

å
a,b..n

gS
q (oa,ob, ..on,g)

!

(3.6)

STRN(O,M,N) =
M,N

å
m= 2,n= 2

�
STRN S(O,m,n)

�
(3.7)

Each STRNS(O,m,n) in Equation (3.5) computes relationships among a given

value ofmtemporal-objects andn spatial-objects and has its ownh andg functions.

Additionally, we consider the temporal-relation function,gT
a (from Eq. 3.3 and

3.4), which captures both object-interactions and action-dynamics. STRN(O,M,N)

in Equation (3.7) accumulates relationships from multiple STRNS(O,m,n) for all

values of(m,n), ranging from(2,2) to (M,N). Hence, we obtain the M-multi-scale

and N multi-object Spatio-Temporal Relation Network (STRN) which we use as

our �nal model.

3.3 Answer Decoder

The �nal encoding from the spatio-temporal relation network (Y) is passed to the

Answer Decoder Module which generates the actual answer. Depending of the

question type, we have three different types of modules:

Multiple-choice: It is modeled as a classi�cation task to choose among �ve

different options. We de�ne a linear regression function which takes the TRM-

encoding (Y) as input and outputs a real-valued score for each multiple-choice

answer-candidate:

s= WT
MCY (3.8)

whereWMC are trainable model parameters. To optimize, we use hinge-loss:max(0,1+

sn � sp), wheresp andsn are scores of the correct and incorrect answer, respectively.

We use this decoder for repeating action and state transition tasks in the TGIF-QA

dataset.
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Open-ended numbers: We model it has a regression problem to predict the

correct number. Similar to the above, we de�ne a linear regression function:

s= [ WT
N Y + b] (3.9)

where [.] denotes rounding,Y is the TRM-encoding,WN are model parameters

andb is the bias. We optimize the network usingl2 loss between the ground truth

and the predicted value. This decoder is used for the repetition count task in the

TGIF-QA dataset.

Open-ended word: This is modeled as a classi�cation task among a vo-

cabulary of words. We de�ne a linear classi�er which selects an answer from a

vocabularyV:

o = so f tmax(WT
w Y + b) (3.10)

whereWw are model parameters andb is the bias. We use cross-entropy loss and

the �nal answer is obtained using:y = argmaxy2V(o). We use this decoder for the

SVQA dataset and also for the FrameQA task in the TGIF-QA dataset.

3.4 Training

Following previous work [8, 13, 20, 41], we train separate models for each task

of the TGIF-QA dataset and one model for the entire SVQA dataset. We use

pre-trained ResNet-152, C3D, and GloVe word embeddings for video and text

representations. We train the rest of the network in an end-to-end manner using

backpropagation. Speci�cally, the parameters of Downscale CNN, Spatial Tempo-

ral Module, Temporal Relation Module, Global Context Encoder LSTM, Question

Encoder LSTM, Answer Encoder LSTM, and Answer Decoder Module are trained

together in an end-to-end manner.

Similar to previous work [54], we choose the functionsgT
a ,hT

b ,gS
q ,hS

f in Equa-

tion (3.5) and (3.6) as fully-connected neural network layers. This is quite simple

in comparison to previous work on video question answering which uses LSTMs

or complex memory networks [8, 13]. Moreover, feed-forward networks, unlike

LSTMs, can be parallelized ef�ciently which leads to notably fast training time
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and real-time inference.

One drawback of relational networks is their quadraticO(n2) computational

complexity with respect to its inputs (n). This is because they consider all possible

combinations while computing relationships among its inputs. In case of the SRM,

we make it tractable by downscaling the CNN feature maps from 7� 7 to 3� 3

using a Downscale CNN. In the case of TRM, where we have long sequences of

frames, we solve this problem using subsamplingS= 3, as done in Zhou [54]. In

Equation (3.7), we choose M=10 different scales, which means we consider 2-10

frames at a time while computing temporal relations. Similarly, we choose N=3,

which means we consider 2-3 spatial-objects at a time while computing spatial

relations. For more implementation details, refer to Section 4.2.1.
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Chapter 4

Experiments

This chapter outlines the details of our experiments. First, we explain the datasets

and details used for evaluation. Then, we compare our method with the state-of-

the-art baselines on both the TGIF-QA and the SVQA dataset. Finally, we show

an ablation study which demonstrates the effectiveness of joint spatio-temporal

relational reasoning.

4.1 Datasets

We validate our model on two large-scale video question answering datasets: TGIF-

QA, based on real world animated GIFs and SVQA, based on synthetically gener-

ated videos. Both the datasets are explained in detail below.

4.1.1 TGIF-QA

TGIF-QA [13] is a large-scale dataset containing 165K QA pairs collected from

71K real-world animated Tumblr GIFs. TGIF-QA dataset is based on the e Tumblr

GIF (TGIF) dataset [21]. The dataset contains two types of questions: videoQA

and FrameQA. VideoQA requires looking at multiple frames and understanding the

spatio-temporal relationships in the video. On the other hand, FrameQA, similar to

imageQA, requires looking at only one appropriate frame in the video. A total of

112,082 VideoQA pairs from 53,247 GIFs were generated using a combination of
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crowdsourcing and template-based approach. For FrameQA, a total of 53,083 QA

pairs from 39,479 GIFs were automatically generated from captions in the TGIF

dataset [21] using the same setup of Ren [32]. The questions are categorized into

four separate tasks, which are described below. For detailed statistics, refer to Table

4.1

1. Repeating Action (Action)aims to name the event that happened a speci�c

number of times in the video. This is a multiple-choice task where the correct

answer is one of the �ve available options (Fig 4.1a). For example, “what

does the woman do 3 times?”.

2. State Transition (Trans), similarly, is a multiple-choice task with �ve op-

tions. Questions ask about state transitions like facial expressions (from

happy to sad), among others (Fig 4.1b).

3. FrameQA is an open-ended task which, similar to image-QA, can be an-

swered by looking at one of the “appropriate” frames in the video. However,

the range of possible answers span the entire vocabulary (Fig 4.1c). For

example, “what is dancing in the cup?”.

4. Repetition Count (Count) aims to count the number of times a given event

happens in the video. This is an open-ended task and answers lie in a range

of integers: 0 to 10 (Fig 4.1d). For example, “how many times does the cat

lick?”

Task
# QA pairs # GIFs

Train Test Total Train Test Total

Rep. Action 20,475 2,274 22,749 20,475 2,274 22,749
Transition 52,704 6,232 58,936 26,352 3,116 29,468
FrameQA 39392 13691 53083 37089 9219 40308
Rep. Count 26,843 3,554 30,397 26,843 3,554 30,397
Total 139,414 25,751 165,16562,846 9,575 71,741

Table 4.1: Statistics of the TGIF-QA dataset.
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4.1.2 SVQA

SVQA [41] is a synthetically generated dataset designed to control and minimize

language biases in existing videoQA datasets. It contains 120K questions asked on

12K videos with moving objects like sphere, cylinder or cube (Fig 4.2). The ques-

tions are compositional and require a series of reasoning steps (like comparison

and arithmetic) in both spatial and temporal domains. All QA pairs are open-

ended word type and are categorized into multiple categories and subcategories as

described below. The questions are picked verbatim from the SVQA dataset.

1. Count - Questions about counts of objects, events, and actions in the video.

For example, “what number of cubes are there?”

2. Exist - Yes/ No questions about the existence of actions, events, and objects.

For example, “are there any yellow balls rotating present?”

3. Query - Questions querying about Color, Size, Action, Direction (of motion)

and Shape of objects. For example, “what action type is the small object that

is to the right of the green object at start?”

4. Integer Comparison- Comparison questions (More, Less, and Equal) about

counts of objects, actions, events, etc. For example, “what action type is the

red object that has the same size as the white cylinder?”

5. Attribute Comparison - Comparison questions about attributes (Color, Size,

Action, Direction, and Shape) of objects. For example, “do the small ball

that is to the left of the big object at start and the small cube have the same

color?”

Since the exact train-val-test subsets of the SVQA dataset are not readily avail-

able, we randomly sample a new split as shown in Table 4.2, which is consistent

with previous work [41]. In comparison to TGIF-QA, it contains more complex

questions requiring more elaborate spatio-temporal reasoning. However, unlike

real-world GIFs in TGIF-QA, it contains perceptually-simpler scenes consisting of

a few synthetic objects. These two datasets are well suited for our task because they

contain well formed questions that require complex spatio-temporal reasoning.
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Question Category Sub Category Train Val Test

Count 19320 2760 5520
Exist 6720 960 1920

Query

Color 7560 1056 2160
Size 7560 1056 2160
Action Type 6720 936 1920
Direction 7560 1056 2160
Shape 7560 1056 2160

Integer Comparison
More 2520 600 720
Equal 2520 600 720
Less 2520 600 720

Attribute Comparison

Color 2520 216 720
Size 2520 216 720
Action Type 2520 216 720
Direction 2520 216 720
Shape 2520 216 720

Total QA pairs 83160 11880 23760
Total Videos 8400 1200 2400

Table 4.2: Statistics of the SVQA dataset.

4.2 Implementation Details

4.2.1 Setup

We implement our model and design our experiments using PyTorch. Following

previous work [8, 13, 20, 41], we train separate models for each task of the TGIF-

QA dataset and one model for the entire SVQA dataset. Similarly, we set the maxi-

mum number of uniformly-sampled frames in a video to 35. To encode text, we use

the 300D Glove [29] word embeddings and take the output of the �nal layer of a

text-encoder LSTM as the question-encoding (taken as answer-encoding in case of

multiple-choice questions). Both the text-encoder and global-context-encoder are

two layer LSTMs with 512 hidden units. In all our experiments, we use a batch size

of 64. We train our networks in an end-to-end fashion using Adam optimizer with

an initial learning rate of 0.001. Wherever applicable, we use a dropout of 0.2. The

functionsgT
a ,hT

b ,gS
q ,hS

f in Equation (3.5) and (3.6) are fully-connected networks
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with 2, 1, 2, 2 layers and and 256, 256, 256, 256 hidden units, respectively. In

Equation (3.7), we choose M=10 different scales, which means we consider 2-10

frames at a time while computing temporal relations. Since the number of possible

combinations of frames can be large, we follow Zhou [54] and randomly sample

S= 3 possible frame-sequences for each separate scale. Similarly, we choose N=3,

which means we consider 2-3 spatial-objects at a time while computing spatial

relations. We do not subsample spatial-relations but we downscale the appearance-

features fromf AtgT
t= 1 2 R7� 7� 2048 to f OtgT

t= 1 2 R3x3x256 using a Downscale-CNN

having (384, 192, 256) �lters and (2,3,2) kernels.

4.2.2 Metrics

Following previous work [8, 13, 20, 41], we use classi�cation accuracy (ACC) as

an evaluation metric for all tasks of the SVQA dataset and also the Trans, Action

and FrameQA tasks of the TGIF-QA dataset, which is de�ned as,

ACC=
Questions Answered Correctly

Total Questions
� 100 . (4.1)

For the Count task of the TGIF-QA dataset, we use Mean Squared Error (MSE)

between the predicted value and the ground truth value as an evaluation metric,

which is de�ned as,

MSE=
å n

i (Predictioni � Ground Truthi)2

Total Questions (n)
. (4.2)

For the TGIF-QA dataset, we train separate models corresponding to each task.

On the other hand, for the SVQA dataset, we train only one model model and

accuracy is computed by considering appropriate subsets of questions. This is

consistent with previous work on video question answering [8, 13, 20, 41].
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4.3 Comparison with State-of-the-art Methods

4.3.1 TGIF-QA Dataset

The results of our model and existing baselines on the TGIF-QA dataset are shown

in Table 4.3. At the very top,RandomandTextcorrespond to selecting an answer

randomly and learning a model without any visual input, respectively. In the next

four lines, we show results obtained using the image-VQA based baselines, which

either mean-pool the video features (aggr) or average the results (avg). VIS+LSTM

[32] combines image-representation with textual features encoded by an LSTM,

and VQA-MCB [6], uses multimodal compact bilinear pooling to handle image-

text fusion and spatial attention.

The next six lines show the results correspond to videoQA methods (refer to

Section 2.1 for a detailed comparison). The letters inside the brackets correspond

to the features used to train the model: R means ResNet, C means C3D and F

means Flow. The �rst set of models, ST and its variants [13], are shown in lines 7-

10 in Table 4.3. Suf�xes SP and TP corresponds to whether Spatial and Temporal

attention mechanism has been used. We encourage the reader to refer to Fig 3, 4 of

Jang [13] for more details. Co-memory [8] model is based on Dynamic Memory

Networks (DNMs) which uses a motion-appearance co-memory attention mem-

ory. PSAC (Positional Self-Attention with Co-attention) [20] uses a Self-Attention

based approach as opposed to LSTMs which models global dependencies by at-

tending to all positions in the sequence.

The last three rows show the result of our models. Our STRN model out-

performs all other approaches on all tasks which require spatio-temporal reason-

ing: Action (2.74%), Trans (2.4%) andCount (4.63%) (4.10� 3.91
4.10 ) by a signif-

icant margin. On the other task, FrameQA, which can be answered using a sin-

gle frame, we outperform all but one approach (PSAC). We gain this increase in

performance despite not taking advantage of Flow features and complex memory-

networks (used in Co-memory), or co-attention mechanisms (used in PSAC). In the

STRN-GC variants, we do not use the Global Context Encoder LSTM. As shown,

we get good results even without using action-dynamics with global-context.
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Model Action " Trans" FrameQA" Count#

Random [13] 20.00 20.00 0.06 6.92
Text [13] 47.91 56.93 39.26 5.01
VIS+LSTM(aggr) [13] 46.80 56.90 34.60 5.09
VIS+LSTM(avg) [13] 48.80 34.80 35.00 4.80
VQA-MCB(aggr) [13] 58.90 24.30 25.70 5.17
VQA-MCB(avg) [13] 29.10 33.00 15.50 5.54
ST(R+C) [13] 60.10 65.70 48.20 4.38
ST-SP(R+C) [13] 57.30 63.70 45.50 4.28
ST-TP(R+C) [13] 60.80 67.10 49.30 4.40
ST-SP-TP(R+C) [13] 57.00 59.60 47.80 4.56
Co-memory (R+F) [8] 68.20 74.30 51.50 4.10
PSAC (R) [20] 70.40 76.90 55.70 4.27
STRN-GC (R) [ours] 72.16 79.18 52.90 4.42
STRN-GC (C) [ours] 71.42 78.85 50.04 4.10
STRN (R+C) [ours] 73.14 79.30 52.96 3.91

Table 4.3: Comparison with state-of-the-art on TGIF-QA dataset." means
higher numbers correspond to better performance (ACC) and# means
lower numbers correspond to better performance (MSE).

4.3.2 SVQA Dataset

Results of our model and existing baselines on the SVQA dataset are summarized

in Table 4.4. Similar to Table 4.3, the two lines at the top correspond to random and

text-only models.GRU+AVGis an image-VQA based approach which averages

the sequential video representation and concatenates it with the question encodng

generated by the GRU.2GRU uses two GRUs to encode questions and videos

separately and concatenates them to generate the answer. SP-TP is the same as

Jang [13] with temporal attention (TP).SVQAis the model proposed in Song [41].

It is comprised of a re�ned GRU (temporal-attention GRU, abbreviated as TA-

GRU), to capture long-term temporal dependencies for multi-step reasoning.

The last line presents the results of our proposed model. As shown in the last

column (All) of Table 4.4, we outperform all methods by a margin of2.68%. We

perform better in Exist, Count and �ve out of thirteen sub-categories of Integer

Comparison, Attribute Comparison and Query. We do competitively in three and
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Exist Count Integer Comparison Attribute Comparison
More Equal Less Color Size Type Dir Shape

Random [41] 50.0022.00 50.00 50.00 50.0050.00 50.00 50.00 50.00 50.00
Text [41] 52.9232.41 75.14 56.39 57.8147.73 52.56 53.12 53.55 51.56
GRU+AVG [41] 51.7733.18 59.66 54.12 59.3852.27 50.00 51.13 53.27 47.58
2GRU [41] 53.5435.02 68.18 53.70 56.1054.12 51.28 51.70 52.70 47.86
ST-TP [41] 51.4632.54 58.46 50.39 53.5249.74 54.56 53.12 51.95 50.39
SVQA [41] 52.0338.20 74.2857.67 61.60 55.9655.90 53.40 57.50 52.98
STRN [ours] 54.0144.67 72.2257.78 62.92 56.3955.28 50.69 50.14 50.00

Query All
Color Size Type Dir Shape

Random [41] 12.50 50.00 50.00 25.00 33.3333.33
Text [41] 12.27 51.07 48.65 25.23 32.7039.95
GRU+AVG [41] 19.78 51.91 53.33 28.26 38.2941.43
2GRU [41] 19.59 53.50 58.38 34.79 38.3441.85
ST-TP [41] 21.23 53.81 55.70 36.08 40.6040.47
SVQA [41] 23.3963.30 62.90 43.2041.69 44.90
STRN [ours] 24.3159.68 59.32 28.2444.49 47.58

Table 4.4: Comparison with the state-of-the-art on different categories of the
SVQA dataset. We split the table into two parts (Top - Exist, Count,
Integer and Attribute Comparison; Bottom - Query and aggregate of All)
for better readability. Higher numbers correspond to better performance.

worse in �ve sub-categories. However, we would also like to highlight a substantial

improvement of6.47% in the Count category, which unlike sub-categories, forms

a signi�cant portion (23%) of the total dataset (see Fig 3 of [41]). This result

is in consonance with TGIF-QA dataset (Table 4.3), where we gain a substantial

improvement of4.63% in the Count task. Since counting is considered a complex

task requiring elaborate spatio-temporal reasoning, we believe this improvement

conclusively demonstrates the effectiveness of our approach.

Our approach falls short by 1-4% in eight out of thirteen subcategories of In-

teger Comparison, Attribute Comparison, and Query. Interestingly, for two sub-

categories, Dir of Query and Attribute Comparison, we notice a substantial drop

in performance by 7.36% and 14.96%, respectively. We posit the reason to be

the spatial-location agnostic nature of how we compute spatial relations. As men-

tioned in Section 3.2, we agglomerate the spatial relations, computed by the spatial-

relation functiongS
q , using a summation operator. The summation operator loses
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any order in terms of the direction in the spatial coordinates, hence, drop the in per-

formance in Dir category. However, this hypothesis needs to be tested with more

experiments as part of future work.

4.4 Ablations

We conduct Ablations on only the TGIF-QA dataset. In this experiment, we show

the effectiveness of joint spatio-temporal relational reasoning, as opposed to in-

dividual spatial or temporal relational reasoning. To show that our experiment

generalizes over different modalities, we consider separate models trained individ-

ually on both ResNet (ResNet-res5c) and C3D (C3D-conv5b). In order to avoid

interference, we do not use Global Context Encoder LSTM and we call the resul-

tant model as STRN-GC. We summarize the results in Table 4.5. We consider two

baselines. In STRN-GC-TRM, we replace the Temporal Relations Module (TRM)

with a two-layer LSTM as a baseline to model temporal relations. We initialize the

hidden state of the LSTM using the last hidden state of the text-encoder LSTM,

following the ST models of Jang [13]. In STRN-GC-SRM, we replace the Spa-

tial Relations Module (SRM) using an expressive CNN. As shown in the table,

STRN-GC signi�cantly outperforms both baselines in all four tasks, which shows

the effectiveness of joint spatio-temporal relational reasoning.

ResNet-res5c
Model Action Trans Frame Count

STRN-GC-TRM 64.95 71.25 44.86 4.50
STRN-GC-SRM 66.09 77.36 49.57 4.54
STRN-GC 72.16 79.18 52.90 4.42

C3D-conv5b
Model Action Trans Frame Count

STRN-GC-TRM 63.10 71.26 44.63 4.18
STRN-GC-SRM 67.72 77.70 47.53 4.40
STRN-GC 71.42 78.85 50.04 4.10

Table 4.5: Effectiveness of joint spatio-temporal reasoning as opposed to in-
dividual spatial or temporal relational reasoning on TGIF-QA dataset.
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4.5 Qualitative Results

Figure 4.1: [Best viewed in color] A comparison of the qualitative results of
ST-TP [13] and STRN (Ours). Green and Red refers to correct and
incorrect predictions, respectively.
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Figure 4.2: [Best viewed in color] Qualitative results for different categories
of the SVQA dataset where our approach predicted the correct answers.
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