
Integrators for Elastodynamic Simulation with Stiffness
and Stiffening

by

Yu Ju Chen

BASc, University of British Columbia, 2014

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

October 2019

c© Yu Ju Chen, 2019



The following individuals certify that they have read, and recommend to the Fac-
ulty of Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

Integrators for Elastodynamic Simulation with Stiffness and Stiffening

submitted by Yu Ju Chen in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in Computer Science.

Examining Committee:

Uri Ascher, Computer Science
Supervisor

Dinesh Pai, Computer Science
Supervisor

Chen Greif, Computer Science
Supervisory Committee Member

Brian Wetton, Mathematics
University Examiner

Eldad Haber, Earth, Ocean and Atmospheric Sciences
University Examiner

ii



Abstract

The main goal of this thesis is to develop effective numerical algorithms for stiff

elastodynamic simulation, a key procedure in computer graphics applications. To

enable such simulations, the governing differential system is discretized in 3D

space using a finite element method (FEM) and then integrated forward in discrete

time steps. To perform such simulations at a low cost, coarse spatial discretization

and large time steps are desirable. However, using a coarse spatial mesh can intro-

duce numerical stiffening that impede visual accuracy. Moreover, to enable large

time steps while maintaining stability, the semi-implicit backward Euler method

(SI) is often used; but this method causes uncontrolled damping and makes simu-

lation appear less lively.

To improve the dynamic consistency and accuracy as the spatial mesh reso-

lution is coarsened, we propose and demonstrate, for both linear and nonlinear

force models, a new method called EigenFit. This method applies a partial spec-

tral decomposition, solving a generalized eigenvalue problem in the leading mode

subspace and then replacing the first several eigenvalues of the coarse mesh by

those of the fine one at rest. We show its efficacy on a number of objects with both

homogeneous and heterogeneous material distribution.

To develop efficient time integrators, we first demonstrate that an exponen-

tial Rosenbrock-Euler (ERE) integrator can avoid excessive numerical damping

while being relatively inexpensive to apply for moderately stiff elastic material.

This holds even in challenging circumstances involving non-convex elastic ener-

gies. Finally, we design a hybrid, semi-implicit exponential integrator, SIERE, that

allows SI and ERE to each perform what they are good at. To achieve this we apply

ERE in a small subspace constructed from the leading modes in the partial spectral
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decomposition, and the remaining system is handled (i.e., effectively damped out)

by SI. We show that the resulting method maintains stability and produces lively

simulations at a low cost, regardless of the stiffness parameter used.
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Lay Summary

We have all seen objects deform elastically under forces in animated films. To

make such movements appear natural and physical, we need to model and simulate

the underlying physics using computer algorithms. In many applications, it is de-

sirable to have a simplified system to enable fast computation. However, existing

algorithms can introduce unwanted artifacts if such simplification is applied with-

out care. In this work, we investigate these fundamental challenges, and propose

algorithms to improve simulation efficiency.
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Preface

This thesis describes results in three research articles:

• Y. J. Chen, U. M. Ascher, D. K. Pai, (2018). Exponential rosenbrock-euler

integrators for elastodynamic simulation. IEEE transactions on visualization

and computer graphics, 24(10), 2702-2713.

• Y. J. Chen, D. I. W. Levin, D. M. Kaufman, U. M. Ascher, and D. K. Pai,

(2019). EigenFit for consistent elastodynamic simulation across mesh res-

olution. Proceedings of the 18th annual ACM SIGGRAPH/Eurographics

Symposium on Computer Animation (p. 5). ACM.

• Y. J. Chen, U. M. Ascher, D. K. Pai, (2019). SIERE: a hybrid semi-implicit

exponential integrator for efficiently simulating stiff deformable objects. Sub-

mitted and under review.

Paper 1 has been published in Proceedings of the 18th annual ACM SIGGRAPH/Eu-

rographics SCA 2019 and is described in Chapter 3. Paper 2 has been published

in IEEE TVCG 2018 and is presented in Chapter 4. Paper 3 has been submitted

and is currently under review. In all three research projects, I was the sole junior

researcher among my co-authors and implemented all the numerical algorithms de-

rived. I wrote the majority part of the all papers and received advices for and help

for editting from all co-authors. In all three projects I received guidance from my

research supervisors Uri Ascher and Dinesh Pai. In Paper 2 I received coding ad-

vice from David Levin and Danny Kaufman during my internship at Adobe. This

work includes numerical software written by me, which is built on top of the C++

simulation library GAUSS[49].
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Chapter 1

Introduction

Elastodynamic simulation, the process of simulating the motion of soft deforming

objects is ubiquitous in computer graphics, robotics, biomechanics, and digital fab-

rication design. Examples include simulating the dynamics of cloth, skin, and other

soft tissues of the human body. A fundamental computational bottleneck in all of

these domains is the efficient forward simulation of elastodynamics. To simulate

elastodynamics, researchers often first discretize the governing differential system

in space employing a finite element method (FEM) [10, 78], and then in time using

a time-stepping method.

For simulation-based applications there are many reasons to alter the spatial

and temporal resolution of the computational mesh. Critically, coarsening in both

space and time is often required in order to make applications practical. Most

notably, runtime costs for soft-body simulations scale super-linearly in the number

of nodes in the FE mesh. However, both spatial and temporal coarsening introduce

undesirable and often unexpected numerical artifacts that reduce the controllability,

consistency, accuracy and effectiveness of resulting simulations.

1.1 Dynamics simulation
Before diving into elastodynamic simulation, we first introduce general dynamic

simulation in computer graphics. More detail will be described in Chapter 2. First,

we write the positional degrees of freedom on a mesh (Figure 1.1), as single vector
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(a) (b)

Figure 1.1: Coarse and fine meshes. Each mesh point has associated a posi-
tion and velocity. Elastodynamics simulation produces elastic waves on
these meshes with modeled forces.

q, the corresponding velocity as v, the inertia for q is written as a mass matrix M,

and the modeled force vector in the system is f(q). The equations of motion form

a system of second-order ordinary differential equations (ODEs):

Mq̈ = f(q) (1.1)

To simulate dynamics we first reduce Eq.(1.1) to first-order and solve the ODE

system

u̇(t) =

[
q̇
v̇

]
=

[
v

M−1f(q)

]
def
= b(u(t)) (1.2)

The speed of a simulation refers to how much wall-clock time is required for com-

puting the trajectory of states q(t), and velocities v(t) for a given time interval

tstart ≤ t ≤ tend . To achieve fast simulations, we can reduce the degrees of freedom

by choosing a coarse mesh (Figure 1.1(a)) instead of a fine mesh (Figure 1.1(b)),

step the system Eq. (1.2) with a large time step, or do both. However, both sim-

plifications may introduce unwanted numerical errors to the propagation of elastic

waves on the simulated mesh objects. To study these numerical errors, we have to
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analyze the tangent stiffness matrix K(q) 1,

K(q) = − ∂

∂qT f(q) (1.3)

This matrix K holds key information about the elastic waves and relates to the

major challenges for solving Eq. (1.2), as we should see in the next section.

1.2 Challenges
When choosing a time integrator and step size for Eq. (1.2), we need to consider

the following issues:

• Stability

• Solving algebraic systems of equations that arise when using implicit inte-

grators

• The effect of artificial damping that arises when using non-conservative in-

tegrators

Stability is an issue for fully explicit integrators where the step size must be short

enough to resolve the elastic wave of the highest frequency, which relates to the

largest eigenvalue of K. While explicit methods are much cheaper per step in

general, the stringent step size requirement can lead to a much more expensive

overall method due to force evaluation and assembly through the FEM model. Due

to this reason, the most popular integrator for elastodynamics in computer graphics

is a semi-implicit (SI) method proposed for cloth simulation in [7]. This method

(which is equivalent to backward Euler (BE) employing only one Newton iteration

at each time step [3]) requires the solution of one linear system per step. In addition

to being fast, the SI method also exhibits reasonable large step stability (see also

[86]). However, this stability comes from the numerical damping inherent to the

method, making it hard to capture the correct dynamic response. Such numerical

1In the computer graphics community, there has been inconsistency regarding the sign of the
stiffness matrix. Many highly-cited papers used the opposite sign. Personally, I like to stick with
this convention because it means that K(q) is symmetric positive definite (SPD) at rest state, which
matches with the canonical Poisson problem subjected to Dirichlet boundary condition.
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damping depends on the step size rather than on material properties, and it does not

act uniformly on the entire spectrum of K. It remains a popular choice nonetheless

because this non-uniform damping which resembles the frequency damping from

Rayleigh damping and provides visually appealing results.

In addition to this challenge caused by the largest eigenvalues of K, there is a

different challenge on the other end of the spectrum. The efficiency of any integra-

tor used for Eq.(1.2) is contingent on the size of the underlying FEM mesh. While

using a fine resolution mesh can capture dynamic deformation with higher accu-

racy, the resulting system size could be prohibitive to be stepped forward in time

quickly, especially for any implicit integrator where iterative nonlinear solvers need

to be used. For this reason, it is desirable to keep the mesh resolution as coarse as

possible. However, using coarse meshes blindly can greatly reduce the simulation

accuracy due to the inconsistency in the spectrum of K across different mesh res-

olutions, especially the lowest few eigenvalues. In particular, the term “numerical

stiffening” has been used to describe the numerical artifacts in simulation of coarse

meshes [17, 44, 66]. We will describe this phenomenon in more detail in Section

2.2.2.

1.3 Outline and contribution
In this thesis we investigate the challenges associated with both spatial and tempo-

ral discretization, and construct numerical solutions for elastodynamic simulations

in the context of computer graphics, where being visually plausible is more impor-

tant than being numerically accurate. This is important because perceptible elastic

waves are the ones associated with low frequencies, whereas the high frequency

waves are inconspicuous and die out quickly due to internal friction. In Chapter

3 and Chapter 6 we develop effective algorithms by finding and isolating these

visually critical components first.

In Chapter 3 we propose and demonstrate, for both linear and nonlinear force

models, a new method called EigenFit that improves the consistency and accuracy

of the lower energy, primary deformation modes, as the spatial mesh resolution is

coarsened. EigenFit applies a partial spectral decomposition, solving a generalized

eigenvalue problem in the leading mode subspace and then rescaling the first sev-

4



eral eigenvalues of the coarse mesh by the stiffening ratio measured at rest. Eigen-

Fit’s performance relies on a novel subspace model reduction technique which re-

stricts the spectral decomposition to finding just a few of the leading eigenmodes.

We demonstrate its efficacy on a number of objects with both homogeneous and

heterogeneous material distributions.

In Chapter 4 we describe the effectiveness of an exponential Rosenbrock-Euler

(ERE) method which avoids excessive discretization-dependent artificial damping.

The method is relatively inexpensive and works well with the large time steps used

in computer graphics. It retains correct qualitative behavior even in challenging

circumstances involving non-convex elastic energies. ERE is designed to handle

and perform well in the important cases where the symmetric stiffness matrix is not

positive definite at all times. Thus we are able to address a wider range of practical

situations than other related solvers. We also analyze the limitation of exponential

integrators in the context of stiff elastodynamic simulation.

In Chapter 5 we introduce an additive method framework which may be used to

compose new methods coupling two integrators together. Related technical details

are described in Appendix A. Describing details of two instances, namely, stiff

springs and discontinuous Galerkin spatial discretization, we demonstrate that in

elastodynamics, systems can often be split into stiff and non-stiff parts and treated

effectively using our additive method. However, in more demanding situations

there are limitations to this approach as well, essentially because it splits only the

right hand side b(u(t)) in Eq. (1.2) and does not transform or modify the unknown

variables u, which in turn limit the choice of integrators. In our computer graphics

context, this is rectified by a method described in the following chapter.

In Chapter 6 we devise a hybrid, semi-implicit method, called SIERE, based on

the techniques developed in Chapters 3-5. We show that SIERE produces simula-

tions that are visually as good as those of the exponential method at a computational

price that does not increase with stiffness, while displaying stability and damping

with respect to the high frequency modes that often improve the performance of

the veteran SI method.

In our concluding chapter, we summarize our methods and contributions, and

shed light on future directions.
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Chapter 2

Elastodynamics

2.1 Elastodynamic Simulation in Computer Graphics
In this chapter we describe the elasticity model with FEM semi-discretization, and

analyze the numerical challenges that arise.

2.1.1 Kinematics

In the absence of applied force, an elastic object is in the reference configuration

Ω̄ ⊂ R3. When deformed, the object is in a deformed configuration, Ω ⊂ R3. One

can think that Ω̄ is resting in the material space and Ω is deforming in the physical

space, where both Ω̄ and Ω are bounded open connect sets. The deformation can

be described by an orientation-preserving mapping ϕ : Ω̄ →R3 that is injective on

the set Ω . The configuration space is the infinite-dimensional space of all possible

deformed configurations Ω from all admissible ϕ (X) , X ∈ Ω̄ .
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Deformation gradient

For a deformed object at any point x = ϕ (X)∈Ω with the corresponding reference

point x ∈ Ω̄ , the deformation gradient is defined as1

∇ϕ (X) = F (X) =


∂ϕ1
∂X1

∂ϕ1
∂X2

∂ϕ1
∂X3

∂ϕ2
∂X1

∂ϕ2
∂X2

∂ϕ2
∂X3

∂ϕ3
∂X1

∂ϕ3
∂X2

∂ϕ3
∂X3

 , (2.1)

which turns out to be a useful quantity that relates to many geometrical changes

(volume, area, and length) in the object [22]. The condition that ϕ must be orientation-

preserving means

det∇ϕ (X)> 0 for all X ∈ Ω̄ ,

which is a nonlinear constraint on admissible ϕ . Notice that the set of admissible

ϕ is not convex (see [22] Sect. 4.7) because of this kinematic constraint.

Since the gradient operator ∇ is a linear map, the deformation gradient F is a

linearization of the deformation ϕ.

Strain measure

A measurement of deformation describing the transformation of the length ele-

ment, known as the Green strain, is defined as

E =
1
2
(
FTF− I

)
.

For small strain approximation, the Green strain can be linearized to get

ε =
1
2
(
FT +F

)
− I.

Since F is linear in ϕ , we have that E and ε are quadratic and linear in ϕ, respec-

tively.

1Here we define the deformation gradient as a function of X instead of x since x is the unknown
that we want to solve for. If the mapping ϕ is bijective, we can also write the deformation gradient
as

F (X) = F
(

ϕ
−1 (x)

)
= F̃ (x)
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2.1.2 Hyperelastic materials and constitutive models

Intuitively, an elastic object is hyperelastic if there is a scalar potential field on

the configuration space of the object, and the scalar potential of a configuration is

the elastic energy of the object at the corresponding deformed state. Formally, if

an object is hyperelastic, there exist an energy density function W : Ω̄ ×M3
+→ R

such that
(
−∇ · ∂W

∂F (X ,F)
)

is a conservative force for all X ∈ Ω , F ∈M3
+. Here

we define M3
+ as the space for 3 by 3 matrices with nonnegative singular values.

The partial derivative ∂W
∂F (X ,F) = T̂ (X ,F (X)) = T (X) is the first Piola-Kirchhoff

stress tensor that maps X ∈ Ω̄ , a point in the reference configuration, to its stress

tensor T in the physical space.

If the material is homogeneous, the energy density is only a function of F ∈
M3

+. In general, the energy density W (X ,F) is dependent on both X (where the

point is) and F (how much it deforms).

Intuitively, a constitutive model describes how the deformation of an infinites-

imal volume relates to the change in energy density and the stress tensor.

2.1.3 Equations in elastodynamics

With energy density W (X ,F) defined by the constitutive model, we can get the

total elastic energy Wtotal =
´

Ω̄
W (X ,F)dX of the object, and the elastic force in

the physical space at each material point

felastic (X) =−∇ · ∂W
∂F

(X ,F) =−∇ ·T (X ,F) .

Combining the elastic force with Newton’s second law, we arrive at the initial-

boundary value problem for the deformation ϕ (X) of a deforming object

ρ (X) ϕ̈ (X , t) = felastic (X)+ fexternal (X , t) , X ∈ Ω̄ , (2.2a)

detF (X)> 0, X ∈ Ω̄ , (2.2b)

ϕ (X , t) = ϕ0 at t = 0 (2.2c)

ϕ (X , t) = ϕD ∀X ∈ ∂Ω̄ (2.2d)
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Notice the density function ρ (X) and the external force fexternal (X , t) are parametrized

in the reference configuration since the deformed configuration is the unknown to

be solved.

2.1.4 Finite element discretization

To solve Eq.(2.2) numerically, we first semi-discretize in space variables using a

finite element method (FEM) and reduce it to a second-order ODE system in time t.

We discretize the reference configuration Ω̄ as Ω̄l
2 in the material space, such that

each X ∈ Ω̄l is a material point on the discrete mesh. The discretized deformation

is now a mapping ϕl : Ω̄l → R3 that stores the deformation at each material point.

We can collect the deformation from these mesh points into a single vector q, and

the corresponding velocity v.

Mq̈ = ftot(q,v) = fels (q)+ fdmp (q,v)+ fext (q) (2.3)

Eq.(2.3) is then further reduced to a first-order ODE system. By defining a

new state vector u = (q,v)T , Eq.(2.3) can be written as Eq. (1.2). To complete the

description for elastodynamics, we briefly describe popular force models used in

computer graphics.

2.1.5 Elasticity model

The elastic force in Eq.(2.3) is derived from a predefined hyper-elastic potential

energy model W (q)

fels (q) =−
∂

∂q
W (q) (2.4)

For example, W (q) is quadratic in the linear elasticity model, and it is quartic in

the StVK material model3. In other models such as co-rotated FEM with linear

material, neo-Hookean material, nonlinear potentials are required to describe the

desired physical behavior. From here, the tangent stiffness matrix Eq. (1.3), K(q),
2Here l is the discretization parameter, and for the discretization to be consistent, we require

lim
l→0

Ω̄l = Ω̄ .

In practice, this parameter can be set in many different ways in mesh generation softwares [37, 76].
3Notice that StVK material is still nonlinear, due to nonlinear strain measure.
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is defined as

K(q) =
∂ 2

∂qT ∂q
W (q)

= − ∂

∂qT fels (q). (2.5)

With Eq. (2.5), we can further rewrite Eq. (1.2) as

u̇(t) =

[
v

M−1ftot

]

=

[
v

−M−1Kq−M−1Dv+g

]

=

[
0 I

−M−1K −M−1D

][
q
v

]
+

[
0

g

]
,

g = g(q(t)) = M−1(f̃els + fext),

f̃els(q) = Kq+ fels(q).

(2.6)

Solving the system of first order ODEs Eq. (2.6) will give us the motion and defor-

mation trajectory of the simulated object. It is important to note that the dimension

of this system can be large and that its assembly at any time point can be expensive.

2.1.6 Damping model

One of the most popular damping models in computer graphics used in Eq.(2.3) is

the local Rayleigh damping model.

fdmp (q,v) = −D(q)v, (2.7a)

D(q) = αM+βK(q). (2.7b)

The main feature of the Rayleigh damping model is the presence of frequency

damping. It is popular for three reasons:

1. Due to the first and second laws of thermodynamics, internal friction natu-

rally leads to frequency dependent damping [75], thus carefully tuned Rayleigh
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damping can appear natural to the eye.

2. The presence of K(q) attenuates high frequencies exponentially and helps

the stability of numerical integration.

3. If K is constant, then the entire force is linear and is cheap to evaluate.

Nevertheless, in recent years, there has been progress in using more accurate and

controllable damping models [51, 92].

2.2 Related work

2.2.1 Integrators

As described in Chapter 1, SI has been the workhorse for integrating elastodynamic

simulation in computer graphics. To derive SI, we first write BE for Eq. (2.6):

BE

un+1 =

[
qn+1

vn+1

]
=

[
qn +hvn+1

vn +hM−1ftot (qn+1,vn+1)

]
which can be simplified to

vn+1 = vn +hM−1ftot (qn +hvn+1,vn+1) ,

or

vn+1−vn−hM−1ftot (qn +hvn+1,vn+1) = 0. (2.8)

The Jacobian of Eq. (2.8) is

I+hM−1D+h2M−1K. (2.9)

Notice the sign in Eq. (2.9) came from Eqs. (2.5) and (2.7b). Here K is the stiffness

at the current configuration. Applying Eq. (2.8) to one Newton iteration at the
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beginning of each time step we have SI:

vn+1 = vn +h(I+hM−1D+h2M−1K)−1(M−1(ftot−hKvn)) (2.10)

We can solve the symmetric linear systems in Eq. (2.10) by either iterative meth-

ods, such as preconditioned conjugate gradient, or direct methods. In computer

graphics, it is common to use direct Cholesky solvers [24, 47, 58, 88].

Other implicit time integrators have also been used for dynamics, including

BDF2 [34], implicit/explicit methods [13, 29], and variational integrators [43].

Unlike the SI method and like BE, these methods require the solution of a system

of nonlinear equations at every time step. In general applications these nonlin-

ear equations are solved by some inexact Newton’s method employing a iterative

Krylov subspace method for the sub-iterations [45]. If the nonlinear equations are

solved at each time step to sufficient accuracy, then these implicit Newton-Krylov

methods are often more robust and accurate. Hence they are typically used when

the cost of time stepping is not the major concern.

A branch of implicit integrators commonly used in the graphics community can

be derived from the discretization for the Lagrangian [11, 27, 30, 53–55, 65]. While

being implicit, all these algorithms avoid the expensive Newton-Krylov methods

and accelerate the nonlinear solve by using superior optimization techniques. This

series of methods also applies to more general and complicated material models.

However, as material stiffness increases, the performance level of all the techniques

mentioned above drops significantly. Specifically, as material stiffens, these meth-

ods require many iterations, and the simulated material will appear softer if the

optimization process stops prematurely. To look at this challenge in more detail,

let’s look at the Jacobian for the nonlinear system from BE and implicit midpoint

method (IM). For BE, we already have the nonlinear system Eq. (2.8), and its Ja-

cobian Eq. (2.9)

For IM we have

un+1 =

[
qn+1

vn+1

]
=

[
qn +

h
2(vn +vn+1)

vn +hM−1(ftot
(qn+qn+1

2 , vn+vn+1
2

)
)

]
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which can be simplified to

vn+1 = vn +hM−1(ftot
(
qn +

h
4(vn+1 +vn),

vn+vn+1
2

)
+ ftot (qn,vn))

or

vn+1−vn−hM−1ftot

(
qn +

h
4

vn+1,
vn +vn+1

2

)
= 0. (2.11)

The Jacobian of Eq. (2.11) is

I+
1
2

h2M−1D+
1
4

h2M−1K (2.12)

Figure 2.1: 1-norm condition estimate vs. material stiffness.

In both Eq. (2.9) and Eq. (2.12), D and K are evaluated at the current config-

uration. For one example, we simulate an armadillo with nonlinear neo-Hookean

material model swinging under gravity without any Rayleigh damping. Figure 2.1

we plot the 1-norm condition estimate for the BE system matrix Eq. (2.9) and IM

system matrix Eq. (2.12). Notice that the condition numbers increase rapidly as

we crank up the stiffness (Young‘s Modulus, Y M increases), which implies that

we are solving a harder problem when we simulate stiff elastodynamics behav-

ior. Here ill-conditioning is an issue not because we are losing multiple digits of

accuracy: in computer animation high accuracy is rarely required. Nevertheless,

ill-conditioning is still a challenge because it causes convergence difficulties to sev-

eral iterative methods. As a demonstration, we record in Table 2.1 the number of
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BFGS quasi-Newton iterations4 and Newton iterations used for solving the implicit

equations for BE observe a clear upward trend as we stiffen the material, especially

for BFGS. In short, for stiff elastodynamic simulations the system became harder

to solve using the optimization based solvers mentioned above.

Table 2.1: Number of BFGS quasi-Newton iteration and exact Newton iter-
ation used for integrating a mass-spring system with 5 particles for 20
frames at h = 0.1s.

Spring constant (N/m) 1e−1 1e0 1e1 1e2 1e3 1e4

BFGS iterations 59 100 205 614 1199 1510
Newton 20 20 39 45 70 80

Due to this challenge, exponential integrators, a branch of integrators special-

ized in stiff problems, have been gaining popularity in graphics in recent years

[19, 60–62, 70]. A review of such methods can be found in [35]. In [36, 56]

exponential integrators are compared to Newton-Krylov methods for various stiff

systems. However, traditional exponential integrators encounter difficulties when

applied for very stiff elastodynamics problems in computer graphics. In Chapter 4

we will describe this challenge in detail.

2.2.2 Numerical Stiffening

The term “numerical stiffening” has been used to describe the numerical artifacts

in simulation on coarser meshes [17, 18, 44, 66]. However, none of the works men-

tioned analyze the cause of numerical stiffening in the context of elastodynamics.

In the next section, we explain numerical stiffening in a simpler context.

To better understand numerical stiffening, let us consider the discretization

of the simplest classical wave equation given by the partial differential equation

(PDE)

utt = c2
∇

2u, (2.13)

4Here we use Matlab’s function [38] with default tolerance.
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where c is the speed of wave. Further, assume that the PDE is in one space variable

and subject to the boundary conditions u(t,x = 0) = u(t,x = 1) = 0.

Looking for solutions of the form u(t,x) = eı
√

λ tU(x) leads to the eigenvalue

problem

− c2
∇

2U = λU, (2.14)

with eigenvalues

λ j = ( jcπ)2, j ∈ N. (2.15)

Here the lowest eigenvalue is λ1 = π2c2≈ 9.86c2, with
√

λ1 the frequency (in time)

of the dominating dynamic mode.

Semi-Discretization It is common to semi-discretize the PDE in Eq. (2.13) in

space, and then step the resulting ODE in time to simulate dynamics. This semi-

discretization in space is, of course, closely related to the eigenvalue problem

Eq. (2.14). However, the spatial discretization error will pollute the overall time tra-

jectory (dynamic behavior) as it alters the analytic eigenvalues given in Eq. (2.15).

Finite Element Method Applying conformal FEM, we first convert Eq. (2.14) to

weak form. The eigenvalue problem (2.14) is then equivalent to requiring that for

all appropriate test functions V ,

c2
ˆ

∇U∇V dx = λ

ˆ
VUdx. (2.16)

We apply simplest Galerkin FEM by choosing piecewise linear “hat functions”

satisfying the boundary conditions as the function space for U and V . The resulting

element stiffness matrix from the left hand side and mass matrix from the right hand

side of Eq. (2.16) are, respectively,

Ke,l =
c2

l

[
1 −1

−1 1

]
, Me,l =

λ l
6

[
2 1

1 2

]
.
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After assembly and elimination of the boundary variables, we have converted Eq. (2.16)

to the system

Klu = λMlu, where (2.17)

Kl = −c2

l



2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1

−1 2


,

Ml =
l
6



4 2

2 4 2
. . . . . . . . .

2 4 2

2 4


.

We have discretized Eq. (2.14) and converted it into a generalized eigenvalue prob-

lem. The lowest eigenvalue at a range of mesh resolutions is plotted in Figure 2.2.

Notice that approximated eigenvalues using the FEM approach the exact one in

Eq. (2.15) from above as l→ 0. This artifact is numerical stiffening, and here the

simulated object is stiffer than the physical model. Moreover, at each progressively

coarser mesh a corresponding simulation will be stiffer when compared to a finer

mesh simulation.

This numerical stiffening is a direct consequence of an old result [23] show-

ing that the Galerkin approximation of the general eigenvalue problem will always

lead to larger eigenvalues. In brief we are searching for the minimum of an ap-

proximated Ritz functional in an increasingly less inclusive function space as we

coarsen the mesh in the weak form of a boundary value PDE problem. Note that

this result will not hold in general, if we lump the mass matrix or use finite differ-

ences; although such method alterations will not improve the numerical stiffening:

it is only the monotonic approach to the limit that would be lost. Based on this

analysis and observation, we derive our algorithm, EigenFit, in the next chapter.

16



Figure 2.2: The lowest eigenvalue of Eq. (2.17) with c = 1 changes depend-
ing on the mesh resolution. This eigenvalue approaches the true eigen-
value π2 of Eq. (2.15) monotonically from above as the mesh resolution
improves.
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Chapter 3

EigenFit for Consistent
Elastodynamic Simulation Across
Mesh Resolution

3.1 Introduction
The calibration, capture, animation and design of soft-body dynamics are criti-

cal for a wide range of domains spanning from robotics, automotive design and

biomechanics to film, interactive animation and digital fabrication design. A fun-

damental computational bottleneck in all of these domains is the efficient forward

simulation of elastodynamics. To simulate elastodynamics researchers often first

discretize the governing differential system in space employing a finite element

method (FEM) [10, 78], and then in time using a time-stepping method.

For simulation-based applications there are many reasons to alter the spatial

and temporal resolution of the computational mesh. Critically, coarsening in both

space and time is often required in order to make applications practical. Most no-

tably, runtime costs for soft-body simulations scale superlinearly in the number of

nodes in the FE mesh. However, both spatial and temporal coarsening introduce

undesirable and often unexpected numerical artifacts that reduce the controllabil-

ity, consistency, accuracy and effectiveness of resulting simulations. While un-
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(a) Reference

(b) EigenFit

(c) Coarse FEM

Error

Figure 3.1: Numerical stiffening can cause animations on a coarser FEM
mesh (sequence (c)) to deviate from corresponding ones on a finer mesh
(sequence (a)). To fix this error, EigenFit adjusts the magnitudes of
the leading modes on the coarse mesh using the fine mesh at rest state,
resulting in sequence (b). The meshes are colored by normalized posi-
tional error with respect to the finer mesh. EigenFit often outperforms
current leading alternatives.

derstanding and reducing artifacts due to temporal coarsening is a long-standing

and active area of investigation, the complementary problem of treating artifacts

due to spatial coarsening has remained much less addressed. Here, we propose

a new method, EigenFit, to mitigate spatial coarsening artifacts in elastodynamic

simulation.

While aggressive spatial coarsening can significantly improve runtime it has

severe consequences for resulting soft-body simulations. First, as coarsening pro-

gresses the computational mesh loses geometric accuracy. Second, higher fre-

quency modes that can only be expressed on finer meshes disappear as the mesh is

progressively coarsened. Third, coarsening introduces numerical stiffening. The

latter, in analogy to numerical dissipation, is the change in a simulated mate-

rial’s effective stiffness directly as consequence of spatial mesh coarsening.1 This

change in observed stiffness becomes more pronounced, despite material parame-

1 Numerical stiffening is not to be confused with other notions of material stiffness that are inde-
pendent of mesh discretization and often result from having very different scales in the underlying
simulated differential system. Here it is the low eigenvalues that are at play, and numerical stiffness
difficulties ebb away as the mesh resolution is increased.
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ters remaining fixed, as we increase element sizes; see Figure 3.1.

Numerical stiffening thus remains a fundamental block to consistent and ac-

curate simulations across changing mesh resolutions. Mesh resolution changes all

the time, but, in principle, simulated physics should not change with it. Towards

this goal we propose and demonstrate a new algorithm, EigenFit, that improves

the consistency and accuracy of both linear and nonlinear model elastodynamic

simulations. Specifically, EigenFit corrects the lower energy, primary deformation

modes of spatially coarsened meshes to gain consistency in elastodynamic simula-

tions across a broader range of mesh resolutions and motions. In particular we will

show that consistent dynamic behavior for the same shape and material is main-

tained as the spatial mesh resolution is varied in a range that preserves primary

eigenmode shapes.

At its core EigenFit is conceptually direct. We apply partial spectral decompo-

sition, solving a generalized eigenvalue problem to rescale leading eigenmodes of a

coarsened model with initial-state ratios between fine- and coarse-resolution mesh

eigenvalues. For nonlinear models EigenFit then updates this fit as time progresses

with a local re-linearization and decomposition that calculates just leading modes

at each time step. By restricting this per-time step correction to subspaces formed

by just the leading eigenmodes, EigenFit avoids prohibitively expensive, repeated

full decompositions and so efficiently performs subspace correction followed by

a low-rank update to map the model back to the full deformation space for time

stepping.

EigenFit performs exceptionally well for linear constitutive materials; see Fig-

ure 3.1 and Section 3.4.1. Furthermore, unlike some other methods EigenFit is

effectively oblivious to material heterogeneity and performs without change for

heterogeneous materials where the Young modulus is a distributed parameter func-

tion. It naturally handles relatively stiff objects where motion is generated through

local softer joints, as demonstrated in Section 3.4 and the supplementary video.

3.2 Related work and numerical stiffening
In this work we focus on constructing coarse spatial-mesh elastodynamic simula-

tions that improve accuracy and consistency of the primary, lowest energy eigen-
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(a) DAC inconsistent

(b) 1st, 3rd, and 6th Modes
of the bar mesh

Figure 3.2: DAC cannot fix some important deformation modes. In this fig-
ure both bars are simulated with Young’s modulus Y M = 4kPa and Pois-
son’s ratio ν = 0.3. However, the stretching and twisting motions are
inconsistent. DAC only uses the first mode to adjust the dynamic be-
havior of the object. But in this example, the first mode of the elastic
bar is a bending mode (see (b)). Consequently, the twisting (3rd mode)
and stretching (6th mode) motions are inconsistent. Subfigure (a) also
demonstrates that numerical stiffening can still occur away from locking
at low Poisson ratio.

modes with respect to a fine-resolution reference mesh. These leading modes gen-

erally exhibit the largest and most visible deformations in elastica and are thus

critical for visual and functional applications in many domains including visual

effects, e.g., film and animation, as well as functional design, e.g., robotics and

biomechanics [17].

A key obstacle to this goal are spatial coarsening artifacts that arise in the

form of numerical stiffening. In Section 2.2.2 we look further into the source of

numerical stiffening. First, however, we briefly review existing remedies for it.

Numerical stiffening in conformal FEM is treated directly by adapting the spa-
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tial mesh for accuracy until error is reduced and thus the artifact is mitigated [6].

These refinements traditionally increase mesh-resolution (h-refinement) and/or el-

ement order (p-refinement) [10]. Many refinement approaches monitor error on the

deformed mesh and so adapt during simulation [9, 32, 64]. Most recently Schneider

et al. [74] proposed p-refinement on unstructured meshes based on analysis of the

undeformed mesh at rest. This latter approach can be highly effective when a small

number of ill-shaped elements are ruining accuracy. However, in the spatial coars-

ening setting we have a global problem where all elements may be problematically

large. Thus, if we were to adopt a refinement solution to alleviate numerical stiff-

ening, the entire domain would require refinement, leading to impractical meshes

with high degree of freedom that one wishes to avoid computing with in the first

place [17].

Alternatively, numerical homogenization methods [16, 44, 66, 69, 85] have

also been proposed to better model energy density at coarse resolution. These

methods work well in the static setting but do not account for inertia and fail to

extend in the dynamic setting [17]. Moreover, the primary focus in these methods

is specifically homogenizing static solutions for heterogeneous materials. Here

we focus on gaining accuracy for dynamics solutions without modifying the given

constitutive material model.

Nonconforming FE methods, especially discontinuous Galerkin (DG), are an-

other potential avenue for reducing numerical stiffening. In particular, DG methods

can be applied to help reduce the related problem of numerical locking [41, 42].

By adding additional degrees of freedom to the system and weakly enforcing inter-

element continuity with penalty terms, DG methods offer freedom to avoid degree-

of-freedom locking. However, this additional flexibility unfortunately does not

provide dynamical correction for numerical stiffening which occurs in addition to

locking; see Figures 3.2a and 3.3.

Most recently, Chen et al. [18] combined homogenization and nonconforming

FE for coarse static solutions to heterogeneous materials. They also interestingly

demonstrated modest improvement on a simple dynamics example, although they

note that no explicit correction in this method is made towards fixing phase error.

The closest work to ours is that of Chen et al. [17]. They observe that rather

coarse meshes can accurately capture low-frequency mode geometry, and hence
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Figure 3.3: The lowest non-zero eigenvalue of a square mesh with two trian-
gles under the Discontinuous Galerkin BZ formulation and IP formu-
lation [18, 41, 42] with a reference continuous Galerkin (CG) solution.
A penalty parameter η can be used to adjust the effective stiffness and
alleviate numerical stiffening somewhat. However, the value of η is
purely empirical.

can capture the primary mode shapes of a simulated object. To a priori correct

this model towards handling numerical stiffening artifacts, they proposed a dy-

namics aware coarsening (DAC) method that precomputes and applies, per mesh,

a one-time numerical rescaling of Young’s modulus to match the lowest eigen-

mode frequency of a coarse mesh to an accurate sample. While this rescaling can

be highly effective in many cases where a single primary mode dominates defor-

mation dynamics, it is unable in many cases to fix a wide number of nonlocal and

nonlinear errors and inconsistencies caused by numerical stiffening; see Figure 3.2.

In particular, if deformations involve stretching, twisting and/or bending motions,

then more than a single parameter adjustment will generally be needed. EigenFit

iteratively re-fits a set of leading eigenmodes to achieve these corrections; see Fig-

ure 3.5 and Sections 3.3 and 3.4 for detailed discussion and comparisons. We

refer to [78, 91] for a discussion of eigenmodes and model reduction. To compute

the leading eigenmodes with symmetric stiffness matrix and mass matrix, we use

the implicitly restarted Lanczos method [48, 79] from the Spectra C++ library [71].

Furthermore, the inverse problem solved per mesh as part of DAC could become

difficult in some applications, a difficulty that EigenFit avoids by not solving any
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inverse problems.

3.3 Method
We now describe in detail a new method that mitigates numerical stiffening by

matching primary vibration modes. As in [17] our setting requires not to coarsen

the mesh beyond a point where the low-energy mode shapes differ between fine and

coarse by more than some small tolerance. The method described below applies

for linear and nonlinear force models.

3.3.1 Mesh eigenmodes

To introduce our ideas gradually, suppose at first that we perform an FEM simu-

lation of an elastic object motion under a linear elastic force at two distinct mesh

resolutions. We then have respective time-independent mass matrices Mc,M f and

stiffness matrices Kc,K f corresponding to the coarse and fine meshes. We can find

the eigenmodes uc,i and u f ,i (modes of deformation) of the coarse and fine meshes

by carrying out the principal component analysis

Kcuc,i = λc,iMcuc,i, i = 1, . . . ,Nc,

K f u f ,i = λ f ,iM f u f ,i, i = 1, . . . ,N f ,

where Nc < N f . While the eigenmodes uc,i and u f ,i have different sizes, they

correspond to the same ith deformation mode of the object for low indices i,

i = 1,2, . . . ,m, where m ≤ Nc. However, as discussed in Section 3.2, their cor-

responding eigenvalues λc,i and λ f ,i will be different due to numerical stiffening.

Although their relative difference is only by O(1), this can change the object de-

formation properties significantly; see Figures 3.1 and 3.5. In particular, avoiding

mass lumping we have λc,i > λ f ,i, and since these eigenvalues directly relate to the

oscillation frequency of the corresponding mode, simulating on a coarse mesh has

been observed to make the object look stiffer and oscillate faster.

To enable such an eigenvalue adjustment, the first idea that may spring to

mind is to use the fact that, if the scalar λ and the vector u are an eigenpair of

a matrix A satisfying Au = λu, then for any integer j, also A ju = λ ju. Thus,
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one could construct an interpolating polynomial p(A) for A = M−1
c Kc such that

p(A)uc,i = λ f ,iuc,i for the first few modes, i = 1,2, . . . ,m, and replace λc,i by

p(λc,i). However, this idea does not work out, even for small fittings of m = 3.

This is because the eigenvalue spread is typically wide and unequal. The resulting,

extrapolated values of p(λc,i) for i > m are often rather far from the corresponding

λ f ,i, and the process is highly ill-conditioned even when using a Lagrange basis for

the polynomial interpolation process. We thus proceed with a direct strategy for

modifying the primary coarse-mesh eigenvalues.

3.3.2 Direct eigenvalue modification

Continuing our gradual development, in this section we assume that the stiffness

matrix K is constant and symmetric positive definite. To reduce the numerical

stiffening effect we modify the first m eigenvalues directly within the eigendecom-

position, where the parameter m is not large (typically in our calculations, m < 20).

First, using the shorthand M = Mc, K = Kc, we write the generalized eigenvalue

problem from Section 3.3.1 above as

KU = MUD, (3.1)

where D is a diagonal matrix having the eigenvalues on its main diagonal, and U is

the matrix having the eigenvectors as columns:

D = diag [λc,1,λc,2, . . . ,λc,Nc ], (3.2)

U =

 | | · · · |
uc,1 uc,2 · · · uc,Nc

| | · · · |

 .
Solving such problem also ensures mass-orthogonality, UT MU = I and MUUT =

I.2

Next, correction of frequency and thus eigenvalues is direct in the linear setting.

2Note, however, that U is not an orthogonal matrix in general.
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We simply replace D in Eq. (3.2) with

D† = diag [λ f ,1,λ f ,2, . . . ,λ f ,m,λc,m+1, . . . ,λc,Nc ]. (3.3)

We select the parameter m using the Hausdorff distance between the eigenshapes

of the coarse and fine meshes, following Chen et al. [17]. Now, using mass or-

thogonality [8], we can approximate the generalized eigenvalue equations (3.1)

by K†U = MUD†, and obtain our modified stiffness matrix K† directly from this

expression:

K† = MUD†UT M. (3.4a)

3.3.3 Nonlinear Materials

The approach described in Section 3.3.2 is direct and simple. However, it is only

applicable to linear force models, where the stiffness matrix and the modal analysis

remain constant throughout the simulation.

In this section we extend our observations from the linear setting to nonlinear

force models, e.g., neo-Hookean, StVK, and the spline model of Xu et al. [93], as

well as to co-rotational FEM.

The obvious step to begin with is to consider a local linearization, i.e., re-

initialization, at each time step. However, there are several obstructions to this

approach. One is that the Jacobian matrix that arises at each given time step de-

pends on the solution there which, in turn, depends in general on all modes. So

there is some mixing of modes in the nonlinear case that does not happen in the

linear one. Moreover, approximations for the stiffness matrix, for instance when

using neo-Hookean force, might give rise to negative eigenvalues (corresponding

possibly to material compression). Finally, the sheer cost of carrying out an eigen-

decomposition at each time step can quickly become prohibitive.
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Rescaling a subset of eigenvalues

Rather than a one-time precomputed rescaling as performed in Chen et al. [17], we

update our fitting iteratively with a local re-linearization at each time step. We first

designate our set of m target eigenvalue ratios ri =
λ f ,i
λc,i

for i = 1,2 . . . ,m, either pre-

computed from the rest shape of the meshes or else set by hand, e.g., for animation

design.

At each time step we then

1. Build a local tangent stiffness matrix K and perform generalized eigenvalue

decomposition on the coarse mesh as in Eqs. (3.1)–(3.2). Note that, unlike

for linear forces, here both the eigenvectors and eigenvalues depend on the

state uc,i = uc,i(qt) and λc,i = λc,i(qt).

2. Set the ratio matrix

R = diag [r1, . . . ,rm,1, . . . ,1], (3.5)

and then D† = RD. This adjusts the leading eigenvalues to their target

values.

3. In the locally linear setting the modified tangent stiffness matrix is now given

by the expression in Eq. (3.4a). The force is correspondingly adjusted to

match:

f† = M
(
URU−1) f = MURUT f. (3.6)

In the general nonlinear material model setting the eigenvalues are not always

positive [21]. This can mix the rescaling effect on different deformation modes. To

mitigate this issue, during assembly of the tangent stiffness matrix, we project any

indefinite element stiffness matrices to the PD cone, by replacing offending nega-

tive eigenvalues with a small positive value ε (we chose ε = 1e−3), in turn guar-

anteeing positive definiteness of the global stiffness matrix; see Teran et al. [84].

Although the generalized eigenvalue decomposition is performed on the coarse

mesh at the beginning of each time step, the corresponding decomposition on the

fine mesh is performed only once, at the beginning. Thus, in (3.5) we keep the
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rescaling ratios fixed, to avoid calculating ratios of the eigenvalues of coarse and

fine at different times. The updated coarse modes, however, are of course used in

Eqs. (3.6) and (3.4a).

Subspace correction

As noted earlier, a fundamental drawback of our strategy so far is the computation

of the full eigendecomposition of the system matrix at every time step. Observe,

however, that our goal is just the re-fitting of the lowest m modes. Thus, we may

focus much of our attention on a subspace of the eigendecomposition. This is espe-

cially important as computation of a low number of eigenpairs is significantly less

expensive (see, e.g., [82]). Starting with this observation we can instead perform

our rescaling in the reduced space spanned by the lowest s modes, where s is a

small integer in the range m ≤ s ≤ Nc. Its value depends on the task complexity

and the computational cost.

Concretely, at each time step we compute only the lowest s eigenpairs. Denote

the corresponding reduced-space eigenvalue and eigenmode matrices Ds and Us.

In contrast to standard linear and nonlinear modal analysis and dimension reduc-

tion methods, here we build a small, local subspace about each time step. In our

setting the relevant eigendecomposition can be efficiently computed by performing

a sequence of inverse power iterations to compute at each time step the lowest few

eigenpairs corresponding to the dominant motions. Note that in the subspace of

dimension s < Nc, UT
s MUs = Is, but MUsUT

s 6= I.

Within each time step’s local subspace, the corresponding mass matrix is the

s× s identity matrix, while the subspace tangent stiffness matrix Ks is diagonal.

The corresponding reduced stiffness matrix and force are then

Ks = UT
s KUs = diag[λc,1, . . . ,λc,s], fs = UT

s f. (3.7)

Next, following Section 3.3.3, we build the diagonal subspace rescaling matrix of

size s in the reduced space,

Rs = diag [r1, . . . ,rs].
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The corresponding modified subspace tangent stiffness matrix and forces, rescaled

by ri, are then

K†
s = RsUs

T KUs = Rsdiag[λc,1, . . . ,λc,s], (3.8a)

f†
s = RsUs

T f. (3.8b)

The EigenFit method

Finally, our local subspace corrections to the primary dynamic modes must be

added back to the full system for simulation of complete dynamics.

To move our subspace correction into the full system we start by observing that,

for an arbitrary diagonal scaling matrix As, the matrix AsUT
s rescales and projects

down to the s-mode basis, as in Eqs. (3.8) above. In turn, MUT
s As lifts the projected

quantity back to the full space of the FEM system. To jointly remove the current,

uncorrected force contributions spanning the subspace, and to add their corrected

counterparts back in, we then use (Rs− Is). Thus, the full-space tangent stiffness

matrix, with our subspace correction, is

K‡ = K+MUs(Rs− Is)UT
s KUsUT

s M, (3.9a)

= K+MUs(Rs− Is)diag[λc,1, . . . ,λc,s]UT
s M, (3.9b)

and the corrected force is

f‡ = f+MUs(Rs− Is)UT
s f. (3.9c)

Note that with the above model we have regained the target correction sought

in Section 3.3.3, while only incurring the cost of the small s-mode eigendecompo-

sition.
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3.3.4 Implementing an EigenFit integration step

The matrix K‡ in Eq. (3.9b) consists of the (relatively) large but sparse positive

definite Nc×Nc matrix K plus an added full (dense) matrix of size Nc×Nc and

rank s. This may make computations using any of our time integration methods

expensive if one is not careful.

Let us define

Y = MUs(Rs− Is), ZT = diag[λc,1, . . . ,λc,s]UT
s M. (3.10a)

Then Y and Z are both Nc× s (i.e., “long and skinny”: s� Nc), and

K‡ = K+YZT . (3.10b)

For the SI time discretization method we have to solve a system of the form

(M+h2K‡)v+ = z

for the velocities v+ at the next time level (where h is the step size). Here z is

a known right hand side. If we use a preconditioned conjugate gradient method

for this, then an oracle for an efficient matrix-vector product can be readily con-

structed, taking into account the thinness of Y and Z.

For some other cases, however, when Nc is not extremely large and the phys-

ical system is stiff, i.e., in the presence of large Young modulus values, we may

well wish to solve the SI linear system (or any other such algebraic system arising

from an implicit time difference method) by a direct method based somehow on

Gaussian elimination. For this purpose we invoke the famous Sherman-Morrison-

Woodbury (SMW) formula [68],

(A+YZT )−1 = A−1−A−1Y(I+ZT A−1Y)−1ZT A−1. (3.11)

In our case we have Y and Z defined as above in Eq. (3.10a) and A = h−2M+K.

The formula is then applied to the right hand side h−2z, requiring one Cholesky

decomposition of the sparse A followed by s+1 forward-backward solves. (Note
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that the matrix I+ZT A−1Y is only s× s, and its inversion is thus assumed cheap.)

In our context, the resulting direct inversion method is typically significantly more

efficient, even when using SI, than iterative methods such as conjugate gradient.

For linear force models, we note that while Section 3.3.2 is there for didactic

purposes, there is no reason to perform a full eigen-decomposition even in the

linear case. In practice we thus apply EigenFit as is also for linear forces, noting

that the low rank correction matrices Y and ZT are calculated just once.

3.3.5 Practical considerations

In many of the experiments, video clips and figures of this paper we naturally

compare our method’s performance on a coarse mesh to similar results on a fine

mesh. But in practice there will be no detailed fine mesh calculations, or else the

purpose of using the coarse mesh in the first place would be nullified. We therefore

must be able to predict, to a reasonable degree of assurance, if applying EigenFit

on a particular coarse mesh would lead to reasonable approximations for a similar

simulation on the finer mesh.

The essential reason why there is hope is the general observation, shared by

both the mechanical engineering and the computer graphics communities, that the

first s modes, s ≤ 20, already essentially determine the visual result. This allows

for the development of a model reduction technique such as we have just presented.

It allows us to always obtain rather acceptable results for linear forces, as demon-

strated throughout this paper and especially in the next section.

At the other end there is always an inherent restriction when applying at each

time step a technique that is essentially a linearization of a nonlinear problem,

especially when the time step is large and there is a lot of deformation action across

it. This is what our work as well as all leading others are often doing. A key to

our success is to keep the leading modes from tangling up: if a mode on the coarse

mesh no longer corresponds to the one on the fine mesh, then of course the ratio of

the corresponding eigenvalues becomes meaningless. See Figure 3.4.

Following extensive experimentation, we have arrived at the following crite-

rion. Our algorithm verifies that at least half of the current eigenvectors match to

the rest-state eigenvectors. The matching process simply uses the mass orthogonal-
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Figure 3.4: Eigenvalues corresponding to the first three leading modes of a
bar with a neo-Hookean force. In the top subfigure (corresponding to a
softer body Y M = 1.e4Pa there is a mode crossing. No such unfortunate
behavior is observed for the stiffer object with Y M = 1.e5Pa. in the
bottom figure.

ity from Eqs. (3.1) and (3.2). This is a functional distance measurement between

two meshes. Since true orthogonality is not achievable from this matching pro-

cess, we use a loss tol = 0.4 throughout the simulation. Practically, we compute

UT
s MUs,r, where Us,Us,r are the s current and rest state eigenvectors, and verify

that at least half of the columns contain an entry larger than 0.6. At the first frame,

a similar calculation is performed to verify that the resolution of the coarse mesh is

capable of simulating the dominating motion of the fine mesh. That is, we calculate

UT
s,r,cBM f Us,r, f , where Us,r,c,Us,r, f are the coarse and fine rest state eigenvectors,

M f is the mass matrix from the fine mesh, and B is a mapping matrix from the

coarse mesh to the fine mesh through barycentric coordinates. Again, we verify
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that at least half of the columns contain an entry larger than 0.6. The present simu-

lation is deemed acceptable only if it passes both tests. In short, we use the criterion

above to make sure the nonlinearity is not out of hand. Note that there are many

types of nonlinearity that can appear in different applications, and different secu-

rity measures can be used accordingly. For example the alignment process in [91]

finds a set of transformation angles by solving an orthogonal Procrustes problem,

and this set of angles can also be used as a measurement for nonlinearity.

3.4 Results
In this section we demonstrate the efficacy of EigenFit on homogeneous and het-

erogeneous material deformable objects of various shapes simulated under both

linear and nonlinear forces. For simplicity, for all examples in this section, we use

time step size h = 1e− 2. In the comparisons below, we always use a fine spatial

mesh simulated using plain FEM as the ground truth. We compare this fine mesh

trajectory against various coarse mesh trajectories simulated by plain FEM, Eigen-

Fit or DAC. In this section we use a number of meshes for the reported simulations.

Table 3.1 summarizes the mesh information used, while Table 3.2 summarizes our

simulation times for each of the coarse mesh, fine mesh, and the EigenFit simula-

tions. We found that for coarse mesh nonlinear material, 20% of the time increase

comes from eigendecomposition, while the rest comes from the low rank update.

Due to the nature of dynamic simulation, some results are easier to visualize and

understand in animated form. For this we refer readers to our supplementary video.

In all of the figures, the color code is calibrated using the maximum error from each

simulation. We rendered an embedded fine mesh together with a wireframe from

the simulated coarse mesh. Note further that many of the examples in this section

and the supplementary video involve positional constraints.

In this project, we use nested cages [73] and TetWild [37] to generate meshes

for our simulation inputs. We implemented our algorithm in C++ with GAUSS

library, and use Spectra, which implemented Lanczos algorithm, for eigenval-

ue/eigenvector computation. We make our code available at https://github.com/

edwinchenyj/GAUSS/tree/release-eigenfit, and the video can be found at https://

www.youtube.com/watch?v=aIAKBsT96to.
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Table 3.1: List of Meshes used for EigenFit experiments

Mesh ID #DOF (3× #Vertices) #Tetrahedrons

Arm fine 15,372 19,378
Arm coarse 7,800 8,948

Armadillo fine 40,539 54,233
Armadillo coarse 4,425 4,902

Bar fine 42,069 72,989
Bar coarse 3,846 5,020
Fert fine 36,324 47,813

Fert coarse 5,385 6,020
Rampant fine 59,382 78,686

Rampant coarse 2,820 3,070
Skater fine 32,169 42,161

Skater coarse 8,394 9,584

3.4.1 Linear hyperelastic constitutive models

While nonlinear models are commonplace in animation tasks nowadays, engineer-

ing and fabrication often rely on linear dynamical analysis. Furthermore, many an-

imation techniques rely on underlying linear models which are modified via warp-

ing to yield visually acceptable results. Linear force models remain popular due to

their simplicity and rapid execution, and have been used in some interesting and

varied applications such as acoustic transfer [50]. In our specific context this sec-

tion is a good place to demonstrate how EigenFit leverages the underlying principle

behind numerical coarsening. We can also clearly see how EigenFit differs from

DAC and improves upon it.

Under the setting of linear elasticity, the eigensystem is constant. We can per-

form the full eigendecomposition as described in Section 3.3.1. However, since the

high energy modes rarely have observable amplitude, we only carry out a partial

eigendecomposition to adjust the first few eigenvalues and eigenvectors, as de-

scribed in Section 3.3.2. Notice that we only need to perform this decomposition

and store Y,Z in Eq. (3.10a) once for the entire simulation.
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Bar

In this example, we simulate a twisted bar using linear material with constant

Young’s modulus Y M = 1e5Pa, Poisson’s ratio ν = 0.45, and IM with α = 0,β =

0.01 in Eq. (4.7). In this case, the fine mesh has N f = 14,023 and the coarse mesh

has Nc = 1,282 free vertices. In the EigenFit algorithm, we pick m = s = 10 modes

to match from coarse mesh to the fine mesh. We track a corner point of the bar and

plot the trajectories and errors in Figure 3.5. We also show the simulation results at

t = 2.9sec with different view angles to provide comparison with other methods.

Note that the Euclidean error of EigenFit at the corner point is consistently

lower than those of the plain FEM and DAC. Interestingly, if we only look at the y

trajectory of the corner point in Figure 3.5(c), DAC does a good job at matching the

ground truth. By looking at the first few eigen-deformations in Figure 3.6, we can

see why this is the case. The first eigen-deformation is a bending mode that affects

the y coordinate only; see Figure 3.6a. Since DAC uses the first eigenvalue ratio

to adjust the Young modulus, it fixes the stiffening effect in this motion. However,

since we are simulating a twisted bar, there are other deformation modes that could

not be captured by such eigen-deformation alone. In our EigenFit algorithm, the

3rd eigenvalue ratio is used to compensate the stiffening effect in the rotational

motion; see Figure 3.6c. This suggests that EigenFit can be viewed as a high-order

improvement to DAC.

Armadillo

Our algorithm can of course handle more complex geometries than a rectangular

bar. In this example we simulate an armadillo using Armadillo meshes described

in Table 3.1. Figure 3.1 demonstrates that EigenFit can match the corresponding

modes to the correct frequency in the fine mesh. This results in a consistent simu-

lation trajectory across different resolutions.

Summary for linear forces: We have carried out dozens of additional simulations

for many different deformable objects under linear force. For all examples tried

EigenFit performs very well indeed. For DAC, the observations above also hold

consistently: it performs well (i.e., comparable to EigenFit) if there is one domi-
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(a) Reference Simulation

(b) EigenFit simulation

(c) DAC Simulation

(d) Coarse FEM Simulation

Figure 3.5: Animation shots for a twisted bar under a linear force, progress-
ing in time from left to right. The fine mesh animation (top row) is
faithfully reproduced by EigenFit on the coarse mesh (2nd row), dis-
playing robustness to irregular meshes. On the other hand, DAC (3rd
row) and the raw FEM coarse mesh simulations (bottom row) produce
significant, visible disagreements with the fine mesh.
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(a) Bar 1st mode (b) Bar 2nd mode (c) Bar 3rd mode

Figure 3.6: The first three modes of the bar example in Figure 3.5.

nating mode, but when several different dominating modes are present DAC falls

behind.

3.4.2 Mildly nonlinear elastodynamics models

To further demonstrate the capacity of EigenFit, we have applied it for nonlin-

ear material force models, including as rigid as possible (ARAP) [15] and neo-

Hookean.

We have used ARAP energy, a popular nonlinear energy model in computer

graphics, to simulate the Armadillo and Skater meshes with stiffness parameter

1e6Pa, simulated with the SI integrator. We fixed and shook the feet of both objects

for 30 frames and observed the resulting oscillation afterwards. For EigenFit, we

used 10 modes and applied the 10 calculated ratios at every frame, as described

in Section 3.3.3. Although the result is not as impressively perfect as in the linear

case, EigenFit still tracks the fine mesh motion much better than the regular coarse

FEM simulation; see Figure 3.7 and Figure 3.9, respectively. In particular, notice

that the position error and velocity are oscillatory and out of phase in the coarse

FEM simulation (yellow line in the error plots), which means that its dominating

motion has the wrong frequency. EigenFit (green line in the error plots) matches

the frequency of this motion, and thus has a much lower error.

In the armadillo mesh, we also compared to DAC. Notice that EigenFit also

performs better than DAC in this case, and it is not hard to see why by looking at

the first 3 dominating modes. From our EigenFit calculation we found the domi-
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nating three modes have eigenvalue ratios r1 = 0.536, r2 = 0.711, and r3 = 0.675,

and the corresponding motions are forward bending (Figure 3.7(c)), side shifting

(Figure 3.7(d)), and slight twisting about the z-axis (Figure 3.7(e)). Effectively,

DAC applied one single ratio, 0.536, to all of these motions, whereas EigenFit

correctly matched their corresponding ratios.

Dynamic constraint

EigenFit also works when a constraint changes during the simulation. In Fig-

ure 3.8, we simulated a shaken armadillo, and released one leg during the sim-

ulation. The EigenFit ratios are recalculated when the boundary conditions are

change. The plots show that using EigenFit reduced the error significantly.

Summary for mildly nonlinear scenarios: The results in Figures 3.7–3.9, as well

as those in Figures 3.10–3.12, all indicate that when the nonlinear effect is suffi-

ciently moderate so that a quasi-linearization at the beginning of each time step

captures the essence of what happens throughout it, the conclusions drawn before

for linear forces can be extended, albeit in an imperfect sense. We do observe

mild mismatches, but both EigenFit and DAC are expected to perform better than

regular FEM, and situations where DAC is worse than EigenFit arise here as well.

3.4.3 Large deformation for nonlinear numerical material

For more general nonlinear scenarios it is important to understand that there is not

a panacea. The methods proposed in the literature all rely on some localization that

may not always hold, and none of them performs satisfactorily in the large context.

Figure 3.13 is a case in point, where both EigenFit and DAC give poorer results

than the regular coarse mesh FEM.

In practice, of course the utility of any method of the sort considered here

depends on not having to simulate the “ground truth” fine mesh trajectory. If the

ultimate fine mesh is much finer than the coarse mesh (hence directly simulating

on it could be prohibitively expensive), then the simplest cure may be to make the

coarse mesh finer but still not as fine as the finest mesh. This is a common practice

in scientific computing; see, e.g., [87]. The condition devised in Section 3.3.5 goes
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(a) EigenFit Frame 125

(b) Coarse Frame 125

(c) Armadillo 1st mode (d) Armadillo 2nd mode (e) Armadillo 3rd mode

Figure 3.7: ARAP armadillo with homogeneous material. The SI integrator
was used to simulate 200 frames. Grey silhouette shows the reference
simulation from a fine mesh. The two plots are maximum position error
and velocity error.
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(a) EigenFit Frame 375

(b) Coarse Frame 375

Figure 3.8: ARAP Armadillo mesh with changing constraints. Color bar was
calibrated to fit the max error. The two plots are max position error and
velocity error.

towards ensuring that EigenFit is not applied where its chances to perform well are

deemed too low.

Remaining still with homogeneous objects for simplicity sake, we also observe

that for the same forces applied to the same object except that the Young modulus

varies, the error is smaller the stiffer the object gets; see Table 3.3. It’s for rather

soft bodies exhibiting large deformation where a finer coarse mesh is particularly

desirable.

3.4.4 Heterogeneous deformable objects

Thus far in this narration we have restricted our attention to homogeneous objects

in order to concentrate on the many other aspects of the numerical stiffness prob-

lem and to enable direct comparison to DAC. However, of course there are many

deformable objects in practice, both natural and designed, where the Young modu-

lus is a non-constant function over the object’s domain; see Figure 3.14.
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(a) EigenFit Frame 175

(b) Coarse Frame 175

Figure 3.9: ARAP skater with homogeneous material. The SI integrator was
used to simulate 200 frames. Grey silhouette shows the reference simu-
lation from a fine mesh. The two plots are maximum position error and
velocity error.

Table 3.2: Relative Simulation Time. A set of coarse and fine meshes were
simulated. We report the CPU time, with the relative simulation time
given in brackets, using the fine mesh simulation time as the reference.

Coarse EigenFit Fine

Arm (ARAP) 219 (0.26) 444 (0.53) 839
Armadillo (Linear) 224 (0.16) 300 (0.22) 1,387
Armadillo (ARAP) 198 (0.08) 546 (0.23) 2,399

Bar (Linear) 335 (0.20) 386(0.22) 1,683
Fert (Neo-Hookean) 633(0.15) 1,914(0.44) 4,331
Rampant (ARAP) 279(0.06) 634 (0.14) 4,496

Skater (ARAP) 298 (0.23) 865 (0.65) 1,311
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(a) EigenFit Frame 40

(b) Coarse Frame 40

Figure 3.10: neo-Hookean arm with heterogeneous material. Color scheme
is calibrated to fit the max error. EigenFit and regular coarse FEM are
displayed. The error plots are for max position and max velocity error.

Table 3.3: Error and Stiffness

Stiffness Parameter (Pa) 1e4 1e5 5e5 1e6 1e7

Arm (ARAP) 0.91 1.39 0.615 0.611 0.438
Armadillo (ARAP) 0.838 0.755 0.622 0.307 0.192
Bar (Neo-Hookean) 1.431 0.7281 0.22 0.247 0.292

Hand (ARAP) 1.35 1.04 0.991 0.977 1.09
Skater (ARAP) 0.92 0.594 0.316 0.273 0.182

To find the distributed parameter function that is Young’s modulus in such a

case, especially for a natural object, can become significantly more difficult [90].

However, the application of EigenFit is independent of finding this function for

different meshes. Thus, assuming the availability of Young’s modulus and an ade-

quate coarse spatial mesh, EigenFit applies to heterogeneous objects as readily as

to homogeneous ones!

Furthermore, EigenFit naturally handles relatively stiff objects where motion
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(a) EigenFit Frame 75

(b) Coarse Frame 75

Figure 3.11: ARAP Rampant mesh with heterogeneous material. Color
scheme is calibrated to fit the max error, and EigenFit is compared
to regular coarse FEM. The two plots are for max position error and
max velocity error.

is generated through local softer joints, as demonstrated to various degrees in Fig-

ure 3.14. In such cases the leading modes corresponding to the softer joints can

be captured well, and larger deformations in the stiffer part of the object can be

successfully followed on the coarse mesh.

In Figures 3.10–3.12 we used heterogeneous material on the Arm, Rampant,

and Fert meshes. Color coding in Figure 3.14 shows how the stiffness parameter

varies spatially in the examples we used; darker color means stiffer, and lighter

color is softer. For the Arm mesh, the peak stiffness is 1e8, and 2e4 at the mini-

mum. For the Rampant mesh, the peak stiffness is 1e8, and 2e6 for the minimum.

For the Fert mesh the peak stiffness is 1e9 and 1e5 at the minimum. Observe

from these figures and the supplementary video that with nonlinear heterogeneous

constitutive material, EigenFit improves the simulation results for non-mild defor-

mations from the coarse FEM mesh.
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(a) EigenFit Frame 225

(b) Coarse Frame 225

Figure 3.12: neo-Hookean Fert mesh with heterogeneous material. Color bar
calibrated to fit the max error. The two plots are max position error
and velocity error.

3.5 Conclusions, limitations and future
Mitigating numerical stiffening for coarsened meshes will open the door for elas-

todynamic simulation in many domains not previously possible. Automated fab-

rication design requires outer optimization loops that can call expensive FE sim-

ulations hundreds of times about each design sample. Simply decreasing the res-

olution needed for sufficient accuracy would open the door to much faster opti-

mization. Furthermore, as geometric design parameters change so does the com-

putational mesh. If changes in the meshing are allowed to change the effective

material stiffness of the simulations, then the entire, exceedingly expensive design

optimization is invalidated. Current optimization design tools, e.g., in the auto-

motive industry, apply mesh-warping techniques in these settings that deform the

rest mesh in attempt to maintain mesh consistency over changing design param-

eters. However, large changes in the design-space necessarily require large and

often abrupt changes in mesh resolution, again forcing tools to conservatively ap-
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(a) EigenFit Frame 125 (a) DAC Frame 125 (b) Coarse Frame 125

Figure 3.13: Under large deformation both EigenFit and DAC may perform
poorly. Here both methods fail to improve on the original coarse FEM
simulation. This is due to the fact that the underlying frequency match-
ing (for DAC) and mode matching (for EigenFit) conditions fail to
hold.

Fert Rampant Arm

Figure 3.14: Examples of heterogeneous objects: lighter color corresponds
to lower Young modulus.
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ply high-resolution meshes.

In this work we have assumed that the material constitutive model is given and

have not attempted to change it, e.g., through homogenization techniques. When

changing the spatial mesh resolution the apparent physical behavior of the simu-

lated motion of a flexible object may change. We have presented, analyzed and

demonstrated a method that significantly reduces this unwanted mesh dependence,

making the simulation consistent across mesh resolutions. The method involves

matching the leading eigenvalues of a given coarse mesh with those of a fine ref-

erence mesh at rest. This necessitates a partial spectral decomposition, which for

nonlinear constitutive laws must be carried out at each time step. For this we have

proposed and implemented a model reduction method, EigenFit, where the essen-

tial work is carried out in a small subspace of the eigenmodes. We demonstrated

EigenFit in action on a range of different meshes for both homogeneous and het-

erogeneous material objects. In addition to the figures in this paper we refer the

reader to the supplementary video, where the gained motion consistency is clearly

demonstrated.

We have applied EigenFit to a class of heterogeneous and nonlinear materials.

To our knowledge, the dynamic aspect of numerical stiffening and numerical ho-

mogenization has not been discussed in detail in the literature, and our assumption

that the coarse mesh is given and is “sufficiently fine” is not out of place in many

heterogeneous simulation applications (e.g., for animating a teddy bear or a plant).

Notice that “large deformation” in the present context is the amount of de-

formation that would modify the ordering of the eigenmodes significantly. It is

possible for certain mesh configurations to have visually small deformation that

still leads to a significant degree of mode crossing. This is indeed the case with

the Hand mesh listed in Table 3.3, where a cluster of eigenvalues/eigenmodes cor-

responding to the motion of each finger can easily exhibit mode crossing, making

the EigenFit mode matching effort ineffective.

For general nonlinear forces with large deformations applied to heterogeneous

material an effort is required, extending [17], to decide which coarse mesh is “suf-

ficiently fine” to enable a reasonable treatment of the numerical stiffening phe-

nomenon. To that end a practical direction is to start with a coarse mesh as in [17]

and gradually refine it for a representative scenario until it is deemed fine enough
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in the present context. Then use the obtained mesh as the new “coarse mesh” to

which EigenFit can be applied.
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Chapter 4

Exponential Rosenbrock-Euler
Integrators for Elastodynamic
sImulation

4.1 Exponential integrators
We begin by briefly describing exponential integrators as needed for our purposes.

Much more is discussed in [35] and [63].

Consider the autonomous ODE

u̇(t) = b(u(t)), u(0) = u0. (4.1)

Exponential integrators are based on splitting b(u) as

b(u) = Ju+ c(u), where J =
∂b
∂u

(u0),

and employing the variation-of-constants formula

u(t) = exp(tJ)u(0)+
ˆ t

0
exp((t− s)J)c(u(ζ ))dζ . (4.2)

By approximating the integral in Eq. (4.2), we can obtain various exponential inte-
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grators.

Exponential Rosenbrock-Euler (ERE) Method

Let us write Eq. (4.1) at un = u(tn) as

u̇(t) = Jnu(t)+ cn(u(t)),

Jn =
∂b
∂u

(un), cn(u) = b(un)− Jnu(t).
(4.3)

We then use Eq. (4.2) to integrate Eq. (4.3) from tn to tn+1 = tn +h, and restart the

linearization process at tn+1. The simplest method of this form can be constructed

by fixing Jn and cn(u(ζ )) at ζ = tn, enabling exact integration in Eq. (4.2) and thus

leading to the exponential Rosenbrock-Euler (ERE) method

un+1 = exp(hJn)un +hφ1(hJn)cn(un)

= un +hφ1(hJn)b(un) (4.4)

with φ1(z) = z−1(exp(z)−1).

Henceforth we will use this method (and not higher order Rosenbrock1) be-

cause we are interested in a qualitatively correct, inexpensive integrator and are

less focused on very small point-wise errors (unlike [62], for instance). On the

other hand, we have found it necessary, for the applications considered here, to

refresh Jn and re-evaluate its exponential at each time step. Furthermore, we have

considered and discarded use of conservative average vector field (AVF) methods

[89] in the present context, because they also lead to potentially difficult large-step

nonlinear systems. In our context, where assembling all the forces to form b(u)
is the major expense at a given time step, the use of ERE allows us to concentrate

only on the evaluation of the exponential matrix function times a vector.

4.1.1 Implementation of ERE

The expression Eq. (4.4) seems computationally attractive as it only requires one

matrix function evaluation. However, the evaluation of the function φ1(z) suffers

1Higher order methods require additional matrix exponential evaluations in the internal stages at
each time step, similar to RK methods. See, e.g., [35] for more detail.
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from numerical instability due to cancellation error when z ≈ 0 [40, 67]. In elas-

todynamics simulations, this could happen when the elastic waves are traveling

on different time scales. To avoid computing φ1, we follow [2, 72] and rewrite

Eq. (4.4) as

un+1 =
[
IN 0N×1

]
exp(hA) ũn, where (4.5)

A =

[
Jn cn(un)

01×N 0

]
, ũn =

[
un

1

]
,

which only involves one product of a matrix exponential of the slightly larger ma-

trix with a vector.

Computing the action of the matrix exponential

When computing the product exp(hA)u for a large but sparse matrix A as in Eq. (4.5),

it is important to avoid forming the full matrix exponential explicitly. Some of the

most efficient algorithms implement sub-stepping (or scaling) of the form

exp(hA)u = exp(δ t1A)exp(δ t2A) · · ·exp(δ tτA)u,
τ

∑
i=1

δ ti = h (4.6)

using one of the following methods:

• truncated Taylor series [2],

• Krylov subspace methods [77],

• Leja approximations [14].

The number of stages τ or the substeps δ ti are chosen to optimize the cost

and accuracy based on desired tolerance and error estimation. See [63] for more

detail and further justification. The costs of all three methods grow with the ma-

trix norm ‖A‖, which in our context is majorized by the system stiffness-density

ratio ‖M−1K‖. For the present type of application, we found that the Krylov sub-

space based algorithm from [77] performed best, so we have subsequently used

their Matlab toolbox for all the calculations involving matrix exponentials reported

here. At each substep δ ti, this algorithm uses the Arnoldi process to project the
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exponential operator onto a small Krylov subspace, where a small matrix exponen-

tial is calculated, and projects the result back. Further details of the algorithm are

omitted here, as these are not contributions of the present paper and may be found

in [77].

Let us denote the material stiffness-density ratio

k/m = Young′s modulus/density,

measured in (m/sec)2. This quantity relates to the natural frequency of the ma-

terial at the rest shape. Figure 4.1 shows the relationship between k/m and the

cost of computing the action of the matrix exponential with the Matlab package

expv from expokit by [77]. (a) Number of substeps τ grows with the stiffness-

density ratio k/m (lines with different color) and matrix size N (x-axis). (b) s grows

(roughly) linearly with N, leading to super-linear growth in total runtime. (c) The

running time for computing the action of the matrix exponential depends on k/m.

Nevertheless, soft tissues and soft engineering materials of much current interest

can be simulated effectively by ERE. We further make the following observations:

• Substepping of the form Eq. (4.6) is equivalent to time-stepping in a linear

ODE with system matrix A. Hence, the growth in number of substeps τ

and ERE cost is similar to what is obtained from the stringent time step re-

quirement for classical explicit methods for ODE systems with fast traveling

waves. However, the cost of substepping is cheap (e.g., involving an Arnoldi

iteration and exponentiation of a small matrix when using a Krylov sub-

space), whereas small time steps with explicit methods are expensive (due

to force calculations through FEM assembly from per element contribution).

More comparisons with explicit methods are discussed in Section 4.2.2.

• ERE can become costly when ‖M−1K‖ is very large, so it is only suitable

for materials that are not too stiff. On the other hand, when ‖M−1K‖ is

large, regular implicit methods (e.g., backward Euler or implicit midpoint)

encounter numerical difficulty from solving nonlinear systems at each time

step. In particular, one can implement a more robust version of Newton’s

method by mixing it with gradient descent or damping the step [53, 58], but
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such implementation might increase cost due to loss of quadratic conver-

gence and involves picking ad hoc parameters.

• On a positive note, according to experimental measurements from [1, 46, 52],

there is a wide range of soft tissues of much current interest that have the

material properties in the range where ERE is efficient. In addition, soft

engineering materials that exhibit highly dynamical behavior can also be

simulated effectively by ERE.

Stability of exponential integrators

For ERE to be stable, a necessary condition is that all the eigenvalues of the Ja-

cobian matrix J must have negative real part at every time step [35], which cor-

responds to the damping in the system. The elastodynamic system that is being

simulated has this property since elastic objects are naturally damped due to in-

ternal friction. In our implementation we have introduced a minimal amount of

damping using the Rayleigh damping model

fdmp(q,v) = (αM+βK0)v, (4.7)

(i.e., the damping matrix is D = αM +βK0), where K0 is the (SPD) stiffness

matrix at the initial state and α,β > 0. In our experience, although the simple

Rayleigh damping model introduced in Eq. (4.7) does not always guarantee stabil-

ity, it works for a wide range of examples. In particular, the stability of ERE suffers

with large ‖M−1K‖, and under large deformation, when g(q(t)) in Eq. (2.6) grows

larger. In the next section we show that ERE is stable for a wide range of soft

materials that arise in computer graphics.

4.2 Results
In this section we demonstrate the performance of ERE on (i) a linear mass-spring

system with linear density 0.1kg/m; and (ii) a nonlinear neo-Hookean material

model with density 1000kg/m3 and Poisson ratio 0.48, discretized using linear dis-

placement tetrahedral elements. In both cases we employ the Rayleigh damping
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Figure 4.1: Cost of calculating the matrix exponential
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model (4.7) with α = 0.01 and β = 0.01.2

For each simulation we choose a range of linear stiffness Kl or Young’s mod-

ulus Y M3 and step size h to demonstrate performance. We emphasize that ERE is

not limited by the above systems: it can be applied to the dynamic system of any

constitutive model semi-discretized in the form of Eq. (2.3).

All reported times t and step sizes h are in terms of seconds (sec). For reading

clarity we occasionally omit this unit in the sequel.

4.2.1 Cost of ERE under large deformation

As mentioned in Section 4.1.1, the number of substeps τ in evaluating the matrix

exponential inside ERE depends on ‖M−1K‖, which depends on material proper-

ties. Under large deformation with a nonlinear material, ‖M−1K‖ can also increase

due to stiffening, and thus plague the performance of ERE. In the present exam-

ple, we simulated a neo-Hookean cylinder under both compression and stretching

(Figure 4.2) and recorded the number of substeps τ used by expv within ERE in

Table 4.1. We observe that τ increases under stiffening only by less than a factor of

3 at 50% compression and by less then a factor of 2 at 100% stretch. For materials

such as soft tissue and organs, the region of elastic deformation is less then 20%,

meaning the cost of ERE will not change much for practical use.

Figure 4.2: Compressing and stretching a neo-Hookean cylinder (2383 tetra-
hedrons)

2Note that our linear mass-spring system is only linear in stretch, and a nonlinear system arises
because of rotation, in contrast to the mass-spring system in [60].

3Since the material is nonlinear, the stiffness parameters are chosen for the rest state only.
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Table 4.1: Number of substeps τ used by expv in ERE for compressing and
stretching a neo-Hookean cylinder (2383 tetrahedra) with different k/m
at step size h = 1/30 at 2%, 50% strain along the cylinder axis. For
stretching, 100% stretch is also tested.

k/m s2% s50% s100%

compression 1e3 2 3
1e4 5 7
1e5 12 23
1e6 48 123

stretch 1e3 2 2 2
1e4 4 4 5
1e5 12 12 13
1e6 47 51 58

4.2.2 Comparison with RK4

For soft material that is not extremely stiff, explicit methods such as the classical

fourth order RK, denoted RK4, can be stable and efficient because the time step

constraint is less stringent. To see that ERE compares favorably for soft materials

nonetheless, we first test ERE against RK. In this comparison, we simulate one

meter of elastic rope as 50 springs in sequence for 2 seconds and list the stable step

size hrk and the total running time tc
rk for RK4 with different stiffness-density ratios.

Results are collected in Table 4.2.4 While ERE introduces with the listed step size

some positional error εere, the simulation results are qualitatively correct and the

method remains stable for all stiffness parameter values at step size here = 1/60

and has shorter total running time tc
ere. The results demonstrate that RK4 is much

more expensive (twice to 30 times). This is because calculating the force model

(mass-spring and Rayleigh damping in this case) for small time steps is expensive,

whereas the substepping for the matrix exponential in ERE is much cheaper.

4The solutions from RK4 are used as “ground truth” to calculate the error for ERE, since RK4 is
a fourth order method that is necessarily evaluated using a much smaller time step.
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Table 4.2: ERE and RK4 step sizes h and total running time tc (measured in
CPU seconds) for simulating an elastic rope with different linear stiffness
Kl(N/m) for 2 seconds. Positional error ε is measured in meters.

Kl here tc
ere max‖εere‖ hrk tc

rk

1e0 1/60 5.2278 0.0720 1/180 9.7558
1e1 1/60 4.9717 0.0210 1/420 19.0327
1e2 1/60 6.1674 0.0511 1/1080 41.7449
1e3 1/60 6.6823 0.1424 1/4680 179.1033

4.2.3 Comparison with semi-implicit method and implicit methods

Solving nonlinear equations

In the following examples, we used Newton’s method for the nonlinear equations

arising in backward Euler (BE) and implicit midpoint (IM) integrators. The step is

successful if the iteration’s residual is less then εn = 10−6. If the residual does not

decrease after 3 iterations, then we locally reduce the time step by half and repeat

the procedure over two half-steps. This is a standard procedure in numerical ODE

practice (see, e.g., [3]) that is a simple instance of a numerical continuation method,

using smaller steps to approximate the path from tn to tn +h. Specifically, it lever-

ages the physical structure of the problem because by reducing the time step the

starting guess un+1/2 is often closer to the desired un+1. This procedure still guar-

antees quadratic convergence for small substep problems, whereas implementing

linear search and Hessian fix [58] could reduce the convergence speed.

It is also possible to apply the semi-implicit approximation (i.e., a single New-

ton iteration) to IM rather than to BE. The cost per step is then the same as SI.

However, we have observed that stability of the implicit midpoint method can be

highly effected under this early termination. A similar effect was observed in [54].

Hence we do not consider this variant further.
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1D Mass-spring systems

We first use the same rope simulation as described in Section 4.2.2 to compare the

performance of ERE against the semi-implicit (SI) method and BE method (which

both introduce artificial damping), as well as the IM method (which does not); see

Figure 4.3. All the methods were run at step size 1/60 and remained stable for

all stiffness parameters tested. Figure 4.3 shows that ERE is cheaper compared to

the fully implicit methods (BE and IM) while having good accuracy (Figure 4.3b).

Figure 4.3c shows energy profiles of different methods for the simulation with

linear stiffness Kl = 100N/m. ERE is clearly better then BE and SI because less

artificial damping is introduced.

2D Mass-spring systems

In this example we simulate a piece of cloth with 121 particles (11×11) and simple

stretching and shearing springs. The cloth is dropped with four corners fixed, and

then quickly shaken at t = 1; see Figure 4.5. In Figure 4.4 we compare ERE with

SI, BE, and IM, all with step size h = 1/60, in terms of running time and maximum

position error (RK4 with small time step serves as ground truth). Figure 4.5 depicts

the frames at t = 1.7, after the shaking event at t = 1. The cloth looks more damped

with SI and BE, whereas the ground truth is more responsive and dynamic. The

ERE solution is only slightly damped, and it remains more faithful to the true

solution. Once the SI step size is reduced down to hsi = 1/120, the simulation

error and visual impressions are similar to ERE with step size here = 1/60. This

is in keeping with the fact that the damping introduced by SI reduces for a smaller

step size. However, reducing the step size also increases the total running time

(Figure 4.4a).

In the next example we make the same cloth mesh with linear stiffness Kl =

100N/m collide with a sphere. The collision is resolved by projecting each particle

onto the closest point on the sphere. Figure 4.6 depicts the state of the cloth after the

collision. The cloth responds more dynamically in the simulation using ERE and

IM. Both SI and BE introduce much more damping into the system, as shown in

Figure 4.7. Table 4.3 displays the total simulation running time for each integrator

with step size h = 1/60. ERE and SI are much cheaper than BE and IM, since no
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additional Newton iterations are required.

In Figure 4.8 we changed half of the cloth to a slightly softer material Kl =

20N/m and the other half to a stiffer material Kl = 200N/m. In this mixed material

example, both SI and BE are seen to introduce non-uniform damping, relative to

the stiffness, and fail to capture the state of the cloth even qualitatively, whereas

ERE looks qualitatively similar to IM.

Character Cloth

In this example we simulate a cape (11×11) attached to a dancing character, with

step size h = 1/60 (Figures 4.9 and 4.10). From these examples we conclude that

ERE is an efficient explicit method for problems such as cloth simulation that does

not introduce too much damping and responds more dynamically to user inputs and

collision events.

Table 4.3: Running time of each method for simulating the cloth collision
scene for 5 seconds.

Integrator Total running time

ERE 8.4187
SI 6.8089
BE 18.9087
IM 29.8337

3D Volumetric Bar

Next we use a neo-Hookean material model to simulate elastic deformation of 3D

volumetric bars. For the first volumetric simulation, we simulate a twisted soft

elastic bar with Young’s modulus values Y M ranging from 10Pa to 10kPa, see

Figure 4.11.

In our second volumetric example we simulate elastic bars, with Young’s mod-

ulus ranging from 10kPa to 50kPa, dropping with one end fixed; see Figure 4.12.

Similarly, we plot the running time of each method in Figure 4.12a, and the en-
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ergy profile of the bar with Young’s modulus 10kPa in Figure 4.12b. We observe

that the running time for ERE increased as we stiffen the material, as predicted in

Figure 4.1.

Both these examples clearly demonstrate that our previous conclusions extend

to a volumetric simulation, namely, that the BE and SI methods lose too much

energy while the fully implicit methods are too slow.

Stanford bunny

In our last volumetric simulation we simulate the Stanford bunny (Y M = 100kPa,

h = 1/180) bouncing due to gravity. Figure 4.13 shows the energy profile for each

integrator in a similar fashion as before. Similar conclusions are drawn from this

figure.

4.3 Conclusions
In this chapter we have analyzed and demonstrated a low cost algorithm for pro-

ducing qualitatively correct simulations of elastodynamics motion involving soft

materials. Our algorithm works well, using large time steps, even when the stiff-

ness matrix is not positive definite everywhere, and it produces simulations that do

not suffer heavy step size-related damping. Our system derives its relative efficacy

from the fact that in typical soft body simulations in computer graphics the major

cost per time step is in the assembly of the forces rather than in evaluating prod-

ucts with matrix exponentials. The need of solving nontrivial nonlinear systems of

algebraic equations at each time step is avoided as well. The performance of our

system has been demonstrated in Section 4.2; please see also our animation video

clip.

Currently, the majority of researchers employ the semi-implicit (SI) method

of [7] for similar simulation purposes. This method is attractive for several rea-

sons: it is very simple, constraints are naturally incorporated at the end of each step,

and stability is typically not an issue (though not always [3]). However, it is also

well-known that a significant artificial damping is introduced by this method, thus

making an artist using such a simulation tool having to deal with implementation-

dependent artifacts and introducing distortion in the resulting animation. In simple
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cases the obtained motion often looks realistic, but with a heavier damping than

desired. In the experiments of Section 4.2, ERE shows a clear advantage over

SI for cloth simulation: the step size dependent damping introduced by SI could

significantly change the cloth response to external force, whereas ERE keeps the

solution qualitatively similar to that of the physical model, even when using large

steps in time. In addition, since ERE is explicit, popular constraints for cloth mo-

tion [13, 31] can be easily imposed.
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Figure 4.3: Comparison between ERE with SI, BE, IM, and RK4 over 2 sec-
onds of the rope simulation. (a) running time, (b) position error, and (c)
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Figure 4.4: These plots compare ERE to SI, BE, and IM over 5 seconds of
cloth modeled by a mass-spring system. SI with h = 1/120 is added to
demonstrate the h-dependent damping effect of this method.
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Figure 4.5: Response of the cloth with (Kl = 100N/m) after the shaking event
using different integrators.
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(a) ERE (b) SI (c) IM (d) BE

Figure 4.6: Response of the cloth (Kl = 100N/m) after colliding with a
sphere using different integrators.
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Figure 4.7: Energy profile of each method in the simulation with cloth colli-
sion.
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(a) ERE (b) SI (c) IM (d) BE

Figure 4.8: Response of the cloth with mixed stiffness, Kl = 20N/m (red) and
Kl = 200N/m (blue), after colliding with a sphere. The highly damping
integrators miss the correct qualitative behavior.

(a) ERE (b) SI (c) IM (d) BE

Figure 4.9: Simulating the cape motion of a dancing character using different
integrators (Kl = 50N/m).

64



Time
0 0.5 1 1.5 2 2.5

E
ne

rg
y

(J
)

100

150

200

250

300

350

400
ERE
SI
BE
IM

Figure 4.10: Energy profiles of the four integrators for the example of a cape
attached to a dancer.
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(e) Energy profile of different methods

Young’s Modulus (Pa)
101 102 103 104

R
un

ni
ng

Ti
m

e

150

200

250

300

350

400

450

500

ERE
SI
BE
IM

(f) Running time

Figure 4.11: These plots compare ERE to SI, BE, and IM in the twisted bar
simulation.

65



Young’s Modulus (Pa)
10,000 20,000 30,000 40,000 50,000

R
un

ni
ng

tim
e

101

102

103

ERE
SI
IM

(a) Running time of each method for simu-
lating a elastic bars with Young’s modulus from
10kPa to 50kPa.
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(b) Energy profile of different methods for
the elastic bar with Young’s modulus 10kPa.

Figure 4.12: These plots compare ERE to SI, BE, and IM in the simulation
of a volumetric bar with one end fixed.
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Figure 4.13: Energy profile of each method for the bunny with Young’s mod-
ulus 100kPa.
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Chapter 5

Additive method

In the previous chapter, we found that the ERE becomes costly as we increase the

stiffness parameter and is not suitable for stiff elastodynamics. This is because

the ODE systems that we solve here are so large that calculating the exponential

matrix explicitly is out of the question, and hence, Krylov subspace methods are

employed for approximately calculating its product with vectors. The latter method

suffers from performance deterioration for very stiff problems. In this chapter we

investigate ways to improve integrators for stiff elastodynamics by splitting the

ODE system [3, 4, 33]. We’ll return to ERE in the next chapter, where we use a

splitting method to improve it. In particular, given an ODE system in the form

u̇ = F(u) = G(u)+H(u)

we can write

u(t) = x(t)+y(t)

where

ẋ = G(x+y) (5.1a)

ẏ = H(x+y) (5.1b)

If Eq.(5.1a) is only moderately stiff while Eq.(5.1b) is potentially very stiff, the

overall ODE Eq. (5) is still stiff. If we apply explicit forward Euler (FE) to Eq. (5),
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we have to take unreasonably short steps to resolve the fast dynamics in Eq. (5.1b).

On the other hand, applying implicit BE to Eq. (5) may be acceptable, but will

introduce excessive damping to both Eqs. (5.1a) and (5.1b). In this case it makes

sense to apply FE to Eq. (5.1a) and BE to Eq. (5.1b). This leads to an implicit-

explicit (IMEX) method

xn+1 = xn +hG(xn +yn)

yn+1 = yn +hH(xn+1 +yn+1)

or

un+1 = un +hG(un)+hH(un+1).

Next, we can further replace the BE part by its semi-implicit version using the local

linearization of H

un+1 = un +hG(un)+hH(un)+hJH(un+1−un) (5.2)

with

JH =
∂

∂u
H (5.3)

or

un+1 = (I−hJH)
−1 (un +hG(un)+hH(un)−hJHun)

= (I−hJH)
−1 (un +hF(un)−hJHun) .

= un +(hI−hJH)
−1 F(un) (5.4)

Notice that Eq.(5.4) is a simple splitting integrator which does not require explicit

knowledge about x, y, G, and H. The only additional evaluation required is JH.

This is important in some applications where the splitting in Jacobian J = ∂

∂u F is

easy to derive, but the splitting in F is not, as is the case in Section 5.1 below. If

Eq.(5.1b) is the only stiff part, Eq.(5.4) should enable large time step without sac-

rificing stability. Next, to see this method in action, we apply and analyze Eq. (5.4)

in mass-spring systems, where a natural splitting in the Jacobian exists.
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Figure 5.1: Simulation of a swinging rope using a mass-spring system.

5.1 Splitting for mass-spring system
In the following we introduce the variables for a single spring for simplicity, but all

the vectors and matrices can be extended for a large spring network; see Figure 5.1.

For a spring s, the position state

q = (q0,q1)
T

and velocity state

v = q̇ = (q̇0, q̇1)
T

represent the total 12 degrees of freedom. Here q0,q1 are the end nodes of the

springs. We define the strain

εs(q) = ‖s‖− l0

s = q0−q1

where l0 is the spring’s rest length. In this spring case, the strain is a signed

scalar measurement that shows how far away the spring is from its rest state. We

further define the stress in the spring

σ(q) = kεs(q)

= k(‖q0−q1‖− l0)

= k(‖s‖− l0)

where k is the stiffness constant. Intuitively, stiffer springs generate larger
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stress under the same strain, thus k is larger for stiffer springs. Notice that both

strain and stress are scalar. To relate strain and stress to the force vector the spring

exerts on its end nodes, we define the elastic energy of the spring

V =
1
2

kεs(q)T
εs(q)

Spring network If we have a spring network with multiple springs, the total elas-

tic energy can be written as

Vtot =
1
2

εεεsss(q)TDkεεεsss(q)

where εεεsss(q) is a column vector containing the strain of each individual spring.

Dk is a diagonal matrix with corresponding material constants along the diagonals.

Coming back to the single spring, the elastic force exerted on the nodes is

written as

fela(q) = −∂V
∂q

T

= −∂εs

∂q

T
∂V
∂εs

T

= −JT
σ(q) (5.5)

with the 1×6 nonlinear Jacobian

J(q) =
∂

∂q
εs(q)

=
1
‖s‖

sT

1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1
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5.1.1 Equations of motion

Before we can apply Eq. (5.4), we also need to derive the stiffness matrix for the

mass-spring system, which is the derivative of Eq. (5.5) with a negative sign:

K(q) = − ∂

∂q
fela(q)

=
∂ 2

∂q2V (q)

= kJTJ+ k
∂JT

∂q
εs(q) (5.6)

Material and geometric stiffness For a single spring the first term in (5.6) is

Ks = kJTJ = k

[
ssT −ssT

ssT ssT

]
(5.7)

called the material stiffness in [86], and the second term is

K̃ = k
∂JT

∂q
εs(q) = k

l0−‖s‖
‖s‖

[
I3− ssT ssT− I3

ssT− I3 I3− ssT

]

called the geometric stiffness in [86]. Suppose the force at each spring is smooth

throughout the simulation, and there is a maximum force fmax, then

‖k(‖s‖− l0)‖ ≤ fmax.

Now, in the case where the stiffness parameter is arbitrarily large, that is,

fmax� k, we have material stiffness and geometric stiffness at two different scales,

and we can apply Eq.(5.4). Since material stiffness can be very large, we use only

the material stiffness matrix in the SI part, leading to a material stiffness semi-

implicit (MSSI) method:

vn+1 = vn +(I−h2M−1Ks)
−1hM−1ftot (5.8)
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We have demonstrated how to use Eq. (5.4) in an elastodynamics system Eq. (1.2).

In particular, we split the stiffness matrix for the mass-spring system Eq. (5.6), but

not the force Eq. (5.5). Next, we look at another elastodynamics system, where the

spatial discretization utilizes the FE discontinuous Galerkin method, and Eq. (5.4)

can be applied as well.

5.2 Splitting for Discontinuous Galerkin method
Discontinuous Galerkin (DG) is a class of finite element methods that relax the

strong constraints on using conforming elements, thus allowing elements to be

piecewise continuous. More details on use of DG in computer graphics can be

found in [41]. Different DG formulations define different numerical fluxes, which

result in different gluing energy. For example, one of the most popular DG meth-

ods, DGBZ [5], defines the quadratic gluing energy

EBZ(u) = η f ∑
i
‖ui,−−ui,+‖2, (5.9)

where η f is an empirical penalty constant, and the summation over i adds up all

the energy at element interfaces. For our purpose, we skip the detailed explanation

for discontinuous Galerkin. Using Eq. (5.9), we have the total energy

EDGBZ(u) = σσσ(u) : εεε(u)+η f ∑
i
‖ui,−−ui,+‖2 (5.10)

The first term and second term in Eq. (5.10) correspond to the element and the

interface energy, respectively1. In this formulation, we have a natural splitting for

the force and the stiffness matrix

ftot = fElement+ fInter f ace

Ktot = KElement+ KInter f ace

We derive fInter f ace and KInter f ace for 2D linear triangle elements in Appendix .

To model stiff material, we may have ‖KElement‖ � ‖KInter f ace‖. This is an ideal

1Notice that in our notation for Eq. (5.10), the stress σσσ(u) and strain εεε(u) tensors can both be
nonlinear in u.
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case to apply Eq.(5.4), leading to a discontinuous Galerkin semi-implicit (DGSI)

integrator2

vn+1 = vn +(I−h2M−1KElement)
−1hM−1ftot (5.11)

By now we have introduced two splittable elastodynamics systems where using

Eq. (5.4) can be useful. In both systems, we integrate the stiff part with SI, and the

non-stiff part with FE.

• In mass-spring systems, we integrate material stiffness with SI, and geomet-

ric stiffness with FE, as per Eq. (5.8).

• Under DG formulation, we integrate elastic forces with SI, and penalty forces

with FE, Eq. (5.11).

The resulting integrators should have better dynamic behavior compared to

applying full SI to the system. We will look at some comparative results in the

next section.

5.3 Results

5.3.1 MSSI for a stiff pendulum

We simulate a stiff pendulum swinging under gravity with m = 1kg, k = 1e4m/s2

using a step size h= 0.1sec, and plot the kinetic energy from MSSI and SI in Figure

5.2. Notice that by Eq. (5.8) MSSI and SI have the same cost, but at this step size

SI significantly damps out the dynamic. The oscillatory energy plot of MSSI shows

that it preserves the swing motion well.

5.3.2 DGSI for a 2D triangle mesh

We simulate a 2D triangle mesh bending and releasing with nonlinear neo-Hookean

energy with m = 1kg, Y M = 1e5Pa, η f = 1e2 using a step size h = 0.01sec. We

compare regular SI for CG simulation against DGSI Eq. (5.11) and plot the total

2Since KElement is block-diagonal, if M is diagonally lumped Eq. (5.11) can be efficiently solved
through parallelization.
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Figure 5.2: Kinetic energy for a pendulum simulated with MSSI and SI. The
SI energy is strongly damped.

Figure 5.3: Simulation of a 2D triangle meshing using DG.

energy from frame 50 to frame 1000 in Figure 5.4. Again, we observe that DGSI

has much better energy behavior since SI is not applied to the entire system.

5.4 Discussion
The integrators in this chapter, Eq. (5.8) and Eq. (5.11), were designed to allow

large time step without introducing significant amount of uncontrolled damping.

The energy plots from Section 5.3 demonstrate that using the additive methods

Eq. (5.2) and Eq. (5.4) can efficiently achieve this goal, when there exists a split-

ting between the stiff and non-stiff part in the system. However, we also observe
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Figure 5.4: Total energy for a 2D triangle mesh simulated with SI using reg-
ular CG formulation (CGSI) and DGSI from Eq. (5.11) using DG for-
mulation.

that, as the system size and stiffness were increased, both MSSI and DGSI became

unstable. This is a limitation that arises from using a crude forward Euler integra-

tor in Eq. (5.2) and Eq. (5.4). In addition, the splitting discussed in this chapter

is achieved only in specific elastodynamics systems. For harder problems a trans-

formation of the unknowns u may be required as well. In the next chapter, we

overcome these limitations the limitations by using a subspace splitting similar to

the one described in Chapter 3 with the exponential integrator from Chapter 4.
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Chapter 6

SIERE: a hybrid semi-implicit
exponential integrator for
efficiently simulating stiff
deformable objects

6.1 Introduction
Physics-based simulations of deformable objects are ubiquitous in computer graph-

ics today. They arise in various applications including animation, robotics, control

and fabrication. For almost two decades the semi-implicit backward-Euler (SI)

method of Baraff and Witkin [7], has been widely employed [86]. This method

allows for stable simulations even when large time steps are used for efficiency

reasons, and it is very stable when incorporating contacts and collisions due to its

heavy damping and error localization properties. Moreover, numerical damping

is in agreement with the observation that our visual system does not detect high

frequency vibrations, even when objects with large Young’s modulus are simu-

lated. However, recent years have also seen growing concerns that heavy numerical

damping may be unsuitable for many purposes, because it can only be controlled

via the time step size, so it does not distinguish phenomena related to material het-
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erogeneity and more complex damping forces [19, 20]. Use of the SI method in ap-

plications such as control and fabrication has also been considered debatable [17].

A further concern is that SI has long been known to occasionally diverge wildly

where the fully implicit backward Euler (BE) still yields acceptable results. This

phenomenon, demonstrated in Sections 6.4.1 and 6.4.2, is due to divergence in low

frequency modes.

Exponential time integration methods have been introduced relatively recently.

These methods are attractive because, although non-conservative, they produce

only little damping and approximate the entire modal spectrum acceptably well.

These methods, like SI and unlike the full BE and various conservative methods,

avoid the need of solving nonlinear algebraic equations at each time step [19, 62].

However, their performance cost becomes prohibitive when the simulated system

of differential equations in time is stiff, which happens for large Young’s modulus

values or upon using a fine spatial discretization. See Figure 6.3 and Table 6.2.

In this chapter we combine the exponential Rosenbrock Euler (ERE) integrator

described in [19] with the SI method in a manner that allows each to concentrate

on what it is good at and improve upon the other method’s deficiencies. The result

is an integrator that outperforms both its predecessors, especially for stiff prob-

lems: it produces animations that are similar to the exponential integrator’s at a

computational cost that does not increase as the simulated object gets stiffer.

The key idea is to consider, at each time step, the appropriately transformed

assembly of forces in the equations of motion as a weighted sum of high frequency

modes that are dealt with well by the heavily damping SI method, and low-to-

medium frequency modes (which are the ones that contribute to what our visual

system senses) that are dealt with efficiently by ERE. No nonlinear algebraic equa-

tions arise, even in the presence of nonlinear elastic forces. To do this we employ

at each time step a partial spectral decomposition which picks the lower, leading

modes, and apply ERE in the corresponding subspace. The rest is handled (i.e.,

damped out) by SI. We call the resulting method SIERE. To re-cap, the advantages

of the new method are:

• It produces lively animations of a similar quality to that of the exponential

method ERE; the results are better than SI both in staying closer to the sim-
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ulated energy manifold and in avoiding over-smoothing of artifacts such as

material heterogeneity and secondary motion.

• It handles contacts and collisions robustly, inheriting this property from SI.

• The computational cost of SIERE, unlike that of ERE, remains a small mul-

tiple of SI cost as the stiffness increases.

• As the exponential part of the method is performed only in a small spectrally-

decomposed subspace, the pain of evaluating the impact of a large exponen-

tial matrix is avoided altogether.

• Potential wild divergence of SI (which arises mostly when relatively soft

material stiffens under large deformation) is avoided by SIERE.

We demonstrate the performance and utility of SIERE, and will make our code

available with the published paper.

6.2 Context and related work
Eq. (1.2) must be discretized before simulation, but as stated above, the popular SI

method and even fully implicit integrators such as BE and higher order backward

differentiation formulae (BDF) introduce significant, step-size dependent, artificial

damping (see also [3]). The potentially heavy damping of high frequency modes

introduced by BDF has often been observed in practice.

The solution q(t) of the scalar, constant coefficient ODE

q̈+ω
2q = 0

oscillates undamped with frequency ω . But applying BDF with step size h gives a

numerical solution that more closely approximates the modified ODE

q̈+dmethodq̇+ω
2q = 0,

where the damping coefficient dmethod > 0 depends on the step size h and on ω .

Straightforward linear algebra gives a value such that dmethod/ω depends only on

the product hω [19] .
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Figure 6.1: Using BDF methods such as BE and BDF2 introduces significant
artificial damping that depends on the time step.

Figure 6.2: Solutions of the scalar test equation q̈+ dq̇+ω2q = 0 for ω =
100,d = 1, using BE, BDF2 and implicit midpoint (IM) with step size
h=0.01.

Figure 6.1 shows the curves obtained for BE and BDF2, which are both popu-

lar methods for animating deformable objects. Figure 6.2 further depicts solution

curves for particular, typical values of ω and h. As mentioned before, such artifi-

cial damping can lead to significant undesirable artifacts in the simulation when hω

is not small. On the other hand, the conservative implicit midpoint (IM) method

introduces no artificial damping.

Note further that SI corresponds to applying one Newton iteration to solve the

nonlinear algebraic equations arising from BE at each time step. Hence SI is the

same as BE for linear problems. Further, we note in passing that an exponential

method such as ERE reproduces the exact solution of this simple test problem. Al-

though this ERE accuracy does not extend to general elastodynamics, the energy

plots presented in the figures throughout Section 6.4 strongly indicate that the sim-

ple analysis in this appendix is indicative of the more general behaviour of BE and

BDF2.
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For linear problems, the methods SI and BE coincide. Further, a semi-implicit

method such as SI cannot have an order of accuracy higher than 1. Replacing a

nonlinear solver by such a linearization in BDF2 therefore reduces the resulting

method’s order of accuracy from 2 to 1.

As discussed in Chapter 4, several exponential integration schemes have been

proposed in the computer graphics literature [19, 60–62].

However, as shown in Figure 6.3 and Table 6.2, these methods become expen-

sive for stiff problems, thus limiting the utility of exponential integrators in the

context of deformable object simulations [19, 62]. The root of this problem is in

the fact that the required number of Krylov vectors needed in order to fully re-

solve the error for a stiff system as in Eq. (1.2) with a wide spectrum matrix and

large b(u) can be very large. One might consider choosing a smaller time step to

assist the matrix function evaluation for stiff objects; however, in physics-based

simulations to stay competitive we expect to be able to keep employing large time

steps independent of the material parameters. The method described in Section 6.3

alleviates this difficulty by applying the exponential integrator only in a suitable

subspace, and the exponential matrix evaluation at each time step is simplified due

to diagonalization.

A popular class of additive methods is the IMEX class, where an implicit

discretization scheme is applied to Eq. (5.1b) and an explicit one to Eq. (5.1a)

[4, 12, 29]. As described in Chapter 5, if the second term in Eq. (5) is stiff, while

the first is not, it makes sense to apply one integration scheme to Eq. (5.1a) and

another one to Eq. (5.1b), add them up and obtain a combined integration scheme

for Eq. (1.2) [3, 57, 81]. Our additive method is similar in spirit to IMEX, although

strictly speaking neither of its components is a fully implicit solver and both rely

on solving a system of linear equations at each time step. The key is in determining

a suitable splitting G and H, described in the next section. Our spectral splitting al-

lows us to achieve results in the graphics context that in general cannot be realized

by the other additive methods cited above.

If a fully implicit method is employed, as is required for large-step conservative

methods (see, e.g., [43]) and for higher order BDF methods such as BDF2, then

a non-trivial nonlinear system of algebraic equations must be solved at each time

step; see [27, 28, 83] and further references therein. Some of these efforts give rise
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Figure 6.3: Exponential integrators (e.g., ERE) can better preserve the oscil-
lations, but at a prohibitive cost as stiffness parameter and/or system
size increases. By contrast, the cost of our method (SIERE) does not
grow significantly with stiffness.

to rather elaborate schemes and packages. Note that in general energy projection

methods cannot be symplectic or even reversible, and as such they also introduce

some artificial dissipation. None of these methods are claimed to be faster or sim-

pler than SI per step. SIERE elegantly avoids this significant and time consuming

issue by using an inexpensive semi-implicit method throughout, resulting in a prac-

tical, fast and powerful method that is derived from solid, clear principles and can

be easily incorporated to fit one’s specific needs and code.

6.3 Method
Recall that we can write the equations of motion in the form Eq. (5), we consider

the additive method

un+1 = un +hH(un+1)+hφ1(hJG)G(un),
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where JG is the Jacobian of the yet unspecified G(un). This combines the ERE

method with the backward Euler (BE) method. One advantage of this is that cal-

culating the ERE term first provides a “warm start” for the ensuing solution of the

BE part.

Furthermore, if we want to avoid solving nonlinear equations then we can

perform a single Newton iteration for H at each time step, replacing BE by SI.

Thus, approximating H(un+1)≈H(un)+JH(un+1−un), we obtain our proposed

SIERE method as

un+1 = un +(I−hJH)
−1(hH(un)+hφ1(hJG)G(un)). (6.1)

Let us note in passing that, since this stable additive method consists of a com-

bination of two first order methods, it converges like O(h) as the step size h shrinks

to 0. Our practical focus, however, remains on large time steps.

6.3.1 Model reduction and subspace splitting

Next, we define the splitting G and H, crucial to the success of our method. The

idea is to apply ERE in the subspace of the first s modes (s� n: typically, 5 ≤
s ≤ 20) and project it back to the original full space. In the bridge example of

Figure 3.1, n≈ 100,000, so this is a rather large reduction.

Then we use SI on the remaining unevaluated part, as per Eq. (6.1). We use

mass-PCA, as introduced in Chapter 3, to find our reduced space. That is, con-

sidering at the beginning of each time step a solution mode of the form q(t) =
wexp(ı

√
λ t) for the ODE Mq̈+Kq= 0, we solve the generalized eigenvalue prob-

lem

Kw = λMw (6.2)

for the s smallest eigenvalues λ and their corresponding eigenvectors w (dominant

modes).

Next, we write Eq. (1.2) in the split form Eq. (5), with the splitting H and G
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defined based on the partial spectral decomposition. We define at each time step

G(un) =

[
vG

M−1fG

]
, H(un) =

[
vH

M−1fH

]
,

vG = UsUT
s Mv, vH = v−vG,

fG = MUsUT
s f, fH = f− fG. (6.3)

We also need the Jacobian matrices

JG =

[
0 UsUT

s M
−UsUT

s KUsUT
s M 0

]
, and (6.4a)

JH =

[
0 I

−M−1K 0

]
−JG. (6.4b)

Notice that the ERE expression, hφ1(hJG)G(un), can be evaluated in the sub-

space first, and then projected back to the original space.

The additive method defined by inserting Eq. (6.3) and (6.4) into Eq. (6.1) has

three advantages:

1. At each time step, the majority of the update comes from ERE in the domi-

nating modes. Thus it is less affected by artificial damping from SI.

2. The computation load of ERE is greatly reduced, because the stiff part is

handled by SI (or BE for that matter). Furthermore, the evaluation of the

exponential function in the subspace has only marginal cost since the crucial

matrix involved has been diagonalized.

3. The “warm start” for SI makes its result closer to that of BE.

ERE update in the subspace: To evaluate the update in the subspace of dimension

s we rewrite Eq. (6.1) as

un+1 = un +(I−hJH)
−1(hH(un)

+ h

[
Us 0

0 Us

]
φ1(hJr

G)G
r(un)), (6.5)
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where

Jr
G =

[
0 I

−UT
s KUs 0

]
=

[
0 I
−ΛΛΛs 0

]
,

Gr(un) =

[
UT

s Mv
UT

s f

]
. (6.6)

The evaluation of the action of the matrix function φ1 involves only matrices of

size 2s×2s. Furthermore, the matrix function φ1 can be evaluated directly through

the eigenpairs of Jr
G{

i
√

λ l,

[
el

ı
√

λ lel

]}
,

{
−ı
√

λ l,

[
−el

ı
√

λ lel

]}
, l = 1, ...,s, (6.7)

with el the lth column of the identity matrix.

The large n×n linear system solved in Eq. (6.5) is not sparse due to the fill-in

introduced by the small subspace projection. Specifically, the off-diagonal blocks

of the Jacobian matrix JG defined in Eq. (6.4a) are not sparse. If not treated care-

fully, solving the linear system in Eq. (6.1) and Eq. (6.5) can be prohibitively costly.

Fortunately, this modification matrix has the low rank s. We can write

JG = Y1ZT
1 +Y2ZT

2 ,

where

Y1 =

[
Us

0

]
, Z1 =

[
0

MUs

]
,

Y2 =

[
0

−UsUT
s KUs

]
, Z2 =

[
MUs

0

]
.

The linear system in Eq. (6.5) becomes

I−hJH = (I−hJ)+hY1Z1T +hY2ZT
2 , (6.8)

where the four matrices Yi and Zi are all “long and skinny” like Us, while the ma-
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(a) (a)I−hJ (b) (b)Yi and ZT

i (c) (c)I−hJH

Figure 6.4: The matrix I−hJH in the linear system Eq. (6.5) is not sparse (c).
Fortunately, by Eq. (6.8) the fill-in to the original sparse matrix I− hJ
(a) has low rank (b) allowing us to use the SMW formula Eq. (3.11).

trix J is square and large, but very sparse. Figure 6.4 illustrates this situation. For

the linear system to be solved in Eq. (6.5) we may employ an iterative method such

as conjugate gradient, whereby the matrix-vector products involving J or YiZT
i are

all straightforward to carry out efficiently. However, we have often found out that

a direct solution method is more appropriate for these linear equations in our con-

text. In our implementation we use pardiso [24, 47, 88]. For this we can employ

the SMW formula, defined in Eq. 3.11, to solve the linear system in Eq. (6.5). In

our specific notation we set at each time step A = I−hJH in Eq. (3.11), and apply

the formula twice: once for Y = Y1, Z = Z1, and once for Y = Y2, Z = Z2. Note

that the matrices I+ZT A−1Y in Eq. (3.11) are only 2s×2s, and this results in an

efficient implementation.

In Algorithm 1 we collect the pieces just derived.

6.4 Results
Here we compare the performance of the new method SIERE against SI and ERE

on several examples. Our purpose is to show that SIERE produces simulation re-

sults that are similar to those of ERE (and thus do not suffer from the excessive

damping of SI), with an implementation cost that does not increase when the stiff-

ness increases (unlike that of ERE). Furthermore, we show examples where SIERE

overcomes occasional divergence and instability phenomena arising in SI and ERE,

as well as the fully implicit BE. Below in Sections 6.4.1 and 6.4.2 we begin with
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ALGORITHM 1: SIERE step from t to t +h

Input: un =

[
qn
vn

]
, f, K, M, h, s

; . K,M symmetric, M positive definite
begin

Solve (6.2) for Us, ΛΛΛs
Construct H ; . (6.3)
Construct JG

r,Gr ; . (6.6)
Evaluate matrix function φ1(hJG

r) ; . use (6.7)

δ ← hH+h
[

Us 0
0 Us

]
φ1(hJG

r)Gr

Construct Y1,Z1,Y2,Z2 ; . (6.8)
x0← (I−hJ)−1δ

x1← x0 updated with Y1,Z1 ; . first (3.11)
x2← x1 updated with Y2,Z2 ; . second (3.11)
un+1← un +x2 ; . (6.5)

end

Output:
[

qn+1
vn+1

]
= un+1

the latter, as the examples used also allow us to investigate the effect of selecting

the dimension s of the ERE update subspace. Later on we fix s and concentrate on

the other aspects, comparing SIERE and SI simulation quality on larger and more

geometrically complex objects where ERE performance is inadequate.

A list of meshes used and their sizes are summarized in Table 6.1. In Table 6.2

we list the CPU time for using the integrator for 100 frames. In our simulations we

used a wide range of Young’s moduli and a uniform Poisson’s ratio ν = 0.45. We

also profiled the cost of the linear algebra calculations for SIERE, and found that

under 20% of the runtime was due to partial eigendecomposition in Eq. (6.2), while

the rest came from solving the linear system with low-rank update in Eq. (6.5).

Notice that after the eigendecomposition, the exponential matrix evaluation is au-

tomatically completed from Eq. (6.7) at no extra cost.

For the backward Euler (BE) nonlinear solver we simply employed Newton’s

method at each time step, declaring convergence when the residual’s norm was

below 10−6. Failure was declared if there was no convergence after 20 iterations.

In our code we also have the option of cutting the step size by 2 and repeating,

which is a form of numerical continuation [25], but we opted not to use this or any
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Table 6.1: List of meshes used in SIERE representative experiments

Mesh ID #Vertices) #Tetrahedrons

Ball 1,018 4,637
Cuboid 1,245 4,624

Honeycomb 3,642 9,850
Moebius ball 5,829 16,857

Rope 12,791 47,279
Eiffel Tower 16,027 69,271

Tree 24,533 79,217
Bridge 30,133 99,455

Table 6.2: CPU Times (in seconds) for different methods, run on a core i7
machine with our C++ implementation. The reported stiffness is the peak
stiffness of the object in Pa. The symbol⊗ indicates unstable simulation,
the relevant method’s timing becoming irrelevant. The symbol × indi-
cates that the simulation took far more than 20 times that of SIERE and
thus we stopped the program before the simulation ended. All the SIERE
results are for s = 5, except the rope example where s = 1.

Mesh Stiffness SI SIERE ERE

Ball 1e8 44 97 36
1e10 42 96 112

Cuboid 1e5 ⊗ 110 ⊗
Honeycomb 1e8 85 154 537

1e10 84 156 5,840
Moebius ball 1e8 162 223 5,780

1e10 154 260 ×
Rope 1e6 ⊗ 651 ×

Eiffel Tower 3e7 631 2,315 ×
Tree 5e7 ⊗ 2,690 ×

Bridge 1e10 1,375 4,585 ×
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other more sophisticated techniques, as such is not our focus here.

6.4.1 Uncoiling rope

We start with an example to demonstrate the superior stability of SIERE arising

from the “warm start” provided by ERE. In this example we simulate the process

of uncoiling a soft homogeneous neo-Hookean rope (12,791 vertices and 47,279

tetrahedrons) with Young’s modulus Y M = 1e6Pa and using h = 0.01s. The mag-

nitude of deformation increases as the rope uncoils, and the stiffness increases.

When the rope is fully uncoiled, the deformation is localized at the very tip of

the spring, leading to a challenging numerical system. SI quickly became unstable

since one Newton iteration for backward Euler could not adequately reduce the

residual for the system. On the other hand, the semi-implicit system arising from

SIERE is stable. To emphasize the point, we chose the smallest subspace dimen-

sion s = 1 for this example: the exponential integrator still provides enough input

to stabilize the simulation; see Figure 6.5.

In addition, we also observed that SIERE is able to uncoil each loop indepen-

dently. This means that SIERE can simulate local deformation very well, unlike

traditional linear subspace methods where global deformation artifacts appears for

small subspace dimension [39]. SIERE does not have this issue because higher

energy modes are not discarded.

Our BE implementation required 1257s for 400 frames, roughly double SIERE’s

runtime. The resulting energy curves are plotted in Figure 6.6. Notice that SIERE

is not only faster, but also more dynamic. It can regain the elastic potential energy

after each oscillation.

6.4.2 Untwisting cuboid

In this example we simulate the untwisting of a relatively soft elastic cuboid for a

homogeneous neo-Hookean material with Y M = 1e5Pa. See Figure 6.7. We have

used the time step size h = 0.01s.

Note that the starting configuration here is challenging, since we begin the

simulation where the stiffness matrix K not positive definite and with the cuboid

under large deformation.
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Both SI (see Figure 6.7(a) and ERE became unstable after a few steps, if for

different reasons, while SIERE stayed stable.

Importantly, this example further demonstrates that it is unnecessary to employ

a large subspace dimension s for SIERE to capture a complex deformation. We

changed the subspace dimension s for SIERE and plotted the elastic potential en-

ergy for s = 5,6 and 10; see Figures 6.7(b-d). Figure 6.7(e) shows that choosing

a larger dimension s can improve the energy behavior. However, a small s = 6

suffices to capture this rather complex twisting simulation, and the difference in

potential energy between s = 6 and s = 20 is small. Notice also that s = 5 already

makes for a lively simulation, although s = 6 visibly improves upon it. Please

watch our supplementary video for a better grasp of this demonstration as well as

the following one.

ARAP energy

To demonstrate the universality of our method, we applied SIERE to the same

cuboid example with ARAP energy [15, 80] instead of neo-Hookean. Using the

same setup and simulating for 150 frames, SIERE required 87 CPU seconds and

BE cost 129 seconds. SI failed here. Figure 6.8 shows the corresponding energy

curves comparing SIERE and BE. Again, we see that SIERE is superior to BE with

lower computational cost and better energy behaviour.

6.4.3 Ball movement

For the present example, as well as all the following ones in Sections 6.4.3–6.4.6,

we have fixed the subspace dimension at s = 5, having verified for each example

that the results using s = 10 and s = 20 are not significantly different. This allows

us to concentrate on other issues and show cost comparisons in Table 6.2 as the

problem size gets larger.

Hanging ball

In the present simulation ERE still performs well, simulating a stiff elastic ball

under a uniform force field, with a fixed top. We use the neo-Hookean material

and time step size h = 0.005s. The ball has radius 10cm with a hard shell of
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thickness 2cm with peak Young’s modulus Y M = 1e8Pa and inner core with Y M =

1e6Pa. At such high stiffness, the ball would not deform under gravity, so we

add a uniform downward pulling force (20× g) to simulate greater deformation.

See Figure 6.9 for energy plots of simulations with the three methods. We also

experimented with the damping behavior of SI, SIERE, and ERE. The runtime are

recorded in Table 6.2, while the mesh size is in Table 6.1. Notice that SIERE

has as good an energy behavior as ERE, whereas the uncontrolled damping of

SI makes its resulting simulation look dull. In particular, the total energy plot in

Figure 6.9 indicates that SI damps out gravitation potential very fast. For a small

system like this one, ERE is fast as expected. We then increased the stiffness of the

system by a factor of 1e2 and re-simulated the scene, recording both timing data

in Table 6.2. Notice that the cost for both SI and SIERE remained constant, but

that for ERE increased by factor of 2. We also tried to reduce the damping error

from SI by reducing the step size by factor 5; however, at such stiffness level, the

uncontrolled damping is still large and no clear damping reduction was observed

upon significantly reducing the step size.

Ball bouncing

In this example we drop the same ball as described above and simulate collision

with the floor using simple penalty methods. The results are described visually in

Figure 6.10 using both screenshots and energy plots.

We make two essential observations, which again are easier to appreciate by

watching the supplementary video. The first is that, comparing to the SIERE ani-

mation (blue), in the SI animation (purple) the ball loses height faster than it should

and is less dynamic. The second important observation, is that SIERE captures sec-

ondary motion that SI does not. This can also be seen in the potential energy plots

in Figure 6.10(c).

6.4.4 Honeycomb structure

In this example we simulate a honeycomb sheet, a popular engineering structure

that is strong and stiff in one direction but soft in the other two. We hang up the

sheet and observe the ensuing oscillation. Again, we use neo-Hookean material.
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We experiment with soft core at Y M = 1e6Pa and stiff edge Y M = 1e8Pa, and

integrate at h = 0.01s.

Plots of energy behavior are recorded in Figure 6.11 and runtime results are

in Table 6.2. Notice that, even though the stiffness setting is similar to that in

Section 6.4.3, ERE is already much more expensive than both SI and SIERE at this

system size. When we further increase the stiffness by factor 1e2 a similar trend can

be observed more emphatically: ERE becomes prohibitively expensive, whereas SI

and SIERE have a nearly constant cost at different stiffness levels. Finally, observe

that SIERE has very good energy behavior for the dominating motions: damping

out only the high frequency regime it achieves excellent stability similar to SI.

6.4.5 Moebius ball

Next we apply SIERE to simulate an exotic object, a Moebius ball, to demonstrate

that wild shapes of the deforming object won’t be the limiting factor of SIERE;

see Figure 6.12. In this example we used nonlinear StVK material. We set a stiff

Y M = 1e10Pa material for the core and Y M = 1e8Pa for the thin sheet spiral, and

stepped forward with h = 0.02s. ERE is prohibitively expensive to use in this

situation and we terminated the program before its simulation ended.

6.4.6 Large scale structures

To further demonstrate the capacity of SIERE, we applied it to some large scale

examples. In the first of these, we simulated a toy Eiffel tower mesh swinging under

strong wind; see Figure 6.13. We used homogeneous StVK material with Y M =

3e7Pa. In the second larger scale example we simulated a multiscale system of a

bridge using ARAP energy [15, 80]; see Figure 6.14. We used stiffness parameter

Y M = 1e10Pa at the stiffest part, and 1e6 at the softest part. In both cases we

simulated using a large step size h = 0.1s.

In both meshes, we observe similar features of SIERE and reach the same

conclusion: SIERE can bypass the efficiency barrier of exponential integrators and

remain cheap regardless of system size and material stiffness. Furthermore, SIERE

achieves excellent damping behavior and stability by selectively damping out the

high frequency oscillations.
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Tree under strong wind

In our last example, we simulated a tree swaying in strong and varying wind using

homogeneous neo-Hookean material with Y M = 5e7Pa. The time step size was

h = 0.01s. The tree branches have a complex structure with nearly 25,000 vertices;

see Figure 6.15. SIERE can simulate a detailed motion for the branches and create

a lively physical simulation with a small subspace dimension (s = 5). On the other

hand, SI diverged for this simulation due to the large external force.

6.5 Conclusion
The quest of simulating, at a fair price, deformable structures that involve a high

degree of stiffness in a manner that does not introduce over-damping is ubiquitous

in computer graphics applications. Here we achieve this using an astonishingly

simple approach. The key idea in this paper is to separate at each time step high

frequency modes from the others, then employ for each regime a suitable method,

and finally combine the results in an additive method that involves a low rank cor-

rection. Along the way we obtain a method that requires no solution of nonlinear

algebraic equations and that is less prone to divergence and instabilities than both

its components. We have demonstrated the efficacy of our method, and we urge the

reader to watch our supplementary video since animations tell the story far better

than stills.

Limitations Our paper does not render the SI method obsolete: there are many

situations where SI performs adequately, and in those cases it is the cheapest alter-

native.

At the other end, we note that our method is not structure-preserving as are

suitable methods that allow no artificial damping at all [17]. We do claim that

there is a significant range of applications in between these two extremes, however,

where SIERE outperforms both.

For SIERE to succeed, we must assume that a moderate value of the subspace

dimension s suffices. While this is the case with many visual simulations as we

have shown, there are applications (such as sound) where other methods are more

suitable.
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(a) SIERE, s = 1

(b) SI

Figure 6.5: An uncoiling rope modeled with soft neo-Hookean material
Y M = 1e6Pa. (a) SIERE (s = 1) stays stable throughout the simulation,
whereas (b) SI becomes unstable (diverges) when the rope stiffens at the
end of the uncoiling process. This demonstrates the superior stability of
SIERE.
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Figure 6.6: Energy curves comparing SIERE and BE over 400 frames for the
uncoiling rope.
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(a)SI

(a) (b) SIERE s = 5

(c) SIERE s = 6

(d) SIERE s = 10

(e) Potential Energy

Figure 6.7: Simulation of a cuboid untwisting with SI and different subspace
dimensions s for SIERE: (a) SI failed in this challenging simulation; (b-
d) SIERE results with different s values; (e) elastic potential Energy for
these SIERE simulations and more. In this example, s = 6 can already
capture the complex twisting deformation. While smaller s could not
capture the energy trajectory fully, at s = 5 the simulation already looks
energetic and lively.
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Figure 6.8: Energy curves comparing SIERE and BE over 150 frames for the
cuboid simulation.

Figure 6.9: Energy plot from the simulation of a stiff elastic ball. While SI
displays a typical decline in energy, both ERE and SIERE are close to
conserving it.
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(a)

(b)
(c)

Figure 6.10: A soft ball bounces after colliding with the floor: (a) SIERE
ball movement with (s = 5) can simulate the secondary motion with
more dynamics; (b) SI is more lethargic, as it does not recover the ball
height after collision well and it loses the secondary motion; (c) cor-
responding energy plots reflect both observations. Notice that SIERE
preserves the energy level after two impacts.
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Figure 6.11: Simulation of a honeycomb sheet: energy plot.

Figure 6.12: Simulation of a Moebius ball: energy plot.

Figure 6.13: Simulation of an Eiffel Tower mesh: energy plot.
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Frame 1 - 15 Frame 240 - 255

Frame 1 - 15 Frame 240 - 255

(a) SIERE

Frame 1 - 15 Frame 240 - 255

Frame 1 - 15 Frame 240 - 255

(b) SI

(c) Potential Energy

Figure 6.14: Simulation of a bridge deforming under strong wind: (a) SIERE
remains dynamic with visible oscillations after 200 frames; whereas
(b) oscillations under SI are heavily damped. A potential energy plot
(c) underscores this observation.
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Frame 1-15 Frame 116-130

Figure 6.15: Simulation of a tree swaying in strong wind.
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Chapter 7

Conclusion and future work

7.1 Conclusions
In this thesis we have examined the challenges in elastodynamic simulation in both

spatial and temporal discretization and presented novel numerical methods to im-

prove existing algorithms.

For the spatial discretization, we analyzed and presented numerical stiffen-

ing, a phenomenon that occurs during mesh coarsening, through a fundamental

finite element method limitation. Galerkin approximation of the general eigen-

value problem will always lead to larger eigenvalues due to an increasingly less

inclusive function space as we coarsen the mesh. Since the eigenvalues represent

the oscillation frequencies in elastodynamics systems, numerical stiffening leads

to inaccurate dynamic behavior as we coarsen the mesh. To address this issue, we

developed EigenFit, an algorithm that improves the consistency in dynamic sim-

ulation across mesh resolutions. Using a partial mass-PCA, EigenFit matches the

leading eigenvalues of a given coarse mesh with those of a fine reference mesh at

rest. For nonlinear constitutive laws mass-PCA must be carried out at each time

step. We have demonstrated the effectiveness of EigenFit on a range of different

meshes for both homogeneous and heterogeneous material objects.

Next we demonstrated the difficulty in time discretization, or time integration,

for stiff material. In Chapter 4 we extended the use of exponential integrators, a

well-known class of integrators for stiff problems, to general elastodynamics sys-
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tems. In particular, we described how to use the ERE integrator for challenging

nonlinear simulations when the tangent stiffness matrix is potentially stiff and not

always SPD. We demonstrated that ERE can be very effective because it does not

introduce excessive damping even when using large time steps, and does not re-

quire solution to nonlinear algebraic equations. However, the cost of ERE increases

with the stiffness of the elastic object simulated.

In Chapter 5 we introduced an additive method framework which may be used

to compose new methods coupling two integrators together. We demonstrated

that in elastodynamics, systems can often be split into stiff and non-stiff parts and

treated effectively using our additive method.

Built on top of the previous chapters, we introduced another integrator, SIERE,

in Chapter 6. In a manner similar to what we did in Chapter 3, we use a partial

mass-PCA to split the low frequency modes from the rest in any given elastody-

namics system. The non-stiff, low frequency part is stepped forward by ERE, while

the rest of the system is handled by SI. The computational load of ERE is further

reduced due to diagonalization in the partial mass-PCA. In addition, the resulting

method requires no solution of nonlinear algebraic equations and is less prone to

divergence and instabilities than both ERE and SI.

Both EigenFit and SIERE use partial mass-PCA as one of the key components

of the algorithm. The main observation behind this is that a large component of ob-

servable elastic motions is represented by the low frequency modes, and the high

frequency modes quickly die out due to internal friction. However, EigenFit has

large deformation for nonlinear models as a major limitation, while SIERE has

been shown effective even under large deformation. This observed difference is

due to the fact that EigenFit centers on modification to the low eigenvalues, but

for nonlinear models eigenvalues may cross, and the relative stiffening factors for

the changing modes are hard to track due to nonlinear terms that may be large in

comparison to these low eigenvalues. On the other hand, in SIERE we merely con-

struct a subspace of the low frequency modes, subsequently applying a different

integration method there, and keep the eigenvalues and eigenvectors untouched.

SIERE also achieves superior stability by using ERE to warm-start SI. In addition,

SIERE elegantly combines the subspace deformation with the global deformation

by a low-rank update, and avoids global deformation artifacts from traditional lin-
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ear subspace methods [39].

7.2 Future work
Several potential avenues for future work arise from this thesis.

1. Extending EigenFit to obtain better accuracy for nonlinear models with large

deformation. This may be achieved by investigating the kinematic eigenval-

ues ([26, 59]) of the coarse and fine systems. Other, data based methods may

be used as well.

2. Extending SIERE, a first order method, to higher order methods for stiff

elastodynamics problem can be an interesting direction. Solving nonlinear

algebraic equations may become an issue here.

3. SIERE is built based on the additive method described and demonstrated in

Chapter 5. It is possible to apply SIERE for the mass-spring system and DG

formulation described in Chapter 5, which can expand its applicability.

4. The methods presented in this thesis focus on the discretization of elastody-

namics models. We have demonstrated how the methods respond to collision

and changing boundary conditions. Further experiments with real-time user

interaction can potentially expand the range of applications for our methods.

5. Some applications may require high accuracy for energy or momentum con-

servation properties. We can potentially combine ERE with other integrators,

such as implicit midpoint, to achieve higher precision for such applications.
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[92] H. Xu and J. Barbič. Example-based damping design. ACM Transactions on
Graphics (TOG), 36(4):53, 2017. → page 11

[93] H. Xu, F. Sin, Y. Zhu, and J. Barbič. Nonlinear material design using
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Appendix

DG energy, force, stiffness matrix

This appendix provides further details associated with Section 5.2.

A.1 BZ flux
Following the BZ method we have the energy

aBZ(u,u) =
ˆ

Ω

σ(u) : ε(u)+
ˆ

Γ

η f ‖u−−u+‖2

Here we derive the force and the stiffness matrix associated with the second term.

A.1.1 Interface energy

Let’s ignore the parameter η f and look at one interface f (an edge in this case) and

the two neighboring elements. Now the energy associate with f is

E f (U−,U+) =

ˆ
f
‖u−−u+‖2dXXX

where U± are the six vertices associated with the two neighboring triangles, 3 in

U− and 3 in U+. For linear elements the deformations u± are

u±(XXX) = F±X +b±
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with

F± = D±,sD−1
±,m

Ds =

[
x1− x3 x2− x3

y1− y3 y2− y3

]
(1)

Dm =

[
X1−X3 X2−X3

Y1−Y3 Y2−Y3

]
= UT G

Thus the energy can be rewritten as

E f (U−,U+) =

ˆ
f
‖u−−u+‖2dXXX

=

ˆ
f
XT (F−−F+)

T (F−−F+)X

+(b−−b+)
T (F−−F+)X

+XT (F−−F+)
T (b−−b+)

+(b−−b+)
T (b−−b+)dXXX

A.1.2 Interface Integration

Since we choose linear basis functions, the integral above involves a line integral

of a quadratic and a linear function. The quadratic integral is of the form

P1ˆ

P0

XT AXdP =

P1ˆ

P0

[
x y

][ a11 a12

a21 a22

][
x

y

]
dXXX

=

P1ˆ

P0

a11x2 +(a12 +a21)xy+a22y2dXXX

Remember all the ai j’s are the components of the deformation graidents, which

are linear functions of U− and U+, and thus remain constant on the line from P0 to

115



P1. Now we can parametrize the line integral by

x = x0 + t(x1− x0),

y = y0 + t(y1− y0).

P0 =

(
x0

y0

)
,

P1 =

(
x1

y1

)
.

The integral is now

P1ˆ

P0

XT AXdXXX = ‖P1−P0‖
1ˆ

0

a11(x0 + t(x1− x0))
2

+(a12 +a21)(x0 + t(x1− x0))(y0 + t(y1− y0))+a22(y0 + t(y1− y0))
2dt (2)

=‖P1−P0‖[
a11

3
(x2

1 + x1x0 + x2
0)+

a22

3
(y2

1 + y1y0 + y2
0)

+(a12 +a21)(
1
6

x0y1 +
1
6

y0x1 +
1
3

x1y1 +
1
3

x0y0)].

Following the same procedure we can integrate the the linear function

P1ˆ

P0

(
B11 B12

)( x

y

)
dP

= ‖P1−P0‖[B11x0 +B12y0 +
1
2 B11(x1− x0)+

1
2 B12(y1− y0)] (3)

And of course

P1ˆ

P0

cdP = c‖P1−P0‖
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A.1.3 Interface Force

To assemble the force, we have the following derivatives

∂

∂x( j)
−,i

E f =

ˆ
f
XT

(
∂

∂x( j)
−,i

FT
−F−+FT

−
∂

∂x( j)
−,i

F−−
∂

∂x( j)
−,i

FT
−F+−FT

+

∂

∂x( j)
−,i

F−

)
X

+

(b−−b+)
T

(
∂

∂x( j)
−,i

F−

)
+

(
∂

∂x( j)
−,i

b−

)T

(F−−F+)

X

+XT

( ∂

∂x( j)
−,i

F−

)T

(b−−b+)+(F−−F+)
T

(
∂

∂x( j)
−,i

b−

)
+

( ∂

∂x( j)
−,i

b−

)T

(b−−b+)+(b−−b+)
T

(
∂

∂x( j)
−,i

b−

)dXXX

∂

∂x( j)
+,i

E f =

ˆ
f
XT

(
∂

∂x( j)
+,i

FT
+ F++FT

+

∂

∂x( j)
+,i

F+−
∂

∂x( j)
+,i

FT
+ F−−FT

−
∂

∂x( j)
+,i

F+

)
X

+

(b−−b+)
T

(
− ∂

∂x( j)
+,i

F+

)
+

(
− ∂

∂x( j)
+,i

b+

)T

(F−−F+)

X

XT

(− ∂

∂x( j)
+,i

F+

)T

(b−−b+)+(F−−F+)
T

(
− ∂

∂x( j)
+,i

b+

)
+

(− ∂

∂x( j)
+,i

b+

)T

(b−−b+)+(b−−b+)
T

(
− ∂

∂x( j)
+,i

b+

)dXXX

where i ∈ [1,2,3] are the indices to the three vertices per element, and j ∈ [1,2] are

the x and y components, respectively. From Eq. (1) we have

∂

∂x( j)
±,i

F± = eee jeeeT
i D−1
±,m, i, j ∈ [1,2]
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∂

∂x( j)
±,3

F± = eee j

(
−1 −1

)
D−1
±,m, j ∈ [1,2]

∂

∂x( j)
±,i

FT
± = D−T

±,meeeieeeT
j , i, j ∈ [1,2]

∂

∂x( j)
±,3

FT
± = D−T

±,meeei

(
−1 −1

)
, j ∈ [1,2]

where eeei is a unit 2-vecotr. There are many ways to calculate ∂

∂x( j)
±,i

b±, here we use

the barycentric coordinate at (1 0 0)T

∂

∂x( j)
1

b = eee j− eee jeeeT
1 D−1

m

(
X1

Y1

)
, j ∈ [1,2]

∂

∂x( j)
2

b = −eee jeeeT
2 D−1

m

(
X1

Y1

)
, j ∈ [1,2]

∂

∂x( j)
3

b = −eee j

(
−1 −1

)
D−1

m

(
X1

Y1

)
, j ∈ [1,2]
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A.1.4 Interface Stiffness matrix

The interface stiffness matrix has four components

∂

∂x(l)−,k

∂

∂x( j)
−,i

E f =

ˆ
f
XT

 ∂

∂x( j)
−,i

FT
−

∂

∂x(l)−,k
F−+

∂

∂x(l)−,k
FT
−

∂

∂x( j)
−,i

F−

XdXXX

+

ˆ
f

 ∂

∂x(l)−,k
b−

T (
∂

∂x( j)
−,i

F−

)
+

(
∂

∂x( j)
−,i

b−

)T
 ∂

∂x(l)−,k
F−

XdXXX

+

ˆ
f
XT

( ∂

∂x( j)
−,i

F−

)T
 ∂

∂x(l)−,k
b−

+

 ∂

∂x(l)−,k
F−

T (
∂

∂x( j)
−,i

b−

)dXXX

+

ˆ
f

(
∂

∂x( j)
−,i

b−

)T
 ∂

∂x(l)−,k
b−

+

 ∂

∂x(l)−,k
b−

T (
∂

∂x( j)
−,i

b−

)
dXXX

∂

∂x(l)+,k

∂

∂x( j)
−,i

E f =

ˆ
f
XT

− ∂

∂x( j)
−,i

FT
−

∂

∂x(l)+,k

F+−
∂

∂x(l)+,k

F+,T ∂

∂x( j)
−,i

F−

XdXXX

+

ˆ
f

− ∂

∂x(l)+,k

b+

T (
∂

∂x( j)
−,i

F−

)
+

(
∂

∂x( j)
−,i

b−

)T
− ∂

∂x(l)+,k

F+

XdXXX

+

ˆ
f
XT

(
∂

∂x( j)
−,i

F−

)T
− ∂

∂x(l)+,k

b+

+

− ∂

∂x(l)+,k

F+

T (
∂

∂x( j)
−,i

b−

)
dXXX

+

ˆ
f

(
∂

∂x( j)
−,i

b−

)T
− ∂

∂x(l)+,k

b+

+

− ∂

∂x(l)+,k

b+

T (
∂

∂x( j)
−,i

b−

)
dXXX
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∂

∂x(l)−,k

∂

∂x( j)
+,i

E f =

ˆ
f
XT

− ∂

∂x( j)
+,i

FT
+

∂

∂x(l)−,k
F−−

∂

∂x(l)−,k
FT
−

∂

∂x( j)
+,i

F+

XdXXX

+

ˆ
f

 ∂

∂x(l)−,k
b−

T (
− ∂

∂x( j)
+,i

F+

)
+

(
− ∂

∂x( j)
+,i

b+

)T
 ∂

∂x(l)−,k
F−

XdXXX

+

ˆ
f
XT

(
− ∂

∂x( j)
+,i

F+

)T
 ∂

∂x(l)−,k
b−

+

 ∂

∂x(l)−,k
F−

T (
− ∂

∂x( j)
+,i

b+

)
dXXX

+

ˆ
f

(
− ∂

∂x( j)
+,i

b+

)T
 ∂

∂x(l)−,k
b−

+

 ∂

∂x(l)−,k
b−

T (
− ∂

∂x( j)
+,i

b+

)
dXXX

∂

∂x(l)+,k

∂

∂x( j)
+,i

E f =

ˆ
f
XT

 ∂

∂x( j)
+,i

FT
+

∂

∂x(l)+,k

F++
∂

∂x(l)+,k

FT
+

∂

∂x( j)
+,i

F+

XdXXX

+

ˆ
f

− ∂

∂x(l)+,k

b+

T (
− ∂

∂x( j)
+,i

F+

)
+

(
− ∂

∂x( j)
+,i

b+

)T
− ∂

∂x(l)+,k

F+

XdXXX

+

ˆ
f
XT

(
− ∂

∂x( j)
+,i

F+

)T
− ∂

∂x(l)+,k

b+

+

− ∂

∂x(l)+,k

F+

T (
− ∂

∂x( j)
+,i

b+

)
dXXX

+

ˆ
f

(
− ∂

∂x( j)
+,i

b+

)T
− ∂

∂x(l)+,k

b+

+

− ∂

∂x(l)+,k

b+

T (
− ∂

∂x( j)
+,i

b+

)
dXXX

with i,k ∈ [1,2,3] and j, l ∈ [1,2].
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A.2 IP flux
The IP method for linear elasticity uses the following bilinear form

aIP(uuu,vvv) : =

ˆ
Ω

ε(vvv) : CCC : ε(uuu)

−
ˆ

Γ

JvvvK : {σ(uuu)}

−
ˆ

Γ

JuuuK : {σ(vvv)}

+

ˆ
Γ

η f JuuuK : JvvvK (4)

and the norm is simply

aIP(uuu,uuu) : =

ˆ
Ω

ε(uuu) : CCC : ε(uuu)

−
ˆ

Γ

JuuuK : {σ(uuu)}

−
ˆ

Γ

JuuuK : {σ(uuu)}

+

ˆ
Γ

η f JuuuK : JuuuK . (5)

The first term in Eq. (5) is the same elastic energy used in the usual FEM used

elsewhere in the thesis, where Φ = ε : CCC : ε is the energy density and

CCC =
∂

∂ε

∂

∂εT Φ

is the elasticity tensor. The linear strain measure is

ε = 1
2(∇uuu+∇T uuu)− I =

1
2
(F +FT )− I

, and the stress tensor is

σ (uuu) =
∂

∂ε
Φ(uuu)
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To generalize Eq. (5) to non-linear elasticty model, we rewrite it as

aIP(uuu,uuu) : =

ˆ
Ω

Φ(uuu)

−
ˆ

Γ

JuuuK : {P(uuu)}

−
ˆ

Γ

JuuuK : {P(uuu)}

+

ˆ
Γ

η f JuuuK : JuuuK (6)

where

P(uuu) =
∂

∂ε
Φ(uuu)

the 1st Piola-Kirchhoff stress tensor. In this case, the elasticity tensor becomes

CP =
∂

∂F
∂

∂FT Φ

and we can rewrite Eq. (6) as

aIP(uuu,uuu) : =

ˆ
Ω

F : CP : FT

−
ˆ

Γ

JuuuK : {P(uuu)}

+

ˆ
Γ

η f JuuuK : JuuuK . (7)

A.2.1 IP force

The force corresponding to the first and the last terms remain the same, and the

only difference comes from the terms in the middle. To do the integration, we
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follow the same procedure as Eqs. (2) and (3). The integral form is

ˆ
FXnT : P

=
´

vec(FXnT )T vec(P)

=
´

XT (n⊗F)T vec(P)

which reduces back to the form in Eq. (3).

Now we can write the second term inside the integral in Eq. (7) explicitly:

EIP = −
´

JuuuK : {P(uuu)}= −
ˆ

1
2
((F−−F+)X +(b−−b+))nT

− : (P−+P+)

= −1
2

XT (n−⊗F−−n−⊗F+)T vec(P−+P+)

−1
2
(b−−b+)T (n−⊗ I)T vec(P−+P+)

and we can proceed to take the derivatives for the corresponding force:

∂

∂x( j)
−,i

(EIP) = −
ˆ

1
2

XT (n−⊗
∂

∂x( j)
−,i

F−)T vec(P−+P+)

+
1
2

XT (n−⊗F−−n−⊗F+)T vec

(
∂

∂x( j)
−,i

P−

)

+
1
2
(

∂

∂x( j)
−,i

b−)T (n−⊗ I)T vec(P−+P+)

+
1
2
(b−−b+)T (n−⊗ I)T vec

(
∂

∂x( j)
−,i

P−

)
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∂

∂x( j)
+,i

(EIP) = −
ˆ
−1

2
XT (n−⊗

∂

∂x( j)
+,i

F+)T vec(P−+P+)

+
1
2

XT (n−⊗F−−n−⊗F+)T vec

(
∂

∂x( j)
+,i

P+

)

−1
2
(

∂

∂x( j)
+,i

b+)T (n−⊗ I)T vec(P−+P+)

+
1
2
(b−−b+)T (n−⊗ I)T vec

(
∂

∂x( j)
+,i

P+

)

and the stiffness matrix

∂

∂x(l)−,k

∂

∂x( j)
−,i

(EIP) = −
ˆ

1
2

XT (n−⊗
∂

∂x( j)
−,i

F−)T vec

 ∂

∂x(l)−,k
P−


+

1
2

XT (n−⊗
∂

∂x(l)−,k
F−)T vec

(
∂

∂x( j)
−,i

P−

)

+
1
2
(

∂

∂x( j)
−,i

b−)T (n−⊗ I)T vec

 ∂

∂x(l)−,k
P−


+

1
2
(

∂

∂x(l)−,k
b−)T (n−⊗ I)T vec

(
∂

∂x( j)
−,i

P−

)

∂

∂x(l)+,k

∂

∂x( j)
−,i

(EIP) = −
ˆ

1
2

XT (n−⊗
∂

∂x( j)
−,i

F−)T vec

 ∂

∂x(l)+,k

P+


−1

2
XT (n−⊗

∂

∂x(l)+,k

F+)T vec

(
∂

∂x( j)
−,i

P−

)

+
1
2
(

∂

∂x( j)
−,i

b−)T (n−⊗ I)T vec

 ∂

∂x(l)+,k

P+


−1

2
(

∂

∂x(l)+,k

b+)T (n−⊗ I)T vec

(
∂

∂x( j)
−,i

P−

)
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∂

∂x(l)−,k

∂

∂x( j)
+,i

(EIP) = −
ˆ
−1

2
XT (n−⊗

∂

∂x( j)
+,i

F+)T vec

 ∂

∂x(l)−,k
P−


+

1
2

XT (n−⊗
∂

∂x(l)−,k
F−)T vec

(
∂

∂x( j)
+,i

P+

)

−1
2
(

∂

∂x( j)
+,i

b+)T (n−⊗ I)T vec

 ∂

∂x(l)−,k
P−


+

1
2
(

∂

∂x(l)−,k
b−)T (n−⊗ I)T vec

(
∂

∂x( j)
+,i

P+

)

∂

∂x(l)+,k

∂

∂x( j)
+,i

(EIP) = −
ˆ
−1

2
XT (n−⊗

∂

∂x( j)
+,i

F+)T vec

 ∂

∂x(l)+,k

P+


−1

2
XT (n−⊗

∂

∂x(l)+,k

F+)T vec

(
∂

∂x( j)
+,i

P+

)

−1
2
(

∂

∂x( j)
+,i

b+)T (n−⊗ I)T vec

 ∂

∂x(l)+,k

P+


−1

2
(

∂

∂x(l)+,k

b+)T (n−⊗ I)T vec

(
∂

∂x( j)
+,i

P+

)
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