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Abstract

We present “SkinProbe 2.0,” a prototype system for low cost, high volume mea-

surement of the physical properties of human soft tissues through direct contact

and perturbation of the skin. Our solution encompasses a handheld device and as-

sociated cloud-based AI processing pipeline, and derives physically-representative

values of stiffness and thickness directly from video. These input videos include

images of the surface under contact, and of a “flexure,” our novel apparatus for

optical force measurement. Videos are captured using a smartphone embedded in

the device.

Our system processes these videos, generating dense optical flow fields for se-

lected frames, and passing these frames and flow fields through two bespoke Neural

Networks: one providing estimated force readings, and one providing estimates of

soft-body material properties in the contact vicinity.

We automate the collection of training data for our networks with robotics and

a 3D-printed apparatus, along with custom-made silicone tissue phantoms, and a

cloud pipeline for data collection, storage, and retrieval. This allows us to scale to

thousands of samples in each training dataset, with minimal human involvement in

collection, and a highly repeatable collection process.

We demonstrate the functionality of our measurement device, cloud pipeline,

and force estimation system, and show promising material estimation results on our

tissue phantoms. We further consider directions for future research in improving

our system, both for handheld data collection, and for eventual usage on human

subjects.
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Lay Summary

We developed “SkinProbe 2.0,” a handheld probing device, which we hope to use

in the future to measure how people’s skin moves and reacts to small amounts of

pressure. Our device is currently a prototype, and not yet suitable for use on peo-

ple. In the future, these results could let us use computers to help create customized

clothing with a perfect fit, or allow us to automatically optimize prosthetics for an

individual, making them more comfortable and secure. The device is low-cost

and highly portable, and uses cloud computing and machine learning to help gen-

erate its results. We lowered the cost by basing the device around an ordinary

smartphone, and using the phone’s camera for all our sensing needs – it observes

movement of both the skin, and of a special spring-like device we call a “flexure,”

which allows the camera to measure the pressure that is applied.
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Preface

The UBC Sensorimotor System Laboratory’s “Skincap” project is the direct prede-

cessor to, and parent of this work. Within Skincap, we sought to develop and refine

experimental techniques and tooling for the measurement of human soft tissues,

with the goal of improving the physical accuracy of simulations for animations,

and for tasks like computer-aided design of clothing. I participated extensively in

this project, designing the version 1 Skin Probe (Section 1.4) and major portions of

the associated capture software; other members of the lab collected data from hu-

man participants using this system, provided feedback on the design, and obtained

results from human participants. This work led to our 2018 paper The Human

Touch: Measuring Contact with Real Human Soft Tissues [34] (ACM Transactions

on Graphics), on which I was one of many co-authors. This was the first publica-

tion describing and utilizing the SkinProbe V1. The SkinProbe 2.0 project would

not have been conceived without the hard work of all the authors on that paper;

that said, nobody other than Dr. Pai and I have made direct contributions to the

development of SkinProbe 2.0.

As the name implies, SkinProbe 2.0 is positioned as a successor of, and poten-

tial replacement for the V1 probe. In Section 1.4, I outline the design and usage of

this original probing system, and explore the shortcomings which led to a desire for

this replacement version. Section 1.4.1 is based substantially on my own work in

the paper discussed above [34], section 3, “Design and Fabrication of Skin Probe”.

My supervisor, Dr. Pai, was largely responsible for conceiving this project, and

provided valuable input throughout. I carried out the development of this system

myself: I wrote the code, designed and fabricated parts for the prototype device,

and carried out experiments with the system. Dr. Pai and I are the only contributors
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to the work presented in this thesis, again excepting the previously-published V1

probe discussed in Section 1.4.

With the exception of Section 1.4.1, I wrote the entirety of this thesis as an

original work; no other sections are based on any other sources, published or un-

published.

We did not require ethics board approval for this work, as no human subjects

were involved in testing this prototype system.
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Glossary

AJAX Asynchronous JavaScript and XML, a set of tools and techniques which

enables live interaction between client-side JavaScript and a web server.

API Application programming interface, a generic term for a set of technical com-

mands and capabilities exposed by a software component.

AR Augmented reality, an interactive medium which mixes sensory input from

the real world with generated virtual input.

AWS Amazon Web Services, a collection of cloud computing platforms and ser-

vices offered by Amazon.

CAD Computer-aided design, the use of computer software in developing and

modifying engineering designs.

CI Continuous integration, a development methodology where new code, models

and data are frequently (continuously) loaded onto a production-like envi-

ronment for automated and/or manual testing.

CNN Convolutional neural network, a DNN employing one or more convolutional

layers – essentially, learned filters – for signal or image processing.

DNN Deep neural network, an artificial neural network with several stacked “hid-

den” layers, commonly used in modern machine learning tasks.

DRY Don’t repeat yourself, a software development methodology where repeti-

tion of code and data is reduced or eliminated, providing a single location

for editing each piece of “knowledge.”
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EM Electromagnetic, a term describing forces and fields around electrically charged

particles, relating electricity and magnetism.

FEM Finite element method, a numerical method for discretizing problems such

as fluid and soft-body simulations.

FPS Frames per second, the number of frames of video recorded or displayed per

second.

GPU Graphics processing unit, a dedicated, highly parallel co-processor com-

monly found in modern desktops and servers, used to accelerate paralleliz-

able tasks, such as image processing and large matrix operations.

GUI Graphical user interface, a visual, virtual, interactive interface consisting of

display and interactive elements such as text, images, and push-buttons.

HTML HyperText Markup Language, an XML-like markup language used to de-

fine documents for display in a web browser.

HTTP HyperText Transfer Protocol, a common communications protocol for re-

questing and receiving documents from web servers.

IPC Inter-process communication, methods allowing for data exchange between

separate software processes, possibly on different computers.

JSON JavaScript Object Notation, a widely-used, human-readable serialized data

format. Often used to replace XML in client-server communication.

LSTM Long short term memory, a popular type of recurrent neural network which

works well in practice.

MAE Mean absolute error, a distance metric between two sets of values, which

sums their element-wise absolute differences:

1
n

n

∑
i=1
|yi− xi|
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MRI Magnetic resonance imaging, a method for non-invasive imaging of the in-

terior of the body using powerful magnetic fields.

MSE Mean squared error, a distance metric between two sets of values, which

sums their element-wise squared differences:

1
n

n

∑
i=1

(yi− xi)
2

NSERC Natural Sciences and Engineering Research Council of Canada, a fund-

ing body for scientific research in Canada.

OOD Out-of-distribution [data], describing data which is anomalous or otherwise

outside of the distribution of training data in a machine learning task.

PLA Polylactide, a polyester thermoplastic made with plant-based compounds,

commonly used for 3D printing. Also known as “polylactic acid.”

ReLU Rectified linear unit, a simple and popular activation function for artificial

neural networks, essentially comprising y = max(0,x)

RGB Red-green-blue, an additive color model where red, green, and blue prin-

cipal components are added to create a range of colors, typically used for

digital storage of color images.

RMSE Root mean square error, a common outlier-sensitive metric for regression

model performance. Lower values indicate a better fit, with 0 being a perfect

fit.

S3 Simple Storage Service, a bulk data storage service in AWS.

SVD Singular value decomposition, a factorization which separates a matrix M

into the form USV T .
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Chapter 1

Introduction

1.1 Goals
With SkinProbe 2.0, we aim to simplify and accelerate the collection of large vol-

umes of data on the physical properties of human soft tissues. We hope that this

data will reveal scientifically and practically useful information on the distribution

of these properties over wide populations, enhancing the modeling and simulation

of both humans in general, and of individuals in particular. We break down these

lofty goals into practical targets:

• Low cost of production and usage

• Portability – ability to collect data “in the field”

• Usability – little training or expertise required of experimenters

• Rapid data collection

• Accuracy – measure physically meaningful properties of soft tissues

With these goals in mind, we opted for a significantly different approach to the

original V1 probe (Section 1.4). We base our solution around a consumer smart-

phone and cloud computing technology, with only the calibration of each device

requiring specialized, immobile hardware. This minimalist approach is enabled

by our use of a novel force-sensing “flexure,” machine learning, and off-the-shelf
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(a) µ̄ Stiffness (b) L0 Thickness

Figure 1.1: Visual descriptions of our material parameterization

optical flow estimation, allowing us to infer material properties using only optical

data. Usage in the field is supported with only the probe and a working internet

connection. Our use of a consumer smartphone and consumer-grade 3D printing

means the incremental cost of constructing a new probe is low. Each probe is op-

erated through the embedded phone’s touchscreen, so we achieve usability with

interface elements which are easily recognizable to the millions of people who use

smartphones every day. We achieve rapid data collection by requiring no external

hardware, and by providing a cloud pipeline for processing new data, which pro-

vides rapid feedback to experimenters. The accuracy of our system is not currently

production-ready, but we present our preliminary results as a proof of concept jus-

tifying further refinement of our techniques.

1.2 Overview
Here we provide a brief overview of the project’s components and methods.

1.2.1 Material Parameterization

Estimating the properties of soft materials requires defining those properties, which

we do here. We use a simple model which attempts to capture the stiffness and the

thickness of the sample under consideration. We limit the model to two variables

out of a desire to limit the necessary volume of data – specifically, the number of

2



(a) No contact (b) 1N normal force (c) 3N normal force

Figure 1.2: Raw video frames as captured by the probe’s camera.

different material samples – necessary for training our material model.

We treat each sample as a depth-wise homogeneous block, backed by a rigid

underlying surface, and define µ̄ as the slope of the force/displacement curve at the

point of contact with the material – that is, for small displacements (Figure 1.1a).

We define L0 as the thickness of the material, in millimeters, to the (real or imag-

ined) rigid underlying surface (Figure 1.1b).

Our “ground truth” material properties are measured with the same equipment

used to generate training data for our system, with only minor modifications.

1.2.2 Data Capture

The smartphone in the probe serves three main purposes: it displays controls for

registering a participant, and for starting and stopping recordings; it captures op-

tical data (videos); and it communicates with the cloud pipeline – uploading data,

and downloading results. Though modern smartphones are powerful computers in

their own right, and are now capable of performing deep neural network (DNN)

inference at a reasonable pace1, doing so presents issues with regards to battery

life and overheating in a portable application. We offload all significant process-

ing “to the cloud,” leaving to the phone’s lesser computational powers the (still

challenging) task of capturing, compressing and uploading high quality video.

The data we are interested in collecting are short videos of the probing shaft

being pressed into the participant – we refer to a single capture, and resulting data

from of one of these videos as a “touch.” An experimenter starts recording, moves

1TensorFlow Lite (https://www.tensorflow.org/lite) permits deployment of fairly advanced image
classification and object detection models on mobile devices.

3
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the probe to touch the stationary participant, and applies a small amount of force

(less than 4N) through the shaft. She then retracts the probe, and stops the record-

ing, with the whole process having taken 3-6 seconds. See Figure 1.2 for several

representative frames of captured video, but note that it shows contact with a sili-

cone phantom, not a human subject.

The scope of experiments which could be carried out with the probe is broad,

but in general, we foresee the device being used in multiple locations on each par-

ticipant. Part of the utility of rapid measurements is to enable many measurements,

generating a map of material values covering a significant region of the partici-

pant’s body. In the future, we envision the probe’s application software guiding the

experimenter through captures for different locations on the body.

1.2.3 Estimation

The desired final output of our system, as applied to a particular recording, is sim-

ply a pair of material parameter estimates. As such, we want a material model

“matEst” which accepts a frame sequence xxx, and outputs a material estimate vector

m̂̂m̂m with our selected material properties:

m̂̂m̂m =

[
µ̄

L0

]
= matEst(xxx)

Rather than attempting to tackle this problem as a monolithic challenge, our

estimation pipeline breaks down the task into two major sub-problems: force esti-

mation for frame selection, and material estimation using the selected frames. We

sketch this overall pipeline in Figure 1.3. We attempt to solve these sub-problems

with two distinct convolutional neural network (CNN) regressors, which we train

from scratch. These are related to, but distinct from popular CNN discrete classi-

fication models – this class of models is famous for its excellent performance on

object recognition tasks, where a particular image is categorized into one of several

different classes. Our regression models instead output numeric estimate vectors,

which are continuously-varying across the input space.

The video captured for each touch includes a view of both the subject’s skin,

and of the flexure, which includes the probing shaft. The flexure is a novel mechan-
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Figure 1.3: Our estimation architecture – raw video is fed frame-wise into
the force estimator, which is used to select frames for optical flow. The
generated optical flow is fed into the material estimator, along with es-
timated forces for the selected frames.

ical device, used to transform applied forces into visible deflection in a repeatable

manner. We extract these forces using our “force model” (Figure 1.4), the first of

our CNNs, which infers the force by observing this deflection in a cropped portion

of the video. We apply our force model in an instantaneous frame-by-frame man-

ner, ignoring the state of the flexure over time, as we found this provided sufficient

accuracy while keeping the model relatively simple.

So, for a given frame of video xi, our model outputs an estimate f̂îfîfi of the true

force vector fififi:

f̂îfîfi = forceEst(xi)≈ fififi

Note that, for this prototype, we only estimate the normal force, so these force

5



Figure 1.4: Structure of the force estimation model, showing the input, out-
put and hidden layers of the DNN. Here, “channels” refer to the outputs,
akin to filtered images, of each distinct CNN kernel in each layer. We
use x→ y as a shorthand for a layer with an input size of x channels/neu-
rons, and and output size of y channels/neurons. Where x is omitted, it
is the size of the last layer’s output.

estimates are in fact scalar. However, the approach described here could be used to

generate and process 3D forces.

Next, we compute the input for the material estimator, another CNN regression

model. Given the estimated input forces f̂îfîfi, we select two frames of the video –

a “contact” frame xc, and a “pressure” frame xp – with which to compute optical

flows. These frames are selected as the estimated force magnitude crosses two

separate thresholds: contact, at 0.15N; and pressure at 2N. We chose these values

manually, aiming to reduce the effect of any noisy output from our force estimator,

and to ensure significant visible deflection between the two frames.

Optical flow is a measurement of the apparent motion of objects, surfaces, or

other features in a sequence of images, traditionally in pairs of sequential frames of

video. We use dense optical flow between the selected frames, where an estimate

of motion in image space is generated at every point (conceptually, at every pixel)

in the image. For a pair of images, the output of this generation is a “flow,” a dense

field of 2D vectors indicating the motion in pixel units of the feature at that pixel’s

location, from the first to the second image in the pair.
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Figure 1.5: Color-mapped rendering of a 120× 120 flow field input to the
material estimator, with the tip of the flexure shaft – which has little
relative motion to the camera – visible on the right of the image.

We compute our optical flow estimates (Figure 1.5) using an off-the-shelf solu-

tion – an open-source implementation of FlowNet2.0 [14], written in Tensorflow.

We input the selected frames xc and xp for a touch into this estimator, obtaining a

flow estimate Ô:

Ô = flowNet2(xc,xp)

The material estimator itself has broadly similar structure to the force estimator,

though it is somewhat larger. It is a CNN regressor comprising three convolutional

layers, and five fully-connected layers (Figure 1.6). The optical flow image Ô is

cropped to a region near the point of contact with the flexure, and this cropped flow

is input to our material estimator model, which outputs our final vector of estimated

material properties:

m̂̂m̂m =

[
µ̄

L0

]
= matModel(Ô)
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Figure 1.6: Structure of the material estimation model, showing the input,
output and hidden layers of the DNN. The initial flow input is 2-channel
as it is a field of 2D vectors (flows), while the two force inputs are the
estimates f̂ĉfĉfc and f̂ p̂f p̂fp for the frames used to generate the flows.

1.2.4 Model Training

As our models for force and material estimation are DNNs, they must be trained

to do anything useful. Since we have specific ground-truth data, our models are

trained in a supervised manner. This means providing example inputs and the cor-

responding expected outputs – the difference between the calculated and expected

results provides a loss, or error, which is minimized to train each model through

backpropagation. This process typically requires large volumes of training data,

enough to cover the expected distribution of real-world (test) data and outputs. De-

pending on the complexity of the model, this can mean thousands to millions of

examples.

We provide large amounts of training data for our models with our robotic “au-

tomation rig,” described in detail in Section 2.3. It holds the probe, and generates

artificial touches against silicone tissue phantoms. We automate this data collec-

tion process with custom sequential control software for our robot, additionally

controlling the probe’s smartphone application over WiFi, to indicate the start and

end of recordings. The rig integrates an industrial force/torque sensor, providing
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reliable force readings, and the robot provides accurate position readings, which

we also save with the training data.

We designed the tissue phantoms to provide a variety of stiffness and thickness

results. We achieve this by varying the type of silicone resins used in the different

phantoms, and by varying the depth of the material within each phantom using

specially-designed trays.

We obtain the material training data in two ways: µ̄ by probing the tissue

phantoms and analyzing the resulting force/displacement curves; and L0 by simply

analyzing the depth of each material sample across its surface, given the computer-

aided design (CAD) model of the silicone tray.

1.2.5 Processing Pipeline

With the smartphone’s storage limited to a few gigabytes, and processing taking

place remotely, we opt to immediately offload all recorded videos to cloud storage.

The phone application records to local mp4 video files, which are then uploaded to

a cloud storage bucket, where they are sorted according to the experiment’s session

ID and current recording number. The application then deletes the local temporary

file.

During a live experiment, the material estimation processing takes place on a

cloud computer equipped with a powerful graphics processing unit (GPU), which

helps accelerate the large tensor operations involved in DNN inference. We also

use this cloud machine for all optical flow processing, and the majority of the

force estimation processing necessary for training and testing our force and mate-

rial models. This provides some of the assurances of continuous integration (CI) –

ensuring our development models function in the “production” cloud environment

– and allows us to run the full FlowNet2 model, which has significant memory

and compute requirements, and which requires special environmental configura-

tion which proved difficult on our local workstations.

Our instance runs three custom services, and a Redis database application,

which together make up our cloud pipeline:

• Redis database: an off-the-shelf, in-memory database providing fast accesses

and asynchronous primitives for inter-process communication (IPC).
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• Flask server: the instance’s outward-facing interface. Provides HyperText

Transfer Protocol (HTTP) endpoints for starting, monitoring, and retrieving

the results of processing jobs.

• PyTorch service: loads and executes our force and material models on data

which it pulls from our cloud storage.

• Flow service: loads the FlowNet2 model, and uses it to generate optical flow

estimates on demand.

These services communicate on the instance to carry out the processing steps

outlined across the previous pages of this section. This processing is initiated by

the upload of a new video recording from the probe’s smartphone application, and

returns results back to the application upon completion, where they are displayed

to the experimenter. All results are additionally stored securely in the cloud, in the

popular (and widely-readable) JavaScript Object Notation (JSON) format.

We discuss this cloud pipeline in greater detail in Section 2.5.2.

1.3 Related Work

1.3.1 Regression Models

While the problems we attempt to solve with deep regression models are highly

specific to our project, DNNs have been used extensively to solve a wide variety

of computer vision problems in the last several years. Much of the focus of this

work has been on supervised categorical learning – classifying one or more objects

in an image [17], or semantically segmenting an image to its component parts [24]

– but this is not the only type of vision task where deep learning has proven use-

ful. The natural output of a neural network is a numeric vector, and while this can

be interpreted (and optimized) as a likelihood distribution over categories, it can

also be used for regression for many different target variables [1]. Regression from

images may sound like an odd task, but is in fact very useful in a variety of do-

mains. For example, human pose estimation from red-green-blue (RGB) images is

a regression task, producing a vector describing a skeleton configuration. Outputs

may come in the form of 2D joint locations [45], a heatmap of joint locations [48],
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or, more recently, as a map of 3D limb orientations [25]. Depth estimation from

images is also fundamentally a regression task, and has seen recent strides [7][23].

A common example of image-based regression, with some similarity to our force

estimation task, is bounding-box estimation, where objects of interest are located

in image space. Our force estimator works, at some level, in a similar fashion, by

locating the flexure shaft in the frame. Examples include architectures with convo-

lutions followed by fully-connected layers (as in our models) [12], and networks

which regress an object mask output [43]. Many of these regression approaches

propose advanced techniques which we do not make use of, such as multi-pass

refinement, but our DNN architectures draw from these examples and more.

1.3.2 Force Measurement

The measurement of forces is an old and extremely widely-studied problem, which

we could not hope to cover here. While our apparatus is novel, the basic idea of

optically deriving a force estimate from the deflection of elastic material is not.

Optical force measurement systems may employ mirrors and lasers to amplify ap-

parent motion for detection – this technique is known as optical beam deflection

[49][37][35], and produces highly accurate measurements from relatively small de-

flections. The features used for estimation in these techniques are generally more

simple than images – generally, the position or brightness of spot(s) of light are

transformed by a simple mathematical model to the final output. An advanced

study of similar techniques can be seen in [13], where Hirose and Yoneda de-

veloped a packaged 6-axis optical force sensor, and discuss several methods of

transforming light based on deflection.

Deflection-based force measurement has also been utilized without optical sens-

ing components. Zhou et al [10] use a carbon-infused silicone rubber to create a

wearable, capacitive tactile sensor, whose electrical capacitance changes as the

material is deformed. Magnets placed in soft materials can be localized using

hall-effect or magnetic field sensors to infer the forces applied to those materi-

als [5][21][47], relating deflection to force output in similar manner to the optical

methods discussed above. These magnetic and capacitive measurements suffer

from environmental inaccuracies: for example, the human body affects the capac-
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itance of objects it is near to or in contact with, and electronic devices generate

electromagnetic (EM) interference which can affect the analog measurement of

a magnet’s position. In the case of powerful magnetic fields, such as those in a

magnetic resonance imaging (MRI) machine, the distortion may be severe, and

magnetic force sensors may become inoperable.

Our idea of monitoring macro-scale deflection for force detection is inspired in

part by visual servoing, a robotic control technique where a robot’s pose is moni-

tored by camera in a closed-loop control system. This type of servoing has indeed

been used for force control, as in Nelson et al’s work [29].

Many other forms of force sensing are common, but typically require special-

ized electronic hardware. This includes accurate, low-deflection strain gauges used

in industrial force/torque sensors. We use this type of sensor for training our force

model, and the original V1 probe also relied on this technology. These sensors

require additional hardware for reading and interpreting analog electrical signals,

are often tied to laptops or desktops, and have a very high unit cost (often $1,000

or more).

1.3.3 Physical Analyses and Simulation of Human Tissues and Other
Materials

The human body is an exceptionally well-studied object, and this study has natu-

rally extended to measurement and modeling of the dynamic response of human

soft tissues. Our work ultimately aims to aid this analysis at a large scale, and so

we pay homage to the enormous number of projects which have come before.

Much work has gone into visually plausible simulation of soft tissues, pri-

marily for artistic applications in movies and, more recently, video games [9].

The behavior of soft, deformable materials is well-approximated by finite element

methods (FEMs) (refer to [40] for a thorough overview), and recent projects have

pushed towards highly detailed, anatomically-based human body models replete

with muscles, tendons and fat. Fan et al used MRI data to model distinct muscles

with targeted active and passive shapes [8]; Sueda et al matched the movement

of muscles, tendons and bones in the hand to artistic animations [41]; and Si et

al modeled a complete human musculoskeletal structure, conforming its motion to

natural swimming gaits [39]. Additional examples of this approach may be found

12



in Lee et al 2009 [22] and Teran et al 2005 [44]. While structurally advanced,

these approaches lack physical realism – they produce visually convincing results

in many cases, but cannot meaningfully predict the force response of human tissues

under direct contact, as they do not use real-world measurements of the behavior

of these tissues.

Parameter fitting for these types of models has also seen significant work.

Sifakis et al used dense motion capture markers, and a volumetric model, to es-

timate muscle and tissue properties within a male subject’s face based on its mo-

tion. Similarly, Pons-Moll et al [36] used 4D, full-body motion capture data to

train a statistical model predicting the future shape of a human body mesh, using

its current physical state. This model produced realistic jiggles and bulges, but

failed to generalize to the effects of external forces. Kim et al [15] extended this

work with an FEM-simulated tissue layer over a statistically-modeled inner body,

learning the physical material parameters from motion capture data, and allowing

generalization to external forces. This work is appealing in its elegance, but it does

not include data on compression behavior, and so cannot be relied on to reproduce

this behavior accurately. It also optimizes a linear material model, which is unable

to accurately simulate tissue compression. Wang et al [46] supply another example

of parameter estimation in a linear model, using Kinect depth sensors to analyze

the motion of complex (but inanimate) objects under external forces.

When attempting to capture compression behavior of soft tissues, contact mea-

surement provides directly relevant data. In a work which heavily inspired this

project, Pai et al [33] used a robotic probing system to capture the shape and phys-

ical behavior of objects such as plush toys. Kry and Pai [19] used motion and

force capture to estimate the compliance behavior of joints (rather than soft tissues

specifically) in the human hand – in this case, the contact was between the hand,

and an object being grasped. Bickel et al [2] improved upon these techniques with

a nonlinear model for heterogeneous materials. This approach was somewhat lim-

ited by their use of a basic, resistive force sensor in their probe. Miguel et al [28]

estimated properties of cloth, skin, and internal anatomy with an advanced hyper-

elastic model. Finally, in our own lab’s work, Pai et al [34] used direct capture

of force-deflection behavior to parameterize a nonlinear FEM “sliding thick skin”

layer over a rigid inner body. We captured this data using the SkinProbe V1, which
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is discussed further in Section 1.4.

More generally, the haptic behaviors of complex structures – not limited to the

human body – have been captured and modeled in several different ways. MacLean

created the “Haptic Camera” [26] for automated, robotic capture of haptic environ-

ments, measuring and modeling a toggle switch’s behavior. While actuated in only

one dimension, this system was then able to convincingly “replay” the switch’s be-

havior to a user. Pai and Rizun developed the “WHaT” [32] wireless haptic texture

sensor, a handheld device incorporating a single-axis piezoelectric force sensor and

multiaxis accelerometer, which allowed a user to measure surface properties like

roughness. The handheld, wireless nature of the device made it easy to use on

complex, three-dimensional objects – we hope our handheld, wireless probe will

achieve much the same.

1.3.4 Tissue Phantoms

Beyond simply studying the body, significant research effort has gone into recreat-

ing the dynamic behaviors of human tissues in artificial analogs, referred to in the

literature as phantoms. These are often designed for surgical training and practice;

SynDaver® products have been used for surgical simulation [30], and range from

single-material tissue and skin phantoms to complex, multi-layered phantoms with

simulated fat, muscle, veins and skin. These commercial products are made with

silicone and other gel-like materials, and aim to emulate the look and feel of real

human tissues under surgical manipulations – palpation, cutting, stitching etc.

Other phantoms have been designed for calibrating and testing medical devices,

such as ultrasounds [4]. Phantoms may also serve double-duty as training aids for

these same devices, and need not consist of artificial materials – Sekhar et al [38]

discuss the use of bovine liver and rib segments, along with pimento olive “tumors,”

as a phantom for liver biopsy training. We avoid the use of animal flesh and other

organic materials in our phantoms for obvious reasons: our automated data capture

sessions can last many hours, and we wish to make these sessions repeatable and

mess-free.

The production of tissue phantoms has also seen some targeted research. Hall

et al [11] characterized the force-displacement behavior of a variety of gelatin-
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based materials using a motorized capture system. Derler et al [6] evaluated the

frictional response of various skin phantoms on textiles, comparing the phantom’s

responses to that of real human skin.

1.4 SkinProbe 1.0
Version 1 of our SkinProbe was, naturally, the immediate predecessor to this project,

and our goals and decisions for SkinProbe 2.0 were informed significantly by

lessons learned designing and using version 1.

The original SkinProbe generated qualitatively different data to SkinProbe 2.0,

providing force-displacement measurements and multi-view optical flows. We2

locally optimized a reality-based model [31] we called “sliding thick skin” [34],

with a thick FEM layer which slid smoothly over a parametric inner body.

1.4.1 Design

The SkinProbe3 (Figure 1.7) was a custom in-house design, tailored for the Skin-

Cap project, and produced with rapid prototyping techniques. We wrote custom

software to operate the probe and record data, which ran on an attached “host” PC.

Hardware

The probe housed three miniature high-definition RGB cameras, a six-axis force/-

torque sensor, three user input buttons, and a micro-controller board. The probe

provided visual feedback to the experimenter during operation through a graphical

user interface (GUI) displayed on a separate monitor, which could be controlled

directly using the buttons on the probe body. The cameras were placed to provide

a clear view of the skin patch around the probing point, with overlapping fields of

view that eliminated occlusions around the probe, except at the point of contact.

The design underwent rapid iterative changes throughout the project. An initial

prototyping phase with non-functional sample parts resulted in general decisions

on the overall shape of the probe, including the pistol-grip design – which opti-

mized grip angle for the probing locations we were considering – and rear place-

2In Section 1.4, “we” refers to the authors Pai et al [34], including me.
3Section 1.4.1 is based on my own work in [34] section 3: Design and Fabrication of Skin Probe.
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Figure 1.7: SkinProbe V1. 1) 3D tracking marker arrangement on the “ten-
tacle”; 2) Single-piece probe “head,” holding cameras and force sensor;
3) Carbon-fiber composite probe stem; 4) Quick-change, magnetic-lock
probe tip; 5) Front-facing cameras; 6) Front trigger button; 7) Rear input
buttons; 8) Ergonomic handle, housing micro-controller; 9) Externally
accessible reprogramming port; 10) Exit point for probe cables, with
internal strain relief. Reproduced from [34] Fig. 2.

ment of the marker tracking assembly, which kept the assembly out of the way of

the probe cameras and experimenter. After this initial prototyping phase, the de-

vice saw five major iterations, with a general trend of increasing size and additional

features, such as the addition of buttons for experiment control.

We optimized for ergonomics, durability over multiple experiments, and ease

of use. This included use by a solo experimenter: the probe’s input buttons allowed

an individual to perform an initial calibration, then select and create recording “tri-

als” with no other experimenters present. This was desirable as it improved partic-

ipant privacy and comfort, and left other project members free for data processing

tasks. With this in mind, and drawing inspiration from video-game console con-

trollers, we laid out the probe buttons for easy operation with one hand. Two but-

tons were positioned for operation with the experimenter’s thumb, on the probe’s

back – that is, the side facing the experimenter. The third button was integrated

into a “trigger” on the rear of the probe, operated with a forefinger. In addition, we

designed the probe’s large, organically-shaped handle to be held comfortably with
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Figure 1.8: Cutaway view of SkinProbe V1’s “head” section. 1) Embed-
ded force/torque sensor; 2) 3D printed probe stem mount; 3) Integrated
probe camera mounts; 4) Probing tip, also showing the internal channel
housing the locking magnets; 5) Endoscope camera (one of three); 6)
Camera and force sensor cable routing. Reproduced from [34] Fig. 3.

a one- or two-handed grip.

With a sensitive force transducer mounted back from the cameras (Figure 1.8),

a relatively long shaft was needed to reach the probing point. This had to be

lightweight, to minimize the influence of the shaft mass on the sensor; compact, to

avoid occluding the camera’s views of the skin patch; and extremely stiff, to ensure

a rigid transformation between the probing location and the probe itself, even as

forces were applied to the tip. After experimenting with metal shafts and tubes, we

switched to a lightweight carbon-fiber shaft with a custom 3D printed mounting

and a magnetically-locking, quick-change tip.

In an application where experiment hardware is in direct contact with members

of the public, safety is an especially great concern. We kept contact forces for our

experiments low – easily achieved with a human experimenter in control – and took

care to avoid sharp edges and exposed electronics in the probe’s design, minimizing

risk of injury to all parties involved.

Software

The capture software for SkinProbe V1 (Figure 1.9) served primarily to monitor

data streams from the various sensors and the Vicon motion capture system, and to
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Figure 1.9: SkinProbe V1’s capture software. 1) Live feed of forces and
torques applied to the probe tip, showing a recent touch; 2) 3D visualizer
window, displaying real-time positions of the participant markers and
probe tip from a user-adjustable virtual camera; 3) Live split view from
the three probe cameras, showing the shaft and tip in-frame, along with
the participant’s skin and attached markers. Reproduced from [34] Fig.
4.

consolidate these streams into recordings sampled at up to 120Hz. It also allowed

the experimenter to execute automated optical flow post-processing on the captured

video feeds. The software was controlled through a GUI written in C++ using the

Qt 5 application library. An additional 3D view of the capture volume was provided

through our visualizer application, a separate program written in Python and using

OpenGL, which we used to display both live and pre-recorded data from the main

application.

Another important role of the software was to calibrate the SkinProbe before

experiments, and to store and re-use these calibrations as far as practicable. This in-

cluded establishing the relative transformations between the probe’s tracking “ten-

tacle” and the tip, and between the tentacle and cameras – we considered these

transformations to be relatively stable between sessions. The software also in-

cluded the ability to tare the force sensor, and to establish the weight of the shaft

and attached tip. This allowed us to accurately zero our force readings, leaving
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only the externally-applied forces on the probe tip in our recorded data.

We used Vicon Blade software to monitor the Vicon system. Blade captured

the 3D position of any detected markers in the capture volume, and provided ro-

bust tracking of the transformations of rigid “props” like the probe tentacle. Blade

relayed this data via Vicon’s proprietary streaming application programming inter-

face (API) to our main capture application, where we implemented our own pre-

dictive marker tracking solution for the less-than-rigid bodies of our experiment

participants.

1.4.2 Limitations

The most significant limitation of the V1 probe is the total system cost and com-

plexity. An accurate, real-time, 3D motion capture system costs tens to hundreds

of thousands of dollars. Full-body 3D scanners can cost hundreds of thousands of

dollars. Accurate multi-axis force sensors range from thousands, to tens of thou-

sands of dollars. Along with a powerful host PC, and thousands of dollars in re-

quired commercial software, these hardware components make for a system which

is prohibitively expensive to create, use, and service.

These cost and hardware restrictions also make scaling the system infeasible.

Only one participant may be run at a time, as the motion capture system consti-

tutes an open area which cannot be shared for privacy reasons. The motion capture

volume and body scanner are also immobile, requiring major effort to move, and

extensive set-up at any new location. This means that participants must be able to

travel to the laboratory to be tested, severely limiting both the number of available

participants, and the geographic region from which they may be pooled. Dupli-

cating the system in new locations would repeat the massive cost of a completely

new set-up, and would require significant work from technicians to replicate the

software environment and hardware connectivity of the original system.

Less serious limitations include convenience and duration issues. The system

requires each participant to partially strip, and to wear a set of markers which

must be carefully and professionally placed (this requires substantial practice). The

system also requires a full body scan, with the markers. Errors in motion tracking,

which we are fortunately able to detect, require the experiment to be paused and the
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participant to stand for re-identification of the tracking markers. These additional

steps beyond the core recorded touches introduce friction and use up time in the

experimental process, frequently leading to session times of 90 minutes or more.

This further limits the available pool of participants: in short, while individual

measurements are rapid, the sessions are neither quick nor easy.

Finally, we found that the optical data gathered from the probe’s trinocular vi-

sion system was of questionable quality. The high-resolution images tended to be

grainy and out of focus. We also had little control over values such as exposure

and frame-rate, which was typically 15 frames per second (FPS), and we struggled

with the camera’s lack of metadata output – for example, no accurate frame cap-

ture times were provided. The camera sensors were not well-seated inside their

housings, tending to point slightly off-axis, and the cameras themselves were also

notoriously unreliable, requiring frequent replacement. With this poor data, we

found that our optimization process struggled to match virtual flows on simulated

material to the real-world flow estimates our system generated, and generally re-

sorted to using the much higher-quality force/displacement data generated with the

probe’s force sensor and the motion capture system.
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Chapter 2

Methods

2.1 Probe Hardware
The probe itself is, of course, central to the project, providing the core data collec-

tion and experiment control capabilities of our system. Experimenters operate the

probe through its touchscreen, and take measurements by gently pressing the prob-

ing tip into a participant or material sample. Results, including estimates of the

forces exerted through the flexure, are generated in the cloud before being returned

to the device, and displayed on the screen for experimenters to check.

Modern smartphones offer a wide variety of sensors and capabilities, including

high-resolution multi-touch screens, high-speed internet over WiFi and 4G, very

high-fidelity imaging through two or more cameras, accurate orientation sensing,

GPS location, and, in newer devices, inside-out SLAM (typically used for aug-

mented reality (AR) applications). They are perhaps the densest, best-value sensor

suites available today, and are widely used and understood. We opted to use one

in the probe to make the most of these capabilities. The probe is built around a

consumer Android smartphone – we use a Samsung Galaxy S81, but only require a

modern Android device with a back-facing camera, running our capture application

(Section 2.5.1). Where the original SkinProbe (Section 1.4) used push-buttons, an

electronic force/torque sensor, host PC, and external motion capture system, this

new device contains and requires no electronics other than the smartphone – the

1https://www.samsung.com/global/galaxy/galaxy-s8/
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Figure 2.1: CAD model of the SkinProbe 2.0 device.

device is operated through its touchscreen, and relies solely on the back-facing

camera for data capture.

A 3D-printed frame securely holds the phone, and provides mounting points

for attaching the flexure and ergonomic handgrips (Figure 2.1). The frame also

serves to allow mounting the device in the robotic automation rig, which we use for

automated data collection (see Section 2.3). The probe’s force-sensing flexure is

fitted to the back of the device, attaching to the frame (Figure 2.2). The orientation

of the flexure is adjusted relative to absolute normal by mounting it indirectly,

on slanted angle adaptor pieces. We position the flexure to make it substantially
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Figure 2.2: SkinProbe 2.0 rear, showing the frame, flexure mounting, and
hardware attachment points.

visible to the phone’s back camera, while not completely taking over its field of

view. The various mounting points along the frame allow for adjustment of the

flexure position, with further fine-tuning achieved by varying the flexure and angle

adaptor designs.

2.1.1 Flexure

The probe’s flexure serves both to provide contact with the participant’s tissue,

and to translate the applied force into visible motion, detectable by the probe’s

main camera. We fabricated the flexure with a combination of 3D printing and

silicone resin casting: the rigid, printed pieces serve as the probing shaft and frame;

the silicone cross-bars connect the rigid pieces, and provide repeatable deflection

behavior under force (Figure 2.3). We use some novel techniques to combine the

silicone and printed plastic, made possible by our use of an Ultimaker 32 dual-

extrusion printer (Ultimaker, Utrecht Netherlands).

The Ecoflex3 00-50 silicone rubber (Smooth-On Inc., Macungie PA) we se-

lected for the flexure was chosen for its near-perfect elasticity and remarkable

durability. We observed no plastic deformation on the silicone parts of the flexure

2https://ultimaker.com/3d-printers/ultimaker-3
3https://www.smooth-on.com/product-line/ecoflex/
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(a) No load (b) 4N normal load

Figure 2.3: Side-on view of probe flexure under no load, and under 4N load.

Figure 2.4: Probe flexure force-displacement behavior in the 0-4N range,
with a 3mm/s contact speed. The lower line – where the plot loops
back – shows some hysteresis, where the material takes some time to
recover after being strained.

after tens of thousands of touches on our automation rig, with forces ranging up to

3 Newtons; however, we did observe plastic deformation after exposure to higher

force levels (this is discussed further in Section 3.1). Additionally, we found that

using this silicone yielded a flexure force-deflection response with a near-linear

trend, and low hysteresis (Figure 2.4).
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Single-Piece Fabrication

We developed a process whereby flexures are fabricated with a single 3D print, us-

ing integrated single-use mold pieces which are broken away after silicone casting.

These mold pieces are made with Ultimaker Breakaway Material4, which forms a

mechanically breakable, but watertight bond with polylactide (PLA) plastic. We

also use this material as removable support for the flexure’s complex geometries,

which is its original purpose. The silicone resin is poured directly into the printed

part, through removable “risers” which allow resin ingress and air egress. Once the

silicone has set, we remove the breakaway material. This conveniently leaves sili-

cone areas with dimensions defined in our 3D design. We do not rely, for example,

on accurately pouring the resin up to a level. It also removes the need to cut away

leaked resin, which we found was a problem with rigid 3D-printed molds, where

small gaps allowed the resin to leak from the part. Finally, this method simpli-

fies the process of designing the molds, as it only requires defining a thin shell of

breakaway material around the silicone volumes, rather than separate, solid molds

which can be attached and removed intact.

Silicone does not adhere to 3D printed plastic parts when cast in contact with

them, and in fact will not adhere at all to most materials. This is an attribute which

makes it ideal for mold-making, but difficult to work with for our purposes. It also

cannot be glued with standard compounds. We opt to mechanically join the silicone

with our prints by integrating rigid 3D lattices, which the silicone resin flows into

and around before curing, forming a multi-layered mechanical joint. We generate

these lattices using Ultimaker’s Cura 4.25 3D printing slicer software, by setting

the lattice volumes to print with no solid walls, and with an “infill” of parallel lines

at alternating angles per-layer. These lattices are shown in the slicer in Figure 2.5a,

and during a print in Figure 2.5b. They are completely obscured by the silicone

post-curing (Figure 2.5d). Note that neither the dual-material breakaway mold

design, nor the complex 3D bonding structures would be possible with traditional

manufacturing techniques.

We calibrated the design of the flexure through rapid prototyping and iteration,

starting with an initial concept where we used a simple strip of flexible 3D-printed
4https://ultimaker.com/materials/breakaway
5https://ultimaker.com/software/ultimaker-cura
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(a) Slicer cutaway (b) During printing

(c) Silicone casting (d) Post-processing

Figure 2.5: a) A cut-away view of the flexure in Ultimaker Cura 3D print-
ing slicer software. Note the visible lattice areas in black plastic, and
the white breakaway material. b) The flexure during printing, again
with lattice structures and white breakaway material visible. c) Sili-
cone ready for casting into risers. d) The breakaway mold material is
removed after casting and curing, revealing the set silicone cross-bar
(blue material).
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plastic. Our final design provides some accommodation in all three axes of motion,

and though we do not currently take advantage of this capability, we believe this

will allow us to extract 3D force estimates in the future.

2.2 Estimators
Recall that two bespoke regression models are used in our system: the force es-

timator, which provides per-frame force estimates in Newtons, and the material

estimator, which provides the final estimates of the physical material properties.

The overall flow of data from raw video to material estimates is depicted in Fig-

ure 1.3.

We split the estimation pipeline in this way for several reasons. Force estima-

tion allows us to impose constraints on the data. We can, for example, ensure that

touches exceed a useful level of force for parameterizing the material. It acts as

a kind of domain knowledge injection – we know that force estimation is at some

level necessary for the task – and also allows us to perform frame selection for

two-frame (rather than video sequence) optical flows, which keeps the individual

models as simple feed-forward networks, and reduces the dimensionality of the in-

put data to the material estimator. Given enough training data on handheld touches

with human skin, we could expect a recurrent model, like a long short term mem-

ory (LSTM) network, to regress material properties directly from a video sequence

of optical flow fields and corresponding flexure images. This is an appealing so-

lution, but acquiring a sufficiently large sample of this in-distribution training data

(and labeling it accurately) would be a huge undertaking. A single two-frame flow

“image” between two points in a touch is far more constrained than the flow se-

quence from the full video of the touch, and our hope is that this allows robotically-

collected data to be closer in distribution to the same data collected by an unsteady

human hand.

The best-in-class results achieved on image-based tasks by other authors lead

us to use CNNs as our regression models, for both force estimation and material

property estimation. Both of our models have broadly similar structures and train-

ing methods, with minor tweaks for each task. We also apply some limited data

augmentation, which we found improved robustness in practice.
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Our models stack several convolutional layers, with each layer’s output chan-

nels fed to the next layer’s inputs. We apply max-pooling [3] between the layers,

which is a common technique for improving the robustness of vision models, and

has the added benefit of reducing the working set size with each layer. We ap-

pend several fully-connected layers in an architecture resembling LeNet [20], with

successively shrinking layer sizes collapsing down to the required output dimen-

sionality – 1× 2 for the material estimator, 1× 1 for the force estimator. We use

rectified linear unit (ReLU) activations on each layer, a standard choice for DNNs,

and train with mean squared error (MSE) loss, another common choice for re-

gression models. Our models are trained and run using PyTorch6, utilizing GPU

acceleration.

2.2.1 Force Estimator

The force estimation network generates the intermediate force estimates f̂îfîfi, which

are used for frame selection in the overall pipeline. The estimates for the selected

frames are also input to the material estimator.

The force network accepts a cropped, normalized, 286×527 grayscale image,

and inputs this directly to its convolutional stack. We use 3× 3 kernels and 2x2

2D max-pooling, expanding to 16 output channels in the first layer and dropping

to 4 in the third and final convolutional layer. The output of the final convolutional

layer is flattened to 1× 8704, and fed into the network’s fully connected layers,

which run 3 deep and output a lone 1×1 normalized force estimate, representing

the normal force applied to the flexure. We settled on these layer sizes and depths

by trial and error, finding that new or larger layers did not improve the results, but

did slow down training and evaluation times.

We expect the convolutional layers in the force estimator to act as powerful

feature detectors, identifying elements in the images (and on the flexure) such as

corners and boundary lines, with the layer outputs consisting of stacked 2D fea-

ture maps. We then expect the first fully-connected layer to focus not just on the

magnitude, but on the location of feature activations in the convolutional output

channels, with subsequent layers non-linearly regressing these feature movements

6https://pytorch.org/
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into the normalized output forces. In essence, we expect the network to learn to

track notable features on the flexure across the images, and use the positions of

these features to infer the forces applied to the flexure. It is also reasonable to ex-

pect the network to identify image features which appear or disappear at certain

force levels, such as specular highlights on the flexure shaft or silicone sections, or

specific patterns on the silicone surface as it deforms.

2.2.2 Material Estimator

Recall from Section 1.2.3 that, from frames of video xi, we select contact and pres-

sure frames xc and xp, and, with the material model, estimate a material parameter

vector m̂̂m̂m using the optical flow between the two frames:

m̂̂m̂m =

[
µ̄

L0

]
= matModel(flowNet2(xc,xp))

The selection of these contact and pressure frames runs as follows. Given the

estimated input forces f̂îfîfi, the selection process picks the first of several consecutive

frames where the estimated force magnitude has passed a manually chosen thresh-

old value. With a window size of w frames, contact force threshold Ftc and n total

frames in the touch, the chosen contact frame index c is:

c = min{i ∈ 0 . . .n−1 : ‖ forceEst(xi+ j)‖< Ftc∀ j ∈ 0 . . .w−1}

With corresponding force estimate f̂ĉfĉfc = forceEst(xc). The subsequent pres-

sure frame index p is selected similarly, with Ft p. We set our threshold values at

Ftc = 0.15N,Ft p = 1.5N, thus selecting frames xc and xp for flow calculation. We

calculate an optical flow estimate using FlowNet2 for these frames (from xc to xp),

and input this flow Ô, along with the contact and pressure force estimates f̂ĉfĉfc and

f̂ p̂f p̂fp, to the material estimation process.

We crop the generated flow to a 2×120×120 region around the contact point,

a fairly small area in the overall image space which displays the most obvious sur-

face displacements, and input this to the convolutional stack at the “start” of the

material estimator network. We apply a large 5×5 convolutional kernel in the first

layer, reasoning that features are fairly sparse in the smooth flow image. The sub-
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sequent two layers apply standard 3×3 kernels. All three convolutional layers use

2×2 2D max-pooling, and we use fairly limited channel counts of 8, 6, and 4. The

final convolutional output is flattened and passed through the first fully-connected

layer (as in the force network), the output of which is then concatenated with the

normalized force inputs. With all inputs accounted for, we gradually reduce the

layer size through 4 more fully-connected layers to the final 1×2 normalized ma-

terial parameter output. We normalize to avoid prioritizing the loss of one param-

eter over another – the scaling of µ̄ estimates in natural units is over 100× greater

than L0. As in the force estimator, we use ReLU activations throughout.

2.2.3 Training

While neural networks with different overall structure and size perform differently,

and are suited to different tasks, a newly-initialized network of any design will

generally perform no better than random at its intended task. This is because the

parameters, typically “weights” of the various connections in the net, must be tuned

from a random initialized state to produce the desired behavior. This tuning is

referred to as “training,” and is analogous to training a person or animal to perform

a task.

In the standard supervised learning paradigm7, training a neural network in-

volves repeatedly applying the network to its intended task using some set of

“training data,” and calculating a “loss” (essentially, the difference) between the

desired results – the “ground truth” – and the network’s output. Training aims to

minimize this loss, and typically this is achieved through backpropagation. Back-

propagation calculates a gradient for each learnable parameter in the network with

respect to the loss, allowing an optimizer to be applied which “follows” these gra-

dients to a greater or lesser extent. Some or all parameters are tweaked by a small

amount with each update, in the direction indicated by the back-propagated gradi-

ents. Most training optimizers provide a user-tunable “learning rate,” a so-called

hyperparameter which adjusts the step size for tuning. Many optimizers provide

additional hyperparameters, which alter their behavior in other ways.

Training is a time- and resource-intense process, with significant computational

7Other types of unsupervised training are possible, but are not directly relevant to this project.
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requirements for both the forward and backward passes through the network, scal-

ing with the network’s size. Each set of updates utilizing all examples in the train-

ing set is referred to as an “epoch.” A network may need hundreds, thousands,

or even millions of epochs of training before its performance is optimal, and even

then, it may perform poorly on real-world data for any number of reasons. A net-

work may overfit to its training data, learning to recognize specific training exam-

ples or spurious noise rather than the “real,” relevant information contained in the

data. More general out-of-distribution (OOD) data issues can also occur, where the

distribution of the training data does not properly match up with that of real-world

test data.

As long as new training data is in-distribution, increasing and diversifying

training datasets for neural networks has been observed to monotonically improve

their real-world performance [42]. This drove our desire to capture large amounts

of training data with reliability and repeatability, leading to the automated capture

solution discussed in Section 2.3. We use this system to capture all of our training

data for both models, and much of our validation data.

Dataset Processing

Storing, loading and utilizing large datasets for machine learning presents several

difficulties. We currently store half a terabyte of training data on Amazon Web

Services (AWS) Simple Storage Service (S3), and have encountered limits on disk,

system memory, and GPU memory. We bypass these limits with custom dataset

caching and loading classes, which cache requested data from S3 to local storage,

unpack the data as needed, and support loading this data as PyTorch tensors. These

tensors can then be moved into GPU memory for training or inference.

Our dataset loaders support several useful features:

• Checking the local hard drive cache, and only downloading missing or in-

complete files.

• Partial dataset loading – request specific recordings, and only those record-

ings will be downloaded and loaded into memory.

• Lazy loading – on memory constrained systems or very large datasets, data
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may be loaded from disc as needed, not kept in system memory.

• Unpacking mp4 video files to png images with ffmpeg8.

• Storing, loading, and displaying Middlebury-format optical flow flo files.

• As-needed optical flow and force estimate generation, starting and commu-

nicating with the cloud GPU machine as needed to obtain these estimates.

We use the same dataset loaders for local training and for live inference in the

cloud, providing don’t repeat yourself (DRY) guarantees that data will be loaded

identically for training and “production.” We also perform some limited data aug-

mentation dynamically in these loaders.

Several other critical parts of the overall pipeline are implemented by the dataset

loaders. This includes: the force-based frame selection logic discussed above;

normalization and de-normalization of forces and material parameters for inputs,

training targets, and outputs; image and flow cropping; data augmentation; and

data selection (e.g. checking the minimum force was hit).

Force Training Data

The training data for our force network is captured by the robotic automation rig,

discussed in Section 2.3. The data consists of the individual video frames from a

series of touches on a rigid plate (Figure 2.6), with randomized target depths in

the normal axis, and skew motions in the off-normal axes. Typically these training

datasets number a few hundred touches, with tens of thousands of frames (each

frame is a training example). This corresponds to just a few minutes of video at 30

FPS, but we found this was more than sufficient. Validation datasets are separately

captured, with much the same programming and with the same hardware setup, but

fewer touches – generally 30-50 touches, with 1000-2000 frames.

One of the difficulties with training and using DNNs is the unexpected behav-

ior they can display, especially when testing with data slightly outside the training

distribution. We found that while the probe’s smartphone torch provided extremely

consistent lighting in the flexure images, our initial force models were extremely

8https://ffmpeg.org/
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Figure 2.6: Rigid force training plate, with various shaded patterns to create
a variety of backscattered lighting effects on the flexure.

sensitive to the effect of backscattered lighting changes – that is, changes in the

albedo and texture of the material being probed. An especially bright or dark mate-

rial would reflect light from the torch back on to the flexure, and could significantly

bias the resulting force estimates: in fact, when training on the material phantom

tray, the force model learned to directly correlate the brightness of reflected light

to the output force. Bringing the probe closer to the surface increased the inten-

sity of backscattered light, and the probe’s proximity to the surface was roughly

proportional to the level of force applied. We countered this unexpected ingenuity

on the network’s part by adding patterns to the force plate, which create a variety

of backscattered lighting conditions when the plate is touched in different areas.

We also made the input images grayscale, to prevent any dependence on the mate-

rial’s hue, and augmented the data with additive lightness variations across whole

images. The model was then able to predict accurately on materials of different

colors and patterns.

Another issue arose when we tested the force network after removing and re-

mounting the flexure. This resulted in a small shift in the flexure’s position in

the image, moving the feature locations on which the network relied to make its

predictions. Testing the force predictions under this scenario resulted in signifi-

cant mis-predictions, and a massive increase in average loss. Given that the shift
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was small, and given that stationary features existed in the images (the flexure

frame), we reasoned that the network should be able to learn to recognize the rel-

ative position of the flexure shaft, and infer the force from that. This would make

the estimates invariant to small relocations of the flexure in the image after be-

ing jogged out of alignment, or re-mounted. We achieved this with another layer

of data augmentation, shifting and rotating the images by small, random amounts

before cropping to the shaft area. This augmentation scheme draws heavily from

the random-cropping augmentations used to great effect in CNN image recognition

tasks.

Material Training Data

Our material model training data is captured by the automation rig, in much the

same way as the force training data. However, rather than touching the rigid force

plate, we touch the phantom material samples – silicone slabs of variable thickness

and stiffness, mounted in the phantom tray (see Section 2.3.2). In contrast to the

force data, where every frame of video is a training example, each material example

consists of a complete touch. So, to obtain the thousands of examples necessary for

training, we have to collect videos of thousands of touches, making these material

datasets comparatively large in terms of raw storage.

As discussed in Section 2.2.2, the actual inputs to the material network consist

of a cropped optical flow between two selected frames from a touch, and the force

estimator’s output for those two frames. The training targets are also provided by

the material dataset loader, and are drawn from material data gathered ahead-of-

time on the phantom tray.

We obtain L0 ground-truth data directly from our CAD models of the tray, but

estimating µ̄ requires some additional work. Using a rigid probing shaft (Fig-

ure 2.7a), we sampled accurate force-displacement curves at small intervals across

each phantom’s surface, with repeated touches at each point. For each location,

we then estimated the initial slope of this force-displacement curve – the slope at

contact – by fitting a line to a short post-contact region in the aggregated data. This

involved thresholding the force magnitudes to identify points between contact and

a low target force (Table 2.1), and cropping the data to this region. We then ag-
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(a) Rigid material probing shaft (b) Samples obtained with the rigid shaft – µ̄ estimates
are derived from these

(c) Parameterization of the material phantoms, including µ̄ and L0

Figure 2.7: Capture apparatus, sampling results, and final parameterizations
for material ground-truth data
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Point Force threshold

Contact 0.02 N
00-10 target 0.15 N
00-30 target 0.2 N
00-50 target 0.3 N

Table 2.1: Threshold forces for phantom µ̄ measurement for the different
phantom materials

gregated cropped data from multiple repeats at each location, and fitted a line to

this multi-sampled point cloud. We took the slope of this line as µ̄ for the location,

with units in N/m. Figures 2.7b and 2.7c show the sampled forces, and resulting

parameterizations for each phantom.

Returning to captures with the probe, a primary concern of ours when captur-

ing the material training data was accounting for the differences between robotic,

on-rails motion of the probe and the more fluid, unsteady human-held motion dur-

ing actual experiments. Our solution is straightforward, and ties into the choice of

a two-frame flow for our data – we simply randomize the direction of the probe’s

movement vector post-contact, within reasonable bounds, in the x and y axes. Ig-

noring hysteresis and other time-varying effects (like motion blur, which should be

minimal), we reason that the optical flow between two points of a random walk –

as in unsteady handheld movement – should be nearly identical to the flow between

those same two points in a robotically linear motion. We additionally randomize

the contact speed of the touches.

The touches are otherwise straightforward. We continue pushing into the ma-

terial up to a target force of 3N, quickly retract, and pause to stop any material

hysteresis affecting subsequent touches (especially on the softer 00-10 phantom,

which displays significant hysteresis). Samples of the material are distributed ran-

domly along the x and y axes, and we perform the same number of touches (typi-

cally 1000-2000) on each of the three phantoms. We capture validation and testing

datasets in the same way, simply reducing the number of touches to 200 per mate-

rial.
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Training Methodology

We trained our models on a local workstation equipped with an Nvidia GTX Titan

X GPU, and packaged and uploaded our trained models to S3 upon completion.

Both the force and material models were trained with similar techniques, using our

custom data-loading code to formulate the raw video and force readings, captured

by the automation rig, into usable input and target output data for training. Each

instance of either network was trained with a particular, named, dataset and val-

idated on another named dataset, usually much smaller and captured in the same

way as the training set.

Our models were trained up to an epoch limit, which we varied based on each

network’s convergence rate. The material net was trained with relatively little data,

and continued to converge over thousands of epochs, while the force network was

trained with tens of thousands of examples, and converged in dozens to hundreds

of epochs. We randomized the order of training examples in each epoch. We

found that the networks converged well with a mini-batch size of 32, which is

fairly standard in the literature. After each epoch, we ran the network (forward

pass with no backpropagation) on the validation dataset, obtaining a loss score

which we recorded and compared to the training session’s best (lowest) score. We

saved the network state whenever the best score was “beaten,” and re-loaded this

gold-standard network state at the end of training. This avoided the problem of

worsening validation loss towards the end of training, as the networks overfit to

their training data.

Packaging and uploading the trained networks involved naming them (usu-

ally by the training dataset, structure, and epoch count), gathering relevant meta-

data (such as normalization parameters), and uploading the meta-data and PyTorch

state dict for the network to a models directory on S3. A model’s state

dictionary holds its trainable parameters, including the all-important connection

weights.

We used the Adam optimizer [16], and found that learning rates of 5e-4 on

the force network, and 1e-3 on the material network worked well for our tasks. We

experimented with variable (during training) learning rates, with exponential decay

and stepped functions, but found little success. We subsequently reverted back to
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fixed learning rates, to reduce complexity and avoid them as a potential source

of confusing errors. We also found that standard regularization techniques, such

as batch-norm and dropout, tended to yield worse results. Dropout in particular

appeared to completely prevent convergence in our tasks, so we stopped using

these techniques.

2.2.4 Optical Flow Generation

As discussed in Section 1.2.3, optical flow is a high-level feature derived from

image sequences – usually, image pairs – and describes the apparent motion of

objects from one frame to another in 2D image space. Estimating flows given an

image pair is a computationally difficult problem, especially when dealing with

large displacements and with real images (which have artifacts like specular high-

lights) [18].

We generate optical flows for image pairs in the captured video of participant’s

skin, and these flows necessarily encode both the motion of the probe relative to the

participant, and the deformation of the participant’s tissues under contact. These

separate but related forms of motion are left coupled – we leave the interpretation

of the signal up to our material estimator network.

Our use of flows rather than the images themselves (or raw image pairs) is jus-

tified by a desire for robustness, and careful consideration of the problem. We do

not believe that the texture and color of human skin is the most useful indicator of

its (or the underlying tissue’s) mechanical properties, and even if it were – say, by

indicating the participant’s age – we cannot expect to capture any relevant corre-

lations when generating training data with our tissue phantoms. To do so would

require advance knowledge of those correlations so that we might encode them in

the phantom designs, and such knowledge could only be established using a system

like the probe we are developing; a catch-22. Trying to capture this variation would

also greatly expand the necessary range of tissue phantoms we had to develop, and

the amount of training data we would have to collect for each probe. Finally, it

would run the risk of introducing problematic bias – a tattooed participant would

very likely display textures and colors outside the distribution of any conceivable

training set, leading to (perhaps dramatically) incorrect estimates.
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Ultimately, we hypothesize that the most relevant information for visually de-

termining a soft material’s physical properties is in its deformation, and we encode

this belief into our system by the use of optical flows.

We use a publicly available9 Tensorflow10 implementation of FlowNet 2 [14], a

cutting edge optical flow estimator, which is itself a particularly large and complex

CNN regression model. We use pre-trained weights for this model, and run it

alongside our own models on our cloud virtual machine. We do not modify or

“fine tune” the model in any way, using it off-the-shelf.

2.3 Robotic Data Collection
Training a DNN from scratch, through back-propagation, requires a very large

amount of labelled data, often thousands to millions of examples for robust perfor-

mance. The amount of training data required for a Computer Vision task can often

be reduced by using a “pre-trained” network, either in whole or in part, whose

parameterized weights have already been tuned for some difficult task, such as ob-

ject labeling in RGB images across hundreds or thousands of labeled classes. The

idea is that typical images are made up of patches of common textures, colors,

and shapes, and that a network trained on a widely-scoped task will necessarily be

capable of identifying these common features. Re-training, or “fine-tuning” these

networks to, for example, identify a different set of objects that those it was origi-

nally trained for, is far more tractable than the original training task working from

randomly-initialized weights. For example, a DNN trained to recognize cars would

have little trouble learning to recognize semi trucks: low-level texture features such

as the presence of smooth body panels, asphalt road surfaces, and different types

of skies in the images would often be present in both classes of image; higher-level

features like tyres, grilles, and window panels could also be shared, recognized in

the new dataset, and the mechanisms of recognition so reused.

The tasks we attack with DNNs bear little resemblance to these more traditional

image classification and interpretation problems. We operate on close-up images

of novel hardware, with a small, relatively fixed feature set, and 2D optical flow

9FlowNet2 Implementation: https://github.com/vt-vl-lab/tf flownet2
10Tensorflow: https://www.tensorflow.org/
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fields drawn from video footage of human skin. A standard image classification

network like ImageNet would have little to say on the configuration of our probing

flexure, and – as these pre-trained networks are often very large – would introduce

a heavy computational burden.

Our use of DNNs in our force and material estimation models therefore ne-

cessitates the collection of a large volume of data – data which, incidentally, may

vary qualitatively with each constructed probing flexure, and with each smartphone

model used to build the probe. Manual data collection is a laborious task, slow and

imprecise. Synthetic, software-generated data is another option, but comes with

caveats. Rendering images which properly cover the true distribution – images

which are, in other words, photorealistic, and calibrated to the properties of our

physical camera system – would be a research project unto itself, and would ad-

ditionally involve accurate physical simulation of the flexure and material under

examination. We opt instead to use the universe as our real-time “simulation,” us-

ing a robotic system coupled to a local server to reliably and repeatably generate

large datasets.

2.3.1 Hardware Design

The robotic “automation rig” (Figure 2.8) is designed to produce data containing

simple touches of some material sample(s) under consideration – typically a set

of silicone phantoms, discussed further in Section 2.3.2. A touch consists of po-

sitioning the tip of the probing shaft above the sampling location, pressing the tip

into the material (thereby applying some measurable force), and retracting. Force,

position and video data are captured in real time as each touch is carried out.

Our rig is based on a Force Dimension Delta 311 robot platform, which pro-

vides 3 axes of motion. The robot’s control libraries allow positioning the effector,

and applying forces in 3D cartesian space. An ATI Mini4012 force/torque sensor

provides precise ground-truth force readings, and the probe itself (Section 2.1) is

mounted on the robot’s end-effector.

We arrange this hardware with two 3D-printed assemblies: a “base,” which fas-

tens securely to the robot’s stationary frame, mounting the phantom tray (described

11http://www.forcedimension.com/products/delta-3/overview
12https://www.ati-ia.com/products/ft/ft models.aspx?id=Mini40
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Figure 2.8: The “automation rig,” with the delta robot platform, silicone
phantom tray, and mounted probe visible.

in Section 2.3.2) through the in-line force sensor; and the probe mounting, a sim-

ple structural addition to the robot’s end-effector, which facilitates fastening and

removing the probe. We fabricate these assemblies using the same Ultimaker 313

3D printer we use to fabricate the probe and flexure.

2.3.2 Tissue Phantoms

In lieu of a software simulation of human tissue, and without a human (or other

mammal) to confine in our data capture apparatus, we revert to the next best thing:

a set of silicone “tissue phantoms” (Figure 2.9), which attempt to mimic the soft,

viscoelastic behavior of human tissue, and cover a range of material properties –

mimicking, for instance, tensed or slack muscles; fatty belly tissues; or the thin

skin-on-bone found around the clavicle.

We use a small selection of different casting silicones, covering a range of

stiffness levels (Figure 2.10). These are Ecoflex14 00-10, 00-30, and 00-50 silicone

13https://ultimaker.com/en/products/ultimaker-3
14https://www.smooth-on.com/product-line/ecoflex/
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Figure 2.9: The assembled phantom tray. Silicone phantoms are incorporated
in order of increasing stiffness, from softest at the top to stiffest on the
bottom.

Figure 2.10: Two silicone phantoms cast outside the tray, demonstrating dif-
ferent levels of softness with variant resting configurations.
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Tray
Silicone

Figure 2.11: Cutaway view of a silicone phantom and its 3D-printed tray,
used for material model training.

Figure 2.12: Close-up of the phantom tray before silicone casting, showing
lattice base and removable (disposable) mold walls.

rubbers (Smooth-On Inc., Macungie PA), which we occasionally refer to as “S-10,”

“S-30,” and “S-50” respectively.

These silicone resins are cast directly into the 3D-printed “phantom tray,” which

additionally varies the thickness of the soft materials beneath a uniform surface

(Figure 2.11). This thickness then becomes one of the material properties learned

by our material estimator, and creates additional variety in the measured µ̄ stiffness

of the materials.

The phantom tray itself is designed with some of the same fabrication tech-

niques as the probe flexure, discussed in Section 2.1.1. The base of each phantom

volume is constructed of a dense, rigid, three-dimensional lattice of printed plastic

(Figure 2.12). This lattice provides an extremely robust connection between the
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Figure 2.13: Phantom tray during silicone casting, with mold caps installed.

silicone and the plastic tray, as the liquid silicone resin flows into and around the

lattice before curing. As with the flexure, the walls of the casting volumes are made

of disposable breakaway material, which is printed as an integrated part of the tray

with an Ultimaker 3 dual-extrusion printer. The walls are broken away post-curing,

leaving a smooth finish, and well-defined geometry for the phantoms. We ensure

the top surface is perfectly level (and that the phantoms display some surface tex-

ture) with printed “cap” pieces for the molds, which slot in once the silicone resins

have been poured (Figure 2.13).

2.4 Automation Server
The automation server operates and monitors the automation rig. This involves

controlling the robot, reading values from the force sensor, remotely operating the

probe’s smartphone application, and providing a web-based graphical user inter-

face (Figure 2.14) for user programming and control of automated capture sessions.

The architecture of this system is built around a custom Python Flask15 server

which provides API endpoints: these endpoints activate the server’s various capa-

bilities, can be polled for the system status, and generally provide the “back-end”

functionality of the user interface. We run high-performance robot and force sensor

data acquisition in background C/C++ threads, which interface with our Python

15Flask documentation: https://flask.palletsprojects.com/en/1.1.x/
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code.

2.4.1 Automation Programs

Automated recording sessions generate large numbers of recordings with our au-

tomation hardware, with limited or no user interaction beyond initial programming.

To program the system, the user creates an “automation script,” which controls the

robot and probe – we discuss the functionality of this scripting system here.

Automation scripts are entered, edited, and run from our web UI. The scripts

themselves are sent to the automation server for execution.

Recordings are grouped into named “sessions,” and can be tagged individually

with arbitrary metadata. Automated recordings hold not just the probe’s videos,

but also high-frequency measurements from the force-transducer, and calibrated

position readings from the robot.

The programming of our automation system is built around Python scripting,

which provides a familiar and exceedingly powerful environment for generating

commands. It provides the ability to generate commands in loops and other high-

level structures, and the ability to use Python’s vast selection of libraries. The

ability to use numpy proved particularly useful, as we are working primarily with

numbers and vector positions. We can, for example, target random locations within

a defined range by simply using numpy’s random number generation facilities.

Our scripts are written with special functions which emit commands for the

automation server to execute through its sequential controller. We summarize the

available commands in Table 2.2. These commands are collected into a complete

sequence when the script is first run – that is to say, the entire program is executed

ahead of time. We structure the programming this way – as opposed to dynamic

scripts, which might be able to read and respond to the system state – as it allows

us to perform basic correctness checks on the scripts before execution. If any part

of the script produces an error (such as a divide by zero), the script fails to run,

whereas a dynamically-executed Python script would only fail when it reached the

point where the exception was generated. Since these automation programs can

take several hours to run, a failure part way through (or at the end!) of a program

would be a frustrating waste of our researcher’s time. This structure also allows us
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to perform more high-level correctness checks: for example, we can guarantee that

all start record calls are matched by a stop record call. Finally, having a

fixed-sized list of commands for each execution run allows us to display a progress

bar, and a completion time estimate.

Python is a fully-fledged scripting language capable of, among other things,

full filesystem access. When combined with the fact our scripts are entered through

a web interface, this represents a potential security issue, as the scripts are executed

remotely. We mitigate this by exposing the server only to the local network, and

by requiring username and password authorization to access the UI, and all API

endpoints.

There are some features here worth discussing, which go beyond the basic

record/move/sleep commands. We use await input to create partially auto-

mated scripts, where the user may move the probe manually for some recordings,

or where the material tray or flexure should be swapped out (or any other aspect of

the hardware manually reconfigured). We use this in combination with enable

and disable motors to move the probe to a target location, then allow the user

to disengage the motors and start a recording with one press, before re-engaging

and finishing the recording with a second press. We make extensive use of the

ability to move up to a force limit, which helps keep data consistent, and prevents

damage to the flexure and phantoms by limiting maximum strain.

2.4.2 User Interface

Our web-based user interface (Figure 2.14) features a live readout of various met-

rics direct from the automation hardware. The interface is a HyperText Markup

Language (HTML) webpage, accessed via a client browser. The page is served

directly by the Flask application. We built the interface with Bootstrap user inter-

face elements, and poll with asynchronous JavaScript and XML (AJAX) requests

to load live data. The interface allows the user to monitor the robot’s position – the

position of the flexure tip, assuming no deflection – and the force being applied to

the material tray.

The user can monitor the robot’s position through direct numeric readouts,

which show both the raw robot-space position, and calibrated phantom-space po-
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Command Function

start session(s) Start a new session, named s. Recordings started
after this command will be grouped under this
session. Must be matched by a subsequent
end session call.

end session() End the current session, packaging and uploading
the recorded data to S3.

start record(m) Start a new recording, attaching the provided
metadata object m – typically a Python dictionary,
which must be serializable to JSON. Must be
matched by a subsequent stop record call.

stop record() Stop the current recording, holding while data is
saved and video is uploaded.

sleep(t) Stop processing new commands for t seconds.
move(p[,s[,t[,f]]]) Move the robot to phantom-frame position p with

speed s. The command (but not necessarily the
move) ends when the robot is within threshold
distance t of the target, or normal-force f is ex-
ceeded.

sync() Synchronize the server and smartphone clocks,
obtaining a new ∆t measurement as described in
Section 2.5.1.

bias() Bias the force sensor readings to a new zero-
point.

set headless() Disable smartphone recordings. Used for
material force-displacement measurements for
ground-truth data.

mute() Disable saving and upload of any data (outputs a
warning). Used for developing and testing scripts.

await input(m) Display a message m and wait for user input – the
user may click “Continue” in the UI, or “Go” in
the app to continue execution.

enable motors() Enable the robot’s motors.
disable motors() Disable the robot’s motors.

Table 2.2: Control commands available in our Python automation program-
ming environment, and their functions.
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1

2

3

4

(a) Direct monitoring and control elements. 1) Interactive 3D visualiza-
tion of flexure tip position relative to phantom tray CAD model. 2) Position
transformation calibration (controls and results) 3) Live normal force graph. 4)
Direct system control - “regulation” enables or disables the motors, and move-
ment controls allow manually moving the robot.

1

3

2

(b) Programming controls. 1) Program execution controls, and program
save/load (on client machine). 2) Program execution progress bar. 3) Interac-
tive editor with syntax highlighting, multi-select.

Figure 2.14: The automation server’s web-based user interface.
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sition. The position is additionally displayed in an interactive WebGL view. This

view shows the phantom tray using its 3D CAD model, and represents the ide-

alized tip position as a small yellow marker with intersecting lines. These lines

extend out from the marker point to provide additional 3D reference for its loca-

tion relative to the phantom tray. The user can shift their view of the tray and tip

by rotating, panning, and dollying16 the virtual camera with mouse controls. Ad-

ditional markers serve as calibration points: if the reference and measured markers

overlap completely, the calibration is perfect (see Section 2.4.3 for more details on

the calibration process).

Forces are monitored in two ways: through direct numeric readouts, which

show both the raw force reading and a moving average; and through a live HTML

canvas graph, which shows only the normal component of the moving-average

force reading. This graph is scalable in the Y -axis, using the mouse wheel. We

found no existing JavaScript packages which worked well for providing this type

of live, scrolling view, so we developed a custom solution which is functional, but

basic. Our graph places one “reading” (response from the automation server) at

each screen pixel, which corresponds to an approximately 30-second long window.

The main issue with this approach is that slow or intermittent responses, which

can occur when the page is de-focused, will unpredictably and unevenly shift and

scale measurements in the time axis. It also means the graph cannot show high-

frequency changes: the sensor itself is polled at approximately 300Hz, but the UI

retrieves a moving-averaged force reading at only 15Hz.

Direct control of the robot is enabled through push-buttons in the UI. The robot

can be moved in small increments along each axis by adjusting its “target position”

(displayed above the position readouts) with the “+” and “−” buttons. It can also

be brought immediately to a safe position with the “home” button. Finally, the user

can completely disable the robot’s motors by switching off position regulation;

re-enabling regulation will cause the robot to hold its new position, so that the

end-effector can be placed by hand and left stationary.

16Dollying refers to moving a camera forwards and backwards along its line of sight. This is
distinct from “zooming,” where the field of view is changed on a static camera to enlarge or shrink
objects in the frame.
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2.4.3 Calibration

The Delta-3 robot’s proprietary control software calculates the cartesian position of

its end-effector by applying forward kinematics with its measured servo positions.

This is a helpful capability, which we rely on heavily, but we wish to obtain the

tip position (translated from the end-effector), and want this position relative to

the phantom tray. This makes the automation programs easier to write (with a

coordinate origin in the tray center) and more repeatable – re-assembling or re-

attaching the phantom tray mounting in a slightly different position should not

change the results.

Our calibration process revolves around measuring three fixed points X on the

phantom tray in the robot’s coordinate frame, which have known positions Y in the

phantom’s coordinate frame. For calibration points, we use the three bolts which

attach the phantom tray (or other material tray) to the force sensor assembly. A

rigid “calibration probe” may be used to manually register these bolt’s positions in

3D space by following these steps:

1. Replace the flexure with the calibration probe

2. Support the probe with one hand, and disable the motors using the

Regulate/Off UI control

3. Move the probe so that the calibration probe slots over the top bolt

4. Click Calibrate to mark the calibration point

5. Repeat steps 3 and 4 for the remaining two bolts, in clockwise order

6. Return the probe to a safe position, and re-engage the motors with

Regulate/On

When the three positions have been sampled, we automatically calculate and

save a new calibration. This involves constructing a transformation composed of a

rotation matrix R, and translation vector ttt. This transformation maps points from

the robot frame to our phantom frame. Let x̄ be the mean of the measured positions,
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and ȳ be the mean of the phantom frame positions. We can then calculate the trans-

formation, using the singular value decomposition (SVD) solution [27] to Wahba’s

problem to find the rotation matrix. Note that we weight all points equally:

B =
3

∑
i=1

(xi− x̄)(yi− ȳ)T

B =USV T

R =U [diag(1,1,det(U) ·det(V T ))]V T

ttt = ȳ−R× x̄

(2.1)

We can then transform any point x in the robot’s coordinate frame (such as

a position reading) to and from the corresponding phantom frame position y as

follows:

y = RT × (x−ttt)

x = R× y+ttt
(2.2)

2.5 Experiment Software
Our software runs during data capture sessions, facilitating the collection of sam-

ples in the form of video and raw data files. The probe runs our Android Appli-

cation, gathering and uploading video data, while a virtual machine in the cloud

runs a suite of server applications which the probe interacts with. Additionally, in

automated capture sessions, a local server runs our robotic automation rig (Sec-

tion 2.3), provides a web interface for controlling and monitoring these automated

capture sessions, and operates the probe via local WiFi.

2.5.1 Android Application

The Android application (Figure 2.15) runs on the probe’s smartphone, and serves

to capture the video data on which our material predictions are based. We oper-

ate the application in two ways: with standard touchscreen controls, visible in the
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Figure 2.15: Screenshot of the probe’s smartphone application, with the
phantom tray visible in the camera preview (the probe is mounted in
the automation rig). 1) Live camera preview. 2) Action button for par-
tially automated captures. 3,4) Session control buttons, for creating
new sessions and starting and stopping manual recordings. 5) Mate-
rial estimation results display. 6) Material estimator model selection
(spinner). 7) Phone system status: battery level and temperature.

screenshot; and remotely, through the automation server discussed in Section 2.4.

The application uploads captured videos directly to S3, and is additionally able to

issue commands to, and display results from the cloud server discussed in Sec-

tion 2.5.2.

Video Capture

We ensure consistent video footage for training and inference by manually setting

the camera’s exposure, focus, and color-adjustment values. We additionally enable

the flashlight for video recordings, which provides highly consistent lighting in our

images – within the 6cm the probe’s camera operates at, the flashlight drowns out

nearly all ambient light sources. We reduce exposure times to account for this,

which has the added benefit of reducing or eliminating motion blur artifacts. The

manually-set values we use are summarized in Table 2.3. We additionally set the

color transformation and color correction gains by reading out values from an auto-
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Preview Capture

FPS 30 30
Focus distance 55mm 55mm
Auto-focus No No
Auto-exposure No No
Optical stabilization No No
Video stabilization No No
Torch No Yes
Exposure time 10ms 3ms
ISO Sensitivity 1500 70

Table 2.3: Probe application camera settings17 for Samsung Galaxy S8 rear
camera.

corrected image taken with our other settings held constant.

Videos are recorded as 1024× 768 resolution mp4 files with a high quality

setting for compression, and no audio. We (optionally) upload the video files to the

current session’s directory on S3, and immediately remove them from the phone’s

local storage post-recording to avoid exhausting the available capacity. Uploading

requires a functional internet connection, using either mobile data or WiFi. Failed

uploads are re-attempted, and in automated capture sessions, no new recordings

will be made until upload has completed.

Automation

For automated capture sessions, the phone application maintains a background

TCP connection with the automation server over a local WiFi network, with an

additional layer of detection for dropped connections, and the ability to resend

dropped messages. Messages are exchanged in a simple JSON format, and consist

primarily of simple instructions for the phone from the server, and confirmation

from the phone that execution of those instructions completed. This confirmation

is necessary as some actions, like starting a recording, can take several seconds.

17Refer to Android Camera2 CaptureRequest documentation for additional information on
the meaning of these settings: https://developer.android.com/reference/android/hardware/camera2/
CaptureRequest
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We thus established robust, asynchronous communications between the phone and

server.

When operating in tandem with the automation server and robotic platform,

accurately recording the timing of image captures becomes essential. Even a small

delay could lead to images of the flexure and material samples being systematically

mis-labeled with force and position readings, which are recorded separately by the

automation server. To correct for this, we establish a precise time offset between

the phone and server system clocks, assuming similar latency in both communica-

tion directions. We calculate a time delta between the two devices by recording the

start time t0 on the server, requesting a timestamp tp from the phone, and recording

the response time t1, again on the server. The time delta is then:

∆t = tp− t0−
t1− t0

2

Where at any time t:

tphone = tserver +∆t

We repeat this process 200 times, and take the average ∆t . We found that the

clocks drift without frequent synchronization – on the order of 0.01s an hour –

and this drift can build up enough to affect synchronization of force and position

readings with individual frames of video. We avoid drift between the two clocks by

repeating this synchronization process frequently during longer capture sessions,

which can last 12 hours or more.

Operating a smartphone for extended periods is somewhat outside such a de-

vice’s intended usage, and presents its own difficulties. Recording video is an CPU-

and power-intensive task, and we found that the phone’s battery would often drain

despite being plugged in to the AC adaptor. Evidently, the adaptor did not provide

enough power alone, so the phone’s battery had to make up the difference. This

high power usage would, after some time, completely drain the battery, causing an

uncontrolled shutdown. It also created a secondary issue: power use in electron-

ics invariably translates to heat, and the phone’s overheat protection would throttle

CPU use and, eventually, shut down the device. We solved these issues in software,

by monitoring the phone’s battery level and temperature, completely disabling the
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camera whenever these metrics passed critical levels. This allowed the phone to

cool and/or charge until the metrics passed above a second set of target levels. The

application maintains a state machine with transition queueing to ensure that, for

example, starting a new recording is deferred until recordings are resumed, and

that the camera is not inadvertently disabled during an active recording.

Live Experiments

In a live experiment, the application’s role changes in several ways. A connec-

tion to the automation server is, naturally, no longer required, and the application

becomes fully controlled by the experimenter, through the touchscreen.

The experimenter can start a new “session,” and then make an unlimited num-

ber of recordings in each session. “Live” recordings are treated differently to au-

tomated ones by both the phone application and server suite, in large part due to

the lack of external sensing hardware – there are no force sensor or robot position

readings to store, and no automation server to synchronize with or send updates to.

Instead of the automation server generating and uploading a metadata json file

for each recording, as in automated touches, the phone application generates this

file. It includes accurate capture times for each video frame, and the start and stop

times of the recording. These files are uploaded individually, rather than packaged

in a zip archive as in automation sessions. Videos are uploaded as normal, albeit

to a different S3 folder.

Once each live touch has been completed (when recording is stopped), and the

resulting video has been uploaded, the phone application sends an HTTP request

to our cloud instance, demanding a new material estimate for the recording. The

request specifies the session, recording, and model to use to generate the results.

The model to use is selected by the experimenter through a drop-down UI, which

is populated by listing the available models on S3. The job request occurs on an in-

dependent background thread, which then continues to monitor the progress of the

material estimation job in the background, polling the instance with additional re-

quests. Multiple simultaneous requests are supported, whether from a single probe

device or many – jobs are simply queued by the instance, and several monitor-

ing threads may run at once within the phone application, though it may not be
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clear which set of results corresponds to which recording; currently, only one set

of results is displayed at a time. The application alerts the user when estimation

has completed (or failed) via a UI update. The resulting µ̄ and L0 estimates are

shown in the results display within the application (Figure 2.15) as soon as they

are available, and are also stored on S3 for later processing.

Older “live” recordings may be subsequently reevaluated on-demand using

newer, or different models. New estimates are indexed by the model used to create

them, not overwritten. This reevaluation is not currently possible from the phone

application itself, which provides no ability to browse or play back old recordings,

or to examine old results – however, these capabilities are perfectly feasible with

software updates to the application.

2.5.2 Cloud Server Suite

We perform live, GPU-intensive computations for the SkinProbe 2.0 system on an

AWS P3.2xlarge instance, which we operate on-demand. The instance per-

forms three main tasks: force inference, optical flow calculation, and material pa-

rameter estimation. The force and flow tasks are generally rolled into a material

estimation calculation – as discussed in Section 2.2, force estimates and optical

flow fields for a given recording are necessary for generating these final mate-

rial estimates. However, we split these tasks semantically so we can maintain the

capability to perform them separately. This allows us to test separately, and to au-

tomatically obtain force estimates and flows from the cloud instance for training.

The three tasks are split across two main systemd services on the instance,

with an additional service providing the public-facing API endpoints using Flask18,

and an automatic update service which runs at startup, pulling in new code. Finally,

we also run a standard Redis in-memory database on the instance, which we use

for high-performance IPC, with synchronous polling and robust queueing.

Workflow for Live Experiments

During a live experiment, the smartphone application communicates with the cloud

instance to obtain results. Upon receipt of a request for new material estimates,

18This service should not be confused with the local automation server, which also uses Flask
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the Flask server places the job (and its associated parameters) on a Redis queue,

and creates a new entry in the database representing the job’s status and results.

The PyTorch server, which synchronously19 polls from this queue, receives the

job and begins processing it. Meanwhile, the Flask server responds to the phone

application with a job ID, which can then be used in subsequent queries to monitor

the process status.

As discussed in Section 2.2, generating a material estimate involves first es-

timating forces applied throughout the video, selecting frames for optical flow,

generating that flow, and executing the material model with the flow as input. The

PyTorch service executes most of this process, communicating with the flow server

through Redis to trigger flow generation (the flows are then available on the local

disc).

Some implementation details complicate the pipeline we have previously dis-

cussed. As the video data is initially uploaded to S3, and is not immediately avail-

able locally, the server must download the new data, and unpack it to an image

sequence on the instance’s virtual storage – we achieve this using the same data

loading libraries we use for training and testing our regression models. The force

and material models requested for the job may also not be available locally; in this

case, they are dynamically loaded from S3, where they are stored in their fully-

trained state. When processing material estimation requests, which require both a

material and force model, the downloaded material model’s metadata then speci-

fies the particular force model to download and use for the force estimation step.

As only one pass through each dataset is required, we use our data loader’s lazy

loading ability to keep memory usage in check.

The optical flow service runs in a separate process to the material and force

estimation, and exists to operate the Tensorflow FlowNet2 model. It uses Redis for

inter-process communication in precisely the same way as the estimation service:

when optical flow pairs are required by the material data loader in the main esti-

mation process, a new flow job is posted to a Redis queue, requesting those flow

pairs. The flow service polls this job from its queue, loads the images from disc,

estimates the optical flow fields, and saves them back to disc in Middlebury flo

19In this context, synchronous means blocking. The PyTorch service waits idle until a job becomes
available on the queue.
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format. Once all pairs are processed, the flow service updates the job to indicate

that the results are available for loading by the estimation process.

After completing the estimation pipeline to obtain normalized results, we de-

normalize the results to real units using each model’s normalization parameters.

The generated force and material estimates are then gathered and stored on the

job’s Redis entry, and the job is marked as “complete.” We finally add the generated

estimates to the session’s estimates files, indexed by the model used to create them,

and (re-)upload them to S3. These files constitute a basic database of completed

estimates, which can then be downloaded for offline analysis.

Throughout the job’s processing, which takes several seconds, status updates

are written to the previously-created Redis database entry. These updates may be

read asynchronously by the smartphone – or any other – client by simply polling a

status HTTP endpoint with the job ID. The client obtains final results in the same

way – once they are made available on Redis, the generated estimates are returned

in the status response, for display to the experimenter through the smartphone ap-

plication UI.
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Chapter 3

Results

Here we outline and discuss the results of our work, analyzing the accuracy of

the probe’s flexure-based force estimation, and of the generated material results

for the synthetic tissue phantoms – the same phantoms used to train the probe’s

neural nets. We establish the prototype probe’s functionality under controlled con-

ditions, and with this limited set of materials, and further evaluate performance of

the system when probing is done by hand.

3.1 Force Predictions
The overall design of our pipeline for SkinProbe 2.0 means that accurate force

predictions are an important foundation for accurate overall results. Poor force es-

timates could add noise or, worse, bias to the final material estimates by leading

to incorrect frame selection – with a target of 1N, underestimating the force and

mistakenly selecting frames at a true applied force of 1.2N could lead to a µ̄ under-

estimate, as the observed deflection would be greater than at the levels the material

estimator was trained for.

We therefore tested the force predictor experimentally, to validate its perfor-

mance in isolation from the rest of the pipeline. We captured data for these ex-

periments using the robotic automation rig, generating probe touches on either the

rigid force-training plate, or the phantom tray. We programmed for touches with

various angles of attack, speeds, and maximum forces – these variables were ran-
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Loss (Newtons)

Dataset MSE (L2) MAE (L1) RMSE R2

Training 4.44e-03 0.0432 0.066 0.9977
Validation 2.74e-03 0.0359 0.071 0.9972
Test 5.08e-03 0.0422 0.069 0.9964
Soft contact 7.43e-03 0.0592 0.086 0.9931
Leather contact 1.03e-02 0.0791 0.101 0.9916
Guided handheld 8.90e-03 0.0655 0.094 0.9927
Freely handheld 3.75e-03 0.0426 0.061 0.9961
Post-stress 1.10e-01 0.229 0.332 0.9185
Post-stress corrected 6.04e-03 0.0492 0.078 0.9955
Post-stress retrained 4.81e-03 0.0409 0.070 0.9961
Leather in direct sunlight 3.24e-01 0.445 0.569 0.7676

Table 3.1: Force estimator network MSE and mean absolute error (MAE)
losses, root mean square error (RMSE) and R2 metrics. The losses and
RMSE are measured in Newtons, which the network outputs directly.

domized across the different samples. We further evaluate the model in handheld

usage, with “randomization” of touches carried out by the experimenter.

We summarize the accuracy of our force estimation results numerically in Ta-

ble 3.1, and expand on these results in detail in the remainder of this section.

3.1.1 Performance on Training and Validation Data

We first examine the performance of the force model on its own training and vali-

dation datasets. We plot individual touch recordings from the datasets for clarity -

note again that the force readings are calculated per-frame, so while some of these

plots run over time, each estimate is calculated independently.

The net performs well on its own training data (Figure 3.1), with 87% of the

training samples yielding predictions within∼ 0.1N of the measured ground truth.

This is not surprising – in fact, neural networks often over-fit to their training data,

picking up on artifacts and specific patterns which may appear there, but which are

absent in real-world data. We might expect the network to do better here than it

has, and indeed leaving the network to train does improve results on the training
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Figure 3.1: As expected, the force network predicts forces in its training set
extremely accurately; results of several consecutive touches are shown,
with different maximum depths (maximum force levels) and contact
speeds.

Figure 3.2: Performance of the ForceNet on its own validation dataset, which
is captured in the same way as the training set. The net is not trained
on this data, but the network state which performs best on this data is
selected. The results here very nearly match performance on training
data.
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Figure 3.3: Progression of the average per-item training and validation losses
while training the force estimator. Note the logarithmic y-axis. Training
loss continues to drop long after validation loss has plateaued, demon-
strating over-fitting – to counter this, we save and use the network which
performs best on validation data.

set to the point of near-perfect accuracy (Figure 3.3). Since we save the network

during training at the point it performs best on its validation data (which may occur

relatively early in training), this effect is not seen in these results – performance on

the training data is imperfect. We show how the network performs on its validation

data in Figure 3.2.

In fact, comparing the MAE for training and validation data shows that this

particular network performs better on its validation set than on its own training set,

with 0.0432N MAE for training data, versus 0.0359N for validation data. 91% of

validation data predictions fall within 0.1N of the ground-truth.

This improvement over training data performance is slightly surprising, but is

perhaps explained by outlier predictions in the training set. It seems that fewer such

“difficult” cases appear in the validation set, which is far smaller, and which may

simply miss these types of outliers by chance. Another explanation is stochasticity

in the validation performance – examining the loss graph in Figure 3.3 shows that
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Figure 3.4: Performance of the ForceNet on an unseen test dataset, which
was captured in the same way as force training and validation data. The
net was not trained or validated on this data.

the validation loss fluctuates noisily, even long after it plateaus. If the performance

happens to peak at an early point (while training data performance is still worse),

this network will be saved and kept. In this case, the network would be over-fit to

the validation data.

3.1.2 Performance on Test Data

The force network also performs well on test data – data not seen in any way during

training1 – with some caveats as our test data moves away from the distribution of

training and validation data. This first test set is a small collection of rigid plate

touches, captured in the same way as the network’s validation data. We show the

network’s results on this data in Figure 3.4.

The network accurately tracks the overall shape of the force curves, with no

apparent noise and with only minor inaccuracies. The MAE of 0.0422N compares

favorably with results on the training and validation datasets, with the network

performing only slightly worse than on its validation data, and marginally out-

performing its training data results.

1As discussed above, our networks could be slightly over-fitted to their validation data, as we
explicitly keep the network weights which yield best performance on that data.
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Figure 3.5: Testing force estimation in contact with a phantom.

3.1.3 Performance on Novel Test Data

Testing the neural net only on data captured robotically, in a fashion identical to

its training data, is somewhat misguided. In our system, the force predictions are

intended to eventually be used in contact with soft human tissue, which displays

a variety of colors and textures that may inadvertently be shown to the network

through reflections, and other optical artifacts. Motion of the probe when held

by a human, or when in contact with different materials, may also differ quali-

tatively from robotic motion in contact with a rigid plate. These different types

of motion could reveal flexure configurations which are not reached (or not com-

monly reached) in the robotic training data. In the remainder of this sub-section,

we test the network’s resilience to different contact materials, surface aesthetics,

and modes of motion.

First, we capture data in contact with one of the flesh-colored silicone phan-

toms (Figure 3.5). Here, the network performs well in general (Figure 3.6), but

struggles with cases displaying unusual (with respect to the training data) configu-

rations of the flexure. Summarizing performance over 30 touches yields an MAE

of 0.0592N, which is worse than the tests on a rigid backing, but this averaged

error does not tell the whole story. On mid-to-high force touches, the network per-

forms as normal, but it struggles to predict on some of the lower-force touches,

pathologically continuing to predict near-zero forces at levels which are normally
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Figure 3.6: Performance of the ForceNet on a test dataset containing touches
with a silicone phantom. These touches are otherwise similar to those
carried out on the rigid force plate for training.

easily detectable. Figure 3.7 shows one touch where this effect was particularly

dramatic.

In this case, the network barely deviates at all from a prediction of 0N force,

despite clear contact being made. Examining the data tells us why – Figure 3.9

shows the frame with the highest error, and compares it to one with no force ap-

plied. The two frames are visually very similar, making a zero-force prediction

understandable. This touch involved a shallow contact with significant lateral mo-

tion – the probe was moved to the left during contact, pulling the flexure tip to

the right, away from the camera, and exerting nearly as much lateral force as nor-

mal force (which is what the network predicts). The network is not trained with

data like this, for the simple reason that this type of motion results in sliding on

the rigid plate; the flexure cannot be moved into a configuration with proportion-

ally high lateral force without a grippy, or slanted surface to press against. The

best way to train the network to predict accurately on touches like this would be

to include similar data, with large lateral forces, in the training set. This would

require a force plate with a grippy surface, presenting a shortcoming in the rigid
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Figure 3.7: Poor force estimation on a pathological case, in contact with a
soft silicone phantom.

Figure 3.8: Contact force errors, with distribution, in the phantom force test.
We separate estimates at near-zero measured force from those at higher
force levels to highlight the network’s relatively high accuracy near
zero, and the network’s tendency to incorrectly predict zero force even
at fairly high force levels – up to −0.4N.
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Figure 3.9: Poorly estimated frame of force network input, compared to a
frame with no force applied. Here, the network predicted −0.003N, for
a frame with a true measured force of −0.342N.

plate design, and an opportunity for future improvement.

Luckily for our purposes, we do not consider this type of contact typical for the

touches used for probing, which largely move directly into and out of the target –

this “blind spot” in the network’s training should not affect the intended use case.

Examining the distribution of prediction errors directly (Figure 3.8) shows us

that the network has a strong preference for predicting a zero force level. This is

troubling, but is likely a simple reflection of a skewed distribution in the training

data. The network learns that images with no force applied are extremely common,

and while this is true, feeding the network a proportionally large number of these

cases – as we currently do – may be counterproductive for training and prediction

performance, as they are all extremely similar. These zero-force frames are also

clearly not captured during touches, making them of little interest to us.

We captured an additional dataset in contact with leather, laid over the same

phantom as above. The leather provides a far darker, more specular surface (Fig-

ure 3.10), as well as different contact dynamics. Examining the prediction graph

(Figure 3.11), we see that the network follows the true force curve, but often does

so with an erroneous offset. In general, it appears to have a troubling tendency to
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Figure 3.10: Testing force estimation in contact with a leather strip (laid over
a phantom).

Figure 3.11: Performance of the ForceNet on a test dataset containing
touches with leather, overlaid on a silicone phantom. These touches
are otherwise similar to those carried out on the rigid force plate for
training. Note the tendency to underestimate the force magnitude.
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Figure 3.12: Contact force errors, with distribution, in the leather strip test.
We separate estimates at near-zero measured force as before, high-
lighting the relatively poor (and skewed) results at higher forces in this
case.

underestimate the magnitude of the applied force. We show the error distribution

for the leather dataset in Figure 3.12.

We speculate that this may be due to differences in cast light from the leather

altering the pattern of features detected by the network, when compared to the

training data using the lighter rigid force plate. As the rigid plate is in fact designed

to create different levels of cast light, this demonstrates another shortcoming of the

plate’s design. The plate’s surface is fairly diffuse, so it scatters the light from the

smartphone’s flashlight back across the probe and flexure, while the leather absorbs

or specularly reflects the light.

Remaining with the theme of robustness to lighting conditions, we captured

an experimental data set in direct sunlight (Figure 3.13). These data represent

a significant departure from those seen in the training set, as the sunlight is bright

enough to overwhelm the phone’s flashlight on the contact surface (the same leather

used in the previous test). As such, the network makes significant errors in its

prediction, but interestingly is not completely thrown off – a strong signal remains
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Figure 3.13: Testing force estimation in direct sunlight, in contact with
leather.

Figure 3.14: Performance of the ForceNet on a test dataset containing
touches with leather in direct sunlight. We do not expect (and do not
see) accurate results here, but a strong signal remains.
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Figure 3.15: Moving the probe by hand in its mount.

(Figure 3.14), and the predictions are stable from frame to frame, if not particularly

accurate. That said, the MAE of 0.445N is unacceptable for real-world usage.

Further work, likely including new force training data, would be needed for the

system to function in the presence of such a bright light source.

Handheld Usage

As discussed above, types of motion outside the training data’s range can present a

challenge for the force predictor, and so handheld motion of the probe could prove

difficult for the force predictor to follow. Here, we captured datasets comprising

assorted hand-guided and fully handheld touches on the silicone phantoms.

The first dataset has the probe mounted on the automation rig, but with the

motors disabled. All motion of the probe is created directly by hand, using a handle

on the probe’s base, but the rig holds the orientation of the probe perfectly steady.

We made several touches on different phantoms and at various force levels, up to

approximately 4N, and sometimes retracting and re-inserting the probe tip during

a touch (a type of motion not seen in training data).

Results here were promising (Figure 3.16), with metrics very comparable to

robotic touches on the same phantoms. While predictions worsened when the probe

remained in contact with the phantoms, predictions during the compression phase

71



Figure 3.16: ForceNet predictions for phantom touches, made by hand but
with the probe mounted in the automation rig (with the motors dis-
abled).

of each touch were excellent, and it is these predictions which are critical for the

material estimation process. We suspect this degradation in performance during

touches is due to unaccounted hysteresis in the flexure itself, and could potentially

be accounted for with a more advanced model – one which takes into account

the flexure’s dynamics. This could be a similar model with multiple image frame

inputs, or even a “tacked-on” post-processing step accepting consecutive force es-

timates, and outputting a revised, dynamics-aware estimate.

We followed up by detaching the probe from its mounting entirely, and recorded

freely handheld touches, intended to resemble material estimation touches by an

experimenter: slow-to-medium contact speed, up to approximately 3N. In this

scenario, the flexure and predictor network also performed very well (Figure 3.17),

with an MAE of 0.0426N; no worse than in robotic testing. The only meaningful

failure in this test is the system’s obvious inability to detect negative (or, strictly

speaking, positive) normal forces; as with other shortcomings we have observed,

it is not trained to do this, as the rigid plate does not display the 00-10 silicone’s

distinctive tackiness. We reason this shortcoming is unimportant for our use case,
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Figure 3.17: ForceNet predictions for phantom touches, made fully by hand
– the probe was not mounted or in any way attached to the automation
rig, though the phantom tray was (in order to detect forces).

as we are interested in material behavior under compression, rather than these brief

periods of tension.

Post-Stress Test Data

While we account for slight shifts in the mounting position of the flexure using

data augmentation, the force prediction process does not account for plastic defor-

mation (“settling”) of the flexure after extended use. The data set in Figure 3.18

was captured on the rigid plate after approximately 6,000 touches at relatively high

force levels, up to 7N. While the zero-point has not majorly shifted, the network

significantly over-predicts forces at higher levels of deflection, sometimes overes-

timating by a full Newton. Overall accuracy reduced to an MAE of 0.229N, over

an order-of-magnitude decrease in performance.

Currently the only way to solve this problem in actual usage is to re-train with a

more recent data set, which yields results at the normal level of accuracy, returning

to an MAE of 0.0409N. However, in Figure 3.19, we show that the error is approx-

imately a function of the estimated force. It could therefore be feasibly corrected
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Figure 3.18: Performance of the ForceNet on an unseen test dataset captured
after thousands of post-training touches, recorded in the same way as
force training and validation data. The net was not trained or validated
on this data.

Figure 3.19: Force network residuals on the post-stress dataset, with and
without a polynomial correction. Raw prediction errors are shown
above in gray, while corrected errors are shown below in blue.
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using a simple calibration process, transforming the network output to match re-

ality using a small dataset. We optimized a fourth-degree polynomial correction

on the output of the force model, and show that these “corrected” errors are only

marginally worse than a retrained network. With a corrected MAE of 0.0492N,

this correction may be sufficiently accurate for our methods – though this metric,

taken alone, could display some over-fitting of the correction to this particular case.

We believe the problem of mechanical changes to the flexure during extended

use may indeed be solvable with a calibration process, which would remove the

need for large-scale force data collection for re-training. In any case, this problem

only occurs after the flexure is exposed to force levels outside its range of use – we

did not observe this problem when limiting touches to 3−4N, even after thousands

of touches.

3.2 Material Estimation

3.2.1 Validation and Test Data

Here we examine the accuracy of the material network’s estimates, beginning with

the training and validation data performance. Recall that robotically-collected ma-

terial data takes the form of a scan of hundreds to thousands of touches across each

of the three material phantoms, in order of increasing stiffness. Each full touch is

a single data-point for the material network, resolving to a single flow input. For

each touch, the material network provides a material estimate vector containing µ̄

and L0 predictions. Touches take place left-to-right on the phantoms, going from

the deep towards the shallow side of the phantoms, are randomly spaced with a

uniform distribution, and randomly offset in the Y (up/down) direction. Refer to

Section 2.2.3 for additional details on the material data collection.

The material network performs well on its validation data, though notably

worse than on its training data, demonstrating the overfitting common to many

DNNs. Results are somewhat noisy for both dimensions of material property es-

timates, but the underlying signal is very clear, and the network rarely makes sig-

nificant mis-predictions on this data. L0 predictions are shown in Figure 3.20a,

and µ̄ predictions in Figure 3.20b. Table 3.2 provides useful metrics for the per-
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(a) L0 results

(b) µ̄ results

Figure 3.20: Material network performance on its own validation set, pre-
dicting a) L0 material depth and b) µ̄ surface stiffness. Estimates are
shown in blue, and corresponding estimate error (to ground truth) is
shown in red.
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MAE RMSE R2

Training
L0 0.050 mm 0.064 mm 0.9995
µ̄ 6.909 N/m 9.035 N/m 0.9994
Validation
L0 0.259 mm 0.389 mm 0.9816
µ̄ 25.468 N/m 51.601 N/m 0.9782
Test
L0 0.438 mm 0.706 mm 0.9447
µ̄ 35.793 N/m 69.765 N/m 0.9662

Table 3.2: Material estimator MAE, RMSE and R2 metrics for the two differ-
ent material properties. Recall that L0 measures thickness, and µ̄ mea-
sures stiffness. Note that training error is, by several measures, signifi-
cantly lower than validation error, which is itself lower than the test error.

formance on both properties. Promisingly, we can see that most L0 predictions fall

within half a millimeter of the true value, and that the handful of outliers fall within

1.5mm. The majority of µ̄ predictions here are also excellent, but the few outliers

are fairly pronounced, and there are some regions where predictions are incorrectly

skewed.

Testing with data unseen by the network during training shows performance

which is worse again than the validation performance (Figure 3.21), but still promis-

ing. In this case, most L0 predictions fall within two millimeters of the true value

– slightly, but not majorly worse than on validation data – and we once again ob-

serve a handful of more extreme outliers. The majority of µ̄ predictions are again

excellent, but we see significant outliers and some regions where predictions are

incorrectly skewed – the predictions seem to be particularly bad around the point

the phantom flattens out at 1mm, where the flexure could simply be getting de-

flected down the slope unpredictably. L0 results seem to be most accurate in the

final thin section of each phantom, while the opposite appears to be true for the µ̄

predictions.
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(a) L0 results

(b) µ̄ results

Figure 3.21: Material network performance on an unseen test dataset, pre-
dicting a) L0 material depth and b) µ̄ surface stiffness. Estimates are
shown in blue, and corresponding estimate error (to ground truth) is
shown in red.
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(a) Front (b) Top view, showing flexure ori-
entation

Figure 3.22: The dismounted prototype, ready for freehand usage.

3.2.2 Handheld Comparison Experiment

We set up an experiment to analyze the probe’s true performance on the phantoms,

and to help eliminate variables as sources of error. We collected three datasets,

with different methodologies:

• Handheld-Guided: The probe was left mounted in the automation rig, but

the robot’s motors were disabled (near-zero resistance), and the probe was

held and moved by the experimenter. This kept the probe constrained to a

fixed orientation, but left motion in the three cartesian axes to the experi-

menter’s hand movements.

• Handheld: The probe was completely detached from the automation rig,

and used freehand (Figure 3.22). The phantom tray was also detached, and

placed flat on a table (not in the standard “wall-mounted” orientation). All

motion of the probe was left to the experimenter, including rotation, though

the experimenter attempted to maintain a perpendicular angle of attack, as

before.

• Robotic: The probe was mounted and robotically articulated in much the

same way as was used to generate training and validation data. This was

meant to serve as a “control.”

Each set of three “locations” corresponds to a different phantom – 00-10, 00-

30 and 00-50 from left to right in the figures. We sampled each phantom with 5

repeats at each of 3 locations – on either end, at the extremes of thickness, and
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MAE RMSE R2

Robotic
L0 0.316 mm 0.481 mm 0.9829
µ̄ 34.524 N/m 65.161 N/m 0.9856
Guided
L0 0.377 mm 0.627 mm 0.9709
µ̄ 101.470 N/m 232.215 N/m 0.8165
Handheld
L0 1.179 mm 1.713 mm 0.7827
µ̄ 217.282 N/m 359.104 N/m 0.5612

Table 3.3: Material estimator MAE, RMSE and R2 metrics for L0 and µ̄ . Note
that these metrics represent only 45 samples per dataset, far fewer than
the other test results discussed above.

in the center. We chose this coarse sampling to enable us to target touches with

reasonable accuracy with the probe handheld.

The material estimates for these datasets (Figure 3.23) followed a general trend

of decreasing accuracy from robotic, to guided, to handheld results (Table 3.3).

The robotic measurement accuracy was comparable to the previously-discussed

test results for the material estimator, and we observe robotic estimates generally

clustered around the ground truth values for both material properties. Estimates

on the handheld-guided dataset were also fairly accurate – while performance in

the µ̄ dimension suffered, predictions for tissue thickness were only slightly worse

than those with the robotically-captured data. Estimates with the freely handheld

dataset were notably less accurate than either dataset with the probe mounted, with

worse performance in both parameter dimensions.

There are several possible explanations for the poorer results with hand-guided

and fully handheld readings: these are necessarily limited to differences between

the test data and the training data, and corresponding differences in downstream

results, including the force predictions and flows. We have established that the

force predictions remain accurate even as the probe is manipulated by hand, and

the phantoms contacted in these tests have not changed from those the material

estimator was trained on – so, we suspect differences in the probe’s motion between
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Figure 3.23: Material estimator results for robotically- and manually-
captured datasets.
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the training and test data to be the cause of the mis-predictions seen here.

As with any handheld object, handheld articulation of the probe can create

small “tremor” motions, which the material network does not see in training –

while we attempt to account for this in training by dynamically moving the probe

while in contact with the phantoms, we may not have accounted for all possible

variations. Another possible difference is that the speed of a handheld touch may

vary through the duration of the touch, while in the robotic touches seen in training,

the speed is consistent throughout each touch. When fully handheld, dynamic

rotations may also occur relative to the phantom surface; rotation is not present

in the training data, robotic data, or in the handheld-guided data, as the probe’s

orientation is fixed: On its mounting, the probe moves only in the 3 cartesian axes

permitted by our robot.

In this case, experimenter inaccuracy may be an additional cause of some

amount of the error seen in these graphs. Small differences in the location of

each touch on the phantoms could lead to measurement of substantially different

material properties, as both measured properties can change rapidly across each

phantom. This experiment assumes that the experimenter has contacted the phan-

toms accurately in each touch, at the designated positions. This is necessary for

the handheld data, as we have no simple way of measuring the probe’s position

once it is removed from its mounting. However, this leaves room for human error,

particularly at locations 1, 4, and 7 in the middles of the phantoms.

Interestingly, L0 predictions appear to be best at the shallower end of each

phantom, where µ̄ predictions are worst. This may be an issue of differentiation

in the data – visually, there is little difference between pressing into a very thin

strip of soft silicone, and pressing into the same depth of stiffer silicone; what

is obvious is that both strips are thin. The µ̄ estimates for the thin end of each

phantom appear to jump between the 00-10, 00-30 and 00-50 stiffness values for

1mm thickness, demonstrating both that the network has over-fit to the particular

properties of the three phantoms, and that there remains uncertainty even in differ-

entiating just these three cases. The material estimator also seems to struggle with

the deeper L0 predictions, especially for 00-50: in this stiffer phantom, there may

be less surface-level behavioral changes due to increasing depth than for the softer

phantoms, particularly the 00-10.
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Chapter 4

Conclusions

4.1 Contributions
Our primary contributions are the hardware and software making up our system:

• We built a low-cost prototype probe device capable of accurate force sens-

ing from purely optical data, and limited detection of material properties in

contacted surfaces.

• We developed application software for the probe’s smartphone, which con-

trols camera parameters, communicates with cloud services, and provides

both remote-control capabilities and a user-operated graphical user interface.

• We built a robotic system for automated capture of training data for our esti-

mators, developed control software for this platform permitting custom user

programs, and developed cloud storage clients for storing and retrieving this

data in useful formats.

• We deployed a cloud pipeline for rapid, on-demand estimation and storage

of forces, optical flows, and material data for one or more probe devices,

using GPU-accelerated machine learning models.

• We characterized the performance of our prototype through a series of labo-

ratory tests.
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To summarize, we believe the notable contributions of this project include the

use of a smartphone and “flexure” to estimate forces and material properties with

only optical data, the cloud pipeline for estimating those results, and the robotic

system used to help train the estimators.

4.2 Project Goals
We set out to create a system with these targets in mind:

• Low cost, both to produce and to use

• Portable

• Usable with little training

• Rapid data collection

• Accurate, useful results

Our device is certainly low-cost, especially when considered in the context

of the SkinProbe V1. Building a new probe requires a one-off investment in a

dual-extrusion 3D printer, which is a professional, but relatively affordable device

costing in the region of $4000. Training estimators for a new probe requires a 3-

axis robot and force sensor, together costing no more than $10,000. Training also

requires access to a GPU-equipped workstation or cloud computer. The incremen-

tal cost of a SkinProbe 2.0 device is then no more than $1000, the bulk of which

is the cost of a new smartphone. This compares to an initial cost of up to several

hundred thousand dollars for the V1 probe, which, unlike our prototype, could not

be duplicated for use in parallel – a new host computer and motion capture setup

would be required at each measurement facility.

Using the device for experiments with live feedback imposes a cloud hosting

cost of approximately $5 per hour, which pays for GPU instance rental. This cost

could be reduced by using non-GPU instances, or lower-tier GPUs for inference,

though estimation speeds are likely to suffer as a result. Note that this cost could be

effectively reduced if multiple probes were in use at once – a single cloud instance,

with a fixed hourly price could support multiple “client” probes.
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Use of a smartphone makes our system both user-friendly and portable. Our

current phone application is usable for the limited trials we have run, with very

straightforward touchscreen controls – essentially just two buttons for experimen-

tal data capture, which any smartphone user should be comfortable with. This

software could also be easily expanded to serve many additional roles, changed to

be made more user-friendly (for example, by the addition of in-app tutorials), or

even localized to different local languages. Carrying out touches is not demanding,

simply requiring a steady hand. The probe’s two-handed grip makes manipulating

it easy.

We support experimental data collection with only an active internet connec-

tion, making use on mobile data networks possible – an experimenter would be

able to travel to other locations (or countries!) to gather data with human sub-

jects, solving one of the major drawbacks of the V1 probe. There remain some

limitations around working environment: we have seen that force estimation fails

in direct sunlight, and we can reason that strong shadows cast on a participant’s

skin would interfere with optical flow generation. For these reasons, our system

can likely only be used effectively in an indoor environment, without strong direct

lighting (e.g. from floodlights). That said, there are no other constraints on the

ambient lighting conditions – our use of the phone’s flashlight ensures consistent

illumination, so long as the flashlight source is not overwhelmed.

Collection of data is indeed rapid, though the response time for the cloud-based

generation of results is not ideal, typically taking≈ 10s. While new recordings can

be made during processing (data collection need not be stopped), real-time feed-

back would allow experimenters to know if their experimental collection is working

as they go. The majority of this processing time is spent uploading, downloading,

and unpacking the video files, and this time could be significantly reduced by re-

ducing the size of the videos. For this prototype, we took a highly conservative

approach to video compression, using high-bitrate, high-quality encodings to de-

crease the possibility of compression artifacts tampering with our results.

The final, and perhaps most important goal is accuracy. Our force-estimation

pipeline works well in practice, including when handheld and in contact with novel

materials – though performance does degrade in some cases, we believe these pre-

dictions are still accurate enough to be useful, and hope that the minor remaining
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issues with the force estimation are solvable with further work. Processing images

to estimated forces is fast, and the network is small and simple enough that, in the

future, it could feasibly be run on a mobile device, providing instant feedback to

experimenters.

However, in this project, the force estimations are only a means to an end;

our material estimation results are, for now, not reliable enough to be useful in

practice, and our system is not yet usable on humans. This is clearly a significant

drawback, but we do not see this challenge as insurmountable: merely deserving

of further research and development on the probe’s software, primarily its estima-

tion algorithms. Transitioning to use on human subjects may also require further

development of the training phantoms, use of human data for training, or both.

4.3 Future Work
As this is a prototype system, there are many aspects of our work that could be

improved upon or expanded.

4.3.1 Force Sensing

The probe’s flexure deflects in more than just the normal direction – our intention

was to support force estimation in three dimensions, and we believe this should

be feasible. Supporting this would be a matter of expanding the force estimation

model to a three-dimensional output, verifying the results, and scaling each di-

mension of the network output targets appropriately to ensure suitable levels of

accuracy in all three axes. This would also likely require replacing the rigid force

plate with a grippy surface, allowing significant lateral forces to be applied during

training.

Another notable drawback of our force sensing system is its lack of awareness

of the flexure’s dynamics from frame to frame. Improving the force estimation

model to account for these dynamics, including hysteresis, would allow the accu-

racy of our force estimates to be further improved, especially in cases of sustained

contact with the subject. This could be achieved with a time-sequence model, such

as an LSTM, or even with a simpler model working as a post-process on a sequence

of single-frame estimates.
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Robustness could be improved by adding darker patches to the rigid plate, tack-

ling the problem seen in the leather contact test, or potentially by using a more

traditional pre-processing pass on the flexure images to negate the effects of differ-

ent lighting conditions. There may also be some benefits to adding high-contrast,

“trackable” features to the flexure shaft and frame, which the network (or a more

traditional computer vision pipeline) would be able to pick out more robustly.

4.3.2 Material Estimation

Our current material estimation system has several limitations, not least its lower

accuracy in handheld use. Our estimates tend to draw from the observed distribu-

tion of phantoms seen in training, regardless of the actual properties of the material

being tested – we see this in the tendency for estimates to “jump” between the

groupings for the different silicone types. This clearly is of little use for analyzing

the properties of human soft tissues, and so we expect making this model general-

ize may require a significantly wider variety of phantom data for training, including

phantoms designed to better approximate human tissue. One approach for gather-

ing this data could be to generate it synthetically, covering a very wide range of

material properties, with the use of optical flows and force data as inputs serving to

remove the need for photorealistic image rendering – flows from a roughly textured

skin rendering should be very similar to the real-world equivalent. Another would

be to construct a wider variety of physical phantoms, training with these, and po-

tentially fine-tuning with data captured from humans. Capturing human data would

require using either the V1 probe, or a hybrid motion-tracked V2 probe to establish

ground-truth measurements.

We would also suggest expanding the range of material properties estimated.

Material force-displacement behavior could be parameterized in far greater detail

than our basic stiffness and thickness model. Terms could including volume preser-

vation and anisotropic properties.

4.3.3 Human Trials

SkinProbe 2.0 is ultimately intended to be used on humans, and so this is a major

direction for future work. Building new probes, and bringing them into the field for
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human trials would allow data collection at a large scale, for application in diverse

fields such as character animation, medicine, and clothing and prosthesis design

and customization. New probes could be equipped with mobile data SIM cards for

use away from dedicated research facilities.

4.3.4 Cloud Pipeline

As mentioned above, generation of estimation results is hardly real-time: there is

significant room for improvement in the speed of our cloud pipeline. Reducing the

file size of our videos would be a shortcut to reducing these processing times, and

it is likely that lower-bitrate video encodings would still work well, especially if

our estimation networks were trained using videos encoded in the same way. If our

current bitrate of 20-30,000 Kbps could be successfully reduced to a more typical

rate of 2-4,000 Kbps for our 1024× 768 resolution, we could see 5− 10× speed

increases in this transfer and unpacking portion of the results generation. There

are also other straightforward optimizations which could be made: by unpacking

videos in-memory, we could perform force estimation directly on image frames

as they are decoded, rather than waiting for all frames to be written to disc be-

fore reading them back into memory one-by-one. Developing high-speed video

upload direct to the cloud instance would remove the interim step of S3 upload

and download; we would then be able to transfer videos to S3 from the instance,

ensuring the same level of data retention as before. Better still, if the phone could

stream video to the instance, frames could be processed for force estimates even

before the recording was completed. At that point, frame selection and material

estimation could be completed even before the experimenter retracts the probe!

The cost of operating the cloud pipeline could be reduced by switching to in-

stances with less-powerful, or no GPUs, though this could present technical chal-

lenges for running the FlowNet2 model.

4.4 Final Thoughts
This prototype is our first step towards large-scale measurement of human tissue

properties. Our system is not yet ready for prime time, but we have demonstrated

functionality in several key areas, and developed robust, low-cost hardware ready
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for further software improvements. On the technical side, we hope this work in-

spires other researchers to use smartphones, optical force sensing, and cloud com-

puting in their own projects.
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