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Abstract

A congruent number n is a positive integer that is equal to the area of
a right triangle with rational side lengths. Positive integers for which such
a representation does not exist are called non-congruent numbers. Equiv-
alently, n is non-congruent if and only if the arithmetic rank of the cubic
curve

En : y2 = x3 − n2x,

known as a congruent number elliptic curve, is zero. Determining whether or
not a given positive integer is congruent in a finite number of steps is a prob-
lem of significant interest in the field of pure mathematics. Although a com-
plete solution to this classical problem has yet to be discovered, progress has
been made in describing particular families of congruent and non-congruent
numbers. The classification of numbers into such families is often done by
imposing conditions on the prime divisors of the numbers and on the Leg-
endre symbols relating the primes.

This thesis focuses on the generation of both odd and even non-congruent
numbers. We present a new family of even non-congruent numbers that are
a product of arbitrarily many distinct primes; these non-congruent num-
bers have at least one prime factor in each odd congruence class modulo
eight. Our main contribution is the development of a general approach for
constructing families of non-congruent numbers. We show that existing fam-
ilies of non-congruent numbers can be extended by working over the finite
field with two elements and using a formula by Monsky for computing the
2-Selmer rank of congruent number elliptic curves. The new non-congruent
numbers are produced by multiplying known non-congruent numbers, cor-
responding to congruent number elliptic curves with 2-Selmer rank of zero,
by arbitrarily many suitable primes. This novel technique allows an infinite
collection of non-congruent numbers to be generated, including both odd
and even non-congruent numbers with arbitrarily many distinct prime divi-
sors in each odd congruence class modulo eight. Our results are illustrated
by numerous numerical examples.
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Lay Summary

This thesis studies a particular set of numbers known as non-congruent
numbers. Every positive integer can be classified as either a congruent
number or a non-congruent number. A congruent number is a positive
integer that is equal to the area of a right-angled triangle with side lengths
that are rational numbers. If such a representation does not exist, then
the integer is called a non-congruent number. The classification of positive
integers as either congruent or non-congruent is an open problem that has
been studied for centuries.

In this thesis, we present criteria for generating non-congruent num-
bers that have arbitrarily many prime divisors. Our main contribution is a
new method for constructing non-congruent numbers. We show that when
existing non-congruent numbers with a specific property are multiplied by
arbitrarily many suitable primes, infinitely many new non-congruent num-
bers are produced. Our results are illustrated by a collection of numerical
examples.

iv



Preface

My achievements as a graduate student would not have been possible
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Chapter 1

Introduction

The classification of positive integers as either congruent or non-congruent
numbers is an unsolved problem in the fields of algebra and number theory
with an extensive history. There exist several equivalent definitions of con-
gruent numbers, but perhaps the most well-known is the one that relates
congruent numbers to right-angled triangles.

Definition 1.1. A positive integer n is a congruent number if it is equal to
the area of a right triangle with rational sides. Otherwise n is said to be a
non-congruent number.

This means that n is a congruent number if there exist rational numbers
a, b, and c such that

a2 + b2 = c2 and n =
ab

2
. (1.1)

The positive integer six is an example of a congruent number.

Figure 1.1: The congruent number six is equal to the area of a right triangle
with rational side lengths.

There are infinitely many positive integers that cannot be written as the
area of a right triangle with rational side lengths, including the numbers

1



Chapter 1. Introduction

one, two, three, and four; these numbers are non-congruent. A list of all
congruent numbers less than 10,000 can be found in [35].

By inspecting the pair of equations in (1.1), it is clear that scaling the
side lengths of a triangle changes its area by a factor of a square. Therefore,
if n is a congruent number, so too is nm2, where m ∈ N+. As a result,
it is a common practice to only consider square-free positive integers when
studying congruent numbers.

The search for a general solution to the problem that involves deter-
mining whether a given number is congruent has fascinated mathematicians
for centuries. Although the study of congruent numbers has its origins
in ancient Greece, the first systematic discussion of the congruent num-
ber problem appears in a pair of Arab manuscripts from the tenth century
[5, 8, 25, 29, 56, 60]. Since that time, notable contributions to the field of
congruent numbers have been made by many well-known mathematicians,
including Fibonacci, Euler, and Fermat [5, 8]. In his book Liber Quadra-
torum (1225), Fibonacci verified that both five and seven are congruent
numbers [5, 8, 32, 56]. He also conjectured that perfect squares cannot be
congruent numbers, or equivalently that the integer one is non-congruent.
Fibonacci’s conjecture remained unproven for four centuries, and ultimately
led to Fermat’s significant discovery of the method of infinite descent. For
a proof that one is a non-congruent number using the method of infinite
descent, see [5].

In the twentieth century, congruent numbers were shown to be related to
a special type of cubic algebraic curve known as an elliptic curve [25]. The
relationship between elliptic curves and congruent numbers is summarized
by the following lemma.

Lemma 1.2. A positive integer n is a congruent number if and only if the
rank of the elliptic curve

En : y2 = x3 − n2x = x(x− n)(x+ n)

is positive. Otherwise, n is a non-congruent number. In other words, n is a
non-congruent number if and only if the rank of En is zero.

A proof of this lemma can be found in Section 9 of Chapter I in [25].
Also, note that the properties of and theory governing elliptic curves and
their rank will be discussed in detail in Chapter 3.

In his groundbreaking paper published in 1983, Tunnell used the theory
of elliptic curves to state and prove an elegant theorem that provides a
simple, but complete, characterization of congruent numbers [5, 25, 29, 46,
56, 57].

2



1.1. The Goal of the Thesis

Theorem 1.3 (Tunnell’s Theorem). Let n be a square-free congruent
number and define

An = |{(x, y, z) ∈ Z3|n = 2x2 + y2 + 32z2}|,
Bn = |{(x, y, z) ∈ Z3|n = 2x2 + y2 + 8z2}|,
Cn = |{(x, y, z) ∈ Z3|n = 8x2 + 2y2 + 64z2}|,
Dn = |{(x, y, z) ∈ Z3|n = 8x2 + 2y2 + 16z2}|.

Then {
Bn = 2An if n is odd,
Dn = 2Cn if n is even.

If the Birch and Swinnerton-Dyer conjecture holds for elliptic curves of the
form y2 = x3 − n2x then, conversely, these equalities imply that n is a
congruent number.

Proof. See Tunnell’s paper [57]. Koblitz’s book [25] is also an excellent
resource that provides a comprehensive discussion of Tunnell’s theorem and
the extensive collection of theory required to complete its challenging proof.

Unfortunately, Tunnell’s theorem does not entirely resolve the congruent
number problem, as one direction of it relies upon the Birch and Swinnerton-
Dyer conjecture, which is currently unproven. This famous conjecture is one
of the seven Millennium Prize Problems posed by the Clay Mathematics
Institute. Because the results in this thesis do not depend upon the Birch
and Swinnerton-Dyer conjecture, we do not provide additional information
in this dissertation. A thorough discussion of the conjecture is given in an
article by Andrew Wiles on the website of the Clay Mathematics Institute
[60].

A comprehensive overview of the history of the congruent number prob-
lem and the progress that has been made towards its solution can be found
in [5, 8, 56].

1.1 The Goal of the Thesis

Because it is difficult to find a complete solution to the congruent num-
ber problem, mathematicians focus on describing and generating particu-
lar families of congruent and non-congruent numbers. Such families can
be obtained by imposing certain conditions on their prime factors and the

3



1.2. The Structure of the Thesis

values of the Legendre symbols relating the primes; see [2, 6, 11–13, 15–
17, 24, 27, 28, 36, 37, 39, 40, 49, 58].

The goal of this thesis is to construct new families of odd non-congruent
numbers and even non-congruent numbers with arbitrarily many distinct
prime factors. Of specific interest is the generation of families of non-
congruent numbers with prime factors belonging to each odd congruence
class modulo eight, and the development of methods that allow known non-
congruent numbers to be extended to produce new families of non-congruent
numbers.

1.2 The Structure of the Thesis

This section provides a brief overview of the layout and main contribu-
tions of the research presented within this dissertation.

Chapter 2 contains a collection of notation and basic theory from the
fields of algebra, number theory, and linear algebra. Chapter 3 covers known
results on elliptic curves with an emphasis on their connection to the con-
gruent number problem. We also discuss Monsky’s formula for the 2-Selmer
rank of En.

Our main contributions are presented in Chapters 4, 5, and 6. Chapter
4 focuses on generating a new family of even non-congruent numbers with
arbitrarily many distinct prime divisors; these non-congruent numbers have
prime factors in each odd congruence class modulo eight. Chapters 5 and 6
introduce our new general extension technique for constructing families of
non-congruent numbers from other known families of non-congruent num-
bers. Chapter 5 focuses on the generation of odd non-congruent numbers,
whereas Chapter 6 is dedicated to the construction of even non-congruent
numbers. In each of these chapters, a detailed proof of the technique for
generating non-congruent numbers is presented along with a collection of
numerical examples that illustrate how the method can be applied.

Finally, we summarize our research contributions and discuss future re-
search avenues in Chapter 7.

4



Chapter 2

Preliminary Information

In this chapter, we present a collection of notation, terminology, and
theory from algebra, number theory, and linear algebra.

2.1 Algebra Preliminaries

We begin by recalling some definitions and theorems from the field of
algebra. The theory in this section closely follows that in [14] and can be
found in most introductory algebra texts.

Definition 2.1. Let G be a group and let a ∈ G. The element a generates
the group G and is referred to as a generator of G if G = {an|n ∈ Z } = 〈a〉.
If this is the case, then G is said to be cyclic.

Definition 2.2. An abelian group 〈G,+〉 is finitely generated if it contains
a finite set of elements {g1, g2, . . . , gn} such that every element g ∈ G can
be written as

g = a1g1 + a2g2 + · · ·+ angn,

where a1, a2, . . . , an ∈ Z.

We now state an important result that completely describes the structure
of all finitely generated abelian groups [14, Theorem 11.12].

Theorem 2.3 (Fundamental Theorem of Finitely Generated Abelian
Groups). Every finitely generated abelian group is isomorphic to a direct
sum of cyclic groups

Zpν11 ⊕ Zpν22 ⊕ · · · ⊕ Zpνωω ⊕ Z⊕ Z⊕ · · · ⊕ Z︸ ︷︷ ︸
r copies

,

where the pi are primes that are not necessarily distinct, νi ∈ N+ for all
i ∈ [1, ω], and r ∈ N.

The following theorem describes the relationship between the order of a
finitely generated abelian group and its subgroups.
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2.2. Number Theory Preliminaries

Theorem 2.4. If m divides the order of a finite abelian group G, then G
has a subgroup of order m.

Definition 2.5. A field is an integral domain D in which every nonzero
element of D has a multiplicative inverse in D.

Definition 2.6. The characteristic of a field K is the least positive integer
n such that n · a = 0 for all a ∈ K. If no such positive integer exists, then
K has characteristic zero.

Definition 2.7. A sequence

G0
δ1−→ G1

δ2−→ G2
δ3−→ · · · δn−→ Gn

of groups Gk and homomorphisms δk is an exact sequence if

Im(δk) = ker(δk+1).

An exact sequence of the form

0 −→ A
f−→ B

g−→ C −→ 0

is called a short exact sequence if the map f is injective, the map g is
surjective, and Im(f) = ker(g).

2.2 Number Theory Preliminaries

This section provides a collection of definitions and theorems from the
field of number theory. Wherever not explicitly specified, the notation fol-
lows that in [46].

Definition 2.8. The parity of an integer defines the value as either even or
odd.

Definition 2.9. The greatest common divisor of two integers a and b, which
are not both equal to zero, is the largest positive integer that divides both
a and b. The greatest common divisor of a and b is denoted by (a, b), and
(0, 0) is defined to be zero.

Definition 2.10. Consider the set of integers A = {a1, a2, . . . , an} and
let ai, aj ∈ A with i 6= j. The integers ai and aj are relatively prime if
(ai, aj) = 1. The integers a1, a2, . . . , an are said to be pairwise relatively
prime, if each pair of integers from the set A is relatively prime.
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2.2. Number Theory Preliminaries

Note that for two integers a and b, the notation a|b denotes that a divides
b, whereas a - b indicates that a does not divide b.

Definition 2.11. Let m be a positive integer. If a and b are integers, then
a is congruent to b modulo m if m|(a − b). To denote that a is congruent
to b modulo m, we write a ≡ b (mod m). If m - (a − b), then a and b are
incongruent modulo m, which is written as a 6≡ b (mod m). The integer m
is called the modulus of the congruence.

Definition 2.12. Let a ∈ Z and m ∈ N+. The congruence class of a modulo
m is the set of all integers that are congruent to a modulo m.

For example, there are four congruence classes modulo four. The first
congruence class contains all integers congruent to 0 (mod 4), the second is
comprised of integers congruent to 1 (mod 4), the third contains the integers
congruent to 2 (mod 4), and the fourth consists of integers congruent to 3
(mod 4). The integers belonging to a particular one of these congruence
classes have the form 4k + i, where k ∈ Z and i is equal to either 0, 1, 2, or
3.

The following theorem, known as the Chinese Remainder Theorem, pro-
vides a method for solving systems of simultaneous congruences with only
one unknown, but different moduli [46, Theorem 4.12].

Theorem 2.13 (Chinese Remainder Theorem). If m1,m2, . . . ,ms are
pairwise relatively prime positive integers, then the system of congruences

x ≡ a1 (modm1),
x ≡ a2 (modm2),

...
x ≡ as (modms),

has a unique solution modulo M = m1m2 · · ·ms.

The proof of Theorem 2.13, along with numerical examples illustrating
its application, can be found in [46].

Fermat’s little theorem, which we state next, describes an important
congruence property for the pth powers of integers modulo p, where p is a
prime [46, Theorem 6.3].

Theorem 2.14 (Fermat’s Little Theorem). If p is a prime and b is a
positive integer with p - b, then bp−1 ≡ 1 (mod p).

Next, we provide the definition of quadratic residues and quadratic non-
residues to motivate our discussion of Legendre symbols.
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2.2. Number Theory Preliminaries

Definition 2.15. If m is a positive integer, we say that the integer b is a
quadratic residue of m if (b,m) = 1 and the congruence x2 ≡ b (mod m) has
a solution. If this congruence does not have a solution, then we say that b
is a quadratic nonresidue of m.

The concept of a quadratic residue can be used to define a multiplicative
function known as a Legendre symbol.

Definition 2.16. Let p be an odd prime and a be an integer not divisible

by p. The Legendre symbol
(
a
p

)
is defined by(

a

p

)
=

{
1 if a is a quadratic residue of p,

−1 if a is a quadratic nonresidue of p.

Legendre symbols will be used extensively throughout this thesis. We
summarize some of their useful properties in Theorems 2.17, 2.18, and 2.19
[46, Theorems 11.4, 11.5, 11.6 & 11.7].

Theorem 2.17. Let p be an odd prime and a and b be integers not divisible
by p. Then

1) if a ≡ b (mod p), then

(
a

p

)
=

(
b

p

)
,

2)

(
a

p

)(
b

p

)
=

(
ab

p

)
,

3)

(
a2

p

)
= 1.

Theorem 2.18 (The Law of Quadratic Reciprocity). If p and q are
distinct odd primes, then(

q

p

)
=

(
p

q

)
(−1)

p−1
2
· q−1

2 .

Theorem 2.19 (The First and Second Supplements to the Law of
Quadratic Reciprocity). If p is an odd prime, then

1)

(
−1

p

)
=

{
1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4),

2)

(
2

p

)
=

{
1 if p ≡ ±1 (mod 8),

−1 if p ≡ ±3 (mod 8).
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2.2. Number Theory Preliminaries

We now state a pair of important and well-known theorems; the first
pertains to primes in arithmetic progressions [46, Theorem 3.3], [50, Chapter
VI], and the second discusses how primes are the multiplicative building
blocks of all integers [46, Theorem 3.15].

Theorem 2.20 (Dirichlet’s Theorem on Primes in Arithmetic Pro-
gressions). Suppose that a and b are relatively prime positive integers. Then
there are infinitely many primes in the arithmetic progression an+ b, where
n ∈ N+.

Theorem 2.21 (The Fundamental Theorem of Arithmetic). Every
positive integer greater than one can be written as a product of primes, and
this representation is unique up to the order of the prime factors.

We also recall an elementary definition from p-adic number theory [18].

Definition 2.22. Let p be a prime number and x be a nonzero rational
number. If

x = pα · a
b

where p - ab, then the p-adic valuation, vp(x), of x is

vp(x) = α.

It is a well-known fact that if a polynomial with rational coefficients has
roots in Q, then it also has roots in R and in Qp for every prime p ≥ 2.
Therefore, a polynomial has no rational roots when there is a prime p ≤ ∞
for which it does not have any p-adic roots. This leads us to the following
definition [18].

Definition 2.23. A polynomial equation with rational coefficients is said
to have local solutions if it has roots in R and in Qp for every prime p ≥ 2. If
the polynomial equation has roots over Q, these are called global solutions.

Thus, a polynomial equation with global solutions also has local solutions
for every prime. We now state an important principle by Hasse, known as
the local-global principle or the Hasse principle [18, Section 3.5].

Principle 2.24 (Hasse Principle). The existence or non-existence of
global solutions of a Diophantine equation can be detected by studying the
local solutions of the equation.
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In other words, an equation has a solution over Q if and only if it has
solutions over R and Qp for all primes p ≥ 2. The Hasse-Minkowski theorem
states that the Hasse principle holds for quadratic forms in m variables with
coefficients in the field K [18, 50]. Unfortunately, the Hasse principle does
not always hold true, as many equations are locally solvable everywhere but
fail to have global solutions. For example, Selmer proved that the equation
3x3 + 4y3 + 5y3 = 0 has a nontrivial solution in the real numbers and in
all p-adic fields, but it does not have a nontrivial rational solution [48].
This shows that the Hasse-Minkowski theorem cannot be extended to cubic
forms.

2.3 Linear Algebra Preliminaries

In this section, we discuss various notation, terminology, and results from
linear algebra.

We denote the identity matrix of order n by In, the zero matrix of order
n by 0n, and any non-square zero matrix by 0.

Let A = [aij ] be an m × n matrix. The transpose of A is denoted by
AT . We introduce the following notation to describe elementary row and
column operations within a matrix A.

Notation: For a given matrix A, let Cx denote column x and Rx denote
row x, where x ∈ N+. Then

Cx −→ Cx + Cy

is used to represent the replacement of column Cx by the sum of columns
Cx and Cy. Finally, we denote the interchange of columns Cx and Cy by

Cx ←→ Cy.

Analogous notation is used for row replacements and interchanges.

Definition 2.25. The rank of an m × n matrix A, denoted by rank(A),
is the maximal number of linearly independent columns (or rows) of A.
Equivalently, the rank of A is defined to be the dimension of its column
space (or row space).

The following theorem summarizes some important properties of deter-
minants [26, Theorems 2.2, 2.3 & 3.26], [33, p. 462-465].

Theorem 2.26. Let A be a square matrix of order n. Then the determinant,
det(A), satisfies the following properties.

10



2.3. Linear Algebra Preliminaries

1) The value of the determinant remains unchanged if a scalar multiple
of one row (or column) is added to another row (or column).

2) The determinant of a triangular matrix is the product of its diagonal
entries.

3) Taking the transpose of a matrix does not alter its determinant, so
det(AT ) = det(A).

4) det(A) 6= 0 if and only if rank(A) = n.

For a matrix subdivided into four blocks, the following identities can
often help to simplify the calculation of the determinant. The proofs of
these results can be found in [33, p. 467 & 475].

Proposition 2.27. If A and D are square matrices over an arbitrary field,
then

det

[
A B

0 D

]
= det(A) det(D) = det

[
A 0

C D

]
.

Proposition 2.28. If A and D are square matrices, then

det

[
A B

C D

]
=

{
det (A) det

(
D−CA−1B

)
if A−1 exists,

det (D) det
(
A−BD−1C

)
if D−1 exists.
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Chapter 3

Elliptic Curves and
Congruent Numbers

3.1 Overview

This chapter provides a brief introduction to elliptic curves and their
properties. There are no new results in this chapter; its purpose is simply
to present the background theory necessary to appreciate and understand
the results discussed in subsequent chapters. We begin by formally defining
elliptic curves and their corresponding group law. Several key theorems, in-
cluding Mordell’s theorem, the Nagell-Lutz theorem, and Mazur’s theorem,
are also discussed. The torsion subgroup is introduced, and then calculated
for congruent number elliptic curves. The final two sections in the chapter
are devoted to studying the rank of elliptic curves, with an emphasis on
techniques for computing this quantity. The chapter concludes with a dis-
cussion of an important result by Monsky that allows the 2-Selmer rank of
congruent number elliptic curves to be calculated.

3.2 An Introduction to Elliptic Curves

An elliptic curve over a field K is a non-singular, projective, cubic al-
gebraic curve with a specified base point defined over K. In the projective
space P2, an elliptic curve has the general form, known as the projective long
Weierstrass normal form,

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3, (3.1)

where a1, a2, a3, a4, a6 ∈ K [23, 47, 51, 52]. The base point on this curve in
homogeneous coordinates is O = [0 : 1 : 0]. It is referred to as the point at
infinity and is the only point with Z = 0 [23, 25, 47, 51, 52]. An introduction
to projective algebraic geometry, including the following definition, can be
found in Appendix A of [52].
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3.2. An Introduction to Elliptic Curves

Definition 3.1. The projective plane, P2, is the set of equivalence classes
of triples [a : b : c] with a, b, c not all equal to zero satisfying the equivalence
relation

[a : b : c] ∼ [a′ : b′ : c′] if a = ta′, b = tb′, c = tc′ for some t 6= 0.

An equivalence class of triples [a, b, c] is called a point in P2, and the numbers
a, b, c are called homogeneous coordinates for the point [a, b, c] in P2.

By substituting x = X/Z and y = Y/Z into Equation (3.1), the Weier-
strass curve can be written in non-homogeneous coordinates as

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (3.2)

This is referred to as the long Weierstrass normal form. Furthermore, if the
characteristic of the field K is not equal to two, a change of variables can
be made [51] in Equation (3.2):

y 7→ y − 1

2
(a1x+ a3).

The simplified equation that results from this substitution is

E : y2 = x3 + ax2 + bx+ c, (3.3)

where

a =
1

4
a21 + a2, b =

1

2
a1a3 + a4, and c =

1

4
a23 + a6.

This is known as the reduced Weierstrass equation.
Recall that for such a curve to be considered an elliptic curve, it must be

non-singular. That is, it has distinct roots or equivalently its discriminant,
given by

D = −4a3c+ a2b2 + 18abc− 4b3 − 27c2, (3.4)

is not equal to zero [52]. This implies that elliptic curves over K ⊂ R must
either have three real roots (as shown in Figure 3.1), or a single real root and
a pair of complex conjugate roots (as shown in Figure 3.2). Cubic curves
with repeated roots are not elliptic curves; examples of singular cubic curves
are shown in Figures 3.3 and 3.4.
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3.3. The Group Law on Elliptic Curves and Mordell’s Theorem

Figure 3.1: The elliptic curve
y2 = x(x−1)(x+1) has three real
roots.

Figure 3.2: The elliptic curve
y2 = (x + 1)(x2 − 3x + 3) with a
single real root.

Figure 3.3: The singular cubic
curve y2 = (x + 1)3 with a triple
root at x = −1.

Figure 3.4: The singular cubic
curve y2 = x2(x + 1) has a dou-
ble root at x = 0.

3.3 The Group Law on Elliptic Curves and
Mordell’s Theorem

A fundamental property of elliptic curves is that their points form an
abelian group under a specific binary operation. To investigate this property,
we begin by considering the binary algebraic structure that consists of the
set of rational points on the elliptic curve E over the field K, along with
the binary operation ∗. The line connecting two rational points P and Q
on E intersects the curve at a third point, R, defined to be P ∗ Q. This
process, known as the chord-tangent composition law [23], can be applied
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3.3. The Group Law on Elliptic Curves and Mordell’s Theorem

regardless of whether P and Q are distinct points (Figure 3.5). In the case
where P = Q, the line drawn is tanget to the curve at that point, so P is
a point of multiplicity two. Since P and Q are rational points on the curve
E, the line joining them is a rational line, and hence R = P ∗ Q is also a
rational point [23, 29, 52]. Thus, given a small number of rational points,
the chord-tangent law can be used to generate many other rational points
on E.

Figure 3.5: The chord-tangent composition law applied to distinct points P
and Q, shown on the left, and a single point P , shown on the right, on the
elliptic curve y2 = (x+ 1)(x2 − 3x− 3).

Unfortunately, the chord-tangent composition law lacks an identity ele-
ment, so it cannot be considered a group law. To resolve this issue, we count
the point at infinity, O, as a rational point and define the set of K-rational
points on the elliptic curve E to be

E(K) = {(x, y) ∈ E : x, y ∈ K} ∪ {O}.

By coupling the set E(K) with the chord-tangent law, we can define a new
binary operation + that makes E(K) into an abelian group; the point at
infinity serves as the identity element for this group. To add two points
P,Q ∈ E(K), we begin by using the chord-tangent law to find the point
P ∗Q. If P ∗Q 6= O and a line is drawn through the points P ∗Q = (xpq, ypq)
and O, the resulting third point of intersection between the curve E and the
line is O ∗ (P ∗Q); this point is defined to be P +Q [23, 29, 47, 51, 52]. As
shown in Figure 3.6, the line through P ∗Q and O is a vertical line, so the
point P + Q is simply the reflection of the point P ∗ Q about the x-axis.
Thus, P + Q = (xpq,−ypq). Note that if P ∗Q = O, then P + Q is defined
to be O.
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3.3. The Group Law on Elliptic Curves and Mordell’s Theorem

Figure 3.6: The group law operator + applied to the points P and Q on the
elliptic curve y2 = (x+ 1)(x2 − 3x− 3).

This important result is summarized by the following theorem [23, 47].

Theorem 3.2. For the elliptic curve E over the field K, the set E(K) of
rational points is an abelian group under the binary operation + defined
above. The point at infinity O is the identity element in the group.

This means that the following properties hold for the group law operator +:

1) Closure: If P,Q ∈ E(K), then P +Q ∈ E(K).

2) Associativity: (P +Q) +R = P + (Q+R) for all P,Q,R ∈ E(K).

3) Identity Element: P + O = O + P = P for all P ∈ E(K).

4) Inverse: For every P ∈ E(K), there exists a point −P ∈ E(K) such
that P + (−P ) = O.

5) Commutativity: P +Q = Q+ P for all P,Q ∈ E(K).

Each of these properties is simple to verify except for associativity; addi-
tional details regarding this can be found in [47, 51, 52].

The precise coordinates of the point P +Q can be determined as follows.
Let P = (x1, y1) and Q = (x2, y2) be points on the elliptic curve E given by
Equation (3.3)

y2 = x3 + a2x
2 + a4x+ a6.
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3.3. The Group Law on Elliptic Curves and Mordell’s Theorem

By the chord-tangent law, we know that the points P andQ are connected by
a line of the form y = λx+ν. Substituting this into x3+a2x

2+a4x+a6−y2 =
0 and simplifying yields

x3 + (a2 − λ2)x2 + (a4 − 2λν)x+ (a6 − ν2) = 0. (3.5)

The third point of intersection between the line y = λx + ν and the curve
E is P ∗ Q = (x3, y3), so the cubic polynomial in Equation (3.5) has roots
x1, x2, and x3. Therefore, we can write

x3 + (a2 − λ2)x2 + (a4 − 2λν)x+ (a6 − ν2)
= (x− x1)(x− x2)(x− x3)
= x3 − (x1 + x2 + x3)x

2 + (x2x3 + x1x3 + x1x2)x− (x1x2x3).

Equating the coefficients of the x2 terms on each side of the above equation,
and solving for x3 yields

x3 = λ2 − a2 − x1 − x2, (3.6)

which is the x-coordinate of the point P ∗Q.
If P = (x1, y1) and Q = (x2, y2) are points with x1 6= x2, then

λ =
y2 − y1
x2 − x1

, and ν = y1 − λx1 = y2 − λx2. (3.7)

The corresponding y-coordinate for P ∗Q = (x3, y3) can be found by using
the equation

y3 = λx3 + ν

with the values of x3, λ, and ν given in Equations (3.6) and (3.7). Since P+Q
is the reflection of P ∗Q about the x-axis, it follows that P +Q = (x3,−y3).

If P = Q, the line y = λx + ν lies tangent to the curve E at the point
P . When y1 6= 0, the slope of this tangent line is

λ =
3x21 + 2a2x1 + a4

2y1
,

which is found by implicitly differentiating the elliptic curve equation E
with respect to x and then evaluating the resulting equation at P = (x1, y1).
Substituting this value for λ into Equation (3.6) and simplifying yields

x(2P ) =
x41 − 2a4x

2
1 − 8a6x1 + a24 − 4a2a6

4y21
. (3.8)
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3.3. The Group Law on Elliptic Curves and Mordell’s Theorem

This equation is known as the duplication formula for the x-coordinate of
P and is used to compute the x-coordinate of the point 2P = P + P. The
y-coordinate of 2P can be found by following an analogous process to the
one outlined above in the case where P = (x1, y1) and Q = (x2, y2) are
points with x1 6= x2.

This procedure for determining the precise coordinates of the point P+Q
is known as the group law algorithm and is described in detail for general
Weierstrass curves in [51].

A well-known theorem proved by Louis Mordell in 1922 provides further
insight into the structure of the group of rational points on a rational elliptic
curve [23, 25, 29, 51, 52, 59].

Theorem 3.3 (Mordell’s Theorem). Let E be an elliptic curve over the
field of rational numbers. The group of rational points, E(Q), is a finitely
generated abelian group.

Proof. See Chapter 6 of [23], Chapter VIII.4 of [51], or Chapter III of [52].

Because the group of rational points E(Q) forms a finitely generated
abelian group, the fundamental theorem of finitely generated abelian groups
(Theorem 2.3) can be applied to write E(Q) as a direct sum of cyclic groups

E(Q) ∼= Zpν11 ⊕ Zpν22 ⊕ · · · ⊕ Zpνωω ⊕ Z⊕ Z⊕ · · · ⊕ Z︸ ︷︷ ︸
r copies

,

where Z is an infinite cyclic group and Zpνii is a finite cyclic group with

prime-power order for all i ∈ [1, ω]. This can be stated more concisely as

E(Q) ∼= T ⊕ Zr,

where T ∼= Zpν11 ⊕Zpν22 ⊕· · ·⊕Zpνωω denotes the torsion subgroup and r ∈ N is
called the arithmetic rank, or Mordell-Weil rank, of the elliptic curve E. The
torsion subgroup is relatively easy to compute and will be discussed in detail
in Section 3.4. However, the rank is not nearly as well understood, because
there does not exist an effective method for calculating it in all cases. The
determination of the rank is crucial when it comes to studying congruent
and non-congruent numbers; more information regarding this mysterious
quantity will be presented in Section 3.5.

18



3.4. The Torsion Subgroup

3.4 The Torsion Subgroup

We begin by stating the definition of the torsion subgroup [23, 29, 51, 52].

Definition 3.4. The torsion subgroup, T , of E(Q) is the group consisting
of all rational points of finite order on the elliptic curve E.

Therefore, to find the rational points that belong to the torsion subgroup,
we must recall the definition of the order of a point P ∈ E(K) [52].

Definition 3.5. Let E be an elliptic curve and let P = (x, y) be a point in
E(K). The point P has finite order if there exists m ∈ N+ such that

mP = P + P + · · ·+ P︸ ︷︷ ︸
m copies

= O,

but m′P 6= O for all integers m′ ∈ [1,m). The integer m is called the order
of P . If no such integer m exists, then P has infinite order.

Clearly, the point at infinity has order one, and since this is a point of
finite order on every elliptic curve, the torsion subgroup is guaranteed to
contain at least one element. Points P = (x, y) of order two are also simple
to find, as they statisfy 2P = O with P 6= O. An equivalent way of writing
2P = P + P = O is P = −P , which means that (x, y) = (x,−y). This only
holds if y = −y, so y = 0. Thus, points of order two have the form (x, 0)
[52]. Other rational points of finite order on an elliptic curve can be found
by using a well-known theorem proven independently by Nagell and Lutz
[51, 52, 59].

Theorem 3.6 (Nagell-Lutz Theorem). Let

y2 = f(x) = x3 + ax2 + bx+ c

be a non-singular cubic curve with a, b, c ∈ Z, and let

D = −4a3c+ a2b2 + 18abc− 4b3 − 27c3

be the discriminant of f(x). Let P = (x, y) be a rational point of finite
order. Then x and y are integers and either y = 0 or else y2 divides D.

Proof. See Chapter VIII.7 of [51] or Chapter II of [52].
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It should be emphasized that the Nagell-Lutz theorem is not an if-and-
only-if statement. Therefore, points on the curve with integer coordinates
satisfying y2 |D are unfortunately not guaranteed to have finite order. How-
ever, if P = (x, y) is a rational point of finite order, then 2P must also have
finite order. By Theorem 3.6, rational points of finite order have integer
coordinates. The duplication formula for the x-coordinate of P , stated in
Equation (3.8), can be applied to compute the x-coordinate of 2P . If x(2P )
is found not to be an integer, 2P is not a point of finite order, and hence P
also is not a point of finite order.

An alternate technique for determining the points of finite order on a
non-singular cubic curve involves defining a reduction modulo p map that is
an isomorphism. This method is summarized by the following theorem [52].

Theorem 3.7 (Reduction Modulo p Theorem). Let C be a non-singular
cubic curve

y2 = x3 + ax2 + bx+ c

with a, b, c ∈ Z, and let D be the discriminant

D = −4a3c+ a2b2 + 18abc− 4b3 − 27c2.

Let Φ ⊆ C(Q) be the subgroup consisting of all points of finite order. For
any prime p, let P 7→ P̃ be the reduction modulo p map

Φ −→ C̃(Fp), P 7→ P̃ =

{
(x̃, ỹ) if P = (x, y),

Õ if P = O.

If p does not divide 2D, then the reduction modulo p map is an isomorphism
of Φ onto a subgroup of C̃(Fp).

Proof. See Section 4.3 of [52].

Both the Nagell-Lutz theorem and the reduction modulo p theorem pro-
vide methods for finding the points of finite order on an elliptic curve. How-
ever, to completely characterize the torsion subgroup of the curve, we utilize
a powerful result by Mazur [23, 29–31, 51, 52, 59].

Theorem 3.8 (Mazur’s Theorem). For an elliptic curve E defined over
Q, the torsion subgroup, T , of the group of rational points, E(Q), is iso-
morphic to one of the following fifteen groups:

1) A cyclic group of order N, ZN , with 1 ≤ N ≤ 10 or N = 12.

2) The product of a cyclic group of order two and a cyclic group of order
2N , Z2 × Z2N , with 1 ≤ N ≤ 4.
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Proof. See [30] and [31].

Of specific interest to this thesis is the torsion subgroup of congruent
number elliptic curves En : y2 = x(x− n)(x+ n). By inspection, it is clear
that these curves have exactly three points of order two, (0, 0), (n, 0), and
(−n, 0). Combining these three points with the point at infinity allows us
to deduce that congruent number elliptic curves have at least four rational
points of finite order. We would like to show that these four points are the
only torsion points on En. We follow a method similar to that presented in
[22, 25].

We begin by proving a lemma that enables us to calculate the number
of points on the curve En over the finite field Fp for a prime p with p ≡ 3
(mod 4).

Lemma 3.9. If p is a prime with p - n and p ≡ 3 (mod 4), then the curve
En over Fp has exactly p+ 1 points.

Proof. The points O, (0, 0), and (±n, 0) always lie on the curve En. We
will verify that these four points are distinct over Fp. In homogeneous
coordinates, the points O, (0, 0), and (±n, 0) are written as [0 : 1 : 0],
[0 : 0 : 1], and [±n : 0 : 1], respectively. According to Definition 3.1, two
sets of coordinates represent the same point in projective space if and only
if the coordinates differ by a nonzero constant. This means that the point
at infinity cannot equal (0, 0) or (±n, 0) over Fp. Furthermore, equality of
any two of (0, 0) or (±n, 0) leads to the congruences

±n ≡ 0 (mod p) or n ≡ −n (mod p).

By assumption p ≡ 3 (mod 4), so p is odd. Therefore, in order for the
above congruences to hold, we require that p|n, which contradicts our initial
assumption that p - n. Thus, O, (0, 0), and (±n, 0) are distinct points over
Fp.

We treat the cases p = 3 and p > 3 separately. When p = 3,

y2 = x3 − n2x = x(x2 − n2) ≡
{

0 (mod p) if p|x,
x(1− n2) (mod p) if p - x.

By assumption p - n, so Fermat’s little theorem (Theorem 2.14) implies that

(1− n2) ≡ 0 (mod p)

for p = 3. Therefore, irrespective of whether p divides x, we have

y2 = x(x− n)(x+ n) ≡ 0 (mod p).
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3.4. The Torsion Subgroup

This shows that O, (0, 0), and (±n, 0) are the only possible points on En
when p = 3, so there are exactly p+ 1 = 4 points on En over F3.

Let us now consider the case where p > 3 and examine the points for
which x 6= 0,±n. Since we are working modulo p, there are (p − 3) such
values for x. By assumption p is odd, so (p− 3) is even. As a result, we can
group the (p − 3) values for x into pairs {±x}. Clearly there is a point on
En whenever (x3 − n2x) is a square in Fp. Therefore, we treat two cases,
one where (x3−n2x) is a square and one where it is not a square. We begin
by assuming that (x3 − n2x) is a square in Fp, and apply Theorem 2.17 to
deduce that (

(x3 − n2x)

p

)
= 1. (3.9)

Since p ≡ 3 (mod 4), it follows from Theorem 2.17, Theorem 2.19, and
Equation (3.9) that(

((−x)3 − n2(−x))

p

)
=

(
−1

p

)(
(x3 − n2x)

p

)
= −1.

This enables us to conclude that ((−x)3−n2(−x)) is a quadratic nonresidue
of p, and hence it is not a square in Fp.

An analogous argument can be used to show that when (x3 − n2x) is
not a square in Fp, then ((−x)3 − n2(−x)) is a square. Thus, every pair
{±x} leads to exactly one point on En over Fp. This means that only half
of the (p − 3) distinct x values contained by the pairs {±x} need to be
considered. Each of these (p−3)/2 values for x corresponds to two y values,
±y. Neglecting the points O, (0, 0), and (±n, 0), there are (p− 3) points on
En over Fp. Thus, altogether there are (p+ 1) points on En over Fp.

The following theorem completely characterizes the torsion subgroup of
congruent number elliptic curves.

Theorem 3.10. For the congruent number elliptic curve En, |Tn| = 4 and
Tn
∼= Z2 × Z2.

Proof. We know that the four torsion points O, (0, 0), and (±n, 0) lie on the
curve En. By way of contradiction, assume there is another torsion point
on En. This torsion point cannot be a point of order two, so it must have
order greater than two. Since Tn contains three points of order two and
at least one with order greater than two, Mazur’s Theorem (Theorem 3.8)
implies that Tn is isomorphic to Z2 × Z2N with N ∈ {2, 3, 4}. Notice that
Z2 × Z4 is a group of order eight, so Theorem 2.4 can be applied to deduce
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3.4. The Torsion Subgroup

that it has subgroups of order 1, 2, 4, and 8. Similarly, Theorem 2.4 implies
that Z2 × Z6 has subgroups of order 1, 2, 3, 4, 6, and 12, and Z2 × Z8

has subgroups of order 1, 2, 4, 8, and 16. Therefore, regardless of which of
the three groups the torsion subgroup Tn is isomorphic to, Tn contains a
subgroup H = {P1, P2, . . . , Pm} of order m, where m is equal to either three
or eight.

Consider the reduction modulo p map P 7→ P̃ . By Theorem 3.7, we
know that if p does not divide 2D, where D is the discriminant of En, then
the reduction modulo p map is an isomorphism of Tn onto a subgroup of
Ẽn(Fp). It follows that the reduction map P 7→ P̃ is injective on H for

all primes p > 2D. Thus, m divides the order of the group Ẽn(Fp) for all
such p. Notice that for the curve En, the discriminant, given by Equation
(3.4), reduces to D = 4n6. Since p > 2D = 8n6, clearly p - n. Therefore, if

p ≡ 3 (mod 4), we can apply Lemma 3.9 to deduce that |Ẽn(Fp)| = p + 1.

For primes p with p > 2D, we know that m divides the order of Ẽn(Fp), so
m|(p+ 1), or equivalently p ≡ −1 (mod m). This implies that for all but a
finite number of primes p with p ≡ 3 (mod 4), we have

p ≡ −1 (mod m).

By Dirichlet’s Theorem on Primes in Arithmetic Progressions (Theorem
2.20), we know that for positive integers a and b with (a, b) = 1, there are
infinitely many primes p with p ≡ b (mod a).

When m = 8, all but a finite number of primes p with p ≡ 3 (mod 4)
satisfy the congruence p ≡ −1 (mod 8) ≡ 7 (mod 8). This means that if
m = 8, there are only finitely many primes with p ≡ 3 (mod 8), which
contradicts Dirichlet’s Theorem (Theorem 2.20).

Now suppose m = 3. Then for all but finitely many primes p with p ≡ 3
(mod 4), we have p ≡ −1 (mod 3). Solving this system of congruences
by using the Chinese Remainder Theorem (Theorem 2.13) yields p ≡ 11
(mod 12). Therefore, when m = 3, there can only be finitely many primes
p ≡ 7 (mod 12), which contradicts Dirichlet’s Theorem (Theorem 2.20).

Thus, the only rational points of finite order on the congruent number
elliptic curve En are O, (0, 0), and (±n, 0), so |Tn| = 4 and by Mazur’s
Theorem (Theorem 3.8), Tn

∼= Z2 × Z2.
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3.5 The Arithmetic Rank and the Method of
Complete 2-Descent

In Section 3.3, the concept of rank was introduced when we applied
Mordell’s Theorem in conjunction with the fundamental theorem of finitely
generated abelian groups to write

E(Q) ∼= T ⊕ Zr.

The arithmetic rank can formally be defined as follows.

Definition 3.11. Let E be an elliptic curve and let E(Q) be its group of
rational points. The arithmetic rank of E, denoted by r, is the number of
generators with infinite order Z in E(Q). Equivalently, the arithmetic rank
is the number of independent rational points of infinite order on E. The
arithmetic rank is also known as the Mordell-Weil rank.

Calculating the arithmetic rank of elliptic curves is, in most cases, a
difficult and computationally challenging problem. Currently, there do not
exist methods for computing the rank of all elliptic curves. It has been
conjectured that the rank can be arbitrarily large [51], but finding elliptic
curves with even moderately high rank is a difficult task. Bhargava and
Shankar proved that the average rank of all elliptic curves over Q is at
most 1.17 and that a positive proportion of the curves have rank zero [3].
Therefore, because moderate and high-rank elliptic curves are scarce, finding
curves with rank greater than one is a problem of interest.

In 2006, Elkies discovered an elliptic curve with rank equal to at least
28; the precise value of the rank is still unknown. The elliptic curve with
the largest known rank is

y2 + xy + y = x3 − x2 + 31368015812338065133318565292206590792820353345x

+302038802698566087335643188429543498624522041683874493555186062568159847.

This curve was found by Elkies in 2009, and its rank is equal to 19. Rogers
currently holds the record for the largest-rank congruent number elliptic
curve with r(n) = 7 for n = 797507543735 [45]. Additional information
regarding high-rank elliptic curves can be found in [9, 10].

Recall from Lemma 1.2 that the arithmetic rank r(n) of congruent num-
ber elliptic curves, which have the form y2 = x3 − n2x, is related to the
congruent number problem; if r(n) > 0, then n is a congruent number. Al-
ter, Curtz, and Kubota [1] conjectured that integers of the form n ≡ 5, 6, 7
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(mod 8) are congruent. By using both the Birch and Swinnterton-Dyer con-
jecture and the Shafarevich-Tate conjecture, Lagrange [10, 27, 49] was able
to expand upon Alter, Curtz, and Kubota’s work and state the following
conjecture for the parity of r(n):

r(n) ≡

{
0 (mod 2) if n ≡ 1, 2, 3 (mod 8),

1 (mod 2) if n ≡ 5, 6, 7 (mod 8).

This would imply that integers n satisfying n ≡ 5, 6, 7 (mod 8) are congruent
numbers.

Monsky provided evidence supporting the above conjecture when he used
the link between congruent numbers and elliptic curves to prove that certain
numbers n with at most two distinct odd prime divisors are congruent [34].
Monsky’s families of congruent numbers n ≡ 5, 6, 7 (mod 8) have the form

1) p5, p7, 2p7, and 2p3,

2) p3p7, p3p5, 2p3p5, and 2p5p7,

3) p1p5 with

(
p1
p5

)
= −1,

4) p1p7 and 2p1p7 with

(
p1
p7

)
= −1,

5) 2p1p3 with

(
p1
p3

)
= −1,

where pi denotes primes that are congruent to i (mod 8).
Tian expanded upon Monsky’s results and described the first families

of congruent numbers with arbitrarily many prime divisors [7, 54, 55]. His
congruent numbers have one prime factor congruent to 3, 5, or 7 modulo
8 and arbitrarily many prime factors congruent to 1 modulo 8. Tian also
proved the following important theorem [7, 54, 55].

Theorem 3.12. For any given integer k ≥ 0, there are infinitely many
square-free congruent numbers with exactly k+ 1 odd prime divisors in each
residue class of 5, 6, and 7 modulo 8.

Methods known as descents are often applied to determine the rank of
an elliptic curve. These techniques have an extensive history dating back
to the method of infinite decent. Fermat developed this technique and used
it to prove that no right triangle with integer side lengths can have its
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area equal to an integer squared [5]. A complete 2-descent is a method
that we can apply to calculate an upper bound for the rank of an elliptic
curve. This algorithm attempts to find the generators for the quotient group
En(Q)/2En(Q) by determining whether specific pairs of equations are solv-
able. The complete 2-descent algorithm for elliptic curves with a Weierstrass
equation of the form y2 = (x − e1)(x − e2)(x − e3) over a field K is stated
and proved in Section X.1 of [51]. The version of this theorem for congruent
number elliptic curves is stated in [10, Theorem 1] and [49, Theorem 3.1]
and is described by the following theorem.

Theorem 3.13 (Complete 2-Descent for En). Let p1, p2, . . . , pt for t ∈
N+ be distinct odd primes and

n = 2εp1p2 · · · pt

be a positive integer with ε ∈ {0, 1}. Let En be the elliptic curve over Q
defined by the equation

En : y2 = x3 − n2x = x(x− n)(x+ n),

and
Q(S, 2) := {c ∈ Q∗/Q∗2| vp(c) ≡ 0 (mod 2) ∀ p ∈MQ\S},

where vp(c) is the p-adic valuation of c and S = {∞, 2, p1, . . . , pt} is a
finite subset of MQ, the set of all places of Q. Then there is an injective
homomorphism

b : En(Q)/2En(Q) −→ Q(S, 2)×Q(S, 2) (3.10)

defined for P = (x, y) by

b(P ) =


(1, 1) if P = O,
(−1,−n) if P = (0, 0),
(n, 2) if P = (n, 0),
(x, x− n) if P = (x, y) 6= O, (0, 0), (n, 0).

If (b1, b2) ∈ Q(S, 2)×Q(S, 2)\{(1, 1), (−1,−n), (n, 2)}, then (b1, b2) ∈ Im(b)
if and only if the system of equations{

b1z
2
1 − b2z22 = n,

b1z
2
1 − b1b2z23 = −n

}
(3.11)

has a solution (z1, z2, z3) ∈ Q∗ ×Q∗ ×Q. In this case,

(b1, b2) = b(P )
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3.5. The Arithmetic Rank and the Method of Complete 2-Descent

for
P = (b1z

2
1 , b1b2z1z2z3) = (b2z

2
2 + n, b1b2z1z2z3).

Recall from Theorem 3.10 that the torsion subgroup of En is isomorphic
to Z2 ⊕ Z2, and hence

En(Q) ∼= Z2 ⊕ Z2 ⊕ Zr(n),

where r(n) is the arithmetic rank of En. Furthermore,

En(Q)/2En(Q) ∼= (Z2)
r(n)+2,

and because the homomorphism b defined in Theorem 3.13 is injective,

Im(b) ∼= (Z2)
r(n)+2.

This means that there are 2r(n)+2 pairs (b1, b2) for which the system of
equations in (3.11) has a solution. Clearly the four torsion points O, (0, 0),
(n, 0), and (−n, 0) always lie on En. However, since there is no known
method for determining whether equations of the form in (3.11) are solvable,
it often can be difficult to conclusively ascertain which of the remaining pairs
(b1, b2) are in Im(b).

By defining an upper bound B for the number of pairs (b1, b2) corre-
sponding to non-torsion points for which the system in (3.11) may be solv-
able, the following inequality can be established.

2r(n)+2 ≤ B + 4 ⇐⇒ r(n) ≤ log2

(
B + 4

4

)
. (3.12)

If the precise number of elements in Im(b) can be determined, then the
inequality in (3.12) becomes an equality. In addition, if the only pairs (b1, b2)
for which the system in (3.11) is solvable correspond to torsion points on En,
then B is zero and consequently the rank of En is also zero. By Lemma 1.2,
we know that such rank-zero elliptic curves En correspond to non-congruent
numbers n.

An example that illustrates how the method of complete 2-descent can
be used to conclusively determine the rank of En and generate a family of
non-congruent numbers can be found in [24]. In this paper, Iskra proves
that there exists an infinite set of primes of the form 8k + 3 satisfying a
specific pattern of Legendre symbols, such that any product of primes in
this set is a non-congruent number; a detailed proof of the result using the
method of complete 2-descent can also be found in Section 4.1 of [38].
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3.6 The 2-Selmer Rank of En and Monsky’s
Formula

We now consider the space formed by the intersection of the two conics
defined in Equation (3.11). For a given pair (b1, b2), these two equations
define a new curve

C(b1, b2) :=

{
b1z

2
1 − b2z22 = n,

b1z
2
1 − b1b2z23 = −n.

This is called a homogeneous space for the elliptic curve En over the field
Q, denoted by En/Q; more information regarding homogeneous spaces can
be found in Chapter X.3 of [51].

Recall from Theorem 3.13 that if there exists a solution (z1, z2, z3) ∈
Q∗ × Q∗ × Q satisfying C(b1, b2) for a given pair (b1, b2), then there is a
corresponding point in En(Q)/2En(Q). But determining whether or not a
given homogeneous space C(b1, b2) has a solution is a challenging task. It is
sometimes possible to find rational points on homogeneous spaces by inspec-
tion or by conducting searches using computers. Furthermore, for certain
values of (b1, b2), curves can be eliminated from consideration because they
do not have any points over R or over Qp for some prime p; a collection of
useful unsolvability conditions is stated in [49]. However, some homogeneous
spaces have local solutions for every prime p, but yet do not have a global
solution. In this situation, the Hasse principle (Principle 2.24) fails, which
makes it difficult to fully determine the elements in En(Q)/2En(Q).

We define two important sets of homogeneous spaces called the 2-Selmer
group and the Shafarevich-Tate group. The 2-Selmer group, Sel2(En/Q), is
the set consisting of the homogeneous spaces C(b1, b2) that have solutions
everywhere locally [29]. Because Q ⊆ Qp for all primes p ≥ 2, the homoge-
neous spaces in Im(b), where b is the injective homomorphism described in
Equation (3.10), belong to the 2-Selmer group. Therefore, the set of homo-
geneous spaces in Sel2(En/Q) with solutions over Q forms a subgroup that is
isomorphic to En(Q)/2En(Q). The Shafarevich-Tate group, X(En/Q)[2], is
the quotient group of Sel2(En/Q) by En(Q)/2En(Q). Thus, the Shafarevich-
Tate group is comprised of elements that are equal to C(1, 1) or homogeneous
spaces in Sel2(En/Q) that do not have solutions over the rational numbers
[29]. If the Shafarevich-Tate group is trivial, then every homogeneous space
that is locally solvable is also globally solvable, and hence corresponds to a
rational point on En.

The relationship between the groups En(Q)/2En(Q), Sel2(En/Q), and
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X(En/Q)[2] is represented by the short exact sequence

0 −→ En(Q)/2En(Q)
ψ−→ Sel2(En/Q)

φ−→X(En/Q)[2] −→ 0,

where ψ is a monomorphism, φ is an epimorphism, and ker(φ) = Im(ψ)
[23, 29, 51]. A thorough discussion of the theory governing the Selmer and
Shafarevich-Tate groups can be found in Chapter X.4 of [51].

For the congruent number elliptic curve En,

|Sel2(En/Q)| = 22+s(n),

where s(n) is defined to be the 2-Selmer rank of En [10, 19, 20]. The
following theorem describes the parity of the 2-Selmer rank of congruent
number elliptic curves En [20, appendix].

Theorem 3.14. If n is a positive square-free integer, then

s(n) ≡

{
0 (mod 2) if n ≡ 1, 2, 3 (mod 8),

1 (mod 2) if n ≡ 5, 6, 7 (mod 8).

Proof. See the appendix by Monsky in [20].

The Selmer conjecture claims that s(n) and r(n) have the same parity
[19]. In addition, the arithmetic rank and 2-Selmer rank of the elliptic curve
En are related by the well-known inequality

r(n) ≤ s(n). (3.13)

Notice that if the 2-Selmer rank of En is equal to zero, then the above
inequality guarantees that the Mordell-Weil rank of the curve is also zero.
Thus, n is a non-congruent number.

Monsky, in the appendix of Heath-Brown’s paper [20], offered a new
perspective on the 2-descent algorithm when he transformed it into a com-
putation involving linear algebra. In his proof of Theorem 3.14, Monsky
begins with a pair of equations derived by Heath-Brown in [19], and devel-
ops an elegant formula for computing s(n). Monsky’s formula calculates the
2-Selmer rank of En by relating it to the rank of a matrix with entries de-
fined over F2. We will refer to this matrix as the Monsky matrix. Monsky’s
formula for computing the 2-Selmer rank of En is essential to the proofs of
our main results in Chapters 4, 5, and 6 and is summarized by the following
theorem.
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Theorem 3.15 (Monsky’s Formula for the 2-Selmer Rank of En).
Let n be a square-free positive integer with odd prime factors p1, p2, . . . , pm.
The diagonal m×m matrices Dk = [di] for k ∈ {−2,−1, 2}, and the m×m
matrix A = [aij ] are defined by

di =


0, if

(
k

pi

)
= 1,

1, if

(
k

pi

)
= −1,

and

aij =


0, if

(
pj
pi

)
= 1, j 6= i,

1, if

(
pj
pi

)
= −1, j 6= i,

aii =
∑
j:j 6=i

aij . (3.14)

Then the 2-Selmer rank of En is

s(n) =

{
2m− rankF2(Mo), if n = p1p2 · · · pm,
2m− rankF2(Me), if n = 2p1p2 · · · pm,

(3.15)

where Mo and Me are the 2m× 2m matrices given by

Mo =

[
A + D2 D2

D2 A + D−2

]
, (3.16)

and

Me =

[
D2 A + D2

AT + D2 D−1

]
. (3.17)

Proof. See the appendix in [20].

According to Monsky’s formula, given by Equation (3.15), for an odd (or
even) integer n, En has s(n) = 0 if and only if the matrix Mo in Equation
(3.16) (or Me in Equation (3.17)) has full rank, or equivalently nonzero
determinant. Therefore, the inequality in Equation (3.13) that relates the
arithmetic rank to the 2-Selmer rank of En implies n is a non-congruent
number if

det(Mo) 6= 0 when n is odd,

or
det(Me) 6= 0 when n is even.

This idea will form the basis of our method for generating families of non-
congruent numbers presented in Chapters 4, 5, and 6.
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Chapter 4

Families of Non-congruent
Numbers

4.1 Overview

In this chapter, our focus is on generating a new family of even non-
congruent numbers with arbitrarily many distinct prime divisors. The first
reference to families of non-congruent numbers dates back to a paper by
Genocchi published in 1855 [15]. These original families of non-congruent
numbers contain a maximum of two distinct odd prime factors. In 1915
Bastien [2] presented two additional families of non-congruent numbers com-
prised of one or two prime factors. Over a century after the appearance of
Genocchi’s results, new families of non-congruent numbers having five or
fewer prime divisors were described by Lagrange [27] and Serf [49]. These
new families were more complex in that they required conditions to be im-
posed on the prime factors of the numbers and the associated values of the
Legendre symbols relating the primes. Since then, families of non-congruent
numbers that are a product of arbitrarily many distinct prime factors have
been described by Cheng and Guo [6], Feng [11], Feng and Xiong [12], Feng
and Xue [13], Goto [16], Iskra [24], Li and Tian [28], Ouyang and Zhang
[36, 37], Reinholz et al. [39, 40], and Wang [58].

The purpose of this chapter is to describe a new family of even non-
congruent numbers whose factorization contains arbitrarily many distinct
primes. The numbers that we generate have prime divisors in each odd
congruence class modulo eight. This characteristic distinguishes our family
of non-congruent numbers from other known families of even non-congruent
numbers that have prime factors belonging to a maximum of three odd
congruence classes modulo eight.

This chapter is based on a result that appears in [42].
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4.2 A Family of Even Non-congruent Numbers
With Arbitrarily Many Prime Factors

Our main theorem describes a new family of even non-congruent numbers
containing prime factors in each odd congruence class modulo eight.

Theorem 4.1. Let p, q, r, s1, s2, . . . , st be distinct prime numbers satisfying
the following congruence conditions:

p ≡ 1 (mod 8),

q ≡ 5 (mod 8),

r ≡ 3 (mod 8),

sγ ≡ 7 (mod 8) ∀ 1 ≤ γ ≤ t,

where t is an odd positive integer. In addition, assume that the prime factors
satisfy the following Legendre symbol conditions:(

q

p

)
=

(
r

p

)
=

(
r

q

)
= −1,(

si
p

)
= 1 for all i ∈ [1, t] with i ≡ 0 (mod 2),

and (
sj
p

)
=

(
sk
q

)
=
(sk
r

)
=

(
sk
sl

)
= −1

for all j ∈ [1, t] with j ≡ 1 (mod 2) and 1 ≤ l < k ≤ t. Then by setting w =
s1s2 · · · st, we have n = 2pqrw is a non-congruent number with s(n) = 0.

Our method of proof for this theorem requires showing that the deter-
minant of the Monsky matrix Me, stated in Equation (3.17), is nonzero.

Proof. We begin by considering the case where t = 1, so n = pqrs1. The
Monsky matrix Me for n has the form

Me =



0 0 0 0 1 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 0 1 1 0 0

1 1 1 1 0 0 0 0
1 0 1 1 0 0 0 0
1 1 0 0 0 0 1 0
1 1 1 0 0 0 0 1


.
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A software program, such as Maple, can be used to verify that this matrix has
full rank, and hence by Equation (3.15), s(n) = 0 and n is a non-congruent
number.

We now let t be an odd integer with t ≥ 3 and construct the (2t +
6) × (2t + 6) Monsky matrix Me for n = 2pqrw. Since some of the entries
in Me vary depending on the number of prime factors in w, we need to
consider two cases, t ≡ 1 (mod 4) or t ≡ 3 (mod 4). These cases are handled
simultaneously and the ensuing differences are carefully noted throughout
the proof. All of our calculations are carried out over F2.

The square Monsky matrix of order (2t+ 6) corresponding to n is given
by Equation (3.17),

Me =

[
D2 A + D2

AT + D2 D−1

]
,

where

D2 =


0 0 0
0 1 0
0 0 1

0

0 0t

, D−1 =


0 0 0
0 0 0
0 0 1

0

0 It

,
and

A =



β 1 1 1 0 1 0 1 · · · 0 1
1 1 1 1 1 1 1 1 · · · 1 1
1 1 1 1 1 1 1 1 · · · 1 1
1 1 0 0 1 1 1 1 · · · 1 1
0 1 0 0 0 1 1 1 · · · 1 1
1 1 0 0 0 0 1 1 · · · 1 1
...

...
...

...
. . .

. . .
. . .

...
...

...
...

...
. . .

. . .
. . .

...
...

...
...

...
. . .

. . .
. . .

...
0 1 0 0 · · · · · · · · · · · · 0 0 1
1 1 0 0 · · · · · · · · · · · · 0 0 0



,

with

β =

{
1 if t ≡ 1 (mod 4),
0 if t ≡ 3 (mod 4).
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4.2. A Family of Even Non-congruent Numbers

Notice that the final t entries in the first row and the first column of A
exhibit an alternating pattern of ones and zeros.

We perform numerous row and column operations to reduce Me, so that
the value of its determinant can be easily computed. Note that because we
are working over F2, these elementary row and column operations do not
alter the determinant of Me. We list the column and row operations to be
applied to Me by using the notation introduced at the beginning of Section
2.3.

Ct+5 −→ Ct+4 + Ct+5

C2t+6 −→ C2t+6 + Ct+5

Even rows



Rt+1 −→ Rt+1 +Rt+3

Rt−1 −→ Rt−1 +Rt+3
...

R6 −→ R6 +Rt+3

R4 −→ R4 +Rt+3

R3 −→ R3 +Rt+3

R2 −→ R2 +Rt+3

Odd rows



Rt −→ Rt +Rt+2

Rt−2 −→ Rt−2 +Rt+2
...

R7 −→ R7 +Rt+2

R5 −→ R5 +Rt+2

R2 −→ R2 +Rt+2.

In addition, if {
t ≡ 1 (mod 4), then R1 −→ R1 +Rt+3,
t ≡ 3 (mod 4), then R1 −→ R1 +Rt+2.

When applied in chronological order, this collection of row and column op-
erations transforms the (t + 3) × (t + 3) block in the upper right corner of
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4.2. A Family of Even Non-congruent Numbers

Me into

B =



0 0 1 1 0 1 0 1 · · · 0 1 0 β
0 0 1 1 1 1 1 1 · · · 1 1 1 0
0 0 0 1 1 1 1 1 · · · 1 1 1 1
0 0 0 0 1 1 1 1 · · · 1 1 1 1
0 0 0 0 0 1 1 1 · · · 1 1 1 0
0 0 0 0 0 0 1 1 · · · 1 1 1 1
...

...
...

. . .
. . .

. . .
...

...
...

...
...

...
. . .

. . .
. . .

...
...

...
...

...
...

. . .
. . .

. . .
...

...
...

...
...

...
. . . 0 1 1 0

0 0 0 · · · · · · · · · · · · · · · · · · 0 0 1 1
0 1 0 · · · · · · · · · · · · · · · · · · 0 0 0 0
1 0 0 · · · · · · · · · · · · · · · · · · 0 0 0 0



,

while leaving the remaining elements in Me unchanged. Furthermore, by
applying the row operations

R3 −→ R3 +R4

R4 −→ R4 +R5
...

Rt−1 −→ Rt−1 +Rt
Rt −→ Rt +Rt+1

R2 −→ R2 + (Rt+1 +Rt−1 +Rt−3 + · · ·+R6 +R4 +R1)

to Me in the order listed above, B becomes

B′ =



0 0 1 1 0 1 0 1 · · · 0 1 0 β
0 0 0 0 0 0 0 0 · · · 0 0 0 1
0 0 0 1 0 0 0 0 · · · 0 0 0 0
0 0 0 0 1 0 0 0 · · · 0 0 0 1
0 0 0 0 0 1 0 0 · · · 0 0 0 1
0 0 0 0 0 0 1 0 · · · 0 0 0 1
...

...
...

. . .
. . .

. . .
...

...
...

...
...

. . .
. . .

. . .
...

...
...

...
...

. . .
. . .

. . .
...

...
...

...
...

. . . 0 1 0 1
0 0 0 · · · · · · · · · · · · · · · · · · 0 0 1 1
0 1 0 · · · · · · · · · · · · · · · · · · 0 0 0 0
1 0 0 · · · · · · · · · · · · · · · · · · 0 0 0 0



.
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Note that these operations do not alter the other three blocks within Me.
Next, we perform numerous row interchanges in sequential order:

Rt+2 ←→ Rt+1

Rt+1 ←→ Rt
...

R6 ←→ R5

R5 ←→ R4

R4 ←→ R3

R3 ←→ R1

R2 ←→ R1

R1 ←→ Rt+3.

These row interchanges transform Me into

M∗
e =



0 0 0 0 0 · · · 0
0 0 0 0 0 · · · 0
0 0 0 0 0 · · · 0
0 0 1 0 0 · · · 0
0 0 0 0 0 · · · 0
...

. . .
...

0 1 0 0 · · · · · · 0

B′′

AT + D2 D−1


,

where

B′′ =



1 0 0 0 0 0 0 0 · · · 0 0 0 0
0 1 0 0 0 0 0 0 · · · 0 0 0 0
0 0 1 1 0 1 0 1 · · · 0 1 0 β
0 0 0 1 0 0 0 0 · · · 0 0 0 0
0 0 0 0 1 0 0 0 · · · 0 0 0 1
0 0 0 0 0 1 0 0 · · · 0 0 0 1
...

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
...

...
...

. . . 1 0 1
... 0 1 1
0 · · · · · · · · · · · · · · · · · · · · · · · · · · · 0 0 1



.
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Our goal is to transform the AT +D2 block of M∗
e into an upper triangu-

lar matrix. To accomplish this, we apply the following column replacements
in M∗

e:
Ct+2 −→ Ct+2 + Ct+1

Ct+1 −→ Ct+1 + Ct
...

C3 −→ C3 + C2

C2 −→ C2 + C1.

These operations affect both the upper left and lower left blocks within M∗
e,

changing this matrix into

M∗∗
e =



0 0 0 0 0 · · · · · · · · · · · · 0

0 0 0 0 0
...

0 0 0 0 0
...

0 0 1 1 0
...

0 0 0 0 0
...

...
...

...
...

. . .
... B′′

...
...

...
...

. . .
...

0 0 0 0 0 0 0
0 0 0 0 · · · · · · · · · 0 0 0
0 1 1 0 · · · · · · · · · 0 0 0

β (β + 1) 0 0 1 1 · · · · · · 1 1
1 1 1 0 0 0 · · · · · · 0 1
1 0 1 0 0 0 · · · · · · 0 0

1 0 0 1 0 0
...

...

0 1 0 0 1 0
...

...

1 0 0 0 0 1
...

... D−1
...

...
...

...
. . .

...
...

...
...

...
... 1 0 0

0 1 0 0 · · · · · · · · · 0 1 0
1 0 0 0 · · · · · · · · · 0 0 0



.
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4.2. A Family of Even Non-congruent Numbers

We then perform the following set of operations on M∗∗
e .

C2 −→ C2 + (Ct+2 + Ct + Ct−2 + · · ·+ C7 + C5)
C1 ←→ Ct+3

C1 −→ C1 + C2

Rt+4 −→ Rt+4 +R1

Rt+5 −→ Rt+5 +R2.

Altogether, these five operations reduce the lower left block in M∗∗
e to an

upper triangular matrix while transforming the lower right block into the
identity matrix of order (t+ 3). This yields

M∗∗∗
e =

[
G B′′

H It+3

]
,

where

G =



0 0 0 0 0 · · · · · · · · · 0

0 0 0 0 0
...

0 0 0 0 0
...

0 0 1 1 0
...

0 0 0 0 0
...

...
...

...
...

. . .
...

0 0 0 0 0 0 0
0 0 0 0 · · · · · · 0 0 0
1 1 1 0 · · · · · · 0 0 0



,

and

H =



1 0 0 0 1 1 · · · · · · · · · 1 β
0 1 1 0 0 0 · · · · · · · · · 0 1
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0

0 0 0 0 0 1
. . . 0 1

...
...

. . .
. . .

. . .
...

...
...

...
. . . 1 0 0 0

...
... 0 1 0 1

0 0 · · · · · · · · · · · · · · · 0 0 1 0
0 0 · · · · · · · · · · · · · · · 0 0 0 1



.
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4.2. A Family of Even Non-congruent Numbers

Finally, we apply Proposition 2.28 to M∗∗∗
e to obtain

det(M∗∗∗
e ) = det(It+3) det(G−B′′I−1t+3H).

Therefore,

det(M∗∗∗
e ) = det



1 0 0 0 1 1 1 1 · · · 1 1 1 β
0 1 1 0 0 0 0 0 · · · 0 0 0 1
0 0 1 1 0 1 0 1 · · · 0 1 0 0
0 0 1 0 0 0 0 0 · · · 0 0 0 1
0 0 0 0 1 0 0 0 · · · 0 0 0 1
0 0 0 0 0 1 0 0 · · · 0 0 0 0
0 0 0 0 0 0 1 0 · · · 0 0 0 1
...

...
...

...
...

. . .
...

...
...

...
...

...
...

. . .
...

...
...

...
...

...
...

. . .
...

...
...

...
...

...
... 1 0 0

0 0 0 0 0 · · · · · · · · · · · · · · · 0 1 1
1 1 1 0 0 · · · · · · · · · · · · · · · 0 0 1



.

Notice that the entries appearing in the middle of the third row and the
middle of the last column of the above (t + 3) × (t + 3) matrix alternate
between ones and zeros. To easily compute this determinant, we apply the
following operations to the matrix above to reduce it to an upper triangular
matrix with ones along its diagonal.

Rt+3 −→ Rt+3 +R2

C3 ←→ C4

R1 ←→ Rt+3

Rt+3 −→ Rt+3 + (R1 +R5 +R6 +R7 + · · ·+Rt+1 +Rt+2).

Since we are working over F2, the determinant of this upper triangular ma-
trix is equal to that of M∗∗∗

e . Therefore,

det(Me) = det(M∗∗∗
e ) = 1,

so Me has full rank. Thus, by Equation (3.15), s(n) = 0 and n is a non-
congruent number.
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4.3 Numerical Examples

The purpose of this section is to give some examples of non-congruent
numbers generated by Theorem 4.1. The prime divisors of these numbers are
required to satisfy certain Legendre symbols conditions, and hence Dirich-
let’s theorem on primes in arithmetic progressions (Theorem 2.20) guar-
antees that our theorem produces infinitely many non-congruent numbers.
We list examples of non-congruent numbers described by Theorem 4.1 in
the following table.

Table 4.1: Non-congruent numbers generated by Theorem 4.1

n = 2pqrs1s2 · · · st t (mod 4)

2·41·13·19·71·31·1319·743·3191·28151·52879·33287·160583 1

2·73·5·83·47·223·7927·2287·6247·7127·8647·26863·252463 1

2 · 17 · 5 · 3 · 23 · 263 · 503 · 1583 · 743 · 18143 · 18047 3

2 · 17 · 29 · 131 · 31 · 127 · 743 · 967 · 2207 · 3391 · 2879
· 59671 · 118247 · 350447 · 1378439

3

In Appendix A, we show how Maple can be used to generate non-
congruent numbers, such as the ones listed in Table 4.1, satisfying the con-
ditions imposed in Theorem 4.1.
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Chapter 5

The Generation of Families
of Odd Non-congruent
Numbers From Known
Non-congruent Numbers

5.1 Overview

In this chapter, we present a novel technique for generating families of
odd non-congruent numbers. Unlike other known results on non-congruent
numbers that impose congruence conditions on each prime factor of a non-
congruent number and on the Legendre symbols relating these primes, the
new technique described in this chapter provides a general approach for find-
ing families of non-congruent numbers. That is, given an odd non-congruent
number α corresponding to a congruent number elliptic curve with 2-Selmer
rank equal to zero, new non-congruent numbers can be constructed by mul-
tiplying α by primes of a specified form. This process allows existing families
of non-congruent numbers to be extended and infinitely many non-congruent
numbers to be produced.

This chapter is based on results that appear in [41] and [44].

5.2 Extending Known Families of Odd
Non-congruent Numbers

This section provides an introduction to our extension technique for gen-
erating new families of non-congruent numbers. We begin by introducing
some notation.

Let pi ≡ 5 (mod 8) and qj ≡ 3 (mod 8) with i, j ∈ N+ be distinct odd
primes, and let a, b ∈ N with (a+ b) > 0. We define the sets
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5.2. Extending Known Families of Odd Non-congruent Numbers

P =

{
∅ if a = 0,

{p1, p2, . . . , pa} if a > 0,

and

Q =

{
∅ if b = 0,

{q1, q2, . . . , qb} if b > 0.

We now state the following theorem from [41].

Theorem 5.1. Let

α =

∏
pi∈P

pi

∏
qj∈Q

qj

,
and suppose that the elliptic curve

y2 = x(x2 − α2)

has s(α) = 0. Define the square-free positive integer n by

n = αr1r2 · · · rv,

where r1, r2, . . . , rv are primes satisfying rk ≡ 1 (mod 8) for all k ∈ [1, v]
with v ∈ N+. If for each k with 1 ≤ k ≤ v the set Sk defined by

Sk =

{(
rk
pi

)
,

(
rk
qj

)
,

(
rk
rh

)
with 1 ≤ i ≤ a, 1 ≤ j ≤ b, and 1 ≤ h < k ≤ v

}
contains exactly one Legendre symbol equal to −1, then s(n) = 0 and n is a
non-congruent number.

Proof. We work over F2 and use properties from the field of linear algebra
in conjunction with Monsky’s formula for the 2-Selmer rank of En to prove
this result. We use Equation (3.16) to construct the (2a + 2b) × (2a + 2b)
Monsky matrix for α = p1p2 · · · paq1q2 · · · qb. This matrix has the form

Mα =

[
Aα + Dα

2 Ia+b

Ia+b Aα + Dα
−2

]
, (5.1)

where

Dα
2 = Ia+b and Dα

−2 =

[
Ia 0

0 0b

]
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5.2. Extending Known Families of Odd Non-congruent Numbers

represent the diagonal matrices for α, and Aα is the square A matrix of
order (a + b) corresponding to α. We use the specified Legendre symbol
conditions imposed on the prime divisors of n = αr1r2 · · · rv and Equation
(3.14) to form the A matrix for n, denoted by An. As a result, the Monsky
matrix for n can be written as

Mn =

[
An + Dn

2 Dn
2

Dn
2 An + Dn

−2

]
,

where

Dn
2 =

[
Dα

2 0

0 0v

]
and Dn

−2 =

[
Dα
−2 0

0 0v

]
.

Guided by the structure of the matrix An, we use elementary row and
column operations to reduce Mn until the value of its determinant can
be easily computed. Since we are working over F2, the operations yield a
matrix with the same determinant. To describe the sequence of steps used
to reduce Mn, we let mij denote the entry in the ith row and jth column
of Mn. We consider those entries with mij = 1, where 1 ≤ i ≤ (a + b + v),
(a+b) < j ≤ (a+b+v), and i < j. Note that for every j ∈ [a+b+1, a+b+v],
there exists a single value of i ∈ [1, a+ b+ v] satisfying mij = 1. Therefore,
beginning with j = (a+b+v), we determine the corresponding value of i for
which mij = 1. We subtract column j from column i, and then subtract row
j from row i. Following this, we decrease the value of j by one and repeat the
previously described column and row subtraction operations. We continue
this process for each j = (a+ b+v−1), (a+ b+v−2), . . . , (a+ b+ 1). Upon
completing the v column subtractions and v row subtractions, we find that
the upper left block of Mn is reduced to[

Aα + Dα
2 0

0 Iv

]
,

while the remaining three blocks in Mn are left unaltered.
The structure of the original An + Dn

2 and An + Dn
−2 blocks in Mn is

similar, so for each j ∈ [2a+ 2b+ v + 1, 2a+ 2b+ 2v], there is precisely one
value of i ∈ [a + b + v + 1, 2a + 2b + 2v] for which mij = 1. Therefore, we
repeat the aforementioned procedure, but with the rows i and the columns j
satisfying (a+b+v+1) ≤ i ≤ (2a+2b+2v), (2a+2b+v) < j ≤ (2a+2b+2v),
and i < j. We begin with j = (2a+ 2b+ 2v) and complete the necessary v
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column subtractions and v row subtractions, thus reducing the lower right
block of Mn to [

Aα + Dα
−2 0

0 Iv

]
.

Altogether, these operations transform Mn into

M∗
n =


Aα + Dα

2 0 Ia+b 0

0 Iv 0 0

Ia+b 0 Aα + Dα
−2 0

0 0 0 Iv

.

We now add rows (2a+ 2b+v+ 1) through (2a+ 2b+ 2v) to rows (a+ b+ 1)
through (a+ b+ v) respectively to get

M∗∗
n =


Aα + Dα

2 0

0 Iv
Ia+b+v

Dn
2

Aα + Dα
−2 0

0 Iv

.

Following this, we perform (a + b + v) row interchanges to M∗∗
n to obtain

the matrix

M∗∗∗
n =


Dn

2

Aα + Dα
−2 0

0 Iv

Aα + Dα
2 0

0 Iv
Ia+b+v

.
Note that since we are working over F2,

det(Mn) = det(M∗
n) = det(M∗∗

n ) = det(M∗∗∗
n ). (5.2)

Applying Proposition 2.28 to M∗∗∗
n allows us to deduce that its determinant

is equal to

det(Ia+b+v) det

(
Dn

2 −

[
Aα + Dα

−2 0

0 Iv

]
I−1a+b+v

[
Aα + Dα

2 0

0 Iv

])
,
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which, when simplified, reduces to

det(M∗∗∗
n ) = det

([
Ia+b 0

0 0

]
−

[
(Aα + Dα

−2)(Aα + Dα
2) 0

0 Iv

])
= det

(
Ia+b −

(
Aα + Dα

−2
)

(Aα + Dα
2)
)

det (Iv)

= det
(
Ia+b −

(
Aα + Dα

−2
)

(Aα + Dα
2)
)
. (5.3)

To compute this determinant, we need to consider the matrix Mα de-
scribed by Equation (5.1). By assumption s(α) = 0, so Equation (3.15)
implies that Mα has full rank, and hence

det(Mα) 6= 0. (5.4)

In addition, if we perform (a + b) row interchanges to Mα to transform it
into

M∗
α =

[
Ia+b Aα + Dα

−2

Aα + Dα
2 Ia+b

]
,

and apply Proposition 2.28 to M∗
α, then

det (Mα) = det (M∗
α) = det (Ia+b) det

(
Ia+b −

(
Aα + Dα

−2
)
I−1a+b (Aα + Dα

2)
)

= det
(
Ia+b −

(
Aα + Dα

−2
)

(Aα + Dα
2)
)
. (5.5)

Combining Equations (5.2), (5.3), (5.4), and (5.5) enables us to conclude
that

det(Mn) 6= 0.

Thus, s(n) = 0 and n is a non-congruent number.

5.3 Numerical Examples of Odd Non-congruent
Numbers

In this section, we provide examples to demonstrate how Theorem 5.1
can be used to generate new non-congruent numbers from known families of
non-congruent numbers. Because these numbers are specified by conditions
on the Legendre symbol relating their prime factors, Dirichlet’s theorem on
primes in arithmetic progressions (Theorem 2.20) guarantees that infinitely
many non-congruent numbers are produced by Theorem 5.1. Also, note
that the examples we list in Table 5.1 clearly belong to new families of non-
congruent numbers because their prime factorizations differ from those of
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existing families of non-congruent numbers [2, 6, 11–13, 15–17, 24, 27, 28,
36, 37, 39, 40, 49, 58].

We begin by extending Iskra’s family of non-congruent numbers [24].

Theorem 5.2 (Iskra). Let a ∈ N+ and suppose that p1, p2, . . . , pa are dis-

tinct primes satisfying pi ≡ 3 (mod 8) and
(
pj
pi

)
= −1 for j < i. Then

α = p1p2 · · · pa is a non-congruent number.

In Reinholz’s master’s thesis [38, Section 4.2], the congruent number
elliptic curves associated with numbers described by Iskra’s theorem are
shown to have 2-Selmer rank of zero. As a result, new non-congruent num-
bers can be produced by using Theorem 5.1 to append a tail of primes of
the form 8k + 1 to Iskra’s non-congruent numbers.

Next, we apply Theorem 5.1 to the following result by Reinholz et al.
[39].

Theorem 5.3 (Reinholz et al.). Let m be a fixed nonnegative even integer
and let a be any positive integer satisfying a ≥ m. Let Nm denote the set of
positive integers with prime factorization p1p2 · · · pa, where p1, p2, . . . , pa are
distinct primes of the form 8k + 3 such that(

pj
pi

)
=

{
−1 if 1 ≤ j < i and (j, i) 6= (1,m),
1 if 1 ≤ j < i and (j, i) = (1,m).

If α ∈ Nm, then α is non-congruent.

In the proof of this theorem [39], the congruent number elliptic curves
corresponding to these non-congruent numbers are shown to have 2-Selmer
rank equal to zero. Therefore, Theorem 5.1 can be directly applied to The-
orem 5.3 to generate infinitely many new non-congruent numbers.

Finally, we use Theorem 5.1 to extend an important result by Ouyang
and Zhang [37].

Theorem 5.4 (Ouyang and Zhang). Let

[x
h

]
=

(
1−

(x
h

))
2

,

and suppose that α = p1p2 · · · pk ≡ 1, 3 (mod 8) with pi ≡ ±3 (mod 8) for

all i ∈ [1, k]. Define B to be the k × k matrix with (i, j)-entries
[
pj
pi

]
for

i 6= j and with (i, i)-entries
[
α/pi
pi

]
, and

C = diag

{[
−1

p1

]
,

[
−1

p2

]
, . . . ,

[
−1

pk

]}
.
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If B2 + CB + C is invertible, then α is a non-congruent number.

With a little effort, one can prove that for the integer α in Theorem 5.4,
the condition that B2 + CB + C is invertible is equivalent to the Monsky
matrix having full rank. Thus, the matrix B2 + CB + C is invertible if and
only if s(α) = 0. As a result, Theorem 5.1 can be used to extend Ouyang
and Zhang’s work and generate new non-congruent numbers containing arbi-
trarily many prime factors belonging to two or three odd congruence classes
modulo eight.

Numerical examples obtained by applying Theorem 5.1 to the non-congruent
numbers in Theorems 5.2-5.4 are given in Table 5.1.

Table 5.1: Non-congruent numbers generated by Theorem 5.1

Theorem
Satisfied

by α

n = (α) · r1r2 · · · rk Extension Tail Legendre
Symbols that Equal −1

Theorem
5.2

(19 · 11 · 163 · 419) · 97 · 313 ·
617 · 1697 · 1721
· 6521 · 15361 · 16889

(
97
19

)
,
(
313
419

)
,
(
617
163

)
,
(
1697
163

)
,(

1721
1697

)
,
(
6521
1721

)
,
(
15361
419

)
,
(
16889
1721

)
Theorem

5.2
(347·83·11·3·499·1123·2803)·
673 · 2953 · 3617 · 7417 · 8713

(
673
11

)
,
(
2953
1123

)
,
(
3617
3

)
,
(
7417
1123

)
,(

8713
2953

)
Theorem

5.3
(11 · 59 · 163 · 307 · 947) · 41 ·
1361 · 2017 · 4057 · 4673 · 8969

(
41
11

)
,
(
1361
11

)
,
(
2017
59

)
,
(
4057
947

)
,(

4673
163

)
,
(
8969
4673

)
Theorem

5.3
(3 · 11 · 67 · 163 · 691 · 1483 ·

3019 · 2179 · 16987)
· 2137 · 4273 · 13553 · 36793

(
2137
163

)
,
(
4273
67

)
,
(
13553

3

)
,
(
36793
1483

)

Theorem
5.4

(3·11·19·43·59·5·13·29·37)·
27481 · 31321 · 52561 · 78049

(
27481
29

)
,
(
31321
37

)
,
(
52561
13

)
,
(
78049
29

)
Theorem

5.4
(3 · 19 · 67 · 83 · 13 · 61 · 101 ·

149) · 4177 · 9649 · 9721
· 17449 · 26953 · 49297

(
4177
61

)
,
(
9649
61

)
,
(
9721
19

)
,
(
17449
83

)
,(

26953
9721

)
,
(
49297
67

)
Note that the non-congruent numbers presented in Table 5.1 were con-

structed using similar Maple code to that described in Appendix A.
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5.4 An Extension Technique for Generating New
Families of Odd Non-congruent Numbers

In this section, we present a method for generating new families of odd
non-congruent numbers by extending other known families of non-congruent
numbers. Of significance is the fact that our method produces non-congruent
numbers with arbitrarily many distinct prime divisors in each of the four
odd congruence classes modulo eight. This is a distinguishing feature of
our result, as all other existing theorems on non-congruent numbers impose
restrictions on the number of prime factors belonging to the odd congruence
classes modulo eight.

We introduce some notation that will be used throughout this section.
Let pi, qj , rk, and sl with i, j, k, l ∈ N+ be distinct odd primes, and let
a, b, c, d ∈ N with (a+ b+ c+ d) > 0. We define the set

P =

{
∅ if a = 0,

{p1, p2, . . . , pa} if a > 0.

The sets Q,R, and S are defined analogously with |Q| = b, |R| = c, and
|S| = d. In addition, we let

W = P ∪Q ∪R ∪ S.

Our main result [44] provides a general extension technique for construct-
ing new families of odd non-congruent numbers.

Theorem 5.5. Define

α =

∏
pi∈P

pi

∏
qj∈Q

qj

∏
rk∈R

rk

∏
sl∈S

sl

, (5.6)

and suppose that the elliptic curve

y2 = x(x2 − α2)

has 2-Selmer rank of zero. Let t > d with t ∈ N+, and define the odd
square-free positive integer n by

n = αsd+1sd+2 · · · st,

where the prime factors of n satisfy the congruence conditions described in
one of the three cases in Table 5.2.
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Table 5.2: Congruence conditions for the prime factors of the odd number
n

Condition pi(mod 8)
∀ pi ∈ P

qj(mod 8)
∀ qj ∈ Q

rk(mod 8)
∀ rk ∈ R

sγ(mod 8)
∀ γ ∈ [1, t]

I 1 5 7 3

II 1 7 3 5

III 5 3 7 1

In addition, assume that the primes appended onto α satisfy one of the
following Legendre symbol conditions.

Condition 1:
For all h ∈ [d + 1, t], pi ∈ P, qj ∈ Q, rk ∈ R, and g ∈ [1, h), one of the
following four sets of Legendre symbol conditions hold.

A)

(
sh
pi

)
=

(
sh
qj

)
=

(
sh
rk

)
=

(
sh
sg

)
= 1.

B)

(
pi
sh

)
=

(
qj
sh

)
=

(
rk
sh

)
=

(
sg
sh

)
= 1.

C)

(
sh
pi

)
=

(
sh
qj

)
=

(
sh
rk

)
=

(
sh
sg

)
= −1.

D)

(
pi
sh

)
=

(
qj
sh

)
=

(
rk
sh

)
=

(
sg
sh

)
= −1.

Condition 2:
For all h, β ∈ [d+ 1, t] with h 6= β(

sβ
sh

)
= 1,

and define T ⊆W with

T =

{
µ

∣∣∣∣ (shµ
)

= −1 ∀ h ∈ [d+ 1, t]

}
and |T | ≡ 1 (mod 2). For all primes ε ∈W\T,(sh

ε

)
= 1 ∀ h ∈ [d+ 1, t].
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Condition 3:
For each h ∈ [d+ 1, t], the set Lh defined by

Lh =

{(
sh
pi

)
,

(
sh
qj

)
,

(
sh
rk

)
,

(
sh
sg

)
with pi ∈ P, qj ∈ Q, rk ∈ R, g ∈ [1, h)

}
has exactly one Legendre symbol equal to −1.

Then, in each of the cases described in Table 5.3, n is a non-congruent
number and the 2-Selmer rank of the elliptic curve y2 = x(x2 − n2) is zero.

Table 5.3: Conditions on the prime factors in the extension tail of the odd
number n

Case Congruence
Condition

Legendre Symbol
Condition

Parity of (t− d)

I.1.A I 1.A No restriction

I.1.B I 1.B No restriction

I.1.C I 1.C Even

I.1.D I 1.D Even

II.2 II 2 Even

III.2 III 2 Even

III.3 III 3 No restriction

Case I.1

To prove this theorem, we use Monsky’s formula for the 2-Selmer rank
of En along with various properties of determinants, including the one de-
scribed by the following lemma.

Lemma 5.6. Let

Q1 =


In1 0 0 0
0 0 In3 0
0 In2 0 0
0 0 0 In4

, Q2 =


In1 0 0 0
0 0 In2 0
0 In3 0 0
0 0 0 In4

,

R1 =


In1 0 0 0
0 0 In3 0
0 0 0 In4

0 In2 0 0

, and R2 =


In1 0 0 0
0 0 0 In2

0 In3 0 0
0 0 In4 0

,
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where n1, n2, n3, n4 ∈ N+. Then

Q1Q2 = Q2Q1 = R1R2 = R2R1 = In1+n2+n3+n4 .

Define the square matrix M of order (n1 + n2 + n3 + n4) by

M =


M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

,
where Mij is a ni × nj matrix. Then

M� = Q1MQ2 =


M11 M13 M12 M14

M31 M33 M32 M34

M21 M23 M22 M24

M41 M43 M42 M44

, (5.7)

MN = R1MR2 =


M11 M13 M14 M12

M31 M33 M34 M32

M41 M43 M44 M42

M21 M23 M24 M22

, (5.8)

M∗ = R1MQ2 =


M11 M13 M12 M14

M31 M33 M32 M34

M41 M43 M42 M44

M21 M23 M22 M24

, (5.9)

and

M′ = Q1MR2 =


M11 M13 M14 M12

M31 M33 M34 M32

M21 M23 M24 M22

M41 M43 M44 M42

. (5.10)

Thus, over F2,

det(M) = det(M�) = det(MN) = det(M∗) = det(M′).

The proofs of the separate cases in Theorem 5.5 are sufficiently different,
so we provide details for each of them individually. Throughout the proofs,
we work over the finite field F2 and let

δ = (a+ b+ c) and ω = (2δ + t+ d). (5.11)
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We also let Aα denote the (δ + d)× (δ + d) A matrix for the integer α; the
entries in this matrix are defined in Equation (3.14).

We begin by presenting the proof of the first four cases listed in Table
5.3.

Case I.1 Proof. Consider n = αsd+1sd+2 · · · st and recall the Monsky matrix
described in Equation (3.16). We form the diagonal D2 and D−2 matrices
corresponding to n; they can be written as

Dn
2 =



0a 0 0 0 0

0 Ib 0 0 0

0 0 0c 0 0

0 0 0 Id 0

0 0 0 0 It−d


=

 Dα
2 0

0 It−d

 (5.12)

and

Dn
−2 =


0a 0 0 0

0 Ib+c 0 0

0 0 0d 0

0 0 0 0t−d

 =

 Dα
−2 0

0 0t−d

. (5.13)

We also define a pair of (t− d)× (δ + d) matrices

T =

 0 · · · 0 0 · · · 0 1 · · · 1 1 · · · 1
...

...
...

...
...

...
...

...

︸ ︷︷ ︸
a columns

0 · · · 0 ︸ ︷︷ ︸
b columns

0 · · · 0 ︸ ︷︷ ︸
c columns

1 · · · 1 ︸ ︷︷ ︸
d columns

1 · · · 1

 (5.14)

and

U =

 1 · · · 1 1 · · · 1 0 · · · 0 0 · · · 0
...

...
...

...
...

...
...

...

︸ ︷︷ ︸
a columns

1 · · · 1 ︸ ︷︷ ︸
b columns

1 · · · 1 ︸ ︷︷ ︸
c columns

0 · · · 0 ︸ ︷︷ ︸
d columns

0 · · · 0

. (5.15)

We now consider the four separate subcases that are dependent upon the
Legendre symbols of the prime factors appended onto α.
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Case I.1.A:
For the given pattern of Legendre symbols, the (δ + t) × (δ + t) A matrix
described in Theorem 3.15 has the form

An =



Aα 0

T

ad+1 0 · · · · · · 0

1 ad+2
. . .

...
...

. . .
. . .

. . .
...

...
. . . at−1 0

1 · · · · · · 1 at


=

[
Aα 0

T A∗

]
. (5.16)

Note that the entries along the diagonal in A∗ vary according to the parity
of the numbers (c+d) and (t−d). By knowing the parity of these quantities,
we can determine whether there are an even or odd number of ones in each of
the final (t−d) rows in An. This information, when combined with Equation
(3.14), allows us to easily deduce the values of the diagonal elements in A∗.
These values are listed in Table 5.4.

Table 5.4: Diagonal entries in the matrix An in Case I.1.A of Theorem 5.5

Case Parity of
(c+ d)

Parity of
(t− d)

Values of the Entries
ad+1, ad+2, . . . , at−1, at

1 Even Odd 0, 1, 0, 1, 0, . . . , 1, 0

2 Even Even 0, 1, 0, 1, . . . , 0, 1

3 Odd Odd 1, 0, 1, 0, 1, . . . , 0, 1

4 Odd Even 1, 0, 1, 0, . . . , 1, 0

We consider the first two cases listed in Table 5.4, and form the (2δ +
2t) × (2δ + 2t) Monsky matrix Mo for n by using Equation (3.16). It can
be written as

Mo =


Aα + Dα

2 0 Dα
2 0

T A∗ + It−d 0 It−d

Dα
2 0 Aα + Dα

−2 0

0 It−d T A∗

,
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where Dα
2 , Dα

−2, T, and A∗ are described in Equations (5.12), (5.13), (5.14),
and (5.16), respectfully. By applying Equation (5.9) from Lemma 5.6, we
can transform Mo into

M∗
o =


Aα + Dα

2 Dα
2 0 0

Dα
2 Aα + Dα

−2 0 0

0 T It−d A∗

T 0 A∗ + It−d It−d

.

Note that by Lemma 5.6,

det(Mo) = det(M∗
o).

To compute the determinant of Mo, and hence determine the rank of
this matrix, we use Proposition 2.27. However, before doing this, we carry
out (t−d−1) row replacements in M∗

o to reduce the A∗ block in M∗
o to the

(t− d)× (t− d) zero matrix. Because the operations vary slightly for each
of cases 1 and 2, we list them below using the notation defined in Section
2.3 and Equation (5.11).

Case 1:

R2δ+2d+2 −→ R2δ+2d+2 + (Rω+2 +Rω+1)

R2δ+2d+3 −→ R2δ+2d+3 + (Rω+2 +Rω+1)

R2δ+2d+4 −→ R2δ+2d+4 + (Rω+4 +Rω+3 +Rω+2 +Rω+1)

R2δ+2d+5 −→ R2δ+2d+5 + (Rω+4 +Rω+3 +Rω+2 +Rω+1)
...

Rω−3 −→ Rω−3 + (R2δ+2t−3 +R2δ+2t−4 + · · ·+Rω+2 +Rω+1)

Rω−2 −→ Rω−2 + (R2δ+2t−3 +R2δ+2t−4 + · · ·+Rω+2 +Rω+1)

Rω−1 −→ Rω−1 + (R2δ+2t−1 +R2δ+2t−2 + · · ·+Rω+2 +Rω+1)

Rω −→ Rω + (R2δ+2t−1 +R2δ+2t−2 + · · ·+Rω+2 +Rω+1)
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Case 2:

R2δ+2d+2 −→ R2δ+2d+2 + (Rω+2 +Rω+1)

R2δ+2d+3 −→ R2δ+2d+3 + (Rω+2 +Rω+1)

R2δ+2d+4 −→ R2δ+2d+4 + (Rω+4 +Rω+3 +Rω+2 +Rω+1)

R2δ+2d+5 −→ R2δ+2d+5 + (Rω+4 +Rω+3 +Rω+2 +Rω+1)
...

Rω−4 −→ Rω−4 + (R2δ+2t−4 +R2δ+2t−5 + · · ·+Rω+2 +Rω+1)

Rω−3 −→ Rω−3 + (R2δ+2t−4 +R2δ+2t−5 + · · ·+Rω+2 +Rω+1)

Rω−2 −→ Rω−2 + (R2δ+2t−2 +R2δ+2t−3 + · · ·+Rω+2 +Rω+1)

Rω−1 −→ Rω−1 + (R2δ+2t−2 +R2δ+2t−3 + · · ·+Rω+2 +Rω+1)

Rω −→ Rω + (R2δ+2t +R2δ+2t−1 + · · ·+Rω+2 +Rω+1)

Since we are working over F2, the A∗ matrix in M∗
o is now reduced to the

zero block, while all other entries in M∗
o remain unchanged. For both case

1 and case 2, M∗
o is transformed into

M∗∗
o =


Aα + Dα

2 Dα
2 0 0

Dα
2 Aα + Dα

−2 0 0

0 T It−d 0t−d

T 0 A∗ + It−d It−d

.

Since [
It−d 0t−d

A∗ + It−d It−d

]
is a lower triangular matrix with ones along its diagonal, its determinant is
equal to one. Therefore, by applying Proposition 2.27 to M∗∗

o , we deduce
that

det(Mo) = det(M∗∗
o ) = det

[
Aα + Dα

2 Dα
2

Dα
2 Aα + Dα

−2

]
. (5.17)

Notice that the square matrix of order (2δ + 2d) within the determinant
calculation above is precisely the Monsky matrix for α. Recall that by our
original assumption, s(α) = 0. As a result, Equation (3.15) implies that the
Monsky matrix corresponding to α has full rank. It follows from Equation
(5.17) that Mo has full rank. Thus, when (c + d) is even in Case I.1.A,
s(n) = 0 and n is a non-congruent number.
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We now consider cases 3 and 4 in Table 5.4. As in cases 1 and 2, we first
construct the (2δ+ 2t)× (2δ+ 2t) Monsky matrix Mo for n. We then apply
Equation (5.10) from Lemma 5.6 to transform Mo into

M′
o =


Aα + Dα

2 Dα
2 0 0

Dα
2 Aα + Dα

−2 0 0

T 0 It−d A∗ + It−d

0 T A∗ It−d

,

where the matrices Dα
2 , Dα

−2, T, and A∗ are given by Equations (5.12),
(5.13), (5.14), and (5.16), respectfully. Notice that the A∗ + It−d block in
case 3 is identical to the A∗ block in case 1. Therefore, the set of (t− d− 1)
row operations described in case 1 can also be applied in case 3 to transform
M′

o into

M′′
o =


Aα + Dα

2 Dα
2 0 0

Dα
2 Aα + Dα

−2 0 0

T 0 It−d 0t−d

0 T A∗ It−d

. (5.18)

Similarly, the A∗ + It−d block in case 4 is identical to the A∗ block in
case 2. This means that the matrix M′′

o, given by Equation (5.18), can be
obtained by applying the same row replacement operations used in case 2.
The remainder of the proof of cases 3 and 4 follows the process described in
the proof of cases 1 and 2. We conclude that in Case I.1.A, s(n) = 0 and n
is a non-congruent number.

Case I.1.B:
We split the proof of Case I.1.B into two subcases according to the parity
of (t − d), and start by considering the even case. The square A matrix of
order (δ + t) corresponding to n has the form
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An =



Aα TT

0

1 1 1 · · · · · · · · · 1

0 0 1
...

0 0 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 0 1 1

... 0 1 1

0 · · · · · · · · · 0 0 0



, (5.19)

where TT is the transpose of the matrix defined in Equation (5.14). Since we
are working over F2 and TT has dimension (δ+d)×(t−d) with (t−d) even,
the elements along the diagonal in the upper left block of An are unaffected
by the entries in TT . Also, notice that the block in the lower right corner
of An is a (t− d)× (t− d) matrix with ones above its diagonal; this results
in an alternating pattern of ones and zeros along the main diagonal of the
block.

We construct the (2δ+ 2t)× (2δ+ 2t) Monsky matrix Mo for n by using
Equation (3.16) and apply Equation (5.9) from Lemma 5.6 to transform it
into

M∗
o =



Aα + Dα
2 Dα

2 TT 0

Dα
2 Aα + Dα

−2 0 TT

0 0 It−d

1 1 · · · · · · 1

0 0
. . .

...
...

. . .
. . .

. . .
...

...
. . . 1 1

0 · · · · · · 0 0

0 0

0 1 · · · · · · 1

0 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 0 1

0 · · · · · · 0 1

It−d



,
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where Dα
2 and Dα

−2 are described in Equations (5.12) and (5.13), respec-
tively. Next, we carry out the following (t− d− 1) row operations to reduce
M∗

o so that its determinant can be easily calculated using Proposition 2.27.

R2δ+2d+1 −→ R2δ+2d+1 + (R2δ+2t +R2δ+2t−1 + · · ·+Rω+2 +Rω+1)

R2δ+2d+2 −→ R2δ+2d+2 + (R2δ+2t +R2δ+2t−1 + · · ·+Rω+4 +Rω+3)

R2δ+2d+3 −→ R2δ+2d+3 + (R2δ+2t +R2δ+2t−1 + · · ·+Rω+4 +Rω+3)

R2δ+2d+4 −→ R2δ+2d+4 + (R2δ+2t +R2δ+2t−1 + · · ·+Rω+6 +Rω+5)
...

Rω−4 −→ Rω−4 + (R2δ+2t +R2δ+2t−1 +R2δ+2t−2 +R2δ+2t−3)

Rω−3 −→ Rω−3 + (R2δ+2t +R2δ+2t−1 +R2δ+2t−2 +R2δ+2t−3)

Rω−2 −→ Rω−2 + (R2δ+2t +R2δ+2t−1)

Rω−1 −→ Rω−1 + (R2δ+2t +R2δ+2t−1)

These row operations transform the matrix M∗
o into

M∗∗
o =



Aα + Dα
2 Dα

2 TT 0

Dα
2 Aα + Dα

−2 0 TT

0 0 It−d 0t−d

0 0

0 1 · · · · · · 1

0 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 0 1

0 · · · · · · 0 1

It−d


,

with
det(Mo) = det(M∗∗

o ).

The (2t− 2d)× (2t− 2d) block in the bottom right corner of M∗∗
o is a lower

triangular matrix with determinant equal to one, so Proposition 2.27 implies
that

det(Mo) = det

[
Aα + Dα

2 Dα
2

Dα
2 Aα + Dα

−2

]
,

which is identical to Equation (5.17). Therefore, as in Case I.1.A, we con-
clude that s(n) = 0 and n is a non-congruent number when (t− d) is even.
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Finally, we consider the case where (t−d) is odd, and form the A matrix
for n,

An =



Aα + J TT

0

0 1 1 · · · · · · 1

0 1 1
...

0 0 0
. . .

...
...

. . .
. . .

. . .
...

...
. . . 1 1

0 · · · · · · · · · 0 0


,

where

J =

[
0a+b 0

0 Ic+d

]
. (5.20)

The matrix J is introduced to account for the fact that when (t− d) is odd,
the (c + d) rows of ones in TT affect the diagonal entries in the upper left
block of An. Also, notice that the elements along the main diagonal in
the lower right block of An alternate between zeros and ones, but that the
pattern is different from the one in the matrix described by Equation (5.19).

We form the Monsky matrix Mo corresponding to n and follow the series
of steps outlined in the proof of the case where (t− d) is even. That is, we
perform a set of row operations and apply Proposition 2.27 to deduce that

det(Mo) = det

[
Aα + J + Dα

2 Dα
2

Dα
2 Aα + J + Dα

−2

]
. (5.21)

Since we are working over F2,

Dα
2 = Dα

−2 + J and Dα
−2 = Dα

2 + J,

where the matrices Dα
2 , Dα

−2, and J are given by Equations (5.12), (5.13),
and (5.20), respectfully. Therefore, Equation (5.21) becomes

det(Mo) = det

[
Aα + Dα

−2 Dα
2

Dα
2 Aα + Dα

2

]
.

This can be rewritten in the form of Equation (5.17) by applying elementary
row and column operations to the block matrix. As before, we conclude that
s(n) = 0 and n is a non-congruent number when (t− d) is odd.
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Case I.1.C:
The square A matrix of order (δ + t) corresponding to n is

An =



1 · · · · · · · · · 1

Aα
...

...

1 · · · · · · · · · 1

ad+1 1 · · · · · · 1

0 ad+2
. . .

...

U
...

. . .
. . .

. . .
...

...
. . . at−1 1

0 · · · · · · 0 at


,

where U is given by Equation (5.15). Because we are working over F2 and
the upper right block of An has an even number ones in each of its rows,
the elements along the diagonal in the upper left block of An remain the
same as those in Aα. However, the diagonal entries in the lower right block
in An vary according to the parity of (a+ b). Since (t−d) is even, the block
in the lower right corner of An has an even number of columns, and hence

(ad+1, ad+2, . . . , at−1, at) =

{
(1, 0, . . . , 1, 0) if (a+ b) is even,

(0, 1, . . . , 0, 1) if (a+ b) is odd.

We construct the Monsky matrix Mo for n by using Equation (3.16).
When (a + b) is even, we apply Equation (5.9) from Lemma 5.6 to Mo, so
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that it becomes

M∗
o =



1 · · · · · · · · · 1

Aα + Dα
2 Dα

2

...
... 0

1 · · · · · · · · · 1

1 · · · · · · · · · 1

Dα
2 Aα + Dα

−2 0
...

...

1 · · · · · · · · · 1

1 1 · · · · · · 1

0 0
. . .

...

0 U It−d
...

. . .
. . .

. . .
...

...
. . . 1 1

0 · · · · · · 0 0

0 1 · · · · · · 1

0 1
. . .

...

U 0
...

. . .
. . .

. . .
... It−d

...
. . . 0 1

0 · · · · · · 0 1



.

We modify this matrix by implementing a series of row operations. We
add all of the final (t − d) rows in M∗

o to each of rows (δ + d + 1) through
(2δ+2d) in M∗

o. These elementary operations transform the rightmost block
of ones in M∗

o into a zero block while leaving the remaining entries in M∗
o

unchanged. We reduce the nonzero block immediately above the identity
matrix in the lower right corner of M∗

o to the zero matrix by carrying out
the (t − d − 1) row replacements listed in Case I.1.B. Finally, we add each
of rows (2δ + 2d + 1) through (2δ + t + d) to the first (δ + d) rows in M∗

o.
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Altogether, these operations transform M∗
o into

M∗∗
o =



Aα + Dα
2 Dα

2 0 0

Dα
2 Aα + Dα

−2 0 0

0 U It−d 0t−d

U 0

0 1 · · · · · · 1

0 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 0 1

0 · · · · · · 0 1

It−d


.

We apply Proposition 2.27 to M∗∗
o to obtain Equation (5.17). As before, it

follows that s(n) = 0 and n is a non-congruent number when (a+ b) is even.
Finally, we consider the case where (a + b) is odd, and use Equation

(5.10) from Lemma 5.6 to transform Mo into

M′
o =



1 · · · · · · · · · 1

Aα + Dα
2 Dα

2 0
...

...

1 · · · · · · · · · 1

1 · · · · · · · · · 1

Dα
2 Aα + Dα

−2
...

... 0

1 · · · · · · · · · 1

1 1 · · · · · · 1

0 0
. . .

...

U 0 It−d
...

. . .
. . .

. . .
...

...
. . . 1 1

0 · · · · · · 0 0

0 1 · · · · · · 1

0 1
. . .

...

0 U
...

. . .
. . .

. . .
... It−d

...
. . . 0 1

0 · · · · · · 0 1



.

Notice that this matrix is very similar to the matrix M∗
o in the case where

(a + b) is even; of specific interest is the fact that the lower right square
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blocks of order (2t − 2d) in each matrix are identical. Therefore, the case
where (a+ b) is odd can be proved analogously to the case where (a+ b) is
even. Thus, we conclude that s(n) = 0 and n is a non-congruent number
irrespective of the parity of (a+ b).

Case I.1.D:
We construct the (δ+ t)× (δ+ t) A matrix for n from the Legendre symbol
conditions imposed on the tail of primes appended onto α. This matrix has
the form

An =



Aα UT

1 · · · 1
...

...
...

...
...

...

1 · · · 1

ad+1 0 · · · · · · 0

1 ad+2
. . .

...
...

. . .
. . .

. . .
...

...
. . . at−1 0

1 · · · · · · 1 at


,

where UT is the transpose of the matrix in Equation (5.15). Since the (t−d)
elements in each row of UT are either all zeroes or all ones, the diagonal
entries in the upper left block of An are not affected by the elements in
UT , and hence remain the same as those in Aα. However, the entries along
the diagonal in the lower right block in An depend upon the parity of the
quantity (δ + d). By assumption (t− d) is even, so we can deduce that

(ad+1, ad+2, . . . , at−1, at) =

{
(0, 1, . . . , 0, 1) if (δ + d) is even,

(1, 0, . . . , 1, 0) if (δ + d) is odd.

We consider the case where (δ+ d) is even and form the Monsky matrix
Mo for n. We apply Equation (5.9) from Lemma 5.6 to rearrange the blocks
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in Mo and transform it into

M∗
o =



Aα + Dα
2 D2 UT 0

Dα
2 Aα + Dα

−2 0 UT

0

1 · · · 1
...

...
...

...
...

...

1 · · · 1

It−d

0 0 · · · · · · 0

1 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 0 0

1 · · · · · · 1 1

1 · · · 1
...

...
...

...
...

...

1 · · · 1

0

1 0 · · · · · · 0

1 0
. . .

...
...

. . .
. . .

. . .
...

...
. . . 1 0

1 · · · · · · 1 0

It−d



.

To apply Proposition 2.27 to this matrix, we must reduce the two UT

blocks in the upper right corner of M∗
o to zero blocks by carrying out row

operations. Specifically, we add the final (t − d) rows in M∗
o to each of

rows (δ + d + 1) through (δ + d + a + b). Notice that these (a + b) row
replacements only affect the elements in the rightmost UT block of M∗

o,
leaving the remaining entries in M∗

o unchanged. We then carry out the
same set of (t− d− 1) row replacements as in case 2 of Case 1.I.A to reduce
the (2t− 2d)× (2t− 2d) block in the bottom right corner of M∗

o to a lower
triangular matrix. Finally, we add all of rows (2δ+2d+1) through (2δ+t+d)
to each of the first (a+b) rows in M∗

o. This set of row operations transforms
M∗

o into
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M∗∗
o =



Aα + Dα
2 D2 0 0

Dα
2 Aα + Dα

−2 0 0

0

1 · · · 1
...

...

1 · · · 1

It−d 0t−d

1 · · · 1
...

...
...

...
...

...

1 · · · 1

0

1 0 · · · · · · 0

1 0
. . .

...
...

. . .
. . .

. . .
...

...
. . . 1 0

1 · · · · · · 1 0

It−d



.

Since
det(Mo) = det(M∗∗

o ),

Proposition 2.27 yields

det(Mo) = det

[
Aα + Dα

2 Dα
2

Dα
2 Aα + Dα

−2

]
.

This is identical to Equation (5.17). It follows that s(n) = 0 and n is
non-congruent when (δ + d) is even.

In the case where (δ + d) is odd, we construct the Monsky matrix Mo
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for n and use Equation (5.10) from Lemma 5.6 to transform Mo into

M′
o =



Aα + Dα
2 D2 0 UT

Dα
2 Aα + Dα

−2 UT 0

1 · · · 1
...

...
...

...
...

...

1 · · · 1

0 It−d

0 0 · · · · · · 0

1 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 0 0

1 · · · · · · 1 1

0

1 · · · 1
...

...
...

...
...

...

1 · · · 1

1 0 · · · · · · 0

1 0
. . .

...
...

. . .
. . .

. . .
...

...
. . . 1 0

1 · · · · · · 1 0

It−d



.

Because the matrices M∗
o for (δ + d) even and M′

o for (δ + d) odd are
similar, we can follow the same process to prove the case where (δ + d) is
odd. We conclude that, regardless of the parity of (δ + d), s(n) = 0 and n
is a non-congruent number.

Next, we prove that Case II.2.

Case II.2 Proof. We construct the (δ + t) × (δ + t) D2 and D−2 matrices
for n = αsd+1sd+2 · · · st,

Dn
2 =

[
Dα

2 0

0 It−d

]
and Dn

−2 =

[
Dα
−2 0

0 It−d

]
,

where Dα
2 and Dα

−2 are the (δ+d)× (δ+d) diagonal matrices corresponding
to α. We also define the (δ+d)× (t−d) matrix B with the elements in each
of its rows being either all equal to one or all equal to zero. In addition, we
require that B contains an odd number of rows with entries all equal to one.
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The Monsky matrix Mo for n can be written as

Mo =

[
An + Dn

2 Dn
2

Dn
2 An + Dn

−2

]

=


Aα + Dα

2 B Dα
2 0

BT 0t−d 0 It−d

Dα
2 0 Aα + Dα

−2 B

0 It−d BT 0t−d

.

Notice that since (t−d) is even, the sum of the elements in an arbitrary row
of B is congruent to zero modulo two. Because we are working over F2, the
elements along the main diagonal of the upper left blocks of An + Dn

2 and
An + Dn

−2 in Mo are not affected by the entries in B. Furthermore, seeing
that there are an odd number of rows in B with elements all equal to one,
there are an odd number of entries in each row of BT that are equal to one.
This allows us to determine that the diagonal elements in the lower right
blocks of An + Dn

2 and An + Dn
−2 are all zero.

We apply Equation (5.9) from Lemma 5.6 to rearrange the blocks in Mo

and transform it into

M∗
o =


Aα + Dα

2 Dα
2 B 0

Dα
2 Aα + Dα

−2 0 B

0 BT It−d 0t−d

BT 0 0t−d It−d

. (5.22)

Our goal is to reduce the two B blocks in M∗
o to zero matrices by carrying

out a set of row operations. We begin by adding rows (2δ+ 2d+ 1) through
(2δ + d + t) in M∗

o to each of the first (δ + d) rows in M∗
o that correspond

to rows in B containing all ones. Notice that when we apply these row
operations, the entries in BT do not affect those in the Dα

2 block. This is
because each column in BT contains elements that are either all ones or all
zeros, and we are adding all of the (t− d) rows of BT , where (t− d) is even,
to a given row in Dα

2 . An analogous procedure can be applied to transform
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the remaining B block in M∗
o into the zero matrix; this reduces M∗

o to

M∗∗
o =


Aα + Dα

2 Dα
2 0 0

Dα
2 Aα + Dα

−2 0 0

0 BT It−d 0t−d

BT 0 0t−d It−d

. (5.23)

Since we are working over F2, the elementary row and column operations
that we applied to transform Mo into M∗∗

o do not affect the value of the
determinant, so

det(Mo) = det(M∗∗
o ).

Furthermore, by applying Proposition 2.27 to M∗∗
o , we can deduce that

det(Mo) = det

[
Aα + Dα

2 Dα
2

Dα
2 Aα + Dα

−2

]
. (5.24)

The block matrix in the determinant calculation immediately above is the
Monsky matrix for α. Our original assumption that s(α) = 0 implies that
the Monsky matrix corresponding to α has full rank. Thus, by Equation
(5.24), we conclude that Mo also has full rank, so s(n) = 0 and n is a
non-congruent number.

We now provide a proof of Case III.2.

Case III.2 Proof. We define Dα
2 and Dα

−2 to be the (δ+d)×(δ+d) diagonal
D2 and D−2 matrices for α. The diagonal matrices corresponding to n =
αsd+1sd+2 · · · st have the form

Dn
2 =

[
Dα

2 0

0 0t−d

]
and Dn

−2 =

[
Dα
−2 0

0 0t−d

]
.

We write the (2δ + 2t)× (2δ + 2t) Monsky matrix for n as

Mo =


Aα + Dα

2 B Dα
2 0

BT It−d 0 0t−d

Dα
2 0 Aα + Dα

−2 B

0 0t−d BT It−d

,
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where the block B is identical to that described in Case II.2.
As in Case II.2, we transform the two B blocks in Mo into zero blocks

by carrying out row operations. Specifically, we add rows (δ+d+1) through
(δ + t) in Mo to each of the first (δ + d) rows in Mo that correspond to
rows in B containing all ones. This reduces the B block in the upper left
quadrant of Mo to a zero block, while leaving the remaining entries in Mo

unchanged. In addition, we add each of rows (2δ+d+t+1) through (2δ+2t)
to any of rows (δ + t + 1) through (2δ + t + d) in Mo that correspond to
rows in B containing all ones. The matrix that results from applying this
set of row operations to Mo is

M∗
o =


Aα + Dα

2 0 Dα
2 0

BT It−d 0 0t−d

Dα
2 0 Aα + Dα

−2 0

0 0t−d BT It−d

.

By interchanging rows and columns in M∗
o, it can be transformed into the

matrix given by Equation (5.23) in Case II.2. Therefore, the remainder of
the proof follows as in Case II.2, and we conclude that in Case III.2, s(n) = 0
and n is a non-congruent number.

Finally, we complete the proof of Theorem 5.5 by verifying that Case
III.3 generates non-congruent numbers. Note that Case III.3 of Theorem
5.5 provides a generalization of Theorem 5.1.

Case III.3 Proof. Let

Mα =

[
Aα + Dα

2 Dα
2

Dα
2 Aα + Dα

−2

]
(5.25)

be the Monsky matrix corresponding to α. We use induction to prove that
s(n) = 0 and n is non-congruent. We begin by considering the case where
α is multiplied by a single prime, sd+1, satisfying the pattern of Legendre
symbols described in the theorem statement, so

n1 = αsd+1.
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The (2δ + 2d+ 2)× (2δ + 2d+ 2) Monsky matrix for n1 can be written as

Mn1 =

[
An1 + Dn1

2 Dn1
2

Dn1
2 An1 + Dn1

−2

]
=


F v Dα

2 0

vT 1 0 0

Dα
2 0 C v

0 0 vT 1

,

where v is a column vector with only a single element equal to one and all
of its remaining elements equal to zero. Due to the form of v, we introduce
the matrices F and C, where

F = Aα + Dα
2 + vvT

and
C = Aα + Dα

−2 + vvT .

Notice that F is nearly identical to the Aα+Dα
2 block in Mα, with the only

difference between them being a single element along their main diagonals.
This difference is a consequence of the column vector v having a single
element equal to one. Likewise, the only difference between the C block
in Mn1 and the Aα + Dα

−2 block in Mα is a single element along their
diagonals.

We carry out row and column operations on Mn1 to reduce it, so that its
determinant can be easily computed. Let mεγ denote the entry in row ε and
column γ of Mn1 , and consider the element mεγ = 1 with γ = (δ + d + 1)
and ε ∈ [1, δ + d]. We subtract column (δ + d+ 1) from column ε, and then
subtract row (δ + d + 1) from row ε. Similarly, there is a single element
mεγ = 1 in Mn1 with γ = (2δ + 2d+ 2) and ε ∈ [δ + d+ 2, 2δ + 2d+ 1]. By
subtracting column (2δ + 2d+ 2) from column ε, and then subtracting row
(2δ + 2d+ 2) from row ε, we transform Mn1 into

M∗
n1

=


Aα + Dα

2 0 Dα
2 0

0 1 0 0

Dα
2 0 Aα + Dα

−2 0

0 0 0 1

.
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Applying row and column interchanges to M∗
n1

allows us to write it as

M∗∗
n1

=


Aα + Dα

2 Dα
2 0 0

Dα
2 Aα + Dα

−2 0 0

0 0 1 0

0 0 0 1

.
Since we are working over F2, and M∗∗

n1
was obtained from Mn1 via a series

of elementary row and column operations, we have

det(Mn1) = det(M∗∗
n1

). (5.26)

Furthermore, Proposition 2.27 implies that

det(M∗∗
n1

) = det

[
Aα + Dα

2 Dα
2

Dα
2 Aα + Dα

−2

]
.

We combine this equation with Equations (5.25) and (5.26) to deduce that

det(Mn1) = det(Mα).

By assumption, s(α) = 0, so we know that the Monsky matrix corresponding
to α has full rank. Thus, we conclude that Mn1 also has full rank, and hence
s(n1) = 0 and n1 = αsd+1 is a non-congruent number.

We now assume that the theorem statement is true for the integer
n∗ = αsd+1sd+2 · · · st−2st−1 formed by appending a tail of (t−d− 1) primes
satisfying the specified Legendre symbol conditions onto α. By assumption,
we know that

s(n∗) = 0.

Consider the integer

n = (αsd+1sd+2 · · · st−2st−1)st

that is generated by appending a single prime, st, satisfying the required
Legendre symbol conditions onto n∗. Proving that n is non-congruent by
knowing that n∗ has s(n∗) = 0 is analogous to showing that n1 is non-
congruent when α satisfies s(α) = 0. This is because in each of the cases, a
single prime of the specified form is appended onto a number whose corre-
sponding congruent number elliptic curve has 2-Selmer rank equal to zero.
Thus, an identical argument to the one that was used to verify that n1 is a
non-congruent number can be applied here to deduce that s(n) = 0 and n
is non-congruent.
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The families of non-congruent numbers generated by Cases I.1.A and
I.1.B of Theorem 5.5 exhibit an interesting property that is summarized by
the following corollary.

Corollary 5.7. Let
W ∪ {sd+1, sd+2, . . . , st}

be a collection of distinct primes satisfying the hypotheses of either Case
I.1.A or Case I.1.B in Theorem 5.5. Any product of integers from the set

H = {α, sd+1, sd+2, . . . , st},

where α is given by Equation (5.6), is a non-congruent number.

Proof. Let λ be a product of integers belonging to the setH. If λ is a product
of two or more of the primes sd+1, sd+2, . . . , st, but does not contain α, then
λ is non-congruent by Theorem 5.2. If λ is a product of α and at least one
of the remaining primes in H, then λ is guaranteed to be non-congruent by
either Case I.1.A or Case I.1.B of Theorem 5.5.

5.5 Examples of Odd Non-congruent Numbers
Generated from Known Non-congruent
Numbers

In this section, we provide a collection of non-conguent numbers sat-
isfying the criterion described in Theorem 5.5. Any odd non-congruent
number corresponding to an elliptic curve with 2-Selmer rank equal to zero
can be extended to produce other non-congruent numbers by using Theo-
rem 5.5. Since various Legendre symbol conditions are imposed upon the
primes that are appended onto the existing non-congruent numbers, Dirich-
let’s theorem on primes in arithmetic progressions (Theorem 2.20) ensures
that each case in Theorem 5.5 generates infinitely many non-congruent num-
bers. Depending on the prime divisors of the non-congruent number chosen
for α, the numbers constructed by applying Theorem 5.5 to α may over-
lap with those described by other known families of non-congruent num-
bers. However, the numerical examples that we present in Tables 5.5, 5.6,
5.7, 5.8, and 5.9 clearly belong to new families of non-congruent numbers,
because their prime factorizations differ from those in [2, 6, 11–13, 15–
17, 24, 27, 28, 36, 37, 39, 40, 49, 58].

Appendix A offers insight into how Maple can be used to construct the
non-congruent numbers listed in the tables in this section. In particular,
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the appendix provides the Maple code used to produce one of the numerical
examples in Table 5.5.

We begin by using Case I.1 in Theorem 5.5 to generate new families of
non-congruent numbers from existing families of non-congruent numbers.
First, we consider Lagrange’s paper [27], which describes many different
families of non-congruent numbers containing a maximum of three odd prime
factors. We apply Case I.1 of our extension theorem to two of Lagrange’s
families of non-congruent numbers.

The first family has the form qr, where q ≡ 5 (mod 8) and r ≡ 7 (mod 8),
and the condition (q

r

)
= −1

is satisfied. The numbers in the second family are a product of three prime
factors, pqr, with p ≡ 1 (mod 8), q ≡ 5 (mod 8), and r ≡ 7 (mod 8) satisfy-
ing(

p

q

)
=
(p
r

)
= −1,

(q
r

)
=

(
q

p

)
= −1, or

(
r

p

)
=

(
r

q

)
= −1.

In Section 9 of [17], Goto states that the numbers belonging to either one
of Lagrange’s two families described above correspond to congruent number
elliptic curves with 2-Selmer rank of zero. Therefore, new families of non-
congruent numbers can be generated using Theorem 5.5 to extend these
existing families of non-congruent numbers. Some numerical examples are
given in Tables 5.5 and 5.6.

Furthermore, since the numbers described by Theorem 5.1 were shown
to have congruent number elliptic curves with 2-Selmer rank equal to zero,
Theorem 5.5 can be applied to these non-congruent numbers to produce
infinitely many non-congruent numbers. Tables 5.5 and 5.6 include several
numerical examples that extend some of the non-congruent numbers given
in Table 5.1.

It is worthwhile to mention that it is possible to apply Theorem 5.5
to odd non-congruent numbers that do not belong to existing families of
non-congruent numbers. For a given odd integer α, one can compute s(α)
by using Monsky’s formula. If s(α) = 0, then infinitely many new non-
congruent numbers can be generated by applying Theorem 5.5 to α. Tables
5.5 and 5.6 list a few numerical examples that extend a non-congruent num-
ber α that does not belong to a known family of non-congruent numbers
but satisfies s(α) = 0.
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Table 5.5: Non-congruent numbers n = αsd+1sd+2 · · · st generated by Cases
I.1.A and I.1.B of Theorem 5.5

Theorem Extension Tail sd+1sd+2 · · · st
Satisfied by α α Case I.1.A Case I.1.B

Lagrange with( q
r

)
= −1

5 · 7 11 · 179 · 499 · 2179 ·
2531 · 2699 · 21211 ·
38459 ·43019 ·148691

19·59·811·1459·1931·
2371 · 2579 · 13331 ·
14699 ·65579 ·164771

Lagrange with(
p
q

)
=
(p
r

)
= −1

17 · 5 · 7 179 · 1019 · 2531 ·
5779 · 10259 · 41771 ·

64891 · 74699 ·
220579 · 254899

19 · 59 · 1291 · 3251 ·
5011 · 23099 · 33851 ·
41411 · 45779 · 77419

Lagrange with(
r
p

)
=
(
r
q

)
= −1

41 · 5 · 7 379 · 1171 · 1451 ·
3259 · 14891 · 17011 ·

54251 · 67979 ·
280219 · 280499

59 · 131 · 419 · 1931 ·
5659 · 12011 · 12659 ·

110459 · 189251 ·
442139

Lagrange with( q
r

)
=
(
q
p

)
= −1

41 · 29 · 31 59 · 107 · 1619 · 3203 ·
9371 · 20771 · 33923 ·

48523 · 210187 ·
308051 · 926227

83 · 139 · 1499 · 6067 ·
7043 · 9931 · 13171 ·
19843 ·32939 ·285451

Theorem 5.1 19·11·163·419·
97 · 313 · 617

6011 · 11867 · 69931 ·
83339 · 133387 ·

236339

811 · 8059 · 45979 ·
64451 · 131779 ·
454379 · 562091

Theorem 5.1 347 · 83 · 11 · 3 ·
499 · 1123 ·

2803 ·673 ·2953

140827 · 172507 ·
191227 · 670099

5051 · 43787 · 46691 ·
147179 · 1174091

Theorem 5.1 11 · 59 · 163 ·
307 · 947 · 41 ·

1361 · 2017

4651 · 15139 · 68611 ·
119827 · 186019 ·

356731

6947 · 12547 · 43403 ·
149027 · 119027 ·
696827 · 783779

Theorem 5.1 3 · 11 · 67 · 163 ·
691·1483·3019·
2179 · 16987 ·
2137 · 4273

23203 · 121531 ·
938491 · 1529851

27299 · 137363 ·
1557443 · 1734827

Theorem 5.1 3 · 11 · 19 · 43 ·
59 · 5 · 13 · 29 ·

37 · 27481

124459 · 376819 ·
467899 · 589579

73259 · 159059 ·
86291 · 394811 ·
930179 · 954971

Theorem 5.1 3 · 19 · 67 · 83 ·
13 · 61 · 101 ·

149 ·4177 ·9649

138451 · 172507 ·
290443 · 731851

14771 · 66491 ·
657947 · 680003

None 13 · 29 · 37 · 23 ·
31 · 71

4003 · 5867 · 41947 ·
60779 · 135131 ·
196387 · 296299 ·

329891

2731 · 3467 · 1483 ·
16363 · 32083 ·
76883 · 269851 ·
274811 · 659611
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Table 5.6: Non-congruent numbers n = αsd+1sd+2 · · · st generated by Cases
I.1.C and I.1.D of Theorem 5.5

Theorem Extension Tail sd+1sd+2 · · · st
Satisfied by α α Case I.1.C Case I.1.D

Lagrange with( q
r

)
= −1

5 · 7 3 · 83 · 467 · 2243 ·
3923 · 3947 · 22067 ·

35363 · 59723 ·
111443 · 185363 ·

581843

43 · 67 · 107 · 2027 ·
8563 · 8803 · 12923 ·
16363·29803·78467

Lagrange with(
p
q

)
=
(p
r

)
= −1

17 · 5 · 7 3 · 227 · 1907 ·
3947 · 7643 · 22307 ·

24443 · 44483 ·
106907 · 151787

107 · 163 · 547 ·
1187 · 8803 · 14387 ·

5987 · 48563 ·
62563 · 142907 ·
215723 · 899467

Lagrange with( q
r

)
=
(
q
p

)
= −1

41 · 29 · 31 3 · 11 · 827 · 1667 ·
6899 · 28283 ·
47819 · 80603 ·
179483 · 453923

19 · 1163 · 1867 ·
2467 · 2531 · 9091 ·

32971 · 71387 ·
93187 · 203659

Theorem 5.1 19·11·163·
419 · 97 ·
313 · 617

211 · 17027 · 22739 ·
82387 · 85571 ·

114659

1483 · 15643 ·
26339 · 60899 ·

174443 · 191299 ·
396091 · 235723

None 13 ·29 ·37 ·
23 · 31 · 71

827 · 2683 · 7451 ·
7963 ·39827 ·48563 ·

255443 · 275923

2699 · 3491 · 8123 ·
27763 · 21491 ·

121379 · 133843 ·
156619

We also provide some examples of non-congruent numbers that can be
generated by Case II.2 of Theorem 5.5. The first family we extend is de-
scribed by the following theorem from [40].

Theorem 5.8. Let m be a fixed positive integer and let c be any integer
satisfying c ≥ m. Let Tm denote the set of positive integers with prime fac-
torization pr1r2 · · · rc, where p is a prime of the form 8k+1 and r1, r2, . . . , rc
are distinct primes of the form 8k + 3 such that(

p

ri

)
=

{
−1 if i = m,
1 if i 6= m,
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and (
rj
ri

)
= −1 if j < i.

If α ∈ Tm, then α is non-congruent.

The congruent number elliptic curves corresponding to the non-congruent
numbers produced by this theorem are shown to have 2-Selmer rank equal to
zero [40]. Therefore, Theorem 5.5 can be applied to these numbers to con-
struct infinitely many new non-congruent numbers, including those listed in
Table 5.7.

The non-congruent numbers generated by Case I.1 of Theorem 5.5 also
correspond to congruent number elliptic curves with 2-Selmer rank equal to
zero, so any of the numerical examples in Tables 5.5 and 5.6 can be extended
by using Case II.2 of Theorem 5.5. We list several numerical examples in
Table 5.7.
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Table 5.7: Non-congruent numbers n = αsd+1sd+2 · · · st generated by Case
II.2 of Theorem 5.5

Theorem
Satisfied

by α

α Case II.2 Extension
Tail sd+1sd+2 · · · st

Prime(s)
µ ∈ T

Theorem
5.8 with
m = 5

41 · 43 · 59 ·
107 · 251 ·
547 · 1307

3541 · 15061 · 31469 ·
52301 · 595717 · 703957

41

Theorem
5.8 with
m = 5

41 · 43 · 59 ·
107 · 251 ·
547 · 1307

5381 · 5717 · 31357 ·
125101 · 214189 · 217981 ·

414157 · 2844701

107

Theorem
5.8 with
m = 5

41 · 43 · 59 ·
107 · 251 ·
547 · 1307

9157 · 12517 · 15773 ·
122069 · 277741 · 444557 ·

544877 · 2836069

41, 547, 1307

Theorem
5.8 with
m = 5

41 · 43 · 59 ·
107 · 251 ·
547 · 1307

8293 · 9437 · 13109 · 84589 ·
119173 · 251501 · 687461 ·

2366173

41, 43, 59,
107, 251, 547,

1307

Theorem
5.5 Case

I.1.A

17 · 5 · 7 ·
179 · 1019 ·
2531 · 5779

541 · 1229 · 2069 · 67349 ·
405749 · 671269 · 786941 ·

838429

17

Theorem
5.5 Case

I.1.A

17 · 5 · 7 ·
179 · 1019 ·
2531 · 5779

5557 · 17477 · 58733 ·
114197 · 128813 · 136237 ·

337973 · 529157

5, 7, 179,
2531, 5779

Theorem
5.5 Case

I.1.A

17 · 5 · 7 ·
179 · 1019 ·
2531 · 5779

3533 · 18133 · 51133 ·
64333 · 77797 · 372277

17, 5, 7, 179,
1019, 2531,

5779

None 13 · 29 · 37 ·
23 · 31 · 71

877·4877·8933·9397·15173·
125197 · 414629 · 495133

13

None 13 · 29 · 37 ·
23 · 31 · 71

173 · 4813 · 6269 · 58237 ·
60733 · 94709 · 140773 ·

353053

71

None 13 · 29 · 37 ·
23 · 31 · 71

4013 · 6917 · 12373 · 14869 ·
23981 · 157141 · 414413 ·

429701

29, 37, 23

None 13 · 29 · 37 ·
23 · 31 · 71

709 · 13037 · 14029 · 21221 ·
68141 · 79669 · 80221 ·

347813 · 1186621 · 2773613

13, 37, 23, 31,
71
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Finally, we provide some examples of non-congruent numbers generated
by Cases III.2 and III.3 of Theorem 5.5. The non-congruent numbers α,
described by Theorems 5.2, 5.3, and 5.4, have s(α) = 0. This means that
we can apply Cases III.2 and III.3 of Theorem 5.5 to these numbers. In
addition, since the non-congruent numbers listed in Tables 5.5, 5.6, and 5.7
correspond to elliptic curves with 2-Selmer rank equal to zero, it is possible
to append a tail of primes of the form described in either Case III.2 or
Case III.3 of Theorem 5.5 onto any of the numbers in Tables 5.5, 5.6, and
5.7 to produce new non-congruent numbers. Examples of non-congruent
numbers that result from applying Case III.2 of our extension theorem to
non-congruent numbers given by Theorems 5.2, 5.3, and 5.4, and to a couple
numbers from Tables 5.5 and 5.7 are listed in Table 5.8.

Table 5.8: Non-congruent numbers n = αsd+1sd+2 · · · st generated by Case
III.2 of Theorem 5.5

Theorem
Satisfied

by α

α Case III.2 Extension
Tail sd+1sd+2 · · · st

Prime(s)
µ ∈ T

Theorem
5.2

19 · 11 · 163 · 419 1361 ·1889 ·2833 ·14401 ·
44497 · 79537 · 98689 ·

217169 · 250433 · 969041

19, 11, 419

Theorem
5.3

11 · 59 · 163 ·
307 · 947

809 · 1009 · 5881 · 8681 ·
58153 · 124673 · 361961 ·

435401

11, 59, 163,
307, 947

Theorem
5.4

3 · 19 · 67 · 83 ·
13 · 61 · 101 · 149

16481 · 46049 · 70937 ·
78233 · 521777 · 1387649

3, 19, 67, 83,
61, 101, 149

None 13 · 29 · 37 · 23 ·
31 · 71

8017 · 24337 · 31121 ·
49481 · 81689 · 214033 ·

532801 · 1265393

71

Theorem
5.5 Case

I.1.A

41 · 29 · 31 · 59 ·
107 · 1619

1801 · 2393 · 6841 · 9001 ·
23057 · 75041 · 289841 ·

1225297

41, 29, 31,
59, 1619

Theorem
5.5 Case

II.2

17 · 5 · 7 · 179 ·
1019·2531·5779·

3533 · 18133

56401 · 88321 · 189961 ·
191969 ·551321 ·1669649

17, 2531,
18133
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Because Case III.3 of Theorem 5.5 is a generalization of Theorem 5.1,
the non-congruent numbers, n, listed in Table 5.1 that arise from applying
Theorem 5.1 to the non-congruent numbers, α, produced by Theorems 5.2,
5.3, and 5.4 can also be generated by Case III.3 of Theorem 5.5. Therefore,
the examples that we list in Table 5.9 are constructed by applying Case III.3
of Theorem 5.5 to a few of the numbers in Tables 5.5, 5.6, and 5.7. Note
that the numbers in Table 5.9 cannot be produced by Theorem 5.1.

Table 5.9: Non-congruent numbers n = αsd+1sd+2 · · · st generated by ap-
plying Case III.3 of Theorem 5.5 to numbers in Tables 5.5, 5.6, and 5.7

α Case III.3 Extension
Tail sd+1sd+2 · · · st

Extension Tail Legendre
Symbols that Equal −1

13 · 29 · 37 ·
23 · 31 · 71

593 · 521 · 857 · 6977 ·
38561 · 36433 · 75193 ·
56377 · 54833 · 331553

(
593
13

)
,
(
521
23

)
,
(
857
37

)
,
(
6977
29

)
,
(
38561
521

)
,(

36433
13

)
,
(
75193
38561

)
,
(
56377
521

)
,
(
54833
71

)
,(

331553
75193

)
17 · 5 · 7 · 179 ·
1019 · 2531 ·

5779

5881 · 7561 · 7841 ·
7481 · 12601 · 59921 ·
28729 · 47681 · 324361

(
5881
2531

)
,
(
7561
1019

)
,
(
7841
1019

)
,
(
7481
7

)
,(

12601
179

)
,
(
59921
5881

)
,
(
28729
7841

)
,
(
47681
28729

)
,(

324361
5881

)
5 · 7 · 43 · 67 ·

107 · 2027
4649 · 5009 · 2801 ·

18289 · 19001 · 20441 ·
56809 · 62969 · 221729

(
4649
43

)
,
(
5009
67

)
,
(
2801
5009

)
,
(
18289

7

)
,(

19001
7

)
,
(
20441
18289

)
,
(
56809
5009

)
,
(
62969
2027

)
,(

221729
19001

)
17 · 5 · 7 · 179 ·
1019 · 2531 ·

5779·541·1229

2129 · 7481 · 5849 ·
44641 · 59921 · 39089 ·

70289 · 710873

(
2129
179

)
,
(
7481
7

)
,
(
5849
7481

)
,
(
44641
1229

)
,(

59921
1229

)
,
(
39089
17

)
,
(
70289
17

)
,
(
710873

5

)
Notice that the different cases of Theorem 5.5 can be combined to gener-

ate new non-congruent numbers. This is illustrated by the numerical exam-
ples listed in the final row of Table 5.8 and Table 5.9 that apply Case I.1.A,
Case II.2, and either Case III.2 or Case III.3 of Theorem 5.5 to produce
non-congruent numbers.
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Chapter 6

The Generation of Families
of Even Non-congruent
Numbers From Known
Non-congruent Numbers

6.1 Overview

In this chapter, we present a criterion for generating new families of
even non-congruent numbers. Our approach is similar to that described
in Chapter 5 for producing families of odd non-congruent numbers. We
construct infinitely many new even non-congruent numbers by appending
primes of a certain form onto existing even non-congruent numbers, whose
corresponding congruent number elliptic curves have 2-Selmer rank equal to
zero. This allows us to generate even non-congruent numbers with arbitrar-
ily many prime factors in each of the four odd congruence classes modulo
eight. This characteristic distinguishes our result from other theorems on
even non-congruent numbers that place restrictions on the prime divisors
of the non-congruent numbers, only allowing an unlimited number of prime
factors in at most two odd congruence classes modulo eight.

This chapter is based on results that appear in [42] and [43].

6.2 An Extension Technique for Generating New
Families of Even Non-congruent Numbers

We begin by stating our main theorem. We let pi, qj , rk, and sl with
i, j, k, l ∈ N+ be distinct odd primes, and let a, b, c, d ∈ N with
(a+ b+ c+ d) > 0. We define the set

P =

{
∅ if a = 0,

{p1, p2, . . . , pa} if a > 0.
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6.2. Extension Technique for Generating Even Non-congruent Numbers

The sets Q,R, and S with |Q| = b, |R| = c, and |S| = d are defined analo-
gously. In addition, we let

W = P ∪Q ∪R ∪ S.

Theorem 6.1. Define

β = 2

∏
pi∈P

pi

∏
qj∈Q

qj

∏
rk∈R

rk

∏
sl∈S

sl

,
and suppose that the elliptic curve

y2 = x(x2 − β2)

has 2-Selmer rank of zero. Let t > d with t ∈ N+, and define the even
square-free positive integer n by

n = βsd+1sd+2 · · · st,

where the odd prime factors of n satisfy the congruence conditions described
in one of the four cases in Table 6.1.

Table 6.1: Congruence conditions for the odd prime factors of the even
number n

Condition pi(mod 8)
∀ pi ∈ P

qj(mod 8)
∀ qj ∈ Q

rk(mod 8)
∀ rk ∈ R

sγ(mod 8)
∀ γ ∈ [1, t]

I 5 3 7 1

II 1 5 7 3

III 1 7 3 5

IV 1 5 3 7

In addition, assume that the primes appended onto β satisfy one of the
following Legendre symbol conditions.

Condition 1:
For all h, σ ∈ [d+ 1, t] with h 6= σ(

sσ
sh

)
= 1,
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6.2. Extension Technique for Generating Even Non-congruent Numbers

and define T ⊆W with

T =

{
µ

∣∣∣∣ (shµ
)

= −1 ∀ h ∈ [d+ 1, t]

}
and |T | ≡ 1 (mod 2). For all primes ε ∈W\T ,(sh

ε

)
= 1 ∀ h ∈ [d+ 1, t].

Condition 2:
For each h ∈ [d+ 1, t], the set Lh defined by

Lh =

{(
sh
pi

)
,

(
sh
qj

)
,

(
sh
rk

)
,

(
sh
sg

)
with pi ∈ P, qj ∈ Q, rk ∈ R, g ∈ [1, h)

}
has exactly one Legendre symbol equal to −1.

Condition 3:
For all h ∈ [d + 1, t], pi ∈ P, qj ∈ Q, rk ∈ R, and g ∈ [1, h), one of the
following four sets of Legendre symbol conditions hold.

A)

(
sh
pi

)
=

(
sh
qj

)
=

(
sh
rk

)
=

(
sh
sg

)
= 1.

B)

(
sh
pi

)
=

(
sh
qj

)
=

(
sh
rk

)
=

(
sh
sg

)
= −1.

C)

(
pi
sh

)
=

(
qj
sh

)
=

(
rk
sh

)
=

(
sg
sh

)
= 1.

D)

(
pi
sh

)
=

(
qj
sh

)
=

(
rk
sh

)
=

(
sg
sh

)
= −1.

Condition 4:
Let h ∈ [d+ 1, t], ε ∈ N+ and define H ⊆W , where

|H| =

{
Odd if (t− d) ≡ 0 (mod 4),

1 if (t− d) ≡ 2 (mod 4),

and µ ∈ H if (
µ

sh

)
=

{
1 for h = d+ (2ε− 1),

−1 for h = d+ 2ε.
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6.2. Extension Technique for Generating Even Non-congruent Numbers

Set (
sσ
sh

)
=

(
λ

sh

)
= 1

for all h ∈ [d+ 1, t], σ ∈ [d+ 1, h), and all primes λ ∈W\H.

Then, in each of the cases described in Table 6.2, n is a non-congruent
number with s(n) = 0.

Table 6.2: Conditions on the primes in the extension tail of the even number
n

Case Congruence
Condition

Legendre Symbol
Condition

Parity of (t− d)

I.1 I 1 Even

I.2 I 2 No restriction

II.3 II 3.A, 3.B, 3.C, 3.D Even

III.3.A III 3.A No restriction

IV.4 IV 4 Even

Our technique for proving this theorem utilizes theory from the field of
linear algebra along with Monsky’s formula for the 2-Selmer rank of En. We
work over F2 and make use of Lemma 5.6 to simplify the calculations in our
proof. As in Section 5.4, we set

δ = (a+ b+ c) and ω = (2δ + t+ d).

In addition, we let Aβ denote the square A matrix of order (δ + d) for β,

and Dβ
2 and Dβ

−1 represent the diagonal matrices corresponding to β; the
entries in these matrices are defined in Theorem 3.15. We now work through
the proofs of the cases described in Theorem 6.1 separately, beginning with
Case I.1.

Case I.1 Proof. We use Equation (3.17) to form the (2δ + 2d) × (2δ + 2d)
Monsky matrix,

Mβ
e =

 Dβ
2 Aβ + Dβ

2

Aβ
T + Dβ

2 Dβ
−1

,
for the even number β. By assumption s(β) = 0, so Equation (3.15) implies

that Mβ
e has full rank.
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6.2. Extension Technique for Generating Even Non-congruent Numbers

We now consider n = βsd+1sd+2 · · · st and construct its corresponding A
matrix

An =

 Aβ B

BT It−d

,
where (t− d) is even. Note that B is a (δ + d)× (t− d) matrix containing
rows with entries all equal to zero, except for an odd number of rows with
elements all equal to one. Because (t − d) is even, the entries along the
diagonal in the upper left block of An are not affected by the elements in
B, so they remain the same as in Aβ. The matrix BT has an odd number
of columns with entries all equal to one, and so there is an identity block in
the lower right corner of An. Thus, the Monsky matrix corresponding to n
can be written as

Me =


Dβ

2 0 Aβ + Dβ
2 B

0 0t−d BT It−d

Aβ
T + Dβ

2 B Dβ
−1 0

BT It−d 0 0t−d

.

By applying Equation (5.10) from Lemma 5.6, Me can be transformed into

M′
e =


Dβ

2 Aβ + Dβ
2 B 0

Aβ
T + Dβ

2 Dβ
−1 0 B

0 BT It−d 0t−d

BT 0 0t−d It−d

,

with
det(Me) = det(M′

e).

Notice that the matrix M′
e is similar to M∗

o given by Equation (5.22) in
the proof of Case II.2 of Theorem 5.5, with the only difference being the
elements in the (2δ + 2d) × (2δ + 2d) blocks located in their upper left
corners. Therefore, we can follow the process outlined in the proof of Case
II.2 of Theorem 5.5 to reduce M′

e to a form where Proposition 2.27 can be
applied. This allows us to deduce that

det(M′
e) = det

 Dβ
2 Aβ + Dβ

2

Aβ
T + Dβ

2 Dβ
−1

 = det(Mβ
e).
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6.2. Extension Technique for Generating Even Non-congruent Numbers

Since Mβ
e has full rank, its determinant is nonzero, so the above equation

implies that M′
e also has full rank. Thus, by Equation (3.15), we conclude

that s(n) = 0 and n is non-congruent.

We now verify that Case I.2 also yields non-congruent numbers. Note
that this result is a generalization of Theorem 1.1 Case 1 in [42].

Case I.2 Proof. We use induction and follow a process analogous to that
used in the proof of Case III.3 of Theorem 5.5. We begin by considering the
integer

n′ = βsd+1

formed by appending the prime sd+1, satisfying the specified pattern of
Legendre symbols, onto the non-congruent number β. The (2δ + 2d+ 2)×
(2δ + 2d+ 2) Monsky matrix for n′ is

Mn′ =


Dβ

2 0 K v

0 0 vT 1

KT v Dβ
−1 0

vT 1 0 0

,

where v is a column vector containing (δ+d−1) elements equal to zero and
a single element equal to one, and

K = Aβ + Dβ
2 + vvT .

The matrix Mn′ can be transformed into

M∗
n′ =


Dβ

2 Aβ + Dβ
2 0 0

Aβ
T + Dβ

2 Dβ
−1 0 0

0 0 1 0

0 0 0 1


by carrying out similar row and column operations to those used in the proof
of Case III.3 of Theorem 5.5 and applying Equation (5.9) from Lemma 5.6.
Therefore, by Proposition 2.27, we have

det(Mn′) = det(M∗
n′) = det(Mβ

e).
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6.2. Extension Technique for Generating Even Non-congruent Numbers

By assumption s(β) = 0, so as in the proof for Case I.1 of Theorem 6.1,
we can conclude that s(n′) = 0 and n′ is a non-congruent number. The
remainder of the proof can be completed by following the process outlined
in the proof of Case III.3 in Theorem 5.5.

We now prove that Case II.3 generates non-congruent numbers. Note
that Case II.3.A generalizes Theorem 1.2 in [42]. This is because Case II.3.A
allows β to have arbitrarily many prime factors belonging to each odd con-
gruence class modulo eight, whereas Theorem 1.2 in [42] imposes restrictions
on the number of primes in certain odd congruence classes modulo eight.

Case II.3 Proof. The diagonal matrices for n are

Dn
2 =

[
Dβ

2 0

0 It−d

]
and Dn

−1 =

[
Dβ
−1 0

0 It−d

]
. (6.1)

We consider the four subcases described in the theorem statement sep-
arately, beginning with Case II.3.A.

Case II.3.A:
By using Equation (3.14), we can write the A matrix corresponding to n as

An =



Aβ 0

T

ad+1 0 · · · · · · 0

1 ad+2
. . .

...
...

. . .
. . .

. . .
...

...
. . . at−1 0

1 · · · · · · 1 at


=

[
Aβ 0

T A∗

]
, (6.2)

where T is given by Equation (5.14). The diagonal entries in A∗ are depen-
dent upon the parity of the quantity (c + d) and, since (t − d) is even, it
follows that

(ad+1, ad+2, . . . , at−1, at) =

{
(0, 1, . . . , 0, 1) if (c+ d) is even,

(1, 0, . . . , 1, 0) if (c+ d) is odd.
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6.2. Extension Technique for Generating Even Non-congruent Numbers

The Monsky matrix for n can be written as

Me =


Dβ

2 0 Aβ + Dβ
2 0

0 It−d T A∗ + It−d

Aβ
T + Dβ

2 TT Dβ
−1 0

0 A∗
T + It−d 0 It−d


by combining Equations (3.17), (6.1), and (6.2).

In the case where (c+ d) is even, we apply Equation (5.8) from Lemma
5.6 to Me to obtain

MN
e =


Dβ

2 Aβ + Dβ
2 0 0

Aβ
T + Dβ

2 Dβ
−1 0 TT

0 0 It−d A∗
T + It−d

0 T A∗ + It−d It−d

,

with
det(Me) = det(MN

e ).

We modify this matrix by carrying out the set of (t−d−1) row replacements
listed in the proof of Case I.1.B of Theorem 5.5. These operations transform
the A∗

T + It−d block into the (t − d) zero matrix, while leaving the other
elements in MN

e unchanged. We then reduce the T block to the zero matrix
by adding all of the final (t− d) columns in MN

e to each of columns (δ+ d+
a + b + 1) through (2δ + 2d). The entries in the TT block do not modify

the elements in the Dβ
−1 block, because we are adding an even number of

columns to each of the aforementioned (c+ d) columns in MN
e . Altogether,

these operations change MN
e into

MNN
e =


Dβ

2 Aβ + Dβ
2 0 0

Aβ
T + Dβ

2 Dβ
−1 0 TT

0 0 It−d 0t−d

0 0 A∗ + It−d It−d

.

We apply Proposition 2.27 to MNN
e and, because the (2t − 2d) × (2t − 2d)

block in the lower right corner of MNN
e is a lower triangular matrix with
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6.2. Extension Technique for Generating Even Non-congruent Numbers

determinant equal to one, we are able to conclude that

det(Me) = det(MNN
e ) = det

 Dβ
2 Aβ + Dβ

2

Aβ
T + Dβ

2 Dβ
−1

 = det(Mβ
e).

Thus, it follows that s(n) = 0 and n is non-congruent when (c+ d) is even.
In the case where (c+ d) is odd, we transform Me into

M�
e =


Dβ

2 Aβ + Dβ
2 0 0

Aβ
T + Dβ

2 Dβ
−1 TT 0

0 T It−d A∗ + It−d

0 0 A∗
T + It−d It−d

 (6.3)

by applying Equation (5.7) from Lemma 5.6. We need to reduce M�
e so that

Property 2.27 can be used to calculate its determinant. We carry out the
(t− d− 1) row operations stated in the proof of case 2 of Theorem 5.5 Case
I.1.A to change the A∗ + It−d block in M�

e into the zero matrix. We also
transform the TT block into the zero matrix by adding rows (2δ + 2d + 1)
through (2δ+ d+ t) to each of rows (δ+ d+ a+ b+ 1) through (2δ+ 2d) in
M�

e. Upon completing these row operations, M�
e has the form

M��
e =


Dβ

2 Aβ + Dβ
2 0 0

Aβ
T + Dβ

2 Dβ
−1 0 0

0 T It−d 0t−d

0 0 A∗
T + It−d It−d

.

The remainder of the proof can be completed analogously to the case where
(c + d) is even, allowing us to reach the desired conclusion that s(n) = 0
and n is non-congruent when (c+ d) is odd.

Case II.3.B:
We recall Equation (3.14), and use it, along with the specified pattern of
Legendre symbols corresponding to the primes appended onto β, to form
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the A matrix for n. This matrix can be written as

An =



1 · · · · · · · · · 1

Aβ
...

...

1 · · · · · · · · · 1

ad+1 1 · · · · · · 1

0 ad+2
. . .

...

U
...

. . .
. . .

. . .
...

...
. . . at−1 1

0 · · · · · · 0 at


=

 Aβ

1 · · · 1
...

...

1 · · · 1

U A∗

,

where U is given by Equation (5.15), and

(ad+1, ad+2, . . . , at−1, at) =

{
(1, 0, . . . , 1, 0) if (a+ b) is even,

(0, 1, . . . , 0, 1) if (a+ b) is odd.

Note that there are an even number of ones in each row of the upper right
block of An. Because we are working over F2, the elements along the diago-
nal in the upper left block of An remain the same as those in Aβ. We form
the Monsky matrix for n,

Me =



1 · · · 1

Dβ
2 0 Aβ + Dβ

2

...
...

1 · · · 1

0 It−d U A∗ + It−d

Aβ
T + Dβ

2 UT Dβ
−1 0

1 · · · 1
...

... A∗
T + It−d 0 It−d

1 · · · 1


,

by using An and the diagonal matrices given by Equation (6.1).
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We consider the case where (a+ b) is even and transform Me into

MN
e =



1 · · · 1

Dβ
2 Aβ + Dβ

2

...
... 0

1 · · · 1

Aβ
T + Dβ

2 Dβ
−1 0 UT

1 · · · 1
...

... 0 It−d A∗
T + It−d

1 · · · 1

0 U A∗ + It−d It−d


by applying Equation (5.8) from Lemma 5.6. We carry out the (t − d − 1)
row replacement operations listed in the proof of case 2 of Theorem 5.5 Case
I.1.A to reduce the A∗

T + It−d block in MN
e to the (t − d) zero block. We

then add all of the final (t − d) rows in MN
e to each of rows (δ + d + 1)

through (δ + d + a + b) to convert all of the entries in the UT block to
zeros. Finally, we reduce the block consisting entirely of ones in the upper
right quadrant of MN

e to the zero matrix by adding all of rows (2δ+ 2d+ 1)
through (2δ + d+ t) to each of the first (δ + d) rows in MN

e . This collection
of row operations transforms MN

e into

MNN
e =



Dβ
2 Aβ + Dβ

2 0 0

Aβ
T + Dβ

2 Dβ
−1 0 0

1 · · · 1
...

... 0 It−d 0t−d

1 · · · 1

0 U A∗ + It−d It−d


and, since we are working over F2,

det(Me) = det(MN
e ) = det(MNN

e ).

Applying Proposition 2.27 to MNN
e allows us to determine that

det(MNN
e ) = det

 Dβ
2 Aβ + Dβ

2

Aβ
T + Dβ

2 Dβ
−1

 = det(Mβ
e).
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The above determinant cannot be equal to zero because of our original
assumption that s(β) = 0. Therefore, Equation (3.15) implies that s(n) = 0
and n is non-congruent when (a+ b) is even.

In the case where (a+ b) is odd, we use Equation (5.7) from Lemma 5.6
to transform Me into

M�
e =



1 · · · 1

Dβ
2 Aβ + Dβ

2 0
...

...

1 · · · 1

Aβ
T + Dβ

2 Dβ
−1 UT 0

0 U It−d A∗ + It−d

1 · · · 1
...

... 0 A∗
T + It−d It−d

1 · · · 1


,

with
det(Me) = det(M�

e).

We carry out the (t− d− 1) row operations listed in the proof of Theorem
5.5 Case I.1.B to convert the A∗ + It−d block in M�

e into the zero matrix.
We then reduce all of the nonzero entries in the upper right quadrant of M�

e

to zero by performing analogous row operations to the ones that we used to
transform MN

e into MNN
e in the case where (a+ b) is even. Completing the

remaining portion of the proof can be done by simply following the series
of steps outlined in case with (a+ b) even. Thus, regardless of the parity of
the quantity (a+ b), s(n) = 0 and n is non-congruent.

Case II.3.C:
We use the pattern of Legendre symbols for the prime factors of n and
Equations (3.14), (3.17), and (6.1) to construct the Monsky matrix for n.
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This matrix has the form

Me =



Dβ
2 0 Aβ + Dβ

2 TT

0 It−d 0

0 1 · · · · · · 1

0 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 0 1

0 · · · · · · 0 1

Aβ
T + Dβ

2 0 Dβ
−1 0

T

0 0 · · · · · · 0

1 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 0 0

1 · · · · · · 1 1

0 It−d



,

where T is given by Equation (5.14). Applying Equation (5.8) from Lemma
5.6 to Me transforms it into

MN
e =



Dβ
2 Aβ + Dβ

2 TT 0

Aβ
T + Dβ

2 Dβ
−1 0 0

T 0 It−d

0 0 · · · · · · 0

1 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 0 0

1 · · · · · · 1 1

0 0

0 1 · · · · · · 1

0 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 0 1

0 · · · · · · 0 1

It−d



.

By inspection, it is clear that the structure of this matrix is similar to the
one in Equation (6.3). Therefore, an analogous process to that described in
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the proof of Theorem 6.1 Case II.3.A with odd (c+ d) can be implemented
to deduce that s(n) = 0 and n is a non-congruent number.

Case II.3.D:
We use the Legendre symbol values and Equation (3.14) to construct

An =



Aβ UT

1 · · · 1
...

...
...

...
...

...

1 · · · 1

ad+1 0 · · · · · · 0

1 ad+2
. . .

...
...

. . .
. . .

. . .
...

...
. . . at−1 0

1 · · · · · · 1 at


=


Aβ UT

1 · · · 1
...

...

1 · · · 1

A∗

,

where UT is the transpose of the matrix described in Equation (5.15). Notice
that the elements along the diagonal in A∗ depend upon the parity of the
quantity (δ + d), where

(ad+1, ad+2, . . . , at−1, at) =

{
(1, 0, . . . , 1, 0) if (δ + d) is odd,

(0, 1, . . . , 0, 1) if (δ + d) is even.

It follows that the Monsky matrix for n has the form

Me =



Dβ
2 0 Aβ + Dβ

2 UT

1 · · · 1

0 It−d
...

... A∗ + It−d

1 · · · 1

1 · · · 1

Aβ
T + Dβ

2

...
... Dβ

−1 0

1 · · · 1

U A∗
T + It−d 0 It−d


.

When (δ + d) is odd, Equation (5.7) from Lemma 5.6 can be applied to
rearrange the blocks in Me. The resulting matrix is similar in structure to
MN

e in the proof of Theorem 6.1 Case II.3.B with (a + b) even. Therefore,
we can complete the proof of the case where (δ + d) is odd by following the
procedural details described in the proof of Theorem 6.1 Case II.3.B with
(a+ b) even.
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Similarly, when (δ+d) is even, we transform Me by using Equation (5.8)
from Lemma 5.6. The remainder of the proof can be completed by following
the process described in the proof of Theorem 6.1 Case II.3.B with (a + b)
odd.

Thus, s(n) = 0 and n is a non-congruent number irrespective of the
parity of (δ + d).

Next, we provide the proof of Case III.3.A.

Case III.3.A Proof. We form the (2δ + 2t) × (2δ + 2t) Monsky matrix for
n = βsd+1sd+2 · · · st. This matrix is described by Equation (3.17) and can
be written in the following general form

Me =



Dβ
2 0 Aβ + Dβ

2 0

0 It−d 0 It−d

Aβ
T + Dβ

2 0 Dβ
−1 0

0 It−d 0 0t−d


.

In addition, the (δ + t)× (δ + t) diagonal matrices D2 and D−1 that corre-
spond to n are given by

D2 =

 Dβ
2 0

0 It−d

 =


0a+b 0 0

0 Ic+d 0

0 0 It−d


and

D−1 =

 Dβ
−1 0

0 0t−d

 =


0a 0 0 0

0 Ib+c 0 0

0 0 0d 0

0 0 0 0t−d

.
We apply Equation (5.10) from Lemma 5.6 to Me to transform it into

M′
e =



Dβ
2 Aβ + Dβ

2 0 0

Aβ
T + Dβ

2 Dβ
−1 0 0

0 0 It−d It−d

0 0 0t−d It−d


,
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with
det(Me) = det(M′

e).

Notice that the lower right corner square block of order (2t−2d) is an upper
triangular matrix with determinant equal to one. Therefore, by applying
Proposition 2.27, we can determine that

det(Me) = det

[
Dβ

2 Aβ + Dβ
2

Aβ
T + Dβ

2 Dβ
−1

]
. (6.4)

The block matrix in Equation (6.4) is recognizable as the Monsky matrix cor-
responding to β. Recall that by assumption s(β) = 0. Therefore, Equation
(3.15) implies that the Monsky matrix for β has full rank, so by Equation
(6.4), we conclude that

det(Me) 6= 0.

Thus, s(n) = 0 and n is a non-congruent number.

Finally, we complete the proof of Theorem 6.1 by verifying that Case
IV.4 produces families of non-congruent numbers.

Case IV.4 Proof. First, we construct the diagonal matrices for n. Because
the primes appended onto β are of the form 8k + 7,

Dn
2 =

[
Dβ

2 0

0 0t−d

]
and Dn

−1 =

[
Dβ
−1 0

0 It−d

]
.

We define
u =

[
1 0 · · · 1 0

]
(6.5)

and
v =

[
0 1 · · · 0 1

]
(6.6)

to be a pair of row vectors containing (t−d) elements that alternate between
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ones and zeros. The Monsky matrix for n can be written as

Me =



Dβ
2 0 E F

0 0t−d G

1 1 · · · · · · 1

0 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 1 1

0 · · · · · · 0 1

ET GT Dβ
−1 0

FT

1 0 · · · · · · 0

1 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 1 0

1 · · · · · · 1 1

0 It−d



, (6.7)

where the structure of the blocks E, F, and G vary depending on whether
(t− d) ≡ 2 (mod 4) or (t− d) ≡ 0 (mod 4).

If (t − d) ≡ 2 (mod 4), G is a (t − d) × (δ + d) matrix with all of its
elements equal to zero, except for a single column of the form vT , where v is
given by Equation (6.6). The structure of G is important, because it ensures
that the block immediately to the right of G has nonzero determinant; if G
had simply been the zero matrix, then the upper triangular block situated
beside G would have exhibited an alternating pattern of ones and zeros along
its diagonal. The significance of this upper triangular block with nonzero
determinant becomes apparent later in the proof when we apply Proposition
2.27.

When (t − d) ≡ 2 (mod 4), the structure of the matrix F is dependent
upon the prime that belongs to the set H. If pi ∈ H for any i ∈ [1, a] or
qj ∈ H for any j ∈ [1, b], then F has (c+ d) rows of ones, (a+ b− 1) rows of
zeros, and a single row of the form v. Similarly, if rk ∈ H for any k ∈ [1, c]
or sl ∈ H for any l ∈ [1, d], then F has (a+ b) rows of zeros, (c+ d− 1) rows
of ones, and a single row of the form u, where u is given by Equation (6.5).
The rows in F that are composed either entirely of zeros or entirely of ones
do not affect the elements along the diagonal in the block E, because we are
working over F2 and (t−d) is even. The remaining row in F of the form u or
v contains an odd number of ones because (t− d) ≡ 2 (mod 4). Therefore,
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the block E is nearly identical to Aβ +Dβ
2, with the only difference between

these two matrices being a single element along their main diagonals.
We now use Equation (5.9) from Lemma 5.6 to transform Me into

M∗
e =



Dβ
2 E 0 F

ET Dβ
−1 GT 0

FT 0

1 0 · · · · · · 0

1 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 1 0

1 · · · · · · 1 1

It−d

0 G 0t−d

1 1 · · · · · · 1

0 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 1 1

0 · · · · · · 0 1



. (6.8)

We convert the G block into the zero matrix by adding each of the final
(t − d) columns in M∗

e to the column in M∗
e whose final (t − d) elements

alternate between zeros and ones. This single column replacement operation
transforms the block E into Aβ + Dβ

2 and the matrix M∗
e into

M∗∗
e =



Dβ
2 Aβ + Dβ

2 0 F

ET Dβ
−1 GT 0

FT K

1 0 · · · · · · 0

1 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 1 0

1 · · · · · · 1 1

It−d

0 0 0t−d

1 1 · · · · · · 1

0 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 1 1

0 · · · · · · 0 1



,
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where K has a single column of ones and all of its remaining entries equal
to zero.

We reduce the GT block to the zero matrix by carrying out a single row
replacement operation in M∗∗

e . Specifically, we add each of rows (2δ+2d+1)
through (2δ + d + t) to the row in M∗∗

e with nonzero entries in GT . Note

that this row replacement operation also transforms ET into Aβ
T + Dβ

2, so
M∗∗

e becomes

M∗∗∗
e =



Dβ
2 Aβ + Dβ

2 0 F

Aβ
T + Dβ

2 Dβ
−1 0 KT

FT K

1 0 · · · · · · 0

1 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 1 0

1 · · · · · · 1 1

It−d

0 0 0t−d

1 1 · · · · · · 1

0 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 1 1

0 · · · · · · 0 1



, (6.9)

with
det(Me) = det(M∗∗∗

e ). (6.10)

Applying Proposition 2.27 to M∗∗∗
e twice allows us to deduce that

det(M∗∗∗
e ) = det



Dβ
2 Aβ + Dβ

2 0

Aβ
T + Dβ

2 Dβ
−1 0

FT K

1 0 · · · · · · 0

1 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 1 0

1 · · · · · · 1 1


= det

[
Dβ

2 Aβ + Dβ
2

Aβ
T + Dβ

2 Dβ
−1

]
. (6.11)
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The square matrix of order (2δ+2d) immediately above is recognizable as the
Monsky matrix corresponding to β. By assumption s(β) = 0, so Equation
(3.15) implies that the Monsky matrix for β has nonzero determinant. This
fact when coupled with Equations (6.10) and (6.11) enables us to deduce
that

det(Me) 6= 0.

Therefore, when (t − d) ≡ 2 (mod 4), s(n) = 0 and n is a non-congruent
number.

If (t−d) ≡ 0 (mod 4), |H| is odd, so the G matrix in Equation (6.7) has
an odd number of columns of the form vT , where v is given by Equation
(6.6), and all of the remaining entries in G are equal to zero. Since there
are an odd number of columns of the form vT in G, the block immediately
to the right of G in Me is an upper triangular matrix with ones along its
main diagonal.

Suppose that the number of primes pi with i ∈ [1, a] and qj with j ∈ [1, b]
belonging to the set H is η, and the number of primes rk with k ∈ [1, c] and
sl with l ∈ [1, d] in H is κ. Then η+ κ = |H|, and F has (a+ b− η) rows of
zeros, η rows of the form v, (c+ d−κ) rows of ones, and κ rows of the form
u, where u is given by Equation (6.5). Since u and v are row vectors of
length (t−d) and (t−d) ≡ 0 (mod 4), there are an even number of elements
equal to one in each of these two vectors. Therefore, the entries in the rows
of F do not affect the elements along the diagonal in the block E and

E = Aβ + Dβ
2.

We follow an analogous process to the one described in the case where
(t−d) ≡ 2 (mod 4) to verify that n is a non-congruent number when (t−d) ≡
0 (mod 4). First, we apply Equation (5.9) from Lemma 5.6 to transform Me

into the matrix M∗
e, given by Equation (6.8). To reduce the G block in M∗

e

to a zero block, we add all of the final (t− d) columns in M∗
e to each of the

|H| columns in M∗
e whose final (t − d) entries alternate between zeros and

ones. This process does not alter the Aβ + Dβ
2 block in M∗

e because we are
adding all of the final (t− d) columns of M∗

e to another column in M∗
e, and

each row in F has either no ones or an even number of ones. The column
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operations transform M∗
e into

M∗∗
e =



Dβ
2 Aβ + Dβ

2 0 F

Aβ
T + Dβ

2 Dβ
−1 GT 0

FT K

1 0 · · · · · · 0

1 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 1 0

1 · · · · · · 1 1

It−d

0 0 0t−d

1 1 · · · · · · 1

0 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 1 1

0 · · · · · · 0 1



,

where K is a matrix with |H| columns of ones and (δ+ d− |H|) columns of
zeros.

Next, we complete a series of |H| row replacement operations to convert
the GT block to the zero matrix. This involves adding all of rows (2δ+2d+1)
through (2δ + d + t) in M∗∗

e to each of the |H| rows in GT of the form v.

These row operations do not affect the Dβ
−1 or Aβ

T + Dβ
2 blocks in M∗∗

e .
Therefore, M∗∗

e is transformed into the matrix M∗∗∗
e , given by Equation

(6.9), where the K block has |H| columns composed entirely of ones and all
remaining columns composed entirely of zeros.

The rest of the proof of the case where (t − d) ≡ 0 (mod 4) can be
completed by following the steps outlined in the proof of the case with
(t − d) ≡ 2 (mod 4). Thus, when (t − d) ≡ 0 (mod 4), we conclude that
s(n) = 0 and n is non-congruent.

6.3 Examples of Even Non-congruent Numbers
Generated from Known Non-congruent
Numbers

In this section, we provide examples of non-congruent numbers that are
generated by Theorem 6.1. These numbers are specified by values of Leg-
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endre symbols, and hence Dirichlet’s theorem on primes in arithmetic pro-
gressions (Theorem 2.20) guarantees that our theorem produces infinitely
many non-congruent numbers. Of significance is the fact that any even
non-congruent number β with s(β) = 0 can be extended to produce in-
finitely many non-congruent numbers by using Theorem 6.1. Depending
on the value chosen for β, the numbers generated by applying Theorem
6.1 may belong to existing families of non-congruent numbers. However,
the numerical examples presented in Tables 6.4, 6.5, 6.6, 6.7, and 6.8 are
from new families of non-congruent numbers, because their prime factor-
izations differ from those of known families of even non-congruent numbers
[2, 6, 11, 12, 15–17, 27, 37, 49].

It is worthwhile to mention that the non-congruent numbers listed in the
tables in this section can be generated with the aid of the Maple code given
in Appendix A.

We begin by considering some existing families of non-congruent num-
bers, so that we can apply Theorem 6.1 to construct new non-congruent
numbers.

Lagrange describes several families of even non-congruent numbers with
a maximum of three distinct odd prime factors [27]. We summarize some of
his results in Table 6.3.
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Table 6.3: Lagrange’s non-congruent numbers of the form β = 2pq or 2pqr,
where p, q, and r are distinct odd primes

p (mod 8) q (mod 8) r (mod 8) Legendre Symbol
Conditions Imposed on
the Odd Prime Factors

of β

1) 3 3 – None

2) 1 5 –
(
p
q

)
= −1

3) 7 3 –
(
p
q

)
= 1

4) 1 3 3
(
p
q

)
= −

(p
r

)
5) 1 5 5

(
p
q

)
= −

(p
r

)
6) 7 3 5

(
p
q

)
=
(p
r

)
7) 7 7 5

(
p
q

)
=
(p
r

)
= −

( q
r

)
8) 1 7 3

(
p
q

)
=
(p
r

)
= −1

or
(
r
p

)
=
(
r
q

)
= −1

In Section 9 of [17], Goto asserts that numbers β of the form described
by Table 6.3 correspond to congruent number elliptic curves with 2-Selmer
rank equal to zero. Therefore, Theorem 6.1 can be used to extend these
numbers to produce new families of even non-congruent numbers containing
arbitrarily many distinct prime factors. In addition, since the even integers
n described by Theorem 4.1 were proven to have s(n) = 0, they too can be
extended by Theorem 6.1. In fact, any even non-congruent number n with
s(n) = 0 can be extended to produce an infinite collection of non-congruent
numbers by using Theorem 6.1.

We begin by applying Case I.1 of Theorem 6.1 to a few non-congruent
numbers described by Lagrange’s results in Table 6.3 and a non-congruent
number that is listed in Table 4.1. The resulting numerical examples gener-
ated by Case I.1 of Theorem 6.1 are stated in Table 6.4.
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Table 6.4: Non-congruent numbers n = βsd+1sd+2 · · · st generated by Case
I.1 of Theorem 6.1

Theorem
Satisfied by β

β Case I.1 Extension
Tail sd+1sd+2 · · · st

Prime(s)
µ ∈ T

Lagrange Case
1 in Table 6.3

2 · 43 · 83 281·337·1433·1601·2593·
4129·6529·17393·98737·
337121 ·490001 ·2015033

83

Lagrange Case
3 in Table 6.3

2 · 23 · 11 89 · 97 · 881 · 1433 ·
2777 · 22697 · 25793 ·
37489 · 51217 · 149689

23

Lagrange Case
6 in Table 6.3

2·19·5·103 761 · 769 · 1489 · 2129 ·
12641 · 25409 · 38321 ·

191089 ·339161 ·1185601

103

Lagrange Case
7 in Table 6.3

2 ·79 ·7 ·13 41 · 353 · 1097 · 6089 ·
10601 · 10993 · 24169 ·
93481 · 252913 · 412081

79, 7, 13

Theorem 4.1 2 · 17 · 5 · 3 ·
23·263·503

6857 · 11393 · 16553 ·
53897 · 58337 · 68993 ·

583673 · 868337

17, 5, 3, 263,
503

None 2 · 5 · 7 · 71 ·
179 · 499

1201·1801·12401·13841·
43649 · 57649 · 105449 ·
290441 ·347729 ·1078841

71, 179, 499

Notice that the value of β listed in the final row of Table 6.4 does not
belong to a known family of non-congruent numbers. However, Monsky’s
formula can be used to verify that s(2 · 5 · 7 · 71 · 179 · 499) = 0, and so
Theorem 6.1 can be applied to this value.

Table 6.5 lists a collection of non-congruent numbers that result from
using Case I.2 of Theorem 6.1 to extend some of the non-congruent numbers
described in Tables 4.1 and 6.3. Note that the first four numerical examples
given in Table 6.5 also appear in Table 2 in [42]. These numbers have been
included to illustrate how the non-congruent numbers generated by Case 1
of Theorem 1.1 in [42] are a subset of those produced by Case I.2 of Theorem
6.1.
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Table 6.5: Non-congruent numbers n = βsd+1sd+2 · · · st generated by Case
I.2 of Theorem 6.1

Theorem
Satisfied

by β

β Case I.2
Extension Tail
sd+1sd+2 · · · st

Extension Tail Legendre
Symbols that Equal −1

Lagrange
Case 6 in
Table 6.3

2·79·3·13 73 · 97 · 313 · 937 ·
1433 · 1249 · 10729 ·
12601·19249·17137

(
73
13

)
,
(
97
13

)
,
(
313
73

)
,
(
937
79

)
,
(
1433
3

)
,(

1249
1433

)
,
(
10729
97

)
,
(
12601
73

)
,(

19249
1433

)
,
(
17137
19249

)
Lagrange
Case 6 in
Table 6.3

2 · 23 ·
11 · 13

113 · 233 · 257 ·
1049 · 1193 · 3433 ·
6337 · 5641 · 49201 ·

64793 · 58217

(
113
23

)
,
(
233
11

)
,
(
257
233

)
,
(
1049
23

)
,(

1193
23

)
,
(
3433
113

)
,
(
6337
13

)
,
(
5641
6337

)
,(

49201
113

)
,
(
64793
6337

)
,
(
58217
64793

)
Lagrange
Case 6 in
Table 6.3

2 · 103 ·
19 · 5

17 · 137 · 409 · 1721 ·
4409 · 7681 · 7753 ·
8209 · 13001 · 26449

(
17
5

)
,
(
137
5

)
,
(
409
19

)
,
(
1721
103

)
,(

4409
17

)
,
(
7681
17

)
,
(
7753
5

)
,
(
8209
409

)
,(

13001
409

)
,
(
26449
17

)
Lagrange
Case 6 in
Table 6.3

2·7·11·13 137 · 257 · 433 · 641 ·
2129 · 3697 · 8969 ·
14561·23761·34057

(
137
13

)
,
(
257
7

)
,
(
433
7

)
,
(
641
257

)
,(

2129
11

)
,
(
3697
13

)
,
(
8969
433

)
,
(
14561
11

)
,(

23761
7

)
,
(
34057
641

)
Lagrange
Case 1 in
Table 6.3

2 · 3 · 11 73 · 313 · 577 · 97 ·
1433 · 6689 · 2689 ·

7297 · 7129

(
73
11

)
,
(
313
73

)
,
(
577
73

)
,
(

97
577

)
,
(
1433
3

)
,(

6689
3

)
,
(
2689
1433

)
,
(
7297
1433

)
,
(
7129
7297

)
Theorem

4.1
2 ·41 ·13 ·
19 · 71 ·
31 · 1319

617 · 3769 · 4001 ·
4937 · 7673 · 40897 ·

45161 · 25913

(
617
13

)
,
(
3769
41

)
,
(
4001
41

)
,
(
4937
41

)
,(

7673
41

)
,
(
40897
4937

)
,
(
45161
4001

)
,
(
25913
71

)

Next, we use Case II.3 of Theorem 6.1 to extend several non-congruent
numbers β with s(β) = 0. For each of the first five examples listed in
Table 6.6, β belongs to a known family of non-congruent numbers. For the
remaining three examples, s(β) can easily be shown to equal zero by forming
the Monsky matrix corresponding to β and verifying that it has full rank.
Also, note that the examples listed in the last two rows of Table 6.6 appear
in Table 3 of [42]. This is because Case II.3.A of Theorem 6.1 generalizes
Theorem 1.2 in [42].
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6.3. Examples of Even Non-congruent Numbers

Table 6.6: Non-congruent numbers n = βsd+1sd+2 · · · st generated by Case
II.3 of Theorem 6.1

Theorem
Satisfied by β

β Case II.3
Extension Tail
sd+1sd+2 · · · st

Case(s)
Satisfied by the
Tail of Primes

Lagrange Case
2 in Table 6.3

2 · 17 · 5 3 · 107 · 347 · 947 ·
1163 · 3803 · 11243 ·

12203 · 22787 · 31643 ·
373187 · 562763

Case II.3.B

Lagrange Case
2 in Table 6.3

2 · 17 · 5 19 · 251 · 491 · 1259 ·
1531 · 6971 · 3947 ·

44563·115883·304907·
662323 · 1205123

Case II.3.A (first
six primes) and

Case II.3.B (final
six primes)

Lagrange Case
8 in Table 6.3

2·41·47·3 331 ·1051 ·1867 ·3307 ·
3907 · 4003 · 25819 ·

59707 · 72763 · 110419

Case II.3.D

Lagrange Case
8 in Table 6.3

2·41·47·3 107 · 419 · 443 · 1091 ·
3499 · 8803 · 21211 ·

93139·135043·873043·
1217683 · 1396987

Case II.3.C (first
four primes) and
Case II.3.D (final

eight primes)

Theorem 6.1
Case I.1

2 · 79 · 7 ·
13·41·353

859·1291·8363·22571·
58763 · 76579 · 215123 ·
325043·326219·890683

Case II.3.C

None 2·5·7·71·
179 · 499

1019 · 19259 · 40699 ·
55931·130099·180539·

239171 · 313331

Case II.3.A

None 2 · 41 · 5 ·
31 · 3

379 · 3931 · 3691 ·
5011 · 10651 · 32299

Case II.3.A

None 2 · 73 · 29 ·
47 · 283

467 · 971 · 1531 · 4003 ·
14243 · 3467 · 63691 ·

84299

Case II.3.B (first
two primes) and
Case II.3.A (final

six primes)

In Table 6.7, we state some non-congruent numbers that can be produced
when Case III.3.A of Theorem 6.1 is used to extend non-congruent numbers
either described by Lagrange’s work, or listed in Tables 4.1, 6.5, or 6.6.
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6.3. Examples of Even Non-congruent Numbers

Table 6.7: Non-congruent numbers n = βsd+1sd+2 · · · st generated by Case
III.3.A of Theorem 6.1

Theorem Satisfied
by β

β Case III.3.A
Extension Tail
sd+1sd+2 · · · st

Lagrange Case 8 in
Table 6.3

2 · 17 · 7 · 3 373 · 421 · 1381 · 1429 ·
4813 · 17077 · 22453

Lagrange Case 8 in
Table 6.3

2 · 41 · 23 · 19 197 · 821 · 1373 · 5717 ·
20149 · 26573 · 29741

Theorem 4.1 2 ·17 ·5 ·3 ·23 ·263 ·503 3109 · 6949 · 31741 ·
33469 · 101149

Theorem 4.1 2 · 41 · 13 · 19 · 71 · 31 ·
1319 · 743 · 3191

11701 · 18773 · 58733 ·
459749 · 578213

Theorem 6.1 Case
I.2

2 ·79 ·3 ·13 ·73 ·97 ·313 997 · 3301 · 12373 · 20029 ·
42013

Theorem 6.1 Case
I.2

2·23·11·13·113·233·257 653 · 1013 · 6653 · 20333 ·
126949

Theorem 6.1 Case
I.2

2·103·19·5·17·137·409 5381 · 5861 · 10429 ·
48109 · 50261

Theorem 6.1 Case
I.2

2·7·11·13·137·257·433 5581 · 6029 · 7253 · 20549 ·
59557

Theorem 6.1 Case
II.3.A

2 ·41 ·5 ·31 ·3 ·379 ·3931 3229 · 9781 · 26701 ·
27901 · 28429 · 74149

Theorem 6.1 Case
II.3.C

2 · 79 · 7 · 13 · 41 · 353 ·
859 · 1291

1117·12373·30781·51949·
129581 · 225941 · 678773

It is also worthwhile to mention that the numbers described by Case (c)
of Theorem 2 in Goto’s paper [16] are a subset of those generated by Case
III.3.A of Theorem 6.1. Goto’s non-congruent numbers are a product of the
integer two and arbitrarily many primes of the form 8k + 5. His numbers
follow the same pattern of Legendre symbols as the tail of primes of the
form 8k + 5 in Case III.3.A of Theorem 6.1.

Finally, in Table 6.8, we present some non-congruent numbers constructed
according to Case IV.4 of Theorem 6.1.
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6.3. Examples of Even Non-congruent Numbers

Table 6.8: Non-congruent numbers n = βsd+1sd+2 · · · st generated by Case
IV.4 of Theorem 6.1

Theorem
Satisfied by β

β Case IV.4 Extension
Tail sd+1sd+2 · · · st

Element(s)
in H

Lagrange Case
4 in Table 6.3

2 · 73 · 3 · 11 359 · 167 · 1823 · 6599 ·
2063 · 20327 · 20063 ·

85439 · 431903 · 138959

73

Lagrange Case
4 in Table 6.3

2 · 73 · 3 · 11 479 · 79 · 359 · 5623 · 6863 ·
8887 · 8087 · 77743 · 38543 ·

98911

3

Lagrange Case
4 in Table 6.3

2 · 73 · 3 · 11 503 · 31 · 1487 · 823 · 10247 ·
4519·70583·65839·278879·
218887 · 541439 · 268063

73, 3, 11

Lagrange Case
5 in Table 6.3

2 ·17 ·13 ·29 103 · 127 · 1223 · 599 ·
10039 · 5087 · 26399 · 9103 ·

253751 · 108359

29

Lagrange Case
5 in Table 6.3

2 ·17 ·13 ·29 919 · 239 · 1223 · 463 ·
5407 · 1879 · 18199 · 3583 ·

200983 · 68543

13

Lagrange Case
5 in Table 6.3

2 ·17 ·13 ·29 647 · 23 · 103 · 199 · 4943 ·
14303 · 38047 · 16007 ·

430847 · 104623

17

Theorem 6.1
Case III.3.A

2 ·79 ·7 ·13 ·
41·353·859·
1291 · 1117

2287 · 239 · 207847 · 74687 ·
392831 · 275039 · 650543 ·

2165039

79, 7, 13,
41, 353

Theorem 6.1
Case III.3.A

2 ·79 ·7 ·13 ·
41·353·859·
1291 · 1117

14551 · 12959 · 161503 ·
142543 · 986543 · 594119 ·

1492063 · 3703823

7, 13, 41,
353, 859,

1291, 1117

Theorem 6.1
Case III.3.A

2 ·79 ·7 ·13 ·
41·353·859·
1291 · 1117

2287 · 607 · 27583 · 60623 ·
298847 · 401743

1117

Note that it is possible to combine the cases in Theorem 6.1 to produce
even non-congruent numbers with prime factors in each odd congruence class
modulo eight. The numerical examples in the final three rows of Table 6.8
are generated by applying Cases I.1, II.3.C, III.3.A, and IV.4 of Theorem
6.1 to a non-congruent number described by Lagrange [27].
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Chapter 7

Conclusion

This thesis focused on the generation of non-congruent numbers with
arbitrarily many distinct prime divisors. Our results are significant because
they provide a new technique for constructing non-congruent numbers, and
produce families of both odd and even non-congruent numbers containing
prime factors belonging to each odd congruence class modulo eight. We
begin by summarizing our main research contributions and then proceed to
discuss some interesting avenues for future work.

7.1 Main Results

In Chapter 4, we described a particular family of even non-congruent
numbers that are a product of arbitrarily many primes. These non-congruent
numbers have at least one prime factor in each odd congruence class modulo
eight. This is a distinguishing feature of our result, as all known families of
even non-congruent numbers are comprised of primes belonging to no more
than three odd congruence classes modulo eight.

Chapters 5 and 6 developed and described a general approach for con-
structing non-congruent numbers. Our method allows any non-congruent
number α, for which the elliptic curve y2 = x3−α2x has 2-Selmer rank equal
to zero, to be extended to produce other non-congruent numbers. Chapter
5 focused on odd non-congruent numbers, and showed that infinitely many
non-congruent numbers can be generated by appending arbitrarily many
primes of the form 8k+ 1, 8k+ 3, or 8k+ 5 onto known odd non-congruent
numbers. In Chapter 6, we considered even non-congruent numbers and pro-
vided criteria for constructing non-congruent numbers with arbitrarily many
prime factors in possibly all of the four odd congruence classes modulo eight.
Our results in Chapters 5 and 6 allow existing families of non-congruent
numbers to be extended and thus, considerably broaden the collection of
non-congruent numbers that can be generated and described.
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7.2. Future Work

7.2 Future Work

In this section, we identify and discuss some directions for future research
work.

1) Theorem 5.5 produces an infinite collection of non-congruent numbers
by multiplying existing odd non-congruent numbers α with s(α) = 0
by primes sd+1, sd+2, . . . , st of the form 8k + 1, 8k + 3, or 8k + 5. Is
it possible to find primes sd+1, sd+2, . . . , st of the form 8k + 7 with
t even, such that for any odd number α with s(α) = 0, the integer
n = αsd+1sd+2 · · · st is a non-congruent number with s(n) = 0?

2) It would be interesting to determine whether Theorems 5.5 and 6.1 can
be expanded to describe a larger collection of non-congruent numbers.
In Theorem 5.5, the primes sd+1, sd+2, . . . , st that are appended onto
the odd non-congruent number α are required to satisfy specific Legen-
dre symbol conditions. Do there exist Legendre symbol conditions that
differ from those in the statement of Theorem 5.5 that, when imposed
upon the primes sd+1, sd+2, . . . , st, guarantee that αsd+1sd+2 · · · st is a
non-congruent number with s(α) = 0? Similarly, are there Legendre
symbol conditions other than the ones stated in Theorem 6.1 that al-
low the even non-congruent number β with s(β) = 0 to be extended to
produce infinitely many non-congruent numbers βsd+1sd+2 · · · st? Fur-
thermore, if Theorems 5.5 and 6.1 can be expanded, is there a better,
more concise way to describe all of the Legendre symbol conditions?

3) There exist non-congruent numbers whose corresponding congruent
number elliptic curves have nonzero 2-Selmer rank. For example,
Bastien [2] described a family of non-congruent numbers of the form
n = 2p with p ≡ 9 (mod 16) for which s(n) > 0. Congruent number
elliptic curves with rank equal to zero and non-trivial Shafarevich-Tate
group are also given by Wang [58]; the non-congruent numbers that he
describes have arbitrarily many prime divisors. It would be desirable
to find other families of non-congruent numbers with nonzero 2-Selmer
rank.

4) The work in this thesis strictly focused on the construction of non-
congruent numbers with arbitrarily many prime factors. However,
it would be of interest to find families of congruent numbers with
arbitrarily many prime divisors. Families of congruent numbers with
two or fewer odd prime factors were given by Heegner [21], Birch [4],
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7.2. Future Work

Stephens [53], and Monsky [34]. More recently Tian described some
families of congruent numbers that have an unlimited number of prime
divisors [7, 54, 55]. Because the 2-Selmer rank provides an upper
bound for the arithmetic rank, Monsky’s formula for computing the
2-Selmer rank of En cannot be used in isolation to generate families of
congruent numbers. This makes the search for families of congruent
numbers with arbitrarily many distinct prime factors a substantially
more challenging task than the search for families of non-congruent
numbers of a similar form.

5) Monsky’s formula, which is described in Section 3.6, computes the 2-
Selmer rank of congruent number elliptic curves y2 = x3 − n2x. A
natural extension would be to examine whether or not it is possible to
use Monsky’s approach to calculate the 2-Selmer rank of other elliptic
curves. In [17], Goto studies a more general version of the congruent
number problem, known as the θ-congruent number problem. This
involves determining whether a positive integer is a θ-congruent num-
ber. A positive integer n is called a θ-congruent number if n

√
r2 − s2

occurs as the area of a triangle with rational side lengths and an angle
0 < θ < π, where cos(θ) = s/r with s, r ∈ Z, |s| ≤ r, and (r, s) = 1.
The θ-numbers are related to elliptic curves of the form

y2 = x(x+ (r + s)n)(x− (r − s)n).

Note that π/2-congruent numbers are regular congruent numbers. Goto
claims that he “could not apply Monsky’s method to the θ-congruent
number problem with θ 6= π/2”. However, he does not provide any
further details regarding this, and so it is unclear whether it is in fact
impossible to derive a formula for computing the 2-Selmer rank of
elliptic curves for θ-congruent numbers with θ 6= π/2.
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Appendix A

Maple & Magma Code

In Sections 4.3, 5.3, 5.5, and 6.3, we presented numerical examples gen-
erated by our main theorems. In this section, we show how to use Maple
to construct those numbers as well as infinitely many other non-congruent
numbers satisfying the constraints imposed in the statements of our theo-
rems in Chapters 4, 5, and 6.

We illustrate the process by considering the non-congruent number n =
(α)s1s2 · · · s8 = (13 · 29 · 37 · 23 · 31 · 71) · 4003 · 5867 · 41947 · 60779 · 135131 ·
196387 · 296299 · 329891 listed in Table 5.5. Since α does not belong to a
known family of non-congruent numbers, we begin by verifying that α =
(13 · 29 · 37 · 23 · 31 · 71) satisfies s(α) = 0. We do this by using Monsky’s
formula, given by Equation (3.15). The following code shows how Maple is
used to compute the rank of the Monsky matrix, Mo, for α. Note that in
the code, the diagonal matrices D−2 and D2 are denoted by Dneg2 and D2,
respectively.
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Since rankF2(Mo) = 12, Equation (3.15) implies that s(α) = 0, as re-
quired.

If α is even, an analogous set of Maple calculations can be completed to
determine the rank of the matrix Me, given by Equation (3.17).

Our next step is to generate new non-congruent numbers by finding a
tail of primes to append onto α that satisfy the Legendre symbol conditions
specified in the statement of Theorem 5.5 Case I.1.A. This can be done
efficiently by using the following Maple code.

Notice that in this loop, the six required Legendre symbol conditions are
specified and primes of the form 8k + 3 satisfying the conditions are listed
in the output. For k values from 0 to 1000, three primes are stated in the
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output. We choose to append the first prime listed, 4003, onto α. We then
update the Legendre symbol conditions to include the condition imposed on
the prime 4003, and run the code again to find another prime to append
onto α · 4003. Our search yields the prime 5867, as shown by the following
code.

This process can be repeated indefinitely, allowing arbitrarily many primes
of the form 8k+3 to be appended onto α, and infinitely many non-congruent
numbers to be produced. Note that if the code fails to return an output,
then the bounds for k need to be adjusted.

The numbers generated by our theorems can be verified to be non-
congruent by using the computer algebra system Magma. This is found
online at

http://magma.maths.usyd.edu.au/calc/.

The code below shows how Magma is used to calculate the Mordell-Weil
rank of the congruent number elliptic curve corresponding to the integer
αs1 = (13 · 29 · 37 · 23 · 31 · 71) · 4003.

Input:

E:=EllipticCurve([-(13*29*37*23*31*71*4003)^2,0]);

Rank(E);

Output:

0 true

Magma confirms that the rank of the curve y2 = x(x2 − (αs1)
2) is zero,

so αs1 = (13 · 29 · 37 · 23 · 31 · 71) · 4003 is a non-congruent number.
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