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Abstract

The study of gravity and magnetism has a long history in Earth sciences and contin-

ues to play an important role in exploration geophysics. Fundamental knowledge

about our planet has been gained from the processing of potential field data at all

scales: from large tectonic processes, down to the size of mineral deposits. At-

tempting to model density and magnetization through the inverse process remains

challenging however as it is a highly non-unique problem. Conventional uncon-

strained inversions generally yield either smooth models with poor edge definition

or sparse and compact models that are too simplistic to represent subtle features.

In this doctoral dissertation, I provide three technical innovations to enhance

the capabilities of potential data inversion. First, I propose to explore a wider

range of solutions by independently varying the sparsity assumption imposed on

the model values and its gradients. At the core of this research is the use of mixed

`p-norm regularization solved by a scaled Iterative Re-weighted Least Squares al-

gorithm. I provide a path to extract dominant features from the solution space with

a Principal Component Analysis and pattern recognition strategy.

Secondly, I provide modification to the magnetic vector inversion in spherical

coordinates to process magnetic field data affected by remanent magnetization. I

tackle long-lasting issues related to the non-linear trigonometric coordinate trans-

formation with an iterative sensitivity re-weighting strategy. The spherical formu-

lation allows me to impose sparsity constraints on the amplitude and orientation of

the magnetization vector independently. The algorithm can recover anomalies with

a coherent magnetization direction.

Lastly, I incorporate soft geological information in the inversion through the ro-

tation of the objective function. Combined with sparsity assumptions, the rotated
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regularization improves the imaging of orientated geological contacts. Rotation

angles are either interpolated from structural measurements or inferred from the

data through a learning process. I demonstrate the benefits of structural constraints

on gravity and magnetic datasets acquired over the Kevitsa Ni-Cu-PGE deposit,

Finland. The recovered density model is compared to a seismic reflection profile

for validation and to complement the geological interpretation of the deposit. Ac-

curate modelling of the magnetization vectors yields insights about past tectonic

deformations.
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Lay Summary

This research focuses on geophysical imaging of Earth’s crust based on the den-

sity and magnetic properties of rocks. This is done through an inversion process

whereby gravity and magnetic field data collected above the surface are converted

to a 3D model representing the sub-surface. Due to the nature of the inverse prob-

lem, there are infinite solutions that can satisfy the observed data. Conventional

inversion algorithms yield smooth models that are difficult to interpret within a ge-

ological framework. I tackle these limitations with a flexible algorithm that allows

me to generate a suite of possible candidates with variable characteristics. The al-

gorithm is implemented for both scalar density and magnetization vector models. I

then provide a learning strategy to extract dominant features from this suite of so-

lutions using Principal Component Analysis. Finally, the efficacy of my approach

is demonstrated using gravity and magnetic data acquired over the Kevitsa nickel

deposit in Finland.
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Preface

The research presented in this thesis was completed by myself, under the guidance

of my supervisor Professor Oldenburg. The algorithms and ideas brought forward

resulted in multiple articles, either published or in revision.

The mixed norm algorithm presented in Chapter 3 and part of the learning algo-

rithm presented in Chapter 6 resulted in the article “Inversion using spatially vari-

able mixed `p-norm” published in Geophysical Journal International (Fournier

and Oldenburg, 2019b). I am the primary author of this article with revisions

from Dr. Oldenburg. The content of the article had previously been presented at a

conference (Fournier et al., 2016). The same algorithm has been used by other re-

searchers and resulted in three research papers to which I am also co-author (Abedi

et al., 2018a,b; Miller et al., 2017).

Improvements to the magnetic vector inversion in Chapter 4 will be featured

in the accepted paper “Sparse magnetic vector inversion in spherical coordinates:

Application to the Kevitsa Ni-Cu-PGE magnetic anomaly, Finland” submitted to

Geophysics (Fournier and Oldenburg, 2019b). The article was written by myself

under the guidance of Dr. Oldenburg. I have also co-authored a research paper in-

vestigating the geothermal resources at Mount Baker (Schermerhorn et al., 2017).

Using the same methodology, I collaborated in the implementation of sparse vec-

tor inversion applied to self-potential problems to map hydrothermal circulation at

Mount Tongariro, New Zealand (Miller et al., 2018).

The material presented in Chapter 5 and part of Chapter 7 is currently in prepa-

ration for publication. The article entitled “Sparse rotated objective function for

stratigraphic constraints: Application to the Kevitsa Ni-Cu gravity anomaly, Fin-

land” will be submitted within a few weeks.
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All programming work done in this thesis builds upon the open-source SimPEG

library as well as multiple packages from the Python ecosystem. Accreditation to

open-source algorithms have been made wherever necessary.
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Chapter 1

Introduction

1.1 Motivation
Density and magnetic permeability are important physical properties used in min-

eral exploration. Geologists routinely measure these properties on rock samples,

along with textural and structural features, to target areas for further investigation.

The vast majority of known mineral deposits have been discovered this way (Mar-

joribanks, 2010). But the conventional approach to mineral exploration is limited

to shallow regions of the Earth with exposed bedrock. Large portions of the crust

remain untouched, buried under thick sedimentary cover.

In the absence of surface evidence, density and magnetic permeability can still

play a role in mineral exploration as a source of geophysical signal. Variations in

the local gravity and magnetic fields are used to map geology and identify buried

structures such as intrusions, faults, folds and alteration zones (Domzalski, 1966;

Grant, 1984). The physical equations for gravity and magnetics are described with

the aid of Figure 1.1. For gravity we have the scalar gravitational potential:

φg = G
∫

V

1
r

ρ(r) dV (1.1)

The gravity field is obtained by taking the gradient of (1.1)

~g = ∇φg (1.2)
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which becomes

~g =−G
∫

V

r̂
r2 ρ(r) dV . (1.3)

Equation (1.3) describes the gravity field ~g( N
kg ) as observed at some arbitrary po-

sition P due to an elementary volume dV with density ρ ( kg
m3 ). The field scales as

a function of radial distance r between the source and the observer, and by New-

ton’s gravitational constant G (6.674× 1011 Nm2

kg2 ). For the magnetic problem, we

Figure 1.1: Cartoon illustrating the (left) gravity and (right) magnetic fields
originating from dense and magnetized anomalies. Adapted from (Blakely,
1996).

follow the notation of Blakely (1996). We consider magnetic minerals as being

composed of small dipoles, each with their own magnetic dipole moment. Prefer-

ential alignment of these dipoles gives rise to a magnetization per unit volume ~M( A
m

)
~M =

total magnetic moment
∆V

. (1.4)

The scalar magnetic potential can than be defined as:

φb(r) =
µ0

4π

∫
V

∇
1
r
· ~M(r) dV , (1.5)
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Taking the gradient of (1.5) yields an expression for the magnetic flux density:

~b = ∇φb (1.6)

and thus
~b(r) =

µ0

4π

∫
V

∇∇
1
r
· ~M(r) dV . (1.7)

In this above equation,~b is the magnetic flux density (Wb
m2 or N

A m ) and µ0 is the mag-

netic permeability of free space ( H
m or N

A2 ). Both equation (1.1) and (1.5) describe

a source of geophysical signal that decays radially with distance and that scales

linearly with changes in physical property contrasts. As a result, the gravity and

magnetic experiments are collectively referred to as potential field methods, and

there is a field of mathematics devoted to this subject.

A large number of potential field datasets has been compiled over the years and

made available to the geoscientific community for analysis: from global satellite

and marine measurements, to airborne and ground surveys (Figure 1.2). Process-

ing this wealth of data has encouraged collaboration between geologists and geo-

physicists in their efforts to map the sub-surface. After nearly five decades of data

acquisition and interpretation, gravity and magnetic methods are still an area of ac-

tive research in geophysics (Nabighian et al., 2005). This Ph.D. project contributes

to that body of research.

1.1.1 Geophysical processing for geological interpretation

While the study of potential field data represents a common ground for geolo-

gists and geophysicists to investigate the Earth, the two branches of geoscience

appear to diverge on the path taken for interpretation. The majority of geologi-

cal studies have focused on data processing techniques for mapping structures and

geological domains in 2D. Fourier filters have been particularly popular, such as

the total derivatives (Cordell and Grauch, 2012), analytic signal (Macleod et al.,

1993; Roest et al., 1992), tilt angle (Miller and Singh, 1994) or combination of

filters (Sanchez et al., 2014; Verduzco et al., 2004). Euler deconvolution has been

used to estimate the depth of simple parametric shapes such as planes, dykes, and

spherical bodies (Mushayandebvu et al., 2001; Reid et al., 1990; Thompson, 1982).
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Figure 1.2: Total magnetic map over northern Europe extracted from the global
Earth Magnetic Anomaly Grid (2-arc-minute resolution) compiled from satellite,
ship and airborne measurements (NCEI, 2017). The case study used in this re-
search, the Kevitsa Ni-Cu-PGE deposit in Finland, sits within a region of strong
magnetization. The image overlay in GoogleEarth was generated with the
open-sourced geosci.GeoToolkit package.

Similarly, the tilt-depth method (Salem et al., 2007)and Source Parameter Imaging

(SPI) (Thurston and Smith, 1997) can provide an estimate for the depth and dip

of elongated bodies in 2D (Phillips, 2010). A common limitation of these meth-

ods is in dealing with data acquired over complex geology. It is challenging to

interpret overlapping signals from multiple sources with arbitrary shapes and posi-

tions in 3D. It is even more challenging to make sense visually of dipolar magnetic

anomalies, especially at low latitudes.

The Kevitsa Ni-Cu-PGE deposit shown in Figure 1.3 is an interesting case

study to illustrate the difficulty of interpreting potential field data in a mineral ex-

ploration context. The gravity and magnetic maps are both visually challenging to

interpret. Attempting to construct a 3D geological model of Kevitsa directly from

the data maps would undoubtedly be a difficult task. Yet there is a lot of infor-

mation that could be extracted to help unravel the geological history of the region.
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Figure 1.3: (a) Surface geology, (b) Topography (c) ground gravity and (d) air-
borne magnetic data acquired over the Kevitsa deposit.

To this end, a large body of work from the geophysical community has focused

on inversion methodologies to model physical property contrasts in 3D. Among

these methods, voxel-based inversions have received considerable attention. One

of the main challenges posed by the inverse problem is that many models can fit

the observed data; this is referred to as non-uniqueness. Additional information

must be provided to isolate geologically sensible solutions. The typical strategy

is to assume smooth changes in physical properties. This strategy has become an

industry standard that is adopted by several commercial codes such as the UBC-

GRAV3D and MAG3D, (Li and Oldenburg, 1996; Li. and Oldenburg, 1998).

The conventional smooth physical property inversion framework is somewhat

at odds with the geological mindset however which is geared towards defining dis-

crete geological domains with sharp boundaries. This divide can once again be

exemplified with sections through the Kevitsa deposit (Figure 1.4). After years of

exploration work in the area, geologists have identified and mapped over a dozen
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lithologies along 2D sections. In an ideal case, we would like to use geophysical

inversion to complete the modelling work in 3D. Attempting to do so with current

methodologies yields the model presented in Figure 1.4(b). The smooth density

anomaly is too difficult to interpret in this context as it shows poor correlation with

the conceptual model of Kevitsa. It is partially for this reason that the geological

community has been slow to adopt 3D inversion methods as part of their interpre-

tation workflow. The apparent disconnect between the two fields of geoscience

remains a key issue to be addressed (Li et al., 2019).

Figure 1.4: Figure comparing three approaches used to model the Kevitsa de-
posit. (a) Geological interpretation derived from seismic and borehole data (bor-
rowed from Koivisto et al. (2015)). (b) Vertical section through an unconstrained
density inversion using conventional smooth assumptions. (c) Geological surface
model guided by geophysical forward modelling using Gocad.
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1.1.2 Constraining the inversion

A number of inversion strategies have been proposed in the past to help bridge

the gap between geologists and geophysicists. For simple scenarios involving a

few isolated targets, geophysical anomalies may be approximated by simple para-

metric bodies such as ellipsoids (McMillan et al., 2016) and dipping dykes (Foss,

2006; Krahenbuhl and Li, 2015). For most complex geological settings, full 3D

surface modelling can be used to constrain the inversion (Bosch and McGaughey,

2001; Fullagar et al., 2008). Figure 1.4(c) demonstrates such modelling efforts on

the Kevitsa intrusion. Building upon the seismic interpretation of Koivisto et al.

(2015), borehole logs and surface mapping, I constructed a 3D surface model us-

ing the Gocad-SKUA package. Generating and testing this model against the

geophysical data is a laborious process that requires skills, advanced software and

that can rapidly become intractable.

On a more data-driven side, hard physical property constraints have been in-

cluded in the inversion on a cell-by-cell basis (Phillips, 1996; Williams, 2008) or

through clustering algorithms (Lin and Zhdanov, 2017; Sun and Li, 2013). Dip and

structural information have also been used to reinforce known trends; this has been

accomplished by rotating the regularization functions with manual adjustment of

model gradients (Davis et al., 2012; Li and Oldenburg, 2000). A common limita-

tion with these approaches is in building and testing different geological scenarios.

Time and computational limitations often force practitioners to arbitrarily choose

one set of parameters for the regularization function and accept the outcome as a

”best” model and have it used in subsequent interpretation.

Few studies in geophysics have attempted to address non-uniqueness within a

learning framework. The genetic algorithm of Wijns and Kowalczyk (2007) and

supervised learning of Haber and Tenorio (2003) can guide practitioners in the

choice of inversion parameters and they could serve as a starting point for advanced

3D modelling work. But the efficacy of these approaches is once again impeded by

assuming a smooth physical property distribution. The learning process is limited

by the ability to generate solutions that are significantly diverse.
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1.1.3 Exploring the solution space

As an alternative to smooth inversions, several studies have employed approxima-

tions to `p-norms in order to recover compact anomalies. Methods such as the

Ekblom norm (p = 1) (Ekblom, 1973) and the Lawson approximation (Lawson,

1961) (p = 0) favor impulsive models with fewer non-zero parameters. Several

papers have demonstrated the efficacy of a sparsity assumption in reducing the

complexity of physical property models (Ajo-Franklin et al., 2007; Barbosa and

Silva, 1994; Blaschek et al., 2008; Chartrand, 2007; Last and Kubik, 1983; Port-

niaguine and Zhdanov, 2002; Stocco et al., 2009). Likewise, a sparse solution for

model gradients can yield blocky (piece-wise constant) models (Daubechies et al.,

2010; Farquharson and Oldenburg, 1998; Gorodnitsky and Rao, 1997; Li, 1993;

Sun and Li, 2014).

Sparsity assumptions have increased the flexibility of inversion algorithms for

the modelling of compact targets with sharp edges. The usual strategy is to define

global parameters applied over the entire model space. In most geological settings,

however, we can expect to encounter a mix of features, either smooth and sparse

in one region but elongated and blocky elsewhere. Determining exactly which

assumption to use in a particular geological setting remains largely user-driven.

Sun and Li (2014) have made inroads in imposing variable sparsity assumptions,

either the `2 or `1-norm measure of the model, to different regions of a 2D seismic

tomography problem. They demonstrate that this choice could be automated based

on information present in the data. Regions reacting favourably to the sparsity

assumption are defined through a learning process.

The next logical step, which I am taking in this research, is to further generalize

the use of sparse assumptions for p ∈ [0, 2] applied to both the model and model

gradients in 3D. I provide algorithmic details regarding the mixing of smooth,

sparse and blocky assumptions. This general inversion framework can be used to

generate diverse solutions and thus help geologists in their interpretation. A suite

of models with broad characteristics can also form a basis for learning algorithms.
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1.1.4 Dealing with remanence

Contrary to density, magnetization has the added complexity of being a vector

quantity defined by strength and orientation. In matter, the total magnetization,

which is the magnetic moment per unit volume ~M in (1.7) can be separated in its

induced and remanent component such that:

~M = κ(~H0 + ~Hs)+ ~Mr , (1.8)

where the magnetic susceptibility κ (SI) is the physical property describing the

ability of a rock to get magnetized under an applied field. In nature, this inducing

field has two components. The geomagnetic field ~H0 originates from Earth′s core.

It is in most cases the dominant component. Secondary fields ~Hs are related to

local magnetic anomalies. For highly susceptible material, the secondary fields

can oppose the geomagnetic field direction and reduce the total magnetization. It

is also referred to as self-demagnetization effects. The remanent magnetization
~Mrem is a permanent dipole moment that is preserved in the absence of an inducing

field.

It has long been assumed that the induced component of magnetization was

dominant. The effect of remanence is often regarded as ‘noise‘ and simply ignored

by 2D filtering and 3D inversion methods. Recent studies have shown however that

remanent minerals, most often magnetite and members of the titanium-hematite se-

ries, are commonly associated with mineral deposits such as diamondiferous kim-

berlites, volcanic massive sulphides and porphyries (Enkin, 2014; Henkel, 1991).

The orientation of remanent magnetization can make geologic interpretation more

complicated and should not be ignored.

Meanwhile, the same remanent component has been used extensively in pale-

omagnetic studies and in that field, it has been regarded as geophysical ‘data‘. A

number of researchers have used the permanent magnetization orientation to map

continental block rotation (Kissel and Laj, 1989; Norris and Black, 1961; Vine and

Matthews, 1963), for fold and thrust belts reconstruction (Ramon et al., 2012; Vil-

lalain et al., 2015) and in geochronology (Enkin, 2003; Henkel, 1991; Lockhart

et al., 2004). While providing valuable information about Earth’s history, these

studies have relied primarily on laboratory measurements performed on oriented
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cores. The availability and cost to acquire the orientation of magnetization at a

point remains a limiting factor for paleomagnetic studies (Pueyo et al., 2016).

Researchers have investigated ways to estimate the magnetization in order to

deal with remanence. This includes search algorithms (Dannemiller and Li, 2006;

Fedi et al., 1994), magnetic moment analysis (Helbig, 1963; Phillips, 2003), and

inversion methods. The most common inversion approach uses simple paramet-

ric shapes to approximate elongated and tabular bodies (Clark, 2014; Foss and

McKenzie, 2011; Fullagar and Pears, 2013; Pratt et al., 2014). For more complex

settings, magnetic data can be transformed into a quantity that is weakly sensi-

tive to the orientation of magnetization, such as magnetic amplitude data, and in-

verted for a scalar quantity, the effective susceptibility (Shearer, 2005). Lelievre

and Oldenburg (2009) introduce the Magnetization Vector Inversion (MVI) for the

3D modelling of magnetization parameters. Because a vector is sought, there are

three times the number of parameters compared to conventional inversion. This in-

creases the non-uniqueness, and useful information from an inversion will require

more complex regularization functions. Queitsch et al. (2019) have shown the ben-

efits of inverting full magnetic gradient tensor data along with sparsity assumptions

imposed on the amplitude of magnetization. Other studies have explored the use

of sparsity assumptions for the recovery of compact bodies, but imposing such as-

sumptions on the orientation of magnetization remains difficult (Fournier, 2015;

Liu et al., 2015; Zhu et al., 2015).

1.2 Research objectives
The challenges posed by the non-uniqueness of inverse problems and complica-

tions posed by remanence form the motivation of my Ph.D. research. The accuracy

of potential field inversions depends on our ability to recover the shape of anoma-

lies and, in the case of magnetic inversion, to also accurately predict the magne-

tization direction. I feel that more knowledge and confidence can be gained from

3D potential field inversion if the algorithm can produce a suite of diverse, yet

geologically reasonable solutions with minimal input required from experts. The

inversion framework should allow for sharp and smooth geological contacts to fit

a broad range of geological scenarios supported by the geophysical data. I want
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to extract subtle information present in the data to better define the geometry of

geological bodies. More specifically, I want to answer the following questions:

• Can I further generalize the use of sparse norms to generate diverse solutions

and determine dominant patterns?

• Can sparse norms be used to constrain the magnetization vector inversion?

• Can we improve the edge definition of geological domains?

In this thesis, I will attempt to bridge the gap between geological and geophys-

ical modelling with three technical innovations. First, I propose to vary sparsity

assumptions imposed on the model and model gradients in a semi-automated fash-

ion such that details about sparsity parameters can vary locally without the direct

input from the user. At the core of this research is the implementation of a mixed

`p-norms regularization. This algorithm will allow me to generate a suite of possi-

ble candidates representing a broad range of characteristics. Secondly, I provide a

learning strategy to extract dominant features from the solution space. This aspect

is important to help practitioners in their interpretation. Thirdly, I improve the con-

vergence of the non-linear MVI in spherical coordinates. When my improved MVI

is combined with sparse norms, I can recover magnetized bodies with well-defined

edges and coherent magnetization orientation. The different components are tested

on synthetic examples and finally implemented in the Kevitsa case study.

1.3 Thesis arrangement
The chapters in this thesis are meant to build on each other. I progressively add

the tools needed for my analysis of the Kevitsa case study in Chapter 7. A number

of synthetic examples are provided along the way to showcase specific aspects of

inversion. In Chapter 2, I provide theoretical background information related to

the forward calculation of potential field data. I provide efficiency improvements

over conventional codes by using a nested OcTree mesh-decoupling strategy and

out-of-core sensitivity storage.

Chapter 3 introduces the theory needed for potential field inversion. I provide

numerical details for the implementation of mixed `p-norm inversions. This chap-

ter is an improvement of the work presented in my MSc thesis (Fournier et al.,
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2016). I use a 1D numerical example to justify changes in the algorithm. I show-

case the flexibility of the algorithm on a synthetic 3D gravity problem.

In Chapter 4, I review the work of Lelievre and Oldenburg (2009) on magnetic

vector inversion and provide improvements to the non-linear formulation in spheri-

cal coordinates by using an iterative sensitivity re-weighting. Sparsity assumptions

introduced in Chapter 3 are used to constrain the inversion for the recovery of com-

pact magnetic anomalies with coherent magnetization orientation.

Chapter 5 brings together advances in mixed norm inversion and the directional

objective function of Li and Oldenburg (2000). I introduce a 7-cell gradient oper-

ator to improve the symmetry of rotated bodies in 3D. I showcase the capability of

the rotated norms for imaging a folded layer. Surface dip and strike data are inter-

polated and used to enforce directionality for the recovery of a continuous layer in

3D.

In Chapter 6, I make inroads in exploring the model space with mixed `p-norm

inversions. Building upon Chapter 3, I propose a learning strategy to extract dom-

inant features from a suite of models with different characteristics. I build an aver-

age model with Principal Component Analysis (PCA) and extract local parameters

with edge detection and image moment algorithms. I extend the work presented in

Chapter 4 to estimate the dip and strike and geological units.

In Chapter 7, I bring together all these components to process gravity and mag-

netic data acquired over the Kevitsa deposit, Finland. I provide a suite of density

and magnetization models to characterize the 2.0 Ga old ultra-mafic intrusion and

host stratigraphy. I incorporate geological trends in the modelling using rotation

angles derived from a seismic reflection profile and surface structural data. An

ensemble of models is analyzed in relation to borehole physical property measure-

ments and conceptual understanding of the deposit. I infer tectonic deformation

from the recovered magnetization vector.

I conclude the thesis with a summary chapter assessing the success of the pro-

posed methodology, identifying weaknesses and providing avenues for future re-

search.
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Chapter 2

Forward modeling of potential
field data

My goal is to characterize the sub-surface in terms of density and magnetization.

In Chapter 1, I have introduced the basic physics describing the relation between

density and magnetization and their respective anomalous fields in integral form.

In this chapter, I provide numerical details about the transformation from the con-

tinuous space to a discrete linear system of equations. I also provide efficiency

improvements over conventional implementations for the processing of large scale

data sets.

2.1 Discrete systems
The usual strategy is to represent the continuous Earth in terms of unit elements

each contributing to the total response observed at a given position in space. For the

gravity problem, the integral in (1.3) can be evaluated analytically over a discrete

prism with uniform density ρ . As derived by Nagy (1966), the integration gives

rise to a linear system:

g =

Tx

Ty

Tz

 ρ , (2.1)
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where T relates the cell-centered density value to the observed gravity field g at

some location P(xP,yP,zP):

Tx =−G
(

arctan
dy dz
r dx

+ log [ dz+ r ]+ log [ dy+ r ]
)∣∣∣∣xU

xL

∣∣∣∣yU

yL

∣∣∣∣zU

zL

Ty =−G
(

arctan
dx dz
r dy

+ log [ dz+ r ]+ log [ dx+ r ]
)∣∣∣∣xU

xL

∣∣∣∣yU

yL

∣∣∣∣zU

zL

Tz =−G
(

arctan
dy dy
r dz

+ log [ dy+ r ]+ log [ dy+ r ]
)∣∣∣∣xU

xL

∣∣∣∣yU

yL

∣∣∣∣zU

zL

r = (dx2 +dy2 +dz2)1/2

dx = (xP− x), dy = (yP− y), dz = (zP− z)

(2.2)

and G is Newton’s gravitational constant. Parameters needed to define the position

and shape of a unit cell are presented in Figure 2.1. Only the lower southwest

L(xL,yL,zL) and upper northeast U(xU ,yU ,zU) corner coordinates are needed to

define the relative distance r(dx, dy, dz) between the observation point and the

nodal limits. In this research I use right-handed Cartesian coordinate system such

that the x̂, ŷ and ẑ coordinate axes point along the east, north and vertical (up)

direction respectively.

Figure 2.1: Parameters describing the spatial relationship between an observa-
tion point P and a rectangular prism C.
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For most gravity field experiments only the vertical component of field gz is

measured, such that (2.1) reduces to

gz = Tz ρ (2.3)

Equation (2.3) defines the gravity response of a single rectangular prism as ob-

served at a single position in space. I can augment equation (2.3) to describe a

gravity experiment conducted over a large volume of earth and at many observa-

tion stations

gpre = Gρ (2.4)

such that the linear forward operator G∈RN×M maps the contribution of M number

of prisms (ρ ∈RM), each contributing to the response measured over N observation

locations (gpre ∈ RN). There are many ways to organize the cells making up this

discrete model. In all the work presented in this thesis, I use an Octree-based

discretization. More details regarding this choice of parameterization are provided

in the following section.

Similarly for the magnetic response, the integral equation in (1.7) can be eval-

uated analytically for a single prism (Sharma, 1966). This gives rise to a linear

system of the form

b = Tm , (2.5)

where T is a dense 3-by-3 symmetric matrix describing the linear relation between

a prism with magnetization m = [Mx, My, Mz]
T to the components of the field

b = [bx, by, bz]
T .

T =
µ0

4π

Txx Txy Txz

Txy Tyy Tyz

Txz Tyz Tzz

 (2.6)

where µ0 is the magnetic permeability of free-space. It is important to note that

the tensor T is a symmetric matrix with zero trace. Therefore only five of the nine
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tensor components need to be calculated.

Txx =−arctan
dx dy

dx2 + r dz+dz2

∣∣∣∣xU

xL

∣∣∣∣yU

yL

∣∣∣∣zU

zL

Tyy =−arctan
dx dy

dy2 + r dz+dz2

∣∣∣∣xU

xL

∣∣∣∣yU

yL

∣∣∣∣zU

zL

Txy = log [ dz+ r ]
∣∣∣∣xU

xL

∣∣∣∣yU

yL

∣∣∣∣zU

zL

Txz = log [ dy+ r ]
∣∣∣∣xU

xL

∣∣∣∣yU

yL

∣∣∣∣zU

zL

Tyz = log [ dx+ r ]
∣∣∣∣xU

xL

∣∣∣∣yU

yL

∣∣∣∣zU

zL

(2.7)

For most geophysical applications, we do not measure the vector field~b, but

rather the Total Magnetic Intensity (TMI) of the field that includes both the ge-

omagnetic and secondary fields. Since we are only interested in the anomalous

response from rocks, the approximation is generally made that

bT MA =~b · Ĥ0−µ0‖~H0‖; (2.8)

such that the Total Magnetic Anomaly bT MA is assumed to be small and parallel to

Earth’s field ~H0. The simulated magnetic datum in (2.5) simplifies to

bpre =
[
Ĥ>0 ·T

]
m (2.9)

Just as for the gravity experiments, this system can be augmented for M number of

prisms (m ∈ R3M) and N observation locations (bpre ∈ RN)

bpre = F m (2.10)

such that F ∈RN×3M. This linear system has three times the number of parameters

compared to the gravity problem as magnetization is a vector property. As part

of my contribution to the open-source community, both the gravity and magnetic

kernels have been added to the SimPEG.PF library.
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2.1.1 Choice of discretization

I have so far established the linear equations (2.4) and (2.10) that map the gravity

and magnetic response for a collection of rectangular prisms making up a discrete

Earth. I have yet to define how these cells are organized in a 3D space. This

decision will directly affect the size of the forward (and later inverse) calculations

as the size of the linear operators scale linearly with respect M. Approximating the

Earth more efficiently will allow me to process large data sets.

The usual strategy is to define a core region of interest with a fine discretiza-

tion and surround it by coarser cells (padding) to absorb regional signals that may

be present in the data. Two options are available to organize rectangular prisms.

The simplest implementation uses a regular grid, or tensor mesh shown in Fig-

ure 2.2(a). Each unit element shares a face with 6 neighbours. Changes in cell

size propagate throughout the domain along the orthogonal direction. The use of

tensor meshes has dominated the inversion literature due to the ease of storing and

viewing uniformly gridded models.

Figure 2.2: Simple representation of (a) tensor and (b) Octree meshes for the
organization of rectangular prisms within a core domain (red) and padding region
over a square domain 4 x 4 m in width. The Tensor mesh can fill the space with
64 cells, compared to only 40 cells with the Octree mesh.
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In an Octree mesh, unit cells are organized in a hierarchical structure as shown

in Figure 2.2(b). The resolution of the grid is increased by dividing a parent cell

into 8 children (or 4 in 2D). This type of discretization offers the most flexibil-

ity for increasing the resolution of the mesh in a specific region without affecting

the resolution of boundary cells. The main challenge is in generating a mesh that

honours the geometry of the problem in terms of data location, topography and ge-

ological contacts. Over the course of my research, I contributed to the open-source

community with a suite of refinement functions to facilitate the creation process of

Octree meshes. As part of the SimPEG.discretize library, I implemented the

following three strategies:

• Box refinement includes all cells intersected by a rectangular box containing

the input points.

• Radial refinement is performed inside spheres centered on each input points.

The radial distance is determined by the user.

• Surface refinement is defined by a continuous Delaunay triangulation of the

input points (Barber et al., 1996). The Octree refinement is determined based

on the vertical distance between cell centers and the nearest triangle.

Figure 2.3 compares the three refinement methods for the discretization of points

(red) placed on a Gaussian surface. The box refinement is the simplest but also

the least efficient strategy as it yields a uniform grid similar to the Tensor dis-

cretization. For the radial refinement, I end up with a small number of cells

concentrated around the input points. It is an optimal refinement for scattered ob-

servation points. The surface is well suited to describe continuous features such

as topography and geological contacts. It gives, in this case, the most accurate

representation of the Gaussian surface.

Forward simulation test

I demonstrate the benefit of an Octree discretization by forward modelling the re-

sponse of a 1 m sphere shown in Figure 2.4. I want to compare the numerical cost

to perform forward simulations using the standard Tensor discretization and an Oc-

tree mesh with surface refinement. Octree refinement uses scatter points placed
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Figure 2.3: Three refinement strategies used to discretize a Gaussian curve de-
fined by scattered points (red): (a) box, (b) radial and (c) surface refine-
ment strategy from the SimPEG.discretize library. Cells are coloured by
their corresponding Octree level.

on the outer surface of the sphere. Using equation (2.5), I calculate the magnetic

response over an 11-by-11 grid of observations placed 1 m above the anomaly. I re-

peat the forward simulation over a range of cell sizes. Only cells inside the sphere

are considered. The forward calculations are compared to the analytical vertical

response (bana
z ) for a vertical magnetization:

bana
z =

µ0

4π

[
−M

r3 +
3(M · r)r

r5

]
· ẑ (2.11)

where M = [0 x̂ ,0 ŷ, 1 ẑ] and r defines the vector between the center of the sphere

and the observation location. Table 2.1 summarizes the forward calculations in

terms of total number of cells, run time and data residual between the simulation

and the analytic solution.

φd =
121

∑
i=1

(bi−bana
i )2 (2.12)

All calculations were performed on a single thread 2.4 GHz Intel processor.

For the Tensor mesh, a reduction in core cell size increases the total number of

cells by a factor 8. For the same reduction in cell size using the surface refinement

increases the number of cells by a factor 4. This is anticipated as only cells at

the surface of the sphere decrease in size compared to a full volume refinement in

19



Figure 2.4: (a) Discretization of a sphere defined by discrete points (red) us-
ing the conventional Tensor mesh with a core region and padding cells. Octree
meshes refined by (b) box, (c) radial and (d) surface methods from the
SimPEG.discretize library.

the Tensor mesh. Both discretizations can reproduce the analytical response with

roughly the same accuracy. Including padding cells to this problem would further

increase the efficiency gap between the two discretization methods as the Octree

mesh can rapidly increase the cell size with little influence from the discretization

in the core region.

20



Tensor Octree (Surface)
Cell size (m) # Cells Time (s) φd # Cells Time (s) φd

1.00e-01 544 1.8e-01 4.2e+02 496 1.6e-01 7.7e+02
5.00e-02 4196 9.6e-01 4.7e+01 2516 5.1e-01 7.1e+01
2.50e-02 33478 6.5e+00 4.2e+00 10836 2.1e+00 5.2e+00
1.25e-02 268080 6.5e+01 2.0e+00 47276 1.0e+01 2.7e+00

Table 2.1: Summary table for the forward modeling of a magnetized sphere us-
ing a Tensor and Octree discretization

2.2 Large scale problems
The amount of memory needed to store the dense linear operators for gravity and

magnetics is a limiting factor for the simulation of potential field data with the

integral formulation. As prescribed in (2.10), the size of the problem is linearly

scaled by the number of model parameters M and the number of the data N. For

moderate size problems encountered in exploration geophysics (M≈ 106, N ≈ 104)

the memory requirement to store a dense M×N matrix can exceed hundreds of

gigabytes. While modern supercomputers can handle problems of this size, it is

still out of reach for common desktop computers.

A number of strategies have been proposed in the past to reduce the size of

the problem. Compression methods, either in the Fourier (Pilkington, 1997) or

wavelet domain (Li and Oldenburg, 2003), have proven successful in reducing the

size of the forward operators. On the downside, compression methods are prone

to introducing modelling artifacts, which can be hard to differentiate from true

anomalies. This is especially an issue for the magnetic vector inversion explored

in Chapter 3.

Another group of methods takes advantage of the rapid decay of geophysical

signals to reduce the size of individual forward simulations. The assumption is

made that model parameters in the far-field of measurements contribute little to the

total response and can, therefore, be approximated with fewer parameters. In this

regard, the concept is loosely related to the Fast Multipole Method (Engheta et al.,

1992). This is especially valid for airborne EM experiments where cells beyond

roughly 10 times the flight height of airborne EM systems have a negligible impact

on the measured response (Reid and Pfaffling, 2006). In its simplest implemen-
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tation, Cox et al. (2010) define a footprint approach such that model parameters

outside a pre-defined tolerance are simply ignored.

More recently, Yang and Oldenburg (2014) introduced a mesh decoupling ap-

proach. Local meshes are designed based on the source location and decay rate

of the geophysical signal. Cell-centered conductivity values are homogenized us-

ing volumetric-weighted averaging. Similarly, Haber and Schwartzbach (2014)

designed a nested Octree mesh strategy. The core region of local meshes is co-

located with cells in the global mesh and cover the same lateral extent. Physical

property values are homogenized from small cells in the global mesh to larger (or

equal) cells in the local meshes. This strategy assures that far-field features can still

contribute to the total response. The accuracy of individual forward simulations

depends primarily on the interpolation scheme used to transfer physical properties

from the global to the local meshes.

In this research, I employ the methodology of Haber and Schwartzbach (2014).

I want to divide the full data set into subsets (or tiles), each associated with a local

mesh. Physical property values are transferred to local meshes using a volumet-

ric weighted average. In order to further minimize the memory footprint of the

simulation, I make use of the parallel Dask package (Dask, 2016). The library

was designed by the data science community for out-of-core processing of large

datasets (Rocklin, 2015). The zarr file format allows the storage of dense arrays

on a solid-state drive (SSD) in compressed memory chunks. Out-of-core storage

is appealing as it reduces the amount of Random-Access Memory (RAM) needed

to store the large forward operators. Read and write operations are done in par-

allel. The runtime depends largely on the hardware used in terms of processor

speed, number of processors and communication speed between the workers and

the solid-state memory. The size of individual memory chunks can be adjusted to

optimize the processing speed depending on the resources available.

In the case of potential field data, the source of geophysical signals can span a

broad range of wavelengths, from tens of meters (local) to hundreds of kilometres

(regional). The memory footprint of a problem can be reduced considerably if we

manage to approximate far-field features with fewer cells. In the most extreme

case, each observation point could have its own local mesh. Choosing the number

of tiles becomes a trade-off between accurately capture the heterogeneity of the
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model for forward modeling while minimizing traffic between the parallel workers

and the SSD memory.

2.2.1 Numerical test

I investigate this trade-off between accuracy and efficiency with a numerical exam-

ple. I create a synthetic gravity model shown in Figure 2.5. The model contains

both short wavelength information from a small block anomaly and long wave-

length signal from large domains in the north and southeast quadrants. From equa-

tion (2.4), I compute gravity data on 21×21 grid placed 1 m above a flat topogra-

phy. Forward simulation of the global model required 4.3 Mb of memory and was

performed in parallel in 6.7 s with 4 processors (2.4 GHz). It is a relatively small

example compared to industry standards, but similar trends are to be expected on

larger scale problems.

I will assess the trade-off between efficiency and numerical accuracy by per-

forming a series of five forward simulations using a range of tiling patterns. I break

up the dataset into 2, 4, 9, 12 and 16 square tiles. For each tiling experiment, I cal-

culate the total memory footprint (Gb) and the computation time (s) to perform the

forward simulations. I also compute the data residual between the global simula-

tion (single mesh) and the tiled simulation using the `2-norm measure in equation

(2.12).

As seen in Figure 2.7, the memory needed to perform the forward calculations

rapidly decreases but eventually levels-off as the number of tiles increases. This

is expected as local meshes necessitate a minimum number of cells to fill out the

global domain and a minimum number of small padding cells near the edge of the

tiles to reduce interpolation artifacts. The reduction in problem size is inversely

correlated with an increase in computational time as communication between the

workers and the SSD memory becomes a bottleneck.

I also note an increase in data residual as a function of tile size. Figure 2.8 com-

pares the simulated data from the global mesh (single tile) to the combined forward

simulation calculated with 12 tiles (last experiment). From the residual map, it is

possible to distinguish short wavelength discrepancies between adjacent forward

simulations (tiles). These residuals are primarily due to the homogenization of
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Figure 2.5: (a) Horizontal and (b) vertical sections through the synthetic density
model used to test the mesh decoupling strategy. (c) The simulated data contain
short and long wavelength information.

anomalies near the edges of tiles, which in turn is a function of the wavelength

information contained in the data. As a first pass, I establish experimentally the

appropriate padding distance based on the estimated data uncertainties, such that

the maximum residual falls below the experimental error. For this experiment, the

meshing artifacts are at most 2% of the data amplitude (or 0.004 mGal), which

I achieved with a minimum padding distance of 4 cells per Octree level. Deter-

mining an optimal padding distance as a function of the geophysical signal would

warrant further research.
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Figure 2.6: Example of mesh decoupling of the forward problem into nested
Octree tiles. (Middle) Local meshes are generated for a pre-defined number of
tiles nested inside the global domain. (Bottom) The forward modelling operator
for each tile is stored in compressed Zarr file format on solid-state memory.
Memory chunks (grey) are accessed in parallel by the Dask library to perform
the forward calculations.
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Figure 2.7: Trade-off curves between the size of the forward problem (blue) and
data residual (red) over a range of number of tiles. The total size of the problem
is calculated based on the sum of cells in all the local meshes times the number
of data. The optimal number of tiles would be at the point of intersection where
both the cost of forward calculations and the data residual change significantly.

Figure 2.8: Simulated gravity data calculated from (a) the global model and (b)
the 12 forward tiled calculations. (c) Data residuals show short wavelength dis-
crepancies between adjacent tiles due to interpolation effects.
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Chapter 3

Inverse Problem

In Chapter 2, I defined the linear equations relating density and magnetization to

gravity and magnetic data. I now review the theory needed to solve the inverse

problem, such that I can recover a 3D representation of the subsurface from the

observed data. A key issue related to the inverse problem is that there is an infinite

number of possible models that can satisfy the data. Field measurements are gener-

ally acquired from the surface resulting in the inverse problem to be ill-posed. The

presence of experimental noise further complicates the problem. To circumvent

these issues, the inversion is often formulated as an optimization problem of form

min
m

φ(m) = φd +βφm

subject to φd ≤ φ
∗
d .

(3.1)

where φd is the misfit function

φd =
N

∑
i=1

(
dpred

i −dobs
i

σi

)2

, (3.2)

that measures the residuals between the observed and predicted data dpre, normal-

ized by the estimated data uncertainties σ .

The regularization function φm, or model objective function, serves as a vehicle

to introduce a priori information in the inversion. Several regularization strategies

have been developed over the last decades such that the solution remains geologi-

27



cally plausible. I focus on the generic `p-norm regularization of the form

φm = ∑
r=s,x,y,z

αr

∫
V

w(m)| fr(m)|p j dV . (3.3)

The functions fr can take many forms but most often have been

fs = m−mre f , fx =
dm
dx

, fy =
dm
dy

, fz =
dm
dz

. (3.4)

Thus fs(m) measures the deviation from a reference model mre f and fx(m), fy(m)

and fz(m) measure the roughness of the model m along orthogonal directions in

3D. This optimization problem has multiple terms scaled by hyper-parameters. The

first parameter is β which controls the balance between misfit and regularization.

It is assumed that a value can be found such that the target misfit is reached. The

α’s are constants that control the relative influence of the different regularization

functions. A larger α-value increases the focus of the optimization on the corre-

sponding penalty function. User-defined weights w(m) are used to incorporate any

type of a priori information that may be available to guide the solution.

Most often the `2-norms measure has been used giving rise to a discrete linear

system of form

φm = αsφs +αxφx +αyφy +αzφz

= ∑
r=s,x,y,z

αr‖Wr Vr Gr (m−mre f )‖2
2 ,

(3.5)

where φs measures the deviation of the discrete model m from a reference model

mre f and φx, φy and φz measure the roughness of the model along Cartesian di-

rections. The reference model is sometimes omitted in the roughness terms. The

matrices Gx, Gy, and Gz are discrete gradient operators. For the smallness compo-

nent, Gs reduces to the identity matrix. Volumes of integration resulting from the

evaluation of (3.3) are applied through diagonal matrices such that

Vs = diag
[
v1/2

]
. (3.6)

where v holds the discrete volume elements corresponding to each cell. For the
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model derivative terms, the volume of integration is computed over cell interfaces

such that

Vx = diag
[(

AFx
C v
)1/2

]
. (3.7)

where the matrix AFx
C averages the cell-centered volumes to cell faces. Similar

averaging is performed along the orthogonal y and z-direction. Diagonal matrices

Wr hold user-defined weights. More details about these weights are provided in the

following section. Lastly, the α parameters control the relative importance given to

individual components of the regularization. What is sometimes sought, at least as

a first pass, is that if φs, φx, φy, φz have about the same numerical value then they are

contributing equally. Dimensional analysis shows that for a uniform discretization

h:
[φx]

[φs]
= [h]−2 . (3.8)

The common approach is to set αs accordingly in order to scale the components of

the regularization function.

The usual strategy to solve (3.1) is through a gradient descent algorithm, such

as a Gauss-Newton approach, where we attempt to find a solution that has zero

gradients

g = ∇mφ(m) = ∇mφd +β

[
αs∇mφs +αx∇mφx +αy∇mφy +αz∇mφz

]
= 0 . (3.9)

where ∇m stands for the partial derivatives of the function with respect to the dis-

crete parameterization m. A solution to (3.9) can readily be calculated by gradient

descent methods (Hestenes and Stiefel, 1952; Nocedal and Wright, 1999).

A large number of studies have made use of this formulation to incorporate a

variety of a priori information: physical property data from rock and core samples

(Lelièvre et al., 2009), structural knowledge (Lelièvre, 2009; Li and Oldenburg,

2000) and advanced 3D geological modeling ((Bosch and McGaughey, 2001; Ful-

lagar et al., 2008; Phillips, 1996; Williams, 2008). Although successful in identi-

fying imaging anomalies at depth, penalty functions that rely on `2-norm measures

have a limited range of possible outcomes. The models tend to be smooth and diffi-

cult to interpret in relation to known geological domains with discrete boundaries.
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Moreover, substantial modelling work is generally required by experts to manually

refine these constraints in order to test different geological scenarios.

Sensitivity weighting

The weighting matrices Wr introduced in (3.5) can take many forms depending

on the type of a priori information that may be available. For potential fields

problems, a sensitivity weighting function is generally used to counteract the rapid

decay of the geophysical signal as a function of distance. In the work of Li and

Oldenburg (1996), a distance weighting approximation is employed and fixed at

the onset. In this thesis, I resort to an iterative re-weighting strategy based on the

sensitivity of a given inverse problem

J =
∂ F [m]

∂m
, (3.10)

where J, also referred to as the Jacobian matrix, holds the partial directives of the

forward problem F [m] with respect to m. Adapted from Haber et al. (1997), I

formulate the sensitivity-based weighting function:

Ws = diag

[[
w

max(w)

]1/2
]

w j =

[
N

∑
i=1

Ji j
2 +δ

]1/2/
v j ,

(3.11)

where w measures the sum square of the columns of the Jacobian, normalized by

the cell volumes. The constant δ is a small value (near machine precision) added

to avoid singularity. The weights are normalized by the maximum value such that

the range of weights are bounded between [0, 1]. The same sensitivity weights can

also be applied to the model derivative terms using a cell averaging operation such

that

Wx = diag

[(
AFx

C

[
w

max(w)

])1/2
]
, (3.12)

similar to the averaging of volumes used in (3.7). This sensitivity weighting strat-

egy is general and adaptable to any inverse problems where the sensitivity matrix

30



can be calculated explicitly. While the initial purpose of the sensitivity weighting

function of Li and Oldenburg (1996) is to simply counteract the decay of potential

fields, I will show numerically in Chapter 4 that the iterative re-scaling process

can also be beneficial in improving the convergence of gradient methods applied to

non-linear inverse problems.

3.0.1 Synthetic gravity example

As an entry point to the inverse problem, I proceed with a simple synthetic gravity

example. I define a volume of interest 600 m wide by 300 m deep, over which I

place a uniform survey grid of 21 x 21 stations placed 5 m above a flat topography.

The core region directly below the survey grid is discretized at a 5 m resolution as

shown in Figure 3.1(a) Within the core region, I build a geophysical target made up

of a single dense cube, 25 m in width. I set the density contrast of the prism to 0.2

g/cc in a uniform zero background. From (2.3), I simulate the vertical gravity field

of the block and add random Gaussian noise with 10−3 mGal standard deviation.

Figures 3.1(b) and (c) display the simulated data and ‘noisy’ observations gobs
z used

in the inversion. I revisit this example in Chapter 4 to demonstrate the inversion

process on magnetic data.

From the noisy data I will attempt to recover the block anomaly by the inverse

process. The objective function to be minimized takes in this case the form:

min
m

φ(m) = ‖G ρ−dobs‖2
2 +β ∑

r=s,x,y,z
αr‖WrVr Gr ρ‖2

2

subject to φd ≤ φ
∗
d

(3.13)

where I set ρre f = 0. Since (3.13) is linear with respect to the density contrast

model ρ , I can solve it uniquely for a fixed trade-off parameter β . I repeat this

process for variable β values until a find a solution that satisfies φd ≈ N. Fig-

ure 3.2(a) presents a vertical section through the recovered density model. The

density anomaly is imaged at roughly the right position, but the edges of the block

are poorly defined. As normally obtained with `2-norm penalties, the solution is

smooth and density values remain near the zero reference model. Hence the need

to explore other regularization functions that can better resolve compact objects.
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Figure 3.1: (a) Vertical section through a 25 m cube with density ρ=0.2 g/cc
placed in a uniform zero density background. (b) Simulated gravity data re-
sponses on a 21× 21 survey grid placed 5 m above the flat topography. (c)
Gravity data with random Gaussian noise added, 10−3 mGal standard deviation.
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Figure 3.2: (a) Vertical section through the inverted density model using the
conventional `2-norm regularization, (b) predicted and (c) normalized data resid-
ual. Outline of the true model (red) is shown for reference.
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3.1 General `p-norm regularization
Alternatively, researchers have explored the use of non-`2 measures to promote the

recovery of compact anomalies. Approximations to `1-norm such as the Huber

norm (Huber, 1964)

∑
i
|mi|p ≈∑

i

{
m2

i , |mi| ≤ ε,

2ε|mi|− ε2, |mi|> ε,

}

and the Ekblom norm (Ekblom, 1973):

∑
i
|mi|p ≈∑

i
(m2

i + ε
2)

p/2
(3.14)

have received considerable attention in geophysical inversion and signal processing

(Daubechies et al., 2010; Farquharson and Oldenburg, 1998; Gorodnitsky and Rao,

1997; Li, 1993; Sun and Li, 2014). Likewise, the Lawson’s measure (Lawson,

1961)

∑
i
|mi|p ≈∑

i

mi
2

(mi
2 + ε2)1−p/2 , (3.15)

has been proposed to approximate `0-norm and it has proven useful in generating

minimum support models. This formulation has received considerable attention

in the literature. (Ajo-Franklin et al., 2007; Barbosa and Silva, 1994; Last and

Kubik, 1983; Portniaguine, 1999). Figure 3.3 compares the `p-norms with the

Lawson approximation over a range of model values. As ε→ 0, the approximation

approaches the `p-norm on the complete interval p ∈ [0,2]. While (3.15) would in

theory permit us to explore a wide range of solutions for 0 ≤ p ≤ 2, its numerical

implementation remains challenging. Most algorithms have been limited to the `0,

`1, and `2-norm measure applied evenly to all components of the model objective

function.

Recent efforts by Sun and Li (2014) have shown promise in further exploring

the model space by varying `p-norm measures locally. They divided the inversion

domain into regions reacting favourably to either the `1 or `2-norm regularization.

The automated process could adapt to complex geological scenarios where both
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Figure 3.3: Approximated `p-norm using the Lawson measure (Lawson, 1961)
over a range of p-values and for a fixed threshold parameter ε = 10−1.

smooth and blocky anomalies are present. Building upon the work I introduced in

my M.Sc. Thesis (Fournier, 2015), I want to extend the work of Sun and Li (2014)

and further generalized the mixed norm inversion for p ∈ [0 2].

3.1.1 Synthetic 1D problem

To develop my methodology it suffices to work with a simple test example. In

Figure 3.4(a) I present a synthetic 1D model made up of a boxcar anomaly. The

region is divided into 50 uniform cells distributed along the interval [0≤ x ≤ 1]. I
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Figure 3.4: Linear forward problem made up of: (a) an example kernel function
; (b) model; (c) observed data with assigned standard errors.

define a synthetic geophysical experiment such that the data (dobs) are

dobs = F mtrue + e , (3.16)

The kernel coefficients Fi j are sampled from a standard normal distribution of pos-

itive values multiplied by the discretization intervals. Choosing a stochastic kernel

function for a linear inverse problem is unusual. Smooth functions are usually em-

ployed (polynomials, decaying exponentials, sinusoidals), but my choice will serve

to highlight the effects of various regularization functions. I generate 10 data, so

F ∈ RN×M where M = 50 and N = 10. Random Gaussian error e (σ=0.025) is

added to simulate noise (Fig. 3.4(c)).

To begin my analysis, I invert my synthetic dataset with two simple regulariza-

tion functions. For this 1D problem, the objective function takes the form:

min
m

φ(m) = ‖F m−dobs‖2
2 +β ∑

r=s,x
αr‖WrVr Gr m‖2

2

subject to φd ≤ φ
∗
d

(3.17)

To simplify the analysis, I set all weighting terms to unity (Wr = I) and the ref-

erence model to zero. Figure 3.5(a) presents the recovered model after reaching

the target misfit (φ ∗d = N) using the smallness term alone (αx = 0). The solution

exhibits high variability similar to the stochastic kernel function, but model param-
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Figure 3.5: Solution to the 1D inverse problem using (a) an `2-norm on the
model (αx = 0), (b) the `2-norm on model gradients (αs = 0) and (c) combined
regularization function (αs = 2500, αx = 1). (d) Convergence curve comparing
the misfit (φd) and the regularization (φm) as a function of iterations. (e) Compar-
ative plot for the relative contribution of the different components of the objective
function measured in terms of maximum absolute gradient (‖gi‖∞

)

eters remain near the implied zero reference value. Next, I invert the data using the

model gradient term (αs = 0); this yields the smoother model presented in 3.5(b).

The solution shows less spatial variability and the horizontal position of the boxcar

anomaly is better located.

Next, I combine both regularization functions so that the solution remains close

to the implied zero reference value and it is smooth. I need to determine the length

scale weighting proposed in (3.8). For my problem h = 0.02 and hence following
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the relationship established in (3.8) I set αx = 1 and αs = 2500. Inverting with

these parameter values yields the model in 3.5(c). Convergence curves presented

in Figure 3.5(d) show the evolution of φd and φm as a function of iteration. As

β decreases (shown in Figure 3.5(e)), the misfit, φd progressively decreases while

model complexity, indicated by φm, progressively increases.

Visually, the solution 3.5(c) exhibits characteristics of remaining near the zero

reference value while also attempting to be smooth. Numerical evaluation of the

two components of the regularization function, presented in Table 3.1, show that

αsφs = 3.31 and αxφx = 1.13. This might suggest that both φs and φx are roughly

equal in importance.

Rather than working with global norms, in this study, I propose to quantify

the relative importance of the terms in the regularization function based on their

partial derivatives, or gradients. From (3.9) I expect to find an optimal solution

where the sum of the gradients vanishes, either because all components are equal

to zero, or because multiple gradients have opposite signs. To quantify the size of

the gradients I use the infinity-norm

‖gr‖∞
= ‖∇mφr‖∞

, (3.18)

corresponding to the maximum absolute value of gr. The ‖gr‖∞
metric is appealing

for a few reasons: (a) it is directly linked to the minimization process because I

use gradient descent methods, (b) it does not depend on the dimension M of the

parameter space as do other measures that involve a sum of components of the

vector, (c) the theoretical maximum can be calculated analytically for any given

`p-norm function. These properties will become useful in the following section

when I attempt to balance different norm penalties applied on a cell-by-cell basis.

Figure 3.5(e) compares ‖gd‖∞, αs‖gs‖∞ and αx‖gx‖∞ over the iterative process.

I note that, under the current α-scaling strategy proposed in (3.8), the individual

partial derivatives for φs and φx also appear to be proportional in magnitude. To

quantify this I define a proportionality ratio:

λ∞ =
αs ‖gs‖∞

αx ‖gx‖∞

(3.19)
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αs αx αs φs αx φx λ∞

2500 1 3.31 1.13 1.23

Table 3.1: Norm values and proportionality ratio obtained for the 1D solution
presented in Figure 3.5(c). A proportionality ratio of λ∞ ≈ 1 indicates that the
components of the regularization function are both contributing significantly to
the final solution.

I shall use λ∞ as an indicator to evaluate the relative influence of (any) two terms in

the regularization function. For my example λ∞ = 1.23, from which I infer that φs

and φx are contributing nearly equally to the solution (Table 3.1). As I further gen-

eralize the regularization function for arbitrary `p-norm measures, I will attempt to

maintain this proportionality ratio (λ∞ ≈ 1) between competing functions so that

my modeling objectives are preserved throughout the inversion process.

3.1.2 Iterative Re-weighted Least Squares algorithm

Solutions obtained with `2-norm regularization functions provided some insight

about the sought model but better representations can be obtained by employing

general `p-norms:

φ
p
s = ∑

i
|mi|p (3.20)

My main focus is in the regularization function in (3.3) which I approximate with

the Lawson norm such that

φm = ∑
r=s,x

αr

∫
V

w(m)
fr(m)2(

fr(m)2 + ε2
)1−pr/2 dV , (3.21)

This measure makes the inverse problem non-linear with respect to the model. The

common strategy is to solve the inverse problem through an Iterative Reweighted

Least-Squares (IRLS) approach such that (3.21) is expressed as a weighted least-

squares problem. The denominator is evaluated for model parameters obtained

from the most recent iteration such that

φ
pr
r =

M

∑
i=1

wivi
fri(m)2[

( fri(m(k−1)))2 + ε2
]1−pr/2 (3.22)
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where m(k−1)
i are model parameters obtained at a previous iteration. The integral

corresponding to the smallest model component can be written as:

φ
ps
s =

M

∑
i=1

wsivsi
m2

i

((m(k−1)
i )2 + ε2)

1−ps/2 (3.23)

In (3.23) I have explicitly written the objective function as φ
ps
s to indicate that I

am evaluating a smallest model component with an `p-norm with p = ps. This

approximation of the `p-norm can be implemented within the same least-squares

framework used in (3.5) such that:

φ
ps
s = ‖WsVs Rs m‖2

2 . (3.24)

where the IRLS weights Rs are defined as

Rs = diag [rs]
1/2

rsi =
(
(mi

(k−1))
2
+ ε

2
)ps/2−1

.
(3.25)

Carrying out the same procedure on the measure of model derivatives yields

φ
px
x =

M−1

∑
i=1

wxivxi

(
mi+1−mi

hi

)2

[(
m(k−1)

i+1 −m(k−1)
i

hi

)2

+ ε2

]1−px/2 (3.26)

where hi defines the cell-center distance between neighboring model parameters.

Equation (3.26) can also be expressed in linear form as

φ
px
x = ‖WxVx Rx Gx m‖2

2 , (3.27)

where the gradient operator and the corresponding IRLS weights are calculated by

Gx =


−h−1

1 h−1
1 0 . . . 0

0
. . . . . . . . .

...
...

. . . 0 −h−1
M−1 h−1

M−1

 . (3.28)
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and

Rx = diag [rx]
1/2

rxi =

(m(k−1)
i+1 −m(k−1)

i

hi

)2

+ ε
2

px/2−1

.
(3.29)

respectively. The final regularization function is thus

φ
p
m = αs‖WsVs Rs m‖2

2 +αx‖WxVx Rx Gx m‖2
2 . (3.30)

The core IRLS procedure described in Table 3.2 involves two main stages:

1. Stage 1 solves the inverse problem using `2-norms presented in (3.5). The

assumption is made that the globally convex `2-norm regularized inversion

is a good approximation of the true solution and it is used to form the initial

IRLS weights defined in (3.25). The β parameter is controlled by a cooling

schedule that starts with a high value and is successively decreased until

φd ≈ φ ∗d .

2. Stage 2 starts from the solution obtained in Stage 1 and solves the inverse

problem iteratively using the regularization in (3.30) and a standard Gauss-

Newton procedure. A gradient descent direction δm is found by solving

H δm = g (3.31)

where H is the approximate Hessian and g is the gradient of the objective

function. I use the Conjugate Gradient method (Hestenes and Stiefel, 1952)

to solve this system.

The model update at the kth iteration is

m = m(k−1)+αδm (3.32)

where the step length α is found by a line-search back-stepping method (Nocedal

and Wright, 1999). Gradient steps are only performed if the data misfit remains
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within the user-defined tolerance ηφd .

|φd−φ ∗d |
φ ∗d

≤ ηφd (3.33)

If outside the tolerance, the algorithm repeats the Gauss-Newton calculation with

the previous m(k−1) and a different β -value, either lower or higher depending on

the achieved φd . This β -search step is an important component in the workflow

when the minimization switches between an l2 to an lp objective function because

φ
p
m can vary markedly. This can force a change of β by a few orders of magnitude

in some cases. Once an appropriate β has been found such that (3.33) is respected,

the model update m(k) is accepted and used for the next iteration cycle. The IRLS

process continues until the change in regularization falls below some pre-defined

tolerance ηφm

|φ (k−1)
m −φ

(k)
m |

φ
(k)
m

< ηφm (3.34)

I set to ηφm = 10−5 (0.01% change) in all my experiments. Using the above algo-

rithm I now explore specific inversions for a fixed ε = 10−3 and uniform norms,

with p = 1 and p = 0, applied on the model and model gradients.

3.1.3 Case 1: `1-norm (ps = px = 1)

I first explore the end member of convex functions for ps = px = 1 for which

optimality can be guaranteed (Daubechies et al., 2010; Osborne, 1985). Using the

procedure prescribed in Table (3.2), I invert the 1D problem with three different

regularization functions: (a) l1-norm measure of the model (αx = 0), (b) l1-norm

measure of the model gradients (αs = 0) and (c) for the combined penalties using

αs = 2500, αx = 1, which I previously used for the l2-norm inversion.

As shown in Figure 3.6(a), the first inversion is successful in recovering a

sparse solution. From Linear Programming (LP) theory, the expected optimal so-

lution would have as many non-zero parameters as there are linearly independent

constraints or 10 values in this case. For comparison, I solve the LP problem by the

Simplex routine from the open-source library Scipy.Optimization.linprog

(Jones et al., 2001). Figure 3.6(a) compares both solutions and shows that my im-
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Stage 1: Initialization (φ 2
m)

min
m

φd +βφ 2
m

s.t. φd = φ ∗d

β (0), m(0), R(0), φ
(0)
m

Stage 2: IRLS (φ p
m)

while |φ (k−1)
m −φ

(k)
m |

φ
(k)
m

> ηφm

do β -Search
k := k+1

β (k), m(k), R(k)

β -Search
Solve H δm = g

m = m(k−1)+αδm
if |φd−φ∗d |

φ∗d
> ηφd

adjust β , re-do

else
continue

Table 3.2: IRLS algorithm in pseudo-code made of two stages: Stage 1 Ini-
tialization with convex least-squares inversion, Stage 2 IRLS updates with inner
β -search steps.

plementation of IRLS for l1-norm yields a solution in close agreement with the

Simplex routine. A better approximation could be obtained (not shown here) by

lowering the threshold parameter ε . I will examine this aspect of the algorithm in

the following section. Figure 3.6(b) presents the solution for the l1-norm applied

to the model gradients. The final solution is blockier and the general shape of the

boxcar model has been improved.

Lastly, the solution obtained with the combined l1-norm regularization on the

model and model derivative is shown in Figure 3.6(c); it is similar to that in Fig-

ure 3.6(a). This shows that the smallest model component has dominated the so-

lution. This is quantified by the evaluated proportionality ratio λ∞ = 50; setting

αs = 2500 is too large. To understand this result, I can factor out a base cell length
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Figure 3.6: (a) Two solutions using an `1-norm on the model: (blue) Simplex,
and (black) IRLS method. (b) Solution obtained with the approximated `1-norm
(IRLS) penalty on model gradients alone and (c) with the combined penalty func-
tions (αs = 2500, αx = 1). The calculated proportionality ratio λ∞ indicates that
the combined penalties is dominated by the φ 1

s term. (d) Convergence curve and
(e) maximum partial derivatives associated with the components of the objective
function as a function of iterations for the inversion in (c). The vertical dotted
lines indicate the change in regularization from an `2-norm to `1-norm measure.
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h from (3.26) such that

φ
px
x =

M−1

∑
i=1

wxivxi

h−2
(

mi+1−mi

ĥi

)2

[
h−2

((
m(k−1)

i+1 −m(k−1)
i

ĥi

)2

+h2ε2

)]1−px/2

=
M−1

∑
i=1

wxivxi

h−2
(

mi+1−mi

ĥi

)2

hpx−2

[(
m(k−1)

i+1 −m(k−1)
i

ĥi

)2

+h2ε2

]1−px/2

= h−px
M−1

∑
i=1

wxivxi

(
mi+1−mi

ĥi

)2

[(
m(k−1)

i+1 −m(k−1)
i

ĥi

)2

+h2ε2

]1−px/2

(3.35)

where h = min(h) represents the core discretization length and ĥi = hi/h. For a

uniform grid, ĥi simply reduces to unity everywhere. Comparing this expression to

(3.22) clearly shows a difference in scales between φ
p
s and φ

p
x , previously fixed in

(3.8), that now depends on the chosen p-value such that

[φ p
x ]

[φ p
s ]

= [h]−px . (3.36)

It also highlights a dependency between the chosen threshold parameter ε and the

discretization length h. I will revisit this parameter in later sections.

In accordance to this new relationship, I can re-adjust the importance of φ
p
s by

setting αs = 50, where p = 1 and h = 0.02. After applying this change I recover the

model presented in Figure 3.7(a). The combined assumption of a piece-wise con-

tinuous and sparse model yields a solution that closely resembles the true boxcar

model. The recovery of mtrue has remarkably improved compared to the `2-norm

solutions (Fig. 3.5), and this demonstrates the power of customizable objective

functions. It is important to notice that the re-adjustment of αs has brought the

partial derivatives of φ
ps
s and φ

px
x to a comparable level, with a final proportionality

ratio λ∞ = 1.01. Even though I have changed the norms during the inversion, the

contribution of both penalty functions has remained at a comparable level during
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Figure 3.7: (a) Solution obtained with the combined penalty functions αsφ
1
s +

αxφ 1
x after re-adjustment of αs = 50, αx = 1. (b) Convergence curve and (c)

maximum partial derivatives associated with the components of the objective
function as a function of iteration.

the transition between Stage 1 and 2 of the algorithm (Fig 3.7(c)).

3.1.4 Case 2: `0-norm (ps = px = 0)

The main advantage of the IRLS formulation is that it permits, in theory, approx-

imating any norm including the non-linear approximation for p < 1. The goal is

to potentially recover a model with even fewer non-zero parameters than that ob-

tained by solving the problem with p= 1. The IRLS formulation for p= 0 has been

implemented for various geophysical problems under different names: such as the

compact inversion (Last and Kubik, 1983), minimum support functional (Portni-

aguine and Zhdanov, 2002), and others (Ajo-Franklin et al., 2007; Barbosa and

Silva, 1994; Blaschek et al., 2008; Chartrand, 2007; Stocco et al., 2009).

Following the same IRLS methodology as described in Table 3.2, I invert the

synthetic 1D problem with three assumptions: (a) `0-norm applied on the model

(αx = 0), (b) `0 on model gradients (αs = 0) and combined penalties (αs = 1, αx =

1). Figure 3.8 presents the solutions for all three cases. I note that in the first case,

(a), the approximate `0-norm inversion recovers a sparser solution than obtained

with the `1-norm; there are only eight non-zeros parameters. Similarly for case

(b), I recover a model with fewer changes in model values. Finally in case (c) the
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Figure 3.8: Solution to the 1D inverse problem using an approximate `0-norm
(a) on the model, (b) on model gradients and (c) combined penalty functions
using the IRLS algorithm (αs = 1, αx = 1). All three solutions honor the data
within the target misfit φ ∗d .

solution obtained with the combined `0-norm penalties matches almost perfectly

the true boxcar anomaly. The final proportionality ratio as calculated from (3.19)

indicates once again a good balance between the penalty functions (λ∞ = 1.13).

To summarize this section, I have now recovered nine models using different

`p-norm penalties applied on the model and model gradient. All solutions pre-

sented in Figure 3.5, 3.6 and 3.8 can reproduce the data within the predefined data

tolerance (φ (k)
d ≈ N). Without prior knowledge about the true signal, all these so-

lutions would be valid candidates to explain the observed geophysical data.

3.2 Mixed norm regularization
While I was successful in recovering a solution that closely resembles the boxcar

model, the same penalty functions might not be appropriate for other models, such

as compact targets with smooth edges. I thus explore a broader range of solutions

by using the Lawson approximation in (3.23) for any combination of norms on the

range 0≤ p≤ 2.

The idea of combining different norm measures for the simultaneous recovery

of smooth and compact features has partially been explored by Sun and Li (2014)

on a 2D seismic tomography problem. They demonstrated the benefits of dividing

model space into regions with different `p-norm penalties. The choice of norms
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was limited to be either l1 or l2. Little has been published however on the inde-

pendent mixing of model and gradient norms on the range p ∈ [0,2], although this

problem was initially addressed in (Fournier, 2015). I now apply my algorithm to

minimize

φ
p

m = αsφ
0

s +αxφ
2

x . (3.37)

where once again the superscript indicates the `p-norm measure used in each func-

tion. Based upon my previous work, I expect the solution to be sparse, in terms

of non-zero model parameters, while smooth with respect to the model gradients.

Unfortunately, following the current IRLS strategy, I recover the model presented

in Figure 3.9(a). The anomaly is concentrated near the boxcar but appears to be

dominated by φ 0
s . There seems to be only marginal influence from φ 2

x . Comparing

the partial derivatives of the objective function confirms this. After convergence

the calculated proportionality ratio is λ∞ = 159. This is a significant change from

the end of Stage 1 where λ∞ ≈ 1. Clearly, iteration 6, at Stage 2 of the IRLS, took

the solution away from the proportionality condition (Fig 3.9(c)). I hypothesize

that a more desirable solution could be obtained if proportionality was preserved

among the components of the objective function throughout the IRLS process. In

the following sections, I provide an important modification to the standard IRLS

algorithm to achieve this goal.

3.2.1 Scaled-IRLS steps

Since the inverse problem is solved using gradients of the composite objective

function φ(m), the relative magnitude of the individual gradients is a driving force

in controlling the iteration step in (3.31). I want to ensure that each penalty term in

the objective function is playing a significant role. Taking the partial derivatives of

(3.24) with respect to m yields:

gp
s =

∂φ
p
s

∂m
= R>s V>s W>

s WsVsRsm (3.38)

where I purposely omitted a factor 2 from the differentiations of the `2-norm as it

gets absorbed by the zero right-end side of (3.9). From Figure 3.10(a), I note that

the magnitude of the derivatives increases rapidly for small p values as mi → 0.
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Figure 3.9: (a) Recovered model and (b) convergence curves using the conven-
tional IRLS method for ps = 0, px = 2 and a fixed threshold parameter ε = 10−3

(αs = αx = 1). (c) Trade-off parameter and maximum gradients for the differ-
ent components of the objective function. At the start of Stage 2 (iteration 6),
the sudden increase in ‖gs‖∞

is matched with a decrease in β . Throughout the
inversion, ‖gx‖∞

remains small in magnitude.

This trend is accentuated for small ε values as demonstrated in Figure 3.10(b) for

p= 0. The magnitude of derivatives for p< 2 increase rapidly as m→ 0 and ε→ 0.

This results in gradient steps in equation (3.9) that are dominated by sparse norms.

This property of the IRLS approximation is important because, when attempting to

combine different norm penalties within the same objective function, there will be a

systematic bias towards small `p-norm penalties. To circumvent this bias I propose

the re-scale the contribution of each regularization function during the iterative

process in order to preserve proportionality. I define the following gradient-based

scaling

γ =

[
‖g2‖∞

‖gp‖∞

]1/2

. (3.39)

By using this scaling strategy I can equalize the influence of each regularization

function. I can evaluate the theoretical maximum of gp
r by taking the deriva-

tive of (3.21) in terms of f (m), followed by a second derivative after substituting

f (m(k−1)) for f (m) and setting the expression to zero such that

( f (m)2 + ε
2)p/2−1 +(p−2) f (m)2( f (m)2 + ε

2)p/2−2 = 0 (3.40)
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Figure 3.10: Derivatives of the Lawson approximation over a range of model
values for (a) a fixed threshold parameter ε = 10−1 over a range of p values and
for (b) a fixed p = 0 over a range of ε values. (c) Applying the γ-scaling to the
gradients brings all maximums to be equal irrespective of p and ε .

The maximum gradient of the Lawson approximation occurs at f (m)∗

f (m)∗ =

∞ or f (m)max, p≥ 1
ε√
1−p , p < 1 ,

(3.41)

from which I can calculate ‖gp‖∞ by substituting f (m)∗ into (3.22). I note that for

p < 1, the maximum gradient does not depend on f (m) but only on the chosen p

and ε value. Figure 3.10(c) presents the derivatives of different approximated `p-

norms after applying the corresponding γ-scale. The role of γs is to reference the

partial derivatives of the approximated `p-norms to the derivatives of its `2-norm

measure. This re-scaling is done for two reasons. First, at the transition between

Stage 1 and 2, it preserves the balance between the misfit and regularization terms

and thus no large adjustment in the trade-off parameter β is needed. Secondly, the

scaling based on the gradients guarantees that two penalties can co-exist and impact

the solution at every step of the IRLS, regardless of the chosen {p,ε}-values or the

amplitude of f (m).
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I therefore define Scaled-IRLS weights such that (3.25) become:

R̂s = γs diag
[(

(m(k−1))
2
+ ε

2
)ps/2−1

]1/2
(3.42)

where the scaling parameter γs is:

γs =

[ ∥∥g2
s

∥∥
∞∥∥gps

s
∥∥

∞

]1/2

(3.43)

Two options are possible to compute the γ-scalings: (a) take the maximum absolute

gradient directly from the gradient values in (3.38), or (b) calculate
∥∥∥gp

j

∥∥∥
∞

analyt-

ically from (3.41). I have found that Option 2 is more stable since it is based upon

a theoretical maximum of the gradient and not on a particular realization of that

maximum that arises from the distribution of values in the current model mk.

The outcome of the re-scaling strategy is shown in Figure 3.11(a). The solu-

tion seems to have my desired properties of being sparse in terms of the number

of non-zero model values and the model has smooth edges. The maximum partial

derivatives, shown in Figure 3.11(c), confirm that the scaling strategy was success-

ful in balancing the impact of the two components of the regularization. This is

quantified by the calculated proportionality ratio λ∞ = 0.7. It is an improvement

over the previous solution with a ratio of 150 (Figure 3.9), but it appears that the

algorithm has reached a steady state solution with slightly more influenced from

φs. In the following section I provide a strategy to better preserve proportionality

between each model update through a cooling strategy.

Scaled model derivatives

Applying the same scaling strategy to the model derivative requires additional care

as the measure is also dependent on length scales. Following the strategy estab-

lished in (3.35), I can factor out the length scales from the model derivative term
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Figure 3.11: (a) Recovered model and (b) convergence curves using the Scaled-
IRLS approach for ps = 0, px = 2 and a fixed threshold parameter ε = 1e− 3
(αs = αx = 1). (c) Trade-off parameter and maximum gradients for the different
components of the objective function. The scaling procedures preserves the
proportionality between

∥∥gps
s
∥∥

∞
and

∥∥gpx
x
∥∥

∞
throughout the iteration process.

The trade-off β -parameter needed only to be adjusted slightly at the beginning
of Stage 2.

such that the partial derivative of φ
p
x with respect to m can be written as

gp
x =

∂φ
p
x

∂m
= h−px ĝp

x

= h−pxD>x R̂>x V>x W>
x WxVxR̂xDxm

(3.44)

where

Dx =


−ĥ−1

1 ĥ−1
1 0 . . . 0

0
. . . . . . . . .

...
...

. . . 0 −ĥ−1
M−1 ĥ−1

M−1

 . (3.45)

measures the model derivatives over normalized length scales ĥi. The IRLS weights

in (3.29) become

R̂x = diag [r̂x]
1/2

r̂xi =

(m(k−1)
i+1 −m(k−1)

i

ĥi

)2

+h2
ε

2

px/2−1

.
(3.46)
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Since the maximum of gp
x scales linearly with the base length scale h−px :

‖gp
x‖∞

= h−p‖ĝp
x‖∞ , (3.47)

I can express the γx-scaling as

γx =

[
hp−2

∥∥ĝ2
x

∥∥
∞∥∥ĝp

x
∥∥

∞

]1/2

. (3.48)

By simply factoring out the base length h, I recover a multiplication factor hp−2

that is closely related to the αs scaling strategy specified in (3.36). If I use the

γx-scaling in (3.48) and the constant αs scaling prescribed in (3.8) I get that

φm = h−2
φs +hp−2

φx . (3.49)

Conversely, if I set the α parameters based on the strategy put forward in (3.36) I

get that

φm = h−p
φs +φx . (3.50)

Expression (3.50) and (3.49) are related by a multiplication factor hp−2. Since the

partial derivatives of φm are invariant with respect to a global constant, I can expect

to get the same solution with either approach, albeit a re-adjustment of the tradeoff

β parameter.

Rather than choosing one approach over the other, and in order to simplify the

definition of the hyper-parameters α , I propose to remove the constant factor h

from the regularization function altogether. I can do this by directly evaluating

the model derivatives with the finite difference operator described in (3.45). This

simple change brings both φ
ps
s and φ

px
x to be dimensionally equivalent such that

[φ̂ p
x ]

[φ p
s ]

= 1 . (3.51)

where φ̂
p
x denotes the measure of model derivative using the finite difference ap-
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proach. The scaled IRLS weights become

R̂x = γx diag
[(

(Dxm(k−1))
2
+ ε

2
)px/2−1

]1/2

, (3.52)

where

γx =

[ ∥∥ĝ2
x

∥∥
∞∥∥ĝpx

x
∥∥

∞

]1/2

. (3.53)

The Scaled-IRLS regulatization becomes:

φ
p
m = αs‖WsVs R̂s m‖2

2 +αx‖WxVx R̂x Dx m‖2
2 . (3.54)

with default parameters αs = αx = 1.

In order to demonstrate that this change in length scale does not change the

overall objective function, I proceed with two inversions. I repeat the experiment

presented in Section 3.1.3 for ps = px = 1, also shown in Figure 3.12(a) for com-

parison. First, I use the regularization function in (3.54) with uniform scaling with

the same uniform discretization (αs = αx = 1). The recovered model shown in

Figure 3.12(b) is almost identical to the previous solution. Small discrepancies be-

tween the two models can be attributed to slight differences in the iterative process.

As presented in Table 3.3, the global objective function φ(m) remains unchanged

with both approaches. Changes in scale between individual components of the ob-

jective function (φd , φ
p
s , φ

p
x ) are absorbed by their respective hyper-parameter (β ,

αs, αx).

The second experiment tests the case of a non-uniform discretization. Using the

same noisy data, I refine the mesh on the right-half of the domain by dividing the

cell size by a factor 2 (hi = 0.01). I also re-adjust the kernel functions Fi j within

the refined region such that each random coefficient is sampled twice but over a

smaller cell length. The final inversion mesh contains 75 parameters, compared to

50 parameters in the previous experiment. After convergence of the algorithm I

recover the model presented in Figure 3.12(c). Once again, the final model and the

calculated components of the objective function (Table 3.3) are almost identical to

the previous experiments. This demonstrates that the normalization of the model

derivatives does not change the global objective function, and that the solution
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Figure 3.12: Recovered 1D models for ps = px = 1 using different scaling
strategies and parameterization. (a) Solution previously shown in Figure 3.7
that uses the standard gradient measure (αs=50). (b) Solution obtained with the
finite difference approach (αs = αx = 1). (c) Model recovered with a different
parameterization such that the right half of the domain has cells with half the
size. Small discrepancies between the three solutions can be attributed to slight
differences in the iterative process.

φd β αs αx βαsφs βαxφx

Figure 3.12(a) 4.87 65.13 50.0 1.0 56.18 8.60
Figure 3.12(b) 5.13 3381.87 1.0 1.0 58.33 8.81
Figure 3.12(c) 4.93 3236.60 1.0 1.0 55.81 8.59

Table 3.3: Components of the objective function corresponding to the inversion
results presented in Figure 3.12 for ps = px = 1.

remains independent on the choice of discretization. For clarity, I will use φ
p
x to

denote the measure of model derivatives using the finite difference operator.

3.2.2 Threshold ε-parameter

While I have improved the flexibility of the IRLS algorithm, I have yet to address

the threshold ε-parameter which has been held fixed. The choice of threshold

parameters remains a subject of disagreement among researchers. In the early

work of Last and Kubik (1983), it was suggested that the threshold value should be

small or near machine error (ε < 10−8) in order to best approximate the `p-norm.

The same strategy was later adopted by others (Barbosa and Silva, 1994; Stocco

et al., 2009). Other researchers, such as in Ajo-Franklin et al. (2007) observed
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instabilities with small values, and opted for a wider range (10−4 < ε < 10−7).

More recently, Sun and Li (2014) proposed an ε-search phase to highlight re-

gions reacting favourably to the sparsity constraints. A final inversion step was then

carried out with a fixed threshold value (ε � 1e− 4). A similar strategy has also

been proposed by Zhdanov and Tolstaya (2004) after selecting an optimal point on

a trade-off curve.

Selecting an appropriate threshold value becomes more complicated when com-

bining different penalty functions. I not only need to contend with the range of

model values, but also with the relative influence of the components of a non-

linear regularization function. To illustrate the challenge, I invert the 1D example

again with the mixed norm penalty function (φm = αsφ
0
s +αxφ 2

x ) but this time over

a range of threshold values (100 < ε < 10−5). The resulting models are shown in

Figure 3.13. I identify the following trends:

• For large values (ε > 10−1), no sparsity is achieved and the model resembles

the solution previously obtained with φm = αsφ
2
s +αxφ 2

x .

• With small values (ε < 10−4), φ
ps
s appears to have little influence on the so-

lution and the model resembles the solution obtained with smooth penalties

αs = 0. The proportionality ratio λ∞� 1 confirms this bias towards φ 2
x .

• The mid-range values (ε−1 < ε < 10−3) show the most significant variability

in the solutions with an achieved proportionality ratio λ∞ ≈ 1.

From this numerical experiment, there appears to be an optimal ε-parameter

in the mid-range (ε−1 < ε < 10−3) that can promote both a sparse and smooth

solution. Ideally, I want to automate the selection process.

In this study, I opt for a cooling strategy. Threshold value ε is initialized at a

large value then monotonically reduced such that:

ε
(k) =

‖m(0)‖∞

ηk , (3.55)

In (3.55), η is a user-defined cooling rate constant and ‖ f j(m)(0)‖∞ denotes the

largest function value obtained at the end of Stage 1 of the algorithm. At the

start of Stage 2, the Lawson approximation with large ε is effectively an `2-norm.

56



Figure 3.13: Recovered 1D models with variable threshold parameter on the
range 10−5 < ε < 100 using a mixed-norm penalty function φm = αsφ

0
s +αxφ 2

x .

Thus there is only a small change in regularization between Stages 1 and 2 of the

algorithm. This is desired since the `p-norm regularization is highly non-linear and

I want to reduce the risk of moving away from my initial proportionality conditions.

I proceed with an inversion with a cooling rate η = 1.25. Recovered models

as a function of iterations are shown in Figure 3.14(a) to (d). As the number of

iterations increases and ε → 0, the emphasis of the sparse penalties (γ2
s g0

s ) sweeps

through the range of model values, progressively focusing on smaller model pa-

rameters. Figure 3.14(e) plots the scaled gradients as a function of absolute model

values obtained at iteration k=10, 15, 24 and 55. This plot can be compared to Fig-

ure 3.10(c). The gradients associated with sparse penalties (g0
s ) force small model

values (m ≈ ε) towards the reference (mre f = 0). Large model values (m >> ε)

are free to increase unless penalized by the other competing functions (φ px
x , φd).

Figure 3.15 illustrates the evolution of penalties by plotting the partial derivatives

of the objective function for iteration k=15 (early stage) and iteration k=55 (late

stage). As ε → 0, small model values are primarily influenced by ∂φd
∂m and βαs

∂φs
∂m ,
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Figure 3.14: (a)-(d) Recovered 1D models at different iteration steps (k). The
value of ε (dash) is shown for reference, highlighting the idea of a progressive
thresholding of model values. (e) Scaled partial derivatives (γ2g0

s ) as a function
of the sorted model values and at various iteration stages.

while large model values are influenced by ∂φd
∂m and βαx

∂φx
∂m .

From a user standpoint, the cooling strategy is attractive as it eliminates the

requirement to predetermine an optimal ε threshold values and instead relies on a

cooling rate η . To investigate the impact of the cooling rate on the solution, I solve

the inverse problem (ps = 0, px = 2) for various cooling rates η = [6, 3, 1.5, 1.125].

For each independent trial, the iteration process continues until reaching the addi-

tional criteria that ε(k) = 10−6 (near machine single precision). Recovered solu-

tions for the 4 cooling rates are presented in Figure 3.16(a-d). I note important

differences between the solutions. A summary of the inversions is provided in

Table 3.4.

Figure 3.16(e) displays convergence curves for each inversion trial. The final

norm φ
p
m is evaluated by using the expression (3.30), that is, all γ scaling parame-
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Figure 3.15: Partial derivatives of the objective function for iteration (top) k=15
and (bottom) k=55. The recovered models are shown in red for reference.

Figure 3.16: (a-d) Recovered models and (e) convergence curves for the mini-
mization of φd +βφ

p
m with various cooling rates η but with a final ε∗ = 1e−6.
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η # Iterations φ
p
m ε(k) φ

(k)
d λ

1.125 77 12.6 1e-06 9.2 0.97
1.5 39 17.8 1e-06 9.1 1.27
3 24 24.1 1e-06 8.5 0.68
6 23 31.1 1e-06 8.9 0.54

Table 3.4: Inversion summary after convergence of the S-IRLS for various cool-
ing rates η as presented in Figure 3.16. Each inversion trial was required to reach
the target misfit φ ∗d and target ε∗ = 1e−6 .

ters have been removed. Thus I am comparing my ability to minimize the global

objective function even though the algorithm has used variable scalings to reach

that result. This promotes insight into the robustness of the final model as a func-

tion of the cooling rate. I note that a lower model norm can be obtained by cooling

slowly. Cooling at an even slower rate (not shown here) has reaffirmed this. A

rate of η = 1.025 yielded φm = 12.5 in 155 iterations. It appears that φ
p
m → 12.5

as η → 1. I found experimentally that for η ≈ 1.25 generally yielded an optimal

trade-off between computational time (number of iterations) and convergence to a

suitable solution.

3.2.3 Summary

My goal is to solve an inverse problem where the regularization function is com-

posed of multiple terms, each defined as an `p-norm premultiplied by a scaling

parameter. The scaling parameters, α’s, are used to control how much each com-

ponent contributes to the final solution. The relative influence of these components

is quantified by evaluating the proportionality ratio λ∞ (3.19). If two components

contribute equally, then λ∞ should be close to unity. Unfortunately, when the com-

ponents of the regularization include model and gradient terms, the scaling is af-

fected by the cell size chosen for discretization. To simplify the implementation I

normalize the length scales used in the measure of model derivatives. This makes

φ
ps
s and φ

px
x dimensionally equivalent. The default values for obtaining equal con-

tributions are thus αs = αx = 1 for all combinations of `p-norms on the gradients.

I solve the inverse problem by replacing the `p-norms with their Lawson norm
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approximations. Thus I search for the model that minimizes

φ(m) =‖Wd ∆d‖2
2+

βαs

M

∑
i=1

wsivsi
m2

i

(m2
i + ε2)

1−ps/2+

βαx

M−1

∑
i=1

wxivxi

(
mi+1−mi

ĥi

)2

[(
mi+1−mi

ĥi

)2
+ ε2

]1−px/2Vi ,

(3.56)

for arbitrarily small ε value. I solve the inverse problem using a two-stage ap-

proach. I first find a solution for the `2-norm problem and then I change the objec-

tive functions to their final desired `p-norms and solve the optimization problem

using IRLS. To keep stability in the iterative process I successively rescale the

IRLS weights R. Thus at each iteration I solve a locally convex problem

φ(m(k)) = ‖Wd ∆ d‖2
2+

β
(
αs‖Ws Vs R̂s m‖2

2 +αx‖WxVx R̂x Dx m‖2
2
)
,

(3.57)

Although the local minimization problems involve scaled gradients, the final

desired solution is that which minimizes (3.56) such that all components contribute

equally. My ability to achieve this goal depends upon the value of ε and the chosen

cooling rate. I find that the best (i.e. minimum norm) solution is obtained when

ε is cooled slowly to a final small value. If the cooling is too fast then I obtain a

substandard solution in which λ∞ is not close to unity and my modelling objectives

are not satisfied. Slower cooling and the frequent re-scaling of the gradients keeps

the proportionality ratio near unity.

3.3 Exploring the model space
The smooth density model presented in Figure 3.2 was a poor approximation of a

compact block, but it is one of many possible solutions. Now that I have developed

an algorithm that can combine multiple regularization functions with different `p-

norm measure, I can explore the model space by generating a suite of solutions

that have variable characteristics. I will demonstrate this on the synthetic gravity
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example shown in Figure 3.1. The function to be minimized for the 3D gravity

problem becomes

min
ρ

φ(ρ) = ‖G ρ−dobs‖2
2 +β ∑

r=s,x,y,z
αr‖WrVr R̂r Dr ρ‖2

2

s.t. φd ≤ φ
∗
d

(3.58)

I carry out eight additional inversions. I use a combination of norms on a range

of ps, p[x,y,z],∈ [0,1,2] values. I set px = py = pz in all cases. The solutions,

nine models in total, are presented in Figure 3.17. All models have a final misfit

φ ∗d ≈ 441 and use the same `2-norm solution to initiate the IRLS steps. I make the

following general observations. There is a progressive transition from a smooth

model (upper left) to a blocky solution (lower right) as ps, px, py and pz decrease.

The top of the density high is most often recovered at 10 m depth. Away from

the anomalous region the density is relatively smooth and close to the background

reference model of 0 g/cc. There is also a clear trend in the data misfit map such

that the correlated residual decreases as ps, px,py, pz→ 0.

3.3.1 Interpretation

Accessing a range of solutions is important to assess the stability of different fea-

tures and to avoid over-interpreting one specific realization. The next step requires

to compare this ensemble of models and make a geological interpretation. In Chap-

ter 6 I provide a more evolved methodology to extract local parameters, but for

now, I will compare the solutions visually. Figure3.18 presents an overlay for the

10th and 90th percentiles anomalous densities calculated from the suite of models

shown in Figure 3.17. I can assess the robustness of features by comparing the

iso-contour lines of each model: tight clustering of the contours indicates that sev-

eral models agree on the position of an edge, while a large spread indicates high

variability. At the center of the model, I note that the top of the anomaly (solid)

is highly correlated among models, but less so the bottom limit. This is expected

as the resolution of the survey decreases with depth. Meanwhile, on the edges

of the domain, the shape and sign of density contrasts vary substantially. From

this simple analysis, I would assign high confidence on the horizontal and top of
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Figure 3.17: (a-i) Vertical section through a suite of density models recovered
for varying `p-norm penalties applied on the model and model gradients for
ps ∈ [0, 1, 2] and px = py = pz ∈ [0, 1, 2].

the positive density anomaly, and low confidence on features on either side of the

inversion domain.

The normalized data residual maps for each inversion are shown in Figure 3.19.

The decrease in correlated residual observed on the misfit maps (Figure 3.18) is

also an important aspect to consider. While all the inversions have achieved the

global target misfit, only after applying the proper constraints (blocky and compact)

that the inversion was able to predict the short wavelength information present

in the data. This is an important aspect of this research as it further stresses the

importance of exploring a range of solutions with broadly different characteristics

such that more subtle features can be extracted. It is also a motivation to automate

the search for suitable inversion parameters that can better resolve the data.
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Figure 3.18: Iso-contour values for the 10th and 90th percentile of anomalous
density calculated from the suite of models shown in Figure 3.17. The outline
of the target (red) is shown for reference. Contour lines tightly clustered indicate
coherence between inversion trials. Negative anomalies (dash) appear to change
significantly, to which I would assign lower confidence.
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Figure 3.19: (a-i) Residual data map calculated from the suite of density models
for varying `p-norm penalties applied on the model and model gradients for
ps ∈ [0, 1, 2] and px = py = pz ∈ [0, 1, 2].
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Chapter 4

Sparse Magnetic Vector Inversion

I have so far showcased the benefits of employing a mixed-norm inversion to solve

the gravity problem. In this chapter, I review and improve inversion methods for

the modeling of magnetization parameters. Contrary to the scalar density, magneti-

zation is a vector quantity defined by a magnitude and an orientation as previously

defined in (1.8)
~M = κ(~H0 + ~Hs)+ ~Mr . (4.1)

Researchers have investigated ways to extract information about magnetization

with inversion methods, but this process remains challenging as there are three

times the number of unknowns over conventional problems. To simplify the in-

verse problem, the assumption is often made that Earths inducing field is much

larger than the other component such that secondary fields and the presence of re-

manence are ignored (~Mr = ~Hs = 0). This assumption has dominated the inversion

literature over the past 30 years (Li and Oldenburg, 1996; Pilkington, 1997). Under

this assumption, the definition of magnetization (1.8) simplifies to

~M = κ~H0 ,
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which gives rise to a linear system relating N data dpre to the M discrete model

cells of magnetic susceptibility κ

dpre = F κ

dpre ∈ RN ,F ∈ RN×M,κ ∈ RM .
(4.2)

To illustrate potential issues with this induced assumption I revisit the synthetic

block example in terms of magnetic properties. I set the magnetic susceptibility

(κ) of the block to 0.035 SI and the vertical inducing flux to ~B0 [50,000 nT, I: 90◦,

D: 0◦]. I also add a remanent component equal in magnitude and pointing along

the x-axis ~Mr [1.4 A/m, I: 0◦, D: 90◦]. This results in a total magnetization ~M

[2.0 A/m, I: 45◦, D: 90◦]. Using the linear relationship presented in (2.10), I can

simulate magnetic data presented in 4.1(b) on which I add random Gaussian noise

of 1 nT standard deviation to simulate field conditions. I will attempt to recover

the magnetized block from the noisy data shown in Figure 4.1(c).

I begin with the conventional smooth assumptions (ps, px, py, pz = 2) and

attempt to recover the position and shape of the magnetic block. Since (4.2) is

linear with respect to κ , I can use the same inversion methodology established in

Chapter 3. The objective function to be minimized becomes

min
κ

φ(κ) = ‖F κ−dobs‖2
2 +β ∑

r=s,x,y,z
αr‖WrVr Rr Dr κ‖2

2

s.t. φd ≤ φ
∗
d

(4.3)

As I am dealing with strictly positive magnetic susceptibility κ , I impose bound

constraints by the projected gradient method (Vogel, 2002). Model parameters κi

that become negative are set to zero and ignored for the following Gauss-Newton

step in (3.32). After reaching the target misfit criterion in equation (3.33), I re-

cover the susceptibility model shown in Figure 4.2(a). I note that the position of

the susceptibility anomaly is shifted to the side of the true block and appears to

dip at 45◦ angle. This is due to the large negative data lobe introduced by the re-

manent component that I have purposefully ignored. Attempting to improve the

solution by solving for a sparse model (ps, px, py, pz = 0) yields the solution pre-

sented in Figure 4.2(c). The magnetic anomaly is imaged at the right depth and
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Figure 4.1: (a) Vertical section through a 25 m cube with uniform magnetization
~M [2.0 A/m, I: 45◦, D: 90◦]. (b) Simulated TMA data response on a 21× 21
survey grid placed 15 m above the anomaly. (c) Magnetic data with random
Gaussian noise added, 1 nT standard deviation.

the vertical extent is better recovered, but position and shape of the anomaly have

not improved. It is also important to note the correlated negative data residuals in

Figure 4.2(b) and (d). The inversion struggled to reproduce the negative portion of
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the magnetic data using strictly positive susceptibility values.

Figure 4.2: Vertical section through the recovered susceptibility model using
(a) smooth assumption (ps, px, py, pz = 2) and (b) sparse `p-norms to recover
a compact model (ps, px, py, pz = 0). Both solutions show an anomaly with a
false dip due to the wrong assumption of a vertical magnetization.

The presence of remanence has long been recognized as an obstacle for the

geological interpretation of magnetic data. Several types of mineral deposits are

associated with remanent magnetization such as diamondiferous kimberlites, vol-

canic massive sulphides and porphyries (Enkin, 2014; Henkel, 1991). In a mining

exploration context, having the wrong image could result in false drilling targets:

costly both in time, resources and confidence in geophysical methods. Hence the

need for a more robust algorithm that does not require knowledge about the ori-

entation of magnetization. In the following sections, I revisit the Magnetic Vector

Inversion introduced in the Ph.D. thesis of Lelièvre (2009). I address numerical
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limitations encountered with the spherical formulation. I also leverage advance-

ments made in Chapter 3 and impose sparsity penalties on the magnetization di-

rection and amplitude independently. This allows to recover compact bodies with

coherent magnetization direction.

4.1 Magnetic Vector Inversion - Cartesian parameters
Rather than assuming a purely susceptible response, Lelievre and Oldenburg (2009)

proposed a strategy to directly invert for the magnetization vector ~M. Re-writing

the discrete system (4.2) in terms of vector magnetization:

dpre = FCmC

= [Fu Fv Fw]
[

κu
κv
κw

]
Fu, Fv, Fw ∈ RN×M

(4.4)

where the model mC = [κu,κv,κw]
> describes the strength of magnetization along

the Cartesian directions in terms of an effective susceptibility parameter,

κe =
~M
‖~H0‖

, (4.5)

The effective susceptibility scales the amplitude of magnetization with respect to

the inducing field strength ‖~H0‖. The forward relationship (4.4) is still a linear

system of equations but it has three times the number of unknown parameters com-

pared to the susceptibility assumption (mC ∈ R3M). The objective function (3.58)

becomes

min
mC

φ(mC) = ‖FCmC−dobs‖2
2 +β ∑

c=u,v,w
∑

r=s,x,y,z
αcr‖Wcr Vcr Rcr Dcr Pc mC‖2

2 ,

(4.6)

where the projection matrices Pc select individual Cartesian component of the vec-

tor model mC. The regularization function is made up of twelve terms. Different

norm measures can be applied to each Cartesian component independently.

Keeping the same inversion methodology and smooth assumptions (pcs , pcx ,
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pcy , pcz = 2), I recover the magnetization model presented in Figure 4.3(a). This

solution is an improvement over the susceptibility model; the bulk magnetization is

recovered at the right position. I note however that the solution is distributed over

a large volume and there is a broad distribution in magnetization direction inside

and around the block.

In order to reduce the complexity of the solution, I once again resort to `p-norm

measures (pcs , pcx , pcy , pcz = 0). As shown in Figure 4.3(b), the recovery of the

block has clearly improved. It is important to point out however that the magneti-

zation vectors are pointing along the Cartesian directions and the final anomaly is

slightly wider than the true model. In the Cartesian formulation, both the direction

and strength of magnetizations are coupled in the vector components and therefore

the method lacks flexibility in recovering sparse vector along arbitrary orientations.

This was the main motivation behind recent research investigating advanced reg-

ularization methodologies and cooperative approaches (Fournier, 2015; Liu et al.,

2015; Zhu et al., 2015). I will attempt to improve on this solution by decoupling the

strength and direction of the magnetization vector with the spherical formulation.

4.2 Magnetic Vector Inversion - Spherical parameters
As an alternative to the Cartesian formulation, Lelievre and Oldenburg (2009) also

proposed the vector inversion in a spherical coordinate system. The conversion

between Cartesian to spherical system follows the relation:

κu =ρ cos(θ) cos(φ)

κv =ρ cos(θ) sin(φ)

κw =ρ sin(θ)

(4.7)

where the magnetization vector is defined by parameters of amplitude (ρ) and two

angles (θ , φ ). Performing the forward calculations using spherical parameters mS

can expressed as

F[mS] = FC

ρ cos(θ) cos(φ)

ρ cos(θ) sin(φ)

ρ sin(θ)

 (4.8)
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Figure 4.3: Vertical section through the recovered magnetization vector model
using the Cartesian formulation with (a) smooth l2-norm assumption and (b) spar-
sity constraints applied on all three Cartesian components(pis , pix , piy , piz = 0).
Corresponding normalized data residuals are shown in (b) and (d) . The true po-
sition and magnetization orientation of the block are shown in red for reference.

The spherical formulation separates the magnitude and orientation of magnetiza-

tion vector; this has two advantages. First, physical property constraints can easily

be incorporated in the inversion. Magnetization measurements performed on rock

samples are often provided in term of susceptibility κ and Koenigsberger ratio Q

Q =
~Mr

‖κ~H‖
(4.9)

measuring the ratio between the induced and remanent component of magnetiza-

tion. This quantity does not contain directionality but it provides information about
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the amplitude of magnetization. Magnetization direction may also be used in the

inversion when laboratory measurements are performed on oriented cores. Ref-

erence angles can than be introduced as constraints. The second advantage of the

spherical coordinate system is that it allows for sparsity assumptions to be imposed

on the magnitude and orientation independently. This has the potential of resolv-

ing compact bodies with uniform magnetization direction in any orientation not

restricted to the Cartesian axes.

Despite its obvious advantages, the MVI-S method has received little atten-

tion in the literature because the non-linear transformation between Cartesian and

spherical coordinates greatly complicates the inverse problem. I demonstrate chal-

lenges encountered with the spherical coordinate system on my synthetic problem.

Taking the partial derivatives of (4.4) as a function of mS(ρ,θ ,φ) yields:

J =
∂F[mS]

∂mS
=

∂F[mS]

∂mC

∂mC

∂mS
(4.10)

where ∂mC
∂mS

involves partial derivatives of trigonometric functions prescribed in

(4.7). The sensitivity matrix can be linearized before each Gauss-Newton step

as:

J = FC S (4.11)

where the matrix S holds the partial derivatives

S =

cosθ cosφ −ρ sinθ cosφ −ρ cosθ sinφ

cosθ sinφ −ρ sinθ sinφ ρ cosθ cosφ

sinθ ρ cosθ 0

 (4.12)

The regularization function becomes

φm = ∑
c=ρ,θ ,φ

∑
r=s,x,y,z

αcr‖Wcr Vcr Rcr Dcr Pc mS‖2
2 , (4.13)

I also take three additional precautions to deal with the spherical parameterization.

First, a zero reference value θ re f and φ re f would imply a magnetization direction

pointing along the x-axis. In the absence of physical constraints, and since I do not

want to assume a specific orientation, I set αθs = αφs = 0 in all my experiments.
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Thus the regularization only penalizes the change in angle between neighboring

cells. Secondly, I perform an adjustment to the measure of angle differences to deal

with the discontinuity at θ =−π, π in order to prevent over penalizing angles that

describe a similar orientation along the x-axis. I convert the difference in angles

between adjacent cells to the coterminal angles as shown in Figure 4.4. Thirdly,

rather than resorting to a projected gradient approach, I proceed with a double

transformation (mS → mC → mS) such that spherical parameter remain bounded

as ρ ∈ [0, ∞], θ ∈ [−π, π] and φ ∈ [−π/2, π/2].

Figure 4.4: Measure of angle differences ∆θ converted to coterminal angle ∆θ̂ .

To demonstrate the difficulties encountered with the MVI-S formulation, I in-

vert the synthetic TMI data with a starting magnetization model pointing upward

m(0)
S (ρ = 10−2,θ = −45◦,φ = 0◦) as shown in Figure 4.5(a). This represents a

worst-case scenario such that the assumed magnetization orientation is at 90◦ from

the true orientation. After convergence of the algorithm, I recover the model shown

in Figure 4.5(b). The solution is a poor representation of the true magnetization.

Model updates were forced to stop before reaching the target data misfit as the

inversion was likely trapped in a local minimum. I note that most of the model

updates were performed on the amplitude ρ , with only marginal changes on the

angle of magnetization. Similar behaviors have been documented by Lelievre and

Oldenburg (2009) and later by Liu et al. (2017). Poor convergence was attributed

to an imbalance between the model parameters. Before attempting to implement

more advanced constraints, I make inroads in improving the convergence of the
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non-linear MVI-S formulation.

Figure 4.5: Vertical section through the (a) starting model and (b) recovered
magnetization vector model in Spherical coordinates. The true position and mag-
netization orientation of the block are shown in red for reference. (c) Normalized
data residuals show correlated signal. The inversion stopped after 15 iterations
and was enabled to further reduce the objective function.

To gain some insight about the issues encountered with the MVI-S formulation,

I consider a simpler two-parameter linear problem of the form

mx + 2∗my = 1 , (4.14)

which I can express in matrix form as

FC mC = dobs ,

FC = [1 2], mC =
[mx

my

]
, dobs = 1

(4.15)
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This defines an under-determined linear system of equations. Just as I did for

the magnetic inverse problem, I can isolate a solution by minimizing an objective

function of the form

φ(m) = ‖FC mC−dobs‖2
2 +βC‖mC‖2

2 , (4.16)

Figure 4.6(a) displays a contour map of the objective function along with its gra-

dients. Following the same methodology as in (3.9), I find a solution such that the

gradient of the objective function φ(m) vanish

∂φ

∂m
= g =

(
F>C FC +βCI

)
mC−F>C dobs = 0 (4.17)

where I is the identity matrix. The factor 2 from the derivative of the `2-norm

is absorbed by the zero right-hand side. After determining a trade-off parameter

βC such that φd ≤ 1e− 3, I recover the Cartesian model mC = [0.2,0.4]. It is

the solution that minimizes the distance (evaluated with the `2-norm) between the

origin and the solution space of F. I note that the relative magnitudes of model

parameters in mC reflect the size of the forward coefficients in F.

As previously discussed for the gravity and magnetic problems, the smallest

solution is often not satisfactory as it is strongly influenced by the physics of the

experiment. From equation (3.11) in Chapter 3, I can introduce sensitivity based

weights to counteract this bias towards a large my value

WC = diag

[[
wC

max(wC)

]1/2
]

wC j =

[
N

∑
i=1

Fi j
2

]1/2

,

(4.18)

where WC holds sensitivity weights added to the regularization (wC = [1, 2]>). The

new weighted objective function becomes

φ(m) = ‖FC mC−dobs‖2
2 +βC‖WCmC‖2

2 , (4.19)
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Figure 4.6: Contour map for two objective functions and their gradients (ar-
rows) for a two-parameter inverse problem solved in Cartesian and polar coor-
dinate systems. (a) The non-weighted (gray) problem yields a solution mC =
[0.2, 0.4] that reflects the size of the forward coefficients. The sensitivity
weighted (black) solution is more desirable as it predicts the data with equal
model parameters m∗C = [0.33,0.33]. (b) Inversion steps performed in the non-
linear polar coordinate system (solid red) are highly oscillatory and do not reach
the optimal solution m∗P = [0.47,0.79]. The same model updates are shown in
Cartesian coordinates (red dash) for reference. (green) Inversion steps performed
in polar coordinates with iterative sensitivity re-weighting and (blue) with the
added Ω-scaling.

and a weighted gradient

gC = F>C FCmC +βCW>
C WCmC−F>C dobs (4.20)

After determining the appropriate β ∗C , I get the solution m∗C = [0.33,0.33] marked

with a black circle in Figure 4.6(a). I have reached the only solution with equal

contribution from both model parameters that also predicts the data within the tol-

erance.

Alternatively, I can attempt to solve the same problem in a polar coordinate

77



system under the transformation

mP = [ρ, θ ]>

mx = ρ cosθ

my = ρ sinθ ,

(4.21)

where the polar model mP is defined by a radius ρ and an angle θ . This is analo-

gous to the spherical transformation performed for the MVI-S formulation in (4.7).

The objective function to be minimized becomes

φ(mP) = ‖F[mP]−dobs‖2
2 +βP‖WCmP‖2

2 (4.22)

The inverse problem is now non-linear with respect to the polar model so I solve it

iteratively with the standard Gauss-Newton procedure described in equation (3.31).

The partial derivatives of the forward mapping with respect to the polar coordinates

are calculated by

J =
∂F[mP]

∂mP
=

∂F[mP]

∂mC

∂mC

∂mP
= FCS (4.23)

where the matrix S holds the partial derivatives of the model with respect to the

polar parameters

S =

[
cosθ −ρ sinθ

sinθ ρ cosθ

]
. (4.24)

The gradient of the objective function becomes

g = S>F>C F[mP]+βPW>
C WCmP−S>F>C dobs (4.25)

A trade-off parameter βP is determined through the cooling schedule established

in Chapter 3. The inversion is terminated once the data misfit and change in model

norm fall below the tolerances ηφd and ηφm defined in equation (3.33) and (3.34)

respectively.

Since m∗C is a desirable model, I would like to be able to recover a similar
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solution in polar parameters (m∗P = [0.47,0.76]). Unfortunately, as shown in Fig-

ure 4.6(b), the minimization process performed in polar coordinates converges to a

different solution (mP [ρ = 0.67, θ = 0.26]) and the iterations steps are oscillatory.

I display the equivalent iterations (red dash) in the Cartesian space for comparison

(mC
P [mx = 0.65, my = 0.17]).

My main goal is to recover the solution m∗P, and I want to reach this solution

with only a few model updates. To understand the discrepancy between the two

formulations, I compare their respective gradients for a given starting model m(0)
C

and its equivalent polar model m(0)
P . In Cartesian coordinates, the gradient direction

is

g(0)C = F>C FCm(0)
C +β

∗
CW>

C WCm(0)
C −F>C dobs (4.26)

assuming that I know the optimal trade-off parameter β ∗C . I can convert these gradi-

ents to polar coordinate by multiplying (4.26) with the matrix of partial derivatives

S such that

gP
C = S>

[
F>C FCm(0)

C +β
∗
CW>

C WCm(0)
C −F>C dobs

]
(4.27)

I want to compare this gradient to the gradient calculated in polar coordinates to

find some equivalence between the two systems

gP
C ' S>F>C F[m(0)

P ]+βPW>
C WCm(0)

P −S>F>C dobs . (4.28)

I can simplify both sides of equation (4.28) by noting that FCm(0)
C = F[m(0)

P ] .

Equation 4.28 and 4.29 are therefore the same if

β
∗
CS>W>

C WCm(0)
C ' βPW>

C WCm(0)
P . (4.29)

I would like both sides to be roughly equal such that the gradient direction in polar

space resemble the gradient direction calculated in the Cartesian space. First, I note

from equation (4.29) that the transformation matrix S is missing from the right-

hand side. The current sensitivity weights were designed to compensate for fixed
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experimental bias but did not account for a constantly varying sensitivity matrix J.

I address this shortcoming by resorting to an iterative update of sensitivity weights

WP = diag

[[
wP

max(wP)

]1/2
]

wPj =

[
N

∑
i=1

Ji j
2

]1/2

,

(4.30)

where the weights wP are updated between each Gauss-Newton step. Inverting

once again the non-linear problem with the iterative scaling strategies (green) I

recover the model mP[ρ = 0.53, θ = 0.53] (Fig. 4.6(b)). The solution has equal

parameters of ρ and θ , and I reached this solution in a few iterations. In most

applications, however, obtaining proportionality between the magnitude and angle

of the vector is not meaningful. Converted to Cartesian space mC
P[mx = 0.46, my =

0.27], I note that the solution is still different from m∗C.

To understand this result, I now examine equation (4.29) in terms of the size

of the model parameters in mP. I have used a regularization function to penalize

two parameters with different units: the radius ρ ∈ [0,∞] in lengths and angle

θ ∈ [−π, π] in radians. The range of values spanned by these parameters differ in

scale as depicted by the aspect ratio of Figure 4.6(b). Comparing the largest change

in model values (gradient) in relation to the Cartesian space mC, it is easy to show

that

‖gρ‖∞ ∝ ‖gx‖∞ +‖gy‖∞ (4.31)

such that a change in the radius ρ is proportional in magnitude to a change in

components in Cartesian space. The same relation does not hold for the angle

parameter as an equivalent change in Cartesian parameters can be achieved with a

rotation ∆θ = π/2 independent of length. In order to scale the gradient steps taken

along different dimensions, I define a proportionality relation

ω =
‖gρ‖∞

‖gθ‖∞

= ‖ρ‖∞

2
π
, (4.32)
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and scale the regularization as

ŴP = diag
([

1 ω

](1/2)
)

WP (4.33)

My new scaled objective function becomes

φ(mP) = ‖F[mP]−dobs‖2
2 +βP‖ŴPmP‖2

2 (4.34)

Minimizing this function I get the model (blue) presented in Figure 4.6 (mC
P[m1 =

0.47, m2 = 0.74]). Converted to Cartesian space, this solution mC
P[m1 = 0.35, m2 =

0.32] closely matches m∗C.

4.2.1 Scaled MVI-S algorithm

Now that I have demonstrated the benefit of an iterative sensitivity re-weighting

of the regularization, I re-visit my synthetic magnetic problem. I invert the TMI

data once more with the starting model oriented at 90◦ from the true magnetization

direction (m(0)
P [ρ = 10−2, θ = −45◦, φ = 0◦]) with smooth assumptions (ps, px,

py, pz=2). The recovered magnetization model obtained after convergence of the

scaled MVIS-S algorithm is presented in Figure 4.7(a). The inversion took 15

iterations to converge. I note close similarities with the MVI-C solution presented

in 4.3(a), with the bulk magnetization centered around the position of the block.

This is a clear improvement over the solution previously shown in Figure 4.5(c).

From a practical standpoint, I have found that it is more efficient to initialize

the MVI-S algorithm with the Cartesian solution. The linear MVI-C approach

allows me to rapidly find a model that fits the observed data and it provides a good

approximation to the MVI-S solution. I invert the data once more using the smooth

Cartesian solution in 4.3(a) as a starting model. Figure 4.8(a) shows the recovered

solution obtained after a single iteration of MVI-S.

Having achieved a stable and reasonable solution with the `2-norm, I can now

consider applying sparsity constraints to recover a block with a coherent magneti-

zation direction. I vary the regularization measure on the amplitude, derivative of

amplitude and derivatives of angles uniformly such that (pcs , pcx , pcy pcz = 0) where

c ∈ [ρ,θ ,φ ]. Figure 4.8(c) presents a section through the magnetic vector model.
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Figure 4.7: (a) Vertical section through the recovered magnetization vector
model and (b) normalized data residual using the spherical formulation with sen-
sitivity based weighting (ps = px = py = pz = 2). The true position and magne-
tization orientation of the block are shown in red for reference.

The shape of the anomaly matches that of the magnetic block, with a magnetization

direction uniformly orientated at 45◦ inclination. The uniform effective suscepti-

bility recovered inside the block matches exactly the true model with κe = 0.05

SI. The normalized data residual shows no apparent correlated signal (Fig. 4.8 d).

This simple example increases my confidence in my ability to accurately recover

the magnetization of geological bodies in 3D.

4.3 Synthesis
In this section, I introduced an iterative sensitivity re-weighting strategy to improve

the convergence of non-linear inverse problems. The iterative re-scaling of the

regularization function associated with the amplitude and angles of magnetization

was crucial in order to get a stable convergence of the MVI-S algorithm. Smoother

and more robust solutions allowed me to apply compact norms on the three model

parameters independently. This can greatly simplify the solution compared to that

from the conventional MVI-C formulation.

Despite this improvement, the MVI problem remains fundamentally under-

determined. Incorporating a priori information, either through model constraints
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Figure 4.8: (a) Vertical section through the recovered magnetization vector
model in Spherical coordinates using sensitivity based weighting with smooth
regularization (ps = px = py = pz = 2). MVI-C solution is used as a starting
model. The true position and orientation of magnetization of the block are shown
in red for reference. (c) Recovered vector model in Spherical coordinates using
sparse and blocky assumptions on the amplitude and angles of magnetization
(pcs = pcx = pcy = pcz = 0). (b) and (d) Corresponding normalized data residu-
als.

or joint physical properties, remains important to accurately represent the geology.

In the following section, I introduce structural information to constrain the shape

of the recovered magnetic bodies.
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Chapter 5

Rotated `p-norm Regularization

In Chapter 3, I introduced a mixed-norm regularization function that could be used

to recover a suite of models that had a broad range of characteristics. This was

accomplished by altering the norms on the model and model derivatives indepen-

dently. I have shown the value in interpreting an ensemble of models to assess the

robustness of certain features. When inverting gravity data arising from a buried

prism, I managed to recover an anomaly at the right depth and with sharp edges.

In this case, the prism was aligned with the Cartesian frame. In most cases, how-

ever, the shape of geophysical anomalies can take many forms. Dip and strikes

of geological contacts rarely occur at right angles and aligned with the geographic

grid. I, therefore, need a more general strategy that is adaptable to any geological

scenarios.

Some research has addressed this issue by imposing directionality in the inver-

sion. Barbosa and Silva (2006) introduce a regularization function to force anoma-

lies to be closer to geometric elements in 2D. Their approach can recover compact

and elongated bodies, but it requires direct input from the user to define the loca-

tion of different anomalies. In Li and Oldenburg (2000), directionality is enforced

by rotating the objective function along preferential axes. The method was later

revised by Lelièvre (2009) and Davis et al. (2012) who advocated the use of for-

ward and backward difference operators to improve symmetry. While successful

in recovering elongated bodies, their approach still requires manual adjustment of

inversion parameters to control stretching factors along different orientations. As
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a natural extension to their work, I am proposing in this chapter to combine the

mixed norm regularization function with the rotation strategy for the recovery of

sharp and oriented edges.

5.1 Rotated objective function
I begin by reviewing the strategy presented in Li and Oldenburg (2000) for the

rotation of the objective function using the conventional `2-norm regularization

φm = αs

∫
V

m2 dV + ∑
r=x,y,z

αr

∫
V

(
dm
dr

)2

dV . (5.1)

Model gradients are traditionally calculated along the Cartesian axes x, y and z.

Evaluating the integral over the discrete domain gives rise to linear penalty func-

tions introduced in equation (3.5)

φs = αs‖WsVs (m−mre f )‖2
2 + ∑

r=x,y,z
αr‖WrVrDr m‖2

2 , (5.2)

where W matrices contain sensitivity or volumetric based weighting and weight-

ing parameters set by the user. As explained in Section 3.1.3, I use finite difference

operators D rather than the conventional gradient operators G to simplify the imple-

mentation. The scaling parameters αr control the stretching along the three axes.

This formulation is restrictive however as the dip and strike of geological bound-

aries can occur at any orientation. To address this shortcoming, Li and Oldenburg

(2000) introduced rotated gradient measures of the form

∂m
∂x′

= ωxx
∂m
∂x

+ωxy
∂m
∂y

+ωxz
∂m
∂ z

∂m
∂y′

= ωyx
∂m
∂x

+ωyy
∂m
∂y

+ωyz
∂m
∂ z

∂m
∂ z′

= ωzx
∂m
∂x

+ωzy
∂m
∂y

+ωzz
∂m
∂ z

(5.3)
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Rotation coefficients ω are defined by the triple rotation around the Cartesian axes

such that

Ω =ΩzΩxΩy =

ωxx ωxy ωxz

ωyx ωyy ωyz

ωzx ωzy ωzz



=

 cosφ cosψ− sinφ cosθ sinψ sinφ cosψ + cosφ cosθ sinψ sinθ sinψ

−sinφ sinθ cosφ sinθ −cosθ

−cosφ sinψ− sinφ cosθ cosψ −sinφ sinψ + cosφ cosθ cosψ sinθ cosψ


(5.4)

where the matrix Ωy defines the rotation angle ψ counterclockwise around the y-

axis (dip)

Ωx =

1 0 0

0 cos(ψ) sin(ψ)

0 −sin(ψ) cos(ψ)

 (5.5)

followed by Ωx defining the rotation angle θ around the x-axis (plunge)

Ωy =

 cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)

 (5.6)

and a final Ωz defining the rotation φ around the z-axis (strike)

Ωz =

 cos(φ) sin(φ) 0

−sin(φ) cos(φ) 0

0 0 1

 . (5.7)

Figure 5.1 depicts the rotation angles with respect to the Cartesian system. The

regularization functions along the rotated axis x′ is defined by substituting (5.3)

into (5.1)

φx′ = αx

∫
V

(
ωxx

dm
dx

+ωxy
dm
dy

+ωxz
dm
dz

)2

dV . (5.8)
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Figure 5.1: Rotation parameters with respect to the Cartesian axes.

which after expanding can be written in discrete form as:

φx′ = αxm>
(

ω
2
xxD>x W>

x WxDx +ω
2
xyD>y W>

y WyDy +ω
2
xzD
>
z W>

z WzDz+

2∗ωxxωxyD>x W>
x WyDy+

2∗ωxxωxzD>x W>
x WzDz+

2∗ωxyωxzD>y W>
y WzDz

)
m

(5.9)

where I absorbed the volumes of integration Vr in the weighting terms Wr for

clarity. Derivation from the integral to discrete form of (5.9) can be found in Li

and Oldenburg (2000). It is important to point out that the difference operators in

(5.9) require square matrices such that Dx, Dy, Dz ∈RM×M. This is done by adding

a backward difference to the edge cells such that the divergence operator in (3.28)

becomes

Dx =


−1 1 0 . . . 0

0
. . . . . . . . .

...
...

. . . 0 −1 1
... . . . 0 1 −1

 . (5.10)
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Carrying out the same procedure for φy′ and φz′ , I obtain the rotated regularization

function φm′ made up of seven terms:

φm′ = m>W>
s Wsm+

m>
(

D>x W>
x BxxWxDx +D>y W>

y ByyWyDy +D>z W>
z BzzWzDz+

2∗D>x W>
x BxyWyDy +2∗D>x W>

x BxzWzDz +2∗D>y W>
y ByzWzDz

)
m

(5.11)

Rotation coefficients ω� and α� parameters corresponding to each term are col-

lected and added to form the different diagonal matrices B�. Rotation parameters

can be defined on a cell by cell basis.

Lelièvre (2009) found experimentally that this formulation resulted in asym-

metric solutions due to the cancellation of rotation parameters. Checkerboard pat-

terns were observed for rotation angles at 45◦. This was addressed with an aver-

aged combination of forward and backward difference operators. Equation (5.11)

becomes

φm′ = m>W>
s Wsm+

m>
1
8

8

∑
i=1

(
D>x,iW

>
x BxxWxDx,i+

D>y,iW
>
y ByyWyDy,i+

D>z,iW
>
z BzzWzDz,i+

2∗D>x,iW
>
x BxyWyDy,i+

2∗D>x,iW
>
x BxzWzDz,i+

2∗D>y,iW
>
y ByzWzDz,i

)
m

(5.12)

such that the ith components correspond to all the combination of forward and

backward difference operators. Figure 5.2(a) and (b) compares the different gra-

dient scheme along the xy-plane. For 3D problems, this formulation results in a

regularization function containing 49 terms in total.

I showcase the effect of rotation with three inversions applied to the density
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ID Dx,i Dy,i Dz,i

1 Forward Forward Forward
2 Backward Forward Forward
3 Forward Backward Forward
4 Forward Forward Backward
5 Forward Backward Backward
6 Backward Forward Backward
7 Backward Backward Forward
8 Backward Backward Backward

block model introduced in Chapter 2. I will take advantage of the non-uniqueness

of potential fields to accentuate trends in the model, even though the true block

anomaly is a single prism orientated parallel to the Cartesian axes. In the first

inversion, I use the conventional `2-norm regularization for a rotation angle of

φ = 45◦. Since I am dealing with smooth assumption, I must impose a stretching

factor along one of the rotated axes (αx = 100, αs = αy = αz = 1). As expected

the recovered density anomaly is stretched and symmetric about the rotated axis x′

(Figure5.3(a)). I have managed to replicate the implementation of Lelièvre (2009).

For the second inversion, I attempt to impose sparse assumptions (ps = px =

py = pz = 0) to recover a compact block anomaly oriented at 45◦. As a first pass,

I attempt to directly incorporate the IRLS weights into the rotated regularization

function such that

φm = m>W>
s R>s RsWsρ+

m>
1
8

8

∑
i=1

(
D>x,iR

>
xxW>

x BxxWxRxxDx,i+

D>y,iR
>
yyW>

y ByyWyRyyDy,i+

D>z,iR
>
zzW

>
z BzzWzRzzDz,i+

2∗D>x,iR
>
xyW>

x BxyWyRxyDy,i+

2∗D>x,iR
>
xzW

>
x BxzWzRxzDz,i+

2∗D>y,iR
>
yzW

>
y ByzWzRyzDz,i

)
m

(5.13)
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Figure 5.2: Two-dimensional representation of finite difference operators using
a combination of (a) 3-cell (Li and Oldenburg, 2000), (b) 5-cell (Lelièvre, 2009)
and (c) the 7-cell scheme used for the rotation of the objective function. Only the
7-cell strategy allows for the interaction between diagonal neighbors.

The IRLS weights for the model derivatives are defined as

Ri j = diag
[(
|(Gi m(k−1))� (G j m(k−1))|+ ε

2
i j

)pi j/2−1
]1/2

. (5.14)

where� denotes the Hadamard (element-wise) product between the model deriva-

tives. Figure 5.3(b) shows the recovered density models after convergence of the
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IRLS. While the general orientation of the anomaly appears to be aligned at 45◦,

edges are poorly defined and the solution is not exactly symmetric about the x′ axis.

Similarly for the third inversion, I rotate the objective function by a smaller angle

of 30◦. The solution in Figure 5.3(c) shows little difference from the 45◦ rotation.

This is primarily due to the averaging over the 8 combination of backward and for-

ward measures. The regularization function in (5.13) also comes with a significant

increase in computational cost as it involves 16 times more operations compared

to the conventional Cartesian approach.

Figure 5.3: Horizontal cross section through the recovered model with rotation
of the objective function using (top) 5-point and (bottom) 7-point gradient oper-
ators. Blue and red arrows indicate the rotation frame. (a, d) Recovered models
with smooth assumptions (ps = px = py = pz = 2) stretched along the rotate x-
axis at 45◦ (αx′ = 100). (b, e) Sparse solutions (ps = px = py = pz = 0) with
rotation at 45◦. The target orientation of the rotated block is marked by the black
dashed line. (c, f) Sparse solutions for a 30◦ rotation of the objective function.
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5.1.1 Diagonal derivatives

Building upon the previous results, I will attempt to improve the recovery of ori-

ented bodies by employing a new derivative scheme. Rather than adding and aver-

aging the contribution of gradient operators along the Cartesian axes, I propose to

also measure the interaction with diagonal neighbours. For clarity, I first examine

the rotated finite difference operator Dx′ along the xy-plane (rotation about ẑ). For

a given cell mi, there are 8 cells that either share a node or a face. Given a rotation

angle θ , I need to determine which of the 8 neighbours participate in the finite dif-

ference. I determine the contribution of each cell based on the intersecting volume

with a test cell mx′ as shown in Figure 5.2(c). To determine the position of mx′ , I

calculate the displacement of its nodes about the center of mi

Mx′ = R(θ)

1 1

0 0

0 0

+
xU xL

yU yL

zU zL

 (5.15)

where U and L define the lower southwest and upper northeast node locations of

the target cell mi. The rotated finite difference is calculated by a weighted average

dx′ = mi−
∑

8
i=1 vimi

∑
8
i=1 vi

(5.16)

where the weights vi are partial volume intersected with mx′ as presented in the

Appendix. The same calculation can be carried out for rotated test cells my′ and

mz′ and rotation angle ψ and φ . To improve symmetry, this process is repeated

for both a forward and backward difference. These calculations are performed for

each cell and their neighbors in our 3D domain, giving rise to the regularization

function:

φm =‖αsWs Vs Rs (ρ−ρ
re f )‖2

2+

∑
r=x′,y′,z′

‖αrWr Vr Rr DF
r m‖2

2 +‖αrWr Vr Rr DB
r m‖2

2 ,
(5.17)

where DF
r and DB

r denotes the rotated forward and backward difference operators.

The upfront cost to build the finite difference operators is higher than for simple
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Cartesian operators but the regularization function has only seven terms in total.

This translates to about 6 times fewer operations needed during the inversion pro-

cess compared to the methodology proposed by Lelièvre (2009).

For comparison, I re-invert the synthetic data using this new regularization

function. Models are presented in Figure 5.3 for (d) 45◦ rotation with smooth `2-

norm (αx′ = 100), (e) 45◦ rotation with `p-norm (ps = px = py = pz = 0) and (f)

30◦ rotation. In the case of the smooth inversion, both formulations give equivalent

results with anomalous density stretched along the rotated x′-axis. I note a signifi-

cant improvement however in the geometry of the rotated sparse models, with good

symmetry and better edge definition along the rotation angle.

I have achieved my initial goal of recovering rotated anomalies, even though

in this specific case the true model is a simple prism oriented along the Cartesian

axes. Figure 5.4 presents the normalized data residual calculated from the last three

experiments. It is important to note that all solutions fit the observed data within

the tolerance φd−φ ∗d ≤ δd, yet large correlated residuals are clearly visible. I have

forced the solution to exhibit characteristics that are not consistent with the true

solution. This reinforces the importance of designing an objective function that

can satisfy subtle information that may be present in the data in order to better

represent the local geology.

Figure 5.4: Normalized data residuals calculated from the recovered models
presented in Figure 5.3(d), (e) and (f) respectively.

93



5.2 Synthetic fold model
I have so far demonstrated the use of rotated sparse norms for the recovery of

oriented blocks by taking advantage of the non-uniqueness of the inverse problem.

The true value of this strategy is to promote the recovery of oriented edges to better

represent geological units of arbitrary shapes. I demonstrate this by simulating a

more realistic scenario. I generate a synthetic fold model made up of a layer with

density contrast of 0.1 g/cc placed in uniform background as shown in Figure 5.5.

The axial plane of the syncline strikes NS and dips 75◦E. The fold axis plunges 15◦

S. The intersection of the axial plane with the various cross-sections are shown as

red dashed lines in Figure 5.5. I divide the ground into an OcTree mesh with core

cells that are 20 m meters in width.

I simulate gravity data at 560 stations placed one meter above the topography.

The locations are randomly sampled from a grid to emulate a field survey with

unevenly spaced data. From the linear relation introduced in (2.3), the density

anomaly of the syncline gives rise to the gravity response presented in Figure 5.6.

I will attempt to use the rotated mixed-norm regularization to recover the folded

layer.

5.2.1 `p-norm inversion

I begin exploring model space by first generating a density model that is smooth

and has minimum structure. Using the regularization function in (5.17) for ps =

px = py = pz = 2, I recover the density model presented in Figure 5.7. As expected

from the smooth regularization function, the thickness of the layer near the surface

is not clearly defined; there is a wide transition from a positive to a negative density

contrast. More importantly, the dip and extent of the fold limbs at depth are poorly

resolved. Without prior knowledge, geological interpretation of this result would

be difficult with low confidence about the geometry of the fold.

I follow up with a mixed norm inversion and attempt to reduce the complex-

ity of the solution, with sparsity assumptions applied on the model (ps = 0) and

smooth model gradients (px,y,z = 2). Figure 5.8 presents a vertical section at the

center of the recovered density model. I note that this solution is an improvement

over the smooth model for at least three reasons.
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Figure 5.5: Synthetic density model made up of a folded layer with a N-S ori-
ented axial plane dipping 75◦E. The intersection between the fold axial plane and
the cross-sections are marked by a red-dashed line: (left) topography draped sec-
tion and (right) vertical cross-sections along (A-A’) and (B-B’). The hinge axis
of the fold is plunging 30◦S. Two strike and dip measurements are provided at
the surface and used as structural constraints.

1. The density contrasts values are mostly positive with the maximum density

approaching the true density of 0.1 g/cc. The near-surface trace of the fold

appears thinner with fewer negative density contrasts seen along the hori-

zontally draped section.

2. The fold is imaged as a continuous body connected at depth along the section

A-A’

3. The dip angle along the fold axis (B-B’) is improved.

While I have made some progress in imaging a continuous layer connected at

depth, there is still space for improvement about the shape and thickness of the

fold. This is a motivation for incorporating geological information in the inver-

sion. Rather than building a 3D model to constrain the solution (the usual path),

I will attempt to drive the solution with so f t directional constraints in the form of

dip and strike measurements and let the data determine the position and shape of

the fold.
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Figure 5.6: Synthetic gravity data generated 1 m above topography over the
synthetic density fold model. Gravity station locations (dot) and topographic
contours (lines) are shown for reference. Structural data (dip, strike) are pro-
vided at two locations on opposite of the syncline. Dip direction of the fold axis
(15◦ S) and limbs are shown with arrows .

5.2.2 Directional `p-norms

My goal is to introduce stratigraphic constraints in order to recover a continuous

layer connected at depth. Apart from the gravity data, structural data are often

available in the form of dip and strike information measured on outcrops. I will

include three points of structural data: one on each limb and one on the fold axis

(Fig. 5.6). I will use this information to build a rotated objective function as pre-

scribed in (5.17).

First I need to extrapolate the structural data to the full 3D domain. I use a

minimum curvature approach (Briggs, 1974). The interpolated normal vectors are
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Figure 5.7: Recovered smooth solution with `2-norm regularization of the syn-
thetic fold anomaly. The dip of the fold limbs are poorly recovered and there is
no indication of the limbs being connected at depth.

Figure 5.8: Recovered density model from the mixed norm regularization (ps =
0, px,y,z = 2). Sparse assumptions helped in simplifying the density model over
the smooth assumption.

shown in Figure 5.9. The orientation is then used to rotate the derivative terms on

a cell-by-cell basis such that Dx′ points along the normal of the fold, while Dy′ and

Dz′ are parallel to the stratigraphy.
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Figure 5.9: Interpolated dip and strike information used for the rotation of the
objective function. The direction of the arrows define the estimated normal or
the folded layer.

I then invert the gravity data with sparse rotated norms. To re-enforce lateral

continuity, I lower the norm applied to model derivatives parallel to the stratigraphy

(px′ = 2, py′ , pz′ = 0). Keeping smooth penalties on the normal component (Dx′)

helps for gradual readjustment of the fold position. Sparsity on the model values

are also used (ps = 0). Figure 5.10 presents sections through the final model. The

dip and lateral continuity of the layer has improved remarkably, which has been

achieved with only three-point constraints at the surface

5.3 Summary
In this chapter, I have successfully combined sparse norms and rotation of the ob-

jective function for the modelling of geological bodies with oriented edges. I have

shown that it is possible to use point structural measurements, in the form of strike

and dip angles, to constrain the model. The recovered fold model closely matched

the true solution even though I did not specify the position of the anomaly or its

physical property contrast. In this regard, sparse rotated norms can be seen as a soft

geological constraint that requires only a general understanding of the geometry of

the problem. The resulting model, or suite of models, could subsequently be used
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Figure 5.10: Recovered density model from the mixed-norm regularization.
Data locations (dots), topography and the outlines of the true model (black) are
shown for reference. Rotated `p-norm oriented along the folded layer helped in
resolving a continuous geological unit at depth.

as a reference for more advanced modelling efforts.

The main challenge with the methodology presented so far is in generating

rotation parameters in 3D. Simple extrapolation of scarce structural measurement

may not accurately capture complex geological settings involving multiple folding

and faulting events. For such complicated cases, such as the Kevitsa deposit intro-

duced in Chapter 1, some level of 3D modelling and interpretation may be required

by experts. Surface mapping and other types of geophysical data may be available

to infer strike and dip information. In the following chapter, I will investigate ways

to learn about preferential orientations using geophysical inversion.
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Chapter 6

Automated mixed-norm modeling

I have so far developed a methodology that can generate a suite of models that

adequately fit the data and, at the same time, sample model space in a consistent

fashion. This flexibility promotes two objectives. First, inverting for diverse mod-

els provides immediate insight about non-uniqueness and that can prevent prac-

titioners from over-interpreting a single inversion result. This is one of the most

important aspects of my work.

The next objective is more challenging. I want to use different combinations

of norms on different parts of the model space so that I obtain solutions that are

geologically informative. As exemplified with the residual shown in Figure 3.19,

certain assumptions may be better suited to fit portions of the data. However, the

selection of different norms to be used in different portions of the model can rapidly

become overwhelming for large problems in complex geological settings. A semi-

automated approach that can capture the heterogeneity of the Earth, with minimal

intervention from an expert, is needed. I am proposing the following strategy:

1. Run a suite of inversions over a range of p parameters applied to the model

norm and its spatial gradients. I will assume that the suit of models is a

representative sampling of diverse solutions from the `p-space.

2. Form an average model (mA) that captures most of the variability in the

solution space

3. Extract p parameters or rotation angles for windowed portions of model
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space based on the correlation between the average mA and individual mod-

els.

4. Carry out a final SVMN inversion with local parameters.

There are numerous ways to implement the above strategy. Here, I use Princi-

pal Component Analysis. I illustrate my approach with a 2D seismic tomography

example and on the 3D fold example introduced in Chapter 5.

6.1 Selecting local p-parameters
I will first demonstrate how it is possible to extract local p parameters for the simul-

taneous recovery of smooth and compact features as introduced in Chapter 3. To

demonstrate my methodology I use the 2D travel-time tomography example pre-

sented in Sun and Li (2014). The synthetic velocity model shown in Figure 6.1(a)

is made up of a smooth velocity high and a blocky velocity low centered at a 1,000

m along the x-axis; the background velocity is 2000 m/s. Contour lines, corre-

sponding to the 25th and 75th percentile values for both anomalies, are also plotted

for reference. An array of 11 transmitters and 13 receivers is positioned on either

side of the model which is discretized into 32×64 square 25 m cells. First arrival

data are calculated for each transmitter-receiver pair by taking the line integral of

slowness (reciprocal of velocity) along each ray path; this yields a total of 143

observations. Gaussian noise of 5% is added to the simulated data shown in Fig-

ure 6.1(b). I will first attempt to invert this data with mixed-norm penalties that are

applied to the entire model.

6.1.1 Model space inversions

Having dealt with scaling issues between `p-norm measures, I can now exploit the

full flexibility of the regularization function in (3.3). My goal is to generate a suite

of models under a broad range of assumptions. For this 2D problem, the objective

function to be minimized takes the form:

min
m

φ(m) = ‖F m−dobs‖2
2 +β ∑

r=s,x,y
αr‖Wr Vr Rr Dr m‖2

2

s.t. φd ≤ φ
∗
d

(6.1)
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Figure 6.1: (a) Synthetic 2D travel-time tomography problem made up of a rect-
angular velocity low, and a smooth Gaussian velocity high. Contour lines (25th

and 75th percentile) are shown in black for the true position and shape of the
velocity anomalies. Transmitters (red) and receivers (green) are positioned on
opposite sides of the model domain. (b) Data map for the 143 line integral data
calculated for each transmitter-receiver pair.

To demonstrate the flexibility of S-IRLS algorithm, I carry out nine inversions,

using a combination of norms on a range of ps, px, py ∈ [0,1,2] values (px = py in

all cases). The solutions, nine in total, are presented in Figure 6.2. All models have

a final misfit φ ∗d ≈ 143 and use the same `2-norm solution to initiate the S-IRLS

steps. I make the following observations:

• The two velocity anomalies centered at 1000 m on the x-axis are dominant

features.

• Anomalies are generally stretched along the ray path due to the experimental

bias, even though I have attempted to compensate for it with the sensitivity

weighting Wr. It is less pronounced for p≤ 1.

• There is a progressive transition from a smooth model (upper left) to a blocky

solution (lower right) as ps, px and py decrease.

• The upper body (velocity low) appears to be most often represented as a

blocky body with sharp edges.

• The lower anomaly (velocity high) tends to be more smooth.

102



Figure 6.2: Suite of inverted models for various combinations of norms ps, px =
py ∈ [0,1,2] (αs = αx = αy = 1). Contour lines (25th and 75th percentile) are
shown in black for the true position and shape of the velocity anomalies.

• Away from the anomalous regions the velocity is relatively smooth and close

to the background reference model of 2000 m/s.

Figure 6.3 presents the data residual maps predicted by these nine inversions.

The random noise originally added to the data is shown in Figure 6.3(j) for com-

parison. I note that the strongest correlated residuals appear as pant-legs, which

corresponds to ray paths travelling through the velocity anomalies. The residual

trend associated with the blocky velocity low (low Tx# to high Rx#) is generally

more obvious, which indicates that the experiment may be more sensitive to uni-

form velocity anomalies with sharp edges as it is the source of coherent signal.

This pant-leg vanishes as p, q→ 0. Meanwhile, the residual trend associated with

the smooth velocity high (low Rx# to high Tx#) diminishes for ps = px = py = 1.

This change in data residual is a strong indicator that a specific combination of

norms may be better suited to represent individual velocity anomalies.
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Figure 6.3: (a) to (i) Data residual contour map for the nine inversions presented
in Figure 6.2. Contour lines (±1 standard deviation) are shown in black. (j)
Random noise added to the experiment.

6.1.2 Average PCA model

I assume that the suite of models presented in Figure 6.2 contains sufficient vari-

ability to be representative of my solution space and I wish to use these to extract

the main features. There are numerous approaches to accomplish this and they vary

in complexity from simple averaging to advanced machine learning algorithms. I

use a Principal Component Analysis (Hotelling, 1933; Pearson, 1901). Consid-

ering each model in Figure 6.2 as a data vector, the principal components of my

solution space can be written as:[
m1 , ... ,mnM

]
≈ A W . (6.2)

such that PCA vectors along the columns of A ∈ RnM×nV contains a subset of nV

eigenvectors spanning the model space. These vectors encode the principal source

of variation across the nine models recovered. The corresponding weights W ∈
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Figure 6.4: PCA vectors covering 75% of the model variances.

RnV×nM, also known as loadings, are scalars relating to how each principal com-

ponent contributes to each model. I use the PCA algorithm from the open-source

Python library Scikit-Learn.decomposition.PCA (Pedregosa et al., 2011).

The number of principal components to be used in the analysis is determined by the

experimenter. Figure 6.4 presents the four largest principal components, covering

in this case over 75% of the variance present in the model space.

Next, I generate a representative model by computing a weighted averaged

model based on the positive PCA loadings such that:

mA =
∑

nV
i=1 ∑

nM
j=1Wi jmi

∑
nV
i=1 ∑

nM
j=1Wi j

. (6.3)

The average model mA is presented in Figure 6.5. I note the close resemblance with

the true model. The background is fairly uniform near 2000 m/s; the low velocity

anomaly appears to be a block with a velocity near 1900 m/s, and the high velocity

anomaly appears is a smooth feature with a maximum velocity near 2100 m/s.

Since mA is not the result of inversion, I have no guarantee that this model can

satisfy the observed data. The corresponding normalized data residual map shows
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Figure 6.5: (a) Averaged PCA model mA and (b) corresponding normalize data
residual map. Contour lines are shown in (a) for the true position and shape of
the velocity anomalies.

some level of correlation with the anomalies (Figure 6.5(b)). My next objective is

to identify inversion parameters that will allow me to fit both the data and features

highlighted by the average model.

6.1.3 Parameter extraction

Next, I want to extract optimal inversion parameters on a cell-by-cell basis in order

to best describe local features. To do so, I resort to a pattern recognition approach.

In order to remove biases towards extreme model values, I transform my model

space into a simpler parametric representation. I use a Canny edge detection al-

gorithm from the open-source library Scikit-Image.feature.Canny (Pe-

dregosa et al., 2011). Figure 6.6 shows the parametric edges extracted from all nine

inversions.

From this simplified representation of each model, I perform a moving window

correlation rmimP between the average PCA model mA and each of the mi solutions:

rmimP =
∑

n
j=1(mi j− m̄i)(mP j− m̄P)√

∑
n
j=1(mi j− m̄i)2 ∑

n
j=1(mP− m̄P j)2

(6.4)

where m̄i and m̄P are the average model and PCA model values inside the window
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Figure 6.6: Parametric representation of the nine inverted models derived form
the Canny edge detection algorithm.

Figure 6.7: Local p-values on the (a) the model norm φ
ps
s and (b) model gradi-

ents φ
px

x , φ
py

y extracted from the solution space.

denoted by the subscript j. The parameters ps, px, py associated with the highest

correlation are used in a weighted average as defined in (6.3). The process is re-

peated over the entire model space. For my example I use 20×20 pixels window.

The recovered ps and px, py values are presented in Figure 6.7(a) and (b) respec-

tively. I note that the norm on the model gradients is generally larger in the bottom

region of the model corresponding to the location of the smooth positive anomaly.
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I now define Scaled-IRLS weights on a cell-by-cell basis as:

R̂s = diag
[

γs�
(
(m(k−1)−mmre f )2 + ε

2
s

)◦ps/2−1
]1/2

,

R̂x = diag
[

γx�
(
(Dx (m(k−1)−mmre f ))2 + ε

2
x

)�px/2−1
]1/2

,

R̂y = diag
[

γy�
(
(Dy (m(k−1)−mmre f ))2 + ε

2
y

)�py/2−1
]1/2

,

(6.5)

where �ps, �px and �py define the element-wise Hadamard power and γs�, γx�
and γy� are the element-wise scaling multiplications defined in (3.52). In this

fashion, the approximated mixed norm regularization can vary on a cell-by-cell

basis.

Finally, I proceed with my SVMN inversion. The data are now inverted us-

ing the extracted local parameters, applied on a cell by cell basis, and the result is

shown in Figure 6.8(a). There is good correspondence with the true model: both

the low-velocity blocky anomaly and the high-velocity smooth anomaly are im-

aged at the right location, with the right shape and near their respective seismic

velocity. The normalized data residual in Figure 6.8(b) do not clearly show pant-

legs associated with the targets. This is a good indication that most of the important

structures have been recovered.

6.1.4 Summary

This example shows that, as long as the data are sufficiently sensitive to the geom-

etry of causative bodies, it is possible to extract preferential inversion parameters.

In the original study of Sun and Li (2014), inversion parameters (either `2 or `1-

norm on the model gradients) were extracted based on the data residual. In this

study, I proposed a different path using modelling trends identified in the solution

space. I would argue that the modelling route is a more robust approach and easily

applicable to other geophysical methods (EM, seismic) as complex signals from

multiple sources can be unravelled by the inverse process.

It is also important to note that I have achieved my final result without direct in-

put from the user, other than setting tuning parameters used in the pattern recogni-
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Figure 6.8: (a) The final SVMN inversion result and (b) normalized data resid-
ual map. Contour lines are shown in (a) for the true position and shape of the
velocity anomalies.

tion phase. The modelling process is therefore completely replicable. The learning

process remains sensitive however to choices made by the user. The size and shape

of the averaging window is an important aspect that can significantly impact the

outcome. Choosing a window that is too large can lump smaller features together,

while a window that is too small might introduce unwanted variability. The work

presented here does provide however an interesting basis for more advanced work

in machine learning.

6.2 Dip and strike estimation
In Chapter 5, I have demonstrated the benefits of using rotated sparse gradient to

accentuate geological trends and better image continuous bodies at depth. I have

used the fold model shown in Figure 6.9 to showcase the use of surface structural

data. In most greenfield exploration settings however such data may either not be

available or too scarce for accurate interpolation. Practitioners would benefit from

being able to estimate the strike and dip of geological features in a semi-automated

way. In this section, I propose to repeat the rotated sparse norm experiment through

a learning process. I will make use of a similar strategy elaborated in the previous

section such that preferential orientations are extracted from the solution space

with a pattern recognition approach.
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Figure 6.9: Synthetic fold model introduced in Chapter 5 used here to test the
dip and strike estimation learning algorithm.

I propose to estimate the angle of rotation in two stages: first along a horizontal

plane to determine the strike, then on vertical sections to estimate the dips. I create

a workflow divided into five steps:

1. Run an unconstrained inversion with sparse and smooth assumptions (ps = 0,

p[x,y,z] = 2)

2. Estimate horizontal trends and rotate the objective function on the xy-plane

3. Run a suite of inversions over a range of dip angles (ps = 1, px = 2, p[y,z] = 0.

4. Form an average model (mA) and extract dip angles locally.

5. Carry out a final SVMN inversion with local p parameters and rotation an-

gles.

I apply this procedure to recover the folded density layer used in Chapter 5 (Fig-

ure 5.5). I will attempt to do this without any external input from the user other

than general tuning parameters in Step 2 and 4.
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Step 1: Unconstrained inversion

Potential field data are most sensitive to lateral changes in density and magnetic

properties, so it is generally easier to determine horizontal trends related to geol-

ogy. I am using a mixed norm inversion (ps = 0, p[x,y,z] = 2) to get a first estimate

of the geometry of the problem such that physical property contrasts are increased

without enforcing assumptions about directionality. While similar analysis could

be performed directly on a gridded data map at a much smaller computational cost,

the inversion route has proven experimentally to be more robust. It can deal with

topographic effects and it can isolate long wavelength trends from near surface

anomalies. Since I already have inverted this synthetic example with sparsity as-

sumptions in Chapter 5 (Figure 5.8), I can advance directly to Step 2.

Step 2: Azimuth estimation

From the recovered model, I want to extract directional information. I resort to

an image moment algorithm to extract dominant patterns on the windowed por-

tion of the model. I first demonstrate the procedure on the UBC Crest shown in

Figure 6.10.

2.1: Density values are converted to a binary image using the python routine

ScikitImage.Skeleton to extract dominant feature (Lee et al., 1994). The

2D image is reduced to one pixel wide representations by recursively identifying

and removing border pixels. The process is carried out until no pixels can be

removed without breaking the connectivity of a given feature.

2.2: Position and orientation of dominant features are extracted with an image

moment approach (Hu, 1962). For a set window of the image with pixel intensity

defined by I(x,y), the image moment is given by

mi j = ∑
x

∑
y

xiy jI(x,y) . (6.6)

The angle defining the principal axis is calculated by

θ =
1
2

arctan
(

2m11

m20−m02

)
(6.7)
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Figure 6.10: Example of an automated azimuth estimation using the UBC Crest.
(b) The image is first converted to a binary image using the python routine
ScikitImage.Skeleton. Image moment calculations are performed on
moving windows to determine the position and orientation of dominant features.
(c) Vectors are then rotated by 90◦ to point along the normal of edges. The
normal vectors are checked for consistency in preparation for interpolation.

and the center of mass of the image is given by

xc =
m10

∑x ∑y I(x,y)

yc =
m01

∑x ∑y I(x,y)
,

(6.8)

Calculations are only performed for windows that contain at least 5% of non-zero

pixels. This process is repeated across the entire section by incrementally moving

the window location. Efficiency can be gained by displacing the window based

on the calculated orientation. This results in a collection of vectors pointing along

with the main features, as shown in Figure 6.10(b).

2.3: Orientation vectors are rotated by 90◦ to point normal to the edge of fea-

tures (Figure 6.10(c)). Neighbouring normals are compared to each other for con-

sistency, such that vectors pointing against the general trend are rotated by 180◦.

This final step is important for a smooth interpolation of angles in 3D space. In

complex geological settings, this step may require quality control checks from the

user.
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Figure 6.11: (a) Image moment calculations over windowed regions of the in-
verted density model. Arrows are plotted for the principal direction (red) and
normal (white) of the main density anomaly. (b) Normal vectors are interpo-
lated in 3D and used to rotate the objective function.

Carrying out the process described above on a horizontal section of the density

model, I recover the orientation vectors presented in Figure 6.11. In this case, I

choose a square window 200 m in width that sweeps through a draped section of

the density model at 40 m depth (two vertical cells). This choice depends on the

discretization and wavelength information present in the data. Going down a few

cells below topography generally offers a good compromise between damping the

near-surface variations while preserving major trends. Just as for the structural

data in Chapter 5, I interpolate the normal vectors in 3D using minimum curvature

approach (Briggs, 1974).

Step 3: Model space inversion

Now that I have determined the preferential orientation (normal) of geological

bodies, I will attempt to extract preferential dip directions. I proceed with a se-

ries of 12 inversions with rotated sparse norms over a range of rotation angles for

θ ∈ [−90◦, 75◦] at 15◦. Figure 6.12 compares the recovered models along the EW

section B-B’.
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Figure 6.12: Suite of models with directional gradients for θ ∈ [−90◦, 75◦].

Step 4: Dip estimation

From the twelve recovered models, I proceed with PCA and form an average model

as prescribed in Section 6.1.2. The calculated average model is shown in Fig-

ure 6.13. From this average model, I extract dip information along vertical sec-

tions using the image moment strategy presented in Step 2. The resulting angles

are extrapolated in 3D and used to rotate the objective function.

Step 5: SVMN inversion

In the final step, I re-invert the dataset with rotated sparse norms. The final so-

lution is shown in Figure 6.14. I note the good match between the solution and

the true position of the dense layer. I have obtained this solution without external

input, other than the window size and threshold value used in the image moment

estimation.
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Figure 6.13: Sections through the average PCA model and rotation vectors (ar-
row) derived from the image moment analysis.

Figure 6.14: (a) Horizontal and (b, c) vertical sections through the recovered
model using rotation angles derived from the average PCA model.
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6.3 Summary
Leveraging the mixed norm regularization function of Chapter 3 and pattern recog-

nition algorithms, I have explored ways to extract inversion parameters from the

solution space. The assumption is made that the shape and position of robust fea-

tures can be highlighted, as long as the data is sufficiently sensitive to their ge-

ometry. I have shown that gravity surveys could be used to determine the strike

and dip of geological features with detectable edges. I have demonstrated this by

successfully imaging a continuous and folded density layer. This process was only

possible because the edges of the anomaly were detectable from the surface. Simi-

lar procedures would not have been successful in a strictly layered environment to

which potential fields are not sensitive.

The rotation parameters are soft geological constraints that reinforce modelling

trends without having to specify the location of physical property contrasts. This is

an appealing property of the algorithm for greenfield settings as the implementation

requires little input from practitioners and easily be automated.

The methodology developed in this chapter is general and can easily be ex-

tended to other geophysical methods, such as electromagnetic and seismic data.

The rotation parameters could potentially be derived from multiple physical prop-

erties. Preferential orientations could form a basis for joint or cooperative physical

property inversion.
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Chapter 7

Case Study - Kevitsa Ni-Cu-PGE
deposit

In the previous chapters, I have provided technical developments to explore the

model space, interpret a suite of models and extract dominant inversion parame-

ters. The different components were tested on synthetic examples that showcased

specific aspects. In this final chapter, I demonstrate the practical implementation

of these advances on gravity and magnetic data sets acquired over the Kevitsa Ni-

Cu-PGE deposit. The complex geology of Kevitsa makes it an ideal candidate to

showcase my research.

7.0.1 Geological setting

The Kevitsa deposit was discovered in the mid-1980’s through extensive explo-

ration programs sponsored by the Geological Survey of Finland. The proven 160

million tons of nickel is economically significant in the region as it is expected to

become the largest mine in the country. Figure 7.1 presents a simplified geolog-

ical map of the Kevitsa-Satovaara intrusive complex adapted from Koivisto et al.

(2015). The ore deposit is hosted in a funnel-shaped ultra-mafic olivine pyroxen-

ite (UPXO) unit dipping towards the southwest, dated to approximately 2054 Ma

(Gregory et al., 2011; Mutanen, 1997). Directly adjacent to the southwest margin

is a large gabbro (IGB) unit formed during a late phase of the intrusion. Similar

gabbro, found west of the Satovaara Fault, is likely related temporally. The body
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Figure 7.1: (a) Geological surface map of the Kevitsa-Satovaara intrusive com-
plex and (b) 2D seismic reflection survey along with the E5 profile. Inter-
preted seismic reflectors and geological contact (black) from the interpretation
of Koivisto et al. (2015) are shown for reference, as well as the outline of the
gravity and magnetic data sets analyzed in this chapter.
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intruded a mostly layered sequence of mafic volcanic (MVS) and carbonaceous

phyllites (MPH) units. Discontinuous layers of arkose (ARK), arenite (ARN) and

felsic volcanic (FVS) units are interbedded within the volcanic sequence. The

current folded configuration of the geology is due to large tectonic events that de-

formed the host stratigraphy around the more competent UPXO block.

It is believed that the disseminated sulphide mineralization within the UPXO

was precipitated from the dissolution of Ni-Cu rich proterozoic metasediments,

referred to as black schist (MPHB) (Mutanen, 1997). Mineralogical and textural

changes observed on core samples within the intrusion reveal the highly heteroge-

neous nature of the deposit. A highly altered dunite raft (UDU), referred to as the

central dunite, is located between the IGB and UPXO. It has likely been partially

assimilated by the UPXO intrusion.

Seismic surveys acquired over the deposit have been studied extensively and

yielded the most complete picture of the deposit to date. Koivisto et al. (2015)

interpreted the profiles along side drill hole data to produce a partial 3D surface

model of the deposit. The bottom limit of the intrusion is marked by a series of

strong reflectors, interpreted as footwall dunite units and host stratigraphy (Fig-

ure 7.1). Additional UDU units have been intercepted by two deep holes, but it

is unclear if this is related to the central dunite or to the komatiite (UKO) layers

found in the host stratigraphy. The southern continuation of the Kevitsa intrusion

can clearly be seen along the E5 seismic profile, as a thick 1km non-reflective zone,

but no bore hole is available to confirm the lateral extent.

Petrophysical data

Along with geophysical data, physical property measurements collected along 279

bore holes were made available for analysis; they include density, magnetic suscep-

tibility, conductivity, seismic velocity measurements. Figure 7.2 presents whisker

plots summarizing the measured density and susceptibility grouped by lithological

units. The interpretation of core logs is challenging due to the complex geology

and broad terminology used to describe the rocks. In order to focus my analysis, I

generalize the rock classification into 10 main geological groups as summarized in

Table 7.1. These groups were defined in terms of relative age and expected physical
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property contrasts. I note a few obvious trends:

• Intermediate and felsic volcanic rocks (VIO) show low density and moderate

to low magnetic susceptibility

• The komatiite (UKO) and dunite (UDU) show significantly higher suscepti-

bility but low density

• The intrusive rocks (UPX) and (IGB) are both dense and susceptible

Overall I should expect high physical property contrasts between the different

lithologies. While I will not directly incorporate this information in the inversion,

it will be used to define research questions and for the final interpretation.

7.1 Geophysical data
Kevitsa is an interesting case study considering the large collection of data sets that

were acquired and made available to researchers: bore hole petrophysical measure-

ments (Montonen, 2012), seismic refraction (Koivisto et al., 2015), direct-current

resistivity and magnetotelluric (Le et al., 2016), airborne time-domain EM surveys

(VTEM 2009, SkyTEM 2010). In this section, I focus on the ground gravity dataset

and airborne magnetic data collected by the VTEM survey shown in Figure 7.3(a)

and (b) respectively.

From simple visual inspection, I note some obvious connections between the

potential field data and the surface geology:

• High gravity and magnetic data correlated with the UPXO and hydrothermal

BXH

• Moderate response from the VMO

• Weak fields over most of the MPHB units.

• Magnetic high and gravity low over the komatiite (UKO),

• Large negative magnetic anomaly within the UDU and near the southern

edge of UPXO
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Code Description Density Susceptibility
OVB Overburden Low Medium

IGB

IGB: Gabbro
IPG: Pegmatite
IGBO: Olivine gabbro
IDI: Diorite
IDB: Diabase
IMO: Intrusive (mafic)
IGBM: Magnetite gabbro

Medium

Medium

Medium

High

UPX

UPXO: Olivine peroxinite
UOO: Ultramafic (Undiff.)
MPE: Metaperidotite
UWB: Websterite

Medium Medium

UDU
UDU: Dunite
UPE: Peridotite
USP: Serpentinite

Low High

UKO Komatiite Low High

BXH
BXO (undiff.)
BXHC: Hydrothermal (crackle)

Low
High

Medium

SOO

MAB: Albitite
MAM: Amphibolite
MQZ: Quartzite
MSCSD: Schist

Low Low

MPH

MPH: Phyllite
MPHB: Black Phyllite
MSCBK: Black Schist
MHF: Hornfels

High Low

VMO
VMO: Volcanic Mafic
VBA: Basalt
VTUM: Volcanic tuff

High Low

VIO

VIO: Volcanic Intermediate
VTUI: Volcanic tuff
VAN: Andesite
VOO: Volcanic (undiff.)

Low Medium

Table 7.1: Summary table grouping the various lithological units logged from
bore hole. Expected density and magnetic susceptibility contrasts are derived from
Figure 7.2.
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Figure 7.2: Whisker plot of logged (a) density and (b) magnetic susceptibility
measured along 279 boreholes. The coloured boxes have a width scaled by the
calculated standard deviation and centered on the mean value for all intercepts
belonging to the same lithological classification. The black lines on either side
define the minimum and maximum values. The different lithologies are colour
coded and grouped based on relative age and similarities in physical properties.

The strong negative magnetic fields observed over the dunite unit are of particular

interest for this study, as it is likely related to remanent magnetization. Analy-

sis from core samples by Montonen (2012) reported large Keonigsberger ratios

and reversed magnetization direction in the UDU unit as summarized in Table 7.2.

It is important to note that large Koenigsberger ratios were also measured in the

122



Figure 7.3: (a) Ground gravity and (b) airborne magnetic data map acquired
over the Kevitsa Ni-Cu-PGE deposit, Finland. Color ranges are histogram equal-
ized and sun shaded to highlight details. The location of the Kevitsa mine (red),
geological boundaries (black) and faults (dash) identified from surface mapping
are shown for reference.
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Hole ID Interval κ (SI) Inc. (◦) Q
KV297 0-52.9 0.034 −42.4±18.9◦ [2,10]
KV200 29.9 0.038 −50.9 5.4

Table 7.2: Intervals along boreholes KV200 and KV297 reporting significant
remanent magnetization (Montonen, 2012)

lower UPXO unit, although susceptibility values remained small. In the absence

of oriented core, no magnetic declinations were provided. From forward mod-

elling of magnetized sheets, Montonen (2012) estimated that a magnetized unit

with effective susceptibility 0.82 SI and orientated [I = −42.5◦,D = 240◦] could

be responsible for the observed negative magnetic anomaly.

7.1.1 Modeling objectives

Due to the complex and disseminated nature of the mineralization, substantial mod-

elling efforts continue to be invested to better understand the intrusion. Most of the

drill holes made public are concentrated within the UPXO, which leaves a few

questions unanswered

1. Can potential fields be used to define the 3D geometry of the intrusion?

2. Can we distinguish variations in physical properties within the UPXO related

to mineralization?

3. Can we characterize the central dunite and possible extension at depth?

4. Can the magnetic response be used to infer tectonic deformation?

7.2 Gravity inversion
I first invert the ground gravity data set acquired over the Kevitsa deposit shown

in Figure 7.3(a). I will attempt to model the 3D geometry of the intrusion and

host stratigraphy based on density contrasts. The survey consists of 28,860 gravity

stations collected at 20 m intervals along east-west and north-south lines spaced at

100 m. Data were terrain corrected with a reference density of 2.67 g/cc. I design
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an OcTree mesh for the inversion with 25 m cells in the core region extending 2

km at depth. After several inversion trials, data uncertainties are set to 0.1 mGal.

As a first pass, I invert the data with the linear `2-norm regularization. Fig-

ure 7.4(a) presents a section through the recovered density model at ≈ 200 m

depth. I also extract a vertical section along the seismic profile E5 in Figure 7.4(b).

I note that the bulk of the density anomaly is located inside the upper portion of

the UPXO. As expected from smooth assumptions, the edges of the anomaly are

poorly defined.

Clearly the assumption of a smooth density distribution is not sufficient to es-

tablish a clear correlation between the known lithology and density. Taking ad-

vantage of the methodology developed in this thesis, I will attempt to improve the

definition of geological domains. First I need to define rotation angles in 3D to

better represent the folded geology of Kevitsa. In this case, I do not have to learn

the orientation as a I have access to geological interpretation at the surface and a

seismic profile at depth. The folded geology of Kevitsa appears to be more or less

symmetric radially around the center of the intrusion. I will, therefore, assume that

vector components extracted from the vertical section can be interpolated in 3D.

Using the method of image moment introduced in Chapter 6, I extract orientation

of major contacts over the study area. Figure 7.5 presents the orientation vectors

used for the rotation of the objective function.

I then proceed with nine inversions over a range of mix-norm penalty functions

for ps, py′,z′ ∈ {0, 1, 2}, px′ = 2. Only the normal component of the geological

contacts is fixed to the `2-norm. Horizontal and vertical sections through the nine

recovered density models are shown in Figure 7.6 and Figure 7.7 respectively.

Residual data maps are shown in Figure 7.8. Correlated residuals indicate that

some of the short short wavelength information is under fitted.

In order to simplify the interpretation, I overlay iso-contour values of low and

high density using the 5th and 95th percentile of density values for each of the nine

independent inversions. From Figure 7.9 I make a preliminary interpretation.

• The recovered density within the UPXO unit appears to be highly variable.

The known ore deposit appears to be sitting within a region of moderate

density.
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Figure 7.4: (a) Horizontal section at ≈ 200 m depth below topography through
the recovered density model after convergence of the algorithm for ps = px =
py = pz = 2. (b) Vertical section of the density model overlaid on the 2D seismic
reflection line E5. Interpreted geological contacts (black) are shown for compar-
ison.
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• Density lows are strongly correlated with mapped schist (SOO) and phyllite

(MPH) units on the outer perimeter of the intrusion. The same does not apply

to the black schist unit (MPHB) found immediately south of Kevitsa. While

MPH and MPHB appear to have been used interchangeably to build the ge-

ological map, the recovered density appears to be a distinguishing property.

The most important aspect of this result is the general trend observed for the main

intrusion that extends south-east below the gabbro. This result is interesting as I

managed to recover models that are in good agreement with the seismic interpre-

tation of Koivisto et al. (2015), even though no information about the depth of the

intrusion was included in the inversion. So f t geological constraints, in terms of

general trend, were sufficient to push the lateral extent of the density anomaly in

accordance with the gravity data.

7.3 Magnetic inversion
I follow my analysis with the processing of magnetic data collected during the

2009 VTEM survey (Figure 7.3(b)). The inducing field parameters at the time of

acquisition were B0 = [A : 52,800 nT, I : 77.5◦,D : 12.2◦]. Similar to the gravity

inversion, I design an OcTree mesh with 50 m core cells extending 2 km at depth.

I determined experimentally a 10 nT uncertainty floor value to the data.

I first invert the TMI data with the conventional smooth susceptibility assump-

tion (ps = px = py = pz = 2) and ignore the effect of remanence. From sections

through the recovered susceptibility model, presented in Figure 7.10(a) and (b), I

note discrepancies with the known geology:

• In plan view, the arc shaped anomaly, SW of the deposit, is recovered outside

the mapped UKO unit.

• Along the E5 seismic section, no susceptibility anomaly is recovered over

the central dunite. This directly contradicts the core sample measurements

made by Montonen (2012).

• The shape and extent of the large anomaly correlates poorly with the UPXO

unit interpreted by Koivisto et al. (2015) from seismic reflectors.
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• The residual data map shows strong correlation with the location of strong

negative magnetic fields.

I conclude that the magnetic response observed at Kevitsa cannot solely be at-

tributed to an induced magnetization.

To address issues posed by remanence, I proceed with the MVI-S algorithm.

I perform a series of nine inversions with varying sparsity measures to assess the

variability in the magnetization model. Starting from a common `2-norm MVI-C

model, I sequentially vary the combination of norms applied to the amplitude and

its derivatives for (pρs , pρxyz ∈ [0,2]) and I apply the same rotation parameters as

previously used for the gravity inversions. In this regard, the sparsity and rotation

parameters tie the density and magnetization inversions together. While not jointly

inverted, I expect some correlation between the two physical properties. Horizontal

and vertical sections through the recovered nine magnetization models are shown

in Figure 7.11 and 7.12 respectively. Residual data maps are shown in Figure 7.13

for all nine inversions.

To simplify the analysis, I superimpose the 90th percentile iso-value of ampli-

tude for each of the nine models (Figure 7.14). I calculate an average magnetization

direction (white) and standard deviation on the angle (red). I observe the following:

• The known ore deposit appears to sit within a volume of low magnetization.

• Parts of the central dunite unit appear to be reversely magnetized [κe =

0.09 SI, I =−52◦±15◦, D = 246◦±5◦] This is in excellent agreement with

the laboratory results published by Montonen (2012)

• The vertical magnetic anomaly between the IGB and UPXO unit, likely re-

lated to the central dunite unit, appears to be plunging towards SE, poten-

tially extending below the UPXO unit as hypothesized by Koivisto et al.

(2015).

• Strong magnetization recovered along the outer-shell of the ultra-mafic intru-

sion appears to be pointing radially outward. Largest magnetization appears

to originate below the UPXO unit.
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• Similar magnetization direction pointing normal to the arc-shaped peridotite

unit.

The last two remarks are interesting for a few reasons. First, strong magneti-

zation below the base of the ultra-mafic supports the presence of magnetic UDU

layers. Secondly, the orientation of magnetization pointing normal to the base of

the unit may be indicative of past tectonic deformation. Under the assumption that

the remanent magnetization component had been fairly uniform within the layered

UDU, UKO and UPXO unit at the time of formation, then the current radiating

magnetization pattern would be caused by subsequent folding of the units. If this

is the case, then this is one of the first times that airborne magnetic data would have

been used as a marker for tectonic deformation of elongated and folder geological

units.

While my modelling of the central dunite unit agrees with published laboratory

measurements, the cause for this reverse magnetization direction remains unclear.

No other lithological units appear to share the same orientation. Re-magnetization

after the emplacement of the ultra-mafic intrusion is unlikely as a similar reversed

polarity pattern would also be expected elsewhere at Kevitsa. I speculate that the

dunite block could be related to the lower UDU unit, which would have been ro-

tated to its current sub-vertical location.

7.4 Summary
The inversion of gravity and magnetic data over the Kevitsa deposit yielded valu-

able information. First from the gravity inversion, I have imaged the UPXO at

depth and extending below the gabbro unit. Second, variations in density and mag-

netization inside the UPXO unit is of interest as it appears to correlate well with the

known mineralization. This could potentially be used for future exploration work.

Third, the average magnetization model confirms that the central dunite unit

is associated with strong reversed magnetization oriented roughly [κe = 0.09 SI,

I = −52◦±15◦, D = 246◦±5◦]. There is also a strong indication that it could be

connected to the lower dunite units, although the magnetization direction would

require the central dunite to have undergone a rotation of almost 180◦.

Potentially the most significant outcome of this case study is the recovered
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magnetization pointing normal to the base of the UPXO unit. A similar radiating

pattern is observed in the komatiite unit east of the deposit. If confirmed by labo-

ratory measurements, this result would be one of the first cases of paleomagnetism

based on the inversion of airborne magnetic data over folded geology.
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Figure 7.5: Rotation parameters (normals) derived from (a) surface geology and
(b) major reflectors detected on the seismic profile E5.
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Figure 7.6: Horizontal sections at ≈ 200 m depth below topography through
the density models recovered over a range of `p-norms applied on the model and
modeled derivatives for ps, px,y,z ∈ {0, 1, 2}
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Figure 7.7: Vertical sections overlaid on the 2D seismic reflection line E5
through the density models recovered over a range of `p-norms applied on the
model and modeled derivatives for ps, px,y,z ∈ {0, 1, 2}
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Figure 7.8: Residual data maps for the nine gravity inversions.
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Figure 7.9: (a) Horizontal and (b) vertical section comparing iso-surfaces for
the 5th and 95th percentile of anomalous density values recovered from the nine
mixed norm inversions for ps, px,y,z ∈ {0, 1, 2}.
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Figure 7.10: (a) Horizontal and b) vertical sections through the recovered sus-
ceptibility model that ignores the effect of remanence. Lithological contacts
(black) identified by Koivisto et al. (2015) are shown for reference. A large
dome-shaped zero-susceptibility anomaly is recovered at the center of the Ke-
vitsa intrusion, likely due to remanence. (c) Residual data map shows strong
correlation with the negative anomalies.
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Figure 7.11: Horizontal sections at≈ 300 m below topography for a suite mod-
els using various sparsity assumptions put on the amplitude of magnetization
for ps , px,y,z ∈ [0, : 2]. Norm measures on the magnetization angle are fixed to
px,y,z = 0 in order to promote uniform magnetization
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Figure 7.12: Vertical sections through the recovered magnetization models. Ef-
fective susceptibilities are concentrated within the UDU and on the lower mar-
gin of the UPXO unit.
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Figure 7.13: Residual magnetic data maps for the nine MVI-S inversions.
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Figure 7.14: (Top) Horizontal and (bottom) vertical sections through iso-
contours of magnetization recovered from nine mixed `p-norm inversions. Mag-
netization orientation (white) and standard deviation on the angle (red) are
shown.

140



Chapter 8

Conclusion

The overarching goal of this research thesis was to facilitate the interpretation of

potential field data acquired over complex geology and to extract as much infor-

mation out of the data through a semi-automated learning process. These goal

was motivated by technical limitations encountered with conventional inversion

methodologies. Geophysical inverse problems are inherently non-unique and the

character of the solution depends on assumptions set by the user. Smooth physical

property inversions yield models that poorly represent sharp geological contact,

while sparsity assumptions generally yield simplistic blocky anomalies. The range

of possible solutions available for interpretation has generally been fairly limited.

More experienced users may be able to improve the interpretation with geological

constraints, but building and testing different scenarios remains a laborious process

that is difficult to track. In this regard, the methodology presented in this thesis sit

somewhere between the blind unconstrained inversion and the expert-driven geo-

logical inversion. I have developed a methodology and software that can generate

a suite of models that honor so f t geological assumptions.

In Chapter 2, I reviewed the numerical implementation of gravity and magnetic

forward modeling in integral form. I tackle numerical limitations associated with

the storage and manipulation of large dense matrices. The memory footprint of po-

tential fields problem is reduced at two levels. First, I borrow the mesh decoupling

strategy previously used in electromagnetic modeling. The global forward prob-

lem is broken down into tiles each associated with nested Octree mesh. Secondly,
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I leveraged open-sourced technologies for out-of-core storage of dense matrices.

Used in concert, the two advancements allowed to run large forward problems

without the need for compression.

In Chapter 3 I reviewed some of the work I had previously investigated during

my Master’s thesis regarding the implementation of a mixed `p-norm regulariza-

tion. I identified a new scaling strategy based on the maximum partial derivatives

of individual regularization functions such that multiple penalties could impact the

solution. The robust implementation of mixed norm assumptions is at the core of

this research as it allows me to generate a suite of solutions and explore the model

space in a consistent manner. This chapter resulted in the research paper Fournier

and Oldenburg (2019a).

Chapter 4 builds upon the magnetic vector inversion in spherical coordinates

first introduced by Lelièvre (2009). The algorithm has received little attention due

to the difficulty in solving the non-linear inverse problem. With knowledge gained

in Chapter 3, I developed an iterative rescaling strategy based on the maximum

partial derivatives of the sensitivity function. The decoupling of the magnetization

strength and orientation allowed me to apply sparsity assumptions for the recovery

of well-defined anomalies with coherent magnetization direction. It is an improve-

ment over methods previously published as it is can deal with complex geological

settings comprising multiple anomalies with arbitrary shape.

Chapter 5 is a generalization of the methodology introduced in Chapter 3 for

the recovery of oriented edges. The measure of model gradients along the Cartesian

axes was a choice of convenience but it poses a major limitation for the modeling

of folded and dipping geological contacts. I introduced a 7-point gradient operator

measuring the model gradients with diagonal cells. I have also shown how scarce

structural measurements can be interpolated and used to guide the inversion.

Chapter 6 takes the model space inversion further by attempting to learn from

the suite of solutions. I investigated ways to extract optimal inversion parameters

based on recurrence of dominant features. I utilized basic machine learning tools

such as PCA, edge detection and image moment algorithms to identify patterns and

build constraints. I elaborated a strategy to automate dip and strike estimation of

isolated geological units.

All the technology brought forward in this thesis were put to test in Chapter 7
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on the Kevitsa Ni-Cu-PGE deposit. I inverted ground gravity and airborne mag-

netic data using rotated sparse norms. The resulting density and magnetization

model highlighted important features of the deposit. First from the density model,

I confirmed the seismic interpretation of an extended ultra-mafic unit under cover.

The magnetization model also corroborated previous studies in modeling the re-

manent component of the central dunite. The inversion also indicated a possible

connection with other units found at the base of the intrusion. Potentially the most

significant outcome of this case study is the orientation of magnetization recovered

in several folded units. While other studies have attempted to use magnetization

inversion to gain insight about the geological history of a deposit, it is likely the

first time that this was done at such a large scale and over complex geology.

8.1 Limitations and future work
The work presented in this thesis represents a significant gain in flexibility for in-

verting gravity and magnetic data, but this comes at an added computational cost

needed to a single inversion and also for generating a suite of models. This is exac-

erbated by the cooling strategy of the threshold parameter introduced in Chapter 3

such that sparsity assumptions are slowly phased in. It is important to note that

each model is a valid candidate with respect to the geophysical data. These models

could potentially be used earlier in the learning process to avoid repetitive iteration

steps.

Attempting to use magnetic vector inversion for large scale paleomagnetic

studies is an appealing approach that warrants further investigation. Sparsity as-

sumptions have helped in recovering coherent magnetization direction inside iso-

lated anomalies. This process is less stable when performed over multiple magnetic

anomalies with overlapping signal. The use of magnetic gradient data may help in

reducing the non-uniqueness and in better defining the boundaries of anomalies.

Another aspect of magnetic vector inversion that I have not addressed in this thesis

is to isolate the remanent component from the total magnetization. This could po-

tentially be accomplished by jointly inverting electromagnetic and magnetic data

for the modeling of susceptibility, remanence and conductivity.

The learning algorithms presented in this thesis have served their purpose in
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identifying trends in the model space and extracting local parameters. A critical

component of this process is the pattern recognition phase. This step still relies

heavily on the user to determine tuning parameters that are currently found by trial

and error. Some level of quality control is also needed when defining rotation pa-

rameters such that strike and dip angles are consistent with known dip directions.

More advanced machine learning algorithm could potentially improve these pro-

cedures. The learning process could be performed on multiple physical properties

and serve as a link for joint and cooperative inversions.

Research dedicated to potential field data is likely to continue and grow as the

quality and quantity of surveys continues to increase. While I have made inroads

in reducing the computation cost of potential fields inversions, large (continental)

scale inversion remains difficult. One of the main tuning parameters that I have

mostly ignored in this project is the reference model. At a large scale, choosing

a single reference value is undoubtedly a gross generalization that can adversely

affect the solution. Future work should investigate the use of model decompo-

sition techniques such that the inversion is performed on both the reference and

anomalous properties. Large scale model decomposition inversion could be done

at various resolutions with the use of spherical Octree discretization.

The methodology presented in this thesis will be extended to other geophysical

data. Work is currently underway to test the model space inversion on electrical

resistivity problems and airborne electromagnetics.
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Appendix

This section describes the partial volume calculation defined by the intersection of

two upright prisms. Let us define the extent of a prism mi by the lower southwest

and upper northeast nodal coordinates:

mi = [nL nU ] =

xL xU

yL yU

zL zU

 (A.1)

To calculate the volume of intersection of two prisms mi and m j I first calculate

the length Lx intercepted along the x-axis as

Lx = max
[
xmax− xmin 0

]
xmin = min

[
nxU i nxU j

]
xmax = max

[
nxLi nxL j

] (A.2)

The same calculation is done along the y and z axes (Ly, Lz). The total volume is

than calculated as

V = Lx ∗Ly ∗Lz (A.3)

Intersecting length calculations in (A.2) can easily augmented for M pairs of cells.
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