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Abstract 

 

Farms are becoming larger in high-income countries and smaller and more fragmented in low-

income countries. This farm size transition has motivated recent international policy calls to 

combat inequities in the global food system and to promote more environmentally friendly 

production practices. This dissertation seeks to understand the impact of this transition on global 

food production, on the environment, and on small-scale farmers’ livelihoods. Each chapter aims 

to examine the underlying assumptions of these policy calls by testing the relationship between 

small-scale farms and key socio-ecological outcomes. Through creating a harmonized dataset 

across 55 countries, Chapter 2 estimates that 30-34% of the world’s food is produced by farms 

under 2 hectares in size and smaller farms producer a greater diversity of crop species than larger 

farms. Chapter 3’s meta-analysis synthesizes the past 50 years of empirical evidence on the 

relationships between farm size and several socio-ecological outcomes of farming systems (i.e., 

yield, biodiversity, resource-use efficiency, greenhouse gas emissions, and profitability). We 

found that smaller farms have higher yields and promote more non-crop biodiversity (across 

species at the farm and landscape scales) than larger farms. We found no relationship between 

farm size and resource-use efficiency, but smaller farms had a non-significant trend to lower 

greenhouse gas emissions per crop output than larger farms. Chapter 4 builds on this meta-analysis 

to investigate the relationship between farm size, productivity, and income using harmonized 

national sample surveys from 34 countries across the Global South. Our results highlight that while 

smaller farms are more productive than larger farms, they have lower per capita incomes. 
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Critically, we also found that the current internationally agreed upon target of doubling small-scale 

farmer incomes is not aggressive enough to transition them out of poverty. Chapter 5 outlines 

pathways for the international community to identify and monitor small-scale food producers, 

which is a central hurdle to ensure governments keep their agreed upon commitments to support 

small-scale farmers. This dissertation makes several empirical contributions to the literature on the 

contribution of small farms to the global food system, and can help inform policy initiatives aimed 

to support small-scale farmers. 
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Lay Summary 

 

The majority of the world’s farms are smaller than two soccer fields. Despite representing the 

majority of all farms, small-scale farmers are amongst the most impoverished and food insecure 

populations in the world. This dissertation seeks to understand relationships between farm size, 

crop production, farmer livelihoods, and the environment. The results suggest that smaller farms 

grow a large amount of the world’s food, promote crop and non-crop biodiversity, and are more 

productive than larger farms. Yet, we found that many smaller farm households still live below 

their national poverty lines. These results can help inform current international initiatives aimed 

to support small-scale farmers, such as the Sustainable Development Goals, by refining 

development targets and by establishing pathways to monitor the role of small-scale farms in the 

global food system. 



 

 
vi 

Preface 

 

This is a manuscript-based dissertation, where Chapters 2-5 were written as independent articles. 

Since each article was prepared for a different publication outlet, there are some overlap contained 
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advisor, Navin Ramankutty, and committee members, Hannah Wittman and Milind Kandlikar. 
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I designed the protocol, I was the primary data collector, I conducted the analysis, wrote the first 

draft of the article, and incorporated co-author edits on subsequent revisions. Co-authors assisted 

in a combination of data processing, analysis guidance, and/or editing. 

Chapter 4 has been prepared for peer-reviewed publication with Navin Ramankutty and Zia 

Mehrabi. This chapter was in collaboration with the Food and Agricultural Organization (FAO), 

in which my analysis was being used to both detect data anomalies in their new dataset and as a 

demonstration for their dataset’s utility. I conducted the analysis, wrote the first draft of the article, 

and incorporated co-author edits on subsequent revisions. Co-authors assisted in analysis guidance 

and editing. 

A version of Chapter 5 has been prepared to be submitted as a policy paper to an international 

development outlet. This chapter was written in collaboration with Navin Ramankutty, Hannah 

Wittman, Zia Mehrabi, and Balsher Sidhu. I conducted the analysis, wrote the first draft of the 

article, and incorporated co-author edits on subsequent revisions. Co-authors assisted in analysis 

guidance and editing. 
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Chapter 1: Introduction 

 

1.1 Overview 

The majority of the world’s farms are small -- of the 570 million farms in the world, 84% are less 

than two hectares (ha) in size and constitute 12% of farmland area (1). Many scholars claim that 

smaller farms are more productive, resource-use efficient, and environmentally friendly than larger 

farms (2–4), and yet, smallholder (a synonym for small-scale farmers) livelihoods are facing 

pressure from low prices in global markets and production losses from climate-change induced 

extreme weather (5). Smallholders are amongst the most impoverished and food insecure 

populations in the world (6, 7). 

An added stress to smallholder livelihoods is that the scale of agricultural production is rapidly 

changing. In general, farms are becoming larger and more industrialized in high-income countries, 

and smaller and more fragmented in low-income countries (Figure 1) (1). The primary factors 

mediating changes in farm size are economic development, land consolidation and redistribution 

policies, colonial legacies, traditional land inheritance systems, and Large-Scale Land 

Acquisitions (LSLA) (8, 9). Depending on how a country develops its non-agricultural sectors, 

farmers can be pulled out of agriculture when there are other employment opportunities -- a process 

that often leads to larger farms. However, farmers can also be pushed out of farming when land 

consolidation policies are enacted, and pushed into poverty and food insecurity if such policies are 

enacted before the economy is able to absorb the resulting agricultural work-force into non-
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agricultural employment (9). Thus, changes in farm size can be a driver of food insecurity and 

poverty, as well as a response to broader economic growth and improved food security. Across 

socio-political and environmental contexts, the cumulative impacts of farm size transitions remain 

largely understudied for both farmers and wider society. 

 

Figure 1: Globally, the average farm size is increasing (left axis). Farms in high-income countries 
are getting larger (left axis) and farms in low income countries are getting smaller (right axis). Data 
from Lowder et al. (1). 

 

There has been growing concern about the need to promote economic growth that is inclusive of 

small-scale farmers. From the 1990s through 2010, there has been a surge of national level policies 

targeting improved incomes and productivity of small-scale farms (Figure 2). Recently, 

international efforts by civil society organizations have shifted to coordinate donor resources 

explicitly to include smallholders into sustainable development agendas. The most widely 

recognized of these international efforts is Goal 2 of the UN Sustainable Development Goals 

(SDGs) that aims to end hunger and achieve food security through sustainable agriculture; a key 
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target (SDG 2.3) is by “2030, [to] double the agricultural productivity and incomes of small-scale 

food producers, in particular women, indigenous peoples, family farmers, pastoralists, and fishers” 

(10)⁠. Several other international efforts in support of smallholders preceded SDG 2.3. In 2014, the 

“International Year of the Family Farm,”  the United Nations (UN) and other food security 

agencies reinforced the need to support for family farmers (11), a term often interchanged or 

analogous with smallholders (12). The COP21 agreement (the 2015 UN Conference of Parties on 

Climate Change) resulted in 179 country commitments that include bolstering smallholder 

adaptive capacity to climate change. Apart from these sustainable development initiatives, 

consumers in higher-income countries are increasingly concerned about health, farmer livelihoods, 

and the decline of diverse and traditional foods; these trends have led to an increased willingness-

to-pay for products with organic and/or local labels, which are often associated with smaller farms 

(13–17). Despite progress in including smallholders and consumer interest in smaller farms in 

international policy agendas, there is scant empirical data on smallholder farms and their role in 

the global food system. 
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Figure 2: Data from the FAOLEX database, which contains over 132,000 policies, legislation, 
regulation, international agreements, and constitutions from around the world from 1990 to 2015. A 
search for the keyword “smallholders” revealed a cumulative 443 national policies, legislations, 
regulations, and/or constitutions for 127 countries (out of 196 total). 

 

To support sustainable transitions in farm size, promote international policy calls, and hold 

governments accountable in their agreements for inclusive economic development, the research 

and development community needs a better understanding of the role of small-scale farms in the 

global food system. A central challenge to conducting global research on small-scale farms has 

been data availability and the need to study complex drivers and outcomes of smallholders’ food 

insecurity. For instance, while there are many national sample surveys and agricultural censuses 

available, they use diverse definitions of farm size (e.g., operational area, harvested area, etc.), 

contain different crop species and using colloquial names, and are conducted at different scales of 

statistical representativeness. Similarly, the literature on small-scale farms is challenging to assess 

through systematic review and meta-analysis techniques because of the inconsistent definitions for 
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smallholders, the range of analytic methods used across disciplines, the diversity of types of small-

scale farms, and the range of socio-political and environmental contexts that case studies cover. 

Despite these challenges, global-scale research on small-scale farms has made several major 

contributions since 2015 (1, 18–21). Empirical studies have detailed global trends in farm size (1), 

the amount of agricultural land operated by family farms (18), and the types and quantity of crops 

produced by smaller farms (19, 20). Systematic reviews and meta-analyses on small-scale farms 

have examined the relationships between production and dietary diversity in smallholder 

households (22) and environmental impacts across farm sizes (23). These studies represent a 

transition in empirical understandings of smallholders at national or regional scales to the 

importance of smallholder systems at the global-scale for: food production, farmer food security, 

and as possible pathways toward sustainable agriculture. While these themes have been 

championed by certain academic and advocacy groups for many years, large-scale empirical 

analyses to test these claims has been missing. Global scale analysis allows for cross-context 

comparisons to highlight the environmental, poverty, and production relationships and the types 

of policy solutions and/or farm-level innovations that can be applied from one context to another. 

1.2 Objective and research questions (RQs) 

The broad objective of this dissertation is to understand the role of small-scale farms in the global 

food system. Building upon the limited literature of global data analyses and synthesis studies, I 

seek to understand centrally debated topics regarding small-scale farms. To contextualize small-

scale farms, I compare small-scale farms with larger farms to identify how agricultural production, 
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yield, environmental impacts, and income are affected by changes in farm size. More specifically, 

the following research questions are examined (see Table 1 for detailed sub-questions): 

1. How much food do small-scale farmers produce globally? Do certain farm sizes produce 

more food, animal feed, seed, or other types of crop uses? Do smaller farms grow a greater 

diversity of crop species than larger farms? 

2. How do yields, biodiversity, resource-use efficiency, greenhouse gas (GHG) emissions, 

and profitability vary by farm size? How do social, political, and environmental contexts 

mitigate these relationships? 

3. What is the relationship between profit per ha, income per person, and farm size? 

4. Is farm size a good indicator of farmer poverty or do other dimensions of small-scale farms 

(e.g., farm size, economic size, family farms, subsistence production, etc.) offer better 

proxies for farmer poverty? Which combination of definitions can operationally identify 

impoverished farmers for SDG 2.3? 

5. Is the SDG 2.3 target of doubling the incomes of small-scale farmers enough to raise them 

over their national poverty lines? 
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Table 1: Overview of dissertation's themes, key socio-ecological outcome variables, main and sub-
research questions, and which chapter answers each question. A detailed literature review and 
hypotheses are given in each corresponding chapter. The conclusion presents fidings for each 
question in this table. 

Theme Variable RQ Sub-Research Question Chapter 

Production Food produced 1 How much of the world's food is produced by smallholders? 2 
 

Non-food produced 1 Within each farm size class, how much of the crop 
production is allocated to different uses? 

2 

 
Yield 2 Do smaller farms have higher yields than larger farms? 3 

Environment Crop diversity 1,2 Do smaller farms grow a greater diversity of crops than 
larger farms? 

2,3 

 
Non-crop diversity 2 Do smaller farms promote more on-farm and landscape level 

non-crop biodiversity than larger farms? 
3 

 
Resource-use 
efficiency 

2 Do smaller farms have greater resource-use efficiency than 
larger farms? 

3 

 
Greenhouse gas 
emissions 

2 Do smaller farms have lower greenhouse gas emissions per 
unit of crop output than larger farms? 

3 

Socio-
Economic 

Economic 
productivity (profit 
per ha) 

3 Are smaller farms less productive (profit per ha) than larger 
farms? 

4 

 
Income (profit per 
capita) 

3 Do smaller farms have lower incomes (profit per capita) than 
larger farms? 

4 

Policy Small-scale farm 
definition 

4 Is farm size a good indicator of farmer poverty compared to 
other small-scale farm definitions? 

4 

 
Doubling incomes 
as an SDG target 

4 Is the SDG 2.3 target of doubling the incomes of small-scale 
farmers enough to raise them over their national poverty 
lines? 

4 

 

1.3 Defining small-scale farms 

Small-scale farms have a diversity of definitions that range from the spatial operating size of a 

farm to the environmental, socio-political, and economic aspects of a farm. To address these range 

of definitions, I first define small-scale farms in terms of their spatial operating size. Then, I later 

empirically examine how spatial farm size compares to other commonly used dimensions of small-

scale farms (e.g., family farm, economic size, and country relative farm size). 
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My initial focus on the spatial size of a farm addresses three motivations. First, operating area has 

been a critical dimension for land consolidation and land reform policies (9), both of which are 

common rallying points for smallholder advocates (24, 25), and has been conventionally used in 

national sample surveys and empirical literature (1, 26). To answer RQ1 and RQ2, available 

household surveys are harmonized and a meta-analysis is conducted, which reflects the past 50 

years of defining small-scale farms in spatial terms. In addition, recent advances in Earth 

observation has enabled easier classification of field size, which is currently being linked to farm 

size (27). While farmers operating under 2 ha have been defined as smallholders conventionally, 

to answer RQ1, I present both widely used breakpoints for small-scale farms and a continuum of 

farm sizes for the reader to use their own preferred cut-off points. The meta-analysis used to answer 

RQ2 examines how changes in farm size -- opposed to cut-off points -- may affect different socio-

ecological outcomes. Second, consumers in higher income countries are increasingly concerned 

about health, farmer livelihoods, and the decline of diverse and traditional foods, leading to an 

increased willingness-to-pay for products with organic and/or local labels, which are often 

associated with smaller farms (13–17). 

Finally, spatial farm size is one of the two dimensions of small-scale farms that have been proposed 

by the FAO to operationalize the SDG 2.3 target. To monitor SDG 2.3, a combined country-

relevant definition of smallholders would identify a country’s smallest 40% farms (as defined by 

spatial size) and farms within the bottom 40% of economic size (as defined by agricultural 

revenue) (28). Since there has been little cross-regional and global scale work to explore the 

relationships between farm size and intended outcomes of the SDGs (e.g., poverty alleviation, 

decreased environmental impacts, and increased productivity), each dimension of this definition 
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needs to be examined. As one key dimension of the SDG 2.3 operational definition, farm size’s 

connection to ongoing land-use policies, available data, historical usage, and consumer interest, 

and limited analysis across regional contexts and disciplinary boundaries suggests a pressing 

literature gap. 

In this dissertation, I also use non-spatial definitions of farm size. Spatial definitions of farm size  

have been criticized for being arbitrary, lacking a country relevant perspective (e.g., by the 2 ha 

definition, Brazil would have 20% of its farms classified as smallholders, while India would have 

~80% of its farms be classified as smallholders), and not accounting for other key dimensions of 

impoverished farmers, such as a farms’ economic size (e.g., annual revenue), labor dimensions 

(e.g., family labor, female labor, etc.), and market orientation (e.g., level of subsistence) (1, 12). 

In addition, global statistics on the role of small-scale farms in the food system are obfuscated by 

differing definitions, such as “small farms” (1, 19, 20, 29), “peasant farms” (30),  and “family 

farms” (11, 18).  

To answer RQ4, I examine how spatial farm size relates to these other key dimensions associated 

with small-scale farms and how each dimension relates to poverty and economic productivity -- 

the key SDG 2.3 targets. While past studies have relied on policy grounded, yet theoretical 

arguments that are in support of various definitions, my research provides novel empirical tests for 

these different definitions of small-scale farms. My perspective fulfills a key literature gap to 

support these theoretical arguments with newly available and harmonized data from 34 countries 

across the low and middle-income countries (LMIC). 
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1.4 Structure of dissertation 

Chapter 2 examines how much food small-scale farms produce globally through harmonizing a 

dataset of nationally representative household surveys and agricultural census data. The 

harmonized dataset was made open-access with a separate data article detailing the dataset 

construction and testing key assumptions in its construction (Appendix A). Chapter 2 is the study 

to directly evaluate the relationship between farm size, crop types, and crop diversity across a large 

range of farm sizes and geographic regions, and to assess how this diversity influences the amount 

of macro-nutrients available from crops.   

Chapter 3 synthesizes 50 years of literature to identify different socio-ecological outcomes of farm 

size, such as the relationship between farm size and yield, crop diversity, resource use efficiency, 

GHG emissions, and profitability. This effort highlights the need to synthesize the scientific 

knowledge of small-scale farms to understand under what socio-political and environmental 

conditions are required for certain production, environmental, and economic outcomes of farm 

size to arise. This study is among few efforts that bridge siloed academic communities that research 

different aspects of small-scale agriculture (e.g., economists and ecologists). Amongst the 

relationships examined in Chapter 3, smaller farms consistently had higher yields than larger farms 

across a large array of geographic contexts. However, the limited number of studies examining 

profitability of small-scale farms compared to larger farms left a greater question unanswered: is 

the higher yield of small-scale farmers enough to raise them out of poverty? 

Chapter 4 seeks to understand the relationship between smallholders, economic productivity, and 

income through a partnership with the UN Food and Agricultural Organization (FAO), which has 
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harmonized national sample surveys from 34 countries and will release this dataset in late 2019. 

This study looks at the difference between profit per ha (productivity) and profit per person living 

in an agricultural household (income). This study then goes beyond spatial farm size definitions 

to explore how other commonly used dimensions of smallholders (e.g., family labor, market-

orientation, country relative farm and economic size) map onto poverty. 

Chapters 5 and 6 conclude the dissertation. Chapter 5 summarizes the key findings of Chapter 4 

into a policy brief discussing SDG 2.3’s small-scale farm definition, and provides an empirical 

example of future data harmonization work that can be used to monitor countries’ progress towards 

SDG 2.3. This policy brief suggests improvements to the UN proposed binary definition of small-

scale farmers. It then details the present landscape of data that can help contextualize where 

different groups of small-scale farmers live to target needed resources (e.g., what percent of small-

scale farmers live in water-scarce areas?). Chapter 6 concludes the dissertation by summarizing 

the key findings. 

1.5 Limitations 

This dissertation has several limitations including the type of data required for a global analysis. 

These limitations should be taken into consideration when interpreting my results. Each chapter 

contains its own separate discussion on the limitations of the study and provides sensitivity tests 

to estimate the effects of each assumption on the results. The following limitations are the most 

salient throughout the dissertation. 
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By seeking a global perspective, I needed to harmonize datasets from disparate data sources; a 

process that required assumptions to combine surveys with different variables. In Chapter 2, I led 

a team to harmonize a dataset from national sample surveys and agricultural censuses across 55 

countries. In Chapter 4, I collaborated with the FAO to refine a harmonized dataset from national 

sample surveys across 37 countries. For both datasets, I examined key variables for data anomalies 

within and across countries, performed sensitivity tests to ensure my conclusions were not due to 

faulty data, and employed methods that deliberately accounted for differences in survey quality, 

design, and sampling strategies. In Chapter 2, I had full control of the data harmonization process. 

I publicly released the dataset and all processing code as well as published a separate data article 

(Appendix A) to explain our assumptions and their likely effects on our conclusions. In Chapter 

4, I relied upon the FAO’s RuLIS dataset, whose team has produced technical documentation to 

explain their processing steps and their key assumptions. While I attempted to take precautions 

with constructing and analyzing these datasets, there are most likely issues from the surveys 

themselves (e.g., recall bias, and errors in sampling or data entry) as well as unintended 

consequences of assumptions that I was not aware.  

The dataset in Chapter 2 represented a global convenience sample, with extrapolations to countries 

not included in the dataset. While we did not include several large agricultural countries due to 

data availability, such as China, we found our results comparable with two other studies that used 

geospatial data with more complete spatial representation. The dataset in Chapter 4 was a 

convenience sample across the Global South. While analysis of 37 countries is not “global,” the 

cross-country comparative analysis gives insight onto global processes, and is representative of a 

diversity of countries with smallholder populations. While there were no other analyses that we 
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could compare these results to, since the scale for this analysis was novel for the topic, we used 

methods that are widely acknowledged to provide generalizable insights to countries not included 

in the dataset (e.g., mixed effects models as outlined in Chapter 4) (137); in this chapter, we limited 

our general conclusions to other LMICs. For these reasons, I urge the reader to be critical of these 

results, while acknowledging that these datasets represent the current state of knowledge on small-

scale farms at a global scale for Chapter 2, and across the Global South for Chapter 4. 

In Chapter 3, I led a systematic review and meta-analysis of six different socio-ecological 

outcomes of cropping systems. Synthesis studies can provide insight into consensus and 

disagreements in the scientific literature, but the research questions, search strategy, and the 

methods need careful consideration. There were two central limitations to Chapter 3. First, our 

meta-analysis required empirical studies that directly compared farm size to one of our outcome 

variables. This narrow inclusion criteria allowed us to examine the trade-offs between changes in 

farm size and several socio-ecological dimensions. However, we were not able to assess non-

quantitative studies or studies that did not examine changes in farm size. While these were beyond 

the scope of Chapter 3, we acknowledge that there is a vast literature that details additional 

outcomes of agricultural systems related to small-scale agriculture. For example, small-scale farms 

can promote cultural preservation and rural community cohesion (24, 115), but larger farms can 

be more suitable for precision agriculture, which may reduce environmental impacts (62). Another 

key limitation of Chapter 3 was regarding the availability of academic databases to which we had 

institutional access. We relied on Web of Science and Scopus for our literature search, which may 

have limited our ability to include all peer-reviewed studies that would have meet our inclusion 
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criteria. To address these limitations, I detail our search strategy in Appendix B and plan to release 

the dataset and analysis code with the chapter’s peer-reviewed publication. 

In Chapter 4, I led a comparison of several definitions of small-scale farms to understand which 

definitions can be used to operationally monitor SDG 2.3. A key limitation of this study is that we 

were only able to test a limited number of definitions. We tested farm size (in hectare and country 

relevant terms), country relevant economic size, the reliance on family labor, and subsistence 

levels. While these five definitions are commonly discussed in the small-scale farm literature (see 

Chapter 4 for a detailed overview), we were unable to test other pertinent definitions with the 

available data (e.g., rainfed or remoteness). 

To help overcome the above limitations, I am in the process of publicly releasing all the underlying 

datasets and analysis code. My hope is that by providing open-access datasets and analysis code 

built with freely available software, there will be more transparency in the derivation of global 

statistics on small-scale farmers. Also, other researchers may add to these datasets and analysis 

packages. 

While acknowledging these limitations, this dissertation attempts to synthesize the current state of 

knowledge about small-scale farms in the global food system. The past 50 years have resulted in 

a wave of research and surveys about small-scale farms that provide rich and multi-faceted 

information. By leveraging these past research outputs, this global synthesis will enable a broader 

perspective across often-siloed academic disciplines and geographic regions. The aim of this thesis 

is to synthesize and build upon previous empirical and theoretical findings, as these are often 

locally derived and yet underpin the current wave of international support for small-scale farmers. 
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Chapter 2: How much of the world’s food do smallholders produce? 

 

2.1 Abstract 

The widely reported claim that smallholders produce 70–80% of the world’s food has been a 

linchpin of agricultural development policy despite limited empirical evidence. Recent empirical 

attempts to reinvestigate this number have lacked raw data on how much food smallholders 

produce, and have relied on model assumptions with unknown biases and with limited spatial and 

commodity coverage. We examine variations in crop production by farm size using a newly-

compiled global sample of subnational level microdata and agricultural censuses covering more 

countries (n = 55) and crop types (n = 154) than assessed to date. We estimate that farms under 2 

ha globally produce 28–31% of total crop production and 30–34% of food supply on 24% of gross 

agricultural area. Farms under 2 ha devote a greater proportion of their production to food, and 

account for greater crop diversity, while farms over 1000 ha have the greatest proportion of post-

harvest loss. 

2.2 Introduction 

It has been widely reported that smallholder farmers (defined generally as being less than 2 ha) 

produce 70-80% of the world’s food (11, 30, 31), are central to conserving crop diversity (2, 32, 

33), produce more food crops than larger farms (34, 35), and yet are largely food insecure (36)⁠. 

These arguments have been a linchpin in recent agricultural development policy. For example, in 
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2014, the ‘International Year of the Family Farm’, the United Nations (UN) and other food security 

agencies reiterated these arguments to garner increased support for family farmers, who are 

predominantly smallholders (11). The COP21 agreement (the 2015 UN Conference of Parties on 

Climate Change) includes mitigation and adaptation commitments pertaining to agriculture from 

179 countries that include the need to bolster smallholder adaptive capacity to climate change. 

Goal 2 of the UN Sustainable Development Goals (SDGs) aims to end hunger and achieve food 

security through sustainable agriculture; a key target (SDG 2.3) is by “2030, [to] double the 

agricultural productivity and incomes of small-scale food producers, in particular women, 

indigenous peoples, family farmers, pastoralists, and fishers” (37)⁠. Yet, despite progress in steering 

development policy towards smallholder farmers, there is scant empirical data on smallholder 

farms, and their role in the food system. 

Key to enacting and monitoring progress on these international agreements and policies is a global 

baseline on the contribution of smallholders to global food production and security. However, the 

data underlying three widely reported claims on smallholder crop production remain non-

transparent or contradictory. First, the source of various UN reports citing smallholder production 

is a communiqué from the ETC group (30), which suggests that “peasants” grow at least 70% of 

the world’s food; yet, the derivation of the estimate is obscure in this report. Second, the claim that 

smaller farms produce more food directly consumed by people, with larger industrialized farms 

producing more non-food crops, such as biofuels and animal feed (34, 35), has been brought into 

question by the observation that smaller farms have larger amounts of post-harvest loss due to lack 

of market and cold storage access (38, 39)⁠. Thirdly, while some authors argue that economies of 
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scale are needed for farms to produce a diversity of crops (40), others suggest that larger farms 

face labor constraints that hamper mixed-cropping systems (41), so it is unknown if smaller farms 

produce a greater diversity of crop species than larger farms. In sum, our current understanding 

how much food smallholders produce, what kinds of food they produce, where their food is 

destined in the food system, and how much nutrition it contains, are all key knowledge gaps in 

global agricultural research. 

The need to fill these knowledge gaps has been recently recognized by scientists (1, 18–20) 

(referred to as Graeub, Lowder, Herrero, and Samberg respectively hereafter). In 2016, a pair of 

studies evaluated the contribution of smallholders and family farms to global crop and food 

production. Lowder was the first to report on global farm size trends from 1960 to 2010 derived 

from 167 countries in the World Census of Agriculture (WCA). They found that small-farms 

(defined as being < 2 ha) constituted only 12% of the global available farmland, but represented 

84% of all farms. Their study did not report on crop production, but their results implied that 

smallholders do not produce 70% global crops; it is unlikely they could produce this much food 

on 12% of available farmland, even if we assumed that small farms had higher yields and produced 

more food crops than larger farms. The second of these studies (Graeub) quantified the number 

and extent of family farms in the world and their production contributions. By using national 

family farm definitions, defining family farms based on farm size, or a combination thereof to 

represent regionally appropriate family farm definitions they estimated that ~98% of all farms 

globally are family farms, collectively managing 53% of all cropland, and meeting an estimated 

36–114% of domestic caloric requirements for different countries. While Graeub’s study 

highlighted the contribution of family farms, they also challenge the idea that all family farms are 
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small farms. For example, farms in Brazil may be family owned but are large in size (while ~85% 

of farms in Brazil are family owned and cover ~25% of agricultural land, only 21% of farms are 

less than 2 ha in size and cover only 0.25% of the agricultural area). Together these two studies, 

quantified the global number of smallholders or family farmers, their cropping area, and detailed 

the differences between smallholders and family farms. 

In 2017, two additional studies were published that tried to better estimate the proportion of food 

coming from smallholder farmers globally. Samberg estimated the contributions of smallholders 

in an analysis of 41 crops and 83 countries in smallholder dominant regions (Latin America, sub-

Saharan Africa, and South and East Asia) that represent 35% of global cropland. They estimated 

that smallholders (which they defined as all administrative units with a “mean agricultural area” < 

5 ha) produced 52.5% of food calories in their cross-regional sample. While, this study was a 

valuable step in mapping the geographic distribution of smallholders, using mean agricultural area 

within an administrative unit as an index of smallholder production is problematic because farm 

size distributions are highly skewed (e.g. Lowder). Following this, Herrero presented an analysis 

which modelled crop and livestock production, micro-nutrition production, and agricultural 

landscape diversity. Crop and animal data were related to farm size classes by combining crowd-

sourced data on field sizes (21) with national farm size distributions (Lowder) as a proxy for per 

pixel production by farm size. They reported that farms < 50 ha produce 51–77% of commodities 

and nutrients in their sample of 41 crops, 7 livestock, 14 aquaculture and fish products, across 161 

countries. They also estimated that ~20% of food calories globally come from farms < 2 ha, and 

highlighted the valuable micronutrient contribution of smallholders, with farms < 20 ha producing 

~70% of the world’s vitamin A. While both Samberg and Herrero provided clear steps forward in 
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understanding the role of smallholders in the food system, and in particular Herrero covering both 

animal and crop products, they did not use direct measurements of crop production and/or area by 

farm size, compute diversity calculations based on these direct calculations of production and/or 

area, or report on the broader role of smallholders in the food system (e.g. how much of their food 

is wasted and destined to non-food crops). 

To fill the gaps in directly linking farm size with crop production that previous studies were not 

able to examine, we compiled the first open source dataset to estimate crop production by farm 

size derived from actual farmer surveys containing crop-specific measurements of production or 

area that are cross-tabulated against each farm size class. Our dataset includes 154 crop types and 

covers 55 countries, which represents 51.1% of global agricultural area. We compare these direct 

estimates to those from the previous modeling studies (e.g., Herrero; Samberg). In addition, we 

provide global estimates of the type of production (i.e., food, feed, processing, seed, waste, and 

other) across farm sizes and within each farm size class, to understand if more production from 

small farms is wasted from storage and transportation, and if this cancels the larger losses to 

biofuels and animal feed grown on large farms. Finally, we evaluate how the type of crops grown, 

crop species diversity, and macro-nutrient production varies by farm size. Our study is the first to 

directly evaluate the relationship between farm size, crop types, and crop diversity across a large 

range of farm sizes and geographic regions, and to assess how this diversity influences the amount 

of macro-nutrients available from crops. Together, these results provide the most comprehensive 

empirically grounded estimates of crop production by farm size currently available.  
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2.3 Methods 

2.3.1 Data compilation 

We compiled a global convenience sample of datasets that directly measured crop production 

and/or area by farm size for 55 countries at either the national, or subnational level (for a total of 

3410 national or subnational units; see Figure 3). Our dataset represents ~50% of the global 

agricultural area (see Appendix A for dataset construction and coverage). These datasets were 

either agricultural census data or nationally (or sub-nationally) representative sample surveys, 

aggregated by administrative unit (n = 34 countries) or available at the micro-level (e.g., 

anonymized individual household level records) (n = 21 countries; of which 18 were household 

surveys and 3 were censuses that captured both family and non-family farms). The median year of 

the data was from 2013, with the oldest datasets from 2001 and the newest from 2015. The database 

has 154 crops which we matched with commodity names outlined in the Food and Agricultural 

Organization’s (FAO) statistical database (42) [FAOSTAT hereafter]. Where farm size and 

production were not cross-tabulated in the survey instrument (i.e. for 33 countries), we calculated 

production by farm size by first extracting either harvest area, cultivated area, crop area, or planted 

area to calculate farm size, and then converted area to production using FAOSTAT’s national yield 

data. We tested the validity of this method, and found it to slightly underestimate production (full 

details of bias tests, inclusion criteria, variable descriptions, summary statistics, and per country 

statistics are given in Appendix A). When farm size data was not available for a country, but we 

had micro-level data, we used the sum of farm plot areas for a given household as a proxy for farm 

size. Internal validation of the use of micro-data to fill in data gaps was not possible with our data, 
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because we did not have both micro-data and farm size metrics for any of our countries, but we 

think the impact of using aggregate plot area is likely to be negligible for our results, as this was 

only used on 4.8% of administrative units in our dataset. Finally, all crop production data was 

tallied per country and validated against available national level reports, and to the FAOSTAT 

crop production database, both of which are computed from aggregated crop area estimates. In 

total, our dataset captures 51.1% of global crop production and 52.9% of global cropland area. We 

harmonized the datasets to match the WCA farm size categories: 0 to 1 ha, 1 to 2 ha, 2 to 5 ha, 5 

to 10 ha, 10 to 20 ha, 20 to 50 ha, 50 to 100 ha, 100 to 200 ha, 200 to 500 ha, 500 to 1000 ha, and 

above 1000 ha. While we recognize that per country definitions of smallholders may not fall within 

these farm size bins, the majority of the datasets included reported these farm size breaks. We 

report our estimates by each WCA farm size class and cumulatively to allow flexible definitions 

of smallholders that are consistent with past attempts to quantify the relationship between farm 

size and crop production. Future researchers may use the accompanying, open-access dataset to 

redefine smallholders based on country specific definitions. Where European data included a > 

100 ha category, we included this in the 100-200 ha range, making our classification less precise 

in > 100 ha groupings, in comparison to < 100 ha. Future researchers may wish to aggregate all 

‘large’ farms into a > 100 ha bin for their specific needs, but here we present the results maintaining 

the disaggregation for surveys that reported it. 
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Figure 3: Spatial coverage and resolution of our data on crop production by farm size. Countries 
shaded purple had directly measured data on crop production or harvested area. 

 

2.3.2 Crop allocation 

Following data compilation, we converted all tonnes of production to their kilocalorie 

(kcal/capita/day) equivalents using FAOSTAT conversion values per crop per country per year. 

We then applied the percent of feed, food, processing, seed, waste, or ‘other’ based on 

FAOSTAT’s food balance sheets per crop per country per year. For example, in many countries, 

maize can be used for human consumption, animal feed, a processed biofuel commodity, and seed, 

while some maize may be lost due to storage and transportation. FAOSTAT contains national 

totals for each of these types of crop allocation categories. We used these totals to calculate 

percentages per crop per country per year to allocate a certain portion of each crop’s production 

towards food, feed, and the other crop allocation categories. While this approach does not account 
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for the actual distribution of crop allocation by farm size, it is the most detailed information 

available and represents a proxy indicator based on what type and quantities of crops each farm 

size produces. 

While certain FAOSTAT categories were straightforward to interpret and contained detailed 

definitions (e.g., ‘feed’ towards livestock and poultry and ‘seed’ set aside for sowing or planting), 

the processing category was ambiguous and required us to make assumptions. We followed 

Cassidy et al. and assumed that the processing category included oil crop production into oils for 

human consumption and for industrial use, as well as protein dense cakes for animal feed (43). 

The waste category encompassed any loss of a given commodity during storage and transportation; 

losses incurred before and during harvest were excluded, as were losses due to household 

consumption. The ‘other’ category encompassed any uses not already accounted for. 

After allocating all crop production to type of production (e.g., feed, food, other, etc.) in 

kcal/capita/day we evaluated how the global quantity of each varied across farm size classes. We 

also provide cumulative distributions of our estimates to encompass a sliding scale of definitions 

of small-farms (e.g., farms under 2 ha, farms under 50 ha, etc.), as may be required by different 

researchers and regional policy makers who might define ‘small’ using different thresholds. In 

addition to comparing how the type of production varies across farm sizes, we also analyzed how 

the types of production are distributed within each farm size class.  

To obtain global estimates for the proportions presented in this manuscript, we computed 95% 

confidence intervals using the accelerated bias-corrected percentile limits bootstrap method (BCa), 

with 1000 iterations. BCa is useful extension of the basic percentile bootstrap, that decreases 
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coverage error by accounting for bias in sample parameters (i.e., when the sample parameter - 

computed from the 55 countries -- does not equal that of the average bootstrapped parameter, 

which in our case is our best estimate of global trends), and allowing the standard deviation of the 

bootstrap parameter to vary with the sample parameter (44). We chose to bootstrap all of the 

parameters of interest at the level of the country (n = 55), not the administrative unit (n = 3410), 

in an attempt to account for dependencies amongst administrative units in the same country and 

sampling campaign. Accuracy in uncertainty estimation for the global trends could be improved 

in future by adding to the number of countries in the dataset. While the BCa does not make any 

assumptions about the distribution of underlying random variable we use the natural log transform 

of production in our analysis for data visualization. 

2.3.3 Crop species diversity and crop types 

To estimate the relationship between crop diversity and farm size, we counted the proportion of 

unique number of species each farm size category produced within each administrative unit, and 

estimated the 95% CI’s for each category using BCa. We note that different survey instruments 

have different crops included, and that farmer responses may not include the full diversity of crops 

that farmers actually produce. Thus, our estimates represent our current state of knowledge given 

empirical data, and are likely to be conservative. We present BCa estimates of crop diversity for 

each farm size using the administrative unit level to compare crop diversity distributions across 

farms within similar biogeographical landscapes (e.g., climate, soil, etc.). We also present BCa 

estimates of crop diversity while controlling for cumulative farm area, to give an indication of how 

diversity scales across the world in each farm size class. To do this we plotted cumulative numbers 
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of unique species against cumulative area of administrative units for each farm size class, and 

estimated uncertainty for these curves by resampling the distribution of administrative units for 

each size class at random, with 1000 iterations (taking the 2.5th and 97.5th percentiles as lower and 

upper bounds, respectively). 

To examine the variation in crop groups by farm size, we aggregated our crop species data into 

major commodity groups according to FAOSTAT definitions of cereals, fruit, oil crops, pulses, 

roots and tubers, tree nuts, vegetables, and other, and we estimated 95% CI’s using BCa. Relying 

on the FAOSTAT classification has its limitations. For example, soy was classified as an oil crop, 

but it is also a pulse; therefore, this classification should be used as a guideline (see Appendix A 

for crop grouping details). In order to examine whether different farm sizes grew a different 

portfolio of crop groups, we used Sorensen’s similarity index: 

CCi,j =    2Ci,j 
   Si + Sj 

 

Ci,j is the number of species two farm size classes have in common, S is the total number of species 

found in the given farm size class, and i and j are the two farm size classes being compared; a score 

of 1.0 would represent perfect overlap in the crop groups grown between the two farm size classes. 

2.3.4 Macro-nutrient production 

We converted production of each crop in our dataset to its macro-nutrient (i.e., carbohydrate, 

protein, or fats in grams/capita) equivalent using FAOSTAT food balance sheets, and conversion 

factors per crop per country for the year matching the farm size data survey year. Any temporal 
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data gaps in FAOSTAT were linearly interpolated per crop and country. As with production, we 

analyzed how macro-nutrient production varied both across farm-size classes and within farm-size 

classes and computed 95% CI’s using BCa at the country level to estimate global figures. 

2.4 Results 

2.4.1 Crop allocation  

The smallest two farm size classes (0-1 ha and 1-2 ha) are the greatest contributors to global food 

production compared to all other classes. Farms less than 2 ha produce 28-31% of total crop 

production and 30-34% of the global food supply (by calories; Figure 4 A-H) as extrapolated from 

the 55 countries in our dataset. Their contribution is slightly higher than their areal coverage of 

24% of gross harvested area, suggesting small farmers have greater cropping intensity or higher 

yields than larger farms. 

We found smallholders (farms < 2 ha) also allocate the largest percentage (55-59%) of their crop 

production to food compared to all other farm size classes (Figure 4). Generally, larger farms 

devote more of their production towards feed and processing. Farms between 200-500 ha have the 

largest allocation of their production to feed (16-29%) compared to farms < 2 ha who allocate 12-

16% to feed. Farms > 1000 ha allocated 12-32% of their production to processing. 
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Figure 4: A-F) Distribution of total global crop production (in kcal equivalents) across farm size 
groups different uses (e.g., food, feed, other, etc.). Grey shows bootstrapped 95% confidence 
intervals and red indicates the average. G) Allocation of use of production within each farm size 
class. H) Cumulative percent of global food production by farm size group with 95% confidence 
intervals. See Table S3 for underlying data. 
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Farms < 2 ha contribute the most 28.1% (26-30%) to total food waste (on-farm and post-harvest 

loss) (Figure 4E); however, this is mainly driven by this farm size group’s large contribution to 

the total crop production. In our dataset, only 4% (2.3-6.1%) of smallholder production is wasted, 

compared to farms > 1000 ha that have the greatest amount of within farm size class waste at 7.5% 

(0.0-18.5%). However, the large uncertainty indicates both that there is substantial variation within 

large farms, and low confidence in the trend between farm size and waste holds at the global level. 

All farm sizes have fairly consistent allocations towards seed (means ranged from 2-5% with 

overlapping 95% CI’s), while there is a trend that smaller farms allocate more to the ‘other’ 

category. 

 

2.4.2 Crop species diversity and crop types 

We found that species richness declined with increasing farm size (Figure 5). Diversity also scaled 

differently with area within different farm size classes, with greater turnover in unique species in 

small farms than in land allocated to larger farms. 
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Figure 5: A) Distribution of total species richness across farm size classes. Gray represents 
bootstrapped 95% confidence intervals; red is the bootstrapped average. The area of each 
administrative unit polygon weighted the data. See Table S4 for underlying data. B) Cumulative 
area to cumulative species richness curves. 1000 iterations generated the cumulative distributions 
between species richness and farm size. The starting point for cumulative distributions were 
randomly chosen each iteration. The lighter the colors, the larger the farm size classes. 

 

Between farm size dissimilarity in species shows that larger farms, while harboring less diversity, 

and lower turnover in crop diversity across space, show greater specialization in certain crop 

groups than other farm sizes. Farms < 5 ha grow similar crops as each other (Sorensen’s coefficient 

of 0.94), and farms > 100 ha have a perfect overlap in crops grown (Sorensen’s coefficient of 1.0; 

Figure 6). But farms greater than 20 ha grow a different array of crops compared to farms smaller 

than 20 ha (Sorensen’s coefficient of 0.4-0.67) and farms greater than 100 ha have the lowest 

overlap with other farm size classes. 



 

 
30 

 

Figure 6: Heat-map of Sorensen's coefficient between each farm size class pair. Purple indicates a 
greater similarity of crops grown between pairs of farm size classes, while brown indicates greater 
dissimilarity between crops grown. 

 

The crop portfolio of each farm size class shows that smaller farms (< 2 ha) produce a greater 

share of the world’s fruits, pulses, and roots and tubers, while medium sized farms produce more 

vegetables and nuts, and large farms produce more oil crops and 'other' (Figure 7). While all farm 

sizes contribute a large proportion to cereals, smaller farms devote a greater percentage of their 

overall production to cereals compared to other farm size classes. 
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Figure 7: A-H) Distribution of production by crop type across farm size classes. Grey shows 
bootstrapped 95% confidence intervals and red is the average. I) Crop type portfolio within each 
farm size class; x-axes ranges from 60-100% since cereals were the only group across all farm size 
classes < ~60%. See Table S5 for underlying data. 
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2.4.3 Macro-nutrient production 

The trends in macro-nutrient (carbohydrates, proteins, and fats) production across farm sizes 

follows that of the food production. Yet, of their own production, smaller farms produce a slightly 

higher percentage of carbohydrates (~0.08% more than the largest farm size class) while larger 

farms grow a slightly higher percentage of proteins (~0.05% more than the smallest farm size 

class). But these differences are minute, and considering the uncertainty estimates, there are no 

significant differences in the percentage of macro-nutrients produced within each farm size class 

(Figure 8). 

 

Figure 8: A) Percentage of macro-nutrient production across farm size classes with 95% confidence 
intervals. B) Percentage macro-nutrient production within each farm size class with 95% confidence 
intervals. See Table S6 for underlying data. 
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2.5  Discussion 

2.5.1 Comparison to previous studies 

Our dataset is the first global sample of direct crop-specific measurements of production or area 

by farm size. We found that farms < 2 ha produce 28-31% of total crop production and 30-34% of 

the food supply on 24% of gross agricultural land when using our directly measured farm size 

dataset. While our dataset covers 55 countries, with distinct data gaps in smallholder dominant 

Southeast and East Asia, our findings are in line with Samberg and Herrero’s global estimates. 

This suggests that these three studies, using different methodologies, agree that the previous 

estimate of smallholders producing 70-80% of global food production needs to be revised. 

While our results are similar to the previous two modeling studies that estimated global 

smallholder production, there are several key differences. Our results offer more refined estimates 

using direct measurements of production by farm size instead of relying on modeling, includes a 

larger range of crop species than previously assessed, and our accompanying open-access dataset 

allows individual countries to have a reliable SDG baseline for how much of their food production 

is grown by smallholders (according to their own regional definitions of farm size). Samberg 

reported that farms < 5 ha produced 55% of global food calories, which is slightly larger than our 

equivalent estimate of 44-48% (Table 2, Samberg A.). To arrive at this estimate, they divided the 

total calories produced in each farm size category in their 83-country sample by total global 

calories produced by all countries. Their estimate could be considered a global estimate if one 

assumes that their sample of smallholder dominant regions account for most of the world’s small 

farms (and their purposeful sample might suggest that interpretation). An alternative interpretation 
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(which is similar to ours) is that the 83 countries in their sample are globally representative; in that 

case one would divide the calories produced by each farm size class by the total calories produced 

in those 83 countries. By this estimate, farms < 5 ha produced 76% of global food calories (Table 

2, Samberg B.). The differences between Samberg and our dataset may be due to the countries and 

crops sampled and that Samberg relying on modeled results instead of direct measurements. 

Samberg used 41 crop species (while we included 154), and they use mean agricultural area instead 

of farm size distributions to understand crop production in smallholder dominant areas rather than 

crop production by farm size. Both Samberg and our study relied on household sample surveys to 

varying degrees (Samberg relied primarily on household surveys, while our dataset relied on them 

for 22.5% of total crop production). Household sample surveys systematically do not sample non-

family farms and hence may be presumed to over-represent smaller farms when compared to 

agricultural censuses that survey all farm types. However, in our Appendix A we show that using 

household surveys to estimate national production is not significantly different than using 

FAOSTAT’s national production estimates. 
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Table 2: Comparison between global estimates for the percentage of food smallholders produce. For 
Samberg, A. uses estimates compared to global total food production, while B. compares estimates 
to total food production within their 83 sampled countries. 

 
< 2 ha < 5 ha < 50 ha Methodological Distinctions 

Our study 30-34% 44-48% 62-66% Direct measurements 
154 Crops 
55 Countries 
 

Herrero 20% - 51-77% Modeled estimates 
41 Crops; 7 Livestock; 14 Aquatic 
Species 
Near global coverage 
 

Samberg A.1 37% 55% - Modeled estimates 
41 Crops 
83 Countries 
Mean Agricultural Area as farm size 
proxy 
 

Samberg B. 52% 76% 92% 

 

Our estimates were also close to Herrero who reported global estimates for farms < 50 ha. We 

found that farms < 50 ha produce 62-66% of the world’s food, which is within Herrero’s range of 

51-71%. Herrero found that farms < 2 ha produce ~20% of food. Our two studies capture different 

aspects of the global food system. Herrero incorporated livestock and fisheries, which are 

important source of nutrients and income for smallholders, while we only focus on crop 

production; our focus was due to data constraints and definitional mismatches between using farm 

size versus herd size, fishing area, or common pasture land. There are also crop species differences 

between the datasets, where Herrero used 41 crop species while we used 154. One key analytical 

difference is that Herrero’s modeled results used field size as a proxy for farm size instead of actual 

                                                

1		Note	that	we	do	not	provide	<	50	ha	estimates	for	Samberg	A	because	we	cannot	support	the	assumption	
that	there	are	no	farms	<	50	ha	outside	of	the	83	countries	sampled	by	Samberg.	
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reported farm size; we used field size as a proxy for farm size for only 4.8% of our data and direct 

measurements of production by farm size instead of modeled estimates. We found that using field 

size as a farm size proxy measure may slightly over estimate small-farms’ production since it does 

not account for non-field elements of a farm (see Appendix A). Additionally, Herrero 

disaggregated production to the pixel level based on field size, while Samberg disaggregated pixel-

level production based on mean agricultural areas. Essentially, both methods assume a constant 

yield for each farm size class since they cannot directly link crop production with farm size. There 

is a widely observed inverse relationship between yield and farm size (IR), where smaller farms 

have higher yields. For 66.7% of our dataset we also needed to use constant yields since direct 

data on production by farm size was not always available (we did have harvest area per crop by 

farm size, and minimally used data on planted area, cropped area, plotted area). Our dataset 

allowed us to test for the bias introduced by constant yield methods, and provides the relationship 

which researchers may use to correct for it. We found a small effect size that using constant yields 

slightly underestimates small-farms’ production (Table S2). Hence, our numbers, Herrero’s and 

Samberg’s may all slightly underestimate smallholders’ crop production owing to this assumption. 

2.5.2 Crop allocation 

Our new findings on crop allocation across different farm sizes has important implications for food 

access and availability, as well as farmer livelihoods, since food, feed, processing, and seed market 

prices may differ from one another. We found nearly 60% of smallholder production is allocated 

to food. A smaller percentage is allocated towards feed (12-16%), which was surprising since 

smallholders often engage in mixed crop-animal farming systems (45); this finding may be 
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explained by the fact that smallholders likely rely more on rearing animals that graze on pasture 

compared to largeholders.  

Our results counter common thinking about smallholders’ post-harvest loss, where improving cold 

storage and road infrastructure is a common development intervention to improve smallholder 

income by reducing wastage. Our dataset suggests that only a small percentage of smallholders’ 

production is wasted. However, one reason for the low amount of smallholder waste in our results 

may be due to food allocated to the ‘other’ category. From our data, 19-23% of smallholder 

production went towards ‘other’ uses. This may be indicative of the need for smaller farms to make 

use of all grown material in integrated farming systems (e.g., using rice stocks as a cover crop to 

promote soil health). Smallholders’ large allocation towards ‘other’ may be indicative that waste 

reduction practices are common since smallholders are often resource poor and would achieve 

higher relative benefit compared to largeholders to find a use for wasted crops.  

While, interventions aimed to reduce smallholder post-harvest loss are still needed in many locales, 

there is also a need for agricultural researchers to identify why larger farms are wasting crops, 

because this group showed the greatest proportion of waste in any category (although this was 

country dependent, as shown by the wide bootstrapped confidence intervals). An estimated 1/4 of 

global food production from croplands is wasted from farm to market (46). The waste data we 

used takes into consideration the quantities lost in the transformation of crop to processed goods. 

Hence, one possible reason for the increased wastage of larger farms’ is that large farms on a whole 

engage in more crop production allocated for processing. Since FAOSTAT’s definition of waste 

also encompassed waste incurred from poor distribution and storage, it was surprising that smaller 
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farms did not have larger proportions of their crop wasted when the majority of smallholders are 

in countries with hot and humid climates and poorer storage infrastructure (47). Future studies 

should disaggregate the types of crop production waste each farm size contributes to and local 

dependencies for these relationships. 

2.5.3 Crop species diversity, crop types, and macro-nutrient production 

Our data suggests a negative relationship between farm size and crop species richness. This adds 

significantly to the evidence on the literature’s mixed finding on this relationship (40, 41, 48), as 

our study contains a wider range of farm sizes and more crop species than ever compared in 

previous studies. Due to the heterogeneity in data sources used to construct our dataset, there were 

not always a wide list of crop species included in each national survey, which may indicate a larger 

portion of primary crops were documented compared to local species. This limitation indicates 

that our findings are conservative and suggest that smaller farms, which are associated with 

producing many non-primary crops (49, 50), may have even higher degrees of crop diversity than 

we found. 

There are several food access, nutrition, and climate resilience implications of higher crop diversity 

in smallholder systems. Since smallholders may be tied to subsistence-surplus production models 

and constrained to highly localized rural markets, their food access is often more reliant on their 

local communities’ crop production compared to large farms (51); hence, in these local markets, 

farms’ crop production needs to be more diverse than better integrated markets that can rely on 

imported crop diversity. The differences in types of crops produced by different farm sizes, and 

macro-nutrient contents that follow overall food production trends, supports the differences in 
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macronutrient production across farm sizes, as found in Herrero. However, there are discrepancies. 

While smallholders produce a large amount of the world’s protein rich pulses, we did not find that 

they produced a greater relative percentage of proteins than larger farms (i.e., all farm sizes 

allocated a similar percentage of their production to proteins). This suggests potential benefits 

from the promotion of mixed animal-crop systems for smallholders to access protein of which they 

are often deficient. 

Our results suggest a nuanced view of the benefits of landscapes harboring different farm sizes, 

beyond the basic relationship between farm size and crop species richness. More diversified 

farming landscapes may need to include smaller farms because they collectively grow a higher 

diversity of crops than large farms, but also include larger farms because of their unique crop 

composition. Each farm size produces a greater quantity of certain types of crops than other farm 

sizes: smaller farms produce more fruits, pulses, and roots and tubers, while medium sized farms 

produce more treenuts and vegetables, and larger farms produce more oil crops. Promoting a 

diversity of farm sizes may encourage a greater diversity of crop types at the landscape level that 

can better provide more balanced diets and non-food needs, while potentially mitigating climate 

risks to the food system as a whole since different species are not affected by temperature and 

precipitation changes the same. 

2.6 Conclusion 

This study attempted to provide a global baseline for international policy measures aimed to 

support smallholder agriculture. These include a need for improved monitoring of SDG Goal 2.3, 

which aims to double food production of smallholders and increase nutrient availability; yet, Goal 
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2.3’s monitoring framework does not use crop production by farm size as a national indicator (10). 

Our findings suggest that previous estimates of the percentage of food produced by smallholders 

were either overinflated by public-sector opinions   or still needed directly measured data to assess 

quality (Herrero; Samberg), and that a nutrient diverse farming landscape would include a diversity 

of farm sizes, since each farm size produces a unique crop portfolio.  

Critically, while our dataset is the first to use directly measured crop specific data on production 

or area by farm size, we were only able to find 55 countries with the necessary data to do this 

analysis. To monitor SDG Goal 2.3, there needs to be increased effort to build on datasets like ours 

through leveraging stakeholder networks. Ongoing efforts to use and add to our dataset will enable 

continuous food system monitoring over time with more geographic precision. We urge 

researchers and food system advocates towards data-driven policy monitoring to accurately assess 

the scale and progress of policy interventions. 
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Chapter 3: Smaller farms are higher yielding and more biodiverse than larger 

farms: A systematic review and meta-analysis 

 

3.1 Abstract 

The scale of agricultural production is rapidly changing. In general, farms are getting larger and 

more industrialized in high-income countries and smaller and more fragmented in low-income 

countries. There has been limited empirical synthesis of the implications of changing farm size for 

outcomes related to food security, economic development, and environmental sustainability. To 

identify and assess the multiple trade-offs and context-specificities influencing these relationships, 

we present the first systematic review and meta-analysis on how differences in farm size affect 

crop production, farmer livelihoods, and the environment. We analyzed 118 empirical studies (318 

observations) from 52 countries, and show that smaller farms, on average, have higher yields (5% 

decrease in yields per 1 ha increase in farm size), promote non-crop biodiversity at the farm and 

landscape scales (77% of studies find smaller farms have more non-crop biodiversity than larger 

farms), and account for greater crop diversity than larger farms (farms under 2 ha accounted for 

~40% of crop species richness in a given landscape). We find no strong relationships between farm 

size and resource-use efficiency, greenhouse gas (GHG) emissions, or profit per ha. Our findings 

highlight the importance of farm size in mediating environmental and social outcomes relevant to 

sustainable development and identifies a series of research priorities related to the ongoing global 

transition in farm sizes. 
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3.2 Introduction 

The scale of agricultural production is rapidly changing. In general, farms are becoming larger and 

more industrialized in high-income countries, and smaller and more fragmented in low-income 

countries (1). The primary factors mediating changes in farm size are economic development, land 

consolidation and redistribution policies, traditional land inheritance systems, and Large-Scale 

Land Acquisitions (LSLA) (8, 9). Yet, across contexts the cumulative impacts of farm size 

transitions remain largely underspecified for both farmers and wider society. 

The majority of the world’s farms are still small -- of the 570 million farms in the world, 84% are 

less than two hectares (ha) in size and constitute 12-25% of farmland area (1, 29). Many scholars 

claim that smaller farms are more productive, resource-use efficient, and environmentally friendly 

than larger farms (2–4), and yet farmers operating smaller farms (smallholders, hereafter) are 

facing growing pressure on their livelihoods from low prices in global markets and climate-change 

induced production losses (5). As a result, small farms are a central focus of international 

organizations promoting sustainable development agendas around improving livelihoods, food 

security, and environmental health. For example, the United Nations (UN) Food and Agricultural 

Organization (FAO) actively promotes small and family farms (e.g., the FAO’s “Year of the 

Family Farm” in 2014). The 2015 Sustainable Development Goals (SDG) seek to support 

smallholders by increasing their productivity, incomes, and access to land (SDG 2.3), while the 

2015 UN Conference of Parties on Climate Change (COP21) agreement resulted in a wide array 

of commitments to bolster smallholders’ adaptive capacity (52). At the same time, consumers are 

increasingly concerned about health, farmer livelihoods, and the decline of diverse and traditional 
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foods, leading to an increased willingness-to-pay for products with organic and/or local labels, 

which are often associated with smaller farms (13–17). 

But despite the international policy activity around farm size, little research to date has 

systematically examined how farm size relates to both environmental and socio-economic 

outcomes. On the one hand, isolated case studies suggest that smaller farms can be more resource-

use efficient, productive, and biodiverse than larger farms (53–55). While the observation that 

smaller farms exhibit higher yields than larger farms was first studied in the 1960s (56, 57), there 

has been little systematic work to understand how the relationships between farm size and outcome 

variables vary across levels of economic development, type of production system, and farm size 

ranges. A robust and multi-dimensional perspective is needed to better understand the economic, 

social, and environmental impacts of changes in farm size globally.  

Here, we synthesize the relationships between farm size and select sustainability outcomes across 

a range of geographies, leveraging the past 50 years of empirical evidence that directly assessed 

crop production, environmental performance, and economic outcomes as they relate to farm size. 

Our systematic assessment of multidimensional outcomes of farm size builds upon past reviews 

focused on single outcomes (e.g. yield, economic performance, or biodiversity metrics for specific 

species) (23, 58–60); non-systematic reviews (58, 59); studies based on indirect measurements of 

farm size and the outcome variables of interest (18, 47); and studies with specific regional foci 

(58, 60). We build on these previous efforts by including studies across diverse regions that directly 

assessed farm size and the outcome variable(s). We assess six relationships between farm size and: 

1) yields (value of crop output per area (value/ha), and total crop production per area (kg/ha)), 2) 
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non-crop biodiversity (field and landscape levels), 3) crop diversity (species and varietal levels), 

4) resource-use efficiency, 5) greenhouse gas (GHG) emissions per unit output, and 6) profit per 

unit area. For yields, resource-use efficiency, and GHG emissions (for which we had quantitative 

data), we use meta-regressions to compute pooled estimates for these relationships and examined 

each variable in relation to location, crop, and farm management contexts. We bound this review 

to spatial definitions of size (i.e., farm size in terms of operated area) as it is a central dimension 

of the farm size debate. 

We situate these results across diverse development contexts to identify if there are lessons from 

one or more context(s) that may provide policy-relevant insights for others. Our findings show that 

smaller farms have higher yields, promote non-crop biodiversity at the field and landscape scales, 

and account for greater crop diversity than larger farms. We find no strong relationships between 

farm size and resource-use efficiency, GHG emissions, or profit. Our findings also highlight a 

series of important literature gaps, with implications for future research aimed at balancing 

equitable economic development with environmental impacts. 

3.3 Results and Discussion 

3.3.1 Literature search 

A systematic review and meta-analysis was conducted using the PRISMA guidelines (61) (see 

Figure S12 for inclusions/omissions and Table S7 for Boolean search terms). The search resulted 

in 218 observations (from 111 studies) for a “vote-count” analysis, designed to estimate the 

probability of studies finding a negative, null, or positive relationship between farm size and the 
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outcome variable (Table S8 shows summary statistics). Studies often contained multiple 

observations and levels of detail if they separately measured different outcome variables, crops, or 

locations. Of these, 70 observations (in 45 studies) had information to allow for a meta-analysis of 

regression coefficients to estimate the relationship between farm size and socio-environmental 

outcomes. To augment the sparse crop diversity and GHG emission literature on farm sizes, we 

used results from Ricciardi et al (2018) and Clark and Tilman’s (2017) dataset, respectively; the 

latter consisted of 100 observations from 11 studies we used in our analysis, for an overall total of 

318 observations. As part of our systematic review we extracted information from the broader 

literature on causal mechanisms behind the main trends as well as factors that caused deviations 

from the main trends (see Table 3). Below we present both the findings from our systematic review 

and meta-analysis. 
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Table 3: Main results and mechanisms. 

Variable Result Mechanisms Benefiting 
Small Farms 

Mechanisms Benefiting 
Large Farms 

Yield Smaller farms • Reliance on family labor 
(e.g., Figure 10). 

• Precision agriculture 
mechanization enables 
higher yields with less labor, 
but is only cost effective on 
larger fields (62). 

Biodiversity 
(non-crop) 

Smaller farms • Smaller fields have more 
edges that provide habitat 
(63, 64). 

• Independently managed 
smaller fields create a 
more heterogeneous 
landscape (65). 

• The link between field and 
farm size is relatively 
understudied; large farms 
with small fields may also 
benefit biodiversity, but was 
untested in the reviewed 
literature. 

Crop 
diversity 

Smaller farms • Subsistence farmers plant 
a greater diversity of 
traditional crops to meet 
nutritional needs (49). 

• Small farms are 
incentivised to cultivate 
landraces when there are 
niche markets for 
traditional crops (50). 

• Varietal diversity requires a 
minimum amount of space 
to prevent genetic erosion 
for wind-pollinated crops 
(66, 67). 

• Diversified crops can reduce 
long-term risk at the expense 
of short-term profit (48, 68). 

Resource-
use 
efficiency & 
GHG 
Emissions 

No 
relationship 

• In contexts where off-farm 
labor opportunities were 
greater, there was less 
available on-farm family 
labor and, in turn, greater 
technical efficiency (69). 

• Smaller farms may use 
less input intensive 
production methods, but 
was untested in the 
reviewed literature. 

• Agriculture mechanization 
can enable higher yields 
with less labor and more 
efficient input use, but is 
often only cost effective on 
larger fields (62). 

• Increased access to 
information from extension 
and advisory services was 
associated with highly 
efficient farms, but was 
more accessible to larger 
farms (69–72). 

Profit No 
relationship 

• Specialty markets for 
traditional foods offers 
higher prices (50). 

• Smallholders’ credit 
access can increase access 
to inputs and markets (73). 

• Better market access for 
larger farms (76, 104). 

• Recovering fixed costs 
require a minimum scale 
(74, 75). 

• Land-based subsidies (76). 
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3.3.2 Yield 

The inverse relationship (IR) between farm size and yields -- a trend describing how production 

per unit area declines with increasing farm size -- has been widely studied since the 1960s (56, 57, 

77–79). Microeconomic theory suggests that optimal sizes exist for specific production processes 

(80), which has led to the debate on whether there is an optimal farm size for specific crops in 

different political and economic contexts, and if policies should thus redistribute land to increase 

regional productivity (9, 77, 81, 82). 

 

Figure 9: Plots A-D show the probability of studies finding negative, null, or positive relationships 
between farm size and the outcome variable as per the vote-count findings. The average and 95% 
confidence intervals are given. (See Table S9 for underlying data.) 

 

Our analysis found that the IR holds across a wide array of country contexts and crop types. We 

estimated that 79% of studies (95% CI = 58-100%) find smaller farms to have higher yields (in 
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both weight/ha and value/ha terms) than larger farms (Figure 9). We also examined pooled effect 

sizes to estimate the magnitude of change in yield per one hectare change in farm size. The pooled 

estimates were computed from the extracted and standardized regression slopes (where studies 

regressed farm size onto yield). We found that yields typically decreased by 5% for each hectare 

increase in farm size (i.e., -5% mean effect; 95% CI: -9 to -1%; Figure 10). These results were 

consistent across measurements defining yield as weight/ha or output value/ha. While confidence 

intervals around these findings are large, and the distribution of effects includes non-consistent 

cases, these findings show that, on average, the available evidence supports the hypothesized IR. 

In 1964, Sen offered three explanations for the IR -- differences in farming practices, labor 

markets, and/or land heterogeneity -- that continue to be tested for different crops across a variety 

of institutional, labor, and environmental contexts (83). We explored if our results were moderated 

by these three common explanations in the literature through sensitivity analysis and based on the 

available evidence. 

Additionally, there were no consistent differences between studies when they controlled for 

farming practices (Figure 10). While not included in our review due to our inclusion criteria, 

precision agriculture mechanization has been found to enable higher yields with less labor, but is 

only cost effective on larger fields (62). Our findings, along with the limited studies we found on 

yields and farm size in higher-income countries, suggests that larger farms may disproportionately 

be able to invest in mechanization to overcome the IR as optimal farm structures have been found 

to change with economic development (59). 
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Figure 10: Pooled effect size per variable as derived from the random effect meta-regressions. The 
vertical black line indicates the 1:1 response ratio where for a 1 ha change in farm size, there is no 
change in the variable. If a response ratio is < 0, then smaller farms have a higher effect (e.g., smaller 
farms have higher yields), and if it is > 0, then larger farms have a higher effect. The number of 
observations (n) and 95% confidence intervals are given per variable. For yield, sensitivity analyses 
fit separate models to test if the effect was consistent for studies that controlled for common 
explanations for the inverse farm size to yield relationship: institutional characteristics, farm 
management, and family labor. For resource-use efficiency, separate models were fit to test if the 
effect was moderated by common development interventions to improve smallholder resource-use 
efficiency: extension access, farmer cooperatives/groups, and credit access. For yields and resource 
efficiency, full models indicate that all variables listed were controlled. Profit and GHG emissions 
had no additional models. (See Table S10 for underlying data.) 

 

First, in exploring the impacts of institutional contexts, we found that the inverse relationship 

between farm size and yield held across studies controlling for credit markets, access to extension 

services, and involvement in farmer cooperatives.  
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Second, we found that for studies that controlled for types of labor (i.e., general labor market 

imperfections, family labor, and household size), the negative relationship between farm size and 

yield no longer existed (Figure 10). This may be explained by the fact that the presence of a large 

amount of unpaid family labor, or limited off-farm labor opportunities -- usually due to other 

market failures (e.g., unequal access to credit, land, and/or insurance) -- would lead to a high 

density of laborers on smaller farms. Controlling for the effect of laborers “boosting yields” on 

smaller farms leads to no differences in yield between farm sizes, which indicates labor is a key 

moderating factor to the IR. 

Third, we found two rigorous studies on the relationship between land heterogeneity, yield, and 

farm size that collected soil samples in Madagascar rice paddies (55) and on Thai sugarcane farms 

(84); both studies found that soil differences did not affect the IR. Elevation and slope of fields 

have also been examined in India and in sub-Saharan African maize and grain farms, with the IR 

still holding (85, 86). 

Lastly, it has been postulated that the IR is an artifact of measurement error, where farmers mis-

report farm size and/or yield, but these hypotheses have had limited empirical work (87, 88). While 

the IR debate has measured productivity in terms of yield and various economic and production 

efficiency metrics (e.g., allocative, technical, and total economic efficiency, returns to scale, and 

profit), we discuss profit and resource-use efficiency separately below.  
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3.3.3 Non-crop biodiversity 

Both smaller farms and landscapes dominated by smaller farms had greater non-crop biodiversity 

(across diversity metrics and species) than larger farms or landscapes dominated by larger farms. 

We estimated that 77% of studies (95% CI = 61-99%) find smaller farms to have greater 

biodiversity at the farm and landscape levels compared to larger farms. Since there were only 12 

observations (4 studies) that measured farm size directly, we included and controlled for 75 

observations (30 studies) that measured the relationship between biodiversity and field size, as 

field size has been shown to correlate with farm size (89, 90). While a key limitation to the 

generalizability of these results are that most studies were from high-income countries (Figure 

S13), the literature’s key mechanisms may provide insight for other economic contexts. 

Fields’ “edge effects” are the key reported mechanism behind smaller farms having greater non-

crop biodiversity. This is because field margins have been shown to contribute to non-crop 

biodiversity, and smaller fields have a higher field margin-to-field area ratio. Increased field 

perimeters (e.g., using grass buffer strips and hedgerows) lead to larger available breeding habitats 

for arthropods (91, 92), provide refuge for arthropods and smaller species to (re)colonize after 

escaping recently disturbed fields (63, 64, 93), increase the number of pollinators and beneficial 

predators within fields (64, 92, 94), and act as conservation corridors for arthropods and small 

mammals (63, 95, 96). While there is limited research on whether and how specific management 

practices influence the effect of farm size on biodiversity (23), there is evidence that farm size can 

have a larger effect than management on biodiversity. For example, Belfrage et al. found smaller 
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farms to have more butterflies, birds, and non-crop herbaceous plants than large farms, irrespective 

of conventional or organic management (94). 

At the landscape level, small farm-dominated landscapes also have greater biodiversity due to the 

buffers around their field edges providing wildlife corridors; diverse land cover types such as forest 

and wetland; fields of different crops; or fields in different stages of production (65, 97, 98). 

However, our review also found a few empirical cases where small farm and field sizes in a 

landscape still resulted in low overall landscape diversity. For example, Hansen and Libecap  

found that during the U.S. Dust Bowl, soil erosion rates were high at least partially due to the 

mosaic of small farms and fields which--although independently managed--had low collective 

crop diversity and land-cover types, resulting in a highly homogenized landscape (99). While the 

Dust Bowl is a unique example with diverse drivers, it reveals that simply having small farms does 

not inherently promote a biodiverse landscape; rather a diversity of management practices 

(including cropping patterns), fields, and biophysical contexts promote biodiversity at the 

landscape scale. 

Not all species benefit from smaller farms and increased landscape heterogeneity. Birds have 

differing preferences for field size and landscape heterogeneity (100), and species-to-landscape 

heterogeneity relationships are not always unidirectional. For example, grey partridges in Poland 

use larger fields for nesting, but insect species that partridge chicks prefer as food are more 

abundant in smaller fields (101), suggesting that, at least in some contexts, there is a need for a 

diversity of farm sizes in the overall agricultural landscape to support biodiversity outcomes. Crop 

type and the landscape surrounding a field also had effects on bird populations, where certain 
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migratory birds favored larger cereal and maize fields with close proximity to forested areas to 

access food sources, while other species preferred a small farm-dominated landscape (102). 

3.3.4 Crop diversity 

Many studies have explored in situ crop diversity among smallholder farmers (103–106), yet few 

directly measured the relationship between farm size and crop diversity. We only found eight 

observations (from eight studies, across six locations) that met our study inclusion criteria for crop 

diversity. Three of these studies found a negative relationship between farm size and crop 

diversity, while four found a positive relationship. We supplemented these vote counts, by instead 

relying on a more in-depth quantitative analysis from a recent publication where we addressed the 

relationship between crop diversity and farm size across 55 countries and 154 crops using a newly 

harmonized dataset of farmer surveys and agricultural censuses (Figure S13) (29). We found that 

when comparing farms within the same landscape, smaller farms accounted for a greater 

percentage (~40% for farms < 2 ha) of crop species richness compared to larger farms (Figure 5). 

Despite the limited studies on crop diversity and farm size, the literature suggests important 

context-dependencies to the farm size and crop diversity relationship. For example, smallholder 

farmers engaged in subsistence systems planted a greater diversity of crops to meet their own 

nutritional needs (49). In market-based systems, smaller farms engaged in niche/specialty markets 

would sell traditional varieties and species; but often, these same farmers would also grow 

“modern” varieties for bulk markets that further diversified their production (50). Smaller farms 

also employed crop diversification to mitigate drought risk when favorable growing conditions 

outweighed financial limitations (107).  
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However, there were contexts where larger farms were more diverse. In higher income countries, 

larger farms were able to more easily enter new markets and they were more willing to diversify 

production to mitigate potential risk even when it meant lower short-term profits per farm (48, 68). 

In regions where the average farm size is smaller, there may be minimum size thresholds that 

prevent crop diversification (48): Smaller, subsistence-based farms were not always able to 

produce a diversity of crops due to varietal constraints, input availability, and land constraints (66, 

67). In Ethiopia, for example, Teshome et al. found sorghum varietal diversity was lower on 

smaller, subsistence-based farms because farmers were not able to save/obtain enough seed per 

variety for the subsequent year’s planting. Their study also found that the available cropping area 

was often limiting for multiple varieties on smaller farms since sorghum is wind-pollinated and 

requires some minimum spacing between varieties to prevent genetic erosion (66).  

3.3.5 Resource-use efficiency and GHG emissions 

We found no conclusive relationship between farm size and per crop resource-use efficiency 

(defined by technical efficiency (TE)), and a negative but uncertain effect of farm size on GHG 

emissions. From 34 studies, we estimated that 50% of studies (95% CI = 39 to 58%) find larger 

farms to be more resource efficient than smaller farms. For the 18 studies we were able to extract 

regression slopes from, we found that average farm size had no conclusive effect on resource-use 

efficiency (0% mean effect; 95% CI: -1 to 2%). We did find evidence that GHG emissions per unit 

output showed a tendency for being lower on smaller farms (-4% mean effect; 95% CI: -10 to 2%), 

suggesting that small farms might be more efficient per unit output (Figure 10). 
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Studies of both resource-use efficiency and GHG emissions represent different aspects of farm 

level resource-use, and use different assessment methods and literatures. GHG emission estimates 

used in the Life Cycle Analysis (LCA) literature examine farm level input/output ratios in terms 

of their GHG equivalents. Resource-use efficiency also examines the farm level input/output 

relationship but in value or volume terms, and enables analysis of the mechanisms influencing 

efficiency (e.g., farm size). In our dataset, the most commonly included inputs for studies using 

TE, in order of frequency, were: labor, seed, herbicides, pesticides, fungicides, and inorganic 

fertilizer. LCA studies included a more diverse array of inputs and outputs than TE studies and 

often included pre-farm (e.g., fertilizer production, infrastructure construction, machinery use, 

etc.) and on-farm energy use (108). In sensitivity tests on TE and LCA inputs and outputs included, 

there were no significant differences in our findings. 

A dominant theme in the literature is that a farm’s political, economic, and geographic context -- 

that is, a farm’s access to training, credit, machinery, insurance, inputs, markets, and/or subsidies 

-- determine its resource-use efficiency. In our meta-regressions, the null relationship between 

resource-use efficiency and farm size remained even when studies controlled for differences in 

farmer group membership, credit, or extension access (Figure 10), suggesting that these factors 

alone do not influence the resource-use efficiency to size relationship. 

While we could not test for other factors affecting resource-use efficiency variation by farm size, 

the literature revealed three barriers that smallholders face. First, technologies were more 

accessible/available to larger farms. Investments in mechanization, such as irrigation and 

harvesting infrastructure, involve large fixed costs that are often beyond the reach of smallholders 
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and can be used more efficiently on larger farms with larger fields. For example, combines can 

cover wider swaths with fewer turns on larger fields, to enable higher yields with less labor and 

more efficient input use -- but are only cost-effective on larger fields (62). In contrast, smallholders 

encounter barriers to accessing these technologies, may farm part-time, or may be inhibited by 

fragmented plots that require increased travel time (109). Second, small farms frequently rely on 

family labor (especially where there are limited off-farm employment opportunities), which results 

in a trade-off between increased crop production and labor inefficiency. The latter affects farms’ 

resource-use efficiency: smaller farms’ higher yields achieved through more family labor did not 

outweigh their overall labor inefficiency (54, 69, 70). However, farm equipment rentals and/or low 

external input systems may offset the high labor inefficiencies. Third, many authors observed that 

increased access to information from extension, advisory services, and higher levels of education 

were associated with highly efficient farms (69–72). While there were limited studies examining 

the interaction(s) between access to information and farm size, Külekçi (2010) found that, even 

after controlling for farm size, a farmer’s access to information was key to increasing TE in Turkey 

(69). The same was true for market access, where larger farms had better access to improved rural 

infrastructure that fostered increased market involvement (110). 

3.3.6 Profit 

We found no general relationship between profit per hectare and farm size. The probability of a 

study finding a positive, negative or null impact of farm size on profit per hectare had wide and 

overlapping confidence intervals (Figure 9); this null result was consistent when we examined the 
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effect sizes, where profit per hectare showed no relationship with farm size (-2% mean effect; 95% 

CI: -10 to 5%).  

The profit results were the most spatially heterogeneous across all variables examined. For certain 

smallholder-dominant countries (e.g., India and Ethiopia) we found that smaller farms were more 

profitable, whereas larger farms were more profitable in countries dominated by large farms (e.g., 

the United States). This may suggest that smallholders have better access to markets and inputs in 

a smallholder-dominant system, but conclusions are limited since we only had 15 observations. 

The literature says little about how the farm size-profit relationship varies by region. Additionally, 

many studies simply considered economic inputs and outputs, rather than considering food calories 

or nutritional value, which would have been more inclusive of subsistence-based producers; hence, 

our findings primarily reflect the profit outcomes of market-oriented farmers. 

The literature suggested some common mechanisms to explain the variations in profit by farm 

size. Larger farms benefited from technology built for those farm scales--irrigation systems, 

harvesters, and other machinery are often not available for smaller farms, or there are minimum 

economic size requirements for farms to recover their fixed costs in the technology or other on-

farm investments (e.g., canals, land-leveling, etc.) (74, 111). Additionally, larger farms were able 

to purchase inputs in bulk to save on upfront costs and had more consistent and streamlined market 

access, where they could leverage the scale of output for better prices (74). Smaller farms, 

especially in remote and resource-poor communities with poor access to markets, often sold their 

crops during harvest to intermediaries at the farm-gate at lower prices (75). Smallholders’ lower 

incomes paired with limited market access and off-farm opportunities may critically affect their 
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food security (112), even under circumstances where they produced a diversity of crops for home 

consumption (22). In countries with land-based subsidy programs (e.g., the U.S. and China), larger 

farms achieved a higher profit, in part due to having more available land to receive government 

payments. For example, Rada et al. (2015) found that in China, larger rice and wheat farms that 

had access to land consolidation incentives (i.e., expansion subsidies that offered payouts when 

selling to larger family, specialty, or cooperative farms) achieved higher profit per hectare; 

however, smaller farms showed higher profits for maize, a sector that did not have these incentives 

(76).  

There were several contexts where improved support for smallholders enabled them to have greater 

profit than large farms. Small farms were more profitable than large farms when they engaged in 

niche, high-value markets -- for example, export-oriented producers with fair trade or 

environmental certification(s) in low or middle-income countries (50). Smaller farms may be more 

competitive when involved in farmer cooperatives that support group input purchases and foster 

bulk sale of graded product. In Nicaragua, Deininger et al. (2003) found that profits were greater 

for smaller farms once the credit system stopped being oriented towards large-holders through 

structural policy reforms in the mid-1990s (73). Despite these structural and contextual changes 

that can promote the profitability of smaller farms, several authors cautioned that, even in 

conditions where larger farms may farm less intensively and obtain lower monetary returns per 

hectare, they may still obtain higher overall profits and thus outcompete smallholders (113). For 

instance, in India, Gaurav and Mishra (2015) found that even though smaller farms had greater 

profits per hectare, their absolute levels of production were often too low to maintain viable 

livelihoods (111). 
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3.4 Research gaps 

We identified several key research gaps in the literature. First, this body of literature largely 

focused on important production outcomes for farmers, like yield and efficiency. To inform land 

reform initiatives aimed at bolstering food security and economic development, future research 

should also examine the relationships between farm size and livelihoods/well-being for farmers, 

laborers, and/or consumers. For example, smallholders’ higher yields but lower absolute levels of 

production raises questions about the sustainability of their livelihoods (111, 114). A better 

understanding of the relationship between farm size and overall agricultural and non-agricultural 

gross national product (GNP) (or other national indicators) may inform cross-sector economic 

development planning efforts, such as identifying rural off-farm sectors to promote supplemental 

incomes for smallholders. Additionally, the IR was investigated in terms of either kg/ha or output 

value/ha, but recent evidence suggests that smaller farms grow an important array of crops for 

nutrient diversity (20, 29). While the relationship between macro and micro-nutrient production 

by farm size is beginning to be understood (20, 29), it is not known who is consuming these 

nutrients. 

Second, there were a limited number of studies on how production methods varied by farm size 

and the associated environmental implications. While resource-use efficiency metrics look across 

all inputs to characterize the system as a whole, there is limited detail on particular inputs and 

farming practices (e.g., do smaller farms use less input-intensive production methods?) and how 

institutional mechanisms (e.g., credit or farmer groups) influence different farm sizes’ access to 

inputs and information. The LCA literature provides greater detail on inputs and farming practices, 
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but these studies did not often compare across farm sizes. Assessing if particular farm sizes are 

associated with a set of production methods within and across different cropping systems would 

enable better identification of scale-specific relationships between farm size and environmental 

impacts. 

Finally, few studies to our knowledge have considered how other social variables and cultural 

services provided by agriculture vary by farm size. Historically, the social relationships developed 

and maintained on smaller-scale family farms -- between family members, neighbors, peers, and 

also between growers and eaters -- provided opportunities to produce and reproduce (or 

renegotiate) cultural norms, morals, values, and local ecological knowledge (24, 115). Small farms 

may be more likely to source directly to consumers at farmers markets or through cooperatives, 

strengthening place-based socioecological linkages. As producers industrialize and scale up, and 

as rural out-migration continues (with young people in particular leaving agriculture), producers 

increasingly need to rely on mechanization and hired -- often exploited -- labor (116). The question 

of labor demand and quality has received little attention in empirical work on both farm size and 

management practices (117) due to the precariousness of farm work and vulnerability of farm 

workers (118). Future research should further investigate how issues of labor, health, and 

wellbeing for laborers, farmers, and consumers interact with farm size and with other sustainability 

outcomes. 

3.5 Conclusion 

Our synthesis leverages the past 50 years of empirical evidence that directly measured production, 

environmental, and economic outcomes of farm size across diverse economic and geographic 
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contexts. We found that smaller farms have greater yields and support higher crop and non-crop 

diversity, whereas there was no strong relationship between farm size and resource-use efficiency 

or profit per hectare, but there was a small effect that smaller farms had lower GHG emissions per 

crop. Additionally, we identified several research gaps. In particular, there were limited cross-

regional and cross-discipline studies and many studies of social outcomes (e.g., food security and 

production resilience) did not compare across farm sizes (e.g., studies on smallholders did not 

include the counterfactual of larger farms).  

Our results suggest that there are multiple trade-offs to consider when assessing the impact of farm 

size; often, the context in which farms exist is key to understanding the socioecological effects of 

farm-size structure and farm size transitions. In addition, while it is useful to understand the 

directionality of the relationship between farm size and each variable in a given context, we 

propose that it is perhaps more critical from a policy standpoint to understand the mechanism(s) 

behind each relationship. While the findings for yield and biodiversity conservation generally 

support the need for investing in small farms, understanding the drivers behind output, earnings, 

and the other assessed relationships can inform policy opportunities for targeting resources to 

support the specific processes that lead to multiple desired outcomes across farm sizes. 

Finally, our results highlight that in order to support sustainable transitions in farm sizes, more 

evidence-based synthesis is needed at broad regional scales. Until recently, the role of farm size 

in the global food system has largely been assessed by independent case studies. As international 

commitments (e.g., SDGs and COP21 INDCs) begin to evolve into actionable funding plans and 
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as countries continue to decide upon land use policies that directly affect the size of farms, it is 

critical to identify under what contexts farm size affects different socio-ecological outcomes.  

3.6 Data and Methods 

A systematic review was conducted with reference to the PRISMA guidelines (61). We searched 

the Web of Science and Scopus databases for studies in English published prior to December 2017. 

We used four inclusion criteria: 1) peer-reviewed; 2) directly measured farm size and the outcome 

variable(s) of interest; 3) reported error estimates/significance tests in determining effect size; and 

4) compared farms with similar management systems (e.g., compared small and large maize farms, 

not small vegetable farms to large cereal farms). Our search yielded 1474 studies. In total, we 

identified 118 studies (318 observations) that met our criteria; from these, we coded 111 studies 

(218 observations) as vote counts, of which we extracted regression coefficients from 45 studies 

(70 observations). 

Studies were coded at the observational level to analyze multiple crops, years, and locations per 

study; studies had multiple observations if they separately reported different crops, years, and/or 

locations per outcome variable. The main conclusions were categorically coded as “vote-counts”, 

where an increase in farm size was associated with a decrease, increase, or null relationship to the 

variable of interest (we found no non-linear results in the literature). For yield, resource-use 

efficiency, and profit we extracted several additional variables to calculate pooled effect sizes of 

regression model coefficients. Due to finding a limited number of studies that directly measured 

farm size and GHG emissions per unit output, we leveraged the Clark and Tilman (2017) meta-

analysis database containing 742 agricultural life-cycle analysis (LCA) observations from 152 
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unique studies (108); we coded observations that reported average farm size to construct a dataset 

containing crop species, GHG emissions per unit output (in CO2 equivalents), average farm size, 

and sample size for 100 observations (11 studies) that met our inclusion criteria. 

3.6.1 Synthesis of results 

We ran three types of meta-regressions to synthesize the vote count findings, extracted regression 

slopes, and the GHG emission estimates. First, we used cumulative link multilevel models 

(CLMM) to synthesize the ordinal vote count findings for yield, resource-use efficiency, profit, 

and biodiversity (119, 120). We used CLMMs to examine the probability of the ordinal outcome 

variable (observation finding negative, null, or positive relationships with farm size). For all 

models, we set the study as a random effect. Because there were more observations available for 

yields and non-crop biodiversity, we also set crop type as random effects. For non-crop 

biodiversity, we also set non-crop species type as a random effect. We tested if the additional 

random effects used for yields and non-crop biodiversity changed the results compared to using 

only studies as random effects and found no differences. 

Second, we used random effects meta-regressions of the standardized regression slopes and 

standard errors (121, 122) to calculate pooled effects for yield, resource-use efficiency, and profit. 

Since certain variables contained multiple currencies, efficiency units, or measurement metrics, 

we relied on Rodríguez-Barranco et al.’s technique to convert farm size regression coefficients 

and standard errors into standardized regression coefficients (34, p 4, Table 1) (123). Our 

standardized coefficients represent a relative change in the outcome variable per 1 ha change in 

farm size. We used the same random effects per variable as in the CLMM models. Sensitivity tests 
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were conducted through cumulative meta-regressions for continuous variables (e.g., year of study, 

average farm size study observed, etc.) and subsetted meta-regression for categorical variables 

(e.g., type of diversity metric used, if yield was defined by weight/ha or value/ha, if resource 

efficiency was derived from data envelopment analysis or stochastic frontier, etc.). All sensitivity 

tests found no differences in results. Forest plots are given in Figure S14-S16. An inclusion of bias 

analysis was conducted through funnel plots that compare the observed outcomes to standard 

errors. There were no clear biases for yields and resource efficiency, but a slight positive bias for 

profit (Figure S17). 

This meta-regression framework also enabled us to further test if the variation in findings between 

different studies could be attributed to the inclusion/omission of variables that authors used when 

estimating the relationship between farm size and the variable of interest, through sensitivity 

analyses using moderators. For yield, we assessed the importance of moderators such as the types 

of production methods, institutional characteristics (i.e., credit markets and access, extension 

access, and involvement in farmer cooperatives), and types of labor (i.e., general labor market 

imperfections, family labor, and household size). Our logic was that if the relationship is 

moderated by these factors (e.g., if the main relationship became null) it would indicate that there 

is a systematic variable omission bias in the literature that, once corrected for, could explain the 

inverse farm size to yield relationship. For resource-use efficiency, we conducted a similar 

sensitivity analyses, by including moderators that described development interventions (i.e., credit 

access, extension access, or farmer group membership). Our key hypothesis was that having 

similar access to credit, extension, or inputs and markets (through farmer groups) may enable small 

farms to be equally or more efficient than large farms. 
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Third, for the GHG emission observations, we used robust linear mixed-effects models where we 

set location and crop type as random effects. To predict GHG emissions per unit output, we used 

the log average farm size of a study as a fixed effect. The key difference in the GHG emission 

model is that the data is at the aggregated farm level, as opposed to extracted regression 

coefficients for the yield, resource-use efficiency, and profit models. (Formulas and further detail 

on each meta-regression used is available in Appendix B). 
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Chapter 4: Examining variations in economic productivity and incomes for 

small-scale farmers 

 

4.1 Abstract 

It has long been established that smaller farms have higher yields than larger farms across a wide 

range of crops and geographical contexts (see Chapter 3). But there has been less empirical 

evidence on whether there are scale constraints on economic returns to income that prevent small-

scale farmers from rising above national poverty lines. We used the Rural Livelihoods Information 

System (RuLIS) harmonized micro-dataset to examine farm size, productivity (as profit per ha), 

and income (as profit per person living in an agricultural household) across 34 countries. Our 

results confirm that smaller farms are more productive but have lower incomes than larger farms. 

For 30 countries, we used mixed models and scenarios to examine how these relationships varied 

across common definitions of small-scale farms (i.e., farm size in hectares, the country relevant 

farm size, the country relevant economic size, the percent of family labor used, and the farming 

household’s level of subsistence). We further tested how the proposed SDG 2.3 definition of small-

scale farms, which combines relative farm size with relevant economic size, maps onto poverty. 

We find that the proposed definition will identify the greatest proportion of farmers living below 

national poverty lines in a country compared to the alternative small-scale farm definitions tested. 

Yet, we caution that for SDG 2.3 this definition will need to be disaggregated to ensure other 

disenfranchised farmer groups (e.g., women, indigenous peoples, certain castes, etc.) are not 
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neglected. In our country-level scenario analysis, we find that the SDG 2.3 target of doubling the 

incomes of small-scale farmers will result in an average of 60% of farmers over their national 

poverty lines regardless of the definition used. Hence, the SDG 2.3 target will need to be modified 

to support extremely impoverished farmers. 

4.2 Introduction 

Small-scale farmers are amongst the poorest populations in many lower-income countries (6, 7). 

International policies, such as the Sustainable Development Goals (SDG), call for supporting 

small-scale farmers in order to combat poverty. A key target of SDG 2 (Target 2.3) is to “double 

the agricultural [labor] productivity and incomes of small-scale food producers, in particular 

women, indigenous peoples, family farmers, pastoralists and fishers.” This target is further 

contextualized against the backdrop of SDG 1, which aims to end poverty, and SDG 2.4’s target 

of sustainably increasing land productivity (37). To support these goals and refine appropriate 

targets, decision makers and civil society organizations need a better understanding of the interplay 

between small-scale farmers, productivity, profit, and poverty. 

SDG 2 present productivity and incomes as dually achievable objectives, but doubling farmers’ 

land and/or labor productivity may not sufficiently raise farmers’ incomes above national poverty 

lines. For example, there has been a recent upsurge in research promoting intensification and labor-

saving technologies for small-scale farmers (124–126). Yet, intensification and labor-saving 

technologies has not been found to transition farmers out of poverty (125). In 2019, Harris used 

data from 15 sub-Saharan African countries to examine increases in income following the adoption 

of intensification technologies and practices (125). In his sample, he found that an increase in 
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agricultural returns from current levels of ~$80-$400/ha/year (2005 USD PPP) to $2500/ha/year 

would be required to transition 50% of farmers out of poverty. Given that smaller farms have 

higher yields than larger farms across a wide range of crops and geographical contexts (127), these 

levels of intensification gains -- even if paired with increased access to cheaper inputs or more 

integrated supply chains -- are unrealistic for most small-scale farmers given their current land 

constraints (128). Hence, doubling small-scale farmers’ incomes might not be a high enough target 

to transition many farmers out of poverty. 

Beyond individual case studies on the relationship between farm size, profit, and income (111, 

114, 129–131), which are sparse when compared to the widely investigated farm size-to-yield 

relationship, the questions remain: Are there scale constraints on returns to income that prevent 

small-scale farmers from rising above national poverty lines? Will doubling small-scale farmers’ 

incomes be enough to transition farmers out of poverty? What types of small-scale farmers can 

transition out of poverty when doubling their incomes and what farmers will require a more 

aggressive target? 

To answer these questions, the operational definitions of small-scale farms that the SDGs can rely 

upon to identify impoverished farmers need to be further examined. Farm size has become a 

predominant definition for small-scale farms because it is easy to define and is often captured in 

sample surveys and agricultural censuses. Recently, earth observation has streamlined field size 

classification (21, 89, 90), which currently is being linked to farm size (27). Conventionally, 

farmers operating under 2 ha are defined as smallholders (a synonym for small-scale farmers). 

This break point is arbitrary, lacks a country relative perspective (e.g., by this definition, Brazil 
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would have 20% of its farms classified as smallholders, while India would have ~80% of its farms 

be classified as smallholders), and does not account for other key dimensions of impoverished 

farmers (e.g., farms’ economic size, labor dimensions, and market orientation) (1, 12). In addition, 

global statistics on the role of small-scale farms in the food system are obfuscated by differing 

definitions, such as, “small farms” (1, 19, 20, 29), “peasant farms” (30), and “family farms” (11, 

18). 

There are multiple definitions of small-scale farms that differ from spatial farm size. For example, 

the recent recognition of family farms has gained support for farmers who have long-term 

relationships to their land and communities (11, 18, 132). Many countries have policy supports for 

family farms based on different legal definitions, such as the farm's corporation status, level of 

family labor, farm size thresholds, or a combination of these factors (18). Yet, a farm’s corporation 

status may not reflect desired management practices or a level of family labor that is beneficial to 

the land, farmers’ incomes, or local communities. The literature leading to and stemming from the 

United Nations’ (UN) 2015 “International Year of the Family Farm" reflected this widely diverse 

definition of “family farms” that ranged from cooperation status, level of family labor, farm 

residency, farm size, and source of income (12, 18, 132, 133). Another key definition of 

smallholders is their market orientation. Whether a farmer engages in subsistence-based 

agriculture or is predominately producing for markets, results in different development 

interventions/types of support. Underlying each definition of small-scale farms are gender 

disparities, which is a key cross-cutting theme in SDG 2 since there are significant gendered 

income and skill gaps that need to be addressed as agriculture feminizes, where an estimated 70-
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80% of agricultural work in LMICs are performed by women and this percentage is expected to 

increase (134).  

While no single definition of smallholders will encompass all impoverished farmers, international 

initiatives to improve the welfare of smallholders need to establish an operational definition that 

can be compared across countries and time. To monitor SDG 2.3, a combined, country relevant 

definition of small-scale farms has been proposed -- as a country’s smallest 40% farms (as defined 

by spatial size) that are also within the bottom 40% of economic size (as defined in agricultural 

revenue) (28). While this definition addresses multiple key debates around measuring farm size, 

there has been little empirical testing to understand the following questions: Will these two 

dimensions of small-scale farms identify the most impoverished farmers? Is this indicator a 

suitable proxy for other key definitions of small-scale farms and what breakpoints capture low-

income farmers? Do family farms, subsistence levels, or other definitions of small-scale farms 

capture a different farming population than farm size and economic size? Will these operational 

definitions also identify female headed households and farms with female dominant labor? 

4.3 Objectives 

This study has three objectives. First, we examine the relationship between farm size, land 

productivity (in profit per ha terms), and income (in profit per all people living in a farming 

household terms) across 34 countries, using the Rural Livelihoods Information System (RuLIS). 

The goal of this analysis is to test if farms with high productivity have higher incomes. 
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Second, we test whether the productivity and income relationships to farm size are better explained 

by other definitions of small-scale farms (i.e., family labor, country relative economic size, country 

relative farm size, and subsistence levels) across 30 countries using RuLIS. By empirically testing 

different definitions of small-scale farms, this analysis seeks to build upon the critical social 

research that has challenged simplified definitions of smallholders (12, 18, 132, 133).  

Third, we examine which types of small-scale farmers (e.g., different small-scale farm definitions 

and different points on the farm size or income distribution scales) can transition out of poverty if 

SDG 2.3 target in doubling their incomes was achieved. The goal of this analysis is threefold. We 

test if doubling farmers’ incomes is an appropriate target to transition farmers out of poverty. Then, 

we test the efficacy of the proposed SDG 2.3 definition of small-scale farms in targeting 

impoverished farmers. Finally, we provide different thresholds for defining small-scale farms (e.g., 

40% smallest farms versus 60% smallest farms in a country).  

4.4 Data 

RuLIS is a harmonized dataset across 37 countries that uses nationally representative sample 

surveys. Data is available at the micro level (i.e., individual household records) and contains over 

200 harmonized variables on agricultural households’ on and off-farm revenues and expenditures. 

For this analysis, we used two subsets of 34 and 30 countries based on the availability of variables 

(Figure S18). While RuLIS contains panel datasets for a selection of countries, we used the most 

recent year per country because we were interested in the broad relationships between farm size, 

profit, and different smallholder definitions across regional contexts. Summary statistics are 

presented in Table 4 and Spearman rank correlations are in Figure 11. 
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Table 4: Summary statistics for data included in analysis. 

Small-scale farm definitions  
Statistic No. Obs. Mean St. Dev. Min Pctl(25) Pctl(75) Max 
Farm Size (rel) 38,126 0.29 0.25 0.00 0.08 0.45 1.00 
Farm Size (ha) 38,126 2.54 3.70 0.25 0.75 3.00 162.00 
Female Labor 38,114 0.51 0.22 0.00 0.40 0.62 1.00 
Family Labor 38,126 0.97 0.05 0 1.0 1 1 
Subsistence 38,126 0.24 0.28 0.00 0.02 0.40 1.00 
Economic Size (rel) 38,126 0.28 0.27 0.00 0.05 0.46 1.00 

 
 

Profit per ha (USD 2011 PPP)  
Statistic No. Obs. Mean St. Dev. Min Pctl(25) Pctl(75) Max 
Crop 37,683 1,490 2,547 -11,885 254 1,738 53,524 
Livestock 37,062 720 1,654 -10,603 0 646 27,111 
On-Farm 36,647 2,202 3,266 -11,885 408 2,632 53,524 
Total 38,126 4,384 6,031 -20,409 888 5,408 90,590 

 
 

Profit per capita (USD 2011 PPP)  
Statistic No. Obs. Mean St. Dev. Min Pctl(25) Pctl(75) Max 
Crop 37,717 1.14 1.71 -8.84 0.20 1.43 23.40 
Livestock 37,512 0.45 0.89 -3.40 0.00 0.56 12.60 
On-Farm 36,954 1.59 2.02 -7.84 0.36 2.10 25.30 
Total 38,282 3.07 3.53 -18.60 0.80 4.02 43.40 

 

Since the key policy interest in small-scale farmers is to support the most vulnerable farmers, we 

tested how the different definitions of smallholders explain on-farm productivity, on-farm income, 

and total income. Specifically, we looked at the following definitions of small-scale farms: actual 

farm size (ha), the relevant farm size (country level ranked percentiles), the relevant economic size 

(country level ranked percentiles), the farming household's level of subsistence, and the percent of 

family labor a given farm used compared to all labor on the farm (definitions available in Table 

S11). RuLIS contains data on the number of days family members worked and the total labor days 

available for only nine countries. To expand our results to include more countries, we used a proxy 

for the percent family labor -- one hundred minus the percent of labor expenditure compared to 

the total on-farm expenditures -- that assumed family labor was unpaid; we validated this 
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assumption with sensitivity tests shown in Figure S19. We examined how the SDG 2’s cross-

cutting theme of gender related to the small-scale farm definitions and tested if it moderated the 

other smallholder definitions’ relationships with productivity and income, where female labor was 

defined as the percent of female labor used on a given farm compared to all labor on the farm.  

 

Figure 11: Pooled within country Spearman rank correlations comparing definitions of smallholders. 
Green represents positive correlations and purple represents negative correlations. All data was used 
from either subset A or subset B depending on variables’ availability. 

 

Since RuLIS consists of nationally representative sample surveys, we restricted the data to only 

include agricultural households. RuLIS categorizes agricultural households based on whether their 
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share of income from agricultural activities (i.e., crop, livestock, forestry, fishery, and agricultural 

wage) is higher than 30% or for which a negative share is not due to negative income in agriculture 

but to a high negative value in income due to non-agricultural and self-employment activities.  

To measure farm size, we used a combination of farm size variables since there were different 

farm size variables available per country. In order of availability we used: cropland, cultivated 

area, and operated farm area. These farm size variables were used to be consistent with the 

operational definition of small-scale farms to monitor SDG 2.3 (28).  

We defined productivity as profit per ha and income as profit per all people living in the farming 

household per day, where profit was defined as revenue minus operation expenses. We conducted 

analyses for on-farm income and for total income (i.e., on and off-farm income) separately; due to 

similar findings, we only present total income as it is more indicative of a household’s entire 

income. For all analyses, food produced for household consumption was not included as revenue. 

Instead, we directly tested if food produced for household consumption had an effect on 

productivity and income by including farms’ levels of subsistence as one of the small-scale farm 

definitions. Similarly, we did not quantify and incorporate unpaid family labor into expenses, as 

we directly tested if unpaid family labor had an effect on productivity and incomes. In the next 

section, we detail that all small-scale farm definitions were used as dependent variables to examine 

their relationships to productivity and incomes. 

We analyzed revenues and expenses in real terms (i.e., 2011 USD purchasing power parities (PPP)) 

and country relative terms (i.e., country level ranked percentiles). We explicitly examined 

differences between real terms and country relevant terms to address critiques on the true 
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comparability of PPP values (135) and to inform the last stage of our analysis where we compared 

country defined poverty lines to the smallholder definitions; since models using the real terms 

were prone to greater heteroskedasticity than models using the country relevant terms, we 

presented the models with the country-relevant terms. Because only three countries included 

forestry and fishery variables, we defined on-farm productivity and incomes using livestock and 

crop values; total income was already calculated in RuLIS to include all on and off-farm sources. 

While the omission of forestry and fisheries is a limitation to our conclusions, they accounted for 

~16% and ~5% of farms’ on-farm income in countries reporting these data had income from these 

sources and we found no relationship between fishery or forestry income and farm size. 

4.5 Methods 

Our methods were twofold. First, we built weighted hierarchical mixed effect models to investigate 

the relationships between the small-scale farm definitions, productivity, and income, and whether 

these relationships held when controlling for other small-scale farm definitions.  

yi = WiXiβ + Zibi + εi 

In the above equation, y is the standardized outcome variable for each household, i (136). Xiβ is a 

matrix of fixed effects, which include each definition of small-scale farm. Wi are a vector of 

standardized survey sampling weights, where each national survey dataset includes weights to 

adjust national representativeness based on the households sampled and the known population; 

since each survey presents their sampling weights according to their known populations, we 

standardized each country’s sampling weights by dividing each weight by the maximum weight 
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per country to ensure values are between 0 to 1. All other continuous variables were centered 

around their mean and standardized by their standard deviation ( !"	!
$

 ) in order to directly compare 

the direction and magnitude of the independent variables. Zibi are the random intercepts, which 

are the primary sampling unit (PSU) of a survey nested within the country the survey was 

administered to account for survey sampling differences, survey representativeness, national and 

local policies, comparison between similar local geographies, and other possible local contextual 

factors (137); the Xiβ matrix includes a pooled intercept derived from the Zibi matrix. εi is the error 

term. We bootstrapped the models to extract the fixed effect intercept, then calculated the median 

effect and 95% confidence intervals. 

The weighted hierarchical mixed effect models were used to ensure within country correlation 

structures were accounted, to allow for generalizability of results to countries not in the analysis, 

and to enable greater efficiency of estimates due to the sharing of information within the model’s 

structure (136, 137). For comparison, we also examined weighted fixed effects models where 

countries and PSUs were used as fixed terms. We tested if non-weighted regression and robust 

regressions (i.e., robust mixed models and sandwich estimators) changed our coefficients and error 

estimates; all models showed similar coefficients and standard errors. In the models that contained 

all small-scale farmer definitions, we did not include farm size in relative and hectare terms due 

to high multi-collinearity; instead, we constructed separate models. For the fully parameterized, 

hierarchical mixed effects models, we tested the amount of variance that each small-scale farm 

definition explained through bootstrapping the analysis of variance (ANOVA) test; boxplots were 

used to compare median and distributions of these results. 
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In the RuLIS dataset, countries have different available variables. To include the most countries 

and to test the most definitions of small-scale farms, we conducted two different sets of 

regressions. Set A used 34 countries and consisted of farm size (in relative and hectare terms), 

relative economic size, and percent female labor. Set B used 30 countries and consisted of all the 

variables in Set A, but also percent family labor and percent subsistence (see Figure S18 for spatial 

distribution). The outcome variables for both sets remained the same. Since our results were 

consistent across both subgroups and Set B allowed us to test more definitions of small-scale 

farms, we present Set B as our main results. 

For the second stage of our analysis, we conducted a simple set of scenarios to understand the 

percentage of farmers who transition out of poverty by doubling their total incomes. These 

scenarios began with doubling all farms’ total incomes and classifying farms into two groups per 

country: those that were above their national poverty line (Group A) and those that were below 

their national poverty line even after doubling the income (Group B). We then used the surveys’ 

sample weights and expansion factors to calculate the national number of farmers in each group. 

We then calculated the percentage of farmers who would be out of poverty after doubling their 

incomes. Then, we compared these results to the percentage of farmers that have incomes over the 

national poverty lines with a different tuning parameter (e.g., two versus three, or four times their 

incomes; one times their incomes represents the present-day percentage of farmers who live above 

their national poverty lines). For all farms that had equal to or less than $0 USD PPP incomes, we 

grouped them into Group B as doubling zeros and negative incomes as there were less than 3% of 

these observations in our dataset. The analysis was conducted at the country level and 95% 

confidence intervals were computed to understand the variation across countries. 
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By expanding these scenarios, we further tested how doubling certain groups of farmers’ incomes 

related to farmers transitioning out of poverty. We used each of the key definitions of small-scale 

farms to calculate the percentage of farmers that are out of poverty when their incomes were 

doubled and with different thresholds for defining smallholders (i.e., doubling the incomes of 

farmers on the smallest 40% of farms per country or farmers living in households with a female 

dominant labor force). Since thresholds for farm size in ha terms are operationally and theoretically 

difficult to compare across countries due to the farm size distributions across different regions 

(e.g., in Asia, ~80% of farms are < 2 ha, while in Latin America and the Caribbean ~25% of farms 

are < 2 ha), we focused on relative farm size. We plotted a range of thresholds to test the 

appropriate cut-off point to have the most farmers transition out of poverty (e.g., will doubling the 

incomes of farmers on the smallest 40% of farms get 100% of farmers out of poverty or should we 

target the smallest 60% of farms?). Since each definition of smallholder captured different types 

of farms and farmers, we then combined the key definitions of smallholders and plotted different 

thresholds to understand which combination and threshold would result in the highest number of 

farmers transitioning out of poverty when their incomes are doubled (e.g., the smallest 40% of 

farms per country and farms with the lowest 40% of revenues per country). 

4.6 Results 

Results from the hierarchical mixed models showed that smaller farms had higher productivity 

(slope: -0.54; 95% CI: -0.56 to -0.53), yet lower incomes (slope: 0.18; 95% CI: 0.16 to 0.19) than 

larger farms. These results held when all other definitions of small-scale farms were controlled 

except for economic size, which had a moderating effect on farm size’s income relationship (Table 



 

 
79 

5). The country relevant economic size of a farm showed consistent positive relationship with 

productivity and income in all models, i.e., smaller farms (on economic basis) were less productive 

(slope: 0.10; 95% CI: 0.09 to 0.11) and had lower incomes (slope: 0.36; 95% CI: 0.35 to 0.37) than 

larger farms. There were moderate negative effects between family labor and productivity (slope: 

0.13; 95% CI: 0.12 to 0.14) and moderate positive effects between family labor and income (slope: 

-0.08; 95% CI: -0.06 to -0.09). Farms’ level of subsistence showed moderate negative effects with 

productivity (slope: -0.02; 95% CI: -0.01 to -0.03) and income (slope: -0.21; 95% CI: -0.22 to -

0.19). There were no trends with female labor, productivity, or incomes. Fixed effects models 

showed relatively consistent results to the hierarchical mixed models (Table S12-S13). Error! 

Reference source not found. shows the predicted relationships, 95% confidence intervals, and 

raw data for the fully parameterized models (i.e., models RE 10 and RE 20). Country subsets that 

used 30 or 34 countries showed similar results for the overlapping variables. Other sensitivity tests 

were conducted on these results to compare robust methods on random samples of the data 

(because the complete dataset was too large to compute computationally intensive robust mixed 

models) -- no large inferential differences were detected. Here, we highlight the relationships 

between country relevant total profit and the dependent variables, but we also found consistent 

relationships when using country relevant on-farm profit. 
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DV RE1 RE2 RE3 RE4 RE5 RE6 RE7 RE8 RE9 RE10 
Intercept 0.04 0.03 0.05 0.11* -0.03 0.04 0 0 0.10* 0.09* 

 (-0.06; 
 0.14) 

(-0.04; 
 0.11) 

(-0.03; 
 0.13) 

(0.02; 
 0.20) 

(-0.10; 
 0.04) 

(-0.04; 
 0.12) 

(-0.07; 
 0.06) 

(-0.07; 
 0.07) 

(0.00;  
0.20) 

(0.01; 
 0.18) 

Farm Size (ha) 0.18*      -0.01  0.14*  
 (0.16;  

0.19) 
     (-0.02; 

 0.00) 
 (0.13; 

 0.15) 
 

Farm Size (rel)  0.14*      -0.01*  0.11* 

  (0.13; 
 0.15) 

     (-0.02; -
0.00) 

 (0.10; 
 0.12) 

Family Labor   -0.08*    -0.01 -0.01 -0.04* -0.04* 

   (-0.09; 
 -0.06) 

   (-0.02; 
 0.00) 

(-0.02; 
 0.00) 

(-0.05;  
-0.03) 

(-0.05;  
-0.03) 

Subsistence    -0.21*   -0.07* -0.07* -0.18* -0.18* 

    (-0.22; 
 -0.19) 

  (-0.08; 
 -0.06) 

(-0.08;  
-0.06) 

(-0.19;  
-0.17) 

(-0.19;  
-0.17) 

Economic Size     0.36*  0.34* 0.34*   
     (0.35; 

 0.37) 
 (0.33; 

 0.35) 
(0.33; 
 0.35) 

  

Female Labor      -0.07* -0.06* -0.06* -0.06* -0.06* 

      (-0.08; 
 -0.06) 

(-0.07; 
 -0.05) 

(-0.07;  
-0.05) 

(-0.07;  
-0.05) 

(-0.07;  
-0.05) 

Num. obs. 38270 38270 38270 38270 38270 38270 38270 38270 38270 38270 
Num. groups: 
country:psu 

7235 7235 7235 7235 7235 7235 7235 7235 7235 7235 

Num. groups: 
country 

30 30 30 30 30 30 30 30 30 30 

 

Table 5: Hierarchical mixed effects models predicting on-farm profit per person living in the 
farming household in country relative terms. Coefficients and bootstrapped 95% confidence 
intervals (in parentheses). Models contain the 30 countries in subgroup 2 (Figure S18). 
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DV RE11 RE12 RE13 RE14 RE15 RE16 RE17 RE18 RE19 RE20 
Intercept 0.02 0.04 0 0.02 -0.01 0.01 -0.05 -0.03 0.05 0.06 
 (-0.08;  

0.12) 
(-0.04;  
0.11) 

(-0.06;  
0.06) 

(-0.04; 
 0.07) 

(-0.06; 
 0.05) 

(-0.04; 
 0.07) 

(-0.19; 
 0.09) 

(-0.10;  
0.04) 

(-0.05;  
0.15) 

(-0.01;  
0.13) 

Farm Size (ha) -0.54*      -0.71*  -0.55*  
 (-0.56;  

-0.53) 
     (-0.72;  

-0.70) 
 (-0.57;  

-0.54) 
 

Farm Size (rel)  -0.39*      -0.52*  -0.40* 

  (-0.40;  
-0.38) 

     (-0.53;  
-0.51) 

 (-0.41;  
-0.39) 

Family Labor   0.13*    0.10* 0.12* 0.07* 0.08* 

   (0.12; 
 0.14) 

   (0.09;  
0.11) 

(0.10;  
0.13) 

(0.06;  
0.08) 

(0.07;  
0.10) 

Subsistence    -0.02*   0 0 -0.11* -0.11* 

    (-0.03;  
-0.01) 

  (-0.01; 
 0.01) 

(-0.01;  
0.01) 

(-0.13;  
-0.10) 

(-0.12;  
-0.09) 

Economic Size     0.10*  0.35* 0.33*   
     (0.09; 

 0.11) 
 (0.34; 

 0.36) 
(0.32; 
 0.34) 

  

Female Labor      0.01* 0 0 0 0 
      (0.00; 

 0.02) 
(-0.01; 
 0.01) 

(-0.01; 
 0.01) 

(-0.01; 
 0.01) 

(-0.01; 
 0.01) 

Num. obs. 38114 38114 38114 38114 38114 38114 38114 38114 38114 38114 
Num. groups: 
country:psu 

7205 7205 7205 7205 7205 7205 7205 7205 7205 7205 

Num. groups: 
country 

30 30 30 30 30 30 30 30 30 30 

 

Table 6: Hierarchical mixed effects models predicting on-farm profit per ha in country 
relative terms. Coefficients and bootstrapped 95% confidence intervals (in parentheses). 
Models contain the 30 countries in subgroup 2 (Figure S18).  
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Figure 12: Predicted relationships between smallholder definitions and income (profit per capita - 
left) and productivity (profit per ha - right). Predictions were based on weighted hierarchical 
mixed effects models that controlled for all other definitions of smallholders. All variables are in 
standardized terms. 95% confidence intervals are plotted but are very narrow due to the high 
sample size. Full data is plotted in black to show the distribution and model fits. The top right and 
left plots show farm size in ha (orange) and country relative (green) terms. Models contain the 30 
countries in subset 2. 
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In examining the pooled within country Spearman rank correlations, female labor had the lowest 

absolute correlations with all smallholder definitions tested. The Spearman Rank correlation 

matrix showed that each definition of smallholder captured a different segment of farm types 

(Figure 11). Female labor was the least correlated with the other definitions of smallholders 

(absolute values of the correlations ranged from 0.01 to 0.02), while economic size most correlated 

with other definitions of smallholders (absolute values of the correlations ranged from to 0.2 to 

0.37, not including correlations with female labor). 

The bootstrapped ANOVA tests show that farm size (in both relative and hectare terms) explained 

the largest amount of variance in productivity in both relative (median: 62%; range: 59 to 65%) 

and hectare (median: 65%; range: 63 to 68%) terms, while country relevant economic size 

explained the largest amount of variance in income (median: 80%; range: 76 to 84%) (Figure 13). 

The lower percentages of variance explained by subsistence levels, family labor, and female labor 

may be due to the heterogeneity of their relationships with productivity and incomes across 

countries (Figure 14). 
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Figure 13: Boxplots show bootstrapped ANOVA results from weighted hierarchical mixed effects 
models that used all definitions of smallholders. The percent of variance explained per each variable 
are on the x-axis. Orange indicates that farm size in ha terms was used in the model, while green 
indicates that farm size in country relevant terms was used in the model. Models contain the 30 
countries in subset 2. 
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Figure 14: Predicted relationships between smallholder definitions and profit per capita (left) and 
profit per ha (right). Predictions were based on weighted hierarchical mixed effects models that 
controlled for all other definitions of smallholders, where the smallholder definition plotted was 
calculated as a random slope. All variables are in standardized terms. Green indicates a positive 
relationship between the smallholder definition and profit, while red indicates a negative 
relationship. Models contain the 30 countries in subset 2. 
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From our scenarios, we found that across countries an average of 37% (95% CI: 34 to 40%) of 

farmers were already above their national poverty line (Figure 15). We found that doubling all 

farmers’ incomes would result in an average of 58% (95% CI: 56 to 60%) of farmers with incomes 

over their national poverty lines. Tripling farmers’ incomes would result in 71% (95% CI: 69 to 

73%) of farmers over their national poverty lines. Since there was a smaller marginal gain after 

tripling farmers’ incomes (Figure S21) and the SDG 2.3 goal aims to double the incomes of 

smallholders, we doubled the incomes for remainder of the scenarios. 

We found that relative economic size, subsistence, and relative farm size required the lowest 

threshold (e.g., the lowest 40% of revenue in a country, farmers who consume 40% of their crops, 

or the smallest 40% of farms in a country) to achieve transitioning the most farmers out of poverty 

compared to the other definitions of smallholders. Interestingly, once the percentage of female 

labor was over 50% (i.e., females became a farms’ dominant labor source), the variable captured 

a large number of farmers that could transition out of poverty. Since each definition of smallholder 

captured different farmers in the population (Figure 11), we combined relative economic size with 

each of the other identified smallholder definitions that best explained income. Relative farm size, 

subsistence level, and relative economic size showed similar trends in Figure 15B. We combined 

relative farm size and subsistence level with relative economic size because relative economic size 

provided the greatest explanation of incomes’ variance by several magnitudes in our regressions 

(Figure 15C). The relative economic size and relative farm size combination resulted in the highest 

number of farmers that could transition out of poverty with the lowest thresholds. The combination 

of relative economic size and subsistence also showed similar trends that required slightly higher 

thresholds to achieve comparable percentages of farmers transitioning out of poverty.  
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Figure 15: Plot A shows the percent of farmers that have incomes higher than their national poverty 
lines if all farmers’ incomes are increased by a multiple of N (e.g., 1x, 2x, 3x the income). Plot B 
shows the percent of farmers over their national poverty lines if only smallholders’ incomes are 
doubled according to different thresholds (e.g., if we double the incomes of farmers on farms smaller 
than 40% of other farms in their country compared to another threshold, such as 60%; another 
example are for the family farmers, where if we double the incomes of farmers that uses family labor 
for 50% of all their labor compared to another threshold, such as 80%). The extents of the lines are 
consistent with available data (e.g., family labor was heavily right skewed so there are few low 
threshold points). Plot C shows if we combine relative economic size (the best predictor of income 
from the above regression analysis) with each of the other key definitions of smallholders we 
identified in the regression analysis: female labor, subsistence, and relative farm size. The 95% 
confidence intervals in each plot represents cross-country variation. 
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4.7 Discussion 

Our results suggest that, while smaller farms were more productive, households with smaller farms 

were poorer than households with larger farms. Our findings test the farm size, productivity, and 

income relationships across the Global South, in which for 34 countries we find consistent results 

and no clear regional patterns (Figure 14). Our results place the often-observed inverse farm size 

to productivity relationship into a poverty context, where smaller farms’ higher productivity does 

not, on average, translate into higher incomes compared to larger farms. We found that there was 

a strong negative relationship between farm size (in both hectare and country relative terms) and 

productivity (as defined by profit per ha). Yet, there was a near equally strong and positive 

relationship with on-farm and total income (as defined by profit per person living in a farming 

household).  

Past case studies on the productivity to farm size relationship suggested that unavailability of off-

farm opportunities for family members of smaller farms result in higher yields (54, 69, 70, 131) 

better market access for larger farms (74, 75), and/or recovering fixed operating costs requiring 

minimal farm sizes (138). By using a subset of the data that included 30 countries, we did not find 

that family labor moderated our farm size to productivity relationships. While market access and 

examining discrete costs were beyond the scope of our study, we did find that the relative economic 

size of a farm better explained the variance in incomes when compared to spatial farm size. Future 

studies would benefit from determining the greatest costs across farm sizes, if these cost 

relationships change due to the physical or relevant size of a farm, and if these costs are consistent 

hurdles across different geographies. 
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Our results can also be used to interrogate conventional spatial definitions of small-scale farms. 

We examined how different definitions of small-scale farms can be used to identify impoverished 

farmer populations across the Global South. Small farm sizes (in hectare terms) has conventionally 

been used as a proxy for impoverished farmers (19, 20, 29, 81, 83, 112, 131). While we found 

farm size (in both hectare and country relative terms) to explain a large degree of income, the 

relative economic size of a farm was a better indicator of farmers’ income levels. Family labor, 

female labor, and levels of subsistence showed moderate relationships with income, but explained 

a small portion of the variance. Our study tested the critiques on using farm size as a proxy for 

impoverished farms (12, 18, 132, 133), but we found farm size was still a strong predictor for 

poverty compared to several other proposed smallholder definitions. 

Under our scenarios, doubling farmers’ incomes would enable ~60% of farmers per country to 

have incomes over their national poverty lines and tripling their incomes would enable ~70% of 

farmers to be over their national poverty lines. These results show that SDG 2.3’s aim to double 

incomes will be insufficient to also meet SDG 1’s goal of eradicating extreme poverty for 

vulnerable groups, such as small-scale farmers. We found that a dual definition of small-scale 

farms using relative economic size and relative farm size would target the greatest number of 

farmers to transition out of poverty (as defined by national poverty lines).  

Despite our findings, we caution against using reductionist operational definitions of small-scale 

farms, since no single definition can capture all vulnerable farmers. For example, we found that 

all definitions of small-scale farms tested were not correlated with female farms, which indicates 

that the farmers on female dominant farms are most likely to not be identified by the combined 
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economic and farm size definition of small-scale farms. While our analysis does not incorporate 

trends, our cross-sectional results imply that the feminization of agriculture across the Global 

South may not be associated with farm size; an idea reflected in past research on the feminization 

of agriculture. Lastarria-Cornhiels suggested that there may be increased female workers on larger 

farms due to the general trend across many countries towards export-oriented production (139). 

At the same time, she illustrated that there is increased formal and informal female labor and 

ownership on smaller farms as men seek off-farm and/or seasonal employment. While these two 

types of increased female involvement in agriculture may cancel out any farm size to gender 

relationships, female farmers still suffer a wage gap from gendered agricultural labor roles (e.g., 

men assuming jobs using machinery and women skills be deemed as unskilled, such as weeding 

or grafting) (140, 141). Our finding highlights the importance of treating gender as a cross-cutting 

theme to achieve SDG 2.3 because the proposed FAO definition of small-scale farm will not 

identify gender differences. Gender dimensions of agriculture -- as well as religion, caste, and 

other disenfranchised minority groups that we were not able to test – will need to be disaggregated 

when monitoring the success of programs intended to inclusively assist small-scale farmers or else 

they will not be identified with the FAO’s proposed definition. 

4.8 Conclusion 

Our study used data from 30 to 34 countries to generate three findings that can help decision 

makers and civil society organizations operationalize their commitments to SDG 2.3, which aims 

to double the productivity and incomes of small-scale farmers. First, we found that smaller farms 

are more productive (in profit per ha terms) yet have lower incomes (in profit per person living in 
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an agricultural household terms) than larger farms. This result suggests that there are scale 

constraints on returns to income that prevent small-scale farmers from rising above national 

poverty lines. Second, we found evidence for the proposed operational definition of small-scale 

farms, which combines country relevant economic size with country relevant farm size. These two 

dimensions of small-scale farmers identified more impoverished farmers than the alternative 

dimensions of small-scale farmers we tested, such as family labor or levels of subsistence. 

However, none of the definitions that we tested identified poorer female farmers. This finding 

suggests that gender aspects of small-scale farmers need to be disaggregated to ensure gender 

inclusion. Finally, we found that the SDG 2.3’s doubling target needs to be refined. Our simple 

scenarios revealed that while some farmers can transition out of poverty when doubling their 

incomes, a large majority of farmers will require greater support to make the transition. 
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Chapter 5: How can development policy target smallholders to achieve SDG 

2.3? 

 

5.1 Introduction 

Sustainable Development Goal (SDG) 2.3 seeks to alleviate rural poverty by doubling the incomes 

and productivity of small-scale farmers (37). Yet, SDG 2.3 has amongst the least available 

information in SDG monitoring reports and databases compared to other targets.2 This data 

disparity prevents civil society from holding countries accountable to their SDG 2.3 commitments 

and to plan allocation of public and donor investment in agricultural development policy.  

This policy brief outlines two interlinked solutions to address SDG 2.3’s data disparity: better 

defining small-scale farms and harmonizing existing data. In 2018, the Food and Agricultural 

Organization (FAO) proposed an operational definition for small-scale food producers -- as the 

smallest 40% of farms and farms with the lowest 40% of agricultural revenue in a given country. 

Prior to this, there was no consensus on defining small-scale farms, which made leveraging 

existing data difficult. Recently, several efforts have begun to address SDG 2.3 data needs by 

combining existing household data that contains socio-economic and agricultural production 

                                                

2 For example, both the World Bank SDG Atlas (http://datatopics.worldbank.org/sdgatlas/SDG-02-zero-
hunger.html)  and the UN SDG Indicator Database (https://unstats.un.org/sdgs/indicators/database/) do not have data 
on target 2.3. 
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variables. Once harmonized, these data can be linked to geospatial information to enable better 

monitoring and allocation of resources.  

In this policy brief, we present empirical support for the FAO’s proposed definition of small-scale 

farm. Then, we present key considerations needed to make disparate agricultural household 

datasets interoperable. Through a case study, we illustrate the utility of combining socio-economic 

and geospatial data sets to identify small-scale farmers’ irrigation requirements. To bolster 

monitoring and planning pathways to achieve SDG 2.3, we conclude with recommendations for 

improving current data efforts. 

5.2 Defining small-scale farms 

The FAO recommends that small-scale farms be defined as those that are both the smallest 40% 

of farms and have the lowest 40% of crop revenue in a given country (28). While a definition that 

incorporates additional dimensions may be more inclusive of disparate populations, given the 

current lack of data on additional dimensions, the FAO’s definition is the most useful to compare 

trends across and within countries over time.  

By using country relevant terms that combine two key aspects of small-scale farms, the proposed 

definition addresses many of the critiques of commonly used definitions of small-scale farms. For 

example, farms operating under 2 ha have been conventionally defined as small-scale farms. Yet, 

this break point is arbitrary, lacking a country relevant perspective (e.g., by this definition, Brazil 

would have ~20% of its farms classified as small-scale, while India would have ~80% of its farms 

be classified as small (1)). By relying on a dual country relevant farm and economic size definition, 
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macro-economic dimensions that affect smaller farms, such as unequal land markets, can be used 

to identify disadvantaged farmers.  

The FAO’s proposed definition is not without problems. It does not account for other key 

dimensions of disadvantaged farmers, such as labor and ownership (e.g., family labor or 

corporation status), market orientation (e.g., level of subsistence), or geographic considerations 

(e.g., poor land quality and drought prone areas) (1, 12). In addition, other disadvantaged farmer 

groups -- such as female farmers, certain castes and religions, and indigenous peoples -- are not 

included in the definition but these specific groups are listed as key populations in SDG 2.3. These 

cross-cutting themes, and the political and geographic contexts in which farmers operate, need to 

be incorporated into the identification and monitoring of disadvantaged farmers. The FAO’s 

proposed definition needs to be disaggregated to avoid misidentifying key groups. 

Despite these critiques, we found that FAO’s proposed definition for small-scale farms identifies 

impoverished farmers. We examined how different dimensions of small-scale farms related to 

rural poverty using the newly harmonized RuLIS dataset across 30 countries (see Chapter 4). 

Specifically, we examined the relationship between income and several definitions of small-scale 

farms, including: the actual farm size, country relative farm size, country relevant economic size, 

percent of family labor used by a farm, and the level of subsistence upon which a farm relied. 

While these tested definitions do not constitute a comprehensive list of all dimensions 

characterising small-scale farms, they were available in a common dataset, across a wide range of 

countries (n = 30), representative at the sub-national level, and available at the individual farm 

level (RuLIS is a harmonized micro-data). We found that country-relevant economic size and 
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country-relevant farm size explained more variation in farming households’ per capita total income 

(including all on and off-farm revenue and expenses) than the other dimensions of small-scale 

farms. Smaller farm sizes and smaller economic sizes both had lower incomes than larger farms. 

There was also a positive relationship between the economic size of farms and productivity (in 

profit per ha terms) but a negative relationship between spatial farm size and productivity. While 

SDG 2.3 defines productivity in terms of labor productivity and not profit per ha, our results are 

consistent with other studies that have found intensification through technology or labor saving 

techniques does not always correspond to higher incomes (124, 126, 142).  These results suggest 

that the FAO’s definition will better identify impoverished farmers than using family ownership 

or market orientation. 

Another key benefit of FAO’s proposed definition of small-scale farms is its flexibility and 

operability. The goal of this definition is to compare countries’ progress in reaching the SDG 2.3 

target of doubling small-scale farmers’ productivity and incomes by 2030. By using country-

relevant terms, the same population can be monitored across countries while accounting for within-

country changes in agrarian structure over time. For example, if we want to track the change in 

smallholders’ incomes over time, this definition will not be influenced by larger shifts in the 

overall farm size of a country that can occur in response to economic development, land reform, 

or land consolidation policies (9). Similarly, when comparing countries that have different types 

of labor, land, and factor markets, disadvantaged groups of farmers will be consistently identified. 
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5.3 Available data for SDG 2.3 

To address SDG 2.3’s data disparity, several existing national sample surveys and agricultural 

censuses are currently being combined to provide valuable information about the livelihood 

constraints small-scale farmers face. In 2019, there has been tremendous effort to develop the 

Rural Livelihood Information System (RuLIS)3 to harmonize national sample surveys, specifically 

across variables relating to small-scale farmers. RuLIS represents an ongoing wave of data 

harmonization needed to better understand the role of small-scale farms in the global food system 

and to empirically verify if certain interventions have improved incomes and productivity. Other 

efforts have focussed on discrete questions relating to smallholders such as quantifying the amount 

of food globally produced by small-scale farms or family farms (18–20, 29, 143). 

While newly harmonized data will include disparate years of data collection, the development 

community plans to coordinate future household surveys with common and interoperable modules 

around key SDG targets, including small-scale farmers’ productivity and incomes. The 50x2030 

project is a donor coordinated initiative to bolster timely data collection (conducting multiple 

sample rounds in 10-year cycles) of agricultural households’ production and incomes with 

standard agricultural survey modules. The project will include three to five additional low and 

middle income countries (LMICs) a year until 2030, when there will be 50 countries using the 

same survey modules that build on the World Bank’s Living Standards Measurement Survey 

                                                

3	http://www.fao.org/in-action/rural-livelihoods-dataset-rulis/en/		
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(LSMS) and FAO’s AGRIS. While this project will be critical to long-term monitoring, we still 

need to harmonize currently available surveys to develop baselines for SDG 2.3. 

To bolster monitoring and planning pathways to achieve SDG 2.3, these harmonized datasets can 

be further combined with geospatial information. With this type of interoperability, one could 

consider the geographic and environmental contexts in which farmers operate. The combined data 

could answer key questions such as: What percentage of small-scale farms operate on low quality 

land? How many small-scale farmers live in drought-prone areas without access to irrigation? How 

far do they live from a paved road, electricity, cell phone signal, or refrigerated processing/market 

facility?  

Household surveys can be georeferenced by collecting geographic coordinates of interviewed 

households and/or their fields or by collecting the village, district, or region codes. Two methods 

can be used to georeference household surveys. First, future surveys can be updated to use field 

equipment that capture the information (e.g., GPS monitors or smartphones /tablets equipped with 

GPS monitors). The public health sector has used georeferenced surveys for many years and can 

provide best practices for data privacy and dissemination for the agricultural sector (e.g., the World 

Health Organization’s Demographic and Health Surveys (DHS)). The second method utilizing 

national sample surveys does not require additional data to be collected; national sample surveys, 

which are underutilized, already contain district or region names. There has been a missing 

processing step to link this information to administrative boundaries (i.e., a shapefile). While this 

processing step needs to consider the survey sampling designs, many surveys are representative at 
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the subnational scale and a few efforts (see Chapter 2) have already tied such surveys to maps of 

administrative boundaries (29). 

In addition to an improved understanding of the geographic and environmental contexts in which 

different small-scale farmers operate, linking household surveys with geospatial information can 

aid agricultural early warning systems. Current early warning systems use market price and climate 

data in order to identify when a production or economic shock occurs (144). By linking household 

surveys to geospatial information, these early warning systems can transition from identifying 

which locations are experiencing production or economic shocks to identifying the populations 

that are experiencing production shocks. Interventions, thus, can target sub-national regions with 

small-scale farmers. 

5.4 Linking social and environmental data: a case study 

To demonstrate how different types of household and geospatial data can be combined for the 

purpose of improving SDG 2.3 monitoring, we created four global maps at 10km spatial resolution 

(Figure 16). We use the FAO’s proposed definition of small-scale farmer, where small-scale farms 

are defined as the smallest 40% of farms in a country and the smallest 40% of economic revenue 

in a country. The farm size data consists of the World Census of Agriculture (WCA) national farm 

size distributions and a global field size map. In 2015 and 2019, two global field size maps were 

created by crowd source campaigns, during which volunteers classified satellite images into ranges 

of small, medium, and large agricultural fields (in absolute terms) (21, 89). While the relationship 

between field size and farm size is not always linear, this data can be used to downscale the WCA’s 

national farm size distributions (1) to produce a global map of farm sizes at the subnational scale 
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(27). Since data for the economic size of a farm was not available, we used a Human Development 

Index (HDI) geospatial dataset of sub-nationally representative statistics from household surveys 

(145). The lowest 40% of HDI scores within each country were intersected with the smallest 40% 

of farm sizes to define smallholders. 

Next, we overlaid the smallholder map with a global irrigation dataset (146) to examine the amount 

of irrigation used by smallholders compared to non-smallholders. We also overlaid it with a water 

scarcity dataset that was created by combining two datasets that represent regions experiencing at 

least one month of blue water scarcity (147) and less than 250 mm of annual rainfall (as per the 

IPCC 2007 definition for green water scarcity (148)). Our results show that smallholders have less 

irrigation coverage (39%) than non-smallholders (51%). This gap in irrigation narrows in water 

scarce regions, where smallholders had 27% of their cropland area irrigated and non-smallholders 

had 34% of their cropland irrigated. 

While disparities between small-scale farmers and large-scale farmers are typically observed in 

local or national geographic contexts, our case study demonstrates that these inequalities can be 

monitored at the global level. Local analyses can target specific policy interventions, such as 

allocating public irrigation infastructure to certain locales; global monitoring of these disparities 

can assist in coordinated strategic planning for donors who work across regions (e.g., grant 

matching programs or pooled resources for targeted interventions). In addition, global monitoring 

of small-scale farmers’ access to critical technologies can ensure govenments are held accountable 

to their SDG 2.3 commitments. 
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Figure 16: Maps show smallholders (top row) and non-smallholders’ (bottom row) use of irrigation 
in all regions (left column) compared to water scarce regions (right column) at 10km resolution 
using Albers equal area projection. The percent of irrigation per pixel is given, where a dark blue 
pixel represents 100% of the crop area in the pixel is irrigated and a light green pixel represents 0% 
of the crop area in the pixel is irrigated. Smallholders are defined as the smallest 40% of farms in a 
country and with the lowest 40% human development index in a country (a proxy for agricultural 
revenue). National farm size data was downscaled using global field size maps. Water scarcity was 
defined as a pixel experiencing at least one month of blue water scarcity and less than 250 mm of 
rain per year.  
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5.5 Recommendations 

We have four recommendations to improve the SDG 2.3’s data efforts. 

1. Existing and future data need to be made interoperable and geolocated. There are many 

household surveys and agricultural censuses that can be harmonized to provide baselines for small-

scale farmers’ productivity and incomes. Many of these surveys can be tied to spatial information 

at the finest resolution available (e.g., the survey sampling unit). There are efforts underway to 

further systematize future data collection on small-scale farms (e.g., the 50x2030 initiative and 

FAO’s AGRIS). These efforts should include modules to georeference the field or household of 

the individual interviewed to allow interoperability with geospatial information. By linking social 

and environmental data, decision makers can allocate resources based on farmer specific contexts 

(e.g., ongoing crop monitoring efforts could transition from identifying areas with production 

losses to identifying populations experiencing losses). While any georeferencing will require 

additional resources and data management to avoid sensitive location information from being 

breached, there are examples in the public health community that have already established best 

practices for this exact type of data collection and dissemination (e.g., WHO DHS surveys). 

2. The proposed FAO definition has empirical support for identifying impoverished farmers, 

but the definition still needs to be disaggregated by gender. While this definition can identify 

impoverished farmers, it may not capture gender, which is a central SDG 2.3 cross-cutting theme. 

We highlight that households with more female laborers had lower incomes; yet female labor was 

not correlated with FAO’s dual definition of farm size and economic size. 
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3. The proposed binary FAO definition should be replaced with a multi-tiered definition. A 

multi-tiered definition would avoid misclassifications of farmers at the edge of a binary small-

scale versus large farm dichotomy. We recommend classes for very-small, small, medium, large, 

and very-large farms. These multiple classes would enable more detailed monitoring of agrarian 

structure without additional data needed. 

4. The terminology in SDG 2.3 target should be changed from “small-scale food producers” 

to “small-scale agricultural producers.” The term “food” can be difficult to define for certain 

crops (e.g., many oil crops can be used for food and/or non-food purposes). In addition, only 

focusing on food may not include small-scale farmers that are producing non-food crops that are 

vital for their livelihoods (e.g., seed, animal feed, thatch, coir fiber for rope, etc.) The proposed 

FAO definition does not need to be changed to meet this rephrasing since it does not classify 

agricultural revenue or farm area based on food crops alone. 
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Chapter 6: Conclusion 

 

This dissertation provides empirical support for understanding the contribution of small-scale 

farms to the global food system. Recently, there has been a wave of national and international 

policy calls to support small-scale farms, such as SDG 2.3 that aims to double their productivity 

and incomes (10, 11, 52). To ensure that international efforts are evidence-based, there is a need 

to understand the diversity and complexity of smallholder production systems as compared to non-

smallholder systems. In this dissertation, I took a global perspective to empirically understand 

relationships between small-scale farmers, their contribution to the global food supply, and their 

socio-ecological impacts on outcomes and processes as compared to larger farms. 

Global scale research on smallholders is relatively new, where the main body of empirical research 

began in 2015 (18–21, 149). This emerging research builds on a long history of case-studies and 

critical work on the socio-political inequities affecting smallholders’ livelihoods (56, 150–152). 

Developments in technologies, advancements in research methods, and efforts to centralize and 

harmonize existing national sample surveys have made this recent global data synthesis work 

possible. In this dissertation, I have led and collaborated on efforts to harmonize new datasets, 

synthesized empirical literature from multiple disciplines, and combined social and environmental 

data. My aim was to add to the emerging global literature on small-scale farms. 

The goal of this dissertation has been to understand the role of small-scale farms in the global food 

system by building upon previous localized and theoretical findings that underpin the current wave 
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of international support for small-scale farmers. Chapters 2 through 4 provide empirical results on 

the role of small-scale farms in global crop and food production and their impact on several socio-

ecological outcomes of farming systems. Chapter 5 places Chapter 4’s results into the current 

policy context aimed to support small-scale farmers, and it presents future research directions. 

Table 7 presents my main findings. 

We found that small-scale farms produce a large share of the world’s food but much smaller than 

claimed by some authors. Farms under 2 ha in size, a conventional definition of small-scale farms, 

produce between 30-34% of the world’s food on ~25% of the available agricultural land. In 

Chapter 2, we derived these statistics by harmonizing a novel dataset of crop production by farm 

size across 55 countries and over 150 crop species. Our finding is in line with two other studies 

that used geospatial data overlays of agricultural production and field sizes or average farm sizes 

(19, 20). The similarity of these three studies, which rely on different data and methods, provide 

strong evidence for small-scale farms production contributions to the global food supply. 
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Table 7: Dissertation's main findings. 

Theme Variable Finding Chapter 

Production Food produced Farms under 2 ha produce ~1/3 of the global food supply, 
while farms under 5 ha produce nearly 1/2 the world's food 
and farms under 50 ha produce over 3/5 of the world's food. 

2 

 
Non-food produced Farms under 2 ha devote a greater proportion of their 

production to food, while farms over 1000 ha have up to the 
greatest proportion of post-harvest loss. 

2 

 
Yield Smaller farms have higher yields than larger farms, where an 

average 5% decrease in yields occurs per 1 ha increase in 
farm size. We find this relationship is largely moderated by 
differences in labor across farm sizes. 

3 

Environment Crop diversity Smaller farms account for greater crop diversity than larger 
farms, where farms under 2 ha account for 
~40% of crop species richness in a given landscape. 

2,3 

 
Non-crop diversity Smaller farms promote greater non-crop biodiversity at the 

farm and landscape scales, where 77% of studies find 
smaller farms have more non-crop biodiversity than larger 
farms. 

3 

 
Resource-use 
efficiency 

We find no strong relationships between farm 
size and resource-use efficiency. 

3 

 
Greenhouse gas 
emissions 

We find a non-significant trend that smaller farms have 
lower GHG emission per unit of crop output than larger 
farms. 

3 

Socio-
Economic 

Economic 
productivity (profit 
per ha) 

Smaller farms, on average, have higher economic 
productivity than larger farms, where an average 1% 
decrease in productivity occurs per 1 ha increase in farm 
size. 

4 

 
Income (profit per 
capita) 

Smaller farms, on average, have lower incomes than larger 
farms, where an average 2% increase in income occurs per 1 
ha increase in farm size. 

4 

Policy Small-scale farm 
definition 

Actual and country relative farm size better explain farmer 
poverty compared to family labor and market orientation. A 
farm's country relevant economic size best relates to poverty 
of the definitions examined. 

4 

 
Doubling incomes 
as an SDG target 

We estimate that currently ~40% of farmers live above their 
national poverty lines. The SDG 2.3 target of doubling 
farmers’ incomes would result in ~60% of farmers living 
above their national poverty lines. SDG 2.3 is not an 
aggressive enough target to transition farmers out of poverty. 

4 
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Smaller farms devote a greater proportion of their production to food, while farms over 1000 ha 

have up to the greatest proportion of post-harvest loss. We found nearly 60% of small farms’ (< 2 

ha) production is allocated to food. A smaller percentage is allocated towards feed (12–16%), 

which was surprising since smallholders often engage in mixed crop-animal farming systems (45); 

this finding may be explained by the fact that smallholders likely rely more on rearing animals that 

graze on pasture compared to largeholders. 

Smaller farms promote more crop and non-crop biodiversity than larger farms. From our dataset 

of 55 countries described in Chapter 2, we compared smaller and larger farms in the same 

landscape and found that smaller farms grew a greater number of crop species than larger farms 

(farms < 2 ha accounted for ~40% of crop species richness).  

In Chapter 3, we conducted a meta-analysis of 30 studies (55 observations) and found a 77% 

probability that smaller farms were more likely to promote non-crop biodiversity at the farm and 

landscape level. This result held across different types of species and diversity metrics. 

Our meta-analysis did not find a relationship between farm size and resource-use efficiency. 

Despite a widely acknowledged unequal access to credit, land, and markets for smallholders (73, 

153), we found no difference between smaller and larger farm sizes and their resource-use 

efficiency across 29 studies (34 observations). Our results showed a non-significant trend that 

smaller farms had lower GHG emissions per unit output by crop than larger farms. 

Smaller farms had higher productivity but lower incomes than larger farms. The higher 

productivity of smaller farms was consistent using two different metrics of productivity (i.e., yields 
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and profit per hectare). In Chapter 3’s meta-analysis of 18 studies (32 observations) we found for 

every 1 ha increase in farm size there was a 5% (95% CI: 1 to 9%) decrease in yield. In Chapter 

4, we used harmonized data from 34 countries. We found that for every 1 ha increase in farm size 

there was a 1% (95% CI: 1.5 to 0.5%)4 decrease in profit per hectare (in country relevant terms). 

We also found that for every 1 ha increase in farm size there was a 2% (95% CI: 1.6 to 2.3%) 

increase in income (in profit per capita terms). From our meta-analysis, we found that smaller 

farms are most likely more productive than larger farms due to the availability of unwaged family 

labor. Our results highlight that while smaller farms are more productive than larger farms, they 

have lower incomes than larger farms. 

Country relevant farm size and economic size better identified impoverished farmers than 

alternative definitions tested. In Chapter 4, we used harmonized data from 30 countries to compare 

the relationship between different definitions of small-scale farms and poverty. We found that 

country relevant economic farm size explained the most variation in farmers’ incomes (in profit 

per capita) compared to other tested small-scale farm definitions. Farm size (in hectare and country 

relevant terms) explained the second most amount of variation in farmers’ incomes. The amount 

of family labor a farm relied on nor level of subsistence explained farm income levels. These 

results suggest that international initiatives can partially rely on the recently proposed dual 

definition of small-scale farms, which combines country relevant economic size and farm size, to 

                                                

4	The	same	method	that	was	used	in	Chapter	3’s	meta-analysis	was	applied	to	the	statistics	from	Chapter	4	in	
order	to	convert	them	into	relative	changes.	See	Rodríguez-Barranco	et	al.	2017	for	details.	
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identify impoverished farmers across geographic regions. While this definition can identify 

impoverished farmers, we found that it will not capture gender, which is a central SDG 2.3 cross-

cutting theme in addition to a farmers’ indigenous, religious, or caste status. Hence, any 

operational definition for small-scale farms will need to be disaggregated (see Chapter 5 for a more 

detailed policy discussion). 

SDG 2.3’s goal to double small-scale farmers’ incomes is not an aggressive enough target to 

transition them out of poverty. In Chapter 4, we conducted simple scenarios to understand if the 

SDG 2.3 target of doubling small-scale farmers’ incomes would transition farmers above their 

national poverty lines. In the 30 countries we analyzed, we found 38% of farming households 

currently live below their national poverty lines. If all farmers’ incomes were doubled, regardless 

of the interventions used to double their incomes, only 60% of farmers would be living above their 

national poverty lines. Our simple scenarios revealed that while some farmers can transition out 

of poverty when doubling their incomes, a large majority of farmers will require greater support 

to make the transition. 
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Appendices 

Appendix A  Chapter 2 supplemental information 

A.1. Previous studies estimating global crop and food production by farm size 

We discuss four previous studies that quantified either the number and area of farms under 

smallholder management (i.e., Lowder et al. 2016; Graeub et al. 2016) or how food production 

varies by farm size (i.e., Herrero et al. 2017; Samberg et al. 2016) [Lowder, Graeub, Herrero, and 

Samberg hereafter, respectively]. Due to the difficulty in compiling global statistics on agriculture, 

each of these studies faced issues with available data or used modelling assumptions that affected 

their final estimates. This supplemental overview discusses these issues in order to both 

differentiate our study as well to have a central location in the literature that compares each study. 

Lowder was the first study to compile global data on the percentage of smallholders in the world 

in terms of how many farms are in each farm size class, how much land each farm size class 

manages, and what percentage of farms are family farms. This dataset was based on the World 

Census of Agriculture (WCA) farm size distributions, which are country reported national 

estimates. Yet, many nationally reported agricultural datasets may have varying reliability and 

include inconsistent years of data with some countries’ most recent statistics dating back to the 

1960s (average year: 1997). Lowder also included distributions of total farm area rather than 

cropping area by farm size; there is no actual way to distinguish how much area was cropped or 

harvested when using this dataset.  
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Graeub quantified the number of family farms in the world and their global production 

contributions. While many small farms are family farms, the authors’ data and examples point out 

that family farms and farm size should not be conflated. For example, family farms in Graeub’s 

case study of Brazil may be family owned but are large in size (while ~85% of farms in Brazil are 

family owned covering ~25% of agricultural land, only 21% of farms are less than 2 ha in size and 

cover only 0.25% of the agricultural area). Graeub estimated ~98% of all farms globally are family 

farms, collectively managing 53% of all cropland, and meeting an estimated 36–114% of domestic 

caloric requirements. There were discrepancies between Lowder and Graeub family farm 

estimates: according to Lowder, family farms made up an average of 73.5% of agricultural land in 

the 77 countries they analyzed, while Graeub found an average of 53% in 105 countries they 

analyzed. This discrepancy may be due to the more nuanced, per country definition of family farms 

presented by Graeub. Lowder did not offer a definition for family farms in their methodology, but 

relied on government reports. 

Samberg was the first study to estimate the global food production contributions of smallholders 

in an analysis of 83 countries in smallholder dominant areas of Latin America, sub-Saharan Africa, 

and South and East Asia. They estimated that farms under 5 ha managed 30% of global agricultural 

land and produced ~53% of global food calories in their sample. This study was a valuable initial 

step in understanding how much food smallholders produced, but may have had inaccuracies due 

to the following methodological reasons. First, their study relied on an estimate of mean size in a 

given administrative unit (referred to as ‘mean agricultural area’ or MAA in their article), and 

therefore did not capture size distributions within; using the mean may bias results because farm 

size distributions are highly skewed (Lowder). Second, their metric MAA included the area of 
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cropland and pasture, and not the entire farm, so they may be overestimating the area of farms 

under smallholder management as larger farms are more likely to have non-agricultural areas (e.g., 

fallow area, water sources, infrastructure, etc.); we ran into a similar issue for ~5% of our dataset, 

where we had to assume that the size of a farm’s aggregated plots equated to its farm size (we test 

for this assumption in Appendix A). Third, they did not account for the fact that the types of crops 

grown potentially vary by farm size within administrative units and hence variations in production 

for food versus other uses. Their study simply used the geographic relationships between crop 

types and MAA for administrative units. Several agricultural economic and agronomic studies 

have found that different farm sizes may grow different species and varieties of crops due to market 

and input access, as well as the subsistence focus of many smallholders (40, 48, 154). Fourth, their 

data may over estimate smallholder production since their ‘global’ sample only contains low-

income, smallholder dominant countries: their sample of 83 countries accounts for 90% of all 

farmers, but only represents 35% of global cropland. Fifth, the authors attempt to disaggregate 

national crop production to their MAAs evenly; meaning, they assumed every farm size within an 

administrative unit has the same yields. There is a long history in the agricultural economic 

literature that suggests smaller farms have higher yields; a phenomenon coined as the ‘inverse 

farm size-yield relationship’ (79, 83, 155). In our paper, we also had to rely on constant yields for 

~60% of our data. In the following sections, we show tests for this bias and determine it may not 

be an issue at this scale of analysis. Finally, their analysis omitted non-family farms by relying on 

household surveys to estimate where smallholders live, resulting in another potential source of 

overestimation since their data came from family-farms, which are often associated with 

smallholders (Graeub). We faced a similar issue for 22.5% of crop production in our dataset; see 
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the following sections for detailed discussion on our dataset and the family farm bias. We were 

not able to provide bias estimates due to the conflicting findings between Graeub and Lowder on 

how much cropland is under family farm management as detailed above. 

The data and methods used in Herrero’s analysis also needs to be further verified due to potential 

issues with two of their underlying datasets. The first is Lowder farm size distributions, as detailed 

above. Herrero attempted to update the farm size distribution dataset where possible, but relied on 

imputing missing data by using regional farm size distributions. Neighboring countries may not 

be the best indicator of farm size since national land reform policies, colonial land grab legacies, 

market integration, and subsidy support are main drivers of farm size rather than pure geographic 

proximity (9)⁠. The second dataset (also used by Samberg) that may have introduced error was a 

crowd sourced field size dataset heavily reliant on interpolation (the data product was 99.99% 

interpolated5) and based on a qualitative scale of five farm sizes from very small to large that did 

not indicate actual hectares per category (21). In terms of methodology, Herrero made an explicit 

and transparent assumption about the relationship between field and farm size, which may have 

led to over estimates of the number of farms and cropping area under smallholder management. 

They used Lowder’s national farm size distributions to estimate sub-national level farm size 

distributions, then matched these distributions with the crowd sourced field sizes; however, the 

                                                

5	Fritz	et	al.	(2015)	used	13,963	samples	of	1	km2	pixels	of	the	global	1,554,216,620	km2	cropland	(FAOSTAT	
2005	(http://www.fao.org/faostat/en/)	estimate	of	arable	land	and	permanent	crops	as	similarly	defined	by	
Fritz	et	al.),	hence,	their	dataset	was	based	on	a	0.0009%	sample	of	total	global	cropland	(100*	13,963	/	
1,554,216,620	).	
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manner in which they used these distributions was not transparent in the available written 

methodology. Their assumption that national level distributions of farm size can be downscaled 

may have introduced error in their attribution of certain fields to farms. More importantly, 

assigning the national level farm size relationships to determine a field to farm size functional 

relationship may make sense in the case of large fields, which can only belong to larger farms. 

Yet, many larger farms may either hold multiple, non-contiguous smaller fields or they may just 

cultivate fewer large fields. Assigning small fields to small farms may under/over-estimate the 

amount of land under smallholder cultivation. Finally, Herrero also relied on the same constant 

yield bias that Samberg and our study did, where they applied per pixel level yields evenly to each 

farm sizes’ cropped area to link the cropland datasets to crop production. Regardless, Herrero was 

the first to provide a complete global estimate of crop production by farm size and to illustrate an 

important link between smallholders and micro-nutrient production. 

Critically, each prior attempt to quantify the amount of global food and crop production did not 

incorporate a validation method to assess whether they were assigning an agricultural field to the 

appropriately sized farm since at the time of their analysis there was no globally representative 

dataset that describes this relationship. Our dataset, while not globally contiguous can provide this 

needed validation. Additionally, we also ran into similar methodological issues due to data 

constraints, such as a partial reliance on constant yields (representing ~60% of our data), omitting 

non-family farms (22.5% of our data), and using aggregated plot size as a proxy for farm size (~5% 

of our data). In the following sections, we provide sensitivity tests and detailed explanation of each 

of these biases to be transparent about our dataset’s limitations, offer insight into past attempts 

relying on these same biases, and offer guidance for any future work. Lastly, all previous attempts 
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to quantify smallholder production, including our study, has defined smallholders by a set farm 

size class for the entire world (e.g., < 2 ha). This definition may also be problematic because it 

does not account for alternate definitions of farm size, such as economic output or relative farm 

size per country. While our dataset cannot be used to recalculate farm size in economic terms, it 

could be used for a reanalysis of farm size in country relevant terms. 

A.2. Dataset construction 

This dataset was built to provide uncertainty estimates for the percentage of food produced by 

farms of different sizes globally. We constructed this dataset by harmonizing agricultural censuses 

and nationally representative household sample surveys that directly measured crop production 

and/or cropping area6 by farm size. This dataset is a convenience sample of 55 countries with 45 

countries having sub-national resolution.  

Our dataset captures ~51.1% of global crop production and ~52.9% of global cropland area (i.e., 

arable land and permanent crop area as reported in the Food and Agricultural Organization’s 

statistical database [FAOSTAT hereafter](42)). The primary sources are agricultural census data 

(i.e., the majority of which used exhaustive sampling of the farming population, but not all 

response rates were 100%) or nationally representative sample surveys (i.e., with randomly 

stratified sampling of households in a country). These data were available at either the aggregated 

                                                

6	Where	there	was	no	crop	production	by	farm	size	data	available	we	extracted	farm	size	by	either	harvest	
area,	cultivated	area,	crop	area,	or	planted	area.	We	will	refer	to	this	as	‘cropping	area’	in	this	article.	
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level by administrative unit (34 countries) or at the non-aggregated, microdata level where data is 

available as anonymized individual household level records (21 countries, of which 18 were 

sample surveys and 3 were complete agricultural censuses) Figure S1). We document the source 

information, detail the methods for building this dataset, and describe its characteristics in this 

article to enable its use by the research community. 

 

Figure S1: Map showing source of data derived from agricultural censuses (purple) or household 
surveys (orange) at the country level. 

 

This database was harmonized across countries, 154 crop species, and farm size categories. Crop 

species and country names were matched with FAOSTAT by year to integrate with its extensive 

variable lists. The median year of the source data was from 2013, with the oldest source dataset 

from 2001 and the newest from 2015; each administrative unit contains data for the most recently 

available time point. We harmonized the farm size categories to match the World Census of 



 

 
128 

Agriculture (WCA) farm size categories: 0 to 1 ha, 1 to 2 ha, 2 to 5 ha, 5 to 10 ha, 10 to 20 ha, 20 

to 50 ha, 50 to 100 ha, 100 to 200 ha, 200 to 500 ha, 500 to 1000 ha, and above 1000 ha. 

We ran into several methodological issues when harmonizing the underlying the data needed to 

construct this dataset. In this article, we outline the assumptions made, and test the bias of these 

assumptions, such as applying constant yields across farm size classes to estimate production when 

only cropping area was available (representing ~60% of our data), omitting non-family farms when 

relying on household sample surveys (22.5% of our data), using aggregated plot size as a proxy 

for farm size (~5% of our data), and omitting crop species that were not able to be harmonized 

across countries or with the FAOSTAT crop species list.  

In this supplemental material, we also provide details on the data collection and inclusion process, 

summary statistics, spatial coverage, and provide sensitivity tests and/or detailed explanations of 

each of the data harmonization assumptions we made. Our goal is to be transparent about our 

dataset’s limitations, offer insight for other data harmonization projects relying on these same 

biases, and offer guidance for people wishing to use this data in their own work.  

A.2.1. Methods for data selection 

Inclusion criteria 

We prescribed four inclusion criteria for this project. First, datasets needed to contain variables for 

farm size (where farm size was not available we relied on aggregate field size), and production per 

crop or cropping area per crop. Second, datasets needed to be nationally representative. 

Agricultural censuses or household sample surveys were used only when their sampling 
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methodology was transparent and/or these datasets were used by the country’s government for 

official statistics. We required the household surveys’ sampling designs to be transparent, 

randomized at the appropriate administrative unit, and to provide sampling weights and expansion 

factors with details on their creation and intended application. Third, national numbers calculated 

from these datasets needed to be comparable with official national statistics. For many agricultural 

censuses, the sampling design and response rates were not available. Fourth, we only focused on 

surveys which included disaggregated data on crop species so that they could be matched 

according to FAOSTAT crop names and item codes. No aggregate category was used (e.g., ‘roots 

and tubers’ or ‘fruit and vegetables’).  

We systematically searched several locations for agricultural datasets to compile our dataset. 

These sources included the World Bank microdata archives, EarthStat metadata, Living Standards 

Measurement Study (LSMS) surveys, and the Accelerated Data Program (see Table S1). We 

conducted our search on a per country basis either through each data archive’s search capabilities 

where available, detailed search of each data archive’s metadata, or via web-scraping the archive 

to identify pertinent variables. Due to the multilingual nature of the datasets, variables were 

translated using the Google Translate Application Programming Interface (API) and we cross-

checked any ambiguous or unknown colloquial crop name against several sources (156, 157) 

and/or with colleagues who work in each region of interest. For each country in each data archive, 

we searched for variables that directly linked ‘farm size’ or ‘plot area’ with ‘production’ or gross 

‘plotted/cropped/planted/harvested area’ by ‘crop type’. If there were multiple eligible datasets 

available per country, we included the most recent year. Nearly all the source data were freely 

obtained and all are used according to their user agreements. 
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Table S1: Data repositories 

Name Region Link 

Accelerated Data Program Global http://adp.ihsn.org/country-activities 

Africa Bank Group Africa https://www.afdb.org/en/knowledge/statistics  

African Growth and Development Policy Africa http://www.agrodep.org/datasets 

Consultative Group to Assist the Poor Global http://www.cgap.org/data 

DataFirst Africa https://www.datafirst.uct.ac.za 

Earthstat Global http://www.earthstat.org  

Harvard's Dataverse Global https://dataverse.harvard.edu  

Harvest Choice Global https://harvestchoice.org 

International Food Policy and Research 
Institute 

Global http://library.ifpri.info/data  

International Household Survey Network Global http://catalog.ihsn.org/index.php/catalog 

Living Standards Measurement Study Global http://www.worldbank.org/en/about/unit/unit-
dec 

Prism Oceania http://pdl.spc.int/index.php/catalog 

UNICEF Multiple Indicator Cluster Surveys Global http://mics.unicef.org/surveys 

World Bank's microdata repo Global http://microdata.worldbank.org  

World Food Program Global http://nada.vam.wfp.org/index.php/catalog 

World Food Programme's Survey Data Portal Global  http://nada.vam.wfp.org  

 

Of the censuses that we included and had detailed sampling information (25 countries), 15 

countries relied on either an exhaustive sampling design or a design that was exhaustive for farms 

with a set number of employees and/or annual revenue and a sample survey for smaller farms. Of 

the exhaustive censuses, there was a median response rate of 80%; the remaining censuses relied 
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on stratified randomized sampling and applied resampling weights and expansion factors before 

making their aggregated data available (see dataset’s metadata). 

Farm size harmonization 

We adjusted the tabulated census data to match the census data to the farm size classes that were 

reported in the WCA in order to enable consistent analyses across all countries. In some instances, 

census data farm size classes could simply be aggregated to match those reported in the WCA. In 

other instances, census data classes needed to be disaggregated into two or more WCA classes. 

For countries that had both tabulated census data and microdata available, the available area data 

in the microdata was aggregated into WCA classes, and the proportion represented by each class 

was used to distribute census data. For countries that had agricultural area by farm size class 

reported at the national level in the WCA, the proportion of area in each class was used to 

disaggregate subnational census data classes where necessary. For example, Paraguay reported a 

farm size class of 1-5 ha, whereas the WCA reported classes 1-2 ha and 2-5 ha. The total area in 

the 1-5 class was split between the two smaller classes based on their relative size, so 25% of area 

was assigned to the 1-2 ha class, and 75% of area was assigned to the 2-5 ha class. For all other 

countries, the simplest solution was to disaggregate classes that did not match based on the size 

class. There were instances where two different methods were used for the same country, for 

example in countries where the WCA only reported data in classes up to 100 ha. Figure S2 shows 

all reported farm size classes for tabulated census data (all European countries reported in Eurostat 

had the same classes, represented by the Europe category in Figure S2). The WCA classes, which 

were used in our analyses, are also shown. Corrections were made for the following countries: 
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Austria, Belgium, Brazil, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Ethiopia, 

Finland, France, Germany, Greece, Hungary, Iceland, India, Ireland, Italy, Latvia, Lithuania, 

Luxembourg, Malta, Montenegro, Netherlands, Norway, Paraguay, Poland, Portugal, Romania, 

Slovakia, Slovenia, South Africa, Spain, Sweden, Switzerland, United Kingdom, United States of 

America.  

 

Figure S2: Farm size harmonization. Countries shown are where the given farm size classes were 
harmonized against the World Census of Agriculture (WCA) farm size classes. European countries 
from the Eurostat database had common farm size classes and are grouped together. Any country 
not shown contained directly matched farm size classes to the WCA. Since the majority of re-
grouping occurred < 10 ha, the remaining farm size classes are not shown. 

 

Construction of conversion factors 

Conversion factors for kilocalories, fats, and proteins (in grams per capita) and for the percentage 

of each crop grown for food, animal feed, processed commodity, seed, and wastage due to 

transportation and storage (but not home consumption) were calculated using FAOSTAT. 
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FAOSTAT provides actual values for each of these variables at the national level per year with 

detailed definitions. For example, if a country produced soybeans in a given year, we took the ratio 

of the amount of soybean production allocated towards food divided by the total soybean 

production in that country to obtain the conversion factor for that country and year. We would 

repeat for feed, processed goods, seed, and waste, then apply these conversion factors to the 

amount of production each farm size produced per administrative unit in that country, and for each 

crop type. Hence, each estimate for these macro-nutrient and production variables assumes the 

national allocations are homogeneous across all administrative units and across all farm sizes. This 

is a largely untested assumption, and to our knowledge there are no sub-national datasets nor farm 

size specific datasets covering these variables, and therefore the bias introduced by it is unknown 

(unlike for other assumptions for which we were able to estimate bias, see Section 4). To enable 

future researchers to accommodate adjusting these conversion factors, we provide the actual 

amount of production per farm size per administrative unit in addition to the conversion factors 

and converted values. 

Dataset descriptive statistics 

Our dataset includes primary datasets ranging from 2001 to 2015, with a median year of 2013. It 

includes 55 countries, 45 of which have subnational resolution, 18 of which have fine scale (i.e., 

farm level) resolution.  
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Figure S3 shows the data’s spatial resolution and distribution of the 154 unique crop species 

represented; on average (Mean), there were 30.8 crop species per country (Standard Deviation 

(SD) = 20.3). Crop species were paired to major commodity groups according to FAOSTAT 

definitions of cereals, fruit, oil crops, pulses, roots and tubers, tree nuts, vegetables, and other. 

Relying on the FAOSTAT classification has its limitations. For example, soy was classified as an 

oil crop, but it is also a pulse; therefore, this classification should be used as a guideline (Figure 

S3). Due to the aggregated nature of a large number of the sources used, we were only able to 

present gross agricultural area, not net agricultural area or the number of farmers by farm size 

class. 



 

 
135 

 

Figure S3: The effect of different classifications of soy on farm size distributions for oil crops and 
pulses. Soy was classified as an oil crop (Panel A as in our dataset and FAOSTAT), as a pulse (Panel 
B), or omitted (Panel C). The x-axis shows each farm size class (ha). The y-axis shows the percent 
of production. The red line is the average percent of production by farm size class. The gray line 
indicated 95% confidence intervals. 
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A.2.2. Key assumptions 

Constant yields  

For 33 countries in our dataset, representing 59.7% of the total production (in kcal), we could not 

find crop production by farm size, but we did find either gross cropped area, harvested area, planted 

area, or plot area by farm size per crop (Figure S4). For these data, we used FAOSTAT’s national 

yield estimates for the given country, year, and crop to estimate production per farm size. This 

assumes that all farm sizes within a country had the same yields for a given crop and year. 

However, as there is a widely observed inverse yield to farm size relationship where smaller farms 

typically have higher yields (79, 83, 155), we explored how using a constant yield across farm 

sizes may bias our production estimates. 
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Figure S4: Map showing countries requiring assumption of constant yield across farm sizes. For 
many countries, our dataset contained a mix of actual production values and only area measurements 
per crops per farm size; percentages are given for each country according to how much of total crop 
production was calculated using constant yield assumption (indicated as percent bias in the legend). 
Darker orange indicates a greater percentage of the country’s data was based on constant yields. 

 

We tested the presence of a constant yield bias in eight countries for which we had both an area 

measurement (i.e., harvested, cropped, planted, or plot area) per crop per farm size and crop 

production by farm size measurement. For these countries, we regressed known production values 

against production values calculated from constant yields with countries and crop type as random 

effects, and we report the intercept and slope for this relationship to indicate the level of bias 

introduced by the constant yield assumption. 
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Figure S5: Verifying our constant-yield assumption through comparing production calculated using 
constant yields versus actual production for countries where we had both area and production data 
by farm size. A) Log-log plot between constant yield calculated production and actual production. 
Black line represents 1-to-1 line. Green line is the linear regression line when using constant yield 
derived production to predict actual production. B) Compares production using constant yields 
(orange) to actual (green) production on a log-scale, while C) shows this relationship for each farm 
size class. 

 

Figure S5A is a log-log plot that shows a high correlation between production computed using 

constant yields and actual production. We used the natural log of production values to plot this 

due to long-tailed distributions in the data. We found that using constant yields slightly 
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overestimates actual production for administrative units with smaller production but converges at 

administrative units with larger production (Intercept: -0.79, SE=0.11; Slope: 1.03, SE=0.001). 

This bias can be corrected for by predicting out of the model shown in Table S2. In Figure S5B, 

we also show boxplots to illustrate this overestimation for all farm size classes, and in Figure S5C 

we show the differences for each farm size. The plots indicate that overestimation of production 

from using constant yield is generally consistent across farm size classes. 

Table S2: Constant yields at the national level were used to calculate production from cropping area 
at the sub-national level, then predict actual production. A mixed model was used to account for 
within country random effects. 

  

Where country level yields were not available for certain crops and/or years, regional or global 

yields were used. Regional and global yields were used for 0.02% of all administrative units in our 

dataset (and had a Spearman rank correlation of 0.86 with the FAO country level yields) and so 

we expect them to have small effects on production values estimated across the sample. These are 

Dependent Variable: Actual Production 
  

 

 
Coef. Std.Err. 95% CI 

Intercept -0.786* 0.112 -1.005 to -0.567 

Production from Constant Yields 1.028* 0.001 1.026 to 1.03 

Group RE 4.771 0.484 
 

N Observations 95850 
  

N Groups 395 
  

BIC Full Model 212369.2   

BIC Without Constant Yields 455736.8   

Note: * = p < 0.01 
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included in the constant yields assumption and the above bias analysis, but are denoted in the 

dataset for future researchers. 

Calibrating with FAOSTAT 

To calibrate our dataset with FAOSTAT we regressed our estimates of country production against 

theirs for matching crops and years. Our data consistency underestimates production relative to 

FAOSTAT (Intercept: 13.29, SE=1.52, and Slope: 0.99, SE=0.07; Figure S6). This relationship 

can be used to calibrate our data against FAOSTAT for future researchers interested in using this 

data. As we used the exact matching of crop lists with the FAO, this is perhaps surprising. It is 

possible that some of this variation represents differences in survey instruments since we have 

included different datasets from what FAOSTAT included since we needed to have access to crop 

production by farm size and FAOSTAT did not require this cross-tabulation. Another way of 

looking at this discrepancy is that our dataset provides an independent, and transparent, estimate 

of the amount of crops produced by different countries across the world. 
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Figure S6: Log-log plot comparing FAOSTAT production values (summed kcal crop equivalents 
per country) to our dataset with and without household surveys. Household surveys are in green, 
census data are in orange. The simple linear regression line shows the relationship between the 
summed production values for countries in our dataset with their FAOSTAT summed production 
values. 

 

Family farms bias 

For 17 countries in our dataset, representing 22.5% of the total production (in kcal), we could not 

find agricultural census data, but we did find nationally representative (often with sub-national 

resolution) agricultural household surveys (Figure S1). One bias that stems from household 

surveys is that they only capture family farms, which are often associated with smaller farms. The 

household surveys miss non-family commercial enterprises and thus do not represent the full 

population of farms in a country. A proper test of the bias introduced by use of household surveys 

would require both census and household survey data for the same countries, which we did not 
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have access to for the countries in our dataset and they covered different ranges and magnitudes 

of production (e.g. with household survey data covering countries with smaller aggregate 

production; see Figure S6). 

Plot size as a farm size proxy  

For 8 countries in our dataset, representing 4.8% of the total production (in kcal), farm size was 

not explicitly reported, so we calculated a proxy farm size using the sum of either harvested, 

cropped, planted, or plot area (Figure S7). This assumption may influence estimates of global crop 

production by farm size by underestimating farm areas in some farm size classes, because the 

aggregation process did not capture all fallow plots, water sources, unused areas, and on-farm 

structures. We think the main effect of this would be to introduce noise into the production by farm 

size signal (by mixing data using the field size proxy with real farm sizes). Due to data constraints, 

we were not able to explore how much noise this introduced. It does stand to reason that larger 

fields need to belong to larger farms, but it is unclear whether smaller fields are part of a large 

farm with several small fields or part of a small farm. However, because these countries represent 

less than 5% of the total production covered in our dataset, they do not greatly influence gross 

estimates of crop production by farm size estimated from these data. When the 8 countries we used 

a proxy indicator for farm size are omitted from the dataset there was minimal influence on the 

distribution of food production by farm size (mean absolute difference=0.26; SD=0.19).  
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Figure S7: Map showing direct farm size data (purple) or farm size proxy (orange) at the country 
level. 

 

Regional bias 

Our dataset accounts for around 51% of the total global harvest area, with representation across 

country types (e.g., spatial and economic). However, since our dataset is a convenience sample, 

we were not able to control for spatial coverage nor the countries included, and there were large 

data gaps for Australasia and Asia Figure S8). 
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Figure S8: Dataset’s percent of harvest area by region or economic status compared to global 
coverage in orange. Harvest area per region calculated from FAOSTAT. 

 

An important question for researchers interested in this dataset is how much the global estimates 

of crop production by farm size are influenced by the omission of particular countries. While this 

coverage error is difficult to compute directly, we can explore how sensitive global estimates are 

to any one country included in the dataset. To do this we re-computed a leave-one-out jackknife 

statistic, shown in Figure S9. The vertical black line is the mean kilocalories (kcal) of food 

produced for a given farm size class when no countries were omitted. Each blue dot represents the 

mean when a corresponding country was omitted. If a country is to the left of the black line it 
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lowers the global average. The vertical lines are the upper and lower quartiles for food production. 

For each plot, we labelled four countries as examples, but all countries are present.  

There is substantial variation when a country is omitted indicating that countries’ farm size 

distributions can heavily influence the global averages (see Tables 3-5 for per country distributions 

of gross agricultural, total production (kcal), and food production (kcal)). This high variation in 

the percentage of food produced in different farm size classes indicates that the relationship 

between farm size and food production is highly contextual; Figure S10 shows two examples, 

South Africa and Germany. 
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Figure S9: Jackknife plots per farm size to estimate country level bias. Grey lines indicate upper and 
lower quartiles of global production, and green points refer to the global mean if the country was 
omitted. 
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Figure S10: Two examples of countries that deviated from the global distribution of total crop 
production by farm size: Germany (purple) and South Africa (orange) have different distributions 
than the global average (green). 
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A.3. Global production statistics 

Table S3: Crop production by allocation type (kcal 10e9) and gross agricultural area (ha2 10e9) per 
farm size class. 

Farm Size (ha) Feed Food Other Processing Seed Waste Area 
0, 1 9.5 65.0 28.6 2.6 2.2 4.0 15.5 
1, 2 24.7 76.6 22.2 4.3 2.5 5.8 15.7 
2, 5 11.5 61.9 27.4 4.7 2.5 4.7 9.5 
5, 10 15.1 41.5 12.6 3.9 1.7 3.5 11.4 
10, 20 5.4 17.0 5.8 3.7 1.2 1.6 10.9 
20, 50 8.1 21.2 4.2 7.9 1.7 1.5 10.5 
50, 100 10.1 24.5 3.7 10.9 2.1 1.8 10.0 
100, 200 23.4 70.6 8.7 27.1 6.8 6.1 9.6 
200, 500 8.4 11.5 3.5 4.6 1.0 0.9 10.1 
500, 1000 20.1 43.9 7.1 15.0 3.8 2.0 10.0 
1000, 100000 6.6 12.9 3.6 7.4 1.8 2.6 15.9 

 
 

Table S4: Species richness distributions by farm size class. 

Farm Size  
(ha) 

Mean 
Richness 
(%) 

95% CI 
Low 

95% CI 
High 

0 to 1 19.92 15.38 24.46 
1 to 2 22.76 18.22 27.3 
2 to 5 12.68 8.14 17.22 
5 to 10 16.66 12.12 21.2 
10 to 20 14.01 9.47 18.55 
20 to 50 11.92 7.38 16.46 
50 to 100 8.73 4.19 13.27 
100 to 200 7.5 2.96 12.05 
200 to 500 6.73 2.19 11.27 
500 to 1000 6.36 1.82 10.9 
1000 to 100000 7.05 2.51 11.59 
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Table S5: Production (kcal 10e10) by crop type per farm size class. 

Farm Size  
(ha) 

Cereals Fruit 
Incl 
Melons 

Oilcrops 
Primary 

Other Pulses Roots 
and 
Tubers 

Treenuts Vegetables 
Primary 

0 to 1 7.10 0.07 0.02 0.10 0.04 0.57 0.00 0.11 

1 to 2 10.04 0.07 0.02 0.09 0.11 0.58 0.00 0.09 
2 to 5 6.85 0.12 0.05 0.14 0.07 0.68 0.00 0.10 
5 to 10 5.40 0.07 0.04 0.15 0.04 0.45 0.00 0.06 
10 to 20 1.76 0.05 0.03 0.19 0.03 0.34 0.00 0.07 
20 to 50 2.08 0.03 0.04 0.63 0.01 0.24 0.00 0.15 
50 to 100 2.27 0.01 0.03 0.99 0.00 0.24 0.00 0.22 
100 to 200 7.04 0.02 0.05 2.77 0.00 0.39 0.00 0.28 
200 to 500 1.84 0.00 0.04 0.44 0.00 0.08 0.00 0.04 
500 to 1000 5.00 0.00 0.07 1.80 0.00 0.25 0.00 0.04 
1000 to 100000 1.99 0.01 0.07 0.73 0.00 0.10 0.00 0.08 

 
 

Table S6: Macronutrient production by farm size class. In grams per capita (10e9) of carbohydrates, 
fats, or protein per farm size class. 

Farm Size (ha) Carbohydrates Fats Proteins 
0, 1 112.34 0.78 6.31 
1, 2 78.84 0.56 4.42 
2, 5 90.49 0.66 5.10 
5, 10 34.18 0.26 1.90 
10, 20 14.25 0.11 0.77 
20, 50 7.89 0.06 0.44 
50, 100 2.36 0.02 0.12 
100, 200 1.44 0.01 0.07 
200, 500 1.71 0.01 0.10 
500, 1000 1.56 0.01 0.10 
1000, 100000 7.40 0.06 0.46 
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Appendix B  Chapter 3 supplemental information 

B.1. Detailed description of data and methods 

B.1.1. Literature survey 

Studies were coded at the observational level to analyze multiple crops, years, and locations per 

study; studies had multiple observations if they separately reported different crops, years, and/or 

locations per outcome variable. For each observation, we recorded mean farm size, crop(s), non-

crop specie(s) for biodiversity, the scale of analysis (farm or landscape), and location. The main 

conclusions were categorically coded as “vote-counts”, where an increase in farm size was 

associated with a decrease, increase, or null relationship to the variable of interest (we found no 

non-linear results in the literature that met our inclusion criteria). For yield, resource-use 

efficiency, and profit we extracted several additional variables to calculate pooled effect sizes: 

regression model coefficients and standard errors; the type of model used; mean and units of 

outcome and response variables; sample size per observation; type of metric used (e.g., yield 

defined as either kg/ha or value output/ha; resource-use efficiency measured as technical efficiency 

(using either Cobbs-Douglas or stochastic frontiers); efficiency factors included in resource-use 

efficiency studies (e.g., seed, irrigation, fuel, labor, etc.); control variables in the regression 

equation (e.g., for yield studies, the type of production system, labor, land heterogeneity, and/or 

institutional factors were common controls; while credit access, extension access, and membership 

to farmer cooperatives were common controls in resource-use efficiency studies). Due to finding 

a limited number of studies that directly measured farm size and GHG emissions per unit output, 

we leveraged the Clark and Tilman meta-analysis database containing 742 agricultural life-cycle 
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analysis (LCA) observations from 152 unique studies (108); we coded observations that reported 

average farm size to construct a dataset containing crop species, GHG emissions per unit output 

(in CO2 equivalents), average farm size, and sample size for 100 observations (11 studies) that 

met our inclusion criteria. Similarly, there were limited crop diversity studies that met our criteria. 

To supplement these findings, we report the results of our recent study that measured crop 

diversity, in terms of relative species richness, and farm size across 55 countries and 154 crops 

(29). 

B.1.2. Synthesis of results 

Equation 1 shows the CLMM’s general form, where P(Yi ≤ j) is the cumulative probability of the 

i-th observation falling into the j-th category (negative, null, or positive relationship to farm size) 

(120). θj is a threshold parameter of designating cut-points between the three ordinal categories; 

hence, the difference between θnegative – 0, θpositive - θnegative, and 1 – θpositive represent the average 

probabilities of a negative, null, or positive relationship, respectively. Xβi is a matrix of all fixed 

effects and their slopes, in which exp(β) represent an odds ratio of the event Y ≥ j. Ui is a matrix 

of the random effect terms; all random effects are crossed. We bootstrapped each model to 

calculate the 95% confidence intervals of the average probabilities of a negative, null, or positive 

relationship. 

Equation 1 logit(P( Yi ≤ j )) = θj – Xβi – Ui 
 
 
Equation 2 shows the general form of the robust linear mixed-effects model used for the GHG 

emissions analysis where we set location and crop type as random effects. Where y is the 
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standardized regression coefficient per observation (i) (136). Xiβ is a matrix of fixed effects; Zibi 

are the random intercepts; εi is the error term. The model calculates an average fixed effects 

intercept by random intercepts. We bootstrapped the models to extract the fixed effect intercept, 

then calculated the median effect and 95% confidence intervals. To calculate the random effects 

meta-regressions for yield, resource efficiency, and profit, we relied on the R package “metafor” 

(122). These meta-regressions are near identical to equation 1, except they do not estimate the 

standard errors, rather we used fixed variances from the extracted standard errors from each study. 

 
Equation 2 yi = Xiβ + Zibi + εi 
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B.2. Supplemental figures 

 
Figure S12: PRSIMA diagram of the data identification, eligibility, and inclusion process. Web of 
Science (WOS) and Scopus article databases were queried, the results were combined and duplicates 
were removed. Clark and Tillman’s (2017) dataset of life-cycle analysis (LCA) studies were 
additionally coded if the study included farm size summary statistics. A few LCA studies pertained 
to other variables, beyond GHG emissions, and were included in the vote counts where appropriate. 
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Similarly, a few resource-use efficiency studies found via WOS and Scopus contained GHG 
information that further supplemented the LCA dataset. 

 

 
 

Figure S13: Number of observations per country per variable.  
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Figure S14: Forest plot for yields, where observations are in standardized form and 95% CI are 
given. The size of each point estimate relates to the inverse standard error. The pooled effect and 
95% CI are given in the lower plot. 
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Figure S14: Forest plot for resource efficiency, where observations are in standardized form and 
95% CI are given. The size of each point estimate relates to the inverse standard error. The pooled 
effect and 95% CI are given in the lower plot. 
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Figure S15: Forest plot for profitability, where observations are in standardized form and 95% CI 
are given. The size of each point estimate relates to the inverse standard error. The pooled effect and 
95% CI are given in the lower plot.  
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Figure S17: Funnel plots to identify bias for observations included in the meta-analyses, where the 
observed outcome is plotted against the standard error. Publication bias would result in non-
symmetric plots. 
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B.3. Supplemental tables 

Table S7: Boolean search terms per variable and number of articles returned. 

  No. Articles 
Variable Search Booleans Web of 

Science 
 

Scopus 

Yields ("Farm size*" OR "Field size*") AND (yield* OR invers*) AND 
(agricult* OR crop*)  

278 423 
 

("Farm size*" OR "Field size*" OR "plot size*") AND (invers*) 
AND (agricult*)  

56 79 
 

("Farm size*" OR "Field size*") AND (yield*) AND (invers* OR 
productivity) AND (agricult* OR crop*) 

75 101 

Biodiversity ("Farm size*" OR "Field size*") AND (biodivers* OR divers*) 
AND (environment* OR ecosystem* OR landscape* OR sharing) 

156 198 
 

("Farm size*" OR "Field size*") AND (biodivers* or divers) AND 
(environment* OR ecosystem* OR landscape* OR sharing) AND 
(intensification) 

41 34 

 
("Farm size*" OR "Field size*") AND (deforestation) 19 17 

Crop Diversity ("Farm size*" OR "Field size*") AND ("crop divers*" OR "diet 
divers*" OR "in situ") 

70 83 
 

("Farm size*" OR "Field size*") AND ("monocrop*" OR 
"intercrop*") 

22 32 
 

("Farm size*" OR "smallhold*") AND ("crop divers*" OR "diet 
divers*" OR "in situ") AND ("size*") 

42 48 

 ("Farm size*" OR "smallhold*") AND ("crop divers*" OR "diet* 
divers*" OR "in situ*") 

136 174 

Resource 
Efficiency 

("Farm size*") AND ("input*") AND (use OR efficienc*)  107 263 
 

("Farm size*") AND ("energy efficienc*")  11 23 
 

("Farm size*" OR "Field size*") AND (input*) AND (use OR 
efficienc*) AND (agricul*)  

126 187 
 

("Farm size*" OR "Field size*") AND ("energy efficienc*") AND 
(agricul*) 

5 13 

Profit ("Farm size*" OR "Field size*") AND ("profit*") AND ("agricult*" 
OR "crop*") 

131 180 

 ("Farm size*" OR "Field size*") AND ("inverse*" OR "allocative 
efficienc*" OR "economic efficienc*" OR "viability" OR "viable") 
AND ("agricult*" OR "crop*") 

105 159 

 ("Farm size*" OR "Field size*") AND ("inverse*" OR "allocative 
efficienc*" OR "economic efficienc*")  

229 261 
 

("Farm size*" OR "Field size*") AND ("inverse" OR "allocative 
efficienc*" OR "economic efficienc*" OR "viability" OR "viable") 
AND ("agricult*" OR "crop*") 

144 308 

GHG Emissions All data was from Clark and Tillman’s (2017) LCA database 
available in their supplemental material. 
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Table S8: Summary statistics. 

Variable Group Finding Median 
Year 

No. Obs No. Studies 

Yield 
 

Effect Size 1998 32 18 
  

Negative 1998 43 26 
  

Null 1984 16 9   
Positive 1979 10 6 

Biodiversity Field Negative 2005 32 13 
  

Null 2012 14 8   
Positive 2012 6 4 

 
Landscape Negative 2010 22 10 

  
Null 2012 10 6   
Positive 1992 3 2 

Crop Diversity 
 

Negative 2015 3 3 
  

Null 2015 1 1   
Positive 2011 4 4 

Resource Efficiency 
 

Effect Size 2010 19 15 
  

Negative 2007 6 6   
Null 2011 11 9 

  
Positive 2013 17 14 

GHG Emissions 
 

Effect Size 2016 100 11 
Profitability 

 
Effect Size 2014 15 11 

  
Negative 2014 6 6 

  
Null 2015 3 2   
Positive 2013 11 9 
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Table S9: CLMM Regression probabilities that a study finds a negative, null, or positive relationship 
between farm size and the variable of interest. 

Variable Relationship No. Obs. Mean Lower 95% Upper 95% 
Yield Negative 43 78.74 57.77 100.00  

Null 16 18.10 0.00 36.29  
Positive 10 3.17 0.00 8.06 

Biodiversity Negative 54 76.90 60.94 98.82  
Null 24 21.60 1.17 35.97  
Positive 9 1.50 0.00 4.27 

Resource Efficiency Negative 6 14.05 7.02 19.23  
Null 11 36.24 26.92 47.67  
Positive 17 49.71 39.29 58.39 

Profit Negative 6 21.78 0.00 39.71  
Null 3 22.24 0.00 55.41  
Positive 11 55.97 23.10 100.00 
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Table S10: Mixed effects regression output of effect size per variable with 95% confidence intervals. 

Variable Subset No. 
Obs. 

Mean 
Effect 

Lower 
95% 

Upper 
95% 

Yields All 33 -0.05 -0.09 -0.01  
Institutional not controlled 26 -0.05 -0.11 0.01 

 
Institutional controlled 7 -0.05 -0.16 0.06 

 
Labor not controlled 17 -0.06 -0.13 0.01  
Labor controlled 16 0.01 -0.08 0.10 

 
Management not controlled 16 -0.03 -0.09 0.02 

 
Management controlled 17 -0.04 -0.12 0.04  
Institutional controlled (full model) 7 -0.06 -0.19 0.07 

 
Labor controlled (full model) 16 0.02 -0.11 0.16 

 
Management controlled (full model) 17 -0.05 -0.17 0.08 

Resource 
Efficiency 

All 18 0.00 -0.01 0.02 
 

Cooperative not controlled 14 0.00 -0.03 0.03 
 

Cooperative controlled 4 0.00 -0.04 0.04 
 

Credit not controlled 8 0.00 -0.02 0.02  
Credit controlled 10 0.06 -0.02 0.13 

 
Extension not controlled 7 0.00 -0.02 0.02 

 
Extension controlled 11 0.05 -0.02 0.13  
Cooperative controlled (full model) 4 0.00 -0.04 0.04 

 
Credit controlled (full model) 10 0.02 -0.31 0.36 

 
Extension controlled (full model) 11 0.03 -0.30 0.36 

GHG All 100 -0.04 -0.10 0.02 
Profitability All 15 -0.02 -0.10 0.05 
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Appendix C  Chapter 4 supplemental information 

C.1. Supplemental figures 

 

Figure S18: Map of the different subgroups we use for our analysis. Subgroup 1 (orange and green) 
contains 34 countries, subgroup 2 (only green) contains 30 countries. Each subgroup analysis uses 
a different selection of predictor variables. Subgroup 1’s variables are: farm area (actual and 
relative), relative economic size, and the percent of female labor. Subgroup 2 includes all subgroup 
1 predictors plus: percent family labor and percent subsistence. Countries in gray, indicate no 
available data. 
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Figure S19: We defined out family labor variable by one minus the percent of labor expenditure 
over total on-farm expenditures, which assumed that family labor was unpaid. We used this 
definition because it allowed us to measure 30 countries. We tested this definition against the number 
of days of family labor worked per year over the total number of labor days worked per year per 
farm for nine countries where we had these variables (this would have been an ideal definition for 
percent family labor). We see a very strong linear relationship between our proxy variable and the 
actual percent family labor. 
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Figure S19: Bivariate relationships of each definition of smallholder with productivity (profit per 
ha) and income (profit per person in the farming household) in country relevant terms (upper two 
rows) and real terms (2011 USD PPP). Family labor, female labor, and subsistence level have 
reversed x-axis to enable easier visual comparison across smallholder definition (i.e., the left most 
values are associated with smallholders). Separate trends are given for crop production, livestock 
production, all on farm production, and on and off farm production where relevant. The bottom row 
contains two poverty lines for comparability with the per capita real income, where $1.90/capita/day 
is the poverty threshold for low-income countries and $3.20/capita/day is the poverty threshold for 
low-middle income countries. Non-parametric trend lines and 95% confidence intervals are given. 

 

Figure S21: Derivatives for Figure 15A, where for each 0.05 increase in N times the current income 
there is a given change in the line’s slope. At 2x the current income, the slope levels off. 
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C.2. Supplemental tables 

Table S11: Independent variable definitions. 

Independent Variable Definition 
Farm size Farm size (ha); a minimum farm size value of 0.25 ha was 

assigned due to potential data anomaly introduced in smaller 
farms.  

Relative farm size Country relative farm size in ranked percentiles. 
Relative economic size Country relative economic size in ranked percentiles of crop 

revenue. 
Female labor The share of working age (between 15 and 60 years old) 

household female members to the total number of working age 
household members. 

Family labor One minus the percent of a household's expenditure on labor 
compared to total on-farm expenditure, which assumed that 
family labor was unpaid. We used this definition because it 
allowed us to measure 30 countries. We tested this definition 
against the number of days of family labor worked per year over 
the total number of labor days worked per year per farm for nine 
countries where we had these variables (this would have been 
an ideal definition for percent family labor). We observed a very 
strong linear relationship between our proxy variable and the 
actual percent family labor (see Figure S19). 

Subsistence level Value of crop consumed divided by the value of crop produced. 
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DV FE1 FE2 FE3 FE4 FE5 FE6 FE7 FE8 FE9 FE10 
           

Farm Size (ha) 0.19*      0  0.15*  
 (0.18; 

 0.20) 
     (-0.02; 

 0.01) 
 (0.14; 

 0.16) 
 

Farm Size (rel)  0.15*      -0.01  0.12* 

  (0.14;  
0.16) 

     (-0.02; 
 0.01) 

 (0.11; 
 0.13) 

Family Labor   -0.08*    -0.02* -0.02* -0.04* -0.05* 

   (-0.10; 
 -0.07) 

   (-0.03; 
 -0.00) 

(-0.03; 
 -0.00) 

(-0.06; 
 -0.03) 

(-0.06;  
-0.03) 

Subsistence    -0.22*   -0.08* -0.08* -0.19* -0.19* 

    (-0.23; 
 -0.21) 

  (-0.09; 
 -0.06) 

(-0.09; 
 -0.06) 

(-0.20; 
 -0.18) 

(-0.20; 
 -0.18) 

Economic Size     0.36*  0.34* 0.34*   
     (0.35; 

 0.37) 
 (0.33; 

 0.35) 
(0.33;  
0.35) 

  

Female Labor      -0.06* -0.06* -0.06* -0.06* -0.06* 

      (-0.07;  
-0.05) 

(-0.07;  
-0.05) 

(-0.07;  
-0.05) 

(-0.07;  
-0.05) 

(-0.07;  
-0.05) 

Num. obs. 38270 38270 38270 38270 38270 38270 38270 38270 38270 38270 
Num. groups: 
country:psu 

7235 7235 7235 7235 7235 7235 7235 7235 7235 7235 

Num. groups: 
country 

30 30 30 30 30 30 30 30 30 30 

R2 0.41 0.41 0.39 0.41 0.47 0.39 0.47 0.47 0.42 0.42 
Adj. R2 0.27 0.27 0.25 0.27 0.35 0.25 0.35 0.35 0.29 0.29 

 

Table S12: Fixed effects models predicting per capita income in country relative terms. 
Coefficients and 95% confidence intervals (in parentheses). 
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DV FE11 FE12 FE13 FE14 FE15 FE16 FE17 FE18 FE19 FE20 
           

Farm Size (ha) -0.54* 
     

-0.71* 
 

-0.55* 
 

 (-0.55;  
-0.53) 

     
(-0.73;  
-0.70) 

 
(-0.56;  
-0.54) 

 

Farm Size (rel) 
 

-0.39* 
     

-0.52* 
 

-0.39* 

 
 

(-0.40;  
-0.38) 

     
(-0.53;  
-0.51) 

 
(-0.40;  
-0.38) 

Family Labour 
  

0.13* 
   

0.09* 0.11* 0.06* 0.08* 

 
  

(0.11;  
0.14) 

   
(0.08; 
 0.10) 

(0.10;  
0.12) 

(0.05;  
0.08) 

(0.07; 
 0.09) 

Subsistence 
   

-0.02* 
  

0 0 -0.12* -0.11* 

 
   

(-0.03;  
-0.01) 

  
(-0.01; 
 0.01) 

(-0.01; 
 0.02) 

(-0.13;  
-0.10) 

(-0.12;  
-0.09) 

Economic Size 
    

0.09* 
 

0.35* 0.33* 
  

 
    

(0.08; 
 0.10) 

 
(0.34; 
 0.36) 

(0.32;  
0.34) 

  

Female Labor 
     

0.01* 0 0.01 0 0 

  
          (0.00;  

0.02) 
(-0.01; 
 0.01) 

(-0.00; 
 0.01) 

(-0.01; 
 0.01) 

(-0.00; 
 0.01) 

Num. obs. 38114 38114 38114 38114 38114 38114 38114 38114 38114 38114 
Num. groups: 
country:psu 

7205 7205 7205 7205 7205 7205 7205 7205 7205 7205 

Num. groups: 
country 

30 30 30 30 30 30 30 30 30 30 

R2 0.5 0.48 0.38 0.38 0.38 0.38 0.56 0.53 0.51 0.48 
Adj. R2 0.38 0.35 0.24 0.23 0.24 0.23 0.46 0.43 0.39 0.36 

 

Table S13: Fixed effects models predicting on-farm economic productivity in 
country relative terms. Coefficients and 95% confidence intervals (in 
parentheses). 


