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Abstract

Technological innovations have allowed for a greater variety of data, most notably

microbial genomic data, to be collected, integrated, analyzed, and visualized for

epidemiological investigations. While analytic methods have evolved in light of this

technological change, data visualizations systems have lagged behind.

I take a novel approach that integrates methods from information visualization,

human computer interaction, machine learning, and statistics to address unmet data

visualization needs in microbial genomic epidemiology (genEpi). This approach

also enables me to generate study artifacts that can be used to address regulatory

and organizational constraints arising in domains where the use of data is highly

restricted. I first present a mixed methods approach to understand the needs,

data, tasks, and constraints of public health stakeholders that are charged with

interpreting the findings of these data. I demonstrate how this approach can be

used to communicate new and heterogeneous types of data in a clinical report

that is read by stakeholders in different roles. I next present a novel method

for systematically reviewing data visualizations that I use to develop a Genomic

Epidemiology Visualization Typology (GEViT), which enables others to explore
and characterize the way the data could be visualized. Finally, I use these collective

findings to inform the design and implementation of data visualization tools:

Adjutant, the GEViT Gallery, minCombinR, and GEViTRec. Adjutant enables rapid

and unsupervised topic clustering of PubMed article corpuses to aid systematic

and literature reviews. The GEViT gallery is a browsable interface for exploring

data visualizations specific to the microbial genEpi domain. minCombinR lowers
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the burden to stakeholders for generating combinations of data visualizations for

heterogeneous data. Finally, GEViTRec takes a novel approach to the automatic

generation of data visualizations that can help stakeholders familiarize themselves

with new data. All of these tools integrate with analytic methods.

This research makes novel contributions to the design and implementation of data

visualization systems that impact microbial genomic epidemiological data collected

for public health investigations. The challenges addressed here are not unique to

this domain and my contributions are extensible to other domains grappling with

heterogeneous, multidimensional, and restricted data.
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Lay Summary

New technologies are enabling public health agencies to collect more data of many

different types, which can be used to inform public health policy and practice. Yet,

this new “big data” is challenging to analyze and to communicate to stakeholders

that need to make decisions with data. In this dissertation research, I developed

new approaches for understanding that relationships between data, how it used

by stakeholders, and the ways that this data can be visualized. Data visualization

forms an effective bridge between increasingly complex data and the methods that

are used to analyze it. I have created new techniques and software systems to

help stakeholders effectively analyze and visualize their data. My research makes

important contributions toward building better analysis tools to help stakeholders in

public health, and even beyond, work effectively with complex data.

v



Preface

Chapters of this dissertation have been previously published with different co-

authors. I acknowledge the collaborative nature of this work by using “we” through-

out the thesis, with the exception of the Introduction and Conclusion chapters where

“I” is used. All research chapters are presented as they were originally published.

Chapters 1 and 8 have not been previously published and have been written by me

with input from both Drs. Munzner and Gardy.
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A. Crisan, J. L. Gardy, and T. Munzner. On regulatory and organizational
constraints in visualization design and evaluation. Proc. Workshop Beyond
Time and Errors: Novel Evaluation Methods for Visualization, 1:19, 2016.
doi:10.1145/2993901.2993911

I conducted the analysis for the case study and wrote the initial drafts of the publi-
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This research was borne out of a collaboration with the COMPASS-TB team at Pub-

lic Health England (PHE) to redesign an existing clinical report for next generation

sequencing of data. In addition to the report re-design collaboration with PHE, the

larger goal of this study was also to collect stakeholder information that could be

used to inform subsequent research aims. All authors jointly conceived of the study

designs and contributed to the writing of the final publication. Geoffery McKee

and I implemented the online surveys, conducted the analysis, developed the final

re-designed clinical report, and wrote the initial drafts of the publication. Zipeng

Liu, Kimberly Dextras-Romangnino, Dylan Dong, and George Hattab participated

in the Design Sprint portion of this research and contributed prototype designs that

were evaluated the Design Choice Questionnaire. The content of Appendix A was

also published alongside this work and includes the online surveys deployed for this

study and the notes I complied to justify design the final clinical report. We have

also produced a LaTeX template for the clinical report that is available online:

https://github.com/amcrisan/TB-WGS-MicroReport

All study resources and materials that could be publicly released were made available

online ahead of publication:

https://github.com/amcrisan/TBReportRedesign

Chapter 4 has been previously published in Bioinformatics [26]:

A. Crisan, T. Munzner, and J. L. Gardy. Adjutant: an R-based Tool to Support
Topic Discovery for Systematic and Literature Reviews. Bioinformatics,
35(6):10701072, 08 2018. doi:10.1093/bioinformatics/bty722

All authors contributed to the writing of the final publication. I developed and

implemented the underlying programmatic logic and the Graphical User Interface

(GUI) for Adjutant. The content of Appendix B was published alongside the initial

publication and contains substantial additional analyses on Adjutant’s approach to

rapid and unsupervised topic clustering.

Adjutant is available as an open source R package on GitHub:

https://github.com/amcrisan/Adjutant
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Chapter 5 has been previously published in Bioinformatics [24]:

A. Crisan, J. L. Gardy, and T. Munzner. A Systematic Method for Sur-
veying Data Visualizations and a Resulting Genomic Epidemiology Visu-
alization Typology: GEViT. Bioinformatics, 35(10):16681676, 09 2018.
doi:10.1093/bioinformatics/bty832

All authors jointly conceived of the study and contributed to the writing of the final

publication. I developed the initial study ideas, created and implemented the sys-

tematic review and analysis methodology, conducted the preliminary analyses, and

finally implemented and deployed the online gallery (http://gevit.net). The

content of Appendix C was published alongside this work and includes additional

information about the methodologies used in study as well as some supplementary

figures. The version of the publication that appears here has a slight modification rel-

ative to the original publication. Following feedback from the research community,

we changed the names of the combinations from “Composite”, “Small Multiples”,

“Many Types Linked”, and “Many Types General” to “Spatially Aligned”, “Small

Multiples”, “Visually Aligned”, and “Unaligned”, respectively.

All study resources and materials were made available online ahead of publication:

https://github.com/amcrisan/GEViTAnalysisRelease

Chapter 6 was submitted for publication [27]:

A. Crisan, S. Fisher, S. Kasica, J.L. Gardy, and T. Munzner (2019). min-
CombinR: Coordinating Chart Combinations with Minimal Specifications.
Submitted for Publication

Myself, Dr. Munzner, and Shannah Fisher conceived of the minCombinR’s archi-

tecture and contributed to the writing of the final publication. Myself and Shannah

implemented minCombinR as an open source package and conducted tests into its

capabilities. Stephen Kasica help with the comparison to other tools. Appendix D
was submitted along this work.

All study resources and materials were made available online ahead of publication :

https://github.com/amcrisan/minCombinR
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Chapter 7 was submitted for publication [28]:

A. Crisan, J.L. Gardy, and T. Munzner (2019). GEViTRec: Domain-Aware

Visualization Recommendation for Data Reconnaissance and Harmonization.

Submitted for Publication

Myself and Dr. Munzner conceived of the original project objectives and contributed

to the writing of the �nal publication. Dr. Munzner and I jointly conceived of the

data reconnaissance and task wrangling conceptual framework presented in this

work. I developed and implemented the algorithmic logic behind GEViTRec and

wrote the initial drafts of the publication. The content ofAppendix E was submitted

alongside this work as a proof-of-concept for GEViTRec.

All study resources and materials were made available online ahead of publication:

https://github.com/amcrisan/GEViTRec

Presentation Style of Dissertation, Chapters, and Appendices

The manuscripts that comprise the aforementioned research chapters are
written for different audiences and venues, as such they have different writing
styles that are dependent upon the publication conventions of each commu-
nity. Throughout, I also treat the term “data” as plural (for example, I write
`these data' and not `the data').

Chapters 2, 6, and 7 are written primarily for an infovis research audience,
have an informal tone, and have a looser manuscript structure that includes
an introduction, related work (either and the beginning or the end of the
manuscript), a theoretical description of an algorithm or toolkit, implementa-
tion details, results, discussion and conclusions.

Chapters 3 and 5 are written for a bioinformatics and genomic epidemiology
audience, have a more formal tone, and follow a so-called “traditional
laboratory style” manuscript, that is they have �ve strictly de�ned sections :
introduction, materials and methods, results, discussion, and conclusions.
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Chapter 4 is also written for a bioinformatics audience, but as an “application
note” – a format that brie�y describes a software application.

Following the convention of the information visualization research literature
I refer to the work conducted within these chapters asprojects. A project
can comprise one or more studies.

The appendices are all written in a relatively informal and conversational tone.
They comprise additional �gures, tables, details on the methods, and �nally
tutorials that were published online and also submitted as supplementary
materials that accompanied their respective publications.

A �nal stylistic note is on the structure of this thesis document. As already
indicated, chapters are presented in their published (or submitted) structure,
which means that each chapter contains an abstract, its own introduction, and
conclusions. This is different than other thesis presentation styles that have
a single Introduction and Conclusion for the entire document; my chosen
presentation style is in keeping with a manuscript thesis format. In this thesis
document, I used the Introduction (Chapter 1) to present an overview of the
individual research chapters, a summary of their contributions, and how all of
these chapters are tied together. In the Conclusions (Chapter 8), I once again
summarize the overall �ndings of these chapters and their contributions, but
also comment on the post-publication reception of my research by the public
health and visualization communities.

Ethics Approval

The studies described in this dissertation work conducted with the approval of
the UBC Behavioral Research Ethics Board, certi�cate number H10-03336.
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Chapter 1

Introduction
We are facing many new challenges, and these cannot be understood by using

the visual metaphors we've been using for centuries— Manuel Lima

Data visualization has been a component of public health research and prac-
tice since John Snow created his infamous 1854 cholera map. The dominant
narrative of Snow's story is that by plotting the cases of infected individu-
als on a map, he formulated a hypothesis that the Broad street pump was
the source of the outbreak. He veri�ed this hypothesis by removing the
pump handle and ending the outbreak. The factually accurate narrative is
more complex and illustrates the dynamic interplay between data, statistical
analyses, visualization, and actionable insights. Snow initially undertook a
considerable statistical effort to implicate water, and not commonly held be-
lief of bad air (“miasmata”), as the vector transmitting the cholera contagion.
While he suspected the Broad Street pump as the source of the outbreak he
still developed the cholera case map to con�rm his hypothesis, which was
further veri�ed by removing the pump handle. It was through the combined
expository power of the statistical procedures and data visualization that
Snow produced a potent analytic repertoire that today still inspires analysts in
public health and beyond. For his investigation and resolution of the cholera
outbreak, Snow is credited as the founder of the discipline of epidemiology.
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Since Snow's seminal research epidemiology has signi�cantly evolved, intro-
ducing new, heterogeneous, and multidimensional sources of data, together
with increasingly complex analytic procedures [42]. Within public health,
an in�ux of new whole genome data has changed the resolution that stake-
holders, which includes clinicians, nurses, policy makers, epidemiologists,
analysts, and researchers, can investigate disease outbreaks. However, ge-
nomic data also introduced new complexities; it was dif�cult to integrate
genomic data with with currently existing data sources, including tabu-
lar data from electronic health records, contact network data, and spatial
data [23, 25]. While new statistical procedures have emerged to respond
to these new and complex datasets, data visualisation techniques have not
evolved at a same pace and there remains a considerable need to better
integrate statistical and visual analysis methods [18]. Thus, that interplay
between analysis and visualization that Snow elegantly demonstrated is at
risk of being disrupted, with the consequence of introducing literal blind
spots into modern epidemiological investigations.

I became interested in the interplay between statistics and data visualization
while analyzing some of these aforementioned complex datasets. Like Snow,
I relied on both statistical and visual approaches to formulate a more com-
plete understanding of these data and to prioritize more viable and actionable
insights over other �ndings. As both my data and analysis procedures would
continue to grow in complexity, I began to encounter limitations with ex-
isting data visualization tools. I discovered I was not alone. Through this
doctoral research, I sought to establish new approaches for visualizing data
stemming from microbial Genomic Epidemiology (genEpi) investigations.
However, knowing thatgenEpiis one facet of the growing discipline of Data
Science, I also sought to produce technical and methodological contributions
that could generalize beyond the speci�cation application context I present
in this thesis.
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1.1 Situating My Research in Prior Work

Each chapter of this dissertation contains a detailed introduction with a
review of the literature that is relevant to its subject matter. This introduction
provides a summary of prior research that emphasizes studies and �ndings
that were in�uential to my overall dissertation. I also present gaps in the
prior work that my research sought to address.

Data visualizations developed for public health have long been drawn by
hand and thus could be as expressive as the imagination of its creator. Tech-
nological innovations have since allowed public health stakeholders to use
computers to generate data visualizations, which enabled stakeholders to
incorporate wider variety of data types, including microbial genomic data. If
stakeholders are suf�ciently technically savvy, or have support from tech-
nical personnel, they can expressively create data visualizations libraries
from within R, Python, or Java Script (using packages such as ggplot [124],
matplotlib [56], D3 [9], vega-lite [100]) and link the generation of these vi-
sualization to analysis procedures. However, few public health stakeholders
have such resources and so rely primarily on systems developed by others.
Even in instances when stakeholders are well resourced, they may lack the
time to create bespoke custom solutions and so still rely on a rich ecosystem
of tools to expressively generate data visualizations.

Data in modern genomic epidemiology investigations are drawn from het-
erogeneous sources that must be integrated, transformed, and analyzed, and
visualized together. This heterogeneity of data adds a level of complexity to
the design and implementation of both analytic and visualization tools. How-
ever, existing data visualization systems are still limited in the types of data
they support, the range of visualizations they can produce, and their ability
to connect to different analytic methods. Overall, it can still be complex
to generate expressive data visualizations from these complex data. I have
experienced this limitation in my own prior research, and it was a motivating
factor in undertaking this research. To illustrate this point, I will describe
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some of these existing tools and the way I have observed them being used
by public health stakeholders that must collect, analyze, and interpret the
results from heterogeneous genomic epidemiology data.

I will begin by discussing tools available for visualizing the most ubiquitous
data in genomic epidemiology: phylogenetic data, which shows the evolu-
tionary relationships of specimens isolated from infected individuals over
time. There exist a number of systems to view these data and among the
most widely used are Tree Viewer [55], ggtree [135], and ape [87]. These
systems that can visualize phyologenetic tree data together with associated
data that contains additional contextual information (i.e. geographic regions,
year specimen was acquired, etc.). The latter two, ggtree and ape, are R
packages that can integrate with a variety of analytic procedures and other
visualization libraries in R, while Tree Viewer, although widely used, is
much more limited. Still, these systems primarily produce a visualization
of one or more phylogenetic trees and to visualize other types of data, for
example genomic, network, or spatial (geographic) data, stakeholders must
turn to other tools. It then becomes necessary to integrate the visualization
results of multiple tools, a procedure that is called `post-processing', in order
to arrive a �nal data visualization. For example, a stakeholder may need
to visualize network data using Cytoscape [105], geographic data using Ar-
cGIS, genomic data via the Integrated Genomics Viewer (IGV) [97] or Island
Viewer [30], and tabular data (also referred to as a linelist to public health
stakeholders) via Excel or Tableau. Statistical analysis may be conducted
in SAS, R, or some other tool. Finally, Adobe Illustrator, PowerPoint, or
InkScape, may be used to integrate all of these visual results together. This is
just one example of a combination of systems among many potential options.
In recent years, data visualization systems have been developed to enable a
stakeholder to more easily integrate and visualize heterogeneous genomic
epidemiological data. These systems include GenGIS [88], Microreact [4],
and Nextstrain [48], which support the visualization of genomic, geographic,
temporal (Microreact & Nextstrain), some network (Nextstrain), and some
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genomic (Nextstrain) data. These tools represent the current state of the art,
but still have considerable limitations toward the types of data, visualizations,
and analyses they support.

Although these systems exist they are not widely used outside of a research
context. An excellent review by Carroll [18] indicates a number of reasons
as to why this may the case, such as poor �t for different stakeholders (like
nurses and clinicians), inability to integrate with existing clinical, treatment,
and surveillance work�ows, and constraints that limit how data can be used
and whether a system can be installed on a stakeholder's workstation. Dig-
ging more deeply into the concerns that Carroll raises, it is possible to also
see how constraints stemming from data access and use as well as stake-
holder familiarity with new and emerging data types all play critical roles
that impact the design and implementation of data visualization systems.
Unfortunately, the existing literature in microbial genomic epidemiology,
or bioinformatics more generally, offers very little guidance toward under-
standing those needs, data, and tasks (the procedures stakeholders perform
with data) as well as the constraints on these data. For a more principled
approach to the design and implementation of data visualization systems, it
becomes necessary to use the methods from another discipline.

A large body of literature in the Information Visualization (infovis) research
community is precisely dedicated to understanding the needs, data, and tasks
of users as well as exploring and characterizing ways to visualize these data.
Using techniques from both quantitative and qualitative user research [57],
the infovis literature advocates a so-called design study methodology to
elicit needs, constraints, data, and tasks that through an iterative process
are then married to visual encodings (a more technical and precise term
for data visualization). There are a number of design study methodologies,
but the most widely used one is reported by Sedlmairet al. [103] and is
referred to as the DSM. The iterative cycles of `the DSM' are intended to
encourage both developers and stakeholders to consider multiple different
visual alternatives before arriving at a �nal visual encoding that is suitable
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for the needs, data, and tasks of stakeholders. For example, a developer may
initially consider a phylogenetic tree with branches coloured to represent
different geographic origins of specimen isolates. However after consulting
with stakeholders, and through iterative re�nements, she might instead end
up at a visual encoding of a tree and map with a co-ordinated colour scheme.
In other words, in order to identify an optimal solution the DSM is intended
to help developers and stakeholders navigate a visualization design space,
which is a conceptualization of all possible ways data could be visualized.
The DSM approach is in contrast to anad hocapproach to the visualization
of data, which does not consider multiple alternatives or have an awareness
of a visualization design space. The infovis research literature provides
concrete examples of such visualization design spaces, for example Set
Vis [1], Tree Vis [101], or BioVis Explorer [58]. More generally, infovis
research also continues to explore the potential types of visual encodings
that could exist for different data types, thus constantly expanding the size
of a visualization design space.

The prior research stemming from microbial genEpi and infovis literature
provide different approaches for visualizing data. Absent is a more system-
atic and uni�ed methodology that integrates methods and practices from the
research disciplines underpinning both communities. Such an integration
would bene�t both disciplines and support the development of better data
visualization tools capable of linking to analytic procedures. For stakehold-
ers representing public health, bioinformatics, and microbial genEpi, an
awareness of the infovis research methodologies would allow them to de-
velop useful data visualization tools and to meaningfully assess their ef�cacy.
Importantly, such an awareness would also motivate bioinformatics develop-
ers to more carefully consider the evolving data landscape that arises from
technological changes. Likewise, the landscape of data, diverse stakeholders,
and unavoidable constraints, can result in novel approaches to design studies
methodologies. In particular, design study methodologies could bene�t from
more robust and systematic evidence based approaches that are the norm in

6



public health investigations.

This dissertation presents a uni�ed methodology that borrows techniques
from a number of disciplines to address presently unmet needs toward the
visualization and analysis of microbial genomic epidemiological data. The
results of applying this methodology are novel contributions of data and
visualization �ndings, algorithms, and tools that are speci�c to microbial
genEpi, but that can also extend beyond this domain.

1.2 Research Overview

My doctoral research undertook an interdisciplinary approach that integrated
techniques from public health, human computer interaction, machine learn-
ing, and information visualization across several research projects. These
projects sought tounderstandstakeholders needs, data and tasks,explore
and characterizeexisting data visualization strategies, in order to de�ne the
problems in how and why stakeholders in genEpi visualized data. Next, my
research sought todesign and implementnew data visualization systems
and algorithms as solutions to previously identi�ed visualization problems.

These research projects and their contributions are summarized in detail in
the subsequent Section 1.3 and here I present a brief overview of the different
research chapters comprising this thesis (Figure 1.1)

In Chapters 2 and 3, I present two projects I undertook tounderstandstake-
holders needs, data, and tasks. In Chapter 2, I present a data visualization
case study in public health to demonstrate how regulatory and organization
constraints impact data access and consequently visualization design and
evaluative approaches. In Chapter 3, I gathered both quantitative and qual-
itative evidence to understand stakeholders' available data, their ability to
interpret these data, and how these data are used for different tasks. Both
projects were carried out collaboratively with teams at the British Columbia
Centre for Disease Control (BCCDC) and Public Health England (PHE) and
focused on genomic epidemiology applied to Tuberculosis (TB).
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In Chapter 5, I present a project I undertook toexplore and characterize
data visualization strategies already in use by stakeholders. I present a novel
method for systematically reviewing data visualizations to derive a Genomic
Epidemiology Visualization Typology (GEViT) that can characterize a so-
calleddomain prevalence visualization design space. The work presented
in Chapter 5 complements the research in Chapters 2 and 3 by combining a
holistic community perspective with that of a smaller and concentrated group
of stakeholders. Importantly, the research in Chapter 5 links speci�c types
of data, which are explored in detail in Chapter 3, to visual representations
already in use by the genEpi community.

Finally, in Chapters 4, 5, 6, and 7, I present thedesign and implementation
of data visualization solutions that build off of the �ndings of the prior
research projects. In Chapter 4, I present Adjutant, a novel method with an
accompanying system for rapid and unsupervised topic clustering of text
data. In Chapter 5, I present a data visualization gallery intended to help
stakeholders explore alternative visual designs for different data types and
creation contexts; for example, browsing visualizations that show genomic
data visualized in an outbreak. Both Adjutant and the gallery are products of
the systematic review method presented in Chapter 5. In Chapter 6, I present
minCombinR, a toolkit that minimizes the amount of code stakeholders
need to write in order to produce different types of charts and combinations
of charts that I catalogued in Chapter 5. Finally, in Chapter 7, I present
GEViTRec, an algorithm for automatically generating data visualizations
given only input data. The GEViTRec algorithm uses the collective evidence
from previous chapters to link data to visual representations, identify relevant
visualizations, and �nally to render visualizations to the display for the user.
Adjutant, minCombinR, and GEViTRec are all implemented in R and are
able to integrate with data analyses procedures within the larger R ecosystem.
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1.2.1 Chronology

Figure 1.2: Doctoral Research Timeline. This timeline contains the different re-
search projects presented in the chapters of the dissertation, along with the
duration of time spent on each project and the publication status. I have also
included the different sources of data (participants, literature, and datasets) that I
gave generated and used in this dissertation.

The overarching trajectory of my research is to understand, explore and
characterize, and �nally design and implement data visualization tools; this
trajectory was established at the outset of my doctoral research. Conse-
quently, the chronological order that these research projects were undertaken
(Figure 1.2) is important because the results of prior projects in�uenced the
research approaches undertaken in the subsequent projects.

I conducted an initial pilot project with stakeholders at theBCCDCto de-
velop and deploy an analytic data visualization to support management and
control of tuberculosis. The initial project allowed me to identify data, con-
straints, missing stakeholders, and available infrastructure for data visualiza-
tions tools. These results are summarized in Chapter 2, entitledRegulatory
and Organizational Constraints in Visualization Design and Analysis. I
built upon these initial results through a collaborative project withPHEin
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Chapter 3,Evidence-based Design. Next, I connect data to visualizations
through the development of aGEViT (Chapter 5), and concurrently devel-
opedAdjutant (Chapter 4) and theGEViT Gallery . These aforementioned
chapters have all been published and also presented in venues that target a
bioinformatics, genomic epidemiology,andpublic healthaudience.

TheminCombinR toolkit (Chapter 6) andGEViTRec algorithm (Chapter 7)
were concurrently developed. In fact, GEViTRec relies on minCombinR to
create data visualizations that are viewed by stakeholders. These chapters
target ainformation and biological visualizationaudience.

1.3 Summary of Research Projects and Contributions

I have produced bothtechnicalanddomain speci�c contributions stemming
from the research projects presented in Chapter 2 to 7, inclusive. Technical
contributions produce a methodology, technique, or algorithm that is in-
tended to be generally applicable. Domain speci�c contributions are artifacts
that result from the application of my technical contributions to a speci�c
application domain, in this casegenEpi. For example, in Chapter 5 I devel-
oped a method for systematically reviewing data visualizations, which is a
technical contribution, and produce both a typology and online gallery, both
domain speci�c contributions, that demonstrate the results of my method
when applied to a domain speci�c research question.

In this section I present a summary of these research projects and their
contributions. I also provide additional contextual information for how all of
these research projects and their contributions are linked together.
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1.3.1 Chapter 2: Regulatory and Organizational Constraints in
Visualization Design and Analysis

Information visualization research exists within a larger data ecosystem that
governswhatdata can be used and alsohowit should be visually represented
for analysis. In Chapter 2, I have de�ned regulatory and organizational
constraints and argue that such constraints are not adequately accounted for
in existing infovis design and evaluative methodologies [23]. I demonstrate
how these constraints implicate visualization design and analysis through
a presentation of a case study that documented the results of a pilot project
intended to build a visual analytics tool for the tuberculosis team at the
BCCDC.

To ameliorate the visualization design and evaluation dif�culties that are
introduced by regulatory and organization constraints I have modi�ed a
widely used Design Study Methodology (DSM) [103]. First, I introduced
the idea of a “power-interest” matrix that allows researchers to generate
a more �ne-grained classi�cation of stakeholders than the existing DSM
enables. Importantly, by classifying stakeholders according to both their
power over a project and their interest in its outcomes, researchers are able to
prioritize those stakeholders that regulate data access, researcher processes,
and whether software can be installed on stakeholder work stations. Next, I
borrowed from the statistical analysis literature to demonstrate how synthetic
datasets can be generated and used in infovis research processes. I also show
how initial tool prototypes developed using this synthetic data can be used
to get buy-in from stakeholders and support data access. Importantly, the
majority of infovis research literature around design studies methodologies
emphasis the use of real data through the design and evaluation process. My
research concretely demonstrates both the value and necessity of generating
representative synthetic datasets for analysis.

Through a case study carried out in collaboration with stakeholders at the
BCCDC interested inTB prevention and control, I produce an example of a
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“power-interest” matrix and a synthetic dataset used for prototyping a data
visualization tool. I also demonstrate how these and other artifacts gener-
ated from the research processes were important for communicating with
stakeholders and getting buy-in from gatekeepers. I conclude this chapter by
summarizing a set of general recommendations to tackle regulatory and or-
ganizational constraints through the data visualization design and evaluation
process.

This initial investigation into the constraints that govern data usage and
access would prove to be in�uential in the research projects undertaken in
subsequent chapters. The “power-interest” matrix I developed was important
for understanding stakeholder availability, data knowledge, and priorities.
These �ndings would motivate the projects I present in Chapters 3 and 5 and
also in�uenced my research methodologies for these projects. Moreover,
an awareness of regulatory and organizational constraints in�uenced the
kindsof tools I should develop since many stakeholders encountered similar
constraints when they carried out their own research. The minCombinR
toolkit and GEViTRec algorithm presented in Chapters 6 and 7, respectively,
are both in�uenced by both data accessibility and stakeholders research
needs in light of regulatory and organizational constraints.

Contributions for Chapter 2

Technical Contributions:

• Formal de�nitions of regulatory and organizational constraints and an
assessment for their impact in visualization design and evaluation

• Incorporation of project management techniques with a DSM

• Strategies for generating synthetic datasets in visualization design and
evaluation

Domain Speci�c Contributions:
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• Case study documenting a data visualization pilot project forgenEpi,
including a tool prototype and initial evaluation

• Stakeholder classi�cation for public health roles

1.3.2 Chapter 3: Evidence-based design

Advances in technology have enabled public health stakeholders to collect
greater quantities of more variable data types to manage and control disease
outbreaks. In Chapter 3, I sought to gather evidence of the types of data
used in different public health diagnostic, treatment, and surveillance tasks,
as well as to understand how con�dent stakeholders are interpreting these
data for their tasks [25]. My co-authors and I partnered with the COMPASS-
TB team fromPHEto re-design aTB Whole Genome Sequencing (WGS)
clinical report. Through the process of the clinical report re-design, I also
sought to gather data that would be instrumental for informing subsequent
data visualization tool development.

The project reported in this chapter employed a multi-phased mixed methods
research approach integrated with the modi�edDSM (from Chapter 2). I
also used the stakeholder classi�cations from Chapter 2 to identify study
participants. The project's �rst phase used an exploratory sequential model
study design [22] to conduct semi-structured interviews with a selective
number of stakeholders in order to established work�ows, speci�c tasks, and
�nally the data used to complete those tasks. These qualitative �ndings were
then transformed into an online questionnaire that established the extent of
consensus (if any) among stakeholders that some data were used to complete
a speci�c task. I also assessed stakeholder ability to interpret these data
in order to perform diagnostic, treatment, or surveillance tasks. I used the
qualitative and quantitative results to inform the second project phase of gen-
erating paper prototypes of alternative clinical report designs. I collaborated
with the information visualization research group at University of British
Columbia (UBC) to come up with report prototypes, which I later converted
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into another online questionnaire to assess stakeholders' preference for spe-
ci�c representations ofWGSdata. To assess preference, study participants
were asked to select or rank preferred data representations and to provide
textual comments to justify their preferences. While we predominantly used
these �ndings to generate a �nal re-design of theWGSclinical report, our re-
sults identi�ed important and general principles for communicating complex
data to stakeholders. These principles are summarized as three experimental
and �ve design guidelines. All study materials are available in Appendix A.
The re-designed clinical report was publically deployed and also integrated
into the analysis pipelines of PHE and others.

A revealing insight from this research project was that there existed very little
stakeholder consensus toward the types of data and even visual representa-
tions forgenEpisurveillance tasks. These are tasks that monitor populations
for the emergence and progression of disease outbreaks. Stakeholders primar-
ily used case counts (number of infected individuals) to make assessments
for surveillance tasks and while there existed considerable enthusiasm to use
newWGStechnologies it was still not very clear how to use these new data.
By comparison the role of different data types, even genomic data, was much
more clearly de�ned for diagnostic and treatment tasks. These �ndings laid
out a clear path for future work to support surveillance tasks with multiple
heterogenous types of data.

Contributions for Chapter 3

Technical Contributions:

• A mixed methods research approach for information and visualization
design and evaluation

• Experimental and design guidelines for communicating new and com-
plex data to stakeholders

Domain Speci�c Contributions:
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• Links between data and tasks for tuberculosis applications forgenEpi

• Emphasizing areas of greatest need in genEpi

• A realized and deployed clinical report

1.3.3 Chapter 4: Adjutant

Chapter 4 presents Adjutant, a system for rapid and unsupervised topic
clustering of PubMed articles [26]. Adjutant is used within the GEViT study
(Chapter 5), but these two chapters are presented separately because they
represent two different publications.

There exist many systems for topic classi�cation of text, but I found that these
systems placed a signi�cant burden on the user to providea priori labels
for text documents in order to perform an accurate classi�cation. Document
labelling is time consuming and so I developed a rapid and unsupervised
method for automatically clustering documents. In Appendix B, I include
considerable materials that assessed Adjutant's clustering accuracy and
comparison to the widely used Latent Dirichlet Allocation (LDA). Adjutant
is available as an R package that is distributed via GitHub. In addition to
a rapid and unsupervised clustering method, I also developed an Adjutant
Graphical User Interface (GUI) that allows stakeholders to initiate queries
and explore the resulting clusters for themselves.

While Adjutant was developed to support the research presented in the
subsequent Chapter 5, this system is capable of performing analysis on any
PubMed queries.

Contributions for Chapter 4

Technical Contributions:

• A system for rapid and unsupervised topic clustering
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1.3.4 Chapter 5: GEViT

Chapters 2 and 3 demonstrate the challenges of integrating new types of data
into healthcare settings, despite enthusiasm from stakeholders to include
these data in their surveillance tasks. These challenges also introduce com-
plexity into the data visualization design process :how can we build data
visualization tools when stakeholders are also trying to understand these
data and their uses?My insight was that research communities lead the
exploration of new data and its uses, including the visualization of these data.
I wanted to leverage this collective community wisdom to speed up the data
discovery and exploration processes through data visualization.

The research presented in Chapter 5 sought to identify and classify commu-
nity strategies for data visualization by creating a method for systematically
reviewing a data visualization corpus and generating a typology to describe
and enumerate these strategies [24]. I demonstrate this method in action
through its application to thegenEpiresearch literature and the development
of aGenomicEpidemiologyVisualizationTypology (GEViT).

First I present a method to systematically survey data visualizations that can
describewhya visualization was created,how it was created, and �nally
how manyexamples there are of speci�c data visualization strategies. This
systematic review method consists of an initial literature analysis phase that
uses Adjutant (Chapter 4) to conduct an unsupervised topic clustering of
research articles. Topic clusters are used as strata within a random sampling
procedure in order to harvest �gures (data visualization) within these articles.
The topic clusters provide a sense ofwhya visualization was created and my
goal was to obtain a broad sample of visualization strategies across different
creation contexts. The literature analysis phase produces a dataset of �gures
that are supplied to the qualitative and quantitative procedures of a visual
analysis phase in order to describehowa visualization was created andhow
manyexamples there are of different visualization strategies. The qualita-
tive stage of the visualization analysis phases uses iterative axial coding
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techniques [20] to derive visualization annotations across three descriptive
axes, chart types, chart combinations, and �nally enhancements. Together,
these descriptive axes form the taxonomy of a visualization typology that
can describe and enumerate common visualization strategies. I refer to the
�nal dataset of annotated and enumerated data visualization strategies is
referred to as adomain prevalence visualization design space.

I applied this method to approximately 18,000 research articles from the
genEpiresearch literature and I developed a visualization typology called
“GEViT” through an analysis of 842 �gures (data visualizations) derived
from 221 articles sampled from 36 topics clusters. Enumerating the visual-
ization strategies also summarized the diversity of current commongenEpi
visualization practices. What I found was that stakeholders used only a
small set of visualization strategies, often just showing a single phyloge-
netic tree or a tree with an accompanying table. While there were examples
of much more sophisticated visualization designs that emerged from my
dataset, these were the exceptions as the majority were relatively simple
and consisted of poor visualization design choices that left mush of the
data encoded as text in the visualization. Interestingly, while the strategies
taken by individual research articles tended to be limited, the combinatorial
space of visual designs revealed byGEViT showed that there existed many
possibilities that the majority of stakeholders did not explore. Thus, the
whole visualization design space was useful, whereas individual examples
from a speci�c paper had variable and sometimes limited visual expression.
In Appendix C, I present additional methodological details and �gures that
support the analysis presented in this chapter.

The GEViT project is an important component of my research that linked
stakeholders' data, tasks, needs, and existing data visualization strategies.
The �ndings from this research directly in�uenced the development of three
data visualization tools presented in this thesis. Within this chapter I present
the GEViT gallery (http.//gevit.net ), which I included within the
GEViT publication. The GEViT gallery allows stakeholders to explore
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visualization designs across different creation contexts, or to browse visual
alternatives via the typology terminology. I have also annotated examples
of “good” and “missed opportunity” visualization practices to help guide
stakeholders toward better practices.

Contributions for Chapter 5

Technical Contributions:

• A method for systematically reviewing data visualizations

• A method for generating a domain prevalence visualization design
space

Domain Speci�c Contributions:

• GEViT, which classi�edgenEpidata visualization strategies according
to chart types, combinations, and enhancements

• A dataset of annotated data visualizations

• The GEViT gallery tool

1.3.5 Chapter 6: minCombinR

An analysis of the domain prevalence visualization design space generated by
the GEViT study revealed that there did not exist a single data visualization
tool that can visualize multiple data types. Furthermore, I found that there
existed few tools that allowed stakeholders to integrate various statistical
and phylogenetic analyses with the visualization of their heterogeneous
datasets. Instead, stakeholders would need to programmatically generate
data visualizations that accompanied their analysis, using R, Python, or
JavaScript, a processes that was labour intensive and complex for the chart
types, combinations, and enhancements revealed by GEViT.
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Chapter 6 presents minCombinR, a toolkit that supports a minimal speci�-
cation syntax for generating a variety of chart types and their combinations
in R. Currently, stakeholders must consider both what visualizations they
wish to generate from some data and to programmatically specify how those
visualization should be rendered by the R graphics device. The minCom-
binR toolkit uses a declarative framework that allows stakeholders to simply
describe the chart types and combinations that they would like to generate
without having to specifyhowthe resulting visualizations should be gener-
ated. A stakeholder is warned when certain visualizations are not possible
to generate and is prompted through a set of steps to help them generate a
viable data visualization speci�cation. The result is that the minCombinR
toolkit allows stakeholders to create visualization with as little as three lines
of code. The minCombinR toolkit is developed as an R package and dis-
tributed via GitHub. It is capable of integrating with analytic methods in the
R ecosystem.

In Appendix D, I present the applicability of minCombinR using various
different chart types and their combinations using datasets speci�c and
agnostic to genEpi.

Contributions for Chapter 6

Technical Contributions:

• A simpli�ed syntax and declarative framework for rendering various
chart types and chart combinations

• Chart harmonization through gradual binding

Domain Speci�c Contributions:

• minCombinR: a tool to support stakeholder's ability to more easily and
reproducibly visualize their genEpi data
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1.3.6 Chapter 7: GEViTRec

Making it easier for stakeholders to generate data visualizations that are
relevant to them is one component helping stakeholders to explore different
visualization alternatives in a visualization design space. While the GEViT
gallery tried to help stakeholders explore different visual alternatives, I
found that stakeholders still needed support to connect data to possible
visualizations. In particular, stakeholders were still overwhelmed by the
volume, novelty, and heterogeneity of new data and were not sure what data
they had available. Together with Dr. Munzner, I developed a framework for
data reconnaissance and task wrangling that describes processes stakeholders
undertake to understand complex and emerging data landscapes. Chapter 7
presents the GEViTRec algorithm that supports stakeholders through data
reconnaissance and task wrangling processes by automatically generating
data visualizations informed by the GEViT visualization design space.

The GEViTRec algorithm is the culmination of my doctoral research and
brings together the threads to environmental constraints and stakeholder
knowledge (Chapters 2 and 3), with existing data visualization strategies
(Chapter 5), and attempts to lower the burden for exploring and generating
data visualization alternatives (Chapter 6).

In the data reconnaissance and task wrangling framework, we describe four
repeated phases stakeholders undertake to explore data landscapes: acquire,
view, assess, pursue. GEViTRec is designed to support data reconnaissance
and task wrangling by helping stakeholders generate a quick, low effort, view
of their data. While there exist data visualisation recommendation systems,
for example Tableau's ShowMe [69], the Voyager Systems [128, 129], and
Draco [76], these systems all require that the user provide some initial speci-
�cations for the visual encoding before the systems recommend alternative
data visualizations. Building on the collective community knowledge sum-
marized in GEViT, the GEViTRec algorithm bypasses the need for any user
input beyond the datasets she wishes to visualize. Moreover, currently exist-

21



ing visualization recommendation systems present just a single chart type,
whereas GEViTRec builds chart combinations to reveal multiple aspects of
these data through shared data linkages.

The underlying GEViTRec recommendation algorithm is intended to general-
ize to other applications, even though here I only demonstrate its applicability
genEpidata. This algorithm is designed to integrate different data types and
extends existing systems by supporting both tabular and non-tabular data.
To automatically generate visualization speci�cations, the algorithm uses the
previously described domain prevalence visualization design space to rank
visualizations according to their relevance to the stakeholder. The use of
such a design space also injects an awareness of domain-speci�c conventions
into the algorithmic recommendation procedure.

Contributions for Chapter 7

Technical Contributions:

• An algorithm for automated domain-aware visualization recommenda-
tion

• Recommendation beyond tabular data and singular charts with minimal
user input

• Relevance as novel and computable metric for ranking visual encodings

Domain Speci�c Contributions:

• GEViTRec: automatic visualization recommendation for genEpi
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1.3.7 Summary of Contributions

Taken together with the methods and contributions of these research chapters
demonstrate how the different sources of knowledge can contribute to a data
visualization design and evaluation processes. Collectively, this knowledge
is represented in different forms, as text from interviews or research articles,
as binary choices of preference, as ranks, as discrete numerical counts,
through typologies, and �nally as visualization design spaces. Through my
research projects I have drawn upon these different sources of knowledge
to understand the present needs and limitations of stakeholders,explore
and characterize visualization strategies, and to use this knowledge to
design and implementtools that address the unmet needs of stakeholders.
These contributions extend current data visualization practice in genomic
epidemiology and work toward the improved integration of data visualization
with analysis. The research approach that I have taken and its resulting
technical and domain speci�c contributions are novel in the way that methods
and techniques from multiple different disciplines are used to create and
integrate new sources of knowledge. Although the work that I present here is
limited to an application context within the genomic epidemiology domain,
this research approach, and especially its technical contributions, can serve
to inform visualization research more broadly.
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Chapter 2

On Regulatory and

Organizational Constraints

in Visualization Design and

Evaluation
Privacy is not something that I'm merely entitled to, its an absolute

prerequisite. — Marlon Brando

1 Problem–based visualization research provides explicit guidance toward
identifying and designing for the needs of users, but absent is more concrete
guidance toward factors external to a user's needs that also have implications
for visualization design and evaluation. This lack of more explicit guidance
can leave visualization researchers and practitioners vulnerable to unforeseen
constraints beyond the user's needs that can affect the validity of evaluations,
or even lead to the premature termination of a project. Here we explore
two types of external constraints in depth, regulatory and organizational
constraints, and describe how these constraints impact visualization design
and evaluation. By borrowing from techniques in software development,

1This chapter has been previously published [23]:
A. Crisan, J. L. Gardy, and T. Munzner. On regulatory and organizational constraints in visualization
design and evaluation. Proc. Workshop Beyond Time and Errors: Novel Evaluation Methods for
Visualization, 1:19, 2016.doi:10.1145/2993901.2993911
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project management, and visualization research we recommend strategies
for identifying, mitigating,andevaluating these external constraints through
a design study methodology. Finally, we present an application of those
recommendations in a healthcare case study. We argue that by explicitly
incorporating external constraints into visualization design and evaluation,
researchers and practitioners can improve the utility and validity of their
visualization solution and improve the likelihood of successful collaborations
with industries where external constraints are more present.

2.1 Introduction

Simon's parable ofThe Ant on the Beachasks readers to consider the trajec-
tory of an ant as it walks along a beach: “Viewed as a geometric �gure, the
ant's path is irregular, complex, hard to describe. But its complexity is really
a complexity in the surface of the beach, not a complexity in the ant” [110].
The parable highlights the importance of describing both the agent of action
and the broader environment that acts upon that agent [118]. In problem–
based visualization research and other user-centred methodologies, that agent
is the user. While a focus on the user does not exclude consideration of
her broader environment, little of the visualization research literature has
been dedicated to precisely understanding how factors external to a user's
needs affect design and evaluation [62]. External factors can constrain the
scope of the design space because, irrespective of user preferences, some
solutions can never be implemented in their contextual environments. If
researchers are unaware of these external factors from the project outset, they
may develop and evaluate a visualization solution that cannot be used. For
example, the authors of WeaVER, a tool that visualizes ensemble weather
data, identi�ed obstacles to data access, barriers of installing their visualiza-
tion tool on locked–down workstations, and dif�culty obtaining raw data as
factors affecting their ability evaluate the tool's design [93]. The discussion
of external factors is not absent from the visualization research, but there

25



does not exist more explicit guidelines toward incorporating factors from a
user's contextual environment into visualization design and evaluation.

In this chapter I propose that these external factors should be modelled as
constraints [118] that must be incorporated into visual and interaction de-
sign choices so as to yield relevant evaluations. I suggest strategies that visu-
alization researchers can use to identify these constraints and provide recom-
mendations for how constraints can be evaluated throughout a project's life
cycle. I also demonstrate how these suggested strategies can be practically
applied by presenting a case study in a healthcare environment, where ex-
ternal constraints can present many challenges for visualization researchers.
Finally, I layout how these constraints impact data visualization design and
analysis and moreover underlay the motivations for research I present the
subsequent chapters.

2.2 De�ning External Constraints

We have de�nedexternal constraintsas any factor affecting visualization
design and evaluation that is separate from the user's problem or needs
and that are drawn from the user's contextual environment. In this section,
we further separate these external constraints into two broad categories
– regulatory and organizational constraints. In the context of this paper,
we limit the de�nition of regulatory and organizational constraints to data
access and the use of data for research purposes, because data is central to
visualization research.

Regulatory constraints refer to legal requirements governing the collection,
storage, and use of data. In contrast,organizational constraints are poli-
cies and practices that are not necessarily encoded in law and that can vary
across different institutions and across communities. Examples of organiza-
tional constraints can include policies around the protection of trade secrets,
protectionist tendencies toward data, availability of �nancial resources, or
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institutional support for visualization projects [18, 102]. Importantly, organi-
zational constraints encompass both theinterpretationand theenforcement
of regulatory constraints. Differences of interpretation mean that different
institutions can have different data access and use policies, some being more
restrictive than others, while still conforming to the law. Although these con-
straints are real, they should not discourage visualization researchers from
collaborating with industries where regulatory and organizational constraints
are present. By being aware of these constraints throughout the project's
life cycle and explicitly incorporating them into visualization evaluation,
researchers can enjoy fruitful collaborations, even within highly regulated
industries.

2.2.1 Implications for Evaluation

Regulatory and organizational constraints have implications for design
choices, often by restricting functionality and research processes (Sec-
tion 2.2.3 and 2.2.2).

As result, these external constraints provide additional parameters that need
to be considered during evaluation or can de�ne how evaluation should take
place.

For example, an additional parameter that needs to be evaluated is whether
the visualization solution can be accessed by users, either by being installed
on their work station or through web access, or whether IT constraints prevent
local installations or uploading data to a web–based interactive platform.
Such considerations can be missed when evaluating solely user's needs, as
users themselves may not be fully aware of these constraints, or users may
be inappropriately using their personal laptops for sensitive data and may
not communicate they may be in violation of regulatory or organizational
constraints.

There are different consequences for failing to account for these constraints.
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Failure to account for organizational constraints typically affects the validity
of evaluations, whereas failure to account for regulatory constraints may have
legal repercussions for a researcher and also the user.For example, ignored
organizational constraints may result in project delays or termination, or a
lack of adoption of the proposed solution. However, researchers who fail to
account for regulatory constraints are in violation of the law and could be
subject to more severe penalties that involve the legal and judicial systems.

It is thus necessary to evaluate that a project is in compliance with these
external constraints throughout the project's life cycle.

2.2.2 Example: Hypothesis Generation Considered Harmful

One of the common arguments for the use of visualization is to facilitate
new insights [81]; that is, to generate new, testable hypotheses from data.

However, in some highly regulated industries such as healthcare, �nance,
or the government, the ethics of exploring or mining data to generate new
hypotheses is often controversial and is sometimes considered inappropriate
or even illegal – especially for data pertaining to individual people [96].

Both regulatory and organizational constraints in�uence exploratory analysis
and hypothesis generation.

For example, organizations that routinely mine their users' data may have
internal policies limiting who can mine this data, at what level of resolution
(individual-level or aggregate), what can be reported and to whom, and what
data may be unacceptable to use (for example, data from minors).

In highly regulated industries, legal boundaries also affect hypothesis–
generating research. For example, personal data in Europe is subject to the
recently adopted General Data Protection Regulation (EU 2016/679), which
provides a framework governing multiple aspects of data use, including
notice of collection, speci�ed-purpose usage, consent, security, disclosure,
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access, and accountability. Failing to adhere to the regulations can cost
organizations �nes of up toe 1,000,000.

Visualization researchers who are new to highly-regulated environments
might want to launch a visualization collaboration to speci�cally support
hypothesis generation, yet might not be aware of the organizational or
regulatory constraints that apply to their data that may preclude a successful
outcome. Even researchers who have successful past collaborations with
industrial partners with strict organizational constraints about the necessity
of keeping proprietary data from leaking to the outside world may not realize
the restrictions entailed by these kinds of regulatory constraints for any
unauthorized data use whatsoever, even internally.

2.2.3 Example: Agile Development Considered Harmful

Many visualization researchers advocate agile and iterative methods for
visualization design and evaluation, but these approaches are often at odds
with the rigid information technology infrastructure typically in place in
institutions like hospitals, banks, or government agencies [36]. Moreover,
concerns about the dangers of uncontrolled data exploration are frequently so
central that they even extend to the realm of software development methods
for tools to manipulate that data. Many organizations in highly–regulated
industries remain �rm in their use of waterfall software development models,
despite their known problems and inef�ciencies, rather than adopting more
agile options [63] [38].

2.3 Prior Work

The central prior work appears both within the visualization literature and in
other domains. In this section, we appraise the extent to which prior work
has equipped visualization researchers to identify, incorporate, and evaluate
external constraints.
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Figure 2.1: Summary of our proposed additions to the Design Study Methodol-
ogy [103]: changes to the cast stage, a new propose stage, the generation of the
starred artifacts, and identifying two of the many possible checkback cycles as
required rather than optional.

2.3.1 Visualization Methodologies

The visualization research literature sets forth a number of models and
methods to approach problem–driven design and evaluation projects [74].
These include contributions from our own group – the Nested Model (NM)
for Design and Validation [78], the follow-on Nested Blocks and Guidelines
Model (NBGM) [73, 74], and a Design Study Methodology (DSM) [103] –
and others, including Multi-dimensional In-depth Long-term Case studies
(MILCs) [108] and the Human-Centered Design Cycle [66]. A central
tenet of problem–driven research has been an emphasis on the needs of
the target users and evaluating visualization design choices with respect to
those needs. The “domain problem” of the NM or the “domain situation”
of the NBGM, and also more recent work by Winters [126] to further
characterize domain situations via the NBGM through a new conceptual
framework,couldbe interpreted to include external constraints, but guidance
is primarily offered toward identifying and evaluating user needs. Similarly,
the DSM and MILC approaches acknowledge the importance of considering
the broader context in which visualization tools are deployed, but we argue
they do do not suf�ciently address external constraints. A small number of
design studies and commentaries of design and evaluation methodologies
have considered external constraints within the context of visualization
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research. A study of large automotive companies warned of obstacles that
are separate of “technical challenges but [include] political or organizational
requirements” [102]. The authors suggested conducting pre-design studies
to understand these factors in order to identify a feasible project path – a
sentiment that was shared in a position paper on pre-design empiricism [12].
Both Brehmer [12] and Sedlmair [102] advocate for a variety of evaluation
techniques at different design stages, with the thrust of their discussion
focusing on a common agile motto “test early, test often”. Another study
by Lam [62] uses ascenario basedapproach to evaluating visualization
solutions that includes understanding environment and workplace practices,
which they and others note is understudied in visualization research. Aside
from identifying these evaluation scenarios through a literature review of
visualization research, Lamet. al[62] do not provide more detailed guidance
towards the the types of external constraints or how they may be identi�ed
and evaluated. The lack of explicit guidance toward evaluating visualization
design with respect to external constraints means that individual researchers
must devise strategies on anad hocbasis, which some researchers may be
more successful at than others.

2.3.2 External Disciplines

The design and evaluation of a system in the context of regulatory and
organizational constraints is not unique to the domain of visualization re-
search or practice. Some of the techniques used in visualization design
studies are drawn from the larger set used in agile software development
and related project management practices. For many visualization research
projects, applying the complete set of agile methodologies and practices may
be inappropriate – they do not capture some of the unique nuances of the
visualization discipline and the agile framework can be too comprehensive
and prescriptive for smaller, informal projects. However, for large, formal
collaborations in industries where the external constraints are much more
pronounced, certain agile techniques from the software development liter-
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ature can be useful. In Section 2.4.3, we discuss speci�c techniques from
the broader domain of agile software development that may be applicable
toward design and evaluation of external constraints for highly–regulated
environments.

Cognitive Work Analysis (CWA) is another broad framework frequently
deployed in developing technologies for the workplace, especially where
regulations or safety are paramount considerations [118]. Its roots lie in
systems thinking and ecological psychology, and it takes the most holistic
view of a user and their contextual environment. A subset of CWA methods
are frequently harnessed for visualization design and evaluation, particularly
for task analysis. Importantly, CWA advocates undertaking a “work domain
analysis” to understand a user's context because “it imposes constraints on
the actions of the actors” [118]. Collectively, the agile and CWA litera-
tures offer a number of strategies for identifying and mitigating external
constraints, but these strategies will be most useful only when appropriately
contextualized for the visualization research domain.

2.4 Guidelines for Evaluating External Constraints

We argue that the best way to mitigate external constraints is to proactively
seek to identify them as early as possible, and to follow up by assess-
ing whether they have been met as part offormative evaluationefforts
throughout the project's life cycle. We use the Design Study Methodology
(DSM) [103] as a scaffold to provide speci�c recommendations to visual-
ization researchers. We propose additional stakeholder roles within the cast
stage and explicit communication strategies with them. We advocate the
creation of several artifacts at many points, including at a new stage where
a formal proposal is generated as part of a formative evaluation to assess
project feasibility. These artifacts serve as checkbacks to speci�c previous
stages, in contrast to the original DSM that simply encourages researchers
to return to any prior stage of the framework as needs are noticed. We also
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Figure 2.2: Power Interest Matrix for identifying detailed roles during the cast phase.
Stakeholders are categorized into core and non-core groups according to their
interest in project outcomes, and also as having low or high power. The speci�c
roles identi�ed in Section 2.5 are included here as a concrete example.

argue for speci�c methods including a staged design process with generation
of synthetic data as a stepping stone for access to the real data. Figure 2.1
presents a summary of these recommendations.

2.4.1 De�ning Stakeholder Roles

The cast stage of the DSM pre-condition phase recommends that collabo-
rators be cast as acting in one or more of several possible speci�c roles to
help researchers identify the ways that relevant stakeholders might become
involved in a project: front-line analyst, gatekeeper, translator, connector, or
fellow tool-builder.

Recommendation 1: Classify stakeholders according to power over and
interest in project outcomes.We argue that this classi�cation should be
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extended to further improve stakeholder identi�cation and management:
these roles should be further strati�ed according to the amount of power
over and interest in the project outcomes for each stakeholder. Using a
power-interest grid can help identify stakeholders – particularly gatekeepers
– that may not be immediately obvious; for example, individuals who are not
directly involved in a project but who can affect the project through their
role in assuring compliance with regulatory or organizational constraints.
Stakeholders that have high interest in a project's outcomes, whether low-
or high-power, typically form a core group with whom researchers closely
collaborate; these core stakeholders will be actively involved in visualization
design and evaluation (both formative and summative) and they also supply
the motivation and needs for a visualization solution. Indeed, a visualization
project may be initiated through these high-interest stakeholders.

Here, we do not prescribe a speci�c type of formative evaluation methodol-
ogy, but note that much of the evaluation studies proposed in visualization
research, including interviews, questionnaires, think-out-loud, and labora-
tory experiments, are targeted toward these core stakeholders. Non-core
stakeholders are those with whom researchers do not collaborate directly and
who are thus classi�ed as low-interest. Often, stakeholders with high power,
but low interest in project outcomes are those that must be consulted with in
order to access data and get approval to conduct the research; the DSM clas-
si�es these stakeholders as Gatekeepers. Gatekeepers can be individuals that
oversee the appropriate access and use of data, both at the outset and through-
out a project, or an institutional review board that provides initial approval
for data access and use. While this quadrant of high–power, low–interest
stakeholders are unlikely to participate in visualization design processes,
individual gatekeepers (but not entire review boards) should be included in
at leastguideline checking formative evaluations [3], to con�rm compliance
with regulatory and organizational constraints. Finally, there are stakeholders
with low interest and low power in visualization project outcomes. These
individuals may have an intellectual interest in project outcomes, such as

34



other researchers building analytical tools; while these individuals will not
take part in either design or evaluation they may form useful allies in the
institution and inform researchers about external constraints.

Recommendation 2: Actively manage communication with stakeholders.
While DSM does indicate that poor rapport can be a potential pitfall to
a project's success (PF-9) [103], it does not provide explicit guidance to-
wards managing communication with stakeholders. Ineffectively managing
stakeholder communications can impact the discovery of regulatory or orga-
nizational constraints, which in turn impacts the validity of evaluations and
could even lead to premature termination of the project. Good communica-
tion with stakeholders is also critical for carrying out formative evaluations
with core stakeholders and guideline checking evaluations with gatekeepers
of prototypes developed through the staged design process (Section 2.4.3).

We recommend using the power–interest grid of Recommendation 1 as the
framework for managing stakeholder communications. For core stakehold-
ers, communication can be informal and will be more frequent than with
non-core stakeholders. For non-core stakeholders with high power over a
project's outcomes, we recommend more formal communication. Some in-
stitutions will already have polices in place for communication templates and
the timeliness of those communications, but when such guidelines are not
available, we recommend a formal, plain-language brief that is distributed
to these stakeholders. These briefs may be more frequent at the beginning
of the project, especially if there is uncertainty around the nature of agile
development methods and the design study framework, and may become less
frequent over time. Communication briefs should emphasize the �ndings
of evaluations carried out during the design process. Effective communica-
tion with stakeholders can have the added bene�t of improving institutional
awareness of visualization research, which may make future projects easier
to conduct.
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2.4.2 Generation of Additional Artifacts

Conducting pre-design studies [103] [12] to assess a project's feasibility
and to identify regulatory and organizational constraints is important. In
its original form, the DSM recommends going directly from the cast stage
to the discover stage of the core phase, but we argue that this transition
is premature and recommend an explicit propose stage between the two.
This new propose stage entails creating additional project artifacts that help
to guide formative evaluations of user needs, in addition to identifying
regulatory and organizational constraints. These artifacts are in addition to
the task and data abstractions and the prototypes that already form part of
the DSM's core phase.

Recommendation 3: Create a formal proposal document.The most im-
portant of these artifacts is a project proposal that summarizes the evidence
gathered in the pre-design studies and consultation with high–power stake-
holders into a single document. This proposal document should be assessed
by both researchers, core stakeholders, and Gatekeepers, before proceeding
to the core phase of the DSM.

Throughout various stages of formative evaluation during the design pro-
cess, this document can serve as the basis for the guideline checking that
will be carried out with Gatekeepers [3]. Institutions may have speci�ed
proposal templates but if a proposal template does not exist, we recommend
communicating –at minimum – the project's scope, including user needs,
known external constraints, data requirements and uses, who is involved
and what they will be doing, and a brief description of the design process
and evaluation procedures. This proposal will typically be re�ned through
a process of discussion with stakeholders.Although the DSM encourages
researchers to backtrack to any of the proceeding steps without requiring any
checkback loop explicitly, our extension proposes that the completion of the
�nal proposal document should trigger arequiredrevisition of the winnow
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stage, as shown by arrow 1 in Figure 2.1. The goal is to evaluate whether the
project can be completed in a timely manner and is mutually bene�cial to
stakeholders and researchers.

Recommendation 4: Create a summary document at the end of a project.
At the end of the project we recommend creating a summary document that
expresses – in plain language – the ways in which the project addressed
a relevant domain problem in light of external constraints. The project
conclusion document is meant to complement the initial project proposal by
highlighting the resulting mutual bene�ts of the project for both researchers
and stakeholders. A research paper describing the project outcomes in terms
suitable for an academic audience of other researchers who grapple with
visualization design and evaluation issues is not a suitable stand–in for
this document, which is aimed at a very different audience with different
concerns. In some cases, the process of abstraction that was undertaken by
the visualization researcher needs to be inverted so that the solution can be
described in domain-speci�c terms in a way that makes sense to the intended
audience. However, this conclusion document can be helpful for educating
stakeholders on the processes and relevance of visualization research [66],
especially if the document emphasizes how the results of various evaluation
studies are in line with individual stakeholder needs and also institutional
policies. It has the potential of laying out important groundwork so that
future visualization research projects are easier to conduct.

2.4.3 Methods

Once researchers and stakeholders have an understanding of users needs as
well as external constraints, both should be integrated into the visualization
design and evaluation process.

Recommendation 5: Use a staged design process.The staged design

37



model [71] proposes incremental prototype development through a series of
stages, making it possible to progressively gain access to users and resources
that may not be accessible at a project's outset and to accommodate changes
in the stakeholders' context and environment that arise over a project's life
cycle.Each stage consists of requirements–gathering and prototype develop-
ment to produce a minimum viable product with progressively improving
�delity. The model should conclude with a formal evaluation that speci�cally
demonstrates whether the tool and development process is in compliance
with regulatory and organizational constraints, in addition to meeting stake-
holder needs.

At the end of each design stage, we highly recommend that researchers
and collaborators explicitly evaluate together whether or not it is feasible to
proceed to the next stage of development, as shown by arrow 2 in Figure 2.1.
By proactively checking on feasibility in this way, initially unforeseen con-
straints that arise later in the project are surfaced as early as possible, to
minimize later adverse impact on researchers such as a loss of access to data
or people. Using a staged design process also allows researchers to plan and
prioritize minimal viable products, some of which may be valid visualization
research contributions in themselves – even if a project is terminated ahead
of the originally planned schedule.

Recommendation 6: Use synthetic data early on if real data is not im-
mediately available.As discussed in Section 2.2.2, some industries have
concerns around hypothesis-generating research related to both the agile
design process and the types of insights that can and should be drawn from
data.

Stakeholders in these industries maywant visualization tools to support
hypothesis generation of individual level data, but nevertheless may wish
to impose limits on the types of uncontrolled exploration a user can con-
duct [96]. At a project's outset, it may not be clear yet how to operationalize
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such limits, which puts researchers and stakeholders in the dif�cult position
of potentially violating regulatory constraints. These constraints can make
collaborators wary of sharing real data at a project's outset, thus impeding
the launch of a potential collaboration with visualization researchers. One
way to overcome this constraint is to use synthetic data in early design stages
and gradually earn the trust necessary to gain access to real data in later
stages. Synthetic data is never a perfect substitute for real data because it
lacks nuances that may be of interest of stakeholders; consequently, the use
of synthetic data affects the validity of evaluations of a prototype's utility.
For example, synthetic data is often very clean, avoiding the problems of
missing or erroneously entered data that are often present in real data; while
such noise can be simulated, the scope of possible errors may be dif�cult to
fully understand and incorporate in synthetic data generation. The nuances
of supporting users in handling dirty data might therefore be absent from a
design process and evaluation process where only clean data is used. In spite
of these limitations, synthetic data can nevertheless an effective means to
demonstrate a tool's functionality and to allow researchers and stakeholders
to have concrete discussions about what aspects of functionality should be
limited.

By graduating from synthetic to real data and modifying the rigor of evalua-
tions over time, what may be lost in initial evaluation validity can be gained
in collaborators' trust. Starting with synthetic data can be a viable alternative
to giving up on the project during early stages due to initial regulatory and
organizational constraints.

2.5 Case Study: Healthcare

In this section we provide a concrete example of how to interpret our rec-
ommendations through a case study in healthcare, in an approach similar to
Winterset al [126]. Case studies provide an opportunity to dive deep into a
speci�c domains to provide insights into a phenomenon that may be trans-
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ferrable to other domains [37], and their bene�ts for visualization research
has been argued by Shneiderman and Plaisant in their ethnographically
informed proposal for multi-dimensional in-depth long-term case studies
(MILCs) [108].

Healthcare systems comprise two disciplines – clinical medicine and public
health – that must work together to improve the health of both individuals
and populations. Public health focuses on prevention and control activities,
while clinical medicine focuses on diagnosis and treatment [51]. While
clinical medicine tends to be the domain of specialist health care providers
such as clinicians, nurses, and pharmacists, public health professionals are
more diverse. In addition to the aforementioned providers, their roles include,
but are not limited to, epidemiologists, statisticians, researchers, politicians,
and other community leaders.

In some cases these two disciplines can operate nearly independently of
one another, but in others they must work more closely together to deliver
patient care. The world of communicable disease prevention and control
is an example of the latter, where disciplines must share knowledge and
make decisions together – clinicians guide the management of individual
patients with a disease, while public health authorities manage the disease at
a population level. Although they must work together, the different traditions
informing public health and clinical medicine mean that there is often a
knowledge translation gap, where the knowledge and data generated by each
discipline is siloed, ultimately affecting the ability of these disciplines to
work together [131].

Visualization tools can help stakeholders in public health and clinical
medicine to more readily share knowledge and insights that support decision
making at patient and population levels. But in order to be most effective,
visualization researchers need to operate within the bounds of the signi�cant
regulatory constraints that apply to healthcare and healthcare data, as well as
the organizational constraints in healthcare, which can differ between public
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health and clinical medicine.

2.5.1 Constraints in Healthcare

Regulatory Constraints. The law distinguishes between primary and sec-
ondary use of health data [98]. Primary uses of health data are those as-
sociated with the direct and immediate care of a patient, while secondary
uses are all other uses that do not directly contribute to a patient's care.
This category includes all research using health data. While the law does
not prevent the secondary use of health data, it does place restrictions on
such usage that are meant to balance an individual's right to privacy and
con�dentiality while simultaneously stimulating progress in public health
and clinical medicine. Oversight and implementation of these regulatory
constraints is not consistent across different institutions [98].

Organizational Constraints. It is recognized that the secondary use of
health data is a ubiquitous and necessary practice, but data access models vary
considerably and are not transparent, which affects research productivity [98].
Many institutions are wary of uncontrolled secondary use of data [96], in
which any researcher can explore any manner of hypothesis in a dataset
without clear bene�t to the patient. While exploratory hypothesis-generating
research is important, it is a hotly debated as a practice because it is ultimately
the patient, and not the researcher, that bears the full burden of accidental
data disclosure.

Researchers who request access to health data are often required to have a
well-formed hypothesis at the project outset, in addition to outlining their
analytical methods. As was discussed in Section 2.2.2, these restrictions
on hypothesis-generating research affect not only the functionality of data
visualization tools, but also the application of agile-like methods for devel-
oping them. Aside from organizational practices that enforce regulatory
constraints, there also exist hierarchical and political structures that can
result in protectionist tendencies toward data. These protectionist tendencies
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can arise because a particular individual is responsible for stewarding the
appropriate use and interpretation of health data, or because researchers are
hesitant to share data that was costly and time-consuming to obtain.

2.5.2 Lessons Learned in Developing a TB Decision Support Tool

Our proposals for integrating constraints into the visualization design and
evaluation grew out of a speci�c project in a highly-regulated healthcare
domain.

Application: Tuberculosis Prevention and Control. Of the many commu-
nicable diseases managed by a public health agency, tuberculosis (TB) is
one of the most interesting. It has a long history of infecting humans, with
TB found in the remains of mummies and tales of “consumption” a popular
theme within popular culture [29]. Despite this long history, medicine has not
yet succeeded in eliminating TB. In 2012 alone, there were 8.6 million new
cases of symptomatic TB and 1.3 million deaths worldwide, and as much as
1/3 of the world's population is thought to be infected with a latent, asymp-
tomatic form of the disease [132]. New strategies to manage existing cases
and prevent future ones are clearly needed. Opportunities for designing and
delivering new interventions to combat TB are available through exploring
and mining patient-level data in electronic health records, population-level
data in disease registries, and even molecular data describing pathogenic
microbes rather than human individuals.

Collaboration Context. We report and re�ect upon a collaboration with
stakeholders involved in TB prevention and control at the British Columbia
Center for Disease Control (BCCDC). Our goal was to build a decision sup-
port tool to facilitate our users' routine work�ows and to allow exploratory
analysis in support of new intervention development. We did not set out to
construct a fail–safe healthcare application; rather, we set out to collabo-
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ratively explore how visualization of our stakeholders' data could support
decision making. At the start of our collaboration, armed solely with ex-
isting visualization design guidelines, we were often reacting to previously
unknown regulatory and organizational constraints rather than proactively
mitigating them – and at one point faced the risk that the project would not
move forward.

At the outset of our collaboration, we engaged with a small group of stake-
holders at the BCCDC that consisted of clinicians, nurses, epidemiologists,
and researchers. This group had worked together extensively in the past,
and had a history of productive prior research collaborations. We engaged
in discussions with them about a project that explored the utility of data
visualization to provide multiple perspectives on the spread of TB through
the province of British Columbia over time. The insights this group of
stakeholders would gain from the tool would help inform future policies
and practices in TB prevention and control. Our discussions around the
project and its objectives were informal, and the data we had intended to
use for tool development had received prior approval for research use. With
a promising collaboration on our hands, we began to engage in discussion
with these stakeholders about the data types in use at BCCDC and the
ways our stakeholders used these data for both routine and high-level policy
decision-making.

Discovering Lurking Constraints. While we were focused on assessing
our stakeholders' needs and their primary research question, we confronted
the �rst regulatory and organizational constraints that would temporarily
suspend our project's progress. Over the course of our project, the BCCDC
had changed the way it gathers Public Health data, and how use of this
data for research was to be governed. Not only were data approval polices
changing, but so too were the individuals responsible for the approvals
(referred to internally as data stewards). As part of taking on their mandate,
the new TB data steward took stock of current research projects, and �agged
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our visualization project for re-assessment. His concern was that the project
did not clearly outline how it may be directly bene�cial to patients and so
had the potential to be deemed unethical. Although an ethics committee had
reviewed and approved the use of our data for secondary purposes, the new
data steward indicated that we needed to provide a more detailed justi�cation
for our speci�c project before we could continue.

Identifying Additional Gatekeepers. Neither we nor our collaborators had
anticipated this intervention by the data steward. As we began to gather infor-
mation about the necessary next steps to take in order to continue our project,
we sought to understand other aspects of the organizational structure and
identify other gatekeepers that might further impede our project's progress.
We took on the exercise of creating a power-interest grid (Recommendation
1) and over time we strati�ed our TB stakeholder group as follows:

• High Interest, High Power Front-line Analysts (TB clinicians and
nurses): Data for individual patients was primarily collected and con-
trolled by and accessed through clinicians and nurses. With a strong
interest in using data to develop new policy and practice, these individ-
uals formed part of our core stakeholder group.

• Low Interest, High Power Gatekeepers (Departmental Medical
Leads, Laboratory Leads, Privacy Of�cers, and Operations Man-
agers):Both medical and laboratory leads must sign off on data usage,
though they may not be directly involved in TB control or invested
in our project outcomes. Privacy of�cers and operations managers
also enforce regulatory processes. One particularly powerful, but
dif�cult to reach, stakeholder was the organization's IT department, as
they controlled the users' workstations and permissions for software
installation. These individuals did not form part of our core stakeholder
group.

• High Interest, Low Power Front-line Analysts and Connectors (TB
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epidemiologists and researchers): In our study, researchers had control
over the use of the pathogen-level molecular data they had generated
and epidemologists could advise us on the use of patient-level case
data, but neither class of stakeholder had the authority to sign off on
data usage beyond the molecular data. Still, as integral parts of the TB
control team, they were interested in our project outcomes, and were
part of our core stakeholder group.

• Low Interest, Low Power Fellow Tool Developers (Non-TB analysts):
Other groups around the BCCDC were interested in visual analytic
tools for their own applications outside of TB, but were outside of our
core stakeholder group.

We established a rough communication plan (Recommendation 2) to engage
with these stakeholders in order to proactively identify important constraints
moving forward. Often our communications were one-on-one discussions,
but when availability afforded it, we conducted large group meetings with
both core and non–core stakeholders.

Finding Constraint Impact on Functionality. As we identi�ed different
stakeholders, we learned of more organizational constraints that would
affect the functionality of the decision support tool we intended to build.
We learned that our tool should not support what might, at �rst glance,
seem to be obviously useful data wrangling functionality such as merging
multiple datasets, correcting data errors, or entering missing data. There
were institutional policies in place that governed how and by whom multiple
datasets could be merged because of concerns around privacy – as more
datasets are linked together, there is a higher likelihood of potentially re-
identifying patients. Furthermore, institutional procedures were also in place
to correct errors or handle missing data in a systematic way, and again were
carried out only by select individuals.

Given the constraints that precluded data wrangling, we recognized that our
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tool would function best as a data viewer that could alert core stakeholders
to missing or incorrect data but not permit them to change the underlying
dataset. Furthermore, our tool needed to �exibly handle whatever data and
data types different core-stakeholders were permitted to access, ranging
from clinicians and nurses allowed to access individual patient data, to
generalist users who should only be shown aggregate data. These additional
requirements affected functional requirements and served to constrain our
design space.

Finding Constraint Impact on Real Data Access. Some stakeholders
unfamiliar with the design process considered it odd that we had not already
established the visual and interaction design choices for our decision support
tool. They also found it unusual that we intended to conduct a research
project to �gure out what those design choices should be. Thus, our research
was initially perceived by some as an uncontrolled use of secondary data
(Section 2.2.2), and several Gatekeepers were unwilling to allow us to use
real data at the outset. We thus considered at length how to develop a strategy
that would gain these users' trust in our research methods.

Finding Constraint Impact on Tool Integration. Through several stake-
holders, we also learned about the impact of the information technology (IT)
group's policy that workstation environments should be locked down. A
lengthy approval process was required to install new software or host custom
web applications on institutional servers. Accessing web applications for
data analysis was also prohibited because data could not leave institutional
servers. Part of the reason for these constraints is that the IT group man-
ages workstations in many healthcare settings, including not only research
workstations but also those used in clinical care, resulting in very restrictive
workstation policies.

One tool that could be used in the existing constrained environment – and
indeed was widely used by BCCDC epidemiologists – was R. Although
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the version of R available on workstations was outdated and could only be
updated by IT, we knew there were plans to update it, and decided that a R–
based tool would be a viable implementation solution that �t into BCCDC's
existing organizational infrastructure.

Changing Strategies for Emerging Constraints. The identi�cation of
these constraints and our assessment of their impacts on our decision sup-
port tool's functionality, utility, and stakeholder adoption allowed us to
reformulate our project's trajectory. We prepared a project proposal for our
core-stakeholders and gatekeepers that outlined clearer objectives for our
tool in light of the various regulatory and organizational constraints we iden-
ti�ed ( Recommendation 3). Importantly, we also indicated how stakeholders
would be involved in evaluating our compliance with these constraints.

Building Trust Through Staged Design.We planned for a staged design
process based upon different datasets (Recommendation 5).

The �rst stage of design would use only data available in routinely collected
administrative datasets, while later stages would combine this data with
laboratory and contact network (who was exposed to an infectious individual)
datasets. In this way, we would produce minimum viable products for the
most commonly used dataset �rst, and less commonly used datasets later.
Although we could not use the real data, we had access to the structure
and aggregate statistics of the real datasets because they were made public
through BCCDC's annual reports. As much as we were able to, we based our
synthetic datasets off of the real data (Recommendation 6). We hypothesized
that if stakeholders were enthusiastic about how the decision support tool
could visualize their most commonly used dataset, albeit as demonstrated by
synthetic data, that this demonstration may encourage them to move toward
using the tool with real data.

We conducted focus groups and developed paper prototypes during the �rst
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design stage to gather user requirements and marry those to known regulatory
and organizational constraints. The inability to install our tool on stakeholder
workstations led us to rely on chauffeured demos [66], using a workstation
with a more current version of R, to conduct evaluations at the conclusion of
the design stage. We gathered qualitative evaluations of the tool's perceived
utility and the validity of our design choices. To evaluate compliance with
regulatory and organizational constraints, we worked closely with BCCDC's
privacy of�cer (Guideline checking evaluations).

Although not rigorous, our evaluation gave stakeholders an opportunity to
see what a decision support tool that visualizes TB data could do and how
it could help them. Furthermore, instead of discussing abstract notions of
how this tool may or may not be bene�cial to patients in the long term, we
could engage in more concrete discussion with stakeholders – especially
Gatekeepers – about what functionality was appropriate and what was not.
We summarized the design and evaluation progress, highlights, and outcomes
of our collaboration at a larger group meeting following the conclusion of
the �rst design stage. We emphasized how a visualization tool could respon-
sibly incorporate regulatory and organizational constraints that are meant to
safeguard patient data, and demonstrated this capacity by emphasizing the
results of formative evaluations that various stakeholders had participated
in. The success of this initial stage has initiated concrete discussion by
both core–stakeholders and gatekeepers toward evaluating the tool using
real data. Thus, what could have been a failed start due to unforeseen initial
constraints has evolved into a viable project with organizational support for
its continuation.
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Chapter 3

Evidence Based Design:
Applying a Design Study Methodology to the Redesign of a
Whole Genome Sequencing Clinical Report

Design is not just what it looks like and feels like. Design is how it works
— Steve Jobs

1 Microbial genome sequencing is now being routinely used in many clinical
and public health laboratories. Understanding how to report complex ge-
nomic test results to stakeholders who may have varying familiarity with ge-
nomics including clinicians, laboratorians, epidemiologists, and researchers
is critical to the successful and sustainable implementation of this new tech-
nology; however, there are no evidence-based guidelines for designing such
a report in the pathogen genomics domain. Here, we describe an iterative,
human-centered approach to creating a report template for communicating
tuberculosis (TB) genomic test results. We used Design Study Methodology
(DSM) a human centered multi-stage approach drawn from the information
visualization domain to redesign an existing clinical report. We used expert
consults and an online questionnaire to discover various stakeholders needs
around the types of data and tasks related to TB that they encounter in their
daily work�ow. We also evaluated their perceptions of and familiarity with

1This chapter has been previously published [25]:
A. Crisan, G. McKee, T. Munzner, and J. L. Gardy. Evidence-based design and evaluation of a whole
genome sequencing clinical report for the reference microbiology laboratory. PeerJ, 6:e4218, Jan.
2018.doi:10.7717/peerj.4218
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genomic data, as well as its utility at various clinical decision points. These
data shaped the design of multiple prototype reports that were compared
against the existing report through a second online survey, with the resulting
qualitative and quantitative data informing the �nal, redesigned, report. We
recruited 78 participants, 65 of whom were clinicians, nurses, laboratorians,
researchers, and epidemiologists involved in TB diagnosis, treatment, and/or
surveillance. Our �rst survey indicated that participants were largely enthusi-
astic about genomic data, with the majority agreeing on its utility for certain
TB diagnosis and treatment tasks and many reporting some con�dence in
their ability to interpret this type of data (between 58.8% and 94.1%, depend-
ing on the speci�c data type). When we compared our four prototype reports
against the existing design, we found that for the majority (86.7%) of design
comparisons, participants preferred the alternative prototype designs over the
existing version, and that both clinicians and non-clinicians expressed similar
design preferences. Participants articulated clearer design preferences when
asked to compare individual design elements versus entire reports. Both
the quantitative and qualitative data informed the design of a revised report,
available online as a LaTeX template. We show how a human-centered de-
sign approach integrating quantitative and qualitative feedback can be used
to design an alternative report for representing complex microbial genomic
data. We suggest experimental and design guidelines to inform future design
studies in the bioinformatics and microbial genomics domains, and suggest
that this type of mixed-methods study is important to facilitate the successful
translation of pathogen genomics in the clinic, not only for clinical reports
but also more complex bioinformatics data visualization software.

3.1 Introduction

Whole Genome Sequencing (WGS) is quickly moving from proof-of-concept
research into routine clinical and public health use. WGS can diagnose
infections at least as accurately as current protocols [40, 67], can predict
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antimicrobial resistance phenotypes for certain drugs [11, 85, 120] with high
concordance to culture-based testing methods, and can be used in outbreak
surveillance to resolve transmission clusters at a resolution not possible with
existing genomic or epidemiological methods [80]. Importantly, WGS offers
faster turnaround times compared to many culture-based tests, particularly
for antimicrobial resistance testing in slow-growing bacteria.

As reference microbiology laboratories move towards accreditation of WGS
for routine clinical use, the community is turning its attention toward stan-
dardization developing standard operating procedures for reproducible sam-
ple handling, sequencing, and downstream bioinformatics analysis [13, 43].
Reporting genomic microbiology test results in a way that is interpretable by
clinicians, nurses, laboratory staff, researchers, and surveillance experts and
that meets regulatory requirements is equally important; however, relatively
little effort has been directed toward this area. WGS clinical reports are often
produced in-house on anad hoc, project-by-project basis, with the resulting
product not necessarily meeting the needs of the many stakeholders using
the report in their clinical and surveillance work�ows.

3.1.1 Human-Centered Design in the Clinical Laboratory

The information visualization, human-computer interaction, and usabil-
ity engineering �elds offer techniques and design guidelines that have in-
formed bioinformatics tools, including Disease View [32] for exploring
host-pathogen interaction data and Microreact [4] for visualizing phyloge-
netic trees in the context of epidemiological or clinical data. Although the
public health community is beginning to recognize the potential role of visu-
alization and analytics in daily laboratory work�ows [18] these techniques
have not yet been applied to routine reporting of microbiological test results.
However, work from the human health domain particularly the formatting
and display of pathology reports, where standardization is critical [64] sheds
light on the complex task of clinical report design.
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Valenstein reports four principles for organizing an effective pathology re-
port: use headlines to emphasize key points, ensure design continuity over
time and relative to other reports, consider information density, and reduce
clutter [114], while Renshawet al. note that when pathology report tem-
plates were reformatted with numbering and bolding to highlight required
information, template completion rates rose from 84 to 98% [95]. Fixed,
consistent layout of medical record elements, highlighting of data relative to
background text, and single-page layout improve clinicians ability to locate
information [82], while information design principles, including visually
structuring the document to separate different elements and organizing in-
formation to meet the needs of multiple stakeholder types, can reduce the
number of errors in data interpretation [133].

Work in the electronic health record (EHR) and patient risk communication
domains has also provided insight into not just the �nal product but also
the process of effective design. Through quantitative and qualitative evalua-
tions, research has shown that some EHRs are dif�cult to use because they
were not designed to support clinical tasks and information retrieval, but
rather data entry [133]. Reviews of the risk communication literature note
that, while many visual aids improve patients understanding of risk [136],
the design features that viewers preferred namely simplistic, minimalist
designs were not necessarily those that led to an accurate interpretation of
the underlying data [2]. Together, these gaps indicate a need for a human-
centered, participatory approach iteratively incorporating both design and
evaluation [53, 54].

3.1.2 Collaboration Context COMPASS-TB

The COMPASS-TB project was a proof-of-concept study demonstrating the
feasibility and utility of WGS for diagnosing tuberculosis (TB) infection,
evaluating an isolate's antimicrobial sensitivity/resistance, and genotyping
the isolate to identify epidemiologically related cases [85]. On the basis of
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Figure 3.1: An initial COMPASS-TB report design.

COMPASS-TB's results, Public Health England (PHE) has implemented
routine WGS in the TB reference laboratory [89]; however, this requires
changing how mycobacteriology results are reported to clinical and public
health stakeholders. The COMPASS-TB pilot used reports designed by
the project team, but as clinical implementation within PHE progressed,
team members expressed an interest in redesigning the report (Figure 3.1) to
facilitate interpretation of this new data type and align laboratory reporting
practices with the needs of multiple TB stakeholders.

We undertook a mixed-methods and iterative human-centered approach to
inform the design and evaluation of a clinical TB WGS report. Speci�cally,
we chose to use Design Study Methodology [103] an approach adopted
from the information visualization discipline. When using a Design Study
Methodology approach, researchers examine a problem faced by a group of
domain specialists, explore their available data and the tasks they perform
in reference to that problem, create a product in our case a report, but, in
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the more general case, a visualization system to help solve the problem,
assess the product with domain specialists, and re�ect on the process to
improve future design activities. Compared to anad hocapproach to design,
Design Study Methodology engages domain specialists and grounds the
design and evaluation of the visualization system in tasks in this case TB
diagnosis, treatment, and surveillance as well as data. It is this marriage of
data and tasks to design choices, informed by real needs and supported by
empirical evidence, that results in a �nal product that is relevant, usable, and
interpretable.

Here we describe our application of design study methodology to the
COMPASS-TB report redesign. Targeting clinical and public health stake-
holders with at least some familiarity with public health genomics, we show
how evidence-based design can be incorporated into the emerging �eld of
clinical microbial genomics, and present a �nal report template, which may
be ported to other organisms. We also recommend a set of guidelines to
support future applications of human-centered design in microbial genomics,
whether for report designs or for more complex bioinformatics visualization
software.

3.2 Materials and Methods

3.2.1 Overview of Design Study Methodology

The Design Study Methodology [103] is an iterative framework outlining an
approach to human-centered visualization design and evaluation. It consists
of three phases Precondition, Core Analysis, and Re�ection that together
comprise nine stages. The Precondition and Re�ection phases focus on
establishing collaborations and writing up research �ndings, respectively,
and are not elaborated upon further here. We describe our work within
each of the three stages of the Core Analysis phase: Discovery, Design, and

54



Figure 3.2: Our human-centered design approach.The Core Analysis phase of the
Design Study Methodology consists of Discovery, Design, and Implementation
stages. Using this methodological backbone, we collected and analyzed data
using mixed-methods study designs in the Discovery and Design stages, which
informed the �nal TB WGS clinical report design.

Implementation (Figure 3.2). We de�nedomain specialistsin this case as
the TB stakeholders - clinicians, laboratorians, and epidemiologists - who
regularly use reports from the reference mycobacteriology laboratory in their
work.

Our research was reviewed and approved by the University of British
Columbias Behavioural Research Ethics Board (H10-03336). All data
were collected through secure means approved by the university and
were de-identi�ed for analysis and sharing. Anonymizedquantitative
results from each of the surveys and the analysis code are available at
https://github.com/amcrisan/TBReportRedesign and in
Appendix A. We also provide the full text of our survey instruments in
Appendix A.
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3.2.2 Discovery Stage

In the Discovery stage, we �rst gathered qualitative data through expert
consults to identify the data types used in TB diagnosis, treatment, and
surveillance tasks; we then gathered quantitative data through an online
survey to more robustly link particular data types to speci�c tasks. This
staged approach to data gathering is known as the exploratory sequential
model [22].

Our expert consults took the form of semi-structured interviews with seven
individuals recruited from the COMPASS-TB project team, the British
Columbia Centre for Disease Control (BCCDC), and the British Columbia
Public Health Laboratory (BCPHL). The interview questions served as
prompts to structure the conversation, but experts were free to comment, at
any depth, on the different aspects of TB diagnosis, treatment, and surveil-
lance. We took notes during the consults in order to identify the tasks and
data types common to TB work�ows in the UK and Canada, as well as to
determine which tasks could be supported by WGS data.

Informed by the expert consults, we drafted a Task and Data Questionnaire
(text in Appendix A) to survey data types used across the TB work�ow
(see Figure 3.3 for a list of data types), the role for WGS data in diagnosis,
treatment, and surveillance tasks, and participants con�dence in interpreting
different data types. The questionnaire primarily used multiple choice and
true/false type questions, but also included the optional entry of freeform
text. The questionnaire was deployed online using the FluidSurveys platform
and participants were recruited using snowball and convenience sampling
for a one-week period in July, 2016. For questions pertaining to diagnos-
tic and treatment tasks, we gathered information only from participants
self-identifying as clinicians; for the remaining sections of the survey, all
participants were prompted to answer each question.

Only completed questionnaires were used for analysis. For questions per-
taining to participants' background, their perception of WGS utility, and
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their con�dence interpreting WGS data, we report primarily descriptive
statistics. To link TB work�ow tasks to speci�c data types, we presented par-
ticipants with different task-based scenarios related to diagnosis, treatment,
and surveillance and asked which data types they would use to complete the
task. For each pair of data and task we assigned a consensus score depending
on the proportion of participants who reported using a data type for a speci�c
task: 0 for fewer than 25% of participants, 1 for 25-50%, 2 for 50-75%, and
3 if more than 75% of participants reported using a speci�c data type for the
task at hand. Consensus scores for a data type were also summed across the
different tasks. Freeform text, when it was provided, was considered only to
add context to participant responses.

3.2.3 Design Stage

The Discovery stage revealed which data types to include in the redesigned
report, while the goal of the Design stage was to identify how it should be
presented. We used a Design Sprint event to produce a series of prototype
reports, which were then assessed through a second online questionnaire.
This survey collected quantitative data on participants preference for speci�c
design elements, with participants also able to provide qualitative feedback
on each element a type of embedded mixed methods study design [22]

The Design Sprint was an interactive design session involving members
of the University of British Columbias Information Visualization research
group, in which teams created alternative designs to report WGS data for
the diagnosis, treatment, and surveillance tasks. Teams developed paper
prototypes [66] [119] of a complete WGS TB report and, at the completion of
the event, presented their prototypes and the rationale for each design choice.
The paper prototypes were then digitally mocked up, both as complete reports
and as individual elements (see the results in Figure 3.4 and Figure 3.5);
these digital prototypes were standardized with respect to text, fonts, and
sample data where appropriate and used as the basis of the second online
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survey.

In the Design Choice Questionnaire (text in Appendix A), we evaluated par-
ticipants preferences for individual design elements, comparing the options
generated during the Design Sprint as well as the initial COMPASS-TB
report design, which we hereafter refer to as the control design. As with the
�rst survey, the questionnaire used FluidSurveys, with participants recruited
using snowball and convenience sampling. Individuals who had previously
participated in the Data and Task Questionnaire were also invited to partic-
ipate. The survey was open for one month beginning September 10, 2016
and was reopened to recruit additional participants for one month beginning
January 5, 2017, as part of the registration for a TB WGS conference hosted
by PHE. Only completed surveys were analyzed.

We used single-selection multiple-choice, Likert scale, and ranking ques-
tions to assess participant preferences. For multiple-choice and Likert scale
questions, we calculated the number of participants that selected each option
and report the sum. For questions that required participants to rank options
we calculated a rescaled rank score as follows:

rescaledrank(Di) = 1�
P� 1å P

p= 1Rp � 1

N � 1

where for each design choice (Di), i = f 1: : :Ng where N is the total number
of design choices,R= f 1: : :Ng is a raw rank (rank selected by a participant
in the study), andP = f 1: : :Pg is the total number of participants. In our
study, 1 was the highest rank (most preferred) and N was the lowest rank
(least preferred) option. As an example, if a design,D1, is always ranked 1
(greatest preference by everyone), the sum of those ranks is P, resulting in a
numerator of 0 and a rescaled rank score of 1; alternatively, if a design,D2,
is always ranked last (N), the sum of those ranks will beP� N, and a rescaled
rank score of 0. Thus, the rescaled rank score ranges from 1 (consistently
ranked as �rst) to 0 (consistently ranked last). This transformation from
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raw to rescaled ranks allows us to compare across questions with different
numbers of options, but is predicated on each design alternative having
a rank, which is why this approach was not extended to multiple choice
questions.

To contextualize rescaled rank scores, we randomly permuted participants'
scores 1000 times and pooled the rescaled rank scores across these iterations
to obtain an average score (intuitively and empirically this is 0.5 for the
rank questions and1N for multiple choice questions) and standard deviation.
For each design choice, we plotted its actual rescaled rank score against
the distribution of random permutations, highlighting whether the score
was within� 1, 2, or 3 standard deviations from the random permutation
mean score. The closer a score was to the mean, the more probable that the
participants preferences were no better than random. We also calculated
bootstrapped 95% con�dence intervals for both rank and multiple choice
type questions by re-sampling participants, with replacement, over 1000
iterations.

3.2.4 Implementation Stage

By combining the results of the Design Choice Questionnaire with med-
ical test reporting requirements from the ISO15189:2012 standards, we
developed a �nal template for reporting TB WGS data in the clinical lab-
oratory.We used deviation from a random score, described above, as an
indicator of preference, selecting design elements 3 or more standard de-
viations from a random score. When there was no strongly preferred
element, we explain our design choice in the Design Walkthrough (Ap-
pendix A). We also considered consensus between clinicians and non-
clinicians, and defaulted to clinician preferences in instances of disagree-
ment as they are the primary consumers of this report. The �nal prototype
is implemented in Latex and is available online as a template accessible at:
http://www.cs.ubc.ca/labs/imager/tr/2017/MicroReportDesign/ .
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3.3 Results

Expert consults, the Task and Data Questionnaire, and the Design Choice
Questionnaires recruited a total of 78 participants across different roles in
TB management and control (Table 3.1).

Table 3.1: Total study participants across different stages of the Design Study
Methodology.

Expert Consults Task and Data Questionnaire Design Choice Questionnaire

Stage Discovery Design

Data Collected Qualitative Quantitative Qualitative & Quantitative

Participants N (% survey total) N (% survey total) N (% survey total)

Clinician 2 29% 7 40% 13 25%

Nurse 1 14% 3 18% 5 9%

Laboratory 2 29% 3 18% 8 15%

Research 0 0% 1 6% 8 15%

Surveillance 1 14% 3 18% 8 15%

Other* 1 14% 0 0% 12 21%

Total 7 100% 17 100% 54 100%

3.3.1 Experts Emphasized Prioritizing Information and Revealed
Constraints

The objective of our expert consults was to understand how reports from the
reference mycobacteriology laboratory are currently used in the day-to-day
work�ows of various TB stakeholders, including clinicians, laboratorians,
epidemiologists, and researchers, and what data types are currently used
to inform those tasks. Tasks and data types enumerated in the interviews
were used to populate downstream quantitative questionnaires; however, the
interviews also provided insights into how stakeholders viewed the role of
genomics in a clinical laboratory.

Amongst the procedural insights, stakeholders frequently reported that the
biggest bene�t of WGS over standard mycobacteriology laboratory protocols
was to improve testing turnaround times and gather all test results into a sin-
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gle document, rather than having multiple lab reports arriving over weeks to
months. Several experts emphasized that these bene�ts can only be realized
if the WGS analytical pipeline has been clinically validated. Although our
study team included a clinician and a TB researcher, two surprising proce-
dural insights emerged from the consultations. First, multiple experts from
a clinical background emphasized that this audience has extremely limited
time to digest the information found on a clinical report. In describing their
interaction with a laboratory report, one participant noted that10 seconds
[to review content] is likely, one minute is luxuriouswhile others described
variations on the theme of wanting bottom-line, actionable information as
quickly as possible. This insight profoundly shaped downstream decisions
around how much data to include on a redesigned report and how to arrange
it over the report to permit both a quick glance and a deeper dive. Second,
experts indicated that laboratory reports were delivered using a variety of
formats, including PDFs appended to electronic health records, faxes, or
physical mail. This created design constraints at the outset of the project
our redesigned report needed to be legible no matter the medium, ruling out
online interactivity, and needed to be black and white.

3.3.2 Experts Vary in Their Perception of Different Data Types

At the data level, we observed that the experts had differing perceptions of
data types and desired level of detail between clinicians and non-clinicians,
perhaps re�ecting the clinicians procedural need for rapid interpretation.
Clinicians emphasized the importance of presenting actionable results clearly
and omitting those that were not clinically relevant for them. For example,
when presented with the sequence quality data on the current COMPASS-
TB report (Figure 3.1) metrics re�ecting the quality of the sequencing run
and downstream bioinformatics analysis interviewees did not expect the
lab to release poor quality data, given the presence of strict quality control
mechanisms. ISO15189:2012 standards require some degree of reporting
around the measurement procedure and results, but this insight suggested
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such data might best be placed later in the report in a simpli�ed format, or
described in the report comments. Similarly, experts were also divided on
the interpretability and utility of the phylogenetic tree in the epidemiological
relatedness section of the current COMPASS-TB report, with clinicians
noting that the case belonging to an epidemiological cluster would not
impact their use of the genomic test results.

Experts also disagreed about the level of detail needed for WGS data, and
this appeared to depend upon on whether the expert was a clinician as well
as their prior experience with WGS through the COMPASS-TB project. For
example, one expert indicated that“clinicians are wanting to know which
mutations conferred resistance”, while another noted that they“dont use
these [mutations] right now routinely, so its not that relevant”. When asked
to comment on the resistance summary table in the current COMPASS-TB
report (Figure 3.1), clinicians were concerned about the use of abbreviations
for both drug names and susceptibility status leading to misinterpretation,
and many were uncertain how to use the detailed mutation information in
the resistotype table.
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3.3.3 WGS Data is Vital, but Some Lack Con�dence in its
Interpretation

The expert consults provided a detailed overview of the tasks and data
associated with TB care, allowing us to create a draft work�ow outlining the
TB diagnosis, treatment, and surveillance tasks coupled to the supporting
data sources and data types (Figure A.12). This work�ow was used to design
the Task and Data Questionnaire.

Of the 17 participants responding in full to the Task and Data Questionnaire
( Table 3.1), most were from the United Kingdom (88%) and most reported
professional experience and formal education in infectious diseases and
epidemiology (Table A.13). Participants were less likely to report education
at the masters or doctoral level in microbial genomics, biochemistry, or
bioinformatics (Table A.1). Fewer than half (47.1%) of participants had par-
ticipated in TB WGS projects, but all (100%) participants were enthusiastic
about the role of microbial genomics in infectious disease diagnosis, both
today (47.1%) and in the near future, pending clinical validation (52.9%).

When queried about their potential future use of molecular data, whether
WGS, genotyping, or other, participants indicated they foresaw themselves
consulting, often or all the time, data on resistance-conferring mutations
(82.3% of participants), MIRU-VNTR patterns (88.2%), epidemiological
cluster membership (76.5%), single nucleotide polymorphism/variant dis-
tances from other isolates (64.7%), and WGS quality metrics (58.8%) (Ta-
ble A.2). However, of the 14 different data types queried, the majority of
participants only felt con�dent in interpreting four (MIRU-VNTR, drug
susceptibility from culture, drug susceptibility from PCR or LPA, genomic
clusters) - most participants only felt somewhat con�dent, or not con�dent
at all, interpreting the other data types (Table A.3).

Moving from con�dence in their own interpretation of laboratory data types

2This �gure and all others with the pre�x A are presented in Appendix A
3This table and all others with the pre�x A are presented in Appendix A
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to con�dence in the utility of WGS data in general, the majority of par-
ticipants were con�dent that information contained within the TB genome
can be used to correctly perform organism speciation (76.5%), assign a
patient to existing clusters (70.0%), rule out transmission events (64.7%),
and to a lesser extent were con�dent TB WGS could be used to identify
epidemiologically related patients (58.8%) and predict drug susceptibility
(52.9%) (Table A.4). The majority of participants thought genomic datamay
be able to inform clinicians of appropriate treatment regimens (100%) and
identify transmission events (94.1%); however, participants showed mixed
consensus toward whether genomic data could be used to monitor treatment
progress for TB (47.2%) or diagnose active TB (52.9%).

3.3.4 Respondent Consensus Suggests a Role for WGS in Diagnosis
and Treatment Tasks

To examine which data types were being used to support diagnosis, treat-
ment, and surveillance tasks in the work�ow, we assigned a numerical score
re�ecting respondent consensus around each data type-task pair (Figure 3.3).
We found greater consensus around the data types that participants would
use in diagnosis and treatment tasks, but little consensus around the data they
would use for surveillance tasks, contrasting with participants previously
stated support for using WGS or other genotyping data for understanding
TB epidemiology. Overall, the most frequently used data types included
administrative data (patient ID, sample type, collection site, collection date)
and results from current laboratory tests (solid or liquid culture, smear sta-
tus, and speciation), which together were used primarily for diagnosis and
treatment. Prior test results from a patient were deemed important; however,
the earlier expert consults indicated that such data was dif�cult to obtain and
unlikely to be included in future reports.

We also queried participants perceptions of barriers impacting their work-
�ow, with the majority of participants (83.3%) reporting issues with both
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Figure 3.4: Digital mockups of complete report prototypes generated during the
design sprint

the timeliness of receiving TB data from the reference laboratory and the
distribution of test results across multiple documents (Table A.5) a �nding
that corroborated the procedural insights from the expert consults.

3.3.5 Prototyping Via a Design Sprint Produces a Range of Design
Alternatives

Equipped with an understanding of how WGS data might be used in the vari-
ous TB work�ow tasks, we embarked on the Design stage of the design study
methodology. A Design Sprint event involving study team members and
information visualization experts resulted in four prototype report designs
(Figure 3.4) and various isolated design elements (Figure 3.5). Although
each prototype used different design elements for the required data types,
when the prototypes were compared at the end of the event, common themes
emerged. These included: presenting data in an order informed by the
work�ow data related to diagnosis, treatment, then surveillance; placing
actionable, high-level on the front page, with additional details on the over
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Figure 3.5: Isolated design component.The original report element, highlighted
in red, is broken down into isolated design elements, each of which was tested
independently in the report design survey. In this example, the original resistance
summary yields �ve different alternative wordings and design elements.

page; and using both an overall summary statement at the beginning of the
report as well as brief summary statements at the beginning of each section.

To drill down and determine which design elements best communicate the
underlying data, we isolated individual design elements (Figure 3.5) and
classi�ed them as wording choices for example, which heading to use for
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a given section of the report or design choices, such as layout, the use of
emphasis, and the use of graphics (Table A.6).

3.3.6 The Design Choice Questionnaire Quanti�es Participant
Preferences for Speci�c Design Elements

We next developed an online survey, the Design Choice Questionnaire, to
assess stakeholders preferences for both speci�c design elements and overall
report prototypes. The distribution of public health roles amongst survey
participants is presented in Table 3.1; all but 11 participants (20%) actively
worked with TB data. Participants were employed by Academic Institutions
(35.2%), Hospitals (24.1%), and Public Health Organizations (33.3%), with
only 7.4% of participants being employed in some other sector. The majority
of participants were from the UK (59.2%), while 11.1% were from Canada;
the remaining 29.7% were drawn from the United States (6.5%), Europe
(14.8%), Brazil (2.8%), India (2.8%), and Gambia (2.8%)

We �rst examined participants' preference for speci�c wording and design
elements (Figure 3.6A,B), comparing elements arising from the prototypes
to those used in the existing COMPASS-TB report, which acted as a control.
Notably, of the 15 wording and design elements queried, in only two cases
was the control design preferred over a design arising from one of the proto-
types (note that one query did not compare to a control). Furthermore, in 8
out of 15 queries (Q6, Q8, Q9, Q10, Q12, Q17, Q5, Q18) participants showed
strong preferences, wherein the to preference was +3 or more standard de-
viations from the mean forbothclinicians and non-clinicians. Figure A.1
provides a version of Figure 3.6 with con�dence intervals and indicates
concordance between strong preferences and non-overlapping con�dence
intervals.

The �ndings from the analysis of wording elements (Figure 3.6A) showed
that participants preferred complete terms to abbreviations, such as writing
out isoniazid as opposed to INH or H, or resistant as opposed to R, and
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that both clinicians and non-clinicians were in agreement over the preferred
vocabulary for section headings. Interestingly, wording questions related to
the treatment task yielded the widest range of rankings.

Clear preferences were also observed for information design elements, again
largely concordant between clinicians and non-clinicians (Figure 3.6B).
Participants preferred elements that drew attention to speci�c data, such
summary statements, shading, and tick boxes, and many participants pre-
ferred that sections be prioritized, with less important details relegated to the
second page of the report. However, there was less consensus around how
much detail to include and where. The majority of participants indicated
that genomic data pertaining to resistance-conferring mutations should be
included (Figure 3.6B; Q11), but were divided as which data should be
included and where. Most (85%) wanted to know the gene harboring the
resistance mutation (i.e. katG; inhA), but only half wanted details of the
speci�c mutation (50% wanted the amino acid substitution, 46% wanted
to know the nucleotide-level change). We did not test any design elements
displaying the strength of the association between the mutation and the resis-
tance phenotype; however, we will add this to a future version of the report
pending receipt of the �nal mutation catalog from the ReSeqTB Consortium.
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Figure 3.6: Design Choice Questionnaire results.Responses are grouped according
to question type: wording (A), design choices (B), and full reports (C), and
partitioned into clinician participants (squares) and non-clinician participants
(circles). Responses are coloured according to whether they are the control
design from the original report (white) or an alternative design devised in the
design sprint (black). Lines connect options between clinician and non-clinicians
preferences, with thicker crossing lines showing discordance between the two
groups and vertical lines showing concordance in preferences. Rescaled rank
scores are shown against a reference of random permutations (see Methods),
with scores closer to 1 indicating the most preferred response. Speci�c questions
are indicated with Q; the participants questions are shown in Table A.6
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Interestingly, while both clinicians and non-clinicians reported similar rank-
ings for most design elements, one element showed an unusual distribution
of scores the visualization for showing genomic relatedness and member-
ship in a cluster. While both groups of participants preferred a phylogenetic
tree accompanied by a summary table, which is the current COMPASS-TB
control design, the other four options appeared to be ranked randomly, with
rescaled rank score close to 0.5, suggesting that none of the alternative
options were particularly good.

We also had participants rank their preferences for the four prototype de-
signs (Figure 3.6C). While all participants ranked Prototype D as their least
preferred choice, many citing that the images used were too distracting, clin-
icians and non-clinicians varied in their ranking of the other three options,
with clinicians preferring option A and non-clinicians preferring B. However,
qualitative feedback collected for this question revealed that participants
found comparing individual elements easier than comparing full reports.

3.3.7 Qualitative Data Affords Additional Insights into Report
Design

The qualitative responses in the Design Choice Questionnaire raised impor-
tant points that would otherwise not have been captured by quantitative data
alone. For example, the importance of presenting drug susceptibility data
clearly emerged from the qualitative responses. Participants indicated that
the report must call attention [to] drug resistanceand expressed concern that
the abbreviation of drug names and/or predicted resistance phenotype could
lead to misinterpretation and pose risks to patient safety, stating thatnot
all clinicians [are] likely to recognize the abbreviationsand[using the full
name] reduces the risk of errors, especially if new to TB. When choosing how
to emphasize predicted drug susceptibility information (shading, bolding,
alert glyphs, or no emphasis), some participants suggestedshading draws
the quickest attention to [resistance]and thatwith presbyopia, resistance
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can be easily missed and therefore shading affords greater patient safety, but
other participants indicated drug susceptibility, rather than resistance, should
be emphasized:not sure that resistant should be shaded better to shade
sensitive drugs in my viewandit would be better to highlight what is working
instead of highlight what is not working.We opted to highlight resistance
given the low incidence of drug-resistant TB in the UK and Canada, which
were the primary application contexts. Some reported concerns as to whether
such emphasis was possible with current electronic health records, including
[bolding or shading] may not transfer correctlyandshaded [text] wont
photocopy well, which prompted us to test both printing and photocopying
of the resulting report.

The issue of clinicians having little time to interact with the report, raised in
both the expert consults and the Task and Data Questionnaire, also became
apparent in the qualitative responses to the Design Choice Questionnaire,
such asthe best likelihood of success will [come] from the ability to draw
attention to someone scanning the document quickly. However, participants
perceptions of which design choices best promoted rapid synthesis varied.
Some preferred summaries in the form of check boxes “[a] tick box is the
most straightforward way to summarize it. Reading a summary sentence
will probably take longer”and“the check boxes provide an at-a-glance
result” while others preferred additional commentary“interpretation is
important; but tick boxes alone lack the necessary nuance required for inter-
pretation” and that“tick boxes may cause confusion when clinicians read
XDR without realizing that option is not selected. Ideal to add a comment
about resistance”.To address this concern we added a “No drug resistance
predicted” option to the check-boxes (absent from the survey design options),
and included shading elements to emphasize the drug susceptibility result.

The qualitative responses to Q17 (Figure 3.6B) provided further insight into
the uncertainty around how best to represent genomic relatedness suggestive
of an epidemiological relatedness. Some participants felt that data related
to surveillance tasks should not appear in a report that is also meant for
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clinicians, either because it wasnt relevant to this audience[this data] should
not appear in the report. It should only be given to �eld epi and researchers.
Overloading the clinical report would be deterioratingandnot useful for
a clinician or because they were uncertain about its interpretationcluster
detection would be �ne for those who already know what a cluster isandmy
patients isolate is 6 SNPs from someone diagnosed 3 years ago. What is the
clinical action?.

Of the design choices for cluster detection, several participants articulated
that many of the options, including the control,[included] too much infor-
mation and [were] unnecessary for routine diagnosis/treatment. However,
others felt that the options did not provide suf�cient detail and offered alter-
natives, such asif you can combine the phylogenetic tree with some kind of
graph showing temporal spread that would be perfect. Adding geographical
data would be a really helpful bonus too.. This is an area of reporting that
requires further investigation and was not fully resolved in our study.

Finally, participants were candid about those design options that did not work
well for example, of the report design with many graphics (Figure 3.6A,
option D), participants indicated it wasdistracting; looks like a set of road-
works rather than a microbiology reportand that it was important tokeep
it simple. Their feedback also revealed when our phrasing on the survey
instruments was unclear.

73



3.3.8 Developing a Final Report Template

Figure 3.7: Original and revised reports. The revised report uses empirical evi-
dence gathered through multiple stages of a human centered design process.
Note that the image in the upper corner of the revised report is a placeholder for
an organizational logo.
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There are no prescriptive guidelines around integrating our quantitative data,
qualitative data, and ISO15189:2012 reporting requirements; thus, we have
attempted to be as transparent and empiric as possible in justifying our
�nal design (Figure 3.7). A more thorough walkthrough is presented in
Appendix A, and here we highlight selected choices. The �nal prototype is
implemented in Latex and is available online as a template accessible at:

http://www.cs.ubc.ca/labs/imager/tr/2017/MicroReportDesign/

We �rst incorporated ISO15189:2012 requirements (see Appendix A) into
the �nal report template and then turned to the preferences expressed in the
Design Choice Questionnaire. Overall, information was structured to mirror
the TB work�ow diagnosis, treatment, then surveillance. We chose to limit
bolding to relevant information, and used shading to highlight important and
actionable clinical information, under the rationale that appropriate use of
emphasis could facilitate an accurate and quick reading of the report, with
detailed information present but de-emphasized.

In two instances, our design decisions deviated from participant preferences:
we opted to use one column instead of two, and we presented detailed
genomic resistance data on the �rst page of the report, rather than the
second page. A single column was chosen as all of the information ranked
as important by participants could be presented on a single page without
the need to condense information into two columns. Because many of
the resistotype details of the original report, such as mutation source and
individual nucleotide changes ( Figure 3.1), were not included in the revised
report, it was possible to present all of the participants' desired data in a
single table on one page.

A draft of the �nal design was presented to a new cohort of TB stakeholders
at a September, 2017 expert working group on standardized reporting of
TB genomic resistance data. Through a group discussion, subtle changes to
the report were made, including updating some of the language used (for
example, replacing occurrences of the word “sensitive” with “susceptible”),
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adding the lineage to the Organism Section, and adding additional �elds to
tables describing the sample, and the assay, such as what type of material
was sequenced (pure culture, direct specimen) and what sequencing platform
was used.

3.4 Discussion

Microbial genomics is playing an increasingly important role in public
health microbiology, and its successful implementation in the clinic will
rely not just on validation and accreditation of WGS-based tests, but also in
how effective the resulting reports are to stakeholders, including clinicians.
Using Design Study Methodology, we developed a two-page report template
to communicate WGS-derived test results related to TB diagnosis, drug
susceptibility testing, and clustering.

To our knowledge, this project is the �rst formal inquiry into human-centered
design for microbial genomics reporting. We argue that the application of
human-centered design methodologies allowed us to improve not only the
visual aesthetics of the �nal report, but also its functionality, by carefully
coupling stakeholder tasks, data, and constraints to techniques from informa-
tion and graphic design. Giving the original report a “graphic design facelift”
would not have improved the functionality, as some of the information in
the original report was found to be unnecessary, presented in a way that
could lead to misinterpretation, or did not take into account stakeholder
constraints. For example, interviews and surveys revealed procedural and
data constraints our study team had not anticipated, including the limited
time available for clinicians to read laboratory reports and the need for sim-
ple, black and white formatting amenable to media ranging from electronic
delivery to fax these �ndings were critical to shaping the downstream design
process. Furthermore, in nearly every case, study participants preferred our
alternative design elements, informed by empirical �ndings in the discovery
stage, over the control elements derived from the original report. Our ap-
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proach also suggested that some participants are not con�dent in their ability
to interpret certain types of genomic data. As WGS moves towards routine
clinical use, it is clear that successful implementation of genomic assays will
also require complementary education and training opportunities for those
individuals regularly interacting with WGS-derived data.

Although human-centered information visualization design methodologies
are commonly used in software development, it could be asked whether
they are warranted in a report design project. One advantage of tackling
the simpler problem of report design is that it allows us to demonstrate
Design Study Methodology in action and link evidence to design decisions
more clearly than with a software product. We also collected data with the
intention of applying it to the development and evaluation of more complex
reporting and data visualization software that we plan to create. Similarly,
others can use our approach or our data to inform the design of simple or
complex applications elsewhere in pathogen genomics and bioinformatics.

The exploratory nature of this project brings with it certain limitations. First,
our participants were identi�ed through convenience and snowball sampling
within the authors networks, and thus are likely to be more experienced with
the clinical application of microbial genomics. While this is appropriate
for the context of our collaboration, in which our goal is redesigning a
report for use by the COMPASS-TB team and collaborating laboratories,
it does limit our ability to generalize the �ndings to other settings.WGS is
only used routinely in a small number of laboratories, and even if its reach
were larger, these may be settings where English is not the �rst language
used in reporting clinical results, or where written text is read in different
ways both of which would affect our design choices. Second, we did
not havea priori knowledge of the effect sizes (i.e. extent of preferential
difference for each type of question) in the Design Choice Questionnaire,
making sample size calculations challenging. Hada priori effect sizes been
available, the study could be powered, for example, for the smallest or
average effect size. To avoid mis-characterizing our results, we have relied
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on primarily descriptive statistics, without tests for statistical signi�cance,
and assert that our �ndings are best interpreted as �rst steps toward a better
understanding how informationandvisualization design can play a role in
reporting pathogen WGS data. However, when con�dence intervals were
calculated for the results of the Design Choice Questionnaire, we observed
that non-overlapping con�dence intervals separated user preferences as well
as thedeviation from a random scoremetric that we primarily used in our
analysis. We argue the latter is a useful measure for exploratory studies
without cleara priori knowledge of effect sizes for proper sample size
calculations. Finally, we did not undertake a head-to-head experimental
comparison between the original report design and the revised design. While
this comparison had been planned at the outset of our project, the results
of the Design Choice Questionnaire showed such a clear preference for the
alternative designs when comparing isolated components that we concluded
there was no need for such a �nal test as it would yield little new evidence.

For researchers wishing to undertake a similar human-centered design ap-
proach, we have summarized our primary �ndings into three experimental
guidelines and �ve design guidelines. These guidelines arose from our ex-
perience throughout this report redesign process, but are intended to apply
generally to the process of designing visualizations for microbial genomic
data or other human health-related information.

The three experimental guidelines re�ect the areas of the design methodology
that we found to be particularly important in our data collection and analysis
as well as the �nal report design process. First,design around tasks. It is
tempting to simply ask stakeholders what they want to see in a �nal design,
but many of them will not be able to create an effective end product because
design is not their principal area of expertise. However, stakeholders know
very well what they do on a daily basis and can indicate data that are relevant
to those speci�c tasks and can indicate in which areas they require more
support. The role of the designer is to marry those tasks, clinical work�ows,
and constraints into design alternatives. Depending on the tasks and context,
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many design alternatives might be possible, making use of colour, more
complex visualizations, or interactivity. In other situations, such as the
one presented here, design constraints limit the range of prototypes that
can be generated. Second,compare isolated components, and not just
whole systems. Here we use system to mean either a simple report or a
more complex software system. Comparing whole systems can overload
an individual's working memory, meaning they may rely on heuristics such
as preferences around style or distracting elements, when assessing and
comparing full systems [104]. Presenting isolated design elements and
controlling for non-tested factors (i.e. font, text) can reduce the burden
on working memory and isolate the effect of design alternatives. Finally,
compare against a control whenever possible.If a prior report or system
exists, or if there are commonly agreed upon conventions in the literature
or �eld, it is useful to compare novel designs against an existing one. More
generally, comparison of multiple alternatives is the most critical defense
against defaulting toad hocdesigns and the most important step of our
human-centered design methodology.

Our �ve design guidelines re�ect techniques from information visualization
and graphic design that we used in an attempt to improve the readability
of the report and balance different stakeholder information needs. First,
structure information such that it mimics a stakeholder's work�ow . In
this case, the report prioritizes aclinical work�ow, and this work�ow is
re�ected in the report's design through the use of gestalt principles [75]
– treating the whole as greater than the sum of its parts. Speci�cally, we
group related data and order information hierarchically, so that the document
is read according to the clinical narrative we established in the Discovery
phase. Second,use emphasis carefully. Here, bolding, text size, and
shading were reserved to highlight important data and were not applied to
aesthetic aspects of the report design. Third,present dense information in
a careful and structured manner. Stakeholders should not have to search
for relevant information a cognitively expensive task [19] that can result in
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information loss [107]. Through the combination of gestalt, visual hierarchy,
and careful use of emphasis, it is possible to present a lot of information
by creating two layers: a higher-level “quick glance” layer and a more
detailed lower layer. The quick glance layer should contain the relevant and
clinically actionable information and should be visually salient (i.e “pop-
out”), while the detailed layer should be less visually salient and contain
additional information that some, but not all, stakeholders may wish to have
(based on their tasks and data needs). Fourth,use words precisely. Speci�c
terminology may not be uniformly understood or consistently interpreted
by stakeholders, particularly when the designer and the stakeholders come
from different domains, or even when individuals in the same domain have
markedly different daily work�ows, such as bioinformaticians and clinicians.
Finally, if using images, do so judiciously.Images can be distracting when
they do not convey actionable information relevant to the stakeholder.

3.5 Conclusions

We applied human-centered design methodologies to redesign a clinical
report for a reference microbiology laboratory, but the techniques we used
drawn from more complex applications in information visualization and
human-computer interaction can be used in other scenarios, including
the development of more complex data dashboards, data visualization or
other bioinformatics tools. By introducing these techniques to the microbial
genomics, bioinformatics, and genomic epidemiology communities, we hope
to inspire their further use of evidence-based, human-centric design.
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Chapter 4

Adjutant:
an R-based Tool to Support Topic Discovery for
Systematic and Literature Reviews

Research complete— Terran Adjutant

1 Adjutant is an open-source, interactive, and R-based application to sup-
port mining PubMed for literature reviews. Given a PubMed-compatible
search query, Adjutant downloads the relevant articles and allows the user to
perform an unsupervised clustering analysis to identify data-driven topic clus-
ters. Following clustering, users can also sample documents using different
strategies to obtain a more manageable dataset for further analysis. Adjutant
makes explicit trade-offs between speed and accuracy, which are modi�able
by the user, such that a complete analysis of several thousand documents can
take a few minutes. All analytic datasets generated by Adjutant are saved,
allowing users to easily conduct other downstream analyses that Adjutant
does not explicitly support. We used Adjutant in the methodology presented
in the subsequent Chapter 5 to cluster the genomic epidemiology research
literature with the intention of sampling and classifying data visualization
strategies within different topic clusters.

1This chapter has been previosuly published as anApplication Note[26]:
A. Crisan, T. Munzner, and J. L. Gardy. Adjutant: an R-based Tool to Support Topic Dis-
covery for Systematic and Literature Reviews. Bioinformatics, 35(6):10701072, 08 2018.
doi:10.1093/bioinformatics/bty722
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4.1 Introduction

Literature reviews, whether systematic or not, can necessitate the analysis of
thousands of documents to derive relevant topics, which can quickly become
overwhelming [83]. Software that implements text-mining techniques, such
as Abstrackr [94], EpiphaNet [21], or Retro [134], as well as libraries within
various programming languages, can help to streamline the literature review
process by identifying topics relevant to the user. Yet in spite of the availabil-
ity of such tools, automation is still not routinely used to support literature
reviews [106], perhaps due to existing tools' intensive compute requirements
and the need for extensive user input. To address these limitations, we have
developed Adjutant, an R package with an associated Shiny application
that supports the quick derivation and exploration of topic clusters within
a PubMed document corpus. Adjutant's objective is to provide a rapid
overview of the corpus' topic structure with minimal overhead, facilitating
an individual's literature review. Like the military rank from which is draws
its name, Adjutant is intended to support an individual's expert knowledge,
rather than to supplant it.

4.2 Implementation Details

Adjutant is primarily designed to be used as a graphical user interface (GUI)
that guides a user through a series of steps to query, cluster, explore, and
sub-sample documents from a PubMed query. The GUI is deployed through
R's Shiny framework, such that Adjutant requires no specialized hardware
and all of the analysis takes place on the user's own computer. Adjutant's
work�ow is also visible to a user as part of the R package and can thus be
integrated into an R Script, bypassing the the GUI altogether. In this section
we will brie�y describe the various steps within Adjutant's work�ow. We
refer the reader to Appendix B for speci�c details of the implementation.
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Querying PubMed and Preparing a Document Corpus.Adjutant runs
PubMed-compatible queries through the Entrez API and downloads article
data and metadata from the NCBI servers to a user's own computer. The
time it takes to download the data can vary depending upon the bandwidth of
the Internet connection and number of documents. The resulting document
corpus is then run through the textmining work�ow speci�ed in [109],
with some modi�cations (see Appendix B). The work�ow begins by using
article titles and abstracts to derive a document term matrix (DTM), in
which articles are rows, stemmed single words (terms) are columns, and the
“term frequency inverse document frequency” (tf-idf) is the relevant analytic
metric. The tf-idf metric is a statistic that weighs how important a term is for
a particular article relative to other articles in a corpus and is a commonly
used metric in text analysis.

Unsupervised Topic Clustering.Unsupervised topic clustering is carried
out by �rst dimensionally reducing the data using t-SNE [115] and then
clustering with hbdscan (a hierarchical density based, spatial clustering; [15]).
The t-SNE algorithm is routinely applied to text data [16] and we choose to
use hdbscan for clustering because it has a much more intuitive parameter
of minimum cluster size rather than the more common, and less intuitive,
number of topics in the corpus; Adjutant performs a greedy search to select
a good setting for hdbscan's minimum cluster size parameter. The hbdscan
scan algorithm allows us to generate clusters of different sizes and exclude
articles that do not easily belong to any one cluster. Applying t-SNE ahead
of hbscan speeds up the analysis, in line with Adjutant's goals, but at the
cost of some accuracy [122]. The goal of Adjutant's unsupervised clustering
procedure is to allow a user to get the gist of the document collection
structure, emphasizing ease of use over pure accuracy. In Appendix B we
provide further details on Adjutant's implementation and an evaluation of its
unsupervised clustering techniques.

Sampling and Automatically Saving Analysis Results.A user may wish
to export all the data or some subset of it, either before or after clustering, in
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order to read articles for further analysis. In the 'Sampling' tab of the GUI,
users may choose between downloading all or some subset of the data. If
only downloading a subset of the data, users may do so by ranking articles
by citation count or year, or randomly sampling articles with the option to
weight by year or citation count. If clustering has been performed, subsets
can be obtained from across the topic clusters. Adjutant also automatically
saves analysis documents into R-compatible formats that can be that can be
reloaded and reexamined within Adjutant at a later date or be used in other
downstream analyses that Adjutant does not itself support.

4.3 Usage Scenario

Appendix B contains several detailed examples of Adjutant usage scenarios
in both notebook and video form. Users unfamiliar with the R environment
or who wish to interactively explore their data can use the Adjutant GUI
(Figure 4.1). The GUI guides users through the analysis steps from query
to clustering, provides users with an overview of their search results in the
`Search Results' tab, allows them to generate and explore topic clusters in
the `Topic Discovery' tab, and to export all their data or some subset in
the `Sample Articles' tab. Advanced R users can bypass the GUI altogether
and use Adjutant's underlying methods in their own R Script. We have also
implemented Adjutant's source code in a modular format and have included
extensive documentation, such that advanced users are also free to modify
various aspects of Adjutant's work�ow while still leveraging its GUI.

4.4 Conclusion

Adjutant is an R-based application that supports literature reviews by en-
abling users to quickly visualize and explore the topic structure of a set of
PubMed-derived documents. Its R-based architecture enables users to access
a wide range of analysis tools. Like the military rank from which it draws
its name, Adjutant is intended to support an individual's expert knowledge,
rather than to supplant it.
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Chapter 5

GEViT:
A Systematic Method for Surveying Data Visualizations and
a Resulting Genomic Epidemiology Visualization Typology

It is important to understand what you CAN DO before you learn to measure
how WELL you seem to have DONE it— John W. Tukey

1 Data visualization is an important tool for exploring and communicating
�ndings from genomic and healthcare datasets. Yet, without a systematic
way of organizing and describing the design space of data visualizations,
researchers may not be aware of the breadth of possible visualization design
choices or how to distinguish between good and bad options. We have
developed a method that systematically surveys data visualizations using
the analysis of both text and images. Our method supports the construction
of a visualization design space that is explorable along two axes: why the
visualization was created and how it was constructed. We applied our method
to a corpus of scienti�c research articles from infectious disease genomic
epidemiology and derived a Genomic Epidemiology Visualization Typology
(GEViT) that describes how visualizations were created from a series of
chart types, combinations, and enhancements. We have also implemented

1This chapter has been previously published [24]. As indicated in preface, the names of the chart
combinations have been modi�ed from the original publication.
A. Crisan, J. L. Gardy, and T. Munzner. A Systematic Method for Surveying Data Visualizations and a
Resulting Genomic Epidemiology Visualization Typology: GEViT. Bioinformatics, 35(10):16681676,
09 2018.doi:10.1093/bioinformatics/bty832
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an online gallery that allows others to explore our resulting design space
of visualizations. Our results have important implications for visualization
design and for researchers intending to develop or use data visualization
tools. Finally, the method that we introduce is extensible to constructing
visualizations design spaces across other research areas.

5.1 Introduction

Genome sequencing is becoming an integral part of modern infectious dis-
ease diagnostics [85] and epidemiology [35, 92]. When genomic and/or
phylogenetic data are combined with clinical and epidemiologic data rou-
tinely generated by public health laboratories and programs, the resulting
analyses support a variety of public health professionals, including clinicians,
epidemiologists, researchers, and policymakers, in their real-time decision-
making around treatment, surveillance, and outbreak response. However,
this new data-driven approach to public health also introduces interpretability
challenges it is dif�cult to succinctly and accurately represent such multi-
variate and high-dimensional data, particularly when many stakeholders do
not routinely work with the genomic or phylogenetic data these analyses
rely upon. These challenges arise not only late in an investigation, when
attempting to communicate the results of an analysis, but also in the early
phases of a project, such as initial data exploration and model-building [47].

Data visualization is an important means to address interpretability chal-
lenges, and one which is increasingly being used in genomic epidemiology.
Tools including nextstrain [48] and Microreact [4] use developments in web
technologies to produce sophisticated, interactive data visualizations that
allow users to explore and interact with public health phylogenetic data in an
epidemiological context. Other tools, such as treeviewer [55], GenGIS [88],
or libraries such as PhyloCanvas (http://phylocanvas.org/ ) also
allow researchers varying degrees of freedom to generate visualizations
blending phylogenetic trees with other metadata. As more and more visual-
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ization tools and libraries are being developed for genomic epidemiology, it
is an appropriate moment at which to assess the type of visualizations being
generated and used in public health genomic studies in order to inform the
design of future visualization tools.

When analyzing existing data visualizations, the concept of a visualization
design space becomes important. This design space is de�ned as the com-
binatorial space of data visualizations afforded by graphical marks (points,
lines, and areas) that convey information through their aesthetic properties
(position, colour, size, shape, texture), which are also referred to as channels
in the information visualization research literature [79]. There have been
explicit attempts to describe visualization design spaces and share them
via web galleries, such as SetVis [1], TreeVis [101], Visualizing Health
(https://www.vizhealth.org ), and BioVis Explorer [58], but these
were not created through a process as systematic as what we propose and thus
do not serve to provide insight into current practice in a speci�c research com-
munity. Collections of visualizations also arise implicitly from search engine
results, including Google, PubMed, or Semantic Scholar image searches,
but these lack a systematic taxonomy and ontology describing the visual-
izations themselves. It is only through organizing the visualizations created
by a research community within a design space that common visualization
practices become apparent and better practices can be suggested.

Here, we present a method for the systematic analysis of a visualization
design space. By employing this structured approach to both generating
and analyzing a suite of visualizations within the context of public health
genomic epidemiology, we reveal current data visualization practices com-
mon to this domain. We are able to identify those visualization designs that
could be better supported through new software tools or improved to make
them more effective, as well as areas of the design space that are currently
underused. This methodological contribution can be applied to visualization
design spaces in domains beyond public health genomic epidemiology; here
we describe its application in a speci�c domain as an additional contribution.
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Figure 5.1: Method and application overview. A) Constructing and systematically
analyzing a visualization design space requires analysis of both the literature
and visualizations themselves, using qualitative and quantitative approaches.B)
Automated steps, as indicated by the robot icon, are used in literature analysis to
identify articles in genomic epidemiology and the topics those articles address.
Manual steps, as indicated by the human icon, are used in the analysis of visu-
alizations derived from those articles, followed by further quanti�cation with
automated statistical approaches. See Figure C.1 and C.2 for more details

We present theGenomicEpidemiologyVisualizationTypology (GEViT),
and we provide a web-based platform for exploring GEViT that researchers,
bioinformaticians, and software developers can use to inform their own
genomic epidemiology data visualization practice.
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5.2 Methods

5.2.1 Developing a Method for the Systematic Analysis of Data
Visualizations

Data visualizations are often challenging to analyze because, unlike images
of real-world objects, visualizations in the scienti�c literature are abstractions
devised by researchers to convey a combination of concepts. For example,
phylogenetic trees display genomic data in an evolutionary context, and can
be further enriched to show metadata about the sampled sequences and/or
organisms and the underlying evolutionary processes. Visualizations vary
across research contexts, and can be described using the nested model for
visualization design and analysis [78], which deconstructs a data visualiza-
tion into four layers: the why a research or domain problem that a data
visualization supports; the what the data that needs to be visualized and the
speci�c tasks performed using the data and visualization, such as �nding
trends or communicating a speci�c �nding; the how – the visual design and
interactivity; and the algorithmic implementation of the visualization.

We have constructed a method for the systematic analysis of data visualiza-
tions that speci�cally articulates and then attempts to connect the visualiza-
tion research problem (why) with the visualization design (how) this goal
is possible because we can meaningfully capture and label these elements
of a data visualization through a systematic analysis based on image and
textual analysis. Our method consists of an initial literature analysis phase
followed by a visualization analysis phase, resulting in a visualization design
space in which images are classi�ed according to their why and their how.
The literature analysis phase (Figure 5.1) automatically analyzes text from a
corpus of research articles to identify the topic of a data visualization why it
was created as we assume that different topics are likely to yield different
visualization designs. In the current instantiation of this method, we also
use the literature analysis phase to perform a random strati�ed sampling of
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articles to select a reasonable subset of visualizations for the subsequent
visualization analysis phase, which requires a human-curated inventory of
each image. In this phase, we iteratively apply open and axial qualitative
coding techniques to the set of images harvested from the sampled articles.
The iterative qualitative coding phases [20] ultimately yield a set of hierar-
chical taxonomies that we collectively refer to as a visualization typology
and that allows us to articulate how visualizations are created (Figure 5.1).
Further detail around the methods employed during both phases are provided
below as well as in Figure C.1 and C.22.

Our speci�c application of this method to articles and images from the in-
fectious disease genomic epidemiology context resulted in the Genomic
Epidemiology Visualization Typology (GEViT) a structured way of describ-
ing a collection of visualizations that together form a visualization design
space. As a research community publishes new data visualizations, these
can be annotated using the typology and added to the design space, and may
even result in the addition of new terms to the typology if the image includes
new elements of visual design.

5.2.2 A Systematic Analysis of Data Visualizations from the
Infectious Disease Genomic Epidemiology Research Literature

Literature Analysis

We developed an R package called Adjutant [26], described in detail else-
where, to support our literature analysis. Here, we brie�y describe how
Adjutant's functionalities are used to search, prepare, and cluster articles in
order to derive a representative subset of documents for the visualization
analysis phase.

Search Terms. We searched for articles related to infectious disease ge-

2These �gures and all others with the pre�x C are presented in Appendix C
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nomic epidemiology that were published within the past ten years. We used
two queries, 1)(genome AND (outbreak OR pandemic OR epidemic)) OR

”genomic epidemiology”and 2)(genomic epidemiology OR molecular epi-
demiology) AND (bacteri* OR vir* OR pathogen) AND Genome, combining
their results and retaining only unique records for further analysis. We also
manually included cancer genomics articles that were known to us to use
phylogenetic trees in their analysis.

Data Preparation. The resulting document corpus included PubMed IDs,
year of publication, authors, article titles, article abstract, and any associated
Medical Subject Heading (MeSH) terms. Titles and abstracts were decom-
posed into single terms, stemmed, and �ltered by Adjutant. We calculated
the term frequency inverse document frequency (td-idf) metric for each term,
and created a sparse Document Term Matrix (DTM) for further analysis. A
separate dataset of bigram terms was also prepared and was used only to link
articles toa priori concepts (see below).

Unsupervised Topic Clustering. We used the t-SNE and hdbscan algo-
rithms to perform an unsupervised clustering using the DTM. We used
the Barnes-Hut implementation of t-SNE [115], which allows for some
acceleration at the cost of accuracy, with the perplexity parameter set to
100; otherwise default parameters of the R package implementation were
used [60]. We then used hdbscan [15] on the t-SNE co-ordinate to derive the
topic clusters; we show in our earlier work on Adjutant [26] that this order
of operations yields relevant results. Clusters are sensitive to the minimum
number of cluster points (minPts) parameter supplied to the hdbscan, thus
we tried different minPts values (50, 75, 100, 125, 150, 250, 500, 1000),
observing how the cluster compositions changed. We observed that some
articles never held membership in any cluster irrespective of the parameter
settings and labelled those as “never clustered”, in contrast to articles that
were simply not clustered with our speci�c �nal parameter settings that are
labeled as “currently unclustered”. The �nal set of clusters combined results
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from the minPts 75 and 150 analyses. Each cluster is assigned a topic by
using the two most frequent terms within the cluster. Following topic clus-
tering, we validated our clusters using an external list of human pathogens
(Table C.1), assessing the correspondence between pathogen names and
cluster topics.

Linking To A Priori Concepts.Before conducting the unsupervised clus-
tering, we discussed what results we might expect given our knowledge of
research activities in the public health genomic epidemiology community.
This initial discussion produced a set of 23a priori concepts that we cat-
egorized into three groups:genomic concepts, including drug resistance,
genome, genotype, molecular biology, pathogen characterization, phylogeny,
and population diversity;epidemiology concepts, including clusters, disease
reservoirs, geography, outbreaks (at international, community, and hospital
levels), surveillance, transmission, vaccine, and vectors, andmedical con-
cepts(clinical, cancer, diagnosis, outcome, and treatment). Following the
clustering, we identi�ed bigrams that occurred in at least ten articles within
a pathogen topic cluster and between at least 10% of the other pathogen
topic clusters, and manually assigned those bigrams to ana priori concept
(Table C.2) for example, the bigram ”vancomycin resistance“ was assigned
to thea priori concept of ”drug resistance“. Assignments were validated by
internal discussion among the research team, including a genomic epidemi-
ology expert.

Document Sampling. To produce a manageable, diverse, and systemati-
cally derived dataset for the human-curated visualization analysis step, we
performed random strati�ed sampling on our document corpus, sampling
one document for eacha priori concept within each of the automatically
derived topic clusters. Each sampled article was examined and either consid-
ered acceptable for further analysis or rejected. Most articles were rejected
because they did not contain any �gures; other reasons for rejection included:
full text article not accessible; article not in English; article was about a
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laboratory or bioinformatics technique and not an epidemiological scenario;
no human data; or the article was a review rather than original research. For
each rejected article, we resampled two additional articles, choosing one
for further analysis. Based upon the analysis of the �rst round of sampling,
the second round only sampled articles from 2011 onwards to increase the
chance of sampling articles containing �gures, and also attempted to sample
underrepresenteda priori concepts from the �rst round. Table C.3 contains a
list of all the articles, which round they were sampled in, whether they were
included or rejected, and the reason for rejection.

Figure and Table Extraction. To properly capture the �gures and their
captions, we manually extracted them from PDFs of the sampled articles.
Images were only excluded if they were CONSORT diagrams, �ow diagrams,
or illustrations without underlying data. We also included a small number of
missed opportunity tables stand-alone tables that we felt could have been
visualized, most frequently matrices of numbers or large tables of patient
metadata where each row consisted of a patient.

5.2.3 Visualization Analysis

Extracted �gures and tables were analyzed using iterative open and axial
qualitative coding techniques. Originally derived from the use of Grounded
Theory in sociology, psychology, and anthropology [20], qualitative coding
methods are now being used in human-computer interaction [57] and infor-
mation visualization research [17]. Qualitative coding involves iteratively
examining data and assigning it to some category. The categories themselves
are re�ned and can take on hierarchical relationships through different cycles
of the coding process (see appendix C), and were informed here by concepts
from visualization theory and terminology [79].

Here, we analyzed whole �gures separately we did not decompose multi-part
�gures in order to understand the potential interplay between panels within
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a �gure. We began by creating a taxonomic code describing the types of
charts present in different �gures. We next examined how different types of
images were combined to show different aspects of the data and thus created
a chart combination taxonomy. Finally, we created a taxonomy that captured
how basic chart types were enhanced to encode additional information. We
refer to the collection of taxonomic code sets for chart types, combinations,
and enhancements that were derived from this document corpus of genomic
epidemiology research articles as GEViT. We conducted three rounds of
qualitative coding, in which we reviewed �gures and made additions or
changes to GEViT; by the third round of coding, there were too few additional
modi�cations to warrant a subsequent round.

Creating an Explorable Visualization Design Space

We used the results of the literature and the visualization analysis phases to
produce an explorable visualization design space, which is freely available
at http://gevit.net . The images presented gallery are used under
Fair Use copyright terms and we provide links back to the original source
publications.

5.3 Results

5.3.1 Literature Analysis

Literature Mining Showed Article Clusters According to Pathogens

We assembled a document corpus of 17,974 articles pertaining to infectious
disease genomic epidemiology research published in the past 10 years (Fig-
ure 5.2). Using article titles and abstracts we derived topic clusters in an
unsupervised manner, and classi�ed articles as either belonging to a named
topic cluster, not belonging to a cluster under current parameter settings,
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Figure 5.2: Summary of literature analysis steps and document sampling

or never being clustered under any parameter settings (Figure 5.3A). Arti-
cles that never formed part of a cluster were removed from further analysis,
leaving 15,315 documents of which 11,416 (75% of the initial document
corpus) formed 32 topic clusters (Figure 5.3B). Clusters were assigned top-
ics via the top two most frequent terms within the cluster, revealing that
infectious disease genomic epidemiology literature is primarily structured
around pathogens. We validated our results by comparing our automatically
derived cluster naming to the distribution of pathogen terms from an external
list (Table C.13, Figure 5.3C), and found there to be a strong correspon-
dence between the automatically derived cluster topics and the propensity
for pathogen terms to appear within clusters of the same name (for example,
the term “in�uenza virus” occurs primarily within the “in�uenza-viru” clus-

3These tables and all others with the pre�x C are presented in appendix C
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