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Abstract

Technological innovations have allowed for a greater variety of data, most notably

microbial genomic data, to be collected, integrated, analyzed, and visualized for

epidemiological investigations. While analytic methods have evolved in light of this

technological change, data visualizations systems have lagged behind.

I take a novel approach that integrates methods from information visualization,

human computer interaction, machine learning, and statistics to address unmet data

visualization needs in microbial genomic epidemiology (genEpi). This approach

also enables me to generate study artifacts that can be used to address regulatory

and organizational constraints arising in domains where the use of data is highly

restricted. I first present a mixed methods approach to understand the needs,

data, tasks, and constraints of public health stakeholders that are charged with

interpreting the findings of these data. I demonstrate how this approach can be

used to communicate new and heterogeneous types of data in a clinical report

that is read by stakeholders in different roles. I next present a novel method

for systematically reviewing data visualizations that I use to develop a Genomic

Epidemiology Visualization Typology (GEViT), which enables others to explore
and characterize the way the data could be visualized. Finally, I use these collective

findings to inform the design and implementation of data visualization tools:

Adjutant, the GEViT Gallery, minCombinR, and GEViTRec. Adjutant enables rapid

and unsupervised topic clustering of PubMed article corpuses to aid systematic

and literature reviews. The GEViT gallery is a browsable interface for exploring

data visualizations specific to the microbial genEpi domain. minCombinR lowers
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the burden to stakeholders for generating combinations of data visualizations for

heterogeneous data. Finally, GEViTRec takes a novel approach to the automatic

generation of data visualizations that can help stakeholders familiarize themselves

with new data. All of these tools integrate with analytic methods.

This research makes novel contributions to the design and implementation of data

visualization systems that impact microbial genomic epidemiological data collected

for public health investigations. The challenges addressed here are not unique to

this domain and my contributions are extensible to other domains grappling with

heterogeneous, multidimensional, and restricted data.

iv



Lay Summary

New technologies are enabling public health agencies to collect more data of many

different types, which can be used to inform public health policy and practice. Yet,

this new “big data” is challenging to analyze and to communicate to stakeholders

that need to make decisions with data. In this dissertation research, I developed

new approaches for understanding that relationships between data, how it used

by stakeholders, and the ways that this data can be visualized. Data visualization

forms an effective bridge between increasingly complex data and the methods that

are used to analyze it. I have created new techniques and software systems to

help stakeholders effectively analyze and visualize their data. My research makes

important contributions toward building better analysis tools to help stakeholders in

public health, and even beyond, work effectively with complex data.
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Preface

Chapters of this dissertation have been previously published with different co-

authors. I acknowledge the collaborative nature of this work by using “we” through-

out the thesis, with the exception of the Introduction and Conclusion chapters where

“I” is used. All research chapters are presented as they were originally published.

Chapters 1 and 8 have not been previously published and have been written by me

with input from both Drs. Munzner and Gardy.

Chapter 2 has been previously published in the Beyond Time and Errors (BELIV)

2016 workshop proceedings [23], associated with the IEEE VIS week conference:

A. Crisan, J. L. Gardy, and T. Munzner. On regulatory and organizational
constraints in visualization design and evaluation. Proc. Workshop Beyond
Time and Errors: Novel Evaluation Methods for Visualization, 1:19, 2016.
doi:10.1145/2993901.2993911

I conducted the analysis for the case study and wrote the initial drafts of the publi-

cation. All authors contributed to the analysis and writing of the final publication.

Chapter 3 has been previously published in PeerJ [25]

A. Crisan, G. McKee, T. Munzner, and J. L. Gardy. Evidence-based
design and evaluation of a whole genome sequencing clinical report
for the reference microbiology laboratory. PeerJ, 6:e4218, Jan. 2018.
doi:10.7717/peerj.4218

vi



This research was borne out of a collaboration with the COMPASS-TB team at Pub-

lic Health England (PHE) to redesign an existing clinical report for next generation

sequencing of data. In addition to the report re-design collaboration with PHE, the

larger goal of this study was also to collect stakeholder information that could be

used to inform subsequent research aims. All authors jointly conceived of the study

designs and contributed to the writing of the final publication. Geoffery McKee

and I implemented the online surveys, conducted the analysis, developed the final

re-designed clinical report, and wrote the initial drafts of the publication. Zipeng

Liu, Kimberly Dextras-Romangnino, Dylan Dong, and George Hattab participated

in the Design Sprint portion of this research and contributed prototype designs that

were evaluated the Design Choice Questionnaire. The content of Appendix A was

also published alongside this work and includes the online surveys deployed for this

study and the notes I complied to justify design the final clinical report. We have

also produced a LaTeX template for the clinical report that is available online:

https://github.com/amcrisan/TB-WGS-MicroReport

All study resources and materials that could be publicly released were made available

online ahead of publication:

https://github.com/amcrisan/TBReportRedesign

Chapter 4 has been previously published in Bioinformatics [26]:

A. Crisan, T. Munzner, and J. L. Gardy. Adjutant: an R-based Tool to Support
Topic Discovery for Systematic and Literature Reviews. Bioinformatics,
35(6):10701072, 08 2018. doi:10.1093/bioinformatics/bty722

All authors contributed to the writing of the final publication. I developed and

implemented the underlying programmatic logic and the Graphical User Interface

(GUI) for Adjutant. The content of Appendix B was published alongside the initial

publication and contains substantial additional analyses on Adjutant’s approach to

rapid and unsupervised topic clustering.

Adjutant is available as an open source R package on GitHub:

https://github.com/amcrisan/Adjutant
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Chapter 5 has been previously published in Bioinformatics [24]:

A. Crisan, J. L. Gardy, and T. Munzner. A Systematic Method for Sur-
veying Data Visualizations and a Resulting Genomic Epidemiology Visu-
alization Typology: GEViT. Bioinformatics, 35(10):16681676, 09 2018.
doi:10.1093/bioinformatics/bty832

All authors jointly conceived of the study and contributed to the writing of the final

publication. I developed the initial study ideas, created and implemented the sys-

tematic review and analysis methodology, conducted the preliminary analyses, and

finally implemented and deployed the online gallery (http://gevit.net). The

content of Appendix C was published alongside this work and includes additional

information about the methodologies used in study as well as some supplementary

figures. The version of the publication that appears here has a slight modification rel-

ative to the original publication. Following feedback from the research community,

we changed the names of the combinations from “Composite”, “Small Multiples”,

“Many Types Linked”, and “Many Types General” to “Spatially Aligned”, “Small

Multiples”, “Visually Aligned”, and “Unaligned”, respectively.

All study resources and materials were made available online ahead of publication:

https://github.com/amcrisan/GEViTAnalysisRelease

Chapter 6 was submitted for publication [27]:

A. Crisan, S. Fisher, S. Kasica, J.L. Gardy, and T. Munzner (2019). min-
CombinR: Coordinating Chart Combinations with Minimal Specifications.
Submitted for Publication

Myself, Dr. Munzner, and Shannah Fisher conceived of the minCombinR’s archi-

tecture and contributed to the writing of the final publication. Myself and Shannah

implemented minCombinR as an open source package and conducted tests into its

capabilities. Stephen Kasica help with the comparison to other tools. Appendix D
was submitted along this work.

All study resources and materials were made available online ahead of publication :

https://github.com/amcrisan/minCombinR
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Chapter 7 was submitted for publication [28]:

A. Crisan, J.L. Gardy, and T. Munzner (2019). GEViTRec: Domain-Aware
Visualization Recommendation for Data Reconnaissance and Harmonization.
Submitted for Publication

Myself and Dr. Munzner conceived of the original project objectives and contributed

to the writing of the final publication. Dr. Munzner and I jointly conceived of the

data reconnaissance and task wrangling conceptual framework presented in this

work. I developed and implemented the algorithmic logic behind GEViTRec and

wrote the initial drafts of the publication. The content of Appendix E was submitted

alongside this work as a proof-of-concept for GEViTRec.

All study resources and materials were made available online ahead of publication:

https://github.com/amcrisan/GEViTRec

Presentation Style of Dissertation, Chapters, and Appendices

The manuscripts that comprise the aforementioned research chapters are
written for different audiences and venues, as such they have different writing
styles that are dependent upon the publication conventions of each commu-
nity. Throughout, I also treat the term “data” as plural (for example, I write
‘these data’ and not ‘the data’).

Chapters 2, 6, and 7 are written primarily for an infovis research audience,
have an informal tone, and have a looser manuscript structure that includes
an introduction, related work (either and the beginning or the end of the
manuscript), a theoretical description of an algorithm or toolkit, implementa-
tion details, results, discussion and conclusions.

Chapters 3 and 5 are written for a bioinformatics and genomic epidemiology
audience, have a more formal tone, and follow a so-called “traditional
laboratory style” manuscript, that is they have five strictly defined sections :
introduction, materials and methods, results, discussion, and conclusions.
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Chapter 4 is also written for a bioinformatics audience, but as an “application
note” – a format that briefly describes a software application.

Following the convention of the information visualization research literature
I refer to the work conducted within these chapters as projects. A project
can comprise one or more studies.

The appendices are all written in a relatively informal and conversational tone.
They comprise additional figures, tables, details on the methods, and finally
tutorials that were published online and also submitted as supplementary
materials that accompanied their respective publications.

A final stylistic note is on the structure of this thesis document. As already
indicated, chapters are presented in their published (or submitted) structure,
which means that each chapter contains an abstract, its own introduction, and
conclusions. This is different than other thesis presentation styles that have
a single Introduction and Conclusion for the entire document; my chosen
presentation style is in keeping with a manuscript thesis format. In this thesis
document, I used the Introduction (Chapter 1) to present an overview of the
individual research chapters, a summary of their contributions, and how all of
these chapters are tied together. In the Conclusions (Chapter 8), I once again
summarize the overall findings of these chapters and their contributions, but
also comment on the post-publication reception of my research by the public
health and visualization communities.

Ethics Approval

The studies described in this dissertation work conducted with the approval of
the UBC Behavioral Research Ethics Board, certificate number H10-03336.

x



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Lay Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Situating My Research in Prior Work . . . . . . . . . . . . 3
1.2 Research Overview . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Chronology . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Summary of Research Projects and Contributions . . . . . . 11

1.3.1 Chapter 2: Regulatory and Organizational Constraints
in Visualization Design and Analysis . . . . . . . . 12

xi



1.3.2 Chapter 3: Evidence-based design . . . . . . . . . . 14
1.3.3 Chapter 4: Adjutant . . . . . . . . . . . . . . . . . 16
1.3.4 Chapter 5: GEViT . . . . . . . . . . . . . . . . . . . 17
1.3.5 Chapter 6: minCombinR . . . . . . . . . . . . . . . 19
1.3.6 Chapter 7: GEViTRec . . . . . . . . . . . . . . . . . 21
1.3.7 Summary of Contributions . . . . . . . . . . . . . . 23

2 On Regulatory and Organizational Constraints
in Visualization Design and Evaluation . . . . . . . . . . . . . 24
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Defining External Constraints . . . . . . . . . . . . . . . . 26

2.2.1 Implications for Evaluation . . . . . . . . . . . . . . 27
2.2.2 Example: Hypothesis Generation Considered Harmful 28
2.2.3 Example: Agile Development Considered Harmful . 29

2.3 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 Visualization Methodologies . . . . . . . . . . . . . 30
2.3.2 External Disciplines . . . . . . . . . . . . . . . . . . 31

2.4 Guidelines for Evaluating External Constraints . . . . . . . 32
2.4.1 Defining Stakeholder Roles . . . . . . . . . . . . . 33
2.4.2 Generation of Additional Artifacts . . . . . . . . . . 36
2.4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Case Study: Healthcare . . . . . . . . . . . . . . . . . . . 39
2.5.1 Constraints in Healthcare . . . . . . . . . . . . . . . 41
2.5.2 Lessons Learned in Developing a TB Decision Sup-

port Tool . . . . . . . . . . . . . . . . . . . . . . . 42

3 Evidence Based Design:
Applying a Design Study Methodology to the Redesign of a
Whole Genome Sequencing Clinical Report . . . . . . . . . . 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.1 Human-Centered Design in the Clinical Laboratory . . 51
3.1.2 Collaboration Context COMPASS-TB . . . . . . . 52

xii



3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . 54
3.2.1 Overview of Design Study Methodology . . . . . . 54
3.2.2 Discovery Stage . . . . . . . . . . . . . . . . . . . 56
3.2.3 Design Stage . . . . . . . . . . . . . . . . . . . . . . 57
3.2.4 Implementation Stage . . . . . . . . . . . . . . . . 59

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.1 Experts Emphasized Prioritizing Information and Re-

vealed Constraints . . . . . . . . . . . . . . . . . . 60
3.3.2 Experts Vary in Their Perception of Different Data

Types . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.3 WGS Data is Vital, but Some Lack Confidence in its

Interpretation . . . . . . . . . . . . . . . . . . . . . 64
3.3.4 Respondent Consensus Suggests a Role for WGS in

Diagnosis and Treatment Tasks . . . . . . . . . . . 65
3.3.5 Prototyping Via a Design Sprint Produces a Range of

Design Alternatives . . . . . . . . . . . . . . . . . 66
3.3.6 The Design Choice Questionnaire Quantifies Partici-

pant Preferences for Specific Design Elements . . . 68
3.3.7 Qualitative Data Affords Additional Insights into Re-

port Design . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.8 Developing a Final Report Template . . . . . . . . . 74

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Adjutant:
An R-based Tool to Support Topic Discovery for
Systematic and Literature Reviews . . . . . . . . . . . . . . . 81
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 Implementation Details . . . . . . . . . . . . . . . . . . . 82
4.3 Usage Scenario . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xiii



5 GEViT:
A Systematic Method for Surveying Data Visualizations and
a Resulting Genomic Epidemiology Visualization Typology . 86
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.1 Developing a Method for the Systematic Analysis of
Data Visualizations . . . . . . . . . . . . . . . . . . 90

5.2.2 A Systematic Analysis of Data Visualizations from
the Infectious Disease Genomic Epidemiology Re-
search Literature . . . . . . . . . . . . . . . . . . . . 91

5.2.3 Visualization Analysis . . . . . . . . . . . . . . . . 94
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.1 Literature Analysis . . . . . . . . . . . . . . . . . . 95
5.3.2 Visualization Analysis . . . . . . . . . . . . . . . . 99

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.4.1 Implications of our Findings for Visualization Design 108
5.4.2 Implications of our Findings for the Genomic Epi-

demiology Community . . . . . . . . . . . . . . . . 110
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 minCombinR:
Coordinating Chart Combinations with Minimal Specifications 112
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.2 Domain Motivation and Design Decisions . . . . . . . . . 115

6.2.1 GEViT Findings . . . . . . . . . . . . . . . . . . . 116
6.2.2 Design Decisions . . . . . . . . . . . . . . . . . . . . 117

6.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.1 Stand-Alone Applications . . . . . . . . . . . . . . 119
6.3.2 Charting Libraries and Packages . . . . . . . . . . . 120
6.3.3 Domain-Specific Tools . . . . . . . . . . . . . . . . . 121

6.4 Design of minCombinR . . . . . . . . . . . . . . . . . . . 122
6.4.1 From Typology to Toolkit . . . . . . . . . . . . . . 122

xiv



6.4.2 Gradual Binding Architecture . . . . . . . . . . . . 124
6.4.3 Specification . . . . . . . . . . . . . . . . . . . . . 125
6.4.4 Creation and Integration . . . . . . . . . . . . . . . 129
6.4.5 Arrangement and Display . . . . . . . . . . . . . . . 131

6.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . 132
6.5.1 User Functions and Specifications . . . . . . . . . . 133
6.5.2 Supported Data and Chart Types . . . . . . . . . . . . 137
6.5.3 Combination Control Flows . . . . . . . . . . . . . . 137

6.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.6.1 Showcasing minCombinR on Different Datasets . . 140
6.6.2 Comparison to Existing Tools . . . . . . . . . . . . 140

6.7 Discussion and Future Work . . . . . . . . . . . . . . . . . 144
6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7 GEViTRec:
Domain-Aware Visualization Recommendation for
Data Reconnaissance and Harmonization . . . . . . . . . . . 146
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.3 Data Reconnaissance and Task Wrangling . . . . . . . . . . 151

7.3.1 Operational Definitions . . . . . . . . . . . . . . . 152
7.3.2 Conceptual Framework . . . . . . . . . . . . . . . 153

7.4 Formalisms for Visualization Recommendation . . . . . . . 156
7.4.1 Domain Prevalence Design Spaces . . . . . . . . . . 157
7.4.2 Data Model . . . . . . . . . . . . . . . . . . . . . . 158
7.4.3 Visualization Specification . . . . . . . . . . . . . . 159

7.5 General Algorithm . . . . . . . . . . . . . . . . . . . . . . 160
7.5.1 Mapping From Datatypes to Visual Encodings with a

Design Space . . . . . . . . . . . . . . . . . . . . . 160
7.5.2 Data Harmonization and Entity Graph Generation . 162
7.5.3 Ranking Paths Within the Entity Graph . . . . . . . 164
7.5.4 Generating Specifications . . . . . . . . . . . . . . 166

xv



7.5.5 Composing Views for Display . . . . . . . . . . . . 169
7.6 Implementation of GEViTRec . . . . . . . . . . . . . . . . 169
7.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.8.1 Rule-Based Approaches . . . . . . . . . . . . . . . 176
7.8.2 Ontology-Based Approaches . . . . . . . . . . . . . . 177
7.8.3 Machine Learning . . . . . . . . . . . . . . . . . . . 177
7.8.4 Stack Comparisons . . . . . . . . . . . . . . . . . . 178

7.9 Discussion and Future Work . . . . . . . . . . . . . . . . . 179
7.9.1 Generalizability . . . . . . . . . . . . . . . . . . . 179
7.9.2 Is Relevance Relevant? . . . . . . . . . . . . . . . . 180

7.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

8 Reflections and Conclusion . . . . . . . . . . . . . . . . . . . 183
8.1 Reflections on Research Projects and Contributions . . . . 185

8.1.1 Regulatory and Organizational Constraints . . . . . 185
8.1.2 Evidence Based Design . . . . . . . . . . . . . . . 186
8.1.3 Adjutant . . . . . . . . . . . . . . . . . . . . . . . 188
8.1.4 GEViT and the GEViT Gallery . . . . . . . . . . . 188
8.1.5 minCombinR . . . . . . . . . . . . . . . . . . . . . . 191
8.1.6 GEViTREC . . . . . . . . . . . . . . . . . . . . . . . 191

8.2 Reflecting on the Merits and Challenges
of Interdisciplinary Research . . . . . . . . . . . . . . . . 193

8.3 Overall Limitations and Future Work . . . . . . . . . . . . 195
8.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . 198

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

A Evidence Based Design Supplemental Materials . . . . . . . . 218
A.1 Supplemental Figures . . . . . . . . . . . . . . . . . . . . 219
A.2 Supplemental Tables . . . . . . . . . . . . . . . . . . . . . 220
A.3 Justification for Final Design Choices by Section . . . . . . 228

A.3.1 Analysis of Quantitative and Qualitative Results . . 228

xvi



A.3.2 ISO15189 Requirements . . . . . . . . . . . . . . . 232
A.4 Task and Data Questionnaire Online Survey . . . . . . . . 238
A.5 Design Choice Questionnaire Online Survey . . . . . . . . 254

B Adjutant Supplemental Materials . . . . . . . . . . . . . . . 277
B.1 Adjutant Implementation Details . . . . . . . . . . . . . . . 277
B.2 Adjutant in Action . . . . . . . . . . . . . . . . . . . . . . 279

B.2.1 t-SNE with Simulated Data . . . . . . . . . . . . . 279
B.2.2 Investigating Adjutant with Real Data . . . . . . . . 300
B.2.3 Alternative Approaches . . . . . . . . . . . . . . . 312

C GEViT Supplemental Materials . . . . . . . . . . . . . . . . . 316
C.1 Supplemental Methods for Visualization Analysis . . . . . 316
C.2 Supplemental Figures . . . . . . . . . . . . . . . . . . . . 318
C.3 Supplemental Tables . . . . . . . . . . . . . . . . . . . . . 319

D minCombinR Supplemental Materials . . . . . . . . . . . . . 336
D.1 Generating Simple Charts with minCombinr . . . . . . . . 336

D.1.1 Common Statistical Charts . . . . . . . . . . . . . . 338
D.1.2 Colour Charts . . . . . . . . . . . . . . . . . . . . . 341
D.1.3 Relational Charts . . . . . . . . . . . . . . . . . . . 342
D.1.4 Spatial Charts . . . . . . . . . . . . . . . . . . . . 343
D.1.5 Tree Charts . . . . . . . . . . . . . . . . . . . . . . . 347
D.1.6 Genomic charts . . . . . . . . . . . . . . . . . . . . . 347
D.1.7 Temporal Charts . . . . . . . . . . . . . . . . . . . . 351
D.1.8 Images . . . . . . . . . . . . . . . . . . . . . . . . 353

D.2 Generating Combinations of Charts with minCombinR . . . 358
D.2.1 Unaligned . . . . . . . . . . . . . . . . . . . . . . 359
D.2.2 Small Multiples . . . . . . . . . . . . . . . . . . . 360
D.2.3 Colour Aligned Combinations . . . . . . . . . . . . 366
D.2.4 Spatially Aligned Combinations . . . . . . . . . . . 368

E GEViTRec Supplemental Materials . . . . . . . . . . . . . . 375

xvii



E.1 Data Harmonization . . . . . . . . . . . . . . . . . . . . . . 377
E.2 Generate Specifications . . . . . . . . . . . . . . . . . . . . 377
E.3 Generated Views . . . . . . . . . . . . . . . . . . . . . . . 378

xviii



List of Tables

Table 3.1 Evidence based design study participants . . . . . . . . 60

Table A.1 Task and data questionnaire study participants . . . . . . 220
Table A.2 Respondents anticipated future use of molecular/genomic

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Table A.3 Respondents’ confidence to interpret laboratory data . . 222
Table A.4 Respondents’ confidence using genomic data . . . . . . 223
Table A.5 Identification barriers impacting respondents’ workflows 224
Table A.6 Summary of design choice questionnaire results . . . . . 225

Table C.1 External list of pathogens . . . . . . . . . . . . . . . . . 320
Table C.2 Mapping of bigrams to a priori concepts . . . . . . . . . 322
Table C.3 Master list of sampled articles . . . . . . . . . . . . . . 334
Table C.4 Final set of pathogens and pathogen clusters . . . . . . . 334

xix



List of Figures

Figure 1.1 Overview of research projects, questions, and contributions 9
Figure 1.2 Doctoral research timeline . . . . . . . . . . . . . . . . 10

Figure 2.1 Summary of our proposed additions to the Design Study
Methodology . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 2.2 Power interest matrix of stakeholder roles . . . . . . . . 33

Figure 3.1 Initial COMPASS-TB report design . . . . . . . . . . . 53
Figure 3.2 Human-centered design approach . . . . . . . . . . . . 55
Figure 3.3 Expert consensus for workflow tasks and data . . . . . 63
Figure 3.4 Digital mockups of complete report prototypes . . . . . 66
Figure 3.5 Isolated design components . . . . . . . . . . . . . . . . 67
Figure 3.6 Design choice questionnaire results . . . . . . . . . . . 70
Figure 3.7 Original and revised reports . . . . . . . . . . . . . . . 74

Figure 4.1 Adjutant user interface . . . . . . . . . . . . . . . . . . 83

Figure 5.1 GEViT method and application overview . . . . . . . . 89
Figure 5.2 Summary of literature analysis steps and document sam-

pling . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 5.3 Summary of literature analysis results . . . . . . . . . . . 97
Figure 5.4 Chart types in GEViT . . . . . . . . . . . . . . . . . . 102
Figure 5.5 Chart combinations in GEViT . . . . . . . . . . . . . . 103
Figure 5.6 Chart enhancements in GEViT . . . . . . . . . . . . . 104

xx



Figure 6.1 Architectural layers of minCombinR . . . . . . . . . . 123
Figure 6.2 User and derived partial specifications . . . . . . . . . 124
Figure 6.3 Overall flow of specifications and control in minCombinR 126
Figure 6.4 Currently implemented chart types in minCombinR . . 132
Figure 6.5 Colour aligned combination of disparate static charts . . 135
Figure 6.6 Code, control flow, and resulting displays for the four

combination types . . . . . . . . . . . . . . . . . . . . 136
Figure 6.7 minCombinR comparison to related work . . . . . . . . 143

Figure 7.1 Conceptual framework for data reconnaissance and task
wrangling . . . . . . . . . . . . . . . . . . . . . . . . . 153

Figure 7.2 Data reconnaissance and task wrangling phases over time 154
Figure 7.3 Comparing different approaches to human centered design154
Figure 7.4 Data reconnaissance and task wrangling phase breakdown 155
Figure 7.5 Data harmonization and entity graph generation

schematic algorithm overview . . . . . . . . . . . . . . 163
Figure 7.6 GEViTRec internal visual encoding templates . . . . . 166
Figure 7.7 Mapping from datatypes to chart types . . . . . . . . . 168
Figure 7.8 GEViTRec code and resulting visualization . . . . . . . 172
Figure 7.9 GEViTRec results with Ebola outbreak data . . . . . . 173

Figure A.1 Survey responses with confidence intervals . . . . . . . 219

Figure B.1 Simple example: two class simulated distributions . . . . 281
Figure B.2 Simple example: applying t-SNE . . . . . . . . . . . . 283
Figure B.3 Simple example: t-SNE results with varying parameters 284
Figure B.4 Simple example: t-SNE results with varying parameters II 286
Figure B.5 Simple example: hdbscan on dimensionally reduced data 287
Figure B.6 Simple example: clusters resolved by Adjutant . . . . . 289
Figure B.7 Complex example: multiclass simulated distributions . 292
Figure B.8 Complex example: t-SNE results with varying parameters II293
Figure B.9 Complex example: hdbscan on dimensionally reduced

data . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

xxi



Figure B.10 Complex example: clusters resolved by Adjutant . . . . . 297
Figure B.11 Complex example with noise . . . . . . . . . . . . . . 298
Figure B.12 Complex example with noise: t-SNE results with varying

parameters . . . . . . . . . . . . . . . . . . . . . . . . 298
Figure B.13 Complex example with noise: hdbscan on dimensionally

reduced data . . . . . . . . . . . . . . . . . . . . . . . 299
Figure B.14 Complex example with noise: clusters resolved by Adjutant299
Figure B.15 Real data: clusters identified by Adjutant . . . . . . . . 303
Figure B.16 Real data: distribution of terms across clusters . . . . . 306
Figure B.17 Real data: distribution of terms across clusters II . . . . . 307
Figure B.18 Real data: distribution of terms across clusters III . . . 310
Figure B.19 Real data: distribution of terms across clusters IV . . . . 311
Figure B.20 Real data: LDA clusters and topics . . . . . . . . . . . 314
Figure B.21 Real data: LDA gamma distribution . . . . . . . . . . . 315

Figure C.1 Literature mining methods . . . . . . . . . . . . . . . . 318
Figure C.2 Qualitative and quantitative visualization analysis methods318
Figure C.3 A priori concepts distributed among pathogens and the

number of bigrams assigned to each concept . . . . . . 319
Figure C.4 Distribution of chart types across articles and the co-

occurrence of chart types with figures . . . . . . . . . . 319

Figure E.1 GEViTRec entity graph . . . . . . . . . . . . . . . . . 378
Figure E.2 GEViTRec generated view #1 . . . . . . . . . . . . . . 379
Figure E.3 GEViTRec generated view #2 . . . . . . . . . . . . . . 380
Figure E.4 GEViTRec generated view #3 . . . . . . . . . . . . . . . 381
Figure E.5 GEViTRec generated view #4 . . . . . . . . . . . . . . 382
Figure E.6 GEViTRec generated view #5 . . . . . . . . . . . . . . 383

xxii



Glossary

BCCDC British Columbia Centre for Disease Control

DSM Design Study Methodology

genEpi Genomic Epidemiology

GEViT Genomic Epidemiology Visualization Typology

GUI Graphical User Interface

HCI Human Computer Interaction

infovis Information Visualization

PHE Public Health England

TB Tuberculosis

UBC University of British Columbia

WGS Whole Genome Sequencing

xxiii



Acknowledgments

Foremost I would like to thank my supervisors, Dr. Tamara Munzner and Dr.
Jennnifer Gardy, for their support and guidance over these past four years.
They gave me the opportunity to pursue a research trajectory I deeply cared
about and gave me the freedom the explore new methodological approaches
that satisfied my intellectual curiosities.

I would like to thank the members of my supervisory committee, Dr. Bonnie
Henry and Dr. Raymond Ng. Given the interdisciplinary nature of my
research, it was important for me to have voices from both my chosen
disciplines, epidemiology and computer science, appraise my work. Both
Drs. Henry and Ng brought important perspectives to my research and I am
grateful for their feedback.

The members of the University of British Columbia (UBC) Information
Visualization (infovis) groups, both past and present, have also provided
a valuable perspective to my research and were often among the first to
appraise its strengths and weakness. I would like to thank Michelle Borkin,
Matthew Brehmer, Kimberly Dextras-Romangnino, Dylan Dong, Madison
Elliott, Shannah Fisher, George Hattab, Stephen Kasica, Zipeng Liu, and
Michael Oppermann.

I have also been fortunate to have collaborators at the British Columbia
Centre for Disease Control (BCCDC), that were my colleagues prior to and
throughout by doctoral studies: Dr. Robert Belshaw, Ms. Catharine Cham-

xxiv



bers, Dr. Victoria Cook, Mr. Michael Coss, Dr. Jennifer Guthrie, Dr. James
Johnston, Dr. William Hsiao, Dr. Geoffery McKee, Dr. Michael Otterstatter,
Dr. Natalie Prystajecky, and Dr. David Roth. The members of the Canadian
Bioinformatics Workshop on Microbial Genomic Epidemiology and the
Biological Data Visualization community have also played an important role
in helping me refine and disseminate my research and I am grateful for their
collegiality. Lastly, among my colleagues I wish to thank the Bedford Lab at
the Fred Hutch Cancer Research Centre, who let me occupy a space in their
lab during my many visits to Seattle.

I have been fortunate in my professional career to develop lasting friendships
that have helped me make the difficult decisions in my research career. Dr.
Christine Buerki has been a supportive mentor for nearly a decade. She
helped me develop into a better researcher and helped me to get started
along the path toward my doctoral research. I am immensely grateful to her.
Dr. Ruth Miller (and her dad Bill) gave me the push I needed to apply to a
doctoral program and I am grateful for their confidence in me when I myself
was unsure. Finally, Ms. Marguerite du Plessis, to whom I grateful for her
friendship, encouragement, and willingness to listen to my rants.

I would also like to acknowledge by funding sources: Vanier Canada Gradu-
ate Scholarships, UBC Four Year Fellowships, the Li Tze Fong Memorial
Award (UBC Affiliated Fellowships), and the UBC Public Scholars Program.
I have also been fortunate to have much of my conference travel sponsored
through awards from several organizations: the American Microbiology
Society, the Canadian Bioinformatics Workshop, the Canadian Institutes of
Health Research Institute for Population and Public Health, the Department
of Biomedical Informatics at Harvard Medical School, the International
Society for Computation Biology, the IEEE VIS Doctoral Colloquium, the
University of Manitoba, and the Wellcome Genome Campus Scientific Con-
ferences.

xxv



Most important of all, I would like to thank my family. I arrived with my
Mom, Dad, and younger brother in Canada in July of 1990 and I defended
this dissertation 25 years to the day that I became a Canadian citizen. When
we arrived in Canada, my parents hoped to open up as many opportunities to
me as possible and along the way they encouraged me explore my interests
and curiosities. Because of this support, I grew up into the scientist I had
always hoped to become. From a distance, my Romanian grandparents,
cousins, aunts, and uncles sent their love and encouragement as well. Over
time I have been fortunate to extend this family, and so would also like to
thank the Brehmer clan for welcoming me and cheering me on.

The support of my family was important to taking on this doctoral research.
Deciding to return to graduate school from industry was tough decision and
one that I was uncertain about in the beginning. You don’t quite know until
the end if it will all pay off, or if you have forgone opportunities by choosing
academia rather than remain in the fray of industry. When I won the Vanier
Scholarship I called my mom and dad to tell them the news and there was a
pause on the phone before my dad said “we made it”. In those words, my
concerns about lost opportunity costs dissolved and I was able to pursue a
research program that I was fully invested in and proud of.

Lastly, but most importantly, an especially grateful note of thanks is to my
husband Dr. Matthew Brehmer, who has been my source of inspiration,
sanity, terrible puns, food, understanding, and love. It was been a joy to be
on this journey together.

xxvi



Dedication

For my grandmothers, Ana and Maria

xxvii



Chapter 1

Introduction
We are facing many new challenges, and these cannot be understood by using

the visual metaphors we’ve been using for centuries — Manuel Lima

Data visualization has been a component of public health research and prac-
tice since John Snow created his infamous 1854 cholera map. The dominant
narrative of Snow’s story is that by plotting the cases of infected individu-
als on a map, he formulated a hypothesis that the Broad street pump was
the source of the outbreak. He verified this hypothesis by removing the
pump handle and ending the outbreak. The factually accurate narrative is
more complex and illustrates the dynamic interplay between data, statistical
analyses, visualization, and actionable insights. Snow initially undertook a
considerable statistical effort to implicate water, and not commonly held be-
lief of bad air (“miasmata”), as the vector transmitting the cholera contagion.
While he suspected the Broad Street pump as the source of the outbreak he
still developed the cholera case map to confirm his hypothesis, which was
further verified by removing the pump handle. It was through the combined
expository power of the statistical procedures and data visualization that
Snow produced a potent analytic repertoire that today still inspires analysts in
public health and beyond. For his investigation and resolution of the cholera
outbreak, Snow is credited as the founder of the discipline of epidemiology.
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Since Snow’s seminal research epidemiology has significantly evolved, intro-
ducing new, heterogeneous, and multidimensional sources of data, together
with increasingly complex analytic procedures [42]. Within public health,
an influx of new whole genome data has changed the resolution that stake-
holders, which includes clinicians, nurses, policy makers, epidemiologists,
analysts, and researchers, can investigate disease outbreaks. However, ge-
nomic data also introduced new complexities; it was difficult to integrate
genomic data with with currently existing data sources, including tabu-
lar data from electronic health records, contact network data, and spatial
data [23, 25]. While new statistical procedures have emerged to respond
to these new and complex datasets, data visualisation techniques have not
evolved at a same pace and there remains a considerable need to better
integrate statistical and visual analysis methods [18]. Thus, that interplay
between analysis and visualization that Snow elegantly demonstrated is at
risk of being disrupted, with the consequence of introducing literal blind
spots into modern epidemiological investigations.

I became interested in the interplay between statistics and data visualization
while analyzing some of these aforementioned complex datasets. Like Snow,
I relied on both statistical and visual approaches to formulate a more com-
plete understanding of these data and to prioritize more viable and actionable
insights over other findings. As both my data and analysis procedures would
continue to grow in complexity, I began to encounter limitations with ex-
isting data visualization tools. I discovered I was not alone. Through this
doctoral research, I sought to establish new approaches for visualizing data
stemming from microbial Genomic Epidemiology (genEpi) investigations.
However, knowing that genEpi is one facet of the growing discipline of Data
Science, I also sought to produce technical and methodological contributions
that could generalize beyond the specification application context I present
in this thesis.
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1.1 Situating My Research in Prior Work

Each chapter of this dissertation contains a detailed introduction with a
review of the literature that is relevant to its subject matter. This introduction
provides a summary of prior research that emphasizes studies and findings
that were influential to my overall dissertation. I also present gaps in the
prior work that my research sought to address.

Data visualizations developed for public health have long been drawn by
hand and thus could be as expressive as the imagination of its creator. Tech-
nological innovations have since allowed public health stakeholders to use
computers to generate data visualizations, which enabled stakeholders to
incorporate wider variety of data types, including microbial genomic data. If
stakeholders are sufficiently technically savvy, or have support from tech-
nical personnel, they can expressively create data visualizations libraries
from within R, Python, or Java Script (using packages such as ggplot [124],
matplotlib [56], D3 [9], vega-lite [100]) and link the generation of these vi-
sualization to analysis procedures. However, few public health stakeholders
have such resources and so rely primarily on systems developed by others.
Even in instances when stakeholders are well resourced, they may lack the
time to create bespoke custom solutions and so still rely on a rich ecosystem
of tools to expressively generate data visualizations.

Data in modern genomic epidemiology investigations are drawn from het-
erogeneous sources that must be integrated, transformed, and analyzed, and
visualized together. This heterogeneity of data adds a level of complexity to
the design and implementation of both analytic and visualization tools. How-
ever, existing data visualization systems are still limited in the types of data
they support, the range of visualizations they can produce, and their ability
to connect to different analytic methods. Overall, it can still be complex
to generate expressive data visualizations from these complex data. I have
experienced this limitation in my own prior research, and it was a motivating
factor in undertaking this research. To illustrate this point, I will describe
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some of these existing tools and the way I have observed them being used
by public health stakeholders that must collect, analyze, and interpret the
results from heterogeneous genomic epidemiology data.

I will begin by discussing tools available for visualizing the most ubiquitous
data in genomic epidemiology: phylogenetic data, which shows the evolu-
tionary relationships of specimens isolated from infected individuals over
time. There exist a number of systems to view these data and among the
most widely used are Tree Viewer [55], ggtree [135], and ape [87]. These
systems that can visualize phyologenetic tree data together with associated
data that contains additional contextual information (i.e. geographic regions,
year specimen was acquired, etc.). The latter two, ggtree and ape, are R
packages that can integrate with a variety of analytic procedures and other
visualization libraries in R, while Tree Viewer, although widely used, is
much more limited. Still, these systems primarily produce a visualization
of one or more phylogenetic trees and to visualize other types of data, for
example genomic, network, or spatial (geographic) data, stakeholders must
turn to other tools. It then becomes necessary to integrate the visualization
results of multiple tools, a procedure that is called ‘post-processing’, in order
to arrive a final data visualization. For example, a stakeholder may need
to visualize network data using Cytoscape [105], geographic data using Ar-
cGIS, genomic data via the Integrated Genomics Viewer (IGV) [97] or Island
Viewer [30], and tabular data (also referred to as a linelist to public health
stakeholders) via Excel or Tableau. Statistical analysis may be conducted
in SAS, R, or some other tool. Finally, Adobe Illustrator, PowerPoint, or
InkScape, may be used to integrate all of these visual results together. This is
just one example of a combination of systems among many potential options.
In recent years, data visualization systems have been developed to enable a
stakeholder to more easily integrate and visualize heterogeneous genomic
epidemiological data. These systems include GenGIS [88], Microreact [4],
and Nextstrain [48], which support the visualization of genomic, geographic,
temporal (Microreact & Nextstrain), some network (Nextstrain), and some
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genomic (Nextstrain) data. These tools represent the current state of the art,
but still have considerable limitations toward the types of data, visualizations,
and analyses they support.

Although these systems exist they are not widely used outside of a research
context. An excellent review by Carroll [18] indicates a number of reasons
as to why this may the case, such as poor fit for different stakeholders (like
nurses and clinicians), inability to integrate with existing clinical, treatment,
and surveillance workflows, and constraints that limit how data can be used
and whether a system can be installed on a stakeholder’s workstation. Dig-
ging more deeply into the concerns that Carroll raises, it is possible to also
see how constraints stemming from data access and use as well as stake-
holder familiarity with new and emerging data types all play critical roles
that impact the design and implementation of data visualization systems.
Unfortunately, the existing literature in microbial genomic epidemiology,
or bioinformatics more generally, offers very little guidance toward under-
standing those needs, data, and tasks (the procedures stakeholders perform
with data) as well as the constraints on these data. For a more principled
approach to the design and implementation of data visualization systems, it
becomes necessary to use the methods from another discipline.

A large body of literature in the Information Visualization (infovis) research
community is precisely dedicated to understanding the needs, data, and tasks
of users as well as exploring and characterizing ways to visualize these data.
Using techniques from both quantitative and qualitative user research [57],
the infovis literature advocates a so-called design study methodology to
elicit needs, constraints, data, and tasks that through an iterative process
are then married to visual encodings (a more technical and precise term
for data visualization). There are a number of design study methodologies,
but the most widely used one is reported by Sedlmair et al. [103] and is
referred to as the DSM. The iterative cycles of ‘the DSM’ are intended to
encourage both developers and stakeholders to consider multiple different
visual alternatives before arriving at a final visual encoding that is suitable
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for the needs, data, and tasks of stakeholders. For example, a developer may
initially consider a phylogenetic tree with branches coloured to represent
different geographic origins of specimen isolates. However after consulting
with stakeholders, and through iterative refinements, she might instead end
up at a visual encoding of a tree and map with a co-ordinated colour scheme.
In other words, in order to identify an optimal solution the DSM is intended
to help developers and stakeholders navigate a visualization design space,
which is a conceptualization of all possible ways data could be visualized.
The DSM approach is in contrast to an ad hoc approach to the visualization
of data, which does not consider multiple alternatives or have an awareness
of a visualization design space. The infovis research literature provides
concrete examples of such visualization design spaces, for example Set
Vis [1], Tree Vis [101], or BioVis Explorer [58]. More generally, infovis
research also continues to explore the potential types of visual encodings
that could exist for different data types, thus constantly expanding the size
of a visualization design space.

The prior research stemming from microbial genEpi and infovis literature
provide different approaches for visualizing data. Absent is a more system-
atic and unified methodology that integrates methods and practices from the
research disciplines underpinning both communities. Such an integration
would benefit both disciplines and support the development of better data
visualization tools capable of linking to analytic procedures. For stakehold-
ers representing public health, bioinformatics, and microbial genEpi, an
awareness of the infovis research methodologies would allow them to de-
velop useful data visualization tools and to meaningfully assess their efficacy.
Importantly, such an awareness would also motivate bioinformatics develop-
ers to more carefully consider the evolving data landscape that arises from
technological changes. Likewise, the landscape of data, diverse stakeholders,
and unavoidable constraints, can result in novel approaches to design studies
methodologies. In particular, design study methodologies could benefit from
more robust and systematic evidence based approaches that are the norm in
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public health investigations.

This dissertation presents a unified methodology that borrows techniques
from a number of disciplines to address presently unmet needs toward the
visualization and analysis of microbial genomic epidemiological data. The
results of applying this methodology are novel contributions of data and
visualization findings, algorithms, and tools that are specific to microbial
genEpi, but that can also extend beyond this domain.

1.2 Research Overview

My doctoral research undertook an interdisciplinary approach that integrated
techniques from public health, human computer interaction, machine learn-
ing, and information visualization across several research projects. These
projects sought to understand stakeholders needs, data and tasks, explore
and characterize existing data visualization strategies, in order to define the
problems in how and why stakeholders in genEpi visualized data. Next, my
research sought to design and implement new data visualization systems
and algorithms as solutions to previously identified visualization problems.

These research projects and their contributions are summarized in detail in
the subsequent Section 1.3 and here I present a brief overview of the different
research chapters comprising this thesis (Figure 1.1)

In Chapters 2 and 3, I present two projects I undertook to understand stake-
holders needs, data, and tasks. In Chapter 2, I present a data visualization
case study in public health to demonstrate how regulatory and organization
constraints impact data access and consequently visualization design and
evaluative approaches. In Chapter 3, I gathered both quantitative and qual-
itative evidence to understand stakeholders’ available data, their ability to
interpret these data, and how these data are used for different tasks. Both
projects were carried out collaboratively with teams at the British Columbia
Centre for Disease Control (BCCDC) and Public Health England (PHE) and
focused on genomic epidemiology applied to Tuberculosis (TB).
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In Chapter 5, I present a project I undertook to explore and characterize
data visualization strategies already in use by stakeholders. I present a novel
method for systematically reviewing data visualizations to derive a Genomic
Epidemiology Visualization Typology (GEViT) that can characterize a so-
called domain prevalence visualization design space. The work presented
in Chapter 5 complements the research in Chapters 2 and 3 by combining a
holistic community perspective with that of a smaller and concentrated group
of stakeholders. Importantly, the research in Chapter 5 links specific types
of data, which are explored in detail in Chapter 3, to visual representations
already in use by the genEpi community.

Finally, in Chapters 4, 5, 6, and 7, I present the design and implementation
of data visualization solutions that build off of the findings of the prior
research projects. In Chapter 4, I present Adjutant, a novel method with an
accompanying system for rapid and unsupervised topic clustering of text
data. In Chapter 5, I present a data visualization gallery intended to help
stakeholders explore alternative visual designs for different data types and
creation contexts; for example, browsing visualizations that show genomic
data visualized in an outbreak. Both Adjutant and the gallery are products of
the systematic review method presented in Chapter 5. In Chapter 6, I present
minCombinR, a toolkit that minimizes the amount of code stakeholders
need to write in order to produce different types of charts and combinations
of charts that I catalogued in Chapter 5. Finally, in Chapter 7, I present
GEViTRec, an algorithm for automatically generating data visualizations
given only input data. The GEViTRec algorithm uses the collective evidence
from previous chapters to link data to visual representations, identify relevant
visualizations, and finally to render visualizations to the display for the user.
Adjutant, minCombinR, and GEViTRec are all implemented in R and are
able to integrate with data analyses procedures within the larger R ecosystem.
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Figure 1.1: Overview of research projects, questions, and contributions. Research projects are structured to address specific
research aim. My first research aim concerned defining the problems of how and why genEpi stakeholders visualized data
and where there existed limitations. The subsequent research aim focused on developing solutions for the problems identified.
These research projects are inter-related whereby prior project results establish the trajectories of future project directions.
Finally, these research projects collectively contribute both technical and domain specific contributions.
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1.2.1 Chronology

GEViTRec

GEViT

Data

Research Projects

Evidence Based Design

From participants

Sep, 2015 2016 2017 2018

Time

minCombinR

From literature
From dataset

Qualitative
Quantitative

Research Phase Publication - In Press Publication – Submitted Data Used / Gathered Legend

2019

Constraints

Figure 1.2: Doctoral Research Timeline. This timeline contains the different re-
search projects presented in the chapters of the dissertation, along with the
duration of time spent on each project and the publication status. I have also
included the different sources of data (participants, literature, and datasets) that I
gave generated and used in this dissertation.

The overarching trajectory of my research is to understand, explore and
characterize, and finally design and implement data visualization tools; this
trajectory was established at the outset of my doctoral research. Conse-
quently, the chronological order that these research projects were undertaken
(Figure 1.2) is important because the results of prior projects influenced the
research approaches undertaken in the subsequent projects.

I conducted an initial pilot project with stakeholders at the BCCDC to de-
velop and deploy an analytic data visualization to support management and
control of tuberculosis. The initial project allowed me to identify data, con-
straints, missing stakeholders, and available infrastructure for data visualiza-
tions tools. These results are summarized in Chapter 2, entitled Regulatory
and Organizational Constraints in Visualization Design and Analysis. I
built upon these initial results through a collaborative project with PHE in
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Chapter 3, Evidence-based Design. Next, I connect data to visualizations
through the development of a GEViT (Chapter 5), and concurrently devel-
oped Adjutant (Chapter 4) and the GEViT Gallery. These aforementioned
chapters have all been published and also presented in venues that target a
bioinformatics, genomic epidemiology, and public health audience.

The minCombinR toolkit (Chapter 6) and GEViTRec algorithm (Chapter 7)
were concurrently developed. In fact, GEViTRec relies on minCombinR to
create data visualizations that are viewed by stakeholders. These chapters
target a information and biological visualization audience.

1.3 Summary of Research Projects and Contributions

I have produced both technical and domain specific contributions stemming
from the research projects presented in Chapter 2 to 7, inclusive. Technical
contributions produce a methodology, technique, or algorithm that is in-
tended to be generally applicable. Domain specific contributions are artifacts
that result from the application of my technical contributions to a specific
application domain, in this case genEpi. For example, in Chapter 5 I devel-
oped a method for systematically reviewing data visualizations, which is a
technical contribution, and produce both a typology and online gallery, both
domain specific contributions, that demonstrate the results of my method
when applied to a domain specific research question.

In this section I present a summary of these research projects and their
contributions. I also provide additional contextual information for how all of
these research projects and their contributions are linked together.
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1.3.1 Chapter 2: Regulatory and Organizational Constraints in
Visualization Design and Analysis

Information visualization research exists within a larger data ecosystem that
governs what data can be used and also how it should be visually represented
for analysis. In Chapter 2, I have defined regulatory and organizational
constraints and argue that such constraints are not adequately accounted for
in existing infovis design and evaluative methodologies [23]. I demonstrate
how these constraints implicate visualization design and analysis through
a presentation of a case study that documented the results of a pilot project
intended to build a visual analytics tool for the tuberculosis team at the
BCCDC.

To ameliorate the visualization design and evaluation difficulties that are
introduced by regulatory and organization constraints I have modified a
widely used Design Study Methodology (DSM) [103]. First, I introduced
the idea of a “power-interest” matrix that allows researchers to generate
a more fine-grained classification of stakeholders than the existing DSM
enables. Importantly, by classifying stakeholders according to both their
power over a project and their interest in its outcomes, researchers are able to
prioritize those stakeholders that regulate data access, researcher processes,
and whether software can be installed on stakeholder work stations. Next, I
borrowed from the statistical analysis literature to demonstrate how synthetic
datasets can be generated and used in infovis research processes. I also show
how initial tool prototypes developed using this synthetic data can be used
to get buy-in from stakeholders and support data access. Importantly, the
majority of infovis research literature around design studies methodologies
emphasis the use of real data through the design and evaluation process. My
research concretely demonstrates both the value and necessity of generating
representative synthetic datasets for analysis.

Through a case study carried out in collaboration with stakeholders at the
BCCDC interested in TB prevention and control, I produce an example of a
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“power-interest” matrix and a synthetic dataset used for prototyping a data
visualization tool. I also demonstrate how these and other artifacts gener-
ated from the research processes were important for communicating with
stakeholders and getting buy-in from gatekeepers. I conclude this chapter by
summarizing a set of general recommendations to tackle regulatory and or-
ganizational constraints through the data visualization design and evaluation
process.

This initial investigation into the constraints that govern data usage and
access would prove to be influential in the research projects undertaken in
subsequent chapters. The “power-interest” matrix I developed was important
for understanding stakeholder availability, data knowledge, and priorities.
These findings would motivate the projects I present in Chapters 3 and 5 and
also influenced my research methodologies for these projects. Moreover,
an awareness of regulatory and organizational constraints influenced the
kinds of tools I should develop since many stakeholders encountered similar
constraints when they carried out their own research. The minCombinR
toolkit and GEViTRec algorithm presented in Chapters 6 and 7, respectively,
are both influenced by both data accessibility and stakeholders research
needs in light of regulatory and organizational constraints.

Contributions for Chapter 2

Technical Contributions:

• Formal definitions of regulatory and organizational constraints and an
assessment for their impact in visualization design and evaluation

• Incorporation of project management techniques with a DSM

• Strategies for generating synthetic datasets in visualization design and
evaluation

Domain Specific Contributions:
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• Case study documenting a data visualization pilot project for genEpi,
including a tool prototype and initial evaluation

• Stakeholder classification for public health roles

1.3.2 Chapter 3: Evidence-based design

Advances in technology have enabled public health stakeholders to collect
greater quantities of more variable data types to manage and control disease
outbreaks. In Chapter 3, I sought to gather evidence of the types of data
used in different public health diagnostic, treatment, and surveillance tasks,
as well as to understand how confident stakeholders are interpreting these
data for their tasks [25]. My co-authors and I partnered with the COMPASS-
TB team from PHE to re-design a TB Whole Genome Sequencing (WGS)
clinical report. Through the process of the clinical report re-design, I also
sought to gather data that would be instrumental for informing subsequent
data visualization tool development.

The project reported in this chapter employed a multi-phased mixed methods
research approach integrated with the modified DSM (from Chapter 2). I
also used the stakeholder classifications from Chapter 2 to identify study
participants. The project’s first phase used an exploratory sequential model
study design [22] to conduct semi-structured interviews with a selective
number of stakeholders in order to established workflows, specific tasks, and
finally the data used to complete those tasks. These qualitative findings were
then transformed into an online questionnaire that established the extent of
consensus (if any) among stakeholders that some data were used to complete
a specific task. I also assessed stakeholder ability to interpret these data
in order to perform diagnostic, treatment, or surveillance tasks. I used the
qualitative and quantitative results to inform the second project phase of gen-
erating paper prototypes of alternative clinical report designs. I collaborated
with the information visualization research group at University of British
Columbia (UBC) to come up with report prototypes, which I later converted
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into another online questionnaire to assess stakeholders’ preference for spe-
cific representations of WGS data. To assess preference, study participants
were asked to select or rank preferred data representations and to provide
textual comments to justify their preferences. While we predominantly used
these findings to generate a final re-design of the WGS clinical report, our re-
sults identified important and general principles for communicating complex
data to stakeholders. These principles are summarized as three experimental
and five design guidelines. All study materials are available in Appendix A.
The re-designed clinical report was publically deployed and also integrated
into the analysis pipelines of PHE and others.

A revealing insight from this research project was that there existed very little
stakeholder consensus toward the types of data and even visual representa-
tions for genEpi surveillance tasks. These are tasks that monitor populations
for the emergence and progression of disease outbreaks. Stakeholders primar-
ily used case counts (number of infected individuals) to make assessments
for surveillance tasks and while there existed considerable enthusiasm to use
new WGS technologies it was still not very clear how to use these new data.
By comparison the role of different data types, even genomic data, was much
more clearly defined for diagnostic and treatment tasks. These findings laid
out a clear path for future work to support surveillance tasks with multiple
heterogenous types of data.

Contributions for Chapter 3

Technical Contributions:

• A mixed methods research approach for information and visualization
design and evaluation

• Experimental and design guidelines for communicating new and com-
plex data to stakeholders

Domain Specific Contributions:
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• Links between data and tasks for tuberculosis applications for genEpi

• Emphasizing areas of greatest need in genEpi

• A realized and deployed clinical report

1.3.3 Chapter 4: Adjutant

Chapter 4 presents Adjutant, a system for rapid and unsupervised topic
clustering of PubMed articles [26]. Adjutant is used within the GEViT study
(Chapter 5), but these two chapters are presented separately because they
represent two different publications.

There exist many systems for topic classification of text, but I found that these
systems placed a significant burden on the user to provide a priori labels
for text documents in order to perform an accurate classification. Document
labelling is time consuming and so I developed a rapid and unsupervised
method for automatically clustering documents. In Appendix B, I include
considerable materials that assessed Adjutant’s clustering accuracy and
comparison to the widely used Latent Dirichlet Allocation (LDA). Adjutant
is available as an R package that is distributed via GitHub. In addition to
a rapid and unsupervised clustering method, I also developed an Adjutant
Graphical User Interface (GUI) that allows stakeholders to initiate queries
and explore the resulting clusters for themselves.

While Adjutant was developed to support the research presented in the
subsequent Chapter 5, this system is capable of performing analysis on any
PubMed queries.

Contributions for Chapter 4

Technical Contributions:

• A system for rapid and unsupervised topic clustering
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1.3.4 Chapter 5: GEViT

Chapters 2 and 3 demonstrate the challenges of integrating new types of data
into healthcare settings, despite enthusiasm from stakeholders to include
these data in their surveillance tasks. These challenges also introduce com-
plexity into the data visualization design process : how can we build data
visualization tools when stakeholders are also trying to understand these
data and their uses? My insight was that research communities lead the
exploration of new data and its uses, including the visualization of these data.
I wanted to leverage this collective community wisdom to speed up the data
discovery and exploration processes through data visualization.

The research presented in Chapter 5 sought to identify and classify commu-
nity strategies for data visualization by creating a method for systematically
reviewing a data visualization corpus and generating a typology to describe
and enumerate these strategies [24]. I demonstrate this method in action
through its application to the genEpi research literature and the development
of a Genomic Epidemiology Visualization Typology (GEViT).

First I present a method to systematically survey data visualizations that can
describe why a visualization was created, how it was created, and finally
how many examples there are of specific data visualization strategies. This
systematic review method consists of an initial literature analysis phase that
uses Adjutant (Chapter 4) to conduct an unsupervised topic clustering of
research articles. Topic clusters are used as strata within a random sampling
procedure in order to harvest figures (data visualization) within these articles.
The topic clusters provide a sense of why a visualization was created and my
goal was to obtain a broad sample of visualization strategies across different
creation contexts. The literature analysis phase produces a dataset of figures
that are supplied to the qualitative and quantitative procedures of a visual
analysis phase in order to describe how a visualization was created and how
many examples there are of different visualization strategies. The qualita-
tive stage of the visualization analysis phases uses iterative axial coding
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techniques [20] to derive visualization annotations across three descriptive
axes, chart types, chart combinations, and finally enhancements. Together,
these descriptive axes form the taxonomy of a visualization typology that
can describe and enumerate common visualization strategies. I refer to the
final dataset of annotated and enumerated data visualization strategies is
referred to as a domain prevalence visualization design space.

I applied this method to approximately 18,000 research articles from the
genEpi research literature and I developed a visualization typology called
“GEViT” through an analysis of 842 figures (data visualizations) derived
from 221 articles sampled from 36 topics clusters. Enumerating the visual-
ization strategies also summarized the diversity of current common genEpi
visualization practices. What I found was that stakeholders used only a
small set of visualization strategies, often just showing a single phyloge-
netic tree or a tree with an accompanying table. While there were examples
of much more sophisticated visualization designs that emerged from my
dataset, these were the exceptions as the majority were relatively simple
and consisted of poor visualization design choices that left mush of the
data encoded as text in the visualization. Interestingly, while the strategies
taken by individual research articles tended to be limited, the combinatorial
space of visual designs revealed by GEViT showed that there existed many
possibilities that the majority of stakeholders did not explore. Thus, the
whole visualization design space was useful, whereas individual examples
from a specific paper had variable and sometimes limited visual expression.
In Appendix C, I present additional methodological details and figures that
support the analysis presented in this chapter.

The GEViT project is an important component of my research that linked
stakeholders’ data, tasks, needs, and existing data visualization strategies.
The findings from this research directly influenced the development of three
data visualization tools presented in this thesis. Within this chapter I present
the GEViT gallery (http.//gevit.net), which I included within the
GEViT publication. The GEViT gallery allows stakeholders to explore
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visualization designs across different creation contexts, or to browse visual
alternatives via the typology terminology. I have also annotated examples
of “good” and “missed opportunity” visualization practices to help guide
stakeholders toward better practices.

Contributions for Chapter 5

Technical Contributions:

• A method for systematically reviewing data visualizations

• A method for generating a domain prevalence visualization design
space

Domain Specific Contributions:

• GEViT, which classified genEpi data visualization strategies according
to chart types, combinations, and enhancements

• A dataset of annotated data visualizations

• The GEViT gallery tool

1.3.5 Chapter 6: minCombinR

An analysis of the domain prevalence visualization design space generated by
the GEViT study revealed that there did not exist a single data visualization
tool that can visualize multiple data types. Furthermore, I found that there
existed few tools that allowed stakeholders to integrate various statistical
and phylogenetic analyses with the visualization of their heterogeneous
datasets. Instead, stakeholders would need to programmatically generate
data visualizations that accompanied their analysis, using R, Python, or
JavaScript, a processes that was labour intensive and complex for the chart
types, combinations, and enhancements revealed by GEViT.
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Chapter 6 presents minCombinR, a toolkit that supports a minimal specifi-
cation syntax for generating a variety of chart types and their combinations
in R. Currently, stakeholders must consider both what visualizations they
wish to generate from some data and to programmatically specify how those
visualization should be rendered by the R graphics device. The minCom-
binR toolkit uses a declarative framework that allows stakeholders to simply
describe the chart types and combinations that they would like to generate
without having to specify how the resulting visualizations should be gener-
ated. A stakeholder is warned when certain visualizations are not possible
to generate and is prompted through a set of steps to help them generate a
viable data visualization specification. The result is that the minCombinR
toolkit allows stakeholders to create visualization with as little as three lines
of code. The minCombinR toolkit is developed as an R package and dis-
tributed via GitHub. It is capable of integrating with analytic methods in the
R ecosystem.

In Appendix D, I present the applicability of minCombinR using various
different chart types and their combinations using datasets specific and
agnostic to genEpi.

Contributions for Chapter 6

Technical Contributions:

• A simplified syntax and declarative framework for rendering various
chart types and chart combinations

• Chart harmonization through gradual binding

Domain Specific Contributions:

• minCombinR: a tool to support stakeholder’s ability to more easily and
reproducibly visualize their genEpi data
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1.3.6 Chapter 7: GEViTRec

Making it easier for stakeholders to generate data visualizations that are
relevant to them is one component helping stakeholders to explore different
visualization alternatives in a visualization design space. While the GEViT
gallery tried to help stakeholders explore different visual alternatives, I
found that stakeholders still needed support to connect data to possible
visualizations. In particular, stakeholders were still overwhelmed by the
volume, novelty, and heterogeneity of new data and were not sure what data
they had available. Together with Dr. Munzner, I developed a framework for
data reconnaissance and task wrangling that describes processes stakeholders
undertake to understand complex and emerging data landscapes. Chapter 7
presents the GEViTRec algorithm that supports stakeholders through data
reconnaissance and task wrangling processes by automatically generating
data visualizations informed by the GEViT visualization design space.

The GEViTRec algorithm is the culmination of my doctoral research and
brings together the threads to environmental constraints and stakeholder
knowledge (Chapters 2 and 3), with existing data visualization strategies
(Chapter 5), and attempts to lower the burden for exploring and generating
data visualization alternatives (Chapter 6).

In the data reconnaissance and task wrangling framework, we describe four
repeated phases stakeholders undertake to explore data landscapes: acquire,
view, assess, pursue. GEViTRec is designed to support data reconnaissance
and task wrangling by helping stakeholders generate a quick, low effort, view
of their data. While there exist data visualisation recommendation systems,
for example Tableau’s ShowMe [69], the Voyager Systems [128, 129], and
Draco [76], these systems all require that the user provide some initial speci-
fications for the visual encoding before the systems recommend alternative
data visualizations. Building on the collective community knowledge sum-
marized in GEViT, the GEViTRec algorithm bypasses the need for any user
input beyond the datasets she wishes to visualize. Moreover, currently exist-
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ing visualization recommendation systems present just a single chart type,
whereas GEViTRec builds chart combinations to reveal multiple aspects of
these data through shared data linkages.

The underlying GEViTRec recommendation algorithm is intended to general-
ize to other applications, even though here I only demonstrate its applicability
genEpi data. This algorithm is designed to integrate different data types and
extends existing systems by supporting both tabular and non-tabular data.
To automatically generate visualization specifications, the algorithm uses the
previously described domain prevalence visualization design space to rank
visualizations according to their relevance to the stakeholder. The use of
such a design space also injects an awareness of domain-specific conventions
into the algorithmic recommendation procedure.

Contributions for Chapter 7

Technical Contributions:

• An algorithm for automated domain-aware visualization recommenda-
tion

• Recommendation beyond tabular data and singular charts with minimal
user input

• Relevance as novel and computable metric for ranking visual encodings

Domain Specific Contributions:

• GEViTRec: automatic visualization recommendation for genEpi
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1.3.7 Summary of Contributions

Taken together with the methods and contributions of these research chapters
demonstrate how the different sources of knowledge can contribute to a data
visualization design and evaluation processes. Collectively, this knowledge
is represented in different forms, as text from interviews or research articles,
as binary choices of preference, as ranks, as discrete numerical counts,
through typologies, and finally as visualization design spaces. Through my
research projects I have drawn upon these different sources of knowledge
to understand the present needs and limitations of stakeholders, explore
and characterize visualization strategies, and to use this knowledge to
design and implement tools that address the unmet needs of stakeholders.
These contributions extend current data visualization practice in genomic
epidemiology and work toward the improved integration of data visualization
with analysis. The research approach that I have taken and its resulting
technical and domain specific contributions are novel in the way that methods
and techniques from multiple different disciplines are used to create and
integrate new sources of knowledge. Although the work that I present here is
limited to an application context within the genomic epidemiology domain,
this research approach, and especially its technical contributions, can serve
to inform visualization research more broadly.
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Chapter 2

On Regulatory and
Organizational Constraints
in Visualization Design and
Evaluation

Privacy is not something that I’m merely entitled to, its an absolute
prerequisite. — Marlon Brando

1 Problem–based visualization research provides explicit guidance toward
identifying and designing for the needs of users, but absent is more concrete
guidance toward factors external to a user’s needs that also have implications
for visualization design and evaluation. This lack of more explicit guidance
can leave visualization researchers and practitioners vulnerable to unforeseen
constraints beyond the user’s needs that can affect the validity of evaluations,
or even lead to the premature termination of a project. Here we explore
two types of external constraints in depth, regulatory and organizational
constraints, and describe how these constraints impact visualization design
and evaluation. By borrowing from techniques in software development,

1This chapter has been previously published [23]:
A. Crisan, J. L. Gardy, and T. Munzner. On regulatory and organizational constraints in visualization
design and evaluation. Proc. Workshop Beyond Time and Errors: Novel Evaluation Methods for
Visualization, 1:19, 2016. doi:10.1145/2993901.2993911
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project management, and visualization research we recommend strategies
for identifying, mitigating, and evaluating these external constraints through
a design study methodology. Finally, we present an application of those
recommendations in a healthcare case study. We argue that by explicitly
incorporating external constraints into visualization design and evaluation,
researchers and practitioners can improve the utility and validity of their
visualization solution and improve the likelihood of successful collaborations
with industries where external constraints are more present.

2.1 Introduction

Simon’s parable of The Ant on the Beach asks readers to consider the trajec-
tory of an ant as it walks along a beach: “Viewed as a geometric figure, the
ant’s path is irregular, complex, hard to describe. But its complexity is really
a complexity in the surface of the beach, not a complexity in the ant” [110].
The parable highlights the importance of describing both the agent of action
and the broader environment that acts upon that agent [118]. In problem–
based visualization research and other user-centred methodologies, that agent
is the user. While a focus on the user does not exclude consideration of
her broader environment, little of the visualization research literature has
been dedicated to precisely understanding how factors external to a user’s
needs affect design and evaluation [62]. External factors can constrain the
scope of the design space because, irrespective of user preferences, some
solutions can never be implemented in their contextual environments. If
researchers are unaware of these external factors from the project outset, they
may develop and evaluate a visualization solution that cannot be used. For
example, the authors of WeaVER, a tool that visualizes ensemble weather
data, identified obstacles to data access, barriers of installing their visualiza-
tion tool on locked–down workstations, and difficulty obtaining raw data as
factors affecting their ability evaluate the tool’s design [93]. The discussion
of external factors is not absent from the visualization research, but there
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does not exist more explicit guidelines toward incorporating factors from a
user’s contextual environment into visualization design and evaluation.

In this chapter I propose that these external factors should be modelled as
constraints [118] that must be incorporated into visual and interaction de-
sign choices so as to yield relevant evaluations. I suggest strategies that visu-
alization researchers can use to identify these constraints and provide recom-
mendations for how constraints can be evaluated throughout a project’s life
cycle. I also demonstrate how these suggested strategies can be practically
applied by presenting a case study in a healthcare environment, where ex-
ternal constraints can present many challenges for visualization researchers.
Finally, I layout how these constraints impact data visualization design and
analysis and moreover underlay the motivations for research I present the
subsequent chapters.

2.2 Defining External Constraints

We have defined external constraints as any factor affecting visualization
design and evaluation that is separate from the user’s problem or needs
and that are drawn from the user’s contextual environment. In this section,
we further separate these external constraints into two broad categories
– regulatory and organizational constraints. In the context of this paper,
we limit the definition of regulatory and organizational constraints to data
access and the use of data for research purposes, because data is central to
visualization research.

Regulatory constraints refer to legal requirements governing the collection,
storage, and use of data. In contrast, organizational constraints are poli-
cies and practices that are not necessarily encoded in law and that can vary
across different institutions and across communities. Examples of organiza-
tional constraints can include policies around the protection of trade secrets,
protectionist tendencies toward data, availability of financial resources, or
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institutional support for visualization projects [18, 102]. Importantly, organi-
zational constraints encompass both the interpretation and the enforcement
of regulatory constraints. Differences of interpretation mean that different
institutions can have different data access and use policies, some being more
restrictive than others, while still conforming to the law. Although these con-
straints are real, they should not discourage visualization researchers from
collaborating with industries where regulatory and organizational constraints
are present. By being aware of these constraints throughout the project’s
life cycle and explicitly incorporating them into visualization evaluation,
researchers can enjoy fruitful collaborations, even within highly regulated
industries.

2.2.1 Implications for Evaluation

Regulatory and organizational constraints have implications for design
choices, often by restricting functionality and research processes (Sec-
tion 2.2.3 and 2.2.2).

As result, these external constraints provide additional parameters that need
to be considered during evaluation or can define how evaluation should take
place.

For example, an additional parameter that needs to be evaluated is whether
the visualization solution can be accessed by users, either by being installed
on their work station or through web access, or whether IT constraints prevent
local installations or uploading data to a web–based interactive platform.
Such considerations can be missed when evaluating solely user’s needs, as
users themselves may not be fully aware of these constraints, or users may
be inappropriately using their personal laptops for sensitive data and may
not communicate they may be in violation of regulatory or organizational
constraints.

There are different consequences for failing to account for these constraints.
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Failure to account for organizational constraints typically affects the validity
of evaluations, whereas failure to account for regulatory constraints may have
legal repercussions for a researcher and also the user.For example, ignored
organizational constraints may result in project delays or termination, or a
lack of adoption of the proposed solution. However, researchers who fail to
account for regulatory constraints are in violation of the law and could be
subject to more severe penalties that involve the legal and judicial systems.

It is thus necessary to evaluate that a project is in compliance with these
external constraints throughout the project’s life cycle.

2.2.2 Example: Hypothesis Generation Considered Harmful

One of the common arguments for the use of visualization is to facilitate
new insights [81]; that is, to generate new, testable hypotheses from data.

However, in some highly regulated industries such as healthcare, finance,
or the government, the ethics of exploring or mining data to generate new
hypotheses is often controversial and is sometimes considered inappropriate
or even illegal – especially for data pertaining to individual people [96].

Both regulatory and organizational constraints influence exploratory analysis
and hypothesis generation.

For example, organizations that routinely mine their users’ data may have
internal policies limiting who can mine this data, at what level of resolution
(individual-level or aggregate), what can be reported and to whom, and what
data may be unacceptable to use (for example, data from minors).

In highly regulated industries, legal boundaries also affect hypothesis–
generating research. For example, personal data in Europe is subject to the
recently adopted General Data Protection Regulation (EU 2016/679), which
provides a framework governing multiple aspects of data use, including
notice of collection, specified-purpose usage, consent, security, disclosure,
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access, and accountability. Failing to adhere to the regulations can cost
organizations fines of up to e1,000,000.

Visualization researchers who are new to highly-regulated environments
might want to launch a visualization collaboration to specifically support
hypothesis generation, yet might not be aware of the organizational or
regulatory constraints that apply to their data that may preclude a successful
outcome. Even researchers who have successful past collaborations with
industrial partners with strict organizational constraints about the necessity
of keeping proprietary data from leaking to the outside world may not realize
the restrictions entailed by these kinds of regulatory constraints for any
unauthorized data use whatsoever, even internally.

2.2.3 Example: Agile Development Considered Harmful

Many visualization researchers advocate agile and iterative methods for
visualization design and evaluation, but these approaches are often at odds
with the rigid information technology infrastructure typically in place in
institutions like hospitals, banks, or government agencies [36]. Moreover,
concerns about the dangers of uncontrolled data exploration are frequently so
central that they even extend to the realm of software development methods
for tools to manipulate that data. Many organizations in highly–regulated
industries remain firm in their use of waterfall software development models,
despite their known problems and inefficiencies, rather than adopting more
agile options [63] [38].

2.3 Prior Work

The central prior work appears both within the visualization literature and in
other domains. In this section, we appraise the extent to which prior work
has equipped visualization researchers to identify, incorporate, and evaluate
external constraints.
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Figure 2.1: Summary of our proposed additions to the Design Study Methodol-
ogy [103]: changes to the cast stage, a new propose stage, the generation of the
starred artifacts, and identifying two of the many possible checkback cycles as
required rather than optional.

2.3.1 Visualization Methodologies

The visualization research literature sets forth a number of models and
methods to approach problem–driven design and evaluation projects [74].
These include contributions from our own group – the Nested Model (NM)
for Design and Validation [78], the follow-on Nested Blocks and Guidelines
Model (NBGM) [73, 74], and a Design Study Methodology (DSM) [103] –
and others, including Multi-dimensional In-depth Long-term Case studies
(MILCs) [108] and the Human-Centered Design Cycle [66]. A central
tenet of problem–driven research has been an emphasis on the needs of
the target users and evaluating visualization design choices with respect to
those needs. The “domain problem” of the NM or the “domain situation”
of the NBGM, and also more recent work by Winters [126] to further
characterize domain situations via the NBGM through a new conceptual
framework, could be interpreted to include external constraints, but guidance
is primarily offered toward identifying and evaluating user needs. Similarly,
the DSM and MILC approaches acknowledge the importance of considering
the broader context in which visualization tools are deployed, but we argue
they do do not sufficiently address external constraints. A small number of
design studies and commentaries of design and evaluation methodologies
have considered external constraints within the context of visualization
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research. A study of large automotive companies warned of obstacles that
are separate of “technical challenges but [include] political or organizational
requirements” [102]. The authors suggested conducting pre-design studies
to understand these factors in order to identify a feasible project path – a
sentiment that was shared in a position paper on pre-design empiricism [12].
Both Brehmer [12] and Sedlmair [102] advocate for a variety of evaluation
techniques at different design stages, with the thrust of their discussion
focusing on a common agile motto “test early, test often”. Another study
by Lam [62] uses a scenario based approach to evaluating visualization
solutions that includes understanding environment and workplace practices,
which they and others note is understudied in visualization research. Aside
from identifying these evaluation scenarios through a literature review of
visualization research, Lam et. al [62] do not provide more detailed guidance
towards the the types of external constraints or how they may be identified
and evaluated. The lack of explicit guidance toward evaluating visualization
design with respect to external constraints means that individual researchers
must devise strategies on an ad hoc basis, which some researchers may be
more successful at than others.

2.3.2 External Disciplines

The design and evaluation of a system in the context of regulatory and
organizational constraints is not unique to the domain of visualization re-
search or practice. Some of the techniques used in visualization design
studies are drawn from the larger set used in agile software development
and related project management practices. For many visualization research
projects, applying the complete set of agile methodologies and practices may
be inappropriate – they do not capture some of the unique nuances of the
visualization discipline and the agile framework can be too comprehensive
and prescriptive for smaller, informal projects. However, for large, formal
collaborations in industries where the external constraints are much more
pronounced, certain agile techniques from the software development liter-
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ature can be useful. In Section 2.4.3, we discuss specific techniques from
the broader domain of agile software development that may be applicable
toward design and evaluation of external constraints for highly–regulated
environments.

Cognitive Work Analysis (CWA) is another broad framework frequently
deployed in developing technologies for the workplace, especially where
regulations or safety are paramount considerations [118]. Its roots lie in
systems thinking and ecological psychology, and it takes the most holistic
view of a user and their contextual environment. A subset of CWA methods
are frequently harnessed for visualization design and evaluation, particularly
for task analysis. Importantly, CWA advocates undertaking a “work domain
analysis” to understand a user’s context because “it imposes constraints on
the actions of the actors” [118]. Collectively, the agile and CWA litera-
tures offer a number of strategies for identifying and mitigating external
constraints, but these strategies will be most useful only when appropriately
contextualized for the visualization research domain.

2.4 Guidelines for Evaluating External Constraints

We argue that the best way to mitigate external constraints is to proactively
seek to identify them as early as possible, and to follow up by assess-
ing whether they have been met as part of formative evaluation efforts
throughout the project’s life cycle. We use the Design Study Methodology
(DSM) [103] as a scaffold to provide specific recommendations to visual-
ization researchers. We propose additional stakeholder roles within the cast
stage and explicit communication strategies with them. We advocate the
creation of several artifacts at many points, including at a new stage where
a formal proposal is generated as part of a formative evaluation to assess
project feasibility. These artifacts serve as checkbacks to specific previous
stages, in contrast to the original DSM that simply encourages researchers
to return to any prior stage of the framework as needs are noticed. We also
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Figure 2.2: Power Interest Matrix for identifying detailed roles during the cast phase.
Stakeholders are categorized into core and non-core groups according to their
interest in project outcomes, and also as having low or high power. The specific
roles identified in Section 2.5 are included here as a concrete example.

argue for specific methods including a staged design process with generation
of synthetic data as a stepping stone for access to the real data. Figure 2.1
presents a summary of these recommendations.

2.4.1 Defining Stakeholder Roles

The cast stage of the DSM pre-condition phase recommends that collabo-
rators be cast as acting in one or more of several possible specific roles to
help researchers identify the ways that relevant stakeholders might become
involved in a project: front-line analyst, gatekeeper, translator, connector, or
fellow tool-builder.

Recommendation 1: Classify stakeholders according to power over and
interest in project outcomes. We argue that this classification should be
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extended to further improve stakeholder identification and management:
these roles should be further stratified according to the amount of power
over and interest in the project outcomes for each stakeholder. Using a
power-interest grid can help identify stakeholders – particularly gatekeepers
– that may not be immediately obvious; for example, individuals who are not
directly involved in a project but who can affect the project through their
role in assuring compliance with regulatory or organizational constraints.
Stakeholders that have high interest in a project’s outcomes, whether low-
or high-power, typically form a core group with whom researchers closely
collaborate; these core stakeholders will be actively involved in visualization
design and evaluation (both formative and summative) and they also supply
the motivation and needs for a visualization solution. Indeed, a visualization
project may be initiated through these high-interest stakeholders.

Here, we do not prescribe a specific type of formative evaluation methodol-
ogy, but note that much of the evaluation studies proposed in visualization
research, including interviews, questionnaires, think-out-loud, and labora-
tory experiments, are targeted toward these core stakeholders. Non-core
stakeholders are those with whom researchers do not collaborate directly and
who are thus classified as low-interest. Often, stakeholders with high power,
but low interest in project outcomes are those that must be consulted with in
order to access data and get approval to conduct the research; the DSM clas-
sifies these stakeholders as Gatekeepers. Gatekeepers can be individuals that
oversee the appropriate access and use of data, both at the outset and through-
out a project, or an institutional review board that provides initial approval
for data access and use. While this quadrant of high–power, low–interest
stakeholders are unlikely to participate in visualization design processes,
individual gatekeepers (but not entire review boards) should be included in
at least guideline checking formative evaluations [3], to confirm compliance
with regulatory and organizational constraints. Finally, there are stakeholders
with low interest and low power in visualization project outcomes. These
individuals may have an intellectual interest in project outcomes, such as
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other researchers building analytical tools; while these individuals will not
take part in either design or evaluation they may form useful allies in the
institution and inform researchers about external constraints.

Recommendation 2: Actively manage communication with stakeholders.
While DSM does indicate that poor rapport can be a potential pitfall to
a project’s success (PF-9) [103], it does not provide explicit guidance to-
wards managing communication with stakeholders. Ineffectively managing
stakeholder communications can impact the discovery of regulatory or orga-
nizational constraints, which in turn impacts the validity of evaluations and
could even lead to premature termination of the project. Good communica-
tion with stakeholders is also critical for carrying out formative evaluations
with core stakeholders and guideline checking evaluations with gatekeepers
of prototypes developed through the staged design process (Section 2.4.3).

We recommend using the power–interest grid of Recommendation 1 as the
framework for managing stakeholder communications. For core stakehold-
ers, communication can be informal and will be more frequent than with
non-core stakeholders. For non-core stakeholders with high power over a
project’s outcomes, we recommend more formal communication. Some in-
stitutions will already have polices in place for communication templates and
the timeliness of those communications, but when such guidelines are not
available, we recommend a formal, plain-language brief that is distributed
to these stakeholders. These briefs may be more frequent at the beginning
of the project, especially if there is uncertainty around the nature of agile
development methods and the design study framework, and may become less
frequent over time. Communication briefs should emphasize the findings
of evaluations carried out during the design process. Effective communica-
tion with stakeholders can have the added benefit of improving institutional
awareness of visualization research, which may make future projects easier
to conduct.
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2.4.2 Generation of Additional Artifacts

Conducting pre-design studies [103] [12] to assess a project’s feasibility
and to identify regulatory and organizational constraints is important. In
its original form, the DSM recommends going directly from the cast stage
to the discover stage of the core phase, but we argue that this transition
is premature and recommend an explicit propose stage between the two.
This new propose stage entails creating additional project artifacts that help
to guide formative evaluations of user needs, in addition to identifying
regulatory and organizational constraints. These artifacts are in addition to
the task and data abstractions and the prototypes that already form part of
the DSM’s core phase.

Recommendation 3: Create a formal proposal document. The most im-
portant of these artifacts is a project proposal that summarizes the evidence
gathered in the pre-design studies and consultation with high–power stake-
holders into a single document. This proposal document should be assessed
by both researchers, core stakeholders, and Gatekeepers, before proceeding
to the core phase of the DSM.

Throughout various stages of formative evaluation during the design pro-
cess, this document can serve as the basis for the guideline checking that
will be carried out with Gatekeepers [3]. Institutions may have specified
proposal templates but if a proposal template does not exist, we recommend
communicating –at minimum – the project’s scope, including user needs,
known external constraints, data requirements and uses, who is involved
and what they will be doing, and a brief description of the design process
and evaluation procedures. This proposal will typically be refined through
a process of discussion with stakeholders.Although the DSM encourages
researchers to backtrack to any of the proceeding steps without requiring any
checkback loop explicitly, our extension proposes that the completion of the
final proposal document should trigger a required revisition of the winnow

36



stage, as shown by arrow 1 in Figure 2.1. The goal is to evaluate whether the
project can be completed in a timely manner and is mutually beneficial to
stakeholders and researchers.

Recommendation 4: Create a summary document at the end of a project.
At the end of the project we recommend creating a summary document that
expresses – in plain language – the ways in which the project addressed
a relevant domain problem in light of external constraints. The project
conclusion document is meant to complement the initial project proposal by
highlighting the resulting mutual benefits of the project for both researchers
and stakeholders. A research paper describing the project outcomes in terms
suitable for an academic audience of other researchers who grapple with
visualization design and evaluation issues is not a suitable stand–in for
this document, which is aimed at a very different audience with different
concerns. In some cases, the process of abstraction that was undertaken by
the visualization researcher needs to be inverted so that the solution can be
described in domain-specific terms in a way that makes sense to the intended
audience. However, this conclusion document can be helpful for educating
stakeholders on the processes and relevance of visualization research [66],
especially if the document emphasizes how the results of various evaluation
studies are in line with individual stakeholder needs and also institutional
policies. It has the potential of laying out important groundwork so that
future visualization research projects are easier to conduct.

2.4.3 Methods

Once researchers and stakeholders have an understanding of users needs as
well as external constraints, both should be integrated into the visualization
design and evaluation process.

Recommendation 5: Use a staged design process. The staged design
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model [71] proposes incremental prototype development through a series of
stages, making it possible to progressively gain access to users and resources
that may not be accessible at a project’s outset and to accommodate changes
in the stakeholders’ context and environment that arise over a project’s life
cycle.Each stage consists of requirements–gathering and prototype develop-
ment to produce a minimum viable product with progressively improving
fidelity. The model should conclude with a formal evaluation that specifically
demonstrates whether the tool and development process is in compliance
with regulatory and organizational constraints, in addition to meeting stake-
holder needs.

At the end of each design stage, we highly recommend that researchers
and collaborators explicitly evaluate together whether or not it is feasible to
proceed to the next stage of development, as shown by arrow 2 in Figure 2.1.
By proactively checking on feasibility in this way, initially unforeseen con-
straints that arise later in the project are surfaced as early as possible, to
minimize later adverse impact on researchers such as a loss of access to data
or people. Using a staged design process also allows researchers to plan and
prioritize minimal viable products, some of which may be valid visualization
research contributions in themselves – even if a project is terminated ahead
of the originally planned schedule.

Recommendation 6: Use synthetic data early on if real data is not im-
mediately available. As discussed in Section 2.2.2, some industries have
concerns around hypothesis-generating research related to both the agile
design process and the types of insights that can and should be drawn from
data.

Stakeholders in these industries may want visualization tools to support
hypothesis generation of individual level data, but nevertheless may wish
to impose limits on the types of uncontrolled exploration a user can con-
duct [96]. At a project’s outset, it may not be clear yet how to operationalize
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such limits, which puts researchers and stakeholders in the difficult position
of potentially violating regulatory constraints. These constraints can make
collaborators wary of sharing real data at a project’s outset, thus impeding
the launch of a potential collaboration with visualization researchers. One
way to overcome this constraint is to use synthetic data in early design stages
and gradually earn the trust necessary to gain access to real data in later
stages. Synthetic data is never a perfect substitute for real data because it
lacks nuances that may be of interest of stakeholders; consequently, the use
of synthetic data affects the validity of evaluations of a prototype’s utility.
For example, synthetic data is often very clean, avoiding the problems of
missing or erroneously entered data that are often present in real data; while
such noise can be simulated, the scope of possible errors may be difficult to
fully understand and incorporate in synthetic data generation. The nuances
of supporting users in handling dirty data might therefore be absent from a
design process and evaluation process where only clean data is used. In spite
of these limitations, synthetic data can nevertheless an effective means to
demonstrate a tool’s functionality and to allow researchers and stakeholders
to have concrete discussions about what aspects of functionality should be
limited.

By graduating from synthetic to real data and modifying the rigor of evalua-
tions over time, what may be lost in initial evaluation validity can be gained
in collaborators’ trust. Starting with synthetic data can be a viable alternative
to giving up on the project during early stages due to initial regulatory and
organizational constraints.

2.5 Case Study: Healthcare

In this section we provide a concrete example of how to interpret our rec-
ommendations through a case study in healthcare, in an approach similar to
Winters et al [126]. Case studies provide an opportunity to dive deep into a
specific domains to provide insights into a phenomenon that may be trans-
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ferrable to other domains [37], and their benefits for visualization research
has been argued by Shneiderman and Plaisant in their ethnographically
informed proposal for multi-dimensional in-depth long-term case studies
(MILCs) [108].

Healthcare systems comprise two disciplines – clinical medicine and public
health – that must work together to improve the health of both individuals
and populations. Public health focuses on prevention and control activities,
while clinical medicine focuses on diagnosis and treatment [51]. While
clinical medicine tends to be the domain of specialist health care providers
such as clinicians, nurses, and pharmacists, public health professionals are
more diverse. In addition to the aforementioned providers, their roles include,
but are not limited to, epidemiologists, statisticians, researchers, politicians,
and other community leaders.

In some cases these two disciplines can operate nearly independently of
one another, but in others they must work more closely together to deliver
patient care. The world of communicable disease prevention and control
is an example of the latter, where disciplines must share knowledge and
make decisions together – clinicians guide the management of individual
patients with a disease, while public health authorities manage the disease at
a population level. Although they must work together, the different traditions
informing public health and clinical medicine mean that there is often a
knowledge translation gap, where the knowledge and data generated by each
discipline is siloed, ultimately affecting the ability of these disciplines to
work together [131].

Visualization tools can help stakeholders in public health and clinical
medicine to more readily share knowledge and insights that support decision
making at patient and population levels. But in order to be most effective,
visualization researchers need to operate within the bounds of the significant
regulatory constraints that apply to healthcare and healthcare data, as well as
the organizational constraints in healthcare, which can differ between public
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health and clinical medicine.

2.5.1 Constraints in Healthcare

Regulatory Constraints. The law distinguishes between primary and sec-
ondary use of health data [98]. Primary uses of health data are those as-
sociated with the direct and immediate care of a patient, while secondary
uses are all other uses that do not directly contribute to a patient’s care.
This category includes all research using health data. While the law does
not prevent the secondary use of health data, it does place restrictions on
such usage that are meant to balance an individual’s right to privacy and
confidentiality while simultaneously stimulating progress in public health
and clinical medicine. Oversight and implementation of these regulatory
constraints is not consistent across different institutions [98].

Organizational Constraints. It is recognized that the secondary use of
health data is a ubiquitous and necessary practice, but data access models vary
considerably and are not transparent, which affects research productivity [98].
Many institutions are wary of uncontrolled secondary use of data [96], in
which any researcher can explore any manner of hypothesis in a dataset
without clear benefit to the patient. While exploratory hypothesis-generating
research is important, it is a hotly debated as a practice because it is ultimately
the patient, and not the researcher, that bears the full burden of accidental
data disclosure.

Researchers who request access to health data are often required to have a
well-formed hypothesis at the project outset, in addition to outlining their
analytical methods. As was discussed in Section 2.2.2, these restrictions
on hypothesis-generating research affect not only the functionality of data
visualization tools, but also the application of agile-like methods for devel-
oping them. Aside from organizational practices that enforce regulatory
constraints, there also exist hierarchical and political structures that can
result in protectionist tendencies toward data. These protectionist tendencies
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can arise because a particular individual is responsible for stewarding the
appropriate use and interpretation of health data, or because researchers are
hesitant to share data that was costly and time-consuming to obtain.

2.5.2 Lessons Learned in Developing a TB Decision Support Tool

Our proposals for integrating constraints into the visualization design and
evaluation grew out of a specific project in a highly-regulated healthcare
domain.

Application: Tuberculosis Prevention and Control. Of the many commu-
nicable diseases managed by a public health agency, tuberculosis (TB) is
one of the most interesting. It has a long history of infecting humans, with
TB found in the remains of mummies and tales of “consumption” a popular
theme within popular culture [29]. Despite this long history, medicine has not
yet succeeded in eliminating TB. In 2012 alone, there were 8.6 million new
cases of symptomatic TB and 1.3 million deaths worldwide, and as much as
1/3 of the world’s population is thought to be infected with a latent, asymp-
tomatic form of the disease [132]. New strategies to manage existing cases
and prevent future ones are clearly needed. Opportunities for designing and
delivering new interventions to combat TB are available through exploring
and mining patient-level data in electronic health records, population-level
data in disease registries, and even molecular data describing pathogenic
microbes rather than human individuals.

Collaboration Context. We report and reflect upon a collaboration with
stakeholders involved in TB prevention and control at the British Columbia
Center for Disease Control (BCCDC). Our goal was to build a decision sup-
port tool to facilitate our users’ routine workflows and to allow exploratory
analysis in support of new intervention development. We did not set out to
construct a fail–safe healthcare application; rather, we set out to collabo-
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ratively explore how visualization of our stakeholders’ data could support
decision making. At the start of our collaboration, armed solely with ex-
isting visualization design guidelines, we were often reacting to previously
unknown regulatory and organizational constraints rather than proactively
mitigating them – and at one point faced the risk that the project would not
move forward.

At the outset of our collaboration, we engaged with a small group of stake-
holders at the BCCDC that consisted of clinicians, nurses, epidemiologists,
and researchers. This group had worked together extensively in the past,
and had a history of productive prior research collaborations. We engaged
in discussions with them about a project that explored the utility of data
visualization to provide multiple perspectives on the spread of TB through
the province of British Columbia over time. The insights this group of
stakeholders would gain from the tool would help inform future policies
and practices in TB prevention and control. Our discussions around the
project and its objectives were informal, and the data we had intended to
use for tool development had received prior approval for research use. With
a promising collaboration on our hands, we began to engage in discussion
with these stakeholders about the data types in use at BCCDC and the
ways our stakeholders used these data for both routine and high-level policy
decision-making.

Discovering Lurking Constraints. While we were focused on assessing
our stakeholders’ needs and their primary research question, we confronted
the first regulatory and organizational constraints that would temporarily
suspend our project’s progress. Over the course of our project, the BCCDC
had changed the way it gathers Public Health data, and how use of this
data for research was to be governed. Not only were data approval polices
changing, but so too were the individuals responsible for the approvals
(referred to internally as data stewards). As part of taking on their mandate,
the new TB data steward took stock of current research projects, and flagged
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our visualization project for re-assessment. His concern was that the project
did not clearly outline how it may be directly beneficial to patients and so
had the potential to be deemed unethical. Although an ethics committee had
reviewed and approved the use of our data for secondary purposes, the new
data steward indicated that we needed to provide a more detailed justification
for our specific project before we could continue.

Identifying Additional Gatekeepers. Neither we nor our collaborators had
anticipated this intervention by the data steward. As we began to gather infor-
mation about the necessary next steps to take in order to continue our project,
we sought to understand other aspects of the organizational structure and
identify other gatekeepers that might further impede our project’s progress.
We took on the exercise of creating a power-interest grid (Recommendation
1) and over time we stratified our TB stakeholder group as follows:

• High Interest, High Power Front-line Analysts (TB clinicians and
nurses): Data for individual patients was primarily collected and con-
trolled by and accessed through clinicians and nurses. With a strong
interest in using data to develop new policy and practice, these individ-
uals formed part of our core stakeholder group.

• Low Interest, High Power Gatekeepers (Departmental Medical
Leads, Laboratory Leads, Privacy Officers, and Operations Man-
agers): Both medical and laboratory leads must sign off on data usage,
though they may not be directly involved in TB control or invested
in our project outcomes. Privacy officers and operations managers
also enforce regulatory processes. One particularly powerful, but
difficult to reach, stakeholder was the organization’s IT department, as
they controlled the users’ workstations and permissions for software
installation. These individuals did not form part of our core stakeholder
group.

• High Interest, Low Power Front-line Analysts and Connectors (TB
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epidemiologists and researchers): In our study, researchers had control
over the use of the pathogen-level molecular data they had generated
and epidemologists could advise us on the use of patient-level case
data, but neither class of stakeholder had the authority to sign off on
data usage beyond the molecular data. Still, as integral parts of the TB
control team, they were interested in our project outcomes, and were
part of our core stakeholder group.

• Low Interest, Low Power Fellow Tool Developers (Non-TB analysts):
Other groups around the BCCDC were interested in visual analytic
tools for their own applications outside of TB, but were outside of our
core stakeholder group.

We established a rough communication plan (Recommendation 2) to engage
with these stakeholders in order to proactively identify important constraints
moving forward. Often our communications were one-on-one discussions,
but when availability afforded it, we conducted large group meetings with
both core and non–core stakeholders.

Finding Constraint Impact on Functionality. As we identified different
stakeholders, we learned of more organizational constraints that would
affect the functionality of the decision support tool we intended to build.
We learned that our tool should not support what might, at first glance,
seem to be obviously useful data wrangling functionality such as merging
multiple datasets, correcting data errors, or entering missing data. There
were institutional policies in place that governed how and by whom multiple
datasets could be merged because of concerns around privacy – as more
datasets are linked together, there is a higher likelihood of potentially re-
identifying patients. Furthermore, institutional procedures were also in place
to correct errors or handle missing data in a systematic way, and again were
carried out only by select individuals.

Given the constraints that precluded data wrangling, we recognized that our
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tool would function best as a data viewer that could alert core stakeholders
to missing or incorrect data but not permit them to change the underlying
dataset. Furthermore, our tool needed to flexibly handle whatever data and
data types different core-stakeholders were permitted to access, ranging
from clinicians and nurses allowed to access individual patient data, to
generalist users who should only be shown aggregate data. These additional
requirements affected functional requirements and served to constrain our
design space.

Finding Constraint Impact on Real Data Access. Some stakeholders
unfamiliar with the design process considered it odd that we had not already
established the visual and interaction design choices for our decision support
tool. They also found it unusual that we intended to conduct a research
project to figure out what those design choices should be. Thus, our research
was initially perceived by some as an uncontrolled use of secondary data
(Section 2.2.2), and several Gatekeepers were unwilling to allow us to use
real data at the outset. We thus considered at length how to develop a strategy
that would gain these users’ trust in our research methods.

Finding Constraint Impact on Tool Integration. Through several stake-
holders, we also learned about the impact of the information technology (IT)
group’s policy that workstation environments should be locked down. A
lengthy approval process was required to install new software or host custom
web applications on institutional servers. Accessing web applications for
data analysis was also prohibited because data could not leave institutional
servers. Part of the reason for these constraints is that the IT group man-
ages workstations in many healthcare settings, including not only research
workstations but also those used in clinical care, resulting in very restrictive
workstation policies.

One tool that could be used in the existing constrained environment – and
indeed was widely used by BCCDC epidemiologists – was R. Although
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the version of R available on workstations was outdated and could only be
updated by IT, we knew there were plans to update it, and decided that a R–
based tool would be a viable implementation solution that fit into BCCDC’s
existing organizational infrastructure.

Changing Strategies for Emerging Constraints. The identification of
these constraints and our assessment of their impacts on our decision sup-
port tool’s functionality, utility, and stakeholder adoption allowed us to
reformulate our project’s trajectory. We prepared a project proposal for our
core-stakeholders and gatekeepers that outlined clearer objectives for our
tool in light of the various regulatory and organizational constraints we iden-
tified (Recommendation 3). Importantly, we also indicated how stakeholders
would be involved in evaluating our compliance with these constraints.

Building Trust Through Staged Design. We planned for a staged design
process based upon different datasets (Recommendation 5).

The first stage of design would use only data available in routinely collected
administrative datasets, while later stages would combine this data with
laboratory and contact network (who was exposed to an infectious individual)
datasets. In this way, we would produce minimum viable products for the
most commonly used dataset first, and less commonly used datasets later.
Although we could not use the real data, we had access to the structure
and aggregate statistics of the real datasets because they were made public
through BCCDC’s annual reports. As much as we were able to, we based our
synthetic datasets off of the real data (Recommendation 6). We hypothesized
that if stakeholders were enthusiastic about how the decision support tool
could visualize their most commonly used dataset, albeit as demonstrated by
synthetic data, that this demonstration may encourage them to move toward
using the tool with real data.

We conducted focus groups and developed paper prototypes during the first
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design stage to gather user requirements and marry those to known regulatory
and organizational constraints. The inability to install our tool on stakeholder
workstations led us to rely on chauffeured demos [66], using a workstation
with a more current version of R, to conduct evaluations at the conclusion of
the design stage. We gathered qualitative evaluations of the tool’s perceived
utility and the validity of our design choices. To evaluate compliance with
regulatory and organizational constraints, we worked closely with BCCDC’s
privacy officer (Guideline checking evaluations).

Although not rigorous, our evaluation gave stakeholders an opportunity to
see what a decision support tool that visualizes TB data could do and how
it could help them. Furthermore, instead of discussing abstract notions of
how this tool may or may not be beneficial to patients in the long term, we
could engage in more concrete discussion with stakeholders – especially
Gatekeepers – about what functionality was appropriate and what was not.
We summarized the design and evaluation progress, highlights, and outcomes
of our collaboration at a larger group meeting following the conclusion of
the first design stage. We emphasized how a visualization tool could respon-
sibly incorporate regulatory and organizational constraints that are meant to
safeguard patient data, and demonstrated this capacity by emphasizing the
results of formative evaluations that various stakeholders had participated
in. The success of this initial stage has initiated concrete discussion by
both core–stakeholders and gatekeepers toward evaluating the tool using
real data. Thus, what could have been a failed start due to unforeseen initial
constraints has evolved into a viable project with organizational support for
its continuation.
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Chapter 3

Evidence Based Design:
Applying a Design Study Methodology to the Redesign of a
Whole Genome Sequencing Clinical Report

Design is not just what it looks like and feels like. Design is how it works
— Steve Jobs

1 Microbial genome sequencing is now being routinely used in many clinical
and public health laboratories. Understanding how to report complex ge-
nomic test results to stakeholders who may have varying familiarity with ge-
nomics including clinicians, laboratorians, epidemiologists, and researchers
is critical to the successful and sustainable implementation of this new tech-
nology; however, there are no evidence-based guidelines for designing such
a report in the pathogen genomics domain. Here, we describe an iterative,
human-centered approach to creating a report template for communicating
tuberculosis (TB) genomic test results. We used Design Study Methodology
(DSM) a human centered multi-stage approach drawn from the information
visualization domain to redesign an existing clinical report. We used expert
consults and an online questionnaire to discover various stakeholders needs
around the types of data and tasks related to TB that they encounter in their
daily workflow. We also evaluated their perceptions of and familiarity with

1This chapter has been previously published [25]:
A. Crisan, G. McKee, T. Munzner, and J. L. Gardy. Evidence-based design and evaluation of a whole
genome sequencing clinical report for the reference microbiology laboratory. PeerJ, 6:e4218, Jan.
2018. doi:10.7717/peerj.4218
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genomic data, as well as its utility at various clinical decision points. These
data shaped the design of multiple prototype reports that were compared
against the existing report through a second online survey, with the resulting
qualitative and quantitative data informing the final, redesigned, report. We
recruited 78 participants, 65 of whom were clinicians, nurses, laboratorians,
researchers, and epidemiologists involved in TB diagnosis, treatment, and/or
surveillance. Our first survey indicated that participants were largely enthusi-
astic about genomic data, with the majority agreeing on its utility for certain
TB diagnosis and treatment tasks and many reporting some confidence in
their ability to interpret this type of data (between 58.8% and 94.1%, depend-
ing on the specific data type). When we compared our four prototype reports
against the existing design, we found that for the majority (86.7%) of design
comparisons, participants preferred the alternative prototype designs over the
existing version, and that both clinicians and non-clinicians expressed similar
design preferences. Participants articulated clearer design preferences when
asked to compare individual design elements versus entire reports. Both
the quantitative and qualitative data informed the design of a revised report,
available online as a LaTeX template. We show how a human-centered de-
sign approach integrating quantitative and qualitative feedback can be used
to design an alternative report for representing complex microbial genomic
data. We suggest experimental and design guidelines to inform future design
studies in the bioinformatics and microbial genomics domains, and suggest
that this type of mixed-methods study is important to facilitate the successful
translation of pathogen genomics in the clinic, not only for clinical reports
but also more complex bioinformatics data visualization software.

3.1 Introduction

Whole Genome Sequencing (WGS) is quickly moving from proof-of-concept
research into routine clinical and public health use. WGS can diagnose
infections at least as accurately as current protocols [40, 67], can predict
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antimicrobial resistance phenotypes for certain drugs [11, 85, 120] with high
concordance to culture-based testing methods, and can be used in outbreak
surveillance to resolve transmission clusters at a resolution not possible with
existing genomic or epidemiological methods [80]. Importantly, WGS offers
faster turnaround times compared to many culture-based tests, particularly
for antimicrobial resistance testing in slow-growing bacteria.

As reference microbiology laboratories move towards accreditation of WGS
for routine clinical use, the community is turning its attention toward stan-
dardization developing standard operating procedures for reproducible sam-
ple handling, sequencing, and downstream bioinformatics analysis [13, 43].
Reporting genomic microbiology test results in a way that is interpretable by
clinicians, nurses, laboratory staff, researchers, and surveillance experts and
that meets regulatory requirements is equally important; however, relatively
little effort has been directed toward this area. WGS clinical reports are often
produced in-house on an ad hoc, project-by-project basis, with the resulting
product not necessarily meeting the needs of the many stakeholders using
the report in their clinical and surveillance workflows.

3.1.1 Human-Centered Design in the Clinical Laboratory

The information visualization, human-computer interaction, and usabil-
ity engineering fields offer techniques and design guidelines that have in-
formed bioinformatics tools, including Disease View [32] for exploring
host-pathogen interaction data and Microreact [4] for visualizing phyloge-
netic trees in the context of epidemiological or clinical data. Although the
public health community is beginning to recognize the potential role of visu-
alization and analytics in daily laboratory workflows [18] these techniques
have not yet been applied to routine reporting of microbiological test results.
However, work from the human health domain particularly the formatting
and display of pathology reports, where standardization is critical [64] sheds
light on the complex task of clinical report design.
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Valenstein reports four principles for organizing an effective pathology re-
port: use headlines to emphasize key points, ensure design continuity over
time and relative to other reports, consider information density, and reduce
clutter [114], while Renshaw et al. note that when pathology report tem-
plates were reformatted with numbering and bolding to highlight required
information, template completion rates rose from 84 to 98% [95]. Fixed,
consistent layout of medical record elements, highlighting of data relative to
background text, and single-page layout improve clinicians ability to locate
information [82], while information design principles, including visually
structuring the document to separate different elements and organizing in-
formation to meet the needs of multiple stakeholder types, can reduce the
number of errors in data interpretation [133].

Work in the electronic health record (EHR) and patient risk communication
domains has also provided insight into not just the final product but also
the process of effective design. Through quantitative and qualitative evalua-
tions, research has shown that some EHRs are difficult to use because they
were not designed to support clinical tasks and information retrieval, but
rather data entry [133]. Reviews of the risk communication literature note
that, while many visual aids improve patients understanding of risk [136],
the design features that viewers preferred namely simplistic, minimalist
designs were not necessarily those that led to an accurate interpretation of
the underlying data [2]. Together, these gaps indicate a need for a human-
centered, participatory approach iteratively incorporating both design and
evaluation [53, 54].

3.1.2 Collaboration Context COMPASS-TB

The COMPASS-TB project was a proof-of-concept study demonstrating the
feasibility and utility of WGS for diagnosing tuberculosis (TB) infection,
evaluating an isolate’s antimicrobial sensitivity/resistance, and genotyping
the isolate to identify epidemiologically related cases [85]. On the basis of
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Figure 3.1: An initial COMPASS-TB report design.

COMPASS-TB’s results, Public Health England (PHE) has implemented
routine WGS in the TB reference laboratory [89]; however, this requires
changing how mycobacteriology results are reported to clinical and public
health stakeholders. The COMPASS-TB pilot used reports designed by
the project team, but as clinical implementation within PHE progressed,
team members expressed an interest in redesigning the report (Figure 3.1) to
facilitate interpretation of this new data type and align laboratory reporting
practices with the needs of multiple TB stakeholders.

We undertook a mixed-methods and iterative human-centered approach to
inform the design and evaluation of a clinical TB WGS report. Specifically,
we chose to use Design Study Methodology [103] an approach adopted
from the information visualization discipline. When using a Design Study
Methodology approach, researchers examine a problem faced by a group of
domain specialists, explore their available data and the tasks they perform
in reference to that problem, create a product in our case a report, but, in
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the more general case, a visualization system to help solve the problem,
assess the product with domain specialists, and reflect on the process to
improve future design activities. Compared to an ad hoc approach to design,
Design Study Methodology engages domain specialists and grounds the
design and evaluation of the visualization system in tasks in this case TB
diagnosis, treatment, and surveillance as well as data. It is this marriage of
data and tasks to design choices, informed by real needs and supported by
empirical evidence, that results in a final product that is relevant, usable, and
interpretable.

Here we describe our application of design study methodology to the
COMPASS-TB report redesign. Targeting clinical and public health stake-
holders with at least some familiarity with public health genomics, we show
how evidence-based design can be incorporated into the emerging field of
clinical microbial genomics, and present a final report template, which may
be ported to other organisms. We also recommend a set of guidelines to
support future applications of human-centered design in microbial genomics,
whether for report designs or for more complex bioinformatics visualization
software.

3.2 Materials and Methods

3.2.1 Overview of Design Study Methodology

The Design Study Methodology [103] is an iterative framework outlining an
approach to human-centered visualization design and evaluation. It consists
of three phases Precondition, Core Analysis, and Reflection that together
comprise nine stages. The Precondition and Reflection phases focus on
establishing collaborations and writing up research findings, respectively,
and are not elaborated upon further here. We describe our work within
each of the three stages of the Core Analysis phase: Discovery, Design, and
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Figure 3.2: Our human-centered design approach. The Core Analysis phase of the
Design Study Methodology consists of Discovery, Design, and Implementation
stages. Using this methodological backbone, we collected and analyzed data
using mixed-methods study designs in the Discovery and Design stages, which
informed the final TB WGS clinical report design.

Implementation (Figure 3.2). We define domain specialists in this case as
the TB stakeholders - clinicians, laboratorians, and epidemiologists - who
regularly use reports from the reference mycobacteriology laboratory in their
work.

Our research was reviewed and approved by the University of British
Columbias Behavioural Research Ethics Board (H10-03336). All data
were collected through secure means approved by the university and
were de-identified for analysis and sharing. Anonymized quantitative
results from each of the surveys and the analysis code are available at
https://github.com/amcrisan/TBReportRedesign and in
Appendix A. We also provide the full text of our survey instruments in
Appendix A.
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3.2.2 Discovery Stage

In the Discovery stage, we first gathered qualitative data through expert
consults to identify the data types used in TB diagnosis, treatment, and
surveillance tasks; we then gathered quantitative data through an online
survey to more robustly link particular data types to specific tasks. This
staged approach to data gathering is known as the exploratory sequential
model [22].

Our expert consults took the form of semi-structured interviews with seven
individuals recruited from the COMPASS-TB project team, the British
Columbia Centre for Disease Control (BCCDC), and the British Columbia
Public Health Laboratory (BCPHL). The interview questions served as
prompts to structure the conversation, but experts were free to comment, at
any depth, on the different aspects of TB diagnosis, treatment, and surveil-
lance. We took notes during the consults in order to identify the tasks and
data types common to TB workflows in the UK and Canada, as well as to
determine which tasks could be supported by WGS data.

Informed by the expert consults, we drafted a Task and Data Questionnaire
(text in Appendix A) to survey data types used across the TB workflow
(see Figure 3.3 for a list of data types), the role for WGS data in diagnosis,
treatment, and surveillance tasks, and participants confidence in interpreting
different data types. The questionnaire primarily used multiple choice and
true/false type questions, but also included the optional entry of freeform
text. The questionnaire was deployed online using the FluidSurveys platform
and participants were recruited using snowball and convenience sampling
for a one-week period in July, 2016. For questions pertaining to diagnos-
tic and treatment tasks, we gathered information only from participants
self-identifying as clinicians; for the remaining sections of the survey, all
participants were prompted to answer each question.

Only completed questionnaires were used for analysis. For questions per-
taining to participants’ background, their perception of WGS utility, and
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their confidence interpreting WGS data, we report primarily descriptive
statistics. To link TB workflow tasks to specific data types, we presented par-
ticipants with different task-based scenarios related to diagnosis, treatment,
and surveillance and asked which data types they would use to complete the
task. For each pair of data and task we assigned a consensus score depending
on the proportion of participants who reported using a data type for a specific
task: 0 for fewer than 25% of participants, 1 for 25-50%, 2 for 50-75%, and
3 if more than 75% of participants reported using a specific data type for the
task at hand. Consensus scores for a data type were also summed across the
different tasks. Freeform text, when it was provided, was considered only to
add context to participant responses.

3.2.3 Design Stage

The Discovery stage revealed which data types to include in the redesigned
report, while the goal of the Design stage was to identify how it should be
presented. We used a Design Sprint event to produce a series of prototype
reports, which were then assessed through a second online questionnaire.
This survey collected quantitative data on participants preference for specific
design elements, with participants also able to provide qualitative feedback
on each element a type of embedded mixed methods study design [22]

The Design Sprint was an interactive design session involving members
of the University of British Columbias Information Visualization research
group, in which teams created alternative designs to report WGS data for
the diagnosis, treatment, and surveillance tasks. Teams developed paper
prototypes [66] [119] of a complete WGS TB report and, at the completion of
the event, presented their prototypes and the rationale for each design choice.
The paper prototypes were then digitally mocked up, both as complete reports
and as individual elements (see the results in Figure 3.4 and Figure 3.5);
these digital prototypes were standardized with respect to text, fonts, and
sample data where appropriate and used as the basis of the second online
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survey.

In the Design Choice Questionnaire (text in Appendix A), we evaluated par-
ticipants preferences for individual design elements, comparing the options
generated during the Design Sprint as well as the initial COMPASS-TB
report design, which we hereafter refer to as the control design. As with the
first survey, the questionnaire used FluidSurveys, with participants recruited
using snowball and convenience sampling. Individuals who had previously
participated in the Data and Task Questionnaire were also invited to partic-
ipate. The survey was open for one month beginning September 10, 2016
and was reopened to recruit additional participants for one month beginning
January 5, 2017, as part of the registration for a TB WGS conference hosted
by PHE. Only completed surveys were analyzed.

We used single-selection multiple-choice, Likert scale, and ranking ques-
tions to assess participant preferences. For multiple-choice and Likert scale
questions, we calculated the number of participants that selected each option
and report the sum. For questions that required participants to rank options
we calculated a rescaled rank score as follows:

rescaledrank(Di) = 1−
P−1

∑
P
p=1 Rp−1

N−1

where for each design choice (Di), i = {1 . . .N} where N is the total number
of design choices, R = {1 . . .N} is a raw rank (rank selected by a participant
in the study), and P = {1 . . .P} is the total number of participants. In our
study, 1 was the highest rank (most preferred) and N was the lowest rank
(least preferred) option. As an example, if a design, D1, is always ranked 1
(greatest preference by everyone), the sum of those ranks is P, resulting in a
numerator of 0 and a rescaled rank score of 1; alternatively, if a design, D2,
is always ranked last (N), the sum of those ranks will be P∗N, and a rescaled
rank score of 0. Thus, the rescaled rank score ranges from 1 (consistently
ranked as first) to 0 (consistently ranked last). This transformation from
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raw to rescaled ranks allows us to compare across questions with different
numbers of options, but is predicated on each design alternative having
a rank, which is why this approach was not extended to multiple choice
questions.

To contextualize rescaled rank scores, we randomly permuted participants’
scores 1000 times and pooled the rescaled rank scores across these iterations
to obtain an average score (intuitively and empirically this is 0.5 for the
rank questions and 1

N for multiple choice questions) and standard deviation.
For each design choice, we plotted its actual rescaled rank score against
the distribution of random permutations, highlighting whether the score
was within ± 1, 2, or 3 standard deviations from the random permutation
mean score. The closer a score was to the mean, the more probable that the
participants preferences were no better than random. We also calculated
bootstrapped 95% confidence intervals for both rank and multiple choice
type questions by re-sampling participants, with replacement, over 1000
iterations.

3.2.4 Implementation Stage

By combining the results of the Design Choice Questionnaire with med-
ical test reporting requirements from the ISO15189:2012 standards, we
developed a final template for reporting TB WGS data in the clinical lab-
oratory.We used deviation from a random score, described above, as an
indicator of preference, selecting design elements 3 or more standard de-
viations from a random score. When there was no strongly preferred
element, we explain our design choice in the Design Walkthrough (Ap-
pendix A). We also considered consensus between clinicians and non-
clinicians, and defaulted to clinician preferences in instances of disagree-
ment as they are the primary consumers of this report. The final prototype
is implemented in Latex and is available online as a template accessible at:
http://www.cs.ubc.ca/labs/imager/tr/2017/MicroReportDesign/.
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3.3 Results

Expert consults, the Task and Data Questionnaire, and the Design Choice
Questionnaires recruited a total of 78 participants across different roles in
TB management and control (Table 3.1).

Table 3.1: Total study participants across different stages of the Design Study
Methodology.

Expert Consults Task and Data Questionnaire Design Choice Questionnaire
Stage Discovery Design

Data Collected Qualitative Quantitative Qualitative & Quantitative

Participants N (% survey total) N (% survey total) N (% survey total)

Clinician 2 29% 7 40% 13 25%

Nurse 1 14% 3 18% 5 9%

Laboratory 2 29% 3 18% 8 15%

Research 0 0% 1 6% 8 15%

Surveillance 1 14% 3 18% 8 15%

Other* 1 14% 0 0% 12 21%

Total 7 100% 17 100% 54 100%

3.3.1 Experts Emphasized Prioritizing Information and Revealed
Constraints

The objective of our expert consults was to understand how reports from the
reference mycobacteriology laboratory are currently used in the day-to-day
workflows of various TB stakeholders, including clinicians, laboratorians,
epidemiologists, and researchers, and what data types are currently used
to inform those tasks. Tasks and data types enumerated in the interviews
were used to populate downstream quantitative questionnaires; however, the
interviews also provided insights into how stakeholders viewed the role of
genomics in a clinical laboratory.

Amongst the procedural insights, stakeholders frequently reported that the
biggest benefit of WGS over standard mycobacteriology laboratory protocols
was to improve testing turnaround times and gather all test results into a sin-
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gle document, rather than having multiple lab reports arriving over weeks to
months. Several experts emphasized that these benefits can only be realized
if the WGS analytical pipeline has been clinically validated. Although our
study team included a clinician and a TB researcher, two surprising proce-
dural insights emerged from the consultations. First, multiple experts from
a clinical background emphasized that this audience has extremely limited
time to digest the information found on a clinical report. In describing their
interaction with a laboratory report, one participant noted that 10 seconds
[to review content] is likely, one minute is luxurious while others described
variations on the theme of wanting bottom-line, actionable information as
quickly as possible. This insight profoundly shaped downstream decisions
around how much data to include on a redesigned report and how to arrange
it over the report to permit both a quick glance and a deeper dive. Second,
experts indicated that laboratory reports were delivered using a variety of
formats, including PDFs appended to electronic health records, faxes, or
physical mail. This created design constraints at the outset of the project
our redesigned report needed to be legible no matter the medium, ruling out
online interactivity, and needed to be black and white.

3.3.2 Experts Vary in Their Perception of Different Data Types

At the data level, we observed that the experts had differing perceptions of
data types and desired level of detail between clinicians and non-clinicians,
perhaps reflecting the clinicians procedural need for rapid interpretation.
Clinicians emphasized the importance of presenting actionable results clearly
and omitting those that were not clinically relevant for them. For example,
when presented with the sequence quality data on the current COMPASS-
TB report (Figure 3.1) metrics reflecting the quality of the sequencing run
and downstream bioinformatics analysis interviewees did not expect the
lab to release poor quality data, given the presence of strict quality control
mechanisms. ISO15189:2012 standards require some degree of reporting
around the measurement procedure and results, but this insight suggested
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such data might best be placed later in the report in a simplified format, or
described in the report comments. Similarly, experts were also divided on
the interpretability and utility of the phylogenetic tree in the epidemiological
relatedness section of the current COMPASS-TB report, with clinicians
noting that the case belonging to an epidemiological cluster would not
impact their use of the genomic test results.

Experts also disagreed about the level of detail needed for WGS data, and
this appeared to depend upon on whether the expert was a clinician as well
as their prior experience with WGS through the COMPASS-TB project. For
example, one expert indicated that “clinicians are wanting to know which
mutations conferred resistance”, while another noted that they “dont use
these [mutations] right now routinely, so its not that relevant”. When asked
to comment on the resistance summary table in the current COMPASS-TB
report (Figure 3.1), clinicians were concerned about the use of abbreviations
for both drug names and susceptibility status leading to misinterpretation,
and many were uncertain how to use the detailed mutation information in
the resistotype table.
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WGS 
equivalent

DIAGNOSIS TASKS TREATMENT TASKS SURVEILLANCE TASKS

TOTAL 
SCORE

Diagnose 
Latent TB

Diagnose 
Active TB

Reactive vs 
New Infection

Characterize 
Transmission 

Risk
Choose 
Meds

Choose Tx
Duration

Assess 
Response 

to Tx

Guide 
Contact 
Tracing

Report to 
Public 
Health

Define a 
Cluster

Connect 
Case to 
Existing 
Cluster

Guide 
Public 
Health 

Response
Patient Identifier Same 3 3 3 3 3 3 3 2 1 1 1 1 26
Sample Collection Date Same 3 3 2 3 3 3 3 1 1 1 1 1 24
Patient Prior TB Results Same 3 2 3 3 3 3 3 1 1 1 0 1 23
Speciation Speciation 1 3 2 3 3 3 3 2 1 1 1 1 23
Sample Type (sputum, fine 
needle aspirate etc.) Same 2 3 2 3 3 3 3 1 1 1 0 1 22

Culture results NA 1 3 2 3 3 3 3 2 1 1 0 1 22
Sample Collection Site (lymph 
node, lung etc..) Same 2 3 2 3 3 3 3 1 1 0 0 1 21

Acid Fast Bacilli Smear Speciation 2 3 2 3 2 3 3 1 1 1 0 1 21
Resistotype Predicted DST 0 2 3 1 3 3 2 2 1 1 1 1 19
Phenotypic DST Predicted  DST 0 2 3 2 3 3 2 1 1 1 0 1 18
Chest x-ray NA 3 3 2 3 0 2 3 1 0 0 0 0 17
Report Release Date Same 2 2 1 2 2 2 2 1 0 1 0 1 15
Requester IDs Same 2 2 2 2 2 2 2 1 0 0 0 0 15
Interpretation or comments 
from reviewer Same 2 2 1 2 2 2 3 1 0 0 0 0 15

Predicted DST Predicted DST 0 2 2 1 3 3 2 1 0 1 0 0 15
MIRU-VNTR SNPs 0 2 3 1 1 1 1 1 1 1 1 1 13
Cluster Assignment Same 0 2 2 1 1 1 0 1 1 1 1 1 11
SNP/variant distance SNPs 0 1 2 1 1 1 0 1 1 1 1 1 10
Phylogenetic Tree Same 0 2 1 1 1 1 0 1 0 1 1 1 9
Reviewer ID Same 1 1 1 1 1 1 1 1 0 0 0 0 8
TST results Speciation* 3 1 1 1 0 0 0 1 0 0 0 0 7
IGRA results Speciation* 3 1 1 1 0 0 0 1 0 0 0 0 7
Lab QC WGS Specific 0 1 2 1 1 1 0 1 0 0 0 0 7
Spoligotype SNPs 0 1 1 1 0 0 0 0 0 0 0 0 3
RFLP SNPs 0 1 1 1 0 0 0 0 0 0 0 0 3

Degree of Consensus: High (3) Some (2) Low (1) Very low (0)

Figure 3.3: Extent of consensus between TB workflow tasks and available TB data. Results are redundantly encoded using
colour and a numerical value to represent the degree of consensus between participants around using a specific data type to
carry out a specific task.
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3.3.3 WGS Data is Vital, but Some Lack Confidence in its
Interpretation

The expert consults provided a detailed overview of the tasks and data
associated with TB care, allowing us to create a draft workflow outlining the
TB diagnosis, treatment, and surveillance tasks coupled to the supporting
data sources and data types (Figure A.12). This workflow was used to design
the Task and Data Questionnaire.

Of the 17 participants responding in full to the Task and Data Questionnaire
( Table 3.1), most were from the United Kingdom (88%) and most reported
professional experience and formal education in infectious diseases and
epidemiology (Table A.13). Participants were less likely to report education
at the masters or doctoral level in microbial genomics, biochemistry, or
bioinformatics (Table A.1). Fewer than half (47.1%) of participants had par-
ticipated in TB WGS projects, but all (100%) participants were enthusiastic
about the role of microbial genomics in infectious disease diagnosis, both
today (47.1%) and in the near future, pending clinical validation (52.9%).

When queried about their potential future use of molecular data, whether
WGS, genotyping, or other, participants indicated they foresaw themselves
consulting, often or all the time, data on resistance-conferring mutations
(82.3% of participants), MIRU-VNTR patterns (88.2%), epidemiological
cluster membership (76.5%), single nucleotide polymorphism/variant dis-
tances from other isolates (64.7%), and WGS quality metrics (58.8%) (Ta-
ble A.2). However, of the 14 different data types queried, the majority of
participants only felt confident in interpreting four (MIRU-VNTR, drug
susceptibility from culture, drug susceptibility from PCR or LPA, genomic
clusters) - most participants only felt somewhat confident, or not confident
at all, interpreting the other data types (Table A.3).

Moving from confidence in their own interpretation of laboratory data types
2This figure and all others with the prefix A are presented in Appendix A
3This table and all others with the prefix A are presented in Appendix A
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to confidence in the utility of WGS data in general, the majority of par-
ticipants were confident that information contained within the TB genome
can be used to correctly perform organism speciation (76.5%), assign a
patient to existing clusters (70.0%), rule out transmission events (64.7%),
and to a lesser extent were confident TB WGS could be used to identify
epidemiologically related patients (58.8%) and predict drug susceptibility
(52.9%) (Table A.4). The majority of participants thought genomic data may
be able to inform clinicians of appropriate treatment regimens (100%) and
identify transmission events (94.1%); however, participants showed mixed
consensus toward whether genomic data could be used to monitor treatment
progress for TB (47.2%) or diagnose active TB (52.9%).

3.3.4 Respondent Consensus Suggests a Role for WGS in Diagnosis
and Treatment Tasks

To examine which data types were being used to support diagnosis, treat-
ment, and surveillance tasks in the workflow, we assigned a numerical score
reflecting respondent consensus around each data type-task pair (Figure 3.3).
We found greater consensus around the data types that participants would
use in diagnosis and treatment tasks, but little consensus around the data they
would use for surveillance tasks, contrasting with participants previously
stated support for using WGS or other genotyping data for understanding
TB epidemiology. Overall, the most frequently used data types included
administrative data (patient ID, sample type, collection site, collection date)
and results from current laboratory tests (solid or liquid culture, smear sta-
tus, and speciation), which together were used primarily for diagnosis and
treatment. Prior test results from a patient were deemed important; however,
the earlier expert consults indicated that such data was difficult to obtain and
unlikely to be included in future reports.

We also queried participants perceptions of barriers impacting their work-
flow, with the majority of participants (83.3%) reporting issues with both
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Tuberculosis Genome Sequencing Results

Patient Name Bob Johnson

Patient ID 123456789

Patient DoB 01-01-1900

Location Oxford

Sample Type Sputum

Sample Site -

Sample Date 01-01-1900

Specimen ID 123456789

NOT FOR DIAGNOSTIC PURPOSES

Patient Information

Summary of Findings
Based upon an analysis of the specimen’s genomic data, this patient has mycobacterium 
tuberculosis that is predicted to be resistant to  2 antibiotics (Isoniazid, Rifampin). This 
case belongs to a cluster of cases with similar genomic findings.  

Diagnosis

The specimen was speciated as mycobacterium tuberculosis

Treatment

Methodology: genomic data from the specimen was compared to mycobacterium and non-mycobatercium
tuberculosis genomes for speciation(reference published paper) . 

Methodology: Drug sensitivities were predicted using the genomic sequence data in accordance to the method 
reported in published paper ref.

The specimen was consider to be multi-drug resistant (MDR) TB.

Drugs Prediction Status Comment
Isoniazid Resistant ! Gene: katG,  Amino Acid Change: S315T

Rifampin Resistant ! Gene: rpoB,  Amino Acid Change: S531L

Ethambutol Sensitive � -

Pyrazinomide Sensitive � -

QUI Sensitive � -

SM Sensitive � -

AG Sensitive � -

Summary of sensitive findings

Page 1 of 2

Page 1 of 2

Authorized By Dr. John Smith

Position Laboratory Director

Signature

Date 01-01-1901

Page 2 of 2

Page 2 of 2

Epidemiologic Summary

Quality Summary
The whole genome sequence analysis of the isolate was considered HIGH QUALITY as the number of reads was 
greater than 4.7 million with 99.47% mapped and a coverage of 91.99% .

Comments

Methodology: Patients are automatically assigned to clusters based upon based upon single nucleotide 
polymorphism differences. Clustering thresholds are defined according to cite referenced paper.

The specimen belongs to a previously existing cluster

Similarity SNP 
difference Cluster trend (past 5 years) Membership

(#cases)

Highly 0 to 5 2

Peripheral 6 to 12 6

References
1. Ref 1
2. Ref 2
3. Ref 3

Tuberculosis Genome Sequencing Results
NOT FOR DIAGNOSTIC PURPOSES

A

C

B

D

Mycobacterium	Whole	
Genome	Sequencing	Report

Report	Date 01-01-1900

Laboratory Oxford

Reviewed by Dr.	John	Smith

Patient	Name Bob Johnson

Patient	ID 123456789

Patient	DoB 01-01-1900

Location Oxford

Requester Dr.	Paul
1234	Smith	St
Birmingham, UK

Copy to

Patient	Details

Sample	Details
Sample	Type Sputum Sample	Date 01-01-1900

Sample	Site - Specimen	ID 123456789

Requester	Details

Speciation

Organism	Species Mycobacterium Tuberculosis

Drug	Sensitivities

Ethambutol
Pyrazinamide

Isoniazid1

Rifampin1

SUSCEPTIBLE RESISTANT INDETERMINATE

!

!

Relatedness

1Details	about	the	mutation(s)	used	to	predict	resistance	can	be	found	in	the	technical	section	on	page	2

Likely	Related	(less than	5	SNP	Difference) Possibly Related	(6-30	SNP	Differences)

Number	of	isolates 2 6

For	further	information	on	related	isolates	and	existing	clusters,	please	contact	the	Public	Health	lab	at	123-456-7890

1/2

Not	for	diagnostic	Use01-01-1900 / Bob	Johnson

Resistotype
Drug Prediction Gene Mutation

Isoniazid Resistant katG S315T

Rifampin Resistant rpoB S531L	

2/2

Sequence	Quality
The	whole	genome	sequence	analysis	of	the	isolate	was	considered	HIGH	QUALITY as	the	number	of	reads	was	greater	than	
4.7	million	with	99.47%	mapped	and	a	coverage	of	91.99%	.

Reviewer	Comments
No	additional	comments

Signature Print	Name Dr.	John	Smith

Date 01-01-1900 Position Lab	Director

Authorization

Not	for	diagnostic	Use01-01-1900 / Bob	Johnson

Mycobacterial Genome Sequencing Results

PATIENT NAME BOB JOHNSON PATIENT ID 123456789

BIRTHDATE 1 JAN 1900 GENDER M LOCATION OXFORD

SAMPLE TYPE SPUTUM SAMPLE DATE 1 JAN 1900

REPORTING LAB OXFORD REPORT DATE 1 JAN 1900

SUMMARY

DIAGNOSIS        

TREATMENT         

First-Line Drugs
Isoniazid Resistant (katG S315T)
Rifampin Resistant (rpoB S531L)
Ethambutol Sensitive
Pyrazinimide Sensitive
Second-Line Drugs
Streptomycin Sensitive
Ciprofloxacin Sensitive
Ofloxacin Sensitive
Moxifloxacin Sensitive
Amikacin Sensitive
Kanamycin Sensitive
Capreomycin Sensitive

EPIDEMIOLOGY         

The specimen from Bob Johsnon is positive for Mycobacterium tuberculosis. It is predicted to be 
resistant to isoniazid and rifampin. It belongs to a cluster of genetically related cases.

The specimen is positive for Mycobacterium tuberculosis 

Based on predicted antibiotic sensitivities, this 
individual has multidrug-resistant (MDR) TB.

This isolate belongs to a cluster of 8 genetically 
related cases, suggesting recent transmission.

2011   2012   2013   2014   2015

4

2
1 1

COMMENTS
This sample was sequenced twice; the initial 
sequencing run did not provide high quality data 
for further analysis.

AUTHORIZED BY DR. JOHN SMITH SIGNATURE

POSITION LABORATORY DIRECTOR DATE 1 JAN 1900

Page 1 of 2

PATIENT NAME BOB JOHNSON IDENTIFIER 123456789

BIRTHDATE 1 JAN 1900 GENDER M LOCATION OXFORD

DIAGNOSIS DETAILS

TREATMENT DETAILS

Species % Identity
Mycobacterium tuberculosis 100%
Mycobacterium avium complex 40%
Mycobacterium canetti 20%

Page 2 of 2

Drug Gene Mutation Catalog Coverage Support
Isoniazid katG S315T Mykrobe v2 47x 46/47 reads
Rifampin rpoB S531L Walker et al 38x 38/38 reads

EPIDEMIOLOGY DETAILS
Isolate Year SNP Distance

2015_A 2015 3

2014_A 2014 4

2013_A 2013 8

2013_B 2013 7

2012_A 2015 10

2012_B 2015 9

2012_C 2015 10

2012_D 2015 9

GENOME SEQUENCING DETAILS
LOCAL LIMS ID 12.0610882 GUUID b7aa98e0-3612-4c0b-

a47b-471e0e78c72dRUN DATE 1 JAN 1900 RUN INSTRUMENT ILLUMINA MISEQ

TOTAL READS 4.73M MAPPED READS (%) 4.70M (99.47%)

REFERENCE GENOME H37RV (NC000962.2)

Species are identified by 
comparing sequenced genomic 
DNA against a database of 
known reference Mycobacterial 
species. % Identity refers to how 
closely the DNA from the present 
sample matches the DNA from 
the reference species.

Resistance is predicted by 
identifying known resistance-
conferring mutations in the 
genomic data. Coverage refers to 
how many sequence reads map 
to a mutation site, with Support 
indicating how many of those 
contain the resistance mutation.

Clusters of related isolates are 
defined as those within 12 single 
nucleotide polymorphisms (SNPs) 
of another isolate, a threshold 
suggestive of recent 
transmission. This table displays 
those previously-sequenced 
isolates within 12 SNPs of the 
current isolate, with the results 
arranged first by year, then by 
SNP distance.

SPECIES IDENTIFIED BY SEQUENCING
100% identical to Mycobacterium tuberculosis 

Page 1 of 2

PATIENT INFORMATION

Name: Bob Johnson                    Identifier: 123456789 
Birth Date: 1 Jan 1900                Sample Date: 1 Jan 1900          
Location: Birmingham                Gender: M  

1

2

3
PREDICTED ANTIBIOTIC RESISTANCE
Resistant to isoniazid, rifampin.

4
EPIDEMIOLOGICAL RELATIONSHIPS
Belongs to a cluster of 8 genetically related cases, suggesting recent 
transmission.

AUTHORIZED BY: DR. JOHN SMITH      POSITION: LABORATORY DIRECTOR     DATE: 1 JAN 1900 

MYCOBACTERIAL GENOME SEQUENCING REPORT

Report Issued By:  OXFORD    Report Date: 1 JAN 1900

5
SEQUENCING QUALITY
Sequenced 4 Aug 2016 on an Illumina MiSeq, yielding 4.73M reads, 
4.70M (99.47%) mapped to the H37Rv (NC000962.2) reference genome.

6
COMMENTS
The sample was sequenced twice; the initial sequencing run did not provide 
high quality data for analysis.

MYCOBACTERIAL GENOME SEQUENCING REPORT

Report Issued By:  OXFORD    Report Date: 1 JAN 1900

Page 2 of 2

Technical Details

7 This section of the report provides the technical details for the 
summaries presented on the first page.

Resistotype

Related Isolates 

Drug Gene Mutation Catalog Coverage Support

Isoniazid katG S315T Mykrobe v2 47x 46/47 reads
Rifampin rpoB S531L Walker et al 38x 38/38 reads

Isolate Year SNP Distance
2015_A 2015 3
2014_A 2014 4
2013_A 2013 8
2013_B 2013 7
2012_A 2015 10
2012_B 2015 9
2012_C 2015 10
2012_D 2015 9

The resistotype describes the mutations that are predicted to confer drug resistance.

The following graph and table describe isolates that have been identified as being genetically 
similar to this patient’s isolate.

Iconography credit to The Noun Project
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Figure 3.4: Digital mockups of complete report prototypes generated during the
design sprint

the timeliness of receiving TB data from the reference laboratory and the
distribution of test results across multiple documents (Table A.5) a finding
that corroborated the procedural insights from the expert consults.

3.3.5 Prototyping Via a Design Sprint Produces a Range of Design
Alternatives

Equipped with an understanding of how WGS data might be used in the vari-
ous TB workflow tasks, we embarked on the Design stage of the design study
methodology. A Design Sprint event involving study team members and
information visualization experts resulted in four prototype report designs
(Figure 3.4) and various isolated design elements (Figure 3.5). Although
each prototype used different design elements for the required data types,
when the prototypes were compared at the end of the event, common themes
emerged. These included: presenting data in an order informed by the
workflow data related to diagnosis, treatment, then surveillance; placing
actionable, high-level on the front page, with additional details on the over
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Figure 3.5: Isolated design component. The original report element, highlighted
in red, is broken down into isolated design elements, each of which was tested
independently in the report design survey. In this example, the original resistance
summary yields five different alternative wordings and design elements.

page; and using both an overall summary statement at the beginning of the
report as well as brief summary statements at the beginning of each section.

To drill down and determine which design elements best communicate the
underlying data, we isolated individual design elements (Figure 3.5) and
classified them as wording choices for example, which heading to use for
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a given section of the report or design choices, such as layout, the use of
emphasis, and the use of graphics (Table A.6).

3.3.6 The Design Choice Questionnaire Quantifies Participant
Preferences for Specific Design Elements

We next developed an online survey, the Design Choice Questionnaire, to
assess stakeholders preferences for both specific design elements and overall
report prototypes. The distribution of public health roles amongst survey
participants is presented in Table 3.1; all but 11 participants (20%) actively
worked with TB data. Participants were employed by Academic Institutions
(35.2%), Hospitals (24.1%), and Public Health Organizations (33.3%), with
only 7.4% of participants being employed in some other sector. The majority
of participants were from the UK (59.2%), while 11.1% were from Canada;
the remaining 29.7% were drawn from the United States (6.5%), Europe
(14.8%), Brazil (2.8%), India (2.8%), and Gambia (2.8%)

We first examined participants’ preference for specific wording and design
elements (Figure 3.6A,B), comparing elements arising from the prototypes
to those used in the existing COMPASS-TB report, which acted as a control.
Notably, of the 15 wording and design elements queried, in only two cases
was the control design preferred over a design arising from one of the proto-
types (note that one query did not compare to a control). Furthermore, in 8
out of 15 queries (Q6, Q8, Q9, Q10, Q12, Q17, Q5, Q18) participants showed
strong preferences, wherein the to preference was +3 or more standard de-
viations from the mean for both clinicians and non-clinicians. Figure A.1
provides a version of Figure 3.6 with confidence intervals and indicates
concordance between strong preferences and non-overlapping confidence
intervals.

The findings from the analysis of wording elements (Figure 3.6A) showed
that participants preferred complete terms to abbreviations, such as writing
out isoniazid as opposed to INH or H, or resistant as opposed to R, and
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that both clinicians and non-clinicians were in agreement over the preferred
vocabulary for section headings. Interestingly, wording questions related to
the treatment task yielded the widest range of rankings.

Clear preferences were also observed for information design elements, again
largely concordant between clinicians and non-clinicians (Figure 3.6B).
Participants preferred elements that drew attention to specific data, such
summary statements, shading, and tick boxes, and many participants pre-
ferred that sections be prioritized, with less important details relegated to the
second page of the report. However, there was less consensus around how
much detail to include and where. The majority of participants indicated
that genomic data pertaining to resistance-conferring mutations should be
included (Figure 3.6B; Q11), but were divided as which data should be
included and where. Most (85%) wanted to know the gene harboring the
resistance mutation (i.e. katG; inhA), but only half wanted details of the
specific mutation (50% wanted the amino acid substitution, 46% wanted
to know the nucleotide-level change). We did not test any design elements
displaying the strength of the association between the mutation and the resis-
tance phenotype; however, we will add this to a future version of the report
pending receipt of the final mutation catalog from the ReSeqTB Consortium.
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Figure 3.6: Design Choice Questionnaire results. Responses are grouped according
to question type: wording (A), design choices (B), and full reports (C), and
partitioned into clinician participants (squares) and non-clinician participants
(circles). Responses are coloured according to whether they are the control
design from the original report (white) or an alternative design devised in the
design sprint (black). Lines connect options between clinician and non-clinicians
preferences, with thicker crossing lines showing discordance between the two
groups and vertical lines showing concordance in preferences. Rescaled rank
scores are shown against a reference of random permutations (see Methods),
with scores closer to 1 indicating the most preferred response. Specific questions
are indicated with Q; the participants questions are shown in Table A.6
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Interestingly, while both clinicians and non-clinicians reported similar rank-
ings for most design elements, one element showed an unusual distribution
of scores the visualization for showing genomic relatedness and member-
ship in a cluster. While both groups of participants preferred a phylogenetic
tree accompanied by a summary table, which is the current COMPASS-TB
control design, the other four options appeared to be ranked randomly, with
rescaled rank score close to 0.5, suggesting that none of the alternative
options were particularly good.

We also had participants rank their preferences for the four prototype de-
signs (Figure 3.6C). While all participants ranked Prototype D as their least
preferred choice, many citing that the images used were too distracting, clin-
icians and non-clinicians varied in their ranking of the other three options,
with clinicians preferring option A and non-clinicians preferring B. However,
qualitative feedback collected for this question revealed that participants
found comparing individual elements easier than comparing full reports.

3.3.7 Qualitative Data Affords Additional Insights into Report
Design

The qualitative responses in the Design Choice Questionnaire raised impor-
tant points that would otherwise not have been captured by quantitative data
alone. For example, the importance of presenting drug susceptibility data
clearly emerged from the qualitative responses. Participants indicated that
the report must call attention [to] drug resistance and expressed concern that
the abbreviation of drug names and/or predicted resistance phenotype could
lead to misinterpretation and pose risks to patient safety, stating that not
all clinicians [are] likely to recognize the abbreviations and [using the full
name] reduces the risk of errors, especially if new to TB. When choosing how
to emphasize predicted drug susceptibility information (shading, bolding,
alert glyphs, or no emphasis), some participants suggested shading draws
the quickest attention to [resistance] and that with presbyopia, resistance
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can be easily missed and therefore shading affords greater patient safety, but
other participants indicated drug susceptibility, rather than resistance, should
be emphasized: not sure that resistant should be shaded better to shade
sensitive drugs in my view and it would be better to highlight what is working
instead of highlight what is not working. We opted to highlight resistance
given the low incidence of drug-resistant TB in the UK and Canada, which
were the primary application contexts. Some reported concerns as to whether
such emphasis was possible with current electronic health records, including
[bolding or shading] may not transfer correctly and shaded [text] wont
photocopy well, which prompted us to test both printing and photocopying
of the resulting report.

The issue of clinicians having little time to interact with the report, raised in
both the expert consults and the Task and Data Questionnaire, also became
apparent in the qualitative responses to the Design Choice Questionnaire,
such as the best likelihood of success will [come] from the ability to draw
attention to someone scanning the document quickly. However, participants
perceptions of which design choices best promoted rapid synthesis varied.
Some preferred summaries in the form of check boxes “[a] tick box is the
most straightforward way to summarize it. Reading a summary sentence
will probably take longer” and “the check boxes provide an at-a-glance
result” while others preferred additional commentary “interpretation is
important; but tick boxes alone lack the necessary nuance required for inter-
pretation” and that “tick boxes may cause confusion when clinicians read
XDR without realizing that option is not selected. Ideal to add a comment
about resistance”. To address this concern we added a “No drug resistance
predicted” option to the check-boxes (absent from the survey design options),
and included shading elements to emphasize the drug susceptibility result.

The qualitative responses to Q17 (Figure 3.6B) provided further insight into
the uncertainty around how best to represent genomic relatedness suggestive
of an epidemiological relatedness. Some participants felt that data related
to surveillance tasks should not appear in a report that is also meant for
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clinicians, either because it wasnt relevant to this audience [this data] should
not appear in the report. It should only be given to field epi and researchers.
Overloading the clinical report would be deteriorating and not useful for
a clinician or because they were uncertain about its interpretation cluster
detection would be fine for those who already know what a cluster is and my
patients isolate is 6 SNPs from someone diagnosed 3 years ago. What is the
clinical action?.

Of the design choices for cluster detection, several participants articulated
that many of the options, including the control, [included] too much infor-
mation and [were] unnecessary for routine diagnosis/treatment. However,
others felt that the options did not provide sufficient detail and offered alter-
natives, such as if you can combine the phylogenetic tree with some kind of
graph showing temporal spread that would be perfect. Adding geographical
data would be a really helpful bonus too.. This is an area of reporting that
requires further investigation and was not fully resolved in our study.

Finally, participants were candid about those design options that did not work
well for example, of the report design with many graphics (Figure 3.6A,
option D), participants indicated it was distracting; looks like a set of road-
works rather than a microbiology report and that it was important to keep
it simple. Their feedback also revealed when our phrasing on the survey
instruments was unclear.
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3.3.8 Developing a Final Report Template

Figure 3.7: Original and revised reports. The revised report uses empirical evi-
dence gathered through multiple stages of a human centered design process.
Note that the image in the upper corner of the revised report is a placeholder for
an organizational logo.

74



There are no prescriptive guidelines around integrating our quantitative data,
qualitative data, and ISO15189:2012 reporting requirements; thus, we have
attempted to be as transparent and empiric as possible in justifying our
final design (Figure 3.7). A more thorough walkthrough is presented in
Appendix A, and here we highlight selected choices. The final prototype is
implemented in Latex and is available online as a template accessible at:

http://www.cs.ubc.ca/labs/imager/tr/2017/MicroReportDesign/

We first incorporated ISO15189:2012 requirements (see Appendix A) into
the final report template and then turned to the preferences expressed in the
Design Choice Questionnaire. Overall, information was structured to mirror
the TB workflow diagnosis, treatment, then surveillance. We chose to limit
bolding to relevant information, and used shading to highlight important and
actionable clinical information, under the rationale that appropriate use of
emphasis could facilitate an accurate and quick reading of the report, with
detailed information present but de-emphasized.

In two instances, our design decisions deviated from participant preferences:
we opted to use one column instead of two, and we presented detailed
genomic resistance data on the first page of the report, rather than the
second page. A single column was chosen as all of the information ranked
as important by participants could be presented on a single page without
the need to condense information into two columns. Because many of
the resistotype details of the original report, such as mutation source and
individual nucleotide changes ( Figure 3.1), were not included in the revised
report, it was possible to present all of the participants’ desired data in a
single table on one page.

A draft of the final design was presented to a new cohort of TB stakeholders
at a September, 2017 expert working group on standardized reporting of
TB genomic resistance data. Through a group discussion, subtle changes to
the report were made, including updating some of the language used (for
example, replacing occurrences of the word “sensitive” with “susceptible”),
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adding the lineage to the Organism Section, and adding additional fields to
tables describing the sample, and the assay, such as what type of material
was sequenced (pure culture, direct specimen) and what sequencing platform
was used.

3.4 Discussion

Microbial genomics is playing an increasingly important role in public
health microbiology, and its successful implementation in the clinic will
rely not just on validation and accreditation of WGS-based tests, but also in
how effective the resulting reports are to stakeholders, including clinicians.
Using Design Study Methodology, we developed a two-page report template
to communicate WGS-derived test results related to TB diagnosis, drug
susceptibility testing, and clustering.

To our knowledge, this project is the first formal inquiry into human-centered
design for microbial genomics reporting. We argue that the application of
human-centered design methodologies allowed us to improve not only the
visual aesthetics of the final report, but also its functionality, by carefully
coupling stakeholder tasks, data, and constraints to techniques from informa-
tion and graphic design. Giving the original report a “graphic design facelift”
would not have improved the functionality, as some of the information in
the original report was found to be unnecessary, presented in a way that
could lead to misinterpretation, or did not take into account stakeholder
constraints. For example, interviews and surveys revealed procedural and
data constraints our study team had not anticipated, including the limited
time available for clinicians to read laboratory reports and the need for sim-
ple, black and white formatting amenable to media ranging from electronic
delivery to fax these findings were critical to shaping the downstream design
process. Furthermore, in nearly every case, study participants preferred our
alternative design elements, informed by empirical findings in the discovery
stage, over the control elements derived from the original report. Our ap-
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proach also suggested that some participants are not confident in their ability
to interpret certain types of genomic data. As WGS moves towards routine
clinical use, it is clear that successful implementation of genomic assays will
also require complementary education and training opportunities for those
individuals regularly interacting with WGS-derived data.

Although human-centered information visualization design methodologies
are commonly used in software development, it could be asked whether
they are warranted in a report design project. One advantage of tackling
the simpler problem of report design is that it allows us to demonstrate
Design Study Methodology in action and link evidence to design decisions
more clearly than with a software product. We also collected data with the
intention of applying it to the development and evaluation of more complex
reporting and data visualization software that we plan to create. Similarly,
others can use our approach or our data to inform the design of simple or
complex applications elsewhere in pathogen genomics and bioinformatics.

The exploratory nature of this project brings with it certain limitations. First,
our participants were identified through convenience and snowball sampling
within the authors networks, and thus are likely to be more experienced with
the clinical application of microbial genomics. While this is appropriate
for the context of our collaboration, in which our goal is redesigning a
report for use by the COMPASS-TB team and collaborating laboratories,
it does limit our ability to generalize the findings to other settings.WGS is
only used routinely in a small number of laboratories, and even if its reach
were larger, these may be settings where English is not the first language
used in reporting clinical results, or where written text is read in different
ways both of which would affect our design choices. Second, we did
not have a priori knowledge of the effect sizes (i.e. extent of preferential
difference for each type of question) in the Design Choice Questionnaire,
making sample size calculations challenging. Had a priori effect sizes been
available, the study could be powered, for example, for the smallest or
average effect size. To avoid mis-characterizing our results, we have relied
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on primarily descriptive statistics, without tests for statistical significance,
and assert that our findings are best interpreted as first steps toward a better
understanding how information and visualization design can play a role in
reporting pathogen WGS data. However, when confidence intervals were
calculated for the results of the Design Choice Questionnaire, we observed
that non-overlapping confidence intervals separated user preferences as well
as the deviation from a random score metric that we primarily used in our
analysis. We argue the latter is a useful measure for exploratory studies
without clear a priori knowledge of effect sizes for proper sample size
calculations. Finally, we did not undertake a head-to-head experimental
comparison between the original report design and the revised design. While
this comparison had been planned at the outset of our project, the results
of the Design Choice Questionnaire showed such a clear preference for the
alternative designs when comparing isolated components that we concluded
there was no need for such a final test as it would yield little new evidence.

For researchers wishing to undertake a similar human-centered design ap-
proach, we have summarized our primary findings into three experimental
guidelines and five design guidelines. These guidelines arose from our ex-
perience throughout this report redesign process, but are intended to apply
generally to the process of designing visualizations for microbial genomic
data or other human health-related information.

The three experimental guidelines reflect the areas of the design methodology
that we found to be particularly important in our data collection and analysis
as well as the final report design process. First, design around tasks. It is
tempting to simply ask stakeholders what they want to see in a final design,
but many of them will not be able to create an effective end product because
design is not their principal area of expertise. However, stakeholders know
very well what they do on a daily basis and can indicate data that are relevant
to those specific tasks and can indicate in which areas they require more
support. The role of the designer is to marry those tasks, clinical workflows,
and constraints into design alternatives. Depending on the tasks and context,
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many design alternatives might be possible, making use of colour, more
complex visualizations, or interactivity. In other situations, such as the
one presented here, design constraints limit the range of prototypes that
can be generated. Second, compare isolated components, and not just
whole systems. Here we use system to mean either a simple report or a
more complex software system. Comparing whole systems can overload
an individual’s working memory, meaning they may rely on heuristics such
as preferences around style or distracting elements, when assessing and
comparing full systems [104]. Presenting isolated design elements and
controlling for non-tested factors (i.e. font, text) can reduce the burden
on working memory and isolate the effect of design alternatives. Finally,
compare against a control whenever possible. If a prior report or system
exists, or if there are commonly agreed upon conventions in the literature
or field, it is useful to compare novel designs against an existing one. More
generally, comparison of multiple alternatives is the most critical defense
against defaulting to ad hoc designs and the most important step of our
human-centered design methodology.

Our five design guidelines reflect techniques from information visualization
and graphic design that we used in an attempt to improve the readability
of the report and balance different stakeholder information needs. First,
structure information such that it mimics a stakeholder’s workflow. In
this case, the report prioritizes a clinical workflow, and this workflow is
reflected in the report’s design through the use of gestalt principles [75]
– treating the whole as greater than the sum of its parts. Specifically, we
group related data and order information hierarchically, so that the document
is read according to the clinical narrative we established in the Discovery
phase. Second, use emphasis carefully. Here, bolding, text size, and
shading were reserved to highlight important data and were not applied to
aesthetic aspects of the report design. Third, present dense information in
a careful and structured manner. Stakeholders should not have to search
for relevant information a cognitively expensive task [19] that can result in
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information loss [107]. Through the combination of gestalt, visual hierarchy,
and careful use of emphasis, it is possible to present a lot of information
by creating two layers: a higher-level “quick glance” layer and a more
detailed lower layer. The quick glance layer should contain the relevant and
clinically actionable information and should be visually salient (i.e “pop-
out”), while the detailed layer should be less visually salient and contain
additional information that some, but not all, stakeholders may wish to have
(based on their tasks and data needs). Fourth, use words precisely. Specific
terminology may not be uniformly understood or consistently interpreted
by stakeholders, particularly when the designer and the stakeholders come
from different domains, or even when individuals in the same domain have
markedly different daily workflows, such as bioinformaticians and clinicians.
Finally, if using images, do so judiciously. Images can be distracting when
they do not convey actionable information relevant to the stakeholder.

3.5 Conclusions

We applied human-centered design methodologies to redesign a clinical
report for a reference microbiology laboratory, but the techniques we used
drawn from more complex applications in information visualization and
human-computer interaction can be used in other scenarios, including
the development of more complex data dashboards, data visualization or
other bioinformatics tools. By introducing these techniques to the microbial
genomics, bioinformatics, and genomic epidemiology communities, we hope
to inspire their further use of evidence-based, human-centric design.
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Chapter 4

Adjutant:
an R-based Tool to Support Topic Discovery for
Systematic and Literature Reviews

Research complete — Terran Adjutant

1 Adjutant is an open-source, interactive, and R-based application to sup-
port mining PubMed for literature reviews. Given a PubMed-compatible
search query, Adjutant downloads the relevant articles and allows the user to
perform an unsupervised clustering analysis to identify data-driven topic clus-
ters. Following clustering, users can also sample documents using different
strategies to obtain a more manageable dataset for further analysis. Adjutant
makes explicit trade-offs between speed and accuracy, which are modifiable
by the user, such that a complete analysis of several thousand documents can
take a few minutes. All analytic datasets generated by Adjutant are saved,
allowing users to easily conduct other downstream analyses that Adjutant
does not explicitly support. We used Adjutant in the methodology presented
in the subsequent Chapter 5 to cluster the genomic epidemiology research
literature with the intention of sampling and classifying data visualization
strategies within different topic clusters.

1This chapter has been previosuly published as an Application Note [26]:
A. Crisan, T. Munzner, and J. L. Gardy. Adjutant: an R-based Tool to Support Topic Dis-
covery for Systematic and Literature Reviews. Bioinformatics, 35(6):10701072, 08 2018.
doi:10.1093/bioinformatics/bty722
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4.1 Introduction

Literature reviews, whether systematic or not, can necessitate the analysis of
thousands of documents to derive relevant topics, which can quickly become
overwhelming [83]. Software that implements text-mining techniques, such
as Abstrackr [94], EpiphaNet [21], or Retro [134], as well as libraries within
various programming languages, can help to streamline the literature review
process by identifying topics relevant to the user. Yet in spite of the availabil-
ity of such tools, automation is still not routinely used to support literature
reviews [106], perhaps due to existing tools’ intensive compute requirements
and the need for extensive user input. To address these limitations, we have
developed Adjutant, an R package with an associated Shiny application
that supports the quick derivation and exploration of topic clusters within
a PubMed document corpus. Adjutant’s objective is to provide a rapid
overview of the corpus’ topic structure with minimal overhead, facilitating
an individual’s literature review. Like the military rank from which is draws
its name, Adjutant is intended to support an individual’s expert knowledge,
rather than to supplant it.

4.2 Implementation Details

Adjutant is primarily designed to be used as a graphical user interface (GUI)
that guides a user through a series of steps to query, cluster, explore, and
sub-sample documents from a PubMed query. The GUI is deployed through
R’s Shiny framework, such that Adjutant requires no specialized hardware
and all of the analysis takes place on the user’s own computer. Adjutant’s
workflow is also visible to a user as part of the R package and can thus be
integrated into an R Script, bypassing the the GUI altogether. In this section
we will briefly describe the various steps within Adjutant’s workflow. We
refer the reader to Appendix B for specific details of the implementation.
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Figure 4.1: The Adjutant user interface after running the unsupervised topic clustering on 2000 documents from the the query
’(outbreak OR epidemic OR pandemic) AND genom*’ run on June 6, 2018. The GUI consists of four tabs
that guide the user through the analysis steps.
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Querying PubMed and Preparing a Document Corpus. Adjutant runs
PubMed-compatible queries through the Entrez API and downloads article
data and metadata from the NCBI servers to a user’s own computer. The
time it takes to download the data can vary depending upon the bandwidth of
the Internet connection and number of documents. The resulting document
corpus is then run through the textmining workflow specified in [109],
with some modifications (see Appendix B). The workflow begins by using
article titles and abstracts to derive a document term matrix (DTM), in
which articles are rows, stemmed single words (terms) are columns, and the
“term frequency inverse document frequency” (tf-idf) is the relevant analytic
metric. The tf-idf metric is a statistic that weighs how important a term is for
a particular article relative to other articles in a corpus and is a commonly
used metric in text analysis.

Unsupervised Topic Clustering. Unsupervised topic clustering is carried
out by first dimensionally reducing the data using t-SNE [115] and then
clustering with hbdscan (a hierarchical density based, spatial clustering; [15]).
The t-SNE algorithm is routinely applied to text data [16] and we choose to
use hdbscan for clustering because it has a much more intuitive parameter
of minimum cluster size rather than the more common, and less intuitive,
number of topics in the corpus; Adjutant performs a greedy search to select
a good setting for hdbscan’s minimum cluster size parameter. The hbdscan
scan algorithm allows us to generate clusters of different sizes and exclude
articles that do not easily belong to any one cluster. Applying t-SNE ahead
of hbscan speeds up the analysis, in line with Adjutant’s goals, but at the
cost of some accuracy [122]. The goal of Adjutant’s unsupervised clustering
procedure is to allow a user to get the gist of the document collection
structure, emphasizing ease of use over pure accuracy. In Appendix B we
provide further details on Adjutant’s implementation and an evaluation of its
unsupervised clustering techniques.

Sampling and Automatically Saving Analysis Results. A user may wish
to export all the data or some subset of it, either before or after clustering, in
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order to read articles for further analysis. In the ’Sampling’ tab of the GUI,
users may choose between downloading all or some subset of the data. If
only downloading a subset of the data, users may do so by ranking articles
by citation count or year, or randomly sampling articles with the option to
weight by year or citation count. If clustering has been performed, subsets
can be obtained from across the topic clusters. Adjutant also automatically
saves analysis documents into R-compatible formats that can be that can be
reloaded and reexamined within Adjutant at a later date or be used in other
downstream analyses that Adjutant does not itself support.

4.3 Usage Scenario
Appendix B contains several detailed examples of Adjutant usage scenarios
in both notebook and video form. Users unfamiliar with the R environment
or who wish to interactively explore their data can use the Adjutant GUI
(Figure 4.1). The GUI guides users through the analysis steps from query
to clustering, provides users with an overview of their search results in the
‘Search Results’ tab, allows them to generate and explore topic clusters in
the ‘Topic Discovery’ tab, and to export all their data or some subset in
the ‘Sample Articles’ tab. Advanced R users can bypass the GUI altogether
and use Adjutant’s underlying methods in their own R Script. We have also
implemented Adjutant’s source code in a modular format and have included
extensive documentation, such that advanced users are also free to modify
various aspects of Adjutant’s workflow while still leveraging its GUI.

4.4 Conclusion
Adjutant is an R-based application that supports literature reviews by en-
abling users to quickly visualize and explore the topic structure of a set of
PubMed-derived documents. Its R-based architecture enables users to access
a wide range of analysis tools. Like the military rank from which it draws
its name, Adjutant is intended to support an individual’s expert knowledge,
rather than to supplant it.
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Chapter 5

GEViT:
A Systematic Method for Surveying Data Visualizations and
a Resulting Genomic Epidemiology Visualization Typology

It is important to understand what you CAN DO before you learn to measure
how WELL you seem to have DONE it — John W. Tukey

1 Data visualization is an important tool for exploring and communicating
findings from genomic and healthcare datasets. Yet, without a systematic
way of organizing and describing the design space of data visualizations,
researchers may not be aware of the breadth of possible visualization design
choices or how to distinguish between good and bad options. We have
developed a method that systematically surveys data visualizations using
the analysis of both text and images. Our method supports the construction
of a visualization design space that is explorable along two axes: why the
visualization was created and how it was constructed. We applied our method
to a corpus of scientific research articles from infectious disease genomic
epidemiology and derived a Genomic Epidemiology Visualization Typology
(GEViT) that describes how visualizations were created from a series of
chart types, combinations, and enhancements. We have also implemented

1This chapter has been previously published [24]. As indicated in preface, the names of the chart
combinations have been modified from the original publication.
A. Crisan, J. L. Gardy, and T. Munzner. A Systematic Method for Surveying Data Visualizations and a
Resulting Genomic Epidemiology Visualization Typology: GEViT. Bioinformatics, 35(10):16681676,
09 2018. doi:10.1093/bioinformatics/bty832
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an online gallery that allows others to explore our resulting design space
of visualizations. Our results have important implications for visualization
design and for researchers intending to develop or use data visualization
tools. Finally, the method that we introduce is extensible to constructing
visualizations design spaces across other research areas.

5.1 Introduction

Genome sequencing is becoming an integral part of modern infectious dis-
ease diagnostics [85] and epidemiology [35, 92]. When genomic and/or
phylogenetic data are combined with clinical and epidemiologic data rou-
tinely generated by public health laboratories and programs, the resulting
analyses support a variety of public health professionals, including clinicians,
epidemiologists, researchers, and policymakers, in their real-time decision-
making around treatment, surveillance, and outbreak response. However,
this new data-driven approach to public health also introduces interpretability
challenges it is difficult to succinctly and accurately represent such multi-
variate and high-dimensional data, particularly when many stakeholders do
not routinely work with the genomic or phylogenetic data these analyses
rely upon. These challenges arise not only late in an investigation, when
attempting to communicate the results of an analysis, but also in the early
phases of a project, such as initial data exploration and model-building [47].

Data visualization is an important means to address interpretability chal-
lenges, and one which is increasingly being used in genomic epidemiology.
Tools including nextstrain [48] and Microreact [4] use developments in web
technologies to produce sophisticated, interactive data visualizations that
allow users to explore and interact with public health phylogenetic data in an
epidemiological context. Other tools, such as treeviewer [55], GenGIS [88],
or libraries such as PhyloCanvas (http://phylocanvas.org/) also
allow researchers varying degrees of freedom to generate visualizations
blending phylogenetic trees with other metadata. As more and more visual-
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ization tools and libraries are being developed for genomic epidemiology, it
is an appropriate moment at which to assess the type of visualizations being
generated and used in public health genomic studies in order to inform the
design of future visualization tools.

When analyzing existing data visualizations, the concept of a visualization
design space becomes important. This design space is defined as the com-
binatorial space of data visualizations afforded by graphical marks (points,
lines, and areas) that convey information through their aesthetic properties
(position, colour, size, shape, texture), which are also referred to as channels
in the information visualization research literature [79]. There have been
explicit attempts to describe visualization design spaces and share them
via web galleries, such as SetVis [1], TreeVis [101], Visualizing Health
(https://www.vizhealth.org), and BioVis Explorer [58], but these
were not created through a process as systematic as what we propose and thus
do not serve to provide insight into current practice in a specific research com-
munity. Collections of visualizations also arise implicitly from search engine
results, including Google, PubMed, or Semantic Scholar image searches,
but these lack a systematic taxonomy and ontology describing the visual-
izations themselves. It is only through organizing the visualizations created
by a research community within a design space that common visualization
practices become apparent and better practices can be suggested.

Here, we present a method for the systematic analysis of a visualization
design space. By employing this structured approach to both generating
and analyzing a suite of visualizations within the context of public health
genomic epidemiology, we reveal current data visualization practices com-
mon to this domain. We are able to identify those visualization designs that
could be better supported through new software tools or improved to make
them more effective, as well as areas of the design space that are currently
underused. This methodological contribution can be applied to visualization
design spaces in domains beyond public health genomic epidemiology; here
we describe its application in a specific domain as an additional contribution.
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Figure 5.1: Method and application overview. A) Constructing and systematically
analyzing a visualization design space requires analysis of both the literature
and visualizations themselves, using qualitative and quantitative approaches. B)
Automated steps, as indicated by the robot icon, are used in literature analysis to
identify articles in genomic epidemiology and the topics those articles address.
Manual steps, as indicated by the human icon, are used in the analysis of visu-
alizations derived from those articles, followed by further quantification with
automated statistical approaches. See Figure C.1 and C.2 for more details

We present the Genomic Epidemiology Visualization Typology (GEViT),
and we provide a web-based platform for exploring GEViT that researchers,
bioinformaticians, and software developers can use to inform their own
genomic epidemiology data visualization practice.
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5.2 Methods

5.2.1 Developing a Method for the Systematic Analysis of Data
Visualizations

Data visualizations are often challenging to analyze because, unlike images
of real-world objects, visualizations in the scientific literature are abstractions
devised by researchers to convey a combination of concepts. For example,
phylogenetic trees display genomic data in an evolutionary context, and can
be further enriched to show metadata about the sampled sequences and/or
organisms and the underlying evolutionary processes. Visualizations vary
across research contexts, and can be described using the nested model for
visualization design and analysis [78], which deconstructs a data visualiza-
tion into four layers: the why a research or domain problem that a data
visualization supports; the what the data that needs to be visualized and the
specific tasks performed using the data and visualization, such as finding
trends or communicating a specific finding; the how – the visual design and
interactivity; and the algorithmic implementation of the visualization.

We have constructed a method for the systematic analysis of data visualiza-
tions that specifically articulates and then attempts to connect the visualiza-
tion research problem (why) with the visualization design (how) this goal
is possible because we can meaningfully capture and label these elements
of a data visualization through a systematic analysis based on image and
textual analysis. Our method consists of an initial literature analysis phase
followed by a visualization analysis phase, resulting in a visualization design
space in which images are classified according to their why and their how.
The literature analysis phase (Figure 5.1) automatically analyzes text from a
corpus of research articles to identify the topic of a data visualization why it
was created as we assume that different topics are likely to yield different
visualization designs. In the current instantiation of this method, we also
use the literature analysis phase to perform a random stratified sampling of
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articles to select a reasonable subset of visualizations for the subsequent
visualization analysis phase, which requires a human-curated inventory of
each image. In this phase, we iteratively apply open and axial qualitative
coding techniques to the set of images harvested from the sampled articles.
The iterative qualitative coding phases [20] ultimately yield a set of hierar-
chical taxonomies that we collectively refer to as a visualization typology
and that allows us to articulate how visualizations are created (Figure 5.1).
Further detail around the methods employed during both phases are provided
below as well as in Figure C.1 and C.22.

Our specific application of this method to articles and images from the in-
fectious disease genomic epidemiology context resulted in the Genomic
Epidemiology Visualization Typology (GEViT) a structured way of describ-
ing a collection of visualizations that together form a visualization design
space. As a research community publishes new data visualizations, these
can be annotated using the typology and added to the design space, and may
even result in the addition of new terms to the typology if the image includes
new elements of visual design.

5.2.2 A Systematic Analysis of Data Visualizations from the
Infectious Disease Genomic Epidemiology Research Literature

Literature Analysis

We developed an R package called Adjutant [26], described in detail else-
where, to support our literature analysis. Here, we briefly describe how
Adjutant’s functionalities are used to search, prepare, and cluster articles in
order to derive a representative subset of documents for the visualization
analysis phase.

Search Terms. We searched for articles related to infectious disease ge-
2These figures and all others with the prefix C are presented in Appendix C
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nomic epidemiology that were published within the past ten years. We used
two queries, 1) (genome AND (outbreak OR pandemic OR epidemic)) OR

”genomic epidemiology” and 2) (genomic epidemiology OR molecular epi-
demiology) AND (bacteri* OR vir* OR pathogen) AND Genome, combining
their results and retaining only unique records for further analysis. We also
manually included cancer genomics articles that were known to us to use
phylogenetic trees in their analysis.

Data Preparation. The resulting document corpus included PubMed IDs,
year of publication, authors, article titles, article abstract, and any associated
Medical Subject Heading (MeSH) terms. Titles and abstracts were decom-
posed into single terms, stemmed, and filtered by Adjutant. We calculated
the term frequency inverse document frequency (td-idf) metric for each term,
and created a sparse Document Term Matrix (DTM) for further analysis. A
separate dataset of bigram terms was also prepared and was used only to link
articles to a priori concepts (see below).

Unsupervised Topic Clustering. We used the t-SNE and hdbscan algo-
rithms to perform an unsupervised clustering using the DTM. We used
the Barnes-Hut implementation of t-SNE [115], which allows for some
acceleration at the cost of accuracy, with the perplexity parameter set to
100; otherwise default parameters of the R package implementation were
used [60]. We then used hdbscan [15] on the t-SNE co-ordinate to derive the
topic clusters; we show in our earlier work on Adjutant [26] that this order
of operations yields relevant results. Clusters are sensitive to the minimum
number of cluster points (minPts) parameter supplied to the hdbscan, thus
we tried different minPts values (50, 75, 100, 125, 150, 250, 500, 1000),
observing how the cluster compositions changed. We observed that some
articles never held membership in any cluster irrespective of the parameter
settings and labelled those as “never clustered”, in contrast to articles that
were simply not clustered with our specific final parameter settings that are
labeled as “currently unclustered”. The final set of clusters combined results
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from the minPts 75 and 150 analyses. Each cluster is assigned a topic by
using the two most frequent terms within the cluster. Following topic clus-
tering, we validated our clusters using an external list of human pathogens
(Table C.1), assessing the correspondence between pathogen names and
cluster topics.

Linking To A Priori Concepts. Before conducting the unsupervised clus-
tering, we discussed what results we might expect given our knowledge of
research activities in the public health genomic epidemiology community.
This initial discussion produced a set of 23 a priori concepts that we cat-
egorized into three groups: genomic concepts, including drug resistance,
genome, genotype, molecular biology, pathogen characterization, phylogeny,
and population diversity; epidemiology concepts, including clusters, disease
reservoirs, geography, outbreaks (at international, community, and hospital
levels), surveillance, transmission, vaccine, and vectors, and medical con-
cepts (clinical, cancer, diagnosis, outcome, and treatment). Following the
clustering, we identified bigrams that occurred in at least ten articles within
a pathogen topic cluster and between at least 10% of the other pathogen
topic clusters, and manually assigned those bigrams to an a priori concept
(Table C.2) for example, the bigram ”vancomycin resistance“ was assigned
to the a priori concept of ”drug resistance“. Assignments were validated by
internal discussion among the research team, including a genomic epidemi-
ology expert.

Document Sampling. To produce a manageable, diverse, and systemati-
cally derived dataset for the human-curated visualization analysis step, we
performed random stratified sampling on our document corpus, sampling
one document for each a priori concept within each of the automatically
derived topic clusters. Each sampled article was examined and either consid-
ered acceptable for further analysis or rejected. Most articles were rejected
because they did not contain any figures; other reasons for rejection included:
full text article not accessible; article not in English; article was about a
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laboratory or bioinformatics technique and not an epidemiological scenario;
no human data; or the article was a review rather than original research. For
each rejected article, we resampled two additional articles, choosing one
for further analysis. Based upon the analysis of the first round of sampling,
the second round only sampled articles from 2011 onwards to increase the
chance of sampling articles containing figures, and also attempted to sample
underrepresented a priori concepts from the first round. Table C.3 contains a
list of all the articles, which round they were sampled in, whether they were
included or rejected, and the reason for rejection.

Figure and Table Extraction. To properly capture the figures and their
captions, we manually extracted them from PDFs of the sampled articles.
Images were only excluded if they were CONSORT diagrams, flow diagrams,
or illustrations without underlying data. We also included a small number of
missed opportunity tables stand-alone tables that we felt could have been
visualized, most frequently matrices of numbers or large tables of patient
metadata where each row consisted of a patient.

5.2.3 Visualization Analysis

Extracted figures and tables were analyzed using iterative open and axial
qualitative coding techniques. Originally derived from the use of Grounded
Theory in sociology, psychology, and anthropology [20], qualitative coding
methods are now being used in human-computer interaction [57] and infor-
mation visualization research [17]. Qualitative coding involves iteratively
examining data and assigning it to some category. The categories themselves
are refined and can take on hierarchical relationships through different cycles
of the coding process (see appendix C), and were informed here by concepts
from visualization theory and terminology [79].

Here, we analyzed whole figures separately we did not decompose multi-part
figures in order to understand the potential interplay between panels within
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a figure. We began by creating a taxonomic code describing the types of
charts present in different figures. We next examined how different types of
images were combined to show different aspects of the data and thus created
a chart combination taxonomy. Finally, we created a taxonomy that captured
how basic chart types were enhanced to encode additional information. We
refer to the collection of taxonomic code sets for chart types, combinations,
and enhancements that were derived from this document corpus of genomic
epidemiology research articles as GEViT. We conducted three rounds of
qualitative coding, in which we reviewed figures and made additions or
changes to GEViT; by the third round of coding, there were too few additional
modifications to warrant a subsequent round.

Creating an Explorable Visualization Design Space

We used the results of the literature and the visualization analysis phases to
produce an explorable visualization design space, which is freely available
at http://gevit.net. The images presented gallery are used under
Fair Use copyright terms and we provide links back to the original source
publications.

5.3 Results

5.3.1 Literature Analysis

Literature Mining Showed Article Clusters According to Pathogens

We assembled a document corpus of 17,974 articles pertaining to infectious
disease genomic epidemiology research published in the past 10 years (Fig-
ure 5.2). Using article titles and abstracts we derived topic clusters in an
unsupervised manner, and classified articles as either belonging to a named
topic cluster, not belonging to a cluster under current parameter settings,
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Figure 5.2: Summary of literature analysis steps and document sampling

or never being clustered under any parameter settings (Figure 5.3A). Arti-
cles that never formed part of a cluster were removed from further analysis,
leaving 15,315 documents of which 11,416 (75% of the initial document
corpus) formed 32 topic clusters (Figure 5.3B). Clusters were assigned top-
ics via the top two most frequent terms within the cluster, revealing that
infectious disease genomic epidemiology literature is primarily structured
around pathogens. We validated our results by comparing our automatically
derived cluster naming to the distribution of pathogen terms from an external
list (Table C.13, Figure 5.3C), and found there to be a strong correspon-
dence between the automatically derived cluster topics and the propensity
for pathogen terms to appear within clusters of the same name (for example,
the term “influenza virus” occurs primarily within the “influenza-viru” clus-

3These tables and all others with the prefix C are presented in appendix C
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Figure 5.3: Summary of literature analysis results. A) Documents were classified
according to whether they were part of a cluster (green), unclustered under
current parameter settings (purple), or never clustered (orange). The 32 cluster
boundaries were automatically determined and are shown as light grey ovals. B)
Clustered documents and their topics, which are automatically assigned based
upon top two terms with the cluster. C) Verification of cluster topics against an
external list of pathogens. The small multiples show the distribution across the
clusters of the pathogen named in the panel header, for the 35 pathogens with 40
or more matching documents.

97



ter). Some notable exceptions are Escherichia coli, Helicobacter pylori, and
Human Immunodeficiency Virus in addition to having their own defined
cluster, these terms also appeared in other clusters, suggesting co-infections
or another phenomenon. We also found that clusters with more generic
names (for example “viru-sequenc”, or “geno-sequenc”) contain pathogens
that likely had too few articles to form their clusters, possibly reflecting
recently emerged pathogens (i.e., Zika, Ebola) with a less extensive research
history. We filtered the corpus by limiting to pathogens with 40 or more
articles, resulting in 6,350 articles within 35 pathogen clusters, then further
simplified to 18 clusters: a final set of 17 pathogen clusters that had 100 or
more documents and one “other” cluster (Table C.4).

Clusters were Manually Mapped to a priori Concepts

The findings from the literature mining were at odds with our own a priori
assumptions that articles would cluster according to more general, pathogen-
agnostic concepts, such as drug resistance, surveillance, and outbreak inves-
tigation. In order to allow researchers to investigate the connections between
these familiar a priori concepts and the literature-derived clusters, we linked
them together manually. We mapped a total of 23 a priori concepts to 404
bigrams. We found that a priori concepts did not occur uniformly across
pathogen clusters (Figure C.3A) and a variable number of bigrams mapped
to individual a priori concepts, with 143 bigrams mapped to “drug resistance”
and only one bigram mapped to “disease reservoirs” (Figure C.2).

Stratified Sampling by Pathogen and a priori Concepts

We then performed two rounds of stratified sampling using pathogens and a
priori concepts as strata. The sampling resulted in 204 unique articles, to
which we manually added 17 additional articles that we deemed contained
interesting data visualizations mainly from cancer research these are clearly
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tagged in our analysis for a total of 221 articles (Table C.1) from which we
extracted a total of 770 figures, including a small number (45) of “missed
opportunity” tables.

5.3.2 Visualization Analysis

GEViT A Genomic Epidemiology Visualization Typology

Using the analysis set of figures from the sample documents, we used
iterative open and axial coding techniques to devise a systematic way to
describe how data visualizations are constructed (see appendix C). We began
by classifying the types of charts in figures, then classified how charts were
combined, and then classified how charts were enhanced. We found that these
three descriptive axes allowed us to sufficiently describe all visualizations in
our dataset of figures. For each of these descriptive axes, we also derived a
hierarchical taxonomy. Collectively, we refer to this result of the descriptive
axes and their associated taxonomies as GEViT (Genomic Epidemiology
Visualization Typology). Below, we describe each of GEViTs descriptive
axes and interleave descriptive statistics to show the distribution of taxonomic
codes across these axes to provide an overview of the variance in the resulting
visualization design space.

Chart Types in GEViT

We identified eight classes of chart types that form the basis of the data
visualizations in our dataset (Figure 5.4): Common Statistical; Colour (sta-
tistical charts that intrinsically depend on hue or brightness to convey data);
Relational; Temporal; Spatial; Tree; and Genomic. We compiled a taxonomy
of common chart names to classify specific instances of chart types within
each class. When applicable, we also defined special cases of a specific chart
for example, epidemic curves are a special case of bar chart. We also defined
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one Other category, which included entities that accompanied data visualiza-
tions but were not themselves data visualizations, such as tables and images,
and miscellaneous visualizations that did not fit elsewhere. In total, we
observed 23 distinct chart types plus one miscellaneous category and found
that the most commonly occurring chart types within data visualizations
included Phylogenetic Trees (17.7% of all data visualizations, although some
type of tree was present in 23.7% of all visualizations), followed by Tables
(9.7%), Bar Charts (8.9%), Genomic Maps (6.9%), Line Charts (6.8%), and
Images (5.7%, typically a Gel Image of Pulsed Field Gel Electrophoresis)
(Figure C.4). The frequency of tables, either alone or in combination with
another chart type, is a notable finding, indicating missed opportunities for
visualization. Our findings also suggest that only a small portion of the
available design space is typically used.

Chart Combinations in GEViT

The majority of figures were composed of a single chart type (40.1%),
but we observed distinct and common patterns of combining chart types
to create more complex, and often linked, multi-part figures (Figure 5.5).
Spatially aligned charts (20.3%) contained multiple chart types that were
aligned along a common horizontal or vertical spatial axis for example,
a heatmap and dendrogram are aligned along a horizontal axis to jointly
convey clustering information. A tree and heatmap can also be visualized
independently of each other, but their combined value is evidently relevant
for many researchers. Small Multiples (17.3%) showed different aspects of
the data through multiple instances of the same chart type. Visually aligned
combinations (13.5%) used multiple different chart types that were visually
linked for example, using a common colour, shape, or even connection
marks to denote some property of the data across the different charts, but
are not spatially aligned. Finally, unaligned combinations (8.8%) comprise
multiple chart types, but where there is no spatial or visual link between
charts these likely were combined into a single figure due to manuscript
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space restrictions. It was not always straightforward to distinguish between
some instances of visually aligned and unaligned, and in such cases, we
resolved the ambiguity in favor of the latter classification. We also observed
instances of Complex combinations (11.9%), in which visualizations used
two of the previously described chart combinations. Phylogenetic Trees
were the chart type mostly commonly combined with other chart types.
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Figure 5.4: Chart Types in GEViT. We used common names for chart types and separated them into eight main classes and also
one ’Other’ class. Special cases of chart types were defined only when there were multiple instances of the same specific chart
across our dataset. Chart types with an asterisk mark (*) indicate that they were included in the analysis through manually
added articles.
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Figure 5.5: Chart Combinations in GEViT. The six combination types differ based
on the number of chart types, the number of charts, and the approach to linking
them together. Complex combinations are an amalgamation of the above five
chart types for example, a spatially aligned visualization that is represented as a
small multiple and also linked another chart type.

Chart Enhancements in GEViT

Lastly, we noted that standard chart types were often enhanced to add meta-
data through the addition or changing of graphical marks the basic graphical
element corresponding to a data record (e.g. a patient), or derived data value
(e.g. the total number of patients). Graphical marks are points, lines, areas,
and text, which are endowed with the aesthetic properties of size, shape,
colour, and texture that can be modified to encode data (Figure 5.6A). For
example, a phylogenetic tree encodes evolutionary relationships inferred
from nucleic acid or protein data as lines of some calculated length (Fig-
ure 5.6B). These lines are often black; however, they can be re-encoded
to incorporate data from some additional source for example, colouring
lines according to geographic regions. It is also possible to add marks to
the base chart type for example, adding coloured point marks to a trees
leaf positions (Figure 5.6B), or adding linear brackets and text to delineate
or otherwise annotate groups. We did not consider axis text, titles, or data
labels to be added marks, subsuming them as constituent parts of the base

103



Figure 5.6: Chart Enhancements in GEViT. A) Our characterization of marks and
their associated aesthetic properties is based on longstanding conventions in the
visualization literature [72, 79] with roots in Bertins Semiology of Graphics [6].
Illustrative examples are shown for B) a tree and C) node-link chart types.

chart type.

It is also possible to add more complex types of marks. Connection marks are
a specific instance of line marks that connect two other marks. Containment
marks are a specific instance of area marks that enclose other marks. Finally,
a glyph is a complex mark that could itself be a type of chart, but that is
smaller than the base chart type and embedded within it (in contrast, we
define that spatially aligned chart types have the same frame size and one
chart is not embedded within the other). The only glyph we identified within
our dataset was a pie chart, which was often added to geographic maps or
node-link graphs (Figure 5.6B) to communication proportions within the
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data.

We differentiate between the instances when chart enhancements are added
consistently, or just as one-off marks. When the addition or re-encoding of
marks is applied consistently to the base chart type for example, re-encoding
all or many lines in a tree or adding points to all or many leaf nodes we
defined these as structured enhancements. Adding one-off marks, even
if they are driven by the data or the addition of some arbitrary ink, was
considered to be an annotation and defined as an unstructured enhancement.
It was not always easy to differentiate between structured and unstructured
enhancements, and in such instances, we resolved ambiguities by choosing
structured enhancement when analyzing figures.

In our dataset, we observed that most base chart types were enhanced (83.8%
of all chart types), typically through the addition of lines, points, or text
(59.6%), while re-encoding of marks was less common (45.6%). The use of
text as a graphical mark with aesthetic properties that can be manipulated
to convey information was common in our dataset, either by adding text
marks to a base chart type, or re-encoding of text labels by manipulating the
font face. The text itself ranged from the simple case of a single letter or
number, to a full word, to a complex concatenated string of metadata such
as specimen ID, location, and year. Annotations were also less common
(33.6%), and were most commonly an arrow to text or a containment mark
that highlighted only a single group.

The GEViT Gallery an Interactive Exploration of the Visualization
Design Space

We created a browsable gallery, available at http://gevit.net, that allows
others to explore the genomic epidemiology visualization design space
we created, examine the results of the literature analysis, and browse our
GEViT taxonomic code sets. Visitors to the GEViT gallery can browse
visualizations across different pathogen types, contextual tags derived from
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a priori concepts, and data or arbitrary terms found in the figure captions.
Clicking on an individual figure within the gallery reveals its construction
via GEViT. Users are also able to browse visualizations based upon GEViT’s
taxonomic codes to see the myriad applications for certain chart types,
combinations, and enhancements. In our analysis of the data visualizations
we also identified examples of good and bad visualization design practice.

5.4 Discussion

Data visualizations are important outputs of many scientific investigations
and, when viewed collectively, merit close study to reveal common, good or
bad, or missed practices in visualization design. Here, we describe a method
for systematically studying data visualizations from the scientific literature,
using both text and image data to articulate both why a visualization was
created and how it was created from various chart types, combinations,
and enhancements. We applied this method to a literature corpus from
the domain of infectious disease genomic epidemiology, resulting in the
Genomic Epidemiology Visualization Typology (GEViT), and we created a
web-based GEViT gallery, allowing users to browse the visualization design
space generated through the application of our methodology and to see how
elements of our typology can be used to describe a given image.

The typology aspect of our work is similar in spirit to the Grammar of Graph-
ics proposed by Wilkinson [125] and modified and instantiated by Wickham
within ggplot2 [123]. While that prior work focuses on low-level details of
chart implementation ours uses a higher level of abstraction, using whole
chart types as a basis. This higher level of abstraction is more appropriate
for exploring and describing the design space used by a community. Our
work also differs from existing ontology-based efforts to describe a research
domain, such as GenEpiO [46]. GEViT might be considered as the data
visualization equivalent to the structured vocabulary that an ontology pro-
vides; however, it does not describe the relationships among entities as an
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ontology would. However, with future work, incorporating visual typologies
into ontologies like GenEpiO is possible.

The present study used data visualizations from articles within the published
research literature and did not include visualizations intended for public
consumption, not published in peer-reviewed journals. This choice was
pragmatic. First, it bounded the search space for our analysis. Academic arti-
cles are often accessible through specialized literature repositories, whereas
including public-facing visualizations would have required extensive web
scraping. Furthermore, research articles are relatively structured, making
them an ideal substrate for topic modelling. Limiting our analysis to peer-
reviewed scientific literature also bounded the content of the sampled images.
There is shared technical knowledge within a research community, meaning
that most users can interpret a visualization without additional assistance,
whereas visualizations designed to communicate a concept to a more general
audience often incorporate additional explanation or background information
(although many of these more general, public-facing visualizations likely
begin as images created in the academic research context). The typology
we developed is extensible to more unstructured, non-academic data visu-
alizations used for public communication, and it would be interesting to
compare such a design space with the one we present here. An important
limitation imposed by our literature search strategy is that we only included
the final data visualization used to communicate some research finding –
we do not have access to those data visualizations that researchers created
during their internal data analysis process. Our own experiences in public
heath genomics research and developing data visualizations to share our
research findings suggest that the visualizations used during an analysis
and those used to communicate final results do not substantially differ, but
confirmation of this conjecture would be a good subject for future work.

Another limitation of our current method is the requirement for a human
to manually carry out aspects of the visualization analysis. Although this
process was time consuming, this inclusion of the human in the loop was
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crucial to understand what aspects of each visualization were necessary to
delineate a design space; current machine learning methods are not capable
of generating such a result. Developing a semi-automatic method that
combines some automatically created decomposition of visualizations with
human judgement as part of the analysis loop through future work would
accelerate the process of refreshing and maintaining the GEViT resource.

5.4.1 Implications of our Findings for Visualization Design

By creating a visualization design space, we not only capture current com-
mon practices in our research domain, but we also reveal gaps and areas
that require additional attention. While we found some instances of bespoke,
effective, and aesthetically appealing data visualizations, the systematic
nature of our method to exploring visualization choices reveals that across
pathogens and a priori concepts, visualization design choices are quite ho-
mogenous, and the quality of visualizations varies substantially. We had
expected greater variability, given than different pathogens have different
transmission routes, are responsive to different interventions, and exist in dif-
ferent environmental, zoonotic, and human contexts. However, phylogenetic
trees are the dominant visualization choice, often with additional contextual
data included as tree labels or as accompanying tables. This dominance
may impact effective knowledge translation in the genomic epidemiology
domain, as the interpretability and utility of trees is unclear among public
health decision-makers who have limited experience with genomic data [25].

Although our finding of design homogeneity is not surprising, it also under-
scores how a lack of awareness of design alternatives leads to ineffective
data visualizations. For example, geographic data is often encoded as text
rather than an alternative mark or an explicit visual representation. The per-
vasive use of text in genomic epidemiology visualizations stands in contrast
to recommendations from the information visualization research literature,
where the use of text as a mark type is discouraged. Reading text requires
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more working memory and thus imposes a high cognitive load, whereas the
goal of most visualizations is to reduce cognitive load by leveraging human
perceptual systems to interpret information through the encoding of data as
marks and aesthetic properties [79]. Our finding that text was often used as
a mark and was endowed with aesthetic properties like colour and variable
font faces and sizes suggests that researchers are aware of the power of visual
channels, but not necessarily the choice of an effective mark. We also note
that many visualizations tended to show all of the data, rather than exploring
alternatives that visually summarize data at multiple levels of detail.

Our work highlights opportunities for further work on areas where the
genomic epidemiology research community could be better supported in
designing data visualizations. Bioinformaticians and software developers
can use GEViT to evaluate whether the tools they are creating afford the
visual expressivity that infectious disease researchers need to communicate
their research findings. Phylogenetic trees are evidently important, but there
is a need for better tools that allow researchers to explore alternative visu-
alizations and to more effectively encode tabular metadata onto trees and
other visualizations. Although our study did not reveal how researchers
create their data visualizations, our experience in the genomic epidemiology
research community suggests that many chart- or tree-generating packages,
some in R, are often used in conjunction with Power Point or Adobe Illus-
trator to compose complex visualizations that include chart combinations
and enhancements. Software tools or libraries that support more expressive
generation of visualizations can lower the barrier to generating data visualiza-
tions, reduce the overreliance on text, expand the use of combinatorial charts,
and contribute to more reproducible research by creating more informative
visualizations in which data is not obscured.

We also suggest that our findings might inspire developers to create alter-
natives to existing common design choices, and that our gallery of visual-
izations gives such developers a resource with which they can empirically
test their new visualization design against existing choices. This empirical
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approach to testing a new visualization will help move the community further
away from the ad hoc approach to visualization development, where design
choices are heavily biased by individual preferences. As more work is done
to explore and test new visualization designs, GEViT will incorporate these
designs, potentially resulting in the addition of new typological terms. It
will also be interesting to explore how GEViT might be used to suggest
visualizations to researchers, as is currently done with common statistical
charts in tools like Tableaus “Show Me” feature [69], Google Sheets’ “Chart
Suggestions”, or in novel systems like Draco [76].

5.4.2 Implications of our Findings for the Genomic Epidemiology
Community

Data visualization can be an important tool for translating scientific re-
sults to a group of experts working in a common domain but with varying
backgrounds. This situation is often the case in public health genomic
epidemiology, where microbiologists, computational biologists, clinicians,
epidemiologists, healthcare administrators, and others often come together
around a specific issue. By making individuals aware of data visualization
conventions used by the community through the GEViT gallery, we hope
to assist researchers who struggle to visually communicate their research
findings by providing both inspiration and a framework for reasoning about
data visualizations that will assist as they develop their own data visualiza-
tion practice. We have tagged examples in the GEViT gallery with good and
missed opportunities to provide some guidance, but these labels are assigned
by our subjective reasoning as data visualization experts and have not been
empirically validated. Future work in this area might include quantitative
evaluation of the efficacy of particular visualizations, and ultimately more
sophisticated guidance around visualization design and analysis in the public
health context.
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5.5 Conclusion

Through a systematic method, we have delineated the visualization design
space used in infectious disease genomic epidemiology. We provide both
a concrete terminology for describing data visualizations and a gallery of
visual inspiration, the combination of which we hope will provide guidance
to visualization tool developers and to researchers looking to create their own
visualizations. Mostly importantly, our work demonstrates that is possible to
think systematically and rigorously about data visualizations and that there
exist open, complex, and interesting problems in visualizations design and
analysis, where the potential impacts on research domains such as public
heath are profound.
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Chapter 6

minCombinR:
Coordinating Chart Combinations with Minimal Specifications

The ability to simplify means to eliminate the unnecessary so that the
necessary may speak — Hans Hofmann

1 Domain experts routinely use coordinated combinations of static charts to
communicate their findings. In a prior study we identified and quantified
different strategies for combining multiple types of charts and we assessed
that existing data visualization tools and charting libraries did not provide
consistent support for these strategies. While some domain experts could
programmatically generate these combinations on their own, many more
would be left to resort to manually combining charts through post-processing,
which can introduce errors and impact the reproducibility of analyses. We
have developed minCombinR, an R-based toolkit that implements a minimal
specification syntax for a wide range of chart types and their combinations.
minCombinR attempts to balance ease-of-use and expressivity with the abil-
ity to link to nuanced data types and analyses that users perform. Through
minCombinR, domain experts use a consistent specification syntax for cre-
ating four types of combinations (small multiples, spatially aligned, colour
aligned, and unaligned), across nineteen distinct chart types ranging from
common statistical graphics to phylogenetic trees to geographic maps to

1This chapter has been submitted for publication [27]:
A. Crisan, S. Fisher, S. Kasica, J.L. Gardy, and T. Munzner (2019). minCombinR: Coordinating Chart
Combinations with Minimal Specifications.
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images. We demonstrate the capacities of minCombinR using both real and
synthetic datasets from multiple domains. We have implemented minCom-
binR using a bottom-up approach to system development, using an existing
domain-specific visualization typology to inform a general architectural
design. Our system, analysis artifacts, and bottom-up approach straddle a
middle ground between a general top-down approach and specific bespoke
systems tailored to the domain as undertaken in design studies.

6.1 Introduction

Many domain experts have analysis needs that require understanding link-
ages between information appearing across different types of charts gener-
ated from heterogeneous data sources. Visualization researchers have long
advocated supporting view coordination through interactive techniques such
as brushing [5] to link between charts. The substantial power and flexibility
of interactive linking between views has led to their support in many visual-
ization systems such as Vega/Vega-lite [100], stand-alone analysis systems
such as Tableau [112], and notebook environments [8]. Despite the utility
of interactivity for exploration, there are many situations where static charts
are the only option for presentation; most notably, in traditional publications
such as research journals. With a few recent exceptions, such as the online
Distill journal, static charts continue to dominate both the analysis process
and the communication process of reporting findings to the scientific com-
munity and for general consumption. Although the coordination of static
charts is often possible with sufficient effort in current software systems, it
could be made easier with better infrastructure support.

Moreover, we note the many costs to interactivity, both temporal and cog-
nitive [61]. A particular concern in scientific analysis settings is potential
threat to reproducibility. When users conduct analyses through interactive
interfaces they may forget the details of their past actions and draw con-
clusions without a full awareness of how they arrived at them, making it
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difficult to assess their validity and robustness. Despite active research to-
ward data and analysis provenance [111] to address some of the challenges
introduced by interactivity, it is unclear whether these methods handle the
complex heterogeneous data types and analysis procedures that are used
in scientific analyses. As an alternative to interaction, users may manually
post-process results to achieve some type of coordination that their tools do
not support. This common practice [7] is problematic for scientific repro-
ducibility because it can be a source of inadvertent errors, or even intentional
manipulation of findings.

In this paper, we address the challenge of facilitating coordinated static com-
binations for two or more complex chart types. While there exists some sup-
port for combined charts in various systems, toolkits, and charting libraries,
static combinations are not consistently supported or sufficiently expressive
of the full range of combinations a user could produce, and at present may
require considerable coding effort from the user to be achieved. Further-
more, combinations have been principally explored for statistical chart types,
with little previous work addressing how combinations for more complex
chart types should be supported. We build on a recent analysis of a domain-
specific visualization design space that produced a visualization typology for
describing and enumerating the types of charts, their combinations, and en-
hancements, that experts in the domain of genomic epidemiology commonly
used for communicating their scientific results [24]. Its findings highlight
the lack of support for creating coordinated chart combinations.

To address this unmet need, we have developed a toolkit called minCombinR
that supports the coordinated combination of static complex chart types in
R. In the design and implementation of this system, we demonstrate how
we can use domain-specific visualization typologies to inform a bottom-up
approach to development of data visualization systems. While rooted in a
domain, this approach identifies real world problems and challenges that
are used to inform, rather than constrain, the architectural design in a way
that is generalizable. Our bottom-up approach is in contrast to the more
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frequent top-down approach to system development, where a generic system
is implemented first and later tailored or optimized for specific applications.

We contribute minCombinR, a system that supports minimal specification
syntax for singular charts and their combinations in R. Our implementation
of minCombinR is based on a visualization typology that we previously
developed for a specific domain (see Section 6.2), but we have architected our
system in a way that is broadly extensible. Key features of the minCombinR
architecture include:

• a declarative framework for gradual binding that integrates user-defined
and programmatically-derived specifications,

• support for a broad variety of singular chart types including spatial
maps, trees, node-link networks, genomic charts, timelines, and anno-
tated images in addition to common statistical charts, and

• control-flow algorithms for enforcing positional and colour consistency
within small multiple, spatially aligned, colour aligned, and unaligned
combinations of charts.

We also contribute analysis artifacts for the minimal specification require-
ments of different chart types and their combinability that could be used in
future systems with a different algorithmic framework.

6.2 Domain Motivation and Design Decisions

Our previous work in the domain of genomic epidemiology visualization was
a major motivation for minCombinR, and inspired our three major design
decisions.
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6.2.1 GEViT Findings

We undertook a systematic review of public health researchers studying
microbial genomic epidemiology to identify common practices, assess good
strategies, note areas for improvement, and generate evidence for the develop-
ment of new idioms that could better addresses a common set of stakeholder
tasks [24]. We developed a novel method for systematically appraising the
design space and used it to generate a Genomic Epidemiology Visualiza-
tion Typology (GEViT) that we used to annotate a dataset of roughly 800
figures extracted from research articles written by domain experts. GEViT
attempted to summarize why a visualization was generated by using text
analysis to ascertain its creation context and also how a visualization was
constructed through the development and then application of GEViT to our
dataset of figures. We also strategically sampled across the design space so
that we could quantify how many instances there were of specific types of
visualizations. We refer the reader to the prior publication for more details
on methods and the justification of this approach [24].

GEViT summarized an expert-defined visualization design space and broke
down how visualizations were constructed according to individual chart
types, enhancements to those chart types by adding or re-encoding marks
and channels, and finally how these individual chart types were combined.
For combinations, we observed four distinct patterns of chart combinations
that were in common use: spatially aligned , colour aligned, small multiples,
and unaligned (formerly presented as composite, many type linked, small
multiples, and many types general, respectively). Overall, our analysis
revealed a complex combinatorial design space, but also quantifiably showed
us that only a very limited range of that design space was explored. Perhaps
the most surprising finding was how much data existed in text in the form of
complex labels or tables that were deliberately added to a visualization and
existed as a part of the figure. We also made some qualitative assessments
as we reviewed these figures in the form of speculations about the process
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used to create them. While it is challenging to prove definitively, we noted
signs of post-processing when experts were trying to enhance or combine
chart types. From these qualitative findings and our knowledge of existing
visualization systems, we hypothesized that experts were not well supported
to create the kinds of visualizations they wished using existing software,
and resorted to putting data into text and doing extensive post-processing to
achieve their objectives.

Here, we take a step toward helping users address their data visualization
challenges. Rather than introduce new visual idioms, we determined that
it would be a prudent first step would be to develop a system to help users
generate and link together charts based on existing visual idioms more easily,
within a platform that is integrated with their complex and diverse analysis
needs.

6.2.2 Design Decisions

We identify a set of design decisions that address the limitations of existing
systems. These decisions are originally motivated by the findings in the
GEViT study, but we conjecture they are relevant for many other domains.

• D1: Support a broad variety of chart types. Experts produced
complex chart types from multiple heterogeneous sources of data, so
helping experts to visualize their data necessarily involves helping
them to integrate multiple different chart types.

• D2: Automatically harmonize static charts into consistent com-
binations. Many previous systems focus on single charts, but with
insufficient support for users who want to maintain consistency across
multiple charts [91]. We would like combinations to be “first-class
citizens” that are easy to generate from simple and minimal specifica-
tions, with toolkit support to enforce the consistency required by each
combination type. While considerable visualization research has been
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devoted to view coordination through linked interaction, combinations
of static charts remain surprisingly difficult to generate.

• D3: Integration with analysis. Experts use complex data within nu-
anced analysis pipelines; a visualization system that is easy to integrate
with these existing pipelines will lower the barriers for its use and
improve the reproducibility of their work.

The GEViT findings led us to choose four types of combinations to support in
minCombinR. Small multiple combinations, also known as facetted charts,
are a well known approach where multiple instances of the same chart type
are each used to show different partitions of a dataset. Spatially aligned
combinations feature vertical or horizontal alignment where a common
attribute is used to encode spatial position within each chart, and moreover
the spatial arrangement between charts is also constrained to be consistent
along the same axis. colour aligned combinations impose a consistent
colour scheme across common attributes in different chart types. Finally,
unaligned combinations have no constraints to share common attributes,
and simply show multiple chart types in any kind of arrangements.

6.3 Related Work

We situate the minCombinR system in the context of prior research on
general-purpose visualization systems as well as specific applications for
visualization in biology. In comparing the contributions of these systems to
our own we consider the following factors:

• Ease of use: how hard or easy it may be for experts to use this system.
Our quantitative proxy for ease of use is the amount of code a user has
to write, where minimal code corresponds to high ease of use and a
system that requires extensive coding has a lower ease of use.

• Expressivity: the breadth of a design space that can be supported by a
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system. We consider expressivity across a large class of design spaces,
only one of which is GEViT.

• Links to analysis: the breadth of analysis procedures that a system can
link to within an integrated programming environment. We consider
both pre-existing analyses that are built into the system itself and
customized analysis procedures that an expert could implement without
leaving the environment.

Although experts could vary considerably in their technical skills, we make
our assessments assuming that the average expert is able to write some code,
is familiar with their own data, and has knowledge of their data analysis
pipelines. We group prior work into the following categories for analy-
sis: stand-alone applications, charting libraries (specifically with JavaScript,
Python, and R), and domain-specific tools for microbial genomic epidemiol-
ogy since we do make specific claims in our results for this domain.

6.3.1 Stand-Alone Applications

The most widely used of the many existing stand-alone applications used for
data visualization are Excel, Tableau, and PowerBI. Tableau and especially
Excel are commonly used among public health experts and are thus an impor-
tant baseline to compare against. Although all of these applications require
some learning time, they are both designed to be and generally perceived
to be easy to use. The monolithic architecture of these applications can
facilitate view coordination, but also imposes limitations to expressivity. The
majority of existing stand-alone applications support tabular data and the
generation of common statistical charts such as bar charts and scatterplots,
and some types of geographic chart types such as choropleth maps or scat-
tercharts with maps as a base. These tools also primarily support generating
singular chart types with varying degrees of interactivity, with some support
for linked views and small multiples (Excel excepted). Extending these
applications to support different data types or more complex visual idioms
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is possible in some cases, for example through Tableau’s “extensions” and
PowerBI’s “marketplace”, where the development and integration of novel
visual idioms can be shared with the wider community. These paths to
increased expressivity are technically possible, but the ease of use for coding
them is very low. Finally, these stand-alone applications support analysis
to various degrees. Excel is a quite powerful analysis tool, while Tableau
and PowerBI support some analyses natively and also make use of extended
features to integrate other types of analysis or even link to analytic scripting
languages like Python or R.

This class of systems all involve a fundamental architectural design choice
that there is a major separation between two regimes: default functionality
that is built in, vs. extensibility only through plugins. In contrast, minCom-
binR architecture does not have this pronounced distinction, so functionality
can be extended in a more integrated way.

6.3.2 Charting Libraries and Packages

Systems implemented as graphics or charting libraries exist widely within
many programming languages. Compared to stand-alone applications all
of these systems have a lower ease of use, with varying level of difficulty
depending on the library. Within JavaScript, D3 [9],Vega [99], and Process-
ing.js [39] have lower ease of use compared to Vega-Lite [100] or Plotly [90]
(also instantiated within Python and R), considered in terms of the number
of lines of code to be written. Chart combinations are primary supported
through interactive linked views and brushing, although Vega-Lite does sup-
port some types of combinations (concatenation, layering, and faceting) that
are akin to minCombinR combinations. Furthermore, Vega-lite can perform
an automatic resolution of scales, but its scope appears to be more limited
than minCombinR’s automatic scale derivation. Finally, the link between
analysis and visualization with JavaScript libraries is tenuous. Observable
notebooks [8] have made it easier to perform browser-based analysis and
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more libraries are being developed to support analysis in the browser. How-
ever, at this time the more common paradigm is to use another language such
as Python for analysis, with output in a format that can be readily used by
JavaScript libraries for visualization.

Programming languages that are analysis driven also contain their own
libraries for data visualization, although as with JavaScript tools the ease of
use is lower than with stand-alone applications. Python has matplotlib [56],
bokeh [86], and seaborn [121] as its most commonly used visualization
libraries. Recently, Altair [117] has been developed on top of Vega-Lite
to support data visualization for Python. Within the R language, both the
base graphics and ggplot [124] are widely used. These two libraries are built
on different graphics systems that exist within in R, so they are not easily
integrated. R also has a means of incorporating JavaScript libraries and there
are active ports of visual idioms created in D3 and even Vega-Lite. As with
the JavaScript libraries, these analysis languages primarily produce static
chart types (although interactivity is possible), and have variable support for
combinations; there appears to be the greatest support for small multiples.

Graphics and charting libraries present systems with ultimate flexibility
and a more integrated link to analysis relative to stand-alone applications.
However, this flexibility does come with high cost in terms of ease of use:
we have observed that many more complex chart types and combinations
are not easy to generate. We have built minCombinR ontop of R, a common
analysis scripting language, to be able to directly integrate our toolkit with
analysis while lowering the burden of creating coordinated combinations of
multiple complex chart types.

6.3.3 Domain-Specific Tools

A third class of systems is domain-specific tools for biological data. Gener-
ally, these tools are meant to support very specific tasks, which limits their
expressivity. They are also connected to specific data analysis pipelines or
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are only able to take in already-completed results for display. Amongst the
community of microbial genomic epidemiology researchers, Nextstrain [48]
and Microreact [4] are the most commonly used tools. These browser-based
applications are connected to complex data analysis pipelines and are meant
primarily to communicate findings. Phylogenetic trees are by far the most
commonly use chart type in this community and a variety of tools exist such
as TreeViewer (stand-alone, [101]), Baltic (python, [33]), ape (R, [87]), and
ggtree (R, [135]). There are also a number of stand-alone tools outside of
the scope of genomic epidemiology that support the analysis and visualiza-
tion of genomic data in particular. The most pertinent to the scope of our
design space is Stack’n’flip [113], which implements an interactive method
for linking information across heterogeneous biological datasets but does
not cover the full breadth of chart types and combinations as minCombinR.
While these toolkits reflect the current state of the art for this domain, they
are limited in their expressivity compared to minCombinR.

6.4 Design of minCombinR

We describe the major challenges of creating a toolkit from a typology
and present an architecture to address them. We then walk through each
architectural layer in detail.

6.4.1 From Typology to Toolkit

The typology that inspired us was created by analyzing existing images. Its
description of how individual static charts can be combined into coordinated
combinations offers no guidance on how to support these capabilities with
an easy to use software architecture that leverages existing charting libraries.
GEViT describes charts in terms of some standard configuration that can be
augmented by adding additional marks, or changing existing marks. The idea
of creating a single chart and then changing it to co-ordinate with others does
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Figure 6.1: Architectural layers of minCombinR.

not map easily onto existing charting libraries, which render a singular chart
as an immutable box of pixels and leave the burden of coordinating multiple
charts to the user. While it is trivial to concatenate charts together into an
unaligned combination, the more interesting cases require automatic chart
harmonization where consistency is enforced between visual encodings,
which must occur in advance of rendering the combination.

We solve this problem with a declarative approach that relies on gradual
binding: specifications are generated and modified in discrete stages, after
which a final specification is passed along to existing imperative chart li-
braries for rendering. The user declares only minimal initial specifications
for singular charts and for a requested combination. The system then derives
additional specifications that enforce the necessary consistency within each
chart, so that all of the rendered boxes of pixels can be trivially concatenated
together into a large box of pixels with the desired characteristics.

Specifications are a declarative language that tell minCombinR what to gen-
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Figure 6.2: User and derived partial specifications. A final specification is a com-
bination of partial specifications from the user (grey), derived specifications from
minCombinR (tan), and stylistic specifications inherited from different charting
libraries (brown).

erate. A key design choice is that users specify singular charts by designating
a chart type, which is easy for domain users who typically reason about visu-
alizations at the level of choosing between different chart types. Although
recently the language of marks and channels (called visual attributes within
R) has become somewhat more widely used beyond visualization research,
thanks to the Grammar of Graphics [125] and D3 [9], making such choices
effectively requires a level of knowledge about, interest in, and attention to
visualization best practices that is not realistic to assume for most domain
experts. Systems such as Vega-Lite [100] and ggplot [124] that require
specifications of marks and channels have a higher specification burden for
users.

6.4.2 Gradual Binding Architecture

The architecture of minCombinR is composed of four layers (Figure 6.1):
specify, create, arrange, and display. The specify layer takes initial partial
specifications from a user for both singular charts and requested combina-
tions, and integrates them with computationally derived specifications that
align the appearance and scales of charts automatically. The create layer
generates singular charts from those specifications, wrapping around existing
chart libraries. The arrange layer will position singular charts according to
the combination specification. The display layer renders the arranged charts
to the user. All of the create and arrange layers are internal to minCombinR;
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in Figure 6.1, only the grey sections in the specification and display layers
are exposed to the user, while all of the coloured sections contained within
the black enclosing rectangle are internal.

6.4.3 Specification

The gradual binding process starts with initial user partial specifications,
first for singular chart types and then their combinations. These are aug-
mented with minCombinR-derived specifications, and finally with style
specifications inherited from underlying chart libraries (Figure 6.2).

Our goal is that the initial partial specifications that the user must provide
should be as simple as possible. For each of the supported chart types, we
conducted an analysis of the minimal specifications that a user must provide
in order to generate it. The results are recorded as table for each chart type in
Appendix D. This information is used within minCombinR to help the user
generate valid specifications, both to document what should be provided and
to generate warning messages when the user specification is insufficient. It
is straightforward to extend the system with new chart types, but the existing
minimal specifications persist unchanged.

For each type of combination, minCombinR derives additional specifications.
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Figure 6.3: Overall flow of specifications and control in minCombinR. The sequence is colour-coded by layer as in Figure 6.1:
user-facing specifications and display in grey, derived specifications in yellow, the final charting library specification in green,
and arrangement in blue. The red minCombinR functions gather specification details from the user through specify single
and specify combination, and plot triggers the internal computations. The process of gradual binding flows from
initial specifications from the user, followed by those derived by minCombinR, and finally with stylistic specifications inherited
from underlying packages.
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Spatially aligned combinations guarantee that within charts there is a com-
mon spatial axis along either the horizontal or vertical direction, and also that
the rendered charts are arranged in a linear 1D array in that direction. We
conducted an analysis to determine which chart types are spatially alignable,
with the results recorded as a matrix for every possible chart pair (see Ap-
pendix D). We automatically scan the positional encoding specifications of
chart types to establish a shared axis to align on. This axis alignment is done
in two steps. First, the algorithm will check whether charts have the same
underlying data source and if so, will then establish whether the positional
encoding channels contain the same variable name. In instances where data
comes from different sources, minCombinR will try to detect if the attribute
fields assigned to positional encoding variables between the two chart types
are in fact the same. minCombinR will analyze all fields that are assigned
to positional encodings of two or more chart types, and if these fields are
determined to be identical, these charts are established to have a shared axis
for spatial alignment. minCombinR will only discover shared axes using
categorical attribute fields; fields with numerical data do not contain enough
contextual information to disambiguate whether an axis is shared without
additional user input.

Once a shared axis of alignment has been established, minCombinR will
automatically specify the correct orientation for individual charts so that the
shared axis is properly oriented with the direction of alignment. For example,
if all charts are to be aligned horizontally, then the shared axis attribute
field should be mapped to y-axis positional encoding. If a chart happens to
have the shared axis attribute field in the x-axis instead, then minCombinR
will ’rotate’ the chart such that the attribute field is now mapped to the
y-axis positional encoding. As a final step to facilitate the spatial alignment,
minCombinR will also derive and apply a common scale to the shared
axis. In our analysis of chart types and combinations, we identified a set
of charts whose positional coordinates cannot be altered because it would
inappropriately distort the information in the chart; these are tree, geographic
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maps, and images (with some exceptions). We refer to the positionally
immutable charts as lead charts and align all other support charts to the axis
scales of the lead chart. All support charts are harmonized to lead chart.

In addition to automatic chart harmonization, minCombinR also provides
helpful guidance by assessing when chart types are not combinable and
automatically dropping any non-combinable chart types from the specifica-
tion (with a warning to the user). Even when charts types are combinable,
minCombinR will also automatically drop charts from the combination spec-
ification that do not have a shared axis for alignment. If the user provides
a specification with more than one lead chart, minCombinR will provide
suggestions for alternative specifications that are appropriate for each of
the individual lead chart types. The analysis reported in Appendix D also
includes the logic behind all of this automatic guidance.

Colour aligned combinations will automatically apply a common colour
palette for shared attributes across multiple charts. minCombinR will assess
whether all charts have some common variable to connect on, similarl to
the approach to finding a shared attribute field between charts for spatially
aligned combinations. However, unlike spatial combinations, which need to
have positional encodings specified, colour aligned combinations can add
a colour encoding or even overwrite an existing colour encoding mapping.
For example, two or more chart types may have position encodings that
are mapped to specific fields in the data, but a colour encoding is possible
through some other attribute field that those charts share. In this case,
minCombinR will simply map that attribute field to the colour encoding
channel for all charts and ensure that these charts use a common colour
palette. In another instance, two or more charts may already have both
positional and colour encoding channels mapped to specific attribute fields
in the initial partial specification, but the user’s combination specification
may request that the charts should be colour aligned by a common attribute
field. In this case, minCombinR will override the existing colour encoding
mappings and modify the specification with a different colour coding using
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the requested field. Users are warned whenever minCombinR overrides
initially specified defaults.

Small multiple combinations are supported natively by many charting li-
braries, but minCombinR overrides those defaults in order to have a unified
interface for all types of combinations. Given a chart type and faceting
variable, minCombinR will derive and apply a common scale to the singular
charts so that they have shared axes. Similarly to the spatial alignment
analysis for positionally immutable charts, we have also identified a set
of chart types (node-link diagrams, trees, and maps) where maintaining
common scales is vital for correctly constructing the facets. For example,
a phylogenetic tree must be constructed using all of the data because the
underlying tree structure would be inaccurate otherwise, but each facet is
meant to highlight a specific subset of the data. By comparison, a bar chart
can be generated using only a subset of the data for each facet. minCom-
binR can distinguish between these two scenarios for small multiples and
automatically selects the best approach for a specific chart type.

Unaligned combinations refer to situations where a user may simply wish
to combine multiple charts without any constraints. The charts may share a
common underlying data source but not a common axis or attribute to facili-
tate other types of combinations, or the user may simply need to conserve
space by combining unconnected multiple subfigures together. Unaligned
combinations are also already commonly supported by many charting li-
braries, but again we override those defaults in favor of a unified interface
for combinations.

6.4.4 Creation and Integration

The architecture of minCombinR is designed to wrap around existing chart-
ing libraries within R and flexibly adapt to new ones. We achieve this
flexibility in minCombinR by gradually binding user and derived specifica-
tions to a common set of generic encoding parameters that are mapped to
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library-specific conventions in the integration layer. These generic parame-
ters are standard combinations of mark and channel encodings (for example,
point colour) and also more generic parameters (for example, colour with-
out a reference to a mark). There are also internal parameters that are not
exposed to the user and are employed to coordinate harmonization across
combined charts, for example what the alignment axis is, if and how charts
should be oriented, if and how chart axes should be scaled, and so on. This
final specification is composed of encoding and internal parameters that are
then passed to the relevant charting library to produce a single chart. The
integration layer also manages details of the aesthetic appearance of individ-
ual charts. For example, in spatial combinations it automatically drops the
axis labels for the shared axis so that it is not repeated in every chart.

As a final step, the minCombinR specifications are converted into a final,
R package dependent, specification that is used by the R graphics systems
in the display layer to render the individual chart types into an immutable
box of pixels. The final output from the integration layer is an array of
final specifications of size N, where N is the total number of singular charts
that a user has specified. This array of individual chart specifications is
passed to the arrangement layer, along with the combination specification
that indicates the desired configuration.

Rendering in R entails integration challenges because R has two primary
graphics systems, referred to as base and grid graphics. minCombinR
currently wraps around ggplot and its extended universe of packages, which
we call the gguniverse, all of which use grid graphics. Integrating base
and grid graphics is possible, but difficult to engineer for in a consistently
reliable and robust fashion, so the initial minCombinR implementation only
encompasses the gguniverse.

130



6.4.5 Arrangement and Display

Arranging and rendering charts into the configuration required by the user’s
combination specification request is straightforward because the the final
specifications charts emerging from the integration layer are already harmo-
nized, from the gradual binding of the individual chart specifications in the
first layer of the minCombinR architecture.

The boxes of pixels that represent rendered individual charts are arranged
in a grid. For most combinations the default grid has three columns and
an arbitrary number of rows depending upon the total number of charts N.
The exception is spatially aligned combinations, which in the horizontal
case are arranged in a single row and N columns or in the vertical case are
arranged in a single column and N rows. The order of the chart arrangements
depends on the combination type. Spatially aligned charts are ordered with
the lead chart first and support charts following in the order that they were
specified. Both colour aligned and unaligned combinations are arranged in
the order that they were specified. Small multiples are ordered according to
their individual facets, by default in alphanumeric order.

The output of the arrangement layer is a large box of pixels, which is simply
passed to the currently active R display device.
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6.5 Implementation

Figure 6.4: Currently implemented chart types in minCombinR.

Our initial implementation of minCombinR supports a subset of 19 of the
25 chart types that we identified in our prior GEViT study, enumerated in
Figure 6.4. This choice provided both a reasonable limit for the implementa-
tion scope and a sufficiently broad context to assess the expressivity of our
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approach. We have deployed minCombinR as an open-source R package
available at: https://github.com/amcrisan/minCombinR.

We provide details on the specific chart types that are currently supported
by minCombinR, along with the algorithmic implementation details of the
different types of chart combinations. In Appendix D we provide a complete
list of all the R base charting libraries used to generate the individual chart
types. At this time, minCombinR requires that individual chart types gener-
ated by the integration layer are compatible with ggplot2 [124]; despite this
compatibility, its extensions do require extra steps to facilitate the integration,
as communicated by the panhandle shape of this layer in Figure 6.1.

6.5.1 User Functions and Specifications

Users can specify chart types, specify combinations, and display
their results using the three main functions: specify single,
specify combination, and plot, as shown in Figure 6.5 and Fig-
ure 6.3.

specify single requires that users define a chart type and a data source,
possibly with additional required encoding parameters depending upon the
different chart types, and returns an initial partial specification. We have
implemented helper functions that allow users to identify the full range of
supported chart types and their minimal specification requirements. Users
are warned if they do not provide the minimal specification requirements for
a chart type.

specify combination takes as input the single specifications of two or
more charts, a type of combination (small multiple, spatially aligned, colour
aligned, and unaligned), and an additional parameter specific to a chart type.
For small multiples, this additional parameter is the attribute field by which
to produce the facets. For spatially and colour aligned combinations, it is
the attribute field used to facilitate the alignment. The function returns a
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valid combination specification. As indicated in Section 6.4.3, the system
provides detailed guidance with suggestions on how to achieve a valid
specification in any warning message indicating the original request cannot
be accommodated.

plot will take a minCombinR specification for a singular chart or a com-
bination as input. This function also assumes that the input minCombinR
specification is valid, since the prior two functions guide the user if any
problems surface. The plot function is the workhorse of minCombinR. The
previous two specification functions only provide initial user partial specifi-
cations and do not trigger substantial computation. When the plot function
is called, chart harmonization is carried out, additional specifications are
derived, and then charts are arranged, rendered, and displayed.

In addition to minCombinR specification and plotting functions, we have
also implemented additional helper functions that assist users to load hetero-
geneous data, annotate images that they intend to combine with other chart
types, and consolidate spatial data from multiple different sources. Within
minCombinR’s online repository are analysis notebooks that demonstrate
how to use minCombinR’s functions within the R environment.
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Figure 6.5: Colour aligned combination of disparate static charts. The R-based minCombinR architecture features a declarative
framework for gradual binding. The concise code to create this result requires only initial partial specifications from the user
for the single charts and the requested combination, with automatically enforced positional and colour consistency within and
between charts computed via derived specifications after the plot command.
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Figure 6.6: Code, control flow, and resulting displays for the four combination
types.
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6.5.2 Supported Data and Chart Types

minCombinR handles heterogeneous data types as input, either pre-
loaded within the R environment or specified as files. In addition to the
data.frame, a tabular data structure that is the most commonly used
data type in R, minCombinR is able to use many other classes of R data
types. The current implementation supports tabular, spatial, tree, image,
genomic, and network data – for more detailed information please see the
online repository. We have created a data object that stores input data and
any associated data files together into a common data structure; for example,
images may have an associated annotations file with contents that identify
features within the image, which can be used to encode data onto the image
and facilitate combinations.

From these different data types, minCombinR currently supports the genera-
tion of 19 different chart types (Figure 6.4), a subset of the 25 chart types
that we observed in GEViT study. This difference is because some chart
types did not have good support within existing R charting libraries (for
example, certain types of genomic plots) and others that existed could not
be reliably converted into a common graphics format. The minCombinR
architecture should be able to easily accommodate those charts within the
rendering and integration layer once better support exists for them in the
future.

6.5.3 Combination Control Flows

In Figure 6.6 we show the code, algorithmic control flows, and displayed
results for the four types of combinations, using a synthetic dataset for
clarity. We now describe the individual considerations for each of the four
combination algorithms pertaining to how the user is guided to generate
valid specifications of chart types and combinations, the way that additional
specifications are derived to facilitate chart harmonization, and importantly
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how different data types are handled by minCombinR. We use a consistent
colour scheme in Figure 6.3 through Figure 6.6 to connect our ideas of
specifications, architectural layers, and control flows.

Unaligned combinations are the simplest because they do not require any
additional derived specifications from minCombinR.

Small multiple combinations can distinguish between scenarios where the
scales between facets must be consistent and others where consistency is not
required. When scales must be kept consistent between facets, minCombinR
will generate the whole chart within each facet and use colour to identify the
subsets within the data pertaining to the individual facets (see example in
Figure 6.6). We determine which class of small multiples to instantiate based
upon the type of input data. From our prior analyses, tabular data is generally
used to generate common statistical chart types and generally these chart
types do not require a common scale across all facets. Non-tabular charts
types such as tree, network, or geographic data tend to contain positional
information and it may not be appropriate to show only a subset of the
data. For example, it may be pertinent to preserve an entire map and show a
region in context rather than only show one specific region within a facet.
By default, if minCombinR detects that the input data for the a chart type
is non-tabular it will require a consistent scale across the facets, unless the
user chooses to override this standard behavior. An additional constraint
on non-tabular data is that there must be some associated tabular data file
that contains further information about the elements. For example, a spatial
file for geographic data must have some associated tabular data that provide
details about, say, specific regions within the geographic data and that could
be used to facilitate faceting. The user is warned by an error message if no
such file exists.

Spatially aligned combinations have a shared horizontal or vertical axis
within each chart, and the rendered charts also are arranged in a linear list in
the same direction, according to a common attribute field that occurs within
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all of the charts. This type of combination is complex because it requires
very precise conditions to be correctly generated. In other charting libraries
where spatial combinations are facilitated as concatenations, it is up the
user to identify whether charts are spatially alignable and exactly how to
do so. In contrast, minCombinR shoulders that burden with the automatic
derivation of specifications, and extensive guidance to the user in the form
of warning messages in case of conflicting or invalid input specifications.
The control flow in Figure 6.6 shows the various ways that minCombinR
guides the user toward generating valid chart types. First, minCombinR
will check whether the user has specified more than one lead chart and if
so, will provide alternative suggestions to the user for a new specification
with just a single lead chart. If none of the input charts are a lead chart then
minCombinR will select the first chart in the combination specification to
serve that role. All remaining support charts that share an axis with the lead
chart will be retained in the specification, while those that do not will be
dropped (the user will be warned of this outcome, but not required to take
action). Once a valid input specification has been achieved, minCombinR
will automatically rescale and reorient chart along their shared axis in the
derived specification.

colour aligned combinations similarly require all chart types in the spec-
ification to share a common attribute field, and as with spatially aligned
combinations will automatically drop non-compatible charts from the combi-
nation specification (again informing the user of this action through warnings
but not requiring action). As was previous mentioned in Section 6.4.3, colour
aligned combinations are unique in that they modify specifications of singu-
lar chart types by adding or overwriting a colour channel encoding.

6.6 Results

We show minCombinR in action on multiple datasets and compare it to
existing tools.
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6.6.1 Showcasing minCombinR on Different Datasets

Figure 6.4 showcases data from the 2013-2016 Ebola outbreak [34] to
demonstrate minCombinR’s ability to generate complex chart types. The
exceptions are the network, interior map, gel images which are from differ-
ent data sources unrelated to the outbreak. Figure 6.5 and Figure 6.6 use a
small synthetic public health dataset for clarity. In Appendix D and online
repository also include multiple R analysis notebooks with the code required
to generate these figures and many others, including many examples of com-
binations with the Ebola outbreak data, and separate worked examples of the
frequently used mtcars tabular dataset. These supporting materials provide
evidence that minCombinR achieves our ease of use goals by requiring only
very few lines of code to accomplish complex combinations across a broad
variety of single chart types.

These notebooks also show how minCombinR is able to integrate with
analysis in R to enable allows users to apply a myriad of techniques to their
data and then to rapidly visualize different chart types and their combinations.
They also demonstrate the various helper functions that we have implemented
to assist users in working with their data and preparing it for visualization,
including an RStudio Shiny application that helps users annotate images and
store this data automatically in order to facilitate combinations of images
with other chart types.

6.6.2 Comparison to Existing Tools

We have also conducted an analysis of minCombinR capabilities compared
to the three widely stand-alone tools Excel, Tableau, and PowerBI; the gg-
universe and the base R libraries; the JavaScript systems D3 and Vega/Vega-
Lite, the Python libraries Bokeh/holoviews/geoviews, matplotlib, seaborn,
and the two domain-specific tools Microreact and NextStrain (6.7). For each
of the chart types and combinations that are supported by minCombinR
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we assessed whether these were easy to generate, possible but challenging,
had any types unsupported, or all types were impossible to generate. We
define a type as easy (dark green) when it is natively implemented in the
stand-alone tools. For charting libraries, users can make almost anything
with sufficient effort; we defined the easy case as chart/combination code
being present on the official gallery pages of those libraries since even users
with limited technical skills could copy and modify that code with little effort.
The possible but challenging case (light green) is our determination that is
is technically possible to generate some chart type or combination if a user
has sufficient technical knowledge to do so, but these solutions have lower
ease of use. For stand-alone packages, plugins or extension architectures
imply that it is possible to have support even if it is not explicit. For charting
libraries, we consider anything that is not part of the official gallery to be
possible but challenging. The 1+ not possible case is a documented instances
where some chart type or combination is actually not possible to generate
(orange), which we have determined by explicit requests for features or
official documentation confirming that the type is not supported. Finally, the
None are possible case indicates that none of the chart types in that category
are supported or the combination is impossible in that system.

Our results show that R and JavaScript charting libraries provide the most
extensive explicit support; by design minCombinR provides much more
explicit support for chart types and combinations relative to other charting
libraries and stand-alone tools. The ease of use of minCombinR manifests
in the lines of code needed to write in order to achieve a desired result.
For individual chart types, the advantages of minCombinR over existing
charting libraries is marginal. However, for combinations, especially across
multiple different types of complex charts, minCombinR’s contributions
are substantial. For spatially and colour aligned combinations in particular,
minCombinR greatly reduces the burden to the user by minimizing the total
amount of code needed to written; with five lines a user can generate a
spatial or colour alignment between two chart types, whereas it would take

141



considerably greater effort to achieve the same result with existing charting
libraries. For the stand-alone and bespoke tools we note that many chart types
and combinations are not possible to create. Bespoke tools, unsurprisingly,
are the most restrictive, support a much more limited set of tasks compared
to other stand-alone systems. Excel, a very popular tool in public health,
has improved its visualization capacity in recent years but it still has many
limitations including an emphasis on single charts. Tableau and PowerBI
offer better support through both their defaults and extensions, but currently
have limitations for domain-specific idioms and data. The limitations of
the stand-alone and bespoke tools highlight some of the benefits of the
bottom-up approach to developing minCombinR’s architecture. By having
an awareness of what a broad set of users in a particular domain currently
want to do, we could design an architecture with sufficient flexibility that
it can serve their current needs and has the potential to evolve over time to
adapt to their changing needs.
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Figure 6.7: Related work comparison. We summarize here a detailed analysis of minCombinR’s capabilities compared to R,
JavaScript, Python, general stand-alone, and bespoke stand-alone approaches. Appendix D contains the the full details of this
analysis including links to each example or counterexample.
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6.7 Discussion and Future Work

Scientific data is becoming much more complex and data visualization sys-
tems need to adaptively respond to these changes in order to keep up with the
demand for better analysis tools. Many past visualization systems have fallen
into one of two primary camps: general systems developed with a top-down
approach where domain specificity is intended to be handled purely by the
programmers who use them, and specific bespoke visualization systems that
are highly tailored for domain-specific requirements but require intensive
labor to develop and maintain. We have instead explored a middle ground
between these by taking a bottom-up approach to build the minCombinR
system from an existing domain-specific visualization typology. The typol-
ogy allowed us to identify the complex varieties of data and chart types
that domain experts generate, and also the types of combinations that they
were using to communicate the linkages between their heterogeneous data.
This bottom-up approach led us to propose a flexible architecture based on
a set of general requirements, which could be used or extended for other
domain-specific instantiations.

Although we have succeeded in automating chart harmonization beyond
previous work, interesting problems pertaining to specification of chart com-
binations remain that would benefit from further investigation. GEViT also
specified an overlay spatial alignment, where two chart types are placed on
top of each other, to classify figures such as a network placed on top of a
geographic map to show the spread of disease. Overlay spatial alignments
are clearly possible to support in that specific case, but much more complex
to support generally. This combination examples highlights an important
challenge of how the linkage between data and the individual pixels on the
screen that make up visual idioms. The D3, Vega, and the ggplot charting
libraries make use of domains and scales to demarcate data and pixel values,
respectively, and much of minCombinR’s automation is fundamentally about
automatically transforming scales of two or more chart types based upon the
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data (domain) and specification. Overlay combinations and even more com-
plex types of spatial alignments involve much more co-ordination between
the domains and scales of many different and complex chart types, which is
difficult to support automatically in the general case even as many solutions
exist for limited combinations of specific chart types. Individual users that
are more technically savvy may also find it complex to programmatically
coordinate more complex combinations of charts. We are continuing to
explore how we might incorporate such a combination into minCombinR.

6.8 Conclusion

We have presented minCombinR, an R-based toolkit whose architecture is in-
formed by a domain-specific typology. It supports coordinated combinations
of a broad array of static chart types, including not only common statistical
charts but also maps, trees, and genomic charts. Existing systems provide
many options, but address different points than minCombinR in the trade-off
space between ease of use, expressivity, and the extent to which they support
analysis. In particular, no previous system supports easy generation of the
full range for chart types we support or the full range of static chart coordi-
nation combinations that we support. In minCombinR we sought to architect
a system that minimizes the amount of code a user must write, creating an
extensible and expressive support for a broader design space that includes
chart combinations as first class citizens, and that integrates readily with
analysis tools.
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Chapter 7

GEViTRec:
Domain-Aware Visualization Recommendation for
Data Reconnaissance and Harmonization

A picture is not thought out and settled beforehand. While it is being done it
changes as one’s thoughts change. And when it is finished, it still goes on

changing according to the state of mind of whomever is looking at it.
— Pablo Picasso

1 Data visualization recommender systems primarily support tabular datasets
through generating common statistical charts, but many more datatypes are
required for current data analysis practices. These heterogeneous and multi-
dimensional datasets introduce challenges that are beyond the capacity of
existing recommender systems and are also overwhelming to domain experts.
We first present a novel conceptual framework for data reconnaissance and
task wrangling with the four phases of acquire, view, assess, and pursue
to characterize what domain experts do when attempting to make sense of
complex unknown data landscapes with the objective of identifying data
that matches their analysis goals. This conceptual framework motivates our
development of a novel general algorithm for domain-aware visualization
recommendations that automatically harmonizes attribute fields between
heterogeneous data sources to create an entity graph. That graph is traversed

1This chapter has been submitted for publication [28]:
A. Crisan, J.L. Gardy, and T. Munzner (2019). GEViTRec: Domain-Aware Visualization Recommen-
dation for Data Reconnaissance and Harmonization.
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to find high-ranked paths according to connection strength between data
sources, the diversity of visual encodings, and their relevance. The rele-
vance score used to rank and select visual encodings for multiple datatypes
is based on an existing quantitative analysis of a design space reflecting
current common practice by experts in a specific domain. We also present
the implementation of GEViTRec, an instance of our algorithm for the spe-
cific domain of genomic epidemiology, and demonstrate its results using a
real-world public health outbreak dataset. Our framework and algorithm are
an important step in extending the capacity of visualization recommender
systems to better support domain experts as they endeavor to understand and
analyze their growing and complex collections of data.

7.1 Introduction

Automatically recommending suitable visual encodings for data has been a
longstanding area of visualization research dating back to the foundational
APT system [68], with significant recent activity including ShowMe [69],
Compass and Voyager [129], and Draco [76]. This previous work has been
focused on tabular data, but current data analyses require support for a
much broader set of datatypes including spatial, network, and genomic data.
Stakeholders who need to integrate and analyze heterogeneous data are
becoming increasingly overwhelmed by the complexity of their data, in
addition to its volume. Moreover, previous recommendation systems have
been architected around the assumption that stakeholders are ready for a
deep dive into an existing specific dataset to conduct exploratory searches.
This assumption that the data a stakeholder needs to visualize is clearly
demarcated and immediately available as input to the system does not hold
in many situations. Stakeholders may be faced with an unfamiliar data
landscape: a large space of datasets that are either available to them now,
or that they could gather, or that they could request from some gatekeeper
who controls access. In this case, they need a system for rapid assessment to
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establish the basics of what a dataset contains, and whether it is sufficient
for some intended task or if more data might be needed to for their analysis
goals. We call this assessment data reconnaissance.

We have found that stakeholders who are sufficiently unfamiliar with a
data landscape typically cannot simply articulate their analysis needs. They
may have many possible questions, but determining which of them have a
reasonable chance of being answered depends on what data is available to
them. The difficulty of understanding stakeholder needs is well known in the
visualization research community, which has long advocated human-centered
design methods for task elicitation. One popular methodology for untangling
tasks is the design study approach [103], where bespoke visualization tools
are developed for a specific domain problem through iterative rounds of task
elicitation and prototype development. The two major limitations of this
approach are the need to invest many months of time into the process, and
the dependence on a very specific data configuration that weighs heavily
in the design of the eventual solution. It is thus a poor match for assessing
unfamiliar data landscapes during data reconnaissance. More generally, we
assert that tools designed to support the deep investigation of a particular
dataset do not necessarily support stakeholders who are attempting to rapidly
glean a high-level understanding of an unknown data landscape.

We observed these unmet needs first hand while working with stakeholders
in public health that were faced with the challenges of integrating different
forms of heterogeneous datasets arising from genomic epidemiological in-
vestigations. Although our stakeholders were enthusiastic to use genomic
data in conjunction with with other data sources, many of them reported
that they were unsure about these new datasets and how incorporating them
into analyses would affect their approach [25]. Although we first became
aware of these challenges within the context of a specific domain, they are
not unique to genomic epidemiology.

To address the challenges arising from data reconnaissance, we have devel-
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oped a general data visualization recommender algorithm for heterogeneous
datatypes that automatically harmonizes datasets, finds linkages between
datasets, and shows those linkages through combinations of multiple coor-
dinated visual encodings. This algorithm allows stakeholders to examine
automatically generated visual encodings, without the need to provide ini-
tial partial specifications, so that they can rapidly explore a complex data
landscape, gaining enough familiarity with the data that they can conjecture
about possible tasks or decide what new sources of data to seek. Beyond
support for heterogeneous datatypes, we also propose the new idea of a
domain-aware recommendation system, that incorporates a domain-specific
quantification of relevance that is used to rank visual encodings. The pur-
pose of introducing relevance ranking is to address an existing limitation of
previous recommenders that have focused on ranking visual encodings with
respect to perceptual efficiency. Although ranking by perceptual efficacy
works well for tabular data encoded with common statistical charts, where
there has been substantial empirical study of human perceptual response,
there is far less empirical evidence available for ranking visual encodings of
non-tabular datatypes.

Our work presents contributions toward better characterizing the challenges
that stakeholders face when analyzing unfamiliar heterogeneous data and the
design of visualization systems that may help them. Our first contribution
is a framework for data reconnaissance and task wrangling, general-
ized to a domain-agnostic context. Giving a concrete name and framing
to the difficulties that arise in the visualization of heterogeneous multidi-
mensional data landscapes is also intended to motivate further discussion
toward how visualization methods can evolve to help stakeholders address
their complex domain-specific challenges.

Our second contribution is the design of a general algorithm for
domain-aware visualization recommendation that goes beyond tabular
data and singular charts.
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• We define and describe the properties of a domain prevalence visu-
alization design space that may be used to computationally generate
relevant recommendations of singular and combined charts

• We introduce the notion of data harmonization and present methods
for the integration and analysis of heterogeneous and multidimensional
collections of data including genomic, network, temporal, and spatial
datatypes.

• We present methods for the automatic generation of visualization
specifications without any initial partial specifications from the user,
given only input data

Our final contribution is GEViTRec, an instance of a domain-aware vi-
sualization recommendation system targeted at the domain of genomic
epidemiology. We compare the design and implementation of GEViTRec
to existing visualization recommenders and discuss how such systems need
to continue to evolve beyond tabular data and singular charts to support
complex heterogeneous and multidimensional data.

7.2 Background

We briefly describe our prior research findings that are necessary for under-
standing the design decisions of our algorithm.

We have been collaborating closely with stakeholders in public health to
help them analyze and visualize emerging genomic data for use in their
epidemiological investigations and disease control policy making. Our stake-
holders each had different expertise and consequently were familiar with
different datatypes depending upon their role. Compounding the problem
were challenges with data access and availability [23] that obscured the
data landscape. It quickly became clear that stakeholders needed a general
view of their data in order to begin to discuss what it might be used for and,
importantly, for them to assess what data they still need to obtain access
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to. To overcome these challenges, we decided to explore the visualization
strategies of the broader genomic epidemiology research community so that
we could begin to anticipate the different types of data that may exist and
how they could be visualized.

In a prior study we characterized and enumerated the domain-specific data vi-
sualization strategies used by these stakeholders [24]. We created a Genomic
Epidemiology Visualization Typology (GEViT) that broke down how visu-
alizations were constructed through chart types, enhancements, and combi-
nations. Our typology revealed 25 unique chart types within 8 categories
(common statistical charts, colour, relational, temporal, spatial, tree, ge-
nomic, and other), four types of combinations (spatially aligned, colour
aligned, small multiples, and unaligned), and two primary mechanisms of
enhancements (adding or re-encoding marks). GEViT was developed using a
corpus of approximately 18,000 research articles pertaining to genomic epi-
demiology that was representatively sampled to yield a set of 800 figures that
informed the typology generation. We also applied text mining techniques to
the titles and abstracts of all articles to derive a sense of the creation context
for the sampled set of figures. Most importantly, our representative sampling
strategy allowed us to enumerate these different visualization strategies and
obtain a quantitative sense of their relevance and importance.

7.3 Data Reconnaissance and Task Wrangling

We provide a general framing of data reconnaissance and task wrangling
as an abstraction of the processes undertaken by stakeholders attempting
to explore a heterogeneous and multidimensional data landscape. This
conceptual model is the underlying motivation for the formalisms and design
decisions that we present in the subsequent sections.
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7.3.1 Operational Definitions

Exploration is a general term that is broadly applied and consequently,
captures many different complex processes. Here we distinguish data re-
connaissance as the process of exploring an unfamiliar data landscape; that
is, the very large space of datasets that are available but not yet understood.
It includes datasets that already exist but have not been assessed, or that
do not yet exist but could be gathered, or that do exist but have barriers to
access. Data reconaissance differs from data wrangling and investigative
exploration, both of which require as a precondition, an existing dataset that
is transformed and analyzed in depth to generate new insights.

Task wrangling is the process of progressively forming a crisper notion of
both what tasks a stakeholder needs to address and whether available data is
suitable for them. We follow the design study methodology (DSM) [103]
definition of a clarity axis with crispness in contrast to fuzziness on its two
ends, where a crisp task has a clearly defined goal with a known set of
steps. The DSM also posits that task crispness should evolve over time, but
assumes a clearly demarcated dataset. Task wrangling describes situations
where the data itself is also fuzzy.

Data reconnaissance and task wrangling are related but distinct. A better
understanding of the data landscape can help to improve the clarity of tasks,
and clearer tasks provide further information about which areas of the data
landscape to next pursue. We posit a chronological ordering where data
reconnaissance and task wrangling come before investigative exploration and
data wrangling. The objectives of data reconnaissance and task wrangling are
to identify relevant data and relevant visual analysis tasks. Its findings could
feed subsequent exploration and data wrangling phases. Although we reify
and name these processes explicitly for the first time, there is clear evidence
that previous visualization researchers have indeed faced these challenges.
For example, Ghani et al. [44] state that the challenges of forming crisper
tasks for their study are exacerbated because “multimodal social networks
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are not a well established concept even in social science”. Wood et al. [130]
discuss the complex trajectories of different domains that do not follow
a “a linear progression” toward crisper tasks, but involve a more dynamic
relationship between data, tasks, and understanding.

7.3.2 Conceptual Framework

Figure 7.1: Conceptual framework for data reconnaissance and task wrangling.
The four phases of acquire, view, assess, pursue are repeated across multiple
cycles of a data reconnaissance and task wrangling process. Squares represent
individual data sources, and the red arrows indicate stakeholders obtaining new
data informed by their assessment of existing data.

Our conceptual framework is composed of four phases: acquire, view, assess,
pursue ( Figure 7.4). Stakeholders acquire some initial data in the form
of one or more heterogeneous datasets. They view these data to gain a
sense of what these datasets are, how they may be related, and a high-level
overview of what they show. Stakeholders can then assess these data by
using the visualization results to consider whether these data meet any of
their needs, whether more data may be collected, and what tasks these
data could be used for. Stakeholders can then opt to pursue additional
data sources. A stakeholder may begin a data reconnaissance and task
wrangling process without a clear understanding of what data should be
visualized or for what purpose. We refer to this initial phase as the fog of
war ( Figure 7.2). Through multiple cycles of the acquire, view, assess,
and pursue phases, stakeholders undertake informed data ideation where
purposefully acquiring new data provides an ever-better understanding of the
data landscape. When the connections between and the utility of the different
data sources is sufficient, stakeholders can conclude with a demarcated
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Figure 7.2: Data reconnaissance and task wrangling phases over time. Within a
single cycle (yellow square) a stakeholder will perform the acquire, view, and
assess phases in order to familiarize themselves with their data and determine
what to further pursue. Over a period of time (t0...tn) a stakeholder will gather
more datasets for analysis and form crisper ideas of the tasks these data could be
used for. We mark the passage of time and growing familiarity of the data into
broader phases that data reconnaissance and task wrangling process occur within:
the fog of war, informed data ideation, and the demarcation of the final data.

Figure 7.3: Comparing different approaches to human centered design. (a) The
steps of a human centered design process [66] (b) A widely used design study
methodology [103] (c) Our conceptual framework.

dataset that can be used for some specific analysis goal. This process may
even be followed by a design study if a clear need for a bespoke solution
emerges.

For an example of such a process in action, consider the following scenario.
When investigating a disease outbreak, epidemiologists may initially have
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Figure 7.4: Data reconnaissance and task wrangling phase breakdown. We indi-
cate the acquire, view, assess, and pursue phases of our conceptual framework
on the human centered design loop.

some tabular data for sick individuals they have already identified, but wish
to obtain additional data sources that could help their investigation. They
consult with researchers to obtain new phylogenetic and geographic data
that could add context to their investigations. These epidemiologists are
unfamiliar with these new data and use a data visualization tool to get a
quick sense of what these data are and how they may be connected together.
They can see some linkages between leaf nodes in the phylogenetic tree
within some geographic region. They discuss their findings with others and
ideate further upon datasets that may exist to provide additional information
on their particular finding or the outbreak dynamics more generally. They
can use the results of their current assessment to justify the collection of
more data. They continue this process until they arrive at a finalized, more
complete dataset that they now investigate deeply to generate a more concrete
understanding of the outbreak origin, spread, and dynamics.

We demonstrate the differences between data reconnaissance and task
wrangling and two common approaches described in prior work, for
human-centered design generally [66] and design study methodology
specifically [103] (Figure 7.3). Broadly, all three of these approaches involve
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people, data, tasks, and visual encodings. The prior approaches require that
people provide some context of creation, data, and some initial set of tasks
that are further refined over time and that directly inform the design of visual
encodings. Our conceptual framework permits a loosely defined creation
context and uses the data itself to inform the design of visual encodings in
advance of any contextual task information. We employ visual encodings to
identify relevant tasks and motivate the pursuit and acquisition of new data.
We overlay the phases of our conceptual framework on the human-centered
design loop (Figure 7.4) to indicate the goals of each phase.

7.4 Formalisms for Visualization Recommendation

To support data reconnaissance and task wrangling we propose an algorithm
that is able to automatically display relevant visual encodings to domain
experts and adaptively respond to new heterogeneous datasets. The algo-
rithm that we propose uses a pre-existing domain prevalence visualization
design space informed by expert definitions as a kind of prior that maps
data sources to potential visual encodings. When stakeholders provide their
own heterogeneous data to our algorithm, it uses that prior knowledge from
the design space to select and prioritize visual encodings for display. In
addition to selecting relevant visual encodings, our algorithm also identifies
linkages between stakeholder’s data sources, a process that we refer to as
data harmonization, and attempts to generate coordinated static combi-
nations of visual encodings so that several aspects of heterogeneous and
multidimensional data can be presented side by side.

We now present formalisms that are used in our algorithmic design. We
present our definition of the properties of a visualization design space, a
data model that defines our assumptions around heterogeneous and multi-
dimensional data, and a visualization specification including what it means
to automatically generate such a specification without input from the stake-
holder.
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7.4.1 Domain Prevalence Design Spaces

To inject domain awareness into a visualization recommendation algorithm,
we create and analyze a visualization design space. The term design space is
used broadly within the visualization research literature with many shades of
meaning. Here, we define a domain design space as a collection of visual
encodings (V ) that are produced by experts in some domain. We define
a domain prevalence design space (D) as one that both captures the full
scope of visual encodings used by some definable set of experts (within
reason) and includes an estimate for prevalence of these visual encoding
strategies in the domain. We use this quantitative prevalence information in
our algorithm to define relevance scores for different visual encodings. We
describe an instance of a quantitative prevalence visualization design space
in Section 7.2; the method for developing it was presented in prior work [24].
Our definition of a domain prevalence design space, which we will frequently
abbreviate below as simply a design space, has two important properties
that our algorithm exploits:

The first property is that the design space is generated from a corpus of
documents that link to some analysis. A collection of images from internet
sources without additional contextual information would not have this prop-
erty because there are no guarantees that we could assess the datatypes used
in the analysis. Our design space is constructed from a corpus of research
articles precisely because we could establish a link between data and visual
encodings.

The second property is that the design space is quantitatively representative
of visualization strategies that are used by domain experts. Both SetVis [1]
and TreeVis [101] are examples of visualization design spaces that do not
have this quantitative property. They present visualization design strategies
for a specific types of encodings and only single instances of these strategies.

While the visualization strategies of domain experts may not conform to all
of the guidelines and best practices currently articulated by the visualization

157



research community, a collection of domain expert visualizations reflects
how they attempt to present their own data and incorporates their knowledge
of the phenomena they investigate. We leverage this connection between
data and visual encodings within the design space to support the generation
of domain-aware, and thus relevant, visual encoding recommendations.

7.4.2 Data Model

We define two broad categories of heterogeneous datatypes: tabular and
non-tabular. The non-tabular data category broadly captures many different
datatypes; for our specific application context in genomic epidemiology,
non-tabular datatypes include spatial, tree, network, image, genomic, and
temporal. Our algorithm takes into consideration both the data category
(tabular vs. non-tabular) and specific datatype when recommending different
visualization encodings.

We describe a process for data harmonization that integrates and links dif-
ferent data sources for visualization. Data harmonization relies on breaking
heterogeneous data sources into atomized attribute fields for analysis, a step
that we call exploding the data. Attribute fields can be further classified
as numeric or non-numeric. For tabular data, fields are simply each of the
individual columns. For non-tabular data, we assume that a data source has
at least one field that corresponds to a unique identifier, and that there may be
associated tabular data that contains additional attribute fields. For example,
a data source for a tree datatype is a flat file that contains the tree structure
and the ids of its leaf nodes. This data source may also have an associated
tabular data file where one column contains the leaf node ids in addition to
other attribute fields.

As we will describe in detail in Section 7.5, both the datatype and attribute
fields of individual sources can be used to create a visual encoding. We
can also reliably find linkages between different data sources by conducting
a simple set-similarity analysis of categories between non-numeric fields
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of two data sources. The different data sources, their attribute fields, and
the derived linkages between the attribute fields of different sources can be
collectively modeled as an entity graph (Figure 7.5). Nodes in the graph
represent individual data sources and their associated fields. Edges also
connect data sources and their attribute fields and also represent the linkages
between fields (and thus by extension link between data sources). Impor-
tantly, modeling data as a graph allows us to identify linkages between two
datasets that exist only due to a third intermediary. We analyze the entity
graph to automatically generate specifications for visual encodings.

7.4.3 Visualization Specification

A visualization specification can describe either a single visualization encod-
ing (V ) or a specific combination of encodings (CV )

For a single visual encoding, we follow the same formalisms for a visu-
alization specification as others have [6] [68] [76], but with some minor
modifications. Briefly, prior work specifies some chart type with a set of
visual encoding marks and channels that map to some attribute field. For
example, to create a scatter chart, numeric attribute fields from tabular data
can map to positional encoding channels for point marks. Some specifi-
cations can also impose constraints, for example, attribute fields encoding
colour channels must be non-numeric and have fewer than 12 unique cate-
gories. To support heterogeneous data, we also include a datatype attribute
for each visualization specification, for example, a phylogenetic tree visual
encoding requires a specific tree datatype.

The specification for a combination of visualization encodings includes the
names of individual chart types to combine, the type of combination, and if
applicable the field on which to link the charts. We have previously reported
on specifications for combinations [27], and briefly summarize our prior
work here. We support four types of combinations: small multiples, spatially
aligned, colour aligned, and unaligned. The first three combination types
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produce coordinated static combinations of multiple chart types, while the
latter produces an uncoordinated combination.

7.5 General Algorithm

We describe a general algorithm that given some domain-specific visualiza-
tion design space (D) and heterogeneous collection of data (H) as input will
attempt to automatically recommend visual encodings (V ) and, if applicable,
combinations of encodings (Cv) that are relevant to a stakeholder.

We first describe how we analyze a domain prevalence design space (with the
properties described in Section 7.4.1) to map between different datatypes and
visual encodings, and how we obtain rankings of different visual encodings
that are used to constrain the possible set of relevant visualizations presented
to the user. We next describe the process of data harmonization by “explod-
ing” data fields out of data sources to generate an entity graph. Finally, we
demonstrate how we analyze and rank paths within the entity graph to auto-
matically create specifications of visual encodings and their combinations
that are then presented to stakeholders for viewing and assessment.

7.5.1 Mapping From Datatypes to Visual Encodings with a Design
Space

Our algorithm assumes there exists a design space that corresponds to data
within an expert’s domain, whether created with the specific method that
we proposed in prior work [24] or some other approach that guarantees the
requirements are met. We analyze this design space to identify correspon-
dences between heterogeneous datatypes and visual encodings and use this
analysis result in our algorithm to identify a set of candidate visual encodings
for each data source.
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Relevance-Ranking Visual Encodings

We can generate a relevance score for visual encodings by taking into account
their prevalence in a design space and also additional information about the
creation context of each encoding. Here, we use the year that the encoding
was created and place a higher weight on those visual encodings created
more recently. Thus, we can calculate the relevance score for all unique chart
types within a design space (VD) by the total weighted sum of occurrences
for each unique chart type (Vi) by year (Y ), where N is the total number of
visual encodings corresponding to a specific year (Y ). Formally,

Rel(Vi) =
Y

∑
y

N

∑
n=1

Vi,n ∗wy (7.1)

where i is the total number of unique chart types in D and wy is a weighting
factor that penalizes older visual encodings. The raw relevance score (Rel)
is then rescaled for computability, interpretability, and consistency across
different design spaces:

rescale(Vi) =
Vi

max(Rel(DV )
∗10 (7.2)

where Vi is a single visual encoding and DV is the visual encoding with the
maximum relevance score in the design space D. This scaled relevance score
ranges between 1 (least common) and 10 (most common). It is designed to
produce non-linear results to emphasize the relative importance of different
types of visual encodings. For example, a phylogenetic tree is the most used
visual encoding in genomic epidemiology and the next most common visual
encoding is bar chart. Instead of giving a phylogenetic tree a rescaled rele-
vance score of 10 (maximum) and bar chart a score of 9, our rescaled rank
score produces scores of 10 and 4 respectively. These scores emphasizes the
relative importance of a phylogenetic tree compared to all other encodings.
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7.5.2 Data Harmonization and Entity Graph Generation

Data harmonization is the process of integrating heterogeneous datatypes
and identifying linkages through their multidimensional field attributes. To
simplify computational procedures across different heterogeneous datatypes
we have developed a common data structure (CDS). For each input dataset,
our data structure stores a unique identifier, the source of the data on disk,
the type of data, and finally the data itself. We also store non-tabular data
and its associated data within the same CDS. We compute over the complete
set of CDS in order to “explode” attribute fields from individual data sources
( Figure 7.5). Exploded fields are categorized as numeric or non-numeric,
and for non-numeric fields we further quantify and store the number of
unique categories. We generate an internal metadata object that keeps track
of all the different data sources, along with their datatypes, attribute fields,
and field classifications.
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Figure 7.5: Data harmonization and entity graph generation schematic algo-
rithm overview Data source #1 is a tree datatype with associated tabular data,
data source #2 is a tabular datatype, and the final data source #3 is a spatial
datatype. The attribute fields within these data sources are “exploded” and clas-
sified into numeric and non-numeric field types. For data source #1, attribute
fields are exploded from the tree data and associated data, for data source #2
the attribute fields are the tabular data column, and for data source #3, attribute
fields are ids associated with spatial polygons. We use the Jaccard index to
compute the similarity of categories between two pairs of non-numeric attribute
fields and establish exact and in-exact linkages between data sources through
their attribute fields. The data sources, their attribute fields, and the linkages
between their fields are used to generate an entity graph. We enumerate paths of
the entity graph that link pairs of data sources and rank paths according to their
link strength, diversity, and total relevance. We generate specification for visual
encodings from each of these paths, beginning with the most highly ranked path
(highlighted in red).

Once fields are “exploded” from their data sources, we consider the unique
categories that occur within each non-numeric field, and compute the set
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similarity for the categories in common between a pair of such fields. For
all possible pairs of non-numeric fields from different data sources, we
calculate the set similarity between fields A and B using the Jaccard Index, a
normalized score between 0 and 1:

J(A,B) =
A
⋂

B
A
⋃

B
(7.3)

A Jaccard index of 1 indicates an exact match between all unique categories
in the two fields, 0 indicates no matching categories, and an inexact match
between 0 and 1 indicates some but not all category values in common.
When pairs of fields between different data sources have a Jaccard index
greater then 0 there is some linkage between these data sources. We can use
this linkage information to derive an entity graph of data sources and their
associated attribute fields ( Figure 7.5). As we show in Section 7.6, when
generating the entity graph it is also possible to specify the minimal Jaccard
index value required to designate a linkage between two non-numeric fields.

Our algorithm analyzes paths within the entity graph in order to come up
with specifications for visual encodings and, if applicable, combinations.
The path analysis process involves two steps. First all paths linking all
possible paired combinations of data sources are enumerated and ranked.
We describe this ranking process in the subsequent Section 7.5.3. Second,
within each individual path we identify highly connected nodes (fields that
link two or more datasets) and use these nodes to seed specifications; we
describe this process in Section Section 7.5.4.

7.5.3 Ranking Paths Within the Entity Graph

We enumerate paths between pairs of data sources and rank the resulting
paths according to strength of the connections between data sources (link
strength), the diversity of visual encodings that can be generated from the
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different data sources (diversity), and finally the cumulative relevance of
those visual encodings (total relevance). Depending upon the degree of
connectivity in the entity graph, paths may not exist between some pairs of
data sources; in the worst case scenario, none of the data sources will be
connected and there will be no paths to rank. Where there exist two or more
disconnected components with the entity graph, paths are ranked, analyzed,
and used to recommend visual encodings for each individual component.

The link strength of a path is the normalized sum of edge weights (ei):

strength =
∑

N
i=1 ei

N
(7.4)

where N is the total number of edges on that path, ei is the Jaccard index,
and where i ∈ {1...N}. The total normalized link strength value varies from
0 up to 1, where a strength of 1 means that a path is composed entirely of
exact matches (edge weights of 1).

Diversity measures the variability of the visual encodings that can be pro-
duced from the data sources along the path. In Section 7.5.4 we present a
mapping of different data sources to specific visual encodings. We count
the number of unique instances of a visual encoding. Diversity scores range
from 1 (the minimum relevance score) for a single visual encoding from a
single data source, up to a maximum value that depends on the input data.

Finally, we compute the total relevance of a path by summing the relevance
scores of the unique visual encodings that can be produced from the different
data sources along the path. For tabular data, we take the relevance score of
the highest-ranking visual encoding that could be produced. The relevance
score ranges from 1 for a single data source, up to 10×T , where T is the
total number of data sources along the path.

The link strength, diversity, and total relevance score for each path is com-
puted. Higher ranks are given to paths with link strengths closer to the
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maximum value of one, with greater diversity, and that could produce highly
relevant chart types. To produce a final quantitative summary rank score, we
rank all paths from 1 (highest) to P (lowest, where P is the total number of
paths) for each of our three criteria (link strength, diversity, and relevance)
and then sum the results. The final rank score can range from 3 (highest link
strength, diversity, and relevance) to P×3 (lowest). Paths are subsequently
analyzed in order of rank.

7.5.4 Generating Specifications

Figure 7.6: Internal Templates. The initial partial specifications in the internal
templates, with empty slots denoted by NA, are mapped to specific data and fields
during the visualization recommendation process to produce a full specification.
Two specific examples used within GEViTRec: (a) Scatter chart template (b)
Phylogenetic tree template.

Beginning with the highest ranked path, we produce visualization specifica-
tions according to a possible set of visual encodings as established from the
data sources. Paths are analyzed for highly connected nodes that link two
or more datasets and the fields pertaining to those nodes are used to seed an
initial specification for all possible visual encodings. We now describe how
attribute fields from different data sources are assigned to visual encodings
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within a specification.

For each chart type, we have created an internal visual encoding template
with initial set of partial specifications that is transformed into a full spec-
ification at run-time by our algorithm. Each template has encoding slots
that are initially empty, specifies constraints on the properties of the field
type that can be mapped to an encoding slot, and indicates whether a field
is required or not to generate the chart. We express encoding constraints
in a simple manner, indicating whether an encoding of some type requires
a numeric or non-numeric field and for non-numeric fields also indicating
the limitations on the number of unique categorical elements a field may
contain. For example, a bar chart has three encoding slots: x-position,
y-position, and colour. The y-position constraint is that the mapped field
must be numeric. The colour constraint is for a non-numeric field with fewer
than 12 categories. Positional encoding slots must be assigned to some
field in order to generate the bar chart, but colour encodings need not be
assigned. Figure 7.6 illustrates a specification template for two other chart
types, scatter charts and phylogenetic trees.

Our template approach is easy to debug and clearly lays out the mappings be-
tween visual encodings and datatypes. Because these templates are provided
within the system, the user does not have to provide any initial specifications
at all. We are able to provide these templates within the system because
the scope of chart types is known in advance; in contrast, previous mixed-
initiative systems leave that burden with the user. Our templates only serve
to provide constraints on the mapping from data to visual encodings. The
intent of previously proposed query languages, such as VizQL [50] and
CompassQL [127], is to also indicate what methods to use for choosing,
ranking, and grouping recommendations; in contrast, we use the entity graph
to perform these computations.
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Figure 7.7: Mapping from datatypes to chart types. The above examples demon-
strate how tabular and non-tabular data are mapped to different chart types. The
mappings shown here are informed by a domain prevalence design space gen-
erated for microbial genomic epidemiology [24]. Our technique assumes that
non-tabular data sources contain encodings for specific marks and their associ-
ated positional channels. Conversely, tabular data must be assigned to different
marks and channels depending upon the total number of fields to be visualized
and the type of field (numeric or non-numeric).

Our algorithm attempts to generate as many visual encodings as possible
given the data sources along a path in the entity graph. In the implementation
we have hard programmatic constraints on the total number of paths and
visual encodings investigated, always prioritizing highly ranked paths and
visual encodings. Data sources and attribute fields are mapped to data and
encoding slots, respectively, within the internal visual encoding template.
As previously indicated, fields that connect two or more datasets (highly
connected nodes) have the highest priority for mapping to encoding slots.
Our algorithm also allows a user to specify the names of fields that should
be in the results and these are also preferentially mapped.

Tabular and non-tabular data are treated differently when mapping to specific
encoding slots. We assume that non-tabular data has pre-specified marks
and positional channels that produce specific visual encodings. If there
exists associated data for the non-tabular datatype, then the associated data
supplies fields that can be used to encode non-positional information. For
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example, tree data data supplies the positions for different line marks and
associated data encodes additional information through line colour, size,
or style channels. Conversely, tabular data has no pre-specified marks or
channels and can produce one or more statistical visual encodings (bar,
scatter, histogram, etc.) depending upon available fields. Figure 7.7 presents
a concrete mapping of data to visual encodings that was informed by a
visualization design space for microbial genomic epidemiology.

If there are no highly connected nodes or no user defined fields to seed the
encodings, then fields are selected at random to populate visual encoding
templates. Similarly, if all high priority fields are assigned and there remain
unassigned encoding slots, lower priority fields are randomly assigned to
encoding slots.

7.5.5 Composing Views for Display

As a final step, visual encoding specifications with all required encoding slots
assigned to an attribute field are rendered for display to the stakeholders. We
generate a single view of coordinated static chart combinations per path. The
implementation describes how these views are composed and how we again
use the relevance of visual encodings to create a view with a manageable
number of visual encodings.

7.6 Implementation of GEViTRec

We now present GEViTRec, which is an instance of the general algorithm de-
scribed in Section 7.5 when applied to a domain-specific problem within pub-
lic health microbial genomic epidemiology. We have implemented GEViT-
Rec in the R programming language as a package and have publicly released
it at https://github.com/amcrisan/GEViTRec. The repository
also contains all analysis code for the results presented in Section 7.7.
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GEViTRec uses the previously described GEViT domain prevalence design
space (Section 7.2) to identify connections between visual encodings and
datatypes and generate visualization recommendations. Our implementation
supports tabular, genomic, spatial, network, tree, and genomic datatypes.
Visual encoding specifications generated by GEViTRec are rendered by
minCombinR, a system that we developed to support a minimal specification
syntax for chart types and combinations [27]. The minCombinR systems
supports the generation of 18 unique chart types and four combinations
(small multiples, spatially aligned, colour aligned, and unaligned). Please
refer to the minCombinR publication for more details.

Stakeholders can run GEViTRec in their R environments and we have devel-
oped a set of functions to help them load heterogeneous data, perform a data
harmonization, generate specifications, and finally render and display views
of visual encodings (Figure 7.8).

input data is a common interface for loading different datatypes into R.
This function requires as input the location of the data source on disk and the
datatype. If applicable, for non-tabular datatypes associated data can also be
loaded. We have developed a series of datatype specific functions that will
load a dataset into the R environment and store it in a common data structure
(Section 7.5.2).

data harmonization takes a collection of datasets and “explodes” at-
tribute fields from different data sources, finds linkages, and creates the
entity graph. The view entity graph command will display it. Stake-
holders can also view a metadata table for the different data sources and their
attribute fields.

get spec list performs the computations on the entity graph. It ranks
paths and processes them in order of rank (highest to lowest) to generate
specifications for visual encodings.

plot view takes a list of specifications, renders the visual encodings, and
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arranges them for display. In instances where an entity graph contains
multiple disconnected components, our current implementation limits the
total number of views per component to ten; that is, we assemble views from
up to ten paths within a single component. Our implementation also limits
the number of chart types per coordinated static combination to five, which
are selected based upon their relevance scores per datatype. However, these
limitations are modifiable.

7.7 Results

We demonstrate the capabilities of GEViTRec with publicly available
datasets from the 2013-2016 Ebola outbreak [34], which are included along
with an R notebook of the analysis below in the GEViTRec code repository.
These data include a phylogenetic tree for roughly 1610 Ebola virus genomic
samples (each sample is unique to one person), spatial data of the affected
nations, and tabular data with additional information for each sample. The
primary reason for using these data is that they are publicly available and
there exists considerable scientific research on this outbreak that allows
us to objectively assess the quality of GEViTRec’s results. We were also
motivated by the challenges present in the domain of genomic epidemiology,
which in recent years saw both Ebola and Zika outbreaks. We heed the call
to arms for better data sharing and analysis tools [42] in exploring how an
automated visualization recommender could have presented these data to
researchers.
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Figure 7.8: GEViTRec Results. Left: GEViTRec code to harmonize heterogeneous data into an entity graph, generate specifications
based on high-ranking paths through it, and display coordinated combinations of static charts. Right: The highest-ranked
combination, with a top row containing charts that have been spatially aligned along a common horizontal axis, and a bottom
row coordinated through colour alignment and shared attribute fields. These automatic recommendations support fast data
reconnaissance.
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Figure 7.9: GEViTRec results with Ebola outbreak data. We load publicly available data including tabular, genomic, and spatial
data of about 1610 viral genome samples, one from each affected person. On the left is the entity graph GEViTRec created in its
data harmonization step, annotated in red to show the attribute names we use in our discussion. On the right are two additional
chart combinations; the highest-ranked one appears in Figure 7.8. Combination #4 represents a path where a phylogenetic tree
is automatically spatially aligned with genomic data. Combination #5 shows a path that links tabular and spatial data with a
combination of five charts.
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Without any input from the user, GEViTRec automatically generates co-
ordinated combinations of charts, and where possible, has aligned charts
according to shared positional axes and colour. Figure 7.8 shows the highest
ranked combination, alongside the code to generate it. These three lines
of simple code harmonize data, generate the specifications, and display
the views; notably, the user does not specify anything about the mapping
between the data and the visual encoding. Figure 7.9 shows the resulting
automatically generated entity graph and two more of the coordinated combi-
nations, ranked 4 and 5; all of the top five views are in Appendix E. We can
see that GEViTRec has identified that country and site id (the unique
identifier for each viral sample) are the high-degree nodes in the entity graph.
We can tell that these two attributes were the seeds for partial specifications
because they are present in all applicable charts: country appears in all,
encoded by position with some and colour with others. Many of the gener-
ated views contain a phylogenetic tree, the most relevant chart type for this
domain. Our prior research [24] noted the tendency of stakeholders to show
tree data with accompanying tables rather than appropriately coordinated
with other charts; GEViTRec has overcome this limitation by facilitating
such coordination automatically and without detailed input from the user.

Beyond the two attributes used to seed specifications, GEViTRec chooses the
remaining attributes to visualize at random, which can produce some inter-
esting results. For example, the latitudes and longitudes for where different
viral samples were collected are treated as generic numeric variables, which
results in charts of either latitude or longitude against the country. Generally
this information is shown on geographic maps instead of the heatmap GEViT-
Rec has chosen, but it would require additional information, either from the
user or hard coded into the system, to know these are privileged attributes
containing spatial information. It would be fruitful future work for us to
automatically mine some of this attribute-level data from our existing domain
prevalence design space and automatically incorporate this information.

It took approximately 35 seconds to produce these results including loading
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data, harmonizing it, generating specifications, and displaying the visualiza-
tions. The findings we show Figure 7.9 are produced on a MacBook Pro
(Quad-core Intel Core i5 CPU, 16 GB of RAM, although the full usage of
these compute resources were not necessary).

It is instructive to compare the automatically created GEViTRec output to
the current state of the art in this community, the Nexstrain and Microreact
applications, both of which visualize the ebola virus data. Both feature a
phylogenetic tree and a map; our highest-ranked path also has these two chart
types, in addition to some others. Nextstrain features multiple interactive
views that are coordinated through brushing and animation, but sits atop a
highly controlled data analysis pipeline and is not easily adaptable to any
other datasets. Microreact is more flexible to different datasets, which can
be loaded as CSV files, but requires the user to manually specify colour coor-
dination by explicitly adding paired colour columns to their tabular datasets.
Neither can show any other visual encodings. The goal of GEViTRec is not
to create polished tools for immediate public dissemination, but rather to
facilitate very fast exploration of a data landscape and provide initial sugges-
tions for visual encodings that may be helpful. These results show its utility
in providing quick glances of the data in support of data reconnaissance.

7.8 Related Work

We situate GEViTRec within existing research in visualization recommen-
dation systems categorized into rule-based, ontology, and machine learning
approaches. We also compare our R-based implementation stack in detail to
the JavaScript-based work of Heer and colleagues, discussing the similarities
and differences of our design contexts and decisions.
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7.8.1 Rule-Based Approaches

Previous rule-based approaches assign fields from tabular data to visual
encoding marks and channels according to the field type (nominal, ordi-
nal, quantitative). They further rank the resulting visual encodings based
upon perceptual effectiveness scores that have been traditionally “hand-
assigned” by experts [69] and more recently are learned from crowd-sourced
studies [76]. First formalized in Mackinalys APT system [68], rule-based
approaches are the most common strategy for visualization recommendation,
with two notable implementations as Tableaus Show Me [69] module and the
Compass and CompassQL recommender engine within the Voyager I [128]
and II [129] systems, respectively. These systems are seeded with partial
specifications supplied by users and then recommend additional ranked al-
ternative visualizations according to perceptual effectiveness scores. Apart
from stand-alone systems, rule-based approaches can also be implemented
as decision trees, such as Data-to-Viz (www.datatoviz.com) or Chart
Chooser (http://experception.net/), that guide users toward a
specific visual encodings. Rule-based systems are powerful and transparent
methods of visualization recommendations and are at the heart of many more
advanced solutions.

GEViTRec uses similar rule-based approaches to assign both datatypes
and fields to specific visual encodings. However, our approach explores
broader types of data, visual encodings, and combinations of encodings than
previous rule-based systems. Furthermore, GEViTRec uses relevance in lieu
of perceptual effectiveness to rank visual encodings, a choice necessitated
by the lack of perceptual studies and expert consensus of visual encodings
that exist in our design space.
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7.8.2 Ontology-Based Approaches

Ontology-based approaches use existing domain knowledge to recommend
useful visualizations. Existing approaches such as SemViz [45] and Cam-
marano’s schema matching technique [14] are primarily developed for se-
mantic web applications, where rich knowledge ontologies exist. As with
GEViTRec, ontologies inject domain-aware prior knowledge to generate
more informed visual encoding recommendations, while minimizing the
burden to the user of providing initial specifications. The strategies used by
GEViTRec rank to identify and rank paths that link data sources are similar
to Cammarano’s technique, albeit for different input data structures. While
there do exist some ontologies that GEViTRec could in theory use, such as
GenEpiO ([46], a genomic epidemiology ontology), the use of ontologies
in visualization recommendation may apply only in specific cases: they
are unlikely to result in a general solution because ontologies are resource
intensive to generate and maintain.

7.8.3 Machine Learning

Machine learning techniques can be used to automatically learn visual encod-
ing recommendations based upon prior knowledge. Draco extends rule-based
approaches by using the results from graphical perception studies to learn
the effectiveness ranks of different visual encodings [76]. Prior research
demonstrates the viability of crowd-sourcing graphical perception studies,
which presents an opportunity to scale data collection procedures [52]. A
different approach is presented by the Data2Vis system, which attempts to
translate data to visualization encodings by learning from paired examples of
data and visualization specifications [31]. Although this approach may scale,
it is again unclear how robustly it will extend to non-tabular sources of data
and complex chart types and combinations; we note the potential of biasing
the results toward certain solutions. Overall, machine learning solutions
to visualization recommendation are relatively new and there exist many

177



interesting and open challenges. The approaches taken by GEViTRec, Draco,
and Data2Vis are not mutually exclusive and can be considered together as
important components for future recommender systems.

7.8.4 Stack Comparisons

It is instructive to situate GEViTRec with respect the previous work in two
software stacks: the R-based stack it lies within (RStack), and the JavaScript-
based stack (JSStack) developed by Heer and colleagues that includes the
Compass [127], Draco [76], and Voyager [128] [129] systems. Both stacks
have a base of visualization grammars implemented within different charting
libraries (ggplot2 for RStack; D3 and Vega for JSStack), and higher-order
charting libraries at the next level (minCombinR for RStack; Vega-Lite
for JSStack). In both, the recommender systems (GEViTRec for RStack;
Compass and Draco for JSStack) sit one level higher, and emit specifications
for visual encodings that are rendered by these libraries. The JSStack also
features facetted browsing with the Voyager I and II systems, while our
RStack currently uses minCombinR’s capabilities to render coordinated
combinations of static visual encodings (charts) that can be displayed in any
R environment such as analysis notebooks or output to a graphics device. A
custom R-based interactive browser could be created as future work, but it is
not necessary to build a new interface to view our recommender output.

The most important difference between our approaches is that GEViTRec
supports a much wider range of visual encodings and datatypes than any
of the current JSStack recommenders. There is no technical reason why
the algorithm we present in Section 7.5 could not have been implemented
in JavaScript, but we chose an R-based implementation so that our rec-
ommender could be easily embedded with the analysis procedures of our
stakeholder community. The Compass and Draco recommender systems
in JSStack were developed for tabular data and it is not obvious how and
whether their architectures would extend to a wider set of datatypes; we do
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note that there is no low-level technical barrier to such future work, since
D3 and Vega/Vega-Lite are highly expressive charting libraries.

Another important difference is that GEViTRec does not require any initial
specifications or prompts from the user beyond simply importing datasets:
the data harmonization and generation of encoding combinations is fully
automatic. In contrast, both JSStack recommender systems require at least
partial specifications ahead of generating recommendations. One small
exception is the Voyager 2 system, which is able to produce histogram or bar
chart univariate summaries for dataset attributes. However, Voyager does
require additional partial specifications to generate multivariate charts and
to recommend alternative charts. Voyager’s output is also presently limited
to the generation of singular charts, with minor variations, whereas each
GEViTRec specification is a coordinated combination of multiple encodings.

Finally, an interesting consideration is the degree of architectural control
across stack layers. Each system in the JSStack is a modular piece, but
was developed by the same research group over a multi-year period. In the
RStack, we developed both the GEViTRec recommender described here
and the minCombinR charting layer beneath it, but these lie atop a software
ecosystem designed and built by many others.

7.9 Discussion and Future Work

We consider the generalizeability of our work, and the tradeoffs between
relevance and perceptual effectiveness for ranking.

7.9.1 Generalizability

Our contributions are intended to generalize to other domain contexts, but we
have not yet fully validated this claim. There are several rate-limiting obsta-
cles to such a validation. One bottleneck is the effort involved in generating
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domain prevalence design spaces. While our previously proposed method
for doing requires a mix of automatic computation and human effort [24], a
robust method that is fully automatic would address that problem. A more
prosaic problem where automation would be more difficult is the amount
of tedious and time-consuming work required to integrate domain-specific
software packages that visually encode new datatypes. Alleviating these
bottlenecks and developing more instantiations in other domains will be an
exciting area of future work. In order to encourage others to build on these
exploratory ideas, we have clearly outlined our assumptions in Section 7.4
and Section 7.5 and have made all of the code and source materials for our
end-to-end implementation of GEViTRec publicly available.

7.9.2 Is Relevance Relevant?

Our design of a domain-aware visualization recommender prioritizes the
relevance of different chart types, which we have defined by examining
commonly used visualization strategies of domain experts, in contrast to the
many existing recommender systems use graphical perceptual effectiveness
to rank visual encodings. We raise the concern that relying on perceptual
effectiveness as the sole ranking mechanism may not be sustainable at scale
because of the large number of studies that would be necessary even to
assess single charts, in light of the full range of visual encodings possible
for a heterogeneous array of datatypes. Worse yet is the combinatorial
explosion for the experiments required to understand combined or linked
visual encodings, because these combinations introduce many perceptual
questions that are challenging to isolate in a single experiment.

Nevertheless, one could argue that domain experts are not visualization
experts and thus may visualize their data inappropriately or without a full
awareness of the visualization design space. Although we agree that individ-
ual domain experts may not be fully aware of how to visualize their data, our
finding is that the collective strategies of a large group of experts can reveal
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a complex combinatorial design space. When we use this domain prevalence
design space in a recommender systems, we can generate visual encodings
that individual experts would not themselves consider.

Importantly, using relevant visualizations does not preclude passing judge-
ments of efficacy. It would be fruitful future work to examine the tradeoffs
between perceptual effectiveness and relevance. If perceptual experiments
provide adequate coverage for any specific design space, then it would be
possible to penalize relevant visualizations that are not perceptually effective.
As a coarse measure, our prior GEViT study tagged some visualizations as
being “good” or “missed opportunity” based upon our expert judgement as
visualization researchers. We did not use these classifications in the current
implementation of our recommender algorithm because we did not have
enough tagged examples for adequate coverage of the space, but as we scale
the exploration of visualization design spaces we can generate more of this
labelled data for use by recommenders.

7.10 Conclusion

Heterogeneous and multidimensional data are already the norm in many
domains and stakeholders are increasingly expected to use these complex
data to derive informed insights. In our own collaborations we saw that
stakeholders are struggling to understand their landscape of heterogeneous
data and we find evidence that others in the visualization research community
have encountered similar difficulties in their own collaborations. We con-
tribute a framework for data reconnaissance and task wrangling that reifies
these difficulties into a concrete vocabulary and processes that visualization
researchers can use in their future work. Our framework identifies four
phases (acquire, view, assess, pursue) that are repeated over time to gain a
better understanding of the data landscape – both what is available and what
is still required – and to develop a crisper notion of the tasks these evolving
data can support. We propose that the process of exploring an unfamiliar data
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landscape requires specific solutions and have developed a general algorithm
that allows stakeholders to view relevant and automatically generated data
visualizations that are informed by the data alone, through a harmonization
process that generates an entity graph and finds top-ranked paths through it
that produce coordinated combinations of chart types. We present a proof
of concept of our algorithm through the implementation of GEViTRec, a
domain-aware visualization recommendation system that supports many
datatypes beyond tabular data, including genomic, spatial, temporal, and
network data. It produces four types of coordinated combinations of visual
encodings: spatially aligned, colour aligned, small multiples, and unaligned.
In contrast to previous systems that suggest different ways to drawing a
single chart, our emphasis is on generating many ways to draw many differ-
ent kinds of data that are automatically coordinated. Our work adds to the
growing research in visualization recommendation systems by exploring the
application of such systems to more diverse types of data sources and visual
encodings.
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Chapter 8

Reflections and Conclusion
The greatest value of a picture is when it forces us to notice what we never

expected to see — John W. Tukey

Technological change is enabling health care systems to collect and analyze
an unprecedented amount and variety of data. If harnessed effectively, these
data can be used to transform public health policy making, just as John
Snow’s seminal work did two centuries earlier. Snow’s work drew on a
combination of statistical analysis and data visualization to identify and then
showcase the probable source of London’s Cholera outbreak. While statisti-
cal methods have continued to develop along with the field of epidemiology,
data visualization tools and practices have languished. The dissociation
between statistical and visual analysis has become more pronounced as new
sources of data need to integrated, analyzed, and communicated to diverse
groups of stakeholders who include, clinicians, nurses, researchers, policy
makers, and the general public.

In this dissertation I have sought to understand the relationship between new
and existing sources of data with the diagnostic, treatment, and surveillance
tasks carried out by stakeholders in public health genomic epidemiology. I fo-
cused on a targeted set of TB stakeholders who were interested in integrating
pathogen genomic data into their existing tasks but were uncertain of how to
integrate genomic data. This understanding enabled me to design and assess
ways of communicating these new types of data in an interpretable manner to
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a diverse group of stakeholders and to identify constraints restricting access
to data. Having a concrete idea of stakeholders data, tasks, constraints, and
unmet needs I then sought to explore and characterize existing strategies
for visualizing the heterogeneous and multidimensional data sources that
comprise modern genomic epidemiology (genEpi) studies. I developed a
systematic method to review data visualizations and created a typology ca-
pable of describing and enumerating a visualization design space. Finally,
I merged the collective knowledge of the genEpi research community with
the specific needs, data, and tasks of a select stakeholder group to design
and implement several tools (Adjutant, the GEViT Gallery, minCombinR,
and GEViTRec) that improve the creation of data visualizations for genomic
epidemiological surveillance tasks and that integrate with a broad ecosystem
of analytic methods.

I have taken an interdisciplinary research approach that borrows methods
and techniques from information visualization, human computer interaction,
machine learning, and statistics. I have innovatively woven this approach
together to develop novel technical and domain specific contributions that
are described throughout the chapters of this dissertation. The technical
contributions may be applied to other domains beyond genomic epidemiol-
ogy, but it will require further study before such a claim can be thoroughly
validated. The domain specific contributions produce research findings and
artifacts that others in public health, biological visualization, or information
visualization communities can use to develop tools for the genEpi commu-
nity. It is important to appreciate that genEpi is a critical component of
how disease outbreaks will be monitored, prevented, and controlled in the
future [34, 35, 42]. As climate change and other sources of environmental
disruption will contribute to the emergence and spread of more disease out-
breaks, the domain specific contributions I present here form useful source
materials for others seeking to develop the analytic and visualization tools
needed combat the disease outbreaks of the future.

Reflecting on my contributions, I begin by considering each project chapter
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individually and for those already in press describe its post-publication re-
ception. Next, I comment on my overall interdisciplinary research approach.
Finally, I discuss the limitations and future trajectory of my research.

8.1 Reflections on Research Projects and Contributions

8.1.1 Regulatory and Organizational Constraints

In Chapter 2, I defined regulatory and organizational constraints and through
a case study demonstrated the impact of these constraints on visualization
design and evaluation. To address the impact of these constraints I modified
a widely used Design Study Methodology (DSM) using methods from agile
software development and statistical analysis. I also provided a set of six
recommendations that visualization researchers and practitioners could in-
corporate into their process. The technical contributions of this work were
the modifications to the DSM that could be applied to other research projects.
The domain specific contributions were artifacts specific in the form of a
resolved stakeholders “power-interest” matrix and case study specific to
public health genomic epidemiology.

The research in Chapter 2 was highly influential in my subsequent projects
because it laid out the foundation of my research environment. It influenced
the approaches I took to create multiple sources of knowledge, from specific
stakeholder groups as in Chapter 3 and [25], to broader community strategies
for data visualization as shown in Chapter 5 and [24]. The findings from
the analysis of these different knowledge sources would go on to influence
the design and implementation of different visualization tools. Importantly,
actively incorporating regulatory and organizational constraints into my
doctoral research enabled me to circumvent the restrictions imposed by these
constraints and to develop usable tools.

Since the publication of this manuscript, regulatory attitudes toward data and
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especially data privacy have changed significantly and imposed constraints
on fields beyond healthcare. Most notably, the European Union General Data
Protection Regulation (GDPR) came into effect in May 2018 and began to
impose constraints on both commercial and research use of data globally. At
the time of this writing, there continues to be a growing and active discussion
on how data should be analyzed and, by extension, visualized. In light
of these more recent developments, the content of Chapter 2, which was
published in 2016, was a foreshadowing of how visualization researchers
and practitioners should position themselves to address growing constraints
on data access and use.

8.1.2 Evidence Based Design

In Chapter 3, I presented a multi-phased mixed approach that integrated
with a DSM to collect data using both qualitative and quantitative methods.
The pretext of this project was a collaboration with the COMPASS-TB team
of Public Health England to redesign a clinical report communicating the
results for mycobacterium whole genome sequencing, but my goal was
also to collect detailed information on the connection between stakeholders
data and tasks. In carrying out the report redesign research, I along with
my collaborators assessed design preferences to represent the information
on the clinical report. These design preferences included wording choice,
visual emphasis, layout, and data visualization representation. Our approach
compared against “control” designs from the existing clinical report. We
also assessed user preferences from presentations of individual “isolated
components” as well as whole clinical reports. Our findings showed that
isolated components were better at eliciting concrete preferences compared
to whole reports, which has implications for how design alternatives should
be assessed more generally. The technical contributions of this work was
the novel mixed methods approach to visualization design and evaluation
and the set of experimental and design guidelines. The domain contributions
pertained to the links between specific data types and genEpi tasks as well
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as the final re-designed mycobacterium WGS clinical report. One limitation
of the clinical report contribution is its specificity to tuberculosis data. Com-
pared to other organisms, TB has a large and comparatively less complex
genomic structure, while other pathogens have complex genomic structures
that include plasmids and mobile elements that confer mechanisms of drug
resistance that are difficult to detect with certainty and thus report. While I
believe that the mixed method approach we present is capable of identifying
and designing for such scenarios, the current implementation of our WGS
clinical report does not does not directly address challenges arising from
more complex genomic structures.

The findings from the research in Chapter 3 provided some of the first
insights into the modern genomic epidemiology data landscape. Surprisingly,
it revealed that there existed little consensus towards the data that should
be used for genomic epidemiology surveillance tasks. This project also
showed how the confidence of stakeholders to incorporate and interpret
genomic data with existing data sources was variable; some stakeholders
were much more confident than others toward their ability to use genomic
data within their current set of tasks. The ambiguity surrounding genEpi
data and tasks motivated me to gather a broader community perspective that
would become the GEViT research (Chapter 5). In particular, I reasoned that
a research community trying to understand its own data might not be well
suited to articulate their preferences toward the visualization of data much
more complex than that shown on the mycobacterium clinical report. This
insight led to the development of the data reconnaissance and task wrangling
framework presented in Chapter 7.

The methodology and resulting clinical report presented in Chapter 3 has
been well received by the wider research communities. It was among the
most widely viewed manuscripts on PeerJ (its publication venue) in 2018. I
presented this work at the 2018 American Society for Microbiology Next
Generation Sequencing Conference and my co-authors have also presented
this research in other venues. I also presented a poster of this research at

187



the 2017 IEEE VIS conference, showcasing how domain specific examples
can be used to translate infovis research knowledge. The re-designed clin-
ical report was made available online as a LaTeX template and could be
programatically filled in. Since its release, and as of this writing, the report
template has been viewed over 3000 times and has been incorporated by
PHE, ReSeqTB, and PathogenWatch analytic pipelines. Anecdotally, the
community consensus has also been that this research tackles the important,
but frequently overlooked, topic of effectively communicating results from
genomic analyses.

8.1.3 Adjutant

The Adjutant tool presented in Chapter 4 was a serendipitous addition to
dissertation research that evolved from general interest in the text mining
approach I developed for the systematic visualization review methodology
presented in Chapter 5. Adjutant is R-based and was released as a open
source tool. Since it was released online, Adjutant has developed an active
user community, especially in under resourced settings that are not able
to afford more expensive text mining tools. I have continued to maintain
Adjutant over the course of my doctoral dissertation thanks to feedback
from its community. Adjutant’s primary contributions were technical: the
development of rapid unsupervised topic clustering method.

Ultimately, Adjutant was also influential in the implementation of minCom-
binR and GEViTRec because it established a practical model for development
and deployment of a maintainable R-based open source tool.

8.1.4 GEViT and the GEViT Gallery

In Chapter 5 I presented a systematic method for surveying data visualiza-
tions and that can be used to generate a typology to describe and enumerate
a visualization design space. I also applied this method to the genEpi
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research literature and developed a genomic epidemiology visualization
typology (GEViT) that describes how data were visualized for different cre-
ation contexts. GEViT contains three taxonomies that describe chart types,
combinations, and enhancements. The Adjutant system was born out of
the need to rapidly and effectively summarize the structure of a document
corpus comprising the genEpi research literature. The GEViT gallery was
developed to provide stakeholders with an interactive means to browse a
visualization design space and explore different visual alternatives. The
primary technical contribution of this work is the systematic visualization
review methodology. I believe this method can generalize very well to other
application domains beyond genomic epidemiology, but this claim has not
yet been validated. The domain specific contributions were GEViT and the
GEViT Gallery, which summarize the visualization strategies of the genEpi
research community.

The research in Chapter 5 was important for connecting data to specific vi-
sual representations and identifying unmet visualization needs. The analysis
of the visualization design space reveals that only a minority of publications
contained more sophisticated visual designs while the majority defaulted to
using primarily phylogenetic trees. The extensive use of trees contrasted
with our findings from Chapter 3 that showed many public health stake-
holders did not find trees useful and were unsure how to clinically interpret
them. I was also surprised by the amount of text that accompanied the
visualizations that were analyzed and I speculated that this overuse of text
contributed to the interpretability difficulties of trees. Closely reviewing the
visualizations from this project, I also noticed artifacts of post processing
in different visualizations, especially those that used less text and more
combinations of different chart types to show different aspects of the data.
I hypothesized that stakeholders did not have enough support to visualize
the various types of charts and their combinations and that less program-
matically sophisticated stakeholders suffered the most because they could
not develop their own solutions as others could. This finding motivated the
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development of minCombinR, a toolkit that supported generation of different
chart types and their combinations through a minimal specification syntax.
Importantly, minCombinR is the first toolkit that supports the visualization
design space revealed by GEViT. The GEViTRec tool uses the data from
GEViT to automatically generate data visualizations. The motivation for
developing GEViTRec was also to support stakeholders exploration of the
visualization design space using their own data.

GEViT and the GEViT Gallery have been well received by the public health
genomic epidemiology and biological visualization research community.
The GEViT gallery receives on average 47 monthly users and has a total
viewership of 662 unique users from countries all over the world. The ma-
jority (approximately 77%) of users of the GEViT gallery find the site via a
direct link, whereas the rest of traffic is derived from organic searches (15%)
and social media (8%). I have presented this research at several venues in-
cluding the 2017 Applied Bioninformatics and Public Health Microbiology
Conference, 2018 Americian Society for Microbiology Next Generation Se-
quencing Conference, and the 2019 Visual and Automated Disease Analytics
Summer School. I have also been invited to present this research as part of
the Harvard Department of Biomedical Informatics Data Insights Seminar
Series and at the 2018 Biological Visualization Dagshtul Seminar. Finally, I
also presented this research as a poster at the 2018 IEEE Vis Conference and
at the 2018 Canadian Student Health Research Forum, where I won a CIHR
Gold distinction for the research and its presentation. While the GEViT
work continues to mature, the overall response has been that I have tackled
a complex problem with a creative and innovative approach. I have been
frequently asked to apply this method to other application domains outside
of genEpi and I have a number of directions to take this research in that I
will describe in the future work.
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8.1.5 minCombinR

In Chapter 6, I presented the minCombinR toolkit. I developed minCombinR
to address unmet needs of genomic epidemiology stakeholders to generate
data visualizations that were needed to support their analysis of heteroge-
neous data sources. The primary technical contribution for minCombinR was
an software architectural framework that supports a consistent declarative
syntax for generating data visualizations. Through only three commands,
specify single, specify combination, and plot stakeholders
could expressively generate a variety of data visualizations. This archi-
tectural framework implemented a gradual binding technique that enabled
minCombinR to add to or modify an initial user provided visualization spec-
ification. Gradual binding allows minCombinR to harmonization multiple
different chart types so that they can be more cohesively combined. While
minCombinR can be applied more generally, it is primarily a domain specific
contribution because it is optimized to support genEpi data and visualiza-
tions. However, I do demonstrate in Appendix D that minCombinR can used
for datasets from other domains.

The minCombinR toolkit also serves as a bridge between the prior GEViT
research and the subsequent GEViTRec automated visualization algorithm.
It is too early to assess the broader impact of minCombinR, as it has thus far
primarily been presented in conjunction with GEViTRec.

8.1.6 GEViTREC

Finally, the research Chapter 7 presents the culmination of these various
research threads throughout this dissertation. The GEViTRec implemen-
tation combines domain specific data visualization knowledge, with the
expressivity of the minCombinR toolkit, and the versatility of recommenda-
tion algorithm. GEViTRec is an innovative approach to help stakeholders
visualize their own data with the assistance of an algorithm. The algorith-
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mic technique unpinning GEViTRec represents multiple heterogeneous data
sources as a graph and uses this graph structure to explore and rank potential
ways to visualize the data. This research also introduces a novel method
for ranking data visualization: relevance. Relevance ranking is informed
by the domain prevalence visualization design space described in Chapter 5
and is an alternative to the widely used graphical perception based ranking.
GEViTRec is the first automated data visualization generating algorithm
that supports non-tabular data, a complex diversity of chart types beyond
common statistical charts (scatter charts, bar charts, etc.), and that only
requires the datasets of interest as input. The development of GEViTRec is
motivated by the larger challenges of exploring unknown data landscapes
that accompany modern genEpi investigations. I identified data reconnais-
sance and task wrangling as two co-ordinated processes that are carried
out over iterative phases of stakeholders acquiring data, quickly viewing
these data, making an assessment, and then if needed pursing additional data
sources. GEViTRec attempts to speed up this iterative multi-phased process
by lowering the burden to view data and make a quick assessment. The
technical contributions of this work are the recommendation algorithm as
well as the data reconnaissance and task wrangling framework. The resulting
GEViTRec implementation is a domain specific contribution.

I presented GEViTRec at the 2019 Applied Bioinformatics and Public Health
Microbiology conference as part of the bioinformatics showcase. The re-
sponse was very positive. Conference attendees were eager to learn about
GEViTRec and its development. I demonstrated how GEViTRec worked
within the wider R ecosystem, including analysis methods, and some at-
tendees asked to change the demonstrate code so that they explore how
GEViTRec worked. GEViTRec was nominated by attendees, and awarded,
the best showcase application. Furthermore, the Data Reconnaissance and
Task Wrangling framework I developed to motivate the development of
GEViTRec is also gaining some traction. In discussion with multiple groups,
the notion of data reconnaissance in particular is evocative and a number of
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groups have indicated that it succinctly describes their current processes and
challenges. It remains early to assess the impact of GEViTRec as well as the
data reconnaissance and task wrangling framework, but the initial response
is promising.

8.2 Reflecting on the Merits and Challenges
of Interdisciplinary Research

There are many merits to an interdisciplinary approach to research, but it
can also introduce many challenges and there exist few resources to instruct
one of how to best proceed. I have included this reflection in my dissertation
for future researchers that consider taking a similar approach.

Overall, taking an interdisciplinary research approach has largely benefited
my dissertation projects. The training I received prior to my doctoral research
emphasized quantitative methods founded in statistical, computational, and
epidemiological disciplines. My doctoral studies introduced me to qualita-
tive and especially mixed methods research approaches drawn from infovis
design study methodologies and Human Computer Interaction (HCI) user
research. Throughout this dissertation research, I borrowed techniques from
across these disciplines in order to gain a broader and richer perspective
on the role of data visualization in public health genomic epidemiology.
Refining the integration of these methods over time helped me to identify
fruitful research contributions that enabled my research to have tangible
impacts in a relatively short period of time. Beyond these tangible impacts,
interdisciplinary research was also intellectually satisfying. It was interesting
to mentally wrestle with the different philosophies and research approaches
taken by different disciplines, especially when these disciplines are at dif-
ferent stages of maturity. Information visualization and human computer
interactions are quite young and in my perspective they are still developing
their methodologies. Epidemiology and statistics have much longer his-
tory with more established methods but are not necessarily well equipped
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to address many of the challenges I encountered within different research
projects. Working within disciplines of different maturity afforded me the
opportunity to reflect on the process and history of science, something that I
had previously taken for granted.

There were also many challenges that attended this interdisciplinary research
approach. The primary challenge was that I had to learn to speak two or
more research languages and adaptively translate my findings into different,
audience dependent, languages. This translation effort was an error prone
process that introduced a considerable overhead to my doctoral research.
Even as I improved upon ability to translate my research across different
audiences and disciplines, it was still challenging to identify that appropriate
target audience to begin with. For chapters 3 to 5, inclusive, I made the
decision to target a bioinformatics, microbial genomics, and public health
audience because the research discussed domain specific needs, data, and
tasks. Having my work accepted and published by that audience was also
an indirect validation of my research findings. Furthermore, I used those
publications to introduce and translate infovis and HCI methods to this target
audience. In Chapters 6 and 7 the primary contributions were novel frame-
work for a visualization toolkit and recommendation algorithm, respectively.
I determined that an infovis audience would find these contributions inter-
esting and would be more capable of assess the rigour of my contributions.
Despite these decisions, it would have easily been possible to divide the
same work differently when it was presented to these audiences.

While I perceived it beneficial to have a wide and diverse audience for
my research output, in reality there were setbacks to this strategy. The
different communities do not necessarily read each other’s literature, which
served to diffuse the messages of my research rather than reinforce the
findings I had developed over successive projects. Early on I had decided to
use conferences and workshops as venues to cross pollinate my published
research between different communities, but again this strategy was not as
effective as I would have liked. Interestingly, at the outset of my doctoral
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research I had anticipated that my own limitations to synthesize and integrate
methods from different disciplines would have been the rate limiting factor.
In fact, this effort of integrating techniques between disciplines was not as
time consuming as managing my message to different audiences.

In spite of these challenges, my attempts to translate and integrated knowl-
edge from multiple different disciplines have paid off. I have been invited
to lecture on the intersection of data visualization, data science, and public
health by a number of organizations, including the BC Centre for Disease
Control, the American Public Health Association, Population Data British
Columbia, the Canadian Bioinformatics Workshops, the Canadian National
Microbiology Laboratory, and the Visual and Automated Disease Analytics
Summer School. The response to these lectures has been quite positive.

8.3 Overall Limitations and Future Work

Within the individual chapters, I have presented the limitations and future
directions of each research project. Here I will comment on the overall
limitations of my doctoral research and its collective future trajectory.

The primary limitation of this research is the scope of the application domain
and evaluative methods of the different tools I have developed. The narrow
scope of public health genomic epidemiology was intentional, but as the
research progressed it became clear that the principal challenges experienced
by my collaborators and the broader genEpi research community were not
domain specific. The Adjutant, GEViT Gallery, minCombinR, and GEViT-
Rec tools thus have components that could be readily applied to other domain
applications, which is why I have separated contributions into technical and
domain-specific categories. Still, these methods are tailored and optimized
for genEpi and I have not conducted extensive evaluations in this dissertation
to assess that these technical contributions truly are generalizable. The scale
of the effort needed to robustly assess this claim of generalizibility is beyond
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the scope of this dissertation.

The research and contributions described in this dissertation form a founda-
tion that provides a trajectory and initial implementations for data visual-
ization tools that help stakeholders navigate and visualize the complex data
landscapes of the future. Data that concerned this dissertation was primarily
derived from instruments that measure and record human biological data,
such as genomics, treatment responses, transmission and so on. However, the
landscape of health data grows more complex, with social media and online
search queries becoming a major way that stakeholders provide, explore,
look-up, and consume health information. As these online data sources
become used and potentially integrated with others, privacy concerns stem-
ming from regulatory and organizational constraints will play an ever larger
role in determining whether data can be used and for what purposes. It is
necessary to continue developing visualization and analytics tools that help
stakeholders integrate, analyze, and visualize these new sources of data so
that they can derive actionable insights that inform population and public
health policy making.

One future avenue of this research is to further explore how synthetic, simu-
lated, or even encrypted data can be visualized. In Chapter 2 I had begun
to explore how synthetic datasets could be used in lieu of real data for eval-
uating visualization prototypes. I showed that using this data was more
acceptable to stakeholders that had concerns about data privacy. However,
the approach I used in the Chapter 2 case study could be expanded by looking
to the biostatistics community, which has developed a number of different
strategies for using synthetic and simulated data within statistical analyses,
and the machine learning and database communities that have been mak-
ing recent advances in the area of differential privacy. Combined, these
emerging research on privacy preserving statistical and machine learning
analyses can be leveraged with data visualization tools in the future. Such
advances in privacy preserving data visualizations would not adversely im-
pact the research tools I have developed in this dissertation. In fact, I have
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purposefully developed tools that are able to adaptively respond to a variety
of data types and easily extend to new data. By foregoing an expectation
of specific data configurations, the minCombinR and GEViTRec tools are
able to incorporate a variety of synthetic and simulated datasets. Privacy
preserving data visualization is a fruitful and underexplored area of data
visualization research, but I anticipate it will play a much larger role in the
future.

Another viable future avenue of this research is to develop a single auto-
mated pipeline that links the generating of a domain prevalence design space
(Chapter 5) to the automatic generation of data visualizations from a stake-
holders datasets (Chapter 7). Generating such a pipeline would also allow
my research to be assessed in other domains and to test the generality of
the algorithms and techniques that comprised the technical contributions of
this doctoral research. Looking beyond these immediate aims, a pipeline
that connects domain knowledge to stakeholder data can also be leveraged
toward developing explainable machine learning models. Presently, machine
learning models are debugged using descriptive statistics that summarize
model performance, such a confusion matrix, accuracy, loss, etc. However,
it remains up to the individual to further probe the data to understand the
model’s performance. I envision a much more expressive and dynamic rela-
tionship, where the model can attempt to show a stakeholder how it came
to its decision. Awareness of the visualization exploration and communi-
cation strategies used by stakeholders can help machine learning systems
derive relevant, potentially more intuitive, and responsive explanations for
their decisions. Furthermore, stakeholders could interact through these vi-
sualizations to engage in a more active dialogue with the machine learning
algorithm by correcting errors or introducing new information. This collabo-
rative interplay between human domain knowledge and machine statistical
knowledge, mediated through data visualization, will be essential to the
future of data driven decision making. The research I present here puts forth
novel approaches for achieving this collaborative relationship between data,
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people, and automated systems.

8.4 Concluding Remarks

Human understanding and descriptions of natural phenomenon have under-
gone many major shifts since our early ancestors began to question their
environment and their place in it. John Snow’s seminal research represents
one such shift that championed the collection, analysis, and communication
of data to understand these natural phenomenon and to derive an actionable
insights that lead to an effective intervention. While today Snow’s approach
may seem like the norm, it was novel and innovative for its time. In the two
centuries that have since passed, data-driven decision making remained the
purview of a select few groups armed with enough money to purchase the
necessary equipment and personnel to collect, analyze, and make decisions
with data. With the accelerated evolution of computing technologies, it
has become possible to collect a greater amount and variety of data and
to analyze these data with ever more sophisticated means. This has been
especially true in public health, where data can be collected from a variety of
sources including from biological samples, healthcare administrative records,
geographical contextual information, social media, and even environmental
sources. In this dissertation, I have described the challenges and enthusiasms
that stakeholders in public health face when using these new types of data
in their routine diagnostic, treatment, and surveillance tasks. I have also
characterized their attempts to visually encode this data, which represents
the cutting edge of how stakeholders situate and communicate their findings.
Most importantly, I linked these needs and strategies to the development of
software systems that are meant to help stakeholders analyze and visualize
their data. As datasets continue to grow in size and complexity, the methods,
techniques, and artifacts that I have presented are important for developing
data visualization tools that help stakeholders find viable paths through an
evolving and unfamiliar data landscape.

198



Bibliography

[1] B. Alsallakh, L. Micallef, W. Aigner, H. Hauser, S. Miksch, and
P. Rodgers. Visualizing sets and set-typed data: State-of-the-art and
future challenges. In EuroVis State of the Art Report. The
Eurographics Association, 2014. ISBN -.
doi:10.2312/eurovisstar.20141170. → pages 6, 88, 157

[2] J. S. Ancker, Y. Senathrajah, R. Kukafka, and J. B. Starren. Design
Features of Graphs in Health Risk Communication : a Systematic
Review. Journal of the American Medical Informatics Association,
13(6):608–619, 2006. doi:10.1197/jamia.M2115.Introduction. →
page 52

[3] K. Andrews. Evaluation Comes in Many Guises. In Proc. Workshop
Beyond Time and Errors: Novel Evaluation Methods for
Visualization, volume 1, pages 8–10, 2008. → pages 34, 36

[4] S. Argimón, K. Abudahab, R. J. E. Goater, A. Fedosejev, J. Bhai,
C. Glasner, E. J. Feil, M. T. G. Holden, C. A. Yeats, H. Grundmann,
B. G. Spratt, and D. M. Aanensen. Microreact: Visualizing and
Sharing Data for Genomic Epidemiology and Phylogeography.
Microbial Genomics, 2, 2016. doi:10.1099/mgen.0.000093. → pages
4, 51, 87, 122

[5] R. A. Becker and W. S. Cleveland. Brushing scatterplots.
Technometrics, 29(2):127–14, 1987. → page 113

[6] J. Bertin and W. J. Berg. Semiology of Graphics: Diagrams,
Networks, Maps. University of Wisconsin Press, Madison, Wisconsin,
1st ed edition, 1983. ISBN 978-1-58948-261-6. → pages 104, 159

199

http://dx.doi.org/10.2312/eurovisstar.20141170
http://dx.doi.org/10.1197/jamia.M2115.Introduction
http://dx.doi.org/10.1099/mgen.0.000093


[7] A. Bigelow, S. Drucker, D. Fisher, and M. Meyer. Iterating between
tools to create and edit visualizations. IEEE Transactions on
Visualization and Computer Graphics, 23(1):481–490, 2016.
doi:10.1109/TVCG.2016.2598609. → page 114

[8] M. Bostock. Observable notebooks. https://observablehq.com/, 2019.
Accessed: 2019-03-25. → pages 113, 120

[9] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-driven documents.
IEEE Transactions on Visualization and Computer Graphics), 17(12):
2301–2309, 2011. doi:10.1109/TVCG.2011.185. → pages
3, 120, 124

[10] M. Bouchet-Valat. SnowballC: Snowball stemmers based on the C
Libstemmer Utf-8 library.
https://CRAN.R-project.org/package=SnowballC, 2014. → page 278

[11] P. Bradley, N. C. Gordon, T. M. Walker, L. Dunn, S. Heys, B. Huang,
S. Earle, L. J. Pankhurst, L. Anson, M. de Cesare, P. Piazza, A. A.
Votintseva, T. Golubchik, D. J. Wilson, D. H. Wyllie, R. Diel,
S. Niemann, S. Feuerriegel, T. A. Kohl, N. Ismail, S. V. Omar, E. G.
Smith, D. Buck, G. McVean, A. S. Walker, T. E. A. Peto, D. W.
Crook, and Z. Iqbal. Rapid Antibiotic-resistance Predictions from
Genome Sequence Data for Staphylococcus aureus and
Mycobacterium tuberculosis. Nature Communications, 6:10063, Dec
2015. doi:10.1038/ncomms10063. → page 51

[12] M. Brehmer, S. Carpendale, B. Lee, and M. Tory. Pre-design
Empiricism for Information Visualization: Scenarios, Methods, and
Challenges. Proc. Workshop Beyond Time and Errors: Novel
Evaluation Methods for Visualization, 1:147–151, 2014. → pages
31, 36

[13] B. Budowle, N. D. Connell, A. Bielecka-Oder, R. R. Colwell, C. R.
Corbett, J. Fletcher, M. Forsman, D. R. Kadavy, A. Markotic, S. A.
Morse, R. S. Murch, A. Sajantila, S. E. Schmedes, K. L. Ternus, S. D.
Turner, and S. Minot. Validation of High Throughput Sequencing and
Microbial Forensics Applications. Investigative Genetics, 5:9, 2014.
doi:10.1186/2041-2223-5-9. → page 51

[14] M. Cammarano, X. Dong, B. Chan, J. Klingner, J. Talbot, A. Halevy,
and P. Hanrahan. Visualization of heterogeneous data. IEEE

200

http://dx.doi.org/10.1109/TVCG.2016.2598609
https://observablehq.com/
http://dx.doi.org/10.1109/TVCG.2011.185
https://CRAN.R-project.org/package=SnowballC
http://dx.doi.org/10.1038/ncomms10063
http://dx.doi.org/10.1186/2041-2223-5-9


Transactions on Visualization and Computer Graphics, 13:
1200–1207, 2007. URL
http://vis.stanford.edu/papers/visualization-heterogeneous-data. →
page 177

[15] R. J. G. B. Campello, D. Moulavi, and J. Sander. Density-Based
Clustering Based on Hierarchical Density Estimates. Advances in
Knowledge Discovery and Data Mining, -:160–172, 2013.
doi:10.1007/978-3-642-37456-2 14. → pages 84, 92, 278

[16] N. Cao and W. Cui. Overview of Text Visualization. In Introduction
to Text Visualization, pages 11–40. Atlantis Press, Paris, France, 2016.
doi:10.2991/978-94-6239-186-4 2. → page 84

[17] S. Carpendale. Evaluating Information Visualizations. In A. Kerren,
J. T. Stasko, J.-D. Fekete, and C. North, editors, Information
Visualization: Human-Centered Issues and Perspectives, pages 19–45.
Springer, Berlin, Heidelberg, 2008. ISBN 978-3-540-70956-5.
doi:10.1007/978-3-540-70956-5 2. URL
https://doi.org/10.1007/978-3-540-70956-5 2. → pages 94, 317

[18] L. N. Carroll, A. P. Au, L. T. Detwiler, T.-C. Fu, I. S. Painter, and
N. F. Abernethy. Visualization and Analytics Tools for Infectious
Disease Epidemiology: A Systematic Review. Journal of Biomedical
Informatics, 51:287–298, apr 2014. doi:10.1016/j.jbi.2014.04.006.
→ pages 2, 5, 27, 51

[19] T. W. Chang, Kinshuk, N. S. Chen, and P. T. Yu. The Effects of
Presentation Method and Information Density on Visual Search
Ability and Working Memory Load. Computers and Education, 58
(2):721–731, 2012. doi:10.1016/j.compedu.2011.09.022. → page 79

[20] K. Charmaz. Constructing Grounded Theory. Sage Publications,
London; Thousand Oaks, Calif, 2006. ISBN 978-0-7619-7352-2. →
pages 18, 91, 94, 317

[21] T. Cohen, G. K. Whitfield, R. W. Schvaneveldt, K. Mukund, and
T. Rindflesch. EpiphaNet: An Interactive Tool to Support Biomedical
Discoveries. Journal of Biomedical Discovery and Collaboration, 5:
21–49, sep 2010. ISSN 1747-5333.
doi:10.5210\%2Fdisco.v5i0.3090. URL https://bit.ly/2JqjDg4. →
page 82

201

http://vis.stanford.edu/papers/visualization-heterogeneous-data
http://dx.doi.org/10.1007/978-3-642-37456-2_14
http://dx.doi.org/10.2991/978-94-6239-186-4_2
http://dx.doi.org/10.1007/978-3-540-70956-5_2
https://doi.org/10.1007/978-3-540-70956-5_2
http://dx.doi.org/10.1016/j.jbi.2014.04.006
http://dx.doi.org/10.1016/j.compedu.2011.09.022
http://dx.doi.org/10.5210%2Fdisco.v5i0.3090
https://bit.ly/2JqjDg4


[22] J. W. Creswell. Research Design: Qualitative, Quantitative, and
Mixed Methods approaches. Sage Publications, Thousand Oaks, CA,
2014. ISBN 9781452274614. doi:10.1007/s13398-014-0173-7.2. →
pages 14, 56, 57, 317

[23] A. Crisan, J. L. Gardy, and T. Munzner. On regulatory and
organizational constraints in visualization design and evaluation.
Proc. Workshop Beyond Time and Errors: Novel Evaluation Methods
for Visualization, 1:1–9, 2016. doi:10.1145/2993901.2993911. →
pages vi, 2, 12, 24, 150

[24] A. Crisan, J. L. Gardy, and T. Munzner. A Systematic Method for
Surveying Data Visualizations and a Resulting Genomic
Epidemiology Visualization Typology: GEViT. Bioinformatics, 35
(10):1668–1676, 09 2018. doi:10.1093/bioinformatics/bty832. →
pages viii, 17, 86, 114, 116, 151, 157, 160, 168, 174, 180, 185

[25] A. Crisan, G. McKee, T. Munzner, and J. L. Gardy. Evidence-based
design and evaluation of a whole genome sequencing clinical report
for the reference microbiology laboratory. PeerJ, 6:e4218, Jan. 2018.
doi:10.7717/peerj.4218. → pages vi, 2, 14, 49, 108, 148, 185

[26] A. Crisan, T. Munzner, and J. L. Gardy. Adjutant: an R-based Tool to
Support Topic Discovery for Systematic and Literature Reviews.
Bioinformatics, 35(6):1070–1072, 08 2018.
doi:10.1093/bioinformatics/bty722. → pages vii, 16, 81, 91, 92

[27] A. Crisan, S. Fisher, S. Kasica, J. L. Gardy, and T. Munzner.
minCombinR: Coordinating chart combinations with minimal
specifications. Under Review, 09 2019. → pages viii, 112, 159, 170

[28] A. Crisan, J. L. Gardy, and T. Munzner. GEViTRec: Domain-aware
visualization recommendation for data reconnaissance and
harmonization. Under Review, 09 2019. → pages ix, 146

[29] T. M. Daniel. The History of Tuberculosis. Respiratory Medicine,
100(11):1862–1870, 2006. doi:10.1016/j.rmed.2006.08.006. → page
42

[30] B. K. Dhillon, M. R. Laird, J. A. Shay, G. L. Winsor, R. Lo, F. Nizam,
S. K. Pereira, N. Waglechner, A. G. McArthur, M. G. Langille, and
F. S. Brinkman. Islandviewer 3: More flexible, interactive genomic

202

http://dx.doi.org/10.1007/s13398-014-0173-7.2
http://dx.doi.org/10.1145/2993901.2993911
http://dx.doi.org/10.1093/bioinformatics/bty832
http://dx.doi.org/10.7717/peerj.4218
http://dx.doi.org/10.1093/bioinformatics/bty722
http://dx.doi.org/10.1016/j.rmed.2006.08.006


island discovery, visualization and analysis. Nucleic Acids Research,
43(W1):W104–W108, Mar 2015. ISSN 0305-1048.
doi:10.1093/nar/gkv401. → page 4
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A.1 Supplemental Figures

Figure A.1: Survey responses with confidence intervals. (a) Wording choices (b) Design choices (c) Full reports
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A.2 Supplemental Tables

Table A.1: Task and data questionnaire study participants.
Note: Participants could select one or more levels of training, thus, rows will *not* add to 100%. * By professional experience,
we mean collaborating with others on a project. ** By continuing education, we mean attending workshops, training sessions,
or self-directed learning

Level Training

Subject Area None Undergraduate
Graduate (Masters, PhD);
Medical Training

Professional
Experience*

Continuing
Education**

Molecular Biology or Biochemistry 29.4% 29.4% 47.1% 41.2% 35.3%

Epidemiology 11.8% 5.9% 58.5% 64.7% 41.2%

Biostatistics 58.8% 11.8% 29.4% 23.5% 23.5%

Bioinformatics 52.9% 0.0% 11.8% 35.3% 29.4%

Genomics 23.5% 5.9% 23.5% 47.1% 52.0%

Infectious Disease 5.9% 35.3% 58.8% 76.5% 52.9%

Respiratory Medicine 17.4% 1.4% 29.4% 47.1% 29.4%
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Table A.2: Task and Data Questionnaire respondents anticipated future use of molecular/genomic data

Extent of usage

Data Type Never Rarely Sometimes Often
All of
the time

Don’t know
what this is

Patient Information 1 (5.9%) 0 (0.0%) 1 (5.9%) 1 (5.9%) 14 (82.4%) 0 (0.0%)

Patient’s own prior TB test result 0 (0.0%) 0 (0.0%) 3 (17.6%) 1 (5.9%) 12 (70.6%) 1 (5.9%)

Requester Identifier 2 (11.8%) 2 (11.8%) 2 (11.8%) 2 (11.8%) 9 (52.9%) 0 (0.0%)

Review identifier 2 (11.8%) 2 (11.8%) 4(23.5%) 0 (0.0%) 8 (47.1%) 1 (5.9%)

Type of sample 0 (0.0%) 0 (0.0%) 1 (5.9%) 5 (24.9%) 11 (64.7%) 0 (0.0%)

Sample colleciton site 0 (0.0%) 2 (11.8%) 0 (0.0%) 1 (5.9%0 11 (64.7%) 0 (0.0%)

Sample Collection date 0 (0.0%) 0 (0.0%) 2 (11.8%) 2 (11.8%) 13 (76.5%) 0 (0.0%)

Interpretation or comments from reviewer 3 (17.6%) 2 (11.8%) 2 (11.8%) 1 (5.9%) 11 (64.7%) 0 (0.0%)

Tuberculin Skin Test Restuls 4 (23.5%) 2 (11.8%) 2 (11.8%) 2 (11.8%) 7 (41.2%) 0 (0.0%)

Interferon Gamma Release Assy (IGRA) results 3 (17.6%) 2 (11.8%) 1 (5.9%) 4 (23.5%) 7 (41.2%) 0 (0.0%)

Chest X-ray 3 (17.6%) 2 (11.8%) 0 (0.0%) 3 (17.6%) 9 (52.9%) 0 (0.0%)

Acid Fast Bacilii (AFB) smear status 2 (11.8%) 1 (5.9%) 1 (5.9%) 1 (5.9%) 12 (70.6%) 0 (0.0%)

Culture results 1 (5.9%) 0 (0.0%) 0 (0.0%) 2 (11.8%) 14 (82.4%) 0 (0.0%)

Speciation 0 (0.0%) 0 (0.0%) 1 (5.9%) 0 (0.0%) 16 (94.1%) 0 (0.0%)

Phenotypic Drug suspectibility test
(determined by culture)

0 (0.0%) 0 (0.0%) 1 (5.9%) 1 (5.9%) 15 ( 88.2%) 0 (0.0%)

Molecular Drug susceptibility testing
(determine by PCR or Line Probe Assay)

0 (0.0%) 0 (0.0%) 1 (5.9%) 4 (23.5%) 12 (70.6%) 0 (0.0%)

Specific mutations conffering
drug resistance (resistotype)

1 (5.9%) 0 (0.0%) 1 (5.9%) 5 (24.9%) 9 (52.9%) 1 (5.9%)

Spoligotype 3 (17.6%) 3 (17.6%) 1 (5.9%) 3 (17.6%) 2 (11.8%) 5 (29.4%)
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Table A.2 continued from previous page
Extent of usage

MIRU-VNTR 0 (0.0%) 1 (5.9%) 1 (5.9%) 4 (23.5%) 11 (64.7%) 0 (0.0%)

RFLP 3 (17.6%) 6 (35.3%) 1 (5.9%) 2 (11.8%) 1 (5.9%) 4 (23.5%)

Cluster Assignment 0 (0.0%) 2 (11.8%) 2 (11.8%) 1 (5.9%) 12 (70.6%) 0 (0.0%)

SNP/V distance from other isoaltes 1 (5.9%) 3 (17.6%) 1 (5.9%) 2 (11.8%) 9 (52.9%) 1 (5.9%)

Phylogenetic Tree 1 (5.9%) 2 (11.8%) 3 (17.6%) 2 (11.8%) 6 (25.3%) 3 (17.6%)

Laboratory performance measures 2 (11.8%) 3 (17.6%) 1 (5.9%) 5 (24.9%) 5 (29.4%) 1 (5.9%)

Table A.3: Task and Data Questionnaire respondents’ confidence in their ability to interpret various types of laboratory
data.

Confidence Interpreting Information

Data Type Confident
Somewhat
Confident

Not
Confident

Don’t know
what this is

Total
Confident

MIRU-VNTR 64.7% 29.4% 5.9% 0.0% 94.1%

Phenotypic drug susceptibility
testing from culture

58.8% 23.5% 11.8% 5.9% 82.3%

Molecular drug susceptibitily
testing from PCR or LPA

58.8% 23.5% 11.8% 5.9% 82.3%

Genomic Clusters 52.9% 29.4% 11.8% 5.9% 82.3%

SNPS (mutations) 47.1% 35.2% 11.8% 5.9% 82.3%

SNP/V conferring drug resistance 41.2% 29.4% 23.5% 5.9% 70.6%

Genetic distance between
isolates measure by SNP/V

35.3% 41.2% 17.6% 5.9% 76.5%

Phylogenetic Tree 35.4% 29.4% 17.6% 17.6% 64.8%
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Table A.3 continued from previous page
Confidence Interpreting Information

Percentage of Genome Covered 29.4% 29.4% 35.3% 5.9% 58.8%

Genome Sequencing quality metrics 29.4% 29.4% 29.4% 11.8% 58.8%

Number of reads mapped /unmapped 29.4% 29.4% 29.4% 11.8% 58.8%

Depth fo sequencing coverage 29.4% 29.4% 29.4% 11.8% 58.8%

RFLP 29.4% 5.9% 35.3% 29.4% 35.3%

Soligotyping 23.5% 11.8% 23.5% 41.2% 35.3%

Table A.4: Task and Data Questionnaire respondents’ confidence in the ability of genomic data to perform various labora-
tory tasks

Level of Confidence

Data Types Task Type
It can
do this

It may be
able to do this

It can’t
do this

Don’t know
what this is

Organism/Speciation
Diagnosis

76.5% 17.9% 5.4% 0.0%
Diagnose Active TB 29.4% 23.5% 47.1% 0.0%

Predict Drug Susceptibility
Treatment

52.9% 47.1% 0.0% 0.0%
Inform a physician’s choice
of a therapy regimen

35.3% 64.7% 0.0% 0.0%

Monitor Treatment progress 5.9% 47.1% 41.2% 5.9%

Identify epidemiologically
related patients

Surveillance

58.8% 41.2% 0.0% 0.0%

Identify transmission events 41.2% 52.9% 5.9% 0.0%
Rule out transmission events 64.7% 29.4% 5.9% 0.0%
Assign patient to existing TB cluster 70.0% 29.4% 0.0% 0.0%
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Table A.5: Task and Data Questionnaire respondents identification of laboratory-associated barriers impacting their work-
flows

Diagnosis Treatment Surveillance*
Response Respondents = 6 Respondents = 5

No Issues 0 (0.0%) 0 (0.0%) NA

Additional data is needed 0 (0.0%) 2 (33.3%) 3 (60.0%)

Issue with timeliness of results being provided (too slow) 5 (83.3%) 5 (83.3%) NA

Results provided over multiple unconnected documents 5 (83.3%) 5 (83.3%) NA

Difficultly interpreting lab results 2 (33.3%) 3 (50.0%) 4 (80.0%)

Lab data is not routinely provided 0 (0.0%) 1 (16.7%) 3 (60.0%)

Lab data is not linked to patient data 1 (16.7%) 3 (50.0%) 1 (20.0%)

Other 2 (33.3%) 1 (16.7%) NA224



Table A.6: Summary of questions asked in the Design Choice Questionnaire, including preferred response.

Question # Options Participant Preference Classification Question Type
1 to 4 NA NA Demographic NA

5
A - With Bolding
B - Without Bolding
C - Equally Informative

A - With Bolding Design Multiple Choice

6

A- Speciation
B - Organism (Control)
C - Diagnosis
D - Species

B - Organism (Control) Wording Rank

7
A - Full Sentence
B - Summary

A - Full Sentence Wording Rank

8

A - Drug Resistance (Control)
B - Drug Sensitivity
C - Drug Susceptibility
D - Treatment

C - Drug Susceptibility Wording Rank

9

A - 3 letter abbreviation (Ex. INH) (Control)
B - Full Name (Ex. Isoniazid)
C - Show me everything (Ex. Isonizaid (INH,H))
D - The are equally informative

B - Full Name Wording Multiple Choice

10
A - 1 letter abbreviation (Ex. S,R,U) (Control)
B - Full Name ( Ex. Susceptibile, Resistant, Unknown)
C - They are equally informative

B - Full Name Wording Multiple Choice

11A
A - No, I am not interested in mutation data
B - Yes on the same table with drug susceptibility data (Control)
C - Yes, but on the other side of the report

C - Yes, but on the other side of the report Design Multiple Choice
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Table A.6 continued from previous page
Question # Options Participant Preference Classification Question Type

12

A - Basic (Control)
B - Alert Glyphs
C - Shaded
D - Bolded

D - Shaded Design Rank

13
A - Basic (Control)
B - Summary Sentence
C - Tick Boxes

C - Tick boxes Design Rank

14
A - Relatedness (Control)
B - Epidemiology
C - Cluster Detection

C - Cluster Detection Wording Rank

15
A - Percent Match (Control)
B - Organism Name

B - Organism Name Design Multiple Choice

16

A - Drugs listed by category
B - Prediction by drug
C- Summary Sentence
D - Drugs listed by category bin
E - Abbreviated prediction by drug (Control)

A - Drugs listed by category B - Prediction by drug Design Rank

17

A - # of cases with spark line
B - # of isolates related table
C- Table + Graph of # of isolates by SNP distance
D - Table + Phylogenetic Tree
E- Related isolates with SNP difference details
F - Summary with related isolates per year

D - Table + Phylogenetic Tree Design Rank

226



Table A.6 continued from previous page
Question # Options Participant Preference Classification Question Type

18
A - Summary Statement
B - No summary statement

A - Summary Statement Design Rank

19
A - One column
B- Two column

B - Two column Design Rank

21 to 23 NA NA Full Report Likert

24

A- Dark Heading
B- Gray Heading
C- Light Heading
D- Pictures

Full Report Rank
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A.3 Justification for Final Design Choices by Section

A.3.1 Analysis of Quantitative and Qualitative Results

Shorthand for the different surveys / requirements documents

Abbreviation Examples
EC: Expert Consults EC-1 = Expert consult #1
S1: Survey 1 (task survey) S1-Q10 = Survey 1 question 10
S2: Survey 2 (design survey) S2-Q11A = Survey 2 question 11A
ISO: ISO15189 requirements document S2-SR18 = Survey 2 survey respondent 18 (for text answers)

1. Summary Statement

(a) On first page of report

(b) Summary sentence

(c) Bold important terms

2. Organism

(a) On first page of report

(b) Section title is Organism (supported by S2-Q6. 31/54 of respondents

prefer “Organism” as top choice (42/54 preferred it as one of their

top two choices). Many participants (13/54) ranked “Diagnosis” the

first choice, over “species” and “speciation”, however, however this

trend was driven mainly by non-clinicians (11 non-clinicians ranking

diagnosis as their first choice, and only 2 clinicians ranking it as their

first choice). In fact, clinicians consistently ranked “Diagnosis” much

lower.

(c) Summary sentence with bolding to emphasize findings

3. Drug Susceptibility: in general, there was not a clear and obvious dislike of

the control design (S2-Q16 “Abbreviated prediction by drug”) because it was

not consistently ranked as lowest preference, but it was not the most desirable
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choice for respondents. Clinicians tended to rank the control design as the

lowest preference relative to non-clinicians.

(a) On first page of report

(b) Section title is Drug Susceptibility (supported by S2-Q8. Respondents

(27/54) preferred “Drug Susceptibility” as their first choice and 41/54

preferred it as one of their top two choices, but other options also

selected (Drug Resistance, Drug Sensitivity). Anecdotal and also qual-

itative evidence indicated that the title predicted drug resistance still

controversial.

(c) Summary sentence to state in silico prediction (not phenotypic)

(d) Tick boxes (S2-Q13 to indicate mono, multi, or extensive drug resistance

(supported by 38/54 who rated tick boxes as preferred choice, and ma-

jority rate basic (control report design) as least preferred (43/54). Good

comment support for tick boxes too: S2-R5: “[..] Tick box is the most

straightforward way [..] summary sentence [..]likely will be ignored”;

S2-R23: “the less risk of misinterpretation of test data the better”. There

was some different between clinician and non-clinician preferences,

but we opted to use the tick boxes with additional annotations to more

clearly indicate when no resistance was detected.

(e) Table listing predictions for drug susceptibility (supported by responses

for S2-Q16. Many respondents felt that an organized table/bins would

be the best, and when including the resistance information the table was

the easiest choice.)

i. Categorize drugs by class

ii. Categorize drugs by susceptible or resistant using full term (S2-

Q16 top choices were to “list prediction by drug” (21/54) and

also to “list prediction by category” (17/54). The design choices

offered didnt quite do both, but the final design does. It categories

drugs according to first and second line (not test on S2) and then
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by Sensitive / Resistant and finally lists each drug line by line.)

iii. Full name (no abbreviation) for drugs

iv. Highlight resistant drugs by shading (supported by S2-Q12 where

majority preferred shading (33/54) over other options. Clear that

basic (no emphasis on resistance) least preferred (36/54 ranked

it last). Number of comments were made for showing resistance:

S2-SR3 “report must call attention to drug resistance”; S2-R18

“MDR-TB should be flagged”, S2-R11 “best highlights the MDR-

TB”, S2-SR16 “better to highlight what is working instead of

what is not working”, S2-SR24 “Bold gets confused with column

headers”) Indicate resistance prediction source (see 4. Resistance

Information)

4. Resistance Information: Only 5/54 participants didnt want to see any ge-

nomic mutation information at all, but participants were split as to how this

information should be prioritized. 28/54 wantd to see this information on the

second page (not front of mind) while 21/54 wanted to see this information

on the front page. In the end, we put this information on the front page

because it worked well with the design (see rationale in main paper), but we

reduced the amount of genomic information shown so as not to overwhelm

the reader.

(a) Incorporated into Drug Susceptibility table

(b) Column header: Resistance (Mutation)

(c) Resistance indicated by Gene (Amino Acid Change) or “No mutation

detected”. (S2-Q11. 46/54 wanted gene abbreviation (i.e. katG) info

included when resistance is detected. But participants were less enthusi-

astic about addition information. A total of 25/54 participants wanted

to see base pair changes, 27/54 wanted to see amino acid changes,

and (this is a bit odd) 29/54 wanted to see read support for a mutation

(but not the total number of reads sequenced (wanted by only 14/54

participants)). We chose to show the amino acid change. Other data
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suggest clinicians in particular do want to see this kind of laboratory

data (see 7. Laboratory Quality Data).

5. Cluster Detection: concerns raised about the relevance of this information

at all: S2-SR18 “Cluster detection would only be fine for those who already

know what a cluster is”, S2-SR9 “Not sure what this conveys [..] What is the

clinical action?”

(a) On second page of report

(b) Section title is Cluster Detection (supported by S2-Q14. All respon-

dents ranked “cluster detection” as top choice (25/54) or top two choices

(46/54), compared to 18/54 ranking the control design (“Relatedness”)

first, or 36/54 ranking it among their top two choices . Also “cluster de-

tection” or “epidemiology” was the most preferred by clinicians, while

“relatedness” was the least preferred. Support also from comments:

S2-SR23 “When I see this I think epidemiology and clusters; not re-

latedness”, S2-SR11 “Cluster detection is important clinically and epi-

demiologically.”)

(c) Table with phylogenetic tree (control option preferred)

6. Laboratory Quality Data: concerns raised about the relevance of this infor-

mation at all: S2-SR18 “Cluster detection would only be fine for those who

already know what a cluster is”, S2-SR9 “Not sure what this conveys [..]

What is the clinical action?”

7. Laboratory Quality Data

(a) Do not include laboratory (sample & sequence) QC data on report

(Compared to the original report, this report does not have the labo-

ratory technical details (i.e. percent mapping to reference, genome

coverage, reference genome information etc.) because this was deemed

not necessary information for any of the tasks that stakeholders (but

especially clinicians) used to conduct their activities (S1). Including

laboratory technical data considered harmful (“Why would the lab put
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out poor quality results for me to interpret?”, “Isnt that up to the lab?”

(EC)). This doesn’t mean the data isn’t collected and stored but that the

data isnt presented on the clinical report. It can be moved to the second

page of the report if necessary, but should not be featured on the front

page.

A.3.2 ISO15189 Requirements

BSI Standards - BS EN ISO 15189:2012 Medical Laboratories - Requirements for

quality and competence.

5.8 Reporting of Results

• 5.8.1 General

– The results of each examination shall be reported accurately, clearly,

unambiguously and in accordance with any specific instructions in the

examination procedures.

– The laboratory shall define the format and medium of the report (i.e.

electronic or paper) and the manner in which it is to be communicated

from the laboratory.

– The laboratory shall have a procedure to ensure the correctness of

transcription of laboratory results.

– Reports shall include the information necessary for the interpretation of

the examination results.

– The laboratory shall have a process for notifying the requester when an

examination is delayed that could compromise patient care.

• 5.8.2 Report attributes

– The laboratory shall ensure that the following report attributes effec-

tively communicate laboratory results and meet the users needs:
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* Comments on sample quality that might compromise examination

results

* Comments regarding sample suitability with respect to accep-

tance/rejection criteria

* Critical results, where applicable

* Interpretive comments on results, where applicable, which may in-

clude the verification of the interpretation of automatically selected

and reported results (see 5.9.1) in the final report.

• 5.8.3 Report content

– The report shall include, but not be limited to, the following:

* A clear, unambiguous identification of the examination including,

where appropriate, the examination procedure; the identification

of the laboratory that issued the report; Will this be Oxford or

Birmingham?

* Identification of all examinations that have been performed by a

referral laboratory

* Patient identification and patient location on each page

* Name or other unique identifier of the requester and the requesters

contact details

* Date of primary sample collection (and time, when available and

relevant to patient care)

* Type of primary sample

* Measurement procedure, where appropriate

* Examination results reported in SI units, units traceable to SI units,

or other applicable units
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* Biological reference intervals, clinical decision values, or diagram-

s/nomograms supporting clinical decision values, where applicable;

* Other comments such as cautionary or explanatory notes (e.g. qual-

ity or adequacy of the primary sample which may have compro-

mised the result, results/interpretations from referral laboratories,

use of developmental procedure

* Identification of examinations undertaken as part of a research

or development programm and for which no specific claims on

measurement performance are available

* Identification of the person(s) reviewing the results and authorizing

the release of the report (if not contained in the report, readily

available when needed)

* Date of the report, and time of release (if not contained in the report,

readily available when needed); o page number to total number of

pages (e.g. Page 1 of 5, Page 2 of 5, etc.).

•

5.9 Reporting of Results

• 5.9.1 General

– The laboratory shall establish documented procedures for the release of

examination results, including details of who may release results and to

whom. The procedures shall ensure that the following conditions are

met.

– When the quality of the primary sample received is unsuitable for

examination, or could have compromised the result, this is indicated in

the report.

– When examination results fall within established alert or critical
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intervals:

* a physician (or other authorized health professional) is notified

immediately [this includes results received on samples sent to

referral laboratories for examination (see 4.5)];

* records are maintained of actions taken that document date, time, re-

sponsible laboratory staff member, person notified and examination

results conveyed, and any difficulties encountered in notifications.

– Results are legible, without mistakes in transcription, and reported to

persons authorized to receive and use the information.

– When results are transmitted as an interim report, the final report is

always forwarded to the requester.

– There are processes for ensuring that results distributed by telephone

or electronic means reach only authorized recipients. Results provided

orally shall be followed by a written report. There shall be a record of

all oral results provided.

* NOTE 1 For the results of some examinations (e.g. certain genetic

or infectious disease examinations) special counselling may be

needed. The laboratory should endeavour to see that results with

serious implications are not communicated directly to the patient

without the opportunity for adequate counselling.

* NOTE 2 Results of laboratory examinations that have been sepa-

rated from all patient identification may be used for such purposes

as epidemiology, demography or other statistical analyses.

• 5.9.2 Automated selection and reporting of results

– If the laboratory implements a system for automated selection and

reporting of results, it shall establish a documented procedure to ensure

that:
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* The criteria for automated selection and reporting are defined,

approved, readily available and understood by the staff.

· NOTE Items for consideration when implementing automated

selection and reporting include changes from previous patient

values that require review and values that require intervention

by laboratory personnel, such as absurd, unlikely or critical

values.

* There is a process for indicating the presence of sample interfer-

ences (e.g. haemolysis, icterus, lipaemia) that may alter the results

of the examination;

* There is a process for incorporating analytical warning messages

from the instruments into the automated selection and reporting

criteria, when appropriate;

* Results selected for automated reporting shall be identifiable at

the time of review before release and include date and time of

selection;

* There is a process for rapid suspension of automated selection and

reporting.

* When an original report is revised there shall be written instructions

regarding the revision so that:

· The revised report is clearly identified as a revision and in-

cludes reference to the date and patients identity in the original

report

· The user is made aware of the revision

· The revised record shows the time and date of the change and

the name of the person responsible for the change

· The original report entries remain in the record when revisions

are made
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· Results that have been made available for clinical decision

making and revised shall be retained in subsequent cumulative

reports and clearly identified as having been revised

· When the reporting system cannot capture amendments,

changes or alterations, a record of such shall be kept.
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A.4 Task and Data Questionnaire Online Survey

Questionnaire submitted online for the task and data survey
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Description	and	Consent

Many	public	health	agencies	are	starting	to	use	whole	genome	sequencing	(reading	every	letter	of	an	organism’s	DNA)	as	a	tool	for	diagnosing	infections,	predicting

what	antibiotics	an	organism	is	sensitive	or	resistant	to,	and	identifying	closely	related	isolates	that	might	suggest	an	outbreak.	Last	year,	a	study	in	The	Lancet

Infectious	Diseases		showed	that	when	this	technique	is	used	in	the	tuberculosis	laboratory,	we	can	generate	all	the	usual	results	that	one	has	come	to	expect	from	a

reference	mycobacteriology	lab,	but	we	can	do	so	much	faster	and	at	lower	cost.	As	a	result	of	this	study,	groups	like	Public	Health	England,	the	BC	Centre	for

Disease	Control,	and	the	US	Centers	for	Disease	Control	and	Prevention	are	all	using	genomics	to	analyze	their	incoming	mycobacterial	isolates.

	

Sequencing	a	bacterial	genome	generates	a	lot	of	information,	only	some	of	which	might	be	needed	to	manage	a	patient’s	infection.	We	are	interested	in	designing	a

new	lab	report	form	that	will	help	to	communicate	tuberculosis	genomic	data	in	a	clear,	concise,	and	meaningful	way	that	will	help	those	in	the	tuberculosis	community

-	clinicians,	epidemiologists,	laboratory	scientists,	and	more	-	in	their	daily	work.	There	is	a	large	field	of	research	into	how	to	present	data	in	a	way	that	makes	it

easily	interpretable	-	we	will	be	using	principles	from	this	field	in	designing	our	new	report	format,	which	will	be	shared	with	public	health	laboratories	so	that	they	may

choose	to	use	it	in	their	own	reporting.

	

By	participating	in	this	survey,	you	will	help	us	better	understand	how	you	use	lab	data	in	your	daily	tuberculosis-related	work.	The	answers	from	this	survey	will	help

us	to	design	a	series	of	sample	reports,	which	we	will	test	later	in	the	year	through	a	second	survey.

	

Today’s	survey	is	divided	into	several	parts.	We’d	like	everyone	to	complete	Parts	I	and	II,	which	ask	questions	about	your	job	and	your	familiarity	with	concepts	and

data	types.	Part	III,	on	tasks	related	to	diagnosis	and	treatment,	will	only	be	asked	to	physicians/clinicians.	Part	IV,	on	contact	tracing	and	outbreak	management,	will

be	asked	of	all	participants.	Part	V,	on	surveillance,	will	only	be	asked	of	epidemiologists,	surveillance	analysts,	and	researchers.	All	participants	will	be	asked	for

(optional)	email	contact	information	in	Part	VI.		

Consent	for	Participation

	

STUDY	PROCEDURES:	

	

If	you	agree	to	voluntarily	participate	in	this	research,	your	participation	will	include	the	following	online	survey	(estimated	completion	time	15-30	minutes)	in	which	you

will	be	asked	questions	about	how	you	use	TB	laboratory	data	in	your	work.	At	the	end	of	the	survey,	you	may	choose	to	provide	an	email	address	if	you’d	like	to	be

entered	into	a	draw	for	an	Apple	Store	gift	card,	or	receive	the	final	results	of	the	study.

	

There	are	no	known	or	anticipated	risks	to	you	by	participating	in	this	research.		An	optional	benefit	is	receiving	the	results	of	the	study	via	an	emailed	report	at	the

project’s	conclusion,	which	will	include	a	template	for	the	final	report	design	that	participants	may	use	in	their	own	work.	Study	results	will	be	also	shared	with	the

research	community	through	open-access	publications,	conference	reports,	tweets	and	other	social	media	postings.

	

MEASURES	TO	MAINTAIN	CONFIDENTIALITY

	

Data	from	this	study	will	be	coded	anonymously:	a	unique	anonymous	identifier	will	be	used	in	place	of	the	optional	email	addresses,	which	will	be	saved	separately

for	the	purposes	of	the	gift	card	draw	and	sending	information	about	the	final	report	to	participants.	After	analysis,	the	anonymized	data	will	be	saved	in	electronic

format	and	made	publicly	available	online	for	use	by	the	research	community.	

	

CONTACTS	FOR	COMPLAINTS	OR	CONCERNS

	

Geoff	McKee	is	a	resident	physician	in	Public	Health	and	Preventive	Medicine	at	the	University	of	British	Columbia	and	you	may	contact	him	if	you	have	any	further

questions	by	email	at	gwmckee@alumni.ubc.ca	or	by	phone	at	250-818-3448.

	

If	you	have	any	concerns	or	complaints	about	your	rights	as	a	research	participant	and/or	your	experiences	while	participating	in	this	study,	contact	the	Research

Participant	Complaint	Line	in	the	UBC	Office	of	Research	Ethics	at	604-822-8598	or	if	long	distance	e-mail	RSIL@ors.ubc.ca	or	call	toll	free	1-877-822-8598.

	

Taking	part	in	this	study	is	entirely	up	to	you.	You	have	the	right	to	refuse	to	participate	in	this	study.	If	you	decide	to	take	part,	you	may	choose	to	pull	out	of	the

study	at	any	time	without	giving	a	reason.

	

By	completing	the	questionnaire,	you	are	consenting	to	participate	in	this	research.	

	

PRINCIPAL	INVESTIGATOR:	

Jennifer	Gardy,	School	of	Population	&	Public	Health,	Tel.	604-707-2488

COMPASS-TB	Report	Design	Questionnaire
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PART	I	–	OCCUPATION	AND	SUBJECT	AREA	KNOWLEDGE	QUESTIONS

All	participants	are	asked	to	complete	this	first	part	of	the	survey:	we’d	like	to	find	out	more	about	you,	your	background,	and	your	general	attitude	towards	genomics

in	public	health.

1.	What	is	your	role	in	tuberculosis	diagnosis,	treatment,	management,	and/or	surveillance?	You	may	select	more	than	one
role.

[Select	as	many	as	apply]

What	is	your	clinical	role?

[Select	one	option]

2.	Who	is	your	primary	employer?

[Select	as	many	as	apply]

3.	In	what	country	do	you	work?

[Select	one	option]

4.	How	many	years	of	experience	do	you	have	working	in	the	field	of	tuberculosis?

[Number	of	years]

Clinical	management	-	I	work	directly	with	TB	patients,	providing	care	and/or	case	management

Laboratory	work	–	I	work	in	a	mycobacteriology	laboratory	setting	where	I	am	involved	with	lab	testing	for	TB

Surveillance/epidemiology	-	I	work	with	TB	data	to	understand	patterns	in	disease	occurrence

Research	-	I	carry	out	academic	research	into	TB

Other,	please	specify... Type	here

Physician/Clinician

Nurse

Other,	please	specify... Type	here

Public	Health	Organization	-	e.g.	Public	Health	England,	CDC

Private	Clinic/Primary	Care	-	e.g.	a	doctor’s	office

Hospital

Academic	Institution

Other,	please	specify... Type	here

England

Canada

USA

Other,	please	specify... Type	here

240



4	of	17

Type	here

5.	Please	indicate	the	highest	level	of	training	(if	any)	you	have	in	the	following	subject	areas:

*	By	professional	experience,	we	mean	collaborating	with	others	on	a	project

**	By	continuing	education,	we	mean	attending	workshops,	training	sessions,	or	self-directed	learning

None Undergraduate

Graduate	Masters,

PhD,	Medical

Training

Professional

Experience*

Continuing

Education**

Molecular	Biology	or	Biochemistry

Epidemiology

Biostatistics

Bioinformatics

Genomics

Infectious	Diseases

Respiratory	Medicine

6.	Have	you	ever	heard	of	or	been	involved	in	a	research	project	that	used	whole	genome	sequencing	data	to	diagnose	or
characterize	tuberculosis	infections	or	understand	tuberculosis	epidemiology?

[Select	one	option]

7.	How	enthusiastic	are	you	about	public	health	agencies	using	genome	sequencing	to	understand	and	diagnose	infectious
diseases?

[Select	one	option]

Yes	-	I	have	heard	about	these	sorts	of	studies	but	have	not	been	involved	in	one

Yes	-	I	have	worked	on	one	of	these	studies

No	-	I	am	not	familiar	with	TB	genomics	studies

Very	enthusiastic	–	we	should	be	using	genomics	now

Enthusiastic	–	genomics	has	a	lot	of	potential,	but	still	needs	to	be	validated	for	clinical	use

Neutral	-	I	don’t	have	a	strong	opinion	on	genomics	in	public	health

Skeptical	–	genomics	may	be	useful,	but	there	is	no	clear	application

It’s	all	hype	–	genomics	hasn’t	proven	itself	to	be	more	useful	than	the	techniques	we	currently	use
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PART	II	–	FAMILIARITY	WITH	DATA	TYPES

All	participants	are	asked	to	complete	this	second	part	of	the	survey:	we'd	like	to	hear	about	the	many	types	of	TB	laboratory	data	you	might	encounter	in	your	work.

8.	How	frequently	do	you	foresee	yourself	using	the	following	data	types	in	your	future,	routine	work?

[Select	one	option	per	data	type]

Never Rarely Sometimes Often All	the	time
I	Don’t	Know

What	This	Is

Patient	identifiers	(Name,	age,	location)

Patient’s	own	prior	tuberculosis	test	results

Requester	identifiers	(Name,	contact,	copy	to

etc.)

Reviewer	identifiers	(Name,	position	etc.)

Type	of	sample	(Sputum,	fine	needle	aspirate

etc)

Sample	collection	site	(lymph	node,	peripheral

blood	draw	etc.)

Sample	collection	date

Interpretation	or	comments	from	reviewer

Tuberculin	Skin	Test	Results

Interferon	Gamma	Release	Assay	(IGRA)	results

Chest	X-ray	results

Acid	Fast	Bacilli	(AFB)	Smear	results

Culture	results

Speciation	(M.	tuberculosis,	MAC,	M.	bovis	etc.)

Phenotypic	drug	susceptibility	testing	-

determined	by	culture

Molecular	drug	susceptibility	testing	-	determined

by	PCR	or	LIne	Probe	Assay	(LPA)

Specific	mutations	conferring	drug	resistance

(Resistotype)

Spoligotype

MIRU-VNTR

Restriction	fragment	length	polymorphisms

(RFLP)

Cluster	Assignment

Single	Nucleotide	Polymorphism/Variant	distance

from	other	isolates

Phylogenetic	Tree
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Laboratory	performance	measures	(Sequence

quality,	coverage	etc.)

Never Rarely Sometimes Often All	the	time
I	Don’t	Know

What	This	Is

9.	How	would	you	describe	your	ability	to	interpret	the	following	data?

To	help	you	choose	your	answers,	we	suggest	the	following	scheme:

Don’t	know	what	it	is:		you	are	unaware	of	this	data	type

Not	confident:		you	know	what	these	data	are,	but	you	are	not	certain	how	to	interpret	the	data	for	clinical	management,	surveillance,	or	research.

Somewhat	confident:	you	know	what	these	data	are	and	are	capable	of	interpreting	it,	but	you	usually	seek	out	a	confirmation	for	your

interpretation

Confident:		you	understand	how	to	interpret	this	data	and	are	confident	in	using	it	in	your	practice

Don’t	know	what	this	is Not	Confident Somewhat	Confident Confident

Spoligotyping

RFLP

MIRU-VNTR

Single	Nucleotide	Polymorphisms	(mutations)

Phenotypic	Drug	Susceptibility	Testing	from

culture

Molecular	Drug	Susceptibility	Testing	from	PCR

or	LPA

Single	nucleotide	polymorphisms/variants

(mutations)	conferring	drug	resistance

Phylogenetic	Tree

Genetic	distance	between	cases	measured	in

Single	Nucleotide	Polymorphisms/Variants

(mutations)

Genomic	Clusters

Genome	sequencing	quality	metrics

Number	of	reads	mapped/unmapped

Percentage	of	Genome	Covered

Depth	of	sequencing	coverage

10.	How	confident	are	you	that	genomic	data	can	be	used	to	correctly	perform	the	following	tasks?

Don’t	know	what	this	is It	can’t	do	this It	may	be	able	to	do	this It	can	do	this

Organism	Speciation

Diagnose	active	tuberculosis

Predict	Drug	Susceptibility

Inform	a	physician’s	choice	of	a	therapeutic

regimen

Monitor	treatment	progress

Identify	epidemiologically	related	patients
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Identify	transmission	events

Rule	out	transmission	events

Assign	patient	to	existing	tuberculosis	cluster

Don’t	know	what	this	is It	can’t	do	this It	may	be	able	to	do	this It	can	do	this
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PART	III	–	TASKS	RELATED	TO	DIAGNOSIS	&	TREATMENT

Only	physicians/clinicians	are	asked	to	complete	this	part:	our	initial	assessment	indicated	that	only	clinicians	are	involved	in	diagnosis	and	treatment,	these

questions	should	not	be	answered	by	nurses,	researchers,	epidemiologists,	or	biostatisticians	as	they	are	not	directly	involved	in	diagnosis	and	treatment.

11.	Are	you	involved	in	the	diagnosis	and	treatment	of	tuberculosis?

12.	What	types	of	samples	do	you	requisition	or	send	to	the	laboratory?

[Select	as	many	as	apply]

13.	Do	you	want	to	know	any	laboratory	or	bioinformatics	quality	metrics	that	may	be	associated	with	that	data	being	reported
to	you?

[Select	one	option]

14.	In	what	format	do	you	currently	receive	this	data?

[Select	as	many	as	apply]

15.	In	the	following	question	you	will	be	provided	with	several	clinical	tasks	in	the	form	of	narratives	and	be	asked	what	data
you	would	use	to	complete	the	task.

A.	[Diagnose	Latent	Tuberculosis]	You	receive	a	laboratory	report	for	a	patient	screened	for	tuberculosis	who	recently	immigrated	from	India.		Which	of	the	following

data	types	would	you	use	/	be	required	to	make	a	diagnosis	of	latent	tuberculosis?

B.	[Diagnose	Active	Tuberculosis]	You	receive	a	laboratory	report	for	a	patient	recently	hospitalized	with	respiratory	and	constitutional	symptoms	suggestive	of

tuberculosis.		Which	of	the	following	data	types	would	you	use	/	be	required	to	make	a	diagnosis	of	active	tuberculosis?

C.	[Reactivation	vs.	New	Acquisition]	You	receive	a	laboratory	report	for	a	patient	confirming	active	tuberculosis.		Which	of	the	following	data	types	would	you	use	/	be

Sputum

Bronchoscopy	Wash

Fine	Needle	Aspirate

Biopsy

Urine

Other,	please	specify... Type	here

Yes	–	I	want	to	always	want	to	have	data	quality	metrics

No	–	Data	quality	results	are	not	relevant,	the	lab	would	not	release	low	quality	data	and	I	trust	their	processes

I	don’t	know

Other,	please	specify... Type	here

Physical	report	mailed	or	faxed	to	me	(hard	copy)

PDF	report	in	electronic	health	record	system	(soft	copy)

Extracted	data	in	electronic	health	record	system	(soft	copy)

Other,	please	specify... Type	here
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required	to	differentiate	between	reactivation	and	new	acquisition	of	tuberculosis?

D.	[Characterize	Transmission	Risk]	You	have	just	diagnosed	a	patient	with	active	tuberculosis	and	are	determining	what	steps	are	necessary	to	prevent

transmission	to	others.	What	data	would	you	use	/	be	required	to	characterize	the	patient’s	risk	of	transmission?

[Select	as	many	as	apply]

A.	Diagnose	Latent

Tuberculosis

B.	Diagnose	Active

Tuberculosis

C.	Reactivation	vs.	New

Acquisition

D.	Characterize

Transmission	Risk

Patient	identifiers	(Name,	age,	location)

Patient’s	own	prior	tuberculosis	test	results

Requester	identifiers	(Name,	contact,	copy	to

etc.)

Reviewer	identifiers	(Name,	position	etc.)

Type	of	sample	(Sputum,	fine	needle	aspirate

etc)

Sample	collection	site	(lymph	node,	peripheral

blood	draw	etc.)

Sample	collection	date

Report	release	date

Interpretation	or	comments	from	reviewer

Tuberculin	Skin	Test	Results

Interferon	Gamma	Release	Assay	(IGRA)	results

Chest	X-ray	results

Acid	Fast	Bacilli	Smear	results

Culture	results

Speciation	(m.	tuberculosis,	MAC,	m.	bovis	etc.)

Phenotypic	drug	susceptibility	testing

Predicted	(in	silico)	drug	susceptibility	testing

Specific	Mutations	conferring	drug	resistance

(Resistotype)

Spoligotype

MIRU-VNTR

Restriction	fragment	length	polymorphisms

(RFLP)

Cluster	assignment

Single	Nucleotide	Polymorphism/Variant	distance

from	other	isolates

Phylogenetic	tree

Laboratory	performance	measures	(Sequence

quality,	coverage	etc.)

16.	When	you	are	using	laboratory	data	to	diagnose	a	patient	with	active	TB,	you	encounter	the	following	challenges:

[Select	as	many	as	apply]

No	challenges	-	the	lab	data	I	currently	receive	is	sufficient

The	lab	data	I	currently	receive	does	not	help	me	to	make	a	diagnosis

I	would	like	to	receive	data	faster	to	make	a	more	timely	diagnosis

Important	results	come	at	different	times	and/or	in	different	documents

I	find	it	difficult	to	interpret	the	lab	results	I	receive

I	am	not	regular	receiving	data	that	would	help	me	to	make	a	diagnosis

The	lab	data	I	receive	is	not	routinely	linked	to	patient	data
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17.	In	the	following	question	you	will	be	provided	with	several	clinical	tasks	in	the	form	of	narratives	and	be	asked	what	data
you	would	use	to	complete	the	task.

A.	[Choose	Medications]	You	are	managing	a	patient	who	has	just	been	diagnosed	with	active	tuberculosis.	What	data	would	you	use	/	be	required	to	decide	what

medications	should	be	prescribed	for	the	patient?

B.	[Choose	Duration	of	Treatment]	You	are	managing	a	patient	who	has	just	been	diagnosed	with	active	tuberculosis.	What	data	would	be	required	to	decide	the

duration	of	treatment	for	the	patient?

C.	[Assess	Responsiveness	to	Treatment]	You	continue	to	follow	the	patient	as	they	proceed	with	the	therapeutic	regimen	for	active	tuberculosis.	What	data	would	be

required	to	assess	their	responsiveness	to	treatment?

[Select	as	many	as	apply]

A.	Choose	Medications B.	Choose	Duration	of	Treatment C.	Assess	Responsiveness	to	Treatment

Patient	identifiers	(Name,	age,	location)

Patient’s	own	prior	tuberculosis	test	results

Requester	identifiers	(Name,	contact,	copy	to

etc.)

Reviewer	identifiers	(Name,	position	etc.)

Type	of	sample	(Sputum,	fine	needle	aspirate

etc)

Sample	collection	site	(lymph	node,	peripheral

blood	draw	etc.)

Sample	collection	date

Report	release	date

Interpretation	or	comments	from	reviewer

Tuberculin	Skin	Test	Results

Interferon	Gamma	Release	Assay	(IGRA)	results

Chest	X-ray	results

Acid	Fast	Bacilli	Smear	results

Culture	results

Speciation	(m.	tuberculosis,	MAC,	m.	bovis	etc.)

Phenotypic	drug	susceptibility	testing

Predicted	(in	silico)	drug	susceptibility	testing

Specific	Mutations	conferring	drug	resistance

(Resistotype)

Spoligotype

MIRU-VNTR

Restriction	fragment	length	polymorphisms

(RFLP)

Cluster	assignment

Single	Nucleotide	Polymorphism/Variant	distance

from	other	isolates

Phylogenetic	tree

Laboratory	performance	measures	(Sequence

quality,	coverage	etc.)

18.	What	are	the	main	barriers	for	improving	the	efficiency	of	active	TB	treatment	through	the	use	of	molecular	laboratory
data?

[Select	as	many	as	apply]

Other,	please	specify... Type	here

There	aren’t	any	barriers

Additional	laboratory	data	is	needed

Timeliness	of	results	being	provided	(too	slow)
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19.	Do	you	have	any	additional	comments	you	wish	to	make	on	the	use	of	genomic	and	molecular	data	for	active	TB
diagnosis	and	treatment?

Type	here

Results	provided	over	multiple	unconnected	documents

Difficulty	interpreting	lab	results

Lab	data	is	not	routinely	provided

Lab	data	is	not	routinely	linked	to	patient	data

Other,	please	specify... Type	here
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PART	IV	–	CONTACT	TRACING	AND	OUTBREAK	MANAGEMENT

All	participants	are	asked	to	complete	this	part:	Contact	tracing	and	outbreak	management	are	performed	by	nurses,	clinicians,	epidemiologists,	and	sometimes	also

researchers.

20.	Are	you	involved	in	the	epidemiological	aspects	of	TB	management,	including	contact	tracing	and/or	managing
outbreak?

Note	that	surveillance	-	collating	data	for	regional	or	national-level	efforts	-	is	not	included	here.	It	will	be	covered	in	the	next	section.

[Select	only	one]

21.	During	your	epidemiological	work,	do	you	directly	review	original	lab	reports?

[Select	only	one]

Do	you	get	aggregate	extracted	data?

[Select	only	one]

22.	In	the	following	question	you	will	be	provided	with	several	clinical	tasks	in	the	form	of	narratives	and	be	asked	what	data
you	would	use	to	complete	the	task.

A.	[Guide	Contact	Tracing]	You	have	been	tasked	with	tracing	potential	contacts	of	a	patient	recently	diagnosed	with	active	tuberculosis.	Which	of	the	following	data

types	would	be	useful	in	guiding	contact	tracing?

B.	[Report	to	Public	Health]	You	are	a	clinician	managing	several	new	cases	of	active	tuberculosis	and	are	concerned	that	they	may	represent	a	cluster.	What	data

would	influence	your	decision	to	report	your	concerns	to	public	health?

C.	[Define	a	Cluster]	You	are	investigating	increased	incidence	of	tuberculosis	in	a	rural	community.	What	laboratory	data	would	be	required	to	define	a	cluster	of

tuberculosis	cases?

D.	[Connect	Case	to	Existing	Cluster]	Following	the	identification	of	a	cluster,	new	cases	have	been	reported	in	a	nearby	community.	What	data	would	be	required	to

connect	these	new	cases	to	the	existing	cluster?

E.	[Guide	Public	Health	Response]	What	data	would	assist	in	guiding	the	public	health	response	to	the	newly	identified	cluster?

[Select	as	many	as	apply]
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A.	Guide	Contact

Tracing

B.	Report	to	Public

Health
C.	Define	a	Cluster

D.	Connect	Case	to

Existing	Cluster

E.	Guide	Public	Health

Response

Patient	identifiers	(Name,	age,	location)

Patient’s	own	prior	tuberculosis	test	results

Requester	identifiers	(Name,	contact,	copy	to

etc.)

Reviewer	identifiers	(Name,	position	etc.)

Type	of	sample	(Sputum,	fine	needle	aspirate

etc)

Sample	collection	site	(lymph	node,

peripheral	blood	draw	etc.)

Sample	collection	date

Report	release	date

Interpretation	or	comments	from	reviewer

Tuberculin	Skin	Test	Results

Interferon	Gamma	Release	Assay	(IGRA)

results

Chest	X-ray	results

Acid	Fast	Bacilli	Smear	results

Culture	results

Speciation	(m.	tuberculosis,	MAC,	m.	bovis

etc.)

Phenotypic	drug	susceptibility	testing

Predicted	(in	silico)	drug	susceptibility	testing

Specific	Mutations	conferring	drug	resistance

(Resistotype)

Spoligotype

MIRU-VNTR

Restriction	fragment	length	polymorphisms

(RFLP)

Cluster	assignment

Single	Nucleotide	Polymorphism/Variant

distance	from	other	isolates

Phylogenetic	tree

Laboratory	performance	measures

(Sequence	quality,	coverage	etc.)
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PART	V	–	SURVEILLANCE

Only	epidemiologists,	surveillance	analysts,	and	researchers	are	asked	to	complete	this	part	of	the	survey.

23.	Are	you	involved	in	tuberculosis	surveillance?

24.	What	data	does	your	institution	currently	use	as	part	of	its	surveillance	practices?

[Select	as	many	as	apply]

Patient	identifiers	(Name,	age,	location)

Patient’s	own	prior	tuberculosis	test	results

Requester	identifiers	(Name,	contact,	copy	to	etc.)

Reviewer	identifiers	(Name,	position	etc.)

Type	of	sample	(Sputum,	fine	needle	aspirate	etc)

Sample	collection	site	(lymph	node,	peripheral	blood	draw	etc.)

Sample	collection	date

Report	release	date

Interpretation	or	comments	from	reviewer

Tuberculin	Skin	Test	Results

Interferon	Gamma	Release	Assay	(IGRA)	results

Chest	X-ray	results

Acid	Fast	Bacilli	Smear	results

Culture	results

Speciation	(m.	tuberculosis,	MAC,	m.	bovis	etc.)

Phenotypic	drug	susceptibility	testing

Predicted	(in	silico)	drug	susceptibility	testing

Specific	Mutations	conferring	drug	resistance	(Resistotype)

Spoligotype

MIRU-VNTR

Restriction	fragment	length	polymorphisms	(RFLP)

Cluster	assignment

Single	Nucleotide	Polymorphism/Variant	distance	from	other	isolates

Phylogenetic	tree

Laboratory	performance	measures	(Sequence	quality,	coverage	etc.)
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25.	Is	your	institution	planning	to	use	more	genomic	data	in	the	future?

[Select	only	one]

How	do	envision	genomic	data	being	part	of	future	surveillance	efforts?

Type	here

26.	What	is	the	main	barrier	of	using	genomic	data	more	routinely	as	part	of	surveillance?

[Select	as	many	as	apply]

Yes	–	we’re	looking	into	it	right	now

Not	yet	–	but	we’d	like	to	incorporate	genomic	data	in	the	future

No	and	we	have	no	plans	to	do	so	in	the	near	future

Data	is	not	consistently	accessible

Data	are	not	consistently	linked	to	relative	patient	data

It	is	not	clear	how	this	data	is	useful	for	surveillance

It	is	not	clear	how	to	interpret	this	data	for	surveillance	purposes

Difficulty	interpreting	lab	results

Other,	please	specify... Type	here
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PART	VI	–	CONTACT	INFORMATION

All	participants	are	asked	to	complete	this	part	of	the	survey.

Would	you	like	to	provide	an	email	address	so	that	we	can	contact	you	for	the	post-survey	gift	card	draw	and/or	later	email
with	the	results	of	this	survey?	This	contact	information	will	be	removed	when	we	anonymize	the	survey	data	before	making	it
available	to	other	researchers.

[Select	as	many	as	apply]

Email	Address:

Type	here

Yes,	please	enter	me	into	the	gift	card	draw	for	participants	who	complete	this	survey

Yes,	please	send	me	the	final	results	of	this	study
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2016-08-23, 4:06 PMCOMPASS-TB Report Design: Second Survey - 0%

Page 1 of 2https://survey.ubc.ca/surveys/37-9dd46c7b0bd841672960e75fec2/compass-tb-report-design-second-survey/?preview=1&lang=en&TEST_DATA

DESCRIPTION AND CONSENT

Many public health agencies are starting to use whole genome sequencing (reading every letter of an organism’s DNA) as a tool for diagnosing infections, predicting what
antibiotics an organism is sensitive or resistant to, and identifying closely related isolates that might suggest an outbreak. Last year, a study in The Lancet Infectious Diseases
showed that when this technique is used in the tuberculosis laboratory, we can generate all the usual results that one has come to expect from a reference mycobacteriology lab,
but we can do so much faster and at lower cost. As a result of this study, groups like Public Health England, the BC Centre for Disease Control, and the US Centers for Disease
Control and Prevention are all using genomics to analyze their incoming mycobacterial isolates.
 
Sequencing a bacterial genome generates a lot of information, only some of which might be needed to manage a patient’s infection. We are interested in designing a new lab report
form that will help to communicate tuberculosis genomic data in a clear, concise, and meaningful way that will help those in the tuberculosis community - clinicians, epidemiologists,
laboratory scientists, and more - in their daily work. There is a large field of research into how to present data in a way that makes it easily interpretable - we will be using principles
from this field in designing our new report format, which will be shared with public health laboratories so that they may choose to use it in their own reporting.
 
By participating in this survey, you will help us better understand how lab data should be represented and what design elements should be used in the final report. The results of
this survey will be used to construct a final prototype report that will be tested in a third and final survey later this year.
 
Consent for Participation
 
STUDY PROCEDURES:
 
If you agree to voluntarily participate in this research, your participation will include the following online survey (estimated completion time 15-30 minutes) in which you will be asked
to compare different visual representations of genomic data and choose your preferred design. At the end of of the survey, you may choose to provide an email address if you’d like
to be entered into a draw for an Amazon gift card.
 
There are no known or anticipated risks to you by participating in this research, and the benefit is receiving the results of the study via an emailed report at the project’s conclusion,
which will include a template for the final report design that participants may use in their own own work. Study results will be shared with the research community through open-
access publications, conference reports, tweets and other social media postings.
 
MEASURES TO MAINTAIN CONFIDENTIALITY
 
Data from this study will be coded anonymously.
 
CONTACTS FOR COMPLAINTS OR CONCERNS
 
Geoff McKee is a resident physician in Public Health and Preventive Medicine at the University of British Columbia and you may contact him if you have any further questions by
email at gwmckee@alumni.ubc.ca or by phone at 250-818-3448.
 
If you have any concerns or complaints about your rights as a research participant and/or your experiences while participating in this study, contact the Research Participant
Complaint Line in the UBC Office of Research Ethics at 604-822-8598 or if long distance e-mail RSIL@ors.ubc.ca or call toll free 1-877-822-8598.
 
Taking part in this study is entirely up to you. You have the right to refuse to participate in this study. If you decide to take part, you may choose to pull out of the study at any time
without giving a reason.
 
By completing the questionnaire, you are consenting to participate in this research.
 
PRINCIPAL INVESTIGATOR:
Jennifer Gardy, School of Population & Public Health, Tel. 604-707-2488
 
CO-INVESTIGATORS:
Geoff McKee, School of Population and Public Health, Tel. 250-818-3448
Anamaria Crisan, School of Population and Public Health, Tel. 604-707-2510

COMPASS-TB Report Design: Second Survey

0%
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Page 1 of 2https://survey.ubc.ca/surveys/37-9dd46c7b0bd841672960e75fec2/compass-tb-report-design-second-survey/?TEST_DATA

PART I – DEMOGRAPHICS

First, we have a few short questions about your background.

1. Do you work with tuberculosis patients or the Mycobacterium tuberculosis bacterium at all?

[Select one option]

1B. What is your role in tuberculosis diagnosis, treatment, management, and/or surveillance?

[Select as many as apply]

2. Do you work in public health microbiology or microbial genomics, whether on TB or another pathogen?

[Select one option]

2B. What is your role in public health microbiology or microbial genomics?

[Select as many as apply]

COMPASS-TB Report Design: Second Survey

16%

Physician - I work directly with TB patients, providing care and/or case management

Nurse - I work directly with TB patients, providing care and/or case management

Laboratory work – I work in a mycobacteriology laboratory setting where I am involved with lab testing for TB

Surveillance/epidemiology - I work with TB data to understand patterns in disease occurrence

Research - I carry out academic research into TB and/or M. tuberculosis

Other, please specify... Type here

Clinical – I am directly involved in patient care and/or case management

Bioinformatics – I use computational tools to analyse genomic data from pathogens

Laboratory work – I am involved in directly handling and/or testing specimens

Surveillance/epidemiology – I work with data to understand patterns in disease occurrence

Research – I carry out academic research in public health and/or microbial genomics

Other, please specify... Type here

Yes No

Yes No
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About UBC
Contact UBC
About the University
News
Events
Careers
Make a Gift
Search UBC.ca

UBC Campuses
Vancouver Campus
Okanagan Campus

UBC Sites
Robson Square
Great Northern Way
Faculty of Medicine Across BC
Asia Pacific Regional Office

Page 2

2C. What pathogens do you work on?

[Select as many as apply]

3. Who is your primary employer?

[Select as many as apply]

4. In what country do you work?

[Select one option]

Back Next

Respiratory infections (e.g. influenza, pertussis)

Enteric infections (e.g. Salmonella, E. coli)

Vector-borne disease (e.g. malaria, Zika)

Blood-borne disease (e.g. HIV, hepatitis)

Other, please specify... Type here

Public Health Organization - e.g. Public Health England, CDC

Private Clinic/Primary Care - e.g. a doctor’s office

Hospital

Academic Institution

Other, please specify... Type here

United Kingdom

Canada

USA

Other, please specify... Type here

Administrator
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PART II – Design Elements

Laboratory results are usually communicated to end-users like doctors or public health officials in the form of a brief one- or two-page report. There are many different styles of lab
report, from simple text documents to colourful pictorial reports. We are interested in understanding what sort of design choices can make a TB genomic laboratory report easy for
end-users to read and to act upon. The report will contain information on what mycobacterial species a patient is infected with, what antibiotics their TB infection is susceptible or
resistant to, and whether or not their TB isolate is related to other isolates and might be part of an outbreak.

Throughout the rest of the survey, we will be showing you some designs that show these different data – speciation, resistance, and epidemiological relatedness – in different ways.
We want to find out which designs you prefer, so that these design elements can be incorporated into a final report design later in our project.

First, we will look at small elements of the report design.

5A. You are reading a summary of a patient’s lab test results. Which of the following summary statement formats is better at
communicating the information you need to know to do your job?

 [Select one option]

5B. Please explain your choice or provide feedback.

[Optional]

Type here

COMPASS-TB Report Design: Second Survey

33%

A (with bolding)

B (without bolding)

They are equally informative.

6A. One section of the report will describe which mycobacterial species a patient was diagnosed with. Which headline best
describes this section of the report?
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6B. Please explain your choice or provide feedback.

[Optional]

Type here

7A. Which wording best conveys tuberculosis speciation results?

[Select one option]

[Please rank your choices]

1 1

2 2

3 3

4 4

A (Speciation)

B (Organism)

C (Diagnosis)

D (Species)

A (Full sentence)

B (Summary)

259



2016-08-23, 4:06 PMCOMPASS-TB Report Design: Second Survey - 33%

Page 3 of 7https://survey.ubc.ca/surveys/37-9dd46c7b0bd841672960e75fec2/compass-tb-report-design-second-survey/?TEST_DATA

7B. Please explain your choice or provide feedback.

[Optional]

Type here

8B. Please explain your choice or provide feedback.

[Optional]

They are equally informative

8A. The presence of particular mutations in a TB genome can be used to predict whether a specimen is sensitive or resistant to
specific antibiotics. Which headline best describes this section of the report?

[Please rank your choices]

1 1

2 2

3 3

4 4

A (Drug Resistance)

B (Drug Sensitivity)

C (Drug Susceptibility)

D (Treatment)
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Type here

9A. There are many ways to represent a TB drug’s name, from a single letter to a full name. Which naming scheme is most useful
on a report? 

[Select one option]

9B. Please explain your choice or provide feedback.

[Optional]

Type here

10A. A specimen can be described as susceptible to an antibiotic (high likelihood of clinical success), resistant to an antibiotic (low
likelihood of clinical success), intermediate (clinical success uncertain), or unknown (not enough information to draw a conclusion).
Which naming scheme is most useful on a report?

[Select one option]

10B. Please explain your choice or provide feedback.

[Optional]

Type here

11A. Drug resistance in TB is caused by point mutations – single base-pair changes that alter the normal function of a gene or the
protein it encodes. If a resistance phenotype is predicted from genomic data, would you want to know the exact mutation that
caused it?

Full Name (Ex. isoniazid)

3-letter abbreviation (Ex. INH)

1-letter abbreviation (Ex. H)

Show me everything - (Ex. Isoniazid (INH, H))

They are equally informative

Full Name (Ex. Susceptible, Resistant, Unknown)

1-letter abbreviation (Ex. S, R, U)

They are equally informative
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[Select one option]

11B. What types of information related to the point mutation would you want to see?

[Select as many as apply]

Yes – on the same table with the drug susceptibility data

Yes, but on the other side of the report

No – I am not interested in the mutation data

Gene abbreviation (e.g. katG, inhA)

Base pair change (e.g. A1562C)

Amino acid change (e.g. S531T)

Number of sequencing reads that position (e.g. 48x)

Number of reads supporting the mutation/coverage (e.g 47/48)

12A. Here are four ways of showing a result in which a specimen is resistant to two drugs. Which one is easiest for you to interpret?

[Please rank your choices]

1 1

2 2

3 3

4

A (Basic)

B (Alert Glyphs)

C (Shaded)

D (Bolded)

262



2016-08-23, 4:06 PMCOMPASS-TB Report Design: Second Survey - 33%

Page 6 of 7https://survey.ubc.ca/surveys/37-9dd46c7b0bd841672960e75fec2/compass-tb-report-design-second-survey/?TEST_DATA

12B. Please explain your choice or provide feedback.

[Optional]

Type here

13B. Please explain your choice or provide feedback.

[Optional]

Type here

4

13A. Depending on the resistance mutations observed, an isolate might be identified as having multidrug-resistant TB (MDR-TB).
There are many ways this could be noted on the report.

[Please rank your choices]

1 1

2 2

3 3

A (Basic)

B (Summary Sentence)

C (Tick Boxes)
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About UBC
Contact UBC
About the University
News
Events
Careers
Make a Gift
Search UBC.ca

UBC Campuses
Vancouver Campus
Okanagan Campus

UBC Sites
Robson Square
Great Northern Way
Faculty of Medicine Across BC
Asia Pacific Regional Office
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14B. Please explain your choice or provide feedback.

[Optional]

Type here

Back Next

14A. One section of the report will describe whether a patient’s specimen is closely related to any specimens that were previously
sequenced, suggesting the cases might be part of a cluster or outbreak. Which headline best describes this section of the report?

[Please rank your choices]

1 1

2 2

3 3

A (Relatedness)

B (Epidemiology)

C (Cluster Detection)

Administrator
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PART III – Report Sections

Now that we’ve looked at some individual design elements, we will next look at each of the three sections of the report: what organism is this, what antibiotics is it sensitive to, and
is it related to other specimens. For each section, we will show you a few different representations of the same dataset; we want to know which one you prefer. Factors such as
ease of readability, time taken to interpret the result, and aesthetics may all influence your choice

15A. Data on speciation and diagnosis is presented below in two different formats. Which do you find most interpretable?

[Select one option]

15B. Please explain your choice or provide feedback.

[Optional]

Type here

COMPASS-TB Report Design: Second Survey
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A (Percent match)

B (Organism name)

16A. Data on drug susceptibility is presented below in a number of different formats. Which do you find most interpretable?
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16B. Please explain your choice or provide feedback.

[Optional]

Type here

[Please rank your choices]

1 1

2 2

3 3

4 4

5 5

A (Drugs listed by category)

B (Prediction by drug)

C (Summary sentence)

D (Drugs listed by category bin)

E (Abbreviated prediction by drug)

17A. Data on relatedness to other isolates/clusters is presented below in a number of different formats. Which do you find most
interpretable?
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[Please rank your choices]

1 1

2 2

3 3

A (# of cases with spark line)

B (# of isolates related table)

C (Table + Graph of # of isolates by SNP distance)
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17B. Please explain your choice or provide feedback.

[Optional]

Type here

18. The reports below contrast between including a summary statement at the beginning of the report versus no summary. Please
select which of the two potential layouts you find most preferable.

Click on images to zoom

[Select one option]

19. The reports below show two potential ways to layout the speciation, drug susceptibility, and relatedness information – with
categories presented in either one or two columns. Please select which of the two potential layouts you find most preferable.

Click on images to zoom

4 4

5 5

6 6

D (Table + Phylogenetic Tree)

E (Related isolates with SNP difference details)

F (Summary with related isolates per year)

A (Summary statement)

B (No summary Statement)
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About UBC
Contact UBC
About the University
News
Events
Careers
Make a Gift
Search UBC.ca

UBC Campuses
Vancouver Campus
Okanagan Campus

UBC Sites
Robson Square
Great Northern Way
Faculty of Medicine Across BC
Asia Pacific Regional Office

Page 4

[Select one option]

Back Next

A (One column)

B (Two column)

Administrator
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PART IV – Report Feedback

In the last part of the survey, we will show you four potential prototype reports. You will have seen some of the elements already – things like speciation and resistance prediction –
but you’ll also see new information, such as a quality report describing the genome sequencing analysis. The reports have been organized such that the most critical information
appears on page one, with expanded details on page two. Please read carefully through both pages before answering the questions.

20A. Please review the following report and select the response indicating your agreement with the corresponding statements.

Click on images to zoom

Strongly Disagree Disagree Neutral Agree Strongly Agree

This report is easy to read.

I know what the information in this report means.

I can read this report and get the information I need
quickly.

I feel that I can accurately interpret the information on
this report.

20B. Please provide any additional comments you may have on the report.

[Optional]

Type here

COMPASS-TB Report Design: Second Survey

66%
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21A. Please review the following report and select the response indicating your agreement with the corresponding statements.

Click on images to zoom

Strongly Disagree Disagree Neutral Agree Strongly Agree

This report is easy to read.

I know what the information in this report means.

I can read this report and get the information I need
quickly.

I feel that I can accurately interpret the information on
this report.

21B. Please provide any additional comments you may have on the report.

[Optional]

Type here

22A. Please review the following report and select the response indicating your agreement with the corresponding statements.

Click on images to zoom
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Strongly Disagree Disagree Neutral Agree Strongly Agree

This report is easy to read.

I know what the information in this report means.

I can read this report and get the information I need
quickly.

I feel that I can accurately interpret the information on
this report.

22B. Please provide any additional comments you may have on the report.

[Optional]

Type here

23A. Please review the following report and select the response indicating your agreement with the corresponding statements.

Click on images to zoom
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Strongly Disagree Disagree Neutral Agree Strongly Agree

This report is easy to read.

I know what the information in this report means.

I can read this report and get the information I need
quickly.

I feel that I can accurately interpret the information on
this report.

23B. Please provide any additional comments you may have on the report.

[Optional]

Type here

24A. The previous 4 report prototypes demonstrate different ways of presenting lab data from whole genome sequencing of a
tuberculosis isolate. Which of the reports to you prefer?

Please see previous questions for enlarged images.
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[Please rank your choices]

1 1

2 2

3 3

4 4

A (Dark heading)

B (Gray heading)

C (Light Heading)

D (Pictures)
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About UBC
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24B. Please explain your choice or provide feedback.

[Optional]

Type here

Back Next

Administrator
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About UBC
Contact UBC
About the University
News
Events
Careers
Make a Gift
Search UBC.ca

UBC Campuses
Vancouver Campus
Okanagan Campus

UBC Sites
Robson Square
Great Northern Way
Faculty of Medicine Across BC
Asia Pacific Regional Office
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PART V – CONTACT INFORMATION

Thank you so much for taking part in our survey! Your responses will help us create a better, more interpretable laboratory report. You can follow our project’s progress at Public
Health InfoVis – we will be collating the results of this survey and releasing a summary report on the blog shortly. We are also happy to email you a copy of the report.

Don’t forget, by having completed the survey, you are eligible to enter our draw for an Amazon gift card. To enter the draw, please enter an email address below.

25. Would you like to provide an email address so that we can contact you for the post-survey gift card draw and/or later email with
the results of this survey?

This contact information will be removed when we anonymize the survey data before making it available to other researchers.

Email Address:

Type here

Back Submit

COMPASS-TB Report Design: Second Survey

83%

Yes, please enter me into the gift card draw for participants who complete this survey

Yes, please send me the final results of this study

Administrator
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Appendix B

Adjutant Supplemental Materials

Adjutant is primarily a graphical user interface that implements a standard text

mining workflow in addition to t-SNE and hdbscan under the hood to rapidly

analyze a corpus of PubMed articles and to derive topic clusters in an unsupervised

manner. This document details Adjutants implementation and then investigates the

quality of Adjutants clustering abilities using both synthetic and real data.

Please note that this appendix is written in the conversational style of a tutorial and

is available as an R markdown notebook at:

https://github.com/amcrisan/adjutant/important-adjutant-details

B.1 Adjutant Implementation Details

This section provides low-level details of Adjutant’s algorithmic implementation.

Querying PubMed and assembling a document corpus. Given a PubMed-

compatible search query, Adjutant uses the RISmed package [59] to obtain a

summary of articles, including PubMed ID, Journal, Article Title, Authors, Abstract,

Public Date, and MeSH terms. It then uses the jsonlite package [84] and the

E-Utils eSummary API to query and extract additional metadata, including PubMed
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Central (PMC) ID, article DOI, PMC citation count, article type (i.e. Journal

Article, Review, Meta-Analysis), and language. Both RISmed and jsonlite are used

because of the differing outputs from the E-Utils eFetch and eSummary APIs.

Data wrangling. Adjutant decomposes the PubMed document corpus into single-

word entities extracted from article titles and abstracts and converts it to a tidy

format for further analysis using the tidytext package [109]. All words are

stemmed using Porter’s algorithm [116], from the SnowballC package [10], after

which common (stemmed) stop words are removed. Again, using tidytext package

resources, Adjutant next calculates the term frequency inverse document frequency

(tf-idf) metric, and then filters terms that are too infrequent (fewer than 1% of

all documents) or too frequent (more than 70%). Finally, Adjutant generates a

document term matrix (DTM), with articles as rows, stemmed single words as

columns, and tf-idf as the relevant analytic metric.

Unsupervised Topic Clustering. The multidimensional DTM is decomposed into

two dimensions using the Barnes-Hut t-SNE [115] implementation from the Rtsne

package [60]. We use default t-SNE parameters, except when the document corpus

contains more than 1000 articles and when the t-SNE the perplexity parameter is

set to 50 [122]; however, Adjutant also allows users to modify the perplexity and

theta t-SNE parameters after an initial analysis is complete. Next, Adjutant derives

clusters using the hdbscan algorithm [15] from the dbscan package [49]. Adjutant

will attempt to automatically calculate the optimal hdbscan minimum cluster points

(minPts) parameter, with optimal being defined as the fewest number of clusters

that best fits the t-SNE data. Adjutant identifies the optimal minPts parameters by

leveraging goodness-of-fit measurements derived from linear models, specifically

the adjusted R2 and the Bayesian Information Criteria (BIC); thus, each minPts

parameter value tested will have an associated R2 and BIC measure. Adjutant

makes this calculation by fitting separate linear models to each of the two t-SNE

dimensions, where for each linear model the t-SNE component co-ordinates are

used as the dependent variable and the clusters are used as the independent variables.

Each cluster is a vector of membership probabilities, from 0 (not in the cluster)

to 1 (definitely a cluster member). The adjusted R2 between the two component

models are multiplied, and the BICs are averaged. To choose the optimal minPts
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parameters, Adjutant identifies all minPts values with an adjusted R2 within 0.05

of the best performing minPts value, and among those different options selects the

minPts value with the lowest BIC. The clusters resulting from the optimal minPts

value are named using the two most commonly occurring terms within the cluster.

B.2 Adjutant in Action

This section provides an overview of Adjutant’s functionality using both real and

synthetic data. These are the libraries needed to run the analysis.
library(MASS)

library(ggplot2)

library(adjutant)

library(dplyr)

library(Rtsne)

library(dbscan)

library(tidytext)

library(reshape)

library(ggthemes)

library(cowplot)

library(topicmodels)

library(stringr)

library(SnowballC)

This section provides an overview of Adjutant’s functionality using both real and

synthetic data.

B.2.1 t-SNE with Simulated Data

Prior to testing Adjutant with a real data set, we will explore the limitations of

Adjutant with some generated data, thus knowing the ground truth. Note that the

Distill Pub article on t-SNE [122] does this as well, however, here we are testing

the specific configuration and environmental dependencies upon which Adjutant is

built.
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A Very Simple Example

The Wikipedia article for t-SNE advises against clustering on t-SNE dimensionally

reduced data points and for rationale references a stack exchange discussion as the

basis of this conclusion. Here we begin by examining the rationale of that stack

exchange argument.
set.seed(416)

# function to generate multivariate normal distributions

multiNormGen<-function(mu = rep(0,2),

Sigma=matrix(c(10,3,3,2),2,2),

grpName = NULL,n=1000){

values<-mvrnorm(n = n, mu = mu, Sigma = Sigma)

if(!is.null(grpName)){
return(data.frame(x=values[,1],

y=values[,2],

grp=rep(grpName,nrow(values))))

}else{
return(data.frame(x=values[,1],y=values[,2]))

}
}

# generating the distributions

sampleDat<-rbind(multiNormGen(n=250,mu=c(-2,0),

Sigma = matrix(c(1,0,0,1),2,2),

grpName = "grp1"),

multiNormGen(n=750,mu=c(2,0),

Sigma = matrix(c(1,0,0,1),2,2),

grpName = "grp2"))

sampleDat$PMID<-1:nrow(sampleDat)

ggplot(sampleDat,aes(x=x,y=y,colour=grp))+

geom_point(alpha=0.7)+

theme_bw()

Running t-SNE
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Figure B.1: Simple example of two class simulated distributions

Adjutant expects a Document Term Matrix (DTM) as input, so instead I have

supplied the defaults Adjutant uses to choose a perplexity parameters for t-SNE.
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# first, adjutant selects a perplexity

# depending upon the number of articles

tsnePer <- 30 #default adjutant value

if(nrow(sampleDat)>=1000){
tsnePer<-50

}else if(nrow(values$corpus)<=100){
tsnePer<-5

}

# then it runs t-SNE

tsneObj<-Rtsne(sampleDat[,c("x","y")],

perplexity = tsnePer)

# some cleaning up and renaming to satiphy the next steps

df<-data.frame(cbind(1:nrow(tsneObj$Y),tsneObj$Y),

stringsAsFactors = F)

colnames(df)<-c("PMID",paste("tsneComp",

1:(ncol(tsneObj$Y)),sep=""))

# let's take a look at the t-SNE output

df<-inner_join(sampleDat,df)

ggplot(df,aes(x=tsneComp1,y=tsneComp2,color=grp))+

geom_point(alpha=0.7)+

theme_bw()

It is possible to see that the larger cluster is spread out quite a bit so as to make it

look like there are many other smaller clusters within it. This observation is inline

with what the Stats Exchange comment brings up as well. Before addressing what

it’s like to cluster on this data, I will first run other perplexity parameter values to

gauge how good Adjutant’s default choices are.
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Figure B.2: Simple example: applying t-SNE

df<-c()

for(tsnePer in c(2,5,30,50,100)){
tsneObj<-Rtsne(sampleDat[,c("x","y")],

perplexity = tsnePer)

df<-rbind(df,cbind(1:nrow(tsneObj$Y),

rep(tsnePer,nrow(tsneObj$Y)),tsneObj$Y))

}

df<-data.frame(df,stringsAsFactors = FALSE)

colnames(df)<-c("PMID","perplexity","tsneComp1","tsneComp2")

# let's take a look at the t-SNE output

df<-inner_join(sampleDat,df)

ggplot(df,aes(x=tsneComp1,y=tsneComp2,color=grp))+

facet_grid(.˜perplexity)+

geom_point(alpha=0.7)+

theme_bw()+

labs(title="RTsne with variable perplexity parameters",
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Figure B.3: Simple example: t-SNE results with varying parameters

subtitle="Theta = 0.5, trading off accuracy for speed")

What the figure above shows is that with a greater perplexity parameter the “closer”

we get to resolving two clusters. This is true of what was shown in the Distill Pub

t-SNE article as well - so while the exact original spatial orientation and density

is not the same the original, the fact that are two slightly overlapping clusters is

clear.What is notable is that we are not performing the fully accurate t-SNE here

either, since the rTsne package has a theta parameter to speed up t-SNE at the cost

of some accuracy. The default value of theta is 0.5, however, we can use a theta

value of 0.0 to get the classical version of t-SNE:
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df<-c()

for(tsnePer in c(2,5,30,50,100)){
tsneObj<-Rtsne(sampleDat[,c("x","y")],

perplexity = tsnePer,theta=0)

df<-rbind(df,cbind(1:nrow(tsneObj$Y),

rep(tsnePer,nrow(tsneObj$Y)),tsneObj$Y))

}

df<-data.frame(df,stringsAsFactors = FALSE)

colnames(df)<-c("PMID","perplexity","tsneComp1","tsneComp2")

# let's take a look at the t-SNE output

df<-inner_join(sampleDat,df)

ggplot(df,aes(x=tsneComp1,y=tsneComp2,color=grp))+

facet_grid(.˜perplexity,scales="free")+

geom_point(alpha=0.7)+

theme_bw()+

labs(title="RTsne with variable perplexity parameters",

subtitle="Theta = 0.0, defaulting to classical t-SNE")

Although the pictures are slightly different, the results are the same, that with greater

perplexity some greater discernability that there are indeed two clusters (note we’ve

freed-up the x-axis scales to make it easier to see that last group).

Running Adjutant’s hdbscan procedure

But the big question is can hbdscan reliably cluster on these data? The hbdscan

algorithm requires that the user specifies the minimum number of points (minPts)

in a cluster. It can be difficult to decide the best minPts parameter value, and so

Adjutant automatically tries several different cluster sizes and selects the best one

based upon the procedure specified in the implementation details.
# Under Adjutant, a tsne perplexity parameter of 50

# would have been selected for the data.

tsneObj<-Rtsne(sampleDat[,c("x","y")],

perplexity = 50)

df<-data.frame(PMID = 1:nrow(tsneObj$Y),
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Figure B.4: Simple example: t-SNE results with varying parameters II

tsneComp1 = tsneObj$Y[,1],

tsneComp2 = tsneObj$Y[,2])

# now we can run the optimal params method,

# which runs HDBSCAN and picks the best parameters

optOut<-optimalParam(df)

#we can see all the choices adjutant cycles through

pList<-lapply(optOut$altChoices,function(x){
x$fitPlot +

labs(title = paste("minPts=",x$minPt)) +

theme(legend.position="none",

axis.text = element_blank(),

axis.ticks = element_blank(),

axis.title = element_blank())

})

cowplot::plot_grid(plotlist = pList, nrow = 2)
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Figure B.5: Simple example: hdbscan on dimensionally reduced data

The above figures shows how the data would be classified using different hdbscan

parameters. Generally, hdbscan finds two clusters, with the exception of when

smaller cluster sizes are permitted (minPts = 10) when three clusters are detected.

Note that not all data points are assigned to clusters, some are assigned to noise

category. This is not shown here, but is shown below, when using the “optimal”

parameters selected automatically by Adjutant.
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sampleDat$PMID<-factor(sampleDat$PMID)

df$PMID<-factor(df$PMID)

tmp<-inner_join(sampleDat,optOut$retItems)

df<-inner_join(df,tmp)

# add a group for noise

df<-df %>% mutate(grpRev= ifelse(tsneCluster == "0",

"Not-Clustered",

paste(grp)))

# get cluster of co-ordinates

clusterNames <- df %>%

dplyr::group_by(grpRev) %>%

dplyr::summarise(medX = median(tsneComp1),

medY = median(tsneComp2)) %>%

dplyr::filter(grpRev != "Not-Clustered")

resolved<-ggplot(df,aes(x=tsneComp1,y=tsneComp2,group=grpRev))+

geom_point(alpha=0.7,aes(colour=grpRev))+

scale_colour_manual(values=c(scales::hue_pal()(2),"lightgray"))+

stat_ellipse(aes(alpha = grpRev))+

geom_label(data=clusterNames,

aes(x=medX,y=medY,label=grpRev),

size=2,

colour="black")+

scale_alpha_manual(values = c(0.7,0.7,0.0))+

theme_bw()+

labs(title="Resolved Plot",

subtitle="Data after t-SNE and HDBSCAN.

\nEllipses denote HDBSCAN clusters on t-SNE data")

original<-ggplot(df,aes(x=x,y=y,color=grp))+

geom_point(alpha=0.7)+

theme_bw()+

labs(title="Original Plot",

subtitle="Data before t-SNE and HDBSCAN")

cowplot::plot_grid(original,resolved,nrow=1)
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Figure B.6: Simple example: clusters resolved by Adjutant. The black ellipses indi-
cate the cluster that Adjutant would automatically select.

The above figure shows the original data as well as the resolved clusters once

they’ve been run through Adjutant. A couple things are notable in the above figure.

First, Adjutant correctly suggests that there are two clusters in the data. The spatial

orientation and the point density of clusters are not identical to the original, but the

structure of groups holds (i.e. points from grp 1 continue to cluster together after

being run through Adjutant’s procedures). The next thing to note is that not all

points could be classified. The hdbscan algorithm allows some points to be labelled

as noise (unclassified to any distribution, indicated in grey). When the ground truth

is known this is not a desirable outcome, however, in situations where we are less

certain about what the shape and structure of the data should be we argue this is a

useful feature. There is no doubt that the two distributions overlap, and that there are

some points at the peripheries of both distributions – those are points the clustering

procedure is less sure about and so are relegated to noise. What Adjutant does

successfully cluster has a very strong signal. There are two ways to address the issue

of noise, one is to force Adjutant to cluster as many of the points as possible and

choose the minPts value that does just that – there are downsides to this approach
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since sometimes ambiguity or uncertainty is warranted. The second is to use the

more confidently clustered data as a prior to other techniques that can classify items

relegated to noise. It is possible to conclude from this analysis that while t-SNE

does misrepresent the original spatial positions of points it is still possible to find

the correct number of clusters in the data. Adjutant’s goal is to suggest clusters and

in this task it’s algorithmic procedure does a good job. We do advise caution in

overly interpreting spatial positions of clusters, although we will show soon spatial

positions are not entirely irrelevant either.

A More Complex Example

Instead of using two distributions, we’ll now simulate a more complex scenario and

later even add some noise.

Generating sample data
sampleDat<-c()

count = 1

prevPoint<-c()

while(count<10){
n=sample(30:250,1)

mu<-c(sample(-20:20,1),sample(-20:20,1))

sC<-sort(sample(0:5,4,replace=TRUE),decreasing = T)

Sigma<-matrix(c(sC[1],sC[3],sC[4],sC[2]),2,2)

tmp<-rbind(prevPoint,mu)

# make sure that distributions are

# not sitting RIGHT on top of each other.

if(sum(dist(tmp)<10)<1){
prevPoint <- rbind(prevPoint,mu)

sampleDat<-rbind(sampleDat,

multiNormGen(n = n,mu = mu,

Sigma = Sigma,
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grpName = paste("grp",count)))

count = count + 1

}
}

# let's add some noise in the middle to

# keeps things interesting. Generally,

# I have found that noisey articles hang out

# in the middle and really clearly resolveable

# clusters out to the sides.

sampleDat$PMID<-1:nrow(sampleDat)

clusterNames <- sampleDat %>%

dplyr::group_by(grp) %>%

dplyr::summarise(medX = median(x),

medY = median(y))

ggplot(sampleDat,aes(x=x,y=y,colour=grp,group=grp))+

geom_point(alpha=0.7)+

geom_label(data=clusterNames,

aes(x=medX,y=medY,label=grp),

colour="black")+

stat_ellipse()+

scale_colour_manual(values=c(

tableau_color_pal("Classic 10 Medium")(10),

"black"))+

theme_bw()
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Figure B.7: Complex example: multiclass simulated distributions

Running t-SNE
#t-Sne resolution at different perplexity parameters

df<-c()

for(tsnePer in c(2,5,30,50,100)){
tsneObj<-Rtsne(sampleDat[,c("x","y")],

perplexity = tsnePer)

df<-rbind(df,cbind(1:nrow(tsneObj$Y),

rep(tsnePer,nrow(tsneObj$Y)),

tsneObj$Y))

}

df<-data.frame(df,stringsAsFactors = FALSE)

colnames(df)<-c("PMID","perplexity","tsneComp1","tsneComp2")

#let's take a look at the t-SNE output

df<-inner_join(sampleDat,df)

ggplot(df,aes(x=tsneComp1,y=tsneComp2,color=grp))+
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Figure B.8: Complex example:t-SNE results with varying parameters II

facet_grid(.˜perplexity,scales="free")+

geom_point(alpha = 0.8)+

theme_bw()+

scale_colour_manual(values=c

tableau_color_pal("Classic 10 Medium")(10),

labs(title="RTsne with various perplexity parameters")

As with the simpler two distributions the higher the perplexity parameter the easier

better t-SNE and resolving the individual clusters. Again, even a t-SNE parameter

of just five starts to optimally separate the data points.

293



Running Adjutant’s HDBSCAN Procedure
# under Adjutant, a tsne perplexity parameter

# of 50 would have been selected for the data.

tsneObj<-Rtsne(sampleDat[,c("x","y")],

perplexity = 50)

df<-data.frame(PMID = 1:nrow(tsneObj$Y),

tsneComp1 = tsneObj$Y[,1],

tsneComp2 = tsneObj$Y[,2])

# now we can run the optimal params method,

# which runs HDBSCAN and picks the best parameters

optOut<-optimalParam(df)

#we can see all the choices adjutant cycles through

pList<-lapply(optOut$altChoices,function(x){
x$fitPlot +

scale_colour_manual(values=c(

tableau_color_pal("Classic 10 Medium")(10),

"black"))+

labs(title = paste("minPts=",x$minPt)) +

theme(legend.position="none",

axis.text = element_blank(),

axis.ticks = element_blank(),

axis.title = element_blank())

})

cowplot::plot_grid(plotlist = pList, nrow = 2)

Adjutant favours choosing a parameter that most spatially sperates clusters and uses

the minimum amount of clusters.
sampleDat$PMID<-factor(sampleDat$PMID)

df$PMID<-factor(df$PMID)

sampleDat<-inner_join(sampleDat,optOut$retItems)

df<-inner_join(df,sampleDat)

#add a group for noise

df<-df %>% mutate(grpRev= ifelse(tsneCluster == "0",
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Figure B.9: Complex example: hdbscan on dimensionally reduced data

"Not-Clustered",

paste("hdbscan clust",

tsneCluster)))

#get cluster of co-ordinates

clusterNames <- df %>%

dplyr::group_by(grpRev) %>%

dplyr::summarise(medX = median(tsneComp1),

medY = median(tsneComp2)) %>%

dplyr::filter(grpRev != "Not-Clustered")

df<-df %>%

mutate(isNoise = ifelse(grp== "Not-Clustered",

"Not-Clustered",

"Signal"))

resolved<-ggplot(df,aes(x=tsneComp1,y=tsneComp2,group=grpRev))+
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geom_point(aes(colour=grp,alpha = isNoise))+

stat_ellipse()+

theme_bw()+

scale_alpha_manual(values = c(0.2,0.7))+

scale_colour_manual(values=c(

tableau_color_pal("Classic 10 Medium")(10),

"black"))+

labs(title="Resolved Plot",

subtitle="Data after t-SNE and HDBSCAN.

\nEllipses denote HDBSCAN clusters on t-SNE data")

original<-ggplot(df,aes(x=x,y=y,color=grp))+

geom_point(aes(alpha = isNoise))+

theme_bw()+

scale_alpha_manual(values = c(0.2,0.7))+

scale_colour_manual(values=c(

tableau_color_pal("Classic 10 Medium")(10),

"black"))+

labs(title="Original Plot",

subtitle="Data before t-SNE and HDBSCAN")

cowplot::plot_grid(original,resolved,nrow=1)

Comparing the original plot against the t-SNE cluster plot a few things are notewor-

thy. The t-SNE co-ordinates do not recover the identical spatial positions (and by

extension point density) of the original plot, but it is clear that Adjutant’s procedures

are none-the-less able to recover the original number of clusters even in this more

complex example – which again is the goal of this tool. It turns out that in this

example when the clusters are actually separable and not overlapping that none of

the points are classified as noise.

This example also shows that the t-SNE spatial positions are not totally irrelevant.

For example, the red, brown, and blue groups are close to each like in the original,

as are the gray, purple, and orange clusters. The proximity of the blue cluster to the

orange cluster is misleading, but this is likely an artifact of preserving its proximity

to other clusters. It also appears that no documents are assigned to noise, meaning

they all are assigned to some cluster.
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Figure B.10: Complex example: clusters resolved by Adjutant. The black ellipses
indicate the clusters that Adjutant would automatically select.

Adding Noise

Next, we’ll test the limits of Adjutant’s algorithms to see how well it does with

some messier, but still synthetic, data, by adding about 1000 data points of noise.
sampleDat<-dplyr::select(sampleDat,x,y,grp)

sampleDat<-rbind(

sampleDat,

multiNormGen(n=1000,mu=c(0,0),

Sigma = matrix(c(60,35,30,55),2,2),

grpName = "Not-Clustered"))

sampleDat$PMID<-1:nrow(sampleDat)

When adding the noise, it becomes clear that several clusters caught within it are

lost within the central noise blob. Clusters on the periphery (yellow, green, purple,

pink, and brown) do indeed still form their own clusters and appear to also pick up

some points from the “noise” distribution. The yellow, orange, and blue clusters that
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Figure B.11: Complex example with added noise
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Figure B.12: Complex example with noise: t-SNE results with varying parameters
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Figure B.13: Complex example with noise: chdbscan on dimensionally reduced data
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Figure B.14: Complex example with noise: clusters resolved by Adjutant. The black
ellipses indicate the clusters that Adjutant would automatically select.

299



are totally overlapped by the noise all get clumped together. If the noise is diffuse

it’s possible that dense pockets of points within it are classifiable, but this is not the

case here.

B.2.2 Investigating Adjutant with Real Data

We’ll now obtain a real-world dataset, one where we do not know the ground truth,

and to see what Adjutant would come up with. We’ll take at articles pertaining to

clinical and public health genomics genomic sequencing.

Downloading 2̃0,000 articles + their metadata from using a single core takes about

15 minutes and then an additional 5 or some minutes for t-SNE and hdbscan to run.

For this reason we’ve saved the analysis and do not run this code in the notebook.
df<-processSearch('((("whole genome"

OR "next generation"

OR "high throughput")))

AND "sequencing")

AND ("medicine" or "public health")',

retmax=20000)

#running the tidy corpus step

tidy_df<-tidyCorpus(corpus = df)

#running t-SNE

tsneObj<-runTSNE(tidy_df,check_duplicates=FALSE,

perplexity=100)

df<-inner_join(df,tsneObj$Y,by="PMID")

#running hdbscan

optClusters <- optimalParam(df)

save(df,tidy_df,tsneObj,optClusters,

file="exampleGenomeDataAnalysis.Rdata")

Having run t-SNE, we can now explore how many different clusters Adjutant would

suggest for this dataset for approximately 19 thousand documents.
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load("exampleGenomeDataAnalysis.Rdata")

#let's look through the cluster changs via HDBSCAN

pList<-lapply(optClusters$altChoices,function(x){
x$fitPlot +

labs(title = paste("minPts=",x$minPt)) +

theme(legend.position="none",

axis.text = element_blank(),

axis.ticks = element_blank(),

axis.title = element_blank())

})

cowplot::plot_grid(plotlist = pList, nrow = 2)

This figure shows that clusters forming toward the periphery of the t-SNE plot tend

to be consistently grouped, and that the changing minPts parameter appears to have

the greatest effect on documents clustered toward the center of the plot (similar to

what was shown with the noisy synthetic data). More specifically as the minimum

cluster size passed to hbdscan gets larger, we lose the ability to resolve clusters

within the the middle blob. Why are those clusters in the middle blob resolvable at

all? Its likely because the density within that blob is diffuse enough that smaller,

but dense, clusters within it are still resolvable. But caution is warranted when

interpreting clusters found within what appears to be a noisy blob.

Now we can take a look at the clusters Adjutant suggests for this data.
load("exampleGenomeDataAnalysis.Rdata")

#add the new cluster ID's the running dataset

df<-inner_join(df,optClusters$retItems,by="PMID") %>%

mutate(tsneClusterStatus = ifelse(tsneCluster == 0,

"not-clustered",

"clustered"))

#now name the clusters

clustNames<-df %>%

group_by(tsneCluster)%>%

mutate(tsneClusterNames =

getTopTerms(clustPMID = PMID,

clustValue=tsneCluster,
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topNVal = 2,

tidyCorpus=tidy_df)) %>%

select(PMID,tsneClusterNames) %>%

ungroup()

#update document corpus with cluster names

df<-inner_join(df,clustNames,by=c("PMID","tsneCluster"))

#re-plot the clusters

clusterNames <- df %>%

dplyr::group_by(tsneClusterNames) %>%

dplyr::summarise(medX = median(tsneComp1),

medY = median(tsneComp2)) %>%

dplyr::filter(tsneClusterNames != "Not-Clustered")

ggplot(df,aes(x=tsneComp1,y=tsneComp2,group=tsneClusterNames))+

geom_point(aes(colour = tsneClusterStatus),alpha=0.2)+

stat_ellipse(aes(alpha=tsneClusterStatus))+

geom_label(data=clusterNames,

aes(x=medX,y=medY,label=tsneClusterNames),

size=3,colour="red")+

scale_colour_manual(values=c("black","blue"),

name="cluster status")+

scale_alpha_manual(values=c(1,0),

name="cluster status")+

theme_bw()

Validity of Clusters

Adjutant proposes many clusters for this document corpus, but how is it possible to

establish the validity of these clusters without ground truth data? Here, we will look

at the distribution of terms across t-SNE coordinates to assess the quality of the

clustering. Again, while precise spatial positions from t-SNE should be cautiously

interpreted, but we have shown that they are not all together irrelevant either and

one would expect that some terms are unique to a specific cluster or set of (ideally)

spatially proximal clusters.
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Figure B.15: Clusters identified by Adjutant from a real data dataset

We use two methods to check the cluster validity. The first is a simple way looking

at just individual words, and the second is a bit more complex that looks overall

term frequencies between clusters.

Looking up specific terms

In this example we will assess the distribution of cluster names, since these reflect

the top-two most common terms in the cluster itself. Ideally the top two terms
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of a cluster name should occur primarily within the cluster of interest. It is crude

metric but it’s a useful start. We’ll also include some common biology terms,

specifically “cancer”, “gene”,“protein”,“expression”,“mutation”, and “study” which

we hypothesize should occur across nearly all of the clusters.
tidy_df_check <- dplyr::select(df,

PMID,

tsneComp1,

tsneComp2,

tsneClusterStatus,

tsneClusterNames) %>%

inner_join(tidy_df)

#bag of terms

clustBag<-clusterNames %>%

mutate(clusterWords = strsplit(tsneClusterNames,"-")) %>%

tidyr::unnest(clusterWords)

clustBag<-unique(c(clustBag$clusterWords,c("cancer",

"gene",

"data",

"protein",

"expression",

"mutat",

"studi")))

tmp<-df %>%

filter(tsneClusterStatus == "clustered")%>%

dplyr::select(PMID,tsneComp1,tsneComp2,tsneClusterNames)

tidy_df_check %>%

filter(wordStemmed %in% clustBag) %>%

filter(tsneClusterStatus == "clustered")%>%

ggplot(aes(x=tsneComp1,y=tsneComp2,group=tsneClusterNames))+

stat_ellipse(data=tmp,aes(group=tsneClusterNames),col="red")+

geom_point(alpha=0.2)+

facet_wrap(˜wordStemmed)+

theme_bw()+
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theme(legend.position="none",

panel.grid.major= element_blank(),

panel.grid.minor = element_blank(),

axis.text = element_blank(),

axis.title = element_blank(),

panel.border = element_blank(),

axis.ticks = element_blank(),

strip.text = element_text(size=8))

In the above figure, each red circle represents a cluster and we’ve only drawn in

the points for articles that contain a specific term. Although it is not very easy to

read the individual terms, the pattern that is evident is that there are indeed some

terms that tend to be present across all articles in the dataset and others that are

present only specific articles within specific regions of the t-SNE plot. For example,

“genom”, is a term that essentially present across all the documents in the corpus.

Whereas terms like “outbreak”, “vaccine”, “lymphoma”“, and even”tumor” tend

to be present is specific areas. The clearest example of this separation is articles

containing the words “genom”, “strain”, and/or “tumor”:
tidy_df_check %>%

filter(wordStemmed %in% c("genom","strain","tumor")) %>%

filter(tsneClusterStatus == "clustered")%>%

ggplot(aes(x=tsneComp1,y=tsneComp2,group=tsneClusterNames))+

stat_ellipse(data=tmp,aes(group=tsneClusterNames),col="red")+

geom_point(alpha=0.2)+

facet_wrap(˜wordStemmed)+

theme_bw()+

theme(legend.position="none",

panel.grid.major= element_blank(),

panel.grid.minor = element_blank(),

axis.text = element_blank(),

axis.title = element_blank(),

panel.border = element_blank(),

axis.ticks = element_blank(),

strip.text = element_text(size=8))

In the above figure, the term “genom” occurs across all articles, while “strain” tends

to be present in articles on the lower left quadrant and tumor tends to be present in
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Figure B.16: Real data: distribution of terms across clusters. Red outlines indicate
the cluster boundaries. Documents that contain specific terms are shown in
black within each facet, while documents that do not contain those terms are
not shown.
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genom strain tumor

Figure B.17: Real data: distribution of terms across clusters II. Red outlines indicate
the cluster boundaries. Documents that contain specific terms are shown in
black within each facet, while documents that do not contain those terms are
not shown. Close examination of the terms genom*, strain*, and tumor. Teh
“genom*” term is distributed across all clusters, while the other two terms a
limited to specific clusters.

articles of the upper right quadrant. This suggests only that there is some underlying

“method of the madness” that is reasonable, not that the clusters are perfectly correct.

But this is still a very simple example and only based on single word matches. What

is more useful, and also more complex, is to compare clusters as “bags of words”,

and that is precisely what we’ll do now.

Comparing term frequency

Using simple terms gives us a sense that there are indeed some relevant merits of

the spatial clustering on t-SNE, however, I will now implement a more sophisticated

approach that treats each cluster as a bag of words (derived from its documents) and

compares derived term frequencies between clusters using the cosine similarity.
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# quickly calculat the cosine similiarity

coss <- function(x) {
crossprod(x)/(sqrt(tcrossprod(colSums(xˆ2))))

}

# looking at term frequency across clusters

# note that t-SNE is based on the tf_idf metric

# instead, we're comparing term frequencies across documents

clustDTM<-tidy_df_check %>%

select(-tf,-idf,-tf_idf) %>% #

group_by(tsneClusterNames,wordStemmed) %>%

summarise(count = sum(n)) %>%

ungroup() %>%

bind_tf_idf(wordStemmed, tsneClusterNames, count) %>%

cast_dtm(.,tsneClusterNames,wordStemmed,tf) %>%

as.matrix()

simClust<-reshape::melt(coss(t(clustDTM))) %>% data.frame()

colnames(simClust)<-c("tsneClusterNames","compClust","cosSim")

# draw how similar clusters are to other clusters around

# them based upon the terms that occur within them

pList<-c()

for(clust in unique(as.character(simClust$tsneClusterNames))){
tmp<-filter(simClust,compClust == clust) %>% select(-compClust)

tmp<-inner_join(df,tmp) %>%

mutate(isCluster = ifelse(tsneClusterNames == clust,1,0))%>%

mutate(cosSimStep=cut(round(cosSim,2),seq(0,1,0.2)))

p<- tmp %>%

filter(tsneClusterNames != "Not-Clustered") %>%

ggplot(aes(x=tsneComp1,

y=tsneComp2,group=tsneClusterNames,

colour = factor(isCluster),fill = cosSimStep))+

stat_ellipse(geom="polygon")+

scale_fill_brewer(breaks=c("(0,0.2]","(0.2,0.4]",

"(0.4,0.6]","(0.6,0.8]",
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"(0.8,1]"),drop=FALSE,

name="Cosine Similarity")+

scale_colour_manual(values=c("black","red"),

name="Selected Cluster",

labels=c("other",clust))+

labs(title=clust)+

theme_bw()+

theme(legend.position="none",

panel.grid.major= element_blank(),

panel.grid.minor = element_blank(),

axis.text = element_blank(),

axis.title = element_blank(),

panel.border = element_blank(),

axis.ticks = element_blank(),

strip.text = element_text(size=8))

pList[[clust]]<-p

}

pList[[1]] + theme(legend.position = "right")

Before considering the results of all possible clusters, we’ll examine the results of

just one to understand what is being shown. The above figure is the result for the

cluster “cancer-breast”, and it compares this cluster (circled in red) with all other

derived clusters in this data. The comparison is accomplished by visually overlaying

the cosine similarity of all clusters relative to the “cancer-breast” cancer. The darker

the blue the more similar the clusters; a cosine similarity of one reflects identical

clusters, while a cosine similarity of 0 are totally different.

The above figure of the “cancer-breast” cluster shows what we’d kind of hoped for.

First our cluster of interest (“cancer-breast” outlined in red) is, appropriately, a dark

blue color (cosine similarity of 1). The clusters that are closest to it are not as dark

blue, but appear to have a cosine similarity between 0.6 and 0.8 (related but not

identical), and as we move further and further away from the cluster we see that

the cosine similarity drops. This suggests that there is indeed some sanity both to

spatial positions of the t-SNE clustering and also how hdbscan and Adjutant have
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Figure B.18: Real data: distribution of terms across clusters III. Red outlines indicates
the cluster with the term “cancer-breast”, while the color of the cluster indicates
cosine similarity : white (low similarity) to dark blue (high similarity). Note
that points that are spatially proximal to the “cancer-breast” cluster are more
similar relative to distant clusters.

chosen the cluster boundaries.

Let’s look at all the other clusters now, to examine if the same trend occurs.

Looking at all of the clusters essentially recapitulates what’s in the previous single

cluster figure. This means that t-SNE spatial positions are reasonable and driven by

common terms in documents and are not arbitrarily placed. It’s also interesting to

consider the “Noise” data (row 4, last column), which has high cosine similarity

with pretty much every cluster - this is another nice sanity check as these articles

had a difficult time clustering with any particular articles. It may be possible to

use Adjutant’s derived clusters to classify those documents that have been assigned

to the noise, or even to discover some fuzzy documents between clusters that

are correctly not classified to one group or another. Adjutant doesn’t support

that kind of clustering because it is up to a user what they’d like to do next with
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Figure B.19: Cluster similarity across all clusters.
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analysis. However Adjutant’s R compatible outputs allow the user to leverage to

full complement of R’s analytic tools to further explore this document corpus from

a more informed initial point.

B.2.3 Alternative Approaches

Topic modeling is a broad and has had various advances in a number of different

disciplines. Here we’ll compared against a standard in R, which is the Latent

Diriechilet Allocation (LDA) analysis presented in the tidytext manual. While

many alternative approaches exist in R and beyond, we feel that is this is the most

relevant comparison since we are developing an R based tool and use tidytext’s

features within Adjutant’s development. One challenge of LDA, and many clustering

methods, is that it’s not very easy to establish the right initial parameters that should

be provided to the method. Adjutant tries to scan for optimal parameters, but the

best way to do this remains an active area of research. The Tidytext manual example

begins with a priori knowledge that there are four books, and thus initializes the

K parameter (number of clusters) to 4. But we don’t know how many clusters we

should have because we’re taking a purely unsupervised approach. However, we do

know that Adjutant would suggests around 60 clusters for this document corpus, so

we can begin LDA with that. This is a nice example of the way that Adjutant can be

used with other topic models.

Input to LDA will be a document term matrix using the tf idf for analysis and an

initial cluster size of 60.We will then look at the top 5 most common words within

each cluster, shown below. The beta from the LDA analysis provide a sense of how

important a word is to a particular topic cluster.

Running this step take a very long time on a document corpus of this size (> 10min).

We have saved this analysis so that it can be quickly re-run here, but it emphasizes

that rather large speed up we get with Adjutant’s approach.
dtm<- tidy_df %>%

tidytext::cast_dtm(PMID,wordStemmed,n)

dtm<-tidy_df_check %>%
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ungroup() %>%

cast_dtm(PMID,wordStemmed,n)

#suggested # of topics from Adjutant

adjClust<-length(unique(df$tsneClusterNames)) #60

df_lda <- LDA(dtm, k = 60, control = list(seed = 1234))

#Extracting topics

df_topics <- tidy(df_lda, matrix = "beta")

#top words within each topic

top_terms <- df_topics %>%

group_by(topic) %>%

top_n(5, beta) %>%

ungroup() %>%

arrange(topic, -beta)

#let's look at this as a tile plot

ggplot(top_terms,aes(x = topic, y = term,colour=beta))+

geom_point()+

theme_bw()+

scale_colour_continuous(name=expression(beta))+

scale_x_continuous(breaks=1:60)+

theme(axis.text.y=element_text(size=8),

axis.text.x=element_text(size=8,angle = 90, hjust=0.5))

From the previous figure, it is evident that some words belong to multiple topics –

this is not surprising as we’ve already seen that terms like “genom” can be readily

found across many documents. However, the beta values are all dark blue (closer to

zero), implying that there is not a strong association between some particular word

and a topic cluster. This is different than what the t-SNE analysis revealed, which

showed that there indeed some individuals words that could be quite prominent

in some clusters, or spatially proximal clusters, and absent or less present in other

clusters.

It is also possible to analyze which topics individual articles belong to by using the

gamma values from the LDA.
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Figure B.20: Real data: LDA clusters and topics

df_gamma<- tidy(df_lda, matrix = "gamma")

#next we'll get the consensus topic for each article

df_classifications <- df_gamma %>%

group_by(document) %>%

top_n(1, gamma) %>%

ungroup()

ggplot(df_gamma, aes(gamma)) +

geom_histogram() +

scale_y_log10() +

labs(title = "Distribution of probabilities for all topics",

y = "Number of documents", x = expression(gamma))

Ideally, this gamma distribution should go from 0 to 1, the results here suggests that

it’s hard for LDA to place documents within topics. With nearly 19,000 documents

there is a huge range of potential values that can be passed to LDA’s ‘k’ parameter
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Figure B.21: Real data: LDA gamma distribution

function. The problem may be that the initial parameter value is not useful, or it

may be that it’s simply difficult for LDA to cluster these data – it’s possible to try

different alternatives but it quickly becomes cumbersome. One thing to note about

the hdbscan procedure is that it allows some articles to not be classified whereas

LDA actually tries to classify every document. This difference may be why Adjutant

finds distinct clusters in this data and LDA does not.

We can also see that the combination of t-SNE and hbscan allowed us to reason

about the topic clusters a little but more easily, since they can be visually inspected

(as we showed earlier) and since “minimum cluster size” is a far easier parameter to

reason about than “number of clusters”. It maybe to possible to improve the LDA

results by trying different parameter combinations, cleaning the data in different

ways, or using other packages. But herein lies the problem Adjutant is trying to

address. The combination of t-SNE and hbdscan do a reasonably good first pass,

which can help an individual to reason about the next steps from a more information

position.
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Appendix C

GEViT Supplemental Materials

Contents

1. Supplemental Methods for Visualization Analysis

2. Supplemental Figures

3. Supplemental Tables

A reminder that analysis notebooks are also available at:

https://github.com/amcrisan/GEViTAnalysisRelease

C.1 Supplemental Methods for Visualization Analysis

We applied qualitative analysis techniques in order to consistently describe and

compare aspects of our corpus of literature-derived data visualizations. We used

a Grounded Theory approach, which refers to a general set of techniques used by

qualitative researchers to inductively analyze and construct a theory about some

phenomenon that is “grounded” in data [57]. Grounded Theory is conceptually

similar to unsupervised analysis methods used in quantitative research [77], since

both approaches rely on emergent pattern matching that is found within human-
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curated and labelled data rather than applying a specific hypothesis or theory;

in qualitative methods, the human resolves the relevant patterns, in quantitative

methods, the algorithm does. Qualitative research approaches are useful when

trying to explore some data without any pre-conceived notions of what the outcomes

should be.

The core foundation of Grounded Theory Methods (GTM) rests upon different

approaches for assigning descriptive codes to data, typically chunks of text, that

become the basis for further analysis [20]. Two widely used approaches are open and

axial coding. In open coding, text is read multiple times to identify emergent themes

– these are captured as codes. In axial coding, a researcher develops hierarchical

relationships between codes. Codes are subjectively assigned to data and refined

over multiple rounds of data interrogation until a final set of descriptive codes are

agreed upon. Notions of validity and generalizability within qualitative research

are different than within quantitative research, but internal validity is a recognized

concept within qualitative research and there exist agreed-upon conventions to

assess this validity (see [70], Chapter 6), which we have employed here.

GTM is used in the field of information visualization (infovis), though we note that

the application of GTM is different between the social sciences and human-computer

interaction (HCI). HCI and infovis researchers frequently apply GTM to text [41],

video, and image data [17], whereas social scientists tend to primarily use interview

text, although some examples of image analysis with social sciences exist [65].

Our application of GTM, and especially open and axial coding, is drawn from the

HCI and infovis research traditions, and we build upon established terminology

and ideas from Munzner’s Visualization Analysis and Design [79]. As our team

comprises primarily quantitative researchers, we apply a specific interrogative lens

to the way we use GTM. There exists a fascinating and broader discussion about

mixed methods approaches that best combine qualitative and quantitative research

methods [22], which is beyond the application of this work but that the reader should

be aware of.
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C.2 Supplemental Figures

Figure C.1: Literature mining methods

Figure C.2: Qualitative and quantitative visualization analysis methods
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Figure C.3: A priori concepts distributed among pathogens (a) and the number
of bigrams assigned to each concept (b)

Figure C.4: Distribution of chart types across articles (a) and the co-occurrence
of chart types with figures (b)

C.3 Supplemental Tables
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Table C.1: External List of Pathogens. A list of human
pathogens and their associated disease taken from Wikipedia
(https://en.wikipedia.org/wiki/List of infectious diseases)and
used to validate the topic clustering by assessing whether the pathogen
strings occur in clusters with the same name. Both the disease and the
source of the disease were checked for a match within each document.

Pathogen Bigram in Corpus Pathogen
enceph viru Ignore

fever viru Ignore

respiratori syndrom Ignore

hemorrhag fever Ignore

porcin reproduct Ignore

porcin epidem Ignore

viru pedv Ignore

middl east Ignore

east respiratori Ignore

cov infect Ignore

escherichia coli Escherichia coli

mycobacterium tuberculosi Mycobacterium tuberculosis

staphylococcu aureu Staphylococcus aureus

influenza viru Influenza Virus

influenza virus Influenza Virus

vibrio cholera Vibrio cholerae

viru hbv Hepatitis B

immunodefici viru Human Immunodeficy Virus

human immunodefici Human Immunodeficy Virus

viru hcv Hepatitis C

salmonella enterica Salmonella Enterica

klebsiella pneumonia Klebsiella pneumonia

hiv infect Human Immunodeficy Virus

human papillomaviru Human Papillomavirus

hbv infect Hepatitis B

tuberculosi isol Mycobacterium tuberculosis

mrsa isol Staphylococcus aureus

coli isol Escherichia coli

acinetobact baumannii Acinetobact baumannii

dengu viru Dengue virus

pseudomona aeruginosa Pseudomona aeruginosa
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Table C.1 continued from previous page
Pathogen Bigram in Corpus Pathogen
produc escherichia Escherichia coli

aureu isol Staphylococcus aureus

sar cov SARS Coronavirus

helicobact pylori Helicobacter pylori

papillomaviru hpv Human Papillomavirus

enterococcu faecium Helicobact pylori

viru hev Hepatitis E

west nile West nile virus

nile viru West nile virus

neisseria meningitidi Neisseria meningitidis

yersinia pesti Yersinia pestis

sar coronaviru SARS Coronavirus

syndrom coronaviru SARS Coronavirus

coronaviru sar SARS Coronavirus

hpv infect Human Papillomavirus

cholera isol Vibrio cholerae

baumannii isol Acinetobact baumannii

vibrio parahaemolyticu Vibrio parahaemolyticus

aeruginosa isol Pseudomona aeruginosa

listeria monocytogen Listeria monocytogenes

clostridium difficil Clostridium difficile

produc klebsiella Klebsiella pneumonia

hev infect Hepatitis E

ebola viru Ebola virus

human rotaviru Human rotavirus

mer cov MERS coronavirus

viru hav Hepatitis A

viral hepat Heptatis - General

legionella pneumophila Legionella pneumophila

salmonella typhimurium Salmonella typhimurium

zika viru Zika virus

chlamydia trachomati Chlamydia trachomatis

coronaviru mer MERS coronavirus

viru denv Dengue virus

herp simplex Human herpesvirus

bacillu anthraci Bacillus anthracis
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Table C.2: Mapping of Bigrams to a priori Concepts. Bigrams from the document
corpus are in the first column, the occurrence of these Bigrams across clusters
(n) and their frequency in the document corpus are also report. The final column
contains author annotations that that assign bigram to a priori concepts, or
indicates that a bigram is not-usefully assigned to any concept (i.e. because it is
too general, belongs to something irrelevant, ect.)

bigram n freq Annotate
acinetobact baumannii 1 0.035714286 pathogen

acut gastroenter 2 0.071428571 disease

acut hepat 1 0.035714286 disease

acut respiratori 2 NA not-useful

aed aegypti 1 0.035714286 reservoir

aeruginosa isol 1 0.035714286 pathogen

ag research 1 0.035714286 not-useful

allel frequenc 1 0.035714286 population

amino acid 7 NA not-useful

analysi mlva 1 0.035714286 genotype

analysi reveal 1 NA not-useful

anti hcv 1 0.035714286 not-useful

antibiot resist 4 0.142857143 resistance

antigen hbsag 1 0.035714286 molecular biology

antimicrobi resist 2 0.071428571 resistance

antimicrobi suscept 1 0.035714286 resistance

associ studi 2 0.071428571 not-useful

attenu vaccin 1 0.035714286 vaccine

aureu isol 1 0.035714286 pathogen

aureu mrsa 1 0.035714286 resistance

aureu strain 1 0.035714286 molecular biology

avian influenza 1 0.035714286 reservoir

basal core 1 0.035714286 disease

baumannii clinic 1 0.035714286 pathogen

baumannii isol 1 0.035714286 pathogen

baumannii strain 1 0.035714286 characterization

beij famili 1 NA not-useful

beij strain 1 NA not-useful

beta lactamas 1 0.035714286 resistance

bla ctx 1 0.035714286 resistance

bla oxa 1 0.035714286 resistance

breast cancer 1 0.035714286 disease
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Table C.2 continued from previous page
bigram n freq Annotate
cancer patient 1 0.035714286 disease

cancer risk 1 0.035714286 disease

candid gene 1 0.035714286 genome

capsid protein 1 0.035714286 molecular biology

carbapenem resist 2 0.071428571 resistance

carbapenemas gene 1 0.035714286 resistance

carcinoma hcc 1 0.035714286 disease

care unit 1 0.035714286 outbreak

cassett chromosom 1 0.035714286 molecular biology

cell carcinoma 1 0.035714286 disease

cervic cancer 1 0.035714286 disease

cervic lesion 1 0.035714286 disease

chain reaction 9 NA not-useful

chain reaction 5 0.178571429 not-useful

cholera epidem 1 0.035714286 outbreak

cholera isol 1 0.035714286 pathogen

cholera outbreak 1 0.035714286 outbreak

cholera pandem 1 0.035714286 outbreak

cholera strain 1 0.035714286 characterization

cholera toxin 1 0.035714286 molecular biology

chromosom mec 1 0.035714286 resistance

chronic hbv 1 0.035714286 disease

chronic hcv 1 0.035714286 disease

chronic hepat 3 0.107142857 disease

circoviru type 1 0.035714286 characterization

circul recombin 1 0.035714286 molecular biology

clinic isol 5 0.178571429 not-useful

clinic sampl 1 NA not-useful

clonal complex 1 0.035714286 molecular biology

close relat 9 NA not-useful

close relat 7 0.25 not-useful

coli isol 2 NA NA

coli isol 1 0.035714286 pathogen

coli stec 1 0.035714286 resistance

coli strain 1 0.035714286 characterization

colorect cancer 1 0.035714286 disease

commun acquir 1 0.035714286 outbreak
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Table C.2 continued from previous page
bigram n freq Annotate
compar genom 1 NA genome

complet genom 5 NA genome

complet genom 4 0.142857143 genome

confid interv 2 0.071428571 not-useful

core promot 1 0.035714286 molecular biology

coronaviru mer 1 0.035714286 pathogen

coronaviru sar 1 0.035714286 pathogen

cov genom 1 0.035714286 genome

cov infect 1 0.035714286 pathogen

dengu epidem 1 0.035714286 outbreak

dengu fever 1 0.035714286 disease

dengu infect 1 0.035714286 pathogen

dengu outbreak 1 0.035714286 outbreak

dengu viru 1 0.035714286 pathogen

dengu virus 1 0.035714286 pathogen

denv serotyp 1 0.035714286 clinical

develop countri 1 0.035714286 not-useful

diarrhea viru 1 0.035714286 disease

discriminatori power 1 0.035714286 not-useful

divers index 1 0.035714286 population

dna level 1 0.035714286 not-useful

drug resist 3 NA resistance

drug suscept 1 0.035714286 resistance

drug user 1 0.035714286 not-useful

east respiratori 1 0.035714286 disease

electrophoresi pfge 4 0.142857143 not-useful

enterica serotyp 1 0.035714286 clinical

enterica serovar 1 0.035714286 clinical

enterica subsp 1 0.035714286 molecular biology

enterococcu faecium 1 0.035714286 pathogen

epidem diarrhea 1 0.035714286 disease

epidemiolog investig 1 0.035714286 outbreak

epidemiolog studi 1 0.035714286 not-useful

esbl produc 1 0.035714286 resistance

escherichia coli 2 0.071428571 pathogen

extend spectrum 1 0.035714286 resistance

field gel 8 NA not-useful
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Table C.2 continued from previous page
bigram n freq Annotate
form crf 1 NA not-useful

fragment length 1 0.035714286 not-useful

gastric cancer 1 0.035714286 disease

gastroenter outbreak 1 0.035714286 outbreak

gel electrophoresi 8 NA not-useful

gene encod 1 0.035714286 genome

gene express 1 0.035714286 genome

gene segment 2 0.071428571 genome

genet divers 9 NA population

genet divers 7 0.25 genetic-diversity

genet factor 1 0.035714286 genome

genet variant 1 0.035714286 genome

genet variat 1 0.035714286 genome

genom constel 1 0.035714286 genome

genom copi 1 NA not-useful

genom epidemiologi 1 0.035714286 not-useful

genom island 1 0.035714286 molecular biology

genom segment 1 0.035714286 not-useful

genom sequenc 24 NA not-useful

genom sequenc 22 0.785714286 not-useful

genom wide 4 NA not-useful

genom wide 3 0.107142857 genome

genotyp constel 1 0.035714286 genotype

genotyp gii 1 0.035714286 genotype

gii gii 1 0.035714286 molecular biology

hand foot 1 0.035714286 not-useful

hav genom 1 0.035714286 genome

hav rna 1 NA clinical

hbeag neg 1 0.035714286 clinical

hbsag posit 1 0.035714286 clinical

hbv carrier 1 0.035714286 clinical

hbv dna 1 0.035714286 not-useful

hbv genom 1 0.035714286 genome

hbv genotyp 1 0.035714286 genotype

hbv infect 1 0.035714286 pathogen

hbv strain 1 0.035714286 characterization

hcv antibodi 1 0.035714286 molecular biology
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Table C.2 continued from previous page
bigram n freq Annotate
hcv genom 1 0.035714286 genome

hcv genotyp 1 0.035714286 genotype

hcv infect 1 0.035714286 disease

hcv rna 1 0.035714286 molecular biology

helicobact pylori 1 0.035714286 pathogen

hemolyt urem 1 0.035714286 disease

hepatocellular carcinoma 2 0.071428571 disease

hev infect 1 0.035714286 pathogen

hev strain 1 0.035714286 characterization

highli pathogen 1 0.035714286 not-useful

hiv infect 1 0.035714286 pathogen

hiv type 1 0.035714286 characterization

hospit children 1 NA outbreak

hpv dna 1 0.035714286 not-useful

hpv genom 1 0.035714286 genome

hpv genotyp 1 0.035714286 genotype

hpv infect 1 0.035714286 pathogen

hpv neg 1 0.035714286 clinical

hpv posit 1 0.035714286 clinical

hpv type 1 0.035714286 characterization

human bocaviru 1 NA pathogen

human immunodefici 1 0.035714286 disease

human influenza 1 0.035714286 disease

human metapneumoviru 1 NA not-useful

human noroviru 1 0.035714286 pathogen

human papilloma 1 0.035714286 pathogen

human papillomaviru 1 0.035714286 pathogen

human papillomavirus 1 0.035714286 pathogen

human rotaviru 1 0.035714286 pathogen

immun respons 3 0.107142857 not-useful

immunodefici viru 1 0.035714286 pathogen

increas risk 1 0.035714286 not-useful

infect individu 1 0.035714286 not-useful

infect patient 2 0.071428571 not-useful

influenza viru 1 0.035714286 pathogen

influenza virus 1 0.035714286 pathogen

insert sequenc 1 0.035714286 molecular biology
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Table C.2 continued from previous page
bigram n freq Annotate
intens care 1 0.035714286 outbreak

interspers repetit 1 0.035714286 genotype

klebsiella pneumonia 1 0.035714286 pathogen

lactamas esbl 1 0.035714286 resistance

lactamas produc 1 0.035714286 resistance

length genom 1 0.035714286 not-useful

length polymorph 1 0.035714286 not-useful

live attenu 1 0.035714286 vaccine

liver diseas 3 0.107142857 disease

locu variabl 1 0.035714286 not-useful

locu vntr 1 0.035714286 genotype

lower respiratori 1 NA disease

mec sccmec 1 0.035714286 resistance

mer cov 1 0.035714286 pathogen

meta analysi 1 0.035714286 not-useful

metapneumoviru hmpv 1 NA pathogen

methicillin resist 1 0.035714286 resistance

methicillin suscept 1 0.035714286 resistance

middl east 1 0.035714286 not-useful

miru vntr 1 0.035714286 genotype

mlva genotyp 1 0.035714286 genotype

mlva method 1 0.035714286 not-useful

mlva profil 1 0.035714286 genotype

mlva type 1 0.035714286 genotype

molecular character 1 0.035714286 not-useful

molecular epidemiologi 9 NA not-useful

molecular epidemiologi 6 0.214285714 not-useful

molecular type 1 0.035714286 not-useful

mouth diseas 1 0.035714286 disease

mrsa clone 1 0.035714286 resistance

mrsa isol 1 0.035714286 pathogen

mrsa strain 1 0.035714286 characterization

multi locu 1 0.035714286 not-useful

multidrug resist 5 0.178571429 resistance

multilocu sequenc 5 0.178571429 not-useful

multilocu variabl 1 0.035714286 not-useful

multipl locu 1 0.035714286 not-useful
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Table C.2 continued from previous page
bigram n freq Annotate
mycobacteri interspers 1 0.035714286 genotype

mycobacterium tuberculosi 1 0.035714286 pathogen

nasopharyng aspir 1 NA not-useful

neutral antibodi 1 NA not-useful

noroviru genom 1 0.035714286 genome

noroviru genotyp 1 0.035714286 genotype

noroviru gii 1 0.035714286 characterization

noroviru infect 1 0.035714286 pathogen

noroviru nov 1 0.035714286 pathogen

noroviru outbreak 1 0.035714286 outbreak

noroviru strain 1 0.035714286 characterization

nosocomi infect 1 0.035714286 disease

nucleotid polymorph 4 NA not-useful

nucleotid polymorph 3 0.107142857 not-useful

nucleotid sequenc 7 NA not-useful

nucleotid sequenc 5 0.178571429 not-useful

odd ratio 3 0.107142857 not-useful

pandem influenza 1 0.035714286 outbreak

panton valentin 1 0.035714286 resistance

papilloma viru 1 0.035714286 pathogen

papillomaviru hpv 1 0.035714286 pathogen

papillomaviru type 1 0.035714286 characterization

papillomavirus hpv 1 0.035714286 pathogen

pathogen avian 1 0.035714286 reservoir

pathogen island 1 0.035714286 molecular biology

pcr assai 1 NA not-useful

pcr method 1 NA not-useful

pedv strain 1 0.035714286 characterization

phage type 1 0.035714286 characterization

phylogenet analysi 14 NA population

phylogenet analysi 11 0.392857143 phylogeny

pig farm 1 0.035714286 zoonotic

plasmid mediat 1 NA resistance

pneumonia isol 1 0.035714286 disease

pneumonia strain 1 0.035714286 characterization

polymeras chain 8 NA not-useful

polymeras chain 5 0.178571429 not-useful
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Table C.2 continued from previous page
bigram n freq Annotate
polymorph rflp 1 0.035714286 genotype

polymorph snp 1 0.035714286 genotype

popul structur 1 NA not-useful

porcin circoviru 1 0.035714286 reservoir

porcin epidem 1 0.035714286 pathogen

porcin reproduct 1 0.035714286 pathogen

posit sampl 1 NA not-useful

produc escherichia 1 0.035714286 pathogen

produc klebsiella 1 0.035714286 pathogen

promot bcp 1 0.035714286 resistance

prostat cancer 1 0.035714286 disease

pseudomona aeruginosa 1 0.035714286 pathogen

public health 2 NA population

public health 1 0.035714286 not-useful

puls field 8 NA not-useful

puls field 7 0.25 not-useful

rapid detect 1 NA not-useful

reaction pcr 2 NA not-useful

reaction pcr 1 0.035714286 not-useful

read frame 1 0.035714286 not-useful

real time 2 NA not-useful

real time 1 0.035714286 not-useful

reassort event 1 0.035714286 molecular biology

recombin form 1 0.035714286 molecular biology

repeat analysi 1 0.035714286 not-useful

repeat vntr 2 NA genotype

repeat vntr 1 0.035714286 genotype

repetit unit 1 0.035714286 genotype

resist acinetobact 1 0.035714286 resistance

resist determin 3 NA resistance

resist determin 2 0.071428571 resistance

resist enterococci 1 0.035714286 resistance

resist enterococcu 1 0.035714286 resistance

resist gene 5 0.178571429 resistance

resist isol 1 0.035714286 not-useful

resist klebsiella 1 NA resistance

resist mdr 1 0.035714286 resistance
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Table C.2 continued from previous page
bigram n freq Annotate
resist salmonella 1 0.035714286 resistance

resist staphylococcu 1 0.035714286 resistance

resist tuberculosi 1 0.035714286 resistance

respiratori infect 1 NA disease

respiratori syncyti 1 NA not-useful

respiratori syndrom 2 0.071428571 disease

respiratori tract 1 NA not-useful

restrict fragment 1 0.035714286 clinical

revers transcript 4 NA molecular biology

revers transcript 2 0.071428571 not-useful

risk factor 4 NA not-useful

risk factor 3 0.107142857 not-useful

risk hpv 1 0.035714286 clinical

risk human 1 0.035714286 not-useful

rotaviru infect 1 0.035714286 pathogen

rotaviru strain 1 0.035714286 characterization

rotaviru vaccin 1 0.035714286 vaccine

rva strain 1 0.035714286 characterization

salmonella enterica 1 0.035714286 pathogen

salmonella genom 1 0.035714286 genome

salmonella isol 1 0.035714286 pathogen

salmonella serovar 1 0.035714286 reservoir

salmonella strain 1 0.035714286 characterization

salmonella typhimurium 1 0.035714286 pathogen

sar coronaviru 1 0.035714286 pathogen

sar cov 1 0.035714286 pathogen

sar epidem 1 0.035714286 outbreak

sar outbreak 1 0.035714286 outbreak

sccmec type 1 0.035714286 characterization

sequenc analysi 5 NA not-useful

sequenc analysi 4 0.142857143 not-useful

sequenc type 8 NA not-useful

sequenc type 7 0.25 not-useful

serovar enteritidi 1 0.035714286 reservoir

serovar typhimurium 1 0.035714286 reservoir

serum sampl 2 0.071428571 not-useful

seventh pandem 1 0.035714286 not-useful
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Table C.2 continued from previous page
bigram n freq Annotate
sever acut 1 0.035714286 not-useful

shiga toxin 1 0.035714286 molecular biology

signific associ 1 0.035714286 not-useful

singl nucleotid 4 NA not-useful

singl nucleotid 3 0.107142857 not-useful

spa type 1 0.035714286 genotype

spectrum beta 1 0.035714286 resistance

squamou cell 1 0.035714286 disease

staphylococc cassett 1 0.035714286 molecular biology

staphylococcu aureu 1 0.035714286 pathogen

statist signific 1 0.035714286 not-useful

stool sampl 3 NA not-useful

stool sampl 2 0.071428571 not-useful

strain circul 1 0.035714286 epidemiology

strain detect 1 0.035714286 not-useful

strain isol 7 NA not-useful

strain isol 6 0.214285714 not-useful

studi design 1 NA not-useful

studi gwa 1 0.035714286 not-useful

subsp enterica 1 0.035714286 characterization

surfac antigen 1 0.035714286 molecular biology

syncyti viru 1 NA not-useful

syndrom coronaviru 1 0.035714286 disease

syndrom sar 1 0.035714286 disease

syndrom viru 1 0.035714286 not-useful

tandem repeat 3 0.107142857 genotype

tandem repeat 2 NA not-useful

time pcr 1 NA not-useful

time revers 1 NA not-useful

tor biotyp 1 0.035714286 pathogen

tor strain 1 0.035714286 characterization

toxin produc 1 0.035714286 not-useful

tract infect 1 NA not-useful

transcript polymeras 1 NA not-useful

tuberculosi complex 1 0.035714286 characterization

tuberculosi isol 1 0.035714286 pathogen

tuberculosi strain 1 0.035714286 characterization
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Table C.2 continued from previous page
bigram n freq Annotate
type method 1 0.035714286 not-useful

type mlst 2 0.071428571 genotype

typhimurium isol 1 0.035714286 pathogen

uniqu recombin 1 NA not-useful

unit variabl 1 0.035714286 not-useful

urem syndrom 1 0.035714286 disease

vaccin candid 1 0.035714286 vaccine

vaccin develop 1 0.035714286 vaccine

vaccin strain 1 0.035714286 characterization

valentin leukocidin 1 0.035714286 resistance

vancomycin resist 1 0.035714286 resistance

vibrio cholera 1 0.035714286 pathogen

viral gastroenter 1 0.035714286 not-useful

viral genom 5 NA not-useful

viral genom 4 0.142857143 genome

viral hepat 1 0.035714286 pathogen

viral load 2 0.071428571 clinical

viru denv 1 0.035714286 pathogen

viru genotyp 2 0.071428571 genotype

viru hav 1 0.035714286 pathogen

viru hbv 1 0.035714286 pathogen

viru hcv 1 0.035714286 pathogen

viru hev 1 0.035714286 pathogen

viru infect 3 0.107142857 not-useful

viru isol 4 NA not-useful

viru isol 3 0.107142857 not-useful

viru pedv 1 0.035714286 pathogen

viru prrsv 1 0.035714286 pathogen

viru serotyp 1 0.035714286 clinical

viru type 2 0.071428571 characterization

virul factor 1 0.035714286 molecular biology

virul gene 2 0.071428571 genome

virus isol 1 0.035714286 not-useful

vntr analysi 1 0.035714286 genotype

vntr loci 1 0.035714286 genotype

vntr type 1 0.035714286 genotype

wide associ 2 0.071428571 not-useful
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Table C.2 continued from previous page
bigram n freq Annotate
wide signific 1 0.035714286 not-useful

wild type 2 0.071428571 not-useful
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Table C.3: Master List of Sampled Articles

This table is too large to print and is available online at:
https:/doi.org/10.1093/bioinformatics/bty832

Table C.4: Final set of pathogens and pathogen clusters

Pathogen Pathogen Cluster
Enterovirus D68 Other

Acinetobact baumannii Acinetobact baumannii

Bacillus anthracis Other

Clostridium difficile Other

Dengue virus Dengue virus

Ebola virus Other

Enterococcus faecium Enterococcus faecium

Escherichia coli Escherichia coli

Helicobacter pylori Other

Hepatitis B Hepatitis B

Hepatitis C Hepatitis C

Hepatitis E Other

Human herpesvirus Other

Human Immunodeficy Virus Human Immunodeficy Virus

Human Papillomavirus Human Papillomavirus

Human rotavirus Other

Influenza Virus Influenza Virus

Klebsiella pneumonia Klebsiella pneumonia

Legionella pneumophila Other

Listeria monocytogenes Other

MERS coronavirus Other

Microbiota Microbiota

Mycobacterium tuberculosis Mycobacterium tuberculosis

Neisseria gonorrhoeae Other

Neisseria meningitidis Other

Pseudomona aeruginosa Pseudomona aeruginosa

Salmonella Enterica Salmonella Enterica

Salmonella typhimurium Other

SARS Coronavirus SARS Coronavirus

Staphylococcus aureus Staphylococcus aureus

Vibrio cholerae Vibrio cholerae

Vibrio parahaemolyticus Other
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Table C.4 continued from previous page
Pathogen Pathogen Cluster
Zika virus Other
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Appendix D

minCombinR Supplemental
Materials

This document demonstrates how to implement and plot different chart types
using minCombinR. This document assumes that you have already run the
“Getting started with minCombinR” and that the necessary data has already
been loaded into your R workspace.

D.1 Generating Simple Charts with minCombinr

devtools::load_all()

library(dplyr)

library(shiny)

# Tabular Data

tab_dat <- input_data(file = system.file("extdata",

"ebov_metadata.csv",

package = "mincombinr"),

dataType = "table")

# Tree data

tree_dat<-input_data(file = system.file("extdata",

"ebov_tree.nwk",
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package = "mincombinr"),

dataType = "tree")

# Genomic data

genomic_dat<-input_data(file = system.file("extdata",

"ebov_GIN_genomic_FIXED.fasta",

package = "mincombinr"),

dataType = "dna")

#Shape files

#Shape files require that .shp,.shx,and .prj

# files at a minimun to be in the same directory

#to add metadata to the shape file, you can also add .dbf files

gin_file<-"gin_admbnda_adm1_ocha_itos.shp"

lbr_file<-"lbr_admbnda_adm1_ocha.shp"

sle_file<-"sle_admbnda_adm1_1m_gov_ocha_20161017.shp"

gin_shape_dat<-input_data(file =

system.file("./inst/extdata/",

gin_file,

package = "mincombinr"),

dataType = "spatial")

lbr_shape_dat<-input_data(file =

system.file("./inst/extdata/",

lbr_file,

package = "mincombinr"),

dataType = "spatial")

sle_shape_dat<-input_data(file =

system.file("extdata/",

sle_file,

package = "mincombinr")

,dataType = "spatial")

# Put all the individual shape files together so that the system

# the system knows to try visualize it all together.

shape_dat <- join_spatial_data(gin_shape_dat, lbr_shape_dat

, sle_shape_dat)
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D.1.1 Common Statistical Charts

# Let's specify and plot some single charts.

# Bar chart:

bar_chart <- specify_single(chart_type = "bar",

data = "tab_dat",

x = "country")

plot(bar_chart)
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# Scatter plot with a title:

scatter_chart <- specify_single(chart_type = "scatter",

data = "tab_dat",

x = "latitude",

y = "longitude",

title = "Ebola Scatter Plot")

plot(scatter_chart)
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Ebola Scatter Plot
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# Histogram:

histogram_chart <- specify_single(chart_type = "histogram",

data = "tab_dat",

x = "latitude")

plot(histogram_chart)
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# Probability Density Function (PDF) plot:

pdf_chart <- specify_single(chart_type = "pdf",

data = "tab_dat",

x = "latitude")

plot(pdf_chart)
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# Boxplot

boxplot_chart <- specify_single(chart_type = "boxplot",

data="tab_dat",

x = "country",

y ="latitude")

plot(boxplot_chart)
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# Swarm plot

beeswarm_chart <- specify_single(chart_type = "swarmplot",

data="tab_dat",

x = "country",

y ="latitude")

plot(beeswarm_chart)
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# We'll even let you make a pie chart

pie_chart <- specify_single(chart_type = "pie", data = "tab_dat",

x = "country")

plot(pie_chart)
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minCombinR can also work with data frames so you can perform some
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analyses and go ahead and plot the data. Here’s an example using a line
chart:
# Let's use our tabular data:

ebov <- tab_dat@data[[1]]

ebov_case_counts <- ebov %>%

group_by(country, month) %>%

count()

# Now let's specify and plot a line chart:

line_chart <- specify_single(chart_type = "line",

data = "ebov_case_counts",

x = "month", y = "n",

group = "country")

plot(line_chart)
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D.1.2 Colour Charts

Color charts are common statistical charts that fundamentally require color
to communicate their results. By comparsion, adding color to a common
statistical chart can be seen as an enhancement (a nice to have, not a need to
have).
# Get our data:

ebov <- tab_dat@data[[1]]

ebov_heat_data <- ebov %>%

group_by(country,month) %>%

count()
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# Specify and plot a line chart:

heatmap_chart <- specify_single(chart_type = "heatmap",

data = "ebov_heat_data",

x = "country",

y = "month",

color = "n")

plot(heatmap_chart)
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D.1.3 Relational Charts

These data do not have network data, so we’ll make up so data to use.
# Data was found in r-graph-gallery:

links_data <- data.frame(

source = c("A","A", "A", "A", "A", "J",

"B", "B", "C", "C", "D","I"),

target = c("B","B", "C", "D", "J","A",

"E", "F", "G", "H", "I","I")

)

highschool_dat <- ggraph::highschool

node_link <- specify_single(chart_type = "node-link",

data = "links_data")

# And plot!

plot(node_link)
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D.1.4 Spatial Charts

The associated data with the spatial charts is always a bit tricky because there
are a lot of ways that a user could bring such data in and it’s not possible for
the system to catch them all. So, some extra attention needs to be paid for
this chart type.

minCombinR does some work for you when you join spatial datasets, so
we can use that to add information. At a bare minimum, if you don’t just
want to draw the polygons of the shape file, but you want to add some
information to them, you need to make sure that the data you’ve loaded in
actually contains usable information. A lot of data does not, and it’s not
possible for minCombinR to fill in those gaps.
meta_tmp <- shape_dat@data$metadata

geo <- shape_dat@data$geometry

There are two ways to view a geographic map. First, working from shape
files:

First, let’s specify and plot all of the regions in the map together
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# metadata from the shape files is incomplete

# this is something you need to know and not something

# that the systems resolves for you. So, we'll work to clean

# up the metadata a bit more before we

spatial_chart <- specify_single(chart_type = "choropleth",

data = "shape_dat",

color = "admin0Name")

plot(spatial_chart)
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# metadata frome the shape files is incomplete

# this is something you need to know and not something

# that the systems resolves for you so, we'll work to clean

# up the metadata a bit more before

shape_meta<-shape_dat@data$metadata

#a little wrangling to put things under the same

#column header since they have slightly different names

tmp<-shape_meta$admin1Name

tmp[is.na(tmp)]<-as.character(shape_meta$admin1name[is.na(tmp)])

shape_meta$admin1Name<-tmp

#now add this with the sample data

tab<-tab_dat@data[[1]] %>% group_by(location) %>% tally()

tab<-left_join(shape_meta,tab,by=c("admin1Name"="location"))

tab[is.na(tab$n),]$n<-0
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#visualize

spatial_chart<-specify_single(chart_type="choropleth",

data="shape_dat",

metadata="tab",

color="admin0Name",

alpha="n")

plot(spatial_chart)
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Also, it possible just to see one individual map too, not just everything
together

Here’s an example where we compute some new data and specify and plot
the “Guinea” region
# Let's change things up a little bit and plot the incidence

# You can change the metadata

gin_meta <- gin_shape_dat@data$metadata

tab<-tab_dat@data[[1]] %>% group_by(location) %>% tally()

tab<-left_join(gin_meta,tab,by=c("admin1Name"="location"))

tab[is.na(tab$n),]$n<-0

spatial_chart<-specify_single(chart_type="choropleth",
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data="gin_shape_dat",

metadata = "tab",

color="admin0Name",alpha="n")

plot(spatial_chart)
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Second, is working from a co-ordinates from a tabular data file. The back-
ground raster image is supplied by the ‘Openstreetmaps’ package (and the
broader project). They do great work, consider supporting them if you like
this feature too.
# Geographic Map

map_chart <- specify_single("geographic map",

data = "tab_dat",

lat = "latitude",

long = "longitude",

color = "year")

plot(map_chart)
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D.1.5 Tree Charts

# Phylogenetic Tree

phyloTree_chart <- specify_single(chart_type = "phylogenetic tree",

data = "tree_dat")

plot(phyloTree_chart)

D.1.6 Genomic charts

A very standard alignment chart. This tends to still work if you’ve got
very long sequences. There are some options to simply the output too.
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It’s possible to pass a diff only parameter, which will only show variant
positions.
# Alignment

genome_chart <- specify_single(data = "genomic_dat",

chart_type = "alignment")

plot(genome_chart)
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We can also just look at the subset of the data, to make life a little bit easier.
# Alignment

diff_seq <- get_diff_pos(genomic_dat)

genome_chart <- specify_single(data = "genomic_dat",

chart_type = "alignment",
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show_pos=diff_seq[1:20])

plot(genome_chart)
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Sequence logo plots are also supported. These work well when there are a
small number of variant positions, but when there are many, it’s actually not
a very nice visual. The user will receive a prompt in those circumstances.
seqlogo_chart <- specify_single(data = "genomic_dat",

chart_type = "sequence logo")

plot(seqlogo_chart)
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See? Too many. Instead, it might be better to select a few specific regions to
show. In the first case, there will be a warning that nothing is very different
and the plot won’t show:
# A little helper function that extracts the similar sequences

diff_seq <- get_diff_pos(genomic_dat)

# Sequence Logo

seqlogo_chart <- specify_single(data = "genomic_dat",

chart_type = "sequence logo",

show_pos = diff_seq[1:10])

plot(seqlogo_chart)
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D.1.7 Temporal Charts

Sometimes data contains start and end dates and its desirable to show these
as different types of temporal charts.
There are two times of timelines that can be created:
1. A “gantt chart” type timeline that will show both ranges and single events.
2. A standard epidemic curve, which is essentially a very special case of a
histogram or bar chart, depending upon the user.
# Using the existing tabular data:

tmp <- tab_dat@data[[1]]

tmp$collection_date <- as.Date(tmp$collection_date)

# Let's add some end dates to keep it interesting:

tmp$collection_date_end <- tmp$collection_date +

sample(10:30,nrow(tmp), replace = TRUE)

tmp$collection_date_end <- sapply(

as.character(tmp$collection_date_end),

function(x){
if(runif(1)>0.9)

return(x)

return(NA)

})
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timeline_chart <- specify_single(chart_type = "timeline",

data = "tmp",

start = "collection_date",

end ="collection_date_end",

y = "site_id")

plot(timeline_chart)
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Since there’s a lot going on, let’s subset this to get a better view.
So here, only plotting those items that are ranges.
tmp_sub <- dplyr::filter(tmp,!is.na(collection_date_end))

timeline_chart <- specify_single(chart_type = "timeline",

data = "tmp_sub",

start = "collection_date",

end = "collection_date_end",

y = "site_id",

color = "country")

plot(timeline_chart)
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D.1.8 Images

Sometimes it’s desirable to use image data, these can be from interior maps
or from gel images. Getting image data to work is a little bit more in-
volved because it requires some annotation data that allows you to link pixel
space to something useful. There’s a small application embedded within
minCombinR that lets you do that.

Here’s a workflow with a few different types of images:
#Load in interior map image data into minCombinR's input_data fcn

interior_img <- input_data(file =

system.file("extdata",

"random_interior_map.tiff",package =

"mincombinr"),

dataType = "image")
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It’s still possible to simply draw a plot that has no metadata
img_chart <- specify_single(chart_type = "image",

data = "interior_img")

plot(img_chart)

But it’s nice to do something more useful with a picture. The error you saw
when loading the data is to remind the user that there needs to be some image
file loaded. To add metadata, we’ll run the special app. Note that in building
this markdown file, this block of code is not run, however, should be done
by the user if they would like to add some metadata.
interior_img <- annotate_image(interior_img)

# The annotations are automatically there now:

metadata <- interior_img@data$metadata

save(file="../inst/extdata/img_meta.rds",metadata)
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# We'll load an already annotated image to keep things going

# Normally, the user doesn't do this, but we have to do so because

# the previous line of code was not run in the markdown notebook

load(file = system.file("extdata", "img_meta.rds",

package = "mincombinr"))

interior_img@data$metadata<-metadata

# Now specify and plot the interior map

img_chart <- specify_single(chart_type = "image",

data = "interior_img")

plot(img_chart)

Let’s do something more interesting and color these regions:
# Let's add some arbitrary case counts to the room

interior_img@data$metadata$counts <- c(100,35)

# Now specify and plot the interior map

img_chart <- specify_single(chart_type = "image",
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data = "interior_img",

color = "counts")

plot(img_chart)
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The other most common type of image is a gel image - this too can now be
part of the analysis fun.
gel_img <- input_data(file = system.file("extdata",

"gel_image.tiff",

package = "mincombinr"),

dataType = "image")

gel_img_chart <- specify_single(chart_type = "image",

data = "gel_img")

plot(gel_img_chart)
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Just like the interior map, this block of code is not run by the notebook but
should be used to annotate an image as a user.
gel_img <- annotate_image(gel_img)

metadata <- gel_img@data$metadata

metadata$element_name <- paste("item", 1:nrow(metadata), sep = "_")

save(metadata,file="../inst/extdata/gel_img_meta.rds")

# Just like the interior map, we will load in an

# annotated image for the sake of demonstration:

load(file = system.file("extdata",

"gel_img_meta_shipped.rds",

package = "mincombinr"))

gel_img@data$metadata <- metadata

gel_img@data$metadata$rnd_class <- sample(c("Resistant",

"Susceptible"),

replace = TRUE, size = nrow(metadata))
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#Now we specify and plot the gel image

gel_chart <- specify_single(data = "gel_img",

chart_type = "image",

color = "rnd_class")

plot(gel_chart)
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D.2 Generating Combinations of Charts with
minCombinR

First, let’s store the specifications for a few charts that we want to combine
together
# Bar chart

bar_chart <- specify_single(chart_type = "bar",

data = "tab_dat",

x = "country")
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# Phylogenetic Tree

phyloTree_chart <- specify_single(chart_type = "phylogenetic tree",

data = "tree_dat")

# Scatter Plot

scatter_chart <- specify_single(chart_type = "scatter",

data = "tab_dat",

x = "latitude",

y = "longitude",

title = "Ebola Scatter Plot")

# Geographic Map

map_chart <- specify_single("geographic map",

data = "tab_dat",

lat = "latitude",

long = "longitude")

D.2.1 Unaligned

Unaligned combinations can be used when you just want to put a bunch of
plots together and there are no spatial or visual linkages between the plots
themselves.
# Specify that you want to combine the bar_chart,

# phyloTree_chart and scatter_chart

mg_combo <- specify_combination(combo_type = "unaligned",

base_charts = c("bar_chart",

"phyloTree_chart",

"scatter_chart"))

# Now plot it!

plot(mg_combo)
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D.2.2 Small Multiples

Small multiple charts are visually linked because they show the same un-
derlying chart type while showing different subsets of the data. Another
common name for this is facets.
# Specify the base chart type with all of the

# data that you wish to use:

scatter_chart <- specify_single(chart_type = "scatter",

data = "tab_dat",

x = "latitude", y = "longitude")

# Now specify the small multiple combination

sm_combo_scatter<-specify_combination(combo_type= "small_multiple",

base_charts= "scatter_chart",

facet_by= "country")

plot(sm_combo_scatter)
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sm_combo_bar <- specify_combination(combo_type = "small_multiple",

base_charts = "bar_chart",

facet_by = "country")

plot(sm_combo_bar)
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# Let's try a more interesting bar_chart small multiple

bar_chart_alt <- specify_single(chart_type = "bar",

data = "tab_dat", x = "year",

title = "All together")

sm_combo_bar_alt<- specify_combination(

combo_type= "small_multiple",

base_charts= "bar_chart_alt",

facet_by= "country")

plot(bar_chart_alt)
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plot(sm_combo_bar_alt)
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Other chart types cannot be easily subsetted.
For example, it would not be meaningful to make a small multiple of a phy-
logenetic tree while only showing a subset of the tree. The same is generally
true for maps, and networks.
Although there are ways to truly subset them, it’s messy and the whole un-
derlying structure matters, so minCombinR will give you the whole network
structure.

In the current implementation of minCombinR, there needs to be some
tabular data associated with non-tabular data in order to understand what
should be visualized in the first place.
# Tree data

tree_dat <- input_data(file = system.file("extdata",

"ebov_tree.nwk",

package = "mincombinr"),

dataType = "tree")

364



tree_dat_meta <- input_data(file = system.file("extdata",

"ebov_tree.nwk",

package = "mincombinr"),

dataType = "tree",

metadata = system.file("extdata",

"ebov_metadata.csv",

package = "mincombinr"))

# Specify the simple tree

tree_chart <- specify_single(chart_type = "phylogenetic tree",

data = "tree_dat_meta")

# Let's see what it looks like without facetting

plot(tree_chart)

# Now let's specify and plot a small multiples combination

sm_combo_tree <- specify_combination(combo_type = "small_multiple",

base_charts = "tree_chart",

facet_by = "country")

plot(sm_combo_tree)
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SLE LBR

GIN

D.2.3 Colour Aligned Combinations

Finally, it could be interesting to link several different chart types together
by color.

In the above examples, we may want to link the phylogenetic tree with the
timeline by their countries.

For the non-tabular data, it’s important to have some associated metadata,
otherwise, it is not possible to link information. It is up to the user to
establish that two variables are actually linkable by the same variable. Some
of the code form the spatial aligned combination is borrowed to see if two
datasets are even linkable to help with the color linkage.

First scenario - no metadata provided for the tree
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minCombinR will try to find if there are linkages between the tabular data
in one chart and non-tabular data in another chart. If there are EXACT
MATCHES, it will link the tabular data to the tree’s metadata
# Specify the phylogenetic tree and histogram

phyloTree_chart <- specify_single(chart_type = "phylogenetic tree",

data = "tree_dat")

epicurve <- specify_single(chart_type = "histogram",

data = "tab_dat",

x = "month")

# Specify that you want to combine with color

color_combo <- specify_combination(combo_type = "color_aligned",

base_charts= c("phyloTree_chart",

"map_chart",

"epicurve"),

link_by = "country")

# Now plot!

plot(color_combo)
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D.2.4 Spatially Aligned Combinations

Spatially aligned combinations line up charts so that they can be read across
horizontally and vertically. Critically, this isn’t an arbitrary concatenation of
charts, but rather, chart are aligned so that the same data are read across.
scatter_chart <- specify_single(chart_type = "scatter",

data = "tab_dat",

x = "month",

y = "site_id")

scatter_chart_two <- specify_single(chart_type = "scatter",

data = "tab_dat",

x = "country",

y = "site_id",

title = "Cases by country")

spatial_aligned_combo<-specify_combination(

combo_type= "spatial_aligned",

base_charts = c("phyloTree_chart",

"scatter_chart",

"scatter_chart_two"))

plot(spatial_aligned_combo)
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This example produce an error (and this is the right thing for it to do) because
pie charts cannot be part of spatially aligned combinations. Pie chart will
be automatically removed from the specifications with a warning message to
the user
# Specifications

pie_chart <- specify_single(chart_type = "pie",

data = "tab_dat",

x = "country")

spatial_aligned_combo<-specify_combination(

combo_type = "spatial_aligned",

base_charts = c("phyloTree_chart",

"scatter_chart",

"scatter_chart_two",

"pie_chart"))

## [1] "The following chart types cannot form a composite
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combination: pie_chart. Composite combination will be

formed with the following charts only: phyloTree_chart,

scatter_chart, scatter_chart_two"

# Plot

plot(spatial_aligned_combo)
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Let’s try combining a phylogenetic tree, bar chart, and scatter chart
# Specifications

bar_alt <- specify_single(chart_type = "bar", data = "tab_dat",

x = "site_id",

y = "month",

rm_x_label=TRUE)

spatial_aligned_combo <-specify_combination

(combo_type = "spatial_aligned",

base_charts = c("phyloTree_chart",

"bar_alt",

"scatter_chart_two"))
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# Plot

plot(spatial_aligned_combo)
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It also works when there isn’t a tree involved
spatial_aligned_combo<- specify_combination(

combo_type = "spatial_aligned",

base_charts = c("bar_alt",

"scatter_chart",

"scatter_chart_two"))

plot(spatial_aligned_combo)
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Here’s a combination with a genomic map
# Genomic chart

# For illustrative purposes, show fewer positions

diff_seq <- get_diff_pos(genomic_dat)

genome_chart <- specify_single(data = "genomic_dat",

chart_type = "alignment",

title="Genome Alignment",

show_pos=diff_seq[1:20])

# Timeline, with some fake end_dates and using

# the existing tabular data

time_dat <- tab_dat@data[[1]]

time_dat$collection_date <- as.Date(time_dat$collection_date)

# Let's add some end dates to keep it interesting

time_dat$collection_date_end <- time_dat$collection_date +

sample(10:30,nrow(time_dat), replace = TRUE)
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time_dat$collection_date_end <- sapply(as.character(

time_dat$collection_date_end

),

function(x){
if(runif(1)>0.9)

return(x)

return(NA)

})

time_dat <- dplyr::filter(time_dat,!is.na(collection_date_end))

# Specifications

timeline_chart <- specify_single(chart_type = "timeline",

data="time_dat",

start = "collection_date",

end ="collection_date_end",

y = "site_id",

title="Timeline")

spatial_aligned_combo <- specify_combination(

combo_type = "spatial_aligned",

base_charts = c("phyloTree_chart",

"scatter_chart_two",

"timeline_chart",

"genome_chart"))

spatial_aligned_combo <- specify_combination(

combo_type= "spatial_aligned",

base_charts= c("phyloTree_chart",

"genome_chart"))

plot(spatial_aligned_combo)
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Note that in the above case, genomic data is not available for all of the items
in the phylogenetic tree. In fact, our source data is for Guinea only. The
composite algorithm is able to adjust in instances where one dataset is a
perfect subset of the other. It is up to the user to ensure this.
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Appendix E

GEViTRec Supplemental
Materials

start_time <- Sys.time()

set.seed(416)

library(dplyr)

library(ggplot2)

library(igraph)

library(ggraph)

# for displaying the resulting and loading the data

library(mincombinr)

#loading gevitrec

devtools::load_all()

#Table data

tab_dat<-input_data(file = system.file("./inst/extdata/",

"ebov_metadata.csv",

package = "gevitRec"),

dataType = "table")

#Tree data
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tree_dat<-input_data(file = system.file("./inst/extdata/",

"ebov_tree.nwk",

package = "gevitRec"),

dataType = "tree")

#Genomic data

genomic_dat<-input_data(file = system.file("./inst/extdata/",

"ebov_GIN_genomic.fasta",

package = "gevitRec"),

dataType = "dna")

#Shape files

#Shape files require that .shp,.shx,and .prj

# files at a minimun to be in the same directory

#to add metadata to the shape file, you can also add .dbf files

gin_file<-"gin_admbnda_adm1_ocha_itos.shp"

lbr_file<-"lbr_admbnda_adm1_ocha.shp"

sle_file<-"sle_admbnda_adm1_1m_gov_ocha_20161017.shp"

gin_shape_dat<-input_data(file =

system.file("./inst/extdata/",

gin_file,

package = "gevitRec"),

dataType = "spatial")

lbr_shape_dat<-input_data(file =

system.file("./inst/extdata/",

lbr_file,

package = "gevitRec"),

dataType = "spatial")

sle_shape_dat<-input_data(file =

system.file("extdata/",

sle_file,

package = "gevitRec")

,dataType = "spatial")

#clean up the metadata a bit and make it a little more interesting

tmp<-all_spatial@data$metadata

idx_missing<-which(is.na(tmp$admin1Name))

tmp[idx_missing,]$admin1Name<-as.character(tmp[idx_missing,]$admin1name)
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idx_drop<-apply(tmp,2,function(x){all(is.na(x))})

tmp<-tmp[,!idx_drop]

#now add some counts, because I can..

case_counts<-tab_dat@data$table %>%

dplyr::group_by(country,location) %>%

tally() %>%

mutate(case_count = n)

colnames(case_counts) <- c("minID","admin1Name","n","case_count")

tmp<-left_join(tmp,case_counts[,c(1,2,4)])

tmp[is.na(tmp$case_count),]$case_count<-0

tmp<-dplyr::select(tmp,admin1Name,

case_count,admin0Name,

minPolyID,minID)

all_spatial@data$metadata<-tmp

E.1 Data Harmonization

harmon_obj<-data_harmonization(tab_dat,tree_dat,

genomic_dat,all_spatial)

#plotting the entity graph

view_entity_graph(harmon_obj[["entityGraph"]])

E.2 Generate Specifications

component_specs<-get_spec_list(harmon_obj)
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Figure E.1: GEViTRec entity graph

E.3 Generated Views

plot_view(component_specs,view_num=1)

plot_view(component_specs,view_num=2)

plot_view(component_specs,view_num=3)

plot_view(component_specs,view_num=4)

plot_view(component_specs,view_num=5)

end_time <- Sys.time()

print(end_time - start_time)

## Time difference of 17.36386 secs
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Figure E.2: GEViTRec generated view #1
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Figure E.3: GEViTRec generated view #2
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Figure E.4: GEViTRec generated view #3
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Figure E.5: GEViTRec generated view #4
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Figure E.6: GEViTRec generated view #5

383


	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acknowledgments
	Dedication
	1 Introduction
	1.1 Situating My Research in Prior Work
	1.2 Research Overview
	1.2.1 Chronology

	1.3 Summary of Research Projects and Contributions
	1.3.1 Chapter 2: Regulatory and Organizational Constraints in Visualization Design and Analysis
	1.3.2 Chapter 3: Evidence-based design
	1.3.3 Chapter 4: Adjutant
	1.3.4 Chapter 5: GEViT
	1.3.5 Chapter 6: minCombinR
	1.3.6 Chapter 7: GEViTRec
	1.3.7 Summary of Contributions


	2 On Regulatory and Organizational Constraints in Visualization Design and Evaluation
	2.1 Introduction
	2.2 Defining External Constraints
	2.2.1 Implications for Evaluation
	2.2.2 Example: Hypothesis Generation Considered Harmful
	2.2.3 Example: Agile Development Considered Harmful

	2.3 Prior Work
	2.3.1 Visualization Methodologies
	2.3.2 External Disciplines

	2.4 Guidelines for Evaluating External Constraints
	2.4.1 Defining Stakeholder Roles
	2.4.2 Generation of Additional Artifacts
	2.4.3 Methods

	2.5 Case Study: Healthcare
	2.5.1 Constraints in Healthcare
	2.5.2 Lessons Learned in Developing a TB Decision Support Tool


	3 Evidence Based Design
	3.1 Introduction
	3.1.1 Human-Centered Design in the Clinical Laboratory
	3.1.2 Collaboration Context â�� COMPASS-TB

	3.2 Materials and Methods
	3.2.1 Overview of Design Study Methodology
	3.2.2 Discovery Stage
	3.2.3 Design Stage
	3.2.4 Implementation Stage

	3.3 Results
	3.3.1 Experts Emphasized Prioritizing Information and Revealed Constraints
	3.3.2 Experts Vary in Their Perception of Different Data Types
	3.3.3 WGS Data is Vital, but Some Lack Confidence in its Interpretation
	3.3.4 Respondent Consensus Suggests a Role for WGS in Diagnosis and Treatment Tasks
	3.3.5 Prototyping Via a Design Sprint Produces a Range of Design Alternatives
	3.3.6 The Design Choice Questionnaire Quantifies Participant Preferences for Specific Design Elements
	3.3.7 Qualitative Data Affords Additional Insights into Report Design
	3.3.8 Developing a Final Report Template

	3.4 Discussion
	3.5 Conclusions

	4 Adjutant
	4.1 Introduction
	4.2 Implementation Details
	4.3 Usage Scenario
	4.4 Conclusion

	5 GEViT
	5.1 Introduction
	5.2 Methods
	5.2.1 Developing a Method for the Systematic Analysis of Data Visualizations
	5.2.2 A Systematic Analysis of Data Visualizations from the Infectious Disease Genomic Epidemiology Research Literature
	5.2.3 Visualization Analysis

	5.3 Results
	5.3.1 Literature Analysis
	5.3.2 Visualization Analysis

	5.4 Discussion
	5.4.1 Implications of our Findings for Visualization Design
	5.4.2 Implications of our Findings for the Genomic Epidemiology Community

	5.5 Conclusion

	6 minCombinR
	6.1 Introduction
	6.2 Domain Motivation and Design Decisions
	6.2.1 GEViT Findings
	6.2.2 Design Decisions

	6.3 Related Work
	6.3.1 Stand-Alone Applications
	6.3.2 Charting Libraries and Packages
	6.3.3 Domain-Specific Tools

	6.4 Design of minCombinR
	6.4.1 From Typology to Toolkit
	6.4.2 Gradual Binding Architecture
	6.4.3 Specification
	6.4.4 Creation and Integration 
	6.4.5 Arrangement and Display

	6.5 Implementation
	6.5.1 User Functions and Specifications
	6.5.2 Supported Data and Chart Types
	6.5.3 Combination Control Flows

	6.6 Results
	6.6.1 Showcasing minCombinR on Different Datasets
	6.6.2 Comparison to Existing Tools

	6.7 Discussion and Future Work
	6.8 Conclusion

	7 GEViTRec
	7.1 Introduction
	7.2 Background
	7.3 Data Reconnaissance and Task Wrangling
	7.3.1 Operational Definitions
	7.3.2 Conceptual Framework

	7.4 Formalisms for Visualization Recommendation
	7.4.1 Domain Prevalence Design Spaces
	7.4.2 Data Model
	7.4.3 Visualization Specification

	7.5 General Algorithm
	7.5.1 Mapping From Datatypes to Visual Encodings with a Design Space
	7.5.2 Data Harmonization and Entity Graph Generation
	7.5.3 Ranking Paths Within the Entity Graph
	7.5.4 Generating Specifications
	7.5.5 Composing Views for Display

	7.6 Implementation of GEViTRec
	7.7 Results
	7.8 Related Work
	7.8.1 Rule-Based Approaches
	7.8.2 Ontology-Based Approaches
	7.8.3 Machine Learning
	7.8.4 Stack Comparisons

	7.9 Discussion and Future Work
	7.9.1 Generalizability
	7.9.2 Is Relevance Relevant?

	7.10 Conclusion

	8 Reflections and Conclusion
	8.1 Reflections on Research Projects and Contributions
	8.1.1 Regulatory and Organizational Constraints
	8.1.2 Evidence Based Design
	8.1.3 Adjutant
	8.1.4 GEViT and the GEViT Gallery
	8.1.5 minCombinR
	8.1.6 GEViTREC

	8.2 Reflecting on the Merits and Challenges of Interdisciplinary Research
	8.3 Overall Limitations and Future Work
	8.4 Concluding Remarks

	Bibliography
	A Evidence Based Design Supplemental Materials
	A.1 Supplemental Figures
	A.2 Supplemental Tables
	A.3 Justification for Final Design Choices by Section
	A.3.1 Analysis of Quantitative and Qualitative Results
	A.3.2 ISO15189 Requirements

	A.4 Task and Data Questionnaire Online Survey
	A.5 Design Choice Questionnaire Online Survey

	B Adjutant Supplemental Materials
	B.1 Adjutant Implementation Details
	B.2 Adjutant in Action
	B.2.1 t-SNE with Simulated Data
	B.2.2 Investigating Adjutant with Real Data
	B.2.3 Alternative Approaches


	C GEViT Supplemental Materials
	C.1 Supplemental Methods for Visualization Analysis
	C.2 Supplemental Figures
	C.3 Supplemental Tables

	D minCombinR Supplemental Materials
	D.1 Generating Simple Charts with minCombinr
	D.1.1 Common Statistical Charts
	D.1.2 Colour Charts
	D.1.3 Relational Charts
	D.1.4 Spatial Charts
	D.1.5 Tree Charts
	D.1.6 Genomic charts
	D.1.7 Temporal Charts
	D.1.8 Images

	D.2 Generating Combinations of Charts with minCombinR
	D.2.1 Unaligned
	D.2.2 Small Multiples
	D.2.3 Colour Aligned Combinations
	D.2.4 Spatially Aligned Combinations


	E GEViTRec Supplemental Materials
	E.1 Data Harmonization
	E.2 Generate Specifications
	E.3 Generated Views


