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Abstract 

 

This thesis presents a unified approach for better understanding the failure mechanisms associated 

with naturally fractured rock masses. With the advances in computing power, it is now possible to 

simulate rock engineering problems in a more realistic manner by including the effects of natural 

fracture networks. By integrating discrete fracture networks (DFN) with hybrid finite-discrete 

element models (FDEM), it is possible to fully account for block kinematics, fracturing processes 

and to capture anisotropic behaviour in an explicit manner. Key contributions include:  

i) Developing techniques to provide geometrical and statistical analysis of discrete fracture 

networks prior to implementation in geomechanical software; 

ii) Developing techniques that allow for direct integration of discrete fractures in FDEM models 

by solving key issues relating to generating good quality finite element meshes and minimizing 

the presence of distorted elements.   

iii) Developing a series of techniques to improve on the analysis of FDEM outputs; the proposed 

methods are capable of calculating the length of induced fractures and tracking whether these 

fractures interact with existing fractures to form new blocks.  

iv) Developing methods to capture block formation directly from simulation mesh data, skipping 

the simplification and inaccuracy of fracture lines, by utilizing graph data structures and graph 

theory. 

v) Developing methods to analyze blocks spatially within each timestep, and more importantly, 

introducing techniques relating those blocks and their analysis temporally, across timesteps. 

The entire set of newly developed techniques is applied to investigate the behaviour exhibited in 

simulated pillar models using existing empirical and numerical methods to make the problem more 
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tractable and allow calibration of the results. The innovative techniques developed in this thesis 

are generic and could be applied to a variety of rock engineering problems in which it is important 

to determine the relative role of brittle and structurally controlled failures, including block caving 

fragmentation, and slope and tunnel stability analysis.  

 

The techniques developed in this thesis are defined as sets of rules to be followed in certain order 

and they provide the ground work needed to utilize machine leaning algorithms to investigate the 

relationship between initial DFN configuration and structural and brittle damage.  
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Lay Summary 

 

This thesis explores the process and potential implications including mathematical representation 

of natural fracture systems, termed discrete fracture networks (DFN), with advanced computer 

models capable of simulating stress-induced fracturing arising from engineering activities (e.g., 

underground excavations). Current methods of analyzing stress-induced fracturing are presented, 

together with their limitations, to highlight the need for improved methods. These are developed 

to provide improved static fracture analyses. DFN and mesh cleaning algorithms are introduced to 

provide good quality finite element meshes that reduce associated errors in the simulation results. 

Rock mass failure mechanisms for rock engineering projects can be both structurally controlled 

and stress-induced brittle failures. This thesis demonstrates the effectiveness of new approaches to 

analyze rock mass failure and how it is possible to relate the observed mechanisms to the initial 

fracture configuration (spatially and temporally). Insights are provided into future integration of 

the proposed methodologies with machine learning.  
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Chapter 1: Introduction 

 

1.1 Problem Statement 

The mechanical behaviour of fractured rock masses depends on three fundamental parameters: i) 

geological structures, including the intensity, orientation and size of natural fractures; ii) stress, 

including the relationship between in-situ and induced stresses, which may result in new cracks to 

be created and existing fractures to be extended; and iii) strength, including that of the intact rock 

material in between fractures and the shear strength of the fractures. The use of an integrated 

discrete fracture network (DFN) and finite-discrete element method (FDEM) numerical analysis 

allows to fully capture the interdependence of those parameters. However, a comprehensive 

characterization of failure mechanisms at various scales using dedicated DFN-FDEM techniques 

requires the development of a “unified approach” to ensure that model generation becomes a more 

objective process, and more importantly allows to quantify modelling outputs, including pre- and 

post- fracture properties, indicators of fracture network characterization and block fragmentation.  

 

This thesis introduces new techniques for DFN analysis and integration with FDEM software; 

furthermore, new post-processing capabilities have been added with the ability to correlate fracture 

traces in the pre-existing DFN model, to newly generated fractures and the resulting fully formed 

blocks (parent-to-child genealogical tree approach). The latter has far reaching implications as it 

lays the foundations for machine learning applications for categorizing a variety of rock failure 

mechanisms. 
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1.2 Research Objectives 

The primary objectives of this research are: 

1. To develop improved means to fully analyze discrete fracture network models to eliminate 

the need for manual editing and maximize mesh quality when importing them into 

numerical simulation software; 

2. To eliminate or significantly complement the use of image analysis or qualitative 

visualization of “screen-capture (snapshots)” in understanding the generation of newly-

created fractures and/or newly-created blocks; 

3. To establish the relationship between pre-existing fractures, stress-induced fractures and 

newly-generated blocks; and 

4. To quantitatively categorize rock mass to various failure modes including brittle failure, 

structurally-controlled failure, and combinations of the two. Also, a quantitative approach 

has been adopted for failure characterization.  

 

By accomplishing these research objectives, the following important contributions are expected: 

1. The development of advanced geometrical and optimization methodologies to improve on 

key problems that to date have limited the use of DFN models in advanced geomechanical 

modelling, including use with FEM, DEM and FDEM modelling approaches. The newly 

developed techniques will offer a robust and fast solution to the problem of considering 

multiple generations of the same DFN model to account for the variability that is inherent 

in stochastic models such as DFNs;  

2. The development of new techniques that enable spatial and temporal analysis of FDEM 

simulation output;  



 3 

3. The development of methodologies that allow the reconstruction of newly-generated 

fractures within the finite element mesh, thus calculating induced fractures intensity 

indications (e.g., 𝐷"$, total length of induced fractures per area; 𝐼"#, total number of 

fractures intersection per area) and relating these to the initial fracture network;  

4. The development of new techniques that capture the block formation and analyze their 

properties. Furthermore, new techniques will be introduced to relate these blocks 

temporally, in a parent-to-child genealogical tree approach, in addition to relating them to 

the blocks in the initial fracture network; and  

5. The development of new techniques (maps and indices) and methodologies to establish the 

relationship between DFN configurations and the resulting rock failure mechanisms. These 

new techniques will include brittle-block tracking tree and brittle fracture maps.  

 

1.3 Thesis Structure 

This thesis consists of seven chapters and two appendices. The present chapter serves as an 

introduction to the entire dissertation, while chapter 7 provides a discussion and recommendations 

for future research. One peer-reviewed journal paper was submitted and published during the time 

required to complete the dissertation, in addition to four conference papers that underwent minor 

peer-reviewing and two papers that are to be submitted to international peer-refereed journals. The 

thesis structure is presented graphically in Figure 1, and is detailed as follows:  

 

• Chapter 2 reviews some of the fundamental aspects of Discrete Fracture Network (DFN) and 

characterization in which various DFN properties are described and a chronological review of 

block calculation and analysis is also presented. A review of optimization techniques, block 
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characterization and numerical modelling in rock mechanics, with specific attention to 

numerical modelling of fractured rock masses is also completed. State of the art numerical 

methods for rock mechanics problems are introduced, with a discussion on the difference 

between continuum and discontinuum methods and on the use of numerical methods to 

investigate brittle failure of rock.  

• Chapter 3 reviews the computational characteristics of the hybrid software Elfen and Irazu and 

shows their application in modelling a simple laboratory sample with two pre-existing 

fractures. This chapter highlights the use of the FDEM method to capture the various stages 

involved in brittle fracturing of a laboratory rock sample from crack initiation to crack 

coalescence, propagation and failure. Also, this chapter describes preliminary work by the 

author exploring problematic areas in the use of the DFN-FDEM numerical modelling 

approach. The results of this chapter prompt new questions that are subsequently addressed in 

chapters 4, 5 and 6 of this thesis. 

• Chapter 4 presents innovative new algorithms for analyzing and cleaning complex discrete 

fracture networks using geometrical and Monte Carlo simulation methods. These analytical 

algorithms provide quantitative metrics for measuring various geometrical DFN properties. 

The DFN cleaning algorithms provide a suitable DFN which can be implemented within a 

variety of numerical modelling software, while minimizing the changes to the initial DFN. 

 

• Chapter 5 presents new innovative computational and graph analysis algorithms to compute 

fracture lines and blocks in geomechanical modelling software, in addition to analyzing them.  
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• Chapter 6 demonstrates the applicability of the developed methods described in the first four 

chapters to the simulation of sixteen pillar models with four of these models being chosen for 

further detailed analysis and failure mechanism investigations.  

 

 

Figure 1.1 Research and thesis structure.  
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Chapter 2: A Review of Numerical Analysis Techniques 

 

This chapter provides a review of numerical approaches for rock engineering problems, with 

emphasis on the use of discrete fracture network (DFN) models when integrated with 

geomechanical models. A large number of numerical models have been developed in the past 20-

30 years; this chapter does not aim to describe those numerical models and their mathematical 

formulations in detail, rather the objective is to provide the required framework to understand the 

driving ideas that form the foundation of the current research project.  

 

2.1 Discrete Fracture Network (DFN) Models 

DFN modelling is the process of simulating realistic fracture networks based on statistical 

distributions obtained from field surveys of key properties such as fracture orientation, fracture 

length and fracture intensity. DFN models could be generated using either a fully stochastic 

approach, or using a hybrid stochastic-deterministic approach, whereby faults and bedding planes 

may be modelled deterministically, while smaller-scale features (e.g. joints) would be simulated 

using field based statistical distributions (e.g. Schlotfeldt et al., 2018; Miyoshi et al., 2018, Zuo et 

al., 2019).   

 

As discussed in Elmo et al. (2015), it is important to consider the limitations that are inherently 

introduced in the analysis by the sampling methods used to derive the key statistical information 

for DFN analysis. The stochastic nature of DFN models is such that there are an infinite number 

of equiprobable fractures simulations that could be generated based on the mapped data. This is a 

key aspect of the integration of DFN models in geomechanical models and the focus of Chapter 4, 
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which presents an example of the importance of better characterizing the inherent variability 

associated with the stochastic analysis of fracture networks and the associated implications for 

stability analyses. DFN models are at the core of the current research, therefore it is important to 

review fundamental principles of DFN modelling. These are briefly described in the following 

sections. 

 

2.1.1 Fracture Orientation 

Fracture orientation is usually measured as the dip angle (measured from the horizontal) and the 

azimuth (dip direction) of the line that represents the steepest inclination across the fracture plane.  

Note that in this thesis the terms “discontinuity” and “fracture” and “joint” are used as synonyms 

to define structural features other than bedding planes and faults, independently of their genesis.  

Fractures may be grouped into sets based on their relative orientation, and well accepted 

hemispherical distributions such as Fisher, Bingham, bivariate Fisher or bivariate Bingham could 

be used to represent a symmetrical distribution of the fracture orientations around a given mean 

(Priest, 1993). The degree of clustering is determined using the dispersion coefficient (K), whereby 

a larger K value indicates a well-defined cluster, Figure 2.1. The Fisher probability density 

function is given in Equation 1 (Priest, 1993), where 𝜃 denotes the angular deviation from 

discontinuity orientation value (Dip). 

 

𝒇(𝜽) = 	𝑲𝐬𝐢𝐧𝜽𝒆
𝑲𝐜𝐨𝐬𝜽

𝒆𝑲N𝒆O𝑲
         [Eq. 1] 

 

So-called “bootstrapping” techniques could be used to describe orientation data that does not 

conform to any specific statistical method (Elmo et al., 2015; Schlotfeldt et al., 2018). The 
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“bootstrapping” technique is described in (Elmo et al., 2015) as a method whereby multiple 

random sampling is used to create a pseudo-replicate sample of fracture orientations. 

 

          
 

Figure 2.1. Example of orientation distributions (reproduced from the FracMan manual, Golder, 2018). 

 

2.1.2 Fracture Size 

The size of a fracture can be described by either its length or its equivalent radius, Figure 2.2. The 

two definitions are not equivalent, and care should be taken not to confuse the two definitions 

when generating a DFN model (Elmo et al., 2015). Measurements of fracture length can be 

obtained by mapping 2D rock exposures, using conventional (scanline or window mapping) or 

remote sensing mapping techniques, in which case the fracture size is often measured as the radius 
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of a disc inscribing the mapped feature (e.g. Vivas et al., 2013; Tannant, 2015). Despite its 

geometrical definition (radius), fracture size measured using remote sensing techniques does not 

coincide with the actual equivalent radius of the fracture whose trace length is being measured. 

Theoretical models exist that define the diameter of an idealized fracture with elliptical shape (e.g. 

Mauldon, 1998; Zhang and Einstein, 1998), or the edge length of a conceptual square fracture 

(Jennings, 1970).  However, in practical applications, persistence is the length of the joint which 

intersects the scanline or mapping window (e.g. Zhang and Einstein, 1998). 

 

 

Figure 2.2. Difference between mapped fracture length (data source) and fracture radius (required DFN input) 

(Elmo et al., 2015). 

 

2.1.3 Fracture Intensity 

There are different ways to define fracture intensity. In this thesis, we adopt the method developed 

by Dershowitz and Herda, (1992), also known as the 𝑃QR intensity system (Figure 2.3), in which 

the subscript i indicates the dimensions of sample, and subscript j indicates the dimensions of 

measurement. Using this system, the volumetric fracture intensity (𝑃S") is defined as the ratio of 

total fracture area to unit volume. 𝑃S" is a true intrinsic rock mass property; however, due to the 
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impossibility of measuring fracture area directly in the field, it can only be measured based on 

correlations with 1D data (𝑃$#, linear fracture intensity) or 2D data (𝑃"$, areal fracture intensity) 

using a simulated sampling methodology (Dershowitz and Herda, 1992). Examples are given in 

Elmo, 2006 and Elmo et al., 2015). 

 

Figure 2.3.  𝑷𝒊𝒋 intensity system used in DFN generation (in Elmo, 2006; originally modified after Dershowitz 

and Herda, 1992). 

 

2.1.4 Fractures Intersections 

The concept of fractures intersections is of a great importance as it governs the interaction between 

fractures and the mechanical behaviour of a rock mass. Various attempts have been made in the 

literature to ensure an effective quantification of fracture intersection. In this thesis, we adopt the 

definition given as part of the proprietary DFN code FracMan (Golder, 2018), which was used as 

part of this research to synthetize DFN models and obtain 2D fractures traces.   
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Intersections can be differentiated based on whether a fracture terminates against another fracture 

(T type) or fully intersect each other (X type), Figure 2.4. Fractures intersections (X and T types) 

will be used in chapter 4 as an indicator of fracture connectivity.  

 

Figure 2.4. Definition of T and X types of intersections (reproduced from the FracMan manual, Golder 

Associates, 2018). 

 

As shown in Figure 2.5 below, collecting fracture intersections data may be rendered challenging 

by field conditions, since it would depend on the ability to clearly identify and measure all fracture 

traces within a specific window. This would also impact the use of fracture intersections as an 

indicator to validate a DFN model; indeed, validation of a DFN model is generally based on some 

type of areal or linear intensity (see also Section 2.1.3), in which case it is assumed the number of 

fracture intersections in the validated DFN model would approximate the one of the fracture 

network in the field.  

 

As mentioned earlier, fracture network connectivity plays a major role in determining the failure 

mechanisms a rock mass may undergo when subjected to a set of external forces. Early attempts 

to measure network connectivity with respect to the permeability of a discrete fracture network 

can be traced back to Robinson (1984), who used percolation theory. Berkowitz (1995) also used 

percolation theory to calculate the probability of fracture connectivity using power-law 

relationships between numbers of individual fractures. 
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Figure 2.5. Example of rock exposures, which show the difficulty to obtain precise measurements of fracture 

intersections (figure on the left reproduced from Pine and Harrison, 2003; figure on the right, Elmo, personal 

communication, 2019). 

 

Zhang et al. (1992) developed a connectivity index using several fracture parameters; an example 

is given in Figure 2.6. (a). The idea behind the approach used by Zhang et al. (1992) has been 

adapted in chapter 4, together with the definition of X- and T-type of intersection shown in Figure 

2.4, to define the connectivity of a DFN network generated using the DFN code FracMan. Other 

authors that have studied network connectivity include Meyer and Einstein (2002), Manzocchi 

(2002), and Darcel et al. (2003). Xu et al. (2006) introduced a connectivity index integrated with 

the concept of connectivity maps (Figure 2.6. b).  
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(a) (b) 

Figure 2.6. Examples of the approaches used by a) Zhang et al. (2002); and b) and Xu et al. (2006) to develop 

a connectivity index for DFN models.  

 

Heatmaps are visualization techniques frequently used to show events occurrence or density; 

various smoothing algorithms exist that could be used to create a heatmap. In this thesis the Kernel 

Density Estimation (KDE) is used to create intersection density maps. Early work on KDE 

algorithms can be traced back to Wand and Jones (1995); the technique has evolved to become 

one of the most widely used non-parametric data smoothing technique (Duong, 2007). In the 

literature, applications of KDE to study the intersection density of DFN models are given, among 

others, by Xu et al. (2006) and Fadakar-A. (2014), Figure 2.7. KDE are used in this thesis (chapter 

4) to study the distribution of fracture intersections across for 2D sections derived from 3D DFN 

model generated to study the behaviour of engineered structures (e.g. mine pillars). Such heatmaps 

will be herein referred to as Intersection Density Maps. 
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(a) 

+ 

(b) 

Figure 2.7. Examples of heatmaps for fracture intersections. a) Xu et al. (2006); b) Fadakar-A (2014). 

 

2.2 DFN Models and Rock Mass Blockiness  

The degree of blockiness of a rock mass is one of the most important factors controlling rock mass 

behaviour (ISRM, 1978; Hoek et al., 1995). Methods to estimate the degree of blockiness of a rock 

mass, and the associated in-situ block size distribution (IBSD) include estimating parameters such 

as volumetric joint count (𝐽X) (Palmstrom, 1974) and block size index (𝐼Y) (ISRM, 1978). These 

methods are based on the knowledge of the average fracture spacing for a series of fracture sets 

and therefore can only provide an estimate of the average dimension of a typical rock block. Cai 

et al. (2004), Kim et al. (2006), and Kim et al. (2015) used a similar approach to calculate the 

volume of a block based on the knowledge of fracture spacing, fracture orientation and fracture 

persistence for a rock mass with three fracture sets, Figure 2.8. 

 

As discussed in Elmo et al. (2008), the volume, shape, and removability of rock blocks formed as 

a result of an excavation would be a function of the characteristics of the natural fracture network. 

Methods for calculating blocks geometry (e.g. size and shape) using DFN models have been 
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proposed, among others, by Glynn and Einstein (1979), Goodman and Shi, (1985), Warburton, 

(1987), and Dershowitz and Carvalho (1996). Using the DFN code FracMan, Elmo et al. (2008) 

and Elmo et al. (2014) studied the continuity of rock blocks and associated rock bridges as a 

function of fracture size.  Additionally, DFN models have been used for kinematic analysis (wedge 

analysis) and rock mass characterization by Rogers et al. (2007), Elmouttie and Poropat (2012), 

Kim et al. (2015), Miyoshi et al. (2018) and McQueen et al. (2019). Examples are provided in 

Figure 2.9. 

 

Generally, a DFN based block analysis would represent a static condition, i.e. fully formed blocks 

would only depend on the geometrical characteristics of the fracture network and the excavation, 

but it would not include any consideration of the stresses induced by the opening of the 

excavations. When considering the relationship between rock mass blockiness and rock mass 

strength, it is important to consider the temporal aspect. For instance, Kemeny (2003) has proposed 

an approach to characterize time dependent damage and study its influence on rock mass strength. 

The aspect has been further explored in chapter 5 of this thesis with respect to in-situ (natural) 

fragmentation and the fragmentation processes a rock mass may undergo when subjected to 

loading. 
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𝑉Y =
𝑠$𝑠"𝑠S

sin 𝛾$ sin 𝛾" sin 𝛾S
 𝑉Y =

𝑠$𝑠"𝑠S
`𝑝$𝑝"𝑝Sb sin 𝛾$ sin 𝛾" sin 𝛾S

 

(a) (b) 

Figure 2.8. a) Blocks formed by the intersection of three joint sets (after Kim et al. 2015); and b) illustration 

of blocks formed by non-persistent joints and equations used to define the average block volume, in which 𝒑𝒊 

represents the persistence factor (after Kim et al., 2006). 

  

(a) (b) 

 

(c) 

Figure 2.9. Example of block search and analysis using DFN models. a) after Elmo et al. (2008); b) and c) 

after Miyoshi et al. (2018). 
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It is important to recognize that the blockiness observed on 2D rock exposures does not necessarily 

correspond to the true 3D blockiness of the rock mass (Min and Thoraval, 2012). Therefore, the 

analysis of failure mechanisms in 2D would have to recognize the limitation imposed by the 

variability in block forming potential as a function of the location of the sampling plane. In 

principle, 3D geomechanical codes that allow the integration of DFN models and a full 

consideration of fracturing processes in 3D would obviate this issue. However, as discussed in 

Section 2.4, simulating failure mechanisms in 3D is still a challenging proposition that requires an 

adequate trade-off between computational times and model resolution, the latter unequivocally 

affecting the size distribution of the natural blocks that could be realistically simulated in a model. 

For these reasons, the numerical analysis in this thesis adopts a 2D approach for the 

characterization of rock mass blockiness. The author believes that the limitation discussed by 

Miyoshi et al. (2018) could be reduced by considering multiple realizations of the same DFN 

model, as the modelled failure mechanisms would provide a range of possible outcomes, thus 

capturing the inherent variability of the rock mass fracture network. 

 

2.3 Numerical Simulation Methods for the Simulation of Brittle Failure   

Consideration of damage mechanisms and brittle failure for both rock and geotechnical 

engineering problems has increased significantly since the early 2000s (Stead and Elmo, 2015). 

However, modelling brittle failure processes requires the correct treatment of the intrinsic rock 

material properties in addition to the model being able to capture non-linear load-displacement 

responses under different loading conditions (Lisjak and Grasselli, 2014). The presence of 

fractures can further increase the complexity of the problem being modelled, resulting in the 
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displacement of large individual blocks and the potential for opening/closing and sliding along 

fracture surfaces (Elmo and Stead, 2015).  

 

The progressive and cumulative damage that rock material undergoes during the deformation 

process, together with the presence of natural fractures, requires the different numerical modelling 

techniques to strike a balance with respect to whether failure processes are represented explicitly 

or implicitly. A comprehensive review of numerical modelling techniques for rock mechanics and 

rock engineering, including a detailed literature source, is provided by Jing (2003). More recently, 

Lisjak and Grasselli (2014b) have compiled a detailed review of discrete modelling techniques for 

fracturing processes in jointed rock masses. 

 

With reference to Figure 2.10, a rock mass could be treated as either a continuous or discontinuous 

media. A continuum approach would reflect mainly the deformation of the system, whilst a 

discontinuum approach would better capture kinematics controls (Elmo, 2006). Whereas 

continuum mechanics calculations for stress are based on plasticity theory, changes at the micro-

structure level are based on fracture mechanics (Lisjak and Grasselli, 2014b). The literature 

sources reviewed in the following sections specifically refer to numerical analysis of brittle failure, 

as this is the key feature of the models later presented in chapters 3, 4 and 5.  
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Figure 2.10. Examples of numerical approaches available to model a rock engineering problem in relation to 

the natural fracture network (from Elmo and Stead, 2015). 

 

2.3.1 Continuum Models 

Despite their definition, continuum models are indeed capable of simulating brittle fracture using 

fracture mechanics principles. Examples of recent finite element models (FEM) for simulating 

fracturing processes include FRAN2D (Wawryznek and Ingraffea, 1989), DIANA and NUMA 

(Alehossein and Hood, 1996), RFPA (Tang et al., 2001, 2004), and R-T2D (Liu, 2003). 

Conventional FEM models are also capable to capture the elasto-plastic yielding associated with 

brittle failure by using dedicated constitutive criteria (e.g. cohesion weakening and frictional 

hardening, Hajiabdolmajid, 2002). However, continuum models cannot truly capture the 

interaction between brittle failure and kinematics processes.  

 

2.3.2 Discontinuum Models 

Discontinuum models include conventional discrete element method (DEM) and particle-based 

models. Theoretically, DFN models also belong to the category of discontinuum models. In 

conventional DEMs, the rock mass is represented as an assemblage of discrete blocks separated 

by fractures, which numerically are considered equivalent to a boundary condition (Elmo, 2006).   
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Deformation and failure along fractures is governed by specific constitutive criteria. Recent 

examples of DEM simulations of brittle failure processes include Christianson et al. (2006), 

Alzo’ubi (2009), Gao (2013), Havaej et al. (2015), Gao and Stead, (2014), and Ghazvinian et al. 

(2014). Those authors used the discontinuum codes (UDEC and 3DEC; Itasca, 2018) in which 

brittle failure is modelled indirectly (i.e. without consideration of the principles of fracture 

mechanics) using a Voronoi tessellation approach, Figure 2.11. As explained in Elmo and Stead 

(2015), the Voronoi tessellation divides the rock mass into polygonal blocks, and failure 

(fracturing) occurs when the contact between adjacent Voronoi blocks is lost. The strength of the 

Voronoi contact is defined according to a standard Mohr-Coulomb shear failure criterion, with 

tensile cut-off; new fractures can therefore be generated either in tension or shear, Figure 2.12. A 

new Trigon tessellation was introduced by Gao (2013) to overcome some of the limitations of the 

conventional Voronoi approach. The parameters governing the behaviour of Voronoi elements 

must be calibrated and verified against reliable laboratory experiments. Uniaxial compression tests 

(UCS) and indirect tensile strength tests are usually simulated to obtain the calibrated Voronoi or 

Trigon properties. For large scale models, care must be taken to account for the size dependency 

of the Voronoi/Trigon properties (Insana et al., 2016, Mayer and Stead, 2017). 
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Figure 2.11. UDEC Voronoi and Trigon 2D approach to simulate brittle failure (modified by Elmo, 2018, 

personal communication, and based on figures included in Gao, 2013). 

 

  

(a) (b) 

Figure 2.12.  Development of a) tension cracks and b) shear cracks in the roadway roof during the shear 

failure process (after Gao, 2013). 
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Particle-based models have proven effective in simulating the granular micro-structure of the 

material by creating an ensemble of rigid circular particles of varying diameters (Cundall and 

Strack, 1979). In Particle flow analysis, the rock mass is represented as a dense packing of non-

uniform-sized circular (2D) or spherical (3D) particles that are bonded together at their contact 

points. Examples of particle flow codes include PFC (Potyondy and Cundall, 2004; Itasca, 2018) 

and Yade (Kozicki and Donze, 2008).  

 

Compared to conventional DEM, PFC type codes do not require either a mesh or complex 

constitutive models to represent a material (i.e. the rock mass properties are not specified directly) 

(Mehranpour and Kulatilake, 2017), instead a particle contact logic is used, Figure 2.13, based on 

a series of springs with constant normal and shear stiffness, 𝑘e and	𝑘f.  

 

 

Figure 2.13. Definition of bond contact logic in PFC (modified from Potyondy and Cundall (2004)). 
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Several examples exist in the literature of the application of PFC codes to simulate brittle failure, 

including Pierce et al. (2007), Wang et al. (2003), Zhang et al. (2015) and Yang et al. (2016). In 

particular, Yang et al. (2016) used PFC to investigate the influence of joint persistency, k, on the 

mechanical behaviour of rock blocks having non-persistent open joints (Figure 2.14), while Zhang 

et al. (2015) used PFC to model the strength of jointed rock pillars, Figure 2.15. 

 

Figure 2.14. Failure modes of jointed rock blocks for different joint persistence and dip angle (after Yang et 

al., 2016). 
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Figure 2.15. Progressive crack propagation in selected models during the loading process. Tensile and shear 

cracks are shown in red and black, respectively (after Zhang et al., 2015). 

 

2.4 Finite-Discrete Element Methods (FDEM) 

The existence of defects in rocks together with stress-induced crack and fragmentation processes 

often limit the applicability of continuum-based methods in rock engineering. Recent 

developments in numerical modelling using discontinuum-based methods have provided a more 

realistic approach. A FDEM approach combines aspects of both finite elements and discrete 

elements and can incorporate fracture mechanics principles.  

 

As part of this study, numerical simulations were carried out using two FDEM programs, Irazu 2D 

(Geomechanica Inc., 2015) and ELFEN 2D (Rockfield, 2014). Irazu 2D (Geomechanica Inc., 

2015) represents an enhanced and computationally improved version of two previously open-

source FDEM codes, namely Y-2D and Y-Geo. The Irazu code is able to simulate crack initiation, 

propagation and coalescence as the rock is strained.  The elastic deformation of the solid rock is 

modeled according to the continuum theory of linear elasticity using constant-strain triangular 
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elements. Under the assumption of isotropic behaviour, the elastic response is characterized by the 

Young’s modulus E, and Poisson’s ratio 𝜐, if the failure criterion with the intact rock is fulfilled, 

then a crack is initiated (Munjiza and Andrews, 2000). 

 

Since no adaptive re-meshing is performed as the simulation progresses, potential crack 

trajectories are restricted to the existing mesh topology and do not cut across the existing mesh 

elements (Irazu; Geomehanica, 2016). The insertion of discrete cracks within the Irazu models can 

be inter-element fracturing. Therefore, to minimize the bias induced on the model response, 

sufficiently refined unstructured meshes should be used.   

 

Rock discontinuities (i.e. either pre-existing or newly created cracks) are treated by a rock joint 

model, computing the contact forces between all pairs of triangular elements that overlap in space. 

Two types of forces are applied to the elements of each contacting pair: 1) repulsive forces; and 2) 

frictional forces. The repulsive forces are calculated using a penalty function based on the Young’s 

modulus of the material.  

 

The overlapping area between two bodies is evaluated by the associated shape and size and the 

value of stiffness. The frictional forces between contacting couples are also calculated in the 

tangential direction using Coulomb’s law of friction. Upon exceeding the peak strength of the 

material (in tension, shear, or a mixed-mode), the strains are assumed to localize within a zone, 

called the Fracture Process Zone (FPZ). The mechanical response of the FPZ is shown by a non-

linear linkage between stress and crack displacements at the crack element level. 
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The hybrid FDEM code ELFEN (Rockfield, 2014) has increasingly been used as a numerical tool 

to simulate the fracture process for laboratory tests. The fracture initiation, propagation and 

coalescence of the strained rock can be simulated using ELFEN. Using ELFEN 2D, the fracture 

propagation is not limited to the boundary of elements and can cut cross the elements and create a 

new element. However, this option is seldom used (e.g. Hamdi, 2015) and the issue of mesh 

dependency is still present. The detailed description of this issue is addressed in chapter 4. 

 

Figure 2.16 and Figure 2.17 show the yield surface and softening curve for rotating crack and 

Rankine models, and Mohr-Coulomb yield criterion implemented in the code Elfen (Rockfield, 

2014). 

 

Figure 2.16. Yield surface and softening curve for rotating crack and Rankine models (after Elfen user’s 

manual, Rockfield, 2014). 
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Figure 2.17. Mohr-Coulomb material model for compression states (after Elfen user’s manual, Rockfield, 

2014). 

 

The advancement of the numerical and mathematical approaches along with the emergence of 

powerful computers have enabled many engineering fields including rock mechanics and rock 

engineering to develop tools that facilitate the study of fracturing and block formation in brittle 

rocks. The FDEM proposed by Munjiza et al. (1995a), for instance, has provided a basis to model 

the transition from continuum to discrete form as well as the post-failure interactions typical of 

brittle rock materials (Owen et al. 2004). 

 

2.4.1 Contact Detection and Interaction in FDEM  

FDEM simulations can involve a large number of interacting discrete elements. To correctly 

capture this behaviour, contacting couples (i.e., pair of contacting discrete elements) is detected in 

the initial stage. Detection is accomplished using No Binary Search (NBS) method (Munjiza and 

Andrews, 2000). According to this method, it is assumed that pairs of contacting couples 
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interpenetrate into each other and create contact forces that are determined by the size and shape 

of the resulting overlapping area, Figure 2.18. 

	
Figure 2.18.  Illustration of infinitesimal repulsive force generated due to infinitesimal penetration of two 

discrete bodies (after Munjiza and Andrews, 2000a). 

 

In ELFEN (Rockfield, 2014), the simulation starts with a continuous representation of the solid 

domain of interest. In general, the approach combines FEM techniques with DEM concepts. The 

DEM algorithms include techniques for detecting new contacts and dealing with the interaction 

between discrete bodies, while the former techniques are used for the computation of internal 

forces and for the evaluation of the failure criterion and the creation of new cracks (Owen and 

Feng, 2001). 

 

Unlike most numerical codes, where fractures can only propagate around the boundary of the 

meshed elements, the ELFEN code allows new fractures to cut across the existing meshed 

elements. As shown in Figure 2.19, the insertion of a new crack can be achieved using two different 
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algorithms (Klerck et al., 2004). The intra-element insertion (Figure 2.19a) results in a new fracture 

in the crack propagation direction by directly splitting the finite elements. In this case, care should 

be taken that the resulting element topology does not decrease the minimum integration time step. 

The Elfen approach presents the mesh topology that is based on a nodal fracture scheme with all 

new fractures developing in tension (i.e. Mode I) in the direction orthogonal to the principal stress 

direction where the tensile strength becomes zero.  

 

Conversely, with the inter-element insertion (Figure 2.19b), the cracking will continue in the 

direction most favorably oriented relative to the failure plane. Following the crack insertion, the 

damage variables in the adjacent finite elements are set to zero and the contact along the two 

newly-created surfaces is treated using a contact interaction algorithm (e.g. penalty or Lagrangian 

multiplier method) (Munjiza and Andrews, 2000). 

	
Figure 2.19.  Approach used for discrete crack insertion and topological updating in ELFEN as explained in 

Owen et al. (2004). a) the actual failure direction defined by weighted-average configuration. b) intra-element 

fracturing, c) inter-element fracturing. (after Klerck et al., 2003). 

 

Hybrid finite-discrete element modelling has been used successfully in various geotechnical fields 

including blasting (Munjiza. et al., 1995b), underground rock engineering (Klerck, 2000) and rock 
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slope instability (Stead et al., 2006) simulated triaxial, plane strain and strip punch tests in addition 

to the borehole breakout problem. Simulation results, constrained by experimental observations, 

have shown that the hybrid finite/discrete element ELFEN code can effectively reproduce rock 

failure by discrete fracturing under compressive stress fields.  

 

The ELFEN code has the capability to show the internal damage and strength degradation under 

varied stresses. The Mohr-Coulomb with rotating crack constitutive model (Rockfield Software 

Ltd. 2014) can be adopted to simulate the fracturing process at various scales. The cohesion (c), 

friction angle (𝜙), dilation (𝜓), tensile strength (𝜎k) and fracture energy (𝐺m)should be specified 

for the material. Due to the inherent extensional fracturing process in ELFEN, the fracture energy 

is specified according to Mode I type of failure. The coupling of Mohr-Coulomb with a rotating 

crack constitutive criterion in ELFEN provides a realistic representation of both shear and tensile 

fracturing. The examples of ELFEN models are given in chapters 4, 5 and 6 of this thesis. 

 

A new, commercially-available finite-discrete element modelling tool, Irazu was developed  by 

Geomechanica (2015) to overcome the computational limitations of  rock mechanic simulations 

by incorporating parallel processing power using General Purpose Graphics Processing Units 

(GPGPUs) (Mahabadi et al., 2016). According to Mahabadi et al. (2016), the parallel processing 

power of GPGPUs has been developed to gain upgrade performance compared to a regular non-

parallel code running on the CPU (i.e., Y-Geo).  

The Irazu code represents an extension of the original Y2D code of (Munjiza, 2004) and continues 

to undergo development for geomechanical applications. The fundamental principles of FDEM 

implemented in Irazu, include contact detection and interaction, and damage and fracture 
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modelling; the governing parameters which are later determined accordingly to the calibration 

procedure developed by Tatone and Grasselli (2015a) are introduced and defined through a trial 

and error procedure.  

 

In Irazu, each intact body is discretized with a mesh comprising 3-noded triangular elements Figure 

2.20. The elastic deformation of the discrete bodies is governed by the continuum theory of linear 

elasticity using constant-strain triangular elements (Munjiza, 2004). The elastic deformation of 

intact material is modelled according to the element deformation (strain) at each time step and is 

described by the differences between its initial configuration (i.e. unreformed) and current 

configuration (i.e. deformed). From the strain tensor, the element stress tensor is calculated using  

isotropic linear elasticity based on plane stress or plane strain assumptions and transversely 

isotropic linear elasticity (Mahabadi et al., 2016). An explicit second-order forward finite-

difference integration scheme is employed to solve the equations of motion for the discretized 

system and update the nodal coordinates at each simulation time step.  
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Figure 2.20. Simulation of fracture propagation with Y-Geo. (a) Representation of a continuum using 

cohesive elements dispersed across a mesh of triangular elements. (b) Constitutive behaviour of crack 

elements defined in terms of bonding stress (tensile, σ, and shear, τ) vs. relative displacement (opening, o and 

sliding, s) between the edges of adjacent triangular elements (after Geomechanica, 2015). 

 

The introduction of numerical viscous damping is required to account for energy dissipation due 

to non-linear material behaviour and model quasi-static phenomenon by dynamic relaxation 

(Munjiza, 2004).  

 

In Irazu, the fracture trajectories are explicitly simulated using the approach of non-linear fracture 

mechanics in which as the tensile strength of the material is exceeded, the fracture process zone is 

developed in Mode I (tensile). Mode I fracture initiates when the opening of a crack element 

reaches a critical value that corresponds to the inherent tensile strength of the element. As a crack 

element is opened, the stress is reduced to the residual opening value at which a traction-free 

surface is shown. Mode II fracture initiates when the tangential displacement of a crack element 

surpasses the displacement associated with the intrinsic shear strength of the element. As the crack 
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element undergoes further tangential slip, the tangential stress is progressively reduced until it 

reaches the residual slip.  

 

Instead of Pure Mode I and Pure Mode II displacements, crack elements often experience a 

combination of two (mixed Mode I and II displacement). In Irazu FDEM, a mixed-mode I-II crack 

initiation and propagation is employed. The mesh topology can be modified such that it combines 

a random triangulation for the intra-layer material (i.e., matrix) with crack elements aligned along 

preferentially oriented planes of weakness. In this method, the crack is allowed to propagate 

through the element boundary. In this procedure, no new element is created and the updating 

procedure is simplified. This procedure requires a relatively finely discretized mesh around the 

potential fracture area. Within the current algorithm, a minimum element size should be used to 

ensure that excessively small elements are not created.  

 

Material softening and hardening can be modelled using a non-associative Mohr-Coulomb elasto-

plastic model with shear strength parameters, including cohesion, friction angle and dilation, 

defined as the function of effective plastic strain. A variety of constitutive models for material 

failure have been developed within softening plasticity and damage theory. The optimum 

propagation paths maintain an orientation normal to the maximum extensile strains. The 

localization of micro-cracking into effective crack bands results in softening normal to the crack 

directions. Fracture is considered in the form of a rate dependent rotating smeared- crack model 

using the tensile strain-softening to indicate the material degradation. For a more comprehensive 

review of the principles and mathematical formulations used in Irazu, the reader is referred to Irazu 
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theory manual (Geomechanica, 2015). The examples of Irazu models are given in chapter 3 of this 

thesis. 

 

2.5 Concluding Remarks 

This chapter began by reviewing the main concepts in discrete fracture network (DFN) models for 

simulating the natural discontinuity systems with a description of both deterministic and stochastic 

approaches used in solving DFNs.  

 

The concept of rock mass blockiness is described with examples of how researchers attempt to 

calculate the block area and volume. The Discrete Fracture Network parameters considered in the 

calculation of blockiness are discussed. 

 

Various numerical modelling techniques (e.g. continuum and discontinuum) are described and 

examples are given for the various techniques. The reader can get a sense of how each numerical 

code works. Particular attention has been given to explain Finite-Discrete Element codes. The 

material properties, mesh elements and calculation procedure are discussed for the two FDEM 

software (e.g. Elfen and Irazu) used in this thesis. 
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Chapter 3: The Need for New Approaches to Improve on Existing FDEM 

Models 

3.1 Introduction 

The main objective of this chapter is to identify the types of output processing required to improve 

on existing Finite-Discrete Element Methods (FDEM). Emphasis is given to the development of 

numerical algorithms that could help engineers and practitioners to better define and quantify, in 

the context of a FDEM model, fracturing processes (e.g. initiation, coalescence and propagation 

of existing fractures) and blocks formation. The models presented in this chapter are by intention 

relatively simple (laboratory scale samples with two pre-existing cracks); simple models are better 

suited to prototype the framework and structure of the algorithms and, if necessary, isolate specific 

functions that may need changes. These simple models are also easy to mesh, which avoids issues 

related to the integration of discrete fracture network (DFN) models and FDEM; this topic will be 

discussed in detail in chapter 4.  

 

3.2 Research Framework 

Simulating the failure of a model with two pre-existing fractures under uniaxial loading conditions 

allows understanding of the role of rock bridge failure in the context of FDEM analysis. Whereas 

rock bridge analysis is not the main focus of this dissertation, various approaches are herein 

introduced that can help in the processing and monitoring of fracture nucleation and development; 

these are of fundamental importance in the analysis of rock bridge failure. It is well accepted that 

stability analysis for high natural or engineering rock slopes should account for brittle failure due 

to high stress concentrations that may exist leading to the development of stress-induced rock 

cracks (Hajiabdolmajid et al., 2002). Note that in this thesis the terms “cracks”, “traces”, and 
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“fractures” are used as synonyms, with no distinction in terms of the scale of the feature. These 

stress-induced cracks may provide kinematic freedom for a previously stable block and result in 

underground structure failure (e.g. pillar). The stochastic character of geometric parameters, 

persistence and water pressure all need to be considered in various rock bridge configurations as 

well as computation of an overall probability of pillar failure. A partially structurally-controlled 

failure occurs through a combination of different mechanisms such as tensile cracking and sliding 

on pre-existing structures in the rock mass. In these cases, development of the stress-induced 

cracks is required for failure as the rock mass is not kinematically free to move out of the pillar. 

This type of failure often occurs at larger scales where high stress levels may cause the 

development of secondary, stress-induced damage zones. Due to the importance of rock bridge 

formation in geotechnical engineering studies (Elmo et al., 2018), the cracking stages and the rock 

bridge response should be investigated at the laboratory-scale.  

 

Strain measurement or acoustic emission monitoring (AE) during laboratory uniaxial compression 

indicates several stages of crack development including, crack closure, crack initiation, crack 

damage and peak strength. An example of a numerical tool that allows for such a continuum-

discontinuum transformation is the finite-discrete element method, FDEM. The suitability of the 

hybrid finite-discrete element method (FDEM) for simulating brittle failure has been described by 

numerous researchers (Mahabadi et al., 2010; Munjiza and Andrews, 2000; Cai and Kaiser, 2004), 

as the method is able to clearly describe the transition from an intact continuum to a discontinuum 

cracked state. To date, a large number of 2D-FDEM numerical simulations have been undertaken 

to simulate the mechanical response of rock samples subjected to varying loading conditions.  
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The mechanical behaviour of anisotropic rocks in the laboratory has been studied with the 

combined FDEM method by Cai and Kaiser (2004) using ELFEN 2D (Rockfield Software Ltd. 

2002) and by Mahabadi et al. (2012) using Y-Geo. Klerck (2000) carried out numerical simulations 

on unconfined compressive strength, UCS, and biaxial tests and showed the suitability of this 

method for simulating both load-displacement response and the observed evolution of discrete 

fracturing. Numerically simulated acoustic emission activity of brittle rock was monitored during 

uniaxial compression testing with a pre-existing crack using the Y-Geo FDEM code (Lisjak et al., 

2013). 

There remains however a real need to further characterize brittle rock failure by quantifying the 

newly generated cracks and the type of failure. The presence of pre-existing damage and the 

formation of new micro-cracks during laboratory testing requires the analysis of the properties of 

the newly-generated cracks.  The objective of this chapter is to introduce new methods to detect 

cracking levels in rock subject to stress, especially micro-cracking and macro-cracking.   

 

Newly generated cracks can be quantified using properties such as the number of newly generated 

cracks, the length of the newly generated cracks, the angle of the newly generated crack with 

respect to the applied load, the locations at which the numerical cohesive crack elements intersect 

and the failure mode responsible for the initiation and propagation of the cracks. These properties 

can then be used for interpreting various stages of the cracking process. Understanding the crack 

stress levels such as crack initiation, crack propagation and crack coalescence in rock allows a 

better understanding of rock behaviour. The crack stress levels are determined based on the 

different failure modes (tensile/shear), the crack counts and number of crack intersection counts. 



 38 

3.3 Model Setup 

The experimental data used in this study is based on the laboratory experiments conducted by 

Moradian et al. (2015), who presented uniaxial compression testing on a prismatic Barre Granite 

specimen (dimensions of 152 mm × 76 mm) as shown in Figure 3.1. The crack patterns obtained 

from a high-speed camera and the stress-strain curves by Moradian et al. (2015) are used in the 

current analysis for both a qualitative and quantitative comparison with the FDEM results (Figure 

3.3 and Figure 3.4).  

 
 

Figure 3.1.  Prismatic granite specimen tested under uniaxial compression loading configuration. The 

dimensions of the specimen are 152 mm × 76 mm × 25 mm. The flaws have a length of 13 mm. Acoustic 

emission sensors were attached to sides of the specimen (after Moradian et al., 2015). 

The model consists of a homogeneous sample containing two pre-existing flaws of 13 mm in 

length, inclined at 30 ° to the horizontal and located at the centre of the model (Figure 3.2). The 
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sample was discretized using a Delaunay triangulation with an average edge size of h = 1 mm 

which resembles the average grain size of Barre Granite of approximately 0.9 mm (Nasseri et al., 

2006); this resulted in a total of 36756 triangular elements in the FEM mesh. 

A constant strain rate was imposed to the model by means of two rigid platens moving in opposite 

directions at a constant velocity of 0.05 mm/s. A sensitivity analysis of the loading rate indicated 

constant values of strengths with a change of loading rate less than approximately 0.05 mm/s. A 

constant integration time step of 5 × 10 -6 s was used to solve the governing equations for the 

FDEM system.  

 
Figure 3.2. Schematic of the simulated rock sample meshed with 31720 triangular elements; 𝐯 is the rate of 

displacement of the load platens. 
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Material properties using Elfen and Irazu are listed in Table 3.1. The results were obtained after 

calibrating the numerical model against laboratory testing results conducted by Moradian et al. 

(2015).  

Table 3.1. Material properties used in Elfen and Irazu. 

Properties of the Intact Rock Value Software 
Bulk density, ρ (kg 𝑚NS) 2500 Elfen and Irazu 
Young’s modulus, E (GPa) 60 Elfen and Irazu 
Poisson’s ratio, ν (-) 0.25 Elfen and Irazu 
Damping coefficient, μ (kg m s-1) 7.41 Elfen  
Tensile strength, 𝜎k (MPa) 8 Elfen and Irazu 
Cohesion, c (MPa) 40 Elfen and Irazu 
Mode I crack energy, 𝐺qr (J 𝑚N") 40 Elfen and Irazu 
Mode II crack energy, 𝐺qqr (J 𝑚N") 20 Irazu 
Friction angle, ∅Q (°) 38 Elfen and Irazu 
Normal contact penalty, Pn (GPa/m) 19.2 Elfen and Irazu 
Tangential contact penalty, Pt (GPa/m) 19.2 Elfen and Irazu 
Fracture penalty, Pf (GPa) 19.2 Irazu 
Discrete Fracture Network Properties Value  
Normal contact penalty, Pn (GPa m) 17 Elfen and Irazu 
Tangential contact penalty, Pt (GPa m-1) 17 Elfen and Irazu 
Friction angle, ∅Q (°) 45 Elfen and Irazu 

 

 

Initially, the uniaxial compression test was simulated to obtain the uniaxial compressive strength 

of 151 MPa Barre Granite (Miller, 2008), and then the same properties were used for simulating 

the uniaxial compression test of the Barre Granite with two pre-existing cracks. A sensitivity 

analysis was undertaken for the properties of the model with pre-existing cracks to obtain a stress-

strain curve equivalent to that presented by Moradian et al. (2015). The code RocData (RocScience 

Inc, 2002) was used to obtain Mohr-Coulomb parameters for the model without pre-existing 

cracks. Using a Young’s modulus of 60	𝐺𝑃𝑎 and a tensile strength of 12 𝑀𝑃𝑎, the fracture energy 
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was calculated to be 50 𝐽𝑚N". In plane strain conditions, fracture energy, and Mode I fracture 

toughness is related through Young’s modulus by (Irwin, 1957): 

𝑮𝑰𝑪 =
𝑲𝑰𝑪
𝟐

𝑬z                                       [Eq. 2] 

 

A friction coefficient of 0.1 (equivalent to approximately 6°) was assumed for the interface 

between the rock sample and the loading platens to minimize end-effects.  

 

3.4 Modelling Results 

The simulated failure process in uniaxial compression can be explained using the critical stress 

levels and cracking stages typical of brittle rocks described by Brace (1964) and Bieniawski, 

(1967a).  They identified five stages based on the stress-strain behaviour of rocks: (1) closure of 

micro-cracks and crushing of asperities; (2) linear elastic behaviour (3) onset of dilation and stable 

crack propagation; (4) unstable crack growth; and (5) brittle post-peak. In this section, different 

plots, e.g. stress vs. strain, failure mode vs. strain, and failure mode vs. damage, are used to 

characterize four stages of brittle failure from linear elastic behaviour to brittle post-peak. The 

closure of micro-cracks is not tracked in the presented models. Note that options of simulating 

micro-cracks as voids in the model instead of meshed fracture lines may allow to better capture 

the initial non-linearity due to micro-cracks closure. However, this approach is not adopted in the 

current models. 
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3.4.1 Simulation Results using FDEM-Irazu 

The triangular elements in the Irazu model can fail in shear, tension or both; accordingly, the 

contours of principal stress (Figure 3.3) show newly-generated cracks in green and red for tensile 

and shear failure, respectively. The broken joints are coloured differently based on the failure: 

Mode I, Mode II and Mixed-Mode (Geomechanica, 2015). The tensile cracks (Mode I) initiate at 

the tips of the pre-existing cracks and propagate when the tensile stress exceeds the tensile strength 

of the intact rock. Mode II cracks propagate when the shear stress exceeds the shear strength of 

the material.  

The results of the fracturing process are presented for four different axial strain levels 

corresponding to the points A to D in Figure 3.3. Figure 3.4 shows stages A to D with respect to 

the stress-strain curve. Single, isolated tensile cracks are generated (Stage A) in pre-peak at 0.3% 

strain; these are aligned with the direction of the major principal stress (𝜎1).  Cracks propagation 

and nucleation continues in Stage B as the axial strain increases to 0.4%. By Stage C, 0.5% strain, 

cracks coalesce to form a large crack in the top right corner of the model. As the strain reaches 

0.6%, cracks grow in an uncontrollable manner to form relatively large damage zones (Stage D). 

In Figure 3.3, the results are compared with the high-speed photographic images published by 

Moradian et al. (2015). Note that the strain level noted in the published images is not the same as 

the modelled strain, and therefore comparison is made only on a qualitative basis.  
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(a) 0.3% Strain 

 

(b) 0.4% Strain 

      
 

(c)  0.5% Strain 

 

(d) 0.6% Strain 

 

 
Figure 3.3. Simulated uniaxial compression in Irazu showing contours of major principal stress with the 

newly-generated cracks in green (tensile) and red (shear). The figures show cracking for strain levels of 0.3, 

0.4, 0.5 and 0.6% (a-d). Photographic evidence of the tested Barre Granite specimen is shown for comparison 

(after, Moradian et.al., 2015). 
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Figure 3.4. Axial stress versus axial strain for the UCS test simulation with two cracks. Letters A to D refer to 

the stages shown in Figure 3.3. 

 

Indeed, although the model simulated the same peak strength as the tested rock specimen 

(approximately 110 MPa), the strain level in the model was only half that measured in the 

laboratory. It is argued that numerical models cannot truly capture the non-linear behaviour 

observed at the beginning of laboratory scale uniaxial testing since the models assume a perfect 

sample, whereas laboratory specimens would have micro-cracks and defects randomly 

distributed in the matrix. As the specimen is loaded under laboratory conditions, these micro-

cracks tend to close, giving rise to a non-linear behaviour. A quantitative comparison of the 

laboratory testing and the Irazu simulation is possible by comparing the stress-strain curves from 

the test. The maximum uniaxial compressive strength of the laboratory uniaxial compressive 

strength with two pre-existing cracks had a value of 110 MPa at 1.1 % strain (Figure 3.5). 
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Figure 3.5. Axial stress (MPa) vs. axial strain (%) and cracking levels for the granite specimen with two pre-

existing cracks. 1) crack closure, 2) linear elastic deformation, 3) micro-crack initiation, 4) micro-crack 

growth, 5) micro-crack coalescence, 6) macro-crack growth, 7) macro-crack coalescence and 8) failure (after, 

Moradian et al., 2015). 

 

3.4.2 Simulation Results using FDEM-Elfen 

The main difference between the models simulated in ELFEN and Irazu is the absence of direct 

Mode II fracture mechanisms in the former. Mode II in ELFEN models is indirectly simulated as 

the result of growth and coalescence of Mode I cracks. A Mohr-Coulomb with rotating crack 

constitutive model (Klerck, 2000) is used to simulate fracturing under both shear and tensile 

conditions. Figure 3.6 shows the different stages (A to D) of the failure process in the ELFEN 

model.  
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Figure 3.6. Simulated uniaxial compression in ELFEN showing the contours of the direct stress ZZ stress 

with the newly-generated cracks shown in black. Various stages of cracking are shown in A-D. 

 
3.5 FDEM Fracture Analysis 

The newly-generated fractures were exported from Irazu-FDEM software and various approaches 

to analyze are suggested and applied to the newly-generated fractures. Although, the developed 

methods are applied on Irazu models, the methodologies are also applicable to the ELFEN 

simulation models. Comprehensive methodologies for the application of these methods to any 

DEM and FDEM simulation outputs are presented in chapter 5. 
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3.5.1 Orientation Analysis and Number of Fractures in Irazu-FDEM 

The orientation of newly-generated cracks can be shown using rosette plots, thus allowing to 

quantitatively analyze the increase in the number of cracks being generated in relation to their 

orientation at different strain levels (Figure 3.7). The same approach was used by Hamdi (2015) 

to better quantify the orientation of the newly-generated cracks in various confining pressures.  

In this section, the crack intensity (percentage) is calculated as a percentage of the maximum 

number of cracks for a specific sector using eighteen different bins to represent angles of between 

0 and 180 degrees with respect to the vertical axis of the sample. The fractures are shown as the 

percentage of the fractures being generated normalized with respect to the orientation with the 

maximum number of fractures. This means that 100% denotes the maximum number of fractures 

in a specific orientation. While any other bin shows the percentage of fractures with respect to the 

defined maximum number of fractures.  

As the strain levels increases from 0.35 to 0.6%, the crack percentage distribution varies from 

semi-vertical (10-20 and 170-160 degrees; see Figure 3.7a and Figure 3.7b) to scattered (40-120 

degrees, see Figure 3.7.c and d). Note that the fractures are measured with respect to the vertical 

axis of the sample. The percentage of cracks in each bin varies depending on the associated strain 

level. In the early stages of the simulation (pre-peak) with 0.35% strain, the highest percentage of 

fractures are vertical; this agrees well with the angle at which the tensile cracks are initiated from 

pre-existing cracks (parallel to major principal stress). As the simulation progresses, cracks are 

still predominantly aligned vertically. Once the sample fails, cracks are generated at a much 

shallower angle, which is attributed to the generation of shear fractures in the later stages of the 

simulation.   
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Crack Orientation, 𝛽° Crack Orientation, 𝛽° 

(a) 0.3% Strain (b) 0.4% Strain 

 
Crack Orientation, 𝛽° 

 
Crack Orientation, 𝛽° 

(c) 0.5% Strain (d) 0.6% Strain 

Figure 3.7. Rosette plots for the Irazu uniaxial compression test simulation showing the orientation of the 

newly-generated cracks with respect to the vertical. The percentage of the failed cracks is shown at four 

different strain levels, A. 0.35, B. 0. 4, C. 0.54 and D. 0.6 %. 

 

3.5.2 Failure Mode Analysis and Damage Quantification in Irazu-FDEM 

Newly-generated cracks are generated due to the relative displacement of the triangular meshed 

elements with respect to each other. Depending on the relative displacement (opening, sliding or 

both), various failure modes are associated with the crack generation process.  

The lines of the newly-generated cracks in the FDEM Irazu models are identified by the edges of 

the triangular elements (Figure 3.8). Each edge of the triangular element has two points and the 

average coordinate of each point is calculated using the nodal coordinates for the elements. The 

coordinates of the newly-generated crack lines are used in the proposed simulation for calculating 
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the number of cracks at each numerical time step (crack counts) and the location of the cohesive 

crack element intersections. 

 
Figure 3.8. Crack generation in the Irazu-FDEM simulation, each triangle element has three nodes and each 

crack element has four nodes. 

 

Figure 3.9 shows the percentage of the crack events due to Mode I fracture, which is 90% greater 

than the counts of Mode II events. These observations correspond well with the generally accepted 

damage process in brittle rocks, whereby damage initiates and accumulates originally due to tensile 

failure, while shear failure can only occur after the specimen has been sufficiently damaged by 

tensile failure mechanisms. As the loading continues, tensile stresses are generated in compression 

because of the pre-existing flaws. For this simulation, the sample remains undamaged for the first 

13% of the total simulation time. Damage then increases with an increase in loading and remains 

constant over the last 40% of the simulation time. 
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The initiation of tensile fractures at the 0.05 % strain level can be associated with the linear elastic 

behaviour part of the stress-strain curve (Figure 3.3.A and Figure 3.4.A). The model correlates 

with Stage 2 shown by Moradian et al. (2015) (Figure 3.5, Stage 2). It also correlates with the 

initiation of tensile fractures at the 0.05% as shown in Figure 3.9. The propagation of tensile 

fractures between strain levels 0.05 – 0.35 % (Figure 3.3.B and Figure 3.4.B) is associated with 

onset of dilation and stable crack propagation as shown in (Figure 3.5, Stage 3-7). This is also 

shown in Figure 3.9 at 0.3% strain when tensile damage cracks coalesce and shear fracturing 

initiates.  

 

The initiation of shear and mixed mode cracks at a strain level of 0.4 % (Figure 3.3.C and Figure 

3.4.C) can be associated with unstable crack growth (Figure 3.5, Stage 8) and is evident the blue 

(tensile) and green (shear) curves presented in Figure 3.9 (0.4-0.55% strain level). The brittle post-

peak stage is apparent in (Figure 3.3.D and Figure 3.4.D). The post-peak stage is simulated as a 

mixture of various failure modes in Figure 3.9 (0.55-0.7% strain). In the Irazu simulation, few 

mixed mode failures were observed when the joint opening and sliding reached the critical value 

simultaneously. In our model simulations, only approximately 1% of mixed-mode cracks were 

observed as this condition is only rarely satisfied.  
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Figure 3.9. Frequency percentage with respect to strain for the Irazu uniaxial compression test simulation 

with two pre-existing cracks. 

Many researchers have attempted to quantify rock damage by introducing different parameters. 

For example, Diederichs et al. (2004) introduced crack density to quantify damage in the PFC 

(Itasca, 1995) laboratory testing models. In the current analysis, Damage Intensity 𝐷"$ is described 

as the ratio of the sum length of total damage to the sampling area:  

𝑫𝟐𝟏 = 	
𝐒𝐮𝐦	𝐥𝐞𝐧𝐠𝐭𝐡	𝐨𝐟	𝐝𝐚𝐦𝐚𝐠𝐞

𝐒𝐚𝐦𝐩𝐥𝐢𝐧𝐠	𝐚𝐫𝐞𝐚
																				    [Eq. 3] 

Gao (2013) employed the 𝐷"$  concept to characterize brittle fracture above coal mine roadways. 

The concept of damage intensity was also used by Tuckey (2012) to characterize discontinuity 

persistence and intact rock bridges. In this study, the damage intensity (𝐷"$) is calculated with 

respect to the failure mode percentage at different strain levels. Figure 3.10 presents the 

relationship between the failure mode percentage and the cumulative damage intensity values for 
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various modes of failure. Most of the damage is due to mode I fracturing, and the total tensile 

damage is approximately 14 times higher than the damage caused by shear mode. Tensile fractures 

are responsible for the damage intensity up to 45 𝑚𝑚/𝑚𝑚", while only 6% of the total shear 

fractures are responsible for 0.01 𝑚𝑚/𝑚𝑚" damage intensity.  

 
Figure 3.10. Variation of the frequency (percentage with respect to the maximum count of each failure mode) 

against the cumulative damage intensity for the Irazu simulated uniaxial compression test. 

 

The main limitation of the damage intensity concept is its inability to differentiate between a 

system of connected and disconnected lines. Therefore, there is the need to use crack intersections 

as a better method to characterize damage. Simulated crack counts and crack intersection counts 

are plotted against progressive strain rates in Figure 3.11 and Figure 3.12, respectively. The 
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observed changes in the slope of the curve shown in Figure 3.11 are attributed to the various stages 

of fracture initiation and coalescence (A and B in Figure 3.11), propagation (C in Figure 3.11) and 

final failure (D in Figure 3.11). 

 

 
Figure 3.11. Number of cracks simulated at different strain levels during 2D uniaxial compression simulation. 

A. micro-crack initiation, B. micro-crack coalescence, C. macro-crack growth, D. macro-crack coalescence 

and failure. 

 

The number of crack intersections is also plotted against strain (Figure 3.12). The number of 

intersections increases with strain almost exponentially, to reflect processes of cracks coalescence 

during the simulation. The slope change (Figure 3.12, Point B) at a strain of 0.35-0.5 % can be 
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attributed to the onset of dilation and stable crack propagation. The second and steeper slope 

change (Figure 3.12, Point C) occurs at a strain level of 0.5-0.6 % and correlates with the 

generation of a shear failure surface due to macro-crack initiation and unstable crack growth. The 

number of crack intersections remains constant in the post-peak. 

Although, the number of crack intersections plot provides information on the various stages of 

crack evolution, it does not include spatial information about the locations where fractures 

intersections occur. The concept of crack intersections has been used by several researchers and 

explained in detail in chapter 2. Two cracks can be directly connected to each other (intersect) or 

can be indirectly connected through a pathway via other connected cracks within a crack network. 

This chapter focuses on analysing the dynamic behaviour of the simulated crack intersection 

density of the newly-generated fractures throughout the full Irazu FDEM simulations. This 

approach has the potential to accommodate a variable degree of complexity, e.g., complex 

intersections in a crack network including varying crack intensity, varying crack geometry and 

variations in numbers of cracks of different scale.  
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Figure 3.12. Number of crack intersections with respect to axial strain for a simulated uniaxial compression 

test with two 13 mm pre-existing cracks. A. micro-crack initiation. B. coalescence and growth. C. macro-crack 

coalescence and D. final failure.  

A simple crack network can contain hundreds of cracks of different sizes and orientations. The 

geometrical intersections are critical control points for evaluating the behaviour of the system. The 

synthesized crack network that results from FDEM simulations depict significant features which 

could be the subject of comparison between different models.  

The newly-generated crack segments and the crack intersection points are shown in Figure 3.13. 

It can be seen that the resulting intersection points follow the crack segments at 0.6% strain (It is 

possible to trace segments by simply joining up the intersections). The intersection of two cracks 



 56 

at any time is a point and the connected cracks within different stages eventually form a continuous 

crack. The geometry of a continuous crack can be constructed by connecting several cohesive 

crack elements that belong to the crack. The coordinates of the crack intersections are calculated 

using an algorithm which loops through all the possibilities of how one crack can intersect another 

existing crack.  

  
(a) (b) 

Figure 3.13:  a) The crack segments and b) crack intersection points throughout the sample at a strain level of 

0.6 %. 

 

The coordinate points in Figure 3.13 do not explicitly indicate the type of interactions between 

cracks, such as intersections, terminations of one crack against another or extension. Therefore, 

colour code maps were generated based on the density of the crack intersection points throughout 

the sample. The weight of these intersection points is determined based on the number of points 

located in each cell. Using the density plot with hexagonal tiling and a grid size of 20 (the number 



 57 

of hexagons in x-direction), the spatial and temporal density of the intersection points are 

calculated and shown in Figure 3.14. The number of intersection points is generally denser in the 

centre and at the beginning of the simulation. As the simulation progresses, the intersection density 

is more concentrated further away from the pre-existing cracks and closer to the platens. The 

regions shown in yellow and red colours have a higher crack intersection density which agrees 

with the areas in which shear crack development occurs.  

 

This study will be expanded on in subsequent chapters to include various combinations of pre-

existing cracks and using a Discrete Fracture Network models (DFN) approach for the detailed 

investigation of newly-generated cracks. This approach may allow the influence of rock bridges 

on the instability of geotechnical structures to be examined in a more robust manner. Rock bridge 

content is often considered a major factor in the magnitude of the hazards posed by brittle fracture 

in geotechnical and mining projects and hence further research using the proposed crack 

intersection and density approaches may have considerable potential. 
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Figure 3.14. Crack intersection density map for uniaxial compression Irazu simulation at four different strain 

levels of 0.35%, 0.4%, 0.54 and 0.6%. The colour bar indicates the weight of the number of crack 

intersections in each cell. 

 

3.6 Conclusions 

The preliminary results presented in this chapter clearly show that the results of FDEM simulations 

cannot always provide the answers to problems such as failure of intact rock bridges and step-path 

mechanisms. The concept of damage, orientation and crack intersection density maps introduced 

in this chapter offers a promising method with which to obtain important geomechanical insights 



 59 

into rock cracking and damage processes. This method allows the characterization of damage and 

crack intersections in a numerical simulation in a quantitative manner. Subsequent chapters will 

refine the concept of fracture analysis to account for aperture and sliding and allow improved 

damage and block analysis.  
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Chapter 4: Improving DFN-Geomechanical Model Integration Using Novel 

Algorithms 

4.1 Introduction 

The challenges in acquiring appropriate input parameters for numerical modelling increase with 

the complexity of the numerical method being adopted (Stead and Eberhardt, 2013). This becomes 

even more important for models in which discrete fracture network (DFN) models are integrated 

within a geomechanical analysis to characterisze the mechanical behaviour of fractured rock 

masses. The synthesis of a DFN model requires information on fracture intensity, fracture 

orientation, fracture length and fracture terminations. When generated, a DFN model can include 

thousands of fractures, which often lead to very complex geometric configurations.  Lorig et al. 

(2015) describe how the local joint configurations and the large number of fractures required to 

realistically model the natural rock mass complexity represent a major limiting factor in the 

integration of DFNs within numerical models. As noted in Mayer, (2015), while algorithms used 

for DFN generation have greatly improved over recent years, they often do not consider the 

subsequent mesh generation routines that are required for geomechanical simulation. The 

reliability of any integrated DFN-geomechanical approach is therefore a function of the care given 

to the way in which the structural data are embedded in the geomechanical model at the required 

engineering scale.  

  

Typically, once a DFN model is generated, 2D or 3D fracture networks can be embedded within 

the solid rock mass in a finite element geomechanical model by inserting fractures with both 

sides of the fracture represented as free surfaces. This solid model is then discretized using 

triangular (2D) and tetrahedral (3D) elements. Note that the specific case of particle flow codes 
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is not considered in this chapter. During the meshing procedure, dedicated algorithms should be 

employed to ensure a reasonable mesh quality is achieved, while at the same time preserving the 

original DFN fracture resolution. The process is herein referred to as DFN Analysis and 

Cleaning. The DFN resolution is directly linked to mesh size: while using a relatively small 

mesh size would help maintaining the original DFN resolution, this could result in exceedingly 

long computational times. Conversely, increasing the mesh size without changing the DFN 

resolution would potentially be the source of numerical instabilities due to the resulting very thin 

or low-angle intersections that could potentially distort the mesh elements. For example, Pine et 

al.  (2006) suggest that excessively small or ‘‘sliver’’ elements may result from either very 

closely spaced fractures or from the termination of fractures in close proximity to each other. In 

the former case, the two fractures may be merged; in the latter case, the nodes defining the near 

fracture intersection may be snapped together. An example is shown in  

Figure 4.1 for a synthetic rock mass. In other cases, fractures may be in too close proximity and 

would need to be moved relative to each other; this is particularly relevant if the DFN model is 

generated using a spatial definition of fracture positions based on a random Poisson process such 

as the widely employed Enhanced Baecher model (Elmo et al. 2014a). For such fracture 

adjustments to be truly effective, there is a need to preserve the overall fracture intensity and to 

maintain the orientation and connectivity of the original fracture network. The objective should be 

to minimize the impact that required adjustments have on the overall behaviour of the resulting 

simulated rock mass. 
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(a) (b) 

 

Figure 4.1.  (a) 2D plane corresponding to one of the outer faces of a 3D DFN model of a synthetic rock mass, 

and (b) resulting meshed fracture traces within a FEM-DEM geomechanical software clearly showing some of 

the meshing issues discussed in the text (e.g. the left black arrow denotes fractures which make acute angles to 

each other and the right black arrow denotes two close fractures). 

 

Similarly, the stochastic nature of the DFN process is such that there are an infinite number of 

possible realizations of the fracture system based on the mapped data. This becomes a source of 

variability within geomechanical models (Olofsson and Fredriksson., 2005; Bagheri, 2009; 

Elmouttie and Poropat, 2011; Elmo et al.,  2015). To characterize this variability multiple DFN 

realizations of the same statistical distributions need to be run; accordingly, the DFN Analysis and 

Cleaning procedure must be repeated several times. Depending on the complexity of the DFNs, 

the pre-processing and model set-up would therefore have a potentially high cost in terms of both 

computing and personnel time. It is obviously important to maintain the highest possible similarity 

of statistical properties of the “cleaned” DFN compared to the original DFN. Without the 

availability of an appropriate algorithm there is the risk of added human uncertainty, as the results 
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of manually cleaning the DFN model would depend on the experience of the user and how they 

interpret the need to correct/modify specific fracture intersections. 

This chapter introduces new methods (DFN Analysis, DFN Cleaning, DFN Quality and Mesh 

Quality) that analyze the properties of an original fracture network, and then simplify it to ensure 

a reasonable mesh quality is achieved based on the calculated geometric characteristics. Mesh 

cleaning tools exist within specific numerical software (e.g. RS2D; RocScience, 2017) that allow 

to fix a poor-quality mesh. Here, we introduce tunable methods that compute DFN traces that are 

easier to integrate within different geomechanical software, and assess and maintain the original 

DFN properties. The proposed approach is generic and could be used in conjunction with FEM 

based software (e.g., RS2D; RocScience, 2017), distinct element codes (e.g., UDEC; Itasca, 2013) 

and hybrid FEM-DEM codes like Elfen2D (Rockfield, 2014) and Irazu2D (Geomechanica, 2017)).  

 

To test the effectiveness of the proposed methods, the results of the automated DFN 

analysis/cleaning algorithm are compared against DFN models that are manually cleaned by two 

users with different working experience with DFN models (intermediate to senior level). The 

resulting DFNs are then embedded within a FDEM code to simulate the failure of synthetic 2D 

pillars and investigate the variation of the modelled pillar strength, pillar mechanical response and 

calculated factor of safety with respect to the adopted DFN cleaning methods. 

 

4.2 Automated Methods to Characterize the DFN  

The use of DFN modelling in geomechanics as a numerical technique that allows for a more 

detailed consideration of the structural character of the rock mass can be traced back to Fakhimi 

et al. (2002). Subsequently, DFN modelling gained further momentum with the work of several 
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researchers, including (Elmo, 2006; Pierce et al., 2007; Diego Mas Ivars et al.,  2008). Although 

these authors mention the limitations of the process of integrating DFN fractures (3D) and traces 

(2D) within geomechanical software, no solution is offered to the problem of optimizing and 

simplifying fractures and/or traces of the initially generated DFN model to minimize meshing 

issues while preserving the appropriate DFN properties. 

 

Typically, in the DFN community, fracture intensity/density parameters are expressed with 

reference to a unified system of fracture measures that incorporates reference to scales and 

dimensions (Elmo et al., 2014). The 𝑃QR system, where the subscript 𝑖 refers to the dimensions of 

sample, and subscript 𝑗 refers to the dimensions of measurement was originally introduced by 

Dershowitz and Herda (1992). Accordingly, for 2D analysis it is possible to define 𝑃"$ (𝑚/𝑚") as 

the total trace length of fractures per unit area (areal intensity), while 𝑃"# (𝑚N") is the total number 

of fractures per unit area (areal density). These parameters are used in the current study, in addition 

to intersections and terminations, to provide engineers and geoscientists with a set of unique DFN 

properties for the characterization of an initial fracture network. The process employed herein uses 

the proposed algorithms termed DFN Analysis.  

 

The DFN Analysis algorithms are independent from the software used to generate the DFN. It 

requires the coordinates of the fracture lines. Flow diagrams describing the steps in the analysis 

for a single DFN and multiple DFNs are shown in Figure 4.2 (a) and (b), respectively. The related 

algorithms are presented in Appendix II. 
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(a)                                                                            (b) 

Figure 4.2. (a) Flowchart illustrating the different steps in the analysis using a single DFN model. (b) multiple 

DFNs. 

 

 

4.2.1 Analysis of Areal Fracture Density 𝑷𝟐𝟎 

The number of fractures per unit area (𝑃"#) can be easily calculated as the ratio of total count of 

fracture lines to the problem area. It is important to consider that when 2D sections are derived 
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from 3D DFN models that employ tessellated planar fractures (Figure 4.3), the calculated 𝑃"# 

refers to the number of segments rather than the actual number of fractures. From a meshing 

perspective, this would in effect lead to adjoining segments being defined by different nodes that 

overlap each other.   

 
 

Figure 4.3. Circular fracture generated using the proprietary DFN code FracMan (Golder, 2018; Dershowitz 

et al., 1998), showing tessellation lines and how these would introduce adjoining segments when considering 

the intersection of the fracture with a plane.  

 

The segmentation of an otherwise continuous trace impacts mesh quality, especially when some 

of the segments are critically small, with respect to the mesh element size. This is clearly shown 

in Figure 4.4, in which two fractures would be counted as eight separate fractures in the presence 

of tessellated lines. In the proposed approach, a procedure is implemented to remove any 

overlapping nodes if they are part of the same continuous fracture. 
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Figure 4.4. Demonstration of the limitations associated with fracture count measurement. (a) Two fractures 

in DFN, (b) eight fractures in DFN.  

 
4.2.2 Fracture Length and Areal Fracture Intensity 𝑷𝟐𝟏 

Areal fracture intensity is defined as the total fracture length divided by area. When considering 

𝑃"$ as an indicator for DFN analysis, there is the need to consider two important aspects: 

i) 𝑃"$ measurements are influenced by the relative orientation of the predominant fracture sets 

with respect to the orientation of the sampling plane; and  

ii) A filtering approach is typically applied to the original 3D fracture network to make it 

amenable to 2D plane strain conditions and avoid consideration of artificial rock bridges. A 

detailed discussion on the 3D to 2D DFN filtering approach is given by Elmo et al. (2007). 

Notwithstanding, 𝑃"$ represents an important parameter that can be used to effectively characterize 

the variability of rock mass strength and the deformability of a fractured rock mass, as discussed 

in Elmo (2006) and Elmo and Stead, (2010). As shown in Figure 4.5, two different DFN models 

could be described using the same 𝑃"$ intensity, when the number of fractures (𝑃"#) and their 

individual lengths can be very different. In Elmo, (2006) and Elmo et al. (2016), the authors 

propose the ratio 𝑃"$:	𝑃"# as a more inclusive parameter for rock mass strength characterization. 
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However, the 𝑃"$:	𝑃"# ratio alone cannot capture the underlying connectivity of the fracture 

network. This is particularly important when considering the influence of intact rock bridges on 

stability analysis. It is reasonable to assume that a higher degree of network connectivity would be 

reflected in a lower potential rock mass strength due to reduced rock bridge content. Note that the 

rock bridge strength itself does not change, however the rock mass strength decreases with 

decreasing rock bridge content. It is argued that connectivity would also be directionally dependent 

(with respect to the principal loading direction), and the proposed DFN Analysis algorithms can 

help decide whether a fracture network would be isotropically or anisotropically connected. 

 

 

Figure 4.5.  Demonstration of two different DFNs with the same 𝑷𝟐𝟏 value of 0.5 (m/m2), but different 

fracture length. 

 

4.2.3 Fracture Intersection Intensity and Density 

The connectivity of a DFN model is clearly linked to the potential of a fracture to intersect or 

terminate against other fractures. This has clear implications for rock mass strength since fracture 

intersections determine the blockiness character of the rock mass and the rock bridge content. In 
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this context, fracture intersection density maps (e.g. Zhanga et al., 1992; Xu et al., 2006;  Fadakar-

A., 2014; Karimi et al., 2016, 2018), can be used as methods to relate the failure process observed 

in geomechanical models to parameters directly related to the characteristics of the initial fracture 

network.    

 

Using the terminology adopted in the DFN software FracMan (Golder, 2018; Dershowitz et al., 

1998), X-type and T-Type intersections can be defined and measured based on the type of 

termination style, as shown in Figure 4.6. The method proposed in this chapter currently considers 

only X-type intersections as these are the most commonly observed. The intersection density 

(number of intersections per sampling area) is then used as a measure of DFN connectivity.  

 
 
 

 

 

 
Figure 4.6. T and X types of fracture intersections and an example in which X-Type intersections are 

shown in blue and T-type terminations are shown in red. 

 

Using the DFN Analysis algorithms, it is possible to calculate the location of fracture line 

intersections, as shown in Figure 4.7.a. The fracture lines are shown in blue, while intersection 

points are denoted in red colours. Heat-maps are also created to help visualize the location of areas 

with high fracture intersections counts (Figure 4.7.b) and high fracture intersection density (Figure 
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4.7.c), with warm colours denoting higher density of fracture intersections. The resolution of the 

heat-map is a function of the number of cells used to discretize the image. Because this may lead 

to an inaccurate visualization and interpretation of fracture intersection density, a smoothing 

algorithm (Kernel Density Estimation) is used to smooth the heat-map and the resulting image is 

shown in Figure 4.7.d.  Kernel density estimation or KDE is a non-parametric method to estimate 

the probability density function of a random variable. Early work on KDE algorithms can be traced 

back to Wand and Jones (1995). According to Duong (2007), Kernel smoothing has become one 

of the most widely used non-parametric data smoothing techniques; The main difference between 

KDE and a normalized histogram is that it smooths the neighboring values of PDF (probability 

density function). The main rule for a PDF indicates that it must sum up to one. Consequently, the 

kernel which defines the PDF must also sum up to one (Silverman, 1986). 
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Figure 4.7. (a) Fracture lines shown in blue and fracture intersections as red points. (b) Heat-map 

visualization of the fracture intersection counts in which the colour bar denotes the number of fractures per 

cell (0.09 area) in the 100 square plane. (c) Normal smoothing applied to heat map and (d) Kernel density 

function applied to heat-map. 



 72 

 

 

Figure 4.8. Examples of DFN’s with the same 𝑷𝟐𝟏, but different fracture lengths resulting in different 

fracture intersection density maps with various density scales for each profile; (a) 50 fracture traces of 6 mm 

length; (b) 100 fracture traces of 3 mm length; (c) 200 fracture traces of 1.5 mm length; (d) 300 fracture 

traces of 1 mm length. 
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For better demonstrating the changes in fracture density values, the colour bar is kept the same for 

all profiles and the results shown in Figure 4.9. a-d. The colour intensity is clearly decreasing from 

50	 × 	6	𝑚𝑚 (Figure 4.9.a) to 300	 × 	1	𝑚𝑚 (Figure 4.9.d). This implies a reduction in the fracture 

intersection density associated with an increase in the number of fracture lines and a decrease in 

the length of the fracture. Accordingly, 𝑃"$ alone clearly cannot and should not be used as an 

indicator of rock mass quality. 
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Figure 4.9.  Examples of DFN’s with the same 𝑷𝟐𝟏, but different fracture lengths resulting in different 

fracture intersection density maps shown with the same density colour bar for all profiles c; (a) 50 fracture 

traces of 6 mm length; (b) 100 fracture traces of 3 mm length; (c) 200 fracture traces of 1.5 mm length; (d) 

300 fracture traces of 1 mm length. 
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4.2.4 Fracture Orientation Frequency and Length 

Fracture orientation is an important parameter in DFN analysis and it is particularly important to 

identify acute angles of fracture intersections. In the current algorithm, fracture intersection angles 

are measured counter-clockwise from the horizontal (with a possible range of 0 to 180 degrees). 

Fractures are grouped into a number of defined bins and then normalized with respect to the 

maximum frequency, effectively measuring fracture frequency according to the orientation. A 

simple DFN section is shown in Figure 4.10.a with the associated fracture orientation frequency 

in Figure 4.10.b. 

         

(a) (b) 

Figure 4.10. (a) DFN and (b) associated fracture orientation plot with respect to the fracture count. 

 

The analysis can also include fracture length in order to identify whether acute intersections are 

formed by random fractures, or whether they are formed by, for example, shorter fractures that 

could be removed from the DFN model without altering the overall rock mass response under 

loading. A simple DFN profile is shown in Figure 4.11.a with the associated orientation-fracture 

length (Figure 4.11.b) and orientation-frequency analysis (Figure 4.11.c). The orientation-fracture 

length analysis clearly shows that most fractures are in the bin (120°-140°), where the longest 
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fracture is dominant in the orientation map. However, the orientation frequency (Figure 4.11.c) 

shows that most of the fractures are in the bin (40°-60°) which is associated with the four short 

fractures in the sample DFN configuration. This is due to the single long fracture being oriented 

in the opposite direction to that of the majority of the shorter fractures.   

 

Considering that the difference in fracture orientation map interpretation is related to both the 

number of fractures and the length of the fractures, the DFN Analysis included separate algorithms 

to show the various fracture orientation maps.  

 

(a) 

 

                                       (b)                                                              (c) 

Figure 4.11. (a) DFN with long fracture trace (left side of the profile) and four short fracture traces (right 

side of the profile). (b) Fracture orientation with respect to the fracture length and (c) fracture orientation 

with respect to the number of fractures. 
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4.3 DFN Cleaning 

In this section, we introduce DFN cleaning techniques, and collectively call them DFN Cleaning. 

The primary goal is to make the process of preparing 2D trace maps for geomechanical analysis 

more objective. The algorithms are intended for 2D applications, but the author believe it could 

also be expanded to 3D applications. The algorithms introduced as part of the DFN Cleaning can 

be applied separately or chained together in any order.  

 

The algorithm uses the DFN Analysis to initially compute, for a given 2D DFN trace-map, the 

detailed DFN properties. Subsequently, several cleaning methods can be selected to make the 2D 

DFN trace-map ready for meshing and to guarantee a good quality mesh is achieved without 

altering the underlying properties of the simulated rock mass. At the end of each cleaning step the 

DFN Cleaning algorithm re-computes the DFN properties and calculates the DFN quality in each 

property compared to the original DFN trace-map. The various cleaning methods introduced as 

part of the DFN Cleaning are listed in Table 4.1 and shown in Appendix II.   

Table 4.1. DFN Cleaning includes the following methods – the input is fracture traces – the output results are 

also fracture traces.  

Method Parameters 

Critical Discontinuity Excluder Angle and Length  

Trace Length Remover Not applicable 

Line Splitter Maximum length 

Short Line Remover Line Length 

Point Collapse Neighbour radius 

Angle Adjuster Angle increment and maximum rotation 

Fracture Separator Distance variation 
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The DFN Cleaning approach for adjusting the fracture angles and fracture separation utilizes 

Monte Carlo simulation. The DFN Quality method is used at the end of each Monte Carlo iteration, 

to compare results of cleaning. Monte Carlo simulations are ideal instruments for searching for an 

optimal fracture angle and separation distance, with tunable accuracy versus runtime. The 

proposed methods can have further implications in finding the best path for rock bridge 

connections.   

 

4.3.1 Critical Discontinuity Excluder 

A critical discontinuity can be defined as a plane along which a rock is easily separated or is 

naturally divided into layers parallel to a mineralogically defined structural weakness within the 

rock. The length of these layers can be quantified by observing the discontinuity trace lengths on 

the surface exposures (American Geological Institute, 1962) and defined herein as bedding length. 

Critical discontinuities may include highly persistent features such as bedding planes, faults, and 

shear surfaces. 

 

A Critical Discontinuity Excluder algorithm is introduced to exclude critical discontinuities from 

the cleaning process. The algorithm considers each fracture trace and applies a specific method for 

sedimentary rocks or highly persistent structures. During the cleaning process, (e.g. line splitter, 

point remover, angle adjuster, and line separator methods) bedding features and other persistent 

discontinuities need not be artificially truncated; to facilitate this, a pre-cleaning step using the 

Critical Discontinuity Exclusion algorithm is added at the beginning of the cleaning process, with 

discontinuity length and orientation as input parameters. The algorithm considers all fractures in 

the DFN and then extracts the fractures with specified length and orientation, which are stored 

separately. The cleaning process can then begin without affecting the critical discontinuities. The 
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last step of the cleaning process is to add the critical discontinuities back to the cleaned DFN 

model.  

4.3.2 Duplicate-Point Remover and Line Splitter 

When exporting 2D fracture traces generated from a 3D DFN model, there may be cases in which 

duplicate points (with the same coordinates but different identification numbers) are shared among 

connecting segments. The occurrence of these duplicate points may cause errors in the mesh 

generators, or more simply hinder the visualization process as it is not possible to distinguish two 

identification numbers located on top of one another. The introduced algorithm searches for start 

and end points of all the traces and, if a given trace is a composed of multiple segments, the relevant 

segments are merged into a single trace (Table 4.2 and Figure 4.12). This cleaning step is important 

since DFN properties are measured taking into consideration fracture length, intersection and 

counting points that are shared between lines, therefore the existence of composite traces would 

artificially increase the intersection density. 

 

Table 4.2. Example of a line comprising several adjacent segments. 

Index x1 y1 z1 x2 y2 z2 Segment ID Trace ID 

0 -4.09 -5 -3.5 -4.06 -5 -3.47 1 1 

1 -4.06 -5 -3.47 -3.8 -5 -3.29 2 1 

2 -6.22 -5 -3.5 -6.2 -5 -3.46 1 2 

3 -6.21 -5 -3.46 -5.8 -5 -2.72 2 2 

4 -5.82 -5 -2.73 -4.87 -5 -0.83 3 2 

 



 80 

 

Figure 4.12. The application of the trace length algorithm (a) without use of the applied trace length 

algorithm (b) with use of applied trace length algorithm. 

 

Conversely, there are cases in which it becomes necessary to create points to clearly define fracture 

intersections between lines, as shown in Figure 4.13, otherwise these intersections would not be 

counted in the fracture intersection density plots. 

 

Figure 4.13.  (a) Fracture traces and (b) Split fracture traces. 
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Distorted mesh elements may result when meshing fracture traces that are smaller than the 

assumed minimum mesh size. To avoid this problem, a simple algorithm has been developed to 

remove all traces that are below a certain defined length.  

 

Figure 4.14.a shows the original DFN configuration comprising four distinct fractures which are 

compared against defined length. Red lines in Figure 4.14.b denote the selected traces smaller than 

a specified length that need to be removed. Figure 4.14.c shows the cleaned DFN after removing 

the selected lines.  

 

    

Figure 4.14.  (a) Original DFN configuration comprising four distinct fractures. (b) Sub-division of fractures 

increases the number of points in all the trace intersections; red denotes the traces not meeting the specified 

criterion for minimum length and (c) Cleaned-DFN after removal of the short traces denoted in red. 

 

There may be some cases in which relatively short traces are removed that belong to an otherwise 

long composite trace; clearly this would be incorrect when considering geological structures such 

as bedding planes or very persistent joints. Under these circumstances the traces that cross the 

more persistent features should be moved apart using the Critical Discontinuity/Bedding Excluder 

algorithm. 
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Very persistent discontinuities are initially excluded from the cleaning process to avoid them being 

split into shorter segments, which may subsequently be deleted by application of the short trace 

removal method. The traces should be excluded from the cleaning process, and then reinserted 

afterwards within the simplified network. If critical areas are still present, the cleaning procedure 

is to be repeated until satisfactory results are obtained in terms of final mesh quality.   

 

4.3.3 Point Collapse Algorithm 

This method is used to merge points belonging to different traces that are close to each other 

(Figure 4.15). Because of the very small distance between these points, it would not be possible to 

use them as the nodes of a closed meshed element. To solve this problem, each point is assigned a 

neighbour zone, defined as a circle with an assumed radius. As a guideline, the radius should be 

set as large as the minimum mesh size. The algorithm goes through each fracture and checks 

whether the termination of another fracture is close to one of its two ends. If yes, it collapses the 

fracture end to the neighboring one, effectively make them intersect at one point; otherwise it does 

not modify the current fracture. This process has runtime complexity of 𝑂(𝑛). 

 

  

Figure 4.15. Example DFN configuration with three fracture traces and three distinct closely located points, 

shown in red (b) the same DFN with the applied point-collapse algorithm and circle radius set at 0.5 mm.  
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4.3.4 Fracture Trace Intersection Angle Adjuster 

The ideal mesh element would be a triangle with equal angles, but there are cases in which traces 

intersect each other forming highly acute angles (e.g., Figure 4.16.a). To solve this problem, a 

method is introduced in DFN Cleaning that scans all traces and calculates all intersection angles. 

The algorithm’s input is a minimum angle threshold and the algorithm rotates one of the traces 

until the intersection angle is larger than the assumed threshold (Figure 4.16.b).  

 

Whereas locally increasing the angle between two fractures would result in a better mesh quality, 

globally, adjusting the angle between two fractures could result in an acute angle with a third 

fracture, resulting in a reduction in overall mesh quality. Therefore, the algorithm is designed to 

limit the rotation to a maximum angle to avoid the resulting global trace-map being significantly 

different to the original. To do so, the algorithm takes the number of Monte Carlo iterations as 

input, in which the algorithm attempts to increase the intersection angles, while at the same time 

measuring the global DFN quality. The more iterations specified, the cleaner the DFN results 

obtained, at the expense of increased processing time. In each iteration, the angles are adjusted 

locally, and the DFN quality then checked. The objective is to find the optimum balance between 

angle-increase and resulting DFN quality and return the cleanest DFN configuration it finds.  

 

Note that a DFN quality measurement is introduced in this chapter as a method which considers 

the size of all intersection angles and the separation distance between all pairs of fractures. The 

sequence of steps required to solve Angle Adjuster is shown in Appendix II as Algorithm 9. 
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Figure 4.16. (a) Example of two fracture traces close to each other with an angle between them of 13° 

resulting in locally badly-shaped elements – Mesh created using unstructured-advancing front algorithm.  (b) 

The Orientation Adjuster algorithm changes the angle to 25°. 

 

4.3.5 Fracture Separator 

There may be cases in which two traces are located very close to each other at a distance that is 

less than the assumed minimum mesh size, Figure 4.17. While it may be tempting to simply delete 

one of the traces, the deletion process would cause a reduction in the areal fracture intensity of the 

model and potentially change the overall characteristics of the trace map. Fracture separator is an 

algorithm that calculates the shortest distance between two traces; if the shortest distance is less 

than the minimum mesh size then the process of moving traces apart is initiated, Figure 4.18. 

 

The shortest distance between the two traces can be computed by either measuring the shortest 

distance between the end points of each trace, or by computing the shortest distance between the 

end points of one trace and the other trace. Because the two traces would not necessarily have the 
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same horizontal or vertical coordinates, the second method is preferred. Once the distance is 

known, a trace would be moved, if necessary, to a target location such that the new distance is 

larger than the minimum mesh size.  

 

Because trace maps can contain a large number of traces, it may be necessary to run multiple 

iterations of the process to guarantee that they all satisfy the minimum distance threshold. To avoid 

changing the overall DFN trace map by having traces being moved too far away from their initial 

location, a restriction is applied such that a trace can only be moved once. A Monte Carlo process 

is used such that the order in which the traces may be moved apart is randomized and the same 

trace is never used as the initial reference for calculating distances. The optimal Monte Carlo 

iteration is chosen based on the resulting mesh quality. 

 

 

Figure 4.17. (a) Example of two fracture traces close to each other which results in locally badly-shaped 

elements, original distance between lines is 0.1 mm and (b) applying the separation algorithm, the distance is 

increased to 0.2 mm.  
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The algorithm begins by first measuring the shortest distance between two lines to determine 

whether any two lines need to be separated from each other - if they are below a specified threshold 

of closeness. The shortest distance between a line and a point is well understood mathematically 

and is illustrated in Figure 4.18.b. If the length of this line is less than the specified threshold, the 

lines are moved apart from each other. In this example, the lower line is moved away from the top 

line by first extending the dotted line to the threshold length, as shown in Figure 4.18.c. We then 

label two points: the anchor point, shown in yellow, and the target point, shown in green, as 

illustrated in Figure 4.18.d. We then translate the line, anchored in yellow, across the purple line, 

until it reaches the target green point. The resulting trace is shown in green in Figure 4.18.e. The 

result is that the two traces are exactly the specified threshold-distance apart from each other as 

shown in Figure 4.18.f. 

 

Locally, the algorithm improves the mesh quality, because a moved trace is in a better position 

with respect to the trace it was moved away from. Globally, however, this trace might not meet 

the distance requirement with multiple other traces in the new DFN. Given that a trace can only 

be moved once, this is not a deterministic approach, since the order of the traces we select from 

the original DFN plays an important role in the new derived DFN. Therefore, in this section the 

use of Monte Carlo simulation is proposed as a DFN optimization technique. The Monte Carlo 

simulation is applied by first randomizing the order of the original traces, then applying the line 

separation method as described above. After moving all traces to the new DFN, we measure the 

global mesh quality and store separately the DFN with the best mesh quality derived at the current 

simulation step. The algorithm that outlines the DFN fracture separator process is shown in 

Appendix II as Algorithm 10. 
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Figure 4.18.  (a) Simple demonstration of two fractures within a specific separation distance, (b) Shortest 

distance between two fracture traces, (c) Extending the dotted line to the threshold length shown in purple, 

(d) Demonstration of anchor point, shown in yellow, and target point, shown in green. (e) Line translation to 

the new location across the purple line, (f) Two traces located at the threshold distance from each other. 

 

It should be emphasized that cleaning DFN traces requires a trade-off between optimum mesh 

quality and the need to maintain original DFN characteristics (e.g. 𝑃$# and 𝑃"$ and a degree of 

network intersection density) that closely match those of the original DFN trace map. The 

algorithm introduced in this section is tunable in terms of the aggressiveness of the DFN cleaning. 

It takes input values for both the minimum and maximum trace length (line removal and line 

splitter algorithms), neighbor radius (point collapse algorithm), angle increment and maximum 

rotation (angle adjuster algorithm) and distance variation (fracture separator algorithm). 
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Accordingly, these parameters control the cleaning procedure and the resulting fracture network 

characteristics. 

 

4.4 DFN Quality Criteria for Meshing 

4.4.1 Development of a Meshability Index for DFN Trace Maps 

 
Mesh quality is a critical parameter that must be considered in a Finite Element (FE) analysis. 

Given the geometrical complexity of DFN configurations resulting from numerous fractures 

intersecting each other, a compromise must be established between mesh quality and the minimum 

element size. The smaller the element size, the easier it is to achieve a higher mesh quality but the 

larger the required computation model run time. 

 

In the previous section, the DFN cleaning required an iterative process and a target to assess when 

a satisfactory result has been achieved. The target can be defined in terms of a specified mesh 

quality value. This section presents various mesh quality measurement methods that are 

independent of mesh generation software. A “meshability index” is introduced that contains three 

components: i) Critical Area Quality; ii) Separation Quality; and iii) Angle Quality. Each of these 

components is calculated independently, and their average defines the meshability index.  

 

4.4.2 Critical Area  

Fracture traces in a DFN trace map form enclosed regions of various shape and size. Depending 

on the mesh element size, the smaller regions might not be able to fit correctly shaped mesh 

elements that meet the minimum mesh element size requirements. From the perspective of the 

meshability index, these regions are uniquely defined herein as of “Critical Area”.  
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Initially, a minimum area threshold value (Critical Area) that is related to the minimum mesh size 

is used as an input. The algorithm searches for enclosed regions that do not meet the Critical Area 

requirement, and furthermore scores each region (independently of area). If the area is larger than 

the defined Critical Area, the enclosed region would be given a 100% score. If it is less than the 

Critical Area, the score is then calculated as the ratio of the enclosed area to the Critical Area (%). 

The average score is then calculated for all enclosed regions; the lower the average score the larger 

the number of enclosed regions that potentially would be difficult to mesh. Figure 4.19 shows an 

example for a 2D pillar (14 m wide, 7 m high), with an assumed Critical Area of 0.1 𝑚". By 

purposely assigning equal weight to each enclosed region, the scoring method provides a better 

indirect measurement of mesh quality. For instance, a scenario where several enclosed regions fall 

slightly below the threshold Critical Area would get a better Meshability Index, compared to a 

DFN with a few very small enclosed regions, as the latter would require an adjustment of the 

Critical Area target for the Meshability Index to increase. 

 
Figure 4.19.  Critical areas are highlighted in orange for a critical area threshold of 0.1 𝒎𝟐 and resulting 

mesh quality of 57%. 

 

The critical area criterion is used as a quality indicator for the cleaning process. When visualized, 

it can also provide a visual guide to identify areas where further cleaning may be required.   
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4.4.2.1 Separation Quality 

This method is used in conjunction with the fracture separator algorithm. The input is a minimum 

distance between fractures (related to minimum mesh size), and it has a scoring system similar to 

that described previously used to define the Meshability Index component. If the distance is larger 

than the minimum distance, it gets a full score; if it is less, then the score is calculated by dividing 

the calculated distance by the minimum distance. The scores of all distances are then averaged, 

resulting in a total score between 0% and 100%.  

 

4.4.2.2 Angle Quality 

Intersecting fracture traces that result in very small angles may produce a poor-quality mesh. 

During the cleaning process of the DFN traces, small angles can be corrected directly, but some 

traces may be moved to fulfil the Fracture Separator criterion, and in the process very small 

intersecting angles may be generated. Therefore, it is necessary to define a further constraint 

bounding the Fracture Separator criterion. In a similar fashion to the angle adjuster algorithm, all 

angles formed by intersecting traces are searched with respect to a threshold and are assigned a 

score. If the angle is larger than the target value, its score is 100%, otherwise its score is equivalent 

to the angle-to-target value ratio (%). The average of all the calculated scores provides the third 

component of the proposed meshability index.  

4.5 Development of a Mesh Quality for DFN Trace Maps 

As an alternative to the formulation of a meshability index, it is possible to define a mesh quality 

criterion, which for each element is measured as the ratio of the maximum edge length to the 

minimum edge length. The ideal value would be one where all edges are of the same size. As the 

ratio increases, the larger difference between the edge lengths would result in a lower mesh quality.  
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Figure 4.20 shows an example in which elements with the lower mesh quality are coloured using 

warmer (darker) colours. 

 

Figure 4.20. Example of mesh quality regions. The warmer (darker) colours indicate elements with a lower 

mesh quality; mm scale. 

 

Visualizing the output of the mesh quality algorithm enables us to quickly see the location of 

potential problematic areas within a model mesh and is useful both during and after the cleaning 

of the DFN trace map to ensure a good mesh quality is achieved. A target ratio (average of the 

quality which is defined as the total cell qualities divided by the number of cells) can be set, (a 

value in the range of 0.1 to 1 is recommended based on the authors experience with preparing FE 

models with embedded DFN traces). 

 

4.6 Application of New DFN Algorithms for the Characterization of Pillar Strength 

Mine pillars provide an excellent example of the importance of accurately determining rock mass 

strength. To accurately simulate the mechanical behaviour of mine pillars by numerical modelling, 

it is necessary to incorporate a more realistic representation of the discrete fracture systems (Elmo 

and Stead, 2010). At the set-up stage the original DFN trace maps need to be prepared for the 
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geomechanical analysis to ensure that the process of incorporating the DFN traces within the 

geomechanical model does not influence the overall mechanical behaviour of the simulated pillars.  

 
4.6.1 Model Set-up, DFN Analysis and Cleaning Process 

 
Geological and geotechnical data from Pine et al., 2006, Elmo., 2006 and Elmo and Stead., 2010 

were used to generate a DFN model for Middleton mine (Derbyshire, UK), which is a classic 

square room-and-pillar mining operation. The current study considers a 2D cross section of a 3D 

DFN model representing mapped jointed pillars at Middleton mine. The section is 14 m wide and 

7 m high. The proprietary code FracMan (Golder, 2018, Dershowitz et al., 1998); is  used in the 

current chapter for DFN synthesis. The properties (𝑃"#, 𝑃"$, 𝐼"$) of the original 2D trace map are 

2.95 1 𝑚"⁄  , 4.04  𝑚 𝑚"⁄ 	and 578 trace intersections, respectively. The original DFN trace map 

was processed using the DFN analysis and the cleaning algorithms introduced in the previous 

sections, to prepare for geomechanical analysis. Additionally, two individuals, with different 

modelling experience (intermediate and senior experienced level) prepared the same trace maps 

manually. The properties of the resulting DFN trace maps are presented in Table 4.3. 

 

Table 4.3. DFN properties of the initial DFN, the new automated DFN and DFN’s produced by both 

intermediate and senior experience level users. 

 
Title 

Fracture 
Length 

(m) 

 
Fracture Count 

Unique  
Intersections Count 

I21 

 
𝑃"# 
1 𝑚z  

 
𝑃"$ 
𝑚
𝑚"z  

Initial 396.2 289 578 2.9 4.04 

Automated 392.8 113 361 1.1 4.01 

Intermediate 383.5 102 316 1.0 3.91 

Senior 385.1 235 329 2.4 3.93 
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Connectivity maps and fracture intersection locations are presented in Figure 4.21 and Figure 4.22. 

The most similar connectivity distributions belong to the trace maps cleaned using the proposed 

algorithms which indicate properties similar to the original DFN. Conversely, the trace map 

processed by the intermediate experience level user shows an increase in intersection density for 

the lower part of the pillar, which does not match the initial DFN. The intermediate experience 

user cleaned most of the high density-high intersection areas by moving traces to locations with 

lower fracture density. Some of the more problematic traces were also deleted, which resulted in 

a processed 𝑃"$ of 3.7 m-1 in comparison to the original 𝑃"$ of 4.0 m-1. The senior experience level 

user was able to maintain an overall agreement between the original and processed DFN network 

intersection density; however, the manual processing can take considerable time. Manual cleaning 

processes are therefore subject to large, user dependent, bias. The proposed algorithms, however, 

shows the closest similarity to the original DFN intersection density map. 

 

Figure 4.21. Intersection density plots of the initial DFN trace map compared to plots resulting from 

automated and manual cleaning procedures (intermediate and senior experienced level users). Unit of the 

colour bar is the kernel density estimation of the binned number of intersections in 2D.   
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Figure 4.22. Number of fracture intersections of the initial DFN trace map compared to those resulting from 

automated and manual cleaning procedures (intermediate and senior experience level users). Unit of the 

colour bar is the number of intersections seen per cell.  

 

To better compare the various cleaning methods, the density KDE histograms of all implemented 

methods are plotted with respect to the x-axis (Figure 4.23.a) and y-axis (Figure 4.23.b) of the 

pillar section, respectively. The left y-axis shows the KDE density, while the right y-axis shows 

the number of intersections in 15 bins.  
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Figure 4.23. Intersection count histogram for initial DFN with KDE plots for initial, automated, intermediate 

and senior level users in (a) X axis and (b) Y axis. 

 

The KDE curves for the automated, intermediate and senior experience level cleaning results are 

compared with respect to the initial KDE curve, by subtracting the density values in x and y 
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directions as explained in Appendix II using Algorithm 3. The values for the various cleaning 

methods are shown in Table 4.4 and show that the automated and senior experience level density 

values in the x axis have relatively low deviation from the initial KDE curve, compared to the 

intermediate level user results. The automated result has the least deviation from the initial state 

KDE in the y-axis. 

Table 4.4. KDE comparison with respect to the initial KDE curve. 

Title X (m) Y(m) 

Automated 0.51 0.83 

Intermediate 1.23 1.11 

Senior 0.36 0.86 

 

To further test for similarity between trace maps, the results of the Trace Orientation Frequency 

and Fracture Length analysis are shown in Figure 4.24 and Figure 4.25, respectively. In the original 

trace map the highest number of traces have an orientation of 80 to 100° with respect to the 

horizontal axis. All the processed trace maps show minor differences (e.g. some of the processed 

traces have an orientation between 100° to 120° with few in the range of 160° to 180°).  In the 

processed trace maps some of the traces with orientation between 60° to 80° and 100° to 120° were 

moved from their original location (slightly left or right). Overall, the automated cleaning method 

yields the closest orientation similarity to the original DFN.  
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Figure 4.24. Trace orientation frequency plot of the initial trace map compared to those resulting from 

automated and manual cleaning (intermediate and senior experience level users). The x-axis is the normalized 

number of fractures. 

                

Figure 4.25. Trace orientation length plot of the initial trace map compared to those resulting from 

automated and manual cleaning (intermediate and senior experienced level users). The x-axis unit is the 

normalized length of fractures. 
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4.6.2 Comparison between Meshability Index and Mesh Quality 

 
Using the Meshability Index and Mesh Quality methods, a comparison is made between various 

sections. The presence and location of smaller closed polygonal regions (Figure 4.26, orange 

colour) is also used to define similarity between the original trace map and those trace maps 

processed for geomechanical analysis.  

 

 

Figure 4.26. DFN Quality of the initial, automated, intermediate and senior experience level users. Dimension 

is meters.  

 

The results of the Mesh Quality analysis are shown in Table 4.5 and Figure 4.27. The initial DFN 

trace map has the lowest Meshability Index, and the trace map could not be meshed using 

unstructured advancing front and Delaunay algorithms. Hence, no Mesh quality value is available. 

The values of meshability index and mesh quality are plotted with respect to various DFNs and 

shown in Figure 4.27. There is an overall increase in the Meshability index from initial DFN (0.57) 
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to automated, intermediate and senior experience level user DFNs with the corresponding values 

of 0.84, 0.87 and 0.75, respectively. There is a good agreement overall between the Meshability 

Index and the Mesh Quality, in which the increase in Meshability Index is proportional to an 

increase in Mesh Quality. This indicates that both methods can be used to constrain the cleaning 

of DFN traces.  

 

Table 4.5. Meshability Index parameters and Mesh Quality are shown for the trace maps for the new, 

automated DFN and DFN’s produced by both intermediate and senior experience level users. 

Title Critical Area 

Quality 

Line Separation 

Quality 

Orientation 

Quality 

Meshability 

Index 

Mesh Quality 

Initial 0.58 0.73 0.40 0.57 Not Applicable 

Automated 0.71 0.82 0.98 0.84 0.86 

Intermediate 0.79 0.90 0.99 0.89 0.86 

Senior 0.73 0.89 0.62 0.75 0.85 
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Figure 4.27. Meshability Index and Mesh Quality assessment for initial, automated, intermediate and senior 

experience level, respectively. 

 

4.7 Geomechanical Simulation of Pillar Strength and Mechanical Behaviours 

A hybrid FEM/DEM numerical approach that combines aspects of both finite elements and 

discrete elements with fracture mechanics principles was used for the geomechanical analysis 

using ELFEN (Rock field, 2017). The same material properties (intact rock and joints) and loading 

stages used in Elmo and Stead. (2010) are applied to the current FEM/DEM models; these 

parameter values were derived from a combination of laboratory measurements on the Middleton 

limestone and values for similar limestones in the literature.  

 

In the design of room-and-pillar mines, the loading capacity of a pillar, i.e. its strength, is equally 

as important as the stability of the roof and walls (Nordlund and Radberg, 1995). As discussed by 

Elmo and Stead, (2010), the most generally accepted techniques for estimating pillar strength is 
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the use of empirical formulae based on survey data from actual mining conditions. However, 

empirical methods do not consider specific failure mechanisms. For a numerical analysis of pillar 

strength to be considered representative, it must be based on an objective modelling process, thus 

reducing the human uncertainty associated to level of experience of the user. Because a pillar 

would be considered to have failed when the average pillar stress is greater than the estimated 

pillar strength, any increased uncertainty in the estimated value of pillar strength would result in 

an increase in the risk associated with the design process.  

 

4.7.1 Material Properties and Boundary Conditions 

The material properties and boundary conditions are adopted from work by Elmo, 2006. The 

platens are placed on the top and bottom part of the pillar. They models are constrained in x-

directions as shown in Figure 4.28. The pillar models in this chapter consist of a pre-fractured rock 

pillar, which was loaded as if it were subjected to uniaxial laboratory loading conditions. An initial 

state of stress was initiated with gravity loading and a displacement of 0.07 m (i.e. 2% of pillar 

height) was applied on top and bottom platens in the second stage. 
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Figure 4.28. Boundary conditions of the pillar model. 

 

The material properties are specified for both intact rock and integrated fracture networks as 

shown in Table 4.6.  
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Table 4.6. Material Properties  

Rock Material Properties (Limestone) Unit Value 

 

 

 

Intact Rock Material 

Unified compressive strength, 𝜎rQ 𝑀𝑃𝑎 48 

Fracture energy, 𝐺m 𝐽𝑚N" 19.47 

Tensile Strength, 𝜎k 𝑀𝑃𝑎 3.84 

Young’s Modulus, 𝐸 𝐺𝑃𝑎 27.5 

Poisson’s ratio, 𝜈 - 0.23 

Density, 𝜌 𝑘𝑔𝑚NS 2600 

Internal Cohesion, 𝑐Q 𝑀𝑃𝑎 9 

Internal Friction, 𝜙m degrees 40 

Platen material properties and discrete (contact) parameters Unit Value 

 

 

Rock Fracture 

Surface Cohesion,	𝑐m 𝑀𝑃𝑎 48 

Surface Friction, ∅m 𝐽𝑚N" 19.47 

Normal Stiffness (Normal Penalty) 𝑃e 𝑀𝑃𝑎 3.84 

Shear Stiffness (Shear Penalty) 𝑃k 𝐺𝑃𝑎 27.5 

 

Platen Properties 

Young’s Modulus of Platen 𝐺𝑃𝑎 200 

Poisson’s ratio of Platen 𝑘𝑔𝑚NS 0.3 

Density of Platen 𝑀𝑃𝑎 7860 

 

 

Rock-Platen 

Contacts 

Rock/platen cohesion MPa 0 

Rock/Platen friction degrees 3 

Rock/platen normal stiffness (Normal Penalty 𝑃e) 𝐺𝑃𝑎/𝑚 27 

Rock/platen shear stiffness (Shear Penalty 𝑃k) 𝐺𝑃𝑎/𝑚 2.7 

 

 

4.7.2 FEM/DEM-DFN Modelling Results 

Selected results at peak stress are presented in Figure 4.29 with an indication of the associated 

cleaning method (Automated, Manual Intermediate Experience and Manual Senior Experience 

level). The results indicate that the dominant mode of failure (independent of the cleaning process 

for the embedded trace map) is progressive slabbing and spalling which eventually leads to an 

hour-glass shape.  
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a: Automated 

 

b: Intermediate level experience 

         

                      c: Senior level experience 

 

Figure 4.29. FEM-DEM-DFN analysis. Evolution of pillar fracturing at the peak stage, for (a) automated and 

(b) manual cleaning intermediate level experience and (c) manual cleaning senior level experience user.  

 

The stress-strain plots for the different cleaning methods are shown in Figure 4.30.a. The stress 

values are then normalized by dividing the pillar axial stress by the uniaxial compressive strength 

of the limestone (48 MPa) and the results are shown in Figure 4.30.b. The proposed DFN cleaning 

process yielded the highest pillar strength and deformation modulus (16.7 MPa and 25 GPa secant 

modulus). The intermediate and senior experience user level models estimated a lower pillar 

strength (13.9 MPa and 12 MPa, respectively) and deformation modulus (16.6 GPa and 13.3 GPa, 

respectively). Table 4.7 shows a comparison between the strength and deformation modulus values 

using the different DFN cleaning methods. The percentage differences in the strength and 
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deformation moduli are shown for the two manual cleaning methods with respect to the proposed 

automated cleaning model. The results of Figure 4.30 show how important the cleaning process 

could be in terms of potentially altering the mechanical behaviour of the rock mass. Similarly, the 

results show that engineering judgment alone (experience user level versus intermediate user level) 

may not be a valid justification to either accept or discard modelling results. Whereas human bias 

and uncertainty may be transferred into the algorithm design, once formulated, the algorithm 

would analyze different DFN traces in a more objective manner.    

 

Table 4.7. Pillar strength and deformation moduli for the Elfen simulation results. 

Cleaning Methods Pillar Strength 

(𝑴𝑷𝒂) 

Deformation Modulus 

(𝑮𝑷𝒂) 

% Strength difference 

of manual vs 

automated method 

% Modulus difference 

of manual vs 

automated method 

Automated 18.7  25  - - 

Intermediate 13.9 16.6 -16.7 -33.6 

Senior 12.0 13.3 -28.14   -46.8  
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                  (a) Axial Stress-Strain                          (b) Normalized Axial Stress-Strain 

Figure 4.30. (a) FEM-DEM -DFN analysis. Pillar axial stress vs. axial strain for automated and manual 

cleaning (intermediate and senior experience level users). (b) Pillar axial stress normalized with respect to the 

UCS vs. axial strain. 

 

The empirical comparisons were made using a similar approach as given in Elmo, 2006 for the 

Middleton mine. As discussed in Elmo, 2006, the strength relationship for square pillars is shown 

in  Equation 4.  

 

𝝈𝒑 = 	𝑲𝒎𝒂𝒔𝒔𝑾𝟎.𝟓𝑯N𝟎.𝟕    [Eq. 4] 

 

𝜎¡ is the ultimate pillar strength that is calculated for an effective width of 28 m, height of 7 m and 

a 𝐾£¤ff value of 9.03 MPa where 𝐾£¤ff is the strength of a unit cube of the pillar rock material. 

GSI of 70, σ¦/ of 48 MPa and m/ of 10 is derived using the GSI-RocData approach (Rocscience 

Inc. 2017). This results in a pillar strength value of 18.3 MPa which agrees closely with FDEM 
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models incorporating the proposed cleaning algorithms which gave a simulated maximum pillar 

strength of 18.7 MPa. 

 

The pillar vertical stress contour plots for the various DFN cleaning methods are shown in Figure 

4.31. The pillar core appears to be stronger in the automated DFN cleaning model, while the 

presence of a larger destressed outer layer was observed in both intermediate and senior level 

experience models. 

 

 

(a)  Automated 

 

(b) Intermediate level experience 

      

                      (c) Senior level experience 

Figure 4.31. FEM-DEM-DFN analysis. Evolution of pillar stress at the peak stage, for (a) automated DFN 

cleaning (b) manual cleaning-intermediate level experience and (c) manual cleaning- senior level experience. 

Note negative convention for compressive fields (𝐌𝐏𝐚). 
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The horizontal displacement contour plots for all models are shown in Figure 4.32. Larger 

horizontal deformations were observed in the senior level experience cleaned DFN model, which 

shows a relatively deeper depth of failure. Considering the orientation results from the DFN 

Analysis, in which the automated DFN cleaning model has the closest orientation similarity with 

the initial DFN (Figure 4.24 and Figure 4.25), it is suggested that the automated model maintains 

a more realistic block size and shape in comparison to the manual cleaning model results. 

 

 

(a)  Automated 

 

(b) Intermediate level experience 

 

  

                    (c) Senior level experience 

Figure 4.32. FEM-DEM-DFN analysis. Evolution of pillar horizontal displacement at the peak stage, for (a) 

automated and (b) manual cleaning, intermediate level experience user and (c) manual cleaning, senior level 

experience user. 
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The FDEM-DFN results indicate that the cleaning process applied to the embedded DFN trace 

map has a significant impact on the modelling results. Accordingly, a higher factor of safety may 

have to be applied to the results to be sufficiently conservative and account for human uncertainty 

(DFN cleaning bias). For instance, consider a simple elastic analysis of pillar stress based on a 

mine depth of 200 m (as at Middleton mine). For a pillar located at the centre of a 2D array of 5 

pillars (pillar width of 14 m equal room width), the maximum pillar stress by tributary analysis 

would be 9.8 MPa. The corresponding Factors of Safety (FoS) would be 1.7, 1.4 and 1.2 for the 

automated, intermediate, and senior level experience user FEM-DEM models, respectively. A 

slight increase in depth to 250 m, would increase the average pillar stress to 12.5 MPa, and the 

FoS would be reduced to 1.3, 1.1 and 0.9, respectively. Therefore, under the same stress conditions 

and modelling assumptions, the risk of either overestimating or underestimating pillar strength 

(and stability) could be significant. However, it is suggested that the trace map yielding the lowest 

pillar strength could still be representative of the natural variability of the jointing conditions in 

the field (under the assumption that the cleaning process has not altered the overall network 

characteristics). 

 

4.8 Summary and Concluding Remarks 

New DFN Analysis and Cleaning methods are introduced that simplify fracture networks, while 

maintaining important properties such as fracture orientation, fracture intersection density, and 

fracture intensity. These methods are of fundamental importance for the integration of DFN 

models within geomechanical models, particularly when embedding rather complex 2D fracture 

networks within a finite element mesh.  
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The application of both DFN Analysis and Cleaning methods integrated with geomechanical 

software has far reaching implications, since the last decade has witnessed an increase in use of 

numerical modelling for simulating the mechanical behaviour of naturally fractured rock masses. 

Because of the underlying stochastic nature of DFN models, synthetic rock mass models with 

embedded DFN traces would need to consider running numerous models to account for the 

variability of the simulated fracture pattern. Whereas generating multiple realizations of the same 

DFN model is relatively straightforward and can be done relatively fast, FEM, FDEM, and DEM 

analysis in contrast are computationally very intensive; consequently, only a limited number of 

realizations can be accommodated in the analysis. The objective of this chapter is to present new 

methods that would allow to more objectively select which DFN model to consider for FEM, DEM 

or FDEM analysis. Only a set of DFN cleaning methods such as the ones presented can guarantee 

more objective and less biased modelling results, thus reducing the risks associated with the 

application of integrated DFN-geomechanical modelling to engineering design. Cleaning DFN 

traces requires a trade-off between optimum mesh quality and the need to maintain a degree of a 

fracture intensity value (e.g. 𝑃$# and 𝑃"$) and a network connectivity that closely match those of 

the original DFN trace map. The method presented in this chapter permits the tunability of the 

aggressiveness of the DFN cleaning. The methods take various parameters including the minimum 

and maximum trace length (line removal and line splitter), neighbor radius (point collapser), angle 

increment and maximum rotation (angle adjuster) and distance variation (fracture separator). 

Accordingly, these parameters control the cleaning procedure and the resulting fracture network 

characteristics. 
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Similarly, DFNs are increasingly used to analyze slope stability problems. Because the stability of 

rock slopes is intrinsically linked to the presence of rock bridges (Elmo et al., 2015), it is important 

that any cleaning of embedded trace maps is as objective as possible and maintains the original 

network connectivity to avoid introducing artificial rock bridges and potential design errors. 

Parameters such as 𝑃"# and 𝑃"$ have inherent bias (e.g. 𝑃"$ is orientation dependent) that may 

limit their ability to characterize DFN models. In the presented methodology, attempt has been 

made to combine as many parameters as possible to characterize DFN models and thereby reduce 

the inherent limitations in the characterization process if based on a single parameter. Furthermore, 

in the proposed methods selected parameters are used primarily to compare DFN traces before and 

after cleaning to ensure acceptable similarity between the original and cleaned DFN traces. The 

subject of DFN characterization goes hand-in-hand with the problem of rock mass 

characterization, since many of the parameters used in engineering practice to characterize the rock 

mass have important limitations (e.g. RQD). The existence of unbiased parameters that can be 

used to characterize rock masses and DFN models is a challenging area for future research, since 

most of the recorded bias and model limitations derive from the way data are collected in the field.  

 
New techniques DFN Cleaning, DFN Quality and Mesh Quality have been introduced with the 

objective of being used at any scale, from laboratory tests to high rock slopes and underground 

block caving models. These DFN methods incorporate advanced optimization techniques, such as 

Monte Carlo simulation, to aid in the search for an optimal result while maintaining a reasonable 

runtime. In this chapter, pillars were used to demonstrate the potential influence of the adopted 

DFN cleaning approach on the modelled pillar strength. The presented results indicate that human 

uncertainty introduced as part of the DFN cleaning process can have a significant impact on model 

performance in terms of calculated pillar stress, displacements and block movement. By using an 
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automated DFN cleaning approach, it is possible to minimize the risks of underestimation or 

overestimation of the maximum strength and to provide an increased control over the final results. 

Considering that the modelled pillar factor of safety was shown to be highly sensitive to the 

location and connectivity of the DFN traces (and therefore to the presence of rock bridges); using 

the DFNAnlayzer methods offer a way to quickly compare the geomechanical results. 

 

The proposed DFN Quality criteria for meshing and Mesh Quality assessments guarantee that a 

reasonable mesh quality is achieved thereby both improving computational times and eliminating 

spurious results that may be associated with the presence of poor geometry elements. A new 

Meshability Index is introduced to assess the DFN mesh quality prior to and after each cleaning 

method. A good correlation was achieved between the Meshability Index and Mesh Quality in the 

pillar case study. The use of the developed DFN techniques allows for a faster and more accurate 

assessment of a DFN model prior to incorporation within a geomechanical analysis.  
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Chapter 5: New Approaches to Quantify Progressive Damage and Rock Mass 

Blockiness  

5.1 Introduction 

The finite-discrete element method (FDEM) has proven itself valuable for simulating the initiation 

and propagation of brittle fractures in various surface and underground excavations (Elmo and 

Stead, 2010; Lisjak and Grasselli, 2010; Tatone, 2014; and Rougier, (2011)). However, there still 

exists the need to develop suitable techniques to better characterize fracturing processes, including 

the formation of fully formed blocks. This chapter describes how the results of FDEM models can 

be used in a detailed analysis of intact rock damage and associated block formation using several 

newly developed approaches: i) block-damage; ii) block size; iii) block detachment maps; iv) block 

tracking-tree; v) block fragmentation; and vi) block displacement. The proposed techniques are 

data driven, and rely solely on raw simulation data, thus eliminating the inherent inaccuracy and 

limited scalability of methods based on image processing. 

 

Chapter 4 has introduced new methods to analyze discrete fracture network (DFN) models. 

However, those techniques are valid for “static” DFN models. When DFN traces are embedded 

into 2D FDEM models, the imposed loading conditions contribute to the extension of the pre-

existing traces and the formation of new cracks. In other words, a new DFN configuration is 

progressively being generated as the loading conditions changes in the FDEM model. The 

objective of this chapter is to analyze “dynamic” DFN traces generated in FDEM simulations. A 

fracture calculator is developed that uses mesh data and timesteps of the FDEM numerical 

simulation. This new technique is independent of the simulation software and could also be applied 

to simpler DEM (Discrete Element Methods). An extension of the DFN Analyzer technique 
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described in chapter 4 is then proposed that allows to quantitatively analyze fractures, both 

spatially (within a timestep) and temporally (for varying timesteps). This new technique has the 

potential to offer significantly improved capabilities for the analysis of intact rock bridge failure 

(e.g. Elmo et al., 2018). The analysis is not limited to fracture traces, and a new Block Calculator 

and Block Analyzer are introduced that precisely calculate the number of fully formed blocks and 

analyze their characteristics based on geometrical methods and graph analysis (Hopcroft and 

Tarjan, 1973; Lewis and Papadimitriou, 1982; Diestel, 2017; Gross and Yellen, 2005).  

 

As in chapter 4, pillar models developed based on data collected by Elmo (2006) have been used 

to test all the new analytical methods. The results show that the proposed techniques can provide 

a detailed portfolio of quantitative information and illustrations that can help in understanding 

brittle failure processes and highlight the relative control that pre-existing fractures and intact rock 

bridges play during the failure process.  

 

5.2 Rock Mass Blockiness as the Key to Understanding Brittle Failure  

The importance of identifying which fractures contribute to block formation has been 

demonstrated by various researchers; for instance, important examples include the application of 

the Geological Strength Index, GSI (Hoek et al. 1995; Marinos et al. 2007; Hoek and Brown, 

2018). Even though blockiness is an important parameter which controls, for a given set of shear 

strength properties, the correct value of GSI to use, there are no procedures that can calculate both 

“static” and “dynamic” rock mass blockiness, i.e. changes in the in-situ block size distribution 

(IBSD) occurring as a result of external loading.   
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Quantification of GSI is proposed by Cai et al. (2004) emphasizing the drawbacks in attributing a 

single value of GSI to the structure under study. Bertuzzi (2018) found a high correlation between 

the GSI derived from the chart by Hoek (1994) and the approach proposed by Cai et al. (2004) in 

major rock types in Sydney. The GSI chart was quantified by Hoek et al. (2013) by introducing 

relationship between Joint Condition and Rock Quality Designation (RQD). In this paper, they 

encourage researchers to use the numerical modelling of rock fracture networks in order to gain a 

better knowledge of jointed rock mass behaviour.  

 

Using GSI terminology, does not necessarily reflect a rock mass that is initially blocky will become 

very blocky when subjected to loading. To study the transition of a rock mass from massive to 

blocky and very blocky, it is necessary to analyze and quantify failure mechanisms, including 

failure of intact rock bridges. However, it is not just a matter of simply measuring block volumes 

(or area in 2D simulations). There is the need to track where blocks are initially nucleated, and 

how those blocks may further fragment into smaller blocks. In other words, the analysis of brittle 

damage requires more than just a measurement of areal intensity (𝐷"$ parameter; Gao, 2013) and 

crack orientation.     

 

Static analysis of block systems has been conducted by many researchers in the past 50 years. The 

concept of block theory has been developed using graph theory, set theory and vector analysis for 

analyzing rock mass stability. For example, Warburton (1981) assessed block stability by using 

vector analysis and calculating blocks volume, mass and factors of safety with respect to a 

frictional failure criterion. Lin and Fairhurst (1988) performed static analysis of large-scale block 

systems using directed graph theory (ordered pair of nodes) in which the blocks are nodes and two 
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nodes are joined by an arc whenever the corresponding blocks are adjacent. The derived paths in 

the graph resembled the free face of the excavation. An example of such graphs by Lin and 

Fairhurst (1988) is shown Figure 5.1. 

 
 

Figure 5.1. The directed graph and the reduced graph (after Lin and Fairhurst, 1988). 

 
Various studies have been dedicated to the analysis of fracture configurations and potential block 

formation for static problems. GeneralBlock was written in Visual C++ 6.0 by Xia et al. (2015) 

using the OpenGL library. In this code, the modelling domain can be a complex shape, and the 

rock and fractures can be imported as heterogeneous materials. This program identifies all blocks 

formed by the excavations and the fractures and can show 3D graphics for each block. However, 

their methodology suffers from being restricted to rock blocks formed by complex excavations 

and finite-sized fractures, therefore filtering non-persistent fractures is one of the primary steps 

prior to using the code. Goodman and Shi (1985) proposed block theory as a 3D approach 

independent of pre-mapping of the joints and accounting for the shape of the excavation. Block 

theory does not offer analysis with large deformation (DDA) (Hatzor et al., 2017). However, the 

issue can be eliminated by using dynamic methods such as distinct element analysis, thus allowing 

for large block movements as well as considering complex geological sections (Cundall and 
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Strack, 2008). Cundall, (1988) proposed methods for detecting the contacts between blocks of 

various shapes (i.e., convex and concave) and characterizing the geometrical and physical 

properties defined by the contact between objects. This method utilized a linked-list data structure 

attached to a global pointer as an optimized search for rapid scanning through all contacts as the 

forces are updated in calculation cycles.  

 

Numerical methods are well-suited to analyze problems that include inherent variability associated 

with natural fractures, including their spatial distribution, and physical properties. Examples 

include block theory and Displacement Discontinuity Analysis, DDA (Goodman and Shi, 1985), 

discrete element method, DEM (Cundall, 1988) and FDEM methods (e.g. Elmo and Stead, 2010; 

Vyazmensky et al., 2010; Mitelman and Elmo, 2014; Tatone and Grasselli, 2015). For dynamic 

problems, Lu (2002) implemented a dynamic linked-list to store topological information of a 

directed polyhedron. This was an automated approach for detecting 3D blocks formed by natural 

fractures, including cracks, joints, and faults. A computer language BGL (Block Generation 

Language) has been developed by Heliot (1988) to build the 3D block structure around excavations 

in rock. BGL has been developed using Lex and Yacc UNIX tools and consider both the 

geometrical description of the jointed rock mass and the available geological history process. More 

recently, Vazaios (2018) identified critical blocks using image processing algorithms applied to 

the output simulation results of Irazu (Geomechanica, 2017).  

 

In general terms, numerical methods of discrete (blocks) problems have been gradually advanced 

by adopting various data structures such as arrays, linked lists and chained trees. Developing 

methods to continuously search for contact between blocks, requires an appropriate 
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implementation of data structure to identify rock blocks. Block calculations and analysis is 

predominantly static and independent of the progressive intact rock damage associated with brittle 

fracturing. Some numerical code is based on a discretization of the modelling domain to blocks, 

and subsequent calculation of the contact forces between these blocks. The method of updating the 

block information with simulation timestep is known as DEM (Cundall and Strack, 2008). The 

proposed methodologies introduced in this chapter use a similar data-driven approach integrated 

with FDEM models by using raw simulation output. One major difference between the method 

proposed in this chapter and previously developed methods for DEM modelling relates to the 

relationship between the blocks across timesteps. While DEM is based on calculating the blocks 

for one given step, the proposed method in this chapter can track finite element information across 

timesteps and build relationships between blocks using tree data structure.  

Graph theory (Gibbons, 1985) is a rapidly developing concept in the mainstream of mathematics 

with potential applications in diverse fields such as electrical engineering (coding theory), 

computer science (algorithms and computations), biochemistry (genomics), and operations 

research (scheduling) and social networks. The same theory has been applied to solve problems 

such as block calculations within FDEM models by creating a tree of mesh elements and their 

connections. Solving the problem at a more abstract level using a hierarchical structure (across 

timesteps) was a fundamental and initial step to allow tracking of elements and the building of 

connected components (blocks). The proposed method in this chapter has enabled the application 

of various advanced analysis methods to the calculated blocks. 
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5.3 A Novel Approach to Analyze Fracture Traces in Finite-Discrete Element Models 

The mechanical properties of a rock mass are directly related to its blocky (or massive) character.  

The geometry of the blocks is determined by the geometry of the fractures; therefore, fracture 

geometry needs to be carefully analyzed and studied. The fractures that form fully connected 

networks (with closed polygons) might be considered as unstable. DFN Analysis has been 

introduced in chapter 4 and relied on fracture line data being available and detailed the application 

of various analyses to these fracture traces. However, DFN Analysis was introduced for the initial 

DFN whereas the method in this chapter considers newly-generated fractures in FDEM models. 

When 2D fracture traces are imported into the FDEM models, they become the edges of meshed 

elements, whose nodes will sustain a much lower strength compared to nodes that represent intact 

rock. As discussed in chapter 2, FDEM techniques may use different approaches to simulate the 

generation and opening of new fractures. This section details how it is possible to compute fracture 

data by using information contained in the raw FDEM simulation output, with specific reference 

to the output of the FDEM code ELFEN. The same principles could easily be extended to other 

FDEM software.  

 

The initial stage in constructing a FDEM model in ELFEN is the discretization of the domain into 

mesh elements of a given size. The size of the mesh element is an important parameter as it 

determines the direction along which the fractures initiate and propagate. In principle, ELFEN 

includes a remeshing option that would make the fracturing process independent of the mesh size, 

but this option is seldom used in the analysis of rock engineering problems due to the large 

computational time required (see also chapter 2). While using small meshed elements would 

provide a more detailed description of the fracturing process, the choice of the minimum element 
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size is a trade-off between accuracy of the modelled fracture path and the computational time 

required to complete the analysis. Accordingly, the number of elements in the FDEM model would 

differ based on the size of the problem under consideration and the assigned mesh size, as shown 

below in Figure 5.2 (after Stead and Elmo, 2015). 

 

 

Figure 5.2. Relationship between model scale, mesh size and number of elements for 2D analysis of brittle 

failure processes (after Elmo and Stead, 2015). 

 

The proposed methodology takes geometrical (mesh topology) information from simulation results 

and computes new fracture information. The process is independent of the mesh size used to 

discretize the rock mass problem.  
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As the simulation progresses, the mesh topology is updated as additional nodes and lines are added 

that represent the newly generated fractures. At every timestep it is possible to track the location 

of every node in the mesh and use this information to develop an “opening” criterion to define 

whether a new fracture has been introduced in the model. The process follows two steps (Figure 

5.3):  

1. Two nodes are still sharing one common edge (line), in which case no new open fracture 

is detected; or 

2. Two nodes are no longer sharing one common edge (line), in which case a new open 

fracture is detected (process of opening). 

 

 
 

Figure 5.3. Mesh visualization for two cases, black arrow indicates the first case, in which cells remain in the 

initial location. Red arrow indicates the case in which the cell lines have moved away from each other. 

 

Once new opening has been detected, the technique (herein called DEMFA) keeps track of the 

newly generated nodes and lines to detect whether a newly generated fracture is extending and/or 

branching out into new separate fractures as shown in Figure 5.4. This process is recursively 

completed for all meshed elements (nodes and lines) for all timesteps.  
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Figure 5.4.a) Pre-existing fracture lines in pillar model shown in black and newly-generated fractures shown 

in red b) Focused fracture line location indicates the yellow area as the opening of mesh cells and red line 

constructed using the mid-point of connected mesh elements. 

 

5.3.1 Material Properties and Boundary Conditions 

The suggested methodologies are applied on a pillar model with following boundary conditions 

(Figure 5.5) and material properties (Table 5.1) similar to the model used in Chapter 4. 

 

Figure 5.5. Boundary conditions of the pillar model. 
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Table 5.1. Material Properties  

Rock Material Properties (Limestone) Unit Value 

 

 

 

Intact Rock Material 

Unified compressive strength, 𝜎rQ 𝑀𝑃𝑎 48 

Fracture energy, 𝐺m 𝐽𝑚N" 19.47 

Tensile Strength, 𝜎k 𝑀𝑃𝑎 3.84 

Young’s Modulus, 𝐸 𝐺𝑃𝑎 27.5 

Poisson’s ratio, 𝜈 - 0.23 

Density, 𝜌 𝑘𝑔𝑚NS 2600 

Internal Cohesion, 𝑐Q 𝑀𝑃𝑎 9 

Internal Friction, 𝜙m degrees 40 

Platen material properties and discrete (contact) parameters Unit Value 

 

 

Rock Fracture 

Surface Cohesion,	𝑐m 𝑀𝑃𝑎 48 

Surface Friction, ∅m 𝐽𝑚N" 19.47 

Normal Stiffness (Normal Penalty) 𝑃e 𝑀𝑃𝑎 3.84 

Shear Stiffness (Shear Penalty) 𝑃k 𝐺𝑃𝑎 27.5 

 

Platen Properties 

Young’s Modulus of Platen 𝐺𝑃𝑎 200 

Poisson’s ratio of Platen 𝑘𝑔𝑚NS 0.3 

Density of Platen 𝑀𝑃𝑎 7860 

 

 

Rock-Platen 

Contacts 

Rock/platen cohesion MPa 0 

Rock/Platen friction degrees 3 

Rock/platen normal stiffness (Normal Penalty 𝑃e) 𝐺𝑃𝑎/𝑚 27 

Rock/platen shear stiffness (Shear Penalty 𝑃k) 𝐺𝑃𝑎/𝑚 2.7 

 

 

5.3.2 Analysis of Fracture Density and Fracture Intensity 

Once all new fracture lines are computed using the technique introduced in section 5.3, the DFN 

Analysis approach introduced in chapter 4 can now be used to provide properties for the dynamic 

DFNs, i.e. as changes occur to the underlying fracture pattern as the simulation progresses 

(increasing timestep). The results can then be compared to the initial, static, DFN at timestep 0.  
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Dynamic DFNs would represent the onset and propagation of damage, while static DFNs represent 

the initial modelling conditions and initial rock mass blockiness.  

 

Whereas calculating damage density (𝐷"#) is straightforward in static DFN models, for dynamic 

DFNs one must consider how new fractures are defined in first place (see section 5.3). In the 

current approach, fractures are defined based on an opening criterion; however, the algorithm 

would count continuous fractures as two or more separate fractures if the fractures are not aligned 

perfectly in a straight line. To overcome this issue, it is proposed to use 𝐷"$ as the key damage 

indicator for dynamic DFNs. The concept of 𝐷"$ is not entirely new; for example, Gao (2013) 

employed the 𝐷"$ to characterize brittle fracture above coal mine roadways. What is being 

introduced here is the use of 𝐷"$ as a component part of a suite of damage indicators, Figure 5.7. 

The results in Figure 5.6 and Figure 5.7 refer to a sample pillar model with pre-defined fracture 

lines. The properties and loading conditions of the FDEM model are similar to those used in 

chapter 4 to test and validate the application of the developed analysis approaches. 

 

The model is associated with some initial displacement prior to the load increment. Comparing the 

stress-strain plot (Figure 5.6) and DEM figures (Figure 5.7) indicates that the damage initiates and 

accumulates with a steep slope relationship between stress, and 𝐷"#, 𝐷"$. The peak stress occurs 

at 0.5% strain. When the stress drops, the damage accumulation continues until 0.56 % of strain. 
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Figure 5.6. Axial Stress vs Axial Strain for Sample Model. 

 

  

  
 
Figure 5.7. DEM Fracture Analyzer indicated, a) number of fractures, b) length of fractures, c) number of 

fractures per area 𝑫𝟐𝟎 and d) total length of fractures per area 𝑫𝟐𝟏 	𝒎 𝒎𝟐⁄ . 
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5.4 A New Algorithm to Define Blocks Formation in FDEM models 

This section introduces algorithms to compute static and dynamic block formation. The static 

blocks can be computed by calculating closed polygons, using fracture lines (DFN) as input. This 

is the same approach used in DFN Quality in chapter 4. In section 5.3, the calculation of the 

fracture lines is obtained per timestep, therefore, this data can be used as input to the polygon 

calculator to compute blocks per timestep. This method, however, treats the data of each timestep 

separately. It does not maintain information of how a single block gets broken into sub-blocks 

across timesteps. Mesh data contains the necessary information to be able to track those blocks 

across timestep. A second method of computing blocks is introduced here that utilizes mesh data 

to overcome this shortcoming. This algorithm has been developed to calculate the block formation 

per timestep. This is computed by analyzing mesh data and the connections between elements, 

subsequently identifying which group of elements form distinct blocks. 

 

The Block Calculator algorithm, DEMBC, considers the data for every timestep separately, but it 

is also capable of logging information concerning one given block at timestep 𝑡Q being broken into 

sub-blocks as the simulation progresses (timestep 𝑡Qª$). To do so, the algorithm analyses mesh 

data and connections between elements, identifying which group of elements form distinct blocks. 

A graph data structure is generated based on elements and connections for every timestep, whereby 

nodes represent mesh elements, and edges (lines) represent connections between elements. Two 

mesh elements are considered connected if they are sharing element edges. When two elements 

are connected, a graph edge is added to link their nodes. Each group of connected components 

represent a distinct graph. Figure 5.7 provides illustration of a simple graph. 
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Figure 5.8. Graph visualization of block calculator. a) element representation and b) three clusters of 

connected components. 

 

Computing connected components is a well-known technique in the field of graph theory 

(Hopcroft and Tarjan, 1973; Shiloach and Even, 1981; Lewis and Papadimitriou, 1982; Reingold 

2008). A random node is initially selected, and then neighbouring nodes are progressively 

connected until there are no more neighbouring nodes to reach. The traversed components are 

called connected components. The process is then repeated by choosing a random node that has 

not been explored yet and repeating the traversal process. The result is a set of connected 

components, each one representing a distinct block.  

 

Figure 5.7 a and b are simple examples (sparse graph) for illustration purposes; however, the graph 

is a lot denser for a real model. Figure 5.9 shows the connected mesh elements forming separate 

blocks in initial timestep.  
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Figure 5.9. FDEM model of a fractured pillar. Static DFN traces and blocks at timestep 0. a) Showing blocks 

without highlighting connected components. b) With highlighting connected components. 

 

Figure 5.10 and Figure 5.11 show FDEM simulated pillar model with a total of 12000 meshed 

elements. Figure 5.10.a shows the graph structure (where nodes represent mesh elements, and 

edges represent connections between those elements). Figure 5.10.b shows the same graph 

structure after applying the connected components algorithm. The colours are used to differentiate 

the components, each component representing the elements of a fully formed block. The graph 

information is converted into geometrical blocks by combining the mesh coordinates information 

with the knowledge of which block each element belongs to, as shown in Figure 5.11. Figure 5.10.a 

shows the mesh elements in the graph structure in the peak stress timestep. Figure 5.11 shows the 

connected mesh elements forming separate blocks at the peak stress timestep. The colours of 

Figure 5.10.b and Figure 5.11.b are correlated with each other.  
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Figure 5.10. a) Element representation and b) connected components. 

 

  

Figure 5.11. FDEM model of a fractured pillar. Dynamic DFN traces and blocks at timestep 50. a) Showing 

blocks without highlighting of connected components. b) With highlighting of connected components. 
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5.4.1 Simulated Block Analysis 

Once blocks are identified, the objective is to group them into three categories, based on their 

kinematic character during and at the end of the simulation. The analysis could, in principle, be 

applied to any DFN model, and is not specific to FDEM software. The three categories are: 

1) Blocks that remain stable (same volume or area) throughout the simulation; 

2) Blocks that are removable, i.e. they detach from the rock mass due to external loading; and 

3) Brittle blocks, i.e. blocks that exist at the beginning of the simulation and are fragmented 

in a series of smaller blocks by the end of the simulation. 

 

These categories provide additional quantification of rock mass damage in addition and in relation 

to 𝐷"$. Under loading, a massive rock mass would likely yield a relatively large 𝐷"$, which may 

result in spalling blocks or failure of intact rock bridges separating existing blocks. Conversely, a 

blocky to very blocky rock mass would likely yield a relatively low 𝐷"$, as either existing blocks 

become kinematically unstable upon failure of critical rock bridges, or as damage is consumed to 

break existing tapered blocks into removable blocks. Dedicated analysis techniques have been 

introduced to test and validate this new approach to rock mass damage quantification, including: 

• Combined block-damage analysis 

• Block size distribution (BSD) and 𝐵$#, 𝐵"&, 𝐵&# (% passing size) parameters 

• Block size and associated aggregations (Max, Min, average, median and quartiles) 

• Block size density maps 

• Block tracking trees 

• Block fragmentation (single block being fragmented in sub-blocks) 

• Block displacement 
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These are described in detail below with reference to the FDEM model shown in Figure 5.6.  

The number of blocks that are generated during a given simulation time can be plotted in relation 

to timestep, damage and/or strain. An example is given in Figure 5.12, which includes the number 

of blocks per timestep, the number of blocks as a function of the damage parameter 𝐷"$ and, 

finally, number of blocks as a function of axial strain (%). Despite being useful, this type of 

information alone does not provide direct insight as to how damage would eventually control the 

mechanical behaviour of the rock mass. The true value of this information will become apparent 

when combined with data such as block density maps, tracking trees and fragmentation. 

 

   
 

Figure 5.12. (a) Blocks count vs. timestep; b) blocks count vs. damage (𝒎/𝒎𝟐); and c) block count vs. axial 

strain (%).  

 

One obvious approach to block size analysis is the generation of cumulative size distribution plots, 

Figure 5.12. Quantiles could then be used to study how specific block sizes change as the 

simulation progresses. It is argued that coarser sizes would be more likely to remain constant or 

show only a marginal decrease with increasing timestep if rock mass failure was predominately 
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structurally controlled. Likewise, spalling failure would be more likely to be indicated by a rapid 

increase in the number of small size blocks.   

 
 

Figure 5.13. Block size versus timestep. Mean block size is shown in light blue, median in red, and the 25 % 

and 75 % of blocks sizes (𝐦𝟐) are shown in dark blue and purple, respectively. 
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For better visualization of block size distribution, block size maps could be generated to show 

block formation at selected timesteps. An example is provided in Figure 5.14, which refers to the 

data included in Figure 5.12 above. Figure 5.15 shows the same block size density map with a 

common colour bar for block size. 

 

   
 

Figure 5.14. Example of block size maps visualization for three different timesteps using different colour 

density block size. 

   

Figure 5.15. Block size density map visualization for three different timesteps using common scale for colour 

density block size. 

 

More importantly, a novel block tracking tree approach is introduced as a method that could have 

important applications in terms of rockburst and rock fall analysis. The approach has at its core a 
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process that characterizes the relationship between blocks formed at different timesteps; a parent-

child relationship is defined when an existing block (parent) at time step 𝑡Q is broken into several 

smaller blocks (children) at timestep 𝑡Qªe. At time step 𝑡Q, block properties (size and coordinates) 

are initially computed. The process is repeated at time step 𝑡Qªe, with the recording of an additional 

property that refer to the hierarchy between blocks. In Figure 5.16.a, this process is shown in the 

form of a graph, in which nodes represent distinct blocks (at a given timestep), and edges point to 

those blocks that have fragmented into new sub blocks in subsequent timesteps. Clearly, this type 

of dense graph visualization is not very effective for simulations that involve a large number of 

time steps. As an alternative, Figure 5.16.b, a circular tree layout could be used, in which each ring 

represents the blocks at one particular timestep. This conversion can be completed by organizing 

all nodes that belong to each time step and positioning them in a circle. The centre of this circle is 

an arbitrary node selected as a starting point and the timestep increases outwards. 

  
Figure 5.16. Examples of (a) Unorganized block tracking tree, and (b) circular tree layout in which green is 

the initial timestep, red is 50% peak stress and blue is peak stress. The circles correspond to the block size 

maps shown in Figure 5.14. 
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Due to the tracking tree layout, it would not be possible to explicitly illustrate the block size and 

damage using a circle size. Hence, it was necessary to further refine the visualization technique to 

illustrate the size and damage data along with block properties, in a quantitative manner. In Figure 

5.17, the block tracking tree is updated to include a measurement of the “children” blocks 

generated from any given “parent” block. Areas within the pillar that do not undergo any 

significant fragmentation are shown in white. The warm colours refer to areas where a higher 

degree of damage (i.e. fragmentation) has been occurring. In Figure 5.17, damage in the simulated 

pillar is higher closer to the roof, floor and core, while sidewalls appear to fragment less, since 

failure is mostly structurally controlled. 

 
 

 
 

Figure 5.17. Fragmentation map calculated based on the number of fragmented blocks being generated at 

peak stress level and normalized to the initial timestep and shown for each block configuration in a) Initial 

DFN, b) Newly-generated fractures in peak stress overlaid with the blocks in the initial DFN.   
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Additionally, it is possible to plot (Figure 5.18 and Figure 5.19) the number of fragmented blocks 

(children) generated at every time step, and colour-code blocks in terms of the displacement and 

stress they are being subjected to.   

 

  

Figure 5.18. a) Number of fragments for each block vs timestep and b) Number of fragments for each block 

vs axial strain (%). 

 

Note that using the FEM simulation data, the displacement and stress contour maps have been 

generated. However, a major drawback has been noted during this process. The FEM simulation 

data can be exported in the specific locations called as history points. The history points are usually 

defined across the model boundary. However, as the fractures initiates and propagated, some of 

the blocks detach from the model. Hence, using this method, the displacement, stress, speed and 

other features of the separated blocks will be lost. This drawback has been removed by developing 

a new displacement technique explained in chapter 6.  
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Figure 5.19. a) Vertical stress of individual blocks at peak stress. b) Vertical displacement of individual blocks  

at peak stress using Finite-Element simulation output. Gray indicates that the displacement is not output due 

to the location of history points that are specified inside the pillar.   

 
 

5.5 Conclusions 

The initiation and propagation of fractures can be captured using FDEM modelling technique. 

Understanding the path fractures join and create large and fragmented blocks depends on having 

the data of the newly-generated fractures and block information in each timestep, separately. 

Collecting the mesh elements data across timesteps is just the starting point in the fracture and 

block calculations workflow. Important aspects that should be considered during calculations: (1) 

the large amount of data can be collected for a given model per timestep and (2) the data might get 

much larger if the assigned mesh element size is small resulting in a large number of mesh elements 

(see Figure 5.2).  
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Techniques have been developed to extract newly-generated fracture lines from the simulation 

output using geometrical computations. The proposed technique (DEMFA) uses the mesh data 

generated during the modelling process. The Block Calculator technique (DEMBA) is then 

introduced by utilizing graph analysis. These methods provide information on the newly-generated 

blocks at each simulation timestep. The power of these methods would be as the initial step needed 

to relate the newly-generated fractures to the newly-generated blocks. The block tracking tree is 

introduced as a graphical representation of block growth across timesteps. The block fragmentation 

map was generated subsequently, indicating the number of block divisions throughout the 

simulation. This map provides a detailed analysis of the fragmented areas.  

 

Results of 2D numerical analysis of a typical pillar model confirm that the definition of rock mass 

damage as a real-time analysis process can be achieved by using block formation. The developed 

approaches in extracting fracture lines and blocks provide us with the necessary information 

needed for further analysis of failure characterization. A sample pillar model was used to show the 

step-by-step application of the methods. The cumulative block distribution analysis of the 

simulation model is completed per timestep. The influence of brittle damage becomes more 

significant as the rock bridges connect and larger blocks form. Stress distribution and stress-strain 

fluctuations were investigated along with damage evolution and fracture propagation. The 

coalescence and further propagation of fractures were monitored in relation to each other. All the 

suggested approaches have been tested via a sample pillar model; however, they are well suited to 

analyze rock bridge problems in various engineering problems.  
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Chapter 6:  Investigating the Factors Controlling Intact Rock Damage 

Mechanisms for Naturally Fractured Pillars 

 

6.1 Introduction 

Previous studies on the strength and deformability of pillars in hard-rock mines have demonstrated 

that the influence of natural fractures diminishes with increasing pillar width. Jointing conditions 

and fracture intensity/intersections play a critical role in the behaviour of slender pillars (width to 

height ratio less than 0.5). An important challenge is the characterization of the intact rock damage 

as a function of the in-situ fracture network and loading conditions. In this chapter, advanced pre-

and post-processing algorithms introduced in chapter 4 and chapter 5 are used to address important 

limitations of empirical pillar formulae, and attempts are made to integrate brittle failure (i.e. rock 

bridge failure) and degree of natural rock mass blockiness using a combined discrete fracture 

network (DFN) and hybrid finite-discrete element method FDEM modelling approach. Pre-

processing techniques can be used to determine parameters such as 𝑃"# (number of fractures per 

unit area), 𝑃"$ (areal fracture intensity), intersection maps (e.g. Zhang et al., 1992; Xu et al., 2006), 

frequency orientation and persistence orientation plots. These are used to relate the failure process 

observed in the models to parameters directly associated with the natural fracture network (static 

DFN) prior to loading and with the progressive evolution of damage (intensity and density of the 

dynamic DFN) with increasing pillar load. The results show that pillars with different initial 

jointing conditions may yield similar strength but follow different stress paths. Detailed 

interpretation of the results has allowed the contribution of damage to block creation with 

increasing load to be highlighted.  
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6.2 Design of Hard-Rock Pillars 

Rock pillars are designed to sustain the overburden load induced by the need to maximize the mine 

extraction ratio. The safety and economics of room and pillar mining is largely dependent on the 

room opening and pillars size, the mining depth and the characteristics of the pillar fracture 

network. Pillar stability analysis is consequently of major importance in underground mine design. 

The influence of scale on pillar strength has been investigated by Esterhuizen et al. (2011), 

showing that the strength of slender pillars (width-to-height ratio, W:H ≤ 0.5) may vary 

significantly compared to the strength of wider pillars (W:H >> 0.5), with important implications 

with respect to design and factor of safety calculations. The same authors described the process of 

brittle spalling and failure at low confinement in the behaviour and strength of slender pillars. One 

important conclusion of this earlier work is that the spalling limit for slender pillars may be 

relatively low, and close to the ultimate pillar strength, such that slender pillars may start 

undergoing overall failure when the induced stresses approach the spalling limit.  

 

Pillar strength (i.e. ultimate load per cross section area of a pillar) is generally estimated using 

empirical formulae based on survey data from actual mining conditions (Martin and Maybee, 

2000). However, empirical methods fail to directly consider brittle failure (spalling) and kinematic 

failure mechanisms. As a result, numerical models are well suited to study the mechanical 

behaviour of rock pillars, using either continuum or discontinuum methods. For example, (Fang 

and Harrison, 2002), and Martin and Maybee, (2000) have investigated brittle failure in pillars 

using a continuum approach. Nordlund et al. (1995) used a discrete element approach to study the 

mechanical behaviour of jointed pillars, while Elmo (2006), Tang and Kaiser (1998), Tang and 

Hudson (2010), Wang et al. (2011), Zhang (2014) and Grisi et al. (2016) have used numerical 
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codes that allow to explicitly model brittle fracture processes. Typical characteristics of stress-

induced pillar failure include surface spalling, axial fracturing, “hour-glass” shape and necking. 

These failure types are typically observed in deep underground pillars (Zhang, 2014).   

 

Elmo and Stead (2010), Esterhuizen (2006) and Esterhuizen et.al (2011) have shown that pillar 

strength may be greatly controlled by the existence of adversely inclined discontinuities. The 

impact of natural fractures would be greater for slender pillars, due to the possibility of a natural 

fracture transecting the full cross-sectional area of the pillar, or two or more fracture coalescing to 

form a failure plane transecting the pillar. This is shown graphically in Figure 6.1. An example of 

modelled combined brittle and kinematic failure mechanisms in pillars is shown in Figure 6.2. 

 

 

Figure 6.1. Typical failure mechanism of a naturally fractured pillar (after Nordlund et al., 1995 and Elmo 

and Stead, 2010). (a) occurrence of preformed blocks; (b) presence of inclined shear fractures and (c) 

transgressive fractures. 
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Figure 6.2. Examples of combined brittle-kinematic failure mechanisms in simulated slender pillars (modified 

from Elmo and Stead, 2010). 

 

Using a FDEM approach, Elmo (2006) demonstrated that the strength of naturally fractured pillars 

could be related to areal fracture intensity (𝑃"$, total length of fractures per sampling area) of the 

natural fracture network. In Elmo and Stead (2010), the authors introduced an Anisotropy Index 

for pillars, relating 𝑃"$ and pillar dimensions, the Anisotropy Index being larger for slender pillars.  
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Ultimately, rock mass blockiness (degree of fully formed interlocking blocks) and intact rock 

bridges would be the two key parameters controlling the strength of hard pillars. Recently, Vazaios 

et al. (2018) have used a FDEM approach to study the relationship between rock mass blockiness, 

rock mass strength and deformability.  

 

An alternative approach to quantify the rock mass structural character, as a combination of its 

degree of blockiness and the presence of rock bridges, has been proposed by Fadakar-A and Elmo 

(2018). The geometrical properties of the natural fracture network provide a basis to establish a 

rock mass structural quality index: for a given rock mass, the higher the rock mass degree of 

jointing and interlocking, the lower the number of rock bridges available, and the lower the degree 

of brittle failure that may associated with the rock mass failure process. However, when relating 

brittle failure processes to the failure of intact rock bridges, it is important to recognize that 

engineers and geoscientist still face several challenges related to the definition and measurement 

of the intact rock bridges (Elmo et al., 2018).  

 

6.3 FDEM Analysis 

6.3.1 Model Set Up and DFN Analysis 

Using the same Middleton mine case study as Elmo (2006), large (14 m wide, 7 m high) 2D DFN 

sections were divided into smaller sections, resulting in sixteen different models with a W:H of 

0.5, Figure 6.3. All the sections were used as part of the FDEM analysis, and in this section the 

results are provided with reference to the simulated pillar strength (Figure 6.5). In total sixteen 

models were considered in the analysis; the 2D DFN traces were generated using the DFN code 

FracMan (Golder, 2018; Dershowitz et al., 1998) and analyzed using the DFN Analysis methods 
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(shown in Table 6.1)  introduced in Chapter 4. The traces were then imported, after being processed 

using the methods introduced in Chapter 4, DFN Cleaning, into the FDEM code ELFEN 

(Rockfield, 2014).  

 

A 

 

B 

 

C 

 

D 

Figure 6.3. 14 m x 7 m DFN configurations used in the FDEM analysis. Green shows the selected Models A, 

B, C and D with four slender DFN sections each. DFN properties of sixteen DFN sections (Fracture count, 

fracture length, fracture intersection Count 𝑷𝟐𝟎 and 𝑷𝟐𝟏) are presented in Table 6.1. 
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Table 6.1. DFN properties of all DFN Sections. 

 

 

 

Model Label 

Fracture 
Length 

[72.46, 117.9] 

Fracture 
Count 

[42, 98] 

Intersection 
Count 

[60, 149] 

𝑃"# 

[1.7, 4] 

𝑃"$ (𝑚/𝑚") 

[2.96, 4.91] 

0 E 92.32 73 69 2.98 3.77 

1 F 93.47 66 71 2.70 3.82 

2 G 95.61 66 62 2.70 3.90 

3 H 117.90 98 126 4.00 4.81 

4 I 101.26 80 84 3.26 4.13 

5 J 111.41 76 110 3.10 4.54 

6* A 82.90 49 111 2.00 3.38 

7 K 89.47 68 76 3.65 3.65 

8 L 101.26 80 85 3.26 3.9 

9 M 94.68 55 89 2.24 3.86 

10 N 93.53 47 60 2.40 3.30 

11* B 80.94 59 149 2.41 3.30 

12 O 90.83 72 143 2.93 3.71 

13 P 100.91 70 81 2.86 4.12 

14* C 72.46 42 77 1.70 2.96 

15* D 79.35 59 108 2.40 3.24 

* Pillar sections shown in Figure. 6.3. 

𝑃"$ is the ratio of total fracture length to sampling area [min, max] range in between brackets. 
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6.3.2 Material Properties and Boundary Conditions 

The boundary conditions and material properties are shown in Figure 6.4 and Table 6.2, 

respectively similar to the model used in Chapter 4 and Chapter 5 

 

Figure 6.4. Boundary conditions of the pillar model. 
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Table 6.2. Material Properties  

Rock Material Properties (Limestone) Unit Value 

 

 

 

Intact Rock Material 

Unified compressive strength, 𝜎rQ 𝑀𝑃𝑎 48 

Fracture energy, 𝐺m 𝐽𝑚N" 19.47 

Tensile Strength, 𝜎k 𝑀𝑃𝑎 3.84 

Young’s Modulus, 𝐸 𝐺𝑃𝑎 27.5 

Poisson’s ratio, 𝜈 - 0.23 

Density, 𝜌 𝑘𝑔𝑚NS 2600 

Internal Cohesion, 𝑐Q 𝑀𝑃𝑎 9 

Internal Friction, 𝜙m degrees 40 

Platen material properties and discrete (contact) parameters Unit Value 

 

 

Rock Fracture 

Surface Cohesion,	𝑐m 𝑀𝑃𝑎 48 

Surface Friction, ∅m 𝐽𝑚N" 19.47 

Normal Stiffness (Normal Penalty) 𝑃e 𝑀𝑃𝑎 3.84 

Shear Stiffness (Shear Penalty) 𝑃k 𝐺𝑃𝑎 27.5 

 

Platen Properties 

Young’s Modulus of Platen 𝐺𝑃𝑎 200 

Poisson’s ratio of Platen 𝑘𝑔𝑚NS 0.3 

Density of Platen 𝑀𝑃𝑎 7860 

 

 

Rock-Platen 

Contacts 

Rock/platen cohesion MPa 0 

Rock/Platen friction degrees 3 

Rock/platen normal stiffness (Normal Penalty 𝑃e) 𝐺𝑃𝑎/𝑚 27 

Rock/platen shear stiffness (Shear Penalty 𝑃k) 𝐺𝑃𝑎/𝑚 2.7 

 

6.3.3 Simulation Results 

Figure 6.4 shows the stress-strain plots associated with the sixteen models labeled as A-P in Figure 

6.3. Four models are selected from sixteen simulated sections, based on 1) Similarity in 𝑃"$ and 

2) The highest difference in peak strength values.  
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Figure 6.5. Stress-Strain plots for all models. 

 

When the properties are analyzed with respect to the DFN listed in Table 6.1, the values of 𝑃"# 

range from 1.67 to 3.89, for modelled pillar strength in the range of 0.1 to 3.5 MPa (all models). 

Figure 6.6.a shows that there is no apparent relationship between 𝑃"# and the modelled pillar 

strength. This indicates that the number of fractures alone cannot be used to characterize pillar 

strength. 𝑃"$, ranges from 2.87 to 4.75 𝑚 𝑚"z , Figure 6.6.b.  At first the results do not show a clear 

correlation between pillar strength and 𝑃"$; however, a correlation is shown to exist when the 

results are superimposed on earlier results included in Elmo (2006), Figure 6.6.c.  

The numbers of intersection counts are plotted with respect to pillar strength, Figure 6.6.d. Once 

again, there is no apparent relationship between fracture intersection counts and pillar strength for 
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the simulated pillars, as a further demonstration that the characterization of pillar strength would 

require a combination of various DFN properties, as initially discussed in Elmo (2006). It is also 

important to consider how the fracture data relate spatially to the fracture intersection counts; this 

aspect is the focus of the following section, which draws from the discussion and numerical 

analysis methods introduced earlier in Chapter 4.  

 

To focus our analysis, four models are selected based on the axial stress - 𝑃"$ plot shown in Figure 

6.6.b.  𝑃"$ ranges from 3-3.5 𝑚 𝑚"z  while maximum strength ranges from 1-4 MPa. The objective 

of this Chapter is to analyze and interpret the results in the pre-and post-stages to understand the 

variations in maximum strengths associated with similar 𝑃"$ values.  
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Figure 6.6. a) Plot of peak axial stress vs. 𝑷𝟐𝟎 for all the models. b) Peak axial stress vs 𝑷𝟐𝟏  (𝒎/𝒎𝟐). Green 

box indicates the selected A, B, C and D models based on Section 0. c) Correlation between pillar strength 

and 𝑷𝟐𝟏   for slender pillars at Middleton mine (data added to Elmo, 2006). d) Plot of peak axial stress vs. 𝑰𝟐𝟎. 
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6.4 In-depth Analysis of Selected Models 

This section considers four selected models (the selection procedure shown in 0), as an example of 

the level of in-depth analysis that would be possible to perform when integrating and processing 

the results of the DFN and FDEM models. The properties of the selected DFN sections are included 

in Table 6.3. Using the same approach as Zhanga et al. (1992), Figure 6.7 shows the fracture traces 

and the associated intersections for the four selected models. These are then contoured (using the 

KDE approach discussed in Chapter 4) in Figure 6.8 to show the corresponding fracture 

intersection density maps. Despite the very similar areal intensity 𝑃"$, the four sections show clear 

differences in the spatial location of the fracture intersections: Model A shows high fracture 

intersection density on the right side of the pillar and along the vertical axis; Model B shows a 

relatively high fracture intersection density in the very top portion of the pillar; Model C has almost 

half the number of fracture intersections compared to Model B, with a concentration at the base of 

the pillar. For Section D, fracture intersections appear to be located at the top and in the lower right 

corner.  

Table 6.3. DFN properties of Selected DFN Sections. 

Label 
Fracture 

Length (m) 
Fracture Count 

Fracture Intersection 

Count 
𝑃"# 𝑃"$	(1 𝑚z ) 

A 82.90 49 111 2.0 3.38 

B 80.94 59 149 2.4 3.30 

C 72.46 42 77 1.7 2.96 

D 79.35 59 108 2.4 3.24 
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Figure 6.7. DFN sections for Models A, B, C and D. Fracture lines shown in blue and fracture intersection 

points in green. 

 

 

Figure 6.8.  Fracture intersection density map for models A, B, C and D. 
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Figure 6.9  shows the distribution of fracture intersections with respect to their (x, y) coordinates. 

According to Figure 6.9 (A: red) the fracture intersection density follows a bimodal distribution in 

both the X and Y directions. Section B, Figure 6.9 (B: black), contains the highest concentration 

of fracture intersection density on very top portion of the section and the fracture intersection 

density follows a bimodal distribution with peak separation of 5 meters. Section C, Figure 6.9 (C: 

blue) indicates the vertical lines on the right side (like A), however it does not contain horizontal 

lines. The fracture intersection density map indicates a normal distribution in the X direction and 

follows a bimodal distribution in the Y direction with fracture concentration in the bottom of the 

section from -2 to 0 meters. The fracture density of section D, Figure 6.9  (D: green) follows a 

bimodal distribution in both the X and Y directions. 

 

 

(a) (b) 

 Figure 6.9. Fracture intersection density distribution along the a) X axis and b) Y axis. 
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With respect to the dip of the fractures, Figure 6.10, all sections show similar percentage of sub-

vertical fractures (dip angle between 80 and 100 degrees). Note that the angle is measured counter 

clockwise from the horizontal, in which case a dip of 100 degrees would represent a fracture with 

true dip of 80 degrees dipping towards the right side of the pillar. Model A contains about 75% 

sub-horizontal (0 and 20 degrees), and 40% (160-180 degrees). Models B is almost the mirror 

image of Section A, while Models C and D have the lowest number of sub-horizontal features.  

 

Figure 6.10. Fracture orientation Frequency for models A, B, C and D, respectively. 

 

When considering the dip of the fractures in relation to their persistence, the longest fractures 

have a dip between 80 and 100 degrees, Figure 6.11. Models B and D have also some longer 

fractures with a dip of 60 to 80 degrees. 
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Figure 6.11. Fracture persistence according to orientation for models A, B, C and D, respectively. 

 

6.5 Stress-Strain Results for the Selected Models 

The stress-strain plots for Models A, B, C and D are shown in Figure 6.12. Models A and C have 

the highest peak strength, while Sections B and D have the lowest. These results could be 

preliminary interpreted considering that Sections A and C have similar fracture intersection density 

maps, while Model B has the largest number of fractures and the largest number of fracture  

intersections (see Figure 6.8).  
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Figure 6.12. Stress-Strain plots for Models A, B, C and D. 

 

6.6 Analysis of rock mass blockiness 

To further characterize the behaviour of the selected four pillar models, new advanced methods 

were developed and applied to quantify the degree of damage (intact rock fracturing) and the 

progressive formation of new blocks, as well as the progressive breaking apart of existing blocks. 

For each pillar model, the average block size distribution (BSD) curves (𝑚"due to 2D nature of 

the models) have been determined for timesteps that correspond to: i) 0 MPa stress (initial 

conditions); ii) 50% of the modelled peak stress; and iii) peak stress. For these time steps, the 

10th, 50th and 90th percentile passing sizes are then measured. The results are presented in  

 for Models A, B, C, and D, respectively.  
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Table 6.4. Summary of  𝐁𝟏𝟎, 𝐁𝟓𝟎 and 𝐁𝟗𝟎 for models A, B, C and D. The values are shown for 𝐭𝟎, 𝐭𝟓𝟎%𝐩𝐞𝐚𝐤 and 

𝐭𝐩𝐞𝐚𝐤. 

 

Model 

𝐵$# (%) 𝐵&# (%) 𝐵'# (%) 

Initial 50% 

𝜎¡¯¤° 

𝜎¡¯¤° Initial 50% 

𝜎¡¯¤° 

𝜎¡¯¤° Initial 50% 

𝜎¡¯¤° 

𝜎¡¯¤° 

A 0.12 0.19 0.16 2.06 1.63 1.28 6.68 2.91 2.58 

B 0.34 0.26 0.12 2.51 2.46 1.25 3.73 3.73 2.51 

C 0.38 0.23 0.13 5.56 1.95 1.23 10.15 4.17 3.16 

D 0.47 0.27 0.05 3.23 2.02 0.91 6.57 4.02 2.35 

 

Figure 6.14 to Figure 6.17 show the differences in the 10th, 50th and 90th percentile passing size 

between initial and peak stress (𝐵$#, 𝐵&# and 𝐵'# percent). For ease of comparison, 𝐵$#, 𝐵&# and 

𝐵'# percent passing sizes are summarized in Table 6.4. 

 

Changes in 𝐵$#, 𝐵&#, 𝐵'# are indicative of the type of failure the pillars are undergoing. In 

principle, the larger the amount of brittle failure and accumulated intact rock damage, the larger 

the shift between BSD curves (for a given model). A shift in 𝐵'#, and/or 𝐵&#, without a shift in 

𝐵$# indicates a lack of brittle failure. It is argued that for a model with an embedded DFN that 

already has fully formed non-tapered finite blocks (Type I and II in Figure 6.13), changes in the 

BSD would be minimal, depending on whether these non-tapered blocks were to be potential key 

blocks or key blocks. The definition of non-tapered and tapered blocks herein is according to that 

given by block theory (Goodman and Shi, 1985), see also Figure 6.13. Note that the introduced 

block analysis is only capable of tracking block size and number of facets; the interpretation of 

which block would be tapered (Type IV in Figure 6.13) and which one would be non-tapered (Type 
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I and II in Figure 6.13) is based on qualitative observations. However, the following sections 

introduce quantitative algorithms, e.g., displacement, block detachment maps and fragmentation 

block maps, for better characterization of the failure mechanisms. 

 

 

Figure 6.13. Definitions of blocks types in accordance with block theory, (Goodman and Shi, 1985). 

 

One must account for the fact that failure in the pillar models would not necessarily be 

symmetrical. For instance, Models A and C show a relatively smaller increase in the 𝐵$# passing 

size, with most of the strain simulated in the models resulting in the formation of relatively large 

tapered blocks (nonremovable blocks). Conversely, relatively large non-tapered finite blocks are 

created for Models B and D as the strain (and stress) increases. Interestingly, Model D shows a 

mixed type of failure mechanism, more brittle on the left side (large number of small size blocks) 

and more structurally controlled on the right side with kinematic release of large blocks.  In this 
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context, the results must be interpreted not just with reference to the BSD curves, but also with 

respect to accumulated damage (𝐷"$) and axial strain, as shown in Figure 6.18 and Figure 6.19. 

For example, in Model A, damage accumulates from the onset and grows rapidly. The 

accumulating damage is “consumed” to break existing large blocks into smaller tapered blocks 

rather than to nucleate isolated fractures (compare Figure 6.14 and Figure 6.19).   

For model C, damage also accumulates quite rapidly, but in this instance, most of the damage is 

consumed in breaking-up the top and bottom portions of the pillar (infinite blocks) into smaller 

tapered blocks. Damage is also consumed to create spalling conditions in the right flank of the 

pillar (Figure 6.16 and Figure 6.19). 

For model B (Figure 6.15 and Figure 6.19), damage starts accumulating when axial strain has 

reached 0.1% of the initial pillar height. Therefore, most of the failure up to this point would be 

structurally controlled (note the buckling mechanism on the right flank).  

Similarly, Model D does not show significant damage being accumulated until 0.14% axial strain. 

Failure is mostly controlled by the rotation/displacement of large key blocks on the right flank of 

the pillar (Figure 6.17 and Figure 6.19). These findings are further validated by considering the 

relationship between damage 𝐷"$ and the cumulative number of blocks being created, Figure 

6.19.b. Models A and C are stronger than Models B and D because: i) more damage is required to 

fracture the pillar such that fully formed blocks are created; and ii) those fully formed blocks are 

tapered (non-removable) blocks, which in turn result in the concentration of stresses and the 

creation of additional damage until the pillar eventually fails. 
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Models A and C with similar slope changes indicate the requirement for additional newly-

generated fractures to result in block formation. As seen in the stress-strain plots of these two 

models (Figure 6.12), they are both associated with higher peak strength and lower strain. This 

confirms that the DFN configuration is responsible for the higher peak strength of the rock mass 

structure relative to models B and D. Model D shows the highest block count-𝐷"$ changes in slope 

(Figure 103.b- green curve). It is observed that initially there is rapid increase in the number of 

blocks formed as the damage increases; there is a point where the damage increases, but no block 

is generated (constant portion of the green plot), then the slope of the plots starts to change again, 

and the new blocks are forming. Model B, with the smallest number of blocks of all shows the 

most structurally related behaviour of all the models.  
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Figure 6.14. Blocks size analysis for Model A. 
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Figure 6.15. Blocks size analysis for Model B. 
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Figure 6.16. Blocks size analysis for Model C. 
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Figure 6.17. Blocks size analysis for Model D. 
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Figure 6.18. Difference in block size passing (10, 50 and 90%) between initial and peak stress for models A, B, 

C and D. 

 

 

Figure 6.19.  a) Pillar damage vs strain. b) Number of blocks vs damage for models A, B, C and D. 
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6.7 Block Detachment Maps and Study of Failure Mechanisms 

In the previous section, studying damage and block formation proved to be an effective method to 

better understand how new cracks coalescence and potentially create new blocks. An attempt was 

made to answer the question as to whether the newly-generated cracks connect to create blocks, or 

whether the newly-generated blocks are solely dependent on the pre-existing fracture configuration 

and independent of rock bridge damage. The interpretation was based on block visualization, CDF 

(Cumulative Distribution Function), Passing %, Damage and Strain analyses along with the block 

count. However, this approach suffers from not categorizing the blocks with respect to their 

kinematic characteristics. 

To better address this problem, block detachment maps are introduced. The block detachment map 

for a given timestep is computed by first computing all the blocks for that timestep, as described 

in Chapter 5. The geometry of these blocks is then subtracted from the rock. The remaining space 

in the rock is the detachment. Note the detachment is computed through geometrical analysis, and 

not using image analysis of the visual model simulation output. This geometrical detachment area 

is then quantified per timestep. For illustration, detachment area is viewed as an orange colour, 

which serves to highlight movement and fracture opening. The combined presence of damage, in 

the form of new fractures (𝐷"$ parameter), and newly-generated blocks in areas where detachment 

has occurred is taken to indicate the presence of Type I and Type II blocks. However, the absence 

of detachment may indicate the presence of Type II and Type IV blocks. Figure 6.20 shows the 

detachment maps for the four selected models that are part of the current study.  

According to the simulation results in Figure 6.20, Model A shows almost no blocks detachment, 

despite new fractures being generated. Failure of intact rock bridges results in the formation of 

blocks elongated in a sub-vertical direction; this geometry would be equivalent to that of a rock 
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sample with vertical fractures being loaded parallel to the direction of the fractures, which would 

explain the relatively stronger response of Model A compared to the rest of the models (B, C and 

D). Model B, on the contrary, shows significant kinematic failure along the right side of the pillar. 

The absence of newly created blocks indicates that failure in this case is largely structurally 

controlled, along pre-existing (Type I) blocks. The behaviour of Model C is very similar to Model 

A; the higher fracture intersection density and the spatial location of the pre-existing cracks may 

explain why Model C is slightly weaker than Model A. Model D shows a combination of failure 

through intact rock (high degree of damage) and block kinematics, whereby blocks were mostly 

already fully formed at the beginning of the simulation. 

The results support the conclusions of Elmo et al. (2018), who suggested that both block forming 

potential and kinematics are instrumental in the definition of rock bridges in terms of block 

stability. Whereas the proposed detachment computation provides a reasonable estimate to 

quantify structural damage, there are two technical limitations that must be addressed when 

considering developing a quantitative indicator that combines both intact rock damage and blocks 

kinematics: 1) accuracy; and 2) computing the block contribution to structural damage, and 

relating them to initial blocks. With respect to (1), a block might have fallen, at a given time step, 

outside of the rock boundary used to define detachment, or a block might have fallen inside the 

space created by other dilating blocks. Falling inside the space created by other detaching blocks 

would not contribute to the calculated detachment area as it should be. In terms of block 

identification and relationship to initial blocks (2), the proposed method needs to be modified to 

consider which specific blocks contributed to the structural damage, effectively obtaining their 

size, shape, and relevant block information. In addition, we need to be able to find the relationship 
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between the structure damage blocks and their parent blocks at the initial timestep, to enable further 

analysis. The following sections propose a solution that solves these limitations. 

 

 

 

Model 

A 

 

 

 

Model 

B 

 

 

 

Model 

C 

 

 

 

Model 

D 

Figure 6.20. Detachment maps at initial stage, 50% peak stress and peak stress for: Model A, Model B, Model 

C and Model D.  
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6.8 Mapping Block Displacement at Peak Stress in relation to Initial Block Geometry 

The previous section described the limitations of the detachment computation method. This section 

provides an initial step in solving these problems, by using block displacement. First, the block 

displacement from the initial timestep to the peak stress timestep needs to be computed. Block 

displacement is computed by aggregating the displacement of the elements making up each block. 

The simulation output provides the location of each element. This information is used to compare 

the original location of each element at the peak stress, against the location at the initial timestep, 

therefore capturing the displacement of each element. The Block Calculator, described in Chapter 

5, computed what groups of elements formed blocks; therefore, it also contained the information 

of which block each element belonged to. Displacement of all elements in each block is averaged, 

effectively computing the block displacement.  

Figure 6.21 shows the displacement values associated with each block at the peak stress.  

 

Second, we need to be able to relate the displacement of blocks at the peak stress timestep, to their 

parent blocks at the initial timestep. Chapter 5 introduced the Block Tracking Tree, which tracks 

block formation across timesteps. This tracking tree provides the necessary information to relate 

blocks at peak stress timestep to their parent blocks at the initial timestep. The remaining step is 

to map the displacement of these blocks at the peak stress timestep to their parent blocks at the 

initial timestep. The computed displacement contribution of each block at the initial timestep is 

the average of the displacement of its children blocks at the peak stress timestep, weighted by 

block size.  

Figure 6.21 demonstrates how the displacement for each model at peak stress that are normalized 

to the overall surface area (left plots) and mapped to their initial timesteps (right plots). 
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Model C 

 

 
 

Model D 

 

Figure 6.21. Displacement per block for models A, B, C and D at the peak stress (left) overlain by the blocks 

at the initial timestep associated with displacement in the peak strength (right). 

 

6.9 Structural Failure Characterization  

In the previous section a method was described for computing block displacement at peak stress 

and relating it to the initial blocks. This section leverages that method, and introduces an approach 

to compute structural damage, identifying which blocks contributed to the structural damage and 

by how much, in addition to relating them to their parent blocks in the initial DFN configuration. 
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For each model, a threshold is set for what amount of displacement would be considered as 

structural damage. This value is dependent on the model. An algorithm for computing a reasonable 

value for this threshold could be developed. In this section, the values are assumed based on 

observations at the Middleton mine. This provides a characterization criterion for each block, 

effectively marking each block as a structural damage block, or non-structural damage block. 

Examples are given in Figure 6.22-Figure 6.25 for Models A, B, C, and D, respectively, in which 

the blocks characterized as structural damage are shown in brown. The figures show the 

characterized blocks at the peak stress timestep, and then the plot shows where this information is 

mapped relative to the initial DFN configuration. 

 

Figure 6.22. Model A. Displacement at peak stress (left) overlain with blocks at the initial timestep associated 

with displacement at peak stress (right). 
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Figure 6.23. Model B. Displacement at peak stress (left) overlain with blocks at the initial timestep associated 

with displacement at peak stress (right). 

 

 

Figure 6.24. Model C. Displacement at peak stress (left) overlain with blocks at the initial timestep associated 

with displacement at peak stress (right). 
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Figure 6.25. Model D. Displacement at peak stress (left) overlain with blocks at the initial timestep associated 

with displacement at peak stress (right). 

 

This method provides a valuable new approach for characterizing structural damage blocks. 

Relating them to the initial DFN configuration provides the ground work needed for future 

research of predictive analysis that would identify at the DFN level which area or blocks might 

result in structural damage. 

 

6.10 Block Characterization using a Block Tracking Tree Approach 

Figure 6.26 illustrates the results of the block tracking tree for selected models A, B, C and D, 

respectively. The computation of the block tracking tree was previously detailed in Chapter 5. The 

circles initiate from the root (yellow circle) and continue to spread outwards for increasing 

timesteps. Each blue circle represents a block fragment from which it can be seen that some of the 

lines start from the root and continue without breaking to smaller fragments (example Model A, 

right blue radius lines). For others (for example Model C), significant breaking occurred in the 
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model and therefore a higher level of fragments can be seen in these circles. Each circle contains 

black and red lines, representing the 50% peak stress and peak stress, respectively. Comparing 

block tracking trees across models provides a general sense of how much fragmentation is 

occurring per model, across timesteps. As an example, model A shows the lowest and more 

concentrated degree of fragmentation. This indicates the lower dependency of the pillar to fail due 

to rock bridges and newly-generated fractures relative to failure through the kinematic instability 

of some the structure bounded blocks. Confirmation of this observation can be seen in Figure 6.22 

and Figure 6.20.a and  

Figure 6.21.a.  Figure 6.25.b indicates a combination of brittle and structural failure. The closeness 

of black line (50% peak stress) to the root also indicates the proximity of pillar failure in a more 

rapid manner in comparison to other models. Model C, (Figure 6.25.c) is experiencing significant 

fracturing prior to 50% peak stress. However, the DFN configuration resulted in a relatively unique 

situation for Model C where the brittle components are not contributing to the final failure of the 

pillar and kinematic block instability is the main reason for the failure. Model C with the greatest 

distance between root and 50% peak (the longer time it takes to fail) is the strongest model of all 

the models. Model D (Figure 6.25.d) shows the highest fragments density of the simulated models. 

The model failure is at combination of brittle fracturing and structural failure.  
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Model A Model B 

  
Model C Model D 

 

Figure 6.26. Block tracking tree for model A, B, C and D. Each circle represents a separate timestep. Black 

denotes block fragments at 50% peak stress and red denotes peak stress.   

 

This analysis of brittleness can be explored further. Similar to the previous section where we were 

able to identify blocks contributing to structural damage, this section aims to identify blocks 
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contributing to brittleness damage. The block tracking tree proves itself useful again in providing 

the necessary information for this identification. This is achieved here by computing, for each 

initial block, how many children blocks are present at the peak stress timestep. This value is used 

in the density plots for Figure 6.27, left. This information is then mapped into the blocks at the 

initial timesteps, Figure 6.27, right. This mapping provides a quantitative measurement of how 

brittle each block is, based on the result of the simulation. Similar to the previous section, this kind 

of powerful analysis enables predictive analysis that identify at the DFN level which area or blocks 

might result in brittle damage. 
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Figure 6.27. Block fragmentation per block for models A and B, C and D in the peak stress (left) mapped with 

blocks in the initial timestep (right). 
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6.11 Summary  

Damage caused by brittle fracturing can be realistically investigated using DFN-FDEM approach. 

The ability of FDEM to capture initiation, coalescence and propagation of fracture lines makes the 

method favorable to study complex failure mechanisms associated with the study of hard rock 

masses.  

Slender pillars (W:H ratio of 0.5) represent the ideal case to study the failure mechanisms 

associated with considering different DFN configurations. These models were used to develop 

quantitative methods to characterize newly-generated fractures and their relationship with newly 

generated blocks. The results can be grouped into four categories: i) failure due to blocks 

kinematics (Type I blocks), without contribution of intact rock damage; ii) failure due intact rock 

damage, whereby newly generated blocks are Type IV blocks (finite tapered blocks); iii) failure 

due to a combination of intact rock damage and block kinematics (Type I and Type II blocks); and 

iv) failure due to intact rock damage without new blocks being generated (Type V blocks).    

 

Block size analysis at three different stress conditions during loading (initial, 50% of peak stress 

and peak stress), was used to calculate the 10, 50 and 90% block-passing values. The difference 

between these values as the loading is increased are indicative as to whether failure may be 

primarily structurally controlled or is due a combination of intact rock damage and kinematics.  

 

Newly introduced detachment area computations, block displacement, structural damage block 

characterization, brittle damage block characterization, in combination with the tracking tree 

methods presented in Chapter 5 provide alternative innovative methods to better capture the role 
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of brittle and structural failure mechanisms in combination with blocks kinematics. The results 

confirm that failure in naturally fractured rock masses is the result of complex mechanisms 

associated with the frequency, persistence and interactions of the natural fracture network. The 

results of this Chapter are not confined to rock pillars, but could be applied to slope stability, 

tunneling and block caving analysis. 

 

Models B and D showed a larger amount of displacement prior to the generation of new cracks. 

This by itself was indicative of free blocks moving downwards. This observation was confirmed 

in the detachment maps in which the orange areas were clearly indicative of large block 

movements. Block count vs damage plots showed the lower dependency in model B on damage to 

generate blocks. This can indicate structurally-controlled behaviour in model B. The observations 

in model D indicate a higher dependency on the structure in the development of the newly-

generated cracks and formation of new blocks. Therefore, the behaviour of this model is due to a 

combination of brittle damage and structurally-controlled behaviour. It was observed that models 

B and D are both associated with a more distributed fracture intersection density map across the 

pillar section.  
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Chapter 7: Conclusions and Future Research 

 

7.1 Conclusions and Key Contributions 

The primary objective of this thesis was to develop a consistent approach in the consideration of 

Discrete Fracture Networks in numerical models in rock engineering practice. The proposed 

approach is built upon the ability to extract as much information as possible about the numerical 

models. This includes the geometrical configuration of the initial DFN model and extends to 

encompass both temporal and spatial analysis of geomechanical simulations. The geomechanical 

modelling used in the thesis is based on the FDEM technique, but the newly developed methods 

could in principle be adapted to work with different FEM and DEM techniques. The focus of the 

numerical analysis is the characterization of strength and possible failure mechanisms of fractured 

rock pillars; these represent numerical models that can be calibrated against empirical methods 

and for which there exist several examples in the literature that were used to constrain and validate 

the modelling results. This thesis includes several important and original contributions. These are 

briefly summarized below. 

 

• Development of new methods to better integrate DFN and FDEM models. Fracture traces can 

be easily imported into numerical models such as FEM, DEM and FDEM model; however, the 

stochastic nature of DFN models requires the selection of representative DFN realizations 

since it would be impractical and computationally expensive to simulate a large number (>10) 

of DFN realizations. A new numerical approach, DFN Analysis, was introduced to help 

practitioners address this problem. DFN Analysis details methods that make full use of DFN 
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statistics, including fracture count, fracture length, fracture intersection count and density, 

fracture orientation frequency and length, to provide objective and robust results.  

 

Previous research has shown the difficulty that may arise when integrating DFN with FDEM 

models. The critical component of the DFN-FDEM integration is the ability to embed and 

mesh complex fracture patterns. This has required to considered several geometrical aspects, 

including: i) the existence of very acute angles between intersecting fracture traces, which 

would result in distorted meshed elements; ii) the presence of traces shorter than the minimum 

mesh size; iii) duplication of points that would result in the duplication of meshed nodes; and 

iv) the occurrence of fracture traces spaced at distance that is less than the minimum mesh size. 

A new numerical approach, DFN Cleaning, was introduced to analyze each of the geometrical 

problems above independently. This is combined with DFN Quality and Mesh Quality that use 

advanced optimization techniques, such as Monte Carlo simulations, to produce an optimal 

meshed fractured network in the FDEM model. The proposed methods significantly reduce the 

human effort otherwise required to mesh DFN-FDEM models and reduce the human 

uncertainty associated with the process. 

• Development of new methods to make better sense of simulations results. Providing a 

comprehensive procedure for calculating fracture lines and blocks in FDEM modelling using 

geometry and graph analysis FDEM models have been commonly used in simulating various 

rock mechanics engineering problems. However, there is a lack of a unified approach for the 

computation and analysis of the resulting fractures and blocks. This limits the analysis to the 

consideration of typical outputs, such strength and deformability, without proper consideration 

of the role that brittle fracture and kinematics plays in the modelled results. In various cases, 
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researchers have attempted to quantify induced fractures and resulting blocks by applying 

image processing techniques; however, that may not feasible for large models and furthermore 

the analysis is limited by the resolution of the images. This thesis introduces a new approach 

for a quantitative analysis of induced fractures and blocks from FDEM simulation results. The 

proposed DEMFA technique use an opening criterion for finding fractures lines for every 

modelling timestep and makes full use of the modelling results. Subsequently, a newly 

developed Block Calculator technique (DEMBA) is introduced that represents meshed 

elements using graph data structures and graph theory concepts. Combined, the two methods 

offer the opportunity of tracking the generation of new blocks temporally (by timestep), thus 

relating the generation of new fractures to the formation of new blocks. A child-parent block 

relationship map is generated by introducing a block tracking tree approach.  

• Development and applications of new methods to characterize rock mass behaviour. This part 

has included the study of failure mechanisms for sixteen pillar models with different DFN 

configurations. Notably, it was possible to define and characterize pillar failure with respect to 

blocks formation (increasing rock mass blockiness) using an approach similar to the key block 

theory.  Innovative mapping methodologies were introduced to characterize blocks, including 

the development of detachment maps, block displacement maps, and block tracking tree and 

brittleness maps.  

• Providing a path to Machine Learning applied to rock engineering problems. The initial DFN 

can be further related to the damage, blocks, and failure at the peak stress. This has the potential 

to be integrated within machine learning schemes and could be used to highlight the critical 

features behind failure mechanisms.  
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7.2 Recommendations for Future Work 

 

It is anticipated that the results and key contributions presented in this thesis could be further 

extended and applied to address a variety of rock engineering problems. For instance, the use of 

DFN analysis and DFN cleaning could provide a path to analyze a large number of DFN sections 

to allow the definition of “critical” DFN patterns with respect to fracture networks. The proposed 

methods could therefore be integrated within a risk analysis assessment of rock engineering 

problems, by looking at the probability of occurrence of critical pathways within a given fracture 

network. Whereas the techniques are herein shown for 2D applications, future work could expand 

the techniques for 3D applications. Engineers need solutions to address future challenges such as 

the development of underground spaces, which are not limited to mining. To do so, there is a need 

to create unified methods to analyze rock mass failure mechanism that goes beyond the sole 

consideration of rock mass strength and deformability, and better integrate the mutual role of 

fracturing processes, blocks formation and kinematics. This thesis has introduced a new set of 

numerical procedures that could help address this important aspect of the future of rock 

engineering.  

Machine learning could be used to relate stress at failure, rock mass deformations, fracture network 

interaction and induced failure mechanisms. The methods presented in this thesis could be adapted 

to include machine learning to improve rock engineering design by facilitating decision making 

processes. 
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In order to gain better modelling results, it is suggested to consider the heterogeneity of material 

grains and fracture properties in the modelling process. The proposed methodologies in the thesis 

consider the geometry of fractures and blocks as the main components for being critical. It is 

suggested to also consider the friction of discontinuities in critical fracture and block 

investigations. 
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Appendices 

Appendix A  Procedure for How to Export 2D Sections from 3D Model 

Step 1: Generating Random Fractures 

In a very simple format, fractures can be created using a random triangle in a (100, 100, 100) 3D 

geometry field. This data is simple, and the same information can be extracted from different 

fracture data formats. 

Step 2: Creating cross sections 

Various number of cross sections can be presented as planes in the 3D field 

Step 3: Calculating Cross-Section Fracture Algorithm 

Detecting the intersection of the triangles and each cross-section plane. The intersections represent 

lines (fractures) 

Step 4: Visualization 

It can be seen that the triangle (3D fracture) results in lines in the cross sections.  

 

Figure A.1. Sample with one fracture.  
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The number of fractures then increased to 20 fractures.  

 

Figure A.2. Sample with 20 fractures. 

 

Figure A.3. Sample with 100 fractures. 
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Appendix B  DFN Analysis and Cleaning Algorithms 
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