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Abstract

Although the Standard Model of particle physics has been a phenomenal success in modelling known

particles and predicting new, theoretically founded particles, it is known to be incomplete. And while

the Standard Model of cosmology has been a phenomenal success in modelling the evolution of the

Universe, it too has open questions that remain unresolved. In this thesis, we aim to address properties

of new physics models that are being developed that aim to answer these questions. In particular, we

wish to focus on and examine in detail the connection between the dark sector of the Universe and the

visible sector. In examining this connection, we may use cosmological observables to place strict limits

on new theories that go beyond the Standard Model.

In the first part of this thesis we will address the flow of energy from the visible sector to the hidden

via a phenomenon known as freeze-in. Here, we explore the effects that early-time, ultraviolet energy

transfer may have on the infrared, late-time evolution of a dark matter candidate. We use a simplified

hidden-sector model to highlight the notion that operators that are typically considered early may have

relevant late-time effects.

Following this, we consider the reverse energy flow, and consider how dark-sector energy injection

via decays of electromagnetic radiation may affect the products of Big Bang Nucleosynthesis. In this

section, we focus on arbitrary light particle (< 100 MeV) decays, and identify how direct and indirect

alteration of the light element abundances can be constrained using the measured values today. Direct

alteration is caused by photodissociation, while indirect effects are felt through changes in the radiation

energy density.

Finally, we consider a full and rich dark sector, consisting of a non-Abelian SU(3) gauge force.

This new gauge field presents itself as glueballs after a confining transition. We study the effects of this

confining transition, as well as the subsequent dynamic evolution of the spectrum of glueballs produced.

In the final chapter, we examine how decays to Standard Model particles via higher-dimensional, non-

renormalizable operators can place stringent limits on the parameter space of this gauge force.
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Lay Summary

While science has made incredible discoveries throughout the ages, the Universe is still a vast, incredible

mystery. A large portion of the Universe is considered to be ‘dark matter,’ a new type of matter that

does not have an explanation within our current particle models, but seems to be required by our most

up-to-date cosmological models. Beyond dark matter, we have puzzles in our particle models that hint

at the need for new unknown particles to create consistent explanations within all our theories.

This thesis aims to explore the relationship between cosmological and particle models, and how new

physics may connect the two. We examine methods for creating dark matter, how destroying it might

affect the world around us, and how it might behave in different physical scenarios. In doing so, we

hope to shed new light on some of the problems that face the physics community today.
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Chapter 1

The Standard Model

1.1 Introduction
The Standard Model (SM) of particle physics is one of the most successful physical theories of modern

physics, successfully explaining the strong, weak and electromagnetic forces. It has been tested, suc-

cessfully predicting new particles such as the Higgs Boson and the massive electroweak gauge bosons

[13–15]. Although we have successfully built, used and tested this powerful model, there are still some

key problems that we wish to address. Doing so inevitably require introducing new physics. However,

well motivated physics models need to do more than just answer the question they were proposed to

solve. They must also pass tests in the rest of the physics realms as well. In particular, new models must

not contradict currently known and well understood effects. In this thesis, we aim to study exactly how

new physics may interact with old, from a variety of angles. In order to do this, we must first understand

how our successful models work.

In this chapter we will build up the Standard Model, focusing on three key pieces that build the

fundamental Lagrangian:

L = LGauge +LHiggs +LYukawa (1.1)

where each piece of this Lagrangian will be explained in detail in this chapter. Following this, we

will address some problems that have arisen that the SM cannot solve, and give common solutions that

incorporate new physics. Reviews of quantum field theory (QFT) and the SM can be found in Refs.

[16–20].

Throughout this thesis, unless stated otherwise we will use natural units, where h̄ = c = kB = 1, and

typically use units of GeV as our natural energy unit.

2



1.2 The Standard Model

1.2.1 Gauge Symmetries

In this section, we wish to explicitly define Lgauge, the portion of the Standard Model that describes the

interactions between fermions via gauge forces. This will rely heavily on group theory and Lie algebras,

for which good references can be found at [21, 22], while gauge field theories can be found in Ref. [23].

All of the known particles can be well defined by the SM, a theoretical description of the Strong,

Weak, and Electromagnetic forces. These forces define the interactions that exist between different

particles, and are explicitly identified in nature by a gauge symmetry of the form:

SU(3)C×SU(2)L×U(1)Y (1.2)

The first term, SU(3)C, corresponds to Quantum Chromodynamics (QCD), the fundamental description

of the strong force. This covers the interactions of quarks and gluons (or bound states of quarks and

gluons, hadrons, at low energy). The next two terms, SU(2)L×U(1)Y , together form electroweak (EW)

theory, which as we shall see can be broken down to the Weak force and the electromagnetic (EM) force

(or in QFT terms, the EM force is often described by Quantum Electrodynamics (QED)) separately after

the symmetry is explicitly broken. The EM force will independently preserve a new U(1)EM symmetry,

with the group charge corresponding to the physical charge of particles that we see (eg. Q = -1 for

electrons). The Weak force remains responsible for events such as β decay of a nucleus, and is the only

explicit connection between neutrinos and other particles in the SM.

In the modern view of particle physics, we take as our starting point that any particles that are

charged under these gauge groups must be invariant under local gauge transformations of the form:

Ur = eiαata
r (1.3)

where αa = αa(x) has local spatial dependence, and ta
r correspond to the Hermitian generators of the

Lie algebra in question. Some examples of such generators include the Pauli matrices for SU(2), where

they are typically normalized as ta
r = 1

2 σa:

σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i

i 0

)
σ3 =

(
1 0

0 −1

)
(1.4)
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or the Gell-Mann matrices for SU(3), with normalization ta
r = 1

2 λ a:

λ1 =

 0 1 0

1 0 0

0 0 0

 λ2 =

 0 −i 0

i 0 0

0 0 0

 λ3 =

 1 0 0

0 −1 0

0 0 0



λ4 =

 0 0 1

0 0 0

1 0 0

 λ5 =

 0 0 −i

0 0 0

i 0 0



λ6 =

 0 0 0

0 0 1

0 1 0

 λ7 =

 0 0 0

0 0 −i

0 i 0

 λ8 =
1√
3

 1 0 0

0 1 0

0 0 −2



(1.5)

Under these transformations, fermions will transform as ψ →Urψ and ψ̄ → ψ̄U†
r . Here we use the

standard definitions, ψ̄ = iσ2ψ∗ and σ2 is the Pauli matrix. Note that here we refer to ψ (ψ̄) as left

(right)-handed Weyl spinors [24, 25]. To get the more familiar 4-component Dirac spinors, we require

two 2-component Weyl spinors:

ΨD =

(
ψ

χ̄

)
, (1.6)

while the Pauli matrices (including σ0 = I2) can be promoted to the more familiar gamma matrices

using:

γ
µ =

(
0 σ µ

σ̄ µ 0

)
(1.7)

where σ̄ = (I2,−~σ) and for the special case of Majorana fermions, χ̄ = ψ̄ . Although we are typically

only interested in the 4-component Dirac notation for the spinors, it is instructive to use the chiral Weyl-

spinors here to explicitly identify the left and right-handed dependencies within the SM. If we now wish

to apply this transformation to a canonical kinetic term for a fermion, we will immediately run into

problems:

ψ
†iσ̄ µ

∂µψ → ψ
†iσ̄ µ

∂µψ +ψ
†iσ̄ µU†

r (∂µUr)ψ (1.8)

which is not invariant under the transformation. However, we can remedy this by introducing a vector

field, Aµ , and promote it to a matrix via the specific representation we are interested in: Arµ = Aa
µta

r . If

we allow Aµ to transform under the adjoint representation of the group:

Arµ →UrArµU†
r +

1
ig

Ur(∂µU†
r ) (1.9)
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We can then show that:

(igArµ +∂µ)ψ →Ur(igArµ +∂µ)ψ (1.10)

So, if we promote our derivatives to covariant derivatives,

Dµ = igAa
µta

r +∂µ (1.11)

then the kinetic terms will remain invariant under the gauge transformation:

ψ
†iσ̄ µDµψ → ψ

†iσ̄ µDµψ (1.12)

and so we see that adding an interaction with a vector field, and simultaneously transforming both

fields will preserve the symmetry. Thus, gauge vector interactions with any particles charged under that

specific gauge are necessary to preserve our gauge symmetries.

Now that we have introduced the gauge vector field, we must also define its own kinetic term. To be

gauge invariant, this can be done using:

Fµν = ∂µAν −∂νAµ −g f abcAb
µAc

ν (1.13)

where f abc are the structure constants for the group representation. Finally, we write the kinetic term as:

L ⊃−1
4

Fa
µνFa µν (1.14)

Here it is important to note that for Abelian gauge groups, such as U(1), the structure constants are all

zero, and so there will be no gauge boson self-interactions. However, non-Abelian gauge groups will

have non-zero structure constants, leading to the possibility of interesting self-interacting effects. These

self-interactions for a particular non-Abelian extension to the SM are explored in much more detail in

Part IV.

In the Standard Model, we thus have to introduce three sets of gauge vector bosons, one for each

gauge symmetry. For SU(3)C, this will be the gluons, Ga
µ , where a runs from 1 to 8.1 We also have

3 Weak bosons, W a
µ for the SU(2)L group, and finally Bµ for the U(1)Y hypercharge group. To be

concrete, we can explicitly express all the vector gauge bosons in terms of their gauge representations,

as shown in Table 1.1. It is important to note that all of these vectors must necessarily be massless, as a

vector gauge term (∼−m2AµAµ ) would violate gauge-invariance. We will see where the masses for the

observed vector bosons come from in the next section.

Of course, these vectors need something to interact with: these are the fermions of the Standard

Model. They will transform as ψi j→UCULUY ψi j, where i and j represent the SU(3)×SU(2) represen-

tations for that particular state. The fermions can be broken up into two subgroups: quarks, which have

1Note that because we only experimentally see the strong force at short ranges, we expect there to be no color neutral gluon
which would mediate a long range force, thus we postulate that the strong force is SU(3) instead of U(3), which would have 9
generators.
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Vector Gauge Boson SU(3)C SU(2)L U(1)Y
Ga

µ 8 1 0
W a

µ 1 3 0
Bµ 1 1 0

Table 1.1: Vector gauge bosons and their gauge charges.

SU(3)C charge, and leptons, which only have SU(2)L×U(1)Y . Both quarks and leptons come in three

generations, with each copy being identical except for the masses of the quarks and leptons involved.

Like the gauge bosons, we can explicitly write out the gauge charges of every fermion in the Standard

Model, which we show in Table 1.2.

Note again that here we have used 2-component Weyl spinors to represent the fermions. In reality,

four-component Dirac spinors represent the physical fields, which are simply the sum of the two Weyl

spinors: ψD =
(

ψL
ψR

)
. However, it is enlightening to write it this way as it emphasizes the chiral nature of

the EW gauge force. Only the left-handed fermions are charged under SU(2)L, while the right-handed

fermions are singlets, causing the EW force to be maximally parity violating. Because of this, we

cannot explicitly write out a mass term, and these fermions must necessarily be massless to preserve

gauge invariance. Not only that, but in the SM there is no right-handed neutrino at all, and as we shall

see, this means that in the SM, the neutrinos should necessarily all have zero mass. This is not the case,

and hints at problems with our model of physics. Nonetheless, armed with these gauge charges, we can

now write down the gauge portion of the SM Lagrangian:

Lgauge = −1
4 Ga µνGa

µν − 1
4W a µνW a

µν − 1
4 BµνBµν +∑

ψ

ψ̄iσ̄ µDµψ (1.15)

where the vector kinetic terms are defined in Eq. (1.13), ψ ∈ {QL,uR,dR,LL,eR} and covariant deriva-

tives are defined in Eq. (1.11) (where the correct representation must be used for each fermion, noting

that ta
r =0 under the trivial representation). For the SM, the covariant derivatives are explicitly given by:

Dµ = ∂µ + igsta
rc

Ga
µ + igt p

rL
W p

µ + ig′Y Bµ (1.16)

where gs, g, and g′ are the Strong, Weak, and hypercharge (Y) couplings. ta
rc

corresponds to the gen-

erators of the fundamental representation of SU(3), which are given by the Gell-Mann matrices in Eq.

(1.5), while ta
rL

are the generators of SU(2), given by the Pauli matrices in Eq. (1.4). Y represents the

hypercharge, the charge of the field under U(1)Y .

So we see that, if the SM consisted solely of fermions charged under the SM gauge symmetries, and

their corresponding vector gauge bosons, we could entirely fix the Lagrangian, but we would necessarily

require massless particles. This is not the case, and so we must introduce a new mechanism to provide

mass for the particles. This will be discussed in the next section.
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Fermion SU(3)C SU(2)L U(1)Y
QL =

(uL
dL

)
3 2 +1/6

uR 3 1 +2/3
dR 3 1 −1/3

LL =
(

νL
eL

)
1 2 −1/2

eR 1 1 −1

Table 1.2: Fermions of the SM and their gauge charges. The top group corresponds to quarks,
while the bottom group corresponds to leptons.

Higgs SU(3)C SU(2)L U(1)Y
H 1 2 +1/2

Table 1.3: Higgs Boson and its gauge charges.

1.2.2 Spontaneous Symmetry Breaking

Under the SM symmetries SU(3)C×SU(2)L×U(1)Y , all of the vector gauge bosons must necessarily

be massless. Furthermore, the chiral nature of the EW symmetry, SU(2)L×U(1)Y , necessarily requires

that the SM fermions must also be massless. However, this does not agree with what we see in nature,

and we need some new mechanism to match observations. In particular, the W± and Z bosons of the

Weak force have masses of ∼80 GeV and 91 GeV, respectively, while every fermion mass has been

measured to be non-zero as well.2 Although these two mechanisms are distinct, it turns out that we can

reconcile both cases with a single new field. This is the Englert-Brout-Higgs-Guralnik-Hagen-Kibble

mechanism, which gives rise to the more commonly named Higgs Boson [27–29] through spontaneous

symmetry breaking (SSB). The next two pieces of the SM Lagrangian are thus LHiggs and LYukawa,

which provide the Higgs connection to both the weak vector bosons as well as (most of) the fermions.

Here we will show that these are both necessary to give mass to the rest of the SM.

To provide masses, we need to spontaneously break the EW gauge symmetries. We do this by

introducing a new complex scalar Higgs field, H, that is a doublet under Weak isospin:

H =

(
φ+

φ 0

)
(1.17)

This will be the final field of the SM, and we write down its gauge representation in Table 1.3.

Because this field is charged under SU(2)L×U(1)Y , it must include a covariant derivative within

the kinetic term:

LHiggs ⊃ |DµH|2 =
∣∣∣∣(∂µ + ig

σ p

2
W p

µ + ig′
1
2

Bµ

)
H
∣∣∣∣2 (1.18)

2For up-to-date measurements of all of these masses, you can see, for example, Ref. [26]
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We also include here the symmetry breaking scalar potential:

LHiggs ⊃−
(
−µ

2|H|2 + λ 2

2
|H|4

)
(1.19)

This potential has a minima that is not at zero, but rather at v/
√

2 = µ/λ (where v = 246 GeV has been

normalized to match standard convention). We can expand around this minima to define excitations of

the Higgs field out of this minima. However, because the Higgs is a complex scalar, we can rotate this

ν by any phase and still be at the minima. Choosing a specific minima will force us to spontaneously

break our symmetries. To be concrete, we choose a gauge to work in (which can always be done by

applying an SU(2)L×U(1)Y rotation), and define the Higgs vacuum state to be:

〈H〉=
(

0
v/
√

2

)
(1.20)

where v is chosen by construction to be real and positive. Working in this gauge, and expanding H as

H =

(
0

(v+h(x))/
√

2

)
(1.21)

we can show that this vacuum state is trivially invariant under SU(3)C. Because it is an eigenstate of

weak isospin, it is also invariant under an abelian subgroup of SU(2)L×U(1)Y = U(1)EM, which has

charge Q = t3 +Y , where t3 is the third component of the weak isospin. We know that for each group

generator that does not leave the vacuum state invariant, we expect a Nambu-Goldstone Boson (NGB)

[30–32]. In EW theory, there are 3 such generators. These modes would remain massless. However,

what actually happens is that the NGB modes of H become the longitudinal polarizations of the now-

massive gauge bosons. We can look at this by explicitly counting degrees of freedom. The original Higgs

field had 4 degrees of freedom (being a complex doublet). After symmetry breaking, we have chosen

a gauge in which it will have 1 degree of freedom, h. The other 3 degrees of freedom are ‘eaten’ by 3

of the weak isospin bosons, giving them mass (and going from 2 massless, independent polarizations to

3 massive, independent polarizations), leaving the fourth massless. These will, after diagonalization of

the mass matrices, become the W± and Z modes of the weak theory, while the massless state becomes

the photon. These will be explicitly shown in the next section.

As we mentioned above, the Higgs is again used to generate the masses of the fermions. This is also

done through the broken symmetry of the Higgs field, but arises due to Yukawa connections between

the Higgs and the fermions, rather than the covariant derivative of the vector bosons. In the unbroken

phase, it is possible to write down gauge invariant operators involving the Higgs field and the fermions

as Yukawa interactions:

LYukawa =−YuQ̄LH̃uR−YdQ̄LHdR−YeL̄LHeR +h.c. (1.22)

where H̃ = iσ2H∗ and Yi are general 3x3 matrices that allow the generations of different quarks and

leptons to mix. These are the most general interactions we can write down that obey the combined EW
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gauge group SU(2)L×U(1)Y . After electroweak symmetry breaking (EWSB), H will be replaced by

Eq. (1.21) in the unitary gauge, which leads to terms of the form ∼ ν f̄L fR, which correspond to mass

terms for the fermions. Note that there is no equivalent −Yν L̄LH̃νR term, as there are no right-handed

neutrinos in the Standard Model. This is ultimately the reason that neutrinos do not have mass in the

SM.

Now that we have all of the pieces required for the SM as laid out in Eq. (1.1), let us put this all

together (in the broken phase) to see exactly what the physical world (nearly3) looks like today.

1.2.3 The Physical Standard Model

Let us now write down the physically observed fields of the Standard Models, and the values of their

couplings and masses. An extensive review of this, as well as up-to-date values for all masses and

couplings quoted here, can be found in Ref. [26], and references therein. We will begin with determining

the appropriate combinations of fields that have physical masses, before commenting on the effects of

confinement on fields that have SU(3) charges.

Fundamental Fields

We begin with the simplest portion, the mass of the Higgs boson. If we expand around our chosen

vacuum state, we find that the scalar potential in Eq. (1.19) reduces to:

LHiggs ∼−v2
λ

2h2 + (self couplings) (1.23)

and so we identify the mass of the Higgs boson as

mH =
√

2λv . (1.24)

This has been experimentally measured to be mH = 125.18±0.16 GeV. The vacuum expectation value

(vev) (v) for the Higgs is constrained to be v ∼ 246 GeV, which implies that the self-coupling value, λ

must be ∼0.13.

Next, we consider the gauge bosons in the broken phase. Although Eq. (1.18) will also contain

Higgs-gauge boson interactions in the broken phase, we again focus on the v2 terms that will contribute

to the mass matrix. Writing this out, we find:

|DµH|2 = 1
2

g2v2

4
(
W 1 2

µ +W 2 2
µ

)
+

1
2

v2

4
(
g′Bµ −gW 3

µ

)2
+ (Higgs-gauge boson couplings) (1.25)

3As we will show in a later section, there are problems with the Standard Model that still need to be explained. We have
hinted at this already with the fact that neutrinos do not have mass in the SM, and yet they do in reality.
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which gives us the mass matrix

M =
v2

4


g2 0 0 0

0 g2 0 0

0 0 g2 −gg′

0 0 −gg′ g′2

 (1.26)

Diagonalizing this, and re-arranging the W 1,2 bosons into two with orthogonal states that have charge

±1 in the U(1)EM gauge, we find:

W±µ =
1√
2
(W 1

µ ∓ iW 2
µ ) (1.27)

with mass

M2
W =

1
4

g2v2 . (1.28)

This has been measured to be 80.379±0.012 GeV. The W 3 and B bosons mix according to:(
Zµ

Aµ

)
=

(
cW −sW

sW cW

)(
W 3

µ

Bµ

)
(1.29)

where cW (sW ) are the cosine (sine) of the Weinberg angle (or weak mixing angle, θW ), defined by

sW = sin(θW ) =
g′√

g2 +g′2
(1.30)

Measurements of the Weinberg angle give sW = 0.23120± 0.00015. In this basis, the mass matrix is

now diagonal, with a massless photon (Aµ ), and the Z boson has mass:

M2
Z =

(
g2 +g′2

2

)
v2 (1.31)

The Z mass has been measured as MZ = 91.1876± 0.0021 GeV. Thus, the symmetry breaking energy

scale set by v also sets the scale for the masses of the weak bosons. Because of this, we consider energies

O(100 GeV) to be at the weak scale.

We complete our physical SM model by looking at the Yukawa terms in Eq. (1.22). When H is

replaced by its vev, we find:

LYukawa =−
v√
2

YuūLuR−
v√
2

Yd d̄LdR−
v√
2

YeēLeR +h.c. (1.32)

To get the physical mass eigenstates, we need to diagonalize the mixing matrices, Yu,d,e. This can be

10



done by choosing a unitary transform for each left or right handed fermion, V f
L and V f

R , such that

M f
diag =

v√
2

V f
L YfV

f †
R , (1.33)

and sending each fermion to:

fL→V f
L fL, fR→V f

R fR . (1.34)

When we do this, we are choosing a new basis that corresponds to the physical mass eigenstates of

the quarks and leptons, where the coupling between the fermion and the Higgs is explicitly realized as:

y f =
√

2
m f

v
(1.35)

This is of course allowed, and if we apply these transformations to the rest of the SM Lagrangian, it turns

out that nearly all of the gauge interactions will be invariant under these rotations as well. However,

the charged-current interactions of the quarks via the W± gauge-bosons will not be invariant. This is

equivalent to the Yukawa couplings breaking an (SU(3))3 global symmetry under rotations of QL, uR,

and dR between the different generations. Thus, by choosing to diagonalize the masses of the up and

down quarks, we are forced to include a mixing matrix elsewhere. This shows up in the charged current

interaction, which mixes up and down quarks as:

LCC =− g√
2
(ūL, c̄L, t̄L)σ̄ µW±µ VCKM

 dL

sL

bL

+h.c. (1.36)

where u, c, t correspond to the three ‘up’ generations of quarks, and d, s, b correspond to the ‘down’

generations. VCKM = V u†
L V d

L is the Cabibbo-Kobayashi-Maskawa (CKM) matrix [33, 34]. This is a

unitary matrix, characterized by three mixing angles and one charge-conjugation parity (CP) violating

phase.4 Note that, because we have no neutrino masses, we do not have this difficulty in the lepton

sector, as we can always choose a neutrino mixing matrix V ν
L =V e

L .

Confinement

Although we can now define all the fundamental particles, and their masses, in the Standard Model, we

cannot quite explain the particles that we physically observe at lower energies. Mesons and baryons, for

example, are confined states of 2 and 3 quarks, respectively. These are the physical fields that we observe

at low energies, but they do not correspond directly to fundamental fields in the Lagrangian. We wish

to briefly describe this phenomena here in the context of QCD, but we will make use of confinement in

Part IV.
4It is interesting to note that the CP violating phase only arises due to the fact that there are 3 generations of quarks. With

only 2, we can always define a real unitary matrix via a clever choice of field redefinitions that will rotate the CP violating
phase away.
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To understand why quarks and gluons exist in bound states, we must first look at how the strong

coupling, gs, depends on the energy that we are concerned with. This can be done by solving the

renormalization group (RG) equations that link the coupling at one momentum scale, µ , to another. For

a non-Abelian gauge theory, the RG equation becomes [16]:

dg
dt

:= β (t) =− b
(4π)3 g3 (1.37)

where g is the running coupling, t = ln(µ/µ0), and b is given by:

b =
11
3

C2(A)−∑
r, f

2
3

T2(r)−∑
r′,c

1
3

T2(r′) (1.38)

Where C2(A) is the Casimir of the adjoint (N for SU(N)) and T2(r) is the trace invariant of the rep-

resentation (1/2 for the fundamental representation). The first (second) sum over r (r′) runs over all

2-component fermions (complex scalars) in the theory with masses below the scale of interest. For

SU(3)C, which has 6 fermion flavours (12 2-component fermions), and no complex scalars, this reduces

to:

bQCD = 7 (1.39)

for energies above the top quark mass. Solving the RG equation leaves us with the unusual running of

the QCD coupling strength:

αs(µ) =
g2

s (µ)

4π
=

αs(µ0)

1+ bQCD
2π

αs(µ0) log
(

µ

µ0

) (1.40)

Because bQCD is positive, the coupling strength actually decreases as the energy increases. This is

known as asymptotic freedom. On the other end, as our energy scales decrease, we approach non-

perturbativity as αs→ 4π . This occurs at the scale µ ≡ ΛQCD ∼ 214MeV. Above this scale, QCD can

be treated perturbatively, with free quarks and gluons. Below this, however, the strong force becomes

non-perturbative and other methods, such as Lattice QCD, must be used [35, 36].

We can still make qualitative statements about the low energy theory based on confinement and

global symmetries. Quarks and gluons become strongly-coupled at low energy, or equivalently, large

distance. If we consider a qq̄ pair, we can imagine attempting to pull these apart. Eventually the

pair will be separated enough that the energy stored in the gluon flux tube will be large enough that

it becomes energetically favourable to break the tube and nucleate a new quark pair from the vacuum

(as long as the quark masses are below the confinement scale). This will be a new meson state, and

signals that confinement is preferred to free states at low energies. However, these confined states are

not fundamental, and thus not well defined by the QCD Lagrangian. In principle, the QCD Lagrangian

should be able to calculate these states and their interactions, but it is unclear how to do so as it is highly

non-perturbative. To describe these states, we would like to have an effective field theory (EFT) for
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QCD at low energies.

One such approach is to write down an EFT that contains the dynamical fields of interest, together

with all possible operators consistent with the underlying symmetries of QCD. This is known as chiral

perturbation theory, and provides an excellent starting point for an EFT of QCD [37]. The underlying

idea is that there is an SU(2)L × SU(2)R×U(1)V ×U(1)A symmetry associated with the QCD La-

grangian in the massless phase when considering only up (u) and down (d) quarks. This corresponds

to SU(2) transformations of the isospin doublets
(uL

dL

)
and

(uR
dR

)
, as well as Baryon number conservation

via the vector current (U(1)V ) and a symmetry associated with the axial vector current (U(1)A). All

of these but U(1)A have cancellations in their anomalies, and so SU(2)L× SU(2)R×U(1)V is a good

global symmetry that should be obeyed in the low energy limit.

One further useful feature of QCD comes from the quark condensate vacuum state:

〈q̄RqL〉 6= 0 (1.41)

This expectation value does not respect the global symmetry defined above, and thus we can expect to

find NGBs of a spontaneously broken symmetry. Here, the full global symmetry is broken down to a

subgroup SU(2)V ×U(1)V , where SU(2)V is the subgroup corresponding to transformations that affect

left and right-handed states in the same way. Thus, we start with (3+3+1=7) generators of the full global

symmetry, broken down to (3+1=4) generators that leave the vacuum state invariant. Thus we expect

to see 3 NGBs; we can associate these with the lightest meson states, the pions: π0, π±. Although

the NGBs should be massless, in the full QCD theory the quark states are not massless. This explicitly

breaks the global symmetry above, and so the pions actually correspond to pseudo-Goldstone bosons

within chiral field theory. This is in fact why this EFT is termed chiral perturbation theory; breaking the

global chiral symmetry plays a large role in the creation of our new bound states.

This can be extended formally to include other meson states, all the quark flavours (that fall below

the confinement scale), as well as the full baryon spectrum. Bound states of gluons are even predicted to

exist, in the form of glueballs [5, 6].5 Thus we have both chiral field theory and Lattice QCD methods

to attempt to understand not only the fundamental fields of the SM, but the physically observed fields as

well.

Now we have all the pieces of the physical Standard Model, where everything can be neatly ex-

pressed in terms of their gauge-boson couplings (gs, g, g′ and their RG evolutions) and representations,

Higgs potential couplings (v, λ ), and the Yukawa couplings (yi, which if diagonalized, lead to the CKM

matrix terms as well). With all this in hand, we can move on to problems with the Standard Model that

motivate our search for new physics beyond.

5We will explicitly study a non-Abelian gauge theory in Part IV that looks at realizations of glueballs and their effects in
the early Universe.
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1.3 Problems with the Standard Model
Despite overwhelming evidence that the Standard Model does an exceptional job of modeling funda-

mental physics, it is known to be incomplete. There are many problems in particle physics that cannot be

explained by the chosen gauge symmetries, generations of fermions, and the presence of a light Higgs.

In this section we will lay out some of the most prominent problems with the SM today, in the hopes to

motivate searches for physics beyond it (also known as BSM physics). Here, we will focus on concrete

problems arising directly from the Standard Model. In a future section, we will extend our motivations

for BSM physics by identifying problems that arise due to our coupling of knowledge of both the SM

and cosmology (such as, for example, the need for dark matter and even more CP violation than that

present in the CKM matrix). Good references addressing and providing overviews of some of these

problems can be found at [20, 38, 39].

Neutrino Masses

As we have hinted at already, one problem with the SM is the lack of neutrino masses. Under the SM,

right-handed neutrinos do not exist, and so we cannot produce neutrino masses via the Higgs mech-

anism. However, the discovery of oscillations between neutrino flavours from atmospheric neutrinos

[40], as well as solar neutrinos [41] necessitates that at least two of the neutrino species must have mass.

Qualitatively, this can be seen by the argument that a truly massless particle must travel at the speed of

light, and by construction will thus not feel the passage of time. If that were the case, oscillations (which

happen over large distances or equivalently timescales) would be impossible. This can be worked out

quantitatively as well. In a simplified 2-state neutrino model, with flavour eigenstates |νe,µ〉 and mass

eigenstates |ν1,2〉, the probability of arriving in the same flavour state as the initial is [42]:

Pee = 1− sin2(2θ)sin2
(

∆m2L
4E

)
(1.42)

where ∆m2 is the neutrino mass difference, L the distance travelled, E the neutrino energy, and θ the

mixing parameter that mixes flavour and mass states. For three generations of neutrinos, similar argu-

ments will apply, although we must use a mixing matrix similar to the CKM matrix in the quark sector.

For leptons, this is known as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [43, 44].

Thus the observation of oscillations provides concrete evidence for at least some of the SM neutrinos

to have mass, which necessitates BSM physics. The easiest solution is to allow for the existence of three

right-handed neutrinos that are gauge singlets. This would allow for Yukawa couplings to the Higgs and

thus give mass to the neutrinos. However, the extreme difference in masses between neutrinos (which,

from cosmological observations must be less than an eV [45]) and charged leptons is enough to question

if there is some other mechanism providing neutrino masses.6 One other popular solution is the (Type I)

see-saw mechanism [46]. In this model, the new neutrinos, N, being gauge singlets, are given Majorana

6The top quark to electron mass ratio is ∼ 105, while the electron to neutrino mass ratio is at least the same order of
magnitude. Although these are not dissimilar, it will still be satisfying to identify some mechanism for the mass hierarchies.
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Figure 1.1: Feynman diagrams contributing to the one-loop corrections to the Higgs mass in
the SM. From left to right, these include fermion loops (particularly the top), Higgs self-
couplings, and massive gauge boson loops. All three diagrams are quadratically divergent.

masses at a scale MN :

L ⊃−1
2

N̄RMNNR (1.43)

When combined with the Yukawa masses of Eq. (1.35), this results in a mass matrix of the form:

Mν =

(
0 yνv/

√
2

yνv/
√

2 MN

)
(1.44)

If the scale at which the new physics is present is much larger than the Yukawa coupling and Higgs vev,

MN >> yνv/
√

2, then the left and right handed neutrino masses essentially decouple:

mν ,L ∼
yνv√
2MN

, mν ,R ∼MN (1.45)

and we are left with our three SM neutrinos that naturally have small masses, suppressed by v/MN , as

well as three (mostly singlet) heavy neutrino states. These are effectively sterile neutrinos, as the singlet

states are extraordinarily hard to detect. Although new neutrinos have not yet been discovered, there

have been hints of a fourth neutrino at experiments such as Liquid Scintillator Neutrino Detector (LSND)

and MiniBoone [47, 48], and as such models that explain the neutrino masses and add new neutrino-like

states are well motivated to study and understand.

Hierarchy Problem

As we have now seen, new physics at higher scales is well motivated. An elegant solution to the

neutrino mass problem relies on heavy sterile neutrinos. Many other models, such as Grand Unified

Theories (GUTs) and quantum gravity also point to natural energy scales much higher than the EW

scale.7 However, introducing new energy scales above the EW scales leads to a new problem. One of

the most interesting problems with the SM is this hierarchy problem, and the desire for a natural model

of physics.

In particular, when computing quantum corrections to the Higgs mass, diagrams of the form shown

7GUTs typically require energy scales around 1014 GeV, while quantum theories of gravity are naturally expected at the
Planck Mass, MPL ∼ 1019 GeV.
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in Fig. 1.1 must be considered. In all three cases, the superficial degrees of divergence of the loop

integrals are D = (power of p in numerator)-(power of p in denominator) = 2, which naively leads to

quadratic divergences [16].8 For example, the first diagram corresponding to a loop from the top quark

will have a loop integral contribution of the form:

loop integral ∝

∫
d4 p

γµ pµ +m
p2−m2

γµ p′µ +m
p′2−m2 ∝ p2 , (1.46)

where p and p′ correspond to the internal propagator momenta of the top quark, and m its mass. This

will naively lead to a quadratic divergence in the integral if we integrate over all possible momenta. In

this case, all the naive expectations align with reality, and contributions to the Higgs mass are of the

form:

δm2
H ∼

Λ2

32π2

[
−6y2

t +
1
4
(9g2−3g′2)+6λ

]
(1.47)

where the loops have been regularized using a momentum cut-off at Λ. If Λ is much larger than the

weak scale, where the Higgs and weak boson masses appear, then in order to realize a physical Higgs

mass of mH = 125 GeV we would require a very fine tuned value of the bare Higgs mass to nearly

exactly cancel any large contributions from new physics at scale Λ. For example, new physics is almost

certainly expected to arise at the Planck scale, where quantum gravity is expected to emerge. With

Λ = MPL ∼ 1019GeV , then mH,bare must be chosen with a precision of one part in 1032. This fine-tuning

is the hierarchy problem, as there is naively no reason for these parameters to show such remarkable

cancellations.

We might worry that these quadratic divergences are simply a relic of using a cut-off regulator, and

they should disappear when renormalizing the theory to remove UV divergences. However, it is more

appropriate to understand Λ as a new physical scale corresponding to the mass of the new heavy particle,

and the corrections that appear in Eq. (1.47) can be considered as finite contributions from heavy parti-

cles (such as the top and gauge bosons) that are proportional to the scale of new physics. For example,

integrating out the massive sterile neutrinos of the previous section leaves a non-renormalizable operator

in the SM EFT that will necessarily include corrections of the form of Eq. (1.47), with Λ∼MN . Thus,

the hierarchy problem is truly a problem that the SM Higgs is sensitive to new scales - if there is no

new UV physics there is no hierarchy problem. But as UV physics is well motivated, this problem is a

fundamental one that many physicists have attempted to explain.

It is also interesting to note that this problem is unique to elementary scalars, and does not arise

when we consider either fermions or gauge bosons. If we pose the exact same problem but consider

8Note that sometimes the superficial degrees of divergence do not lead to the correct UV divergent behavior. This is the
case, for example, with the photon self-energy correction, which naively expects a quadratic divergence but is only logarithmic.
Symmetries in the theory (such as the gauge symmetry which leads to the Ward Identity [49]) can reduce the number of degrees
of freedom, changing the UV behavior. Nevertheless, it is still a good reference point to understand where in our theories these
divergences may arise.
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corrections to the fermion mass, these corrections will scale as:

m f ∝ m f log
(

Λ

m f

)
(1.48)

which is a far slower divergence, and protects the masses of the fermions (and gauge bosons) from the

divergence we see in scalars. This arises due to the fact that there is an approximate symmetry in the

chiral theory. If m f → 0, this symmetry becomes exact, which serves to suppress large corrections to

the masses.

Many solutions to the hierarchy problem have been proposed. One possible option is that this

is not a problem at all, and we simply require fine-tuning for life to exist. This anthropic argument is

unsatisfying to many, as it is still possible to create ‘habitable Universes’ for Higgs masses that are much

larger [50]. More popular solutions have included supersymmetry (SUSY) and Higgs extension models.

In supersymmetry, (a good primer for which can be found in Ref. [51]), the Poincaré symmetries of

space-time are extended to include particles of different spins. In doing this, an entire complement of

new particles to the SM are predicted, with every elementary SM particle gaining a superpartner with

spin differing by half.9 This cleanly solves the hierarchy problem, as the superpartners will contribute

to the quadratic divergence of the Higgs with the same couplings (modulo their broken masses) but

opposite signs as their SM counterparts. As long as SUSY is broken softly, this leads to δm2
H ∼ m2

so f t ,

and so new superpartners near the TeV range would help to explain the hierarchy problem.

With no hint yet of such physics at the Large Hadron Collider (LHC) experiments, other solutions

to the hierarchy problem are also gaining interest. Most of these involve changing the elementary nature

of the Higgs in some way. These are collectively known as Composite Higgs models, including Little

Higgs, Twin Higgs, Technicolor, and more [52–57]. In these models, the common motivation is that the

Higgs is no longer an elementary scalar, but rather a composite bound state of some more fundamental

objects. In these cases the Higgs is then an NGB of an underlying global symmetry, G. To allow the

Higgs a quadratic mass term, the underlying symmetry must not be exact, but rather an approximate

symmetry. In this way, G is explicitly broken, making Higgs a pseudo-Nambu-Goldstone-Boson. The

underlying shift-symmetry associated with NGBs allows for mH to naturally be small, providing another

solution to the hierarchy problem.

Strong CP Problem

The last major issue that we will comment on here is the strong CP problem [58–61]. When we wrote

down the gauge boson kinetic terms for the SM Lagrangian in Eq. (1.14), we ignored a number of

possible gauge invariant operators. We could also have included terms of the form:

L ⊃−
(

θQCD

32π2 GµνG̃µν +
θL

32π2WµνW̃ µν +
θY

32π2 Bµν B̃µν

)
(1.49)

9In standard SUSY models, the masses of the superpartners are predicted to be identical to their counterparts. As we have
not discovered any such particles, if SUSY exists, it must be a spontaneously broken form to lift the mass degeneracies.
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where G̃µν = εµναβ Gαβ/2 is the dual field strength tensor. It can be shown that these terms are equiv-

alent to total derivatives of the fundamental fields. These would then vanish in the action as boundary

terms if the fields have non-trivial windings. This is true for Abelian fields (and so we do not worry

about θY ), but the theta terms cannot be removed for non-Abelian theories. While θL can be removed

by transformations in lepton number (L) and baryon number (B) [62], the term cannot be removed from

QCD, and so we should include its effects when considering standard physics models. Even if we were

to naively set θQCD = 0, rotations of the quark fields to try to produce diagonal mass matrices results in

a re-introduction of the theta term, and so it would appear to be the case that we should naturally expect

some non-zero value of the phase.

However, there is an important effect that is predicted if this term exists. In particular, CP violating

couplings of pions to neutrons are expected, that give rise to a calculable neutron electric dipole moment

[63]. This is calculated to be:

dN ∼ 5.2×10−16
θ cm (1.50)

Current limits on the (non)-existence of such a dipole moment imply extremely small values for θ <

5×10−11 [64]. Understanding why this value is so small is the strong CP problem.

The most popular solution to this is the axion, a new particle that arises in the Peccei-Quinn theory

[65]. In this theory, an extra U(1) symmetry is added to the Standard Model in such a way so as to

balance the problematic term. Spontaneous breaking of this symmetry, together with explicit break-

ing associated with low-energy QCD effects lead to a pseudo-NGB. This new particle is the axion, a

pseudoscalar field, a, that couples to the SM as:

L ⊃− g2
s

32π2
a
fa

GG̃ , (1.51)

with a potential:

V (a)∼ m2
a f 2

a
(
1− cos(θ̄ +a/ fa)

)
(1.52)

where θ̄ corresponds to the value of θQCD chosen by nature, which is arbitrarily expected to be non-

zero. After SSB, the axion gains a vacuum expectation value that exactly cancels off θ̄ , thus completely

eliminating the strong CP problem. Other solutions to the strong CP problem involve invoking discrete

symmetries instead of the continuous U(1) Peccei-Quinn symmetry. Invoking a P symmetry at high

energies between left-handed SM particles and right-handed mirror particles will eliminate the theta

term, once again solving the CP problem [66].

These are only a few of the problems associated with the SM, (with some more to be discussed later

in the context of cosmology) but already we can see that there are plenty of well motivated reasons to

search for new physics. However, when doing so, we need to remember that any new physics models

must remain consistent with the rest of our understanding of how the Universe appears to work and

interact with itself. Of interest to us will be how new physics may interact with the SM in the early
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Universe, and so next we will provide a short overview of useful cosmological theory.
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Chapter 2

Cosmology and Dark Matter

2.1 Introduction
While the SM of particle physics has done a remarkable job on small scales, predicting new particles

and explaining their interactions, the ‘Standard Model’ of cosmology has been doing the same thing

on larger scales, successfully modelling the evolution and expansion of the observable Universe. This

model has successfully predicted the Cosmic Microwave Background (CMB) power spectrum [67], as

well as the abundances of light elements created during Big Bang Nucleosynthesis (BBN) [68, 69].

However, just like the SM, there are problems that cannot be solved in cosmology with only the known

particles, and so we must once again turn to new physics to attempt to explain the unexplainable.

In this chapter, we will build up a working knowledge of the cosmology needed to incorporate

new physics into the early Universe. Some good reviews and texts for the following discussion can

be found at Refs. [70–72]. This will include looking at how we currently understand the expansion

of the Universe is driven, as well as a detailed look into the thermodynamics of the early Universe.

Following this, we will address problems that cannot be explained by our current models. We will focus

on dark matter (DM) and dark sectors, as this is the frontier where particle physics directly coincides

with cosmology, and understanding how dark sectors interact with the SM will be the main focus of

this thesis. In particular, in this chapter we will address how DM (and other new particles that may be

relevant in the early Universe) can leave an observable imprint that can be used to constrain new physics.

Through this chapter, we will be using the mostly negative convention for the metric: ηµ,ν = diag(1,-

1,-1,-1). Also note that we will use the reduced Planck mass, MPL = 1√
8πG

whenever it is referenced.

2.2 The ΛCDM Model
We begin our survey of the ‘Standard Model’ of cosmology by considering the expansion of the Uni-

verse. On large scales, all astrophysical evidence points towards the idea that the observable Universe

is homogeneous and isotropic. The most general metric (gµν ) that satisfies these conditions is the
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Friedmann-Robertson-Walker (FRW) metric, which can be written in the form:

ds2 = dt2−a2(t)
(

dr2

1− kr2 + r2dθ
2 + r2 sin2

θdφ
2
)
= gµνdxµdxν (2.1)

where (t, r, θ , φ) are comoving coordinates, a(t) is the scale factor, and k = -1, 0, 1 correspond to

spaces of negative, zero, or positive spatial curvature, respectively. When k = 0 (as is suggested from

many large scale observations), r is the standard radial comoving coordinate. In flat space, then, we can

find physical distances between objects by simply scaling the comoving distances:

~xphysical = a(t)~xcomoving (2.2)

It is standard to assume that the present-day scale factor, a(t0) = 1. Often, distances to astrophysical

objects are quoted in terms of redshift, z, instead of the scale factor. This is a direct measurement of

how much a wavelength of light has stretched before reaching us: λ0 = (1+ z)λi. These are related by:

z(t) =
a(t0)
a(t)

−1 (2.3)

Thus, in order to study the evolution of the Universe we simply need to understand how the scale factor

changes with time. To do this, we solve the Einstein equations:

Gµν ≡ Rµν −
1
2

gµνR = 8πGTµν (2.4)

where Gµν is the Einstein tensor, Rµν the Ricci tensor (which depends on the metric and its derivatives),

R the Ricci Scalar = gµνRµν , G the Gravitational constant, and Tµν the stress-energy tensor describing

all the fields and energy that are present. For simplicity (and to match the symmetries, isotropy, and

homogeneity of the metric), we consider perfect fluids as the source of all energy. In this case, the

stress-energy tensor can be written in terms of the energy density, ρ , and pressure, p, of the fluid, as:

Tµν =


ρ 0 0 0

0 −p 0 0

0 0 −p 0

0 0 0 −p

 (2.5)

When we impose conservation of the stress-energy tensor (under vanishing covariant derivative, ∇µT µν=0),

we find the first law of thermodynamics in an expanding Universe:

∂ρ

∂ t
+

ȧ
a
(3ρ +3p) = 0 (2.6)
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where dots are used to denote time derivatives. If we take this stress-energy tensor, together with the

FRW metric, we find, for the time-time component of Einstein’s equations, the Friedmann equation:(
ȧ
a

)2

+
k
a2 =

8πG
3

ρ (2.7)

This is usually written in terms of the Hubble rate, H = ȧ/a and a critical energy density, ρC = 3M2
PLH2

such that we find:

ρ

ρC
= 1+

k
H2a2 , (2.8)

or equivalently, in dimensionless form:

Ω = 1−Ωk (2.9)

where Ω gives the dimensionless fractional energy density with respect to the critical, and Ωk =− k
H2a2 .

In a closed Universe, k = +1 and Ω> 1. If the Universe is open, k = -1 and Ω< 1. Finally, a flat Universe

will find that the total energy density will exactly match the critical density, and so the curvature must

vanish. Experimentally, there is a growing amount of evidence that supports this scenario, and so from

here on we will consider a flat Universe only, and explicitly set k = 0.

The spatial components of the Einstein equations can similarly be used to determine the second

Friedmann equation. When taken together with Eq. (2.6), this is typically written as an equation gov-

erning the acceleration of the scale factor:

ä
a
=−4πG

3
(ρ +3p) . (2.10)

Let us now explain why the standard cosmological model of expansion is called ΛCDM. To take the

Friedmann equations any further, we require knowledge of the type of fluid that is driving expansion.

This can be done using the equation of state,

p = wρ (2.11)

where w parametrizes the type of fluid present. The three main parametrizations that we will consider

are w = 1/3 (radiation), 0 (matter), and -1 (vacuum energy, or a cosmological constant, Λ). Using the

Friedmann equations, we can show that the evolution of the energy densities must be:

ρ ∝ a−3(1+w) (2.12)

This makes intuitive sense: matter scales like a−3, which is equivalent to the volume of space expanding,

as expected. Radiation scales like a−4, which has the volume of space expanding, plus an additional

factor for the redshifting of each wavelength. Finally, the cosmological constant does not scale, but

remains constant as the Universe expands. We can take it a step further to determine how the scale
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factor must change with time given a particular equation of state as well:

a(t) ∝

t2/3(1+w) w >−1

eH0t w =−1
(2.13)

Because the energy densities scale at different rates, we can define unique Cosmological epochs within

which different types of energy density are dominant. Early in the history of the Universe, when

a << a(t0), radiation energy density will be the dominant form. As the Universe continues to expand,

eventually we will reach the matter dominated era, signalled by the time of matter-radiation equality:

ρr,0

a4 =
ρm,0

a3 (2.14)

This can be solved for the cross-over scale factor, aeq = Ωr/Ωm, where it is more standard to work using

the dimensionless energy fractions, Ωx = ρx/ρC.

After a period of matter domination, the Universe will eventually be dominated by the cosmological

constant term, provided by Λ. When we are within each epoch, it is fairly numerically safe to solve

the Friedmann equations using only one of the three types of energy densities. If we are crossing over

multiple epochs, however, it is best to use the full equation for the Hubble rate, which is best expressed

as:

H2 = H2
0

(
Ωr,0

a4 +
Ωm,0

a3 +ΩΛ

)
(2.15)

where H0 is the present Hubble rate, and Ω0 = Ωr,0 +Ωm,0 +ΩΛ is the present day (dimensionless)

energy density. Typically, H0 is parametrized in terms of a dimensionless number, h, as well, and is

historically given as H0 = 100 h km/s/Mpc. The current observational limits on the above values are

given by the latest CMB results from the Planck telescope, together with lensing reconstruction and

baryonic acoustic oscillation (BAO) results [67]:

h = 0.6766±0.0042

Ωm = 0.3111±0.0056 (2.16)

ΩΛ = 0.6889±0.0056

and Ωr is negligible today. These are enough to fully inform the evolution of the Universe. Thus, the

Λ comes from the cosmological constant, and CDM comes from the cold dark matter (that we will

delve into in a future section) that makes up the dominant portion of the matter density of the Universe

(although Ωm still accounts for the baryonic portion as well). Together these make up effectively all of

the energy density in the Universe today.
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2.3 Thermal Evolution

2.3.1 Thermodynamics

With our understanding of how the Universe evolves in hand, we can now turn to thermodynamics to un-

derstand how evolution will move forward for species that are in thermal equilibrium. Before discussing

the early Universe and the radiation-dominated phase, we first review some basic thermodynamics.

In order to track the evolution of a species i, we will wish to know the number density ni, energy

density, ρi, and pressure, pi. For a given gas of particles with gi internal degrees of freedom, this only

depends on the phase space distribution fi(p):

ni =
gi

(2π)3

∫
fi(~p)d3 p (2.17)

ρi =
gi

(2π)3

∫
E(~p) fi(~p)d3 p (2.18)

pi =
gi

(2π)3

∫ |~p|2
3E

fi(~p)d3 p (2.19)

where E2 = |~p|2 +m2. In kinetic equilibrium, we can identify the phase space occupancy by the Fermi-

Dirac or Bose-Einstein distribution:

fi(~p) =
1

e(Ei−µi)/Ti±1
(2.20)

where +1 pertains to fermions, -1 to bosons, and µi is the chemical potential of the species. Furthermore,

if we have chemical equilibrium as well as kinetic, then the chemical potential of each species can be

related to those it interacts with. For example, for an interaction of the form:

i+ j↔ k+ l , (2.21)

we must have:

µi +µ j = µk +µl . (2.22)

In the relativistic limit, these equations can be solved exactly for both sets of statistics, giving:

n(0)i =

[
3
4

]
ζ (3)
π2 giT 3

i (2.23)

ρ
(0)
i =

[
7
8

]
π2

30
giT 4

i (2.24)

p(0)i =
ρ
(0)
i
3

(2.25)

where the factor in square brackets [] must be included for Fermi statistics. Shown here are the limits

where µ = 0 (which will often be referred to as the equilibrium value). In the non-relativistic limit, both
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sets of statistics reduce to the same form:

n(0)i = gi

(
miTi

2π

)3/2

e−mi/Ti (2.26)

ρ
(0)
i = mini (2.27)

p(0)i = niTi ∼ 0 (2.28)

If we wish to relate these solutions back to the full solution including the chemical potential, we can

neglect quantum statistics, and approximate the phase space distribution by the Maxwell-Boltzmann

distribution ( f ∼ exp(−(Ei−µi)/Ti)). This is typically reasonable for T < m/3 [73]. The full number

density, for example, would then be given as ni = eµi/Tin(0)i .

We can see parametrically that, due to the Boltzmann suppression of non-relativistic species, the

number and energy densities for relativistic species is typically much larger. As such, it is a good

approximation to treat the entire energy density as a relativistic bath of particles, and essentially ignore

any particle whose temperature has dropped below its mass. In this way, we can rewrite the entire

radiation energy density as:

ρr =
π2

30
g∗T 4 (2.29)

where we assume that T is the photon bath temperature, and the effective massless degrees of freedom

is a sum over all relativistic (Ti > mi) species:

g∗ = ∑
bosons

gi

(
Ti

T

)4

+
7
8 ∑

f ermions
gi

(
Ti

T

)4

(2.30)

In reality, the drops in g∗ are not quite this discrete, as the change from relativistic to non-relativistic is a

smooth process. The full evolution of g∗(T ) as a function of temperature in SU(3)C×SU(2)L×U(1)Y
is shown in Fig. 2.1.

Using Eq. (2.29) as the entire energy density in the early Universe, we can then write down an

explicit form for the Hubble rate we started with in Eq. (2.7):

H =

√
g∗π2

90
T 2

MPL
(2.31)

Furthermore, we can show that the temperature will scale as 1/a (up to slight variations as g∗ drops).

As we will often be concerned with changes that are occuring during the radiation epoch, these relations

will prove to be useful when we wish to solve for the number density evolution of interacting particles.

The final piece of thermodynamics that we will need to introduce is the idea of entropy. In an

expanding Universe, the second law of thermodynamics can be written as:

T dS = d(ρV )+ pdV −µd(nV )≥ 0 (2.32)
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Figure 2.1: Evolution of the relativistic degrees of freedom, g∗ and g∗s as a function of temperature
in the SM.

where S is the entropy, and V is the volume of the region in question. In an expanding Universe, such

that Eq. 2.6 describes conservation of energy and the vast majority of the energy density is in thermal

equilibrium, we can actually take this inequality to be exact, and thus have an adiabatically expanding

Universe such that dS = 0. If we take this together with the first law of thermodynamics given in Eq.

(2.6), it is possible to define an entropy density, s = S/a3 as:

s =
ρ + p−µn

T
(2.33)

In standard cosmology in the early Universe, we only need to consider radiation energy density, as

it will be much larger than contributions from any other sources.1 In that case, the entropy density can

then be written as:

s =
2π2

45
g∗sT 3 (2.34)

Here, we have introduced a new effective degree of freedom, g∗s:

g∗s = ∑
bosons

gi

(
Ti

T

)3

+
7
8 ∑

f ermions
gi

(
Ti

T

)3

(2.35)

At the hottest temperatures, this will map directly onto g∗, as all SM particles are in thermal equilibrium

and share a common temperature. However, as particles cool and decouple from the photon bath so that

Ti 6= T , this will deviate from g∗. Both degrees of freedom are shown in Fig. 2.1. As we will discuss in

1We keep the full entropy density here as reference, however, as it will prove to be useful in Part IV, where we will need to
consider entropy conservation in a sector entirely dominated by out of equilibrium, non-relativistic particles
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a future section, the main reason for the deviation is the decoupling of neutrinos at T ∼MeV, at which

point they are no longer heated by further photon interactions, such as the decoupling of electron and

positron annihilations.

Conservation of S implies that s ∝ a−3, and that g∗sT 3a3 remains constant as the Universe expands.

Thus, in periods when g∗s is constant (or varying slowly), T ∝ 1/a, as we predicted before. The evolution

of s with a−3 also helps us define a useful quantity that will be used throughout later chapters. For a

particle that is no longer interacting with the thermal bath such that the total number of particles has

stopped changing, it is straightforward to see that the quantity:

Yi ≡
ni

s
(2.36)

will remain constant. This is known as the yield for species i. Thus, if we can determine n(T ) at the last

point of interaction, we can determine the density we would expect to see today, which can be used to

make predictions and provide constraints based on observations of the Universe as we view it today:

n0 = ni
s0

si
(2.37)

where s0 is the current entropy density, given by the temperature of photons today, T = 2.7255±
0.0006K [74], such that s0 ∼ 3000 cm−3.

We now have enough understanding of the thermodynamics of the early Universe to move onto

particle interactions, which will be governed by Boltzmann equations.

2.3.2 Boltzmann Equations

As particles are interacting and maintaining thermal equilibrium, their number densities naturally be-

come suppressed as the Universe expands. When the equilibriating reactions responsible for particle

interactions drop below the Hubble rate, departures from thermodynamic equilibrium will occur. This

departure from equilibrium can be described as a modification in the phase space distribution, fi, of a

species. The modification of the distribution for a single species is governed by the Boltzmann equation:

L̂[ f ] = C[ f ] (2.38)

where L̂ is the Liouville operator, and C the collision operator. For a spatially homogeneous and

isotropic distribution (such that f (pµ ,xµ) = f (|~p|, t)) in the FRW metric, the Liouville operator is:2

L̂ =
∂

∂ t
−H p

∂

∂ p
(2.39)

where p corresponds to the usual magnitude of the momentum 3-vector. If we integrate both sides of

Eq. (2.38) by d3 p, and include the appropriate normalizing constants, this can be transformed to a

2Note that we should actually take derivatives with respect to the affine parameter [71, 72]. However, we can adjust our
definition of the collision operator to account for the extra factor of E that this would involve.

27



Boltzmann equation for the number density:3

∂n
∂ t

+3Hn =
∫

g
d3 p
(2π)3 C[ f ] = C̃[ f ] (2.40)

Integrals over higher moments can be taken as well to get Boltzmann equations for the energy density,

pressure, etc. In general, the collisional term will be a complex expression, involving the matrix ele-

ment associated with the forward and reverse reactions, as well as the phase space distributions of each

species. However, for 2→ 2 interactions of the form in Eq. (2.21), the equation can be vastly simpli-

fied. We present this case here, although we will be interested in generalizations of this in later chapters

(for example, we will consider particles starting out of equilibrium in Part II, and 3→ 2 interactions in

Part IV). We begin by writing down a general collision equation for the 2→ 2 reaction, where we are

interested in the evolution of species i:

C[ f ] =
1

2Ei

1
S

∫
dΠ jdΠkdΠl(2π)4

δ
(4)(pi + p j− pk− pl)

×{|M |2kl→i j fk fl(1± fi)(1± f j)

−|M |2i j→kl fi f j(1± fk)(1± fl) }

(2.41)

where Ei is the energy of particle i, |M |i j→kl is the standard unpolarized amplitude, obtained with the

usual Feynman rules, and we average over initial and sum over final spins. S is a symmetry factor that

accounts for identical particles in the initial or final state. dΠi corresponds to the differential Lorentz-

invariant phase space:

dΠ j = gi
d3 pi

(2π)32Ei
(2.42)

The 1± fi terms correspond to Bose enhancement and Pauli blocking factors. Reversibility and unitarity

of the interaction will imply that |M |i j→kl = |M |kl→i j ≡ |M |. For many cases of interest, we will typi-

cally consider systems at temperatures smaller than Ei−µ . In this regime, we can make a further approx-

imation that the quantum statistics can be ignored. In particular, we can ignore the Bose enhancement

and Pauli blocking factors, and further replace the equilibrium distributions by fi,eq(E)→ eµi/T e−Ei/T .

Making these adjustments, we can write our modified collision operator C̃ as:

C̃[ f ] =
∫

dΠidΠ jdΠkdΠl(2π)4
δ
(4)(pi + p j− pk− pl)

1
S
|M |2( fk fl− fi f j) (2.43)

To proceed further, we need to make some assumptions about the form of the phase space distributions.

In most cases, we will be interested in particles annihilating into SM particles, or particles coupled

tightly to the plasma, such that kinetic and chemical equilibrium are immediately obtained. Thus, we

can replace fk fl → fk,eq fl,eq. Furthermore, detailed balance allows us to replace these with the initial

3Strictly speaking, the term Boltzmann equation only applies to Eq. 2.38, but this terminology is widely accepted in the
cosmological community.
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state distributions: fk,eq fl,eq = fi,eq f j,eq ∼ e−(Ei+E j)/T .4 Because of this, we can do the final state phase

space integrals independent of their distributions, and replace them with the cross section corresponding

to the interaction:

σv =
1

4EiE j

∫
dΠkdΠl(2π)4

δ
(4)(pi + p j− pk− pl)

1
S
|M |2 (2.44)

where v is the Møller velocity:

v =

√
(pi · p j)2−m2

i m2
j

EiE j
(2.45)

Using all of this, we can write a simple version of the collision operator

C̃[ f ] = 〈σv〉(n(0)i n(0)j −nin j) (2.46)

where n(0)i = ni(µ = 0) as defined in Eq. (2.17) and we have taken the thermal average of the cross

section:

〈σv〉= 1

n(0)i n(0)j

∫
gi

d3 pi

(2π)3 g j
d3 p j

(2π)3 fi,eq f j,eqσv (2.47)

Using the thermal average here allows us to use truncation schemes for the cross-section. For small

temperatures, and thus low relative velocities, we can compute σv in the center of mass frame, and then

expand in terms of the relative velocity, v. Most interactions will have an s-wave term that is velocity

independent. Then, 〈σv〉 ∼ σ0. If a symmetry forbids the lowest angular momentum term, then the

p-wave cross section will become relevant: 〈σv〉 ∼ σ1T/m. In general, we can use:

〈σv〉 ∼ σn

(m
T

)−n
(2.48)

where σn will be constant, and n corresponds to the lowest allowed angular momentum state. n = 0 for

s-wave, 1 for p-wave, and so on to higher angular momentum states. Putting everything together, this

gives us the basic Boltzmann equation for a 2→ 2 interaction in the early Universe:

∂ni

∂ t
+3Hni =−〈σv〉(nin j−n(0)i n(0)j ) (2.49)

We will make use of this equation when we discuss DM in section 2.5, and similar modified versions

throughout later sections.
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Inflation
> 109GeV
< 10−32s

EW Phase Transition
∼ 100GeV
∼ 10−12s

QCD Phase Transition

∼ 1GeV
∼ 10−6s

ν Decouple
∼ 1MeV
∼ 1s

BBN
∼ 0.1MeV
∼ 3min

m-r Equality

∼ 1eV
∼ 50,000yrs

Recombination
∼ 0.1eV

∼ 380,000yrs

Structure Formation
∼ 0.01eV
∼ 105yrs

Reionization
< 0.01eV

∼ 106yrs
Today

∼ 10−4eV
∼ 14GYr

Figure 2.2: Brief timeline of the evolution of the Universe. Note that inflation could in principle
happen at much lower energies.

2.4 The Universe Timeline
Now that we have tools to describe particle interactions and the evolution of the Universe, we wish to

reconstruct the thermal history of the Universe. In doing so, we will highlight key problems that we do

not yet fully understand, as well as epochs in our history that lead to key pieces of observational evidence

that can be used to constrain new physics. A brief outline is given in Fig. 2.2 as reference. Note that

in this upcoming section, we will simply assume that there is some form of dark matter making up the

primary abundance of matter. In a future section we will discuss this puzzling detail that is necessary

for standard Big Bang cosmology in more detail.

The Early Unknown

Above temperatures around ∼ 5MeV, not much is known experimentally about what were the ex-

act conditions of the early Universe. However, well-founded theories typically extend to energies

much higher than this, often involving multiple different phase transitions early on. For example,

our current vacuum state is well described by SU(3)C ×U(1)em, which is the unbroken remnant of

SU(3)C× SU(2)L×U(1)Y . It is expected that we would have gone through a phase-transition at tem-

peratures around 100 GeV, at which point the Higgs potential would be spontaneously broken and all

relevant particles would gain mass. There is also an expected QCD phase transition at around 1 GeV

(the scale of non-perturbativity in QCD, ΛQCD), above which quarks and gluons would be free, but

below we expect the usual bound states of baryons and mesons.

4This is typically always true, as scattering processes that enforce kinetic equilibrium will stay relevant for longer than
those that enforce chemical equilibrium.
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However, even before this, we expect a phase transition corresponding to a period of inflation. In

order to postulate the existence of a spatially flat, homogeneous and isotropic metric, a period of cosmic

inflation is almost a requirement [75]. This epoch can solve many different problems in cosmology,

including the flatness and horizon problems. However, to do so we must postulate the existence of some

new scalar field to drive inflation.5

To see how inflation could occur, we can consider a scalar field with a symmetry breaking potential

similar to the Higgs,

V (φ) =
1
4

λφ
4− 1

2
µ

2
φ

2 +V (0) (2.50)

Although this has a vacuum expectation value at 〈φ〉 = µ
√

λ , at finite temperatures there are radiative

corrections of the form T 2φ 2. These would restore the symmetry, and 〈φ〉 → 0. As the Universe cools,

the symmetry would be broken either through a first order phase transition (and the field would tunnel

through a barrier), or via a second order transition (and the field can transform smoothly from the local

to global minima). In either case, the field can slowly transform from the false vacuum to the true

vacuum if the properties of the potential are appropriate. As the field ‘slow rolls’ from the false vacuum

to the true vacuum, it will be dominated by the constant energy density of the potential, V (0). This can

be large enough to overcome the energy density of any radiation present, and so dominate the energy

density of the Universe. As we saw in Eq. (2.13), a constant energy density leads to exponentially

driven expansion of the scale factor.

During this exponential expansion, many desired effects will happen. First, the observed isotropy

and homogeneity of the Universe would be fixed, as one small causally connected region would be

blown up, and the entire visible Universe would have been in thermal contact early on. This solves the

horizon problem, as evolving backwards from our current point would imply that the Universe we see

today would never have been causally connected, without this period of inflation. Furthermore, we can

also solve the flatness problem. This is best seen by looking at the evolution of the net energy density:

1−Ω =
a2(1−Ω0)

Ωr +Ωma+ΩΛa4 (2.51)

Before ΩΛ came to be relevant, 1−Ω was always increasing. However, current measurements of Ω0

imply that the Universe is still incredibly flat, and so the initial curvature must have been fine-tuned to

1 part in 1060 to see the flatness we do today [77]. However, having an early period of inflation drives

the flatness to zero automatically, thus bypassing the fine-tuned flatness problem altogether.

Once inflation has finished, the inflaton field can transfer its energy density to the visible, radiative

sector through a process termed reheating. As the scalar field reaches the global minima of its potential,

it will oscillate around this point. The kinetic energy associated with these oscillations will be transferred

via decays to SM (or hidden sector) coupled particles. When the SM has had enough energy transferred

5For some time, it was thought that perhaps the Higgs field itself could drive inflation, but after the discover of the Higgs
boson at its observed mass and self-interaction values, this is no longer considered to be the case, as it would require an
extremely large coupling in |H|2R. So the question of what new field is required is still open [76].
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and rethermalized, we can continue with the standard hot big bang model, where radiation energy will

dominate. In future sections, we will often refer to a period of reheating as an initial condition for the

models we consider, but will not attempt to model the UV physics that would be required to describe

how the reheating came to occur.

After this period of inflation, there is a new puzzle we must address: baryogenesis. This is the

cosmological problem associated with the observed baryon asymmetry in the Universe. From our per-

spective, anti-matter appears to be extremely rare, only seemingly detected in accelerators or cosmic

rays. In both cases, the presence of anti-matter is expected to be a result of collisions of high-energy

matter, and not a primordial source. Understanding why there are more baryons than anti-baryons to-

day is a puzzle that has not yet been explained by the SM or cosmology. Explicitly, we are trying to

understand why the parameter:

η =
nb−nb̄

nγ

= (6.09±0.06)×10−10 (2.52)

is close to, but not exactly zero [9, 75]. 6 Typically, we cannot even use inflation as a source of

the asymmetry: any initial fluctuations in the baryon symmetry are diluted by the expansion of the

Universe, while entropy is being produced, implying we would expect a symmetric Universe directly

after inflation. Thus, we need a mechanism by which we can dynamically produce the asymmetry. To

do so, one must postulate three conditions for baryogenesis: violation of Baryon number, B, violation of

C (charge conjugation) and CP (charge conjugation-parity), and a departure from thermal equilibrium.

These are known as the Sakharov conditions for baryogenesis [78], and are necessary to produce an

asymmetry. Baryon number must be violated so that an asymmetry can be produced from a symmetric

state. C and CP must be violated so that baryons will be produced preferentially over antibaryons.

Finally, the process must occur out of equilibrium, so that the reverse process does not have the same

rate.

Although all three of these conditions are met in the Standard Model, they are not strong enough

to explain the entirety of the asymmetry that we see today. As such, some new physics must be incor-

porated to explain our observations. One such solution arises in the see-saw mechanism we considered

earlier in the context of neutrino masses. In this context, an asymmetry in leptons (aptly named leptoge-

nesis [79]) due to decays of the heavy right-handed neutrino is transferred to the baryon sector through

SM sphalerons, which conserve B-L [70]. There have been many other models of baryogenesis pro-

posed [80], all of which must invoke some new physics at scales above ∼ 5 MeV. However, once we

reach 5 MeV, we can take this asymmetry as a given parameter in our models, and continue the evolution

with this asymmetry in mind.

6It is actually better to use the entropy instead of photon number density in the ratio, such that the whole ratio is actually
conserved as particles become non-relativistic and freeze-out of the relativistic energy density. This is given by nb/s = η /7.04
today.
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Neutrinos Decouple

Now that the Universe has cooled to a few MeV, we can start making concrete predictions based on the

interactions of the SM. One of the first important things that will happen is the decoupling of neutrinos

from the rest of the visible sector. At hot enough temperatures, neutrinos are kept in equilibrium through

weak interactions such as ν̄ν ↔ e+e− and νe↔ νe. If we compare the interaction rates to the Hubble

rate, we find:

Γ

H
=

n〈σv〉
H
' G2

FT 5

T 2/MPL
'
(

T
MeV

)3

(2.53)

where GF is the Fermi constant describing weak interactions, and factors that are of order unity have

been left out. At temperatures above an MeV, the interaction rates are strong enough to drive the neutri-

nos into thermal contact with the plasma. Below this, however, the Hubble rate is such that the Universe

expands faster than the neutrinos can interact, freezing them out of thermal contact. After this point, the

neutrino temperature will scale as 1/a, independent of anything occurring in the photon plasma. This

is the first of many times we will consider ratios of interaction rates to the Hubble rate, a useful tool in

understanding the parametrics of the early Universe.

Shortly after neutrinos freeze-out, the temperature drops below the mass of electrons, and the en-

tropy that was in e± pairs will be transferred to photons, but not neutrinos. We can estimate the effect

this will have on the temperature of photons by counting relativistic degrees of freedom before and af-

ter e± annihilations. Directly before, we have photons (g=2), e± pairs (g=4), and neutrinos (g=6), and

everything shares the same temperature. However, directly after, the e± pairs will no longer contribute,

and the photon temperature will be raised above the neutrinos as they gain the electron entropy. By

equating the entropy density before and after the electron annihilations, we can find that the ratio of

temperatures between photons and neutrinos must be:

T
Tν

=

(
11
4

)1/3

' 1.40 (2.54)

We make use of this temperature ratio when considering the effects of new physics on BBN, the next

step in the evolution of the Universe.

Big Bang Nucleosynthesis

After neutrinos have decoupled, the next major step in the evolution of the Universe comes from the

creation of light elements during Big Bang Nucleosynthesis (BBN). These elements include D, 3He,
4He, and 7Li. This takes place primarily at temperatures just below an MeV, when the Universe has

cooled enough to allow for reactions involving heavier elements to proceed.

The main output of BBN is the relic abundance of 4He, which can be estimated extremely simply

by considering the parametric evolution of all the reactions involved [81]. There are three main phases

typically considered in BBN: the freeze-out of neutrons, the Deuterium bottleneck, and the nuclear

reactions that drive BBN. Before the onset of BBN, neutrons and protons are in equilibrium, due to
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weak interactions of the form n+e+↔ p+ ν̄e and n+νe↔ p+e−. Because the abundances are driven

to equilibrium, the ratio of neutrons to protons will simply be given by:

n
p

∣∣
eq = e−∆m/T (2.55)

where ∆m = mn−mp = 1.293 MeV is the neutron-proton mass difference. Similar to neutrinos, the

weak interactions keeping this abundance in equilibrium will freeze-out around 1 MeV, which leads to

a freeze-out ratio of ∼ 1/6. This sets the amount of neutrons that are initially available to take part in

the creation of heavier elements. However, because neutrons decay (n→ p+ e−+ ν̄e), there will be

slightly fewer available at the onset of BBN. This reduces the freeze-out ratio from ∼ 1/6 to ∼ 1/7.

The main reason for the delay is the Deuterium bottleneck; many of the interactions that occur during

the creation of light elements involve Deuterium. For example, the first link in the nucleosynthesis

chain is p+ n→ d + γ . It is also required for the production of 3He (D+D→3 He+ n), as well as 4He

(D+T→4 He+n). Because the ratio of baryons to photons is so small, the temperature must cool well

below the binding energy of Deuterium (EB = 2.2 MeV) before the Deuterium destruction rate falls

below the production rate. Thus, BBN is delayed until η−1e−EB/T ∼ 1. This is at approximately 0.1

MeV.

Once we have passed this bottleneck, all nuclear reactions proceed fairly quickly. To a good approx-

imation, nearly all of the neutrons present at this point will end up in 4He, the most stable light element.

Thus the primordial mass fraction of Helium, Yp ≡ ρHe/ρb can be estimated by:

Yp =
2 n

p

1+ n
p
∼ 0.25 (2.56)

This turns out to be a remarkably good estimate of the full numerical solution. The numerical results

will also estimate the final yields of D and 3He to ∼ 10−5 relative to H, while 7Li is reduced further to

∼ 10−10 H. These can be compared to the present day observations of the abundances of these isotopes.

Deuterium is measured using absorption lines of distant quasars through damped Lyman-α (DLA)

systems that have low metallicities [82]. These are good sites as they have high column densities of

neutral gas, which implies a good optical depth for many of the Lyman series. Low metallicity is also

useful as there will be negligible D astration from sources such as dust within the region [83, 84].

Researchers have also studied whether deuterium is formed in appreciable amounts, such as via stellar

processes [85, 86], and found that deuterium is essentially not created, but only destroyed, and thus only

monotonically decreases over time. Thus, any measurement of D made today will be a lower bound on

the D present at BBN. That is: (
D
H

)
DLA
≤
(

D
H

)
p

(2.57)

One group (Cooke), continually updates their result every time a new observation for a Ly-α system

is completed that matches their selection criteria [87–91]. Their most recent observation/analysis, [91]
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uses results from 7 systems, and is:(
D
H

)
p
= (2.527±0.030)×10−5 (2.58)

Another group has also recently completed an analysis of 13 systems, with a slightly smaller uncertainty

[92]: (
D
H

)
p
= (2.545±0.025)×10−5 (2.59)

If we take the weighted average of these two analyses, we get:(
D
H

)
p
= (2.538±0.019)×10−5 (2.60)

The consensus on the Helium-3 values are much more vague, as it is a much more difficult isotope

to track. Unlike when searching for D, which uses absorption lines, 3He is observed in emissions from

regions of ionized gas (HII regions) [93]. Thus far, only successful searches have been done within

the galaxy, specifically in planetary nebulas, HII regions, and within the solar system. There is also a

secondary issue that does not arise with D: stellar processes are more than happy to create helium in low

mass stars, or destroy it in high mass stars. As such, it is hard to decipher the true primordial amount,

and thus searches are typically done in locations that have not been too disturbed by galactic/stellar

processes (such as protosolar clouds).

However, Kawasaki ([94]) and Sigl ([95]) both point out that helium cannot be used to overproduce

D, and so, even though 3He is much more sensitive to its surroundings, the ratio 3He/D should always

monotonically increase, and so you should be able to get upper bounds on the primordial abundance

from regions where both He and D are measured. It also appears to be the case that the quantity (D

+ 3He)/H is stable through galactic evolution [96], and so measuring this, together with D/H can give

ratios such as 3He/H and 3He/D.

Some of the most recent observations are from Bania [97], who measure the upper limit on the

abundance from planetary neblua:

3He
H

= (1.1±0.2)×10−5 (2.61)

Mahaffy provide results from the Galileo probe that measured the ratio of He isotopes in Jupiter’s

atmosphere [98]:

3He
4He

= (1.66±0.06)×10−4 , (2.62)
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and Geiss provide results from protosolar clouds [96]:

D+3 He
H

= (3.63±0.35)×10−5 . (2.63)

Note that if we use the results from Eqs. (2.58) and (2.63), we get:

3He
H

= (1.10±0.35)×10−5 (2.64)

Which agrees with the results from Eq. (2.61). We can also combine the Eqs. (2.58) and (2.63) to arrive

at:

3He
D

< 0.44±0.14 (2.65)

Note that this is much lower than the value cited in Kawasaki [94]: this is because they don’t use the

observed value of D/H from Cooke, but rather those from Geiss. Using this, you arrive at:

3He
D

< 0.83±0.27 (2.66)

Like 3He, 4He measurements are coming from ionization regions such as HII, the sun, planetary

nebulas, and regions within the galactic disk [99]. Again, they look for regions that have low metallicity

so that the region is relatively unaffected by stellar processes, giving the best indication of the initial

primordial abundance. Although the fit is done by determining the abundance vs. metallicity and then

extrapolating to low metallicity [100, 101], having as much data as possibile at low metallicities is the

current observational goal.

There appear to be three current measurements of Yp, the helium fraction. The first is from the

group that did the actual observations [102], who update their old measurement by incorporating both

optical and IR measurements of the helium emission lines to help constrain the density by breaking a

degeneracy in the parameter space with temperature. They have 45 low metallicity HII regions from

‘primitive galaxies.’ The Izotov group determines:

Yp = 0.2551±0.0022 (2.67)

Two other groups have used the data from the observations. The first is Aver [101], who use updated

emissivities from Porter [103] to arrive at:

Yp = 0.2449±0.0040 (2.68)

And the second is Peimber [104], who also use the updated emissivities, and arrive at:

Yp = 0.2446±0.0029 (2.69)
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Note that Eqs. (2.68) and (2.69) agree with each other, but not with (2.67). This appears to be due

to the methods used, and selection criteria used for including/discarding various sources from the data

set. The consensus seems to be that the Aver and Peimber results are most reliable [67]. The combined

result from both of these analysis is:

Yp = 0.2447±0.0023 (2.70)

Finally, there is a puzzle associated with the abundance of Lithium. The best systems for observation

of the Lithium abundance are metal-poor stars in the spheroid of the Galaxy [105]. Here, observations

have shown that Lithium does not appear to vary significantly with low metallicity [106]. However,

systematics and uncertainties in different measurement techniques have led to a host of different mea-

surements for the observed abundance of Lithium [107–109]. Furthermore, in some very metal poor

stars, Lithium is not even detected at all [110, 111]. Thus best estimates appear to come from the

mid-range metallicities, with a value of:

Li
H

= (1.6±0.3)×10−10 (2.71)

taken as the safest estimate [111]. However, while observations of Helium and Deuterium are in agree-

ment with BBN predictions, the measurement of Lithium is not, leading to the Lithium puzzle. BBN

predictions tend to overpredict the amount of Lithium that should be produced compared to observa-

tions. However, there is much more uncertainty on the observational abundance and its relation to the

primordial abundance, due to the possibility of both creating and destroying Lithium in different astro-

physical environments. Although we do not attempt to resolve this puzzle here, it is worth noting as it

could be incorporated into future works, and is often considered as a possible source of new physics.

Because the predictions of BBN agree so well with the primordial abundances inferred from present

day observations, any new physics that may be present at this time is highly constricted [112]. Indirect

alterations to the radiation energy density (typically denoted through the parameter Ne f f , the number of

effective degrees of freedom in the neutrino sector) will alter when neutrons freeze-out, which in turn

alter the final amount available to produce 4He. Furthermore, direct dissociation of the elements can

occur via the decay or annihilation of new particles during or following BBN.

If the energy is injected via hadronic channels, it is possible to affect both the process of BBN

as well as the outputs. For short lifetimes (τ < 104s), hadronic decays will produce partons that will

hadronize into stable particles (such as pions and nucleons) that will directly alter the final abundances.

Long-lived partons may interact with background nuclei, and charged current interactions with pions can

alter the neutron-proton ratio, all of which will alter the final abundances of light elements. However,

more stringent constraints can be placed on decays after the production of 4He. Once 4He has been

produced, hadrodissociation can occur, breaking up the light elements. Energetic nucleons can also

cause spallation processes on Helium, once again reducing its abundance and interfering with present

day observations.

Energy can also be injected via electromagnetic channels as well (or into the EM channels via sec-
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ondary EM showers produced by hadronic decays). In this case, photodissociation of the light elements

can take place. However, these tend to occur at later lifetimes, as high energy decays can efficiently

scatter off the background photons, dissipating the energy that could be used for photodissociation. It is

only when energies drop below a critical energy:

Ec =
m2

e

22T
∼ 2 MeV

(
6 keV

T

)
(2.72)

that photodissociation typically begins to take place [7]. This tells the temperature (and equivalently,

the time), at which electromagnetic decays become important. In particular, we can equate the binding

energies of the light elements with the critical energies to find the relevant temperatures [112]:

Tph '


7 keV 7Be+ γ →3 He+4 He Eb = 1.59 MeV

5 keV D+ γ → n+ p Eb = 2.22 MeV

0.6 keV 4He+ γ →3 He+n Eb ∼ 20 MeV

(2.73)

As the temperature drops below each of these scales, the light element begins to be destroyed, which

highly constrains the presence of any new particles decaying at these temperatures. Note that as the

temperature falls below 0.6 keV, photodisintegration of 4He actually implies net production of D and
3He as well. We can make use of this to constrain new physics, and will use the remarkable accuracy of

BBN and the primordial abundances of the light elements in future chapters.

Matter-Radiation Equality

Once the light element abundances have been formed, the Universe continues to evolve relatively un-

interrupted. At some point, the Hubble expansion rate has caused the scale factor to reach a point at

which matter and radiation contribute equally to the radiation density. If we ignore any contributions to

matter except for the baryon component, we would find that this occurs at a redshift of z∼550, which

will have consequences for structure formation [113].

However, we expect there to be a large dark matter component to the matter density today (in fact,

this is one of the reasons why). If we plug the observed densities today into Eq. (2.14), we find that the

actual epoch of matter-radiation equality physically corresponds to a scale factor of a ∼ 2×10−4, or a

redshift of z ∼ 3600. This is when the Universe is ∼ 50,000 years old. After this occurs, matter will

be the dominant energy form, and the expansion speed will actually increase relative to the radiation

dominated epoch, with scale factor increasing like t2/3 instead of t1/2. At this point, dark matter over-

densities, which have already formed out of primordial fluctuations, will begin the slow push to non-

linear growth that will signal the true start of structure formation.

Recombination and the CMB

As the Universe continues to expand, the photon-baryon plasma is initially tightly coupled, as Compton

scattering of free electrons efficiently thermalizes photons to the baryonic matter. However, as the
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temperature cools below the ionization energy of Hydrogen, neutral atoms form and photons no longer

have anything to scatter with. This point of recombination is the ‘last scattering’ surface for photons,

after which they free-stream towards us. This occurs at temperatures of about 0.1 eV, or 380,000 years

(or a redshift of 1100) into the evolution of the Universe.

Because photons free-stream from this point on, they give us a unique snapshot of what the Universe

looked like when it was still relatively young. Careful study of this epoch can give us a rich and detailed

account of the parameters that make up the standard model of cosmology. Light from this time is known

as the Cosmic Microwave Background (CMB), and its spectral form is a main supporting pillar of the

hot Big Bang model for the Universe. In particular, we can use the CMB to study the evolution of

density perturbations that would eventually give rise to the structure (galaxies, clusters, etc) that we

see today. A good review can be found at Ref. [114], while a more up-to-date review, with current

parameter values, can be found at Ref. [26].

Although the physics that must be incorporated to completely model the shape of the CMB spectrum

is complicated, we can explain qualitatively the main features that we expect to see. These can be

explained by the evolution of two different types of length scales (or equivalently, the Fourier modes,

described by wavenumber, k): those that were in causal contact at the time of last scattering, and those

that were not. Because the over-densities at this point are still small (O(10−5)), they can be modelled

as linear perturbations, and thus the separate modes will evolve independently. These length scales can

be directly related to angular distances on the sky: smaller causally connected regions (larger k) map

directly onto smaller angular distances.

With this in mind, we can lay out the main features of the CMB spectrum:

• The ‘monopole’ of the CMB. This corresponds to the overarching blackbody spectrum and asso-

ciated temperature that is predicted for an isotropic and homogeneous fluid. Because inflation (or

something like it) provided a causally connected surface that later rapidly expanded out of con-

tact, it is expected that the temperature of the CMB should be uniform in all directions. Indeed,

the fact that we observe such a uniform backbody is a strong motivation for inflation.7

• The ‘dipole’ of the CMB. This is another large, overarching feature due to Doppler boosting of

the underlying spectrum caused by the motion of the Earth relative to the isotropic background.

This is not a ‘primordial’ feature of the CMB, but rather an effect that must be removed to see the

true underlying anisotropies.

• CMB anisotropies. As we mentioned already, the seeds of density perturbations that eventually

give rise to structures should also be present in the CMB. These density perturbations would, for

example, arise naturally as quantum fluctuations in the gravitational potential during inflation.

These lead to four main features in the anisotropies of the CMB:

1. The Sachs-Wolfe plateau. For modes that were not yet back in causal contact at the time of

recombination, the spectra should be a direct measure of the primordial density fluctuations,
7Late decays of non standard particles could distort the near perfect blackbody frequency spectrum of the CMB. We discuss

the possible effects of such decays in Parts III and IV.
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as only gravity is able to affect these modes. By this point, the density fluctuations in

matter are closely following these initial perturbations, and so the large scale anisotropies

in the temperature of CMB photons should follow the over-densities present in matter. As

the Universe is matter dominated at the time of recombination, the gravitational potential

is constant, and so there should be a plateau in the power spectrum as all different scales

crossing into causal contact see the same potential [71]. Interestingly enough, although at

the time of recombination, the over-densities would correspond to hotter, denser regions, the

photons that reach us have actually redshifted (to climb out of the gravitational wells), and

so we see these as colder regions in the CMB at large scales.

2. The Integrated Sachs-Wolfe (ISW) rise. At the largest scales, we expect a deviation from the

primordial fluctuations due to the presence of the cosmological constant, Λ. This is due to

the change in the comoving distance that must be considered when modes come into causal

contact closer to the time of dark energy dominating the energy density. Thus, the largest

scales are slightly raised above the Sachs-Wolfe plateau.

3. Acoustic Peaks. For small scales that are back in causal contact before recombination,

the photons were tightly coupled to the electrons present in the plasma. As a result of

this coupling, the photon-baryon plasma can effectively be treated as a driven harmonic

oscillator, with sound speed cs ∼ 1/
√

3, driven by the perturbations of the gravitational

potential. As such, the photons and baryons will oscillate around the over-densities, causing

the photon temperature spectrum to fluctuate accordingly. At the time of recombination, the

phases of the oscillations are frozen in, which become projected onto the sky today as peaks

and troughs in the temperature power spectrum. The locations of the peak will vary with

the sound speed (which depends on the baryon abundance), and the strength of each peak

depends on the baryon abundance as well. Thus, the size and location of these peaks tells

us unique information about the baryon density instead of the entire matter density. This is

a strong piece of evidence for dark matter as well, as it is indicative of the baryon density

being much smaller than the net matter density required to explain the Universe as we see it

today.

4. Silk Damping. Because the photon-electron plasma coupling is not perfect, there will be

some diffusion associated with the coupling. In particular, it takes time for the ionization

fraction of electrons to be reduced to zero, and so the last scattering surface will actually

have some thickness associated with it. Any modes that are shorter than this scale will have

their anisotropies washed out, and the peaks in the oscillations are damped.

Taken together, these peaks and plateaus provide a strong theoretical prediction for the CMB that has

been tested extensively over the years, from the COBE satellite, to WMAP, to the third generation CMB

telescope Planck [115–117]. In this era of precision cosmology, the CMB continues to agree remarkably

well with predictions, and stands as a true pillar of cosmology. Because of the remarkable agreement

between the CMB and the standard model of cosmology, any new physics that we might introduce must

40



not interfere too much with this spectrum. For example, increasing the amount of radiation energy in

the early Universe (through the parameter Ne f f , the effective degrees of freedom in the neutrino sector)

will delay the onset of matter-radiation equality, damping the peaks in the CMB anisotropy oscillations.

We will use the stringent behaviour of the CMB to place limits on new models in future chapters.

Structure Formation

Following the formation of the CMB, matter over-densities will continue to evolve. During the radiation

dominated epoch, these perturbations will be partially damped by pressure waves in the radiative bath.

However, as the over-dense regions grow large enough, they overcome the radiative effects, growing

logarithmically with the scale factor during this epoch [71]. After matter-radiation equality, the over-

densities continue to grow, but now linearly with scale factor. For density modes that have only just

recently entered into the cosmic horizon, the growth will be slightly altered due to the presence of the

cosmological constant. In a low mass-density Universe, the growth of over-densities is reduced to:

d lnδ

d lna
∼Ω

γ
m (2.74)

where δ is the matter over-density, and the gamma parameter is ∼0.55, independent of vacuum density

[118]. Thus, perturbations grow fastest during matter dominated epochs. This is strong evidence for

dark matter being ‘cold.’ If dark matter was hot, or relativistic, for a long enough time, it would take

longer for the Universe to reach matter-radiation equality, thus delaying the start of structure formation,

at which point we would not expect to see the structures that we do today. This actually implies a lower

bound on the mass of thermal dark matter [119]:

mX >∼ keV (2.75)

Eventually, these densities will grow non-linear, and the full structure of the Universe will begin to be

realized. The earliest stars will form, expected to be extremely large and bright Population III stars

[120, 121]. The furthest galaxy yet recorded has been at a redshift of z∼ 11 [122], signalling the onset

of structure formation at around 105−6yrs.

Reionization

After the earliest stars and galaxies have formed, the Universe may go through a period of reionization.

In this epoch, the non-thermal light from stars, quasars, early supernovae, etc., will travel through neutral

Hydrogen that has not collapsed yet, partially reionizing the matter. This reionization shows up in the

CMB today as an increase in the damping of small scale anisotropies and peaks. The presence of this

astrophysical effect shows up in the measurement of the reionization optical depth from CMB data,

which is taken as a fundamental parameter that must be measured. The optical depth, τ is a measure of

the mean free path of photons between now and reionization, and causes the amplitude of the anisotropy

peaks to be damped by e−2τ [123].
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This can be used as a useful tool if we wish to constrain new physics. Any new particles that inject

energy into the inter-galactic medium (IGM) during the cosmic ‘dark ages,’ while photons are free-

streaming and the ionization fraction is low can alter the reionization optical depth, which in turn would

appear in the temperature spectrum of the CMB. This can occur if particles decay or annihilate to SM

particles during this epoch. Although the effect may persist throughout the cosmic dark ages, ionization

of the IGM has the strongest effect on the CMB if energy injections actually occur near recombination,

ionizing neutral hydrogen and broadening the last scattering surface. As the CMB is so well measured

and understood, this can place strong constraints on the types of new physics that may be allowed.

The Present Day

After reionization, we finally arrive at the present day. At this point, structure formation has successfully

built up a vast network of galaxies, galactic clusters, filaments, and voids to create the enchanting

Universe that we live in. As recently as redshifts of z ∼ 0.3, the Universe is expected to have become

dominated by the cosmological constant, Λ. During this current epoch, there are a variety of different

methods that may be used to constrain new physics, as we can physically look out and search for signals

that are being created today. These include looking at gamma ray bursts from high density regions,

searches for weakly-interacting massive particles (WIMPs) in various experimental setups, and even

more recently using gravitational waves to limit new models. Thus we have now seen the evolution of

the Universe, and have seen many different tools that we can use to constrain new physics. In the bulk

of this work, we will focus on constraints that pertain to BBN and the CMB, although when applicable

we will consider others as well. In particular we are interested in how new physics in a dark sector will

interact with the rest of the SM. This dark sector may contain DM, which we will discuss in more detail

now.

2.5 Dark Matter
Over the last few decades, evidence for the existence of some source of non-luminous matter has become

overwhelming. We discuss here the evidence for such dark matter, as well as possible candidates and

their production mechanisms. Excellent references and reviews can be found at [124–127].

2.5.1 Evidence

Evidence for dark matter began to amass as early as the 1930s. Some of the earliest and most convincing

evidence comes from the velocity dispersion of galaxies. This was first observed in the Coma cluster,

which had galactic velocities within the cluster not supported by the amount of luminous matter alone

[128]. This was further reinforced by the measurement of galactic rotation curves [129–131]. We may

consider a single object that is orbiting at some radius, r, from the center of a galaxy. Assuming spherical

symmetry and a stable Keplerian orbit, the velocity of this satellite should be:

v(r) =

√
GM(r)

r
(2.76)
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where M is the amount of mass inside the orbit. Observations of spiral galaxies indicate that most of

the luminous matter lies within the central bulge, and so, if this makes up the bulk of matter, velocities

should be ∝ 1/
√

r. However, galactic rotation curve observations show that the velocity is roughly

constant at large r, implying that M ∝ r in this region, or ρ ∝ r−2. This cannot be explained by the

visible matter alone, and so the standard adopted theory is that of a spherical dark matter halo, within

which the baryonic matter of stars, dust, and gas is embedded.

The dark matter distribution of galaxies, clusters, and even larger scales can also be mapped using

gravitational lensing. This technique uses background galaxies to map the density of matter by corre-

lating distortions in their images to the amount of matter present in the foreground. One of the most

famous examples of this is the Bullet Cluster, which is the remnants of the collision of two clusters

in recent (cosmological) times [132]. The result of the collision was the collapse of baryonic matter

as particles interacted and dissipated kinetic energy as they fell into the gravitational well. This can

be measured directly using x-ray emissions from the hot gases. However, when gravitational lensing

is used, the map clearly shows that the bulk of matter associated with the cluster is separate from the

visible matter, having not felt the strong dissipative effects associated with the baryons.8

These astrophysical observations are supported by many other independent sources of proof. Most

of these we have discussed already in Section 2.4, and come from a larger cosmological scale. For

example, BBN and the CMB together put strict constraints on the overall abundance of baryons that can

be present to produce both the abundance of light elements we see today, and the peaks of the oscillations

in the CMB temperature anisotropies. However, the CMB also needs a specific overall matter density

so that the correct scales are sub-horizon at the time of recombination, to match the observed patterns

we see today. Between these two values, we can place stringent limits on both matter densities [67]:

Ωch2 = 0.1198±0.0012 (2.77)

Ωbh2 = 0.02233±0.00015 (2.78)

where Ωb is the baryon abundance and Ωc is the excess abundance required by cold dark matter. This

implies that we need 5-6 times more dark matter than we have baryons, a ratio that is in agreement

with the amount required by velocity dispersions in galaxies. This is also in agreement with structure

formation arguments for dark matter. The presence of early universe galaxies is only possible if non-

linearities have had time to grow before the redshift of galactic observations. Because we know from

the CMB that the density perturbations were still very linear at the time of recombination, there needs to

be an extended period of time between then and galactic formation in which matter over-densities can

grow faster. Because these over-densities grow linearly (vs logarithmically) during matter dominated

epochs, and cold dark matter would push the matter dominated epoch back further, the presence of such

old galaxies is once again compelling evidence for cold dark matter.

While there is extremely compelling evidence for the existence of DM on scales the size of galaxies

8In fact, this is strong evidence that dark matter can only be weakly self-interacting, otherwise the dark matter would not
have remained separated as the clusters collided. This can be used to place limits on the mass and self-interactions of dark
matter candidates, as we shall consider in later chapters.
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and larger, there are still some troubling conflicts between astrophysical observations and simulations on

smaller scales. These challenges to the DM hypothesis include the missing satellite problem, cusp-vs-

core, diversity, and the ‘too-big-to-fail’ ([133, 134]) problem. In the missing satellite scenario, N-body

simulations of DM in galaxies tend to predict far more substructure and satellite/sub-haloes than what

we actually observe [135]. Similarly, these same simulations often predict ‘cuspy’ profiles for the dark

matter, with the density scaling like 1/r near the core of galaxies. However, galactic observations include

many cored inner profiles, with densities nearly constant over the core [136]. This ties into the diversity

problem, which implies that there should be remarkably little scatter in density profiles for a given halo

mass. In nature, this does not seem to be evident, as there seems to be a large scatter in the profiles of

observed galaxies [137]. Finally, the ‘too-big-to-fail’ problem is that the largest sub-haloes of the Milky

Way should be dense enough to host star formation and their own observable galaxies, but this is not

observed [138]. All of these issues stem from the overabundance of substructure in dark matter structure

simulations. There is ongoing work to try to solve these issues: these include incorporating baryons or

self-interactions of dark matter into the simulations [137, 139, 140].

2.5.2 Candidates and their Production Mechanisms

In order to have a candidate for dark matter, it must satisfy multiple conditions. It must be stable on

cosmological timescales, have extremely weak EM interactions, and have the correct relic abundance.

There are many such candidates to be found in BSM models, including those models which we have

already discussed when attempting to solve other problems in the SM. For example, the axion, originally

postulated to solve the strong CP problem, may produce DM via the oscillation of the axion field around

its minima. These coherent oscillations redshift the same way as matter, and could have the correct relic

abundance if the free parameters of the model are tuned appropriately [125, 141]. Supersymmetry,

proposed to solve the hierarchy problem, may also produce dark matter candidates, if there is an exact

R-parity that forces the lightest super-partner (LSP) to be stable [142]. Little Higgs models also produce

viable DM candidates if a T-parity is imposed, such that the lightest T-odd particle is stable [125].

Finally, sterile neutrinos (proposed both to give mass to SM neutrinos and perhaps solve the baryon

asymmetry) could also be DM candidates, with the added bonus that light sterile neutrinos could make

up a small portion of warm dark matter that could help to alleviate the core-vs-cusp problem [143, 144].

To address the question of whether or not these (and many other) candidates have the correct relic

yield, we must consider the various production mechanisms. These fall into two broad categories:

thermal and non-thermal production.

Thermal Production

In thermal production of dark matter, the new BSM candidate is in thermal equilibrium with the SM at

high temperatures. This is the standard WIMP scenario, which has very weak couplings to the SM, but

large enough to equilibriate at high temperatures. WIMPs will typically have interactions of the form

χχ ↔ SM SM, where χ is the DM candidate. As the temperature cools, the reaction rates keeping this

equilibrium will fall below the Hubble rate, causing the particle to freeze-out of equilibrium, at which
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Figure 2.3: Generic freeze-out of a WIMP, the most commonly considered production mechanism
for dark matter. Going to lower branches is equivalent to moving to larger cross-sections.

point it will evolve independently with constant yield, as defined in Eq. (2.36). The numerical solution

for such a yield is shown in Fig. 2.3. This constant yield can be estimated semi-analytically in the case

of WIMPs. We can begin at Eq. (2.49), where the standard lore is to use the relic yield, Yx, instead of

particle number, and an inverse temperature (x = mx/T ), where mx is the DM candidate mass, instead of

time, as the evolution variable. Recast in these variables, the freeze-out interaction Boltzmann equation

becomes:

dYx

dx
=− xs

H(mx)
〈σv〉(Y 2

x −Y (0)2

x ) (2.79)

We can estimate the temperature at which the particle freezes out by equating its interaction rate to the

Hubble rate:

H ' 〈σv〉n(0)x (2.80)

where we can use the equilibrium number density as an approximate solution before freeze-out. Solving

this equation for an arbitrary partial wave (Eq. (2.48)) in the cross-section, we find the approximate

freeze-out temperature [70]:

x f o ' ln

[√
90

8π3
gx

g1/2
∗

mxMPLσn

]
− (n+1) ln

(
ln

[√
90

8π3
gx

g1/2
∗

mxMPLσn

])
(2.81)

where n is the power of the temperature in the partial-wave being considered and gx the degrees of

freedom of the DM particle. This corresponds to x f o ∼ 20 for a large range of masses, as there is only a

logarithmic dependence on the parameters involved. Following freeze-out, the yield will stop following
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equilibrium, and Eq. (2.79) can be solved exactly, as Yx � Y (0)
x . Doing this results in an approximate

solution for the final yield of:

Y∞ ∼
45

2π
√

90
g1/2
∗

g∗s

n+1
MPLmxσn

xn+1
f o (2.82)

or in dimensionless units (for n=1):

Ωxh2 = mxYx
s0

ρC
∼ 0.1

(
3×10−26cm3/s

〈σv〉

)(x f o

20

)
(2.83)

A new particle with weak-scale couplings, such that

〈σv〉 ∼ g4

(4π)2
1

m2
x
∼ 10−23cm3/s

(
100 GeV

mx

)2

(2.84)

has nearly the exact cross-section required for the correct relic abundance for masses at the weak scale.9

This is known as the WIMP miracle, and has driven the search for WIMP-like DM for many years.

Although many thermal interactions will follow this approximate form, there are some deviations

that must also be considered. These become important when the DM candidate is interacting with other

states present in the plasma at the time of decoupling. These effects include coannihilations, in which

a species with a similar mass efficiently depletes the DM density, and resonant enhancements if the

mass of the DM particle is close to that of a mediator [145]. Sommerfeld enhancement due to the

presence of a light boson mediator will also cause changes to the present day cross-section (relative to

the cross-section at freeze-out), which has significant implications when constructing detectors [146].

Finally, another thermal method to produce dark matter may be through a 3↔ 2 self-interaction of

the DM candidate [147]. If kinetic equilibrium with the visible sector is maintained, these so-called

self-interacting massive particles (SIMPs) require large self-interactions in order to deplete the yield to

an acceptable level. We consider a variation of this production mechanism in Part IV, in which we do

not require thermalization with the visible sector, but make use of this self-interacting number changing

interaction to set the relic abundance in a disconnected dark sector.

Non-Thermal Production

Dark matter can also be produced via non-thermal mechanisms, in which the thermally averaged cross-

section connecting the SM to DM is not the main contributing factor. As we briefly discussed above,

axions are a classic example of a non-thermal dark matter candidate, as it is simply the coherent oscil-

lations of the axion field that contribute to dark matter, and not the axion itself.

Another non-thermal production mechanism includes gravitational production of WIMPZillas, su-

perheavy DM states [148]. These are produced similarly to the inflationary generation of gravitational

9Although there are a few orders of magnitude difference between the cross section required to get the correct relic density
and the naive weak-scale estimate, the fact that these two values are still so close is the true miracle. There are many sources
of uncertainties, such as the true coupling values, form of the cross section, current Hubble rate, etc., that could easily push
this closer to the desired value.
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perturbations that seed the formation of large scale structure. Effectively, for very large masses, a very

small number of particles must be produced. This is done via the decay of the inflaton, which effectively

reheats the SM sector, which in turn can produce a very small amount of the WIMPZilla candidate. This

is a specific case of a more general class of massive particle decays in the early Universe. If the original

massive particle has very weak couplings to the SM, it may freeze-out of equilibrium very early with

a large relic abundance. This could lead to an early period of matter domination, which could have in-

teresting implications for the evolution of structure in the Universe. When the massive particle decays,

the Universe goes through a (possibly secondary) period of reheating, as the massive particle transfers

all of its energy to radiative energy density. This could partially transfer energy to ‘superWIMPs’ at the

same time, leading to a non-thermal production of the DM candidate [149, 150].

There is also the possibility that dark matter is set by an asymmetry in the dark sector, similar to the

unknown mechanism producing the baryon abundance [151]. This would require that the DM particle,

ψ , have a distinct antiparticle, with which it could efficiently annihilate. If these annihilations are strong

enough (typically much stronger than WIMP interactions), the symmetric densities will be washed out,

leaving behind the asymmetric abundance of only ψ particles. This would have the unfortunate side-

effect of being very difficult to detect today, as there would no longer be any annihilations occurring.

However, it does have an appealing symmetry, in that the asymmetry setting the dark matter abundance

could also, in principle, be setting the baryonic abundance. This could happen if dark matter has a

conserved charge related to baryon number. In this case, we get a nice relationship between the mass of

dark matter and baryonic matter. As there is ∼5 times more dark matter than baryonic, then we would

expect the masses to be ∼5 times higher as well.

Finally, there is the possibility of freeze-in (FI) of dark matter. This corresponds to the production

of DM through a thermal scattering off SM particles that was too feeble to ever thermalize the two

sectors [152], but strong enough to allow some energy-leakage into the hidden sector. Freeze-in can

occur if two conditions are met: the dark matter particle starts with a negligible density, nx � n(0)x ,

and the particle interacts weakly with the SM so that thermodynamic equilibrium is never attained.

When renormalizable operators govern the interaction, this is typically called feebly-interacting massive

particle (FIMP) dark matter, as the coupling strengths must be much smaller than even a standard WIMP

scenario. An excellent review of FIMPs can be found at Ref. [153]. Although renormalizable operators

have been well studied, less emphasis has been placed on non-renormalizable operators [154]. We study

effects associated with this explicit scenario in Part II.

2.5.3 Observational Status

Now that we have built up models to explain the nature of dark matter (and other phenomena), we can

attempt to observe this new physics. Within the context of dark matter, this is typically done in three dif-

ferent ways: through direct detection, indirect detection, and collider searches, depicted schematically

in Fig. 2.4. Direct detection attempts to measure the small recoil energy of a nucleus in underground

detectors that have scattered off the ambient dark matter present that makes up the galactic halo. These

have been mostly aimed at the detection of WIMP DM, as the thermal annihilation cross-section that
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Figure 2.4: Three fundamental methods to detect dark matter.

gives rise to the relic yield should also give rise to nucleon scattering interactions today. Although there

have been some hints at detections (see for example, [155, 156]), there have mostly been null results.

An excellent review of the current status of direct detection experiments can be found in Ref. [26]. Al-

though direct detection WIMP searches have historically focused on the mass range 1-1000 GeV, more

recent electron scattering experiments have aimed to explore the low mass regime [157], while the upper

bound has been reconsidered in multi-scatter models [158].

While direct detection considers the scattering cross-section, indirect detection looks explicitly for

the flux of final stable particles produced by annihilations and decays of dark matter. Gamma-ray

observations of dwarf galaxies and the Galactic center, which should have high densities of dark matter,

provide robust limits on the cross-sections and masses of dark matter that could be present. Although

there have been some reported excesses (such as the Galactic center excess [159], the 3.5 keV line in

clusters [160], an antiproton excess [161], and a positron excess [162]), it is not clear yet whether these

excesses are BSM in nature, or if they can be explained by more natural astrophysical sources. A review

of the current status of indirect detection experiments and limits can be found in Ref. [163].

A more direct way to attempt to see dark matter is at colliders, where we do not rely on the ambient

presence of dark matter on galactic scales, but rather attempt to produce it via the collision of SM

particles. There has been a great deal of work in constraining dark matter in this way, with more null

results complementing the direct detection searches [164–166].

The majority of these DM searches hinge upon having a strong enough interaction in Fig. 2.4 for

a detection to occur. This has lead to the search being mostly focused on WIMPs, as they have the

most appealing interactions to search for today. The lack of evidence for WIMP DM thus far has lead

to growing interest in the non-thermal production mechanisms listed above. With the lack of WIMP

DM, we have also had many null results in the search for physics to explain any of the other current

problems in the SM. Because of this, combined with an unprecedented era of precision Cosmology, we

have begun to place more indirect constraints on new physics using all of the different Universal epochs

we discussed above. These constraints are complementary to those provided by direct detection and
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Figure 2.5: Visualization of the connections possible between the visible and dark sectors.

colliders, and provide invaluable information as we attempt to narrow down the possibilities for new

physics in our Universe.

2.6 Beyond the Standard Models
Now that we have built up a solid foundation of well understood physics, between the Standard Model of

particle physics and the Standard Model of cosmology, we wish to learn how new physics will interact

with these models. As we have seen, there are problems that cannot be explained by the SM, including

the nature of DM, the hierarchy problem, and more. This has motivated many different possible exten-

sions, with each problem spawning a plethora of unique solutions. However, well motivated physics

models need to do more than just answer the questions they were proposed to solve. In particular, new

models must not contradict currently known and well understood effects in other areas. In this thesis,

we study exactly how new physics may interact with old, from a variety of angles. Concretely, we shall

focus on dark (or hidden) sectors, that may contain dark matter, decaying dark particles, or more. These

dark sectors may have weak, feeble, or non-existent interactions with the SM. The very nature of these

feeble interactions suggest that we must move beyond the conventional collider searches, and so we

approach this problem using cosmological observables as our basis for constraining new physics. As we

are now in an era of unprecedented precision cosmology, these observables will prove to be invaluable

tools moving forward.

This is depicted schematically in Fig. 2.5. Within each sector, there will be interactions between all

the particles present, while at the same time energy may flow between the two sectors during different

eras of the Universe, complicating the responses. In this thesis, we look to break this down, and focus

on different components of these interactions in specific, realized scenarios. In Part II, we will start

with the transfer of energy from the visible to the dark sector only, and see how this energy inflow will

have a role as the dark sector continues to evolve. Following this, in Part III, we will look at the reverse

process, and consider how energy flowing from the dark to the visible sector will have consequences for

the evolution of SM particles and their abundances, which we can physically observe and thus constrain
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this interaction. Finally, in Part IV, we will consider a fully realized model of a dark sector, that could

possibly contain energy transfer in both directions, as well as a complex network of interactions in the

dark sector. In breaking it up this way, we identify important information along each of the various

arrows within Fig. 2.5, that can be applied to more models than just those considered here.

50



Part II

From the Visible to the Dark
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Chapter 3

Infrared Effects of Ultraviolet Operators
and Dark Matter Freeze-In

3.1 Introduction
We begin our exploration of the relationship between the visible and dark sectors by considering the

effects that the visible sector can have on the hidden, which we schematically depict in Fig. 3.1. In

this scenario, the visible sector will directly inject energy into the dark sector, which will concurrently

be interacting with itself. These dark interactions may have self-interactions or couplings between the

different components of the hidden sector. The relationship and interplay between the visible sector and

the interactions of the dark sector are what we wish to explore.

This relationship is most evident when the visible sector is used to directly produce dark particles,

such as dark matter (DM). It has long been known that the SM does not provide a complete description

of the universe, with a key missing element being DM. This is a pressing issue, as DM has been observed

cosmologically to make up the majority of matter today [67]. However, very little is known about DM

beyond its gravitational influence, such as its particle properties or how its density was created in the

early universe [124, 142, 167]. In this chapter, we focus on the latter in our effort to explore how the

visible sector can influence a dark sector, even (especially) if the coupling between the sectors is small

compared to the individual sector’s self-interactions1.

Many theories of DM coupled directly to the SM rely on thermal production, with the most-studied

paradigm being thermal freeze-out, as discussed in Part I [70, 168, 169]. This simple mechanism for

DM production has many attractive features: it is insensitive to the state of the very early universe, and

it yields the correct relic abundance (to within a couple orders of magnitude) for a generic WIMP with

mass near the weak scale[170].

Despite these enticing features of thermal freeze-out, the lack of discovery in direct detection ex-

0This chapter is based on L. Forestell and D. E. Morrissey, Infrared Effects of Ultraviolet Operators on Dark Matter
Freeze-In, [arXiv:1811.08905] [1].

1Here, I do not necessarily mean the standard definition of self-interaction in which a single particle interacts with itself,
but rather all the reactions between the (possibly many) different particles that only live in one sector or the other.
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VS: H DS: ψ , X µFreeze-In
Interaction

Figure 3.1: Flow of information considered in this chapter. The visible sector transfers energy and
number density to the dark sector, which may go through further self-processing effects that
interplay with the inflow of energy. In this chapter, the visible sector provides an interac-
tion via the Higgs boson, while the dark sector consists of a fermionic DM candidate and a
massless vector boson.

periments and collider searches for WIMPs has motivated the study of other DM production mecha-

nisms [171, 172]. As was mentioned previously, a promising alternative is freeze-in (FI) [152], in which

the DM species is assumed to interact only very feebly with the SM and to have an initial abundance

well below the value it would obtain in equilibrium with the SM plasma. Transfer reactions of the

form SM+SM → DM+DM then create a sub-equilibrium abundance that evolves to the DM density

seen today. The feeble coupling together with this sub-equilibrium abundance means that FI is an ideal

environment for studying the visible to dark sector connection, as it implies a one-way connection from

visible to hidden, while the reverse is generally not true. Freeze-in can arise as a production mecha-

nism in sterile neutrino models[173, 174], as well as the production of gravitinos[175–178], and fully

understanding this method of production will be useful for many future avenues of BSM models.

Within this paradigm, there are two general classes of connectors between DM and the SM with

very different cosmological behaviours, both of which are shown in Fig. 3.2. The first and most studied

has DM connected to the SM through a renormalizable operator with small coupling. Production of

DM for this class is dominated by temperatures near the DM mass, T ∼ mψ [152, 153, 179–188]. For

this reason, it is usually categorized as infrared (IR) freeze-in. This FI mechanism retains much of the

attractive insensitivity to initial conditions as WIMP freeze-out aside from the assumption of a very

small initial DM density. On the flip side, the renormalizable couplings needed for IR freeze-in must be

extremely feeble, which would need further explanation if one wishes to retain naturalness.

The second class of connectors leading to FI are non-renormalizable operators connecting the DM

to the SM, whose interaction strength is naturally very small at low temperatures. Dominant DM pro-

duction typically occurs at the highest SM temperatures attained during the radiation era, such as the

reheat temperature TRH post inflation[189]. Because of this early temperature dependence, this is what

is called ultraviolet (UV) freeze-in [154, 189–192], with a well-known example being the gravitino in

SUSY [193–196]. A less attractive property of this paradigm, is that the DM abundance depends on

the state of the universe very early in its history. However, because of the natural mass suppression that

arises due to the dimensionality of these operators, no further feeble (unnatural) coupling constant is

required.

In this chapter we demonstrate that both UV and IR freeze-in can play a role in determining the

DM relic abundance through a single, non-renormalizable connector operator. This contrasts with the

standard expectation that non-renormalizable operators decouple once and for all at higher temperatures.
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Figure 3.2: General behaviour for the yield Y = nx/s of various production mechanism for dark
matter. The red curve shows the classical freeze-out behaviour (with the dotted line follow-
ing equilibrium), while the blue and green curves show UV and IR freeze-in, respectively.
Freeze-out occurs near x∼ 20, while IR freeze-in is dominant around x∼ 1 and UV freeze-in
occurs almost completely at xmin ∼ xRH � 1.

We illustrate this feature in a concrete dark sector model consisting of a stable Dirac fermion ψ with

mass mψ that is charged under an unbroken U(1)x gauge force with vector boson X µ and coupling

strength αx = g2
x/4π . The only connection between the dark sector and the SM is assumed to be through

the fermionic Higgs portal operator[197, 198],

−L ⊃ 1
M
|H|2 ψψ . (3.1)

Here, M defines a very large mass scale of new physics above the energy and temperature ranges we

consider. This can be done using a variety of UV completed models, as described in Refs. [199, 200].

For example, a singlet scalar S can interact with the Higgs via a renormalizable coupling. If we also

include a Yukawa coupling between S and the fermionic DM, the scalar S can be integrated out to leave

us with the Higgs portal. This is shown schematically in Fig. 3.3. Although the mediator creating the

Higgs portal is not of interest in this work, it is still interesting to note that direct searches can be done

for the mediators, such as discussed in Ref. [197, 200].

Note that we assume no gauge kinetic mixing between U(1)x and hypercharge, which can be en-

forced by an exact charge conjugation symmetry in the dark sector [201]. We also do not consider

the pseudoscalar partner to this operator, 1/M|H2|ψ̄iγ5ψ . This is done by imposing CP symmetry.

Although higher order operators could be considered, such as the dimension-6 term that comes from

the four-fermion interaction, L ∼ 1/M2(Q̄LγµQL + q̄RγµqR)(ψ̄γµψ), these will all be suppressed by

(mψ/M)2(d−4). Because of this factor, the lowest dimension (i.e. Higgs) portal will provide the strongest

effects, and thus we focus here in order to highlight the visible to hidden effects.
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Figure 3.3: Feynman diagrams for a possible UV completion of the Higgs portal. The left diagram
is the full UV model, mediated by a scalar particle. On the right, the scalar particle has been
integrated out, and its propagator and couplings combine to create a new coupling, with
approximate strength 1

M .

The UV connector operator of Eq. (3.1) can generate both UV and IR freeze-in effects over a broad

range of parameters when three plausible conditions are met. First, reheating after inflation is assumed

to populate only the SM sector with visible reheating temperature TRH well below the connector mass

scale M. The dominant source of dark sector particles then comes from visible-to-dark transfer reac-

tions through the connector operator (UV freeze-in). Second, for moderate to large values of the dark

sector gauge coupling αx the dark sector can self-thermalize to a temperature Tx less than the visible

temperature T but greater or similar to the dark fermion mass mψ . And third, if the DM annihilation

cross section is sufficiently large the DM abundance can track the equilibrium abundance (at temper-

ature Tx < T ) for long enough that transfer reactions from the non-renormalizable connector operator

return as the dominant contributor to the DM abundance. This allows us to further examine the under-

lying behaviour of a dark sector that is directly being influenced by an inflow of energy from the visible

sector, while also providing a counterexample to the standard lore that non-renormalizable operators

decouple in the early universe.

The combined UV and IR freeze-in behavior we focus on in this chapter is only one of a number of

“phases” of freeze-out and freeze-in possible within this dark sector model. These phases are analogous

to the four phases studied in Ref. [182] for a similar dark sector consisting of a charged complex scalar

DM particle connected to the SM Higgs field through the standard renormalizable Higgs portal operator,

but tilted towards the UV. When the mass scale M in the fermionic connector operator of Eq. (3.1) is

large relative to the weak scale and αx → 0, the theory reduces to standard UV freeze-in of ψ dark

matter as studied in Ref. [191] with no significant dark self-thermalization or later annihilation. In

contrast, for much smaller M near the TeV scale the dark and visible sectors are thermally coupled (via

the connector) throughout ψ freeze-out, and this operator can control the freeze-out process even when

αx is very small [197, 202, 203]. We focus on the scenario between these relative extremes with larger

M and αx.

This chapter is structured as follows. Following the introduction, we discuss in Sec. 3.2 the UV

freeze-in transfer of number and energy density through the connector operator of Eq. (3.1) as well as

dark self-thermalization. Next, in Sec. 3.3 we compute the interplay between freeze-out and IR freeze-

in in determining the relic abundance ψ particles and determine the conditions under which both UV

and IR freeze-in can be relevant. In Sec. 3.4, we comment briefly on the astrophysical implications of
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the new dark force from DM self-interactions. Finally, Sec. 3.5 is reserved for our conclusions. Some

technical details related to thermally-averaged cross sections and the calculation of freeze-in transfer

rates are contained in Appendix A. This chapter is based on work published in Ref. [1] in collaboration

with David Morrissey.

3.2 Populating the Dark Sector through UV Freeze-In
We begin by investigating the transfer of energy and number density to the dark sector by UV freeze-in

through the connector operator of Eq. (3.1). For this, we make the standard freeze-in assumption that

only the visible SM sector is populated significantly by reheating after inflation with reheating tem-

perature TRH � M [152, 154].2 The dark sector is then populated by transfer reactions of the form

H +H† → ψ +ψ (assuming unbroken electroweak) mediated by the operator of Eq. (3.1). Once the

number density of ψ grows large enough, the dark sector may also thermalize to an effective temperature

Tx through further reactions such as ψ +ψ↔ X µ +Xν . In this section we study the creation of ψ parti-

cles from SM collisions during and after reheating as well as the conditions for the self-thermalization

of the dark sector.

3.2.1 Transfer without the Dark Vector

It is convenient to study first the creation of ψ fermions by SM collisions in the absence of dark vectors

(αx→ 0) [191]. The number and energy transfer via H +H†→ ψ +ψ is described by

dnψ

dt
= −3Hnψ −〈σtrv(T )〉(n2

ψ −n2
ψ,eq(T )) (3.2)

dρx

dt
= −3Hρx−〈∆E ·σtrv(T )〉(n2

ψ −n2
ψ,eq(T )) (3.3)

where ρx is the total energy density in the dark sector and ∆E is the energy transfer per collision.

Starting with number transfer, in the limit of nψ � nψ,eq and T � mψ the collision term is approxi-

mately

−T (T ) =−〈σtrv(T )〉(n2
ψ −n2

ψ,eq(T )) '
1

4π5
T 6

M2 . (3.4)

Details of the calculation are given in Appendix A. Assuming radiation domination up to the reheating

temperature TRH � mψ , this gives the simple solution for the yield of ψ (and ψ) of

Yψ(T ) ' Yψ(TRH)+Yψ,eq(T )

√
5/2

2ζ (2)π4 g−1/2
∗

MPlTRH

M2

[
1−
(

TRH

T

)−1
]
. (3.5)

This solution only holds in the limit Yψ � Yψ,eq, corresponding to a consistency condition of (for

2Obtaining such an asymmetric reheating between different sectors has been studied recently in Refs. [204, 205].
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Yψ(TRH)→ 0 and T � TRH)3

TRH �
2ζ (2)π4√

5/2
g1/2
∗

M2

MPl
. (3.6)

Larger reheating temperatures imply thermalization between the dark and visible sectors at reheating

with Yψ(T )→ Yψ,eq(T ) for T ∼ TRH . In this chapter we focus on the non-thermalization scenario.

Turning next to energy transfer, the transfer term is computed in Appendix A and for mψ � T �M

and nψ � nψ,eq reduces to

−U (T ) =−〈∆E ·σtrv(T )〉(n2
ψ −n2

ψ,eq(T )) '
3

2π5
T 7

M2 . (3.7)

Solving as above, we find(
ρx

ρψ,eq

)
'
(

ρx

ρψ,eq

)
TRH

+
180
√

10
7π8 g−1/2

∗
MPlTRH

M2

[
1−
(

TRH

T

)−1
]
. (3.8)

Again, this is only valid for Yψ � Yψ,eq. For sufficiently large TRH , ρx→ ρψ,eq(T ) at T ∼ TRH .

Comparing Yψ and ρx found above for Yψ �Yψ,eq, we see that the mean momentum of the fermions

produced near reheating is on the order p ∼ TRH . At later times, these momenta simply redshift as

1/a provided T � mψ . Indeed, the detailed analysis of Ref. [191] shows that (in the absence of dark

vectors) the dark fermions obtain an approximate Bose-Einstein distribution with effective temperature

Tx ' (1.155)TRH(aRH/a).

3.2.2 Thermalization with the Dark Vector

Now that we have considered the effect that the visible sector can have on our dark particle, let us

include a dark vector boson X µ coupling to ψ with strength αx = g2
x/4π . This interaction allows the

dark fermions to scatter with each other, annihilate to vector bosons, and emit vectors as radiation,

as shown in Fig. 3.4. If these reactions are strong enough, the dark fermion and vector species can

thermalize with each other to yield an effective temperature Tx ≤ T .

The self-thermalization of heavy dark particles coupled to a massless dark vector was investigated

in Refs. [182, 189]. As in these works, we only make parametric estimates of the very complicated full

thermalization processes. We identify self-thermalization in the dark sector with the condition

Γth(Tth) = H(Tth) , (3.9)

where Γth is an effective thermalization rate to be discussed below and this relation defines the visible

thermalization temperature Tth implicitly. Note that Tth ≤ TRH , and we set Tth = TRH if Γth(TRH) ≥
H(TRH).

3The number and energy density produced through thermal transfer prior to reheating by the operator of Eq. (3.1) is a very
small fraction of that produced at reheating [191, 192].
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Figure 3.4: Interactions involved in the dark sector. The left hand S-channel (and the equivalent
T and U channels) will contribute to the thermalization of the hidden sector. The right hand
T-channel (as well as a corresponding U-channel) will contribute to thermalization as well as
eventual ψ freeze-out.

It is convenient to classify the thermalization processes contributing to Γth into: i) 2→ 2 processes

with hard momentum exchange; ii) 2→ 3 inelastic processes together with 2→ 2 with soft momentum

exchange. The first class includes annihilation ψ +ψ→ X µ +Xν and hard scatterings such as ψ +ψ→
ψ +ψ for which we estimate the rate to be [182]

Γel(T ) ∼
π α2

x

T 2 nψ(T ) , (3.10)

where nψ(T ) is the number density of ψ prior to dark self-thermalization. Using Eq. (3.5) (with

Yψ(TRH)→ 0), for T � mψ it is given by

nψ(T ) '
3
√

5/2

2π6g1/2
∗

MPlTRH

M2 T 3 . (3.11)

The second class of soft and inelastic processes was studied in Ref. [189] with the net result

Γin(T ) ∼ min

{
α3

x nψ(T )
µ2

IR
, α

2
x

√
nψ/T

}
, (3.12)

where µIR an effective infrared cutoff given by

µIR = max

{√
αxnψ/T , H, mψ

}
. (3.13)

We take the full thermalization rate to be the sum of the hard and inelastic rates, Γth = Γin +Γel .

If thermalization occurs with Tth� mψ , a smaller number of ψ and ψ fermions with typical energy

T are redistributed into a larger number of ψ , ψ , and X µ particles in equilibrium with each other at

temperature Tx. Treating the thermalization as instantaneous, the resulting dark sector temperature can

be obtained from energy conservation and the result of Eq. (3.8):

Tx(Tth)

Tth
≡ ξ (Tth) '

[
180
√

10

11π8g1/2
∗

MPlTRH

M2

]1/4

. (3.14)
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Figure 3.5: Minimum consistent values of ξ (TRH) in the M–mψ plane for αx = 10−1 (left),
10−2 (middle), 10−3 (right). The black line indicates where ξ (TRH)→ 1 and our assumption
of non-thermalization with the SM breaks down.

At later times, separate conservation of entropy in the dark and visible sectors implies

ξ (T ) ' ξ (Tth)

[
g∗S(T )
g∗S(Tth)

· g∗S,x(Tth)

g∗S,x(T )

]1/3

, (3.15)

where g∗S(x) refers to the number of visible (hidden) entropy degrees of freedom.

The analysis leading to the temperature ratio of Eq. (3.14) has three assumptions built into it, and

their consistency implies maximal and minimal allowed values of ξ (Tth). First, the assumption of non-

thermalization between the visible and dark sectors implies ξ (Tth)� 1. Second, the validity of the

effective connector operator description of Eq. (3.1) requires TRH � M corresponding to a maximum

value of ξ (Tth) . (10−3 MPl/M)1/4. And third, we have so far neglected the mass of the ψ fermion.

Demanding that Tx(Tth)& mψ then leads to a lower bound on ξ (Tth) that we use to define

ξmin ≡
mψ

Tth
. (3.16)

This also defines an implicit lower bound on the thermalization temperature for given values of mψ , M,

and αx, and correspondingly a lower limit on the reheating temperature TRH .

In Fig. 3.5 we show the values of ξmin in the M−mψ plane for αx = 10−1 (left), 10−2 (middle), and

10−3 (right). Larger M and αx and smaller mψ lead to smaller ξmin. The white regions in the upper left

corners of the plots (bounded by black lines) have ξmin → 1 corresponding to thermalization between

the visible and dark sectors when dark self-thermalization is achieved. As stated above, in the analysis

to follow we focus on the lower right region where this does not occur.

3.3 Freeze-Out and Late Transfer in the Dark Sector
If the dark sector is populated by UV freeze-in and is self-thermalized at temperature Tx & mψ , the dark

fermion will undergo freeze-out by annihilation to dark vectors when Tx falls below mψ . While freeze-
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out in a dark sector with Tx� T has been studied in Refs. [189, 206–208], we identify a qualitatively

new feature in the present context. Specifically, we show that the UV connector operator responsible for

initially populating the dark sector at reheating can drastically change the freeze-out dynamics at much

later times. This interplay between visible effects and dark sector self-interactions are precisely what

we wish to study in this chapter.

3.3.1 Evolution Equations

The evolution of the ψ dark fermion number density at Tx . mψ is described by

dnψ

dt
+3H nψ ' −〈σv(Tx)〉ann(n2

ψ −n2
ψ,eq(Tx))+ 〈σtrv(T )〉n2

ψ,eq(T ) (3.17)

In writing this expression we have assumed self-thermalization in the dark sector with Tx� T and no

asymmetry between ψ and ψ .

The first term on the right side of Eq. (3.17) describes annihilation ψ +ψ→ X µ +Xν with a thermal

average at temperature Tx. The leading-order perturbative result for the cross section at low velocity

is [209]

σann,pv =
π α2

x

m2
ψ

. (3.18)

However, the full cross section receives independent non-perturbative enhancements from the Sommer-

feld effect [210–212] and bound state formation [206, 213]. The full cross section can be written in the

form [206, 214]

σannv = [Ssomm(v)+Srec(v)] σann,pv , (3.19)

where v is the relative velocity and

Ssom(v) =
2πz

1− e−2πz , (3.20)

Srec(v) = Ssom(v)
29

3
z4

(1+ z2)2 e−4z tan−1(1/z) , (3.21)

with z = αx/v, and which have the limits Si(v)→ 1 for v� αx.

The second term on the right side of Eq. (3.17) corresponds to transfer reactions of the form

H +H† → ψ +ψ , and has all relevant quantities evaluated at the visible temperature T .4 An explicit

expression for this transfer term is given in Appendix A, which reduces to

〈σtrv(T )〉n2
ψ,eq(T ) ≡ T (T ) '


1

4π5
T 6

M2 ; T � mψ

3
32π4

m2
ψ T 4

M2 e−2mψ/T ; T � mψ

. (3.22)

4Since Tx� T , we can neglect the reverse reaction.
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For Tx < mψ but T � mψ , the standard annihilation term in Eq. (3.17) receives an exponential suppres-

sion in temperature while the transfer term is only suppressed by a power. We show below that this can

allow the transfer term derived from a UV connector operator to play a significant role in the IR.

3.3.2 Analytic Estimates

It is instructive to estimate the relic density of ψ particles analytically to understand the effect of late-

time transfer by the UV connector. To do so, we treat the annihilation cross section as being power-law

in velocity: 〈σannv〉 → σ0 x−n
x where x≡ mψ/T and xx ≡ mψ/Tx = ξ−1 x.

Freeze-Out Without the Transfer Term

Consider first the relic density of ψ with no transfer term but a definite value of ξ � 1. This can be

computed by a simple generalization [206–208] of the analytic freeze-out approximation of Refs. [70,

73, 168, 169, 215]. Freeze-out occurs when the mass to dark temperature ratio is

xx, f o ' ln
[
(0.192)(n+1)(gψ/g1/2

∗ )MPl mψ σ0 ξ
2
]
− (n+

1
2
) ln(xx, f o) , (3.23)

which can be solved iteratively for x f o
x . This translates into an approximate relic density of5

Ωψh2 ' (2.07×108 GeV−1)
ξ (n+1)xn+1

x, f o

(g∗S/g1/2
∗ )MPl σ0

. (3.24)

Relative to the freeze-out of a species in thermodynamic equilibrium with the visible sector with the

same mass and cross section, these relations imply

x f o
x ' x̃ f o +(2−1/x̃ f o) lnξ , Ωψh2 ' ξ

(
1+2lnξ/x̃ f o)

Ω̃ψh2 , (3.25)

where x̃ f o and Ω̃ψh2 are the values for these quantities if the species were thermally coupled to the SM.

The most important change is a reduction of the relic density by a factor of about ξ � 1.

Freeze-Out With the Transfer Term

Let us now include the transfer term from Eq. (3.17) in the evolution of the density of ψ . As Tx falls

below mψ , annihilation is expected to dominate and keep nψ close to its equilibrium value at temperature

Tx. However, since the corresponding annihilation rate falls exponentially in this regime, it decreases

more quickly than the Hubble and transfer rates, and thus the near-equilibrium regime ends when one

of these other rates catches up. We show here that late-time transfer reactions can significantly modify

the final ψ relic density when the annihilation rate meets the transfer rate before reaching Hubble.

Define Tx,= to be the value of the dark temperature Tx that solves the equation

〈σannv(Tx)〉n2
ψ,eq(Tx) = T (Tx/ξ ) , (3.26)

5Note that we use MPl = 2.43×1018 GeV, and the full DM relic density is the sum of equal ψ and ψ densities.
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where T (T ) is the transfer rate given in Eq. (3.22). If the solution has T= = Tx,=/ξ < mψ , an approxi-

mate expression for it is

xx,= '
1
2

ln
(

π2

2
g2

ψ σ0M2
ξ

6
)
+

(
3−n

2

)
ln(xx,=) , (3.27)

which can be solved iteratively for xx,= provided it is greater than unity. When xx,= is greater than the

freeze-out temperature without transfer, xx, f o given in Eq. (3.23), the transfer operator does not signifi-

cantly alter the ψ relic density. In particular, the condition xx,= > xx, f o implies that the evolution of the

ψ density is dominated by Hubble dilution rather than transfer for all xx > xx, f o since the expansion term

decreases less quickly than the transfer term in this regime. In contrast, transfer effects are important

for xx,= < xx, f o.

When xx,= < xx, f o, the transfer and annihilation terms in Eq. (3.17) can reach a balance with each

other for xx > xx,= until the Hubble term catches up. The number density of ψ is then approximately

nψ,=(Tx) '

√
T (Tx/ξ )

σ0
xn/2

x (3.28)

→ 1
2π5/2

m3
ψ√

σ0M2
ξ
−3 x−3+n/2

x
(
Tx/ξ � mψ

)
(3.29)

where the expression in the second line only applies for Tx/ξ �mψ . Note that the density in this regime

is always greater than the equilibrium density nψ,eq(Tx), even when Tx/ξ < mψ . This follows logically

from the fact that in this regime, the sourcing of new particles from the visible sector is compensating

for the annihilations that are occurring, producing a net number density that is above equilibrium.

If the balance regime is achieved, xx,= < xx, f o, it ends when the Hubble term in Eq. (3.17) catches up

to the annihilation and transfer terms. This later decoupling corresponds approximately to the condition

〈σannv(Tx)〉nψ,=(Tx) ' H(Tx/ξ ) . (3.30)

Defining Tx,dec as the dark temperature that satisfies the relation above, an approximate solution for

Tx,dec/ξ � mψ is

xx,dec '

[
(0.086)

mψMPl
√

σ0

g1/2
∗ M

ξ
−1

]1/(1+n/2)

. (3.31)

The solution for Tx,dec/ξ .mψ is more complicated but can be obtained similarly. The final relic density

can be written in a form very similar to standard freeze-out via Eq. (3.30):

Ωψh2 ' (2.07×108 GeV−1)
ξ xn+1

x,dec

(g∗S/g1/2
∗ )MPl σ0

. (3.32)

Since nψ,=(Tx)> nψ,eq(Tx) we must have xx,dec > xx, f o whether or not Tx,dec/ξ is larger or smaller than
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mψ , and therefore the relic density of Eq. (3.32) is bigger than the pure freeze-out result of Eq. (3.24).

3.3.3 Numerical Results for Freeze-Out

To confirm the analytic estimates derived above and map out the parameter space of the theory, we

perform a full numerical analysis of the dark matter freeze-out process. In Fig. 3.6 we show the evolution

of the relevant rates in the upper panels and the ψ density in the lower panels for αx = 0.1, ξ = 0.1,

mψ = 104 GeV, and M = 1012 GeV (left) and 1015 GeV (right). The rate plots show the rates for Hubble,

annihilation, and late transfer defined according to

Hubble = H(T ) , Annihilation = 〈σannv(Tx)〉nψ , Transfer = T (T )/nψ , (3.33)

where nψ is the number density obtained from solving Eq. (3.17) and T (T ) is the transfer rate of

Eq. (3.22). The value of M is smaller in the left panels of this figure, and late-time transfer becomes

more important. In the ψ number density plots, we show the densities in equilibrium (dashed line), and

with and without the transfer operator (upper and lower solid lines).

Late transfer by the fermionic Higgs portal operator is seen to increase significantly the final relic

density in the left panels of Fig. 3.6, while its effect is negligible in the right panels. The difference

corresponds to the larger transfer rate for M = 1012 GeV in the left panels versus M = 1015 GeV in the

right. Following the rates for M = 1012 GeV, transfer is seen to catch up to annihilation before Hubble

leading to a regime of balanced rates and enhanced number density. In contrast, the Hubble rate catches

up to annihilation before transfer in the right panels with M = 1015 GeV and never plays a significant

role in the evolution of nψ .

In Fig. 3.7 we show the enhancement of the relic density in the M–mψ plane for αx = 0.1 (left) and

0.01 (right) with ξ = ξmin as computed previously. The contours in both panels indicate the relic density

we find to the value that would be obtained without late transfer effects, Ωψ/Ωno−tr
ψ . Late transfer

by the connector operator initially increases as M decreases and the transfer operators becomes more

effective. However, as M continues to decrease we find a competing effect between the efficiency of

transfer and the increasing value of ξmin. As the dark and visible temperatures approach each other,

transfer is more likely to occur while T → mψ and the effect becomes exponentially suppressed, as

seen in Eq. (3.22). Transfer effects are also reduced at αx = 0.1 relative to αx = 0.01 due to the non-

pertubative enhancements in the annihilation cross section at low velocities for the larger value of the

gauge coupling.

Ultimately, we are interested in the parameter space where ψ can make up all the dark matter. In

Fig. 3.8 we show the values of mψ for which this occurs as a function of M for αx = 0.1 (left) and

0.01 (right) for various values of ξ (solid lines). The lines in these plots are cut off at smaller M

when ξ falls below ξmin. As expected from the annihilation cross section, larger values of αx coincide

with larger dark matter masses. In the right part of both panels the allowed DM mass mψ reaches a

value that is independent of M for fixed ξ . This region corresponds to late transfer being negligible for

the freeze-out process, with the relic density scaling approximately as ξ−1α2
x /m2

ψ . Going to smaller
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Figure 3.6: Evolution of the relevant rates in the upper panels and the ψ density in the lower panels
for αx = 0.1, ξ = 0.1, mψ = 104 GeV, and M = 1012 GeV (left) and 1015 GeV (right).

M, transfer eventually becomes important and the relic density increases. Correspondingly, the mass

mψ that produces the correct relic density decreases. As M decreases further, the lines for different

ξ values in Fig. 3.8 come together. This can be understood from Eqs. (3.31) and (3.32), where the

direct dependence on ξ is seen to cancel for cross sections 〈σannv〉 = σ0x−n with n→ 0, as we have

here (up to the Sommerfeld and bound state enhancements). The upper shaded region in both panels is

excluded because the resulting relic density of ψ is always greater than the observed DM density for any

consistent value of ξ . Going from αx = 0.1 to 0.01, lower ψ masses are needed to produce the correct

relic density. Also shown in this figure are bounds from DM self-interactions to be discussed below.

3.4 Dark Matter Self-Interactions
Dark matter in our theory is charged under an unbroken U(1)x gauge force implying long-range self

interactions among DM particles that can modify their behavior in collapsed systems. Such interactions

have been suggested as a way to resolve several apparent discrepancies between simulations of DM

structure formation and observations [137, 216]. However, these interactions are also constrained to not
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be so large as to overly disrupt cosmic structures [217, 218].

An upper bound on DM self-interactions can be derived from the observed ellipticity of galactic

halos such as NGC720 [219, 220]. For charged DM coupled to an unbroken U(1), Refs. [206, 208]

derived limits on the gauge coupling of the form

αx . {0.35, 2.5}×10−6
( mψ

GeV

)3/2
, (3.34)

where the two numbers in brackets correspond to the analyses of Refs. [206] and [208], respectively.

While the limit derived in Ref. [206] is considerably stronger, Ref. [208] (and Ref. [221]) argue for a

weaker one based on the application of the ellipticity constraint only at larger galactic radii and a number

of smaller factors. We show both upper bounds on αx in Figs. (3.8). These favor smaller temperature

ratios ξ and larger DM masses mψ , well above the weak scale.

The limits on αx from the ellipticity of NGC720 correspond to an effective transfer cross section

per mass below about σT/mψ . 1cm2/g in this system with a velocity dispersion on the order of v '
300km/s. Dark matter self-interactions in this regime are described by a Rutherford-like transfer cross

section [206, 208, 221]:

σT '
8π α2

x

m2
ψ

1
v4 lnΛ , (3.35)

where lnΛ∼ 45−75 is a collinear enhancement factor cut off by the typical interparticle spacing in the

system [208]. Since this cross section has a very strong velocity dependence, the DM self-interactions

in systems with lower velocity dispersions such as dwarf halos can be much stronger. Using typical
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Figure 3.8: Values of mψ that give the correct relic density of ψ dark matter as a function of M for
αx = 0.1 (left) and 0.01 (right) for various fixed values of ξ . Each solid line corresponds to
the correct ψ relic density for the corresponding value of ξ . The red shaded upper region is
excluded due to overproduction of ψ relic density for any consistent value of ξ . The lower
blue shaded regions indicate exclusions from the effects of ψ dark matter self-interactions
from the observed ellipticity of galactic halos, with the dark blue indicating a conservative
exclusion and the light blue showing a more aggressive one. The dotted line indicates a DM
self-scattering transfer cross-section per mass in dwarf halos of σT/mψ = 10cm2/g.

velocities and densities for dwarf halos, this translates into

σT/mψ ' 18cm2/g
(

αx

0.1

)2
(

5×104 GeV
mψ

)3(10km/s
v

)4( lnΛ

50

)
(3.36)

Interaction cross sections of this size are expected to lead to the formation of cores in dwarf halos, with

Refs. [222, 223] suggesting a better agreement between simulations and data for σT/mψ ∼ 10cm2/g.

On the other hand, it is not clear what the upper bound on σT/mψ is from these systems, with the

simulations of Ref. [224] finding reasonable behavior for σT/mψ = 50cm2/g (the largest value studied)

and Ref. [208] arguing that much larger values can work as well. Indeed, the results of Ref. [224] appear

to be consistent with the approximate duality between σT/mψ and mψ/σT about Knudsen number close

to unity suggested in Ref. [208] based on the analyses of Refs. [225, 226]. For reference, we also show

dashed contours indicating σT/mψ = 10cm2/g in Figs. 3.8.

3.5 Conclusions
This chapter has focused on the interplay between a dark sector interacting with itself and small con-

nections between the visible and dark sectors. As a first step into our exploration of the two sec-

tors, this small connection only allowed for energy to flow from the visible to the hidden, and not
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in reverse. Specifically, this was realized in a model consisting of a freeze-in transfer effect from a

non-renormalizable connector operator together with a self-thermalizing hidden sector. The standard

expectation for non-renormalizable operators in the early universe is that their effects are greatest at

high temperatures and that they decouple at lower temperatures. For this reason, DM creation from SM

collisions connecting to a secluded dark sector through a non-renormalizable operator is referred to as

UV freeze-in [152, 154]. In this work we showed that such operators can also contribute importantly at

lower temperatures when combined with freeze-out in a dark sector.

To illustrate the effect, we studied a concrete dark sector consisting of a massive Dirac fermion ψ

DM candidate and a massless Abelian dark vector X µ , with the only connection to the SM through the

dimension-five fermionic Higgs portal operator of Eq. (3.1). At the end of reheating, the dark sector

can be populated by transfer reactions SM+SM→ ψ + ψ̄ mediated by the non-renormalizable portal

operator to a density below the value it would have in full equilibrium with the SM. As the universe cools

further, the population of dark fermions can equilibrate with the dark vectors at temperature Tx below

the visible SM temperature T provided the dark gauge coupling and the initial fermion density are large

enough. Freeze-out occurs in the dark sector when Tx falls below the fermion mass mψ . For a broad

range of parameters in this theory, the relic density of ψ fermions can receive a significant additional

enhancement from late transfer reactions through the non-renormalizable portal operator during the

course of the freeze-out process for T down and below the fermion mass. The UV connector operator

of Eq. (3.1) is therefore seen to play an important role in the IR.

The dark sector theory we have considered here also has interesting implications for DM self-

interactions, which are motivated by a number of puzzles in cosmic structure [137, 216]. Such in-

teractions were investigated for this theory in Refs. [206, 208, 221] and suggest that to be viable larger

DM masses and smaller temperature ratios ξ = Tx/T are required to avoid bounds from the observed

ellipticity of NG720. These bounds, and the dependence of the self-interaction cross section on the

DM velocity, could potentially be softened by extending the theory to include a small mass for the dark

vector [218]. The calculations presented in this work can be carried over to such a massive vector sce-

nario provided its mass is much smaller than the decoupling temperature of the dark fermion so that it

provides a relativistic thermal bath during this process. Furthermore, the vector mass would also have

to be small enough to avoid too much vector boson DM [227, 228].

While this work focused on a specific dark sector theory and non-renormalizable connector operator,

it is expected to generalize to other connections. Specifically, a similar IR contribution from a UV

operator that produces the relic density of dark-sector DM is expected to occur as well for other dark

sectors or connector operators. For the effect to arise, the DM candidate in the dark sector must undergo

significant annihilation to allow the power-suppressed transfer reactions (relative to reheating) of the

connector operator to catch up. Other non-renormalizable connector operators can also lead to late IR

transfer contributions to the DM relic density, although initial estimates suggest that the effect becomes

less important as the operator dimension increases. Late-time transfer of a symmetric density could also

be relevant in scenarios of secluded asymmetric DM.

Dark matter arising from a dark sector that is colder than the SM in the early universe has been
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investigated in a wide range of scenarios of new physics [3, 4, 154, 187, 187, 206–208, 229–238]. In

some of these works, the dark temperature Tx is taken as an input to the calculation of the DM relic

density without reference to how the dark sector was populated initially. Our results show that such an

assumption is not always justified, and the nature of the connector operators that mediate transfer from

the SM to the dark sector can play an important role in determining the relic density of DM.

Now that we have thoroughly investigated the effect that the visible sector can have on the evolution

of a dark sector, we turn to the reverse effect. In particular, we will consider how the dark sector can

leave a visible imprint on the relics of BBN.
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Part III

From the Dark to the Visible
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Chapter 4

Limits from BBN on Light Decays and
Annihilations

4.1 Introduction
In the previous chapter we explored in detail how the visible sector can play a role in the subsequent

evolution of a dark sector. We now turn to the reverse scenario, and look at how dark particles can play a

role in the visible. This turns out to be a very powerful technique. We can place stringent constraints on

various new models of physics, because we can see the effects of this scenario explicitly through more

than just gravitational potentials. The flow of energy is once again shown in Fig. 4.1. In particular, we

will focus on low energy transfers that will ultimately affect the outcomes of an early universe process,

Big Bang Nucleosynthesis (BBN).

BBN is one of the most powerful probes of the very early universe [112, 239–241]. Over the course

of BBN, free protons and neutrons assemble into a handful of light elements [242–244]. Assuming

a standard Λ cold dark matter (ΛCDM) cosmological history, the primordial abundances of these el-

ements can be predicted using known nuclear reaction rates in terms of a single input parameter, the

overall baryon density. These predictions agree well with observational determinations of primordial

abundances up to plausible uncertainties in astrophysical determinations and nuclear rates [81].1

The success of BBN gives very strong evidence for the ΛCDM cosmological model up to radiation

temperatures near the MeV scale [248–250], which extends much earlier than other known tests [67].

BBN also places stringent constraints on new physics beyond the Standard Model that injects energy

into the cosmological plasma or influences the expansion rate at early times. This includes the decays

of massive particles with lifetimes greater than τ ' 0.1s [94, 194, 196, 251–261], dark matter (DM)

annihilation with an effective cross section near the critical value for thermal freeze-out [262–265], and

any new thermalized species with mass below a few MeV [10, 266–268].

Limits from BBN on the decays of long-lived massive particles have been studied in great detail [94,

0This chapter is based L. Forestell, D. E. Morrissey, and G. White, Limits from BBN on Light Electromagnetic Decays,
JHEP, 1901, (2018), 074, [arXiv:1809.01179] [2].

1The extrapolated densities of 6Li and 7Li give a particularly acute puzzle in this regard [111, 245–247].
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VS:
4He, 3He,

T, D, n, p,
e, ν , γ

DS:
X

Decay

Annihilation
Interaction

Figure 4.1: Flow of information considered in this chapter. The dark sector now transfers en-
ergy via decays and annihilations to the visible sector, which will go through further self-
processing effects that interplay with the inflow of energy. In this chapter, the visible sector
consists of relevant BBN particles, while the dark sector consists of a single species X .

258–261]. In the majority of this work, often motivated by new physics connected to the electroweak

hierarchy puzzle or weakly-interacting massive particle (WIMP) dark matter, the energy injected by

the decay has been assumed to be close to or greater than the weak scale. Thus, the decay products

typically have initial energies that are much larger than the thresholds for nuclear reactions relevant to

BBN which are typically on the order of several MeV. Weak-scale decay products typically also have

both hadronic and electromagnetic components, if only through radiative effects.

Hadronic energy injection can modify the light element abundances at times as early as t ∼ 0.1s [258,

259]. Initially, these products scatter with protons and neutrons and alter the ratio of these baryons and

thus the resulting helium abundance. At later times, injected hadrons destroy and modify the abun-

dances of helium and other light elements through hadrodissociation. Since the initial hadronic energies

are usually assumed to be much larger than the MeV scale, thresholds for these reactions are easily

overcome.

Electromagnetic (EM) energy – photons, electrons, and positrons – injected into the cosmological

plasma does not have a significant effect on the light element abundances until much later. The main ef-

fect of electromagnetic injection on the light elements is photodissociation (unless the amount of energy

deposited is enormous). However, being much lighter than hadrons, photons and electrons lose their

energy very efficiently by scattering off the highly-abundant photon background. The electromagnetic

cascade initiated by this scattering is strongly suppressed for energies above Ec, given by [7, 269]

Ec '
m2

e

22T
' (2 MeV)

(
6 keV

T

)
, (4.1)

where T is the cosmological photon temperature. As a result, even for initial energies orders of magni-

tude above the MeV-scale thresholds for photodissociation, the fraction of energy available for photodis-

sociation is tiny until the background temperature falls below T . 10 keV, corresponding to t ∼ 104 s.

While much of the focus on new sources of energy injection during BBN has been on decays or

annihilations at or above the weak scale, there exist many well-motivated theories that also predict new

sources well below the weak scale. Specific examples include dark photons [270, 271], dark Higgs

bosons [271, 272], dark gluons and glueballs [3, 4, 235], light or strongly-interacting dark matter [273,

274], and MeV-scale neutrino decays [275, 276]. As the injection energy falls below the GeV scale,

hadronic decay channels start to become kinematically unavailable and disappear entirely below the pion
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threshold. This leaves electromagnetic and neutrino injection as the only remaining possibilities. Even

more importantly, it was shown in Refs. [8, 277] that the development of the electromagnetic cascade at

these lower energies can differ significantly relative to injection above the weak scale. Furthermore, as

the injection energy falls below a few tens of MeV, photodissociation reactions begin to shut off.

In this chapter we expand upon the analysis of Refs. [8, 277] and investigate the effects of electro-

magnetic energy injection below 100 MeV on the primordial element abundances created during BBN.

One focus of this study is the development of the electromagnetic cascade from initial photon or electron

(e+e−) injection. For high energy injection, the resulting spectrum of photons is described very well

by the so-called universal spectrum rescaled by a temperature- and energy-dependent relaxation rate.

This spectrum is used widely in studies of photodissociation effects on BBN, it can be parametrized

in a simple and convenient way, and has the attractive feature that it only depends on the total amount

of electromagnetic energy injected. However, for lower-energy electromagnetic injection, the universal

spectrum does not properly describe the resulting electromagnetic cascades.

The universal spectrum fails for lower-energy injection in two significant ways. First, the universal

spectrum is based on a fast redistribution of the initial energy EX�Ec to a spectrum populated at E ≤Ec

through Compton scattering and photon-photon pair production. As shown in Refs. [8, 277], this picture

does not hold for initial injection energies EX < Ec, which can easily occur for smaller EX and larger

decay lifetimes. And second, as argued in Ref. [271] the Compton scattering with background photons

that dominates electron interactions is qualitatively different at high energies compared to low. At higher

energies, s ∼ E T � m2
e , electrons scatter in the Klein-Nishina limit and typically lose an order unity

fraction of their energy in each scattering event. In contrast, lower energy scattering with s∼ E T �m2
e

enters the Thomson regime where the fractional change in the electron energy per collision is very small

and the up-scattered photon energy is much less than the initial electron energy.

To address the breakdown of the universal spectrum for lower-energy electromagnetic injection, we

compute the full electromagnetic cascade for photon or electron (e+e−) injection with initial energies

EX ∈ [1, 100] MeV following the methods of Ref. [7]. Our work expands upon Refs. [8, 277] that studied

the photon portion of the cascade for photon injection. We compare and contrast our results to the

universal spectrum, and study their implications for BBN. In addition to finding important differences

from the universal spectrum at these lower energies, we also demonstrate that final-state radiation (FSR)

from electron injection can have a very significant impact on the resulting photon spectrum. For very

low injection energies approaching the MeV scale, we also study the interplay of the spectrum with the

thresholds for the most important nuclear photodissociation reactions.

Although energy injected directly into electromagnetic cascade products will have the most dras-

tic effect on the visible sector via the photodissociation of BBN products, there is another, more subtle

method by which the dark sector can influence the visible at these low energies. This is via the alteration

of Ne f f , the effective number of neutrino species[10, 157, 278–282]. This can be done either via the

presence of a new relativistic species, such as a sterile neutrino or a low mass WIMP[10, 276, 283–287],

or via energy injection through particle decays and annihilations[288]. The energy injected into the vis-

ible sector can serve to alter the relative ratio of the background photon temperature to the temperature
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of neutrinos. For the Standard Model with 3 generations of neutrinos, Ne f f = 3. 2 The altered value

of Ne f f will in turn affect the Hubble expansion rate as the total radiation energy density increases (or

decreases), relative to that obtained via a standard Ne f f :

ρR = ργ

[
1+

7
8

(
Tν ,0

Tγ,0

)4

Ne f f

]
(4.2)

where ρR is the total radiative energy density contributing to the Hubble rate, ργ the portion coming

from photons, and the rest represented by Ne f f , where the factors out front have been included to make

Ne f f = 3 for the standard 3 neutrino generations.

Both BBN and the CMB can be used to place limits on the value of Ne f f . During BBN, increasing

Ne f f leads to a faster freeze-out of the neutron population, which will result in more 4He and deu-

terium being produced with the extra neutron availability[81, 284, 291–293]. This is thus constrained

by the same present day measurements that also place limits on the effects of photodissociation. The

CMB will also provide constraints, as increasing the effective number of relativistic degrees of free-

dom increases the small-scale (Silk) damping of the CMB power spectrum[268, 280, 294, 295]. With

precise measurements from telescopes such as the Atacama Cosmology Telescope (ACT)[296], South

Pole Telescope (SPT)[297] and Planck[9], we can provide a limit on the possible values of Ne f f . The

unique thing about the Ne f f limit is it will apply to both electromagnetic interactions, as well as neutrino

effects. Although neutrinos have frozen-out and do not interact with the electromagnetic background

at the time of BBN, and thus do not affect BBN directly, they are still a viable, kinematically allowed,

decay/annihilation candidate at these light energies. Annihilations and their effects on Ne f f have been

broadly studied previously in the literature (see, for example, Refs. [10, 157, 268, 279–281]). However,

the constraints that arise from decays have not been as thoroughly examined, so we provide a calcuation

here to complete our examination of low energy constraints.

The outline of this chapter is as follows. After this introduction, we present our calculation of the

electromagnetic cascade in Sec. 4.2. Next, in Sec. 4.3 we study the impact of such electromagnetic

injection on the light element abundances. In Sec. 4.4 we contrast the bounds from photodissociation

of light elements with other limits on late electromagnetic injection, including those derived from Ne f f .

Finally, Sec. 4.5 is reserved for our conclusions. Some technical details can be found in our paper [2],

Appendix A for completeness. This chapter is based on work published in Ref. [2] in collaboration with

David Morrissey and Graham White, with extended sections covering the effects on Ne f f .

4.2 Development of the Electromagnetic Cascade
In this section we compute the electromagnetic cascade in the early universe following the injection of

photons or electrons (e+e−) with initial energy EX < 100 MeV.

2More precisely, the value predicted for Ne f f is slightly above this, ∼ 3.046, due to the fact that neutrinos have not
completely decoupled at the time of e± annihilations [289, 290].

73



Figure 4.2: Most important reactions for the development of the electromagnetic cascade. Top
row: high energy photons scatter off background photons or nuclei. Bottom row: Compton
scattering for either high energy photons or e± (left), as well as final state radiation (right).
The fastest processes tend to be 4P (top left) and IC (bottom left).

4.2.1 Computing the Electromagnetic Cascade

Energetic photons or electrons injected into the cosmological plasma at temperatures below the MeV

scale interact with background photons and charged particles leading to electromagnetic cascades that

produce spectra of photons and electrons at lower energies. Since the development of the cascade is

much faster than the typical interaction time with the much more dilute light elements created in BBN,

these spectra can be used as inputs for the calculation of photodissociation effects.

The most important reactions for the development of the electromagnetic cascade in the temperature

range of interest T ∈ [1 eV, 10 keV] are show in Fig. 4.2, and are given by: [7]:

• photon photon pair production (4P): γ + γBG→ e++ e−

• photon photon scattering (PP): γ + γBG→ γ + γ

• pair creation on nuclei (PCN): γ +NBG→ NBG + e++ e−

• Compton scattering (CS): γ + e−BG→ γ + e−

• inverse Compton (IC): e∓+ γBG→ e∓+ γ

• final state radiation (FSR): X → e++ e−+ γ

Of these processes, IC and 4P are typically the fastest provided there is enough energy for them to occur.

We define Na = dna/dE to be the differential number densities per unit energy of photons (a = γ)

and the sum of electrons and positrons (a = e). The Boltzmann equations for the evolution of these

spectra take the form

dNa

dt
(E) =−Γa(E)Na(E)+Sa(E) , (4.3)
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where Γa(E) is a relaxation rate at energy E, and Sa(E) describes all sources at this energy. Since

the relaxation rates are typically much faster than the Hubble rate, the Hubble dilution term has been

omitted. Furthermore, the relaxation rate is also much larger than the mean photodissociation rates

with light nuclei, so a further quasistatic approximation can made with dNa/dt→ 0 [7]. This gives the

solution

Na(E) =
Sa(E)
Γa(E)

. (4.4)

Note that Na(E) evolves in time in this approximation through the time and temperature dependences

of the sources and relaxation rates. The source terms are discussed in more detail below while explicit

expressions for the contributions to the relaxation rates are given in Appendix A of Ref. [2].

Monochromatic Photon Injection

For monochromatic photon injection at energy EX from a decay with rate per volume R, the source terms

are

Sγ(E) = ξγR δ (E−EX)+∑
b

∫ EX

E
dE ′Kγb(E,E ′)Nb(E ′) , (4.5)

Se(E) = 0+∑
b

∫ EX

E
dE ′Keb(E,E ′)Nb(E ′) , (4.6)

where ξγ is the number of photons injected per decay, and the Kab(E,E ′) functions describe scattering

processes that transfer energy from species b at energy E ′ to species a at energy E ≤ E ′. Explicit

expressions for these transfer functions are given in Ref. [2]. Note that in the case of decays of species X

with lifetime τX , the rate is R = nX(t)/τX . These equations can also be applied to annihilation reactions

of the form X + X̄ → nγ with cross section 〈σv〉 by setting R = 〈σv〉nX nX̄ and ξγ = n.

It is convenient to describe the cascades resulting from the initial monochromatic (delta function)

injection with smooth functions that are independent of the injection rate. To this end, we define

f̄γ(E) =
1
R

Nγ(E)−
ξγ

Γγ(EX)
δ (E−EX) (4.7)

f̄e(E) =
1
R

Ne(E) . (4.8)

Using this form in Eq. (4.4) with the sources of Eqs. (4.5,4.6), we obtain the relations

Γγ(E) f̄γ(E) = ξγ

Kγγ(E,EX)

Γγ(EX)
+∑

b

∫ EX

E
dE ′Kγb(E,E ′) f̄b(E ′) (4.9)

Γe(E) f̄e(E) = ξγ

Keγ(E,EX)

Γγ(EX)
+∑

b

∫ EX

E
dE ′Keb(E,E ′) f̄b(E ′) (4.10)

The functions f̄γ and f̄e are expected to be smooth, and can be used to reconstruct the full spectra Nγ(E)
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and Ne(E) uniquely for any given injection rate R.

Determining the electromagnetic cascade from monochromatic photon injection is therefore equiv-

alent to solving Eqs. (4.9,4.10). We do so using the iterative method of Ref. [7], with an important

modification to account for the Thomson limit of IC scattering. In this method, the spectra f̄a(E) are

determined on a grid of energy points Ei given by

Ei = E0

(
EN

E0

)i/N

, (4.11)

where we use E0 = 1 MeV, EN = EX , i = 0,1, . . . ,N, and N� 1. For the top point i = N, Eqs. (4.9,4.10)

give

f̄γ(EN) = ξγKγγ(EN ,EN)/Γ
2
γ(EN) , f̄e(EN) = ξγKeγ(EN ,EN)/Γγ(EN)Γe(EN) . (4.12)

To compute the spectra at lower points, we use the fact that the transfer integrals at a given energy

E only depend on the spectra at energies E ′ > E. Thus, at any step i the integrals in Eqs. (4.9,4.10)

can be approximated numerically (e.g. Simpson’s rule) using the spectra already determined at points

j = i+1, . . . ,N. Relative to Ref. [7] we also apply a finer grid to compute the top two energy points.

This approach to computing the cascades works well for ye =EeT/m2
e� 1, but becomes numerically

challenging for ye . 0.1. The problem comes from the contribution of inverse Compton (IC) scattering

to Kee. As ye becomes small, IC scattering enters the Thomson regime in which the cross section is

large but the fractional change in the electron energy per scattering is much less than unity, and thus

the function Kee(E,E ′) develops a strong and narrow peak near E ′ ' E. To handle this we follow

Refs. [269, 298] and treat the electron energy loss due to IC in the Thomson limit as a continuous

process by replacing

−Γe(E) f̄e(E)+
∫ EN

E
dE ′Kee(E,E ′) f̄e(E ′) →

∂

∂E

[
Ė f̄e(E)

]
. (4.13)

Here, Ė is the rate of energy loss from IC of a single electron in the photon background, given by [298]

Ė
E

= −4
3

[
3ζ (4)
ζ (3)

](
ET
m2

e

)
σT nγ , (4.14)

where σT = (8π/3)α2/m2
e is the Thomson cross section, nγ = [2ζ (3)/π2]T 3 is the thermal photon

density, and ζ (z) is the Riemann zeta function. The approximation of Eq. (4.13) is valid provided the

fractional energy loss rate Ė/E is much smaller than the total scattering rate σT nγ , which coincides

with ye� 0.1. In this limit, the two terms on the left-hand side of Eq. (4.13) are much larger than their

difference leading to a numerical instability in the original iterative approach.

When computing the electromagnetic spectra, we use the iterative method described above with

Eqs. (4.9,4.10) until y j = E jT/m2
e < 0.05 is reached. For lower energy bins we keep Eq. (4.9) for f̄γ but
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apply the replacement of Eq. (4.13) for f̄e, yielding the solution

f̄e(E) =
(

E j

E

)2

f̄e(E j)+
1

aT E2

∫ E j

E
dE

′′
S ′

e(E
′′
) , (4.15)

with

S ′
e(E

′′
) = ξγ

Keγ(E
′′
,EN)

Γγ(EN)
+
∫ EX

E ′′
dE ′Keγ(E

′′
,E ′) f̄γ(E ′) , (4.16)

and

aT =
Ė
E2 =

4π2

45
σT

T 4

m2
e
. (4.17)

Again, this can be evaluated iteratively, from high to low. While we use the specific value ye < 0.05

to match from one method to the other, we find nearly identical results from matching within the range

ye ∈ [0.001,0.1].

Monochromatic Electron Injection

Monochromatic injection of electrons (and positrons) at energy EX can be treated nearly identically to

monochromatic photon injection, with the only major change being in modifying the sources to

Sγ(E) = SFSR
γ (E)+∑

b

∫ EX

E
dE ′Kγb(E,E ′)Nb(E ′) , (4.18)

Se(E) = ξeR δ (E−EX)+∑
b

∫ EX

E
dE ′Keb(E,E ′)Nb(E ′) , (4.19)

where R is the decay (or annihilation) rate per unit volume, ξe is the number of electrons plus positrons

injected per decay, and SFSR
γ (E) is a contribution to photons from final-state radiation to be discussed in

more detail below. For decays of the form X → e++ e− we have R = nX(t)/τX and ξe = 2, while for

annihilation X + X̄ → e++ e− the rate is R = 〈σv〉nX nX̄ and ξe = 2.

Given these source terms, it natural to define the reduced spectra f̄a(E) by

f̄γ(E) =
1
R

Nγ(E) (4.20)

f̄e(E) =
1
R

Ne(E)−
ξe

Γe(EX)
δ (E−EX) (4.21)

Applying this to Eq. (4.4) with the sources of Eqs. (4.18,4.19), we obtain the relations

Γγ(E) f̄γ(E) =
SFSR

γ (E)
R

+ξe
Kγe(E,EX)

Γe(EX)
+∑

b

∫ EX

E
dE ′Kγb(E,E ′) f̄b(E ′) (4.22)

Γe(E) f̄e(E) = ξe
Kee(E,EX)

Γe(EX)
+∑

b

∫ EX

E
dE ′Keb(E,E ′) f̄b(E ′) (4.23)
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These equations can be solved using the same methods as described above for photon injection, includ-

ing a matching in the Thomson limit using Eq. (4.13).

A new feature that we include for electron injection is a contribution to the photon spectrum from

final-state radiation (FSR) off the injected electron; SFSR
γ (E) in Eq. (4.18). For processes of the form

X→ e++e− or X + X̄→ e++e− with X uncharged and EX �me, this new source can be approximated

by [299, 300]

SFSR
γ (E)' R

EX

α

π

1+(1− x)2

x
ln
[

4E2
X(1− x)

m2
e

]
Θ

(
1− m2

e

4E2
X
− x
)
, (4.24)

where x = E/EX . To be fully consistent, a corresponding subtraction should be made from the electron

source. However, we find that this modifies the spectra by less than a percent. In contrast, we show

below that the direct contribution to the photon spectrum from FSR can be the dominant one at higher

energies when EX T/m2
e� 1, when the initial electrons scatter via IC with the photon background mainly

in the Thomson regime.

4.2.2 Review of the Universal Spectrum

Many studies of the effects of electromagnetic energy injection on BBN approximate the photon spec-

trum with the so-called universal spectrum. This is a simple parametrization of the full calculations of

the photon spectrum in Refs. [7, 269]. It replaces the source terms (direct and cascade) in Eq. (4.4) with

a zeroeth generation spectrum Sγ(E)/R→ pγ(E) based on the assumption that 4P and IC processes

instantaneously reprocess the initial injected electromagnetic energy.

The standard parametrization used for the zeroeth generation spectrum is [112, 257, 269]

pγ(Eγ) '


0 ; Eγ > Ec

K0

(
Eγ

Em

)−2.0
; Em < Eγ < Ec

K0

(
Eγ

Em

)−1.5
; Eγ < Em

, (4.25)

where Ec ' m2
e/22T and Em ' m2

e/80T are derived from Ref. [7], and K0 is a normalization constant.

For monochromatic injection of ξ photons, electrons, and positrons each with energy EX , it is fixed by

the requirement

ξ EX =
∫ EX

0
dE E pγ(E) , (4.26)

implying K0 = ξ EX/[E2
m(2+ ln(Ec/Em)] for EX > Ec. An important feature of the spectrum is that it is

proportional to the total injection energy (for either photons or electrons) provided EX � Ec, up to an

overall normalization by the total amount of energy injected.

Within the universal spectrum approximation, the final spectra are given by

fγ(E) =
pγ(E)
Γγ(E)

, fe(E) = 0 , (4.27)
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Figure 4.3: Photon spectrum f̄γ(E) for single photon injection with energy EX = 1000 GeV (left)
and 100, GeV (right), for temperatures T = 1, 10, 100 eV. Also shown are the predictions
of the universal spectrum (solid) and the parametrizations of Kawasaki and Moroi given in
Ref. [7].

where fγ(E) = Nγ(E)/R, and the relaxation rate Γγ(E) accounts for the further reprocessing of the

spectrum by slower processes like Compton scattering, pair creation on nuclei, and photon-photon scat-

tering.3 These spectra have no residual delta-function parts since the initial injection is assumed to be

fully reprocessed into the zeroeth-order spectrum by 4P and IC scatterings.

4.2.3 Results for Photon Injection

To validate our electromagnetic spectra, we compare our results to previous calculations and the uni-

versal spectrum at high injection energies. In Fig. 4.3 we show our photon spectra f̄γ(E) for single

photon injection with EX = 1000 GeV (left) and 100 GeV (right) at temperatures T = 1, 10, 100 eV.

Also shown in the figure are the predictions from the universal spectrum and parametrizations of the

results of Kawasaki and Moroi listed in Ref. [7]. In all cases here, EX � Ec and the universal spectrum

is expected to be a good approximation. Our spectra agree well with the results of Ref. [7] but are some-

what larger than the universal spectrum. We have also checked that our spectra scale proportionally to

the total energy injected provided EX � Ec. In all cases shown in the figure, the electron spectra are

smaller than the photon spectra by orders of magnitude due to efficient IC scattering. Also visible is the

strong suppression of the photon spectra for E > Ec where the 4P process is active.

In contrast to electromagnetic injection at high energies with EX � Ec, injection at lower energies

with EX . Ec has received much less attention. In Fig. 4.4 we show our computed photon spectra for

single photon injection with EX = 100 MeV (left), EX = 30 MeV (middle), and EX = 10 MeV (right)

for T = 1, 10, 100 eV. Also shown are the predictions of the universal spectrum (normalized according

to Eq. (4.26)) and the prescription by Poulin and Serpico of Ref. [8]. Since EX < Ec, the assumptions

that go into the universal spectrum are not met and it is not expected to be accurate in this regime, as

first pointed out in Ref. [8]. Our spectra agree fairly well with the results of Ref. [8], which only kept

3In practice, this Γγ (E) is effectively equal to the full relaxation rate that also includes 4P scattering since this process is
very strongly Boltzmann-suppressed for E < Ec.
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Figure 4.4: Photon spectrum f̄γ(E) for photon injection with EX = 100 MeV (left), EX =
30 MeV (middle), and EX = 10 MeV (right), with T = 1, 10, 100 eV. Also shown are the
predictions of the universal spectrum (solid) and the low-energy prescription of Ref. [8].

the photon part of the spectrum. Some deviations are seen at lower energies where photon regeneration

by IC becomes significant. Note as well that the full cascade also contains a moderately damped delta-

function part that is not shown here (and was explicitly removed in our definition of f̄γ in Eq. (4.7)).

4.2.4 Results for Electron Injection

For electron and positron (e+e−) injection with energies EX � Ec, we find the same photon (and elec-

tron) spectra as from photon injection with an equal total input energy, and thus our results agree rea-

sonably well with Ref. [7] and the universal spectrum in this limit. However, for EX . Ec we find

very significant variations from the universal spectrum as well as from pure photon injection. Photon

spectra f̄γ resulting from e+e− injection are shown in Fig. 4.5 for input energies EX = 100 MeV (left),

EX = 30 MeV (middle), and EX = 10 MeV (right) and temperatures T = 1, 10, 100 eV. The solid lines

show the full spectra, while the dashed lines show the corresponding result when FSR off the initial de-

cay electrons is not taken into account. Also shown is the universal spectrum for the same total energy

injection (normalized according to Eq. (4.26)). Let us also mention that the photon spectra do not have

a delta function component for electron or positron injection.

The strong suppression of the photon spectrum from electron injection at lower energies in the

absence of FSR was pointed out in Ref. [271]. As argued there, this suppression can be understood

in terms of the behavior of IC scattering at low energy, which is the main mechanism for electrons

to transfer energy to photons in this context. For smaller EX and T , the dimensionless combination

ye = EeT/m2
e � 1 is small, and IC scattering lies in the Thomson regime where each collision only

slightly reduces the initial electron energy. Correspondingly, the maximal scattered photon energy E ′γ
in the Thomson limit is E ′γ ≤ 4(Ee/me)Eγ , where Eγ is the energy of the initial photon. Since the initial

photon comes from the CMB, Eγ ∼ T is expected so that

E ′γ . 4(Ee/me)
2T (4.28)

∼ 15 MeV
(

Ee

100 MeV

)2( T
100 eV

)
.
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Figure 4.5: Photon spectrum f̄γ(E) for electron plus positron (e+e−) injection with energies EX =
100 MeV (left), 30 MeV (middle), and 10 MeV (right), with T = 1, 10, 100 eV. The solid
lines show the full spectrum, while the dashed lines show the result when FSR is not taken
into account. Also shown is the universal spectrum for the same total injected energy.

Higher scattered photon energies are possible, but they come at the cost of an exponential Boltzmann

suppression.

In this regime, FSR from the injected electrons and positrons can be the dominant contribution

to the photon spectrum, as illustrated in Fig. 4.5. Relative to the rest of the cascade, the distribution of

photons from FSR is hard, falling off roughly as 1/E instead of as 1/E2. Despite the suppression of FSR

by (α/π)× log (with log ∼ few), it can easily overcome the exponential suppression of IC for photon

energies above the bound of Eq. (4.28). We show below that this has a very important implication for the

effects of lower-energy electron injection on the primordial light element abundances. Note, however,

that FSR has only a very minor effect on the spectra for photon injection or when EX � Ec.

4.3 Effects of Electromagnetic Injection on BBN
Having computed the electromagnetic cascades from lower-energy injection, we turn next to investigate

the effects of such injection on the primordial element abundances from BBN.

4.3.1 Photodissociation of Light Elements

Photodissociation of light element begins when the temperature of the cosmological plasma falls low

enough for MeV photons to populate the electromagnetic cascade. From Eq. (4.1), this does not begin

until temperatures fall below about 10 keV (corresponding to t ∼ 104 s). By this time element creation

by BBN has effectively turned off, and thus we can compute the effects of photodissociation as a post-

processing of the outputs of standard BBN [241, 257].

The effects of photodissociation on the light element abundances can be described by a set of cou-

pled Boltzmann equations of the form

dYA

dt
= ∑

i
Yi

∫
∞

0
dEγ Nγ(Eγ)σγ+i→A(Eγ)−YA ∑

f

∫
∞

0
dEγ Nγ(Eγ)σγ+A→ f (Eγ) , (4.29)
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Process Threshold (MeV) Peak value (mb)
D+ γ → p+n [301] 2.220 2.47

3He+ γ → D+ p [302] 5.490 1.18
3He+ γ → p+ p+n [302] 7.718 1.02

T+ γ → n+D [303, 304] 6.260 0.818
T+ γ → n+n+ p [304] 8.480 0.878

4He+ γ → T+ p [305] 19.81 1.31
4He+ γ → 3He+n [306, 307] 20.58 1.28
4He+ γ → D+D [257] 23.85 0.0051
4He+ γ → n+ p+D [305] 26.07 0.182

Table 4.1: Processes included in our calculation of photodissociation effects from electromagnetic
injections, as well as their threshold energies and peak cross sections.

where Nγ(Eγ) are the photon spectra calculated above, A and the sums run over the relevant isotopes,

and YA are number densities normalized to the entropy density,

YA =
nA

s
. (4.30)

Note that we do not include reactions initiated by electrons because the electron spectra are always

strongly suppressed by IC scattering.

In our analysis we include the nuclear species hydrogen (H), deuterium (D = 2H), tritium (T = 3H),

helium-3 (3He), and helium (He = 4He). Heavier species including lithium isotopes could also be

included, but these have much smaller abundances and they would not alter the results for the lighter

elements we consider. The nuclear cross sections included in our study are listed in Table 4.1, for which

we use the simple parametrizations of Ref. [257]. All these cross sections have the same general shape

as a function of energy, with a sharp rise at the threshold up to a peak followed by a smooth fall off. We

list the threshold energies and peak values of the cross sections in the table to give an intuitive picture

of their relevant strengths and ranges of importance. Of the nine cross sections listed, it is helpful to

group them into processes that destroy helium and create deuterium and helium-3 with thresholds above

20 MeV, and processes that destroy the lighter isotopes with significantly lower thresholds.

It is straightforward to solve the evolution equations of Eq. (4.29) numerically following the standard

convention of converting the dependent variable from time to redshift. For standard BBN values of the

primordial abundances, we use the predictions of PArthENoPE [308, 309]:

Yp = 0.247 ,
nD

nH
= 2.45×10−5 ,

n3He

nH
= 0.998×10−5 . (4.31)

In the analysis to follow, we compare the computed output densities to the following observed val-

ues, quoted with effective 1σ uncertainties into which we have combined theoretical and experimental
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Figure 4.6: Limits on EX YX from BBN on the monochromatic photon decay of species X as a
function of the lifetime τX for photon injection energies EX = 10 MeV (left), 30 MeV (mid-
dle), and 100 MeV (right). Bounds are given for the effects on the nuclear species D, 3He,
and 4He.

uncertainties in quadrature:

Yp = 0.245±0.004 (Ref. [101]) (4.32)
nD

nH
= (2.53±0.05)×10−5 (Ref. [91]) (4.33)

n3He

nH
= (1.0±0.5)×10−5 (Ref. [310]) . (4.34)

For the helium mass fraction Yp, the value we use is consistent with Ref. [104] and previous deter-

minations but significantly lower than the determination of Ref. [102]. The quoted uncertainty on the

ratio nD/nH is dominated by a theory uncertainty on the rate of photon capture on deuterium from

Ref. [311]. For n3He/nH, we use the determination of (nD + n3He)/nH of Ref. [310] together with the

value of nD/nH from Ref. [91]; the resulting upper bound (with uncertainties) is similar to but slightly

stronger than what is used in Ref. [94]. The uncertainties quoted here are generous, and in the analysis

to follow we implement exclusions at the 2σ level.

4.3.2 BBN Constraints on Photon Injection

Following the methods described above and the electromagnetic cascades computed previously, we

derive BBN bounds on monochromatic photon injection from late decays with lifetime τX and initial

injection energy EX . In Fig. 4.6 we show the resulting limits on the combination EX YX , where YX is

the predecay yield of the decaying species X (assumed to produce one photon per decay) for injection

energies EX = 10, 30, 100 MeV. The bounds coming from D, 3He, and 4He are shown individually, and

correspond to 2σ exclusions. Early on, when Ec is small, the dominant effect is destruction of D since

it has the lowest photodissociation threshold. Later on, as Ec increases, it becomes possible to create

excess D and 3He through the destruction of 4He provided the injection energy is larger than the 4He

threshold of about 20 MeV. Destruction of D is the dominant effect at all times for EX below the helium

threshold, as can be seen in the leftmost panel of Fig. 4.6.
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Figure 4.7: Combined limits on EX YX as a function of τX and EX for the decay of a species X with
lifetime τX injecting a single photon with energy EX .

In Fig. 4.7 we show maximal values of EXYX from monochromatic photon injection at energy EX

from the decay of species X as a function of τX and EX . The combined exclusion is based on the

union of 2σ exclusions of the individual species. Clear features are visible in this figure at τX ' 106 s

and EX ' 20 MeV. These coincide with the structure of the exclusions shown in Fig. 4.6, with both

corresponding to where the photodissociation of 4He turns off, either because Ec or EX is too small.

4.3.3 BBN Constraints on Electron Injection

In Fig. 4.8 we show the limits for e+ e− injection from the decay of a species X with lifetime τX on

EX YX , where YX is the predecay yield of the decaying species X (assumed to produce one e+e− pair

per decay) for injection energies for each electron of EX = 10, 30, 100 MeV (from left to right). The

bounds coming from D, 3He, and 4He are shown individually, and correspond to 2σ exclusions. The

electromagnetic spectra used in this calculation include FSR from the injected e+e− pair. The resulting

bounds are somewhat weaker than for photon injection and follow a similar pattern, and remain quite

strong even down to EX = 10 MeV. For comparison, we show the corresponding results when FSR

effects are not included in Fig. 4.9. As expected, the exclusions are significantly weaker, particularly for

larger τX and lower EX where the relevant IC scattering is deep in the Thomson regime.

In Fig. 4.10 we show maximal values of EXYX from monochromatic e+e− injection at energy EX

from the decay of species X as a function of τX and EX , with FSR effects included in the electromagnetic

cascade. The combined exclusion is based on the union of 2σ exclusions of the individual species.

Again, the exclusions become weaker for τX . 106 s or EX . 20 MeV where the photodissociation of
4He turns off. The bounds on e+e− injection are also typically weaker than for photon injection, but not

drastically so when FSR is taken into account.
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Figure 4.8: Limits on EX YX from BBN on the monochromatic e+e− decay of species X as a
function of the lifetime τX for individual electron injection energies EX = 10 MeV (left),
30 MeV (middle), and 100 MeV (right). Bounds are given for the effects on the nuclear
species D, 3He, and 4He, and contributions to the electromagnetic cascades from FSR are
included.
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Figure 4.9: Same as Fig. 4.8 but without FSR effects.

4.4 Other Constraints on Low Energy Decays
In addition to directly modifying the primordial light element abundances, energy injection in the early

universe can produce other deviations from the standard cosmology. Electromagnetic decays near or

after recombination at trec ' 1.2×1013 s can modify the the temperature and polarization power spectra

of the CMB [123, 312–314]. Since current CMB observations are found to constrain such decays much

more strongly than BBN [80, 315], we focus here on decays prior to recombination. The best limits

in this case, aside from BBN, come from alterations to Ne f f and modifications to the CMB frequency

spectrum. Ne f f can be constrained both before the beginning of BBN, as while as much later due

to its effect on the CMB as well. Early alterations of Ne f f will alter the radiation energy density, in

turn leading to an altered neutron abundance available for the main BBN processes. Ne f f will also be

constrained by the CMB as it increases the amount of small-scale Silk damping present in the CMB

power spectrum[268, 280, 294, 295]. In this section we estimate these other limits on late energy

injection and compare them to our results for BBN.
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Figure 4.10: Combined limits on EX YX as a function of τX and EX for the decay of a species X
with lifetime τX injecting an electron-positron pair each with energy EX , with FSR effects
included.

4.4.1 Constraints from Ne f f

Recall that we have defined Ne f f to be a proxy for the total contribution of radiative species to the

radiation energy density that are not photons, as shown in Eq. (4.2). This includes standard model

neutrinos, such that without the presence of new physics, Ne f f = Nν = 3.046, which is slightly larger

than 3 due to reheating during the non-instantaneous decoupling of electron-positron annihilations. The

Tν ,0/Tγ,0 factor is the temperature ratio of neutrinos to photons assuming no new physics. It accounts

for the fact that neutrinos have a different temperature from photons after e± annihilation, and is given

by [70, 71]:

Tν ,0

Tγ,0
=

1 T � me

(4/11)1/3 T � me

(4.35)

As was dicussed in Ch. 2. If we allow for particles to decay either electromagnetically, or into neutrinos,

we inject extra energy into the visible sector. This energy will effectively heat up all particles that are in

thermal equilibrium with the decay products. As such, we can also write out the total radiation energy

density during times of interest as:

ρR = ργ +ρν +ρX (4.36)

Note that here, we do not include e± as radiative species, as we will typically be concerned only with

temperatures below their mass. In theory, the decaying X particles could contribute to the radiation

density as well, if they are light enough and have a thermal temperature Tx�mx. This type of effect has
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been well studied for particles in thermal equilibrium with standard model particles [10, 268, 279, 280].

Instead, we focus on the case of a cold dark particle, that will not itself contribute to the radiation energy

density, and thus ρX = 0, and it instead contributes indirectly via the alteration of either ργ or ρν .

Comparing Eqs. (4.2) and (4.36), and using Eq. (2.24), with gi = 2 (6) for photons (neutrinos), we

see that a working definition of Ne f f is given by:

Ne f f

Nν

=

(
Tγ,0

Tν ,0
× Tν

Tγ

)4

(4.37)

To calculate changes to Ne f f , we consider conservation of both energy and entropy. We begin by

assuming that the decay will happen instantaneously, when the Hubble rate has dropped to match the

decay rate, 1/τ . This occurs at a decay temperature, Td of:

Td =

(
MPl

τ

)1/2(
g∗(Td)

π2

90

)−1/4

(4.38)

with g∗ defined as in Eq. (2.30). This not only allows us to produce analytic estimates, but it will be

accurate to within a few percent. If the decay occurs to electromagnetic species, the photon temperature

will increase, and Ne f f will be reduced. However, if the the decay occurs to neutrinos, then Ne f f

increases. Note that in both cases, we assume explicitly that the decay is occurring after the neutrinos

have decoupled, at temperature T ∼ 2 MeV. Otherwise, any energy introduced into the visible sector is

equilibriated between both photons and neutrinos, and both Tν and Tγ will change by the same amount.

In particular, we assume that the decaying particle has some steady comoving number density before

it decays. If the decaying particle has an initial mass weighted yield, mxYx, then the energy density of

the particle right before it decays is:

ρX = mxnx = mxYxs(Td) (4.39)

with s the relativistic entropy density, given in Eq. (2.34). We can use this to calculate the energy that

is transferred to either ργ or ρν . In particular, we find that for decays to electromagnetic species, this

results in an Ne f f of:

Ne f f

Nν

=


1 T > Td[

1+ 2
3 g∗s(Td)

(
mxYx

Td

)]−1

T < Td

(4.40)

while for decays to neutrinos, we find:

Ne f f

Nν

=


1 T > Td[

1+ 16
63 g∗s(Td)

(
Tγ,d
Tν ,d

)4
(

mxYx
Td

)]
T < Td

(4.41)

Note that the factor Tγ,d/Tν ,d is 1 for decays before e± annihilations, and (11/4)1/3 otherwise.
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Figure 4.11: Effects of low energy decays on Ne f f for decays to neutrinos (top, blue), and electro-
magnetic species (bottom, red). Shown are effects for various particle lifetimes. The central
grey band corresponds to the conservative estimate given in Eq. (4.42), in agreement with
Planck and BBN estimates[9, 10]. The enlarged green region shows the extra phase space
that could be allowed if a sterile neutrino with ∆Ne f f = 1 is included.

The results for decays to light visible species are given in Fig. 4.11. The blue, increasing lines

correspond to decays to neutrinos, while the red, falling lines correspond to decays to γ and e±, as we

expect. We also include a grey band to show the region that is consistent with present day observations.

Currently, the 2018 Planck results constrain Ne f f to a central value of 3.27±0.15, when considered in

conjunction with other astrophysical observations [67]. Furthermore, if we consider BBN constraints,

then Ne f f = 3.56±0.23 is favoured [10]. This gives us combined results of:

∆Ne f f = Ne f f −3.046 = 0.31±0.16 (4.42)

which implies that cosmological observations favour a slightly larger value of Ne f f than is present in the

SM. In Fig. 4.11, we use 95% confidence intervals to estimate a conservative region that is consistent

with observations.

It’s also interesting to note that the decay to EM species has an interesting caveat. If there is a fully

thermalized sterile neutrino, this would correspond to a ∆Ne f f = 1. As such, decays to EM species can

be compensated by the presence of a sterile neutrino, thus allowing slightly larger decays to remain

consistent with current observations [316]. This is given by the extended green band in Fig. 4.11.
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4.4.2 Constraints from the CMB

Late decays releasing electromagnetic energy can also distort the frequency spectrum of the CMB [317,

318], which is observed to be a nearly-perfect blackbody [319]. The effect depends on the decay time

τX relative to the times τdC ' 6.1× 106 s when double-Compton scattering freezes out and τC ' 8.8×
109 s when Compton scattering turns off [317, 318]. Decays with τdC < τX < τC yield products that

thermalize through Compton scattering and generate an effective photon chemical potential µ given

by [317, 318, 320]

µ ' 5.6×10−4
(

∆E YX

10−10 GeV

)(
τ

106 s

)1/2

e−(τdC/τ)5/4
. (4.43)

For τX > τC, electromagnetic injection produces a distortion that can be described by the Compton

parameter y = ∆ργ/4ργ , with the approximate result [317, 318, 320]

y ' 5.7×10−5
(

∆E YX

10−10 GeV

)(
τ

106 s

)1/2

C (τ) , (4.44)

where C (τ) = 1 for τ < teq and C (τ)' (τ/teq)
1/6 for τ > teq. The current limits on µ and y are [319]

µ < 9×10−5, |y|< 1.5×10−5 , (4.45)

while the proposed PIXIE satellite is to have sensitivity to constrain [321]

µ < 1×10−8, |y|< 2×10−9 . (4.46)

In the left and right panels of Fig. 4.12 we show the limits from Ne f f and CMB spectral distortions.

The solid (dashed) red line shows Ne f f = 0.31±0.16 for decays to EM (neutrinos), with a conservative

95% estimate included. Note that the constraint arising from EM decays is much stronger, due to the

fact that these decays lower Ne f f , while cosmologically evidence preferentially raises it. This constraint

can be mediated by the presence of sterile neutrinos, as discussed above. For CMB spectral distortions

we show bounds on the µ and y parameters in blue based on the approximate estimates above based on

measurements by COBE/FIRAS (solid) and the projected sensitivity of PIXIE (dotted). For comparison,

we show in green the limits derived above for monochromatic photon injection (left) and monochromatic

e+e− injection (right). In both panels, the dotted, dashed, and solid lines correspond to injection with

EX = 10, 30, 100 MeV. Even for low injection energies, BBN constraints currently dominate for τ &

104 s until being replaced by bounds from either CMB frequency or power spectrum variations. Even

with the vast improvement expected from PIXIE, BBN will continue to provide the strongest limit on

electromagnetic decays in the early universe with lifetimes 104 s . τX . 106 s and energy injections

above a few MeV.
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Figure 4.12: Other bounds on electromagnetic decays in the early universe as a function of the
lifetime τX and the total electromagnetic injection ∆E YX relative to limits derived from
BBN. In both panels, the red line shows ∆Ne f f = 0.31±0.16, while the solid (dotted) blue
lines show the current and projected CMB frequency bounds from COBE/FIRAS (PIXIE).
The left panel also indicates the limits derived from BBN for photon injection with energy
EX = 10, 30, 100 MeV with green dotted, dashed, and solid lines. The right panel shows
the corresponding BBN bounds from monochromatic e+e− injection.

4.5 Conclusions
In this chapter, we have focused on the interplay between the dark sector and the visible sector from

the perspective of decaying dark species. As in the previous chapter, we have focused specifically on

a one-way energy flow, as indicated in Fig. 4.1. In this section, the energy flow was from the dark to

the visible, so that we can isolate the effect that dark decays and annihilations may have on various SM

particles and how we can observe this influential effect. Also similar to the previous chapter, we focus

on ‘small’ interactions. In Ch. 3, we focus on small interactions via a feeble coupling, such that the

two sectors never fully thermalize. In this chapter, however, we focus on ‘small’ in the sense that we

consider low energy transfers, typically below 100 MeV. Although early, well motivated theories tended

to focus on new physics at or above the weak energy scale, new models can still be well motivated much

below this, and these low energy ranges have not yet been fully explored. We are able to place stringent

constraints on new physics, simply by modelling how the visible sector, which is full of well-understood

and strongly coupled particles, responds to the energy inflow. This response can be compared to present

day observations to identify models and parameter spaces that are in conflict.

To set the stage for dark energy deposition, we have investigated the electromagnetic cascades in-

duced by electromagnetic energy injection in the range EX = 1−100 MeV and we have studied its

effects on the light elements abundances created during BBN. As in Ref. [8], we find significant de-

viations from the universal photon spectrum for monochromatic initial photon injection with energy

EX . Ec = m2
e/22T . Our study also expands on previous work by computing the full electromagnetic
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cascade including electrons.

Photon and electron injection produce very similar electromagnetic cascades for EX � Ec but differ

in important ways for EX .Ec. Initial hard photons induce a smooth population of lower-energy photons

through Compton and photon-photon scattering. In contrast, electrons injected with EX . m2
e/10T

interact mainly through inverse Compton (IC) scattering off the CMB, which lies in the Thomson regime

at such energies. The upscattered photons from Thomson scattering have much lower energy than the

initial electron, and can easily fall below the MeV scales needed to induce photodissociation. However,

in this regime we find that photons radiated off the initial hard electrons can populate and dominate the

induced photon spectrum up to near the initial electron energy. To our knowledge, the contribution of

FSR to the photon spectrum has not been considered before in this context since its effects are very

small at the higher initial injection energies that have been investigated in the greatest detail.

We also study how this impacts BBN, both directly through photodissociation of the light elements,

and indirectly through changes to Ne f f . For either photon or electron injection, we find that BBN

provides the strongest constraint on late-decaying particles with lifetimes between 104 s . τ . 1013 s

for electromagnetic energies nearly all the way down to the photodissociation threshold of deuterium

near Eth ' 2.22, MeV. For earlier lifetimes, the indirect effects obtained via Ne f f provide the strongest

constraints. When considering Ne f f , we gain the ability to consider decays to the other kinematically

allowed species, neutrinos. While decays to neutrinos typically raise their temperature and thus increase

Ne f f , decays to EM species do the opposite. Because current observations favour a slight increase in

Ne f f , the EM decays are thus more constrained (although they do allow for the possibility of a sterile

neutrino to compensate for the Ne f f reduction).

While this work has concentrated on decays, our results for electromagnetic cascades are also ap-

plicable to annihilation in the early universe. Our results could also be used to investigate potential

solutions to the apparent anomalies in the lithium abundances, which was studied in Refs. [276, 322]

using the universal spectrum.

At this point, we have studied elementary models that move energy from either the visible sector

to the dark, or the dark sector to the visible. In both cases, we have considered dark sectors that have

minimal interactions, and focused on understanding how the two sectors might interact with each other.

Let us now turn to a more concrete and complex model of a hidden sector, in which we can apply the

tools we have learned to study it in greater detail.
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A Complete Dark Model
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Chapter 5

Non-Abelian Dark Forces and the Relic
Densities of Dark Glueballs

5.1 Introduction
Up to this point, we have split the dark and visible sectors of the Universe, in an effort to understand how

the two sectors may interact and play roles in the evolution of each other. In doing this, we have utilized

fairly simple models of the dark sector, so that the inter-sector interactions would be highlighted and

not masked by effects in the hidden sector. In the next few chapters we will focus on a more concrete

realization of a dark sector, in which we can find a rich spectrum of interactions. To begin, we will

focus explicitly on the dark sector isolated by itself, and attempt to understand how the self-interactions

of this sector play a role in its own evolution, as shown in Fig. 5.1. In the following chapter, we will

incorporate Standard Model connections, thus creating a full, rich, and connected dark sector that will

incorporate what we have learned in the previous chapters.

To motivate the dark sector we will consider, we note that gauge invariance under the SU(3)c×
SU(2)L×U(1)Y group of the Standard Model provides a remarkable description of the non-gravitational

forces of Nature. Yet, our knowledge of the Universe is incomplete and new gauge forces beyond those

of the SM may be crucial to describing the laws of physics. The existence of such forces is highly

constrained if they couple significantly to SM matter unless they have an associated mass scale (such as

from confinement or the Higgs mechanism) well above a TeV [323, 324]. In contrast new dark gauge

forces, with only feeble connections to the SM, can exist at energy scales much less than the TeV scale

(or even be in a massless phase) and still be fully consistent with existing experimental bounds [325–

327]. Such dark forces may also be related to the cosmological dark matter [146, 209, 213].

Abelian dark forces have been studied in great detail and have the novel property that they can

connect to the SM at the renormalizable level through gauge kinetic mixing [328, 329]. Limits on

the existence of such a kinetically-mixed dark photon have been obtained from existing experimental

0This chapter is based on L. Forestell, D. E. Morrissey, and K. Sigurdson, Non-Abelian Dark Forces and the Relic Densities
of Dark Glueballs, Phys. Rev. D, 95, (2016), 015032, [arXiv:1605.08048] [3]
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Interaction

Figure 5.1: Flow of information considered in this chapter. We start our inspection of a non-
Abelian dark force with a completely hidden sector, entirely isolated from the visible. How-
ever, even though isolated, the dark sector will still have a complex set of interactions, with
many stable glueball states that can be involved in self-interactions, annihilations, and so on.

searches and astrophysical and cosmological observations for a range of dark photon masses spanning

many orders of magnitude [325–327]. An exciting dedicated experimental program to search for dark

photons is also underway [326, 327].

Non-Abelian dark forces have received somewhat less attention. As gauge invariance forbids the

simple kinetic-mixing interaction with the SM, it is less clear how they might connect to the SM. Even

so, non-Abelian dark forces are well motivated and arise in many contexts including string theory con-

structions [330], in models of dark matter [229, 231, 232, 235, 331–338], baryogenesis [339–341],

theories of neutral naturalness [54, 342], and within the hidden valley paradigm [11, 12, 343]. Non-

Abelian dark forces can also lead to very different phenomenological effects compared to their Abelian

counterparts owing to the requisite self-interactions among the corresponding gauge bosons and their

potential for a confining phase transition at low energies.

The minimal realization of a non-Abelian dark force is a pure Yang-Mills theory with simple gauge

group Gx. Such a theory is expected to confine at the characteristic energy scale Λx, with the elementary

dark gluons binding into a spectrum of colour-neutral dark glueballs (GBs) of mass m ∼ Λx [344].

These dark states may have significant cosmological effects even when their connection to the SM is

too small to be detected in laboratory experiments. For very small values of Λx, dark gluons can act

as self-interacting dark radiation [345–348], and can be consistent with existing constraints provided

their effective temperature is somewhat lower than the SM plasma. With larger Λx, the glueballs will

contribute to the density of dark matter if they are long-lived [229, 231, 232, 235, 336], or they may lead

to observable astrophysical or cosmological signals if they decay at late times [229, 235, 336].

Assessing the cosmological impact of massive dark glueballs requires a precise knowledge of their

relic abundances. The primary goal of this chapter is to compute these abundances and map out the

ranges of parameters where one or more dark glueball states might constitute all or some of the observed

dark matter. We focus mainly on Gx = SU(3), but we also comment on how our results can be applied to

other non-Abelian gauge groups. In the next chapter we will describe in detail the cosmological effects

of both stable and unstable primordial glueball populations and use them to constrain the existence of

non-Abelian dark forces.

Starting from an early Universe containing a thermal plasma of dark gluons with temperature Tx >

Λx, typically different than the temperature of the SM plasma, dark glueballs will be formed in a phase
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transition as the temperature of the dark sector falls below the confinement scale, Tx .Λx. Since glueball

number is not conserved, the number densities of the glueball states will then track their equilibrium

values so long as their 2→ 2 and n→ 2 interaction rates are fast relative to the Hubble expansion rate.

The key difference compared to standard freeze-out is that without direct annihilation or rapid decays

to SM or lighter hidden states, the overall chemical equilibrium of the dark glueballs will be maintained

primarily by 3↔ 2 number-changing reactions [147, 349, 350]. Moreover, if the hidden glueballs do

not have a kinetic equilibration with the SM or a bath of relativistic hidden states, the energy released by

the 3→ 2 annihilations will cause the remaining glueballs to cool much more slowly than they would

otherwise [349]. Together, these two effects produce freeze-out yields with a much different dependence

on the underlying parameters of the theory than the typical freeze-out paradigm of annihilation into light

relativistic particles.

Previous works have studied the effects of 3→ 2 annihilation and self-heating in general massive

self-coupled sectors [147, 349, 350]. The specific application of these processes to dark glueballs has

also been studied in Refs. [231, 232, 235]. We expand upon these works in two ways. First, we in-

vestigate possible effects of the confining phase transition on the final glueball yields.1 And second,

we compute the freeze-out abundances of the heavier glueball states in addition to the lightest mode.

We also comment on the importance of including some of the heavier states, as when the glueballs are

connected to the SM, the heavier relic glueball states can sometimes have a greater observational effect

than the lightest mode.

Following this introduction, we discuss the general properties of dark glueballs in Section 5.2. Next,

we study the freeze-out of the lightest glueball in Section 5.3 and investigate the effects of the confining

phase transition. In Section 5.4 we extend our freeze-out analysis to include the heavier glueball states.

The possibility of dark glueball dark matter is studied in Section 5.5, as well as a brief introduction to

additional constraints that may be placed on general dark forces when a connection to the SM is added.

We give brief concluding remarks in Section 5.6. This chapter is based on work published in Ref. [3] in

collaboration with David Morrissey and Kris Sigurdson.

5.2 Glueball Spectrum and Interactions
The spectrum of glueballs in pure SU(N) gauge theories has been studied extensively using both analytic

models and lattice calculations [352]. Stable glueballs are classified according to their masses and their

quantum numbers under angular momentum (J), parity (P), and charge conjugation (C). The lightest

state is found to have JPC = 0++ [6, 353, 354], as expected based on general grounds [355], but a number

of stable states with other JPC values are seen as well. In this section we summarize briefly the expected

spectrum of glueballs and we estimate how they interact with each other.

1These effects were studied in a slightly different context in Ref. [351].
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JPC mr0 (N = 2) mr0 (N = 3)
0++ 4.5(3) 4.21(11)
2++ 6.7(4) 5.85(2)
3++ 10.7(8) 8.99(4)
0−+ 7.8(7) 6.33(7)
2−+ 9.0(7) 7.55(3)
1+− − 7.18(3)
3+− − 8.66(4)
2+− − 10.10(7)
0+− − 11.57(12)
1−− − 9.50(4)
2−− − 9.59(4)
3−− − 10.06(21)

Table 5.1: Masses of known stable glueballs in SU(2) [5] and SU(3) [6].

5.2.1 Glueball Masses

Much of what is known about the spectrum of glueballs in SU(N) gauge theories comes from lat-

tice calculations. It is conventional to express these masses in terms of a length scale r0 correspond-

ing to where the gauge potential transitions from Coulombic to linear [356, 357], or in terms of the

confining string tension
√

σ . Both of these quantities can be related to the energy scale ΛMS where

the running gauge coupling becomes strong [358]. For SU(3) (with zero flavors), they are given by

r0ΛMS = 0.614(2)(5) [358] and r0
√

σ = 1.197(11) [5, 357]. To facilitate connections with modern

lattice calculations, we will express the glueball masses in terms of 1/r0 and define the strong coupling

scale as the mass of the lightest 0++ glueball, Λx ≡ m++
0 .

Assuming conserved P and C in the dark sector, the dark glueballs will have definite JPC quantum

numbers. In Table 5.1 we list the spectra of SU(N) glueballs for N = 2 and N = 3 determined in

lattice studies in units of r0. The N = 3 glueballs in the table correspond to all the known stable states,

with the masses listed taken from Ref. [6]. Listings for the N = 2 case are based on Ref. [5], have

significantly larger fractional uncertainties, and may not give a complete accounting of all the stable

states. Note that the absence of C-odd states is expected for SU(2) and other Lie groups with a vanishing

dabc = tr(ta{tb, tc}) symbol (where ta is the generator of the fundamental representation) [11, 352, 359].

Glueball spectra for SU(N > 3) have also been investigated on the lattice [360, 361]. The (lowest-

lying) glueball masses are found to scale with N according to

r0 m(N)' P+Q/N2 , (5.1)

with P and Q on the order of unity. These corrections are found to be numerically modest for N > 3,

and the glueball spectrum for larger N appears to be similar to N = 3. Extrapolations to large N also

find that r0
√

σ ' 1.2 remains nearly constant [5], while the strong-coupling scale decreases smoothly

to r0ΛMS ' 0.45 [362]. A further variation on SU(N) theories is the addition of a non-zero topological
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theta term. This violates P and T explicitly, shifts the string tension
√

σ and glueball masses [363], and

induces mixing between glueball states with different P quantum numbers [363, 364].

The glueballs for other non-Abelian gauge groups have not been studied in as much detail on the

lattice, but a few specific features are expected based on general arguments. As mentioned above, there

are no C-odd states for SU(2), SO(2N +1), or Sp(2N) due to their vanishing dabc coefficient [11, 352,

359]. For SO(2N), SO(4) ∼= SU(2)× SU(2) and SO(6) ∼= SU(4) reduce to previous cases, while for

2N > 6 the C-odd states are expected to be significantly heavier than the lowest C-even glueballs [11].

This follows from the fact that the minimal gluon operators giving rise to the C-odd states for the groups

have mass dimension 2N [359], and higher-dimension gluon operators are generally expected to lead to

heavier glueball states [6, 11, 359].

In this study we concentrate on SU(N) glueballs with P and C conservation in the dark sector.

However, other non-Abelian gauge groups could be realized in nature [330], and we comment on these

more general scenarios when they lead to important phenomenological distinctions.

5.2.2 Glueball Couplings

Dark glueball freeze-out in the early Universe depends on the cross sections for 2→ 2 and 3→ 2

glueball reactions. Glueball self-couplings and transition matrix elements are thus needed to compute

their cosmological evolution. These quantities have not been studied in as much detail on the lattice

as the glueball mass spectrum. Here, we collect the relevant existing lattice results, and we use naive

dimensional analysis (NDA) [365–367] and large-N scaling [368, 369] to make estimates when no

lattice data is available.

Glueball interactions are expected to be perturbative in the limit of large N (for an underlying SU(N)

gauge group), and this motivates writing an effective Lagrangian in terms of glueball fields. Combining

the N scaling of gluon n-point functions with dimensional analysis suggests the form

Le f f =

(
N
4π

)2

m4
x F(φ/mx,∂/mx) , (5.2)

where φ represents a glueball field interpolated by a single-trace gluon operator, mx is a characteristic

glueball mass scale, and F(x,y) is a smooth function that is finite as N→∞. Expanding this function in

a power series and rescaling to obtain a canonical kinetic operator, the effective Lagrangian becomes

Le f f =
1
2
(∂φ)2−∑

n

an

n!
m4−n

x

(
4π

N

)n−2

φ
n + . . . (5.3)

where the coefficients an are expected to be of order unity. This form matches the NDA scaling of

Ref. [231] as well as the 1/N counting of Ref. [235]. Note that shifting the gluon field to remove the

linear term does not alter this general form. In the analysis to follow, we identify mx = m0 with the mass

of the lightest glueball.

This gives rise to diagrams such as those shown in Fig. 5.2, which allows for both 2→ 2 as well as

3→ 2 interactions. Applying this form to 2→ 2 elastic scatterings of the 0++ state with mass mx, we
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Figure 5.2: Feynman diagrams for the scalar 0++ glueball state, which include a typical self-
interaction (left), as well as a number changing interaction (right).

estimate

σ2→2v' A
4π

(
4π

N

)4
β

s
, (5.4)

where A is dimensionless and close to unity, s is the square of the center-of-mass energy, and β =√
1−4m2

x/s. The same arguments applied to 3→ 2 processes at low momentum give

σ3→2v2 ' B
(4π)3

(
4π

N

)6 1
m5

x
, (5.5)

with B also close to unity. These cross sections are at the limit of perturbative unitarity for small N but

become moderate for N & 4π , reflecting the expected transition to weak coupling in this regime [369].

In the analysis to follow we set A = B = 1, and we generalize the cross section estimate for 2→ 2

interactions to more general processes involving other glueball states using the same NDA and large-N

arguments.

5.3 Freeze-out of the Lightest Glueball
Having reviewed the properties of glueballs, we turn next to investigate their freeze-out dynamics in the

early Universe. In this section we study the thermodynamic decoupling of the lightest 0++ glueball in a

simplified single-state model. We also discuss the confining transition in which the glueballs are formed

and investigate how it might modify the glueball relic density. The freeze-out of heavier glueballs will

be studied in the section to follow.

Throughout our analysis, we assume that the dark glueballs are thermally decoupled from the SM

during the freeze-out process but maintain a kinetic equilibrium among themselves. This implies that

the entropy of the dark sector is conserved separately from the visible sector, up to a possible increase

during a first-order confining phase transition. This motivates the definition

R≡ sx

s
= constant , (5.6)

where sx is the entropy density of the dark sector after the confining transition and s is that of the
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visible. The value of R is an input to our calculation, and may be regarded as an initial condition set

by the relative reheating of the dark and visible sectors after inflation if they were never in thermal

contact [204, 231], or by the thermal decoupling of the sectors if they once were [350]. Since inflation

can potentially reheat the dark and visible sectors very asymmetrically, we consider a broad range of

R ∈ [10−12,10−3]. For Tx� Tc and Gx = SU(N), the entropy ratio is related to the temperatures in the

two sectors by

R =
2(N2−1)

g∗S

(
Tx

T

)3

, (5.7)

where g∗S is an effective number of degrees of freedom in the visible sector at temperature T . This ratio

will be maintained through the confining transition provided it is not too strongly first order [351].

5.3.1 Single-State Model

Consider first a dark sector consisting of a single real scalar φx with mass mx, 2→ 2 and 3→ 2 self-

interaction cross sections given by Eqs. (5.4,5.5), and no direct connection to the SM. We show below

that this is often an accurate simplified model for the freeze-out of the lightest 0++ glueball, even when

the heavier glueballs are included.

The freeze-out dynamics of this model coincide with the general scenario of Ref. [349]. Chemical

equilibrium of the φx scalar is maintained by 3→ 2 transitions. These transitions also transfer energy

to the remaining φx particles in the non-relativistic plasma causing them to cool more slowly than they

would if there was a relativistic bath to absorb the input heat [349, 350]. Freeze-out occurs when the

3→ 2 transition rate becomes too slow to keep up with the Hubble expansion. While this happens,

kinetic equilibrium is maintained by 2→ 2 elastic scattering of glueballs, which is parametrically much

faster than the 3→ 2 processes at dark-sector temperatures below the scalar mass.

Kinetic equilibrium implies that the number density of φx particles takes the form

nx =
∫ d3 p

(2π)3

[
e(Ex−µx)/Tx−1

]−1
, (5.8)

where E =
√
~p2 +m2

x , and Tx and µx refer to the temperature and chemical potential of the φx plasma.

Analogous to our derivation of the 2→ 2 Boltzmann equation in chapter 2, this number density evolves

in time according to [147, 349]

ṅx +3Hnx =−〈σ32v2〉(n3
x−n2

x n̄x) , (5.9)

where H is the Hubble rate (sourced by both the visible and dark sectors), n̄x = nx(µx→0) is the number
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Figure 5.3: Temperature evolution of the hidden sector while the 0++ is freezing-out. Shown are
the inverse of the dark and visible sector temperatures (xx(x) = mx/Tx(T )). Before freeze-
out, the temperature drops (xx rises) much slower than the visible sector, as the glueballs
reheat themselves through the 3→ 2 process (dashed red line). After freeze-out, the dark
temperature scales as Tx ∝ a−2 (solid red line). The dashed black line shows the comparison
with how the temperatures would evolve if there was no reheating.

density in the limit of zero chemical potential, and the thermally-averaged cross section is

〈σ32v2〉 =
1
n̄3

x

∫
dΠ1dΠ2dΠ3 e−(E1+E2+E3)/Tx σ32v2 (5.10)

' 1
(4π)3

(
4π

N

)6 1
m5

x
,

where dΠi = gid3 pi/(2π)32Ei and we have used Eq. (5.5) in going to the second line. The dark-sector

entropy is

Txsx = ρx + px−µxnx , (5.11)

with the energy density ρx and pressure px determined by the same distribution function as nx in

Eq. (5.8). Together, Eqs. (5.6,5.9) provide two equations for the two unknowns Tx(t) and µx(t) that

can be solved in conjunction with the Friedmann equation for H(t) [70]. Prior to freeze-out of the 0++

mode (and after dark confinement), the dark temperature falls as Tx ∝ 1/ ln(a) due to the energy injected

by 3→ 2 annihilations [349]. After 0++ freeze-out, the dark temperature falls as Tx ∝ a−2. This effect

is illustrated in Fig. 5.3.

While the results we present below are based on the numerical evaluation of Eqs. (5.6,5.9), it is

instructive to derive an approximate solution for the non-relativistic freeze-out process [349]. For mx�
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Tx, µx, the dark-sector entropy density is

sx '
(

mx

Tx

)
nx . (5.12)

This relation is maintained with zero chemical potential until freeze-out occurs, after which the number

density just dilutes with the expansion of spacetime. Matching these limits and applying Eq. (5.6), the

freeze-out yield is

Yx =
nx

s
' R

x f o
x

, (5.13)

where x f o
x =mx/T f o

x and T f o
x is the dark temperature at which chemical equilibrium is lost. To determine

x f o
x , we follow Ref. [349] and identify freeze-out with the point at which the equilibrium 3→ 2 rate falls

below the fractional rate of change of nxa3, which gives

3H ' x f o
x 〈σ32v2〉n̄2

x . (5.14)

Assuming visible radiation dominates the total energy density during freeze-out, this implies a visible-

sector freeze-out temperature of

T f o ' n̄x

x f o
x MPl〈σ32v2〉√

g f o
∗ π2/10

1/2

, (5.15)

where MPl is the reduced Planck mass and g f o
∗ is the number of effective energy degrees of freedom in

the visible sector [70] at glueball freeze-out. Combining this with the entropy relation of Eq. (5.6) and

the explicit form of n̄x in the non-relativistic regime, we find

(x f o
x )5/2 e2x f o

x =
g f o
∗S

180π
R

m4
xMPl〈σ32v2〉√

g f o
∗ π2/10

3/2

, (5.16)

with g f o
∗S the number of effective entropy degrees of freedom in the visible sector [70] at glueball freeze-

out. This relation can be solved iteratively for x f o
x . Numerically, we find x f o

x ∈ [5,20] for R∈ [10−12,0.1]

and m0 ∈ [10−3,109] GeV.

In Fig. 5.4 we show the mass-weighted relic yield mxYx of φx with N = 3 as a function of the mass

of the lightest glueball Λx = mx and the dark-to-visible entropy ratio R. If the lightest glueball is stable,

the mass-weighted yield is related directly to the relic density by

Ωxh2 = (0.1186)×
(

mxYx

4.322×10−10 GeV

)
. (5.17)

We also indicate on the plot where the relic yield coincides with the observed dark matter relic density,
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Figure 5.4: Mass-weighted relic yields in the single-state simplified model discussed in the text
with N = 3 as a function of the mass Λx = mx and entropy ratio R. The solid white line
indicates where the glueball density saturates the observed dark matter abundance Ωxh2 =
0.1186 [9]. The dark masked region at the lower right indicates where freeze-out occurs for
x f o

x < 5 and our freeze-out calculation is not applicable due to the unknown dynamics of the
confining phase transition.

Ωxh2 = 0.1186 [9]. The dark shaded region at the lower right corresponds to x f o
x < 5. As will be dis-

cussed below, there is an additional uncertainty in the relic abundance in this region when this simplified

model is applied to dark glueballs, and the present calculation might not be applicable here.

5.3.2 Dynamics of the Confining Transition

Dark glueballs are first formed in the early Universe in a confining phase transition. At dark temperatures

much larger than the confinement scale, Tx� Λx, the dark sector can be described as a thermal bath of

weakly interacting dark gluons with g∗ = 2(N2−1) degrees of freedom. As Tx cools below Λx a phase

transition occurs with the gluons binding to form glueballs. Depending on the nature of the transition

and the interaction rate of the resulting glueballs, this transition can affect the glueball relic density.

The nature of the confining transition in pure SU(N) gauge theories has been studied in detail on

the lattice [370–379] and in a number of semi-analytic models (e.g. Refs. [380–385]). The transition

is found to be second order for N = 2, weakly first order for N = 3, and increasingly first order for

N ≥ 4 [372, 373]. The dark-sector critical temperature Tc for N = 2−8 is fit well by the relation [378]

Tc/
√

σ = 0.5949(17)+0.458(18)/N2 , (5.18)

where
√

σ ' 1.2/r0 [357] (or
√

σ ' 2.5ΛMS [358, 362]). Note that this is about a factor of five smaller

than the mass of the lightest glueball in Tab. 5.1. For N > 2 where the transition is found to be first-order,
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the latent heat Lh scales according to [376]

Lh

(N2−1)T 4
c
= 0.388(3)−1.61(4)/N2 , (5.19)

while the interface tension between the phases is consistent with [373]

σcd

T 3
c

= 0.0138(3)N2−0.104(3) . (5.20)

In the confined phase just below the critical temperature, 0.7Tc . Tx < Tc, the entropy and pressure are

significantly larger than what is predicted from the known glueball states [377, 386]. Interestingly, this

discrepancy can be explained by additional glueball states with a Hagedorn spectrum corresponding to

the excitations of a bosonic closed string [386–388], in agreement with the model of Ref. [389]. The

lattice studies of Refs. [390, 391] also suggest that the lowest-lying glueball pole masses persist nearly

unchanged up to Tc (although see Ref. [392] for a different conclusion).

Much less is known about the non-equilibrium properties of the SU(N) confining transition such

as the nucleation temperature and rate. An estimate of the nucleation rate in the early Universe for

SU(3), valid in the limit of small supercooling, is given in Ref. [351]. For supercooling by an amount

Tx = (1−δ )Tc, they find a decay per unit volume of

Γ/V ' T 4
x e−∆Fc/Tx (5.21)

with

∆Fc

Tx
' 16π

3
σ3

cd

L2
hTc

δ
−2 (5.22)

' 2.92×10−4
δ
−2N2

(
1−7.54/N2

)3

(1−4.15/N2)2 , (5.23)

where ∆Fc is the difference between the free energies of the two phases, and in the second line we

have generalized the result of Ref. [351] to SU(N ≥ 3) using the central lattice values of Lh and σcd

listed above. For moderate N, this suggests that nucleation occurs at Tx extremely close to Tc (provided

Tx/T ∼R1/3 is not too small) with only a very small injection of entropy. For very large N, the nucleation

rate becomes small and the assumption of small supercooling made above breaks down. This suggests

that significant supercooling can occur at large N, although a full non-perturbative calculation of the

nucleation rate would be needed to verify this.

To apply these results to the calculation of relic glueball abundances, we assume that the phase

transition completes with Tx = Tc ' m0++/5 [393] and that the mass spectrum of stable glueballs just

after the transition is the same as at Tx→ 0. The simplified model discussed above can then be used with

initial conditions at xx = xc
x ≡mx/Tc, which can be specified completely in terms of R = sx/s and µx(xc

x).

If the 3→ 2 depletion process is fast relative to the Hubble rate at xx = xc
x, the initial chemical potential

relaxes quickly to zero and the final relic density is specified completely by the choice of R. However,
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Figure 5.5: Mass-weighted relic yields in the single-state simplified model with the initial density
set by f = Yx(xc

x)/Yx(xc
x,µx = 0) at Tx = Λx/5 with R = 10−9 and N = 3.

if full chemical equilibration does not occur at xx = xc
x, a range of µ(xc

x) values can be consistent with

the equilibration rate relative to Hubble, and there is an additional uncertainty in the final glueball relic

density for a given value of the entropy ratio R.

To investigate the potential dependence of the relic yield on the initial glueball density following the

phase transition, we repeat the freeze-out calculation described in the previous section for Gx = SU(3)

with different initial glueball densities at Tx = Tc defined by the ratio f = Yx(xc
x)/Yx(xc

x,µx = 0). Our

results are shown for a range of values of Λx with R = 10−9 and N = 3 in Fig. 5.5. For most of the range

of Λx and R of interest, dark freeze-out occurs with x f o
x > xc

x ' 5 and the final glueball relic density is

insensitive to the initial value after the phase transition. Even when x f o
x < xc

x, some residual annihilation

(or creation) typically occurs, and the final density tends to be similar to f = 1. The region in the Λx–R

plane in which this additional uncertainty is present is indicated by the shaded area in Fig. 5.4.

5.4 Freeze-Out with Multiple Glueballs
We turn next to the heavier glueballs above the lightest state. Recall from Section 5.2 that multiple

stable glueballs are expected in a confining Yang-Mills theory, with the spectra found for SU(2) and

SU(3) groups listed in Table 5.1. These heavier states lead to new annihilation channels involving the

lightest glueball, and their relic densities can be of cosmological interest.

The freeze-out of the full glueball spectrum involves many states and a network with numerous

reaction channels. Despite this complexity, we find that the glueball relic densities follow a relatively
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i JPC mi/m0++

1 0++ 1.00
2 2++ 1.39
3 3++ 2.13
4 0−+ 1.50
5 2−+ 1.79
6 1+− 1.70
7 3+− 2.05
8 2+− 2.40
9 0+− 2.74
10 1−− 2.23
11 2−− 2.27
12 3−− 2.39

Table 5.2: List of stable glueball states and mass ratios for SU(3), from Ref. [6].

simple pattern with three main features. First, the relic density of the lightest glueball is described very

well by the simplified one-state model presented above provided it freezes out while it is significantly

non-relativistic. Second, the relic densities of the heavier C-even states are typically extremely small

relative to the lightest glueball. And third, the total relic density of C-odd states (for SU(N ≥ 3) gauge

groups) is dominated by the lightest C-odd mode and is much smaller than the lightest 0++ state but

typically larger than all the other C-even states. This significant difference arises from the conserved

C number in the dark sector, which allows coannihilation of the heavier C-even states with the lightest

glueball but forbids it for C-odd states.

In this section we investigate the relic densities of the full set of glueballs for the dark gauge group

SU(3). We begin by determining which 2→ 2 glueball reactions are allowed by JPC conservation in the

dark sector, and we estimate their rates. Next, we study a simplified reaction network of C-even states

that we argue captures the most important features of the full dynamics. Finally, we perform a similar

analysis for the C-odd states.

5.4.1 Glueball Reactions

To discuss glueball reactions for Gx = SU(3), it will be convenient to label the modes in the spectrum

by i = 1,2, . . . ,12 as in Table 5.2. This table also lists their relative masses and JPC quantum numbers.

The specific interactions between glueballs are not known, but all possible processes consistent with

dark-sector J, P, and C conservation are expected to be present. For a 2→ 2 glueball reaction of the

form i+ j→ k+ l, conservation of C requires

C jC j =CkCl . (5.24)
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This is trivial to apply and rules out a number of reactions. Conservation of P implies

PiPj = (−1)LPkPl , (5.25)

where L is the relative orbital angular momentum of the reaction channel. When identical particles are

present, they must also be symmetrized. In general, it can be shown that there always exists a value of L

such that both parity and total angular momentum are conserved unless either Ji = J j = 0 or Jk = Jl = 0.

If the process i+ j↔ k+ l is allowed, it contributes to the collision term in the Boltzmann equation

for glueball i according to

∆ṅi = −〈σv〉i jklnin j + 〈σv〉kli jnknl , (5.26)

where 〈σv〉i jkl is the thermally-averaged cross section and ni refers to the number density of the i-th

species. Assuming kinetic equilibrium is maintained among the glueballs, we have

ni = gi eµi/Tx(4π)m2
i Tx K2(mi/Tx) (5.27)

' gi

(
miTx

2π

)3/2

e−(mi−µi)/Tx , (5.28)

where Tx is the temperature of the glueball bath and gi, mi, and µi are the number of degrees of freedom,

mass, and chemical potential of the type-i glueball. The thermally-averaged cross-section is given by

〈σv〉i jkl =
1

nin j

∫ d3 pi

(2π)3

∫ d3 p j

(2π)3 gi e(µi−Ei)/Txg j e(µ j−E j)/Tx(σv)i jkl (5.29)

=
gig j

n̄in̄ j

∫ d3 pi

(2π)3

∫ d3 p j

(2π)3 e−(Ei+E j)/Tx (σv)i jkl , (5.30)

where Ei =
√

m2
i +~p2

i and n̄i = ni(µi = 0). Note that the chemical potentials cancel in this expression.

The reaction i+ j → k + l is either exothermic (mi +m j ≥ mk +ml) or endothermic (mi +m j <

mk +ml). Equilibration of this process implies µi +µ j = µk +µl . Combined with detailed balance, we

must have

〈σv〉i jkl n̄in̄ j = 〈σv〉kli j n̄kn̄l . (5.31)

Using these relations, the thermally-averaged rates of endothermic reactions can be estimated based on

those of exothermic reactions.

Thermal averaging of cross sections was studied in detail in Refs. [73, 215]. Generalizing their

results slightly and using the large-N and NDA estimates of interaction strengths, we estimate the

thermally-averaged cross section of an exothermic process i+ j→ k+ l that proceeds at lowest orbital
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angular momentum level L by

〈σv〉i jkl '
(4π)3

N4
βi jkl

si j
cL

(
2

xi+x j

)L

, (5.32)

where xi = mi/T ,

si j =

(
1+

3
xi + x j

)
(mi +m j)

2 , (5.33)

along with

βi jkl =
2p′kl√si j

(5.34)

=
1
si j

(
s2

i j +m4
k +m4

l −2si jm2
k−2si jm2

l −2m2
l m2

k
)1/2

,

and the coefficients cL are [73]

c0 = 1, c1 = 3/2, c2 = 15/8, c3 = 35/16, c4 = 315/128 . (5.35)

The first factor in Eq. (5.32) contains the couplings, the second factor describes the kinematics near

threshold in the non-relativistic limit, while the third is the velocity suppression for a process that goes

at the L-th partial wave.

The cross-section estimates of Eq. (5.32) can be used to judge which reactions are most significant

during freeze-out. The relative effect of the process i+ j→ k+ l (with j, k, l 6= i) on the number density

of glueball species i is

|∆ṅi|
ni

= 〈σv〉i jkl n j . (5.36)

In general, this reaction is cosmologically active for |∆ṅi|/ni > H. Scanning over all possible 2→ 2

reactions of SU(N = 3) glueballs, we find that in full equilibrium with xx > 5 and for every glueball

species i > 1 there exist multiple number-changing 2→ 2 reactions down to lighter states with |∆ṅi|/ni

significantly larger than the corresponding quantity for 3→ 2 annihilation of the lightest glueball. This

implies that relative chemical equilibrium is maintained among the glueballs during and for some time

after 3→ 2 freeze-out, with

ni

n j
=

n̄i

n̄ j
' gi

g j

(
mi

m j

)3/2

e−(mi−m j)/Tx . (5.37)

Equivalently, the number densities of all species immediately after 3→ 2 freeze-out are given by their

equilibrium values with a common chemical potential.

Relative chemical equilibrium after 3→ 2 freeze-out implies further that the relative importance of

different 2→ 2 reactions on the subsequent freeze-out of the heavier glueballs can be estimated using
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their equilibrium number densities. This allows us to greatly simplify the set of reaction networks by

keeping only the dominant processes and concentrating exclusively on a few key states. It turns out to be

consistent and convenient to study the C-even and C-odd states independently, and this is the approach

we take below.

5.4.2 Relic Densities of C-Even States

The lightest C-even glueballs above the lowest mode have JPC = 2++, 0−+, 2−+ and correspond to i =

2, 4, 5, in our labelling scheme. Scanning over all possible reactions for these states and estimating their

relative effects on the number densities as above, the dominant interactions near relative equilibrium are

found to form a minimal closed system. The reaction network for the system is described by

ṅ1 +3H n1 = −〈σ32v2〉n2
1(n1− n̄1) (5.38)

−1
2
〈σv〉2111

[(
n̄2

n̄1

)
n1n2−n2

2

]
−〈σv〉2211

[(
n̄2

n̄1

)2

n2
1−n2

2

]

−1
2
〈σv〉2214

[(
n̄2

2
n̄1n̄4

)
n1n4−n2

2

]

−1
2
〈σv〉2415

[(
n̄2n̄4

n̄1n̄5

)
n1n5−n2n4

]
ṅ2 +3H n2 = +

1
2
〈σv〉2111

[(
n̄2

n̄1

)
n1n2−n2

2

]
(5.39)

+〈σv〉2211

[(
n̄2

n̄1

)2

n2
1−n2

2

]

+〈σv〉2214

[(
n̄2

2
n̄1n̄4

)
n1n4−n2

2

]

+
1
2
〈σv〉2415

[(
n̄2n̄4

n̄1n̄5

)
n1n5−n2n4

]
−1

2
〈σv〉1512

[(
n̄1n̄5

n̄1n̄2

)
n1n2−n1n5

]
ṅ4 +3H n4 = −1

2
〈σv〉2214

[(
n̄2

2
n̄1n̄4

)
n1n4−n2

2

]
(5.40)

+
1
2
〈σv〉2415

[(
n̄2n̄4

n̄1n̄5

)
n1n5−n2n4

]
ṅ5 +3H n5 = −1

2
〈σv〉2415

[(
n̄2n̄4

n̄1n̄5

)
n1n5−n2n4

]
(5.41)

+
1
2
〈σv〉1512

[(
n̄1n̄5

n̄1n̄2

)
n1n2−n1n5

]
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Figure 5.6: Mass-weighted relic yields of the four lightest C-even glueballs in SU(3), JPC =
0++, 2++, 0−+, 2−+, as a function of the dark glueball temperature variable xx =mx/Tx com-
puted using the simplified reaction network discussed in the text. The solid lines show the
yields derived from the reaction network while the dashed lines indicate the yields expected
if the states were to continue following equilibrium with µi = 0. Top left: (Λx/GeV, R) =
(1, 10−9). Top right: (Λx/GeV, R) = (105, 10−9). Bottom left: (Λx/GeV, R) = (1, 10−3).
Bottom right: (Λx/GeV, R) = (105, 10−3).

The factors of 1/2 appearing here are symmetry factors for initial states that are not included in the

standard definition of the thermally-averaged cross section [215]. They ensure that the summed number

density n1 +n2 +n4 +n5 is conserved in the absence of 3→ 2 reactions. In addition to these evolution

equations, the ratio of entropies R = sx/s is conserved after the confining transition at T c
x ' mx/5, with

the dark sector entropy now extended to include all (relevant) glueball modes.

Numerical solutions of this system of equations for SU(3) dark glueballs are shown in Fig. 5.6 for
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Figure 5.7: Mass-weighted relic yields of the 0−+ dark glueball in SU(3) as functions of Λx = mx

and R, computed using the simplified C-even reaction network discussed in the text. For
reference, we also indicate the yield corresponding to the observed dark matter density. Note
that the yield of the 0++ state is much larger.

the parameter values (Λx/GeV, R) = (1, 10−9), (105, 10−9), (1, 10−3), (105, 10−3). In each panel, the

evolution of the mass-weighted yields miYx with xx =mx/Tx are given by the solid lines, while the dashed

lines show the mass-weighted yield of each species with µi = 0. In all four panels, the lightest 0++ mode

is seen to dominate the total glueball relic abundance for xx & 10. This abundance is found to match

closely with the value determined by the one-glueball simplified model discussed above. The much

smaller relic abundances of the heavier glueball modes is due to the efficient coannihilation reactions

they experience. Since these 2→ 2 processes are parametrically faster than the 3→ 2 annihilations

setting the 0++ density, relative chemical equilibrium is maintained to large values of xx. This implies a

strong exponential suppression of the heavier glueball densities as in Eq. (5.37).

Let us also point out that the 0−+ state freezes out (of relative chemical equilibrium) well before the

2++ and 2−+ modes, even though it is heavier than the 2++. This can be understood by examining the

relative rates of the depletion reactions for the 0−+ state; for xx & 20 it is found to be 0−++0++→ 2+++

2++. Comparing masses, this reaction is found to be endothermic and thus it receives an additional rate

suppression as discussed in Ref. [394]. The dependence of the 0−+ (i = 4) glueball relic density on

Λx = mx and R is also shown in Fig. 5.7.

5.4.3 Relic Densities of C-Odd States

Freeze-out of the C-odd glueballs is qualitatively different from that of the C-even modes due to the

conservation of C number in the dark sector. This forbids coannihilation reactions of the C-odd states

with the relatively abundant lightest 0++ glueball into final states with only C-even modes, and can lead
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to a significant relic density for the lightest C-odd 1+− state.

To see how this comes about, let us split up the labels of the state indices defined in Table 5.2

according to

i, j = 1,2,3,4,5 =C-even , a,b = 6,7, . . .12 =C-odd , (5.42)

and let us also define the net C-odd density by

n− =
12

∑
a=6

na . (5.43)

The net collision term in the Boltzmann equation for n− is

∆ṅ− = ∑
a

∆ṅa (5.44)

= − ∑
ab,i j
〈σv〉abi j nanb + ∑

i j,ab
〈σv〉i jab nin j . (5.45)

The key feature of this expression is that all processes contributing to the rate of change of ṅ− have

two C-odd particles either in the initial or the final state [215]. Using detailed balance, we can rewrite

Eq. (5.45) in the form

∆ṅ− = −〈σv〉6611n2
−

[
∑
abi j

(
〈σv〉abi j

〈σv〉6611

nanb

n2
−

Θ++
〈σv〉i jab

〈σv〉6611

nanb

n2
−

n̄in̄ j

n̄an̄b
Θ−

)]
(5.46)

+〈σv〉6611n2
1

(
n̄−
n̄1

)2
[
∑
abi j

(
〈σv〉abi j

〈σv〉6611

n̄an̄b

n2
−

nin j

n̄in̄ j

n̄2
1

n2
1

Θ++
〈σv〉i jab

〈σv〉6611

nin j

n2
−

n̄2
1

n2
1

Θ−

)]
,

where Θ+ = Θ(ma +mb−mi−m j) and Θ− = Θ(mi +m j−ma−mb) are step functions to select out

exothermic reactions as appropriate.

Consider the relative sizes of the individual terms in Eq. (5.46) when relative equilibrium is main-

tained. In the first line, the first term is on the order of unity for a = b = 6 but has an exponential

suppression otherwise from the factor of nanb/n2
−, while the second term has an additional exponen-

tial suppression from the factor n̄in̄ j/n̄an̄b (mi +m j > ma +mb). Similar arguments also apply to the

terms in the second line of Eq. (5.46), noting that n̄in̄ jn2
1 = nin jn̄2

1 in relative equilibrium, and only the

a = b = 6 portion of the first term avoids an exponential suppression. Indeed, a numerical evaluation

of these contributions, assuming relative equilibrium and moderate xx & 10, confirms that the a = b = 6

terms of the Θ+ pieces dominate the collision term.

The total C-odd density begins to deviate appreciably from the relative equilibrium value for

〈σv〉6611 n̄2
−(n1/n̄1)

2 ∼H. This occurs well before the C-even states freeze out, and also well before C-

odd transfer reactions, such as 7+1↔ 2+6, turn off. The latter result implies that the relative densities

of C-odd states are maintained among themselves (but not the C-even states) even after the net C-odd

density has frozen out. Therefore we also expect n6/n−→ 1 and na>6/n−→ 0 provided these processes
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Figure 5.8: Mass-weighted relic yields of the 1+− dark glueball in SU(3) as a function of Λx = mx

and R, computed in the simplified two-state network discussed in the text. For reference, we
also indicate the yield corresponding to the observed dark matter density. Note that the yield
of the 0++ state is much larger.

turn off at moderate xx & 10.

The net result of this analysis is that it is generally a good approximation to compute the freeze-out

of the C-odd density using a simplified two-state system consisting only of the i = 1, 6 (0++ and 1+−)

glueballs. Correspondingly, the system of Boltzmann equations is

ṅ1 +3Hn1 = −〈σ32v2〉n2
1(n1− n̄1) (5.47)

+〈σv〉6611

[
n2

6−
(

n1

n̄1

)2

n̄2
6

]

ṅ6 +3Hn6 = −〈σv〉6611

[
n2

6−
(

n1

n̄1

)2

n̄2
6

]
. (5.48)

Corrections to this estimate are expected to be of order unity, which is well within the uncertainties on

the cross sections.

The mass-weighted yields of the lightest 1+− C-odd SU(3) glueball based on this analysis are shown

in Fig. 5.8. Like for the C-even states, the inclusion of additional heavier C-odd glueballs generally has

a negligible effect on the final abundance of the lightest 0++ mode relative to the one-state model

discussed previously. Furthermore, the 0++ state dominates the total glueball density, and the relic

abundance of the 1+− state is smaller by several orders of magnitude. However, the 1+− density can

be considerably larger than any of the C-even states, even though it is heavier than the 2++ and 0−+

glueballs. As discussed above, this can be understood by the absence of relevant coannihilation reactions

112



involving the much more abundant 0++ glueball. Let us also point out that C-odd dark glueballs provide

an explicit realization of the scenario discussed in Ref. [395] consisting of a stable dark matter state

freezing out in the background of a massive bath.

5.5 Dark Matter Scenarios and Connections to the SM
Stable dark glueballs will contribute to the dark matter (DM) density of the Universe. However, if the

dark sector has a connection to the SM, some or all of the dark glueballs will be able to decay [229].

Possible SM connections include heavy matter charged under both the dark and SM gauge groups [11,

12], a Higgs portal [337], or a Yukawa connection [12]. In all of the above scenarios, the decay rates of

glueballs through the various operators can span an enormous range. For lifetimes beyond the age of the

Universe the glueballs will contribute to the DM density and the considerations discussed above apply

here as well. In addition, for lifetimes τ . 1026 s there will also be constraints from energy injection

into the CMB near recombination [123, 270, 396], x-ray and gamma-ray fluxes [235, 397], and energy

release during primordial nucleosynthesis [258–260, 270], such as that discussed in Part III. Given the

parametrically similar decay rates and the much larger relic density of the lightest 0++ glueball relative

to the others, these bounds apply primarily to this state, although it is possible for the 1+− (and to

a lesser extent, the 0−+) to also contribute to the constraints if certain symmetry conditions are met.

These will be discussed in detail in the following chapter.

These SM operators can also be relevant for the glueball freeze-out abundances. At high temper-

atures they can lead to the thermalization of the dark and visible sectors, although the specific details

depend on the reheating history after primordial inflation. They may also help to further populate the

dark sector through inverse decays [270], or induce decays before freeze-out occurs, although this typi-

cally requires relatively larger values of Λx/M. This is a modification of the scenario discussed in Part II,

and so we must keep in mind the connection between the two sectors when moving forward.

With no connection to the SM, all the states in the glueball spectrum discussed in Section 5.2 will

be stable and contribute to the net DM density2. As reported in Sections 5.3 and 5.4, the total glueball

contribution will be dominated by the lightest 0++ state. The DM scenario in this case coincides with the

glueball scenarios considered in Refs. [231, 232, 235] in which only the lightest glueball was considered.

Avoiding overclosure by the glueball relic density bounds Λx and R from above, as can be seen in

Fig. 5.4. If the lightest glueball makes up all the DM, Λx is bounded from below by the requirement that

its self-interaction cross section not be too large, σ2→2/m . 10cm2/g, which translates into [231, 232,

235]

Λx & 100 MeV
(

3
N

)4/3

. (5.49)

Smaller Λx can also interfere with cosmic structure formation [207, 235, 398].

2Decays to gravitons are possible, but the corresponding lifetime is much longer than the age of the Universe for Λx .
107 GeV [235].
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5.6 Conclusions
In this chapter we have investigated the freeze-out dynamics of SU(3) dark glueballs in the early

Universe. This is our first step towards creating a complex hidden sector (that will eventually have

SM connections). Such glueballs arise from confinement in theories with a new non-Abelian gauge

force decoupled from the SM and all charged matter significantly heavier than the confinement scale.

Our results expand upon previous studies of the cosmological history of dark glueballs in two key

ways [231, 232, 235]. First, we studied potential new effects on the glueball relic density due to the

confining phase transition itself. And second, we performed a detailed analysis of the freeze-out dy-

namics of the heavier glueballs in the spectrum. We also briefly discussed connections to the SM as

well as some of the implications of the heavier glueballs on dark matter, astrophysics, and cosmology,

with a more detailed study of these effects to follow in the next chapter.

When the glueballs are unable to decay efficiently through connectors to the SM (or other lighter

states), we find that the lightest 0++ state dominates the total glueball relic abundance, and the abun-

dance we calculate is in agreement with previous studies that only considered the lightest state [232,

235]. The relative relic densities of heavier glueballs in the spectrum are orders of magnitude smaller,

with the largest contributions coming from the 0−+ and 1+− modes (for SU(3)). Even though the abun-

dances of these states are much smaller than the lightest 0++, they can also be parametrically long-lived

compared to the 0++. This opens the possibility of the 0++ mode decaying away early, and the heavier

modes making up the DM density today or leading to the most stringent constraints on dark Yang-Mills

theories. A detailed study of these effects based on the results determined here for the freeze-out relic

abundances will be the focus of the next chapter.

Our results are also be applicable to other non-Abelian gauge groups with some straightforward

modifications. The lightest glueball, which is generically expected to have JPC = 0++ [355], will have

the largest relic yield. This yield can be computed reliably in the single-state model of Section 5.3,

provided 3 → 2 annihilation processes are active after the confining transition. The relic yields of

the heavier glueballs will depend on their specific masses and quantum numbers, but can be computed

following the general methods of Section 5.4. For a given confinement scale, their masses will be similar

to those of SU(3) for general SU(N) groups, while the C-odd states are expected to be considerably

heavier for SO(2N) groups and absent for SU(2), SO(2N + 1), and Sp(2N) groups with a vanishing

dabc symbol. The different properties of the more massive glueballs will only be relevant to cosmology

when they have lifetimes that are parametrically much longer than the lightest 0++ mode.

Now that we have developed a solid foundational understanding of how glueballs will interact and

evolve when treated independently from external influences, we relax that assertion. As has been alluded

to already, in the next chapter we build up our non-Abelian gauge force to include SM connections. This

will entail incorporating all of the previous chapters. For example, we will need to be careful to work

in regimes that will not be affected by the presence of extra freeze-in transfer (or include those effects

if necessary), as we found in Ch. 3. After building up the model, we will identify the implications that

the glueballs will have on astrophysics and cosmology, using constraints very closely related to those

derived in Ch. 4. As such, the next chapter will be a culmination of everything we have studied thus far.
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Chapter 6

Cosmological Bounds on Non-Abelian
Dark Forces

6.1 Introduction
In previous chapters, we have explored the many different facets of SM interactions with a dark sector.

To begin, we started with only SM influence on a dark sector, and learned about how the evolution of the

dark sector may change, even in the presence of UV operators. Next, we considered low-energy decays

in the context of BBN constraints, which explicitly considers how energy injected from a hidden sector

can alter the abundances of the products of BBN. Finally, we moved away from simple dark sectors to

a more complex model, motivated by many different areas of study. This new model, a non-Abelian

gauge force, gives rise to a full spectrum of stable glueballs. We studied this glueball spectrum in an

isolated environment, and learned how the various states will interact, ultimately leading to solutions for

the relic yields of the different glueballs. Now, we put all of this information to use, and consider how

this more complex model will interact with the Standard Model. Although we focus more explicitly

on the effect that glueball decays will have on the visible sector, we still make mention of the role

that SM connectors might have on their production, before moving on to constraining the full theory.

Schematically, we depict this wholistic view of the two sectors in Fig. 6.1.

As we motivated previously, new gauge forces may be realized in nature beyond the SU(3)c ×
SU(2)L×U(1)Y structure of the Standard Model (SM). If a new gauge force connects directly to SM

matter, it must have a characteristic mass scale above about a TeV to be consistent with experimental

tests of the SM [399–401]. On the other hand, new dark gauge forces that couple only very weakly

to the SM can be significantly lighter [325–327]. Such dark forces can be very challenging to probe

directly in experiments, and in many scenarios the strongest bounds on them come from astrophysical

and cosmological observations [270–272, 402].

In this chapter we investigate the cosmological evolution and constraints on new non-Abelian dark

0This chapter is based on L. Forestell, D. E. Morrissey, and K. Sigurdson, Cosmological Bounds on Non-Abelian Dark
Forces, Phys. Rev. D, 97, (2018), 075029, [arXiv:1710.06447] [4]
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VS: SM DS: 0++, 1+−

Figure 6.1: Flow of information considered in this chapter. We now have a fully realized dark
sector, with complex interactions. The dark sector may also transfer energy to the visible
sector via decays, while the visible sector may influence the production of dark glueballs.

forces. The requirement of gauge invariance in theories of non-Abelian dark forces implies that the new

gauge vector bosons can only couple to the SM through non-renormalizable operators [11, 12]. This

stands in contrast to Abelian dark forces that can connect to the SM at the renormalizable level through

kinetic mixing with hypercharge. As a result, direct low-energy searches for non-Abelian dark forces

are very difficult, and cosmological observations usually provide the most powerful tests of them [231,

232, 235–237, 336–338, 351, 403–407].

The particle spectrum in theories of non-Abelian forces is diverse and complicated, and depends on

both the gauge group and the representations of the matter fields charged under it. We continue to focus

on the minimal realization of a non-Abelian dark force consisting of a pure Yang-Mills theory with a

simple gauge group Gx. If the visible and dark sectors do not interact, they evolve independently with

distinct temperatures T and Tx. This was thoroughly investigated in the previous chapter. After con-

finement at Tx = Tc, the dark glueballs undergo a complicated freeze-out process. The energy density of

the dark sector is dominated by the lightest glueball state, which on general grounds is expected to have

JPC = 0++ [355]. The lightest 0++ number density changes mainly through (3→ 2) self-annihilation

processes [235], as we demonstrated explicitly in the previous chapter. While these reactions are active,

the dark temperature changes very slowly, only falling off as the logarithm of the cosmological scale

factor [349, 408]. As a result, the lightest glueballs form a massive thermal bath in which the other

heavier glueballs annihilate through 2→ 2 processes and eventually freeze out [395, 409]. In the end, a

collection of relic glueball densities is left over, dominated by the 0++ with exponentially smaller yields

for the heavier states [409].

The process of glueball freeze-out can change drastically if there are operators that connect the

visible and dark sectors. Such operators are always expected at some level; quantum gravitational effects

are thought to induce gauge-invariant operators involving both SM and dark sector fields suppressed by

powers of the Planck mass [410–413]. Even stronger connections can arise if there exist new matter

fields that couple directly to both the visible and dark sectors [11, 12]. As long as the new physics

generating these operators is much larger than the confinement scale, their effects can be parametrized

in terms of a set of non-renormalizable connector operators.

With connectors, energy can now be transferred between the dark and visible sectors [229, 235–237].

After confinement, connector operators can also modify the glueball freeze-out dynamics and induce

decays of some or all of the dark glueballs to the SM. If one of the glueballs is long-lived or stable, it will
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contribute to the density of dark matter (DM) [231]. However, glueball lifetimes that are not exceedingly

long will inject energy into the cosmological plasma and modify the standard predictions for big bang

nucleosynthesis (BBN) [259, 260] and the cosmic microwave background (CMB) [123, 312], as well as

act as astrophysical sources of cosmic and gamma rays [402].

The aim of this chapter is to estimate the bounds on pure non-Abelian dark forces in the presence

of connector operators from cosmology and astrophysics. We focus mainly on the dark gauge group

Gx = SU(3) with glueball masses above m0 ≥ 100 MeV, and we study the leading connector operators

between the dark vector bosons and the SM with characteristic mass scale M� m0. As an initial con-

dition, we assume inflation (or something like it) followed by preferential reheating to the visible sector

to a temperature above the confinement scale but below that of the connectors. With these assumptions,

we find very strong limits on non-Abelian dark forces.

Cosmological effects of dark gluons and glueballs were studied previously in Refs. [229, 231, 232,

235–237, 336, 351, 402, 406], including the detailed analysis of the relic yield we presented in Ch. 5.

We extend these earlier works with a more detailed analysis of the leading (2-body) connector operators

and their effects on energy transfer between the visible and dark sectors. We also investigate the effects

of heavier glueballs in the spectrum beyond the lightest mode, and we show that the lightest C-odd

glueball can play an important role in some cases and even make up the observed DM density when it

is long lived or stable.

Following this introduction, we discuss and review the general properties of glueballs relevant to this

analysis in Sec. 6.2. Next, we present the leading connector operators to the SM and investigate their

implications for glueball decays in Sec. 6.3. In Sec. 6.4 we study the cosmological evolution of the dark

gauge theory and we compute glueball yields both with and without connector operators. These results

are then applied to derive cosmological constraints on dark glueballs in Sec. 6.5. Finally, Sec. 6.6

is reserved for our conclusions. Some technical details about gluon thermalization are collected in

Appendix B. This chapter is based on work published in Ref. [4] in collaboration with David Morrissey

and Kris Sigurdson.

6.2 Glueball Properties
Glueballs have been studied using a variety of methods for a wide range of non-Abelian gauge groups [352,

359]. In this section we review and derive some general results for SU(N) glueballs that will be essen-

tial for the analysis to follow. The basic properties, such as masses and self-interaction strengths can be

found in Ch. 5, while extra connections relevant to the standard model will be given here.

6.2.1 Glueball Matrix Elements

In Ch. 5, we described the glueball self-interactions. However, we will also need glueball matrix el-

ements in the analysis to follow. Specific glueball states can be identified with gauge invariant gluon

operators, in the sense that the operators can create one-particle glueball states from the vacuum. For
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example [11],

S = tr(XµνX µν) → 0++

P = tr(Xµν X̃ µν) → 0−+

Tµν = 1
2 tr(XµαX α

ν )− 1
4 ηµνS → 2++, 1−+, 0++

Ω
(1)
µν = tr(XµνXαβ Xαβ ) → 1−−, 1+−

Ω
(2)
µν = tr(X α

µ X β

α Xβν) → 1−−, 1+−

(6.1)

Here, Xµν = Xa
µνta is the dark gluon field strength contracted with the generators of the fundamental

representation of the group normalized to tr(tatb) = δ ab/2.

The two matrix elements of greatest interest to us are

αxFS
0++ ≡ αx〈0|tr(XµνX µν)|0++〉 ∼ m3

x (6.2)

α
3/2
x M1+−0++ ≡ α

3/2
x 〈0++|

(
Ω

(1)
µν −

5
14

Ω
(2)
µν

)
|1+−〉 ∼

√
4π

N
m3

x , (6.3)

where the estimates on the right hand sides are based on large-N and NDA, and αx = g2
x/4π is the dark

gauge coupling. In the second line, we have also suppressed the Lorentz structure of the matrix element,

εµναβ pαεβ , where pα is the outgoing momentum and εβ is the polarization of the initial state [11]. The

first of these matrix elements, FS
0++ , has been computed on the lattice for N = 3 with the result [354, 414]

4παxFS
0++ = 2.3(5)m3

x , (6.4)

which agrees reasonably well with our large-N and NDA estimate and is scale independent. In contrast,

the second matrix element has not been calculated on the lattice. We use the lattice value of FS
0++ and

the NDA estimate α
3/2
x M1+−0++ =

√
4π/N m3

x in the analysis to follow.

6.3 Connections to the SM and Glueball Decays
With the SM uncharged under the dark gauge group Gx, gauge invariance forbids a direct renormalizable

connection of the dark gluons to the SM. However, massive mediator states that couple to both sectors

can generate non-renormalizable operators connecting them. If the characteristic mass scale of the

mediators is M�Λx, the leading operators have mass dimension of eight and six, and take the form [11,

12]

O(8a) ∼ 1
M4 tr(FSMFSM) tr(XX) , (6.5)

O(8b) ∼ 1
M4 Bµν tr(XXX)µν , (6.6)

O(6) ∼ 1
M2 H†H tr(XX) , (6.7)

where X and FSM refer to the dark gluon and SM field strengths. If present, these operators allow some

or all of the glueballs to decay to the SM. In this section we illustrate mediator scenarios that generate
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Figure 6.2: Diagrams that contribute to the effective Lagrangian of Eqs. (6.9) and (6.10). Effective
operators are created via integration of loops of the heavy mediator fermions[11]. The left
hand diagram will loosely correspond to decays of 0++ (Eq. (6.9)), while the right hand
diagram will also contain terms that describe 1+− decays (Eq. (6.10)).

these operators, and we compute the glueball decay rates they induce. This is an explicit realization of

the unstable glueball scenarios hinted at in Ch. 5.

6.3.1 Dimension-8 Operators

Dimension-8 operators of the form of Eqs. (6.5,6.6) lead to glueball decays with characteristic rate

Γ8 ∼
m9

x

M8 . (6.8)

Here, we present an explicit scenario of mediator fermions that generates these operators and we com-

pute the glueball decay rates they induce.

Before proceeding, it is helpful to organize the dimension-8 operators according to a dark charge

conjugation operation Cx under which Xa
µ → −η(a)Xa

µ , where η(a) is the sign change of the funda-

mental generator ta under charge conjugation [415], with the SM vector bosons being invariant. The

operators of Eq. (6.5) are even under Cx and those of Eq. (6.6) are odd. Furthermore, Cx coincides with

the Cx-number assignments of the glueball states. Correspondingly, the operators of Eq. (6.5) only allow

direct decays of Cx-even glueballs to the SM, or glueball transitions from even to even or odd to odd. In

particular, at d = 8 the operator of Eq. (6.6) is required for the lightest Cx-odd 1+− glueball to decay.

Consider now a set of massive vector-like fermions with masses Mr ∼M� Λx, each transforming

as a fundamental or antifundamental under Gx = SU(N) and the representation r of the SM gauge

group (defined with respect to the left-handed component of the fermion). Direct collider and precision

electroweak limits on such fermions imply Mr & 100 GeV if they only have electroweak charges, and

Mr & 1000 GeV if they are charged under QCD [11, 12, 416]. The diagrams that will be relevant for

the effective operators are shown in Fig. 6.2. The effective Lagrangian generated by integrating the
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fermions out is [11]:

Le f f ⊃
αx

M4

(
α1χ1BµνBαβ +α2χ2W c

µνW c
αβ

+α3χ3Ga
µνGa

αβ

)
×
(

1
60

Sη
µν

η
αβ +

1
45

Pε
µναβ + . . .

)
(6.9)

+
α

3/2
x α

1/2
1

M4 χY Bµν

14
45

(
Ω

(1)
µν −

5
14

Ω
(2)
µν

)
. (6.10)

Here, the dark gluon operators S, P, and Ω
(1,2)
µν correspond to Eq. (6.1), and the coefficients χi are

given by

χi = ∑
r

d(ri)T2(ri)/ρ
4
r (6.11)

χY = ∑
r

d(ri)Yr/ρ
4
r , (6.12)

where the sums run over the SM representations r of the fermions, and ρr = Mr/M. For each such

representation, we define sub-representations r = (r1,r2,r3) with respect to the SM gauge factors Gi =

U(1)Y , SU(2)L, SU(3)c. The quantity d(ri) is the number of copies of the i-th sub-representation within

r, and T2(ri) is the trace invariant for that factor (normalized to 1/2 for the N of SU(N) and Y 2 for

U(1)Y ).1

Generic representations of mediator fermions break the dark charge conjugation number Cx ex-

plicitly and generate both operator types of Eqs. (6.5,6.6). This is explicit in Eq. (6.9), with both

even (χi 6= 0) and odd operators (χY 6= 0). However, there exist mediator fermion combinations that

preserve Cx [201] and yield χY = 0. From Eq. (6.12), we see that this requires a specific combination of

fermion charges as well as masses. The presence of masses also implies that Cx can be broken softly. In

contrast, the χi coefficients of Eq. (6.11) are positive semi-definite and not subject to cancellation.

The Cx-preserving operator of Eq. (6.9) allows direct decays of the 0++ glueball to pairs of SM

vector bosons. The corresponding decay widths are [11]

Γ(0++→ gg) = (N2
c −1)

α2
3

16π

(
2
60

)2

χ
2
3

m3
0(αxFS

0++)2

M8 , (6.13)

Γ(0++→ γγ)

Γ(0++→ gg)
=

1
(N2

c −1)

(
αχγ

α3χ3

)2

(6.14)

Γ(0++→ ZZ)
Γ(0++→ gg)

=
1

(N2
c −1)

(
α2χZ

α3χ3

)2(
1−4

m2
Z

m2
0

)1/2(
1−4

m2
Z

m2
0
+6

m4
Z

m4
0

)
(6.15)

Γ(0++→W+W−)
Γ(0++→ gg)

=
2

(N2
c −1)

(
α2χ2

α3χ3

)2(
1−4

m2
W

m2
0

)1/2(
1−4

m2
W

m2
0
+6

m4
W

m4
0

)
(6.16)

Γ(0++→ γZ)
Γ(0++→ gg)

=
2

(N2
c −1)

(√
αα2 χγZ

α3χ3

)2(
1− m2

Z

m2
0

)3

(6.17)

1Note that due to our normalizations, our χ2,3 are smaller by a factor of 1/2 than the corresponding terms in Ref. [11].
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where m0 = mx is the 0++ glueball mass, FS
0++ is given by Eq. (6.2), N2

c − 1 = 8, the χi are defined

in Eq. (6.11), χγ = χ1 + χ2, χZ = (s4
W χ1 + c4

W χ2)/c2
W , and χγZ = (c2

W χ2− s2
W χ1)/cW , with sW being

the sine of the weak mixing angle. Note that the decay width to gluons in Eq. (6.13) only applies for

m0 � 1 GeV; at lower masses the final states consist of hadrons. We do not attempt to model this

hadronization, and instead we apply a factor of
√

1− (2mπ/m0)2 to the decay width. In evaluating the

width of Eq. (6.13), we take α3 at scale m0 since the corresponding gluon operator is renormalized (at

one-loop) in the same way as the standard field strength operator.

Decays of the lightest 1+− glueball occur through the Cx-odd operator term in Eq. (6.9), with the

leading decay channels expected to be 1+−→ 0+++{γ,Z}. The widths are [11]

Γ(1+−→ 0++
γ) =

α

24π
χ

2
Y

(
1− m2

x

m2
1

)3 m3
1 (α

3/2
x M1+−0++)2

M8 (6.18)

Γ(1+−→ 0++Z) =
α

24π
t2
W χ

2
Y

[(
1+

m2
x

m2
1
− m2

Z

m2
1

)2

−4
m2

x

m2
1

]3/2
m3

1 (α
3/2
x M1+−0++)2

M8 (6.19)

with m1 = m1+− , and M1+−0++ defined in Eq. (6.3).

The total decay lifetimes τ = 1/Γ of the 0++ and 1+− glueball states from the dimension-8 operators

above with χi = χY = 1 and Gx = SU(3) are shown in the left and right panels of Fig. 6.3. In the

upper left of both plots, we mask out the regions with m0 > M/10 where our treatment in terms of

effective operators breaks down. The dotted, solid, and dashed lines indicate reference lifetimes of

τ = 1/Γ = 0.1s, 5×1017 s,1026 s. These lifetimes correspond to decays that occur early in the history

of the Universe, at the present day, and long lived glueballs, respectively. Both decay rates follow the

approximate scaling of Eq. (6.8). All other known (SU(3)) glueballs can decay through these dimension-

8 operators as well with parametrically similar rates, although there can be numerically significant

differences due to coupling factors and phase space [11].

6.3.2 Dimension-6 Operators

Glueball decays through the dimension-6 operator of Eq. (6.7) proceed with characteristic rate

Γ6 ∼
m5

0
M4 . (6.20)

We present here two mediator scenarios that generate the operator of Eq. (6.7) and we compute the

decay rates they induce.

Our first mediator scenario follows Ref. [12] and consists of mediator fermions with Yukawa cou-

plings to the SM Higgs boson, as shown in Fig. 6.4. A minimal realization contains a vector-like SU(2)L

doublet P with gauge quantum numbers (rx,1,2,−1/2), and a vector-like singlet N with quantum num-

bers (rx,1,1,0) together with the interactions [12, 416]

−L ⊃ MPP̄P+MNN̄N +λ P̄HN +(h.c.) . (6.21)
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Figure 6.3: Decay lifetimes τ = 1/Γ of the 0++ (left) and 1+− (right) glueball states due to the
dimension-8 operators as a function of M and m0 for χi = χY = 1 and Gx = SU(3). The
masked regions at the upper left show where m0 > M/10 and our treatment in terms of
effective operators breaks down, while the white dotted, solid, and dashed lines indicate
reference lifetimes of τ = 0.1s, 5×1017 s, 1026 s.

Figure 6.4: Diagram that contributes to the effective Lagrangian of Eq. (6.22). Effective operators
are created via integration of loops of the heavy mediator fermions[12].

For MN , MP � mh, the leading glueball effective operator from integrating out the fermions can be

obtained using the low-energy Higgs theorem [417],

Le f f ⊃
αx

6π
T2(r)

λ 2

M2 H†HXa
µνXa µν , (6.22)

where M2 ' MPMN and T2(rx) = 1/2 is the trace invariant of the fermion representation rx under the

dark gauge group Gx. In addition to the dimension-6 operator above, the massive fermions also generate

dimension-8 operators of the form of Eq. (6.9).

A second mediator scenario consists of a complex scalar Φx charged under the dark gauge group

with a Higgs-portal coupling,

−L ⊃M2
Φ|Φx|2 +κ|Φx|2|H|2 (6.23)
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Applying the low-energy Higgs theorem to this state (for MΦ� mh), we find

−Le f f ⊃ −
αx

48π
T2(r)

κ

M2
Φ

H†H Xa
µνXa µν . (6.24)

In passing, we note that the Higgs portal coupling of Eq. (6.23) respects dark Cx number.

The operator generated in either mediator scenario can be written in the form

−Le f f ⊃
αxy2

e f f

6πM2 H†HXa
µνXa µν , (6.25)

with the dimensionless coefficient ye f f . Since this operator is even under Cx, it only allows direct decays

of Cx-even glueballs to the SM, or even-to-even or odd-to-odd glueball transitions. It was shown in

Ref. [12] that this is sufficient to allow all known SU(3) glueballs to decay, except for the 1+− and 0−+

modes. The absence of a 1+− decay follows from Cx considerations, while the conclusion for 0−+ is a

result of spin and parity, rather than Cx. This mode can decay at the dimension-6 level if a topological

dark gluon term is added to the UV Lagrangian or by extending to a two-Higgs doublet model [12].

Using the parametrization of Eq. (6.25), the direct decay of the 0++ glueball to the SM has rate [12]

Γ(0++→ SM) =

(
y2

e f f

3π

)2
(
√

2〈H〉)2 (αxFS
0++)2

M4 [(m2
0−m2

h)
2 +(mhΓh)2]

Γh(mh→ m0) , (6.26)

where
√

2〈H〉 = 246 GeV is the electroweak vacuum expectation value, FS
0++ is defined in Eq. (6.2),

mh = 125 GeV is the Higgs mass, Γh = 4.1 MeV is the Higgs width, and Γh(mh→m0) is the total width

the SM Higgs would have if its mass were m0 (and includes decays to Higgs final states for m0 > 2mh).

We evaluate this width using the expressions of Refs. [418, 419].

In Fig. 6.5 we show the decay lifetime τ = 1/Γ of the 0++ glueball from the dimension-6 (and

dimension-8) operators above with ye f f = 1 and Gx = SU(3). The upper region of the plot is masked

out since it corresponds to m0 > M/10 where our treatment in terms of effective operators breaks down.

The dotted, solid, and dashed lines indicate lifetimes of τ = 0.1s, 5× 1017 s,1026 s. For m0� mh, the

0++ lifetime scales according to Eq. (6.20), while for m0 < mh there is an additional suppression from

small Yukawa couplings. Comparing to the 1+− lifetime in Fig. 6.3, we see that it is parametrically

long-lived compared to the 0++ when both dimension-6 and dimension-8 operators are present.

6.3.3 Decay Scenarios

Based on the discussion above, we present four glueball decay scenarios organized by the dimensions

of the relevant decay operators and the dark conjugation charge Cx:

1. Dimension-8 decays with broken Cx

In this scenario glueballs decay exclusively through the dimension-8 operators of the form of

Eq. (6.9). All glueballs are able to decay with parametrically similar rates. To realize this scenario,

we use the effective interactions in Eq. (6.9) with χi = χY = 1.
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Figure 6.5: Decay lifetime τ = 1/Γ of the 0++ glueball due to the combined dimension-6 and
dimension-8 operators as a function of M and m0 for χi = χY = 1, ye f f = 1, and Gx = SU(3).
The masked region at the upper left shows where m0 > M/10 and our treatment in terms
of effective operators breaks down, while the dotted, solid, and dashed white lines indicate
lifetimes of τ = 0.1s, 5×1017 s, 1026 s.

2. Dimension-8 decays with exact Cx

This scenario is similar to the first, but now with χY = 0. Conservation of Cx implies that the

lightest 1+− glueball is stable. The other glueballs are all able to decay with parametrically

similar rates.

3. Dimension-6 decays with broken Cx

Glueball decays occur through the dimension-6 operator of Eq. (6.25) and the dimension-8 op-

erators of Eq. (6.9). We realize the scenario by setting ye f f = 1 together with χi = χY = 1.

With the exception of the 1+− mode (and possibly the 0−+), glueballs decay primarily through

the dimension-6 operator. In contrast, the 1+− glueball only decays through the Cx-breaking

dimension-8 operator with a parametrically suppressed rate, making it much longer-lived than

the other glueballs, which in turn leads to different cosmological scenarios when considering the

constraints we can place on this model.

4. Dimension-6 decays with exact Cx

Decays occur through the dimension-6 operator of Eq. (6.25) and the Cx-conserving terms in

Eq. (6.9). We realize the scenario by taking ye f f = 1, χi = 1, and χY = 0. The 1+− glueball is

stable, while the other glueballs decay mainly through the dimension-6 operator.

We study the cosmological implications of these four decay scenarios in the analysis to follow.
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6.4 Glueball Densities in the Early Universe
Glueballs are formed in the early universe in a confining transition as the dark sector temperature Tx

falls below a critical temperature Tc ∼ m0. After they are created, the glueballs undergo a complicated

freeze-out process involving a range of 2→ 2 and 3→ 2 reactions. These dynamics become even more

complicated when the dark sector connects to the SM through the operators discussed above, with new

effects such as energy transfer between the visible and dark sectors and glueball decays. In this section

we briefly review the formation and freeze-out of glueballs in the absence of connectors to the SM, as

was studied in detail in Ch. 5, and we investigate how this picture changes when connectors are present.

6.4.1 Glueball Formation and Freeze-Out without Connectors

This section is a review of Ch. 5, and serves to emphasize the key points and parameters that are used

in estimating glueball yields. This will be important when we move on to consider the effects of the

decay scenarios discussed previously. Although parts of this are repetitions of the previous chapter, we

include it to highlight the key differences and results that will be important in further analysis.

In the absence of operators that connect to the SM, the visible and dark sectors do not thermalize

with each other. We assume that enough energy is liberated by reheating following primordial infla-

tion (or something similar) that both sectors are able to thermalize independently with temperatures T

and Tx [204], and furthermore that Tx ≥ Tc at this point.2 Following the recipe for glueball formation

provided in Ch. 5, entropy is conserved independently in both sectors while kinetic equilibrium is main-

tained. This implies that the ratio of entropy densities s and sx in the two sectors remains constant, and

can be parametrized by a single value, R. We again take R as an input to our calculation. However, we

do assume R < 1 corresponding to preferential reheating to the visible sector.

Once formed, dark glueballs interact with each other and undergo a freeze-out process in which

they depart from thermodynamic equilibrium and develop stable relic densities. This process is what

we studied in detail in Ch. 5. In the last chapter, the evolution of glueball numbers was computed

numerically using a network of Boltzmann equations containing the most important 2→ 2 and 3→ 2

reactions, with thermally averaged cross sections estimated using the glueball effective Lagrangian of

Eq. (5.3). There, we considered various different subsets of glueballs, in which we discovered that the

0++ relic yield is predominately determined by the 3→2 reaction, and including other glueballs was

largely irrelevant to the overall yield. However, because some of our decay scenarios explicitly allow

for stable 1+− states, we consider the two-state model of Sec. 5.4.3 for the rest of this chapter so that

we can track both the 0++ and 1+− yields for further analysis.

In Fig. 6.6 we show the relic yields of 0++ (left) and 1+− (right) glueballs in the absence of connec-

tors to the SM in the m0–R plane for Gx = SU(3). The white lines in both panels indicate where the relic

density of that species coincides with the observed DM density, ΩDMh2 = 0.1188(10) [9]. The shaded

regions at the lower right of both panels show where x f o
x < 5 implying the glueball densities are set by

the non-perturbative dynamics of the confining phase transition. As expected, the 1+− yield is always

2If not, the glueball relic density is set by the details of inflationary reheating.
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Figure 6.6: Mass-weighted relic yields of the 0++ (left) and 1+− (right) glueballs in the m0–R
plane in the absence of connectors for Gx = SU(3). The solid white lines in each panel indi-
cate where the relic density saturates the observed dark matter abundance. The dark masked
region at the lower right of both panels shows where 0++ freeze-out occurs for x f o

x < 5 and
our freeze-out calculation is not applicable due to the unknown dynamics of the confining
phase transition.

much lower than the 0++ yield.

Going beyond the two-state model, our arguments regarding the exponential suppression of the 1+−

density relative to the 0++ also apply to the other heavier glueball modes, as we showed in Ch. 5. The

total glueball relic density is strongly dominated by the 0++ density, while 2→ 2 annihilation reactions

push the heavier glueball densities to much smaller values. In fact, these reactions tend to be much more

efficient for the other heavier glueballs than the 1+− due to coannihilation with the 0++. As a result,

the 1+− state generally develops the second largest relic density, with the densities of the other dark

glueballs being much smaller. This, combined with the unique decay properties of the 1+− glueball

when connectors are included, is the reason why we only consider the effects of the 0++ and 1+−

glueballs in our analysis of glueball cosmology.

6.4.2 Glueball Freeze-Out with Connectors

Connector operators can modify the freeze-out of glueballs in a number of ways. As we explicitly

examined in Ch. 3, we realize that it is important to fully understand these connector operators before

moving forward with our models. Scattering and decay reactions mediated by such operators transfer

energy between the visible and dark sectors, and may allow them to thermalize. Decays through the

connector operators after confinement also deplete glueballs, and can occur before or after the freeze-

out of the various (3→ 2) and (2→ 2) reactions. We investigate these effects here, both before and

after confinement, with a focus on the 0++ and 1+− glueballs. Our goal is to compute the yields of these

species prior to their decay.

As in the freeze-out analysis without connectors, we take as an initial condition primordial inflation

(or something like it) with preferential reheating to the visible sector characterized by a temperature

TRH that is larger than the confinement transition temperature Tc ' m0/5.5. With connectors, we also
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assume TRH �M. Reheating above the connector scale M is likely to thermalize the dark and visible

sectors at TRH , and can produce a relic abundance of the connector particles themselves. These can have

interesting cosmological effects in their own right, acting as quirks if they carry Gx charge [342, 420,

421], and potentially creating dark glueballs non-thermally [406, 407, 422, 423]. By taking TRH �M,

the production of connector particles in the early universe is strongly suppressed allowing us to focus

on the effects of the glueballs.

Energy Transfer before Confinement

Consider first the transfer of energy at temperatures T well above the confinement temperature Tc. In the

absence of connectors, preferential reheating to the visible sector produces Tx� T . Connector operators

allow reactions of the form SM+SM↔ X +X that transfer energy from the visible sector to the dark

sector. For Tx > Tc, the evolution equation for the energy density of the dark sector is [424, 425]

dρx

dt
+4Hρx = −〈∆E ·σv〉

(
n2

x− ñ2
x
)
, (6.27)

where 〈∆E ·σv〉 is the thermally averaged energy transfer cross section for X +X→ SM+SM, nx is the

dark gluon number density, and ñx = g̃x(ζ (3)/π2)T 3 is the value it would have in full equilibrium with

the visible sector with g̃x dark gluon degrees of freedom (equal to g̃x = 2(N2−1) for Gx = SU(N)).3

For Tx� T , the ñ2
x term on the right side above dominates and leads to a net energy transfer to the dark

sector. This transfer saturates and ceases when Tx→ T and nx→ ñx.

For visible radiation domination with constant g∗, Eq. (6.27) can be rewritten as

d
dT

(
ρx

T 4

)
=

1
HT 5 〈∆E ·σv〉

(
n2

x− ñ2
x
)
. (6.28)

With the connector operators of Eqs. (6.5,6.7) and T � Tx, the right side of Eq. (6.28) takes the para-

metric form

∆C ≡ 〈∆E ·σv〉
(
n2

x− ñ2
x
)

(6.29)

∼ −Dn
MPl T n−2

Mn , (6.30)

where n = 4, 8. Integrating from temperature T to the reheating temperature TRH , the approximate

solution is

(
ρx

T 4

)
−
(

ρx

T 4

)
RH
∼ Dn

(n−1)
MPlT n−1

RH
Mn

[
1−
(

T
TRH

)n−1
]
, (6.31)

This expression is dominated by the contribution near the reheating temperature, and represents the

contribution to the dark energy density from transfer reactions.

3Implicit in Eq. (6.27) is the assumption of self-thermalization of the energy injected into the dark sector to a temperature
Tx > Tc. Thermalization of non-Abelian gauge theories tends to be efficient [426], and we expect this assumption to be valid
provided the total energy transfer is not exceedingly small.
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The approximate forms of Eqs. (6.30,6.31) are only valid for T < TRH and T > Tx ≥ Tc. The first

of these conditions corresponds to the upper limit on the era of radiation domination. An even higher

radiation temperature can be achieved prior to reheating, but for standard perturbative reheating and

n < 29/3' 9.67 we find that the energy transfer before the radiation era is also dominated by reactions

near T ∼ TRH . The second condition T > Tx ≥ Tc is needed to justify our neglect of the n2
x term on

the right side of Eq. (6.28) and our assumption of a deconfined phase. As Tx approaches T due to the

energy transfer, this term becomes important and the net energy transfer goes to zero, corresponding to

the thermalization of the two sectors.

Motivated by these considerations, let us define

∆

(
ρx

T 4

)
≡

∫ T

·
dT ′

(
∆C

HT ′5

)
(6.32)

∼ Dn

(n−1)
MPlT n−1

Mn . (6.33)

This represents the contribution to the dark sector energy from thermal transfer in the vicinity of tem-

perature T . Thermalization occurs when

∆

(
ρx

T 4

)
≥ π2

30
g̃x , (6.34)

where g̃x is the number of dark gluon degrees of freedom. Let Tth be the temperature that solves

Eq. (6.34) as an equality. If Tth < Tc, the visible and dark sectors remain thermalized at least until

confinement. Conversely, if Tth > Tc thermalization is lost at T = Tth and the dark and visible sectors

evolve independently thereafter with separately conserved entropies.

The dark to visible entropy ratio R is constant for T < Tth and depends on reheating. If Tth < TRH ,

thermalization occurs after reheating and is maintained until T = Tth. The entropy ratio R (for Tth > Tc)

after thermalization ceases is then

R = Rmax ≡
g̃x

g∗S(Tth)
. (6.35)

Thermalization need never have occurred after reheating if TRH < Tth. In this case, (for Tth > Tc) we can

define

TxRH = TRH

[
30

π2g̃x
∆

(
ρx

T 4

)
RH

]1/4

. (6.36)

This implies a lower bound on the entropy ratio of

R≥ g̃x

g∗S(TRH)

(
TxRH

TRH

)3

. (6.37)

In general, lower reheating temperatures allow for smaller values of R. We define Rmin to be the value of
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Figure 6.7: Values of the minimal entropy ratio Rmin in the M–m0 plane for energy transfer via
dimension-8 (left) and dimension-6 (right) operators for Gx = SU(3). The black shaded
region at the upper left indicates where our treatment in terms of effective operators breaks
down. The diagonal black dotted, solid, and dashed lines show reference values of Rmin =
10−3, 10−6, 10−9. In the cyan region in the right panel, thermalization between the visible
and dark sectors is maintained at least until confinement.

R such that TxRH = Tc, the lowest possible reheating temperature given our assumption of TxRH ≥ Tc.4

When Tth > Tc, the range of R values is therefore Rmin ≤ R≤ Rmax.

In Appendix B we present explicit expressions for the collision term ∆C needed to compute the

energy transfer ∆(ρx/T 4) via Eq. (6.32). The results obtained for Rmin are shown in Fig. 6.7 in the m0–

M plane for energy transfer via dimension-8 (left) and dimension-6 (right) operators for Gx = SU(3).

The shaded region at the upper left has m0 > M/10 and indicates where our treatment in terms of

effective operators breaks down. The black dotted, solid, and dashed lines show reference values of

Rmin = 10−3, 10−6, 10−9. In the cyan region in the right panel, thermalization between the visible and

dark sectors is maintained at least until confinement, corresponding to Tth < Tc.

Evolution of the 0++ Density

Glueballs form at Tx = Tc and undergo freeze-out, transfer, and decay reactions. In the absence of

connectors, the dominant glueball species is the lightest 0++ mode. To track its evolution with connector

operators, it is convenient to organize the analysis according to the thermalization temperature Tth,

computed above in the unconfined phase, relative to the confinement temperature.

Tth < Tc: This condition implies that thermalization is maintained at least until confinement, and thus

we expect T = Tx = Tc as an initial condition for the glueball evolution. To compute the 0++ density

and thermal transfer after confinement we adapt the analysis of Refs. [350, 428] based on Refs. [424,

425, 429], which is applicable here since T, Tx ≤ Tc ' m0/5.5. If thermal equilibrium is maintained

4Even lower values of R are possible for TxRH < Tc, but this also implies that reheating can interfere with the freeze-out
process [427], and goes beyond the scope of this work.
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independently within both the dark and visible sectors, the dark temperature evolves as [350, 428]

dTx

dt
' −2HTx +

2
3n0

(Cρ −m0 Cn) (6.38)

where Cρ and Cn are the collision terms appearing in the evolution equations for the 0++ energy and

number densities. The Hubble term in Eq. (6.38) gives the usual 1/a2 redshifting of the effective temper-

ature of an independent massive species, while the second term describes energy transfer from scattering

and decay processes.

The explicit forms of the collision terms are

Cn ' −〈σ32v2〉n2
0(n0− n̄0)−Γ0 [n0(1−3Tx/2m0)− ñ0(1−3T/2m0)] , (6.39)

where n̄0 = n0(Tx) and ñ0 = n0(T ), as well as

Cρ ' n0nSM〈σelv·∆E〉−m0Γ0(n0− ñ0) . (6.40)

The only new piece in these expressions is the elastic scattering term n0nSM〈σelv·∆E〉 in Eq. (6.40). It

corresponds to reactions of the form SM+ 0++→ SM+ 0++, and was studied in detail in Refs. [424,

425].

Combined in Eq. (6.38), the (3→ 2) scattering term from Eq. (6.39) tends to heat the dark glueballs,

and the elastic scattering and decay terms tend to drive Tx→ T . Applied to the 0++ glueball with either

the dimension-8 or dimension-6 connector operators, we find that thermalization below confinement

implies Γ0 > H(T = m0). Thus, the 0++ density simply tracks the equilibrium value with temperature

T following confinement.5

Tth > Tc: With Tth > Tc, the visible and dark sectors are not thermally connected at confinement, and

thus T ≥ Tx at this point with a well-defined entropy ratio in the range Rmin ≤ R ≤ Rmax. Using the

scaling arguments applied above, it can be shown that R ≥ Rmin implies T ≤ m0 when the 0++ decays

set in at Γ0 ' H(T ).6 The evolution equations for the 0++ number density and temperature can thus be

written as (to leading order in Tx/m0)

dn0

dt
= −3Hn0−〈σ32v2〉n2

0(n0− n̄0)−Γ0(n0− ñ0) (6.41)

dTx

dt
= −2HTx +

2
3

m0〈σ32v2〉n0(n0− n̄0)+Γ0Tx

(
1− ñ0

n0

T
Tx

)
(6.42)

where again n̄0 is the equilibrium value at temperature Tx and ñ0 is the equilibrium value at temperature

T . Note that we have neglected the elastic scattering term because it can be shown to be parametrically

small relative to the Hubble term for T < Tth and R≥ Rmin.

5In the absence of decays, massive glueballs with connectors would give an explicit realization of the SIMP [147] or
ELDER [350, 428] DM scenarios.

6Our numerical analysis confirms this as well.
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When the decay terms are neglected, the evolution equations of Eqs. (6.41, 6.42) are equivalent to

those we used previously with no connector operators (to leading order in Tx/m0). Glueball decays only

become significant when Γ0'H(T ), and quickly drive Tx→ T and n0→ ñ0. It follows that our previous

analysis without connectors can be applied to compute the 0++ relic yield prior to decay (which may

occur before freeze-out). The only significant effect of energy transfer on this calculation is to limit the

range of the initial entropy ratio to Rmin ≤ R≤ Rmax.

Evolution of the 1+− Density

Even though the lightest 0++ glueball dominates the total glueball density and controls the dark temper-

ature prior (and even after) its decay, the heavier 1+− glueball can also be relevant for cosmology due

to its longer lifetime. Recall that the 1+− is parametrically long-lived relative the 0++ in the decay sce-

narios 2–4 listed in Sec. 6.3.3, where the 0++ decays through a dimension-6 operator while the 1+− is

stable or only decays at dimension-8. Even in decay scenario 1, where both states decay at dimension-8,

the 0++ decay rate tends to be larger than the 1+− by a factor of (N2
c −1)α3/α .

The evolution of the 1+− density is sensitive to the 0++ density in several ways. Prior to decay, the

0++ density acts as a massive thermal bath that cools very slowly relative to the visible temperature,

thereby delaying the freeze-out of the 1+− state. This thermal bath collapses and disappears when

the 0++ decays, which can hasten 1+− freeze-out. If the 0++ density is large when it decays, the

entropy transferred to the visible sector can also dilute the densities of the remaining 1+− glueballs. We

investigate these effects here, dividing the analysis into Tth < Tc and Tth > Tc cases.

Tth < Tc: Recall that this case is only realized for dimension-6 transfer operators, and implies that

the 0++ decay rate is larger than Hubble following confinement. This means the 0++ density tracks

its equilibrium value with effective temperature Tx = T , and there is no longer a separately conserved

entropy in the dark sector. The evolution of the 1+− number density in this context is

dn1

dt
+3Hn1 =−〈σ22v〉

(
n2

1− ñ2
1
)
−Γ1(n1− ñ1) , (6.43)

where ñ1 denotes the equilibrium density of the 1+− at temperature T . Note that Eq. (6.43) assumes

the 1+− mode also thermalizes with the visible sector. This is expected prior to freeze-out since the

equilibrium density of the 1+− is smaller than that of the 0++, and elastic scattering between these two

species is at least as efficient as the annihilation reaction.

Tth > Tc: This second case implies Tx ≤ T at confinement, with 0++ decays inactive (Γ0 < H) until

T < m0. To compute the resulting 1+− relic density, we treat the 0++ decay as instantaneous and

match the density evolution immediately before and after it occurs. Prior to the decay, the dark and

visible entropies are conserved independently with ratio R, and the glueball densities evolve according

to Eqs. (5.47,5.48). Decays of the 0++ are implemented at Γ0 = H, where the Hubble rate includes

contributions from both the visible and dark energy densities. If Ti < m0 is the visible temperature prior
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to the decay, the visible temperature afterwards is obtained from local energy conservation,

ρ(Tf ) = ρ(Ti)+ρx(Ti) , (6.44)

where we have neglected the exponentially subleading contribution of the 1+− mode to the energy

density. Note that Tf > Ti is always smaller than m0 as well. The evolution of the 1+− number density

after the 0++ decays is given by Eq. (6.43). Since the 1+− number density is not changed by the decays,

n1(Tf ) = n1(Ti) is used as the initial condition at T = Tf .

The interplay of glueball annihilation, transfer, and decays leads to many different qualitative be-

haviours. These were investigated in Ref. [395, 409] for a simplified model consisting of an unstable

massive bath particle and a heavier DM state. Dark glueballs provide an explicit realization of this

scenario, with the 0++ making up the massive bath and the 1+− acting as (metastable) dark matter.

Compared to the simple model studied in Ref. [395, 409], the 0++ massive bath particle always freezes

out (or decays) before the would-be 1+− dark matter, corresponding to the chemical or decay scenarios

discussed there. A potential further behavior that we have not captured in our approximations is the

late production of 1+− glueballs through transfer reactions while T > m1 but after 1+− freeze-out has

occurred in the dark sector. We estimate that this is potentially relevant in a very limited corner of the

parameter space, and will only increase the limits we find.

6.4.3 Comments on Theoretical Uncertainties

Before applying our results for dark glueball lifetimes and densities to derive cosmological and astro-

physical constraints on them, it is worth taking stock of the theoretical uncertainties in our calculations.

It is also useful to identify how some of these uncertainties might be reduced with improved lattice

calculations.

The glueball lifetimes computed in Sec. 6.3 rely on glueball masses and transition matrix elements.

Masses for Gx = SU(3) have been obtained to a precision greater than 5% in Refs. [6, 354], while the

matrix element relevant for 0++ decay was determined to about 20% in Refs. [354, 414]. Thus, we

expect our determination of the 0++ decay width to be reasonably accurate. The situation is less clear

for the 1+− width, which relies on a 1+− → 0++ transition matrix element that we were only able to

estimate using NDA. In the absence of lattice calculations for this matrix element, we estimate that our

1+− width is only reliable to within a factor of a few.

Turning next to the cosmological evolution of the dark gluons and glueballs, we implicitly treated

their interactions as being perturbative. This is a good approximation at temperatures well above the

confinement scale, but significant deviations can arise as the temperature falls to near confinement [377].

For the range of entropy ratios R due to energy transfer computed above, this implies that values of

Rmax with Tth � Tc are reliable, but the specific values of Rmin and Rmax for TRH ∼ Tc could receive

large corrections. Similarly, the glueball interactions used to compute the (3→ 2) and (2→ 2) cross

sections are quite strong for N = 3. It is difficult to quantify how this affects the pre-decay glueball relic

densities, but we do note that the densities typically depend roughly linearly on R and the annihilation
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cross sections. Our naive estimate is that the pre-decay glueball densities we find are accurate to within

about an order of magnitude.

6.5 Cosmological Constraints
In the analysis above we showed that dark glueballs can have a wide range of decay rates and a variety

of formation histories in the early universe. Very long-lived dark glueballs can potentially make up the

cosmological dark matter. On the other hand, shorter-lived glueballs are strongly constrained by the

modifications they can induce in the standard predictions for big bang nucleosynthesis (BBN) [94, 259,

260], the cosmic microwave background (CMB) [123, 430] and the spectrum of cosmic rays [402]. We

investigate the bounds from cosmology and astrophysics on dark glueballs in this section for the four

decay scenarios discussed in Sec. 6.3. Throughout the analysis, we focus on Gx = SU(N =3), and we

assume reheating such that TRH � M and TxRH ≥ Tc. Details of how we implement the bounds from

BBN, the CMB, and cosmic rays are collected in the following section.

6.5.1 Decay Constraints from BBN

Particle decays during or after big bang nucleosynthesis (BBN) can modify the primordial abundances

of light elements including tritium, deuterium, helium, and lithium [81, 112, 259, 260]. The observed

abundances of these light elements (with the exception of lithium) agree well with the predictions of

standard BBN when the baryon density deduced from the CMB is used as an input [81]. If there was

non-standard physics present during the era of BBN, such as the decays of dark glueballs to SM fields,

the predictions the elemental abundance would be altered. Thus, constraints can be placed upon decays

of glueballs after the onset of BBN.

Hadronic decays of a long-lived relic after t ' 0.05s can modify the neutron (n) to proton (p)

ratio and increase the helium fraction through charge exchange reactions such as π−+ p→ π0 + n, or

destroy light elements through spallation reactions like n+4He→D+ p+2n [81, 112]. Electromagnetic

decays are only constrained at later times, after about t ∼ 104 s, since energetic electromagnetic decay

products emitted before this thermalize with the photon-electron plasma before can they can destroy

light elements by photodissociation [7, 81, 112].

The combined effects of hadronic and electromagnetic decays on BBN have been studied in a num-

ber of works, including Refs. [94, 259, 260]. We apply the exclusions derived in Ref. [94] to place

limits on decaying glueballs, using an interpolation to generalize their results to arbitrary relic mass

values between the range 30 GeV≤ mx ≤ 106 GeV they studied, and matching to the appropriate set of

final states. For masses outside these ranges, we apply the constraint for the nearest mass boundary.

6.5.2 Decay Constraints from the CMB

Particle decays during or after recombination at t ' 1.2×1013 s can modify the temperature and polar-

ization spectra of the CMB. They do so by injecting energy that increases the ionization fraction and

temperature of the cosmological plasma. In turn, this broadens the last scattering surface and alters the
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correlations among the temperature and polarization fluctuations [123].

Detailed studies of the impact of such energy injection on the CMB have been performed in Refs. [80,

313–315, 430–432]. Corresponding limits on particle decays based on the CMB measurements of

Planck [9] were extracted in Refs. [80, 430]. Given the theoretical uncertainties in our calculation

of the pre-decay glueball yields, we apply a very simple parametrization of the results of Ref. [430]:

miYi < (4.32×10−10 GeV)
(

τ

1024 s

)
F (τ) , (6.45)

where F (τ) accounts for the effects of early decays. It is obtained by fitting to the curve of Fig. 4

of Ref. [430], and is normalized to unity for τ � 1.2× 1013 s. The form of Eq. (6.45) neglects mild

dependences on the mass of the decaying glueball and the specific final state, but these effects are

smaller than the uncertainties in the calculation of the pre-decay yield. We also apply this limit to

relic masses well above the largest value of mx ∼ 10 TeV studied in Ref. [430] (and elsewhere). Such

large masses lead to injections of highly energetic photons and electrons that deposit their energy very

efficiently in the cosmological plasma [315]. As a result, we do not expect any major loss of sensitivity

for glueball masses well above 10 TeV.

Bounds on glueball decays can also be obtained from their effects on the CMB frequency spec-

trum [318, 433]. We find that these are subleading compared to those derived from BBN and the CMB

power spectra.

6.5.3 Decay Constraints from Gamma Rays

Glueballs with lifetimes greater than the age of the universe t0 ' 4.3× 1017 s can produce observable

signals in gamma ray and cosmic ray telescopes, even if their density is only a small fraction of the

total DM value. Limits on the lifetimes of decaying DM were derived in Ref. [402] for dimension-

6 glueball decays and other final states over a broad range of masses using galactic gamma ray data

from Fermi [434]. With the theoretical uncertainty on glueball yields in mind, we use the following

parametrization of the limits on the glueball yield:

miYi < (4.32×10−10 GeV)

(
τ

5×1027 s

)
et0/τ e(10 GeV/mi) , (6.46)

where the last two factors account for the depletion of the signal if the decay occurs before the present

time and the loss of sensitivity of Fermi at lower masses [435]. This limit is fairly conservative and can

be applied safely to all dominant 0++ decays, which occur on their own or shortly after being created in

a 1+− decay.

6.5.4 Application to Glueballs

In this next section we apply the constraints collected above to the specific decay scenarios presented in

section 6.3.3.
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Figure 6.8: Cosmological constraints on dark glueballs in the M–m0 plane for decay scenario 1
with dominant dimension-8 operators and broken Cx. The upper two panels have R =
Rmin, Rmax, while the lower three panels have fixed R = 10−9, 10−6, 10−3. The grey shaded
region in each panel indicates where our theoretical assumptions fail, while R < Rmin to the
left of the dashed line.

Decay Scenario 1: Dimension-8 Decays with Broken Cx

This scenario has all the dimension-8 operators of Eq.(6.9) with χi = χY = 1. Both the 0++ and 1+−

glueballs decay with parametrically similar rates, as shown in Fig. 6.3.

The cosmological constraints on this scenario are shown in Fig. 6.8 in the M-m0 plane for vari-

ous values of the entropy ratio R. The upper two panels have R = Rmin, Rmax respectively,7 and the

lower three panels show R = 10−9, 10−6, 10−3. The grey shaded regions indicate where our theoret-

ical assumptions break down. The rising diagonal portion of the gray shaded region corresponds to

m0 > M/10; we demand smaller values of m0 to justify our treatment in terms effective operators sup-

pressed by powers of M. The upper part of the grey shaded region indicates Tx f o > Tc, corresponding

to glueball densities set by the non-perturbative dynamics of the confining phase transition. To the left

of the diagonal dotted lines in the lower three panels, the given fixed value of R is less than Rmin and is

inconsistent with minimal energy transfer by the connector operators for TxRH > Tc.

We see from Fig. 6.8 that dark glueballs are strongly constrained by cosmological and astrophysical

observations. When the 0++ is long-lived, corresponding to small m0/M, its relic density tends to be

too large unless the entropy ratio R is much less than unity. With sufficiently small R the 0++ can make

up all the dark matter corresponding to the white line in the left panel of Fig. 6.6. Such a DM candidate

7Recall from Eq. (6.35) that Rmax corresponds to thermalization after reheating, while from Eq. (6.37) Rmin is the lowest
possible entropy ratio consistent with energy transfer and TxRH > Tc.
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Figure 6.9: Cosmological constraints on dark glueballs in the M–m0 plane for decay scenario 2
with dominant dimension-8 operators and conserved Cx. The upper two panels have R =
Rmin, Rmax, and the lower three panels have fixed R = 10−9, 10−6, 10−3. The grey shaded
region indicates where our theoretical assumptions fail, while to the left of the dashed line
we find R < Rmin.

would be very difficult to probe, with the most promising avenues being high energy gamma rays and

modifications to cosmic structure from glueball self interactions. Using large-N and NDA, the 2→ 2

self-interaction cross section of 0++ glueballs is [231, 235]

σ2→2/m0 ' (10cm2/g)
(

3
N

)4(100 MeV
m0

)3

. (6.47)

This is at (or slightly above) the current limit for N ≥ 3 and m0 ≥ 100 MeV and could have observable

effects close to these values [137], but falls off very quickly with higher mass or if the 0++ glueball is

only a small fraction of the full DM density. For larger m0/M ratios, the 0++ and 1+− glueballs both

decay quickly enough to alter BBN or the CMB or create high energy gamma rays. Not surprisingly,

the bounds from glueball decays in this scenario come primarily from the 0++ which has a much larger

relic yield prior to decay.

Decay Scenario 2: Dimension-8 Decays with Exact Cx

Our second decay scenario has dominant dimension-8 operators with χi = 1 and a conserved Cx charge

that implies χY = 0 and a stable 1+− glueball. The cosmological bounds on this scenario are shown in

Fig. 6.9 for various values of the entropy ratio R. The upper two panels have R=Rmin, Rmax respectively,

and the lower three panels show R = 10−9, 10−6, 10−3. As above, the grey shaded regions indicate
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Figure 6.10: Cosmological constraints on dark glueballs in the M–m0 plane for decay scenario 3
with dominant dimension-6 operators and broken Cx. The upper two panels have R =
Rmin, Rmax, and the lower three panels have fixed R = 10−9, 10−6, 10−3. The black shaded
region indicates where our theoretical assumptions fail, while to the left of the dashed line
we find R < Rmin.

where our theoretical assumptions are not satisfied, and the diagonal dashed lines have R < Rmin to their

left.

The cosmological exclusions on this scenario are nearly identical to those on scenario 1 except for

the new bounds from the 1+− relic density. At the lower edge of the cyan excluded region, the 1+−

glueball can make up all the dark matter. This occurs primarily when the 0++ decays relatively quickly,

since otherwise it tends to dilute the 1+− relic density too strongly. Note as well that the 1+− glueball

can make up the dark matter for a wide range of values of the entropy ratio R, and for masses well above

the weak scale, between about 102 GeV . 105 GeV. For smaller values of m0/M, the 0++ is long-lived

and remains the dominant species as in scenario 1.

Decay Scenario 3: Dimension-6 Decays with Broken Cx

The third decay scenario 3 has both dimension-6 and dimension-8 operators with ye f f = 1 and χi = χY =

1, and broken Cx. This leads to 0++ decays dominated by the dimension-6 operator, but decays of the

1+− only through the dimension-8 operators. As a result, the 1+− glueball is parametrically long-lived

relative to the 0++ (and the other glueball states).

We show the cosmological and astrophysical bounds on this scenario in Fig. 6.10 for various values

of the entropy ratio R. The upper two panels have R = Rmin, Rmax respectively, and the lower three

panels show R = 10−9, 10−6, 10−3. As above, the grey shaded regions indicate where our theoretical
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Figure 6.11: Cosmological constraints on dark glueballs in the M–m0 plane for decay scenario 4
with dominant dimension-8 operators and conserved Cx. The upper two panels have R =
Rmin, Rmax, and the lower three panels have fixed R = 10−9, 10−6, 10−3. The black shaded
region indicates where our theoretical assumptions fail, while to the left of the dashed line
we find R < Rmin.

assumptions are not satisfied, and the diagonal dashed lines have R < Rmin to their left, except in the

R = Rmax panel. Here, thermalization is maintained all the way to confinement (and beyond) to the left

of the line.

Decays of both the 0++ and 1+− glueballs lead to relevant exclusions in this scenario. The 0++

relic density tends to be much larger than the 1+− prior to decay, and produces the strongest constraints

for small values of m0/M when it is long-lived. For very long lifetimes and small R, it can make up

all the DM as before. However, larger values of m0/M lead to relatively short-lived 0++ glueballs

that decay before the start of BBN. In this case, the longer-lived 1+− can decay late enough to disrupt

nucleosynthesis or the CMB in an unacceptable way. Note as well that the region in which the 1+− relic

density is potentially large, it decays too quickly to make up the dark matter.

Decay Scenario 4: Dimension-6 Decays with Exact Cx

Our final decay scenario 4 has has both dimension-6 and dimension-8 operators with ye f f = 1 and χi = 1,

together with conserved Cx (and χY = 0). The 0++ mode decays as in the previous scenario, but now

the 1+− is stable.

The cosmological bounds on this scenario are shown in Fig. 6.11 for various values of the entropy

ratio R. The upper two panels have R = Rmin, Rmax respectively, and the lower three panels show R =

10−9, 10−6, 10−3. As above, the grey shaded regions indicate where our theoretical assumptions are not

satisfied, and the diagonal dashed lines have R < Rmin to their left, except in the R = Rmax panel. Here,
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thermalization is maintained all the way to confinement (and beyond) to the left of the line.

The exclusions on this scenario from the 0++ are identical to those on scenario 3. However, the

constraints from the 1+− are now from its relic density rather than the effects of its decays on BBN and

the CMB. This state can make up the dark matter for a range of values of its mass and the entropy ratio

R. Compared to the analogous scenario 2, the relic density of the 1+− tends to be larger here because it

experiences less dilution from the more rapid decay of the 0++.

6.6 Conclusions
In this chapter we culminated all of the individual pieces that were considered in previous chapters. We

have investigated the cosmological constraints on non-Abelian dark forces with connector operators to

the SM. We have focused on the minimal realization of such a dark force in the form of a pure Yang-Mills

theory. In the early universe, the dark gluons of such theories confine to form a set of dark glueballs.

Connector operators allow the transfer of energy between the visible (SM) and dark sectors, modify the

freeze-out dynamics of the glueballs, and induce some or all of the dark glueballs to decay. Late decays

of glueballs can modify the standard predictions for BBN, the CMB, and cosmic ray spectra, while very

long-lived or stable glueballs must not produce too much dark matter. Using these considerations, we

have derived strong constraints on the existence of new non-Abelian dark forces.

A significant new feature of our work compared to previous studies [229, 231, 232, 235–237, 336,

351, 406] is the inclusion of the heavier 1+− glueball species. This state can be parametrically long-lived

or stable relative to the other glueballs. It freezes out in conjunction with the 0++, with the 0++ density

forming a massive thermal bath, leading to a rich array of freeze-out and decay dynamics [395, 409].

In general, the (pre-decay) relic density of the 1+− mode is much smaller than the 0++. Even so, the

1+− can sometimes yield the strongest cosmological bounds due to its longer lifetime. Specifically, the

0++ could decay before impacting standard cosmological processes such as BBN, while the 1+− decays

late enough to directly interfere. In some cases, the 1+− glueball could even make up the observed DM

density.

Our study also concentrated on the dark gauge group Gx = SU(N=3) with a lightest 0++ glueball

mass above m0 ≥ 100 MeV. The constraints found here could also be generalized to other dark gauge

groups and lower masses. A very similar glueball spectrum is expected for SU(N > 3) [5], but the

confining phase transition will be more strongly first-order and its effect on glueball freeze-out deserves

further study [351, 378]. For Gx = SU(2), SO(2N+1), Sp(2N) there are no Cx-odd glueballs [11, 359],

but otherwise we expect the constraints based on the 0++ glueballs to be applicable here. In the case

of SO(2N > 6), the Cx-odd states are expected to be significantly heavier than the 0++, and thus the

additional constraints on the lightest Cx-odd mode would typically be weakened.

Thus, we have now completed a comprehensive overview of how the visible and dark sectors of

the Universe may interact with one another. We have used our knowledge and intuitions, built up over

the previous chapters, to create a fully realized hidden sector in the form of a non-Abelian dark gauge

field. The sectors own self-interactions were studied extensively, before allowing for SM connections,

completing the energy transfer circle we first outlined in Fig. 2.5, and made explicit in Fig. 6.1.
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Part V

Conclusions
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Chapter 7

Conclusions and Future Outlook

In this thesis we have investigated how new physics beyond the Standard Model may interact with that

which we understand already. This was depicted in Fig. 2.5. In particular, we have focused on how a

dark sector may be influenced by, or influence, the visible sector that we know and understand. This

has involved studying and constraining new physics in different epochs in the Universe, ranging from

Big Bang Nucleosynthesis to how new physics could alter galactic formation. These are effects that the

dark sector could have on the hidden. However, it is also possible to affect the dark sector directly via

the visible sector, and so we have also studied how energy transfer in this direction can play a factor as

well.

In Chapter 3, we started our overview of the visible-dark dynamic by looking specifically at the visi-

ble to hidden energy transfer, in a modified freeze-in scenario. We wished to understand how ultraviolet

freeze-in may continue to play an important role in the relic abundance of dark matter, well after it is

typically considered complete. Specifically, we realized this scenario by including a freeze-in transfer

effect from a non-renormalizable, UV operator, coupled with a self-thermalizing hidden sector. To be

concrete, we focused on the dimension-five fermionic Higgs portal operator to connect the two sectors,

but note that this effect should extend to any UV operator. The freeze-in transfer serves to initially min-

imally populate the hidden sector (although we leave open the possibility that during reheating, some

other mechanism could have also produced hidden sector particles, but to a temperature less than the

visible sector). Within the hidden sector there is contained a candidate dark matter fermion, as well as

a massless Abelian dark vector that couples to the dark matter. This typically results in what would

be a standard, hidden freeze-out scenario as the Universe continues to expand and cool in both sectors.

However, the extra freeze-in coupling serves to halt the freeze-out process. Instead, the dark matter

candidate reaches a new pseudo-equilibrium state, where the freeze-out rate becomes balanced by the

freeze-in rate, even well after the freeze-in rate should have become negligible. Thus, we find that the

UV connector operator continues to play an important role, even into the IR.

While this effect is suppressed if there is no dark sector annihilation subsequent to the initial trans-

fer, it is nevertheless expected to generalize to any other connection. Thus, we expect IR contributions

from any UV operators that produce relic abundances of dark-sector DM, as long as there is some form

of annihilation that continues to occur in the hidden-sector. This can lead to a significant additional en-
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hancement of the relic density over a broad range of parameters in the theory. As we continue to expand

our searches for new physics, dark-sector scenarios grow more complicated, and it is thus important to

keep in mind this visible energy transfer dynamic. An interesting extension would be to consider a mas-

sive vector boson in the hidden sector, and consider the interplay between the freeze-in energy transfer

and subsequent evolutionary dynamics. Other more complicated hidden sectors could be considered

as well; any model of new physics that maintains a hidden annihilation will have to keep this effect in

mind. As our direct detection experiments continue to probe smaller DM-nucleon cross-sections (with

no evidence for WIMP-like DM), we need to build up a robust understanding of more production mech-

anisms than just standard freeze-out, and as such it becomes important to understand how these feeble

interactions can have an effect on the evolution of hidden sector fields. Furthermore, as these interac-

tions may never be directly probe-able with various experiments, it becomes crucial to understand those

parts of new theories that will have long-lasting evolutionary effects, as observations of the DM relic

density may be one of the only mechanisms by which we may study BSM physics.

Following this study of the visible energy transfer, we moved on to a study of how dark sector energy

may affect the visible in Chapter 4. In particular, we have focused on decaying dark species with SM

by-products, in an effort to understand how this energy injection can alter the outcomes of Big Bang

Nucleosynthesis. Although this has been studied in the literature before, it had not yet been done for

the lowest range of masses that may affect the outputs of BBN. Specifically, we have focused on the

1-100 MeV range. This range has received less attention as the earliest, well-motivated BSM models

were typically at the weak scale, ∼ TeV range. However, new models can still be motivated below

this, and as these low energy ranges have not yet been fully explored, we wished to fill this gap in our

understanding. Even at these low energy transfers, we are still able to place stringent constraints on new

physics, by modelling how the SM responds to the energy inflow.

Because we constrain ourselves to such low energy ranges, nearly all of the energy must be trans-

ferred via electromagnetic energy injection, as the threshold for hadronic energy injection lies at the

pion mass (∼ 134 MeV). Because of this, we model the electromagnetic cascades induced by EM en-

ergy in this range. This leads to a photon spectrum that is different from the historical universal photon

spectrum that is typically adopted for photon injection. The spectrum is altered due to the inclusion of

Thomson scattering for low energy electrons, as well as including final state radiation in the decay of

the dark sector particle to electron-positron pairs.

The photon spectrum determined from electromagnetic decays of the dark sector particles is then

used to determine photodissociation rates of light elements in the epoch following their production. For

energies below the threshold photodissociation energy of 4He, the most stringent constraint comes from

destruction of Deuterium below the levels we observe today. For energies above the 4He threshold, there

is instead an interplay between the destruction of 4He and the overproduction of deuterium, as it gets

produced as a by-product of 4He dissociation. Because our present-day limits on 3He are much more

uncertain than the other two elements, this is typically a weaker limit than the other two, although there

are still some regions of parameter space where it may provide the limiting constraint. Future studies

may wish to also include the Lithium observations, and perhaps attempt to explain (or contribute to) the
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Lithium puzzle that has still not been solved.

While direct energy injection can be used to directly dissociate the light elements, we also look at

indirect effects on BBN. This was done by identifying the effect that energy injections may have on

Ne f f , which is a measure of the radiation energy density in the early Universe. Decays to electrons,

photons, and even neutrinos can affect Ne f f , either increasing or decreasing the energy density, which

in turn effects when BBN occurs, altering the ratio of all the final elements present at the end of BBN.

These indirect effects are the dominant constraint on particles with lifetimes < 104s, while lifetimes up

to 1013s are most strongly constrained by the direct EM injections and photodissociation of the light

elements. For later lifetimes, constraints from the CMB and gamma-rays today become more relevant.

Nevertheless, this chapter has provided a unique look into how low-energy transfers from a hidden

sector can affect the elements that we know and understand.

Now that we have developed a complete understanding of the constraints that may be placed on

new physics that is active during the epoch of BBN, we may begin to apply these constraints to specific

realizations of new physics. Although many early, well motivated theories of new physics typically

involved much higher energy scales, the lack of evidence from direct detection and collider experiments

has pushed our studies to expand and look in different energy regimes. Moving forward, as new models

develop that are continually pushing to lower energies, we can apply this BBN constraint to supplement

our bounds on such new physics. For example, various light vector bosons often appear in new models.

These could include dark photons, B-L symmetry theories, and even the dark glueballs considered

here[270, 436]. Thus the future outlook for cosmological probes is bright, across many different energy

scales.

After studying cases of energy injected into either the hidden-sector or into the visible-sector, we

moved on to a more complicated hidden-sector in Part IV. Here, we investigated the dynamics associated

with a hidden SU(3) sector of dark glueballs that would have formed and evolved in the early Universe.

These glueballs arise from confinement in non-Abelian gauge sectors, and typically have masses near,

or slightly above, the confinement scale.

In Chapter 5, we began with a focused study of isolated glueballs, with no transfer allowed between

the glueballs and the visible sector. The primary focus was to perform a detailed analysis of the freeze-

out dynamics associated with a complex dark sector. In particular, we modelled the 3→ 2 interaction

that dominates the freeze-out of the lightest 0++ state, while also determining what effects the heavier

glueballs may have on the overall density. The heavier glueball states are included in the analysis via

an expanded set of Boltzmann equations, that include the most dominant and relevant 2→ 2 interac-

tions. We found that the heavy C-even states do not have a large effect on the lightest state, although

their individual yields are in fact affected by the presence of other glueballs, through effects such as

coannihilation. However, when the glueballs are unable to decay efficiently through SM connectors,

these yields are always subdominant to the lightest 0++ state, and have a negligible effect on the relic

abundance constraint associated with the glueball spectrum making up the cosmological dark matter.

The C-odd states have a similar effect. However, these are modelled separately, as dark-sector symme-

tries could stabilize the lightest C-odd states while the C-even states decay to SM particles, making the
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lightest C-odd state, the 1+− state, of cosmological interest as well.

This was studied explicitly in Chapter 6, in which we relaxed the assertion that these glueballs were

entirely isolated. We considered the two most relevant non-renormalizable decay operators that might

connect the hidden SU(3) sector to the Standard Model. These are dimension-6 operators, which only

allow for C-even (and so, in particular, the 0++ state) decays, as well as dimension-8 operators, which

allow all glueball modes to decay (although even here, only some of the vector portals allow for decay

of the 1+− state). This leads to a broad host of cosmologically interesting constraints, including bounds

from BBN, the CMB, and gamma-ray constraints for lifetimes close to the age of the Universe. When

the dimension-6 operator is not present, the 0++ and 1+− states have parametrically similar decay rates,

and so the larger yield associated with the 0++ state causes this to have the strongest constraints over

all epochs. If we consider still only the dimension-8 operator, but stabilize the 1+− state via a dark C

symmetry, then we gain constraints on the yield of 1+− being larger than the cosmological dark matter

abundance today. Including the dimension-6 operator lifts the parametric similarities of the 0++ and

1+− decay rates: the 0++ will now decay earlier. This causes the decays of both states to contribute to

the overall constraint picture, allowing us to rule out vast portions of the parameter space, regardless of

the type of transfer operator being considered.

Thus, we have now seen a comprehensive overview of how the visible and dark sectors of the

Universe may interact, and explored a rich and diverse hidden sector in the form of a full non-Abelian

gauge force that is realized as a massive glueball spectrum. We have explored both visible and dark

sector energy injections in detail, while addressing how these energy injections can lead to constraints

on new physics. Moving forward, these new constraints and insights should prove invaluable to future

studies, and can be expanded upon by building more complex models, and updating the bounds as our

cosmological measurements grow ever-more precise.

The outlook for the future is certainly bright. Although we are currently in an era of physics where

we are not sure what the future holds or where BSM physics could be hiding, we have developed an

extraordinary set of tools to guide our analyses moving forward. As the LHC goes through upgrades to

come back at higher luminosities, cosmological surveys probe further into the past history of the Uni-

verse with evermore precision, and new technologies such as gravitational wave detectors are produced,

theoretical models and constraints stand ready to be applied to whatever new signals lurk around the

corner. And if no signal presents itself immediately, we can still close the doors on, or at least narrow

the windows for, many new models of physics by simply continuing to develop our understanding of

the cosmological evolution of known and unknown fields based on the immense amount of data we

have amassed and continue to cultivate. We are truly developing theories in an era of data, which is

an exciting experience and hopefully one that will lead to answers to some of our puzzles as the data

continues to grow.
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Appendix A

Calculation of Transfer Rates during
Freeze-In

In this appendix we calculate the effective transfer rates of number and energy density from the visible

sector to the dark sector through the operator of Eq. (3.1), used in chapter 3. The squared matrix element

for ψ + ψ̄ → H +H† derived from this interaction and summed over both initial and final degrees of

freedom is

|̃M |2 = 4
M2 (s−4m2

ψ) , (A.1)

with s = (p1+ p2)
2. Note that we assume implicitly that the Higgs is in the electroweak unbroken phase

and can be treated as a massless SU(2)L scalar doublet.

Number Transfer
The relevant number transfer term via ψ(1)+ψ(2)→ H(3)+H†(4) is

T (T ) ≡ 〈σtrv(T )〉(n2
ψ −n2

ψ,eq(T )) (A.2)

≡
∫

dΠ1

∫
dΠ2

∫
dΠ3

∫
dΠ4 (2π)4

δ
(4)(pi)|̃M |2( f1 f2− f3 f4) ,

where dΠi = d3 pi/2Ei(2π)3. To make the calculation tractable, we approximate the distribution func-

tions by the Maxwell-Boltzmann form fi = ζie−Ei/T , where ζi is the rescaling needed to get the correct

number densities relative to equilibrium at temperature T . We expect that the Maxwell-Boltzmann

approximation used here is correct up to factors very close to unity.

For nψ � nψ,eq(T ) we have f1 = f2 ' 0, while Higgs fields in full thermodynamic equilibrium with

the SM (in the electroweak unbroken phase) imply f3 = f4 = 1. The transfer term then reduces to

T (T ) =
∫

dΠ1

∫
dΠ2

(
4g2

ψE1E2σtrv
)

e−(E1+E2)/T , (A.3)

165



with gψ = 2 being the number of fermion spin states. Note that the combination in brackets is Lorentz

invariant and can depend only on the variable s. It is given by

(
4g2

ψE1E2σtrv
)

=
∫

dΠ3

∫
dΠ4 (2π)4

δ
(4)(pi)|̃M |2 (A.4)

=
1

8π

(
1

4π

∫
dΩ |̃M |2

)
CM

=
1

2π

1
M2 (s−4m2

ψ) .

To integrate this over the initial states, we follow Refs. [73, 215] and use the fact that the integrand

depends only on s and E+ = (E1 +E2) to write∫
dΠ1

∫
dΠ2 =

1
4(2π)4

∫
∞

4m2
ψ

ds
∫

∞

√
s
dE+

√
1−4m2

ψ/s
√

E2
+− s . (A.5)

Since the only E+ dependence of the integrand is in the Boltzmann exponential, integrating using a

Bessel function identity1 gives

T (T ) =
1

4(2π)4

∫
∞

4m2
ψ

ds(4g1g2E1E2σtrv)
√

1−4m2
ψ/s (A.6)

=
1

2(2π)5
T 6

M2 F (x) ,

where x = mψ/T and

F (x) =
∫

∞

2x
duu(u2−4x2)3/2 K1(u) (A.7)

'


16 ; x� 1

6π x2e−2x ; x� 1

Energy Transfer
We are also interested in the net rate of energy transfer between the visible and dark sectors. The

relevant energy collision term for ψ +ψ→H+H† is identical to Eq. (A.2) but with an additional factor

1Kν (z) =
√

πzν

2ν Γ(ν+1/2)
∫

∞

1 dt (t2−1)ν−1/2e−zt .
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of ∆E = (E1 +E2) = E+ in the integrand. The result is2

U (T ) ≡ 〈∆E ·σtrv(T )〉(n2
ψ −n2

ψ,eq(T ))

≡ T
4(2π)4

∫
∞

4m2
ψ

ds(4g1g2E1E2σtrv)
√

s−4m2
ψ

√
sK2(
√

s/T ) (A.8)

=
1

2(2π)5
T 7

M2 G (x)

with x = mψ/T and

G (x) =
∫

∞

2x
duu2 (u2−4x2)3/2 K2(u)

(A.9)

'

{
96 ; x� 1

12π x3e−2x ; x� 1

2∫ ∞

1 dt t
√

t2−1e−zt =− d
dz [K1(z)/z] = K2(z)/z.
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Appendix B

Thermalization Rates for Glueballs

In this appendix we calculate expressions for the collision term, ∆C needed to compute the energy

transfer ∆(ρx/T 4), in Eq. 6.27.

The collision term relevant for thermalization corresponds to the process X +X → SM+SM, and is

given by

∆C = 〈σ v·∆E〉 ñ2
x (B.1)

=
∫

dΠ1

∫
dΠ2 f1 f2W (s)∆E ,

where E1 and E2 are the initial-state energies, ∆E = (E1 + E2) is to be evaluated in the comoving

frame, dΠi = gi d3 pi/(2π)32Ei, fi are the equilibrium distribution functions at temperature T , and the

scattering kernel is defined by [73, 215]

W (s) = 4E1E2σv (B.2)

=
S

g1g2

∫ d3 p3

(2π)32E3

∫ d3 p4

(2π)32E4
(2π)4

δ
(4)(p1 + p2− p3− p4) ∑

{int}
|M |2 .

Here, S is the symmetry factor for identical particles, gi are the numbers of degrees of freedom of the

initial-state particles, the sum runs over all internal degrees of freedom, and |M |2 is the squared matrix

element for the reaction. Note that this quantity is Lorentz invariant, and can therefore only depend on

s = (p1 + p2)
2.

Following Refs. [73, 215], the expression of Eq. (B.1) can be reduced to a single integral if we

approximate the distribution functions by Maxwell-Boltzmann forms, fi = exp(−Ei/T ):

∆C =
g1g2T 2

32π4

∫
∞

(m1+m2)2
ds p12 F (

√
s/T )W (s)

(B.3)

=
g1g2

32π4 T 5
∫

∞

x+
dx
√(

x2− x2
+

)(
x2− x2

−
)
F (x)W (s = x2T 2) ,

where F (x) =
(
K1(x)+ x

2 [K0(x)+K2(x)]
)
= [2K1(x)+ xK0(x)] and x± = (m1±m2)/T .
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Cross Sections for Dimension-8 Operators

The relevant operator has the general form

O8 =
A

M4 Xa
αβ

Xaαβ FC
µνFC µν , (B.4)

where FC
µν is a SM field strength. This operator generates XX → AA transfer reactions for T � mA, m0,

as well as XA→ XA elastic scattering. Concentrating on XX → AA, the corresponding matrix element

for (p1,a)+(p2,b)→ (p3,C)+(p4,D) is

M = 4A
s2

M4 δ
ab

δ
CD(ε∗1 · ε∗2 )(ε3 · ε4) , (B.5)

where a,b,C,D are “colours” and εi are polarization vectors. From this expression, we find (neglecting

possible masses)

W (s) =
1
π

(
g̃A

g̃x

)
A2 s4

M8 , (B.6)

where g̃x and g̃A = 2(N2
A− 1) are the dark and visible numbers of degrees of freedom. The energy-

transfer collision term is then

∆C =
g̃xg̃A

32π5 A2
[∫

∞

0
dx x10F (x)

]
T 13

M8 . (B.7)

The integral is dominated by x =
√

s/T ∼ 10, corresponding to scattering at the high end of the thermal

distribution.

The coupling A can be obtained by matching to our previous results for dark gluon connector opera-

tors. While there are several operators that can contribute, we keep only the S component corresponding

to the operator listed above, which yields

Ai =
αiαx

120
χi , (B.8)

with Ai = Y,2,3 for each of the SM gauge factors. For χi→ 1, the gluon contribution dominates with

g̃A = 2(N2
c −1), and we focus on it exclusively. Note that since we are considering T & m0 & 100 MeV

and the integration is dominated by
√

s∼ 10T , we should always be safely above the QCD confinement

scale.

Cross Sections for Dimension-6 Operators

The operator of interest is now

O6 =
B

M2 |H|
2 Xa

αβ
Xaαβ , (B.9)
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with

B =
αxy2

e f f

6π
. (B.10)

To treat scattering through this operator, we should distinguish between temperatures above and below

the electroweak phase transition at TEWPT ' 100 GeV. Above the transition, all the SM states are

massless and we can treat the Higgs field as a complex scalar doublet. Below the transition, we must

account for masses.

For T > TEWPT , the dominant transfer reaction is X +X → H +H†, for which the scattering kernel

is

W (s) =
1
π

1
g̃x

B2

M4 s2 . (B.11)

This yields the collision term

∆C =
g̃x

32π5 B2
[∫

∞

0
dxx6F (x)

]
T 9

M4 , (B.12)

where now the integral is dominated by
√

s∼ 6T .

Below the transition temperature, we have f f̄ , hh, W+W−, and ZZ final states at leading order.

Their contributions to the scattering kernels are

Wf (s) =
N( f )

c

π

1
g̃x

B2

M4 s2

(
m2

f

s

)(
s

s−m2
h

)2
(

1−
4m2

f

s

)3/2

(B.13)

Wh(s) =
1

4π

1
g̃x

B2

M4 s2
(

1−
4m2

h
s

)1/2

(B.14)

WZ(s) =
1

4π

1
g̃x

B2

M4 s2
(

s
s−m2

h

)2(
1− 2m2

Z

s
+

12m4
Z

s2

)(
1− 4m2

Z

s

)1/2

(B.15)

WW (s) =
1

2π

1
g̃x

B2

M4 s2
(

s
s−m2

h

)2(
1− 2m2

W

s
+

12m4
W

s2

)(
1− 4m2

W

s

)1/2

(B.16)

These results only apply for
√

s > 2mi; they are zero otherwise. Note that for
√

s� 2mh, 2m f , the sum

of these kernels is equal to the result of Eq. (B.11).
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