
Automated Reasoning in First-order
Real Vector Spaces

by

Carl Kwan

B.Sc., The University of British Columbia, 2017

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate and Postdoctoral Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

August 2019

c© Carl Kwan 2019

Abstract

We present a formal first-order theory of arbitrary dimensional real vector
spaces in ACL2(r). This includes methods for reasoning about real vectors,
metric spaces, continuity, and multivariate convex functions, which, by ne-
cessity, involves the formalisation of a selection of classically significant and
useful mathematical theorems. Notable formalisations include the first me-
chanical proof of the Cauchy-Schwarz inequality in a first-order logic and
a theorem attributed to Yurii Nesterov for characterising convex functions
with Lipschitz continuous gradients.

One motivation for this work is to further contribute to the automated
deduction of theorems involving such mathematical objects. Another mo-
tivation is the potential applications in the verification of analog circuits,
cyberphysical systems, and machine learning algorithms. Indeed, common
techniques in these areas involve reasoning about the algebraic properties of
higher dimensional structures over the reals or the extremal values, mono-
tonicity, and convexity properties of functions over these structures. These
applications, along with Nesterov’s theorem, demonstrate that our formali-
sation serves as a useful foundation in the space of reasoning and verification
research.

ii

Preface

This thesis contains the research I conducted while in UBC’s Integrated
Systems Design Lab under the guidance of Mark Greenstreet. Chapter 4,
Chapter 5, and Chapter 6 are based on work previously published as [21].
Similarly, Chapter 7 and Chapter 8 are based on work published as [20].
Both papers were jointly written with Mark Greenstreet.

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Tables . vi

List of Figures . vii

List of Programs . viii

Acknowledgements . x

1 Introduction . 1

2 Related Work . 4

3 Preliminaries . 6
3.1 Vector and Inner Product Spaces 6
3.2 The Cauchy-Schwarz Inequality 7
3.3 Metric Spaces . 7
3.4 Continuity & Differentiability in Rn 8
3.5 Convex Functions & F1

L(Rn) 8
3.6 ACL2(r) . 10
3.7 Non-standard Analysis and ACL2(r) 11

4 Mechanical First-order Real Vector Spaces 13
4.1 Vector Space Axioms . 15
4.2 Inner Product Space Axioms 18

iv

Table of Contents

5 Formalising Cauchy-Schwarz 21
5.1 Cauchy-Schwarz I . 24
5.2 Cauchy-Schwarz II . 24
5.3 Conditions for Equality . 28
5.4 Final Form of Cauchy-Schwarz 29

6 Reasoning about Continuity 32
6.1 Metric Space Axioms . 32
6.2 Continuity Rn → R . 35
6.3 Why are Non-classical Recursive Functions Prohibited? . . . 38

7 Mechanical Multivariate Convex Functions 40
7.1 Example Functions . 40
7.2 Reasoning about Convexity 42
7.3 A Useful Lemma . 44

8 Formalising Nesterov’s Theorem 48
8.1 Approach and Basic Definitions & Lemmas 49
8.2 Instantiating Inequalities . 55
8.3 Taking Limits . 56
8.4 Nesterov’s Final Form . 57
8.5 Ambiguities in Nesterov’s Statement 59

9 Conclusion and Future Work 61

Bibliography . 63

Appendices

A Classical Proofs . 68

v

List of Tables

4.1 Key definitions in Chapter 4. 13
4.2 Key theorems in Chapter 4. 14

5.1 Key definitions in Chapter 5. 21
5.2 Key theorems in Chapter 5. 23

6.1 Key definitions in Chapter 6. 32
6.2 Key theorems in Chapter 6. 33

7.1 Key definitions in Chapter 7. 40
7.2 Key theorems in Chapter 7. 41

8.1 Key theorems in Chapter 8. 49
8.2 Multiple interpretations of Nesterov’s statement. 60

vi

List of Figures

1.1 Thesis organisation . 3

5.1 Proof structure of Cauchy-Schwarz 22

8.1 Nesterov’s proof of Theorem 3 50
8.2 Our proof of Theorem 3 . 51

vii

List of Programs

2.1 Cauchy-Schwarz in Coq . 5
2.2 Cauchy-Schwarz in Mizar . 5
2.3 Cauchy-Schwarz in HOL Light 5

4.1 Vector addition. 16
4.2 Scalar multiplication. 16
4.3 Vector subtraction is equivalent to (vec-+ vec1 (scalar-*

-1 vec2)). 16
4.4 Using the equivalence between vector-- and vec---x. . . . 17
4.5 The dot product. 18
4.6 An example of using commutativity to prove bilinearity of the

dot product. 19

5.1 Applying bilinearity of the dot product to prove a simple
identity. 25

5.2 Substituting v for 〈v, v〉−1〈u, v〉v. 26
5.3 Final form of Cauchy-Schwarz I. 26
5.4 Showing Cauchy-Schwarz II. 27
5.5 Linearity follows from equality. 28
5.6 Introducing a Skolem function for linearity. 29
5.7 The conditions for equality for Cauchy-Schwarz I. 29
5.8 The final form of Cauchy-Schwarz. 30

6.1 The Euclidean metric. 34
6.2 The Euclidean norm. 34
6.3 Showing arbitrary entries of a vector are infinitesimal via the

maximum element. 37
6.4 A fantastical recognizer for vectors with infinitesimal entries

that doesn’t exist. 37
6.5 A theorem positing the infinitesimalness of arbitrary entries

in x− y. 37
6.6 A theorem positing sum is continuous. 38

viii

List of Programs

6.7 The function g(x, y) = xy is continuous. 38
6.8 An impossible function in ACL2(r). 38

7.1 f(x) = x2 is convex. 43
7.2 Encapsulating a constant function cvnf-1 and stating its con-

vexity. 44
7.3 Supressing the definition of cvfn-1, stating a special case of

distributivity, and stating the convexity of a · f 45
7.4 The string of equalities in Equation 7.3. 46
7.5 Pseudo triangle inequality formalised. 47

8.1 The first inequality follows from Lipschitz continuity. 52
8.2 The second inequality follows from Cauchy-Schwarz. 53
8.3 The desired implication in an expanded form. 53
8.4 Skolem functions that allow us to invoke the forall quantifier. 54
8.5 Nest. 0 implies Nest. 4 . 54
8.6 An “obvious” way to state Nest. 2 implies Nest. 3. 55
8.7 Instantiating two copies of Nest. 2. 56
8.8 Introducing standard-vecp into the hypotheses. 57
8.9 Theorem 3. 58
8.10 Nest. 5 in Polish notation. 59

ix

Acknowledgements

I would like to thank Audrey Xu, Jiasi Yu, Kevin Cheang, Adrian She, Max
Hui-Bon-Hoa, Chris Chen, Itrat Akhter, Justin Reiher, Yan Peng, Bruce
Shepherd, Anne Condon, Warren Hunt, Matt Kaufmann, Ruben Gamboa,
Alan Hu, Will Evans, and Mark Greenstreet. Words cannot fully express
my appreciation.

x

Chapter 1

Introduction

Automated reasoning in general and automated theorem proving in particu-
lar play a dual role in computer science, treading a line between theory and
application. On the application side, theorem provers are a tool for those
working in formal methods to reason about and verify complex systems –
a more rigourous approach compared to testing. The limitations of testing
manifest in a variety of flaws leading to potentially significant human or
monetary loss. One high-profile example is the Pentium FDIV bug which
has since propelled theorem proving for verification to become a standard
in the microprocessor industry [8]. Other examples include the MIM-104
Patriot Missile failure [45], the Therac-25 radiation therapy machine ac-
cidents [25], the Vancouver Stock Exchange rounding error [47], and the
Meltdown [26] and Spectre [18] vulnerabilities. On the fundamental side,
computer proofs provide a rigourous justification for mathematical state-
ments beyond that found in human proofs. Moreover, automated tools have
been used to prove novel theorems where human approaches were fallible
or otherwise insufficient (at the time). Examples include the four colour
theorem [4, 5], the Robbins conjecture [30], a special case of the Erdös dis-
crepancy problem [19], and, more recently, Boolean Pythagorean triples [15]
and Schur Number Five [14].

A common theme among these problems is that they all involve discrete
mathematical structures which are particularly amenable to computational
methods. However, reasoning about continuous structures, such as the re-
als, poses difficulty as any representation of (some) real numbers inherently
involve some form of infinity. The typical computer science solution is to
use floating-point numbers, which trades the precision of the reals for a fi-
nite but malleable representation. But the speed-ups afforded by techniques
for manipulating floating-point numbers can lead to errors that are funda-
mental to the use of finite representations for infinite domains. In fact, this
is exemplified by the Pentium FDIV bug where the look-up table for com-
puting floating-point division was missing entries. On the other hand, real
numbers are undoubtedly useful. Calculus and real analysis in general have
numerous applications in science beyond just pure mathematics. In formal

1

Chapter 1. Introduction

methods, recent efforts have been focused on the verification of analog cir-
cuits, cyberphysical systems, and optimisation algorithms used in machine
learning. The unifying theme in these domains is that they all involve rea-
soning about functions in real vector spaces – typically about their extremal
values, monotonicity, or convexity properties. In particular, these involve
not only univariate functions, but multivariate ones, too.

There are, indeed, several well-established approaches to formalising (in
the theorem prover sense) the reals (in the univariate sense) but, to the
best of our knowledge, only one existing formalisation in a first-order logic.
Likewise, we are not aware of any first-order logic formalisation of the reals
for higher dimensional structures. First-order logic is of particular interest
because it is sufficiently expressive for reasoning about computer systems
while maintaining highly automated decision procedures that higher-order
logic cannot provide. How can we reason about arbitrary dimensional real
vector spaces in a first-order logic?

This thesis presents the first formalisation in a first-order logic,
interactive theorem prover of Rn as an inner-product space and a
metric space. We demonstrate that our formulation provides a
useful foundation for reasoning about such mathematical struc-
tures by mechanically proving interesting theorems about vector
spaces and convex functions.

The organisation of this thesis is visualised by Figure 1.1. In particular,
we present the first formal first-order theory of arbitrary dimensional real
vector, inner product, and metric spaces (Chapters 4 and 6). By necessity,
this includes a formal proof of the Cauchy-Schwarz inequality, which is the
first of its kind in a first-order logic (Chapter 5). We also present solutions for
reasoning in these theories while avoiding fundamental soundness-motivated
logical limitations in expressibility. Finally, we apply our theories by rea-
soning about convex optimisation techniques commonly used in machine
learning (Chapter 7). This includes a formal proof for a set of equivalent
conditions for inclusion in the class of convex functions with Lipschitz con-
tinuous gradients – a theorem that, to the best of our knowledge, has yet to
be fully published in a single piece of literature with a correct and unam-
biguous proof (Chapter 8).

Throughout this work, we use ACL2(r), a highly automated and effi-
cient theorem prover in a first-order logic that supports reasoning about
real numbers.

2

Chapter 1. Introduction

Vector Spaces
Chapter 4

Inner Product Spaces
Chapter 4

Cauchy-Schwarz Inequality
Chapter 5

Metric Spaces
Chapter 6

Continuous Functions
Chapter 6

Convex Functions
Chapter 7

Nesterov’s Theorem
Chapter 8

Figure 1.1: Thesis organisation. Major theorems are denoted by round
corners.

3

Chapter 2

Related Work

While this thesis focuses on Rn from two perspectives, most other formalisa-
tions in the literature outline only one view of Rn – usually either neglecting
to address metrics or lacking in the development of vectors. Moreover, to
the best of our knowledge, these formalisations of Rn are verified in a higher-
order setting. For example, a theory of complex vectors with a nod towards
applications in physics was formalised in HOL Light but does not address
metrics [3]. On the other end of the spectrum, there is a formalisation of
Euclidean metric spaces and abstract metric spaces in HOL that do not
fully include a theory of real vectors [12, 29]. This observation extends to
Coq [46].

Within ACL2(r), there has been formalisation for some special cases of n.
The work that handled n = 1 is indeed fundamental and indispensable [11].
We may view C ' R2 as a vector space over R so n = 2 is immediate since
ACL2(r) supports complex numbers. Moreover, extensions of C such as the
quaternions H and the octonions O with far richer mathematical structure
than typical vector spaces have recently been formalised, which addresses
the cases of n = 4 and n = 8 [9].

Theorem provers with prior formalisations of Cauchy-Schwarz include
HOL Light [13], Isabelle [38], Metamath [32], Coq [28], Mizar [1], Proof-
Power [40], and PVS [48]. However, it appears most statements of these
theorems do not mention the conditions for equality. To the best of our
knowledge, only Metamath has a statement concerning the equality case of
the Cauchy-Schwarz inequality [31].

We know of no other formalisations of convex functions in the current
literature but base our formalisation on reference texts [7, 33]. Most of the
mathematics in this thesis can be found in standard texts such as [16, 22,
42, 44]. Non-standard analysis is less standard of a topic but some common
references are [24, 27, 41].

4

Chapter 2. Related Work

Program 2.1 Cauchy-Schwarz in Coq. Originally formalised by Daniel de
Rauglaudre.

Notation "’Σ’ (i = b , e) , g" := (summation b e (λ i, (g)%R)).

Notation "u .[i]" := (List.nth (pred i) u 0%R).

Cauchy_Schwarz_inequality

: ∀ (u v : list R) (n : nat),

(Σ (k = 1, n), (u.[k] * v.[k])2

≤ Σ (k = 1, n), ((u.[k])2) * Σ (k = 1, n), ((v.[k])2))%R

Program 2.2 Cauchy-Schwarz in Mizar. Originally formalised by Jaroslaw
Kotowicz.

theorem :: HERMITAN:45

:: Schwarz inequality

for V be VectSp of F_Complex, v,w be Vector of V

for f be diagReR+0valued hermitan-Form of V

holds |. f.[v,w] .|^2 <= signnorm(f,v) * signnorm(f,w);

Program 2.3 Cauchy-Schwarz in HOL Light. Originally formalised by John
Harrison.

|- !x:real^N y. abs(x dot y) <= norm(x) * norm(y)

5

Chapter 3

Preliminaries

3.1 Vector and Inner Product Spaces

A vector space is a couple (V, F) where V is a set and F a field equipped
with scalar multiplication such that, for any v, u, w ∈ V and any a, b ∈ F ,

v + (u+ w) = (v + u) + w (associativity) 3.1

v + u = u+ v (commutativity) 3.2

∃ 0 ∈ V, v + 0 = v (additive identity) 3.3

∃ −v ∈ V, v + (−v) = 0 (additive inverse) 3.4

a(bv) = (ab)v (compatibility) 3.5

1v = v (scalar identity) 3.6

a(v + u) = av + au (distributivity of vector addition) 3.7

(a+ b)v = av + bv (distributivity of field addition). 3.8

An inner product space is a triple (V, F, 〈−,−〉) where (V, F) is a vector
space and 〈−,−〉 : V × V → F is a function called an inner product, i.e. a
function satisfying

〈au+ v, w〉 = a〈u,w〉+ 〈v, w〉 (linearity in the first coordinate) 3.9

〈u, v〉 = 〈v, u〉 when F = C (conjugate symmetry) 3.10

〈u, u〉 ≥ 0 with equality iff u = 0 (positive definiteness) 3.11

for any u, v, w ∈ V and a ∈ F . If F is not complex, then we may simply
replace conjugate symmetry with symmetry, i.e. 〈u, v〉 = 〈v, u〉. Indeed, for
the purposes of this thesis, we take Rn over R to be our vector space and
endow it with the dot product

〈(u1, u2, . . . , un), (v1, v2, . . . , vn)〉 = u1v1 + u2v2 + · · ·unvn 3.12

to obtain an inner product space. In particular, we note that one may
obtain different inner product spaces by replacing any entry of the triple
(Rn,R, 〈−,−〉) with an object of the respective type, but leave such a gen-
eralisation for future work.

6

3.2. The Cauchy-Schwarz Inequality

3.2 The Cauchy-Schwarz Inequality

Cauchy-Schwarz allows us to relate the magnitude of vectors to their inner
product. Let ‖ · ‖ be the norm induced by 〈−,−〉.

Theorem 1. Formally, the Cauchy-Schwarz inequality states

|〈u, v〉|2 ≤ 〈u, u〉 · 〈v, v〉 Cauchy-Schwarz I

or, equivalently,

|〈u, v〉| ≤ ‖u‖‖v‖ Cauchy-Schwarz II

for any vectors u, v. Moreover, equality holds iff u, v are linearly dependent.

Proof (sketch). If v = 0, then the claims are immediate. Suppose v 6= 0 and
let a be a field element. Observe

0 ≤ ‖u− av‖2 = 〈u− av, u− av〉 = ‖u‖2 − 2a〈u, v〉+ a2‖v‖2. 3.13

Setting a = ‖v‖−2〈u, v〉 and rearranging produces Cauchy-Schwarz I. Take
square roots and we get Cauchy-Schwarz II. Note that 0 ≤ ‖u− av‖2 is the
only step with an inequality so there is equality iff u = av.

More details will be provided as we discuss the formal proof – especially
the steps that involve “rearranging”.

3.3 Metric Spaces

Observe by setting d(x, y) = ‖x − y‖, a metric is induced. Metric spaces
are topological spaces equipped with a metric function which is a rigorous
approach to defining the intuitive notion of distance between two vectors.
Formally, a metric space is a couple (M,d) whereM is a set and d : M×M →
R a function satisfying

d(x, y) = 0 ⇐⇒ x = y (definitness) 3.14

d(x, y) = d(y, x) (symmetry) 3.15

d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality). 3.16

From this it follows that
d(x, y) ≥ 0 3.17

7

3.4. Continuity & Differentiability in Rn

because
0 = d(x, x) ≤ d(x, y) + d(y, x) = 2d(x, y). 3.18

A function f : M →M ′ between metric spaces is continuous if for every
x ∈M and for any ε > 0, there is a δ > 0 such that

dM (x, y) < δ =⇒ dM ′(f(x), f(y)) < ε 3.19

for any y ∈ E.

3.4 Continuity & Differentiability in Rn

When M = M ′ = R, a univariate function f : R → R is continuous if for
any x ∈ R and ε > 0, there is a δ > 0 such that for any y ∈ R, if |x− y| < δ,
then |f(x)− f(y)| < ε. Moreover, the derivative of f is defined to be

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
3.20

if such a form exists.
For a multivariate function f : Rn → R, continuity is defined similarly:

we call f continuous if for any x ∈ Rn and ε > 0, there is a δ > 0 such
that for any y ∈ Rn, if ‖x − y‖ < δ, then |f(x) − f(y)| < ε. Likewise, if
it exists, there is a derivative for multivariate functions defined similarly to
the univariate case:

〈f ′(x), y〉 = lim
h→0

f (x+ hy)− f(x)

h
. 3.21

We call f ′ : Rn → Rn the gradient of f and it satisfies

f ′(x) = (f ′1(x1), f
′
2(x2), . . . , f

′
n(xn)) 3.22

where f ′i(x) is the univariate derivative of f with respect to the i-th compo-
nent xi of x.

3.5 Convex Functions & F1
L(Rn)

A function f : Rn → R is convex if for any x, y ∈ Rn and α ∈ [0, 1],

αf(x) + (1− α)f(y) ≥ f(αx+ (1− α)y). 3.23

8

3.5. Convex Functions & F1
L(Rn)

Equivalently, if f is differentiable once with gradient f ′, then it is convex if

f(y) ≥ f(x) + 〈f ′(x), y − x〉. 3.24

Write F(Rn) to denote the class of convex functions from Rn to R. Examples
of convex functions include f(x) = x2, ‖ · ‖2, and ‖ · ‖22. Moreover, the class
of convex functions is closed under certain operations.

Theorem 2. If f : Rn → R and g : Rn → R and h : R→ R are convex with
h monotonically increasing, then

1. a · f is convex for any real a ≥ 0,

2. f + g is convex,

3. h ◦ f is convex.

The proof of these claims follow directly from the definitions which we
defer to Appendix A.

Often, convex optimisation algorithms require f to be both convex and
sufficiently “smooth”. Here, we take “smooth” to be stronger than continu-
ous but not necessarily differentiable. In particular, we say that f : Rn → R
is Lipschitz continuous if for any x, y ∈ Rn there is some L > 0 such that

‖f(x)− f(y)‖ ≤ L‖x− y‖. 3.25

Informally, we have the following chain of inclusions for classes of functions:

Differentiable ⊂ Lipschitz Continuous ⊂ Continuous.

We write F1(Rn) for the class of once continuously differentiable con-
vex functions on Rn and F1

L(Rn) for functions in F1(Rn) with Lipschitz
continuous gradient with constant L. Functions in the class F1

L(Rn) have
many useful properties for optimisation. A significant result of this thesis is
proving a theorem that gives six “equivalent” ways of showing that a convex
function is in F1

L(Rn):

Theorem 3. Let f ∈ F1(Rn), x, y ∈ Rn and α ∈ [0, 1]. The following

9

3.6. ACL2(r)

conditions are equivalent to f ∈ F1
L(Rn):

f(y) ≤ f(x) + 〈f ′(x), y − x〉+
L

2
‖x− y‖2 Nest. 1

f(x) + 〈f ′(x), y − x〉+
1

2L
‖f ′(x)− f ′(y)‖2 ≤ f(y) Nest. 2

1

L
‖f ′(x)− f ′(y)‖2 ≤ 〈f ′(x)− f ′(y), x− y〉 Nest. 3

〈f ′(x)− f ′(y), x− y〉 ≤ L‖x− y‖2 Nest. 4

f(αx+ (1− α)y) +
α(1− α)

2L
‖f ′(x)− f ′(y)‖2 ≤ αf(x) + (1− α)f(y)

Nest. 5

αf(x) + (1− α)f(y) ≤ f(αx+ (1− α)y) + α(1− α)
L

2
‖x− y‖2. Nest. 6

The first proof of this theorem is attributed to Yurii Nesterov and can be
found in his classic 2004 text, Introductory Lectures on Convex Optimiza-
tion [33, Thm. 2.1.5]. We defer a (better) hand proof of this theorem to
Appendix A.

3.6 ACL2(r)

ACL2 (A Computational Logic for Applicative Common Lisp) is a strict sub-
set of Common Lisp and an automated theorem prover in a total, first-order
logic commonly used to model and verify computer systems and mathemat-
ics. By total, we mean all functions map all objects in the logic. By first-
order, we mean quantifiers can only predicate over individuals (in contrast
to sets and sets of sets, etc. in higher-order logic). In particular, functions
cannot be naturally quantified over. The return on this restriction is that
first-order theorem proving is highly developed, semi-decidable, and allows
for truly automated reasoning. ACL2, in particular, is primarily based on
term-rewriting, which, simply put, is a set of rules for replacing one logical
expression with an another equivalent expression. In addition to these facts,
ACL2 is mostly quantifier-free which allows it to be a highly automated and
efficient tool for reasoning about computer hardware and software systems
appealing to commercial applications in the verification space. ACL2 is
sometimes referred to as an industrial-strength theorem prover.

Some commonly used ACL2 functions in this thesis are:

• defun - defines a function symbol

10

3.7. Non-standard Analysis and ACL2(r)

• defthm - name and prove a theorem

• defun-sk - define a Skolem function, i.e. a function with an outermost
quantifier

• encapsulate - hide some events and constrain some functions

• car - returns the head of a list

• cdr - returns a list without its head

• len - returns the length of a list.

Despite the first-order nature of ACL2, there is a mechanism, called en-
capsulation, for proving theorems about functions. An encapsulation hides
certain events (which include theorems) and/or function definitions from
the global logic; such events and definitions are called local. Local the-
orems can then be proven about local functions. Furthermore, there are
global theorems whose proofs only rely on local theorems, and not on the
function definitions themselves. Functional instantiation allows these global
theorems to be deduced for other functions that satisfy the local theorems.
Local functions that are originally used to satisfy the local theorems within
the encapsulation are called witnesses. This provides a psuedo-higher-order
ability for reasoning about functions in general. Details are given in the
ACL2 documentation [2]. In this thesis, encapsulations are used to prove
theorems about continuous functions and convex functions in Chapters 6
to 8.

3.7 Non-standard Analysis and ACL2(r)

Classical real analysis is well known for its epsilon-delta approach to math-
ematical theory-building. For example, we say that function f : R → R is
continuous at x ∈ R iff

∀ε > 0, ∃δ > 0 : ∀y ∈ R, |y − x| < δ =⇒ |f(y)− f(x)| < ε. 3.26

This classical approach makes extensive use of nested quantifiers and sup-
port for quantifiers in ACL2 is limited. In fact, proofs involving terms with
quantifiers often involve recursive witness functions that enumerate all pos-
sible values for the quantified term. Of course, we cannot enumerate all of
the real numbers. Instead of using epsilon-delta style reasoning, ACL2(r) ex-
tends ACL2 by supporting real numbers via a formalisation of non-standard

11

3.7. Non-standard Analysis and ACL2(r)

analysis – a more algebraic yet isomorphic approach to the theory of real
analysis. Since quantifiers are unwieldy, this alternative approach is more
amenable to automated deduction.

Non-standard analysis introduces an extension of R called the hyperreals
∗R ⊃ R which include numbers larger in magnitude than any finite real and
the reciprocals of such numbers. These large hyperreals are aptly named
infinite and their reciprocals are named infinitesimal. If ω is an infinite
hyperreal, then it follows that |1/ω| < x for any positive finite real x. Also,
0 is an infinitesimal.

Any finite hyperreal is the sum of a real number and an infinitesimal.
The real part of a hyperreal can be obtained through the standard-part
function st : ∗R→ R.

To state a function f : Rn → R is continuous in the language of non-
standard analysis amounts to: if d(x, y) is an infinitesimal for a standard x,
then so is |f(x)− f(y)|.

Some commonly used ACL2(r) functions in this thesis are:

• realp - the recognizer for a real number

• real-listp - the recognizer for lists of real numbers

• i-small - the recognizer for infinitesimals

• i-large - the recognizer for infinite hyperreals

• i-limited - the recognizer for reals that are not i-large

• st - returns the standard-part of a real.

12

Chapter 4

Mechanical First-order Real
Vector Spaces

Rn is ubiquitous across much of mathematics. Indeed, as a geometric struc-
ture, we view Rn as a place in which to perform analysis; as an algebraic
object, Rn is a direct sum of subspaces. Under different lenses we view Rn

as different structures and it thus inherits the properties of the related struc-
tures. It is a metric space, a Hilbert space, a topological space, a group,
etc.

In this chapter, we present Rn formalised from two perspectives. First,
we consider Rn as a vector space. Then, by endowing Rn with the dot
product, we obtain an inner product space. Inner product spaces are vector
spaces equipped with an inner product which induces – among other notions
– a rigorous definition of the angle between two vectors and the size of a
vector. Notably, by playing with the definitions of the inner product, vector
addition, scalar multiplication, etc. we reap dividends in the later chapters
by way of short and elegant proofs. For this reason, and since this is the first
appearance of ACL2 code, we discuss and showcase some selected definitions
to exposit our approach to reasoning about and formalising Rn.

Definition ACL2 Name Program

Vector Addition vec-+ 4.1

Scalar Multiplication scalar-* 4.2

Vector Subtraction (I) vec-- 4.3

Vector Subtraction (II) vec--x

Dot Product dot 4.5

Table 4.1: Key definitions in this chapter.

13

Theorem Statement ACL2 Name Program

Vector Space Axioms See Section 3.1

Closure of Vector Addition u, v ∈ Rn =⇒ u+ v ∈ Rn vec-+-closure-1

vec-+-closure-2

4.1

Equivalence of vec-- and vec--x u− v = u−x v vec---equivalence 4.4

Anticommutativity of
Vector Subtraction (vec--x)

u−x v = −(v −x u) vec---x-anticommutativity 4.4

Anticommutativity of
Vector Subtraction (vec--)

u− v = −(v − u) vec---anticommutativity 4.4

Inner Product Space Axioms See Section 3.1

Commutativity of the Dot Product 〈u, v〉 = 〈v, u〉 dot-commutativity 4.6

Linearity of the Dot Product
in the First Coordinate (I)

〈au, v〉 = a〈u, v〉 dot-linear-first-coordinate-1 4.6

Linearity of the Dot Product
in the Second Coordinate (I)

〈u, av〉 = a〈u, v〉 dot-linear-second-coordinate-1 4.6

Table 4.2: Key theorems in this chapter.

14

4.1. Vector Space Axioms

4.1 Vector Space Axioms

Program 4.1 shows our definition of vector addition, vec-+. Unsurprisingly,
vectors in Rn are represented by lists of n real numbers. For operations
between such elements to be well defined, the two vectors must be of the
same length, and closure forces the function to return a vector of the same
dimension. With these considerations, vec-+ is defined via a straightfor-
ward recursion. In ACL2, all functions, including vec-+, are defined for all
arguments. Thus vec-+ is defined for vectors of mismatched length or even
values that are not vectors. For example, (vec-+ ‘‘hello world’’ 42)

returns nil. The guard for a function describes the intended usage. When
a function is defined in ACL2, checks can be made to ensure that terms in
the function body satisfy their respective guards. This is a generalisation
of type checking that allows many simple programming errors to be caught
and corrected before attempting subtle proofs. Since all functions, including
vec-+, are total, theorems about these functions, such as vec-+-closure-1
(also in Program 4.1), must hold for all values of function parameters. Thus,
it is common, as seen in vec-+-closure-1, to restate the guard as a hy-
pothesis of the theorem. ACL2 also uses guard information to optimise
the execution of functions in contexts where the guard has been proven to
hold. Note, in Program 4.1, define is a wrapper for defun that simpli-
fies many common aspects of function definition in ACL2, such as guards.
The more-returns section of a define is a convenient way of introducing
theorems about the function. Likewise, there are similar theorems positing
associativity, commutativity, etc. that are readily proven in ACL2 without
further user assistance when provided the appropriate induction scheme.

Scalar multiplication scalar-* is defined similarly in Program 4.2 with
the usual theorems about closure, compatibility, etc. proven via induction.

Ideally, vector subtraction would be defined as a macro as in Program 4.3
involving vec-+ and scalar-* as it is with subtraction for reals in ACL2.
Happenstantially, however, proving theorems regarding a function equivalent
to vec-- (which we call vec--x) and then proving the theorems for vec-- via
the equivalence is more amenable to verification in ACL2 than immediately
proving theorems about vec--. In fact, the definition for vec--x is similar
to vec-+ but with - appearing wherever + previously appeared. Hence,
the theorems involving closure, identity, inverses, anticommutativity, etc.
are almost immediate. An example of this can be seen in Program 4.4.
Upon execution of the desired properties for vec--, the theorem positing
the equivalence of vec-- to vec--x is disabled so as to not pollute the
space of rules which the rewriter uses.

15

4.1. Vector Space Axioms

Program 4.1 Vector addition.

(define vec-+ ((vec1 real-listp) (vec2 real-listp))

:guard (and (real-listp vec1)

(real-listp vec2)

(= (len vec1) (len vec2)))

:returns (vec real-listp)

(b* (((unless (and (consp vec1) (consp vec2))) nil)

((cons hd1 tl1) vec1)

((cons hd2 tl2) vec2)

((unless (and (realp hd1) (realp hd2))) nil))

(cons (+ hd1 hd2) (vec-+ tl1 tl2)))

///

(more-returns

(vec (real-listp vec) :name vec-+-closure-1)

(vec (implies (and (real-listp vec1)

(real-listp vec2)

(= (len vec1) (len vec2)))

(and (= (len vec) (len vec1))

(= (len vec) (len vec2))))

:name vec-+-closure-2) ...))

Program 4.2 Scalar multiplication.

(define scalar-* ((a realp) (vec real-listp))

:returns (retvec real-listp)

(b* (((unless (consp vec)) nil)

((cons hd tl) vec)

((unless (and (realp a) (realp hd))) nil))

(cons (* a hd) (scalar-* a tl)))

///

(more-returns ...))

Program 4.3 Vector subtraction is equivalent to (vec-+ vec1 (scalar-*

-1 vec2)).

(defmacro vec-- (vec1 vec2)

(list ’vec-+ vec1 (list ’scalar-* -1 vec2)))

16

4.1. Vector Space Axioms

Program 4.4 Using the equivalence between vector-- and vec---x.

(defthm vec---equivalence

(implies (and (real-listp vec1)

(real-listp vec2)

(= (len vec1) (len vec2)))

(equal (vec-- vec1 vec2) (vec--x vec1 vec2)))

:hints (("GOAL" :in-theory (enable vec--x vec-+ scalar-*)

:induct (and (nth i vec1) (nth i vec2)))))

...

(defthm vec--x-anticommutativity

(= (vec--x vec1 vec2) (scalar-* -1 (vec--x vec2 vec1)))

:hints (("GOAL" :in-theory (enable vec--x scalar-*))))

(defthm vec---anticommutativity

(implies (and (real-listp vec1) (real-listp vec2)

(= (len vec2) (len vec1)))

(= (vec-- vec1 vec2) (scalar-* -1 (vec-- vec2 vec1))))

:hints (("GOAL" :use ((:instance vec---equivalence)

(:instance vec---equivalence

(vec1 vec2) (vec2 vec1))

(:instance vec--x-anticommutativity)))))

17

4.2. Inner Product Space Axioms

4.2 Inner Product Space Axioms

The definition of the dot product (Program 4.5) is rather similar to vec-+ in
that it is a simple recursive definition. The particular differences amount to
returning a real instead of a vector. Proofs of return values, commutativity,
etc. pass with a simple unwinding of the definition.

Program 4.5 The dot product.

(define dot ((vec1 real-listp) (vec2 real-listp))

:guard (and (real-listp vec1) (real-listp vec2)

(= (len vec2) (len vec1)))

:returns (r realp)

(cond ((or (not (real-listp vec1)) (not (real-listp vec2))) 0)

((not (= (len vec2) (len vec1))) 0)

((or (null vec1) (null vec2)) 0)

(t (+ (* (car vec1) (car vec2))

(dot (cdr vec1) (cdr vec2))))))

Aside from the usual suspects, one troublesome property is bilinearity of
the dot product. While linearity of the first coordinate passes inductively
without any hints, linearity for the second coordinate does not execute so
easily. Providing an explicit induction scheme via a hint would likely produce
the desired proof; however, it was simpler to apply commutativity and use
linearity of the first coordinate to exhibit the same result, e.g. given

〈au, v〉 = a〈u, v〉, 4.1

〈u, v〉 = 〈v, u〉, 4.2

we have
〈u, av〉 = 〈av, u〉 = a〈v, u〉 = a〈u, v〉. 4.3

Program 4.6 shows the ACL2 version of this proof.
Our reliance on proving theorems about algebraic structures via their

algebraic properties instead of via induction is well exemplified here. This
is especially important for the following formalisation of metric spaces. Be-
cause non-classical recursive function are not permitted in ACL2(r), sup-
pressing the definition of recursive functions on vectors, say dot, within a
define facilitates the reasoning of infinitesimals in the space of Rn. In par-
ticular, since 〈−,−〉 : Rn → R is a real-valued function, we may connect
the notion of infinitesimal values of 〈−,−〉 with the entries of the vectors

18

4.2. Inner Product Space Axioms

Program 4.6 An example of using commutativity to prove bilinearity of
the dot product.

(defthm dot-commutativity

(implies (and (real-listp vec1) (real-listp vec2)

(= (len vec2) (len vec1)))

(= (dot vec1 vec2) (dot vec2 vec1)))

:hints (("GOAL" :in-theory (enable dot))))

(defthm dot-linear-first-coordinate-1

(implies (and (real-listp vec1) (real-listp vec2)

(= (len vec2) (len vec1)) (realp a))

(= (dot (scalar-* a vec1) vec2)

(* a (dot vec1 vec2))))

:hints (("GOAL" :in-theory (enable dot scalar-*))))

...

(defthm dot-linear-second-coordinate-1

(implies (and (real-listp vec1) (real-listp vec2)

(= (len vec2) (len vec1)) (realp a))

(= (dot vec1 (scalar-* a vec2))

(* a (dot vec1 vec2))))

:hints (("GOAL" :do-not-induct t

:use ((:instance scalar-*-closure (vec vec2))

(:instance dot-commutativity

(vec2 (scalar-* a vec2)))))))

19

4.2. Inner Product Space Axioms

on which 〈−,−〉 is evaluated without unravelling the recursive definition of
dot.

However, as can be seen in Chapter 5, algebraic proofs of theorems in-
volving functions on vectors can require significant guidance by the user
in what would have otherwise been a simple application of associativity,
commutativity, identity, etc. On the other hand, applying combinations of
algebraic rules in search of a satisfying expression can be viewed as a con-
straint satisfaction problem. We leave this as future work and discuss it
further in Chapter 9.

20

Chapter 5

Formalising Cauchy-Schwarz

The Cauchy-Schwarz inequality is considered to be one of the most im-
portant inequalities in mathematics. It plays a role in areas as diverse
as functional analysis, real analysis, probability theory, linear algebra and
combinatorics to name a few. Cauchy-Schwarz even made an appearance
on an online list of “The Hundred Greatest Theorems” [17] and the subse-
quent formalised version of the list “Formalizing 100 Theorems” [48]. In this
chapter, we present the first formal proof of the Cauchy-Schwarz inequality
in a theorem prover for first-order logic including both forms (squared and
norm versions) and the conditions for equality. Such a formalisation sug-
gests ACL2 can be used in the various areas of mathematics in which the
inequality appears. In fact, Cauchy-Schwarz is used in Chapter 6 to prove
the triangle inequality for ACL2(r) real metric spaces and in the proof of
Nesterov’s Theorem (Theorem 3) in Chapter 8.

We begin by outlining some of the key lemmas in ACL2(r) that result
in the Cauchy-Schwarz inequality. Much of the proof is user guided via
the algebraic properties of norms, the dot product, etc. that were proven
in Chapter 4. Since this is the first significant formal proof of the thesis,
surplus details are provided.

Definition ACL2 Name Program

Zero Vector Recognizer zvecp

Euclidean Norm eu-norm

Euclidean Norm Squared norm^2

Square Roots acl2-sqrt ACL2(r) Books

∃a : u = av linear-dependence-nz 5.6

Table 5.1: Key definitions in this chapter.

21

5.1. Cauchy-Schwarz I

AxiomsCS1

CS2

CS1

EQ

Figure 5.1: Structure of the proof for Cauchy-Schwarz. CS1, CS2, and
EQ denotes Cauchy-Schwarz I, Cauchy-Schwarz II, and the conditions for
equality, respectively.

22

Theorem Statement ACL2 Name Program

Cauchy-Schwarz I |〈u, v〉|2 ≤ 〈u, u〉 · 〈v, v〉 cauchy-schwarz-1 5.3

Relationship between
Norms and Inner Product (I)

〈u, u〉 = ‖u‖2 norm-inner-product-equivalence

Relationship between
Norms and Inner Product (II)

√
〈u, u〉 = ‖u‖ lemma-16 5.4

Cauchy-Schwarz II |〈u, v〉| ≤ ‖u‖ · ‖v‖ cauchy-schwarz-2 5.4

Conditions for Equality
(Cauchy-Schwarz I)

|〈u, v〉|2 = 〈u, u〉 · 〈v, v〉
m

(u = 0) ∨ (v = 0) ∨ (∃a : u = av)

cauchy-schwarz-3 5.7

Conditions for Equality
(Cauchy-Schwarz II)

|〈u, v〉| = ‖u‖ · ‖v‖
m

(u = 0) ∨ (v = 0) ∨ (∃a : u = av)

cauchy-schwarz-4 5.8

Table 5.2: Key theorems in this chapter.

23

5.1. Cauchy-Schwarz I

5.1 Cauchy-Schwarz I

Recall that Cauchy-Schwarz I states

|〈u, v〉|2 ≤ 〈u, u〉 · 〈v, v〉. Cauchy-Schwarz I

Note the case where v = 0 is trivial. Suppose v 6= 0. To see Cauchy-Schwarz
I, first we prove

‖u− v‖2 = 〈u, u〉 − 2〈u, v〉+ 〈v, v〉 5.1

by applying multiple instances of the bilinearity of 〈−,−〉. This can be seen

in Program 5.1. Since ‖u− v‖ ≥ 0, replacing v with 〈u,v〉〈v,v〉v in Equation 5.1
above produces

0 ≤
∥∥∥∥u− 〈u, v〉〈v, v〉

v

∥∥∥∥2 = 〈u, u〉 − 2

〈
u,
〈u, v〉
〈v, v〉

v

〉
+

〈
〈u, v〉
〈v, v〉

v,
〈u, v〉
〈v, v〉

v

〉
5.2

which can be seen in Program 5.2. The inequality reduces to

0 ≤ 〈u, u〉 − 2
〈u, v〉
〈v, v〉

〈u, v〉+
〈u, v〉2

〈v, v〉2
〈v, v〉 5.3

Factoring out 〈u, v〉 and rearranging via the algebraic rules produces Cauchy-
Schwarz I. This first version of Cauchy-Schwarz can be seen in Program 5.3.

Despite claiming v 6= 0 throughout the proof and, indeed, the case-split
in Program 5.3 corroborating this fact, note that the preceding lemmas in
Programs 5.1 and 5.2 do not need such a hypothesis. This is particularly
concerning for lemma-7 in Program 5.2 since we factor out 〈u, v〉/〈v, v〉 which
would reduce to 0/0 if v = 0. However, in ACL2, all functions are total and
expressions representing, say, x/0 become 0 so the algebra remains valid.

5.2 Cauchy-Schwarz II

To see Cauchy-Schwarz II (i.e. |〈u, v〉| ≤ ‖u‖‖v‖) from Cauchy-Schwarz I,
we simply take square roots (defined as acl2-sqrt in ACL2) and show
the equivalence between the dot products and the square of the norms. In
particular, we use the fact that

√
〈u, u〉 = ‖u‖ which follows simply from

the definitions. Which form one desires is a matter of preference but for
ACL2 to automatically recognize their relationship in the final statement of
Cauchy-Schwarz II (cauchy-schwarz-2), the fact must be stated explicitly
in a preceding lemma (lemma-16). This part can be seen in Program 5.4.

To see the other direction, we simply square both sides and rearrange to
obtain the desired form.

24

5.2. Cauchy-Schwarz II

Program 5.1 Applying bilinearity of the dot product to prove a simple
identity.

;; < u - v , u - v > = < u , u > - < u , v > - < v , u > + < v , v >

(defthm lemma-3

(implies (and (real-listp u) (real-listp v) (= (len u) (len v)))

(equal (norm^2 (vec-- u v))

(+ (dot u u)

(- (dot u v))

(- (dot v u))

(dot v v))))

:hints (("GOAL" :use ((:instance scalar-*-closure (a -1) (vec v))

(:instance dot-linear-second-coordinate-2

(vec1 v)

(vec2 u)

(vec3 (scalar-* -1 v)))

(:instance dot-linear-second-coordinate-2

(vec1 u)

(vec2 u)

(vec3 (scalar-* -1 v))))))))

;; < u - v, u - v > = < u, u > - 2 < u , v > + < v, v >

(defthm lemma-4

(implies (and (real-listp u) (real-listp v) (= (len u) (len v)))

(equal (norm^2 (vec-- u v))

(+ (dot u u) (- (* 2 (dot u v))) (dot v v))))

:hints (("GOAL" :use ((:instance dot-commutativity

(vec1 u) (vec2 v)))))))

25

5.2. Cauchy-Schwarz II

Program 5.2 Substituting v for 〈v, v〉−1〈u, v〉v.

;; 0 <= < u, u > - 2 < u , v > + < v, v >

(local (defthm lemma-6

(implies (and (real-listp u) (real-listp v) (= (len u) (len v)))

(equal (<= 0 (norm^2 (vec-- u v)))

(<= 0

(+ (dot u u)

(- (* 2 (dot u v)))

(dot v v)))))))

;; let v = (scalar-* (* (/ (dot v v)) (dot u v)) v)

(local (defthm lemma-7

(implies (and (real-listp u) (real-listp v) (= (len u) (len v)))

(equal (<= 0

(norm^2 (vec-- u

(scalar-* (* (/ (dot v v))

(dot u v))

v))))

(<= 0

(+ (dot u u)

(- (* 2 (dot u

(scalar-* (* (/ (dot v v))

(dot u v))

v))))

(dot (scalar-* (* (/ (dot v v))

(dot u v))

v)

(scalar-* (* (/ (dot v v))

(dot u v))

v))))))

:hints (("GOAL" :use (...

(:instance lemma-6

(v (scalar-* (* (/ (dot v v))

(dot u v)) v))))))))

Program 5.3 Final form of Cauchy-Schwarz I.

(defthm cauchy-schwarz-1

(implies (and (real-listp u) (real-listp v) (= (len u) (len v)))

(<= (* (dot u v) (dot u v))

(* (dot u u) (dot v v))))

:hints (("GOAL" ... :cases ((zvecp v)(not (zvecp v))))))

26

5.2. Cauchy-Schwarz II

Program 5.4 Showing Cauchy-Schwarz II.

(local (defthm lemma-16

(implies (and (real-listp u) (real-listp v) (= (len u) (len v)))

(and (equal (acl2-sqrt (* (dot u v) (dot u v)))

(abs (dot u v)))

(equal (acl2-sqrt (dot u u)) (eu-norm u))

(equal (acl2-sqrt (dot v v)) (eu-norm v))

(equal (acl2-sqrt (* (dot u u) (dot v v)))

(* (eu-norm u) (eu-norm v)))))

:hints (("GOAL" :use ((:instance norm-inner-product-equivalence

(vec u))

(:instance norm-inner-product-equivalence

(vec v)))))))

(defthm cauchy-schwarz-2

(implies (and (real-listp u) (real-listp v) (= (len u) (len v)))

(<= (abs (dot u v))

(* (eu-norm u) (eu-norm v))))

:hints (("GOAL" :use ((:instance cauchy-schwarz-1)

(:instance norm-inner-product-equivalence

(vec v))

(:instance norm-inner-product-equivalence

(vec u)) ...) ...)))

27

5.3. Conditions for Equality

5.3 Conditions for Equality

Suppose u, v 6= 0 and
〈u, v〉2 = 〈u, u〉〈v, v〉. 5.4

Then we simply reverse all the equalities used to prove Cauchy-Schwarz I
from the axioms (see Equation 5.2) until we return to

0 =

∥∥∥∥u− 〈u, v〉〈v, v〉
v

∥∥∥∥2 . 5.5

Since ‖ · ‖2 is positive definite, we must have

u =
〈u, v〉
〈v, v〉

v. 5.6

This can be seen in Program 5.5. The cases for u = 0 or v = 0 are immediate.
To express linearity, we introduce a Skolem function so that the final

form of the conditions for equality are in the greatest generality. Skolem
functions have bodies with an outermost quantifier and are equivalent to
certain predicate formulas. For ACL2, this means that the logic can express
statements with quantifiers while maintaining fast and automated decision
procedures. The definition of the Skolem function is in Program 5.6.

We also attempted a proof where the value of the Skolem constant was
explicitly computed – simply find the first non-zero element of v and divide
the corresponding element of u by the v element. The proof for the Skolem
function approach was much simpler because the witness value comes already
endowed with the assertion that it has the properties we need for subsequent
reasoning. The final result can be seen in Program 5.7.

The conditions for equality for Cauchy-Schwarz II follow similarly.

Program 5.5 Linearity follows from equality.

;; equality implies the two vectors are linearly dependent

(local (defthm lemma-19

(implies (and (real-listp u) (real-listp v)

(= (len u) (len v)) (not (zvecp v))

(= (* (dot u v) (dot u v)) (* (dot u u) (dot v v))))

(equal u (scalar-* (* (/ (dot v v)) (dot u v)) v))) ...))

28

5.4. Final Form of Cauchy-Schwarz

Program 5.6 Introducing a Skolem function for linearity.

(defun-sk linear-dependence-nz (u v)

(exists a (equal u (scalar-* a v))))

Program 5.7 The conditions for equality for Cauchy-Schwarz I.

;; conditions for CS1 equality

(defthm cauchy-schwarz-3

(implies (and (real-listp u) (real-listp v) (= (len u) (len v)))

(equal (= (* (dot u v) (dot u v)) (* (dot u u) (dot v v)))

(or (zvecp u)

(zvecp v)

(linear-dependence-nz u v)))) ...)

5.4 Final Form of Cauchy-Schwarz

Program 5.8 displays the final form of the Cauchy-Schwarz. The theo-
rems cauchy-schwarz-1 and cauchy-schwarz-2 are equivalent to Cauchy-
Schwarz I and Cauchy-Schwarz II, respectively. Likewise, the theorems
cauchy-schwarz-3 and cauchy-schwarz-4 are the conditions for equality
for Cauchy-Schwarz I and Cauchy-Schwarz II, respectively.

Here we would like to note the choice of classical proof on which we
base this formalisation. In particular, we would like to compare its flavour
to other proofs of Cauchy-Schwarz. Indeed, there are geometric proofs,
analytical proofs, combinatorial proofs, inductive proofs, etc. whereas we
followed an algebraic approach. Considering ACL2(r)’s strengths with re-
gards to induction, the choice may seem odd. There are several potential
inductive candidates we considered before proceeding at the onset of this
endevour. However, most of these candidates inducted over the dimension
of Rn and required reasoning over the real entries of vectors. We suspect
unwinding the vectors and guiding ACL2(r) through such a proof would be
more onerous than the one outlined in this paper. Moreover, our formalisa-
tion of inner product spaces already provided the exact tools necessary for
the chosen proof of Cauchy-Schwarz (i.e. vectors, vector-vector operations,
scalar-vector operations, inner products, etc.) without resorting to reason-
ing over individual reals. The precision of this approach is arguably more
elegant.

Finally, while this formalisation of the Cauchy-Schwarz inequality is not

29

5.4. Final Form of Cauchy-Schwarz

Program 5.8 The final form of Cauchy-Schwarz.

(defthm cauchy-schwarz-1

(implies (and (real-listp u) (real-listp v) (= (len u) (len v)))

(<= (* (dot u v) (dot u v))

(* (dot u u) (dot v v)))) ...)

(defthm cauchy-schwarz-2

(implies (and (real-listp u) (real-listp v) (= (len u) (len v)))

(<= (abs (dot u v))

(* (eu-norm u) (eu-norm v)))) ...)

(defthm cauchy-schwarz-3

(implies (and (real-listp u) (real-listp v) (= (len u) (len v)))

(equal (= (* (dot u v) (dot u v))

(* (dot u u) (dot v v)))

(or (zvecp u)

(zvecp v)

(linear-dependence-nz u v)))) ...)

(defthm cauchy-schwarz-4

(implies (and (real-listp u) (real-listp v) (= (len u) (len v)))

(equal (= (abs (dot u v)) (* (eu-norm u) (eu-norm v)))

(or (zvecp u)

(zvecp v)

(linear-dependence-nz u v)))) ...)

30

5.4. Final Form of Cauchy-Schwarz

a particularly deep proof, it has historic significance by merit of its first-
order context. There is no profound mathematical insight to be gleaned,1

but being the first proof in a first-order logic holds some inherent value by
itself. Furthermore, various applications may be introduced as a result of
the inequality. The appearance of Cauchy-Schwarz in functional analysis,
real analysis, probability theory, combinatorics, etc. speaks to its utility. In
this thesis, we will use it in Chapter 6 to prove the triangle inequality for
real metric spaces and in Chapter 8 to prove Theorem 3.

1Or, at least, none that we found obvious.

31

Chapter 6

Reasoning about Continuity

Continuity is a central idea in calculus and analysis in general, and hardly
needs justification for its utility. Unfortunately, the dense and infinite na-
ture of the reals introduces difficulty for machine reasoning. Non-standard
analysis provides a more algebraic approach to analysis by favouring the use
of infinitesimals in lieu of the classical epsilon-delta approach. One conse-
quence of this is that quantifiers are relegated to a minor role in ACL2 -
thus further facilitating the automated nature of the logic.

Formalising Rn for arbitrary n, however, introduces certain difficulties.
The fundamental differences between the rational and irrational induces a
subtle schism between ACL2 and ACL2(r) wherein the notions formalised in
ACL2 (which we call classical) are far more well-behaved than those unique
to ACL2(r) (which we call non-classical). The arbitrariness of n suggests the
necessity of defining operations recursively – yet, as explained in Section 6.3,
non-classical recursive functions are not permitted in ACL2(r).

First, we briefly outline our approach to formalising a theory of real
metric spaces. Next, we describe our method for reasoning about continuity.
Finally, we conclude with a short discussion about non-classical recursive
functions.

6.1 Metric Space Axioms

Observe
d2(x, y) = ‖x− y‖2 =

√
〈x− y, x− y〉. 6.1

Definition ACL2 Name Program

Euclidean Metric eu-metric 6.1

Euclidean Norm eu-norm 6.2

Euclidean Metric Squared metric^2

Maximum Norm max-abs-reals 6.3

Table 6.1: Key definitions in this chapter.

32

Theorem Statement ACL2 Name Program

Metric Space Axioms See Section 3.3

Norm Infinitesimal
implies

Maximum Infinitesimal

‖x‖ infinitesimal
⇓

maxi |xi| infinitesimal

eu-norm-i-small-implies-max-abs-reals-i-small 6.3

Norm Infinitesimal
implies

Entries Infinitesimal

‖x‖ infinitesimal
⇓

|xi| infinitesimal

eu-norm-i-small-implies-elements-i-small 6.3

Metric Infinitesimal
implies

Difference of Entries
Infinitesimal

‖x− y‖ infinitesimal
⇓

|xi − yi| infinitesimal

eu-metric-i-small-implies-difference-of-entries-i-small 6.5

f(x) = x1 + x2 + x3 is
Uniformly Continuous

‖x− y‖ infinitesimal
⇓

|f(x)− f(y)|
infinitesimal

sum-is-continuous 6.6

g(x) = x1x2 is
Continuous

For standard x,
‖x− y‖ infinitesimal

⇓
|g(x)− g(y)| infinitesimal

prod-is-continuous 6.7

Continuity / Uniform
Continuity of Other
Various Functions

See Section 6.2

Table 6.2: Key theorems in this chapter.

33

6.1. Metric Space Axioms

Proving theorems regarding metrics reduces to proving theorems about the
norm from which the metric is induced. Likewise, proving theorems in-
volving norms can be reduced to proving properties of the inner product
underlying the norm. The process of formalisation, then, should ideally de-
fine the metric via the norm, and the norm should be defined via the inner
product. This is useful for proving properties such as positive-definiteness
of both the metric and the norm, e.g. if

〈u, u〉 ≥ 0 6.2

with equality iff u = 0, then the same applies for

‖x‖2 =
√
〈x, x〉 ≥ 0 6.3

and
d2(x, y) = ‖x− y‖2 =

√
〈x− y, x− y〉 ≥ 0. 6.4

However, as exemplified by vec-- and vec--x, the obvious sequence is
not necessarily the easiest. Indeed, not only is it simpler to prove theorems
on functions equivalent to the desired functions, we also prove properties of
similar functions not equivalent to the desired functions but such that if the
properties hold for the similar functions, then they also hold for the desired
functions.

For example, suppose we wish to define commutativity for the Euclidean
metric eu-metric. The elegant form of eu-metric can be seen in Pro-
gram 6.1 and the elegant form of the Euclidean norm eu-norm can be seen
in Program 6.2.

Program 6.1 The Euclidean metric.

(defun eu-metric (u v)

(eu-norm (vec-- u v)))

Program 6.2 The Euclidean norm.

(defun eu-norm (u)

(acl2-sqrt (dot u u)))

Now recall (vec-- x y) is a macro for (vec-+ x (scalar-* -1 y))

and, together with an instance of acl2-sqrt, passing the proofs for com-
mutativity require a non-trivial amount of provided hints and user guidance.

34

6.2. Continuity Rn → R

Instead, define a recursive function metric^2 which is the square of the
norm of the difference of two vectors (which is equivalent to the square of
the Euclidean metric, i.e. ‖x − y‖22). Moreover, proving those equivalences
simply amounts to unwinding the definitions. Having established

‖x− y‖22 = ‖y − x‖22, 6.5

it follows that

d2(x, y) =
√
‖x− y‖22 =

√
‖y − x‖22 = d2(y, x). 6.6

Hence, commutativity for eu-metric is proven.
The triangle inequality follows from the Cauchy-Schwarz inequality with

a bit of algebraic coaxing.

6.2 Continuity Rn → R

To showcase continuity, let us begin with an enlightening example. Recall
the non-standard analysis definition of continuity for a function f : Rn → R
stated in the language of non-standard analysis: if d2(x, y) is an infinitesimal
for a standard x, then so is f(x) − f(y). Take f(x) =

∑n
i=1 xi. It is clear

that f is continuous in our usual theory of classical real analysis. However,
we must translate into the language of infinitesimals. By hypothesis,

d2(x, y) = ‖x− y‖2 =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2 6.7

is an infinitesimal. We would like to show that

f(x)− f(y) =
n∑

i=1

xi −
n∑

i=1

yi =
n∑

i=1

(xi − yi) 6.8

is also an infinitesimal. Indeed, by Equation 6.7 we see that each xi − yi
must be an infinitesimal since otherwise d2(x, y) wouldn’t be an infinitesimal.
Because the RHS of Equation 6.8 is a finite sum of infinitesimals, so is
f(x)− f(y) as desired.

Often, the line of reasoning for proving such a multivariate function to
be continuous can be visualised as follows:

d2(x, y) infinitesimal −→ |xi−yi| infinitesimal −→ |f(x)−f(y)| infinitesimal.

Showing the second arrow depends on the definition of the function (and is,
of course, false for discontinuous functions). This leaves the first arrow and
two motivating questions:

35

6.2. Continuity Rn → R

1. How do we make ACL2(r) recognize xi − yi are infinitesimals from
d2(x, y) being infinitesimal?

2. How do we state “all xi − yi are infinitesimals”?

To answer the first question, observe for any vector z and i ≤ n,

‖z‖2 =

√√√√ n∑
i=1

z2i ≥ max
i
|zi| ≥ |zi|. 6.9

Setting z = x − y, we see that if the norm is an infinitesimal, then so
must each entry of the vector. By introducing an ACL2(r) function, say
max-abs-reals, equivalent to maxi and reasoning over the arbitrariness of
i instead of over the length of x and y, we may exhibit the infinitesimal-
ness of any entry in x − y as seen in Program 6.3. Note that the converse
of eu-norm-i-small-implies-elements-i-small in Program 6.3, e.g. a
theorem of the form

(implies (i-small (nth i vec)) (i-small (eu-norm vec)))

is not particularly useful since this reverses the line of reasoning above for
showing multivariate functions are continuous. Moreover, since eu-norm is
defined recursively on the entries of a vector which, in this case, are all
infinitesimal, proving such a theorem would encounter the issues outlined in
Section 6.3.

To address the second question, one could imagine a recognizer for vec-
tors with infinitesimal entries – such a recognizer is depicted in Program 6.4.
However, this recognizer would be recursive on the entries of the vector with
each recursive step invoking the non-classical recognizer i-small for in-
finitesimal reals. Because non-classical recursive functions are forbidden, so
is the suggested recognizer. We considered using a Skolem function, but to
remain consistent with eu-norm-i-small-implies-elements-i-small in
Program 6.3, we opted for a theorem positing the condition for an arbitrary
index i as seen in Program 6.5 instead.

To see eu-metric-i-small-implies-difference-of-entries-i-small
in action, consider once again the example of f(x) =

∑n
i=1 xi. If n = 3 and

sum is the ACL2(r) function equivalent to f , then Program 6.6 proves conti-
nuity for sum – in fact, it is uniformly continuous since we do not hypothesise
x is standard.

Other examples of functions with proofs of continuity in ACL2(r) include
the Euclidean norm (and its square), the dot product with one coordinate
fixed, and the function g(x, y) = xy.

36

6.2. Continuity Rn → R

Program 6.3 Showing arbitrary entries of a vector are infinitesimal via the
maximum element.

(define max-abs-reals ((vec real-listp))

...

(b* (((unless (consp vec)) 0)

((cons hd tl) vec)

((unless (realp hd)) 0))

(max (abs hd) (max-abs-reals tl)))...)

(defthm eu-norm-i-small-implies-max-abs-reals-i-small

(implies (and (real-listp vec) (i-small (eu-norm vec)))

(i-small (max-abs-reals vec))))

(defthm eu-norm-i-small-implies-elements-i-small

(implies (and (real-listp vec) (i-small (eu-norm vec))

(natp i) (< i (len vec)))

(i-small (nth i vec))))

Program 6.4 A fantastical recognizer for vectors with infinitesimal entries
that doesn’t exist.

(defun i-small-vecp (x)

(cond ((null x) t)

((not (real-listp x)) nil)

(t (and (i-small (car x)) (i-small-vecp (cdr x))))))

Program 6.5 A theorem positing the infinitesimalness of arbitrary entries
in x− y.

(defthm eu-metric-i-small-implies-difference-of-entries-i-small

(implies (and (real-listp x) (real-listp y) (= (len y) (len x))

(i-small (eu-metric x y)) (natp i) (< i (len x)))

(i-small (- (nth i x) (nth i y)))) ...)

37

6.3. Why are Non-classical Recursive Functions Prohibited?

Program 6.6 A theorem positing sum is continuous.

(defthm sum-is-continuous

(implies (and (real-listp x) (real-listp y)

(= (len x) 3) (= (len y) (len x))

(i-small (eu-metric x y)))

(i-small (- (sum x) (sum y))))...)

Program 6.7 The function g(x, y) = xy is continuous.

(defun prod (x)

(* (nth 0 x) (nth 1 x)))

...

(defthm prod-is-continuous

(implies (and (real-listp x) (real-listp y)

(= (len x) 2) (= (len y) (len x))

(i-limited (eu-norm x)) (i-limited (eu-norm y))

(i-small (eu-metric x y)))

(i-small (- (prod x) (prod y))))...)

6.3 Why are Non-classical Recursive Functions
Prohibited?

This chapter is significant because it provides a method for reasoning about
continuity in a logic where non-classical recursive functions are prohibited.
So why are they prohibited? Simply, the introduction of such functions
will also introduce inconsistency into the logic of ACL2(r). In particular,
it is possible to define a function that violates the rules of non-standard
analysis. The following example comes from Ruben Gamboa in a personal
communication on March 1, 2018 [10].

Program 6.8 An impossible function in ACL2(r).

(defun f (n)

(cond ((zp n) 0)

((standardp n) n)

(t (f (-1 n)))))

For example, consider the hypothetical function defined in Program 6.8.

38

6.3. Why are Non-classical Recursive Functions Prohibited?

Suppose f terminates. If n is standard, then f returns it without issue.
If n is infinite, then f returns the largest standard number. However, this
is impossible since such a number does not exist and, if n is infinite, so is
(-1 n) which means f should not have terminated anyways. Moreover, this
applies if n is any non-standard hyperreal since if n = st(n) + ε is equivalent
to n and ε > 0 is an infinitesimal, then n− 1 = st(n− 1) + ε is not standard
either.

The apparent issue with f is that its measure is non-standard. If the
measure of a function can be proven to be standard, then a recursive non-
classical function could be conceded. However, in practice, such a proof
would likely be involved. Moreover, there are many non-obvious results in
analysis and proving the measure of a non-classical recursive function to be
standard does not preclude the existence of other even more subtle logical
issues. A more detailed exploration of these issues is beyond the scope of
this thesis but the interested reader can find a collection of counterexamples
in analysis in [6].

39

Chapter 7

Mechanical Multivariate
Convex Functions

Convex optimisation is a branch of applied mathematics that finds widespread
use in financial modelling, operations research, machine learning, and many
other fields. Algorithms for convex optimisation often have many parameters
that can be tuned to improve performance. However, a choice of parameter
values that produces good performance on a set of test cases may suffer from
poor convergence or non-convergence in other cases. Hand written proofs for
convergence properties often include simplifying assumptions to make the
reasoning tractable. This motivates using machine generated and/or veri-
fied proofs for the convergence and performance of these algorithms. Once
an initial proof has been completed, the hope is that simplifying assump-
tions can be incrementally relaxed or removed to justify progressively more
aggressive implementations. These observations motivate our exploration of
convex functions within ACL2(r).

In this chapter, we present example proofs of convexity for some simple
functions and some basic theorems of convex optimisation. Moreover, we
use these results to prove a major theorem in the next chapter.

7.1 Example Functions

In this section, we provide some selected examples of formalised theorems
involving convex functions. The formalised proofs follow almost directly
those of the informal proofs. For the sake of exposition, the proof for the
first theorem is outlined but the rest are omitted for the sake of brevity.

Definition ACL2 Name Program

Square Function square-fn

Convex Function (Witness) cvfn-1 7.2

Table 7.1: Key definitions in this chapter.

40

Theorem Statement ACL2 Name Program

f(x) = x2 is Convex f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) square-fn-is-convex 7.1

‖ · ‖ is Convex. ‖αx+ (1− α)y‖ ≤ α‖x‖+ (1− α)‖y‖
‖ · ‖2 is Convex ‖αx+ (1− α)y‖2 ≤ α‖x‖2 + (1− α)‖y‖2

Closure of Convexity
under (Non-negative)
Scalar Multiplication

f convex, a ≥ 0 =⇒ a · f convex a-*-cvfn-1-convex 7.3

Closure of Convexity
under Addition

f, g convex =⇒ f + g convex

Closure of Convexity
under Composition

f : Rn → R, g : R→ R convex
with g non-decreasing

⇓
g ◦ f convex

Pseudo triangle inequality α(1− α)‖x− y‖2 ≤ α‖x‖2 + (1− α)‖y‖2 pseudo-triangle-inequality 7.5

Table 7.2: Key theorems in this chapter.

41

7.2. Reasoning about Convexity

The first is a simple theorem positing the convexity of the square func-
tion. Recall from Equation 3.23 that a function f is convex if for α ∈ [0, 1],

αf(x) + (1− α)f(x) ≥ f(αx+ (1− α)y) 3.23

Then, the function f(x) = x2 is convex because

αx2 + (1− α)y2 − (αx+ (1− α)y)2 = α(1− α)(x2 − 2xy + y2)

= α(1− α)(x− y)2

≥ 0.

7.1

We first define a square function: (defun square-fn (x) (* (realfix

x) (realfix x))). The chain of equalities in Equation 7.1 is immediately
recognized by ACL2. The inequality in Equation 7.1 also passes without
issue. The convexity of square-fn then follows from a simple application
of the two lemmas. This entire proof is in Program 7.1.

Other functions for which convexity is exhibited include the Euclidean
norm ‖ · ‖2 and its square ‖ · ‖22.

7.2 Reasoning about Convexity

Also formalised is a proof of each of the statements in Theorem 2. Here
we outline the proof of the convexity of a · f given that a ≥ 0 and f is
convex. The rest are similar. Moreover, the approach we take resembles our
approach to formalising Theorem 3 albeit much simpler. In particular, to
reason about functions, we use the technique of encapsulation to first prove
the desired theorem for a witness function. Functional instantiation then
provides a method for reasoning about functions in general. Our witness,
cvfn-1, is a constant function and so is clearly convex. This can be seen in
Program 7.2.

Explicitly, a · f is convex because

af(αx+(1−α)y) ≤ a(αf(x)+(1−α)f(y)) = α(af(x))+(1−α) (af(y)) . 7.2

In particular, we invoke convexity and need to distribute a. Moreover, this
line of reasoning is not dependent on the definition of f so we may disable
the definition of cvfn-1 in Program 7.2. This can be seen in Program 7.3.
We omit the formal proofs for the other claims of Theorem 2.

The encapsulation in Programs 7.2 and 7.3 deserves further elucidation.
In ACL2, encapsulation is used to hide events from the “outside” logical
world and (sometimes) introduce constrained functions. Local theorems

42

7.2. Reasoning about Convexity

Program 7.1 f(x) = x2 is convex.

(encapsulate

nil

;; ax^2 + (1-a)y^2 - (ax + (1-a)y)^2 = a(1-a)(x-y)^2

(local (defthm lemma-1

(implies (and (realp x) (realp y) (realp a) (<= 0 a) (<= a 1))

(equal (- (+ (* a (square-fn x))

(* (- 1 a) (square-fn y)))

(square-fn (+ (* a x) (* (- 1 a) y))))

(* a (- 1 a) (square-fn (- x y)))))))

(defthm square-fn-positivity (<= 0 (square-fn x)))

;; replace a with a(1-a) and x with x-y to obtain the desired

;; inequality

(local (defthm lemma-2

(implies (and (realp a) (<= 0 a))

(<= 0 (* a (square-fn x))))))

(defthm square-fn-is-convex

(implies (and (realp x) (realp y) (realp a) (<= 0 a) (<= a 1))

(<= (square-fn (+ (* a x) (* (- 1 a) y)))

(+ (* a (square-fn x)) (* (- 1 a) (square-fn y)))))

:hints (("GOAL" :use ((:instance lemma-2 (a (* a (- 1 a)))

(x (- x y))))))))

43

7.3. A Useful Lemma

Program 7.2 Encapsulating a constant function cvnf-1 and stating its
convexity. This encapsulation also originally contained proofs for the other
parts of Theorem 2 which are ommited here.

(encapsulate

(((cvfn-1 *) => *)...)

(local (defun cvfn-1 (x) (declare (ignore x)) 1337))

...

(defthm cvfn-1-convex

(implies (and (real-listp x) (real-listp y) (= (len y) (len x))

(realp a) (<= 0 a) (<= a 1))

(<= (cvfn-1 (vec-+ (scalar-* a x) (scalar-* (- 1 a) y)))

(+ (* a (cvfn-1 x)) (* (- 1 a) (cvfn-1 y)))))) ...)

(e.g. lemma-1 in Program 7.3) are erased or hidden whereas non-local theo-
rems (e.g. a-*-cvfn-1-convex) are exported to the logical world. Similarly,
the local definition of a constrained function introduced by an encapsula-
tion (e.g. cvfn-1 in Program 7.2) is erased. All that is known about the
constrained function is exported non-local theorems. Following the encap-
sulation, one can prove other theorems about the constrained functions but
the proofs can only depend on the theorems exported from the encapsula-
tion. Note that a constrained function is non-executable – ACL2 can reason
about it using the rules created from the proven theorems but the function
itself cannot be evaluated. The upshot is that the user can define some
other function and prove theorems about it equivalent to the theorems ex-
ported from the encapsulation where the constrained function was defined
via functional instantiation.

7.3 A Useful Lemma

Nesterov’s original proof of Theorem 3 in Introductory Lectures in Convex
Optimization uses a particular inequality twice. However, its proof is not
given and neither could we find a proof in the existing literature. For com-
pleteness, we include a machine (and handwritten) proof here and, for lack
of a better name, we call it the pseudo triangle inequality.

Lemma 4. Let α ∈ [0, 1] and x, y ∈ Rn. Then

α(1− α)‖x− y‖2 ≤ α‖x‖2 + (1− α)‖y‖2. Pseudo triangle inequality

44

7.3. A Useful Lemma

Program 7.3 Supressing the definition of cvfn-1, stating a special case of
distributivity, and stating the convexity of a · f .

(local (in-theory (disable (:d cvfn-1) (:e cvfn-1) (:t cvfn-1))))

(encapsulate

nil

;; factor out alpha

(local (defthm lemma-1

(implies (and (real-listp x) (real-listp y) (= (len y) (len x))

(realp a) (<= 0 a) (<= a 1)

(realp alpha) (<= 0 alpha))

(= (+ (* a (* alpha (cvfn-1 x)))

(* (- 1 a) (* alpha (cvfn-1 y))))

(* alpha

(+ (* a (cvfn-1 x))

(* (- 1 a) (cvfn-1 y))))))))

(defthm a-*-cvfn-1-convex

(implies (and (real-listp x) (real-listp y) (= (len y) (len x))

(realp a) (<= 0 a) (<= a 1)

(realp alpha) (<= 0 alpha))

(<= (* alpha (cvfn-1 (vec-+ (scalar-* a x)

(scalar-* (- 1 a) y))))

(+ (* a (* alpha (cvfn-1 x)))

(* (- 1 a) (* alpha (cvfn-1 y))))))

:hints (("GOAL" :in-theory (disable distributivity)

:use ((:instance cvfn-1-convex)

(:instance lemma-1))))))

45

7.3. A Useful Lemma

Proof. Observe,

0 ≤ (α‖x‖ − (1− α)‖y‖)2

= α2‖x‖2 + (1− α)2‖y‖2 − 2α(1− α)‖x‖‖y‖
= (α− α(1− α))‖x‖2 + ((1− α)− α(1− α))‖y‖2 − 2α(1− α)‖x‖‖y‖
= α‖x‖2 + (1− α)‖y‖2 − α(1− α)

(
‖x‖2 + ‖y‖2 − 2‖x‖‖y‖

)
= α‖x‖2 + (1− α)‖y‖2 − α(1− α) (‖x‖+ ‖y‖)2

7.3

so

α(1− α)‖x− y‖2 ≤ α(1− α) (‖x‖+ ‖y‖)2 ≤ α‖x‖2 + (1− α)‖y‖2 7.4

where the first inequality follows from the (actual) triangle inequality.

The machine proof follows exactly the handwritten proof. Notably, the
string of equalities in Equation 7.3 immediately passes in ACL2(r) which is
a testament to ACL2’s affinity for truly automated deduction. We see this
in Program 7.4.

Program 7.4 The string of equalities in Equation 7.3. We temporarily
replace ‖x‖, ‖y‖ with reals x, y, respectively.

(local (defthm lemma-4

(implies (and (realp a) (realp x) (realp y))

(equal (* (- (* a x) (* (- 1 a) y))

(- (* a x) (* (- 1 a) y)))

(+ (* a (* x x))

(* (- 1 a) (* y y))

(- (* a (- 1 a) (* (+ x y) (+ x y)))))))))

The rest of the proof follows simply from the positivity of squares, the
triangle inequality, and replacing x, y with ‖x‖, ‖y‖, respectively. The final
theorem is in Program 7.5.

46

7.3. A Useful Lemma

Program 7.5 Pseudo triangle inequality formalised.

(defthm pseudo-triangle-inequality

(implies (and (real-listp x) (real-listp y) (= (len y) (len x))

(realp a) (<= 0 a) (<= a 1))

(<= (* a (- 1 a) (metric^2 x y))

(+ (* a (norm^2 x))

(* (- 1 a) (norm^2 y))))) ...)

47

Chapter 8

Formalising Nesterov’s
Theorem

While convexity and differentiability can open up a slew of optimisation
techniques, requiring moderate smoothness conditions on the derivatives of
convex functions can lead to extreme speed-ups in the convergence rates
of algorithms (e.g. certain stochastic gradient descent methods [43]). In
particular, Lipschitz continuity is one such condition. Recall the notation
of Section 3.5: F1(Rn) refers to the class of once continuously differentiable
convex functions on Rn and F1

L(Rn) refers to the class of functions in F1(Rn)
with Lipschitz continuous derivatives (or gradients) with constant L. Then
Nesterov’s Theorem (i.e. Theorem 3 in Section 3.5) provides six equivalent
conditions for showing that a function with a continuous first derivative (i.e.
a function in F1(Rn)) also has a Lipschitz continuous derivative (ie. is in
F1
L(R)).

Theorem 3. Let f ∈ F1(Rn), x, y ∈ Rn and α ∈ [0, 1]. The following
conditions are equivalent to f ∈ F1

L(Rn):

f(y) ≤ f(x) + 〈f ′(x), y − x〉+
L

2
‖x− y‖2 Nest. 1

f(x) + 〈f ′(x), y − x〉+
1

2L
‖f ′(x)− f ′(y)‖2 ≤ f(y) Nest. 2

1

L
‖f ′(x)− f ′(y)‖2 ≤ 〈f ′(x)− f ′(y), x− y〉 Nest. 3

〈f ′(x)− f ′(y), x− y〉 ≤ L‖x− y‖2 Nest. 4

f(αx+ (1− α)y) +
α(1− α)

2L
‖f ′(x)− f ′(y)‖2 ≤ αf(x) + (1− α)f(y)

Nest. 5

αf(x) + (1− α)f(y) ≤ f(αx+ (1− α)y) + α(1− α)
L

2
‖x− y‖2. Nest. 6

There are several motivations to prove Theorem 3 in ACL2(r). First,
such a formalisation provides an unambiguous statement of the theorem. We

48

8.1. Approach and Basic Definitions & Lemmas

Theorem Statement ACL2 Name Program

Nesterov’s Theorem See Theorem 3 nesterov 8.9

Table 8.1: Key theorems in this chapter.

discuss the issues of Nesterov’s original theorem statement in Section 8.5.
Secondly, this enables the use of Theorem 3 for further reasoning about
convex functions and optimisation algorithms. Indeed, Theorem 3 has ap-
plications in the convergence proofs for many gradient descent algorithms.

This chapter discusses our formalisation of Theorem 3. First, we look
at the differences between our approach and Nesterov’s approach to proving
Theorem 3. Second, we outline a few basic definitions and lemmas useful for
the proof. Then, we outline some of the challenges we encountered during
our formalisation of Theorem 3. Several of these issues involve the proofs
of the remaining lemmas, which all require some user intervention beyond
simple algebraic manipulation. We discuss two such instances; the others are
omitted because we solve them similarly. Finally, we discuss the final form
of Theorem 3 and the various considerations regarding it and alternative
approaches.

8.1 Approach and Basic Definitions & Lemmas

In Introductory Lectures on Convex Optimization, Nesterov provided a proof
that followed the structure visualised by Figure 8.1. His proof uses tech-
niques that are not amenable to proofs in ACL2(r). In particular, inte-
gration is used multiple times to show some inequalities but integration in
ACL2(r) is dependent on the function that is being integrated. This places
extra obligations on the user. Our alternate approach shown in Figure 8.2
requires fewer instances of integration than Figure 8.1. Moreover, Figure 8.2
has fewer implications to prove in general and is visually more pleasing when
compared to Figure 8.12. The primary difference in our approach is that
we prove Nest. 4 from a straightforward application of Cauchy-Schwarz and
omit Nest. 1 implies Nest. 4.

2 In addition to differences in visual symmetry, the more imaginative reader may notice
that Figure 8.1 resembles a pet fish whereas Figure 8.2 resembles a rabbit. However, closer
inspection reveals that the long “ears” in Figure 8.2 are more characteristic of hares than
rabbits [23] and hares are superior to pet fish. Snowshoe hares found in Yukon, Canada
have been observed to eat, among other carrion, the carcasses of birds, Canadian Lynx
(their primary predator), and, indeed, fish [34, 37]. The superiority of hares over fish
serves as further evidence for the advantages in our approach over Nesterov’s.

49

8.1. Approach and Basic Definitions & Lemmas

Nest. 0

Nest. 1

Nest. 2

Nest. 3

∫
×2

CS
Nest. 4

∫
×2

Nest. 6

×2

Nest. 5

×2

Figure 8.1: Nesterov’s proof of Theorem 3. Here Nest. 0 is Lipschitz conti-
nuity. Applying Cauchy-Schwarz is denoted by CS. Integration is denoted
by
∫

. Instantiating inequalities twice is denoted by ×2.

Stating a theorem about functions in ACL2 is an unnatural endeavour
because ACL2 is a theorem prover for first-order logic so we cannot predicate
over sets in general. The natural solution is to leverage encapsulation and
functional instantiation to obtain pseudo-higher order behaviour. However,
this means that the desired function for which the user wishes to apply The-
orem 3 must pass the theorems within the encapsulation. To formalise the
theorem in its greatest generality, it is necessary to suppress the definition
of the witness function in the encapsulation and instead prove the theorems
based on the properties of the function. To use functional instantiation,
these properties must be proven for the desired function. Thus, we aim to
minimize the number of properties that the user must show, and derive as
much as possible within the encapsulation. In our case, the user obligations
are the theorems and identities involving the continuity, derivative, and in-
tegral of the encapsulated functions as well as any forms explicitly involving
the dimension of the space.

The encapsulated functions include the multivariate function of inter-

50

8.1. Approach and Basic Definitions & Lemmas

Nest. 0

Nest. 4

Nest. 1 Nest. 2

Nest. 3

CS

∫
×2

CS

Nest. 6

×2

Nest. 5
×2

Figure 8.2: Another proof of Theorem 3. Here Nest. 0 is Lipschitz continuity.
Applying Cauchy-Schwarz is denoted by CS. Integration is denoted by

∫
.

Instantiating inequalities twice is denoted by ×2.

est mvfn and its derivative nabla-mvfn, the function that evaluates to
the Lipschitz constant L, a helper function phi based on mvfn and its
derivative nabla-phi, the recognizer for vectors with standard real entries
standard-vecp, and the function, DIM, that evaluates to the dimension n of
the vector space. The helper function phi as originally defined by Nesterov
is used to better elucidate the proof of a lemma [33, Lemma 1.2.3].

The prohibition of non-classical recursive functions and the necessity
of a recognizer for vectors with standard entries forces the recognizer to
be defined with a specific n within the encapsulation. An encapsulation
requires nevertheless a witness for the convex function of interest (which
in this case happens to be the function f(x) = 42) so we set n = 2. The
recognizer standard-vecp simply checks whether a vector of dimension 2
has standards in both its coordinates.

51

8.1. Approach and Basic Definitions & Lemmas

A recurring and particularly useful theorem is the Cauchy-Schwarz in-
equality. It was formalised in Chapter 5 and the particular version we use
is Cauchy-Schwarz II, or cauchy-schwarz-2 in Program 5.8.

There are several proofs of implications in Figure 8.2 that follow almost
immediately from the mentioned definitions and lemmas. We outline one of
them: Nest. 0 implies Nest. 4. The proof mimics the chain of inequalities

L‖x− y‖2 ≥ ‖f ′(x)− f ′(y)‖ · ‖x− y‖ ≥ 〈f ′(x)− f ′(y), x− y〉 8.1

where the first inequality follows from Lipschitz continuity and the second
inequality follows from Cauchy-Schwarz II. Indeed, applying Lipschitz con-
tinuity gives us the first inequality in Equation 8.1 as seen in Program 8.1.
Applying cauchy-schwarz-2 from Program 5.8 gives the second inequality

Program 8.1 The first inequality follows from Lipschitz continuity.

;; ||f’(x) - f’(y)|| <= L||x - y|| implies

;; ||f’(x) - f’(y)|| ||x - y|| <= L||x - y||^2

(local (defthm lemma-2

(implies (and (real-listp x) (real-listp y)

(= (len y) (len x)) (= (len x) (DIM))

(<= (eu-norm (vec-- (nabla-mvfn x) (nabla-mvfn y)))

(* (L) (eu-norm (vec-- x y)))))

(<= (* (eu-norm (vec-- (nabla-mvfn x) (nabla-mvfn y)))

(eu-norm (vec-- x y)))

(* (L) (eu-norm (vec-- x y))

(eu-norm (vec-- x y)))))...))

of Equation 8.1 under absolute values as seen in Program 8.2. Eliminating
absolute values gives the desired inequality (in an “expanded” form) as seen
in Program 8.3. To state the implication in its full generality and for reasons
to appear in the next section, we use Skolem functions to replace the inequal-
ities in the theorem. The function definitions can be seen in Program 8.4.
Here, (defun-sk ineq-0 (L) ...) introduces two new functions: ineq-0

and ineq-0-witness. These are constrained functions similar to those de-
fined by encapsulations (see Section 7.2). The rules introduced for these
functions state that:

1. If there is a counterexample to the forall term, then ineq-0-witness

returns such a counterexample; otherwise, ineq-0-witness just re-
turns an arbitrary x, y pair.

52

8.1. Approach and Basic Definitions & Lemmas

Program 8.2 The second inequality follows from Cauchy-Schwarz.

;; |<f’(x) - f’(y), x - y>| <= L||x - y||^2

(local (defthm lemma-3

(implies (and (real-listp x) (real-listp y)

(= (len y) (len x)) (= (len x) (DIM))

(<= (eu-norm (vec-- (nabla-mvfn x) (nabla-mvfn y)))

(* (L) (eu-norm (vec-- x y)))))

(<= (abs (dot (vec-- (nabla-mvfn x) (nabla-mvfn y))

(vec-- x y)))

(* (L) (eu-norm (vec-- x y))

(eu-norm (vec-- x y)))))

:hints (("GOAL" :use ((:instance lemma-2)

...

(:instance cauchy-schwarz-2

(u (vec-- (nabla-mvfn x)

(nabla-mvfn y)))

(v (vec-- x y))))))))

Program 8.3 The desired implication in an expanded form.

;; <f’(x) - f’(y), x - y> <= L ||x - y||^2

(defthm ineq-0-implies-ineq-4-expanded

(implies (and (real-listp x) (real-listp y)

(= (len y) (len x)) (= (len x) (DIM))

(<= (eu-metric (nabla-mvfn x) (nabla-mvfn y))

(* (L) (eu-metric x y))))

(<= (dot (vec-- (nabla-mvfn x) (nabla-mvfn y)) (vec-- x y))

(* (L) (metric^2 x y))))

:hints (("GOAL" :use (...(:instance lemma-3)))))

53

8.1. Approach and Basic Definitions & Lemmas

2. The function ineq-0 returns the result of applying the test for the
inequality to the values of x, y returned by ineq-0-witness.

Note that if the forall claim holds, then it holds for the arbitrary x and
y returned by ineq-0-witness, and ineq-0 returns t. Conversely, if the
forall claim does not hold, then ineq-0-witness returns a counterexam-
ple, and ineq-0 returns nil. Because these are constrained functions and,
in particular, not exacutable, the user doesn’t need to write code that tests
such a witness. When proving ineq-0-implies-ineq-4, ACL2 uses the
hypothesis of ineq-0 to infer that no such counterexample exists, and uses
that to prove that ineq-4 must hold for any x and y.

The theorem then becomes of the form seen in Program 8.5 where the
hypotheses function constrains any witness of a counterexample to must
consist of two real vectors of length (DIM). All implications in Figure 8.2
are of this form.

The other implications that follow mainly from the definitions are Nest. 4
implies Nest. 1 and Nest. 1 implies Nest. 2.

Program 8.4 Skolem functions that allow us to invoke the forall quanti-
fier.

;; Lipschitz continuity ||f’(x) - f’(y)|| <= L ||x - y||

(defun-sk ineq-0 (L)

(forall (x y)

(<= (eu-metric (nabla-mvfn x) (nabla-mvfn y))

(* L (eu-metric x y))))...)

...

;; <f’(x) - f’(y), x - y> <= L ||x - y||^2

(defun-sk ineq-4 (L)

(forall (x y)

(<= (dot (vec-- (nabla-mvfn x) (nabla-mvfn y)) (vec-- x y))

(* L (metric^2 x y))))...)

Program 8.5 Nest. 0 implies Nest. 4

(defthm ineq-0-implies-ineq-4

(implies (and (hypotheses (ineq-4-witness (L)) (DIM))

(ineq-0 (L)))

(ineq-4 (L)))...)

54

8.2. Instantiating Inequalities

8.2 Instantiating Inequalities

The proof of Nest. 2 implies Nest. 3 amounts to adding two copies of Nest. 2
with x, y swapped. This induces issues with the proof of the implication.
The natural form of the lemma would involve Nest. 2 among the hypotheses
as in Program 8.6.

Program 8.6 An “obvious” way to state Nest. 2 implies Nest. 3.

(defthm ineq-2-implies-ineq-3

(implies (and (real-listp x) (real-listp y)

(= (len y) (len x)) (= (len x) (DIM))

(ineq-2 (L)))

(ineq-3 (L)))...)

However, to instantiate a copy of Nest. 2 with swapped x, y in such a
form would be equivalent to

∀x, y, (P (x, y) =⇒ P (y, x)) 8.2

where P is a predicate (in this case equivalent to Nest. 2), which is not
necessarily true. The form we wish to have is

(∀x, y, P (x, y)) =⇒ (∀x, y, P (y, x)). 8.3

In order to instantiate another copy of Nest. 2 within the implication requires
quantifiers within the theorem statement. The usual approach involves using
Skolem functions to introduce quantified variables. With this method, we
can instantiate the two copies with swapped variables as in Program 8.7.

We also considered simply including two copies of the inequality with
swapped variables among the hypotheses. This has two advantages. Firstly,
with such a form, the lemma becomes stronger because the hypothesis
P (x, y)∧P (y, x) is weaker than ∀x, y, P (x, y). Secondly, the lemma is slightly
easier to pass in ACL2(r). However, the primary drawback is that this form
is inconsistent with the other lemmas and the final form of Nesterov’s the-
orem becomes less elegant (e.g. showing Nest. 1 implies Nest. 2 would also
require two copies of Nest. 1).

The lemmas Nest. 1 implies Nest. 6 and Nest. 2 implies Nest. 5 also
requires instantiating multiple copies of the antecedent inequalities (albeit
with different vectors).

55

8.3. Taking Limits

Program 8.7 Instantiating two copies of Nest. 2 with swapped variables.

(defthm ineq-2-expanded-v1

(implies (ineq-2 (L))

(and (<= (+ (mvfn x)

(dot (nabla-mvfn x) (vec-- y x))

(* (/ (* 2 (L)))

(metric^2 (nabla-mvfn x) (nabla-mvfn y))))

(mvfn y))

(<= (+ (mvfn y)

(dot (nabla-mvfn y) (vec-- x y))

(* (/ (* 2 (L)))

(metric^2 (nabla-mvfn y) (nabla-mvfn x))))

(mvfn x))))...)

8.3 Taking Limits

In the language of non-standard analysis, limits amount to taking standard-
parts. For example, limx→a f(x) is equivalent to st(f(x)) when x−a is an in-
finitesimal. However, for products, say, xy, the identity st(xy) = st(x) st(y)
only holds when x, y are both finite reals. In the proof of Nest. 6 implies
Nest. 1, there is a step that requires taking the limit of (1 − α)‖y − x‖2 as
α→ 0. Now, if α > 0 is an infinitesimal,

st((1− α)‖y − x‖2) = st(1− α) st(‖y − x‖2) = ‖y − x‖2 8.4

is easy to satisfy when x, y are vectors with standard real components.
Moreover, requiring variables to be standard is consistent with some in-
stances of single variable theorems (e.g. the product of continuous functions
is continuous). It then remains to state such a hypothesis using, say, a recog-
nizer standard-vecp as in Program 8.8. The natural approach to defining
standard-vecp would be to simply recurse on the length of a vector ap-
plying standardp to each entry. However, standardp is non-classical and
this definition encounters a common issue throughout our ACL2(r) formal-
isation in that such a definition would be a non-classical recursive function
which is forbidden in ACL2(r) (see Section 6.3). Because standard-vecp

is dependent on the dimension, our solution is to encapsulate the function
and prove the necessary theorems involving it (e.g. metric^2 is standardp

on standard-vecp values). For the case n = 2, we simply check the length
of the vector is two and that both entries are standard reals. A final note
regarding the lemma is the hypothesis α > 0 replacing the weaker α ≥ 0

56

8.4. Nesterov’s Final Form

Program 8.8 Introducing standard-vecp into the hypotheses.

(defthm ineq-6-implies-ineq-1-expanded

(implies (and (real-listp x) (real-listp y)

(= (len y) (len x)) (= (len x) (DIM))

(realp alpha) (i-small alpha)

(< 0 alpha) (<= alpha 1)

(standard-vecp x) (standard-vecp y)

(<= (+ (* alpha (mvfn y))

(* (- 1 alpha) (mvfn x)))

(+ (mvfn (vec-+ (scalar-* alpha y)

(scalar-* (- 1 alpha) x)))

(* (/ (L) 2)

alpha

(- 1 alpha)

(metric^2 y x)))))

(<= (mvfn y)

(+ (mvfn x)

(dot (nabla-mvfn x) (vec-- y x))

(* (/ (L) 2) (metric^2 y x)))))...)

since part of the proof depends on dividing by α.
The other lemma that requires similar hypotheses is the implication

Nest. 5 implies Nest. 2.

8.4 Nesterov’s Final Form

Finally, we discuss our final form of Theorem 3 as well as several alternatives
and their considerations. The final form can be seen in Program 8.9. The
function hypotheses ensures that we are dealing with real vectors of the
correct dimension. The function st-hypotheses ensure that the vectors
have standard entries due to the necessity of taking limits. The function
alpha-hypotheses is the same as hypotheses but includes the hypothesis
that α ∈ [0, 1]. The function alpha->-0-hypotheses ensures that α > 0 for
the case of taking limits.

In Section 8.1, we saw, for each lemma, the basic structure involving
Skolem functions. In Section 8.2, we cited elegance and ease of instantia-
tion as reasons for using Skolem functions. Because stating even the shorter
inequalities in Polish notation would quickly become awkward and unintelli-
gible (e.g. Program 8.10), it became desirable for us to define the inequalities

57

8.4. Nesterov’s Final Form

Program 8.9 Theorem 3.

(defthm nesterov

;; theorem statement

(implies (and (hypotheses (ineq-0-witness (L)) (DIM))

(hypotheses (ineq-1-witness (L)) (DIM))

(hypotheses (ineq-2-witness (L)) (DIM))

(hypotheses (ineq-3-witness (L)) (DIM))

(hypotheses (ineq-4-witness (L)) (DIM))

(st-hypotheses (ineq-1-witness (L)))

(st-hypotheses (ineq-2-witness (L)))

(alpha-hypotheses (ineq-5-witness (L)) (DIM))

(alpha-hypotheses (ineq-6-witness (L)) (DIM))

(alpha->-0-hypotheses (ineq-5 (L)))

(alpha->-0-hypotheses (ineq-6 (L)))

(or (ineq-0 (L)) (ineq-1 (L)) (ineq-2 (L))

(ineq-3 (L)) (ineq-4 (L)) (ineq-5 (L))

(ineq-6 (L))))

(and (ineq-0 (L)) (ineq-1 (L)) (ineq-2 (L)) (ineq-3 (L))

(ineq-4 (L)) (ineq-5 (L)) (ineq-6 (L))))

;; hints, etc. for ACL2(r)

...)

58

8.5. Ambiguities in Nesterov’s Statement

in a clean and clear manner. One simple approach would be to define the
inequalities as ACL2 functions or macros. Unfortunately, during the course
of our formalisation, we found that the rewriter would be tempted to “sim-
plify” or otherwise change the form of the inequality via arithmetic rules.
This made applications of certain theorems more involved and arduous than
necessary. Therefore, it would be necessary to disable the function defini-
tions anyways. In addition to permitting instantiations of inequalities with
different vectors within a single theorem statement, Skolem functions would
allow us to suppress or “hide” the explicit inequality thus providing a clear,
concise, and compact package.

Program 8.10 Nest. 5 in Polish notation.

(<= (+ (mvfn (vec-+ (scalar-* alpha y) (scalar-* (- 1 alpha) x)))

(* (/ (* 2 (L)))

(* alpha (- 1 alpha) (metric^2 (nabla-mvfn y)

(nabla-mvfn x)))))

(+ (* alpha (mvfn y)) (* (- 1 alpha) (mvfn x))))

On the other hand, this form has the unfortunate drawback of making
the proof of the theorem slightly more involved. By introducing Skolem
functions we also introduce the necessity of witness functions; proving the
lemmas in terms of the witness functions may occasionally become onerous.
For example, to state the hypotheses that the entries of the witness functions
are real vectors of the same dimension, we would like to define a hypotheses

function. However, explicitly exhibiting the witness functions within the
definition of hypotheses leads to a signature mismatch. We instead pass the
witnesses for each Skolem function to the appropriate hypotheses function.

8.5 Ambiguities in Nesterov’s Statement

Theorem 3 as stated by Nesterov in Introductory Lectures on Convex Opti-
mization begins with

“All the conditions below, holding for all x, y ∈ Rn and α from
[0, 1], are equivalent to inclusion f ∈ F1,1

L (Rn) . . . ”

and then proceeds to list inequalities Nest. 1 through Nest. 6 (Nesterov

writes Fk,p
L (Rn) for convex k times differentiable functions on Rn with Lip-

schitz continuous p-th derivative with constant L). What does Nesterov

59

8.5. Ambiguities in Nesterov’s Statement

Interpretation Correctness

∀f : Rn → R, f ∈ F1,1
L ⇐⇒ N1 ⇐⇒ · · · ⇐⇒ N6 False

∀f ∈ C, f ∈ F1,1
L ⇐⇒ N1 ⇐⇒ · · · ⇐⇒ N6 False

∀f ∈ C1, f ∈ F1,1
L ⇐⇒ N1 ⇐⇒ · · · ⇐⇒ N6 False

∀f ∈ C1,1, f ∈ F1,1
L ⇐⇒ N1 ⇐⇒ · · · ⇐⇒ N6 False

∀f ∈ C1,1L , f ∈ F1,1
L ⇐⇒ N1 ⇐⇒ · · · ⇐⇒ N6 Almost True

∀f ∈ F1,1, f ∈ F1,1
L ⇐⇒ N1 ⇐⇒ · · · ⇐⇒ N6 True

Table 8.2: Multiple interpretations of Nesterov’s statement. Here, we write
F1,1
L for F1,1

L (Rn), C1,1
L for continuous functions on Rn with indices retaining

their previous meaning, N1 for Nest. 1, etc.

mean? At first glance, it appears that he means if any function satisfies any
of the six inequalities, then it is convex with Lipschitz continuous gradient
and satisfies any of the other inequalities. However, looking at any of Nest. 1
to Nest. 6 makes it clear this is not the case. In fact, there are multiple in-
terpretations of the statement, yet only one is true. Some examples are seen
in Table 8.2.

The theorem actually requires the assumption f ∈ F1(Rn), but this
hypothesis is not explicitly stated in the theorem statement in Nesterov’s
original text. Instead, the assumption is implicit in the preceding text. On
the other hand, Nest. 5 implies that f is convex. Nest. 2 through Nest. 6
implicitly have an existential quantification of L. Furthermore, note the
placement of the quantifiers (as discussed in Section 8.2). Each N1 is of the
form

∀x, y, hypotheses(x, y) =⇒ ineq-1(x, y) 8.5

and similarly for N2, N3, etc. Thus, N1 ⇐⇒ N2 means

(∀x, y, hypotheses(x, y) =⇒ ineq-1(x, y))~w�
(∀x, y, hypotheses(x, y) =⇒ ineq-2(x, y)).

8.6

and, in particular, Nesterov’s theorem is not

∀x, y, hypotheses(x, y) =⇒ (ineq-1(x, y) ⇐⇒ ineq-2(x, y)). 8.7

By stating and proving the theorem in ACL2(r), these ambiguities are
avoided.

60

Chapter 9

Conclusion and Future Work

The various structures of Rn are very rich in mathematical theory and hold
applications in various areas of science. In this thesis, we presented a for-
malisation of the space from two perspectives. This choice of perspectives
is arguably among the most fundamental. It is the vector space structure
of Rn that provides the necessary operations between its elements. Indeed,
one would be hard-pressed to find any view of Rn that does not assume
any operations on the domain. Moreover, inner products are the path to
calculus: inner products lead to norms; norms lead to metrics; and metrics
lead to real analysis. The formalisation of Rn as a metric space is among
the last steps before multivariate calculus which is in and of itself full of
applications and left as future work.

During the course of formalisation, emphasis was placed on using alge-
braic methods to prove theorems that would have otherwise been proved
via induction. For example, compare the various flavours Cauchy-Schwarz
proofs; there are geometric proofs, analytical proofs, combinatorial proofs,
inductive proofs, etc. [49] whereas we followed an algebraic approach. Con-
sidering ACL2(r)’s strengths with regards to induction, the choice may seem
odd. Indeed, there are several potential inductive candidates we considered
before proceeding at the onset of this endevour. However, most of these
candidates inducted over the dimension of Rn and required reasoning over
the real entries of vectors. We suspect unwinding the vectors and guiding
ACL2(r) through such a proof would be more onerous than the one out-
lined in this paper. Moreover, our formalisation of inner product spaces
already provided the exact tools necessary for the chosen proof of Cauchy-
Schwarz (i.e. vectors, vector-vector operations, scalar-vector operations,
inner products, etc.) without resorting to reasoning over individual reals.
The precision of this approach is arguably more elegant. Not only does
the formalisation of Cauchy-Schwarz suggest various applications to areas
in which it appears (e.g. in functional analysis, probability theory, combi-
natorics, etc.), but the ACL2(r) proof is a demonstration of how the inner
product space properties can be used to prove useful and interesting math-
ematical theorems with a mechanical theorem prover.

61

Chapter 9. Conclusion and Future Work

Unfortunately, algebraic approaches require significant guidance from
the user. The solution may be to leverage automated tools that perform
better at symbolic manipulation. To this end, the properties of the inner
product space axioms might be amenable to certification by a SMT solver
via smtlink [35, 36]. The challenge here is that SMT solvers do not per-
form induction – we need to leave that for ACL2. On the other hand, we
might be able to treat operations on vectors as uninterpreted functions with
constraints corresponding to the requirements for a function to be an inner
product, a norm, etc.

One more reason to take an algebraic approach is to explicitly avoid
an inductive one. While ACL2 relies heavily on and excels at induction,
this recursive strategy can fail for vectors in a non-standard setting due to
soundness motivated limitations outlined in Section 6.3. We avoid recursion
by instead reasoning about the essential properties of the data structure; for
example, the maximum element in a vector of real numbers. The upshot is
that this approach provides a viable method for reasoning about continuity
which serves to justify our formalisation of metric spaces (with respect to
the Euclidean metric). Moreover, there is still potential to further extend Rn

as a metric space. The notions of continuity are independent of the metric
used and d2 may be replaced with any metric on Rn. By way of encapsu-
lation, pseudo-higher-order techniques may be employed to easily formalise
various real metric spaces – especially if we consider the metrics induced by
other p-norms. Among the extensions of Rn as a metric space is proving
its completeness. Addressing Cauchy sequences traditionally follows from
an application of Bolzano-Weierstrass which has yet to be formalised [44].
Stating completeness in terms of infinitesimals and ACL2(r) is a farther but
tantalizing prospect. Upon doing so, we would have a formalisation of Rn

as a Hilbert space [39].
To serve as proof of feasibility for these constructions, we also presented

a set of theorems for reasoning about convex functions in ACL2(r). Our
theory of convex functions also justifies the utility of our formalisation of
the proceeding inner product and metric space theories by serving as an
automated tool for reasoning in an application-heavy area of mathematics.
Our particular interest in this work is the potential applications to verifying,
among other areas, optimisation algorithms used in machine learning. To
this end, we chose a theorem of Nesterov’s to serve as an example of the
analytical reasoning possible in our formalisation. The natural next step
would be to develop a proper theory of multivariate calculus to further
automate the reasoning of optimisation algorithms.

62

Bibliography

[1] Formalizing 100 Theorems in Mizar. Online, https://mizar.org/100.

[2] ACL2: Encapsulate. Available at https://www.cs.utexas.edu/

users/moore/acl2/manuals/current/manual/?topic=ACL2___

_ENCAPSULATE.

[3] Sanaz Khan Afshar, Vincent Aravantinos, Osman Hasan & Sofiène
Tahar (2014): Formalization of Complex Vectors in Higher-Order
Logic. In Stephen M. Watt, James H. Davenport, Alan P. Sex-
ton, Petr Sojka & Josef Urban, editors: Intelligent Computer
Mathematics, Springer International Publishing, Cham, pp. 123–137,
doi:10.1023/A:1012692601098.

[4] K. Appel & W. Haken (1977): Every planar map is four col-
orable. Part I: Discharging. Illinois J. Math. 21(3), pp. 429–490,
doi:10.1215/ijm/1256049011.

[5] K. Appel, W. Haken & J. Koch (1977): Every planar map is four
colorable. Part II: Reducibility. Illinois J. Math. 21(3), pp. 491–567,
doi:10.1215/ijm/1256049012.

[6] John M. H. Olmsted Bernard R. Gelbaum (2003): Counterexamples in
Analysis. Dover Books on Mathematics , Dover Publications.

[7] Stephen Boyd & Lieven Vandenberghe (2004): Convex Optimization.
Cambridge University Press, doi:10.1017/CBO9780511804441.

[8] T. Coe, T. Mathisen, C. Moler & V. Pratt (1995): Computational as-
pects of the Pentium affair. IEEE Computational Science and Engi-
neering 2(1), pp. 18–30, doi:10.1109/99.372929.

[9] John Cowles & Ruben Gamboa (2017): The Cayley-Dickson Construc-
tion in ACL2. In Anna Slobodova & Warren Hunt, Jr., editors: Pro-
ceedings 14th International Workshop on the ACL2 Theorem Prover
and its Applications, Austin, Texas, USA, May 22-23, 2017, Electronic

63

https://mizar.org/100
https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____ENCAPSULATE
https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____ENCAPSULATE
https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____ENCAPSULATE
http://dx.doi.org/10.1023/A:1012692601098
http://dx.doi.org/10.1215/ijm/1256049011
http://dx.doi.org/10.1215/ijm/1256049012
http://dx.doi.org/10.1017/CBO9780511804441
http://dx.doi.org/10.1109/99.372929

Bibliography

Proceedings in Theoretical Computer Science 249, Open Publishing
Association, pp. 18–29, doi:10.4204/EPTCS.249.2.

[10] Ruben Gamboa: personal communication via the ACL2 help list on
2018-03-01.

[11] Ruben A. Gamboa & Matt Kaufmann (2001): Nonstandard Analy-
sis in ACL2. Journal of Automated Reasoning 27(4), pp. 323–351,
doi:10.1023/A:1011908113514.

[12] John Harrison (2005): A HOL Theory of Euclidean Space. In Joe
Hurd & Tom Melham, editors: Theorem Proving in Higher Order
Logics, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 114–129,
doi:10.1007/11541868-8.

[13] John Harrison (2013): The HOL Light Theory of Euclidean Space. Jour-
nal of Automated Reasoning 50(2), pp. 173–190, doi:10.1007/s10817-
012-9250-9.

[14] Marijn Heule (2018): Schur Number Five. Available at https://www.

aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16952.

[15] Marijn J. H. Heule, Oliver Kullmann & Victor W. Marek (2016): Solv-
ing and Verifying the Boolean Pythagorean Triples Problem via Cube-
and-Conquer. In Nadia Creignou & Daniel Le Berre, editors: Theory
and Applications of Satisfiability Testing – SAT 2016, Springer Inter-
national Publishing, Cham, pp. 228–245.

[16] Nathan Jacobson (1985): Basic Algebra I, 2nd edition. Dover Publica-
tions.

[17] Nathan Kahl: The Hundred Greatest Theorems. Online. Available
at http://pirate.shu.edu/~kahlnath/Top100.html. Originally pub-
lished by Paul and Jack Abad (1999).

[18] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz & Yuval Yarom (2019): Spectre Attacks: Ex-
ploiting Speculative Execution. In: 40th IEEE Symposium on Security
and Privacy (S&P’19).

[19] Boris Konev & Alexei Lisitsa (2014): A SAT Attack on the Erdős Dis-
crepancy Conjecture. In Carsten Sinz & Uwe Egly, editors: Theory

64

http://dx.doi.org/10.4204/EPTCS.249.2
http://dx.doi.org/10.1023/A:1011908113514
http://dx.doi.org/10.1007/11541868-8
http://dx.doi.org/10.1007/s10817-012-9250-9
http://dx.doi.org/10.1007/s10817-012-9250-9
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16952
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16952
http://pirate.shu.edu/~kahlnath/Top100.html

Bibliography

and Applications of Satisfiability Testing – SAT 2014, Springer Inter-
national Publishing, Cham, pp. 219–226.

[20] Carl Kwan & Mark R. Greenstreet (2018): Convex Functions in
ACL2(r). In: Proceedings 15th International Workshop on the ACL2
Theorem Prover and its Applications, Austin, Texas, USA, November
5-6, 2018, Electronic Proceedings in Theoretical Computer Science 280,
Open Publishing Association, pp. 128-142.

[21] Carl Kwan & Mark R. Greenstreet (2018): Real Vector Spaces and the
Cauchy-Schwarz Inequality in ACL2(r). In: Proceedings 15th Interna-
tional Workshop on the ACL2 Theorem Prover and its Applications,
Austin, Texas, USA, November 5-6, 2018, Electronic Proceedings in
Theoretical Computer Science 280, Open Publishing Association, pp.
111-127.

[22] Serge Lang (2002): Algebra, 3rd edition. Graduate Texts in Mathemat-
ics 211 , Springer-Verlag New York, doi:10.1007/978-1-4613-0041-0.

[23] Liz Langley (2014): What’s the Difference Between Rabbits and Hares?
Available at https://news.nationalgeographic.com/news/2014/

12/141219-rabbits-hares-animals-science-mating-courtship/.
Online.

[24] C. Ward Henson (Eds.) Leif O. Arkeryd, Nigel J. Cutland (1997): Non-
standard Analysis: Theory and Applications, 1st edition. Nato Science
Series C: 493 , Springer Netherlands, doi:10.1007/978-94-011-5544-1.

[25] N. G. Leveson & C. S. Turner (1993): An Investigation of the Therac-25
Accidents. Computer 26(7), pp. 18–41, doi:10.1109/MC.1993.274940.

[26] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom & Mike Hamburg (2018): Meltdown: Reading
Kernel Memory from User Space. In: 27th USENIX Security Sympo-
sium (USENIX Security 18).

[27] Peter A. Loeb & Manfred P. H. Wolff (2015): Nonstandard Analysis
for the Working Mathematician, 2nd edition. Springer Netherlands,
doi:10.1007/978-94-017-7327-0.

[28] Jean-Marie Madiot: Formalizing 100 theorems in Coq. Online, https:
//madiot.fr/coq100.

65

http://dx.doi.org/10.1007/978-1-4613-0041-0
https://news.nationalgeographic.com/news/2014/12/141219-rabbits-hares-animals-science-mating-courtship/
https://news.nationalgeographic.com/news/2014/12/141219-rabbits-hares-animals-science-mating-courtship/
http://dx.doi.org/10.1007/978-94-011-5544-1
http://dx.doi.org/10.1109/MC.1993.274940
http://dx.doi.org/10.1007/978-94-017-7327-0
https://madiot.fr/coq100
https://madiot.fr/coq100

Bibliography

[29] Marco Maggesi (2018): A Formalization of Metric Spaces in HOL
Light. Journal of Automated Reasoning 60(2), pp. 237–254,
doi:10.1007/s10817-017-9412-x.

[30] William Mccune (1997): Solution of the Robbins Prob-
lem. Journal of Automated Reasoning 19(3), pp. 263–276,
doi:10.1023/A:1005843212881.

[31] Norman Mcgill (2001): Metamath Proof Explorer, Theorem bcseqi. On-
line, https://us.metamath.org/mpeuni/bcseqi.html.

[32] Norman Mcgill (2008): Metamath Proof Explorer, Theorem sii. Online,
https://us.metamath.org/mpeuni/sii.html.

[33] Yurii Nesterov (2004): Introductory Lectures on Convex Optimization,
1st edition. Applied Optimization 87 , Springer US, doi:10.1007/978-1-
4419-8853-9.

[34] Michael JL Peers, Yasmine N Majchrzak, Sean M Konkolics, Rudy
Boonstra & Stan Boutin (2018): Scavenging By Snowshoe Hares (Lepus
americanus) In Yukon, Canada. Northwestern Naturalist 99(3), pp. 232
– 235 – 4, doi:10.1898/NWN18-05.1.

[35] Yan Peng & Mark Greenstreet (2015): Integrating SMT with Theo-
rem Proving for Analog/Mixed-Signal Circuit Verification. In Klaus
Havelund, Gerard Holzmann & Rajeev Joshi, editors: NASA For-
mal Methods, Springer International Publishing, Cham, pp. 310–326,
doi:10.1007/978-3-319-17524-9-22.

[36] Yan Peng & Mark R. Greenstreet (2015): Extending ACL2 with SMT
Solvers. In: Proceedings Thirteenth International Workshop on the
ACL2 Theorem Prover and Its Applications, Austin, Texas, USA, 1-2
October 2015., pp. 61–77, doi:10.4204/EPTCS.192.6.

[37] Adam Popescu (2019): Hares are cannibals and eat
meat, surprising photos reveal. Available at https:

//www.nationalgeographic.com/animals/2019/01/

snowshoe-hares-carnivores-cannibals-photos-yukon/. On-
line.

[38] Benjamin Porter (2006): Cauchy’s Mean Theorem and the Cauchy-
Schwarz Inequality. Archive of Formal Proofs. http://isa-afp.org/

entries/Cauchy.html, Formal proof development.

66

http://dx.doi.org/10.1007/s10817-017-9412-x
http://dx.doi.org/10.1023/A:1005843212881
https://us.metamath.org/mpeuni/bcseqi.html
https://us.metamath.org/mpeuni/sii.html
http://dx.doi.org/10.1007/978-1-4419-8853-9
http://dx.doi.org/10.1007/978-1-4419-8853-9
http://dx.doi.org/10.1898/NWN18-05.1
http://dx.doi.org/10.1007/978-3-319-17524-9-22
http://dx.doi.org/10.4204/EPTCS.192.6
https://www.nationalgeographic.com/animals/2019/01/snowshoe-hares-carnivores-cannibals-photos-yukon/
https://www.nationalgeographic.com/animals/2019/01/snowshoe-hares-carnivores-cannibals-photos-yukon/
https://www.nationalgeographic.com/animals/2019/01/snowshoe-hares-carnivores-cannibals-photos-yukon/
http://isa-afp.org/entries/Cauchy.html
http://isa-afp.org/entries/Cauchy.html

[39] Frigyes Riesz & Bela Sz.-Nagy (1990): Functional Analysis. Dover
Publications.

[40] Roger Jones Rob Arthan (2017): 43 famous theorems in ProofPower.
Online, https://www.rbjones.com/rbjpub/pp/rda001.html.

[41] Abraham Robinson (1966): Non-Standard Analysis. North-Holland
Publishing Company.

[42] Steven Roman (2008): Advanced Linear Algebra, 3rd edition. Graduate
Texts in Mathematics 135 , Springer-Verlag New York, doi:10.1007/978-
0-387-72831-5.

[43] Nicolas L. Roux, Mark Schmidt & Francis R. Bach (2012): A Stochas-
tic Gradient Method with an Exponential Convergence Rate for Finite
Training Sets. In F. Pereira, C. J. C. Burges, L. Bottou & K. Q. Wein-
berger, editors: Advances in Neural Information Processing Systems
25, Curran Associates, Inc., pp. 2663–2671.

[44] Walter Rudin (1976): Principles of Mathematical Analysis, 3rd edition.
International Series in Pure and Applied Mathematics , McGraw-Hill.

[45] Robert Skeel (1992): Roundoff error and the Patriot missile. SIAM
News 25(4), p. 11.

[46] Jasper Stein (2001): Documentation for the formalization of Linerar
Agebra. Online, http://www.cs.ru.nl/~jasper.

[47] H. D. Vinod & B. D. McCullough (1999): The Numerical Reliability
of Econometric Software. Journal of Economic Literature 37(2), pp.
633–665.

[48] Freek Wiedijk: Formalizing 100 Theorems. Online, http://www.cs.
ru.nl/~freek/100.

[49] Hui-Hua Wu & Shanhe Wu (2009): Various proofs of the Cauchy-
Schwarz inequality. Octogon Mathematical Magazine 17(1), pp. 221–
229.

67

https://www.rbjones.com/rbjpub/pp/rda001.html
http://dx.doi.org/10.1007/978-0-387-72831-5
http://dx.doi.org/10.1007/978-0-387-72831-5
http://www.cs.ru.nl/~jasper
http://www.cs.ru.nl/~freek/100
http://www.cs.ru.nl/~freek/100

Appendix A

Classical Proofs

Theorem 2. If f : Rn → R and g : Rn → R and h : R→ R are convex with
h monotonically increasing, then

1. a · f is convex for any real a ≥ 0,

2. f + g is convex,

3. h ◦ f is convex.

Proof. Let α ∈ [0, 1]. If f is convex, then so is af for a ≥ 0 since

af(αx+(1−α)y) ≤ a(αf(x)+(1−α)f(y)) = α(af(x))+(1−α)(af(y)). A.1

If f and g are both convex, then

(f + g)(αx+ (1− α)y) = f(αx+ (1− α)y) + g(αx+ (1− α)y)

≤ αf(x) + (1− α)f(y) + αg(x) + (1− α)g(y)

= α(f + g)(x) + (1− α)(f + g)(y).

A.2

If f is convex and h is convex and monotonically increasing, then

h◦f(αx+(1−α)y) ≤ h(αf(x)+(1−α)f(y)) ≤ αh◦f(x)+(1−α)h◦f(y) A.3

where the first inequality follows from the convexity of f and monoticity of
h and the second inequality follows from the convexity of h.

Theorem 3. Let f ∈ F1(Rn), x, y ∈ Rn and α ∈ [0, 1]. The following

68

Appendix A. Classical Proofs

conditions are equivalent to f ∈ F1
L(Rn):

f(y) ≤ f(x) + 〈f ′(x), y − x〉+
L

2
‖x− y‖2 Nest. 1

f(x) + 〈f ′(x), y − x〉+
1

2L
‖f ′(x)− f ′(y)‖2 ≤ f(y) Nest. 2

1

L
‖f ′(x)− f ′(y)‖2 ≤ 〈f ′(x)− f ′(y), x− y〉 Nest. 3

〈f ′(x)− f ′(y), x− y〉 ≤ L‖x− y‖2 Nest. 4

f(αx+ (1− α)y) +
α(1− α)

2L
‖f ′(x)− f ′(y)‖2 ≤ αf(x) + (1− α)f(y)

Nest. 5

αf(x) + (1− α)f(y) ≤ f(αx+ (1− α)y) + α(1− α)
L

2
‖x− y‖2. Nest. 6

Proof. We first show Nest. 1 implies Nest. 6. By Nest. 1, we have

f(x) ≤ f(z) + 〈f ′(z), x− z〉+
L

2
‖z − x‖2 A.4

and

f(y) ≤ f(z) + 〈f ′(z), y − z〉+
L

2
‖z − y‖2. A.5

Add Equation A.4 multiplied by α to Equation A.5 multiplied by 1−α and
simplify to obtain

αf(x) + (1− α)f(y) ≥ f(z) + α〈f ′(z), x− z〉+ (1− α)〈f ′(z), y − z〉

+
α(1− α)

2L
‖f ′(y)− f ′(z)‖2

A.6

Set z = αx+ (1− α)y and apply Lemma 4 to obtain Nest. 6. The proof for
Nest. 2 implies Nest. 5 is similar.

To see Nest. 1 from Nest. 6, swap x and y in Nest. 6 and rearrange to
obtain

f(y) ≥ f(x) +
f(x+ α(y − x))− f(x)

α
+

1− α
2L
‖f ′(x)− f ′(y)‖2. A.7

Take α→ 0 to obtain Nest. 1. The proof of Nest. 5 implies Nest. 2 is similar.
For Nest. 0 implies Nest. 4, apply Cauchy-Schwarz.

69

Appendix A. Classical Proofs

We now prove Nest. 4 implies Nest. 1. Observe

f(y)− f(x)− 〈f ′(x), y − x〉 =

∫ 1

0
〈f ′(x+ τ(y − x))− f ′(x), y − x〉dτ

≤ L‖y − x‖2
∫ 1

0
τdτ

=
L

2
‖y − x‖2

A.8

which gives us Nest. 1.
Now we show Nest. 1 implies Nest. 2 Assume Nest. 1. Let ϕ(x) =

f(x)− 〈f ′(x0), x〉 for some arbitrary but fixed x0. Observe ϕ is continuous,
convex, and differentiable and ϕ(x0) ≤ ϕ(x) for any x. Moreover, ϕ′(x) =
f ′(x)− f ′(x0). Then

ϕ

(
y − 1

L
ϕ′(x)

)
≤ ϕ(y) + 〈ϕ′(y), y − 1

L
ϕ′(y)− y〉+

1

2L
‖ϕ′(y)‖2

= ϕ(y)− 1

2L
‖ϕ′(y)‖2

A.9

gives us Nest. 2.
Add two copies of Nest. 2 with swapped variables to obtain Nest. 3.
Apply Cauchy-Schwarz to Nest. 3 to obtain Lipschitz continuity which

brings us back to Nest. 0.

70

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Programs
	Acknowledgements
	Introduction
	Related Work
	Preliminaries
	Vector and Inner Product Spaces
	The Cauchy-Schwarz Inequality
	Metric Spaces
	Continuity & Differentiability in Rn
	Convex Functions & F1L(Rn)
	ACL2(r)
	Non-standard Analysis and ACL2(r)

	Mechanical First-order Real Vector Spaces
	Vector Space Axioms
	Inner Product Space Axioms

	Formalising Cauchy-Schwarz
	Cauchy-Schwarz I
	Cauchy-Schwarz II
	Conditions for Equality
	Final Form of Cauchy-Schwarz

	Reasoning about Continuity
	Metric Space Axioms
	Continuity RnR
	Why are Non-classical Recursive Functions Prohibited?

	Mechanical Multivariate Convex Functions
	Example Functions
	Reasoning about Convexity
	A Useful Lemma

	Formalising Nesterov's Theorem
	Approach and Basic Definitions & Lemmas
	Instantiating Inequalities
	Taking Limits
	Nesterov's Final Form
	Ambiguities in Nesterov's Statement

	Conclusion and Future Work
	Bibliography
	Classical Proofs

