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Abstract

The low-temperature magnetic order in the rare-earth nickelates is a subject
of vigorous debate in the literature. Recent work emphasized the primary
role of the electron-phonon coupling for the metal-insulator transition in
the nickelates, and suggested that lattice distortions are the driver of the
transition, leading to the observed charge order. However, to our knowl-
edge there has been little work on the impact of lattice distortions on the
magnetic order, in particular whether distortions favour some orders over
others. In this thesis, we study the magnetic order in the nickelates at zero
temperature, and investigate whether the breathing-mode lattice distortions
select a preferred ground state. An effective two-band Hubbard model for
the nickelates is constructed and coupled to the lattice distortions with an
on-site Holstein-like term. The distortions are treated semiclassically. Us-
ing the Hartree-Fock approximation, we obtain the magnetic phase diagram,
then turn on the coupling to the lattice to observe its impact on the var-
ious phases. Our model reproduces the earlier work showing the stronger
charge disproportionation and insulating behaviour in the phase space due
to increased coupling to the lattice. Furthermore, we find numerous 4-site
magnetic orders that are self-consistent within the model, including all of the
main suggestions in the literature (states such as ↑↑↓↓, ↑→↓← and ⇑ 0 ⇓ 0).
However, in this model a magnetic order can only couple to the lattice dis-
tortions if there is nonzero charge disproportionation. As a result, we find
that coupling to the lattice distortions broadly favours the ⇑ 0 ⇓ 0 order in
large sectors of the parameter space. Finally, we considered the impact of
longer range hopping on the magnetic order: we find that the shape of the
density of states, rather than overall bandwidth, primarily determines the
magnetic ground state. A van Hove singularity arises even for small 2nd-
nearest hopping amplitudes, which results in robust ferromagnetism across
most of the phase diagram in a Stoner-like fashion. On the contrary, even
small 4th-nearest amplitudes decrease the Fermi level density of states, re-
sulting in ballooning of the metallic phase despite a barely renormalized
bandwidth.
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Lay Summary

While the study of magnetism began as a hobby for philosophers, it has
since led to deep insights about our physical world. Aside from the obvious
utility of fridge magnets, understanding the atomic origin of magnetism
has given humanity many useful tools: MRI machines, loudspeakers, hard
drives. Magnetism originates with an electronic property – spin: electrons
are essentially tiny bar magnets. In most magnets, electrons align in one
direction, producing strong magnetism on the macroscopic scale. But rare-
earth nickelates – at low temperature – become a peculiar kind of a magnet.
Instead of aligning, the electrons exhibit an unknown pattern repeating every
four lattice sites, potentially ↑↑↓↓ or ↑→↓←. In this thesis, we construct
a quantum-mechanical model for the nickelates to study their magnetism.
Using the magnetic pattern of this material to encode bits of information is
just one potential technological byproduct that could become available as
our understanding of the material grows.
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Chapter 1

Introduction: Experiments
and Calculations on the
Nickelates

The ultimate court of appeal is
observation and experiment...
not authority.

Thomas Huxley (1875)

Rare-earth nickelates (chemical formula RNiO3, with R any rare-earth
element from La to Lu) are a fascinating perovskite transition-metal oxide
[10] material series that have not only generated much excitement in the
condensed matter community as a matter of fundamental interest [3, 4], but
are also now inspiring more and more potential applications, specifically
in the memory domain [11–13]. Obtained for the first time in 1971 by
Demazeau et al. [14], they were largely ignored until the general surge of
interest in perovskite materials in the 90s, generated by the discovery in one
of them – the cuprates – of high-temperature superconductivity in the late
80s [15].

In terms of basic science, the nickelates exhibit a variety of phase tran-
sitions and emergent orders. All nickelates except LaNiO3 undergo – in fact
are considered the prime examples of – a sharp metal-to-insulator (MIT)
transition [16] (see Fig. 1.1 for a phase diagram), which is generally under-
stood to be a consequence of charge order (although the exact mechanism is
still disputed [17–22]). The transition is concurrent with a breathing-mode,
rock-salt pattern lattice distortion [23], as shown in Fig. 1.2. In addition,
for all nickelates except LaNiO3

1, at still lower temperatures (and for Pr and
Nd, at the same temperature as the MIT) there is an additional, magnetic
phase transition, resulting in an as-yet poorly-understood magnetic order,
with various competing proposals [4, 25–28]. While the phases themselves

1although this has recently been challenged [24].
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Chapter 1. Introduction: Experiments and Calculations on the Nickelates

Figure 1.1: A temperature vs. type of rare-earth ion phase diagram of the
rare-earth nickelates, adapted from Ref. [1].

Figure 1.2: A graphic of the rocksalt breathing-mode distortion in the rare-
earth nickelates. Adapted from Ref. [2].

2



Chapter 1. Introduction: Experiments and Calculations on the Nickelates

are reasonably well-understood and characterized (with the exception of the
low-temperature magnetism, which is largely due to the difficulty of synthe-
sizing large enough single crystal samples), the precise mechanisms of the
charge and magnetic phase transitions are not yet entirely clear. Moreover,
almost all of these transitions can be tuned with the type of rare-earth ion
(as in Fig. 1.1), pressure [29], in heterostructures [30], and even swapping
out the oxygen for its isotopes [31].

One of the thorniest questions in the field in recent years has been the
nature and origin of the magnetic order that obtains in this material series
at low temperatures. Specifically, while neutron diffraction measurements
have firmly established the ordering wavevector of the magnetic phase as
Qm = 2π

a [1
4 ,

1
4 ,

1
4 ]pseudocubic

2, the community is still debating the origin and
precise alignment of the local magnetic moments. Some of the magnetic
orders potentially consistent with the above ordering wavevector include
⇑ 0 ⇓ 0 [25], as well as ⇑↑⇓↓ [26] and even the non-collinear option ⇑→⇓←
(throughout this thesis we use fat arrows to indicate larger spin magnitudes).
In light of recent work demonstrating that the lattice breathing-mode distor-
tion helps stabilize charge order in the nickelates [32], it seemed reasonable
to suggest that the lattice distortion could also preferentially favour one or
the other kind of magnetic orders suggested in the literature. In this thesis,
we address the magnetic order question by constructing an effective two-
band Hubbard Hamiltonian for the nickelates, and coupling it through an
on-site interaction to the lattice distortion, which we treat semiclassically.
We then search for the magnetic ground state in the Hartree-Fock approxi-
mation, and consider how the presence of coupling to the lattice distortion
affects the magnetic phases that arise.

This thesis is structured as follows: in the rest of this chapter we begin
by describing, at the appropriate level of detail, the phenomenology of this
Ni material series, including structural, charge and magnetic properties – as
gleaned from experiment. In Chapter 2, we construct in detail the micro-
scopic model used for the nickelates in our study. In Chapters 3 and 4, we
apply and numerically implement the Hartree-Fock approximation for the
model. In Chapter 5, we present our results and answer the main research
questions of the thesis, as well as comment on any unexpected discoveries.
Our conclusions and outlook are summarized in Chapter 6.

2 2π
a

[ 1
2
, 0, 1

2
] in perovskite notation.

3



1.1. Crystal structure

Figure 1.3: From Medarde’s excellent 1997 review, Ref. [3]. (a) Ideal per-
ovskite structure; (b) Rhombohedral distortion twists about the [111] direc-
tion for t ∼ 1 (R3c point group symmetry class) (c) Orthorhombic distortion
twists about the [110] direction – the case for most of the nickelates (domi-
nant mode at smaller t).

1.1 Crystal structure

At room temperature, most nickelates – whether found in nature or synthe-
sized in the laboratory – consist of the usual columns of oxygen octahedra
engulfing the nickel atoms, with the rare-earth ions sitting in-between them
(see Fig. 1.3a for a diagram of the crystal structure). For all the nickelates,
the structure actually is strictly speaking not an ideal perovskite lattice: it
has a slight deviation from perfect cubic lattice symmetry due to “twists” of
the octahedra, caused by the too-small -to-fit rare-earth ions (many of the
lattice parameters are tabulated in [33]; for more general information about
the crystal structure, see [3]). In practice, these deviations – characterized
by the Goldschmidt tolerance factor t [34], defined as

t =
dR-O√
2dNi-O

, (1.1)

where d are the bond lengths of R-O and Ni-O, respectively, – are rather
small and often either entirely ignored [26], or incorporated phenomenolog-
ically (e.g. through modifying the hopping rates in a tight-binding model).
The range of variation of t is fairly small – from t = 0.932 for LuNiO3 to
t = 0.986 for LaNiO3. As an aside, sometimes also the Ni-O-Ni bond angle
is used in place of the tolerance factor to characterize the distortion: it is
marked in Fig. 1.4.

The most stark phase change in the nickelate phase diagram is between
the high-temperature metallic phase, and the low temperature insulating

4



1.1. Crystal structure

Figure 1.4: Ni-O-Ni bond angle in the rare-earth nickelates is a measure of
the perosvkite distortion, equivalent to the tolerance factor. Figure from
Ref. [4].

5



1.2. Structural Transition

phase. (The only element in the series that stays metallic at all tempera-
tures is the La based compound.) Before we discuss this metal-to-insulator
transition (MIT), which is still at times a source of controversy in the liter-
ature, we first consider the structural changes that occur in the nickelates
across that same phase boundary, as the former is widely thought to be
heavily influenced, if not outright triggered, by the latter.

1.2 Structural Transition

As the temperature is lowered, all nickelates (except LaNiO3) undergo a
symmetry reducing lattice distortion, which changes their point group class
from the orthorhombic Pbnm to monoclinic P21/n [5, 9, 35–37]. In addition,
there is a slight volume reduction [23]. As was just mentioned, the struc-
tural deformations may be rather complex, combining twists and tilts about
various crystal axes [3, 4, 23, 27, 38]: however, it is of prime importance
to determine exactly the kind of distortion type (or symmetry class) that
dominates the overall structural evolution, as different types would support
qualitatively different explanations for the MIT (see Secs. 1.3,1.4). This can
be accomplished through the use of symmetry-mode based decomposition
analysis (in this section we follow Refs. [5, 39]; for a general review of the
method in crystallography, see Ref. [40]). In short, the atomic positions in
a distorted crystal, labelled rdist

i , are written in terms of the coordinates of
the undistorted, high-symmetry crystal r0

i and a linear combination of par-
ticular distortion modes with unit displacement vectors dim and distortion
mode amplitudes Am

rdist
i = r0

i +
∑
m

Amdim. (1.2)

The modes dim are defined based on symmetry considerations, which
makes them independent from each other and allows for the decomposition.
This approach helps process experimental data, which often comes as various
Ni-O bond lengths, Ni-O-Ni angles, and other crystallographic parameters,
in a transparent way and quickly identify the dominant distortion modes
from change in the amplitudes Am across a phase line. Balachandran and
Rondinelli [5] have carried out a careful symmetry-mode based decomposi-
tion analysis for the nickelates: they noted that, while there is significant
distortion of types R+

4 (an out-of-phase rotation, see Fig. 1.5f), M+
3 (an in-

phase twist, see Fig. 1.5c), and X+
5 (in-phase tilting, see Fig. 1.5h) already
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1.3. Metal-Insulator Transition: Introduction

present in the nickelates at high temperatures, the biggest change across
the MIT phase line is in the sudden appearance from zero of the breathing-
mode type distortion R+

1 (already depicted above in Fig. 1.2). Meanwhile
the various Jahn-Teller like modes (see Sec. 1.4.2 for a discussion of why
they were thought to be important) are negligibly small.

Some of the earlier structural analysis [41] seemed to suggest that Jahn-
Teller distortions were present, but the conclusions were drawn based on
a more rudimentary technique – that of calculating the distortion param-
eter ∆d = (1/6)

∑
n=1,...6[(dn − 〈d〉)/〈d〉2]2, where 〈d〉 is the average Ni-O

bond length and dn are the various Ni-O bond lengths measured in neutron-
scattering studies. Moreover, in the analysis the change of this parameter
with temperature for a fixed R member of the nickelate series was never
considered. Rather, the distortion parameter was calculated for the nick-
elate series and correlated with the transition temperatures TMIT : but it
is the changes across the MIT phase line that are most significant, and
a cross-sectional view of the nickelate series cannot conclusively establish
what distortions are relevant across it. In light of the more sophisticated
treatment via eq. 1.2, it is clear that the earlier approach (a) could not
easily differentiate between the various contributions to the distortions in
the Ni-O bonds and thus risked mis-attributing the distortion to the wrong
mode, and (b) it is the changes across the MIT phase line that determine
the dominant distortion mode, which were not considered.

The conclusion to take away from this discussion is that while the nick-
elates may be octahedrally twisted and otherwise distorted in a number of
ways, the primary change across the MIT phase boundary results from a
rocksalt, breathing-mode lattice distortion of type R+

1 , wherein alternat-
ing Ni octahedra expand and collapse isotropically and roughly by an equal
measure, and that furthermore there are no Jahn-Teller distortions observed
(once again, see Sec. 1.4.2 to see why the Jahn-Teller modes generated so
much controversy).

1.3 Metal-Insulator Transition: Introduction

The “smoking gun” kind of evidence for an MIT in the nickelates is the
standard measurement of electrical resistance: this first-order phase tran-
sition is clearly indicated by the resistance curves, which shoot straight
up once critical temperature is reached (see the measurements for several
of the compounds in Fig. 1.6, from [6]). While the presence of the MIT
is firmly established by measurements from several groups over the past
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Figure 1.5: Various distortion modes available to the nickelates. Figure from
Ref. [5].
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1.3. Metal-Insulator Transition: Introduction

Figure 1.6: Electrical resistivity of PrNiO3 as a function of temperature:
the metal-insulator transition is clearly visible. Data and figure from Ref.
[6].

decades [35, 42, 43], its nature and origin are not immediately obvious from
these measurements alone. Before we launch into a discuss of the various
possibilities, let us consider the basic electronic structure of the nickelates.

1.3.1 Formal Valence rules

When it comes to transition metal oxides and determining the formal3 ox-
idation state4 of the various components, for instance in a perovskite with
the chemical formula ABX3, it is customary to do the following. Given that
the unit cell ought to be electrically neutral – otherwise the material would
not be electrically stable – the valences of all the components must add up
to zero. Furthermore, due to extremely high electronegativity of chalcogens
(O, S, Se) and halides (F, Cl, Br, I), assume their outer shells are closed:
they have stolen enough electrons to satisfy their outer shells. One can make
a similar assumption about the alkali metals like Li, alkaline earth elements
in the Be column, and those in the column under Sc: their low electroneg-
ativity leads them to give up their electrons in most situations. Once these

3i.e. nominal, not physically true but a useful starting point.
4that is, how many electrons an outer electronic subshell is gaining/losing.
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1.3. Metal-Insulator Transition: Introduction

are fixed, the remaining valences are determined by setting the sum total to
zero: this condition can typically be satisfied because the transition metals
often have a variety of diverse stable oxidation states (e.g. for vanadium
the oxidation state can range from +2 all the way to +5). In the case of
the rare-earth nickelates RNiO3 we can assign formal valences as follows: R,
being the in Sc column, has +3. In a formula unit of RNiO3 there is 1 Ni
and 3 O: if we insist on O−2, and R is +3, that forces Ni+3, or, in terms of
shell structure, Ni = [Ar] 3d7.

Knowing the number of electrons residing in the outer shell of the Ni
ions, one can, in order to describe the nickelate behaviour, attempt to con-
struct a Hubbard-like model for the nickelates. The simplest approach is
to forget about the rare-earth ions and the O bands, assuming they are far
away from the Fermi level and the Ni bands, and to focus purely on the Ni
conduction electrons. A Ni atom in a spherically symmetric vacuum pos-
sesses the standard hydrogen-like electronic orbitals: in fact, according to
the hydrogen atom solution, all the orbitals in the Ni n = 3 subshell (where
n is the principal quantum number5) have the same energy (assuming the
electron-electron interactions are neglected!) and thus would all have to be
included in a Hubbard model. However, the Ni atoms are not really in a
vacuum, nor are they in a spherically-symmetric environment: they are sur-
rounded by a periodic array of O and R and other Ni. In particular, each
Ni atom is encased in an octahedral cage of oxygen atoms: this breaking
of full rotational symmetry down to the octahedral group lifts the orbital
degeneracy and significantly simplifies the model, reducing the number of
states that need to be included. The effects of the surrounding O on the
electronic structure of Ni are obtained within crystal field theory.

1.3.2 Crystal field splitting of RNiO3

There are excellent books available detailing the crystal field calculations for
various geometries and point group symmetries, as well as the group theory
involved [7, 44]. Here we will only provide a qualitative description of the
calculation, omitting some of the calculation details.

Consider the total electric potential V (r) on the electron in the outer
shell of an ion of interest – say, Ni (positioned at R0). Treating all other

5which is a consequence of conservation of energy in the hydrogen atom problem.
Other quantum numbers to remember are the angular quantum number l from rotational
symmetry (l = 0 is the s orbital, l = 1 the p orbital, l = 3 the d orbital, l = 4 the f
orbital, ...), the angular projection number mz, and the spin projection quantum number
sz.
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1.3. Metal-Insulator Transition: Introduction

ions (oxygens) as point electric charges of magnitude qa for the moment, one
can write

V (r) =
∑
a

qa
|Ra − r|

=
q0

|R0 − r|
+
∑
a

nearest
neighbours

qa
|Ra − r|

+
∑
a non

nearest
neighbours

qa
|Ra − r|

= (1.3)

= V0(r) + Vlig(r) + Vcr/lig(r). (1.4)

The first term is simply the spherically symmetric potential from the
electron’s own core ion. The second is the so-called ligand field, produced
by the ligands or atoms that are immediately surrounding (bonding to) the
original Ni ion. The second and the last term together comprise the crystal
field.

It is reasonable to assume that the nearest neighbours exert the strongest
influence on the electron of the ion at R0. Specializing to the case of a Ni ion
in an octahedral cage of O, we have point charges qO at positions (±a, 0, 0),
(0,±a, 0) and (0, 0,±a) (the assumption of perfect octahedra with all equal
primary axes can be relaxed, but it does not change the results qualitatively).
The ligand field on the electron is

Vlig(r) =
qO√

(x− a)2 + y2 + z2
+

qO√
(x+ a)2 + y2 + z2

+

+
qO√

x2 + (y − a)2 + z2
+

qO√
x2 + (y + a)2 + z2

+

+
qO√

x2 + y2 + (z − a)2
+

qO√
x2 + y2 + (z + a)2

. (1.5)

Taylor expanding about r = 0 to first order gives

Vlig(r) ≈ 35

4

qO
a5

(
x4 + y4 + z4 − 3

5
r4

)
= D

(
x4 + y4 + z4 − 3

5
r4

)
. (1.6)

This term manifestly breaks spherical symmetry by virtue of the x4, y4, z4

factors: the hydrogen atom problem thus acquires a perturbation to the
spherical Coulomb potential 1/r and the large degeneracy between the dif-
ferent subshell orbitals is lifted. One clever way to figure out how the degen-
eracy is lifted is using representation theory: however, the exact derivation
is lengthy and interested readers are directed to Ref. [7].

To calculate the actual energy splittings and the make-up of the states
in terms of the original atomic orbitals |n, l,mz, sz〉 it is necessary to do de-
generate perturbation theory on the ligand potential Vlig(r) and diagonalize
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1.3. Metal-Insulator Transition: Introduction

Figure 1.7: The eg and t2g manifolds resulting from crystal field splitting.
Figure from Ref. [7].

the resulting crystal-field matrix to obtain the splittings. Without going in
the details of the diagonalization (see Ref. [7]), we simply quote the results.
After taking into account the crystal field, the degenerate d orbitals of the Ni
ion split into two manifolds: a higher energy manifold called eg (for group-
theoretic reasons), which encompasses the orbitals d3z2−r2 , dx2−y2 ; and t2g
with the orbitals dxy, dyz, dzx. Intuitively, the eg orbitals end up being higher
in energy because they are oriented towards the negatively charged O ions,
whereas the t2g are largely in interstitial space (see Fig. 1.7).

Combining this knowledge of the new d orbitals with the previous insight
about the Ni valency of 3d7, we conclude that the lower-lying t2g triplet is
completely filled, while the eg doublet remains degenerate, with a single
electron splitting its time between the two orbitals – and two possible spin
projections sz = ±1/2 – resulting in quarter-filling at zero temperature.
This is often written as d7 = t62ge

1
g. Thus the tight-binding model, if con-

structed, ought to include two bands, |z〉 ≡ d3z2−r2 , |z̄〉 ≡ dx2−y2 .
While the eg − t2g splitting is an adequate starting place for under-

standing the impact of the ligand O on the electronic properties of Ni, the
simple point charge approximation leaves out important band effects. To
take those into account, it is necessary to take stock of the charge-transfer
energy gap between the Ni and O bands, which we discuss next within the
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Zaanen-Sawatzky-Allen framework [45].

1.3.3 Zaanen-Sawatzky-Allen scheme

In this discussion we draw on an excellent reference by George Sawatzky and
Robert Green [8]. Standard band theory, motivated by the tight-binding
model, assigns only one criterion for judging whether a material is a metal
or an insulator: the parity of the number of electrons per unit cell. If the
number is odd, then the outermost band is only partially occupied and the
material is a metal. Conversely, an even number of electrons means the band
is fully occupied, and in the presence of a finite band gap between the occu-
pied (valence) band and the next higher, unoccupied (conduction) band, the
material is insulating (this is well-described in many solid-state textbooks).
The success of this model was astounding, but brief: it was quickly realized
that there were a variety of materials, most notably transition-metal oxides,
which were insulating despite formally having an odd number of electrons
in the unit cell.

To address this discrepancy, Mott and Hubbard pointed out that inter-
actions between electrons must be taken into account [46, 47]. The Mott-
Hubbard model, which incorporates the electron-electron interactions only
between electrons at a given site, was already a significant improvement: it
was able to show exactly how electron-electron interactions were forcing the
localization of electrons, thus rendering the materials insulating. Without
interactions the Fermi level would sit in the middle of the outer electron
band: the system would have many states which could potentially respond
to an applied current (which is what conduction is). Instead, the electrons’
mutual Coulomb repulsion (whose strength is characterized in the model by
the value U) opened a gap in the density of states at the Fermi level, split-
ting the band in two, and eliminating any states that were once accessible
for conduction, effectively confining the electrons to their “home cell” (see
Fig. 1.8 for a useful graphic).

However, soon this was also revealed not to be the whole story. Transi-
tion metal oxides nominally incorporate both transition metal 3d bands and
oxygen 2p bands in their bandstructure. Typically it is assumed that the
oxygen bands are valence and are way below the transition-metallic bands:
however, in many oxides that is not the case. In fact the bandstructure
can be such that the lowest energy excitations actually involve the an elec-
tron hopping from the oxygen band to the transition-metal band, or yet
more exotic possibilities. This was the chief insight of Zaanen, Sawatzky
and Allen [45], who in 1985 classified the possibilities for such compounds
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1.3. Metal-Insulator Transition: Introduction

Figure 1.8: A graphic depicting the Zaanen-Sawatzky-Allen classification
scheme, using featureless densities of electronic states without hybridization.
Figure from Ref. [8].

in terms of the Hubbard U and the charge-transfer energy ∆: this latter
energy scale characterizes the energy cost of the electron hopping from the
transition-metal atom to the ligand oxygen.

The different possibilities coming from the interrelationship of U and
∆ are depicted in Fig. 1.8. They range from a full-on Mott-Hubbard sit-
uation, where the oxygen band indeed plays no role; to a positive charge
transfer case where the lowest-order excitations are of dnL0 → dn+1L1 type
(L indicates a hole state on the ligand oxygen); to a mixed valence state
that is somewhat difficult to understand and we will not discuss much here;
and, finally, negative charge transfer insulators, which is what the nickelates
RNiO3 are believed to be in the ZSA scheme. The idea behind the negative
charge transfer insulator is that ∆ < 0 and it is thus energetically favourable
for the oxygen 2p electron to migrate toward the Ni : this situation is some-
times called self-doping. The structure of the lowest order excitations in
the various scenarios is depicted in Fig. 1.9.

The crucial takeaway from the ZSA analysis is that, unlike in the formal
valence counting in Sec. 1.3.1, the correct starting point for constructing a
Hubbard model for the Ni should be the d8L1 state, not d7. This has seri-
ous implications for the picture of the charge order and the metal-insulator
transition, as we will see shortly.
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Figure 1.9: The lowest order excitations within the Zaanen-Sawatzky-Allen
classification scheme. Figure from Ref. [8].

1.4 Metal-Insulator Transition: Mechanisms

Armed with the understanding of the basic facts about the Ni valency, or-
bitals and bandstructure, we can now start addressing the question of the
metal-insulator transition and the various mechanisms that have been pro-
posed.

1.4.1 Mechanism: Charge-transfer gap

In the simplest and one of the earliest pictures, as the temperature is lowered,
a charge-transfer gap appears in the band structure of the nickelates, leading
to insulating behaviour [16]. However, this does not readily account in any
way for the structural lattice distortions which are present in this material
and thus is not considered an adequate theory at this point.

1.4.2 Mechanism: Jahn-Teller effect

A good rule of thumb when it comes to electronic systems is that “nature
abhors an orbital degeneracy”[48]. Whenever there is a possibility of lifting
a degeneracy, it is generally done, unless the degeneracy is protected by sym-
metry. So it should come as no surprise that the remaining degenerate eg
doublet could have a natural way of resolving its degeneracy: in the case of a
perovskite lattice, one such possibility is known as the Jahn-Teller effect. In
short, it comes from the interaction between the electronic orbitals and lat-
tice vibrational modes. The interaction produces a “cooperative distortion”
of the lattice, elongating the O octahedra preferentially along one axis. This
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Figure 1.10: The unit cell of KCuF3 and the associated JahnTeller distortion
modes. Figure from Ref. [7].

splits the eg doublet and produces a kind of orbital order. A derivation of
the Jahn-Teller effect from a Theory-of-Everything Hamitlonian is beyond
the scope of this thesis: an excellent introduction is given in Ref. [7].

A typical example of a Jahn-Teller system is KCuF3, another perovskite:
see the two possible distortion modes in Fig. 1.10. Intuitively, the Q2 mode
brings the negatively charged O closer to the branches of dx2−y2 and so raises
its energy, while pushing other O away from d3z2−r2 and lowering its energy
– and in so doing, lifts the degeneracy.

In light of this well-studied phenomenon, and given that with the open
outer subshell structure t62ge

1
g the nickelates are expected to be Jahn-Teller

active [38] (due to the unpaired electron in a degenerate pair of orbitals), it
was reasonable to suggest that a Jahn-Teller distortion is what resolves the
electronic degeneracy and results in insulating behaviour below a certain
temperature [31, 49]. At high temperatures, itinerant6 electrons possess
large kinetic energy (the bandwidth W is large) that dominates the Jahn-
Teller distortion and suppresses it, so the (electric) conduction is largely
unaffected.

Many in the literature assert that, despite decades of research, no dis-
cernible Jahn-Teller like (orthorhombic) distortion was found [27, 35, 39,
42, 50, 51] – even though they might cite papers that explicitly say that
Jahn-Teller distortions are present (such as in [41]). Moreover, some re-
searchers suggest that neutron diffraction studies show that the change of
the point group across the MIT phase line would not even be consistent
with a Jahn-Teller distortion: the change is such that the unit cell appears
to double, resulting in two inequivalent Ni sites – whereas a Jahn-Teller dis-

6i.e. not localized – typical Bloch states in metals that are distributed over almost the
entire sample.
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tortion would operate in the same way within all octahedral O cages [52].
However, others are suggesting that a Jahn-Teller distortion is indeed ob-
served [4, 41, 49, 53]: they point to an increase in the distortion parameter
∆d = (1/6)

∑
n=1,...6[(dn−〈d〉)/〈d〉2]2 as one follows the nickelate series from

La to Lu, at room temperature. However, as we already discussed above
in Sec. 1.2 on the structural transition in the nickelates, a variety of dif-
ferent types of distortion could potentially occur in the nickelates. Any of
them could affect this very general parameter ∆d, without necessarily serv-
ing as evidence for Jahn-Teller distortions. The more recent studies already
mentioned that apply a sophisticated symmetry based mode decomposition
analysis for the distortions seem to concur that a breathing-mode distor-
tion, rather than a Jahn-Teller one, is the main contribution to the lattice
distortion of the nickelates across the MIT. Ref. [54] explains nicely how the
same data (e.g. Ni-O bonds lengths) could have been interpreted in favour
of different theories by different researchers.

In summary, with some degree or certainty one could conclude that Jahn-
Teller distortions are not responsible for charge order, as there are no Jahn-
Teller distortions observed: although a possibility of a dynamic Jahn-Teller
effect, which would not be readily picked up by the various X-ray and neu-
tron diffraction experiments (as they time-average the measurements), has
not yet been conclusively ruled out [41].

1.4.3 Mechanism: Charge disproportionation

An alternative proposed microscopic explanation accounting for the MIT is
the effect of charge disproportionation (CD). Neighbouring Ni ions, nom-
inally each being of d7 valency, spontaneously form pairs with alternating
valence d7−δd7+δ (equivalently this is often written Ni3− δNi3+δ), where δ
is the magnitude of the charge disproportionation [4, 35–37, 42, 48, 50, 55].
This happens to lift the eg degeneracy without requiring Jahn-Teller distor-
tion, and would preferentially couple to breathing-mode type distortions7,
as opposed to Jahn-Teller like distortions [54]. The breathing mode distor-
tion makes sense in light of the changes of ionic radii with the introduction
of a non-zero δ. This charge density wave then impedes conduction in the
usual Mott-Hubbard insulator sense, opening a gap at the Fermi surface.
However, there are some issues with this approach. Firstly, a charge density
wave can only occur for Hund’s coupling J8 large enough to compensate

7i.e. ones where alternating O octahedra expand and contract.
8Hund’s coupling J is the strength of the exchange interaction in an electronic system:

typically smaller than U , it prefers to arrange the electrons into a state that maximizes
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for the prohibitive cost of double occupancy U [48]: this indeed seems to
be the case in the nickelates [32]. But that kind of ratio between U and J
would make it energetically favourable to transfer the electron away from O
and onto Ni (alternatively, a hole from Ni to O), thus making a 3d7 config-
uration an inappropriate starting point (as discussed in terms of the ZSA
framework in Sec. 1.3.3). Second, on more experimental grounds, it appears
to directly contradict resonant soft-x-ray diffraction measurements probing
the Ni d orbital occupation [56].

1.4.4 Mechanism: Negative charge-transfer theory

An alternative view, motivated by the Zaanen-Sawatzky-Allen framework
[45], holds that the nickelates are a negative-charge transfer insulator: that
is, the energy cost ∆ (the charge-transfer energy) of occupying a Ni d or-
bital versus an oxygen p orbital is such that ∆ < U and in addition ∆ < 0
[18–22]. This forces a hole into the oxygen band (effectively self-doping the
material), resulting in a d8L Ni valency state (L denotes a ligand (oxy-
gen) hole). Subsequently, electron-phonon coupling results in a breathing-
mode distortion of the lattice, which couples to a charge order of the form
(d8L)i(d

8L)j → (d8L2)S=0(d8)S=1. Since each hole on the oxygens is shared
equally by both Ni that are bonded to it, there is no actual overall move-
ment of charge: both O cages have the same average hole concentration
[32]. But when two holes are present on a Ni (collapsed) octahedron, the
phase of their wavefunctions is modified to acquire the symmetry of the Ni
eg orbitals. The pair of holes then locks into a singlet with the Ni electrons,
resulting in an effectively 3d6 Ni configuration, which is not susceptible to
Jahn-Teller distortions. Meanwhile the expanded Ni octahedron, left with
no holes, orders as a triplet with S = 1, which allows the material to order
magnetically (and acting in effect just like charge disproportionation would
during most experimental probes).

These different mechanisms of how the MIT actually proceeds are not
merely questions of interpretation of data: different modeling approaches,
treating the electronic structure to varying degrees of sophistication, have to
be implemented depending on which of the mechanisms one believes to be
correct. We use many of the considerations laid out here (Ni valence count-
ing, crystal-field splitting, the Zaanen-Sawatzky-Allen framework, absence
(maybe?) of Jahn-Teller distortions and orbital order) when we construct
our model in Ch. 2.

the local spin – justifying that old adage from chemistry, Hund’s rule.
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1.5 Magnetic Transition: Introduction

There are a few key experimental signatures that signal the onset of mag-
netic ordering, such as a divergence in magnetic susceptibility, or the sud-
den appearance of a nonzero atomic magnetic moment (picked up usually
through neutron scattering). The first indications of magnetic behaviour in
the nickelates were observed by the team Demazeau et al. that originally
synthesized the material series in the early 70s [14]. It was not until the
late 80s and early 90s that magnetic phenomena in the nickelates started to
attract more widespread attention [38, 57–59]. An excellent plot of the Ni
magnetic moment with temperature is depicted in Fig. 1.11: the sponta-
neous transition to a magnetically ordered state with temperature is clearly
visible.

After a great deal of work it emerged that all of the members of the Ni
family possess nontrivial, magnetically ordered ground states at low enough
temperatures (except for LaNiO3 which is assumed to stay paramagnetic
down to the lowest temperatures – although there is very recent work that
is calling this into question [24]). Two of the members of the family, Nd
and Pr, experience the magnetic transition simultaneously with the MIT:
the transition is first order [3]. Meanwhile the rest of the family up to
Lu undergoes a second-order transition, with the transition temperature TN

trending upward as one approaches Lu. This is encapsulated in the canonical
phase diagram showed in an earlier section 1.1.

Much work since those days has been devoted to characterizing this low-
temperature magnetically ordered state, primarily though neutron diffrac-
tion measurements [9, 28, 38, 49, 56, 60, 61]. Due to the difficulty of produc-
ing large enough single crystal samples, the alignment of the local magnetic
moments (both from the Ni and the rare-earth sublattices) remains a mys-
tery: however, it has been conclusively established that whatever the align-
ment may be, it obeys the ordering wavevector Qm = 2π

a [1
4 ,

1
4 ,

1
4 ] (2π

a [1
2 , 0,

1
2 ]

in the perovskite lattice notation). This effectively means that the unit cell
of the nickelate ought to include 4 separate, linearly coordinated Ni octahe-
dral sites: only after the fourth site does the magnetic order repeat itself.
The emergence of this ordering peak can be clearly seen in Fig. 1.12, where
it is marked in the perovskite notation.
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Figure 1.11: The Ni magnetic moment in PrNiO3 as a function of tempera-
ture, with the onset of magnetism clearly visible. Figure from Ref. [4].
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Figure 1.12: The appearance of a new ordering peak in neutron diffraction
data for DyNiO3 as the temperature is lowered past the magnetic transition
temperature TN. Figure from Ref. [9].
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1.6 Magnetic Transition: Mechanisms

At present it is not known what the mechanism of magnetization is in the
nickelates: nor is it known what the alignment of local magnetic moments
is. This state of affairs fuels much of the current interest in the nickelates:
it ranges from attempts to grow larger crystals9 [24] to be able to get at
the order experimentally – say through a scanning-tunneling microscopy
(STM) experiment or inelastic neutron diffraction – to theoretical attempts
to model the nickelates and thus make a prediction for the alignment using
either effective band models, like in this thesis or as Lee et al. for in Ref. [26],
or ab initio methods [1, 2, 19, 25, 39]. There are a variety of propositions as
to how the magnetic order arises, which are separate from the propositions
regarding what the order actually is.

One idea for the appearance of the order is that it is due to an orbital
superlattice, triggered, in turn, by the orthorhombic distortions of the nick-
elates away from perfect perovskite lattice structure [62]. The presence of
this distortion results, potentially, in (very weak) orbital order: but if the
energy splitting introduced by it is comparable to the exchange coupling
between the different orbitals on the same Ni site, a new energy-favourable
configuration becomes available wherein two sublattices with different or-
bital occupancy emerge. Then, given a Ni site, if its neighbour has the
same orbital occupancy, they are antiferromagnetically coupled through the
oxygen 2p bands (superexchange); if it has the opposite orbital occupancy,
then it is preferential for the spins to align ferromagnetically. This scenario
would reproduce the experimentally observable wavevector Qm: locally, it
would result in the magnetic order of type ↑↑↓↓.

Another possibility is, once again, cooperative Jahn-Teller distortions.
The mechanism here would be very similar: orbital order would couple with
magnetic exchange interactions to spontaneously generate two inequivalent
sublattices with AF coupling between same-orbital occupancy neighbours
and FM coupling between opposite-orbital ones. The crucial distinction
here is the origin of the orbital order: it would be assumed due to the
elongation of the Ni octahedra. However, we again reiterate here that no
Jahn-Teller like distortion has been observed for the nickelates.

It would appear that one could disentangle the order generated by the
orbital versus the spin degrees of freedom by studying the neutron scattering
peaks of Ni family members with TMIT > TN: one might hope that the

9The problem is that a variety of different orders, such as ⇑ 0 ⇓ 0 or ⇑⇑⇓⇓ cannot be
distinguished from one another during a neutron diffraction study on a powder.
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1.6. Magnetic Transition: Mechanisms

precursors of orbital order exist already above TN. However, a study with
Sm placed very stringent bounds on the magnitude of these peaks, if they
exist (< 10−4 of the largest peak typically observed in the study).

Clearly, much more work needs to be done to fully understand the char-
acter of the magnetic order and the magnetic transition at low temperature:
that is the main purpose of this thesis.
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Chapter 2

Effective Two-Band Model
for the Rare-Earth Nickelates

All models are wrong, but some
are useful.

George Box (1987)

Now that we have extensively reviewed the status of experimental and
theoretical work to date, especially when it comes to the metal-insulator
transition and the magnetic order, the stage is set for constructing a phe-
nomenological, microscopic tight-binding model for the nickelates. The con-
siderations in the previous chapter should make clear as to what aspects
of the physics ought to be included, and what can be neglected or treated
phenomenologically as a renormalization to the model parameters.

Given that the octahedral twists do not appear to change drastically
across the MIT or the magnetic phase line and thus apparently do not
couple much to the electronic/magnetic degrees of freedom, for simplicity
we take RNiO3 as having a perfect (pseudo)cubic perovskite lattice, with
lattice constant a. In light of the crystal field and formal valence discussions,
we will concentrate on two eg “effective” Ni orbitals for the tight-binding
model, |z〉 ≡ d3z2−r2 , |z〉 ≡ dx2−y2 .

We call the orbitals effective, because we believe that in reality the point-
charge model for the Ni orbital crystal field splitting is incomplete: it omits
any mention of the O 2p bands, or of the holes on the O due to negative
charge transfer. If one believes in the charge disproportionation mechanism
of the MIT, the O bands are assumed inert and thus the simplistic crystal
field treatment described above is essentially accurate: so the eg bands in
the model would really be the eg bands of the Ni.

However, that is not quite so in the negative charge transfer picture.
When considering a single Ni octahedron, the holes on the O are found to be
those linear combinations of the pσ O orbitals that exhibit eg character [32].
This makes sense, as eg-like O orbital combinations are the ones with max-
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Chapter 2. Effective Two-Band Model for the Rare-Earth Nickelates

imum overlap with the Ni eg doublet: they are most likely to hybridize and
donate an electron to the Ni, leaving behind the ligand hole and producing
the 3d8L state in the first place. Hence the ligand hole states can be thought
of as “effective” eg orbitals: the analogy does not fully bear out because such
orbitals would not actually be orthogonal between nearest-neighbour sites
and in fact need to be built up in the Wannier states manner from a variety
of more extended Ni and O states. This could potentially strongly renor-
malize the hopping and interaction parameters as compared to their bare
values. More than that, some recent results suggest that even the make-up
of the bands – i.e. what eg, t2g and other bands are active in the model –
could dynamically respond to things like site occupation and crystal lattice
distortion [63]. We deal with this by letting the model parameters vary and
seeing what states obtain within the larger parameter space.

Now that we settled what the lattice is and what orbitals to include,
we can readily write down all the ingredients of a microscopic tight-binding
model. We will work at zero temperature for simplicity, as we are inter-
ested mostly in the magnetic order that obtains at very low temperatures in
the nickelates. At the same time, we can represent sweeping the nickelate
series by adjustments in the model parameters. Roughly speaking, while
swapping out the rare-earth ion affects the bond angles in the crystal and
so significantly modulates the bandwidth (which is determined by various
nearest-neighbour hopping amplitudes Ti in our model), it does little to
change the on-site Coulomb repulsion. Thus changing the hopping rate can
represent the effect of continuously sweeping through the entire nickelate
series.

As the importance of the lattice has already been established [31, 32, 39,
51], we introduce the lattice semiclassically and couple it to the tight-binding
model via an on-site coupling, with the goal of demonstrating explicitly the
forcing of charge disproportionation by the lattice and to investigate the im-
pact of the lattice on the ground state magnetic order. Finally, we treat the
electron-electron interactions by employing the standard spherically sym-
metric Kanamori Hamiltonian for the case of two bands. Our Hamiltonian
will thus have the general form

Ĥ = T̂ + Ĥe−e + Ĥlatt + Ĥe−latt. (2.1)

We use electronic creation and annihilation operators d†iaσ, diaσ to create
and destroy electrons in an orbital a with spin σ on site i. In what follows,
we build up the Hamiltonian 2.1 piece by piece.
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2.1. Hopping

Figure 2.1: A schematic diagram of the various hoppings included in
the nickelates two-band model. The green arrow corresponds to the first
neighrest neighbour hopping; the yellow to second nearest neighbour hop-
ping; third nearest neighbour hopping, represented by the red arrow, is not
included due to minimal orbital overlap; and fourth nearest neighbour hop-
ping is shown by the purple arrow.

2.1 Hopping

We know from neutron scattering measurements to expect a linearly coor-
dinated 4-site magnetic order in the nickelates It is necessary then to in-
clude first nearest neighbour (with amplitude t1), second-nearest neighbour
(t2) and fourth-nearest neighbour (t4) hopping, where the “nearness” of the
neighbours is indicated in Fig. 2.1 and is purely spatial. The hopping part
of the Hamiltonian reads

T̂ = T̂1 + T̂2 + T̂4. (2.2)

Let us work through these sequentially. We will explicitly write out
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2.1. Hopping

all the hoppings in the various directions: we will use notation like di+x,xσ
where the first x is a vector translating us one lattice constant length along
x to the next Ni site (with respect to the original site, for which we use a
condensed 3-dimensional label i), and the second x is the orbital

∣∣3x2 − r2
〉
,

which is the equivalent of |z〉 =
∣∣3z2 − r2

〉
“polarized” along the x direction,

which allows hopping along x. The reason we have states like
∣∣3x2 − r2

〉
is

because while we have only two true orbitals |z〉 and |z〉, the choice of the
z axis is arbitrary: we could have equally well have chosen x as the z axis
and still would have had an eg member “polarized” along that axis. We can
always write all these orbitals in terms of |z〉 =

∣∣3z2 − r2
〉
, |z̄〉 =

∣∣x2 − y2
〉

by remembering what the decomposition of these orbitals is in terms of (real)
spherical harmonics

|x〉 ≡
∣∣3x2 − r2

〉
= −1

2
|z〉+

√
3

2
|z̄〉 , |y〉 ≡

∣∣3y2 − r2
〉

= −1

2
|z〉 −

√
3

2
|z̄〉 .

(2.3)

2.1.1 1st nearest neighbour hopping

With these orbitals, the nearest neighbour hopping contribution is

T̂1 = −t1
∑
iσ

[
d†izσ (di+z,zσ + di−z,zσ) +d†ixσ (di+x,zσ + di−x,zσ) +

+ d†iyσ (di+y,zσ + di−y,zσ)
]
. (2.4)

Of course, nearest neighbour hopping is not possible for the |z〉 orbital along
the z direction, because these orbitals have no overlap with the ligand O in
that direction. The hopping is possible along the x and y directions, but we
choose to consider the hopping through |z〉 (and |z〉-like orbitals polarized
along different axes) as dominant and so neglect this fact.

This quadratic Hamiltonian can be readily brought to almost diagonal
form (save for the orbital subspace) by Fourier transforming to k basis, using
the prescription

d†kaσ =
∑
i

eikRi

√
N
d†iaσ, (2.5)

where k ranges over the full cubic Brillouin zone −π
a < kη <

π
a , η = x, y, z.
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2.1. Hopping

Using this gives (the details of the calculation are in Appendix A):

T̂1 = −t1
∑
kσ

[
t1zz(k)d†kzσdkzσ + t1z̄z̄(k)d†kzσdkzσ+

+ t1zz̄(k)(d†kzσdkz̄σ + d†kz̄σdkzσ)
]
,

(2.6)

with

t1zz(k) = 2 cos(kza) +
1

2
[cos(kxa) + cos(kya)],

t1z̄z̄(k) =
3

2
[cos(kxa) + cos(kya)], (2.7)

t1zz̄(k) = −
√

3

2
[cos(kxa)− cos(kya)].

2.1.2 4st nearest neighbour hopping

With the T̂1 prescription in our pocket, we can immediately write down the
T̂4 operator. Since the 4th neighbour hopping is through the same orbitals
as the 1st neighbour hopping, the form of the operators is still the same, save
for the displacement vector being 2a · x̂, ŷ, ẑ. Hence the result ought to be
the same as T̂1, except the cosines are now over twice the lattice constant,
cos kxa→ cos 2kxa and so on. Explicitly,

T̂4 = −t4
∑
kσ

[
t4zz(k)d†kzσdkzσ+t4z̄z̄(k)d†kzσdkzσ+

+ t4zz̄(k)(d†kzσdkz̄σ + d†kz̄σdkzσ)
]
, (2.8)

with

t4zz(k) = 2 cos(2kza) +
1

2
[cos(2kxa) + cos(2kya)],

t4z̄z̄(k) =
3

2
[cos(2kxa) + cos(2kya)], (2.9)

t4zz̄(k) = −
√

3

2
[cos(2kxa)− cos(2kya)].

2.1.3 2nd nearest neighbour hopping

This leaves the slightly more complicated 2nd neighbour hopping, where the
hopping proceeds through mixed orbitals along multiple directions at once,
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2.1. Hopping

in one of the three planes xy, yz, zx. Only the origin and destination matter
for the hopping: we catalog the hopping contributions in terms of them.
There are 12 possible destinations, 4 in each of the principal planes. In
general the hopping term will look like this

T̂2 = −t2
∑

iabσ,τ̂ 6=µ̂
d†i+τ̂+µ̂,aσdibσ + h.c., (2.10)

with τ̂ , µ̂ ranging over ±a · x̂, ŷ, ẑ. However, notice that during such a hop
the electron always ends up in an orbital that is different from the one it
started in. For instance, hopping x̂+ ŷ forces the orbital to go either x→ y
or y → x, depending on what orbital the electron started in (the orbital
will change “virtually”, while the electron hops through a virtual site, but
the absence of any overlap between |z〉 and |z〉 does not allow orbitals to
change on real sites). Let us adopt the convention that in the site indices,
order matters: in other words, if we have an index i + x̂ + ŷ, that means
we first hop along x̂ and then along ŷ. Then it is clear that the starting
orbital index b will be the same as the first hop displacement τ̂ – after all,
if an electron starts in the y orbital, it can only (initially!) hop along y.
This allows us to set b = τ and a = µ. After that, it is a matter of carefully
Fourier transforming all the 12 hopping destinations. The final result is (the
details are in Appendix A)

T̂2 = −2t2
∑
kσ

[
t2zz(k)d†kzσdkzσ+t2z̄z̄(k)d†kz̄σdkz̄σ+

+ t2zz̄(k)(d†kzσdkz̄σ + d†kz̄σdkzσ)
]
, (2.11)

with

t2zz(k) = 2 cos(kxa) cos(kya)− 2 cos(kza)(cos(kya) + cos(kxa)),

t2zz̄(k) =
√

3 cos(kza)(cos(kxa)− cos(kya)), (2.12)

t2z̄z̄(k) = −3 cos(kxa) cos(kya).

All of the different hopping contributions can be combined to give the
usual form for T̂

T̂ =
∑
kabσ

tab(k)d†kaσdkbσ, (2.13)

The coefficients can be found at the end of Appendix A.
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2.2. Lattice contributions

2.2 Lattice contributions

Let Uj be a distortion parameter characterizing the structural distortion at
site j. At the semiclassical level, where in addition the phonon modes of the
material are assumed to be incredibly heavy, the dynamical (momentum)
contribution to the phonon energy can be neglected, and the lattice energy
is primarily determined by the distortion parameter Uj . In accordance with
experimental data described in an earlier section, it appears entirely justified
to treat the main contribution to the lattice energy as that coming from an
isotropic breathing-mode distortion mode R+

1 (for a depiction of the mode
see again Fig. 1.5). Specifically, the Ni octahedra are assumed to expand-
contract in a checkerboard-like (also called breathing-mode like, also called
rocksalt like) pattern, with the expansion/contraction isotropic and roughly
equal in magnitude (opposite in sign). Thus the distortion parameter Uj is
a simple scalar, and its energy can be written

Hlatt =
∑
j

(
k

2
U2
j +

A

4
U4
j

)
. (2.14)

where for greater generality the anharmonic terms U4
j have been included.

For convenience, re-scale the distortion magnitude to extract the lattice cou-
pling energy scale by non-dimensionalizing the lattice distortion parameter
uj = kUj/g: this results in

Hlatt = εb
∑
j

(
1

2
u2
j +

α

4
u4
j

)
, εb = g2/2k, α = Ag2/2k3. (2.15)

So long as the value of the distortion is known, the contribution to the
energy can be readily evaluated with this expression.

2.3 Electron-electron interactions

As there are assumed to be two degenerate bands in the eg manifold, there
are markedly more options for electron-electron processes spurred on by the
Coulomb interaction than there are in a single-band Hubbard model. Inter-
action models of this kind have been studied previously: the generalization
to two bands is called the Kanamori [64–66] (sometimes Slater-Kanamori

30



2.4. Electron-lattice interaction

[19]) Hamiltonian, with the general form

HU = U
∑
iα

n̂iα↑n̂iα↓ + U ′
∑
iσ

n̂izσn̂iz̄σ̄+ (2.16)

+ (U ′ − J)
∑
iσ

n̂izσn̂iz̄σ − J
∑
iσ

d†izσdizσ̄d
†
iz̄σ̄diz̄σ+ (2.17)

+ J
∑
ia

d†ia↑diā↑d
†
ia↓diā↓. (2.18)

The derivation of this interaction is beyond the scope of this thesis: inter-
ested readers may be directed to [67]. Here we merely outline an intuitive
understanding of its behaviour. The first two terms should be familiar: they
are merely the usual Hubbard-like density-density interaction terms. The
presence of J signifies Hund’s exchange interaction that arises in the pres-
ence of more than one orbital, reflecting the varying cost of occupying the
two orbitals with various spin orientations. A useful heuristic is Hund’s rule,
which states that in the absence of other energy splitting, Hund’s J prefers
to order the electrons by maximizing the total spin on the ion: thus in the
case of two degenerate orbitals, the preferred configuration for two electrons
would be the triplet, not the singlet. Hund’s rule is a heuristic: if it was
followed to the letter in this situation, it would actually “prefer” the config-
uration with truly maximum spin, namely t52ge

2
g, which has three unpaired

spin up electrons and thus spin S = 3
2 . The magnitude of J essentially signi-

fies how “strongly” the rule is followed: thus in this paper we do not consider
very large values of J , as that would invalidate the two-band premise and
we would have to include the full t2g manifold into the calculation.

The last two terms are somewhat more exotic: they represent the si-
multaneous spin-flip and the pair hopping processes. Notice that we will
make the spherically symmetric choice U ′ = U − 2J and neglect the sym-
metry reduction due to crystal fields: this is standard procedure [60]. In
this construction the values of U and J should still be thought of as phe-
nomenological parameters, instead of the proper Coulomb atomic matrix
elements.

2.4 Electron-lattice interaction

Now comes the crucial piece: an interaction between the electrons and the
crystal lattice distortions. The collapsed or expanded octahedra should af-
fect an electron’s affinity to occupy a given site: coupling the electronic

31



2.5. Final form of the Hamiltonian Ĥ

density to the on-site distortion, we obtain the electron-phonon interaction
term

Ĥe−latt = −g
∑
i

Ui (n̂i − 1) . (2.19)

Again applying the prescription ui = kUi/g, we obtain the final form

Ĥe−latt = −2εb
∑
i

ui(n̂i − 1). (2.20)

Notice that in this picture the electron-lattice interactions are assumed the
same for the two orbitals |z〉 , |z̄〉: this is because we assume that the only
active lattice distortion mode is the breathing-mode, which interacts in the
same way with both the orbitals. We thus implicitly assume that none of
the other modes (like Jahn-Teller distortion) are active. We feel justified in
this assumption given that there appears to be no experimental evidence of
Jahn-Teller distortions, as discussed in the introduction in Ch. 1.

2.5 Final form of the Hamiltonian Ĥ

Now that the stage is set and the model is fully defined, we have the following
Hamiltonian for the rare-earth nickelates

Ĥ =
∑
kabσ

tab(k)d†kaσdkbσ + εb
∑
j

(
1

2
u2
j +

α

4
u4
j

)
− 2εb

∑
i

ui(n̂i − 1)+

+ U
∑
iα

n̂iα↑n̂iα↓ + U ′
∑
iσ

n̂izσn̂iz̄σ̄ + (U ′ − J)
∑
iσ

n̂izσn̂iz̄σ− (2.21)

− J
∑
iσ

d†izσdizσ̄d
†
iz̄σ̄diz̄σ + γJ

∑
ia

d†ia↑diā↑d
†
ia↓diā↓.

All in all there are 7 parameters characterizing this Hamiltonian: the three
hoppings t1, t2, t4, buried inside the coefficients tab(k); the on-site Coulomb
repulsion U and Hund’s exchange J ; the breathing-mode distortion energy
εb and the dimensionless anharmonicity α.

Next, we perform a Hartree-Fock calculation on this Hamiltonian. One
obvious difficulty we will face is that it is easiest to treat the hopping part in
Fourier space, but it is simplest to treat the electron-electron (and electron-
lattice) interactions in real space. Fortunately, there is a trick that can help
us make use of both simplifications at once.
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Chapter 3

Hartree-Fock Approximation
for Rare-Earth Nickelates

The most important part of
doing physics is the skill to
neglect.

Lev Landau

We attack the Hamiltonian in 2.1 with the unrestricted Hartree-Fock
approximation (i.e. the mean-field approach – in this thesis we will often
use the terms interchangeably). It is unrestricted because we are allowing
the spin occupancy to be independent of the orbital occupancy, and not
demanding that for every occupied single-particle state that its spin-reversed
partner is also occupied. The ground state wavefunction is assumed to split

|Ψ〉 = |Ψe〉 ⊗ |Φlatt{u}〉 , (3.1)

with a Slater determinant |Ψe〉 for the electronic part and a semiclassical
distortion |Φlatt{u}〉 for the lattice, which is a function of all the distortions
{uj}. The electronic part is complicated and will produce many mean-field
parameters (e.g. charge disproportionation δ =

∑
aσ〈niaσ−ni−1,aσ〉, orbital

order
∑

σ〈nizσ − niz̄σ〉, spin density 〈Si〉 and so on), while the lattice part
only depends on the distortions uj . To find the Hartree-Fock ground state,
we will derive the self-consistency equations, obtained by minimizing the
total energy

E = 〈Ψ| Ĥ |Ψ〉 , (3.2)

with respect to the mean-field parameters.

3.1 Minimizing lattice contributions

First, we minimize the energy with respect to the lattice distortions ui. In
principle, a straightforward and foolproof approach is to compute the energy
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3.1. Minimizing lattice contributions

as a function of ui and do a simple (or not so simple) parameter sweep to
find the lowest energy (and thus determine the ground state). However,
this turns out to be an arduous and time-consuming process: luckily it
is simplified significantly with the aid of the Hellmann-Feynman theorem
[68, 69], which allows us to pass the derivative inside the expectation value
during minimization

∂

∂uj
〈Φlatt(ui)| 〈Ψe|H |Ψe〉 |Φlatt(ui)〉 = (3.3)

= 〈Φlatt(ui)| 〈Ψe|
∂H

∂uj
|Ψe〉 |Φlatt(ui)〉 , (3.4)

despite the fact that |Ψe〉 |Φlatt(ui)〉 is generally not an eigenstate of Ĥ (as
it needs to be for the usual proof [70] of the theorem to apply). In fact,
there is a generalization of the theorem to any kind of variational state, not
merely an eigenstate [71]. Consider the energy functional

ET [Ψ{u}, {u}] = 〈Ψ{u}| Ĥ{u} |Ψ{u}〉 .

By definition, |Ψe〉 |Φlatt{u}〉 is a stationary point of the functional with
respect to a variation δΨ{u}, i.e. |Ψe〉 |Φlatt{u}〉 is the solution to

δET
δΨ{u}

= 0.

On the other hand, taking a total u derivative of ET ,

d

du
ET (Ψ{u}, {u}) =

∂ET
∂{u}

+
δET
δΨ{u}

∂Ψ{u}
∂{u}

=
∂ET
∂{u}

,

we see that the Hellman-Feynman result still holds, thanks to the station-
arity of the variational state. (In our calculation, we also checked this nu-
merically, by comparing the results of Hellmann-Feynman calculation with
explicit minimization with respect to u.)

Utilizing the Hellmann-Feynman theorem, we minimize with respect to
ui

∑
i

〈Ψe| 〈Φ|
∂

∂uj
2εb

(
1

2
u2
i +

a

4
u4
i − ui (n̂i − 1)

)
|Φ〉 |Ψe〉 =

= 2εb[uj + au3
j − 〈n̂j〉Ψe − 1] = 0,
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3.1. Minimizing lattice contributions

where we defined 〈Ψe| Ô |Ψe〉 ≡ 〈Ô〉Ψe . This gives us our first self-consistency
equation

uj + au3
j + 1 = 〈nj〉Ψe . (3.5)

Careful neutron scattering measurements from multiple groups suggest
that the lattice distortions are isotropic, and alternate between the octahe-
dra along all three crystallographic axes. Moreover, the collapse magnitude
u of one octahedra is exactly equal to the expansion of another. Therefore
we adopt the ansatz uj = ueiQc·Rj , where Qc = (2π/a)(1

2 ,
1
2 ,

1
2) is the order-

ing wavevector corresponding to a breathing-mode distortion. Let us also
choose to represent the charge disproportionation behaviour with a param-
eter δ, so that 〈n̂j〉 = 1 + δeiQc·Rj (charge disproportionation follows the
same ordering wavevector as the lattice distortion — this will be discussed
in much more detail in Sec. 3.3). The equation above then reduces to a
depressed cubic equation

u+ au3 = δ, (3.6)

which, interestingly, admits a closed-form solution (see Appendix B for de-
tails):

u = δ
3

2β
1
3

[
(1 +

√
1 +

1

β
)

1
3 + (1−

√
1 +

1

β
)

1
3

]
, (3.7)

with β = 27
4 aδ

2. In other words, in our model the lattice distortion is inher-
ently linked to charge disproportionation, just as observed in experiments (of
course, this was already clear in the general Eq. 3.5, before any assumptions
about the specific type of lattice/charge order). This is helpful: it allows us
to eliminate any u dependence in the Hartree-Fock equations, leaving only
dependence on the electronic mean-fields and thus reducing the problem to
a purely electronic one.

It is important to note that whilst the argument above establishes the
validity of a Hellman-Feynman like result for any variational stationary state
of the energy functional, in reality there can be small discrepancies arising
due to round-off and other errors inherent to any numerical implementation
of the calculation [71]. The “stationary state” thus obtained will not be
exactly the true stationary state and thus in principle the theorem does not
apply. However, assuming the errors can be made sufficiently small, the
theorem should still apply within the error margins: and our calculations
confirm this, showing that there is no difference (other than speed) between
relying on this extended Hellmann-Feynman result and doing the foolproof
parameter sweep.
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3.2. Minimizing electronic contributions

3.2 Minimizing electronic contributions

We now derive the self-consistency equations for the electronic degrees of
freedom. Assume, as usual in the unrestricted Hartree-Fock approximation
[72], that the true ground state is a Slater determinant of some (so far

unknown) states with creation operators a†p

|Ψe〉 =
∏
p

a†p |0〉 , (3.8)

with the new states being related to the original d†iaσ by a unitary transfor-
mation

d†iaσ =
∑
n

φ∗n(iaσ)a†n. (3.9)

This is the first assumption of mean-field (or Hartree-Fock) theory. The goal
is to determine this unitary transformation, by calculating the energy in this
state and subsequently minimizing it with respect to the variational (mean-

field) parameters φn(iaσ) (equivalently, expectation values 〈d†iaσdjbτ 〉Ψe).
The Hlatt term has no electron operators and vanishes during minimiza-

tion. The electron-phonon term Ĥe−latt immediately yields

〈Ψe| Ĥe−latt |Ψe〉 = 〈Ψe| − 2εb
∑
i

ui(n̂i − 1) |Ψe〉 =

= −2εb
∑
i

ui

[∑
paσ

φ∗p(iaσ)φp(iaσ)− 1

]
. (3.10)

The hopping term T̂ produces, in real space

〈T̂ 〉Ψe =
∑
p

∑
ijabσ

tabij φ
∗
p(iaσ)φp(jbσ). (3.11)

Finally, consider the Kanamori interaction operator Ĥe. As this is a four-
operator interaction and the state |Ψe〉 is a Slater determinant, to evaluate
the expectation value we can use Wick’s theorem [73]. In short, it says that
whenever we have an expectation value with respect to a Slater determi-
nant of an even number of creation/annihilation operators (say 〈d†↑d↑d

†
↓d↓〉),

the result is a sum of products of all possible pairwise expectation val-
ues (called contractions), with the sign reflecting the number of permu-
tations of the operators that are required to attain that given order (so
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3.2. Minimizing electronic contributions

〈d†↑d↑d
†
↓d↓〉 = 〈d†↑d↑〉〈d

†
↓d↓〉 − 〈d

†
↑d↓〉〈d

†
↓d↑〉). In principle even contractions

like 〈d†↑d
†
↓〉 could be allowed for a state more complex than a Slater deter-

minant: this expectation value would be nonzero if the ground state against
which this expectation value was taken would allow two-electron excitations
(for example, this expectation value would be nonzero for the BCS state,
if we were trying to construct a model for superconductivity [74]). In our
case, since we assume a normal state for the electrons, we automatically drop
such terms from the Wick expansion. Using this technique on the Kanamori
Hamiltonian immediately leads to

〈Ĥe〉Ψe =U
∑
ia

[
〈d†ia↑dia↑〉〈d

†
ia↓dia↓〉 − 〈d

†
ia↑dia↓〉〈d

†
ia↓dia↑〉〉

]
+

+ U ′
∑
iσ

[
〈d†izσdizσ〉〈d

†
iz̄σ̄diz̄σ̄〉 − 〈d

†
izσdiz̄σ̄〉〈d

†
iz̄σ̄dizσ〉

]
+

+ (U ′ − J)
∑
iσ

[
〈d†izσdizσ〉〈d

†
iz̄σdiz̄σ〉 − 〈d

†
izσdiz̄σ〉〈d

†
iz̄σdizσ〉

]
−

− J
∑
iσ

[
〈d†izσdizσ̄〉〈d

†
iz̄σ̄diz̄σ〉 − 〈d

†
izσdiz̄σ〉〈d

†
iz̄σ̄dizσ̄〉

]
+

+ γJ
∑
ia

[
〈d†ia↑diā↑〉〈d

†
ia↓diā↓〉 − 〈d

†
ia↑diā↓〉〈d

†
ia↓diā↑〉

]
. (3.12)

Since all interactions are on-site, there will be no matrix elements 〈d†iaσdjbτ 〉
for i 6= j. With this, the full set of unrestricted Hartree-Fock equations
may be obtained by varying the energy E = 〈T̂ + Ĥe + Hlatt + Ĥe−latt〉
with respect to the amplitudes φ∗p(iaσ), together with the constraint that
the set φp(iaσ) are normalized amplitudes. Mathematically, that last part
means 1 =

∑
iaσ φ

∗
p(iaσ)φp(iaσ) for all p. This constraint can be accom-

plished by what is essentially a Lagrange multiplier technique: simply add
the (constant) term

∑
liaσ Elφ

∗
l (iaσ)φl(iaσ) to the Hamiltonian,

H̃ = Ĥ −
∑
liaσ

Elφ
∗
l (iaσ)φl(iaσ), (3.13)

where El is the Lagrange multiplier, one for every set of amplitudes φl (and,
simultaneously, the Hartree-Fock energy of that state). The normalization
condition of φ can be recovered from the total expression in the usual way
– by differentiating with respect to the Lagrange multiplier and setting the
result equal to zero

∂

∂Ep
H̃ = 1−

∑
iaσ

φ∗p(iaσ)φp(iaσ) = 0.
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3.2. Minimizing electronic contributions

At the same time, varying H̃ with respect to the amplitudes φ gives the
equations which determine these amplitudes, subject to the constraint that
they are normalized:

Epφp(iaσ) =
δ

δφ∗p(iaσ)
〈Ĥ〉. (3.14)

These are the celebrated Hartree-Fock equations. We derive them step by
step.

First, noticing that 〈d†iaσdjbσ′〉 =
∑

p φ
∗
p(iaσ)φp(jbσ

′), a key identity may
be obtained that simplifies the variation considerably (especially for the
Kanamori term)

δ

δφ∗p(lcτ)

∑
ijabσσ′

〈d†iaσdjbσ′〉 =
∑

ijabσσ′

δlcτ,iaσφp(jbσ
′), (3.15)

where δlcτ,iaσ is the Kronecker delta function which is zero unless l = i, c =
a, τ = σ, in which case it is 1. Using this identity, we calculate the variation
term by term. Varying the hopping term we immediately obtain

δ

δφ∗p(iaσ)

(∑
s

∑
ljcbτ

tcbljφ
∗
s(lcτ)φs(jbτ)

)
=
∑
jb

tabij φp(jbσ). (3.16)

Varying the Ee−latt,

δ

δφ∗p(iaσ)

(
− 2εb

∑
j

uj

[∑
lbτ

φ∗l (jbτ)φl(jbτ)− 1

])
= −2εbuiφp(iaσ).

(3.17)

Finally, tackle varying the Kanamori contribution, term by term, using the
identity 3.15:

first term of 〈Ĥ〉 −→ δ

δφ∗p(iaσ)

(
U
∑
jb

[
〈d†jb↑djb↑〉〈d

†
jb↓djb↓〉 − 〈d

†
jb↑djb↓〉×

× 〈d†jb↓djb↑〉
])

= U(φp(ia ↑)δσ,↑〈d†ia↓dia↓〉+ φp(ia ↓)δσ,↓〈d†ia↑dia↑〉−

− φp(ia ↓)δσ,↑〈d†ia↓dia↑〉 − φp(ia ↑)δσ,↓〈d
†
ia↑dia↓〉) =

= U(φp(iaσ)〈d†iaσ̄diaσ̄〉 − φp(iaσ̄)〈d†iaσ̄diaσ〉). (3.18)

In the last line we made the replacements of the type φp(ia ↑)δσ,↑〈d†ia↓dia↓〉 →
φp(iaσ)〈d†iaσ̄diaσ̄〉. These are valid because only one of every pair of terms
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3.2. Minimizing electronic contributions

in the second line is nonzero for a given σ: and for that nonzero term, the
spins can be deduced relative to the original spin σ.

Using the same tricks, the variations of the other terms can be evaluated:

second term of 〈Ĥ〉 −→ δ

δφ∗p(iaσ)

(
U ′
∑
jσ′

[
〈d†jzσ′djzσ′〉〈d

†
jz̄σ̄′djz̄σ̄′〉−

− 〈d†jzσ′djz̄σ̄′〉〈d
†
jz̄σ̄′djzσ′〉

])
= U ′(φp(iaσ)〈d†iāσ̄diāσ̄〉 − φp(iāσ̄)〈d†iāσ̄diaσ〉),

(3.19)

third term of 〈Ĥ〉 −→ δ

δφ∗p(iaσ)

(
(U ′ − J)

∑
jσ′

[
〈d†jzσ′djzσ′〉〈d

†
jz̄σ′diz̄σ〉−

− 〈d†izσdiz̄σ〉〈d
†
jz̄σ′djzσ′〉

])
= (U ′ − J)(φp(iaσ)〈d†iāσdiāσ〉−

− φp(iāσ)〈d†iāσdiaσ〉). (3.20)

The simultaneous spin-flip term results in

fourth term of 〈Ĥ〉 −→ δ

δφ∗p(iaσ)

(
− J

∑
jσ′

[
〈d†jzσ′djzσ̄′〉〈d

†
jz̄σ̄′djz̄σ′〉−

− 〈d†jzσ′djz̄σ′〉〈d
†
jz̄σ̄′djzσ̄′〉

])
= −J(φp(iaσ̄)〈d†iāσ̄diāσ〉 − φp(iāσ)〈d†iāσ̄diaσ̄〉).

(3.21)

Finally, the pair-hopping process gives

fifth term of 〈Ĥ〉 −→ δ

δφ∗p(iaσ)

(
γJ
∑
jb

[
〈d†jb↑djb̄↑〉〈d

†
jb↓djb̄↓〉−

− 〈d†jb↑djb̄↓〉〈d
†
jb↓djb̄↑〉

])
= γJ(φp(iāσ)〈d†iaσ̄diāσ̄〉 − φp(iāσ̄)〈d†iaσ̄diāσ〉).

(3.22)
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3.3. Mean-Field Parameters

Combining these variations, we obtain the Hartree-Fock equations

Epφp(iaσ) =
∑
jb

tabij φp(jbσ) +
[
− 2εbui + U〈d†iaσ̄diaσ̄〉+ U ′〈d†iāσ̄diāσ̄〉+

+ (U ′ − J)〈d†iāσdiāσ〉
]
φp(iaσ) +

[
− U〈d†iaσ̄diaσ〉−

− J〈d†iāσ̄diāσ〉
]
φp(iaσ̄) +

[
(U ′ − J)〈d†iāσdiaσ〉+

+ J〈d†iāσ̄diaσ̄〉+ γJ〈d†iaσ̄diāσ̄〉
]
φp(iāσ)+

+
[
U ′〈d†iāσ̄diaσ〉+ γJ〈d†iaσ̄diāσ〉

]
φp(iāσ̄). (3.23)

This is clearly a nonlinear eigenvalue problem, as we have terms of order
φ and of order φ3 on the right-hand side of the equation. The easiest (and
often only) way to solve it is by iteration. Given an initial guess for the mean-

field parameters w(0) = {〈d†iaσdibτ 〉}, this set of equations can be solved for
the Hartree-Fock energies Ep and the amplitudes (eigenstates) φp(iaσ). In
turn, the energies can be used to determine which “states” φp(iaσ) are
occupied (remember that since our calculation is done at zero energy, there
is a well-defined Fermi level). At zero energy this is determined by filling:
in our case, there is one electron per Ni site, which corresponds to quarter-
filling (2 orbitals and 2 spins per orbital = 4 states, 1 electron). The bottom
quarter of all the states is then considered occupied: from these occupied
states, the mean-field parameters v(0) = {〈d†iaσdibτ 〉′} can be re-calculated
and compared to the initial guesses for these parameters. If the two do not
agree (to within some pre-specified margin of error), the newly calculated
parameters become guesses for the next iteration step, w(1) = v0. This
process is then repeated until convergence.

3.3 Mean-Field Parameters

Of course, the (infinite-dimensional) set of mean-field parameters 〈d†iaσdibτ 〉
is too general and needs to be specialized to the problem at hand. This
is where the second mean-field assumption comes in: we will assume that
the set of relevant parameters can be truncated past a particular value of
i. Specifically, we assume that only the parameters within a periodically
repeating unit cell are non-trivial. The particular choice of this periodic
structure is motivated by phase phenomena experimentally found in rare-
earth nickelates: charge disproportionation, (potential for) orbital order,
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3.3. Mean-Field Parameters

and the various magnetic possibilities, from ferromagnetism to exotic non-
collinear 4-site orders. Given the ordering wavevectors for these behaviours
(Qc and Qm, respectively), we conclude that (one choice for) the unit cell
is a 4-site linearly-coordinated one. Thus only mean-field parameters from
i = (i, j, k) to i+ 4x̂ = (i+ 4, j, k) should matter: the rest of the mean-field
parameters can be obtained by translation of the unit cell by the primitive
lattice vectors.

However, it is not clear a priori what starting guesses for the mean-field
parameters 〈d†iaσdibτ 〉 are appropriate: we do not have any intuition as to
what values of these matrix elements would correspond to particular kinds
of actual charge/lattice/magnetic orders. Instead, it would be useful if we
had some combinations of these mean-fields (let us call the combinations
order parameters), which would readily signal the presence or absence of
a particular order.

Consider, for example, the phenomenon of charge order, with a 3D
checkerboard pattern represented by the ordering wavevector

Qc =
2π

a

(
1

2
,
1

2
,
1

2

)
.

The average charge at site i is 〈n̂i〉 =
∑

aσ〈d
†
iaσdiaσ〉: suppose there is a dif-

ference δ between neighbouring sites in all three crystallographic directions,
namely

〈n̂(i,j,k)〉 − 〈n̂(i,j,k)+η〉 = δ, η ∈ {x̂, ŷ, ẑ}. (3.24)

A shorthand way of writing this is by using the ordering wavevector: set

〈n̂i〉 = 1 + δeiQc·Ri = 1 + δeiπ(i+j+k), Qc =
2π

a

(
1

2
,
1

2
,
1

2

)
. (3.25)

It is clear from this expression that on each alternate site along the three
crystallographic axes, the magnitude of the on-site charge will be either
enhanced (if the integer in the exponent is even) or reduced (if it is odd)
by the same factor of δ. Thus a δ 6= 0 readily indicates the presence of
(rocksalt-type) charge order. On the other hand, as we just said above, the
on-site average electron density is the sum of the densities in the respective
orbital and spin states

〈n̂i〉 =
∑
aσ

〈d†iaσdiaσ〉. (3.26)
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3.3. Mean-Field Parameters

So one order parameter δ wraps into itself a variety of different matrix
elements 〈d†iaσdibτ 〉, while simultaneously being a signature of a given phase:
it then appears more prudent to search for such order parameters than to
randomly guess values for the

[×2(orbitals)×2(spins)](states) choose 2 (each matrix element

includes two states) −→ 6
times 4, as there are 4 unique sites−−−−−−−−−−−−−−−−−−−−−→ 24

different allowed matrix elements.
Given that no experimental signatures of orbital order have been ob-

served to date in the nickelates, a reasonable assumption to make is that at
least the average occupancy of the original orbitals |z〉 , |z̄〉 is the same,

〈n̂iz〉 = 〈n̂iz̄〉. (3.27)

This does not entirely preclude the possibility of orbital order, which could
still occur due to nonzero cross-orbital matrix elements 〈d†iaσdiāτ 〉. (Much

like the cross-spin matrix elements 〈d†iaσdibσ̄〉 correspond to spin order off-
the-axis, namely along the x or y axis instead of the z, cross-orbital matrix
elements would result in orbital order across some combination of the orbital
orbitals |z〉 , |z̄〉.) Combined with the expression that defined δ in eq: 3.26,
the assumption of equal a priori orbital occupancy means

〈d†ia↑dia↑〉+ 〈d†ia↓dia↓〉 =
1

2

[
1 + δeiQc·Ri

]
. (3.28)

To proceed further, we need to consider the average spin on site i, 〈Si〉 =∑
aττ ′〈d

†
iaτ

σττ ′
2 diaτ ′〉 (σττ ′ is the vector of Pauli matrices). Applying the

same sort of thinking, we write down an ansatz for the average spin per site
based on the possible magnetic orders

〈Si〉 = SFMẑ + SAFMe
iQc·Ri ẑ + S1 cos(Qm ·Ri) + S2 sin(Qm ·Ri). (3.29)

The ferromagnetic and antiferromagnetic orders should be self-explanatory.
The last two terms are the ones that produce the possibility of a 4-site
magnetic order: this is because the “period” of the cosine or a sine with the
wavevector Qm is going to be 4 sites. For instance, a cosine will evaluate
to 0, then 1, then 0, then -1: supposing that S1 = (0, 0, S1z), the resulting
magnetic pattern would be ↑ 0 ↓ 0, precisely one of the contenders for the
ground state suggested in the literature. The sine term, on the other hand,
is offset by one lattice site: an equivalent setup for the sine term would

42



3.3. Mean-Field Parameters

result in the magnetic pattern being 0 ↑ 0 ↓. Thus when put together, they
can produce another candidate, ↑↑↓↓. Finally, picking S1 = (0, 0, S1z) and
S2 = (S2x, 0, 0) would produce the non-collinear order ↑→↓←.

Once again we will resort to experiment and assume equal orbital occupa-
tion of the original orbitals |z〉 , |z̄〉. We also assume that the magnetic order
vectors S1/2 = (S1/2x, 0, S1/2z) can only have nonzero x and z components,
so that there are only two independent axes involved in the noncollinear
order. Unpacking the expression for the average spin density in terms of
Pauli matrices 〈Si〉 =

∑
aττ ′〈d

†
iaτ

σττ ′
2 diaτ ′〉 for the particular axes we find

1

2

[
〈d†ia↑dia↑〉 − 〈d

†
ia↓dia↓〉

]
=

1

2

[
SFM + SAFMe

iQc·Ri+

+ S1z cos(Qm ·Ri) + S2z sin(Qm ·Ri)
]
,

(3.30)

1

2

[
〈d†ia↑dia↓〉+ 〈d†ia↓dia↑〉

]
=

1

2
[S1x cos(Qm ·Ri) + S2x sin(Qm ·Ri)] .

(3.31)

The y axis calculation yields an identity

− i
2

[
〈d†ia↑dia↓〉 − 〈d

†
ia↓dia↑〉

]
= 0, (3.32)

due to our assumption of only 2 independent non-collinear axes. Thus
〈d†ia↑dia↓〉 = 〈d†ia↓dia↑〉. Combining these results with the previous insights
about δ, we can write a general form for the direct and cross-spin matrix ele-
ments 〈d†iaσdiaσ〉, 〈d

†
iaσdiaσ̄〉, with both spin-dependent and spin-independent

parts, as follows

〈d†iaσd
†
iaσ〉 =

1

4

[
1 + δeiQc·Ri

]
+
σ

2

[
SFM + SAFMe

iQc·Ri+

+ S1z cos(Qm ·Ri) + S2z sin(Qm ·Ri)
]
,

(3.33)

〈d†iaσd
†
iaσ̄〉 =

1

2
[S1x cos(Qm ·Ri) + S2x sin(Qm ·Ri)] . (3.34)

In a very similar manner, directly by analogy we establish the mean-field
order parameters for the orbital order, that arises from the cross-orbital
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3.4. Energy of the Hartree-Fock ground state

matrix elements 〈d†iaσd
†
iāσ〉. Altogether, we have the following definitions

〈d†iaσd
†
iaσ〉 =

1

4

[
1 + δeiQc·Ri

]
+
σ

2

[
SFM + SAFMe

iQc·Ri+

+ S1z cos(Qm ·Ri) + S2z sin(Qm ·Ri)
]
,

〈d†iaσd
†
iaσ̄〉 =

1

2
[S1x cos(Qm ·Ri) + S2x sin(Qm ·Ri)] ,

〈d†iaσd
†
iāσ〉 =O1 +O2e

iQc·Ri + σ
[
Z1 + Z2e

iQc·Ri+

+ Z3 cos(Qm ·Ri) + Z4 sin(Qm ·Ri)
]
,

〈d†iaσd
†
iāσ̄〉 =X1 cos(Qm ·Ri) +X2 sin(Qm ·Ri). (3.35)

The parameters thus defined transparently allow for the presence of different
kinds of ordering. For instance, if SAFM = 1 and the other S are identically
zero, that corresponds directly to antiferromagnetic ordering

〈Szi 〉 =
∑
a

〈d†ia↑dia↑ − d
†
ia↓dia↓〉 = SFM + SAFMe

iQc·Ri+

+ S1z cos(Qm ·Ri) + S2z sin(Qm ·Ri) = SAFMe
iQc·Ri ∼ SAFM(↑↓↑↓).

In the last line, and throughout this thesis we frequently use this arrow
notation to refer to the magnetic order that obtains in the lattice, by simply
writing down the arrows for the spin alignment within a single 4-site linearly-
coordinated unit cell. Notice that there are only 15 free parameters here
(16 when counting the lattice distortion u, which however is fixed by δ),
as opposed to the 24 matrix elements we started with: this is due to the
assumptions we made when defining the possible order parameters based on
what could be expected to be seen from experiment.

The various suggested guesses for the magnetic order can be obtained as
follows: the ⇑ 0 ⇓ 0 obtains if δ > 0 and S1z > 0, while all others are zero.
The sublattice-symmetric collinear order ↑↑↓↓ obtains if S1z = S2z 6= 0.
Finally, a non-collinear state ↑→↓← can be obtained if S1z = S2x 6= 0.

3.4 Energy of the Hartree-Fock ground state

In general, multiple solutions can be found to 3.23 for any given set of pa-
rameters t1, t2, t4, U, J etc.. To identify the true ground state, it is necessary
to calculate the total energy of each of the solutions, then pick the state
with the lowest energy. As the Hartree-Fock approximation is a variational
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3.4. Energy of the Hartree-Fock ground state

approximation, such a solution will be an upper-bound on the true ground
state energy of the model. The ground state energy per site of a trial state
|Ψe〉 is given by

EGS
N

=
1

N
〈Ψe| T̂ + Ĥe + Ĥe−latt +Hlatt |Ψe〉 . (3.36)

It is immediately clear that there is a problem10. The definitions of the
order parameters w = δ, SFM, ... rely on the single-site (localized) matrix

elements 〈d†iaσdibτ 〉: thus it is best to evaluate the interaction contribution to

the energy 〈Ĥe + Ĥe−latt〉 in the localized, site-centered single-particle basis
|iaσ〉. Meanwhile the hopping energy 〈T̂ 〉 is best expressed in the extended

Bloch state basis |kaσ〉 =
∑

i
eik·Ri√

N
|iaσ〉. To circumvent the need to convert

either of the energy contributions to a cumbersome representation, we resort
to a trick that allows us to re-express the hopping average 〈T̂ 〉 in terms of the
Hartree-Fock energies Ep and thus eliminate it from the energy expression
entirely. Multiplying on the left by φ∗p(iaσ) in the Hartree-Fock equations
3.23 and summing over i, we find∑

p

φ∗p(iaσ)
δ

δφ∗p(iaσ)
〈Ĥ〉 =

∑
p

φ∗p(iaσ)Epφp(iaσ) =
∑
p

Ep. (3.37)

Generally speaking, in terms of the amplitudes φp(iaσ) any energy functional
E[φp] with at most quartic interactions may be written

E = C+
∑
pq

∑
ijabσ

tabij φ
∗
p(iaσ)φq(jbσ)+

+
∑
pqrs

∑
ijkl,abcd,σσ′

gabcdijkl (σ, σ′)φ∗p(iaσ)φ∗q(jbσ)φr(kcσ
′)φs(ldσ

′).

(3.38)

Plugging this ansatz into Eq. 3.37, we notice that whatever the variational
derivative extracts in terms of the φp amplitude factors, the subsequent
multiplication puts right back in. So the left-hand side essentially yields
the energy, except that each term in the average is multiplied by a prefactor
based on the power of φ∗p in that term (remember that in this variation φ and
φ∗ are treated as separate dynamical variables, as is standard in variational
calculations involving complex variables). Thus the hopping term 〈T̂ 〉 does

10one inherent to any Hubbard model type Hamiltonian, where a competition between
the localized and itinerant behaviours is present.
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3.4. Energy of the Hartree-Fock ground state

not acquire a prefactor, but the electron-electron interaction 〈Ĥe〉 picks up
a factor of 2: ∑

p

Ep = 〈T̂ 〉+ 2〈Ĥe〉+ 〈Ĥe−latt〉.

Re-expressing the hopping contribution,

〈T̂ 〉 =
∑
p

Ep − 2〈Ĥe〉 − 〈Ĥe−latt〉,

it becomes possible to write the expression for the total energy per site
without the T̂ contribution

EGS
N

=
1

N

(∑
p

Ep + Elatt − 〈Ĥe〉
)
. (3.39)

Using the definitions of the Hartree-Fock parameters 3.35 and the expression
for 〈Ĥe〉 from 3.12, we obtain a closed form expression for the mean-field
energy in terms of the mean-field parameters only

EGS
N

=
1

N

∑
p

Ep + 2εb

(
u2

2
+
au4

4

)
− 1

N
〈Ĥe〉, (3.40)

where

1

N
〈Ĥe〉 =

3U − 5J

8
(1 + δ2)− U + J

2

(
S2

FM + S2
AFM+

+
S2

1x + S2
1z + S2

2x + S2
2z

2

)
− 2(U − J(4 + γ))(O2

1 +O2
2)−

− 2(U + (γ − 2)J)

(
Z2

1 + Z2
2 +

Z2
3 + Z2

4

2

)
−

− (U + (γ − 2)J)(X2
1 +X2

2 ). (3.41)

(The N comes from the fact that the sum over the sites i yields N identical
terms, as per the mean-field assumption. See Appendix C for the complete
calculation of 〈Ĥe〉.) Once a self-consistent solution w is generated, its
energy can be immediately evaluated using this expression.

While the order parameters w can be guessed initially, it is still not
entirely clear how to re-calculate them – or how to find the energies Ep in the
first place. In the next section we construct the Hartree-Fock Hamiltonian,
which will address both those points.
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3.5 Hartree-Fock Hamiltonian

Given the set of Hartree-Fock equations

Epφp(iaσ) =
∑
jb

tabij φp(jbσ) +
[
− 2εbui + U〈d†iaσ̄diaσ̄〉+ U ′〈d†iāσ̄diāσ̄〉+

+ (U ′ − J)〈d†iāσdiāσ〉
]
φp(iaσ) +

[
− U〈d†iaσ̄diaσ〉−

− J〈d†iāσ̄diāσ〉
]
φp(iaσ̄) +

[
(U ′ − J)〈d†iāσdiaσ〉+

+ J〈d†iāσ̄diaσ̄〉+ γJ〈d†iaσ̄diāσ̄〉
]
φp(iāσ)+

+
[
U ′〈d†iāσ̄diaσ〉+ γJ〈d†iaσ̄diāσ〉

]
φp(iāσ̄). (3.42)

or, having in mind the definitions of the various order parameters 3.35 and
the spherical symmetry U ′ = U − 2J

Epφp(iaσ) =
∑
jb

tabij φp(jbσ) +
{3U − 5J

4
+

[
3U − 5J

4
δ − 2εbu

]
eiQc·Ri−

−σ
2

(U+J)
[
SFM+SAFMe

iQc·Ri+S1z cos Qm ·Ri+S2z sin Qm ·Ri

]}
φp(iaσ)−

− U + J

2
[S1x cos Qm ·Ri + S2x sin Qm ·Ri]φp(iaσ̄)−

− (U + J(γ − 2))
[
X1 cos Qm ·Ri +X2 sin Qm ·Ri

]
φp(iāσ̄)+

+
{

(J(4 + γ)− U)
[
O1 +O2e

iQc·Ri

]
− σ

[
U + J(γ − 2)

][
Z1 + Z2e

iQc·Ri+

+ Z3 cos Qm ·Ri + Z4 sin Qm ·Ri

]}
φp(iāσ),

it is always reasonable to ask: what quadratic Hamiltonian could they have
originated from? In other words, what is the Hamiltonian that results af-
ter one applies the Hartree-Fock approximation to the original, interacting
Hamiltonian in Eq. 2.21? Such a Hamiltonian – now quadratic – and thus
easily diagonalizable – is termed factorized : it is relatively easy to recon-
struct it from the equations. Recalling that 〈d†iaσdjbτ 〉 =

∑
p φ
∗
p(iaσ)φp(jbτ),

we can visualize what the quadratic Hamiltonian “should have been” in or-
der to produce the equations 3.23 after the expectation value with the trial
state |Ψe〉 =

∏
p a
†
p |0〉 and the variation with respect to φ∗p(iaσ). For each

term, we need to recover the factor φ∗p(iaσ): moreover, their sum over p

ought to be replaced by the appropriate matrix element 〈d†iaσdjbτ 〉 and then
the expectation values stripped away, leaving the operators d. Following
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3.5. Hartree-Fock Hamiltonian

this procedure, it is straightforward to reconstruct the appropriate quadratic
Hamiltonian

ĤHF =
∑
ijabσ

tabij d
†
iaσdjbσ +

{3U − 5J

4
+

[
3U − 5J

4
δ − 2εbu

]
eiQc·Ri−

−σ
2

(U+J)
[
SFM+SAFMe

iQc·Ri+S1z cos Qm ·Ri+S2z sin Qm ·Ri

]}
d†iaσdiaσ−

− U + J

2
[S1x cos Qm ·Ri + S2x sin Qm ·Ri] d

†
iaσdiaσ̄−

− (U + J(γ − 2))
[
X1 cos Qm ·Ri +X2 sin Qm ·Ri

]
d†iaσdiāσ̄+

+
{

(J(4 + γ)− U)
[
O1 +O2e

iQc·Ri

]
−σ
[
U+J(γ−2)

][
Z1+Z2e

iQc·Ri+Z3 cos Qm·Ri+Z4 sin Qm·Ri

]}
d†iaσdiāσ.

This quadratic Hamiltonian is equivalent, in its ground state and eigen-
functions/eigenvalues, to the original Hamiltonian under the Hartree-Fock
approximation: it is the Hartree-Fock Hamiltonian. It has the advantage
of being quadratic and thus can be diagonalized, obtaining said eigenval-
ues/eigenfunctions. Making use of Bloch’s theorem is very advantageous
here, as the Hamiltonian admits significant block-diagonalization with trans-
forming to Fourier (k) space (which was not the case for the original Hamil-
tonian because of the 4-operator terms). The details of this are carried out
in Appendix D: the result, after some mundane substitutions of the usual
Fourier transform

d†kaσ =
∑
i

eik·Ri

√
N

d†iaσ (3.43)

becomes
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3.5. Hartree-Fock Hamiltonian

ĤHF =
∑
kabσ

tab(k)d†kaσdkbσ +
∑
kaσ

(3U − 5J

4
− σ

2
(U + J)SFM

)
d†kaσdkaσ+

+
(3U − 5J

4
δ − 2εbu−

σ

2
(U + J)SAFM

)
d†k+Qc,aσ

dkaσ−

− σ

4
(U + J)

(
(S1z − iS2z)d

†
k+Qm,aσ

dkaσ + (S1z + iS2z)d
†
k−Qm,aσ

dkaσ

)
−

− U + J

4

(
(S1x − iS2x)d†k+Qm,aσ

dkaσ̄ + (S1x + iS2x)d†k−Qm,aσ
dkaσ̄

)
− U + J(γ − 2)

2

(
(X1 − iX2)d†k+Qm,aσ

dkāσ̄ + (S1x + iS2x)d†k−Qm,aσ
dkāσ̄

)
+

+ [(J(4 + γ)− U)O1 − σ(U + J(γ − 2))Z1] d†kaσdkāσ+

+ [(J(4 + γ)− U)O2 − σ(U + J(γ − 2))Z2] d†k+Qc,aσ
dkāσ

− σ
2

(U +J(γ−2))
[
(Z3 − iZ4)d†k+Qm,aσ

dkāσ + (Z3 + iZ4)d†k−Qm,aσ
dkāσ

]
.

Notice that the different Q prefactors have resulted in the mixing of
certain momenta within the Brillouin zone. Instead of folding the Brillouin
zone and labeling the resulting states (a so-called reduced zone scheme treat-
ment of the Brillouin zone), we continue to work in the original Brillouin
zone (so-called extended scheme [75]).

At this point, the Hamiltonian is ready to be diagonalized: thanks to
translational symmetry, it is already block-diagonal in k and can be written

ĤHF =
∑
k

ψ†kh(k)ψk

where
ψ†k = (ψ†kz↑, ψ

†
kz̄↑, ψ

†
kz↓, ψ

†
kz̄↓)

and
ψ†kaσ = (d†kaσ, d

†
k+Qm,aσ

, d†k+Qc,aσ
, d†k−Qm,aσ

).

Hence only separate 16× 16 subblocks need to be explicitly diagonalized –
a process we implemented in Python and discuss in a subsequent chapter.
Explicit expressions for the matrices are available in Appendix D. (Note
that this matrix is, due to the properties of the Fourier transform, almost a
Toeplitz matrix.)

Once the Hamiltonian is diagonalized, to complete the iteration it is
necessary to re-calculate the order parameters w from the eigenvalues and
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3.5. Hartree-Fock Hamiltonian

eigenfunctions of ĤHF. First off, the eigenfunctions are ordered by their
corresponding eigenvalues: according to our quarter-filling scheme, only the
bottom quarter are selected to participate in the calculation of the order
parameters. The Slater determinant (Hartree-Fock trial wavefunction) is

|Ψe〉 =
′∏

kaσ

d†kaσ |0〉

where the prime indicates the product over the occupied single-particle
states. The matrix elements 〈Ψe| d†kaσdkbτ |Ψe〉 need to be calculated and
compared to the values that were guessed for them initially in order to
complete the iterative process. The easiest way to proceed is by using the
density matrix approach [72]. Define the density matrix associated to the
Hartree-Fock ground state by

ρk(ζbτ, ηaσ) = 〈Ψe| d†k+ηQm,aσ
dk+ζQm,bτ |Ψe〉 . (3.44)

Insert the identity decomposition 1 =
∑

kaσ |kaσ〉 〈kaσ| in between the cre-
ation/annihilation operators,

ρk(ζbτ, ηaσ) =
∑
pbσ′

〈Ψe| d†k+ηQm,aσ

∣∣pbσ′〉 〈pbσ′∣∣ dk+ζQm,bτ |Ψe〉 . (3.45)

Each of the matrix elements can only be nonzero if the state |pbσ′〉 is occu-
pied, i.e. it is part of the ground state. So the sum is now primed – only over
the occupied states. Moreover, since the expectation value is taken with re-
spect to the ground state of the system, 〈Ψe| d†k+ηQm,aσ

and dk+ζQm,bτ |Ψe〉
should be considered as single-state excitations. This leads to

ρk(ζbτ, ηaσ) = 〈k + ηQmaσ|

 ′∑
pbσ′

∣∣pbσ′〉 〈pbσ′∣∣
 |k + ζQm, bτ〉 . (3.46)

This equation shows that the matrix elements 〈Ψe| d†k+ηQm,aσ
dk+ζQm,bτ |Ψe〉

are the (reversed) matrix elements of the operator ρ =
∑′

pbσ′ |pbσ′〉 〈pbσ′|,
constructed out of occupied single-particle Hartree-Fock states.

The single-particle states themselves are 16-tuples |kaσ〉 of numbers.
They can be used to construct the density matrix, which can then be used
to find the order parameters δ, SFM, ... via the Fourier transform rule. This
is most easily understood when demonstrated on an explicit example. Recall
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3.5. Hartree-Fock Hamiltonian

the definitions of the order parameters

〈d†iaσdiaσ〉 =
1

4

[
1 + δeiQc·Ri

]
+
σ

2

[
SFM + SAFMe

iQc·Ri+

+ S1z cos(Qm ·Ri) + S2z sin(Qm ·Ri)
]
.

Re-arranging into a more convenient form, sorting by the order of the expo-
nential

〈d†iaσdiaσ〉 =

[
1

4
+
σ

2
SFM

]
e0 +

[
δ

4
+
σ

2
SAFM

]
eiQc·Ri+

+
σ

2

[
S1z − iS2z

2

]
eiQm·Ri +

σ

2

[
S1z + iS2z

2

]
e−iQm·Ri .

Notice that by hitting the matrix element with the appropriate exponential
and summing over the sites, we can “project out” the quantities we are
interested in: the terms which do not have the same exponential will sum
to zero. For instance, simply summing over sites i and orbitals a leaves
only the non-varying terms (other terms oscillate in sign and cancel out, a
typical trick in condensed matter calculations – see [75] appendix for this
shown explicitly) – the sum over a only contributes an overall factor of 2∑

ia

〈d†iaσdiaσ〉 = N

[
1

2
+ σSFM

]
.

Using the fact that the sign is different for the up and down spins, we can
isolate for SFM by multiplying by σ and summing over it

SFM =
1

2N

∑
iaσ

σ〈d†iaσdiaσ〉.

Finally, to make connection with the |k + ηQm, aσ〉 = d†k+ηQm,aσ
|0〉 , η ∈

{0, 1, 2,−1} eigenfunctions that are actually found during diagonalization
of the Hartree-Fock Hamiltonian, Fourier-transform the operators inside the
expectation values. Since in this particular case only on-site operators are
involved and there are no exponential prefactors, the Fourier transform is
immediate and yields

SFM =
1

2N

∑
kaσ

σ〈d†kaσdkaσ〉 =
1

2N

∑
kηaσ

σρk(ηaσ, ηaσ). (3.47)

The matrix element 〈d†kaσdkaσ〉 is an expectation value of the number oper-
ator n̂kaσ in the Hartree-Fock ground state |Ψe〉. It is also simply an entry
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3.5. Hartree-Fock Hamiltonian

of the density matrix 3.46. Let us explicitly illustrate how to evaluate such a
sum relative to the 16×16 block density matrix at each value of momentum.
In this case, the sum is over diagonal elements only: yet even for a single
value of kaσ, there are still four entries that need summing over, namely

SFM =
1

2N

∑
k in [−π

a
,π
a

]3

and aσ

σ
(
〈d†kaσdkaσ〉+ 〈d†k+Qm,aσ

dk+Qm,aσ〉+

+ 〈d†k+2Qm,aσ
dk+2Qm,aσ〉+ 〈d†k−Qm,aσ

dk−Qm,aσ〉
)

=

=
1

2N

∑
k in [−π

a
,π
a

]3

and ηaσ

σ
(
ρk(0aσ, 0aσ) + ρk(1aσ, 1aσ)+

+ ρk(2aσ, 2aσ) + ρk(−1aσ,−1aσ)
)
. (3.48)

Similar expressions can be obtained for the other order parameters. Note
that for certain sums with displaced indices, it is necessary to sum over
“looped” entries. For instance, consider obtaining the charge dispropor-
tionation order parameter: after the usual exponential multiplication and
summation trick,∑

i

e2iQm·Ri〈d†iaσdiaσ〉 = N

[
δ

4
+
σ

2
SAFM

]
.

Fourier transforming on the left and summing over the spin and orbital
degrees of freedom,

δ =
1

N

∑
kaσ

〈d†k+Qc,aσ
dkaσ〉. (3.49)

Summing over all allowed values of k, we inevitably stumble upon entries
like 〈d†k+2Qc,aσ

dk+Qc,aσ〉 = 〈d†k,aσdk+Qc,aσ〉: such entries are from the upper
triangle of the matrix subblock and need to be summed together with those
from the lower triangle. Thus, the matrix 16× 16 subblock can be thought
of as having “bands” that correspond to particular momentum space sepa-
ration between the column and row. In the example above, the separation is
Qc: the matrix bands that correspond to that are of (i, j + 2) and (i+ 2, j)
type, that is, the second off-diagonals. In the case of SFM there was zero
separation (this corresponds to the true diagonal of the matrix subblock).
For the curious case of Qm separation, the bands consists of the nearest
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off-diagonal and together with the opposite corner of the matrix. Inter-
estingly, for the case of both δ and SAFM, this sort of summation ensures
they are both real without requiring the matrix entries themselves to be real
(because the sum is over the two diagonals that are each other’s Hermitian
conjugates). Naturally, the reality of SFM is ensured by the fact that it only
includes diagonal entries. All of the order parameters are re-calculated and
the expressions are cataloged in Appendix E.

One final point: since it is clear from the above that there is no mo-
mentum mixing (this is a feature of the Hartree-Fock approximation), from
a computational perspective it is useful to first quickly calculate the total
density matrix ρ =

∑′ |kaσ〉 〈kaσ|, then merely extract the components one
requires from it.
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Chapter 4

Numerical implementation of
the Hartree-Fock
approximation

Part of the inhumanity of the
computer is that, once it is
competently programmed and
working smoothly, it is
completely honest.

Isaac Asimov (1981)

The equations have been derived, the expression for the total energy
obtained: we have reached the extent of what can be done by hand. The
next step is to implement the solution procedure (and, much more impor-
tantly, automated sweeping/analysis) on the computer. This is necessary
not only because it is infeasible to diagonalize 16 × 16 matrices by hand
(especially ones that involve complex expressions, such as the ansatzes for

〈d†iaσdibτ 〉 and the hopping coefficients tab(k)), but also because the number
of mean-field order parameters w and adjustable parameters U, J, ... is ex-
tremely large when compared to the typical mean-field model. Its thorough
analysis demands a computerized approach, such that the true ground state
in the multi-parameter w space is surely identified, and all the relationships
between the different adjustable parameters and how they affect the ground
state is duly cataloged and categorized. In this chapter we describe this
process in detail.

4.1 The Hartree-Fock iterative algorithm

The task at hand is to find the ground state of the Hamiltonian Ĥ 2.21. As
already mentioned, in this thesis this is accomplished within the Hartree-
Fock approximation: this produces a properly factorized companion Hamil-
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4.1. The Hartree-Fock iterative algorithm

tonian ĤHF. Even though the Hamiltonian thus obtained is quadratic and
so nominally exactly solvable, its coefficients depend on its own eigenfunc-
tions: the Hartree-Fock equations are nonlinear and thus must be solved
iteratively. The Hamiltonian to diagonalize is

ĤHF =
∑
k

ψ†kh(k)ψk (4.1)

where

ψ†k = (ψ†kz↑, ψ
†
kz̄↑, ψ

†
kz↓, ψ

†
kz̄↓), ψ

†
kaσ = (d†kaσ, d

†
k+Qm,aσ

, d†k+Qc,aσ
, d†k−Qm,aσ

),

and the matrix h(k) is given in Appendix D. The energy can be evaluated
with the help of the expression from Chapter 3

EGS
N

=
1

N

∑
p

Ep + 2εbN

(
u2

2
+
au4

4
− 〈Ĥe〉

)
, (4.2)

where

1

N
〈Ĥe〉 =

3U − 5J

8
(1 + δ2)− U + J

2

(
S2

FM + S2
AFM+

+
S2

1x + S2
1z + S2

2x + S2
2z

2

)
− 2(U − J(4 + γ))(O2

1 +O2
2)−

− 2(U + (γ − 2)J)

(
Z2

1 + Z2
2 +

Z2
3 + Z2

4

2

)
−

− (U + (γ − 2)J)(X2
1 +X2

2 ). (4.3)

Finally, the matrix elements that the Hartree-Fock Hamiltonian relies
on can be re-calculated from the density matrix using the expressions in the
Appendix E.

Let us sketch out the iterative solution process by which the ground state
is found.

1. Choose parameter values U, J, ... from the parameter regime of interest.

2. Create a pool of initial guess values for the mean-field parameters

w(0) = (δ(0), S
(0)
FM, S

(0)
AFM, ...). Think physically about what they mean

and what states/symmetries could be present in this parameter region.
Without good guesswork, it is likely the iterative solution will not
work.
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(a) Pick one of the initial guesses and start the iterative solution
sequence:

(b) i. Initialize the Hartree-Fock matrix ĤHF using the guessed or-
der parameter values.

ii. Diagonalize the Hamiltonian, then build the ground state
density matrix ρ =

∑′
kaσ |kaσ〉 〈kaσ| at quarter-filing. That

is, order the eigenvectors obtained during minimization by
their eigenvalues, then pick the bottom quarter.

iii. Re-compute the order parameters v(0) using the expressions

in the Appendix E: evaluate the residual ε(0) =
∣∣w(0) − v(0)

∣∣2.

iv. Check if ε(0) < ε0, the pre-established convergence condition.
If yes, output the eigenvectors |kaσ〉 and eigenvalues Ekaσ.
If not, repeat this loop with the initial guess being the newly
found solution, w(1) = v(0) (or choose it in an more involved
way – more on such techniques later). If the maximum al-
lowed number of iterations nmaxiter is exceeded, quit.

(c) If the sequence converged, evaluate the total state energy EHF.

3. When all the guesses from the pool have been explored, pick the lowest
energy solution as the best approximation of ground state.

In principle, this algorithm, together with the Eqs. 4.1–4.2, should be
sufficient to fully solve the problem. However, in principle the energy land-
scape can be complex and have multiple local minima, manifesting as differ-
ent unique solutions to the self-consistency equations. We found that there
are many possibilities for improving convergence for difficult types of guess
states, ensuring that the true ground state is identified, as well as simply
speeding up the convergence process.

4.2 Strategies for improving computation

4.2.1 Pulay mixing

Although the self-consistent algorithm (4.1) suggests to always re-start the
algorithm on step n + 1 with the updated guess w(n) being the solution
v(n−1) from the previous step, in fact one can do much better. The simplest
generalization is to use, as the guess for the next step w(n), an interpolation
between the guess w(n−1) and the solution v(n−1) obtained with this guess,

w(n) = v(n−1)α+ w(n−1)(1− α). (4.4)
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The literature on nonlinear iterative equation solution techniques suggests
the optimal choice of α that ensures fastest convergence is highly problem
specific [76]. Our experience appears to be that α = 0.3 produces the
smoothest and most reliable iterations. The key advantage of this “cautious
convergence” technique that only admixes part of the newly-found solution
into the guess is being able to avoid the iteration getting stuck in a loop, or
helplessly hopping on either edge of a flat minimum.

However, this approach works best in conjunction with another idea
called Pulay mixing, or direct inversion in the iterative subspace (DIIS). The
idea behind DIIS, originally developed for high-dimensional11 Hartree-Fock
quantum chemistry calculations by Pulay [77], is the following: suppose a se-
quence of N solutions v(1),v(2), ...v(N) to the nonlinear system has been gen-
erated. Together, they span a linear subspace VN = span{v(1),w(2), ...w(N)}
within the higher-dimensional (possibly nonlinear) solution manifold V . It
is possible to pick the “best possible” vector w(N+1) within this linear sub-
space, by minimizing the total error E.

To construct this best possible vector, consider a linear combination of
the vectors spanning the solution subspace with some a priori unknown
coefficients cm

w(N+1) =
N∑
m=1

cmv(m). (4.5)

It turns out that a good way to pick the coefficients cm is so as to minimize
the residuum vector ∆w(N+1), defined as

∆w(N+1) =
N∑
m=1

cm(v(m) −w(m)), (4.6)

subject to the constraint that the coefficients sum to one (i.e. the linear
combination in 4.5 is actually a convex combination, picking a vector from
inside the space VN )

N∑
m=1

cm = 1. (4.7)

Define the total error E as the magnitude squared of the residuum vector,
E = ||

∑N
m cm(v(m)−w(m))||2, and minimize it, together with the Lagrange

11in terms of the number of order parameters involved.
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multiplier factor λ(1−
∑N

m cm) (which ensures the condition 4.7 holds) with
respect to the coefficients cm. Differentiating with respect to cj gives a series
of equations

∂

∂cj

(
||

N∑
m

cm(v(m) −w(m))||2 + λ(1−
N∑
m

cm)
)

=
∂

∂cj

( N∑
m

c2
m(v(m)−

−w(m))2 + 2
N∑

m<n

cmcn(v(n) −w(n)) · (v(m) −w(m)) + λ(1−
N∑
m

cm)
)

=

= 2cj(v
(j) −w(j))2 + 2

∑
m 6=j

cm(v(j) −w(j)) · (v(m) −w(m))− λ =

=
∑
m

cm(v(j) −w(j)) · (v(m) −w(m))− λ. (4.8)

In the last step a re-scaling of the (arbitrary) Lagrange multiplier λ allowed
us to get rid of the factor of 2. Adopting the notation Bjm = (v(j) −w(j)) ·
(v(m)−w(m)), the system of equations, together with the constraint 4.7 may
be written 

B11 B12 .. B1N −1
B21 B22 .. B2N −1
. ... .. ... ..

BN1 BN2 .. BNN −1
−1 −1 .. −1 0



c1

c2

...
cN
λ

 =


0
0
..
0
−1

 . (4.9)

So the search for the best possible vector within the subspace VN amounts
to solving an N + 1×N + 1 system of linear equations (hence the “inversion
of the iterative subspace” – for more details, see Ref. [77]). This approach
already yields an improvement on the iterative process.

But one can do even better than this. Of course, the Pulay approach can
quickly maximize the potential of the vectors within the subspace VN : but
what if the true solution is outside the subspace by more than the allowed
residual ε0 to begin with? Then no matter how many times Pulay mixing is
carried out, it will not result in improved convergence – instead, it will slow
down the search. The fix to this, as shown by Banerjee and co-workers [76],
is to intersperse Pulay mixing with regular updates of the form 4.4, with
a given periodicity k (typically k = 3). The algorithm thus alternates be-
tween expanding its iterative subspace, and finding the lowest residual vector
within it, resulting in optimal convergence for most parameter values. In
fact, our calculations show that this approach can even arrest divergences
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from round-off error accumulation. Small errors (e.g. some order param-
eters being nonzero while they should be zero for this particular type of
state) often cause rapid divergence of the Hartree-Fock iterative trajectory
away from a solution. Yet the Pulay approach appears to counteract that
tendency, gently guiding the trajectory towards the self-consistent point by
resetting the creeping small errors in irrelevant order parameters back to
zero.

4.2.2 Convergence in iteration count and momentum
sampling

From the standpoint of standard iterative solution theory, there are two key
parameters that need to be tested for convergence: the cutoff iteration count
nmaxiter and the number of points sampled in the Brillouin zone nnum-k-pts.
It is clear that too fine of a sampling of momentum space can slow down
the calculation time as O(N3): as for the cutoff iteration count, it needs to
be large enough to allow convergence for the interesting solutions, while not
so large so as to waste computation time on “dead-end” iterative trajecto-
ries that never converge. Long-time convergence studies, studying both the
number of identified self-consistent solutions, as well as the behaviour of the
per-site ground state energy for those solutions, show that a k-space sam-
pling rate of 25 points per dimension, or nnum-k-pts = 253 ∼ 15, 000 points
total, along with the cutoff iteration count nmax-iter = 500 are optimal for
our purposes, taming the residual error ε(n) to less that ε0 = 10−4 and the
differences in energy between subsequent iterations to less than 10−3.

4.2.3 Choosing initial guesses

A good update choice strategy for picking the next guess for the itera-
tion, such as Pulay mixing, is paramount to reaching converged solutions.
However, equally important is the choice of the initial guesses w(0) for the
iterative trajectory: our early calculations quickly showed that a lion’s share
of the initial guesses chosen at random never lead to interesting converged
solutions even if they are known to exist, no matter how high the cutoff
nmatiter is. Through a combination of physical thinking and grueling calcu-
lations with extremely large nmax-iter and fine random sampling of the initial
guesses, we identified a multitude of key converged states, which include the
ferro/antiferromagnetic solutions (↑↑↑↑ and ↑↓↑↓), the non-interacting zero-
spin solution 0000, fully charge-disproportionated 4-site antiferromagnetic
solution (⇑ 0 ⇓ 0), and the collinear and non-collinear 4-site solutions ↑↑↓↓,
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↑→↓←, along with a few others. For subsequent calculations these high-
symmetry solutions are always included as initial guesses: this enhanced
both the reliability of converging one of these states, as well as the speed of
sweeping the parameter space.

4.2.4 Parallelization

As can be seen from the self-consistent algorithm (4.1), the calculation of
an iterative trajectory is not an easily parallelalizable process. The diag-
onalization of an individual 16 × 16 block submatrix for each momentum
can be done in parallel, but the additional difficulties of structuring the
storing and writing of the matrix and its eigenvalues/eigenvectors and the
fact that each diagonalization process is very fast on its own makes this
option unattractive. On the other hand, there are more high-level paral-
lelization opportunities possible: (a) multiple initial guesses can be made
and followed through on for the same set of parameter values U, J, ..., and
(b) ground states can be found at multiple parameter values at once. In our
calculation we opted for option (b) due to ease of implementation and data
management and because it resulted in immediate linear speed-up of the
calculation (of course, ground states corresponding to different parameter
values are independent from each other, hence there is no overhead to the
parallelization).

4.2.5 Boot-strapping with neighbouring points

While the calculations at neighbouring points in the parameter space may
be independent from each other, they can benefit from using each other’s
converged solutions as initial guesses for starting new iterative trajectories.
On the grounds of adiabaticity (which should apply at least far away from
any phase boundaries), we expect small changes in the values of various pa-
rameters U, J, t1, ... to lead to small changes in the nature of the ground state
(characterized by its order parameter vector w): as such, an already con-
verged solution from a neighbouring point can result in fast convergence to
a similar kind of converged solution at the current point, further improving
the reliability of the calculation and reducing computation time.

Armed with the algorithm 4.1, the analytical equations 4.1 – 4.2 and the
numerical tricks from this chapter, we are ready to tackle the problem and
look at the results.
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Chapter 5

Results

An approximate answer to the
right problem is worth a good
deal more than an exact answer
to an approximate problem.

John Tukey (1962)

Before discussing the results of applying the Hartree-Fock approximation
to the nickelates, let us once again reiterate our inspiration for and goals
for our research. Our study of the nickelates is largely motivated by the
recent observation that the coupling to the lattice distortion has a signifi-
cant impact on electronic behaviour and might ultimately be responsible for
triggering the MIT, with no need for actual charge disproportionation [32].
In light of this, and the peculiar fact that the magnetic transition only coin-
cides with the MIT for sufficiently weak lattice coupling (manifested by the
Eu to Lu part of the nickelate series), we wanted to investigate what impact,
if any, the lattice coupling can have on the magnetic transition. So we built
an effective two-band Hubbard model for the nickelates, in the spirit of the
calculation of Lee et al. [26], and coupled it to the lattice semiclassically,
with three goals in mind:

1. Confirm quantitatively the earlier findings that the lattice coupling
forces charge disproportionation;

2. See what magnetic orders are self-consistent, in a mean-field calcula-
tion, within our model;

3. Observe whether one of the orders suggested in the literature, or an-
other order that obtains in the calculation, is stabilized by the coupling
to the lattice.
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5.1 Charge order and the Metal-Insulator
Transition

The experimental observation that the temperature of the metal-insulator
transition TMIT is higher than the temperature of the magnetic transition TN

for the heavier nickelates, along with the strong effect that higher neutron
count isotope substitutions of O18 have on this temperature [31], suggest the
primacy of electron-phonon interactions in the charge ordering process over
that of the electron-electron interactions. A recent study [32] clearly demon-
strated the possibility of charge disproportionation without overt charge
transfer in the nickelates (see Sec. 1.4), being driven mostly by the cou-
pling of ligand holes to the (static) lattice distortions. Here we reproduce
this result, showing that even a Holstein-like on-site coupling between the
lattice and the electronic degrees of freedom can drive the system through a
metal-insulator transition. This is because the on-site coupling mimics the
effect of encouraging double occupancy of the shrunk site, as is obtained
more naturally from the ligand hole picture.

To first get an idea of what the phase space is like and how charge
disproportionation δ depends on the various adjustable parameters, we plot
the value of δ for the ground state in the U–J plane. Other parameters are
set to the values used in the Lee et al. study [26]: t1 = 1, t2 = 0.15, t4 = 0
and there is no coupling to the lattice (εb = 0) for the moment. The data in
Fig. 5.1 consists of a 40×40 grid of solutions, where at each point in the grid
we carried out the full self-consistent calculation and obtained the ground
state. In total, to obtain the figure, we carried out 1,600 calculations, each of
which started from a pool of 20-30 initial guesses (or more, depending on its
neighbours) and proceeded through anywhere from 5 to 250 iterative steps
(where each iterative step involves the diagonalization of roughly 15,000
16 × 16 subblocks of the Hartree-Fock matrix, as well as the calculation of
the density matrix and the order parameters w).

All in all, Fig. 5.1 shows qualitative agreement with earlier studies (such
as those of Lee el al. [26] or Peters [78]), as well as with basic physical
intuition. The small U , small J region exhibits no charge modulation, as it
is largely metallic (the hopping dominates the interactions), with a robust
weight at the Fermi level (see density of state plots for various representa-
tive points in the U–J phase diagram in Fig. 5.2). Upon increasing U no
modulation arises either: strong on-site Coulomb repulsion opposes charge
density waves, instead favouring on-site localization. Finally, regardless of
the magnitude of U , for J large enough it becomes possible to stabilize
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5.1. Charge order and the Metal-Insulator Transition

Figure 5.1: Charge modulation δ (the magnitude is reflected in the colour
bar) of the ground state in the U–J plane. Other parameters are t1 = 1, t2 =
0.15, t4 = 0, εb = 0. Resolution is 40× 40.
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5.1. Charge order and the Metal-Insulator Transition

Figure 5.2: Representative density of states diagrams for the various phases
in Fig. 5.1: (a) metallic phase, U = 1.077, J = 0.538; (b) itinerant magnetic
phase (see the magnetic phase analysis below for more details about this
phase), U = 3.231, J = 0.385; (c) charge modulated phase, with a clear
gap at the Fermi level, U = 2.0, J = 1.538; (d) Mott insulating phase,
U = 5.846, J = 0.231. Other parameters as in Fig. 5.1, with the addition
of α = 1. Notice the increased weight (called the van Hove singularity) at
the lower band edge: its presence is due to the nonzero t2 parameter, which
introduces a strong asymmetry to the DOS. More on this below.

charge density wave order thanks to Hund’s rule. It minimizes the energy
by “poaching” an electron from a neighbouring site, then organizing the
two electrons into a triplet state across the two orbitals |z〉 , |z̄〉. This is
favourable even despite the increased on-site inter-orbital repulsion from U
(although it does take a larger J to accomplish this if U is large).

What of the lattice? To investigate the impact from turning on the
lattice coupling εb we turn to Figs. 5.3 and 5.4, where the U–εb diagrams of
charge disproportionation and metal-insulator behaviour are presented for
various ratios of J/U , from a modest 0.2 to a more experimentally reasonable
0.5. These diagrams essentially represent line slices of the U–J diagram
emanating from the origin in the lower left corner, with the new dimension
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5.1. Charge order and the Metal-Insulator Transition

Figure 5.3: Charge modulation δ (see colour scale) in the HF ground-state,
as a function of U and εb, for J/U = 0.2, 0.3 (top left and right, respectively)
and 0.4, 0.5, (bottom left and right, respectively). Other parameters are
t1 = 1, t2 = 0.15, t4 = 0.25, α = 1. Resolution is 20× 20.

showing the impact of lattice coupling εb. Here we let t4 = 0.25: the impact
of this on the diagram is not extensive and will be reviewed later. The reason
we include it here is to ensure that all of the pieces of our model (including
the 4th neighbour hopping) are present during the analysis.

Overall the behaviour again conforms to expectations from earlier work.
For small U (and thus an even smaller J) the system is fully metallic (as
can be seem from the metal-insulator diagrams), and δ = u = 0 (recall that
in our model u is essentially fixed by δ as per the self-consistency equation
for u). In the absence of coupling to the lattice, just as was seen in Fig. 5.1,
there is already a transition to a finite δ 6= 0 state with increasing J , which
occurs sooner for larger slopes J/U . This can be readily explained, as for
larger J/U the propensity for two-orbital triplet occupancy (Hund’s order)
grows faster than the push towards single-site localization (Mott-Hubbard
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Figure 5.4: The HF ground-state is metallic (deep blue) or insulating (yel-
low). The results are shown in the U -εb space, for J/U = 0.2, 0.3, 0.4 and
0.5, respectively (panels arranged as in Fig. 5.3). All other parameters are
as in Fig. 5.3.
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localization). And once the coupling to the lattice is introduced, no matter
what U and slope J/U we are considering, at large enough coupling strengths
the system will gravitate towards the charge modulated state.

To summarize, we find that our model supports the existence of the MIT,
triggered by modulating material parameters (in particular, electron inter-
action strength U, J). It manifests as a charge density wave with nonzero
charge modulation δ 6= 0. The introduction of the lattice further enhances
the favourability of the charge density wave order across the parameter
space, the onset being more dramatic for larger values of J/U : the resulting
lattice distortion u 6= 0 is readily obtained from the charge disproportiona-
tion δ via the self-consistency condition derived earlier in Eq. 3.5.

5.2 Magnetic order: types and the transition

Having confirmed the existence of the MIT within the model and “soft-
benchmarked” it against earlier works by confirming that charge modulation
arises for large J , we move on the primary subject of this thesis: the issue of
the magnetic order and its interaction with the lattice degrees of freedom.
Once again, we begin by analyzing the large-scale picture of phases in the
U–J plane. Before we discuss the insights it provides, note that in general at
most points in the diagram there are many different types of self-consistent
solutions from which to pick the ground state. Below is a list of most of the
types of magnetic order states that we identified during our searches:

1. The “no magnetic order”, fully metallic solution 0000;

2. The ferromagnetic solution ↑↑↑↑;

3. The antiferromagnetic solution ↑↓↑↓;

4. The fully disproportionated antiferromagnetic solution ⇑ 0 ⇓ 0 order,
favoured by some in the literature [25];

5. The non-disproportionated collinear solution ↑↑↓↓, the focus of the
work of Lee et al. [26];

6. The non-disproportionated non-collinear solution ↑→↓←, suggested
by several recent studies [27, 28];

7. A variety of unexpected orbital-order states such as spin ordered ⇑↓⇑↓
with ferroorbital order of type XxXx (an x indicates a preference for
the orbital |x〉 = (1/2)(|z〉+ |z̄〉), with magnitude again reflecting the
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5.2. Magnetic order: types and the transition

size of the preference): we will refer to this state as the disproportion-
ated ferroorbital order;

8. Moreover, we see the states ⇑↑⇑↑ (the aligned ferrimagnetic state), as
well as various odd asymmetric ones such as ⇑↓↑↓ (but they are always
higher energy states and involve orbital order).

9. There are even more possibilities, which sometimes even manifest as
ground states, that are associated with complex combinations of the
spin and orbital order: states such as ↑→↓←, 0x0x̄, or→→←← xxx̄x̄.
In this thesis we do not spend much time studying such states, partly
because they rarely occupy much space in the phase diagram. They
manifest mostly when the hopping integrals are adjusted. All such
states are marked with “misc” label in the phase diagrams and their
study is relegated to future work.

Only a select few of these states actually end up having a robust presence
in the magnetic phase diagrams. Consider Figs. 5.5, the magnetic phase
diagrams in the U–J plane at the reference parameter values of Lee et al.,
with the coupling to the lattice εb = 0 in the first and εb = 0.8 in the second.
The black contours represent the (interpolated) value of δ. There are several
items of note here: first of all, the magnetic diagram with no lattice cou-
pling again exhibits qualitative agreement with prior work: a non-magnetic,
metallic phase is found for small U/small J ; large values of Hubbard U re-
sult in the presence of a ferromagnetic state ↑↑↑↑ due to localization of the
electrons; and large values of J lead to charge modulation and as a con-
sequence two inequivalent spin sublattices, one of which is almost entirely
devoid of magnetic moment and the other is antiferromagnetically ordered,
⇑ 0 ⇓ 0.

One crucial distinction we point out at this stage: Lee et al. find a thin
ribbon-like region of intermediate-magnet phase ⇑↑⇓↓ between the ⇑ 0 ⇓ 0
large J phase and the ↑↑↓↓ medium-to-large U phase. We do not find such
an intermediate phase at all: in fact, in all our calculations we have never
been able to successfully converge a magnetic state with (a) nonzero charge
disproportionation and (b) both magnetic sublattices having nonvanishing
magnetic moments. It appears that solutions of this type are simply not
self-consistent within our model: in fact, they seem to be among the least
stable points in the phase space (see Sec. 5.5 about stability below). What
instead obtains at the boundary between the two phases is a typically narrow
region where the relative energies of the two states are the same to within the
numerical precision: such regions are designated “degenerate” in the phase
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Figure 5.5: Top: U -J phase diagram of magnetic order, in the absence of
coupling to the lattice (εb = 0). Bottom: Same when coupling to the lattice
is turned on (εb = 0.8). Other parameters are t1 = 1, t2 = 0.15, t4 = 0, α = 1
for both. The black-line contours indicate the value of charge modulation
δ. Resolution is 40× 40.
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diagram legend. It is possible that the only reason Lee et al. saw such a
region in the first place was because of their specific technique for carrying
out the mean-field approximation by explicitly minimizing the energy as a
function of the mean-field parameters (that is, via a parameter search), as
opposed to solving the Hartree-Fock equations and looking for self-consistent
points. These two techniques, while formally ought to yield the same results,
can sometimes involve hidden assumptions and thus not quite produce the
same outcomes (as was discussed in Chapter 3).

Aside from the intermediate phase issue, the qualitative agreement is
clear (although there are sizable quantitative differences, which we attribute
to the somewhat different form of the on-site interaction Hamiltonian Ĥe).
As the coupling to the lattice is turned up, it is immediately obvious that
the charge modulated ⇑ 0 ⇓ 0 order benefits extraordinarily from it: it
expands in reach down to J = 0 in some regions, suppressing the equal-
sublattice order ↑↑↓↓ entirely. It also expands across the board, taking over
about half of what used to be the metallic phase, and making large gains
at the expense of the ferromagnetic phase as well. The charge modulation,
however, expands even independently of its associated magnetic order, as is
evidenced by the relative growth of the aligned-ferrimagnetic phase ⇑↑⇑↑.

A curious feature emerges at the leftmost boundary between the metallic
and the ⇑ 0 ⇓ 0 order directly on the U = 0 axis: a small phase pocket
opens up, with the ground state there exhibiting charge order without the
usually associated magnetic order ⇑ 0 ⇓ 0. In effect, the lattice distortion
helps decouple the charge and orbital degrees of freedom, which is strongly
reminiscent of the behaviour of the heavier rare-earth ions (Sm to Lu) in
the traditional nickelate phase diagram. This could be evidence for the
dominant role of the lattice coupling during the MIT, and suggests that
the strength of the lattice interaction might be responsible for determining
whether the MIT and magnetic transitions are concurrent or not. Looking
back at the metal-insulator diagrams in Fig. 5.4, we notice that despite
acquiring charge density wave character, the ground state for small U is still
metallic: despite the strong gapping out of the spectrum and flattening of
the bands by the lattice distortion, the Fermi level stays well within the
occupied band, so there is no electron localization and magnetic order does
not arise.

If we fix charge modulation to the experimentally relevant range δ ∼
0.3-0.4, we notice that most of the time these contours follow the phase
lines between the ⇑ 0 ⇓ 0 phase and some other phase (metallic for U
up to 1.5, ferromagnetic after U ∼ 4). They, of course, stay on the ⇑
0 ⇓ 0 side. However, right in the middle region (the more experimentally
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Figure 5.6: Magnetic order in the HF ground state, as a function of U and
εb, for J/U = 0.2, 0.3 ((a) and (b), respectively) and 0.4, 0.5, ((c) and (d),
respectively). Other parameters are t1 = 1, t2 = 0.15, t4 = 0.25, α = 1.

reasonable values of U ∼ 1.5-3) these contours fall squarely into the bulk of
the ⇑ 0 ⇓ 0 phase, suggesting that this indeed could be the dominant 4-site
local magnetic alignment for the real system. And this dominance is only
enhanced by the coupling to the lattice, as the region of the overall phase
diagram occupied by this state grows.

Zooming in once again to specific values for the ratio J/U , we can in-
terrogate the impact of the lattice more closely. Just as we argued from
the large-scale diagrams of Fig. 5.5, it is clear from Fig. 5.6 that with the
increase of εb the phase line for the ⇑ 0 ⇓ 0 order creeps further and fur-
ther to the left towards smaller U and J values: again the effect is more
pronounced for larger ratios J/U . The suppression of the other nontrivial
4-site alignments is also evident with increasing lattice coupling: eventually
the only possibilities for the ground state become a charge density wave,
with or without magnetic order.

An even more explicit picture of the preference of the lattice for the
⇑ 0 ⇓ 0 type order can be seen in Fig. 5.7. Here we plot the energies of the
various states at a particular set of parameter values relative to the metallic
solution 0000, as we sweep εb: ⇑ 0 ⇓ 0 emerges a clear winner (and also
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Figure 5.7: Energies of the various converged states (y axis) as a function of
εb (x axis). The parameters are U = 3.158, J = 0.2U, t1 = 1, t2 = 0.15, t4 =
0.25. Resolution is 20× 20.

the only one responsive to the presence of the lattice). While this plot is
made at a specific set of parameter values, this pattern seems to hold across
various parameter regimes of U, J, ti, as is evidenced by the magnetic phase
diagrams where ⇑ 0 ⇓ 0 phase conquers an ever-larger area with increasing
εb. What is curious about these plots at a first glance is that relative to
the 0000 state, none of the states’ energies are affected by changing εb,
aside from ⇑ 0 ⇓ 0. But there is a straightforward explanation to this:
any state that includes no charge disproportionation also includes no lattice
distortion, as δ ∼ u through the lattice self-consistency equation 3.5. Thus
changing εb has no effect neither in the total energy nor in the Hartree-Fock
Hamiltonian, as it always enters in the combination εbu. The real question
is: why are the states with partial charge disproportionation, e.g. ⇑↑⇓↓
not convergent within this mean-field model? Such states could potentially
compete with ⇑ 0 ⇓ 0 order for ground state status, as the coupling to the
lattice is cranked higher. It is a fact, however, that such states are not only
not convergent during the iterations no matter the starting point, but in
fact they are among the least stable (this is discussed more in Sec. 5.5).
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5.3 Impact of the hopping integrals

One clear impact of adjusting the hopping integrals ti is to affect the overall
bandwidth W , defined in the usual way as the difference between the largest
and the smallest Hartree-Fock eigenvalues at zero interaction (U = J = εb =
0). We know from numerous studies of the single-band Hubbard model that
the parameter that results in the onset of Mott insulator phase is the ratio
of the interaction strength to the bandwidth, U/t (U/W with W the total
bandwidth if more than one hopping pathway is present): thus one could
anticipate changes to the phase diagram when any of the hopping rates ti
increase enough so as to change W significantly.

On experimental grounds, however, given the spatial extent of the nick-
elate orbitals, it is unrealistic to expect the farther-neighbour hopping t2, t4
to be larger or even same magnitude as the nearest neighbour t1. The anal-
ysis of Lee et al. put the rate t2 somewhere in the range ≈ 0.05-0.15t1
for best agreement with LDA calculations and Fermi surface measurements
[26]: thus we can reasonably restrict t2, t4 < 0.3. However, the bandwidth
changes by at most %10 for this range of values, which should lead to only
modest shifts of the phases in the diagram.

Yet we observe much more dramatic effects than could be expected on the
basis of bandwidth renormalization. Looking to Fig. 5.8, where a magnetic
phase diagram in the U–J plane is produced for varying levels of the second-
nearest neighbour hopping (t2 = 0, 0.1, 0.25), we notice a profound change
of the phase boundaries. Moreover, this change favours ferromagnetism, in
spite of the increasing bandwidth, which would be expected to push the insu-
lating boundary to larger U . Looking to Fig. 5.10 with t4 = 0, 0.1, 0.25, 0.35,
the opposite effect is observed: a change for the metallic region that is way
beyond the meager %10-%15 one could expect based on the U/W Mott pic-
ture. Instead, it appears that the shape, rather than the width, of the DOS
is to blame: both t2 and t4 hopping pathways affect the lop-sidedness of the
distribution strongly even when the overall width is barely renormalized, a
phenomenon noted in the literature on Hubbard models [79].

Both the t1 and t4 hopping pathways appear to produce a symmetric
(about the midpoint) DOS: this is not entirely surprising, given that t4 has
exactly the same hopping coefficients, just with the lattice constant being
2a. The t2 hopping, on the other hand, is different, producing an asymmetric
DOS: even a small positive t2 value leads to a pile-up of DOS weight towards
the lower band edge (see Fig. 5.9). This extra weight, known as a van Hove
singularity, increases the DOS at the Fermi level (given that at quarter-
filling the Fermi level is in the lower quartile of the distribution). One
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Figure 5.8: Magnetic order in the HF ground state, as a function of U and
J , for t2 = 0, 0.15, 0.25 (top to bottom). Other parameters are t1 = 1, t4 =
0, εb = 0.
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Figure 5.9: The non-interacting (U = J = 0) DOS, corresponding to the
systems in Fig.5.8. Notice that increasing the bandwidth (even if just mod-
estly by at most %15), paradoxically, leads to more robust ferromagnetism
at lower U — a consequence of the van Hove singularity at the lower band
edge. Also notice how when the next-nearest neighbour frustration is max-
imally reduced (t2 = 0), the non-collinear 4-site magnetic order dominates
the collinear one. Currently it is not clear to us why this would be the case,
given how introducing t2, t4 seems to affect them equally based on pure
lattice frustration arguments.
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Figure 5.10: Magnetic order in the HF ground state, as a function of U
and J , for t4 = 0, 0.1 ((a) and (b), respectively), and t4 = 0.25, 0.35 ((c)
and (d)). The bandwidth is W = 6.4 in all cases. Other parameters are
t1 = 1, t2 = 0.15, εb = 0. The growth of the metallic region is clearly not
the effect of a renormalized bandwidth, but rather due to the changes of the
shape of the DOS.
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well-known pathway to ferromagnetism is the Stoner criterion [80]: derived
within the Hubbard model, it says that ferromagnetism can spontaneously
arise in an electronic system when the condition UD(EF) > 1 is met (D(EF)
is the density of states at the Fermi level). This condition is derived for a
different Hubbard model than the one employed here: however, it appears
to be consistent with that we observe. The increase/decrease in the density
of states at the Fermi level with the changes of t2, t4 is on the order of
%30-40, much more commensurate with the observed shifts of the phase
boundaries in Figs. 5.8,5.10. In particular, t2 acts to increase the DOS at
the Fermi level: this means U (or some effective measure of the electron-
electron interactions) at which ferromagnetism sets in can be significantly
lower. Conversely, increasing t4 has the effect of boosting the DOS above
the Fermi level, thus depleting it at the Fermi level and increasing the U
required to set off ferromagnetism. This kind of behaviour is consistent
with what has been seen before with regards to the next-nearest neighbour
hopping [79].

Despite the seemingly strong impact of the hopping rates on the magnetic
phase diagram, it appears that it almost does not affect the energy of the
4-site states. Fig. 5.11 shows how the energies of the three main 4-site
contenders ⇑ 0 ⇓ 0, ↑↑↓↓ and ↑→↓← scale with varying t2 and t4. These
plots represent the trend that is observed across most of the parameter
regimes: that the hopping rates generally do not affect the energy order
of the various 4-site magnetic states, rather they modulate their energies
more or less equally. This can be generally understood from frustration cost
arguments: the added frustration introduced by a nonzero t4 is identical
for all the three candidates. For t2 the effect is slightly more complicated,
as increasing it actually brings down the energy for all of the magnetic
states: we believe this should be seen in light of the Stoner criterion which
benefits all kinds of magnetic order, but prefers ferromagnetism above all
else. Unlike t4, increasing t2 actually does show a preference for magnetic
orders: namely it prefers collinear orders like ⇑ 0 ⇓ 0 and ↑↑↓↓ above the
non-collinear version ↑→↓← – however, its preference for ferromagnetism
reigns above all else. Conversely, the frustration costs from t4 are strongest
in ferromagnets, as can be seen by the steep increase in energy for the
ferromagnetic state in Fig. 5.11. Once again, we would like to point out
that these effects are all purely a consequence of the shape of the DOS, as
the bandwidth is barely renormalized (see Fig. 5.8).

Another small caveat to the notion that the relative standing of the
various 4-site candidates is unaffected by the various hopping rates is the
emergence of the non-collinear ↑→↓← state as the ground state in what
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used to be the ↑↑↓↓ domain at t2 = 0, visible in the top panel in Fig. 5.8.
This phenomenon is still not entirely clear to us and is to be studied further
in a later work: however, the fact that it only happens when t2 = 0 and
is washed out at all other values of the hopping rates suggests that it is
an isolated phenomenon and should not affect the general discussion of the
ground state in rare-earth nickelates.

5.4 The anharmonicity parameter α

Throughout this work the value α = 1 was mostly used during the calcu-
lations: however, it is certainly important to reflect on the impact of this
additional parameter in our model. Looking at the form of the lattice energy
for the typical value of the distortion u = 0.5,

Elatt = εb(u
2
i + αu4

i /2) ∼ εb(0.25 + 0.03α),

we observe that the anharmonic contribution for α = 1 is merely %10 of the
total value of the lattice energy. Hence its main impact is to renormalize
the ground state distortion value u away from the identity u = δ, as per the
self-consistency equation 3.5,

uj + au3
j + 1 = 〈nj〉Ψe ,

without affecting the physics of the problem. An example calculation for
a fixed ratio J/U = 0.2 in Fig. 5.12 supports this intuition: there is only
a moderate displacement of the phase boundaries with the anharmonicity
parameter going from α = 0 to α = 1, with the main change being the
shift of the charge modulation δ contours. And it is mostly the contours for
largest δ (i.e. largest u) that are significantly displaced, as could be expected
from the energy scale comparisons above. In the interest of controlling the
magnitude of the lattice distortion u, we employ α = 1 throughout most of
the calculation in this thesis.

5.5 Convergence and stability

It should be noted that many of these magnetic orders, excluding perhaps
the ⇑ 0 ⇓ 0 state, are very unstable numerically. Consider the no dispropor-
tionation collinear state ↑↑↓↓. In our model it will have (for example) the
following mean-field description,

δ, SFM, SAFM, S1x, S2x = 0, S1z = S2z 6= 0.
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Figure 5.11: Energies of several converged self-consistent HF states as a
function of t4, relative to the energy of the metallic state. The differ-
ent colours correspond to different magnetic orders (see the legend). The
parameters are U = 4, J = 0.316, t1 = 1, t4 = 0, εb = 0 for (a) and
U = 5, J = 0.316, t1 = 1, t2 = 0.15, εb = 0 for (b). Notice how in (b)
the relative energies of the chief magnetic ground state contenders are not
affected by the change in the hopping rate t4 – except for ferromagnetism,
which gets strongly frustrated with the additional t4 hopping and, paradoxi-
cally, “unfrustrated” with the introduction of t2 hopping due to DOS effects
(see the text for details). Meanwhile, in (a) with tuning the t2 rate away
from 0 the non-collinear ↑→↓← gets briefly favoured, but then quickly loses
out to the collinear ↑↑↓↓, before ferromagnetism begins to reign supreme.
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Figure 5.12: Magnetic order in the HF ground state, as a function of U and
εb, for J/U = 0.2, and two different values of the anharmonicity α: α = 0
(top) and α = 1 (bottom). Other parameters are t1 = 1, t2 = 0.15, t4 = 0.25.
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To make a reasonable guess for its convergence, we might guess S1z = S2z =
0.5, and all other parameters zero. Then we usually get the desired state.
However, if there is even a slight deviation from either perfect symmetry
between the sublattices (S1z 6= S2z), or a small non-zero δ, or a different
parameter (O1, Z4, SFM, ...) being nonzero, most likely the iterations would
run away from the solution of the desired type. Sometimes there are lines
of stability, along which deviations generally do not result in catastrophic
runaway, but there never are any sizable convergence basins for most of the
states on the list 5.2. In fact, iteration divergence occured (before the in-
troduction of the Pulay mixing method) even if the iterations simply took
too long: the accumulated numerical errors after a sufficiently large number
of iterations automatically result in some of the other parameters becom-
ing non-zero, which causes runaway effects and the desired solution is not
obtained. This can be seen most clearly from cuts in the 15-dimensional
parameter space that show iterative trajectories of the Hartree-Fock cal-
culation (such diagrams are called “Poincare sections” in the dynamical
systems literature). In Fig. 5.13, we plot the difference S1z−S2x versus the
charge disproportionation δ during the iterative process, as the algorithm
searches for the solution to the Hartree-Fock equations. Both ↑→↓← and
⇑ 0 ⇓ 0 are well-defined points in this plane, corresponding to S1z = S2z and
one of the S being zero, respectively. The intermediate state ⇑→⇓← would
then lie somewhere on the diagonal, between the two. From the iterative
trajectories, we can see that any solution not already on the S1z − S2z = 0
line (the y-axis) converges to ⇑ 0 ⇓ 0 instead: and the intermediate type
states on the diagonal have some of the fastest decay toward the ⇑ 0 ⇓ 0
states out there.
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Figure 5.13: A phase portrait of the iterative sequences for various starting
parameters in the δ, S1z, S2z parameter subspace. On the x axis we plot
the difference between the spin parameters of the sublattices, S1z − S2z:
hence the perfect symmetry point is at the origin. On the y axis is the
disproportionation parameter δ: the stable point ⇑ 0 ⇓ 0 is thus at the
top right and equivalently bottom left. The parameters are U = 1.5, J =
3, t1 = 1, t2 = 0.15, t4 = 0.55, εb = 0. Despite the relatively dense sampling
of the phase space, the ⇑ 0 ⇓ attractors dominate the dynamics, with no
other states, specifically of the partially disproportionated kind ⇑↑⇓↓, being
convergent.
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Conclusions

What we call the beginning is
often the end. And to make an
end is to make a beginning. The
end is where we start from.

T. S. Eliot (1942)

Rare-earth nickelates, ever since being synthesized in the early 70s, have
presented us with numerous fascinating puzzles that speak to various areas
of condensed matter physics. While the questions about its crystal struc-
ture and the lattice distortion across the MIT phase boundary are considered
largely settled, the conversations surrounding the MIT itself – including its
precise mechanism and physical manifestation vis-á-vis the orbital structure
in the Ni-O cages – as well as questions about the nature of the magnetic
order at low temperatures and its interrelation to charge and lattice degrees
of freedom, are still ongoing. In this thesis we focussed our efforts on in-
vestigating the relationship between the lattice distortions in the material
and the charge/magnetic order found at low temperatures. Our approach
was to construct an effective two-band Hubbard model, based on the phe-
nomenology of the material that is known from experiments, that focusses
on the nominally degenerate eg doublet of the Ni outer electron subshell.
We included first, second and fourth neighbour hopping, and incorporated
the electron-electron interactions in the two-band context in the usual way
– by employing the Kanamori Hamiltonian. The lattice was introduced
semiclassically, characterized by a single scalar u representing the largely
isotropic distortion of the Ni-O octahedral cage: it was coupled to the elec-
trons through a Holstein-like on-site term. The final model ends up hav-
ing 7 independent adjustable parameters: the electron-electron interaction
strengths U, J , the hopping amplitudes t1, t2, t4, the lattice energy scale εb
and anharmonicity α.

Upon constructing the model, we applied the Hartree-Fock approxima-
tion and solved the resulting Hartree-Fock equations to obtain the expected
ground state of the model at zero temperature. Studying the ground state

83



Chapter 6. Conclusions

in a variety of slices of the high-dimensional parameter space, we were able
to confirm that the net effect of the electron-phonon coupling on the elec-
tronic behaviour – even in this simple semiclassical model for the lattice –
is to encourage the formation of insulating charge order, just as found by
earlier investigators [32]. With the increase of the lattice coupling strength
εb, we found that the area of phase diagrams occupied by the phase with
charge order increases dramatically, as the order becomes more energetically
favourable: in this simple model the charge order is most closely identified
with that of a charge density wave type Ni3+δNi3−δ, as described in Sec.
1.4.3, although effective parallels can be drawn with the negative-charge
transfer picture as well, as discussed briefly during the construction of the
model in Ch. 2.

Next we proceeded to interrogate the magnetic behaviour of the nicke-
lates within our model. It turns out there is a great variety of states that are
self-consistent within the model: the relevant ones are those that are lowest
in total energy. We identified several 4-site self-consistent candidate states
that could fit the experimentally observed wavevector Qm = (2π

a )(1
4 ,

1
4 ,

1
4):

these include ⇑ 0 ⇓ 0, ↑↑↓↓, and ↑→↓←. Even without the coupling to the
lattice, for most hoppings ti and a wide range of the electron-electron inter-
action parameters U, J , the ⇑ 0 ⇓ 0 state emerges as the dominant ground
state. The two other candidates only arise at intermediate U and small J
and zero lattice coupling εb, and do not fare well when the lattice coupling
is increased, quickly ceding their entire phase space to the ⇑ 0 ⇓ 0. This
sort of behaviour makes sense in light of the fact that the states ↑↑↓↓, and
↑→↓← cannot couple to the lattice distortion, given that they have perfect
sublattice symmetry and no charge disproportionation: and if δ = 0, then
the self-consistency condition for the lattice degree of freedom demands the
lattice distortion also vanish u = 0. So while these two states are unaffected
by the presence of the lattice, the state ⇑ 0 ⇓ 0 can couple to the distortions
and lower its energy, thus becoming the favoured ground state.

In principle one could imagine states with only partial charge dispropor-
tionation, say of type ⇑→⇓←, emerging within the model to compete ener-
getically with the fully disproportionated state ⇑ 0 ⇓ 0. However, that does
not seem to happen within our model: we never find such states among the
self-consistent solutions. In fact, if we follow the iterative trajectories dur-
ing the solution of the Hartree-Fock equations and start with initial guesses
close to such a partially disproportionated order, such points appear among
the least stable in the phase space, the solution quickly diverging away either
to the metallic 0000 state or to the ⇑ 0 ⇓ 0 one.

During this study, an unexpected new feature emerged in the phase dia-
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gram when the lattice coupling εb was turned on: a novel phase wherein the
charge density wave (δ 6= 0) appeared without the accompanying magnetic
order ⇑ 0 ⇓ 0. This de-coupling of the charge and magnetic transitions in
the phase diagram appears to be mediated by the electron-phonon coupling:
the energy decrease afforded by the charge disproportionation is reinforced
by the lattice distortion so far so as to make the additional appearance of
the magnetic order (and simultaneously the onset of insulating behaviour)
unfavourable. This feature is strongly reminiscent of the well-known phe-
nomenon in the nickelates where the MIT and the magnetic transition oc-
cur at different temperatures, TMIT > TN, for all the nickelates from Eu
to Lu, leaving out only the lightest rare-earth ions Pr and Nd, for which
TMIT = TN. The observation that this decoupling can be brought on by the
electron-phonon coupling even in this simple model further underscores the
importance of the lattice degrees of freedom and could potentially be seen as
an explanation of the phenomenon, given that the lattice coupling strength
can be expected to increase for the heavier rare-earth ions.

However, plenty of open questions remain. For one, the negative charge
transfer picture of the MIT in the nickelates calls for the involvement of the
oxygen 2p bands in the model: it is unclear to what extent the variation
of the hopping and interaction parameters can capture the effects of intro-
ducing the oxygen bands. Moreover, the Hartree-Fock approximation does
not take into account any correlation effects (aside from Pauli’s exclusion
principle): while it is generally believed that the effects of correlation in
the nickelates are not very important, it would still be useful to check this
explicitly, e.g. via a dynamical mean-field theory (DMFT) approach.

Aside from the questions about the applicability of the model and the
accuracy of the Hartree-Fock approximation, even within our study there are
a few ideas that can be pursued further. For instance, a clear understand-
ing of the orbitally ordered state (the antiferromagnetic disproportionated-
ferroorbital state) that obtains at intermediate to high values of U in the
magnetic order phase diagrams would be very valuable, along with other
orbitally ordered states, especially considering that there have been no signs
of any orbital order in most experimental studies.

Overall, while we have made significant strides in addressing the question
of the impact of the electron-phonon coupling on the charge and magnetic
order in the nickelates, further work, using more detailed Hamiltonians and
more accurate approximations, is required before the matter is fully put to
rest.
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[68] H. Hellmann, “Einführung in die Quantenchemie,” in Hans Hellmann:
Einführung in die Quantenchemie, pp. 19–376, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015.

92



[69] R. P. Feynman, “Forces in Molecules,” Physical Review, vol. 56,
pp. 340–343, August 1939.

[70] D. J. Griffiths, Introduction to Quantum Mechanics. Toronto: Pearson
Prentice Hall, 2nd ed., 2005.

[71] F. Jensen, Introduction to Computational Chemistry. Mississauga:
John Wiley & Sons Inc., 2nd ed., 2007.

[72] J.-P. Blaizot and G. Ripka, Quantum Theory of Finite Systems. Lon-
don: MIT Press, 1st ed., 1986.

[73] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field
Theory. Boca Raton, FL: CRC Press, 1995.

[74] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of
Quantum Field Theory in Statistical Physics. Dover, 1975.

[75] M. P. Marder, Condensed Matter Physics. Hoboken, NJ, USA: John
Wiley & Sons, Inc., October 2010.

[76] A. S. Banerjee, P. Suryanarayana, and J. E. Pask, “Periodic Pu-
lay method for robust and efficient convergence acceleration of self-
consistent field iterations,” Chemical Physics Letters, vol. 647, pp. 31–
35, March 2016.

[77] P. Pulay, “Convergence acceleration of iterative sequences. the case of
scf iteration,” Chemical Physics Letters, vol. 73, pp. 393–398, July 1980.

[78] R. Peters, Magnetic Phases in the Hubbard Model. PhD thesis, der
Georg-August-Universitat Gottingen, 2009.

[79] R. Peters and T. Pruschke, “Half-filled Hubbard model on a Bethe
lattice with next-nearest-neighbor hopping,” Physical Review B, vol. 79,
no. 4, pp. 1–7, 2009.

[80] E. C. Stoner, “LXXX. Atomic moments in ferromagnetic metals and
alloys with non-ferromagnetic elements,” The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, vol. 15,
pp. 1018–1034, May 1933.

93



Appendix A

Calculating the hopping
coefficients tab(k)

In this appendix we start with the basic expressions for the hopping within
the tight-binding model that we are constructing for the nickelates, and we
calculate the hopping matrix elements to put them eventually into a simple
form in Fourier space.

A.1 1st and 4th neighbour hopping

For 1st order hopping, there will not be any mixed orbital hopping between
different directions, as discussed in the text, so we have

T̂1 = −t1
∑
iσ

[
d†izσ(di−z,zσ + di+z,zσ) + d†ixσ(di−x,xσ + di+x,xσ)+

+ d†iyσ(di−y,yσ + di+y,yσ)
]
. (A.1)

The first step it to put everything in terms of the |z〉 and |z̄〉 states, using
the expressions

d†ixσ = −1

2
d†izσ +

√
3

2
d†iz̄σ

d†iyσ = −1

2
d†izσ −

√
3

2
d†iz̄σ. (A.2)

Let us massage the terms separately. The y hopping gives

d†iyσ(di−y,yσ+di+y,yσ) =

(
1

2
d†izσ +

√
3

2
d†iz̄σ

)
×

×

(
1

2
di−y,zσ +

√
3

2
di−y,z̄σ +

1

2
di+y,zσ +

√
3

2
di+y,z̄σ

)
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A.1. 1st and 4th neighbour hopping

while the x terms are

d†ixσ(di−x,xσ+di+x,xσ) =

(
1

2
d†izσ −

√
3

2
d†iz̄σ

)
×

×

(
1

2
di−x,zσ −

√
3

2
di−x,z̄σ +

1

2
di+x,zσ −

√
3

2
di+x,z̄σ

)

Now all the operators are expressed in terms of the same orbitals, but hop-
ping still occurs along different directions. Fourier transforming into mo-
mentum space should fix this. Notice that what orbital the operator has
will have no influence on this transformation: the only thing that matters is
the site index. Letting τ = x, y, z denote the displacement index for a site
(and simultaneously a physical unit displacement vector ax̂, aŷ, aẑ), we see
that a standard term will transform in momentum space as∑

iσ

d†iaσdi+τ,bσ =
1

N

∑
ikqσ

e−ik·Rid†kaσe
iq·Ri+τdqbσ =

=
1

N

∑
ikqσ

e−i(k−q)·Rid†kaσe
iq·τdqbσ =

∑
kσ

eik·τd†kaσdkbσ

Since the Hamiltonian is Hermitian, the hermitian conjugate of this term
will also be present, which is of course hopping in the opposite direction
— in our Hamiltonian it is represented by the hopping from the other side
onto the same site i (plus orbital swap), as can be seen by shifting the index
i→ i+ τ∑

iσ

d†ibσdi−τ,aσ =
∑
iσ

d†i+τ,bσdiaσ
same as above−−−−−−−−→

∑
kσ

e−ik·τd†kaσdkbσ.

Together, of course, these terms produce the usual band structure∑
iσ

(d†iaσdi+τ,bσ + h.c.) = 2
∑
kσ

cos(k · τ)d†kaσdkbσ.

To utilize these insights, let us group the appropriate terms from the x, y, z
directions into nice groups based on orbitals. First, these are all the zz
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A.1. 1st and 4th neighbour hopping

terms from T̂1:

zz terms hopping along z =
∑
iσ

d†izσ(di−z,zσ + di+z,zσ) =
∑
iσ

d†izσdi−z,zσ+

+
∑
iσ

d†izσdi+z,zσ︸ ︷︷ ︸
re-sum to h.c. form

=
∑
iσ

d†izσdi−z,zσ +
∑
iσ

d†i−z,zσdizσ =

=
∑
iσ

(d†izσdi−z,zσ + h.c. )
applying the prescription−−−−−−−−−−−−−−−→

2
∑
kσ

cos

(
k · τ︸︷︷︸

=aẑ

)
d†kzσdkzσ = 2

∑
kσ

cos(kza)d†kzσdkzσ.

Now we collect zz terms hopping along x. We have

zz terms hopping along x =
1

4

∑
iσ

(d†izσdi−x,zσ + d†izσdi+x,zσ)

apply prescription−−−−−−−−−−−→
re-sum as before

1

2

∑
kσ

cos(kxa)d†kzσdkzσ.

Now for zz terms hopping along y. We have exactly the same outcome as
above

zz terms hopping along y =
1

4

∑
iσ

(d†izσdi−y,zσ + d†izσdi+y,zσ) −→

1

2

∑
kσ

cos(kya)d†kzσdkzσ.

Now let us do the z̄z̄ terms. There are none with z hopping (for z these are
the in-plane orbitals), so we go to x:

z̄z̄ terms hopping along x =
3

4

∑
iσ

(d†iz̄σdi+x,z̄σ + d†iz̄σdi+x,z̄σ) −→

3

2

∑
kσ

cos(kxa)d†kz̄σdkz̄σ.

Exactly the same for y

z̄z̄ terms hopping along y =
3

4

∑
iσ

(d†iz̄σdi+y,z̄σ + d†iz̄σdi+y,z̄σ) −→

3

2

∑
kσ

cos(kya)d†kz̄σdkz̄σ.
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A.1. 1st and 4th neighbour hopping

Now for the cross terms. Again, there are no cross terms with z hopping, so
we go directly to x. There will be four such terms, in conjugate pairs

zz̄ terms hopping along x = −
√

3

4

∑
iσ

(
(d†izσdi−x,z̄σ + d†iz̄σdi+x,zσ)︸ ︷︷ ︸

h.c.’s

+

+ (d†iz̄σdi−x,zσ + d†izσdi+x,z̄σ)︸ ︷︷ ︸
h.c.’s

)
apply prescription−−−−−−−−−−−→
same resummation

−
√

3

2

∑
kσ

cos(kxa)
(
d†kzσdkz̄σ + d†kz̄σdkzσ

)
.

Since the terms in the expansion of y are exactly the same save for the
displacement vector ŷ and that there are no minus signs, we get exactly the
same outcome, with a + sign

zz̄ terms hopping along y =

√
3

4

∑
iσ

(
(d†izσdi−y,z̄σ + d†iz̄σdi+y,zσ)+

+ (d†iz̄σdi−y,zσ + d†izσdi+y,z̄σ)
)
−→

√
3

2

∑
kσ

cos(kya)
(
d†kzσdkz̄σ + d†kz̄σdkzσ

)
.

And that’s it! We have put our T̂1 Hamiltonian into momentum space, all
in terms of z and z̄ orbitals. We write

T̂1 = −t1
∑
kσ

[
t1zz(k)d†kzσdkzσ+t1z̄z̄(k)d†kzσdkzσ+

+ t1zz̄(k)(d†kzσdkz̄σ + d†kz̄σdkzσ)
]
, (A.3)

with

t1zz(k) = 2 cos(kza) +
1

2
[cos(kxa) + cos(kya)],

t1z̄z̄(k) =
3

2
[cos(kxa) + cos(kya)], (A.4)

t1zz̄(k) = −
√

3

2
[cos(kxa)− cos(kya)].

As mentioned in the text, we can immediately write down the corre-
sponding result for the 4th neighbour hopping by merely doubling the hop-
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A.2. 2nd neighbour hopping

ping distance a→ 2a. Explicitly, we have

T̂4 = −t4
∑
kσ

[
t4zz(k)d†kzσdkzσ+t4z̄z̄(k)d†kzσdkzσ+

+ t4zz̄(k)(d†kzσdkz̄σ + d†kz̄σdkzσ)
]
, (A.5)

with

t4zz(k) = 2 cos(2kza) +
1

2
[cos(2kxa) + cos(2kya)],

t4z̄z̄(k) =
3

2
[cos(2kxa) + cos(2kya)], (A.6)

t4zz̄(k) = −
√

3

2
[cos(2kxa)− cos(2kya)].

A.2 2nd neighbour hopping

Start with
T̂2 = −t2

∑
iabσ,τ̂ 6=µ̂

d†i+τ̂+µ̂,aσdibσ. (A.7)

As discussed in the text, we can take b = τ and a = µ, and then take the
Fourier transform just as before, obtaining∑

iabσ,τ̂ 6=µ̂
d†i+τ̂+µ̂,aσdibσ =

∑
iσ,a6=b

d†
i+b̂+â,aσ

dibσ =
∑

kσ,a6=b
eik·(b̂+â)d†kaσdkbσ.

There are multiple possible summands arising from the above, but they will
come in conjugate pairs. There are a total of 24 terms (6 ·6 = 36 overall, but
cannot have a and b be equal. There are 6 identical terms, but we sum over
both a and b, so in fact we leave out 12 terms, so 36− 12 = 24), which are
conjugate pairs based on the overall sign, like +x+ y and −x− y, or +x− y
and −x + y. Grouping them into conjugate pairs produces the following
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A.2. 2nd neighbour hopping

(note the standard cos dispersion)∑
kσ,a6=b

eik·(b̂+â)d†kaσdkbσ =
∑
kσ

2 cos(kxa+ kya)
[
d†kxσdkyσ + d†kyσdkxσ

]
+

+ 2 cos(kya+ kza)
[
d†kyσdkzσ + d†kzσdkyσ

]
+

+ 2 cos(kza+ kxa)
[
d†kzσdkxσ + d†kxσdkzσ

]
+

+ 2 cos(kxa− kya)
[
d†kxσdkyσ + d†kyσdkxσ

]
+

+ 2 cos(kya− kza)
[
d†kyσdkzσ + d†kzσdkyσ

]
+

+ 2 cos(kza− kxa)
[
d†kzσdkxσ + d†kxσdkzσ

]
.

Using the trigonometric identity cos(x+ y) + cos(x− y) = 2 cos(x) cos(y),
we can reduce this even further to obtain∑

kσ,a6=b
eik·(b̂+â)d†kaσdkbσ =

∑
kσ

(
4 cos(kxa) cos(kya)×

×
[
d†kxσdkyσ + d†kyσdkxσ

]
+ 4 cos(kya) cos(kza)

[
d†kyσdkzσ + d†kzσdkyσ

]
+

+ 4 cos(kza) cos(kxa)
[
d†kzσdkxσ + d†kxσdkzσ

] )
.

To make further progress, we need to express everything in terms of our
preferred orbital basis |z〉 and |z̄〉. Notice that, simply inverting the matrix
in favour of |x〉 , |y〉 from before, we find[

|x〉
|y〉

]
=

[
−1

2

√
3

2

−1
2 −

√
3

2

]
︸ ︷︷ ︸

=U

[
|z〉
|z̄〉

]
→
[
|z〉
|z̄〉

]
=

[
−1 −1

1√
3
− 1√

3

] [
|x〉
|y〉

]
. (A.8)

We can represent the three terms in our Hamiltonian in the following way
(using the shorthand dx ≡ dkxσ and so on)[

d†kxσdkyσ + d†kyσdkxσ

]
→
[
d†x, d

†
y

] [dy
dx

]
(A.9)

Symbolically changing basis, we have[
d†x, d

†
y

] [dy
dx

]
=
[
d†z, d

†
z̄

]
(U−1)tU s

[
dz̄
dz

]
=

=
[
d†z, d

†
z̄

] [−1
2 −1

2√
3

2 −
√

3
2

][
−
√

3
2 −1

2√
3

2 −1
2

] [
dz̄
dz

]
=
[
d†z, d

†
z̄

] [ 0 1
−3

2 0

] [
dz̄
dz

]
,
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A.2. 2nd neighbour hopping

where the notation U s means we swapped the two rows. Instead of plugging
in expressions for each term, we can just perform this matrix product. The
other terms looks similar, except the matrix will have one simple row for
the terms that already include z:

[
d†y, d

†
z

] [dz
dy

]
=
[
d†z̄, d

†
z

] [−√3
2 0
−1

2 1

][
1 0

−1
2 −

√
3

2

] [
dz
dz̄

]
=

=
[
d†z̄, d

†
z

] [−√3
2 0

−1 −
√

3
2

] [
dz
dz̄

]
=
[
d†z, d

†
z̄

] [−√3
2 −1

0 −
√

3
2

] [
dz̄
dz

]
just to straighten it out in accordance with the rest of the terms. Finally,
for the last term we find (Adopt the shorthand cx ≡ cosx)

[
d†z, d

†
x

] [dx
dz

]
=
[
d†z, d

†
z̄

] [1 −1
2

0
√

3
2

][√
3

2 −1
2

0 1

] [
dz̄
dz

]
=

=
[
d†z, d

†
z̄

] [√3
2 −1

0
√

3
2

] [
dz̄
dz

]
.

Adding them all together, we find

cos(kxa) cos(kya)
[
d†kxσdkyσ + d†kyσdkxσ

]
+ cos(kya) cos(kza)×

×
[
d†kyσdkzσ + d†kzσdkyσ

]
+ cos(kza) cos(kxa)

[
d†kzσdkxσ + d†kxσdkzσ

]
=

= cos(kxa) cos(kya)
[
d†z, d

†
z̄

] [ 0 1
−3

2 0

] [
dz̄
dz

]
+

+ cos(kya) cos(kza)
[
d†z, d

†
z̄

] [−√3
2 −1

0 −
√

3
2

] [
dz̄
dz

]
+

+ cos(kza) cos(kxa)
[
d†z, d

†
z̄

] [√3
2 −1

0
√

3
2

] [
dz̄
dz

]
=

=
[
d†z, d

†
z̄

] [√3
2 cz(cx − cy) cxcy − cz(cy + cx)

−3
2cxcy

√
3

2 cz(cx − cy)

] [
dz̄
dz

]
=

= [cxcy − cz(cy + cx)] d†zdz +

[
−3

2
cxcy

]
d†z̄dz̄+

+

[√
3

2
cz(cx − cy)

]
(d†zdz̄ + d†z̄dz).
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A.3. Full hopping operator

Done! Putting this all together, the form of the Hamiltonian is

T̂2 = −2t2
∑
kσ

[
t2zz(k)d†kzσdkzσ + t2z̄z̄(k)d†kz̄σdkz̄σ+

+ t2zz̄(k)(d†kzσdkz̄σ + d†kz̄σdkzσ)
]
, (A.10)

with

t2zz(k) = 2 cos(kxa) cos(kya)− 2 cos(kza)(cos(kya) + cos(kxa)),

t2zz̄(k) =
√

3 cos(kza)(cos(kxa)− cos(kya)), (A.11)

t2z̄z̄(k) = −3 cos(kxa) cos(kya).

A.3 Full hopping operator

Altogether, then, the hopping operator has the form

T̂ =
∑
kσ

[
tzz(k)d†kzσdkzσ + tz̄z̄(k)d†kz̄σdkz̄σ+

+ tzz̄(k)(d†kzσdkz̄σ + d†kz̄σdkzσ)
]
, (A.12)

with the definitions

tzz(k) =− 2t1

(
cos(kza) +

1

4
[cos(kxa) + cos(kya)]

)
−

− 2t4

(
cos(2kza) +

1

4
[cos(2kxa) + cos(2kya)]

)
−

− 2t2 [cos(kxa) cos(kya)− 2 cos(kza)(cos(kya) + cos(kxa))] ,

tz̄z̄(k) =− 3t1
2

[cos(kxa) + cos(kya)]− 3t4
2

[cos(2kxa) + cos(2kya)]+ (A.13)

+ 6t2 cos(kxa) cos(kya),

tzz̄(k) =

√
3t1
2

[cos(kxa)− cos(kya)] +

√
3t4
2

[cos(2kxa)− cos(2kya)]−

− 2
√

3t2 cos(kza)(cos(kxa)− cos(kya)).
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Appendix B

Minimizing lattice
contributions: solving the
cubic equation

In the text we were faced with the need to solve the cubic equation

u3 +
1

a
u− δ

a
= 0 (B.1)

which arose during lattice energy minimization in the Hartree-Fock process.
It turns out that it admits a closed form solution: write

u3 = (s− t)3,
1

a
= 3st,

δ

a
= s3 − t3

Combining the latter two equations into one fo t, we find

t6 + t3
(
δ

a

)
−
(

1

3a

)3

= 0

which is easily solved as a quadratic

t3 =
1

2

−δ
a
±

√(
δ

a

)2

+
4

27a3



s3 = t3 +
δ

a
=

1

2

δ
a
±

√(
δ

a

)2

+
4

27a3


from which we can recover the expression for u

u = δ
3

2β1/3

[(
1 +

√
1 +

1

β

)1/3

+

(
1−

√
1 +

1

β

)1/3
]

(B.2)

where we set β = 27
4 aδ

2. So we see that the charge disproportionation factor
δ couples to the lattice distortions.
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Appendix C

Calculation of 〈Ĥe〉

In this appendix we express the electron-electron interaction contribution to
the Hartree-Fock energy, 〈Ĥe〉, which we found in the text to be

〈Ĥe〉Ψe = U
∑
ia

[
〈d†ia↑dia↑〉〈d

†
ia↓dia↓〉 − 〈d

†
ia↑dia↓〉〈d

†
ia↓dia↑〉

]
+

+ U ′
∑
iσ

[
〈d†izσdizσ〉〈d

†
iz̄σ̄diz̄σ̄〉 − 〈d

†
izσdiz̄σ̄〉〈d

†
iz̄σ̄dizσ〉

]
+

+ (U ′ − J)
∑
iσ

[
〈d†izσdizσ〉〈d

†
iz̄σdiz̄σ〉 − 〈d

†
izσdiz̄σ〉〈d

†
iz̄σdizσ〉

]
−

− J
∑
iσ

[
〈d†izσdizσ̄〉〈d

†
iz̄σ̄diz̄σ〉 − 〈d

†
izσdiz̄σ〉〈d

†
iz̄σ̄dizσ̄〉

]
+

+ γJ
∑
ia

[
〈d†ia↑diā↑〉〈d

†
ia↓diā↓〉 − 〈d

†
ia↑diā↓〉〈d

†
ia↓diā↑〉

]
, (C.1)

in terms of the newly-defined order parameters δ, SFM, ..., which are set by

〈d†iaσd
†
iaσ〉 =

1

4

[
1 + δeiQc·Ri

]
+
σ

2

[
SFM + SAFMe

iQc·Ri+

+ S1z cos(Qm ·Ri) + S2z sin(Qm ·Ri)
]
,

〈d†iaσd
†
iaσ̄〉 =

1

2
[S1x cos(Qm ·Ri) + S2x sin(Qm ·Ri)] ,

〈d†iaσd
†
iāσ〉 =O1 +O2e

iQc·Ri + σ
[
Z1 + Z2e

iQc·Ri+

+ Z3 cos(Qm ·Ri) + Z4 sin(Qm ·Ri)
]
,

〈d†iaσd
†
iāσ̄〉 =X1 cos(Qm ·Ri) +X2 sin(Qm ·Ri). (C.2)

We calculate the contributions term by term. The important trick to
remember is that

∑
i e
is·Ri(...) = 0 unless s ·Ri = 0 mod 2π. Otherwise the

exponential keeps alternating sign and the sum essentially cancels itself out.
An exact derivation of this fact, as well as many important examples of its
application are given in the appendices of Marder’s textbook on condensed
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Appendix C. Calculation of 〈Ĥe〉

matter physics [75]. Below, whenever we encounter sums over terms that
have non-vanishing exponentials we will immediately drop them from the
expression. And whenever there is a cosine or a sine, expressing it in terms
of the exponentials will allow us to apply that same rule. Let us derive those
rules: for a product of cosines∑

i

cos2(Qm ·Ri) =
∑
i

1

4
(ei(Qm·Ri) + e−i(Qm·Ri))2 =

=
∑
i

1

4
(eiQc·Ri + 2 + e−iQc·Ri) =

1

4
2N =

N

2
. (C.3)

For sines this is identical, except there is a minus sign which is fixed by the
presence of the i in the denominator that gets squared to −1∑

i

sin2(Qm ·Ri) =
∑
i

1

−4
(ei(Qm·Ri) − e−i(Qm·Ri))2 =

N

2
. (C.4)

Finally, for a product of sines and cosines we find∑
i

cos(Qm ·Ri) sin(Qm ·Ri) =
∑
i

1

4
(ei(Qm·Ri) + e−i(Qm·Ri))×

×(ei(Qm·Ri) − e−i(Qm·Ri)) =
∑
i

1

4
(eiQc·Ri + 0− e−iQc·Ri) = 0. (C.5)

The first term gives

U
∑
ia

[
〈d†ia↑dia↑〉〈d

†
ia↓dia↓〉 − 〈d

†
ia↑dia↓〉〈d

†
ia↓dia↑〉

]
=

= U
∑
ia

[ 1

16
(1 + δeiQc·Ri)2 − σ2

4

[
SFM + SAFMe

iQc·Ri + S1z cos(Qm ·Ri)+

+ S2z sin(Qm ·Ri)
]2
− 1

4
(S1x cos(Qm ·Ri) + S2x sin(Qm ·Ri))

2
]

=

= U
∑
i

[1

8
(1 + δ2)− 1

4

[
S2

FM + S2
AFM +

1

2
S2

1z +
1

2
S2

2z

]
−

− 1

4

(
1

2
S2

1x +
1

2
S2

2x

)]
=

= 2UN

[
1

16
(1 + δ2)− 1

4

(
S2

FM + S2
AFM +

S2
1z + S2

2z + S2
1x + S2

2x

2

)]
.

(C.6)
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The second term gives, by analogy (it is almost exactly the same as the
first, same for X instead of S1,2x in the last term)

U ′
∑
iσ

[
〈d†izσdizσ〉〈d

†
iz̄σ̄diz̄σ̄〉 − 〈d

†
izσdiz̄σ̄〉〈d

†
iz̄σ̄dizσ〉

]
=

= U ′
∑
iσ

[ 1

16
(1 + δeiQc·Ri)2 − σ2

4

[
SFM + SAFMe

iQc·Ri + S1z cos(Qm ·Ri)+

+ S2z sin(Qm ·Ri)
]2
− 1

4
(X1 cos(Qm ·Ri) +X2 sin(Qm ·Ri))

2
]

=

= 2U ′N

[
1

16
(1 + δ2)− 1

4

(
S2

FM + S2
AFM +

S2
1z + S2

2z

2

)
− 1

2
(X2

1 +X2
2 )

]
.

(C.7)

The third term gives

(U ′ − J)
∑
iσ

[
〈d†izσdizσ〉〈d

†
iz̄σdiz̄σ〉 − 〈d

†
izσdiz̄σ〉〈d

†
iz̄σdizσ〉

]
=

= (U ′−J)
∑
iσ

{1

4
(1+δeiQc·Ri)+

σ

2

[
SFM+SAFMe

iQc·Ri+S1z cos(Qm ·Ri)+

+ S2z sin(Qm ·Ri)
]}2

+
{
O1 +O2e

iQc·Ri + σ
[
Z1 + Z2e

iQc·Ri+

+ Z3 cos(Qm ·Ri) + Z4 sin(Qm ·Ri)
]}2

= (U ′ − J)
∑
iσ

{ 1

16
(1 + δ2)+

+
1

4

[
S2

FM + S2
AFM +

S2
1z + S2

2z

2

]
+
σ

4

[
SFM + SAFMδ

]}
+
{
O2

1 +O2
2 + Z2

1+

+ Z2
2 +

Z2
3 + Z2

4

2
+ σ

(
O1Z1 +O2Z2

)}
= 2(U ′ − J)N

[ 1

16
(1 + δ2)+

+
1

4

[
S2

FM + S2
AFM +

S2
1z + S2

2z

2

]
+O2

1 +O2
2 + Z2

1 + Z2
2 +

Z2
3 + Z2

4

2

]
. (C.8)

where towards the end the σ-dependent terms dropped out because of
the sum over the spins.
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The fourth term gives

− J
∑
iσ

[
〈d†izσdizσ̄〉〈d

†
iz̄σ̄diz̄σ〉 − 〈d

†
izσdiz̄σ〉〈d

†
iz̄σ̄dizσ̄〉

]
=

= −J
∑
iσ

[1

4
(S1x cos(Qm ·Ri) + S2x sin(Qm ·Ri))

2 − (O1 +O2e
iQc·Ri)2+

+
(
Z1 + Z2e

iQc·Ri + Z3 cos(iQc ·Ri) + Z4 sin(iQc ·Ri)
)2]

=

= −2JN

[
S2

1x + S2
2x

8
− (O2

1 +O2
2) +

(
Z2

1 + Z2
2 +

Z2
3 + Z2

4

2

)]
. (C.9)

And, finally, the fifth term

γJ
∑
ia

[
〈d†ia↑diā↑〉〈d

†
ia↓diā↓〉 − 〈d

†
ia↑diā↓〉〈d

†
ia↓diā↑〉

]
=

= γJ
∑
ia

[
(O1 +O2e

iQc·Ri)2 −
(
Z1 + Z2e

iQc·Ri + Z3 cos(iQc ·Ri)+

+ Z4 sin(iQc ·Ri)
)2
− (X1 cos(Qm ·Ri) +X2 sin(Qm ·Ri))

2
]

=

= 2γJN

[
O2

1 +O2
2 −

(
Z2

1 + Z2
2 +

Z2
3 + Z2

4 +X2
1 +X2

2

2

)]
. (C.10)

Combining all of these together, we find

〈Ĥe〉
N

=
3U − 5J

8
(1 + δ2)− U + J

2

(
S2

FM + S2
AFM +

S2
1 + S2

2

2

)
−

− 2(U ′ − (2 + γ)J)(O2
1 +O2

2)− 2(U ′ + γJ)
(
Z2

1 + Z2
2+

+
Z2

3 + Z2
4

2

)
− (U ′ + γJ)(X2

1 +X2
2 ). (C.11)

In this thesis we make the assumption of spherical symmetry for the
two-band Hubbard terms: this assumption means that U ′ = U − 2J . With
this in mind, we obtain the final form

〈Ĥe〉
N

=
3U − 5J

8
(1 + δ2)− U + J

2

(
S2

FM + S2
AFM +

S2
1 + S2

2

2

)
−

− 2(U − (4 + γ)J)(O2
1 +O2

2)− 2(U + (γ − 2)J)
(
Z2

1 + Z2
2+

+
Z2

3 + Z2
4

2

)
− (U + (γ − 2)J)(X2

1 +X2
2 ). (C.12)
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Appendix D

Fourier Transforming ĤHF

The task of this appendix is to make use of the Bloch symmetry of the
Hartree-Fock Hamiltonian

ĤHF =
∑
ijabσ

tabij d
†
iaσdjbσ +

{3U − 5J

4
+

[
3U − 5J

4
δ − 2εbu

]
eiQc·Ri−

−σ
2

(U+J)
[
SFM+SAFMe

iQc·Ri+S1z cos Qm ·Ri+S2z sin Qm ·Ri

]}
d†iaσdiaσ−

− U + J

2
[S1x cos Qm ·Ri + S2x sin Qm ·Ri] d

†
iaσdiaσ̄−

− (U + J(γ − 2))
[
X1 cos Qm ·Ri +X2 sin Qm ·Ri

]
d†iaσdiāσ̄+

+
{

(J(4 + γ)− U)
[
O1 +O2e

iQc·Ri

]
− σ

[
U + J(γ − 2)

]
×

×
[
Z1 + Z2e

iQc·Ri + Z3 cos Qm ·Ri + Z4 sin Qm ·Ri

]}
d†iaσdiāσ. (D.1)

and Fourier transform it into k-space according to the rule

d†kaσ =
∑
i

eikRi

√
N
d†iaσ. (D.2)

The Fourier transform of the hopping operator was already carried out in
Appendix A, resulting in

T̂ =
∑
kabσ

tab(k)d†kaσdkbσ,

with the coefficients tab(k) tabulated in Appendix A. In order to deal with
the rest, we need a quick rule of thumb. Fourier transforming a term of the
form

∑
i e
is·Rid†iaσdibτ simply offsets the momentum label of one of the d

operators by the vector s∑
i

eis·Rid†iaσdibτ
Fourier transform−−−−−−−−−−−→

with D.2

∑
k

d†k+s,aσdkbτ . (D.3)
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Armed with this rule, we tackle the Hamiltonian term by term. The first
term gives{3U − 5J

4
+

[
3U − 5J

4
δ − 2εbu

]
eiQc·Ri− σ

2
(U +J)

[
SFM +SAFMe

iQc·Ri+

+ S1z cos Qm ·Ri + S2z sin Qm ·Ri

]}
d†iaσdiaσ =

=
[3U − 5J

4
− σ

2
(U + J)SFM

]
d†kaσdkaσ +

[3U − 5J

4
δ − 2εbu−

− σ

2
(U + J)SAFM

]
d†k+Qc,aσ

dkaσ −
σ

4
(U + J)

[
(S1z − iS2z)d

†
k+Qm,aσ

dkaσ+

+ (S1z + iS2z)d
†
k−Qm,aσ

dkaσ

]
.

The second term gives

− U + J

2
[S1x cos Qm ·Ri + S2x sin Qm ·Ri] d

†
iaσdiaσ̄ =

= −1

4
(U + J)

[
(S1x − iS2x)d†k+Qm,aσ

dkaσ̄ + (S1x + iS2x)d†k−Qm,aσ
dkaσ̄

]
.

The third term gives

(U + J(γ − 2))
[
X1 cos Qm ·Ri +X2 sin Qm ·Ri

]
d†iaσdiāσ̄ =

=
1

2
(U +J(γ−2))

[
(X1− iX2)d†k+Qm,aσ

dkāσ̄ + (X1 + iX2)d†k−Qm,aσ
dkāσ̄

]
.

Finally, the last term gives{
(J(4 + γ)− U)

[
O1 +O2e

iQc·Ri

]
− σ

[
U + J(γ − 2)

][
Z1 + Z2e

iQc·Ri+

+ Z3 cos Qm ·Ri + Z4 sin Qm ·Ri

]}
d†iaσdiāσ =

=
[
(J(4 + γ)−U)O1−σ(U + J(γ− 2))Z1

]
d†k,aσdkāσ +

[
(J(4 + γ)−U)O2−

−σ(U+J(γ−2))Z2

]
d†k+Qc,aσ

dkāσ−σ(U+J(γ−2))
[
(Z3−iZ4)d†k+Qm,aσ

dkāσ+

+ (Z3 + iZ4)d†k−Qm,aσ
dkāσ

]
.

Define some abbreviated interaction strengths

Ū =
3U − 5J

4
, U0 =

U + J

2
, U1 =

U + J(γ − 2)

2
, U2 = J(4 + γ)− U.

(D.4)
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Also define

Σz = S1z + iS2z, Σx = S1x + iS2x, χ = X1 + iX2, ζ = Z3 + iZ4. (D.5)

Using these, we can write down the expressions for the various 4×4 subblocks
of the 16× 16 matrices h(k) that we diagonalize at every k. Recall that the
matrices h(k) are written

ĤHF =
∑
k

ψ†kh(k)ψk,

where
ψ†k = (ψ†kz↑, ψ

†
kz̄↑, ψ

†
kz↓, ψ

†
kz̄↓)

and
ψ†kaσ = (d†kaσ, d

†
k+Qm,aσ

, d†k+Qc,aσ
, d†k−Qm,aσ

).

The matrices for the same orbital, same spin subblock have the form

ĥaσ,aσ =



Ū−σU0SFM+
+taa(k) −σU0

2 Σz
Ūδ−2εbu−
−σU0SAFM

−σU0
2 Σ∗z

−σU0
2 Σ∗z

Ū−σU0SFM+
+taa(k+Qm) −σU0

2 Σz
Ūδ−2εbu−
−σU0SAFM

Ūδ−2εbu−
−σU0SAFM

−σU0
2 Σ∗z

Ū−σU0SFM+
+taa(k+Qc)

−σU0
2 Σz

−σU0
2 Σz

Ūδ−2εbu−
−σU0SAFM

−σU0
2 Σ∗z

Ū−σU0SFM+
taa(k−Qm)


. (D.6)

The matrices for the same orbital, opposite spin subblocks are

ĥaσ,aσ̄ =


−U0

2 Σx −U0
2 Σ∗x

−U0
2 Σ∗x −U0

2 Σx

−U0
2 Σ∗x −U0

2 Σx

−U0
2 Σx −U0

2 Σ∗x

 . (D.7)

The matrices for the opposite orbital, opposite spin are

ĥaσ,āσ̄ =


−U1χ −U1χ

∗

−U1χ
∗ −U1χ
−U1χ

∗ −U1χ
−U1χ −U1χ

∗

 . (D.8)
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Finally, the opposite orbital, same spin matrices have the form

ĥaσ,āσ =



U2O1−2σU1Z1+
+taā(k) −σU1ζ

U2O2−
−2σU1Z2

−σU1ζ
∗

−σU1ζ
∗ U2O1−2σU1Z1+

+taā(k+Qm) −σU1ζ
U2O2−
−2σU1Z2

U2O2−
−2σU1Z2

−σU1ζ
∗ U2O1−2σU1Z1+

+taā(k+Qc)
−σU1ζ

−σU1ζ
U2O2−
−2σU1Z2

−σU1ζ
∗ U2O1−2σU1Z1+

+taā(k−Qm)


.

(D.9)
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Appendix E

Re-calculating the
Hartree-Fock order
parameters

In this appendix we demonstrate how to close the self-consistency loop when
solving the Hartree-Fock equations, by recalculating the order parameters
δ, SFM, ... for which the initial values were simply guessed. The order pa-
rameters are defined by the expressions

〈d†iaσd
†
iaσ〉 =

1

4

[
1 + δeiQc·Ri

]
+
σ

2

[
SFM + SAFMe

iQc·Ri+

+ S1z cos(Qm ·Ri) + S2z sin(Qm ·Ri)
]
,

〈d†iaσd
†
iaσ̄〉 =

1

2
[S1x cos(Qm ·Ri) + S2x sin(Qm ·Ri)] ,

〈d†iaσd
†
iāσ〉 =O1 +O2e

iQc·Ri + σ
[
Z1 + Z2e

iQc·Ri+

+ Z3 cos(Qm ·Ri) + Z4 sin(Qm ·Ri)
]
,

〈d†iaσd
†
iāσ̄〉 =X1 cos(Qm ·Ri) +X2 sin(Qm ·Ri). (E.1)

When we diagonalize the Hamiltonian ĤHF from Appendix D, we are left
with the 16-tuple momentum space eigenvectors arranged like

ψ†k = (ψ†kz↑, ψ
†
kz̄↑, ψ

†
kz↓, ψ

†
kz̄↓)

with
ψ†kaσ = (d†kaσ, d

†
k+Qm,aσ

, d†k+Qc,aσ
, d†k−Qm,aσ

).

As is discussed in the main text in Chapter 3, the density matrix,

ρ(ζbτ, ηaσ) =
∑
k

〈Ψe| d†k+ηQm,aσ
dk+ζQm,bτ |Ψe〉 , (E.2)
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is essentially the quantity we need to calculate, and it turns out that it can
be obtained from the occupied eigenvectors |k, n〉 (n runs from 1 to 16, as
there are 16 eigenvectors for each 16× 16 subblock) by

ρ(ζbτ, ηaσ) =
′∑
k

|k, n〉 〈k, n| , (E.3)

where the prime on the sum indicates that the summation is over only the
occupied eigenvectors (which are determined by ranking all the eigenvectors
in accordance with their corresponding eigenvalues, then taking the lower
quarter). Thus the crucial task is to connect the real-space matrix elements
in E.1 with the momentum space density matrix ρ(ζbτ, ηaσ). To do this,
we use Fourier’s trick: this is the same trick we used when Fourier trans-
forming the Hamiltonian in Appendix D. The trick is that any sum of the
form

∑
i e
is·Ri(...) is zero unless s ·Ri = 0 mod 2π: essentially the sign of

the summands keeps alternating and they effectively average out. We can
use this to invert the expressions in Eqs: E.1 for the various order parame-
ters δ,O1, ... by multiplying by the inverse of the exponential factor of the
parameter we want so as to cancel it out: the rest of the terms in that ex-
pression will then sum to zero because of Fourier’s trick and we can isolate
the one we are interested in. This was already demonstrated in the text for
SFM and for δ: we quote the expressions here for completeness

δ =
1

N

∑
kaσ

〈d†k+Qc,aσ
dkaσ〉 =

∑
aσ

[
ρ(0aσ, 2aσ) + ρ(1aσ,−1aσ)+

+ ρ(2aσ, 0aσ) + ρ(−1aσ, 1aσ)
]
. (E.4)

SFM =
1

2N

∑
kaσ

σ〈d†kaσdkaσ〉 =
1

2N

∑
ηaσ

σρ(ηaσ, ηaσ). (E.5)

We obtain the rest of the by analogy. The expressions for many are
essentially immediate

SAFM =
1

2N

∑
kaσ

σ〈d†k+Qc,aσ
dkaσ〉 =

=
∑
aσ

σ
[
ρ(0aσ, 2aσ) + ρ(1aσ,−1aσ) + ρ(2aσ, 0aσ) + ρ(−1aσ, 1aσ)

]
,

(E.6)
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O1 =
1

4N

∑
kaσ

〈d†kaσdkaσ〉 =
1

4N

∑
ηaσ

ρ(ηaσ, ηāσ), (E.7)

Z1 =
1

4N

∑
kaσ

σ〈d†kaσdkaσ〉 =
1

4N

∑
ηaσ

σρ(ηaσ, ηāσ), (E.8)

O2 =
1

4N

∑
kaσ

σ〈d†k+Qc,aσ
dkaσ〉 =

=
∑
aσ

σ
[
ρ(0aσ, 2aσ) + ρ(1aσ,−1aσ) + ρ(2aσ, 0aσ) + ρ(−1aσ, 1aσ)

]
.

(E.9)

The other parameters require just a little more finesse. Looking to the
second line in eqs. E.1, re-express the trigonometric functions in terms of
the exponentials

〈d†iaσd
†
iaσ̄〉 =

1

4

[
(S1x − iS2x) eiQm·Ri + (S1x + iS2x) e−iQm·Ri

]
. (E.10)

Multiplying by the two exponentials and carrying out the sum produces the
expressions∑
iaσ

e−iQm·Ri〈d†iaσd
†
iaσ̄〉 = S1x − iS2x,

∑
iaσ

eiQm·Ri〈d†iaσd
†
iaσ̄〉 = S1x + iS2x.

(E.11)

Adding or subtracting these and carrying out the Fourier transform gives
the expressions for S1/2x

S1x =
1

2N

∑
kaσ

[
〈d†k+Qm,aσ

dkaσ〉+ 〈d†k−Qm,aσ
dkaσ〉

]
=

=
1

2N

∑
aσ

[(
ρ(0aσ, 1aσ̄) + ρ(1aσ, 2aσ̄) + ρ(2aσ,−1aσ̄) + ρ(−1aσ, 0aσ̄)

)
+

+
(
ρ(1aσ, 0aσ̄) + ρ(2aσ, 1aσ̄) + ρ(−1aσ, 2aσ̄) + ρ(0aσ,−1aσ̄)

)]
. (E.12)

S2x =
1

2iN

∑
kaσ

[
〈d†k+Qm,aσ

dkaσ〉 − 〈d†k−Qm,aσ
dkaσ〉

]
=

=
1

2iN

∑
aσ

[(
ρ(0aσ, 1aσ̄) + ρ(1aσ, 2aσ̄) + ρ(2aσ,−1aσ̄) + ρ(−1aσ, 0aσ̄)

)
−

−
(
ρ(1aσ, 0aσ̄) + ρ(2aσ, 1aσ̄) + ρ(−1aσ, 2aσ̄) + ρ(0aσ,−1aσ̄)

)]
. (E.13)
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By analogy with these we can immediately write down the rest of the ex-
pressions, as the only ones remaining also only depend on the trigonometric
functions

S1z =
1

2N

∑
kaσ

σ
[
〈d†k+Qm,aσ

dkaσ〉+ 〈d†k−Qm,aσ
dkaσ〉

]
= (E.14)

=
1

2N

∑
aσ

σ
[(
ρ(0aσ, 1aσ) + ρ(1aσ, 2aσ) + ρ(2aσ,−1aσ) + ρ(−1aσ, 0aσ)

)
+

(E.15)

+
(
ρ(1aσ, 0aσ) + ρ(2aσ, 1aσ) + ρ(−1aσ, 2aσ) + ρ(0aσ,−1aσ)

)]
. (E.16)

S2z =
1

2iN

∑
kaσ

σ
[
〈d†k+Qm,aσ

dkaσ〉 − 〈d†k−Qm,aσ
dkaσ〉

]
=

=
1

2iN

∑
aσ

σ
[(
ρ(0aσ, 1aσ) + ρ(1aσ, 2aσ) + ρ(2aσ,−1aσ) + ρ(−1aσ, 0aσ)

)
−
(
ρ(1aσ, 0aσ) + ρ(2aσ, 1aσ) + ρ(−1aσ, 2aσ) + ρ(0aσ,−1aσ)

)]
. (E.17)

Z3 =
1

4N

∑
kaσ

σ
[
〈d†k+Qm,aσ

dkāσ〉+ 〈d†k−Qm,aσ
dkāσ〉

]
=

=
1

4N

∑
aσ

σ
[(
ρ(0aσ, 1āσ) + ρ(1aσ, 2āσ) + ρ(2aσ,−1āσ) + ρ(−1aσ, 0āσ)

)
+

+
(
ρ(1aσ, 0āσ) + ρ(2aσ, 1āσ) + ρ(−1aσ, 2āσ) + ρ(0aσ,−1āσ)

)]
. (E.18)

Z4 =
1

4iN

∑
kaσ

σ
[
〈d†k+Qm,aσ

dkāσ〉 − 〈d†k−Qm,aσ
dkāσ〉

]
=

=
1

4iN

∑
aσ

σ
[(
ρ(0aσ, 1āσ) + ρ(1aσ, 2āσ) + ρ(2aσ,−1āσ) + ρ(−1aσ, 0āσ)

)
−
(
ρ(1aσ, 0āσ) + ρ(2aσ, 1āσ) + ρ(−1aσ, 2āσ) + ρ(0aσ,−1āσ)

)]
. (E.19)

Finally,

X1 =
1

4N

∑
kaσ

σ
[
〈d†k+Qm,aσ

dkāσ̄〉+ 〈d†k−Qm,aσ
dkāσ̄〉

]
=

=
1

4N

∑
aσ

σ
[(
ρ(0aσ, 1āσ̄) + ρ(1aσ, 2āσ̄) + ρ(2aσ,−1āσ̄) + ρ(−1aσ, 0āσ̄)

)
+

+
(
ρ(1aσ, 0āσ̄) + ρ(2aσ, 1āσ̄) + ρ(−1aσ, 2āσ̄) + ρ(0aσ,−1āσ̄)

)]
. (E.20)
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Appendix E. Re-calculating the Hartree-Fock order parameters

X2 =
1

4iN

∑
kaσ

σ
[
〈d†k+Qm,aσ

dkāσ̄〉 − 〈d†k−Qm,aσ
dkāσ̄〉

]
=

=
1

4iN

∑
aσ

σ
[(
ρ(0aσ, 1āσ̄) + ρ(1aσ, 2āσ̄) + ρ(2aσ,−1āσ̄) + ρ(−1aσ, 0āσ̄)

)
−
(
ρ(1aσ, 0āσ̄) + ρ(2aσ, 1āσ̄) + ρ(−1aσ, 2āσ̄) + ρ(0aσ,−1āσ̄)

)]
. (E.21)
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