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Abstract

In this thesis we investigate the core, or the set of stable solutions, of a coopera-

tive game without side payments. This "multicommodity flow" game was initially

introduced by Papadimitriou to model incentives in internet routing. He posed the

questions of whether such stable solutions exist and if we can find them. Markakis

and Saberi showed both how to solve this game in the setting with side payments,

and that such stable solutions always exist with or without side payments. Yamada

and Karasawa provide an algorithm for generating one core solution in the special

case when the underlying transit graph is a path (as well as special cases of trees).

We provide a new algorithm for generating more core elements and a method to test

core membership efficiently in this same special case. We empirically characterize

this larger set of solutions. The data suggests that stability does not necessarily

impede efficiency, and that there is little trade-off between efficiency and fairness.
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Lay Summary

It is often the case that a network, such as a communication network, is owned by

multiple entities aiming to maximize their own profits. For instance different In-

ternet Service Providers own the hardware that runs the internet and must share it

to satisfy their individual customers demands. Our work can be summarized as an-

swering a special case of the question "How can we share the Internet?" Currently

such sharing agreements are built in an ad hoc way and lack theoretical guarantees.

We can model such interactions as a cooperative game. In this thesis we provide a

method for finding stable sharing agreements in particularly simple networks when

players are not allowed to encourage others to take specific agreements through the

use of side payments (bribes). We run simulations to investigate the diversity of

these stable agreements with a focus on how productive they are for all of society

and how fair they are to the individuals.
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Preface

This thesis is an original, unpublished work by Coulter Beeson, written under the

supervision of Bruce Shepherd.
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Chapter 1

Introduction

Problems worthy of attack prove their worth by fighting back. — Piet
Hein

Cooperative game theory investigates the nature of cooperation between self-

interested parties when they cannot bribe (provide side payments to) others to par-

ticipate. Each participant is only incentivized to accept an agreement if they can

find no better offer. If there are no groups who by their collusion could secede

from a given agreement, then such an agreement is stable. While the stability of

a solution says nothing of the quality of an agreement, especially in terms of the

distribution of the wealth produced, it gives certainty to the future which is desir-

able. It is a generally accepted goal to adopt stable agreements. One may then also

reason about their structure and diversity, and make prescriptions as to which are

in the best interest of the public.

We use this general framework to examine routing in networks where the nodes

are autonomous agents. The cooperative game we focus is used to model routing

internet traffic and was introduced by Christos Papadimitriou. The self interested

agents (players) in this game are anyone who has a supply of capacity, granted

by their ownership of the hardware, and a desire to route some traffic for their

customers. We further assume that traffic can only be routed through this network

via the cooperation of these players. That is to say: if a player rejects the current

agreement they simply can not route others’ traffic. Thus by sharing their capacity

each player can have access to a larger network and can satisfy more of their own

1



demand.

The rest of the section is dedicated to formalizing these ideas.

1.1 Coalition Games
A coalition game without side payments consists of a set of players V and a charac-

teristic function Π which maps each S⊆V to a subset of RV
≥0. These are sometimes

referred to as games with non-transferable utility (NTU). The interpretation is that

Π(S) denotes the set of possible payoff (utility) vectors π available to players of

S if they decide to cooperate (we assume that πi = 0 if i 6∈ S). A general theme in

cooperative game theory is to find strategies whereby the grand coalition, namely

V itself, becomes a stable set of partners. In other words, we seek a payoff vector

π ∈Π(V ) such that no proper subset S of the players could do better if they secede

from the grand coalition. We call such a coalition S a breakaway set for π; we now

define this notion formally.

For two vectors x,y ∈ RN , we say x dominates y on S if xi > yi ∀i ∈ S; we

may write x >S y. Let S be a proper subset of V and π ∈ Π(V ). We call a second

payoff vector π ′ ∈ Π(S) a S-deviation from π if π ′ >S π; we sometimes refer to

the strategies inducing this payoff as a deviation. We call S a breakaway set of π if

there is some S-deviation.

The core of a coalition game is the set of payoff vectors π ∈Π(V ) which have

no breakaway sets. We sometimes refer to the strategies inducing these core pay-

offs, as core strategies. Thus core vectors represent payoffs π to the grand coalition

which are stable in the sense that no subset of players is motivated to defect from

the strategy which induces π .

We can define the core formally then as the following set,

core = {π ∈Π(V ) : ∀S⊂V, π
′ ∈Π(S) ⇒∃v ∈ S, πv ≥ π

′
v}

It is clear from this definition that increasing the payoffs cannot remove a vector

from the core (subject to feasibility).

2



1.2 Multiflow Coalition Game
A multicommodity flow coalition game is a coalition game where the players are

the nodes of a supply graph G = (V,E); we refer to e ∈ E as a supply edge. In

addition, we are given capacities c(v) on each node v ∈ V . We are also given a

commodity graph H = (V,F). We refer to e ∈ F as a commodity edge associated

with a demand de ≥ 0.

Strategies in a flow coalition game arise from feasible flows in G for the com-

modities H. For each commodity uv ∈ F , we denote by Puv the set of (simple)

paths in G joining u,v. We denote the sum of all flow between two nodes as

fuv = ∑P∈Puv f (P). We denote the sum of all flow terminating at a player v as

fv = ∑u∈V fuv. A flow is then defined by a non-negative assignment of flow fP to

each path P joining the endpoints of some commodity. Formally, f is a feasible

flow if it satisfies:

1. ∑P3v fP ≤ cv ∀v ∈V Capacity constraint

2. fuv ≤ duv ∀uv ∈ F = E(H) Demand constraint

3. fP ≥ 0 ∀P ∈Puv ∀uv ∈ F = E(H)

We let F (G,c,H) denote the set of all feasible flows. We are also interested in

the strategies available to a subset S of players. We denote by F (G[S],c,H[S]), or

simply F S, the feasible flows in G[S], the induced subgraph of G on S.

Each feasible flow induces payoffs (or utilities) for the players as follows. For

any S ⊆ V and f ∈ F S, we define πv( f ) = fv as the sum of all flows that ter-

minate at v (we make no distinction between traffic coming from or going to v).

Note that if v 6∈ S, then πv( f ) = 0. The set of payoffs available to a coalition is

thus Π(S) = {π( f ) : f ∈F S}. The set of feasible flows is a lower comprehensive

convex polytope and the utility function is linear so Π(S) is also a lower compre-

hensive convex polytope. A polytope Γ is lower comprehensive if y≤ x and x ∈ Γ,

y ∈ Γ.

We can define for each coalition S the set of payoffs on which they can do better

by seceding D(S) = {π ∈ RV
≥0 : ∃π ′ ∈Π(S) π ′ >S π}. Then clearly D(S)⊂Π(S),

and we can rewrite the definition of the core as Π(V ) \
⋃

S⊂V D(S). From this
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definition we can see it is possible for the core to be non-convex. Indeed Figure

1.1 illustrates just that.

We use Figure 1.1 to illustrate notation for representing flows that we re-use

throughout this thesis. Straight edges represent actual edges of the supply graph,

curved edges represent demand edges and are labelled x/y where x represents the

amount of flow sent and y the demand for that commodity. Nodes are labelled

x/y where x is the amount of capacity used and y is the initial amount of capacity

available (capacities are omitted when possible for clarity). If a commodity is fully

routed it is drawn in bold, if an edge is not routed it is drawn as a dashed line

and when a player has no more remaining capacity we draw them with a bold

circle. Each players payoff is listed below them. The flow indicated in Figure 1.1

has a symmetric version which produces a second utility vector in the core x =

(1,2,1,2), y = (2,1,2,1). The 1
2 x+ 1

2 y convex combination produces (3
2 ,

3
2 ,

3
2 ,

3
2)

which is not in the core since the two central nodes would deviate by fully routing

their shared commodity resulting in a pay off of (0,2,2,0).

2/2

2

2/2

1

2/2

2

2/2

1

1/2 0/2

1/1 0/2 1/1

Figure 1.1: Example of non-convexity of the core

1.3 Related Work
The Multicommodity Flow Game was originally introduced by Papadimitrio to

model incentives in internet routing [5]. In this model each node or player repre-

sents an Autonomous System (AS). Each AS is a component of the internet ad-

ministrated by (usually) one operator, such as a university or corporation. Each
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AS then desires to selfishly route as much of traffic originating from its users as

possible. On the other hand ASs must cooperate with each other to allow their

customers access to the board network.

While we focus on games without side payments or non-transferable utility

(NTU) games, much of game theory has focused on games with side payments or

transferable utility (TU) games. In TU games we assume that players can losslessly

transfer utility between each other. This can be achieved by an equally valued cur-

rency. However, this is is often not the case in practice. For instance, when utility

is tied to the players identity like fame or grades in school, when side payments are

illegal (bribery), or when players have vastly different amounts of wealth and do

not equally value the payouts. One example of NTU games are Stable Matching

problems where the payout a player receives is determined by their preference for

the player they are matched with. Then stable matchings are exactly those match-

ings whose payoff is in the core. It is well known that for bipartite graphs the

core is always non-empty and a core element can be found using the Gale-Shapley

algorithm. However when the graph is not bipartite the core need not exist.

Formally a TU utility game is a set of players V and a characteristic function

π : P(V )→R≥0 where the interpretation is that π maps coalitions to single payoff.

We can take any NTU game and convert it to a TU game in a canonical way. Let

(V,Π) be a NTU game, then define π(S) = maxπ ′∈Π(S)
{

∑i∈S π ′i
}

. We call ∑i∈V πi

the social welfare (SW) of the payout π . We can analogously define the core of a

TU game as the set of all payoff vectors π ′ ∈ RV
≥0 such that ∑i∈V π ′i = π(V ) and

∑i∈S π ′i ≥ π(S).

In TU games the strategy is fixed at the social welfare maximizing outcome

and the difficulty is in determining how to split the profits. Whereas in NTU games

the strategy to choose is non-obvious but the allocation of profits is completely

fixed. Indeed not all core allocations achieve the same social welfare, and those

that maximize social welfare often can be highly unfair.

In both cases of TU or NTU games we run into the issue that the core does

not always exist. Scarf however offers a sufficient condition for the core to be

non-empty. To introduce this we first define balanced collections. A collection

of coalitions T ⊆P(V ) is balanced if there exists weights wS such that for every

player i, ∑S3i wS = 1. If all weights are in {0,1}, then this is exactly a partition of
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V . We say that a payoff π is attainable by S if π ∈ Π(S). A game is balanced if

for all balanced collections T , if πS is attainable for all S ∈ T then π is attainable

for the grand coalition. Scarf’s theorem then says that every balanced game has a

non-empty core [7].

Markakis and Saberi [2] show that the TU Multicommodity Flow Game has

a non-empty core and how to compute such an element in polynomial time by

solving the dual program. They also show that the NTU Multicommodity Flow

Game is balanced with a simple proof that we repeat here for completeness.

Lemma 1. The multicommodity flow game with non-transferable payoff is bal-

anced and hence has a non-empty core [2]

Proof. Let T be a balanced collection with weights wS and π be a payoff such that

πS is attainable for all coalitions S ∈ T .

Every coalition S ∈ T must have a flow f S ∈F S such that ∑ j∈S f S
i j = πi ∀i ∈ S.

We can then construct a flow f =∑S∈T wS f S, such that ∑S3i wS ∑ j f S
i j =∑S3i wSui =

ui thus u is achievable for V and the game is balanced.

While there are numerous constructive proofs of Scarf’s Lemma, Goldberg,

Papadimitriou, and Savani suggest that implementing these methods in general is

PSCACE-Complete [1].

For the multicommodity flow game on a path Yamada and Karasawa overcome

this difficulty and provide an efficient combinatorial algorithm for producing a sin-

gle core element [8]. To state their algorithm succinctly we first define a subroutine

that we re-use as follows.

ROUTE

Input. A path Pk`

m←minv∈Pk`

{
Cv
}

fk`←min
{

dk`,m
}

Cv←Cv− fk` ∀v ∈ Pk`

6



Where Cv denotes the residual capacity for node v. We say that a commodity k`

crosses a player v if v ∈ (k, `). Intuitively we route as much flow for a commodity

k` as its minimum bottleneck. Where the minimum bottleneck is the lesser the

smallest residual capacities of any players crossed by k` and the demand dk`.

We are now ready to present the Yamada and Karasawa algorithm.

Y&K PATH ALGORITHM

Input. Given a Game (G,c,H), where G is a path

Output. a flow f such that π( f ) ∈ Core(G,c,H)

f ← 0, Cv← cv

for ` ∈ [2...n] do
for k ∈ [`...1] do

route
(
[k, `]

)
end

end
Return f
This algorithm essentially processes the players in a left to right fashion, by

symmetry of the path we can (usually) obtain a second core element by running

the algorithm from right to left. We later develop a more general algorithm to find

more core elements.

7



1.4 Notation and Definitions
G = (V,E) Graph with vertex set V and edge set E

V (G), E(G) Vertex and Edge set of G

G[S] Induced subgraph of G for the set S

RV Real vector space indexed by elements of V

RV
≥0 Non-negative orthant of RV

P(V ) The power set of V

x(S) = ∑v∈S xv The sum of the elements of x in S

V The grand coalition

S⊂V S is a subset of V , S is a coalition

F S Set of feasible flows for coalition S

G = (G,c,H) A multicommodity flow game

cv Capacity of player v

Cv The residual capacity of player v

duv Demand between players u and v

fP the flow along path P

fuv Sum of all flow on paths between players u and v

fv Marginal flow of v

Puv Set of all paths connecting u and v

Puv Unique path between u and v when the graph is a tree

[k,v] Unique path between u and v when the graph is a path

I(P) The interior of the path P, i.e. the path without its end-points

π( f ) Payoff vector for flow f

πS Payoff π projected onto the coalition S

Π(S) Set of all payoffs for coalition S

8



Chapter 2

Certificates

In this section we consider the question of how to show that a given coalition cannot

secede from the grand coalition. All results in this section are for general graphs.

Let f̂ be some feasible flow. How can we check if the payoff vector π( f̂ ) is in the

core? Let us consider a more restricted question. For a given set S, can we verify

that it has no deviation? That is, can we certify that there is no flow f ∈F S such

that π( f )>S π( f̂ )? The existence of such a deviation corresponds to feasibility of

the following strict-inequality linear program.

maximize 0T f

subject to ∑
P3v

fP ≤ cv v ∈ S

∑
P∈Pk`

fP ≤ dk` k` ∈ H[S]

πv( f )> πv( f̂ ) v ∈ S

f ≥ 0

(2.1)

To show that S does not have a deviation f , we must show that the above

linear program is infeasible. By Farkas’ Lemma, a linear system Ax ≤ b,x ≥ 0

is infeasible if and only if ∃y ≥ 0 such that yT A ≥ 0 and yT b < 0 (for further

details and proofs of Farkas Lemma see [6]). This would immediately give a way

to show that a coalition S is not a breakaway, but for the fact that (2.1) has strict

inequalities. Hence, for some ε > 0, consider a standard LP, call it LP(ε), obtained

by modifying the payoff constraints to be: −πv( f ) ≤ −πv( f̂ )− ε . We may now
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apply Farkas’ Lemma to this new program to see that it is infeasible if and only

if there is a solution (yv : v ∈ S),(zk` : k` ∈ E(H)),(wv : v ∈ S) to the following

system.

∑
v∈S

yvcv + ∑
k`∈H[S]

zk`dk` ≤ ∑
v∈S

wv(πv( f̂ )+ ε) (2.2)

∑
v∈V (P)

yv + zk` ≥ wk +w` ∀P ∈Pk`, k` ∈ H[S] (2.3)

y,z,w ≥ 0 (2.4)

where we use that if P ∈ Pk`, then fP only contributes to the payoffs πk and π`.

These facts now are used to prove the following.

Lemma 2. S does not have a deviation if and only if there exists y,z,w≥ 0 which

satisfy (2.3) and

∑
v∈S

yvcv + ∑
k`∈E(H[S])

zk`dk` ≤∑
v∈S

wvπv( f̂ ) (2.5)

and such that w 6= 0.

Proof. Note that S does not have a deviation if and only if LP(ε) is infeasible for

any ε > 0. First suppose that y,z,w satisfy the prescribed conditions. Since wv > 0

for some v, we then have that the strict inequality holds (2.2), for any choice of

ε > 0. That is, LP(ε) is infeasible for any ε > 0. Conversely, if S does not have a

deviation, then LP(1) is infeasible and hence there is an associated dual certificate

y,z,w. Since the left-hand side of (2.2) is non-negative, and π( f̂ ) ≥ 0. we must

have that wv > 0 for some x ∈ S.

We call a feasible solution y,z,w to (2.5), (2.3), and (2.4) a (Farkas) certificate

for a coalition S and a payoff π( f̂ ). Such a solution certifies both that π( f̂ ) is in

the core, and that S cannot deviate from the strategy f̂ . We call such a coalition

certifiable for the payoff π( f̂ ). We construct our certificates from the flow f̂ so we

sometimes also say S is certifiable under f̂ . To establish that some payoff vector is

in the core, we must argue that any coalition S is certifiable. To establish correct-

ness of the algorithm we develop we must show that every coalition is certifiable

10



for any flow returned.

We note some additional properties of certificates.

Without loss of generality, we restrict our attention to coalitions S such that

G[S] is connected. This is without loss of generality as if S has a deviation, then

each individual connected component of G[S] must also have a deviation.

Lemma 3. If there are polynomially many connected subgraphs, then we can effi-

ciently certify that a payoff is in the core.

Proof. Lemma 2 implies there are only polynomial many linear programs to solve

each of which can be solved in polynomial time.

Lemma 4. If a coalition S is certifiable for a given payoff π( f̂ ), then S is certifiable

for any payoff arising from a flow f ∈FV such that f ≥ f̂ .

Proof. Clearly payoffs are monotonic with regard to flow, and the payoffs only

occur in constraint (2.5). As increasing the payoff can only improve this constraint,

S is still certifiable under f .

2.1 Implied Values
Given vectors y,w ≥ 0 we can easily determine if there is z for which y,z,w is a

certificate, since the “best” choice of z is for each k` ∈ H[S], to set

zk` := Zk`(y,w) = max
P∈Pk`

{
wk +w`− ∑

v∈V (P)
yv,0

}
. (2.6)

We refer to Zk`(y,w) as the value implied by y,w. This is the best value since

zk` only occurs in 2 constraints: in (2.3) where it needs to be at least the implied

value, and (2.5) where making it smaller improves the inequality.

Lemma 5. If y,z,w is a certificate, then so is y,z′,w where z′ is set to the values

implied by y,w.
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From now on, we assume that z is set to the implied values. Hence we only

need to check condition (2.5).

Our certificates have a special structure in that the vectors y,w are binary. We

call a node tight if it has no remaining residual capacity. Then the support of y is

a set Y of tight nodes, which is a subset of the support of w. The first few results

handle the straightforward cases where certificates are trivial to construct.

We call a node v globally content if πv = cv. We hardly need a certificate to

show that no feasible flow (for any coalition S!) could yield strictly greater utility

for v. Nevertheless we construct a certificate as a warm-up for later results.

Lemma 6. If there exists a globally content player v ∈ S, then S is certifiable.

Proof. We construct the certificate as {v} = Y =W . Note that the right hand side

of (2.3) is only non-zero for demands which terminate at v. For such demands

yv = 1 already handles this constraint. Then the implied value for z = 0.

Now for condition (2.5) we have

yc+ zd = cv

= πv

= wπ

We now assume there are no globally content players and hence:

Assumption 1. Every tight player in S transits some flow.

If there exists v ∈ S such that πv ≥∑u∈S duv, then no feasible flow from FS can

route more flow to v. We say that such a player v is S-content.

Lemma 7. If there exists an S-content player, then S is certifiable
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Proof. We set wv = 1 and y = 0. Hence the implied values are zkv = 1 for all com-

modities kv ∈ H[S].

Again we check condition (2.5).

yc+ zd = zd

= ∑
kv∈H[S]

dkv

= ∑
kv∈H[S]

fkv

≤ ∑
k 6=v

fkv

= πv

= wπ

Where the second equality follows from z only selecting commodities incident

v, and the third equality follows as every commodities (from H[S]) incident v is

fully routed (i.e. dkv = fkv)

Henceforth we assume the following.

Assumption 2. Every player in S must be incident to a commodity within H[S] that

is not fully-routed.

Note that if there are no tight nodes in S, then every player in S is S-content.

Hence we assume the following.

Assumption 3. The coalition S contains a tight node.

2.2 Pre-Certificates and Anchor Sets
Our certificates are based on two sets of nodes Y ⊆W , where Y is a set of tight

nodes. We call this pair a pre-certificate if the vectors y = 1Y ,w = 1W can be

extended to a certificate by setting a vector z to the implied values (2.6). We can
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think of the variables y,z,w as selecting some node capacities, demands, and node

utilities respectively. We then think of the selected demands and capacities as costs

that need to be charged against the selected utilities. i.e. to verify the condition

(2.2) we ensure wπ− (yc+ zd)≥ 0. In other words, a charging scheme consists of

paying for the selected capacities yc and demands zd by using the payoffs for the

selected players wπ .

Next we determine sufficient conditions for sets Y,W to be a pre-certificate.

But first we introduce the notion of anchors.

We define the anchors of a node v as A(v) = {k ∈V : ∃P ∈Pk`, f (P)> 0, v ∈
I(P)}. That is, if there is positive flow routed over a player v, then the endpoints of

the flow are anchors of v. Given a coalition S we refer to any positive commodity

with exactly one end point in S as an external commodity.

Lemma 8. Consider a pair of node sets Y ⊆W where nodes in Y are tight. This

forms a pre-certificate if the following properties hold:

P1) every commodity with both endpoints in W is fully routed.

P2) every positive commodity that crosses a player v ∈ Y has an endpoint in W

P3) every non-fully routed commodity with an endpoint in W crosses or termi-

nates at a node in Y

P4) no positive flow crosses or touches more than one node in Y

Proof. Observe that by our construction of the certificate yv,wv ∈ {0,1}. For each

k`∈H[S], we define W (k, `) :=wk+w` and so by (2.6) zk` =maxP∈Pk`

{
wk+w`−

∑v∈V (P) yv,0
}

. It follows that zk` ∈ {0,1,2} and by P1 & P3, that zk` > 0 only if kl

is a fully-routed demand.

It now remains to verify (2.5). We do this by a charging argument. First, we charge

demands selected by z to utilities of chosen players in W \Y .

Case 1) zk` = 2:
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Then W (k, `) = 2 and k` does not cross or touch any node of Y . By P1,

k` is fully-routed and we charge this "twice selected" demand against

both endpoints.

Case 2) zk` = 1:

There are two subcases, either W (k, `) = 1 or W (k, `) = 2.

Case 2.1) zk` = 1 and W (k, `) = 1:

Then k` neither touches or crosses a node in Y . P3 thus

ensures that any such commodity is fully-routed, and we

charge the zk`dk` to the endpoint in W .

Case 2.2) zk` = 1 and W (k, `) = 2:

By definition of zk`, the commodity k` must cross or touch

precisely one node in Y . In the case that k` terminates at a

node in Y , then we charge the demand zk`dk` to the utility

of its endpoint not in Y . Otherwise k` crosses a node in Y

and P1 ensures k` is fully routed. In this case we arbitrarily

charge one endpoint k or `.

Notice that the demands considered in Case 2.2) contribute utility to

two nodes in W and we have charged its zk`dk` to one of them. Simi-

larly if zk` = 0 for a fully-routed demand crossing a player in Y , then

W (k, `) = 1 (if W (k, `) = 2, then property P4 ensures that zk` is im-

plied to be 1) and we have not yet charged the utility from the chosen

endpoint. We denote the total such surplus s.

We have now accounted for all demands selected by z, i.e., we have charged the

quantity zd. We must now account for yc using the remaining utility from wπ .

Let’s classify the unspent utilities. First, we have only charged players in W \Y ,

Second, since zk` > 0 only for fully-routed demands, we have not yet charged any

utility from split demands. We have not used utility from external demands. Fi-

nally, as noted earlier we sometimes have surplus utility s associated with one of

the endpoints of a fully-routed demand (see discussion after Case 2.2). For each
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type of surplus we denote its total excess utility as follows: s (as defined above), σ

(from split commodities), e (from external commodities) and ∑v∈Y πv (from play-

ers in Y ). We thus have that wπ− zd ≥ s+σ + e+∑v∈Y πv.

We must now charge the quantity yc to the surplus utilities. Since any positive

commodity touches or crosses at most one node of Y (by P4) we consider each

node in Y separately and then charge the demands which used its capacity. For a

given node v∈Y , the quantity yvcv arises in two ways: as flow that terminates at v or

as flow that crosses v. We charge all of the capacity of cv used by flows terminating

at v to πv. The remaining capacity is used by positive commodities crossing v. By

P2 we have that every crossing commodity has at least one endpoint in W . First,

if this is a split commodity we charge its unique endpoint in W ; note that this flow

contributed to σ . So it remains to consider a crossing commodity k` which is fully-

routed. Either zk` = 0 or W (k, `) = 2 (commodities from Case 2.1 do not cross any

players in Y ). In both cases it contributed to s, and so there is an available endpoint

in W which has not been charged (by this commodity).

Combining these observations we deduce that

yc≤ s+σ + ∑
v∈Y

πv.

Combining this with our earlier observation that wπ− zd ≥ s+σ +e+∑v∈Y πv we

have

wπ− zd− yc≥ e≥ 0

and hence the implied certificate y,z,w satisfies (2.2).

Armed with the above lemmata and assumptions we are now ready to move on

to defining our algorithms.
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Chapter 3

Algorithms

We consider the following natural class of algorithms which greedily routes flow

for commodities according to a given partial order � on the pairs of players. We

focus on the special case where there is a unique path connecting any two players

k, `. That is to say, when the supply graph is a tree. In this case we denote the

path between to players k, ` as Pk` or in when the supply graph itself is a path [k, `].

Given that paths are unique we simplify our notation and write fk` = fPk` . After a

pair of players is considered in the algorithm we call that pair visited. Let M ( f ) be

the set of minimal un-visited pairs for the current flow. Where we mean minimal

with respect to our partial order ≺.

POSET-GREEDY

Input. Given a Game (G,c,H,d), and an order �
Output. a flow f such that π( f ) ∈ Core(G,c,H,d)

f ← 0, Cv← cv

while ∃ k` ∈M ( f ) do
if k` ∈ E(H) then

route
(
Pk`
)

end
end
Return f

Notice that the Y&K PATH algorithm can be viewed as a POSET-GREEDY algo-
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rithm with a total ordering of pairs of players. One property of the ordering used in

the Y&K PATH algorithm is that if [k`]⊂ [i j] then k`≺ i j. More generally we call

an ordering nested if for any given path P it routes all subpaths of P before P itself.

We first note some properties flows returned by the POSET GREEDY algorithm.

For the following let f be any flow returned by the POSET GREEDY algorithm

Lemma 9. If fk` < dk`, then ∃v ∈V (Pk`) that is tight

Proof. By definition of the greedy algorithm such a v must exist otherwise fk` =

dk`.

Lemma 10. For a given slack node v let the K(v) be the maximal connected sub-

graph containing v that contains no tight nodes. Then every commodity in E(H[K])

is fully routed.

Proof. Suppose there exists such a commodity, then Lemma 9 requires there be a

tight node in K(v), a contradiction.

3.1 Properties of Nested Flows
In the following let f be an arbitrary flow returned by POSET-GREEDY using a

nested ordering.

Lemma 11. If fk` > 0, then fi j = di j, for all Pi j ⊂ Pk`

Proof. If fk` > 0, then prior to this commodity being added Cv > 0 ∀v ∈ Pk`.

Because all commodities i j such that Pi j ⊂ Pk` are processed prior to k` due to the

nested order after i j was routed @v∈ Pi j such that Cv = 0. That is there was no tight

node when i j was routed otherwise fk` = 0.

Lemma 12. If fk` < dk`, then fi j = 0, for all Pi j ⊃ Pk`

Proof. If fk` < dk`, then there is a tight node x ∈ Pk`. Thus for all commodities i j

the node x blocks any flow as they are routed later in the nested ordering.
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We partition the commodities into three sets F0,F<,F= zero commodities, split

commodities, and fully routed commodities. Formally,

F0 = {k` : 0 = fk` < dk`}

F< = {k` : 0 < fk` < dk`}

F= = {k` : 0 < fk` = dk`}

0

<

=

Figure 3.1: Nested Property

We summarize the main properties of nested flows to aid intuition:

• For k` ∈ F<∩F=: Pi j ⊆ Pk`⇒ i j is fully-routed

• For k` ∈ F<: Pi j ⊇ Pk`⇒ i j is a zero commodity

• No split commodity is a subset of another split commodity.

• Call a commodity i j maximal if i j /∈ F0 and for any commodity k` such that

Pk` ⊃ Pi j, k` ∈ F0. Then every split commodity is maximal.

• Let i j be a maximal commodity. Then (i) Pk` ⊂ Pi j ⇒ k` is fully-routed, and

(ii) every commodity k` such that Pk` ⊃ Pi j is a zero commodity.

Lemma 13. POSET GREEDY with a nested ordering does not always produce an

element of the core.

Proof. To illustrate this we provide a counterexample. Figure 3.2 shows a flow

resulting from a nested ordering. The payoff of each player is listed below it. We
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can then easily see in second part of the figure that the middle four players have a

breakaway.

2 1 1 1 1 2

1/1

1/1

1/1

1/10/2

0/2

0 2 2 2 2 0

0/1

0/1

0/1

0/12/2

2/2

Figure 3.2: Counterexample to General Nested Ordering
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3.2 Incorporation Algorithm
We now present our main algorithm we call an Incorporation Algorithm

INCORPORATION ALGORITHM

Input. Given a Game (G,c,H,d), and a nested order �
Output. a flow f such that π( f ) ∈ Core(G,c,H,d)

f ← 0, Cv← cv, S←{r}
while S⊂V do

Let v ∈ N(S)

S← S+ v

while ∃ k` ∈M ( f )∩H[S] do
if k` ∈ E(H[S]) then

route
(
Pk`
)

end
end

end
Return f

Informally the algorithm grows an incorporated set of players by adding neigh-

bouring players one at a time. When a player is incorporated we route all com-

modities incident that player with its other end point also in the incorporated set

according to our given partial order ≺. The terminology is especially fitting as

both "incorporate" and "core" etymologically derive from the Latin corpus. At any

point in the execution of the algorithm all players in this set are fully incorporated,

then the currently flow is in the core of this sub-game. That is to say, every subset

of the incorporated set is certifiable.

Assuming n is odd, then it is not hard to verify that there are 2∑

n−1
2

i=1

(n−(i+2)
i−1

)
different orderings in which we could incorporate players each potentially giving

rise to different core element. Thus we can hope to generate exponentially many

different core elements from our algorithm.
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Chapter 4

Paths

In this section we focus on the case when the transit graph itself is a path. We then

consider a flow f returned by the INCORPORATION ALGORITHM using a nested

ordering. In order to prove correctness we must show that an arbitrary coalition

S = [i, j] is certifiable. Formally,

Lemma 14. If f̂ is a flow returned by the INCORPORATION ALGORITHM with a

nested ordering, then π( f̂ ) is in the core.

k i j `

≤

=

Figure 4.1: Configuration of Lemma 15.

Lemma 15. If G[S] is a path and there is a positive commodity k` such that S =

[i, j]⊆ [k, `], then S is certifiable.

Proof. If such a commodity exists and k` 6= i j, then by Lemma 11, every commod-

ity in H[S] is fully-routed. But then every player in S is S-content, contradicting

our assumption. If k` = i j, then every node in (i, j) is S-content as well. This

only leaves the case j = i+1. We must have i(i+1) ∈ F< or else both i and i+1
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would be S-content. But then since f was produced via a nested order, i(i+1) was

routed (and hence blocked), before any demands which transit through either i or

i+ 1. It follows that one of i or i+ 1 hit capacity and is hence globally content,

contradicting our assumption.

We now further refine our notion of anchors for paths. For a given node v we

split its anchors into disjoints sets of left and right anchors L(v) = {u ∈ V : u ∈
A(v), u < v} and R(v) = {u ∈ V : u ∈ A(v), v < u} respectively. We define the

left (resp. right) anchor sets for a player v as Y = {v}, and W = L(v)+ v. (resp.

Y = {v}, and W = R(v)+ v).

L′ i v ` j

i a L′ b v j

<

Figure 4.2: The configuration disallowed by PA and PB (resp.)

Lemma 16. The left (resp. right) anchor sets of a tight node v ∈ S is a pre-

certificate as long as the following conditions hold:

PA) L(v)⊂ S (resp. R(v)⊂ S)

PB) there is no non-fully routed commodity ab such that b ∈ L(v) and a ∈ [i,L′)

(resp. a ∈ R(v) and b ∈ (R′, j]).

Where L′ is the leftmost anchor of v (resp. R′ is the rightmost anchor of v).

Proof. We show that properties PA and PB ensure that all properties from Lemma

8 are satisfied.
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P1) First, note that W is a subset of [L′,v] where L′ is the leftmost anchor. Any

commodity with both endpoints in W is thus nested under a positive com-

modity that terminates at L′ and crosses v. Hence by Lemma 11 it is fully

routed.

P2) By PA any positive commodity that crosses v must have its left endpoint in

[i,v). Hence by definition, its left endpoint is a left anchor which is then in

W .

P3) Suppose that ab is a non-fully routed commodity which does not cross or

terminate at v. By Lemma 11, we must have a < L′ or else it is fully-routed.

But then this possibility is disallowed by PB.

P4) Follows trivially as there is only one player in Y .

Lemma 8 now implies that Y,W is a pre-certificate.

Lemma 17. If v is a leftmost tight node in S, then all commodities ab such that

[a,b]⊆ [i,v) are fully routed (resp. rightmost)

Proof. The proof follows from Lemma 10.

Now consider the execution of the INCORPORATION ALGORITHM after the

pair i, j is visited we have the flow f̂ . We use Lemma 4 to argue that the coalition

S is certifiable for the final flow returned by the INCORPORATION ALGORITHM.

Lemma 18. If f̂ is the flow resulting after i, j is visited, then [i, j] is certifiable

under the flow f̂ .

Proof. Without loss of generality, let i be the player currently being incorporated.

By Assumption 3 there must be at least one tight node, w.l.o.g. let v be a leftmost

tight node.

We now show that the left anchor sets of v form a pre-certificate by Lemma 8
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PA) The player i is only just being incorporated so no commodity with an end-

point farther left than i has been routed so L(v)⊂ [i, j].

PB) As v is a leftmost tight node we can apply Lemma 17.

Thus [i, j] is indeed certifiable.

We now complete the proof of Lemma 14.

Proof. When the algorithm terminates the last pair it considers are the endpoints

of the path, and all subsets have been considered prior. By Lemma 18 when a

pair is consider is corresponding subset [k, `] was certifiable for the current flow.

By Lemma 4 after potentially adding more flow subsequently each set remains

certifiable. Thus every coalition of contiguous players is certifiable for f̂ , and π( f̂ )

must be the core.

0/N

Figure 4.3: Example Non-maximal Core Flow

Thus we have demonstrated an algorithm for finding numerous core elements

for games on the path. Furthermore the flow returned by the INCORPORATION

ALGORITHM is a maximal flow. However as we can see in Figure 4.3 a flow

need not necessarily be maximal to be in the core. In this instance the zero flow

is in the core, whereas routing the only commodity can result in a maximal flow

with arbitrarily higher social welfare. In Figure 4.4 we see two core elements with

different social welfare. The first flow has a social welfare of 16 while the second

has a social welfare of 14. However, the second flow has a minimal payoff of 1,

while the first has minimal payoff of zero. This is the so called efficiency-equity

trade-off.
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2/2

2/2 2/2

2/2

0/1

2 1 1 2 2 2 1 1 2

2/2

1/2 1/2

2/2

1/1

Figure 4.4: Example Efficiency Equity Trade-off

4.1 Rooted Paths and Spiders
Consider running the INCORPORATION ALGORITHM with a nested ordering on a

path, but ignoring all commodities that cross r. We claim that this also produces

an element of the core.

It is easy to see that coalitions which do not contain r are unaffected so lets

consider a coalition [i, j] such that r ∈ (i, j). But even in this case the arguments

from Lemmamata 18 and 14 still apply as the certificates are unaffected by these
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un-routed commodities. Thus the resulting flow is still in the core although not

necessarily maximal. Essentially, for every coalition either r is S-content or we can

use a leftmost (rightmost) tight node as a certificate (see proof of Lemma 14).

This idea can easily be extend to spiders. A spider graph is a tree with at most

one node with degree greater than two. That is it is a star with each ray replaced

by an arbitrary path. We call this distinguished node in the center the root of the

spider, and each maximal path with the root as an endpoint is a leg of the spider.

Yamada and Karsawa provide an algorithm for finding core solutions for spiders

[8]. Consider running the INCORPORATION ALGORITHM with a nested ordering

where we set the root of the spider as the starting node r. Then the above argument

still holds and we can safely ignore any commodities that cross r. Again, for every

coalition either r is S-content, or at least one of the legs of the spider has a deepest

node that can be used to create an anchor certificate. We now make this idea formal.

Lemma 19. The INCORPORATION ALGORITHM always returns a core flow, when

the transit graph is a spider and r is the root of the spider.

Proof. Any coalition [i, j] not containing r is routed the same as if we ran the Y&K

PATH ALGORITHM w.l.o.g on the subset [r, j] alone. We no consider a coalition S

that contains r. Consider the flow that results after the last player was incorporated

into S. By Assumption 3 there is a tight player in S. If r is tight, then r is globally

content and we are done. So assume the tight player is on one of the legs. W.l.o.g.

let v be a maximally deep tight node (i.e. a tight node such that there is no tight

node farther away from r on the same leg), and let t be the deepest node on the

same leg as v. Then we can consider the path Prt in isolation and again Lemma 18

directly applies.

Figure 4.5: Example Spider Graph With 3 Legs
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In either case all the remaining commodities may be routed in any arbitrary

way, so as to improve the fairness and/or social welfare of the allocation.
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Chapter 5

Trees

In this section we attempt to extend our analysis of the path and spiders to general

trees. However, we have thus far been unable to produce an efficient algorithm

for finding core elements. Nonetheless we present here some counterexamples to

natural orderings, and partial results as we have found them.

r

b

a c

1/1

0/1

Figure 5.1: Counterexample to Nested Incorporation Order on a Tree

First, we consider simply applying the INCORPORATION ALGORITHM with

a nested ordering. Figure 5.1 however shows a counterexample. If we grow our

incorporated set from r to b, then to c we route the commodity ra using up all of the

capacity of b. However the coalition {b,c} has a deviation as they could simply

route their single commodity. It seems using b’s capacity to transit flow before

handling a coalition such as {b,c} is problematic.

One natural set of orderings is to use a tree decomposition. That is, we choose

a root and then recursively route subtrees and combine them. However, we can
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easily adapt our counterexample from Figure 3.2 as illustrated in Figure 5.2. This

ordering does provide a core element to the instance in Figure 5.1.

3 2 1

r

0 1 2 3

2/2

2/2

0/1

0/11/1

1/1

0/2

0/2

0 3 2

r

2 2 3 0

0/2

0/2

1/1

1/10/1

0/1

2/2

2/2

Figure 5.2: Counterexample to Recursive Tree Routing

Observe that in Figure 5.2 if there were no commodities that crossed r, then

routing subtrees recursively would indeed be successful. This leads us to a simple

lemma but first a definition. Assume that we have an arbitrary out r-arborescence

for the tree T . As before let Pi j denote the unique path from i to j in T , and Di j be

the path with edges directed as in the arborescence. We then classify commodities

as either vertical if Di j is a directed path, or horizontal otherwise.

Lemma 20. If there exists only horizontal commodities, then the zero flow is in the

core.
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Proof. Consider a potential breakaway S. Let rS be the root of the subset S. Then

rS is S-content.

We now extend our notion of left and right anchor sets from the path to the tree.

Again, we partition the anchors of a player A(v) into two sets the up and down

anchors of v denotes U(v) and D(v) respectively. Where U(v) is the set of all

anchors that are ancestors of v relative to the root r and D(v) is the set of anchors

that are descendants of v.

Lemma 21. If v is a maximally deep tight node in S , then there does not exist any

non-fully routed commodity ab such that such that a and b are both deeper than v.

Proof. The claim follows from Lemma 10.

Lemma 22. The down anchor sets of a tight node v ∈ S are a pre-certificate as

long as the following conditions hold:

PA) D(v)⊂ S

PB) Every commodity ab such that a and b are both deeper than v, and at least

one of a or b is in D(v) is fully routed.

Proof. We show that the given properties ensure all properties of Lemma 16 are

satisfied.

P1) First, note that every node in W is a descendent of v. By assumption there

are no horizontal commodities so consider a vertical commodity ab with

both endpoints in W w.l.o.g. let b be deeper than a. By virtue of b being an

anchor of v there must exist some positive commodity of routed along Pvb,

but Pab ⊂ Pvb so ab is nested under a positive commodity and must be fully

routed.

P2) By PA any positive commodity that crosses v has a deepest endpoint in

D(v)⊂W .
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P3) Suppose ab is a non-fully routed commodity with an endpoint in W that does

not cross of terminate at v. Then both ab are deeper than v and by PB must

be fully routed.

P4) There is only player in Y .

Lemma 23. If S contains a deepest tight node v and all its down anchors D(v),

then S is certifiable.

Proof. By assumption PA of Lemma 22 is satisfied as D(v)⊂ S .

v is a deepest tight node and so by Lemma 21 all commodities with endpoints

deeper than v are fully routed and thus property PB is satisfied as well.

Lemma 24. Let Prv be a maximal path in S and k` a positive commodity such

that Prv ⊂ Pk`. If v’s subtrees (contained in S) contain no tight nodes, then S is

certifiable.

Proof. If all of v’s subtrees are empty, then v is S-content as all commodities inci-

dent v nest under k`.

Suppose v’s subtrees are not empty, then by our extended nested ordering any

commodity uv such that u is in a subtree of v must precede k`, but v was not tight

when k` was routed thus v must be fully routed on all of its subtrees and all of its

ancestors. Thus v is S-content.

It is tempting to create an analogous proof for up anchor sets however here we

run into a problem. Consider a coalition S and a shallowest tight node t and that

the analogous properties to PA and PB hold. That is to say suppose that t’s up

anchors are all in S (i.e. U(t) ⊂ S). And suppose that every commodity ab such

that a and b are both shallower than t, and at least one of a or b is in U(t) is fully

routed. Then an anchor can be incident a non-fully routed commodity with its other

endpoint deeper than t in a subtree that does not contain t (violating property P3 of

Lemma 16). To address this we would need to include multiple tight nodes into our

certificate. But here we hit a catch. Consider the following example in Figure 5.3.

While in this case there are certificates of another form, if we attempt to create an
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up anchor certificate we find that we must include all of t and v’s anchors as well

as t and v themselves in our set W . But now the commodity vr has both endpoints

W , but is not fully routed (violating P1 of Lemma 16).

r

tv

1/1

1/1
0/1

1/1 1/1

Figure 5.3: Counterexample to Up Anchor Set Certificate

We propose on final ordering along with its counterexample before ending our

discussion on trees. Consider rooting the tree at a node r and decomposing the

graph into level sets from r. That is to say L0 = {r}, L1 = {v : depth(v) = 1},
etc... We then again consider growing an incorporated set from the root, but by

adding entire levels at a time. To maintain the nested ordering, when routing level

k we first route all commodities between level k and k− 1 and then k− 2 and so

on until we reach the root. Commodities between two given levels are routed in

any order. Figure 5.4 shows a possible flow resulting from such an ordering and its

breakaway.

It is our hope that these examples can help guide further research on finding

core solutions in general trees.
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Figure 5.4: Counterexample to Level Order Routing
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Chapter 6

Empirical

To those who, seeing the vice and misery that spring from the unequal
distributions of wealth and privilege, feel the possibility of a higher

social state and would strive for its attainment. — Henry George,
Progress and Poverty (1879)

We now have an algorithm that can generate a potentially large and diverse set

of stable solutions to our game. Although our algorithm only generates a subset of

possible core solutions, by randomizing the order in which it executes we can sam-

ple from this subset. We call this generated subset of solutions the Empirical Core,

denoted EC throughout this chapter. It is natural to study the variation amongst

these solutions and to consider the question of which constitutes the best?

The problem of aggregating individual utilities (payoffs) into a social pref-

erence has long been studied and has significant implications in terms of public

policy decisions and social justice. To rank different outcomes one often uses a

Social Welfare objective function. That is a function that takes in a payoff vector

and outputs a positive real number, where we interpret larger values as being more

preferred by society. For a thorough treatment see Fair Division and Collective

Welfare [3]. Generally we desire social welfare functions that satisfy the following

conditions:

• Monotonicity: If a players’ utility increases ceteris paribus, then the latter

profile is preferred.
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• Symmetry: The function is blind to the identity of players. Formally it is

invariant under permutations.

• Continuity: For a given payoff vector π the sets of all vectors weakly better

and weakly worse than π are closed (where a payoff vector x is weakly better

(resp. worse) than a payoff vector y if xi ≥ yi (resp. xi ≤ yi))

• Independence of Unconcerned Agents: The function does not depend on

agents whose utility is unchanged (e.g. if our objective prefers (1,3,10) to

(1,2,10), then it must also prefer (1,3,1) to (1,2,1)).

• Independence of Common Scale: The function is invariant to scaling utilities

by the same value (e.g. it wouldn’t matter if we measured utility in cents,

dollars, or millions of dollars).

It can be shown that any function satisfying the above properties (up to multi-

plicative constants) is of one of the following three form:

W (π) =


∑i π

p
i p > 0

∑i log(πi) p = 0

−∑i π
p
i p < 0

If we require the additional property known as the Pigou-Dalton Principle then

p ≤ 1. Informally the Pigou-Dalton Principle states that if the sum of utilities is

held constant and there is a transfer from a better off player, to a worse off player

such that the difference of their utilities decreases, then the social welfare function

increases (doesn’t decrease). That is our social welfare function should prefer less

inequality.

Three important social welfare functions are p = 1, p = 0, and p =−∞. These

are known as the utilitarian (or Benthamite) function, the Nash Utility function,

and the egalitarian (or leximin/Rawlsian) function. While the egalitarian choice

as a function maps all payoff vectors to zero, it still allows us to order payoffs

by instead taking p arbitrarily small. We can evaluate this ordering by sorting the

individual payoffs into ascending order and prefer payoff vectors that are lexico-

graphically smaller. We approximate this objective by the minimum payoff. For
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our analysis we focus on the utilitarian objective, and the minimum payoff.

The utilitarian objective is blind to the condition of the individuals and seeks

only to maximize the production of our society as a whole. From now on we

refer to the value of this function as the social welfare (SW) or the efficiency of an

outcome. The minimum payoff objective aims to improve the stock of the worst

among us leading to increased fairness of the distribution. From now on we refer

to the value of this function as the fairness of that outcome. As shown in Figure

4.4, it is often the case that the utilitarian and min payoff objectives are at odds

with each other. On one hand, increasing the product of the whole can in some

games increase the payoffs of those at the top while reducing those at the bottom

of the wealth distribution. That is to say increasing the production can increase

inequality. Whereas increasing the position of our most marginalized individuals

can damage the production of the whole. For a more dramatic example consider

the following game with only two players and two outcomes [0.99,100] and [1,1].

the first outcome maximizes the SW whereas the second maximizes fairness. If we

were to allow the transfer of utility, then clearly, the first outcome is to be preferred

if the second player gives up even a tiny fraction of their payoff. This trade-off is

known as the efficiency-equity trade-off [4].

First, we explore the question "Do core elements in general have an efficiency-

fairness trade-off?" To explore this we extract two subsets of the empirical core

Min(EC) = argminv∈EC{SW (v)} and Max(EC) = argmaxv∈EC{SW (v)}. That is,

the elements that attain the minimum and maximum SW respectively.

Secondly, we aim to understand how the set of core solutions changes as we

perturb the underlying game. That is to say, how does the character of stable solu-

tions change as we vary capacity or demand?

To answer these questions we first require a game to subject to analysis. In the

following section we describe the models by which we generate specific games.

6.1 Game Models
We first recall that a path game is defined entirely by the demand graph, its weights,

and the capacities of the players. To select a game we either deterministically

choose these values, or we create a model from which to probabilistically sample
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them. To avoid modelling the dynamics of network evolution we fix the number of

players to be constant.

We choose models not for their ability to accurately reflect real world routing,

as most real world routing does not take place on paths. Instead these models have

been chosen for their simplicity and insights into the structure of our problem.

For each model we seek control over the relative amount of capacity and de-

mand. By setting their relative abundance we can adjust the competitiveness of

the games sampled. That is to say, if the level of aggregate demand is fixed, then

when capacity is scarce there is more competition for it. If we instead look at a

situation in which every player has capacity in excess, then there is no competition

and the only reasonable solution is to route all demands. It is clear to see that if

capacities are everywhere zero, then the only feasible solution arises from the zero

flow. Thus, at either extreme end of competitiveness our solution set is reduced to

a single point. It is between these two bounds that we investigate the richness of

our solutions. We intentionally leave the definition of competitiveness vague as it

varies depending on the specific model employed.

6.1.1 Constant Model

In this model we deterministically set all demands and capacities to some constant

values C,D. That is duv = D ∀u,v ∈V , and cv =C ∀c ∈V .

6.1.2 Normal Model

In the normal model we aim to draw the marginal demand dv = ∑u6=v duv for each

player v according to a normal distribution described below. Each player’s capacity

is then a scaling of their marginal demand. To generate a game we select parame-

ters C,D, where C is the amount by which we scale the marginal demand and D is

the total demand of the system.

We take a truncated normal distribution N(µ,σ) over [1,n], with mean µ = n/2

and standard deviation σ = 2
√

n (for a formal definition of a truncated normal

distribution see Appendix A.1). We then draw D pairs of players u,v independently

from N and for each pair u,v we add a unit demand. In this way acquire integral

demands duv. Note that the marginal demand dv for each player v approximates the
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truncated normally distribution. In this model we aim to capture the idea that more

central players are likely more "popular" (i.e. have a greater demand for traffic),

and that a player’s capacity depends only on their own demand (and not on other

players’ desire to use their capacity).

6.1.3 Bottlenecks

In addition to the above models we also investigate games where an artificial bot-

tleneck to capacity is added in the middle of the path. Concretely, when we add

a bottleneck we halve the existing capacity of the central third of players. For ex-

ample, in a game with n = 60 players, players [20,40] would have half of their

previous capacity.

6.1.4 Random Graph Model

In this model we first generate a demand graph according to an Erdős-Rényi ran-

dom graph model with parameter p. That is, each edge is present independently

with probability p. We again choose parameters C,D where capacities for each

player are chosen uniformly at random from [1,C], and for each demand edge

present its weight is drawn uniformly at random from [1,D].

6.2 Results
For each of our models we fix the parameters which determine the relative amount

of demand and number of players. We then generate a list of games of decreas-

ing competitiveness (increasing capacity). For each of these games, we then run

our algorithm with a random valid ordering to generate an EC. We then plot the

relevant statistics.

6.2.1 Constant Model Results

We use the constant model to illustrate the experiments performed, and use it as a

reference for explaining trends across models. For this section we fix the number

players n = 50, and unit demands D = 1.

First, we investigate the number of distinct core elements our algorithm pro-
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duces in Figure 6.1. The number of distinct core elements rapidly spikes as capac-

ity increases from zero to approximately 10, before trending back down to zero as

capacity increases further. At the peak we sampled 85 distinct core elements. The

general trend is for the number of distinct elements to decrease, but it does so in

a nearly step-wise fashion, with deep inter-step valleys. In other words, there are

extended periods where the number of distinct elements is constant with increasing

capacity. Then the number of solutions sharply decreases briefly before plateauing

again at a level lower than the previous plateau. The length of the steps increases

as capacity increases. Although not every step is perfectly flat, this is likely due to

statistical noise.

Figure 6.1: Number of Elements in EC for Constant Model, 500 samples per
game

Next, for each game we plot the average of the core elements generated in

Figure 6.2. It should be noted, as the core is in general non-convex, these average

elements need not be in the core.

The plot shown in Figure 6.2 can be separated into two section. Those corre-

sponding to games with a capacity above or below 200. In games with a capacity

40



greater than 200, on average, the more central the player the better their payoff on

average. Whereas in games with a capacity below 200, we see that this is not the

case. Instead as capacity decreases from 200 the positions of the richest players

(symmetrically) moves towards to the endpoints. This forms ridges in the shape of

a "triangle" whose base is at the endpoints of the line at zero capacity and meet at

the center of the path at capacity 200.

At capacity 650 we can see that the network is saturated as every player has

enough capacity to meet all of their demand (i.e. πi = ∑u6=v duv = n−1).

Figure 6.2: Average of EC for Constant Model, x: capacity, y: player ID, z:
payoff, samples per game: 500

Next, we plot the average element of the Min(EC) and Max(EC) respectively

in Figure 6.3. In both these plots we again see a transition at capacity 200. Unlike

Figure 6.2, in the plot for the Min(EC) above a capacity of 200, the central players

are not richest on average. In the plot for the Max(EC), the central players are

richer than in the average of the EC. However, this comes at the expense of the

players farther towards the endpoints.
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Figure 6.3: Average of Min(EC)/Max(EC) for Constant Model, x: capacity,
y: player ID, z: payoff, samples per game: 500

We now compare the average SW and fairness between these three sets (The
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EC, Min(EC), and Max(EC)). In the top plot of Figure 6.4 we see SW for every set

increases monotonically with capacity. In the range of [100,400] units of capacity

there is a gap between the maximum SW and the minimum SW. Outside this range

both essentially coincide and all core elements achieve the same SW. We can also

see the above mentioned transition at capacity 200. This point corresponds to the

largest gap in SW. In the second, plot fairness also increases monotonically with

capacity for all three sets (modulo statistical noise from sampling). The curves for

the Max(EC) and Min(EC) are nearly piece-wise linear as is typical of tropical

curves. For all games the average fairness of the Max(EC) dominates that of the

Min(EC). At a capacity of roughly 600 the fairness of the SW minimizing elements

steeply jumps at which point all elements achieve the same fairness. In both the

plots for SW and fairness the average is closer to the maximum for nearly the entire

range of the plot (with the exception of a capacity of roughly 140 where the fairness

of the SW minimizing elements actually greater than the average).
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Figure 6.4: Average SW and Fairness for Constant Model, samples per game:
500

We repeat the above analysis with the addition of a bottleneck. Below the

44



transition point players that are in the bottleneck receive zero payoff. Besides this

difference the trends in the results are similar and are included in Appendix A.2.

6.2.2 Normal Model Results

In this model we can continuously scale the amount of capacity so to sample a finite

number of games we must take discrete steps. In the following plots the "capacity"

refers to the scaling and not an absolute value of capacity. This means the capacity

is only zero if the scaling factor is zero. Instead we choose some small arbitrary

starting capacity.

Figure 6.5: Number of Elements in EC for Normal Model, 2000 samples per
game

In Figure 6.5 the general trend is again for the number of distinct elements to

decrease with decreasing competition. However in this case it is unclear if there is

still a periodic/step-wise character as in Figure 6.1 or if it is due to statistical noise.
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Figure 6.6: Average of EC for Normal Model, x: capacity, y: player ID, z:
payoff, samples per game: 2000

In Figures 6.6 there again appears to be a transition between scarce and abun-

dant capacity at a capacity of roughy 35. The effect of considering only the

Min(EC) and Max(EC) is similar to that of the constant model. These plots are

included in Appendix A.2.
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Figure 6.7: Average SW and Fairness for Normal Model, samples per game:
2000

The plots in Figure 6.7 are qualitatively similar to those for the constant model
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in Figure 6.4. However, the plot for fairness is much nosier. In this model it is not

the case that the average fairness of the Min(EC) elements dominates the average

fairness of the Max(EC) elements.

Results for the inclusion of a bottleneck are again included in Appendix A.2.

6.2.3 Individual Games Constant Model

In this section we further analyze three individual games from the constant model.

One where capacity is scare C = 100, one where it is abundant C = 400 and another

at the transition point C = 200.

We again plot the average of the elements the Min(EC), the Max(EC), and the

EC. These plots only reinforce the above observations about this transition and are

included in Appendix A.2.

For the remaining plots changing the capacity did not drastically impact the

results. Only those for the low capacity game are shown as and the rest are located

in the Appendix A.2.

Figure 6.8 shows histograms for SW and fairness. In agreement with the previ-

ous results we see that most elements indeed maximize SW. With fairness there is

a far smaller range, and while most elements don’t maximize fairness the majority

of elements fall on the upper half of this distribution.
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Figure 6.8: Histogram of SW and Fairness for Scarce Capacity Constant
Model, Samples: 1000

Finally, we investigate the impact of the time a player is incorporated on their
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payoff. In other words, if a player is Incorporated earlier do they receive more or

less payoff? Surprisingly, we find that players tend to do best if they are incor-

porated at a time dependent on their position in the path. This effect is shown in

Figure 6.9. In this figure we can see that a player k on average receives its greatest

payoff if they are added nearly exactly at time k or time n− k, making more on

average if added at the later of these two times.

Figure 6.9: Player’s Average Payoff by Time Incorporated for Scarce Capac-
ity Constant Model, Samples: 5000, x: player, y: time incorporated, z:
payoff

6.3 Discussion
From the above data we can see similar trends across models as capacity increases.

In terms of the number of distinct solutions found, generally increasing capacity

decreases the number of distinct solutions found. This trend is reversed when ca-

pacity is extremely scarce in which case increasing capacity rapidly increases the

number of solutions found. This is not seen in the normal model due to how the

data was generated. In all cases we generate substantially fewer distinct element
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than the theoretical maximum. In addition to the affect on the number of elements

found, increasing capacity increases both the social welfare and the fairness of the

games.

Comparing across models we see that with increasing capacity, there is a tran-

sition that occurs between games with scarce capacity and games with abundant

capacity. This is clearest in the graphs of average SW and fairness. At this tran-

sition point is the largest gap between the maximum SW and the minimum SW.

However, even at this transition the gap is quite small. For instance, in the constant

model with no bottleneck there is a maximum difference of 100 units or roughly

6% of the maximum SW. By comparison the gap between the average fairness of

the Max(EC) and Min(EC) can be quite large. In the constant model this gap can

be as large as roughly a third of the average fairness of the Max(EC). Despite

a larger gap, in all models except the normal model, the average fairness of the

Max(EC) dominates the fairness of all solutions. In all graphs the average values

are much closer to the maximum than the minimum suggesting that most elements

are near optimal. This conclusion is supported by the histograms produced for the

individual games.

In addition to comparing the maximum SW of the EC solutions we also com-

pared against the maximum possible over all feasible flows (i.e. the maximum

multicommodity flow ignoring stability). We found that in every game for every

model there exists at least one core element that matches the maximum possible

SW. Which is to say that, there is no loss in efficiency from stability. To lend sup-

port to this hypothesis we also sampled 1000 games (n = 100) from the random

graph model (p = 0.5,C = 1000,D = 1000) and compared the maximum possible

SW to the maximum SW of all EC elements. All games compared had a core el-

ement that matched the maximum feasible SW. In addition we measured the gap

between the maximum and minimum SW of EC elements and found again that

in all cases the gap is small. However with these random games virtually every

solutions has a player with a zero payoff and fairness cannot be improved at all.

Interestingly, it seems that there is a strong correlation between the time a

player is added and their position in the network. Indeed this suggests that sim-

ply following a left to right ordering as done by Yamada and Karasawa should

provide an element that approximately maximizes the payoff for every player and
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thus also maximizes SW. The Yamada and Karasawa algorithm does produce an el-

ement that maximizes SW in the case of the constant model and the normal model.

However, when tested on random games we find that it fails to maximize the SW.

Despite this, random games still show a correlation between the time players are

added and their payoff.

In conclusion the data suggests that if the objective is to maximize SW, then

even the worst solution in the EC nearly approximates the maximum possible

social welfare. Hence a random solution is likely to be near optimal. In most

cases maximizing SW also maximizes fairness showing a lack of efficiency fair-

ness trade-off. Future work should investigate whether there always exists a core

solution that achieves the maximum possible SW or whether there are instance

where any core solution does strictly worse.
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Chapter 7

Conclusions

We have partially succeeded in our goal of producing efficient algorithms for gen-

erating core solutions for the multicommodity flow game and examining their di-

versity. We have developed methods for generating a large number of solutions

when the underlying graph is a path or spider. In general we can certify any pay-

off for a multicommodity flow game, but not necessarily efficiently. However, any

specific coalition can be certified or provided a breakaway in polynomial time. In

the case of general trees we fall short of a general algorithm to produce core so-

lutions, but identify structures that any poset greedy approach must deal with if it

is to be successful. The case of finding core elements for general graphs we leave

open.

Even in the case of paths however we fail to fully characterize the structure

of core solutions. There are core elements that our algorithms can never produce

(such as by violating the nested ordering), but there are also core elements that no

post greedy algorithm can produce. Specifically our algorithm only returns max-

imal flows, however not every core element needs to be maximal. However from

the perspective of maximizing SW this is a non-issue, buy it is a theoretically in-

teresting question and could lead to techniques for optimizing over core solutions.

Empirically we confirm that we do indeed generate a diverse set of core solu-

tions. From the perspective of the two social objective considered most solutions

are nearly optimal. Additionally, there does not appear to need to be a trade-off be-

tween stability and efficiency, and the trade-off between efficiency and fairness also
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seems to be small or non-existent. These claims are however empirical in nature

and the data we generate are fundamentally limited by the computational power

available for this thesis. In terms of optimizing solutions from the perspective of

individual players more work needs to be done.

We have provided a method of generating solutions and guidance on selecting

the best among them for paths (and spiders). We hope to apply these techniques to

generate stable solutions for trees and general graphs. While our algorithm is cen-

tralize and uses perfect information the internet is decentralized and players are not

necessarily truthful. To address this in the future we aim to develop decentralized

mechanisms for finding core solutions.
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Appendix A

Supporting Materials

A.1 Truncated Normal Distribution Definition
Let N(µ,σ) be a normal distribution. Let φ(x) = 1√

2π
exp
(
− 1

2 x2
)
, and Φ(x) =

1
2

(
1+ erf(x/

√
2
)

be the probability density function and cumulative distribution

function for the standard normal distribution respectively. Then a truncated normal

distribution with a lower bound of L and an upper bound of U has the following

probability density function:

f (x) =
φ
( x−µ

σ

)
σ

(
Φ
(U−µ

σ

)
−Φ

(L−µ

σ

))
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A.2 Supporting Results

Figure A.1: Average of Min(EC)/Max(EC) for Normal Model, x: capacity,
y: player ID, z: payoff, samples per game: 2000
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Figure A.2: Number of Elements in EC for Bottleneck Constant Model, 2000
samples per game
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Figure A.3: Average of EC for Bottleneck Constant Model, x: capacity, y:
player ID, z: payoff, samples per game: 2000
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Figure A.4: Average of Min(EC)/Max(EC) for Bottleneck Constant Model,
x: capacity, y: player ID, z: payoff, samples per game: 2000
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Figure A.5: Average SW and Fairness for Bottleneck Constant Model, sam-
ples per game: 2000
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Figure A.6: Number Distinct EC for Bottleneck Normal Model, 2000 sam-
ples per game
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Figure A.7: Average of EC for Bottleneck Normal Model, x: capacity, y:
player ID, z: payoff, samples per game: 2000
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Figure A.8: Average of Min(EC)/Max(EC) for Bottleneck Normal Model, x:
capacity, y: player ID, z: payoff, samples per game: 2000
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Figure A.9: Average SW and Fairness for Bottleneck Normal Model, sam-
ples per game: 2000
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Figure A.10: Average Payoffs for Scarce Capacity in Constant Model, Sam-
ples: 1000
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Figure A.11: Average Payoffs for Transition Capacity in Constant Model,
Samples: 1000
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Figure A.12: Average Payoffs for Abundant Capacity in Constant Model,
Samples: 1000
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Figure A.13: Histogram of SW and Fairness Transition Capacity for Constant
Model, Samples: 1000
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Figure A.14: Player’s Average Payoff by Time Incorporated for Transition
Capacity Constant Model, Samples: 5000, x: player, y: time incorpo-
rated, z: payoff
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Figure A.15: Histogram of SW and Fairness for Abundant Capacity Constant
Model, Samples: 1000
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Figure A.16: Player’s Average Payoff by Time Incorporated for Abundant
Capacity Constant Model, Samples: 5000, x: player, y: time incorpo-
rated, z: payoff
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Figure A.17: Histogram of SW Random Game, Samples: 1000
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Figure A.18: Player’s Average Payoff by Time Incorporated for Random
Game, Samples: 1000, x: player, y: time incorporated, z: payoff
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