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Abstract

This dissertation is a collection of three essays that study the efficiency of policies targeting environmental

and urban transportation issues.

The first essay investigates a government incentive that subsidizes the purchase of electric vehicles(EVs)

and asks a question of whether subsidizing public charging facility would be more cost-effective. It esti-

mates a discrete choice model of EVs which relies on both EV characteristics and individual demographic

information, using micro-level data from the California Clean Vehicle Rebate Program. Results show: (1)

EVs with smaller battery capacity are more reliant on the public charging network; (2) consumers with

higher income are less price sensitive. Such results support subsidizing more to public charging facility and

reducing the EV purchase subsidy to the more affluent consumers.

The second essay builds on the literature of road congestion and addresses the importance of schedule

delay cost occurred due to uncertain traffic time. We propose the notion of a “reliability standard” that

commuters use to calculate their schedule time — the buffer time added to a commute so as to ensure

being at work on time most of the time. With this tool, we conduct an extensive simulation study to gain

further insights into the role of commuter composition, time cost differences, and the degree of inflexibility

on optimal road tolls. While the cost of commuting time reliability is economically important, we find

that the difference between a full-information road toll and a limited-information road toll is smaller than

one would expect. Our study points to how future stated preference studies can be designed to elicit more

meaningful information that identifies commuter heterogeneity, and in turn will lead to better designs for

mobility pricing.

The third essay examines the relationship between firms’ voluntary disclosure in environmental per-

formance information and their level of institutional ownership. Empirical results indicate that US S&P

500 companies with higher institutional ownership ratio are less likely to disclose to the Carbon Disclosure

Project. Moreover, disclosure behavior also leads to a lower ratio of institutional ownership. This negative

relationship suggests adverse selection in the disclosure decision, hence such voluntary disclosure policy

might be of limited value to the public.
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Lay Summary

This dissertation evaluates the efficiency of three existing or proposed policies that target on environmental

or urban transportation issues. First, in order to promote electric vehicle(EV) adoption, improving the public

charging network is no less important than subsidizing individual purchasers. Investing in charging facilities

will enhance the attractiveness of EVs with smaller batteries which are also more affordable. Subsidies on

luxurious EVs can be reduced because higher-income consumers are less price-sensitive. Second, besides

prolonged travel time, the uncertainty of travel time caused by congestion also occurs cost on commuters,

therefore this also needs to be accounted for while designing mobility pricing policies. We propose that

future surveys should ask about travelers’ valuation of travel time, inflexibility criteria, and the correlation

between them. Finally, voluntary disclosure of environmental information might be of limited value to

the public as empirical results show a negative correlation between disclosure decision and institutional

ownership.
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Chapter 1

Introduction

This dissertation is a collection of three independent essays that investigate the efficiency of existing or

proposed policies targeting on environmental or urban transportation issues. The first essay in Chapter 2

investigates whether providing cash subsidies to individual electric vehicle(EV) purchasers is the most cost-

effective policy to promote EV adoption. The second essay in Chapter 3 addresses the importance of volatil-

ity in commute time and discusses how to induce an optimal mobility pricing scheme that accounts for such

issue. The third essay in Chapter 4 analyzes the effectiveness of a voluntary disclosure policy on firms’

environmental performance and suggests that disclosure content is of limited value to the public. In this

chapter I will briefly summarize the main methodology and findings of each essay. Because each essay

targets an independent topic, I thus leave a more comprehensive discussion of the research question and

literature review in each chapter.

The first essay (Chapter 2) is titled “Efficient Government Spending on Promoting Electric Vehicles:

a Case of California”. Various incentives have been carried out by policy makers in order to promote

adoption of electric vehicles(EV), which rely on electricity as an energy source and might generate less

greenhouse gas compared to conventional vehicles using fossil fuel. This paper aims to analyze factors

that affect consumers’ taste on different types of EVs, and discuss whether the current U.S. government

incentives are most efficient. Estimating a discrete choice model using micro-level data from California

Clean Vehicle Rebate Program (CVRP), this paper discovers that access to both private and public charging

facility contributes to decision of EV purchase. Among various types of EVs, pure battery electric vehicles

(BEV) with relatively shorter electric range have the most inelastic demand towards public charging facility

network. Meanwhile, shorter range BEVs have a modest price compared to longer range BEVs, and are more

energy efficient compared to plug-in electric vehicles (PHEVs). Therefore subsidizing charging facility

instead of individual EV purchasers might contribute more to energy saving and air pollution reduction,

whereas reducing the concern that high-income potential buyers of luxurious longer range BEVs might free

ride government subsidy.

The second essay (Chapter 3) is titled “The Cost of Commuting Time Reliability: Theoretical Advances

using Reliability Standards and Empirical Findings from Metro Vancouver Traffic Data”. The literature on

road congestion has long acknowledged the importance of inflexible commuters who incur schedule delay

costs in order to arrive on time. This paper advances a number of new insights into this phenomenon. We
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introduce the notion of a “reliability standard” that commuters use to calculate their schedule time—the

buffer time added to a commute so as to ensure being at work on time most of the time. Using two com-

peting empirical distribution of commuting travel time (Fréchet and Lognormal), we develop a tight linear

approximation of the schedule time that neatly separates schedule inflexibility (a commuter characteristic)

from the coefficient of variation of travel time (a route characteristic). Our theoretical insights allow us to

characterize and quantify the cost of commuting time reliability. Empirically, we use two data sets with

traffic flows in the Metro Vancouver area—one with volume and speed of several key congestion points, and

one with time distributions across a sample of 2,000 commutes across the entire Metro region—to identify

the links between congestion and the cost of commuting time reliability. The empirical results demonstrate

that travel time variability is a function of congestion, but interacts with route characteristics. We also con-

duct an extensive simulation study to gain further insights into the role of commuter composition, time cost

differences, and the degree of inflexibility on optimal road tolls. We expand this approach to encompass the

correlation structure of time costs, degree of inflexibility, and demand response (cutoff time for commutes).

While the cost of commuting time reliability is economically important, we find that the difference between

a full-information road toll and a limited-information road toll is smaller than one would expect. Overall, our

study points to how future stated preference studies can be designed to elicit more meaningful information

that identifies commuter heterogeneity, and in turn will lead to better designs for mobility pricing.

The title of the third essay (Chapter 4) is “Voluntary Carbon Disclosure and Institutional Ownership”.

This study unveils the relationship between firms’ voluntary carbon emission disclosure behavior and the

level of institutional ownership. The question of interest is whether disclosure of non-financial information is

associated with changes in financial performance. Disclosure improves firms’ transparency to shareholders,

and also incurs costs such as to maintain good carbon emission record in the future, therefore disclosure can

result in financial impact of either direction. Empirical results indicate that among US S&P 500 companies,

higher institutional ownership ratio causes less disclosure to Carbon Disclosure Project(CDP), an organi-

zation which publishes large companies’ self-disclosed information about carbon emission. Moreover the

disclosure behavior also leads to lower ratio of institutional ownership. This negative relationship implies

that firms’ disclosure behavior does not signal carbon strength, yet might be caused by other motivations

unfavored by institutional investors.
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Chapter 2

Efficient Government Spending on
Promoting Electric Vehicles: a Case of
California

2.1 Introduction
Among various instruments towards reducing greenhouse gas(GHG) emission, electric vehicles(EVs) have

drawn much attention not only from policy makers but also the general public. Different from conventional

internal combustion engine vehicles (ICEVs), EVs do not depend on particular sources of energy, which

allows them to use cleaner energy that generates less air pollutants and GHG. According to U.S. EPA, EVs

convert about 59% - 62% of the electrical energy from the grid to power at the wheels, whereas ICEVs only

convert about 17% - 21% of the energy stored in gasoline. Many governments have set ambitious goals on

replacing ICEVs with EVs in the future. Britain and France said in 2017 that by 2040 new cars completely

relying on petrol or diesel will be illegal. China, with the world’s largest EV market, also announced that

ICEVs would be banned in the future and required automobile makers with more than 30,000 annual sales

to meet a quota of 10% being EVs.

From consumers’ point of view, EVs favor potential buyers that they render much lower fuel cost, at

about half of gasoline vehicles.1 Surveys show that EV drivers also appreciate the new technology and envi-

ronmental benefit. Despite the superiorities EVs embrace, their adoption are hindered by factors including

higher prices and concerns on charging. For example, the popular EV Nissan Leaf (2017 model) has a Man-

ufacturer’s Suggested Retail Price(MSRP) of $30,680 - $36,790, while a comparable ICE vehicle Toyota

Prius (2017 model) has a much lower MSRP of $23,475 - $30,015. According to EPA’s estimate on annual

fuel cost, Nissan Leaf costs $150 less than Toyota Prius per year, which hardly justifies the price difference

of about $6,000. Convenience of charging is another concern to potential EV drivers, as EVs have shorter

range with a full battery compared to ICEVs with a full tank of fuel whereas the charging process takes

1U.S. EPA website lists estimated annual fuel cost for each vehicle model. The actual fuel cost savings depends on local price
of gasoline and electricity.
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much more time than refueling at gas station. For example, Nissan Leaf (2017 model) has a range of 107

miles whereas Toyota Prius (2017 model) has a range of 588 miles, and using fastest charging facility, Leaf

can be charged to 80% battery capacity in 30 minutes, which takes way more time than people stay at a

gasoline pump.

Within the family of EVs, there are plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles

(BEVs), their difference being that PHEVs have shorter electricity range and would rely on gasoline after it

exhausts its battery whereas BEVs use electricity as their sole energy source. Throughout this paper, I use

the word EV to refer to both PHEV and BEV.

Policy makers around the world therefore launched combinations of incentives to encourage EV adop-

tion, examples including: cash rebates or tax credits upon EV purchasing or leasing, unlimited access to

high occupancy vehicle(HOV) lanes on highways, utility rate discount for charging EVs, etc. Some local

governments also subsidize the installation of EV charging stations.

The current financial incentives given to EV owners are rather generous. EVs purchased in the US

after year 2010 may be eligible for a federal income tax credit of up to $7,500, depending on the vehicle’s

battery capacity. Under such a scheme, BEVs usually qualify for $7,500 tax credit while PHEVs get $2,500

-$4,500. This paper mainly relies on data from California Clean Vehicle Rebate Program (CVRP), which is

a state incentive provided by the California Air Resource Board. CVRP provides rebates to various kinds

of energy-efficient vehicles including PHEVs, BEVs, and some other alternative fuel vehicles, with PHEVs

and BEVs representing about 99% of all the rebated vehicles. Under CVRP, each BEV and PHEV receives

a cash rebate of $2,500 and $1,500 respectively during the time period covered by the dataset used in this

study.2 With multiple instruments at hand for the governments to promote EV adoption, a natural question

to ask is how to efficiently allocate limited funding so that maximum amount of total gasoline miles could

be replaced by electricity miles, leading to most pollution reduction. To answer this question, I propose

to first estimate the utility function of PHEVs and BEVs that explains heterogeneous consumers’ decision

making process in EV choice, and then conduct counterfactual exercises to see how consumers would react

under alternative incentive bundles.

The case of California is worth studying due to at least two reasons. First, California is the biggest EV

market in the US, accounting for about half of US EV sale. Second, compared with other states, California

suffers more serious air pollution from ICEVs whereas embraces a cleaner electricity source, bringing EVs

greater environmental benefits (Holland et al., 2016).

The contribution of this paper is two-fold. First, it estimates a discrete choice model of EVs which

relies on both EV characteristics and individual demographic information, whereas the literature mainly

uses aggregated data. Second, this paper provides implication on how to design cost-effective policies to

promote EVs, leveraging the heterogeneous tastes of EV owners towards financial incentives and charging

infrastructure.
2The CVRP rebate amount adjusted several times since its establishment in 2010, and the details will be presented in a later

section of this paper.
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2.2 Background

2.2.1 Electric Vehicles

Over the years, global warming has made increasingly visible impact to our planet. For example, growing

arctic temperature has melted glaciers dramatically and resulted in sea level rise, which further threats to in-

undate land areas; places around the world experience enlarging variability in temperature and precipitation,

which led to conditions like severe wildfires in California during 2017 fall. Increasing GHG emissions such

as carbon dioxide, methane, and nitrous oxide are the dominant cause of climate change.

Car driving accounts for one of the largest sources of GHG emissions as traditional cars rely on fossil fuel

as sole energy source. Fortunately the invention of EVs provides an opportunity to reduce GHG emissions,

since electricity could be generated from cleaner energy sources that emit less GHG. California, for example,

mainly uses natural gas, hydro power, solar power, and nuclear power for electricity generation. Such energy

sources not only lowers GHG emissions compared with gasoline, but also generate less air pollutants such

as particulate matter, nitrogen oxides, sulfur dioxide, etc.

EVs first came into existence in mid-19th century, yet the series production of highway-capable EVs

happened not until recent decade. In 2008, the first EV available to the general public, Tesla Roadster, was

launched. It is the first EV using lithium-ion battery cells and has a range greater than 200 miles between

charges. The production of Roadster was ceased in 2012, when Tesla introduced Model S, a full-sized all-

electric luxury car which receives wide popularity. The earliest generation of Model S with a 60 kWh battery

pack has an electric range of 208 miles rated by EPA, and 265 miles for the 85 kWh battery pack model.

Despite that the price of Model S starts as high as $66,000, it is the top selling EV in year 2014 and 2015,

also the second best selling EV model of all the time. In 2010, the Japanese manufacturer Nissan introduced

a compact hatchback electric car — Leaf, which is the world’s best selling EV model. First generation of

Nissan Leaf comes with a modest electric range at 73 miles (rated by EPA).

Tesla Model S and Nissan Leaf are both BEVs which consume electricity as the sole energy source.

Another branch of the EV family is PHEV, which carries both a battery and an internal combustion engine.

PHEVs function just like BEVs until their battery is exhausted and then they will turn to the gas tank to

power the car. PHEVs began available to the public in 2010, and among the most popular models including

the Chevrolet Volt manufactured by General Motors. The first generation of Chevrolet Volt has an electric

range of 25-50 miles, and it has a total range of 379 miles with full battery and gasoline.

2.2.2 Government Incentives

Policy makers around the globe have tried various tools to promote EV adoption. Federal government of

the United States carried out tax credit for new EV purchasers since 2008, the amount of which increases

proportionally with battery size and capped at $7,500. The tax credits will phase out after 200,000 EVs have

been sold by one car manufacturer. Until the end of 2017, the 200,000 subsidy limit has not been reached

by any manufacturer. Charging equipment installed by homes and businesses also receive tax credit through

2013, the amount ranging from $1,000 to $50,000, depending on installation scale.

In California, the largest EV market of US, additional financial incentives are provided by the Clean
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Vehicle Rebate Project (CVRP). The program started in 2010 with $5,000 subsidy to BEVs, and the rebate

amount soon decreases to $2,500 after June 2011. PHEVs entered the market in year 2012 with the in-

troduction of Toyota Prius PHEV, and PHEV buyers receive a rebate of $1,500 from CVRP. Starting from

Mar 29, 2016, the program gives more subsidy to lower-income buyers whereas sets an income cap to re-

strict application of rebates from the richer. On Nov 1, 2016, subsidy to lower-income buyers are increased

whereas the income cap is further lowered. Details are revealed in Table 2.1. Besides financial incentives,

local policies such as allowing solo EV drivers access to HOV lanes, free EV parking, discounted utility rate

for EV charging, etc. also contribute to California’s relatively high EV sales.

Table 2.1: CVRP Schedule

Vehicle Date of Purchase Income Cap Increased Rebate
Prior to Mar 29 2016 Not Applicable Not Applicable
Mar 29 2016 - Oct 31 2016 $250,000 $1,500
Nov 1 2016 - Present $150,000 $2,000

Increased rebate are eligible to households with income less than 300 % of the federal poverty level.

Income Cap are for single filers. Household filers have higher income caps.

Other countries leading in EV sales such as Japan, China, United Kingdom, Norway, Netherlands, Swe-

den, France, Germany, etc. have also carried out various monetary incentives. The policy instruments they

used include tax reduction, direct subsidies to purchasers or manufacturers, elimination of car registration

fee, etc.

2.2.3 Charging Infrastructure

There are several modes of EV charging. It could be as simple as plug in to a non-dedicated 110-volt

household outlet (Level 1 charging), and it takes about 16 hours to add 100 electric miles.

Level 2 charging stations are the most common ones installed by household and public parkades. They

require 240-volt outlet and can charge about 6 times faster than Level 1. Smart features are also available

for Level 2 charging stations which can schedule charging for off-peak hours. The cost to purchase and

install Level 2 charging stations at home is about $1,500, while rebates ranging from $500 to $1,000 are

available for some counties in California. Public Level 2 charging stations cost more than home chargers

due to more features, and installing chargers at curbside costs more than in a garage. Local incentives for

public or workplace charging stations are also available in some areas.

Direct Current(DC) fast charging stations connect EVs to main power grid through an external charger,

and can charge most EVs to 80 percent in 20-30 minutes. They are much more expensive to install, costing

$50,000 to $100,000 per station.

2.2.4 Related Literature

This study is built on a growing literature that analyze the factors affecting EV adoption empirically. Li

et al. (2017) studied how adoption of EV and deployment of EV charging stations affect each other using

US vehicle sales data. A feedback loop is found and the authors conclude that policies that subsidize
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building charging stations would be twice as effective in promoting EVs compared to the current federal

tax incentives for EV purchasers. Studies based on other places around the world also confirmed that EV

charging facility plays an important role in pushing forward EV adoption, examples include Sierzchula et al.

(2014), Mersky et al. (2016), Wang et al. (2017), and so on. Bailey et al. (2015) found that the availability

of home charging has a much more substantial impact than perceived existence of public charging stations

on EV demand, using survey of new-vehicle buyers in 2013.

This paper is also closely related to the literature discussing the design of government subsidy on clean

vehicles. DeShazo et al. (2017) focuses on designing optimal EV rebate policy that induces more EV sale

under a constraint of total government expense. They illustrated that policies which set a cap on EV price or

set different rebate schedule for consumers with heterogeneous income would be more efficient. To support

this idea, they developed a theory model and tested empirically using data from stated preference surveys.

Chandra et al. (2010) estimate the effect of tax rebates offered by Canadian Provinces on the sales of hybrid

electric vehicles (HEVs). While confirming the rebate successfully boosted sales of HEVs, they argue that

the subsidized consumers would have bought either HEVs or other fuel-efficient vehicles in the absence of

the rebate. Therefore they conclude that reduction of carbon emission is too costly under this rebate scheme.

A strand of literature uses stated choice survey data to analyze what factors influence consumers’ deci-

sion in EV adoption. Hackbarth and Madlener (2013) used discrete choice model on German survey data

to analyze consumers’ preference to BEVs and PHEVs. They found that due to the longer waiting time of

EV charging and higher risk of getting stranded with an empty battery, BEVs are less appealing to con-

sumers than PHEVs, since the latter has a backup gasoline tank that allows the PHEV to be refueled as

a conventional ICEV. Lieven (2015) conducted survey analysis regarding potential EV purchasers’ prefer-

ence to combinations of different government incentives. Based on surveys collected from 20 countries,

they claimed that the charging infrastructures are must-haves while expediting EV diffusion, whereas mon-

etary incentive and favorable traffic regulations are appealing but not as essential as establishing a charging

network.

Several papers apply the random-coefficient discrete choice model which follows the setting of Berry

et al. (1995) (referred to as the BLP model) and study the demand for electric vehicles or other new en-

ergy vehicles. Zhang et al. (2016) observe the BEV market in Norway and examine how consumers’ BEV

choice vary with government incentives, in addition to price and car characteristics. They find that gov-

ernment incentives including bus lane access, toll waiver, and charging station expansion promotes BEV

adoption, within them increasing density of charging station has the most significant effects for BEV sales.

Beresteanu and Li (2011) use BLP style random coefficients model to analyze demand for hybrid vehicles

under scenarios of varying gasoline prices and government tax incentives.

2.3 Theoretical Framework

2.3.1 Operational Cost Decomposition

This section decomposes operational costs of different types of vehicles.

Operational cost ci j includes monetary cost and time cost that occur when refueling vehicles. For BEVs,
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PHEVs and ICEVs, the general form of their operational costs are similar:

ci j = m j +witi j

where m j stands for dollar fuel cost of driving 1 mile; wi is valuation of time for individual i; ti j is time

spent refueling for 1 mile’s driving distance, which includes time searching for refueling stations as well as

waiting. Next I decompose ci j in detail.

2.3.1.1 Operational Cost of EVs

A major concern for EV adoption is the reliability and convenience of charging. Assume two scenarios of

charging an EV: regular charging with cost c1,i j and backup charging with cost c2,i j. Upon purchasing an EV

j, consumer i has made a decision on her regular charging mode – installing home charging equipment, or

use public chargers located in parkades of workplace or near home, resulting in regular charging cost c1,i j.

The consumer is also aware that in some non-regular cases when a BEV is about to exhaust all its battery

away from her usual charging spot, she would then have to search for public charging station and wait while

the BEV is being charged. PHEVs, however, enjoy more flexibility when the battery drains thanks to their

backup fuel tanks. In such non-regular cases, charging cost c2,i j is generated. Last but not least, there exists

a possibility that a BEV might get stranded due to completely exhausted battery, with an expected cost of

stranded being c3,i j.

Let qi j denote the probability of “backup charging”. The car owners would plan ahead to avoid backup

charging, since that either renders more time cost waiting for a BEV to be charged or more monetary

cost to add fuel for a PHEV. Assume daily range driven by person i follows log-normal distribution: ri ∼
Lognormal(µi, σ2

i ),3 with its probability density function denoted as f (ri). With EV j’s electric range being

R j, qi j can be expressed as the probability that individual i drives distance longer than its maximum electric

range within a day:

qB,i j =
∫ +∞

δR j

f (ri)dri

qP,i j =
∫ +∞

R j

f (ri)dri

where δ ∈ (0,1) is a ratio which means BEV owners recharge their BEVs once they’ve driven a distance of

δR j.4

Therefore qi j = q(µi,σi,R j). For simplicity, I assume σi = σ so that f (ri) only depends on µi, the mean

daily driving distance. Then qi j = q(µi,R j) and ∂qi j
∂R j

< 0, ∂qi j
∂ µi

> 0. The intuition is that EVs with longer

electric ranges will occur less backup charging whereas people who on average drive longer distance per

day face higher chance of exhausting battery storage.

3To echo the pattern of peoples’ daily driving distance from 2009 National Household Transportation Survey, I set µi = 3.25,
σ2

i = 0.75. The distribution of ri is skewed to the left with a long right tail.
4BEVs suffer from high cost of being stranded therefore BEV owners will not exhaust all of its electric range before recharging,

whereas PHEVs do not share such problem.
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In the following paragraphs, I discuss the composition of charging costs c1,i j and c2,i j, and stranded

cost c3,i j. The cost of regular charging c1,i j varies with the charging mode selected by the EV owner.

Specifically, whether or not the EV owner has access to home charging makes a big difference. Having a

home charger guarantees availability and convenience of charging, and does not cause detour to find public

charging stations. Assume that EV owners who have chargers at home will not use public charging stations

for regular daily charging, then their regular charging cost would be:

c1|HC,i j = PS +
Pe

Ej

where PS is the fixed cost to install a Level 2 charging station amortized to each mile driven by the EV5;

E j is energy efficiency of vehicle j, i.e., miles/kWh; Pe is electricity rate6. Note that in the case of home

charging, no time cost occurs to individual i.

EV owners without home charging will experience more hassles to regularly charge their EVs due to the

physical distance between charger and home, uncertainty of charging spot availability, and more expensive

electricity price. The frequency of charging depends on both EV’s electric range R j and EV owner’s average

daily driving distance ri. Assume that EV owners go to public charging stations only when they expect the

left battery storage would not fully cover the driving distance of the next day, then the days between each

time charging would be max(
⌊
δR j/ri

⌋
,1) for BEVs and max(

⌊
RPE, j/ri

⌋
,1) for PHEVs. Then the regular

charging cost per mile of EV owners without home charging c1,i j is:

c1|BEV,NHC,i j =
wit1(SS,i j)

min(ri,R j)max(
⌊
δR j/ri

⌋
,1)

+
Pe

E j

c1|PHEV,NHC,i j =
wit1(SS,i j)

min(ri,R j)max(
⌊
RPE, j/ri

⌋
,1)

+
Pe

E j

where SS,i j is density of level II public chargers7; R j is the electric range of the BEV; RPE, j is the electric

range of PHEV j, wi is individual i’s valuation of time. t1(·) stands for the time spent detouring to a public

charging station and it is a decreasing function of SS,i j. With greater density of public charging stations, EV

owners spare less efforts finding one and less time walking between charging stations and home or office.

Also, an EV with a longer electric range can run for more days once fully charged, therefore it reduces the

frequency of charging and time spent on it.

With probability qi j, an EV relies on backup charging channels. Since PHEVs have secondary fuel

source as gasoline, PHEVs and BEVs’ backup charging costs differ. For BEVs, such costs include time cost

of detouring to a charging station and waiting for the EV to be charged, as well as cost of electricity.

c2|BEV,i j = qB,i j

[
wi(

t1(SF,i j)

δR j
+ t2, j)+

Pe

E j

]
5Level 2 charging uses a regular socket with some EV specification protection arrangement. Most EV models can be fully

charged in 4-6 hours under Level 2 charging. They are most popular in home charging and public charging stations.
6For simplicity reason, assume homogeneous electricity rate in baseline case
7Charger density differs by geography therefore has subscript i. Compatibility of chargers with EV models may differ therefore

subscript j.
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where SF,i j is the density of fast charging stations8, t2, j is charging time of vehicle j under fast charging

mode (minute/mile). Note that in this case, individual i waits for the EV to be charged, because this is not

her regular charging spot and she might be in the middle of a trip. DC fast charging stations nowadays

usually can add 80 % of an EV battery in 20-40 minutes, whereas level II chargers take more than 3 hours.

Therefore I assume that BEV owners search only for fast charging stations in case of backup charging.

For PHEVs, I assume that the owners rely on gasoline as their sole fuel source in cases of backup

charging. Similar to BEVs, PHEVs’ backup charging cost involves time cost of detouring to a gasoline

station and waiting while the gas tank is filled, as well as monetary cost of gasoline.

c2|PHEV,i j = qP,i j

[
wi(

t1(SG,i)

δRPG, j
+ t3, j)+

Pg

G j

]
where SG,i is the density of gasoline stations; RPG, j is PHEV j’s gasoline range; t3, j is the time of filling the

gas (minute/mile); G j stands for miles per gallon and Pg is gasoline price considered as a constant.

Furthermore, possibility remains that BEVs will be stranded with an empty battery, which renders un-

desired inconveniences such as car towing. The expected cost of being stranded c3,i j only occurs to BEV

but not PHEV, considering the well developed network of gasoline stations. Probability of failure to find a

public charging station, fi j(SS,i j,SF,i j) is a decreasing function of density of public charging stations, i.e.,
∂ f

∂SS,i j
< 0 and

∂ f
∂SF,i j

< 0. BEV owners with accessibility to home charging are only exposed to risk of

stranded in case of backup charging, whereas BEV owners without home charging face the stranded risk in

all charging modes. Therefore the expected cost of stranded is as below:

c3|PHEV = 0

c3|BEV,HC,ij = qB,i j fi j(wi
ts
R j

+ms)

c3|BEV,NHC,ij = fi j(wi
ts
R j

+ms)

where monetary cost occurred and time wasted after a BEV gets stranded is abstracted to ms and ts.

To simplify the analysis, I sum up EV’s monetary operational cost and denote it as MB, j for BEVs or MP, j

for PHEVs9. Then the cost term ci j derived from the previous discussion could be summarized as below,

differed by being a BEV or PHEV, and having accessibility to home charging (HC) or not (NHC):

8Compatibility of fast charging stations differs across EVs, especially Tesla manages their own fast charging network — Tesla
Superchargers, therefore this term has subscript j.

9According to EPA, estimated annual fuel cost of a BEV or PHEV varies from $550 to $850, which is a relatively small amount
compared to vehicle prices. PHEVs bear greater fuel cost in general due to higher price of gasoline than electricity.
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ci j =



(HC,BEV) : PS +MB, j +qi j

[
wi

(
t1(SF,i j)

δR j
+ t2, j + fi j

ts
R j

)
+ fi jms

]
(HC,PHEV) : PS +MP, j +wiqi j

(
t1(SG,i)

δRPG, j
+ t3, j

)
(NHC,BEV) : MB, j +

wit1(SS,i j)

min(ri,R j)max(
⌊
δR j/ri

⌋
,1)

+wi

[
qi j

(
t1(SF,i j)

δR j
+ t2, j

)
+ fi j

ts
R j

]
+ms fi j

(NHC,PHEV) : MP, j +
wit1(SS,i j)

min(ri,RPE, j)max(
⌊
RPE, j/ri

⌋
,1)

+wiqi j

(
t1(SG,i)

δRPG, j
+ t3, j

)
(2.1)

2.3.1.2 Operational Cost of ICEVs

Operational cost for conventional ICEVs is listed below for comparison, the functional form of which is

similar to the backup charging case of PHEVs. It includes time cost of searching for gasoline station and

waiting at the gas pump, and monetary cost of gasoline consumption.

cICEV,i j = wi(
t1(SG,i)

R j
+ t3, j)+

Pg

G j

2.3.2 Factors Affecting EV Operational Cost

For consumers without concerns of environmental impacts, their choices between BEVs, PHEVs, and

ICEVs with same vehicle attributes depend on trade-off of monetary and time cost of refueling. There-

fore efforts to reduce time cost of EV charging is crucial in promoting EV adoption, given that monetary

cost of EV charging is relatively fixed.

From equation (2.1), one can discover that driving force of EV charging time cost consist of accessibility

to home charging, density of EV charging stations, valuation of time, EV category (BEV or PHEV), and EV

range. This section discusses in general how consumer characteristics and EV attributes affect convenience

of EV charging and hence consumer utility. Several propositions are listed below, with their proves provided

in Section A.1.

Proposition 1 Accessibility to home charging will lower charging cost in general.

Proposition 2 Adding public charging stations will lower charging cost in general, and such impact is

greater for EV owners without home charging.

Proposition 3 Within BEVs, those with shorter electric range benefit more from adding public charging

stations.

Proposition 4 Greater electric range lowers charging cost, and such impact enlarges with people’s valua-

tion of time.

The propositions in this section will be tested using individual level EV purchase data. Also, I will use

aggregated data to show that smaller BEVs (SBEVs, BEVs with shorter electric range) are more sensitive

11



Figure 2.1: Year Trend of Rebate Applications

to the increasing number of public charging stations than larger BEVs (LBEVs, BEVs with longer electric

range). The dataset will be described in Section 2.4, and specification details will be provided in Section 2.5.

A baseline scenario (illustrated in Section A.2) compares the operational costs of several currently avail-

able car models which are considered to be close substitutes with each other. It shows how individual

characteristics such as accessibility to home charging, valuation towards time affect operational cost hence

choice of vehicle within categories of BEVs, PHEVs, and ICEVs.

2.4 Data

2.4.1 Electric Vehicle Adoption in California

This paper focuses on the case of California. California Environmental Protection Agency’s Air Resources

Board releases information for each EV purchase under CVRP (Center for Sustainable Energy, 2017), in-

cluding EV make, time of purchase, Census Tract of residence, etc. I will aggregate this whole sample

dataset by Census Tract and year, and then examine the impact of public charging stations on EV adoption.

Having detailed geographic information — Census Tract code of the vehicle owner is crucial for this study,

for it enables observing how many electric vehicle charging stations are present surrounding the drivers’

home address. A total number of 8,058 census tracts are involved in this study.

Ever since the CVRP launched in 2010, the number of BEVs and PHEVs10 applying for rebate kept in-

creasing. Figure 2.1 below exhibits the trend of rebate applications from different vehicle models11. More-

over, figure 2.2 shows the market shares of different EV models across different regions, with the number

on top of each vertical bar indicating the total number of rebates of the region.

CVRP also conducted a detailed consumer survey that asks about demographic information. 14,442

10PHEVs were launched to sell in year 2012. The data in year 2016 only lasts until September 2016.
11For simplicity, BEVs under a single automobile maker are considered as same product, so are PHEVs.
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Figure 2.2: Market Share across Regions

questionnaires have been answered completely, which represent about 10% of all the rebates in CVRP.

The following information is unveiled for each questionnaire: (1) rebate application date, (2) rebate dollar

amount, (3) vehicle category (e.g. PHEV, BEV, etc.), (4) vehicle make (e.g. Tesla, Nissan, etc.), (5) residence

county12, (6) income range, (7) housing type, (8) renter/owner of the residence place. With individual EV

purchaser’s demographic information, this survey data can be used to examine consumers’ heterogeneous

taste on EV characteristics.

Table (2.2) exhibits vehicles’ type and make frequency that are present in the consumer survey. Note

that in the survey, some less popular EV makers are documented as ”Others”, such as Smart and Volkswa-

gen, probably due to privacy reason. Such less popular EV models are excluded from our individual level

discrete choice analysis since EV characteristics are unknown. The first column of table (2.2) include all

observations; the second and third columns present observations in counties with higher/lower population

density; the last two columns present observations in Northern/Southern California counties. Such split of

sample is in accordance with the empirical analysis in later part of the paper.

2.4.2 National Household Travel Survey

2017 National Household Travel Survey (NHTS) 13 also provides useful information for this study. The

nationwide survey asks households’ travel decisions including vehicle purchases. One could observe house-

12Unfortunately, more accurate Census Tract information is not asked in the individual questionnaire.
13Downloaded on March 20, 2018 from https://nhts.ornl.gov.
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Table 2.2: Frequency of Vehicle Make in Surveyed Sample

Type-Make All High Pop. Den. Low Pop. Den. North CA South CA

BEV
BMW 335 186 149 129 206
Chevrolet 499 237 262 242 257
FIAT 1,482 813 669 681 801
Ford 402 164 238 213 189
Nissan 2,974 1,369 1,605 1,789 1,185
Tesla 2,334 1,207 1,127 1,140 1,194
Toyota 352 183 169 173 179

PHEV
Chevrolet 2,890 1,556 1,334 1,101 1,789
Ford 1,660 789 871 736 924
Toyota 1,514 894 620 618 896
Total 14,442 7,398 7,044 6,822 7,620

holds’ vehicle choice including both EVs and ICEVs from NHTS, unlike in CVRP where only EV pur-

chases are observed. Households’ demographic information such as income, home ownership, household

size, household vehicle count, etc. are also provided.

An important feature of NHTS dataset is that household’s residential state is revealed. This helps identify

the dollar amount of financial incentive a consumer might receive if she purchases an EV. Since financial

incentives differ across states and EV models, such variation makes it possible to estimate consumers’

preference towards financial incentives.

For the purpose of research, there are at least two shortcomings of the NHTS dataset. First, the geo-

graphical identifiers of households are at state level, which is too broad to learn the pattern of public charging

stations deployed near each households. Second, since EVs’ market share in the US is about 1%, the sample

size of EV purchasers in this dataset is also relatively small (about 400 EV purchases out of 40,000 total

vehicle purchases surveyed).

Nevertheless, I use this dataset to determine households’ choice between category of EVs and ICEVs

given their demographic information, financial incentives, and density of public charging stations at state

level.

2.4.3 Charging Stations

Information of all electric vehicle charging stations in California are downloaded from Alternative Fuels

Data Center, U.S. Department of Energy14 on Oct 20, 2015. Charging stations’ location and type information

are contained in this dataset. Unfortunately the dataset unveils opening dates information for merely about

one third of all stations. However, variation in density of stations is crucial in this study, I rescue the situation

by using the earliest date one station appears on on-line EV forums15 to substitute for the actual opening

14http://www.afdc.energy.gov/data download
15The first source is Plugshare, which comes with a smartphone application to let EV owners to find nearby charging stations

and allow them to leave comments. The date of the first comment is used. The second source is carstations.com, which tells the
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date. Yet there are approximately 20% stations still left with unknown opening date, I use Oct 20, 2015 —

the day when the list of charging stations is downloaded, to fill in such missing information. The table below

casts a light on the expansion of EV charging station construction and EV adoption. During year 2011 to

2015, the ratio of EVs to charging stations in California increased from 9:1 to 57:1.

Table 2.3: Annual Growth of EV Charging Stations and Rebates

Year 2010 2011 2012 2013 2014 2015
Total # Rebates (BEV&PHEV) 61 4,028 14,679 42,996 85,371 130,276
Total # Charging Stations 155 465 960 1,412 1,778 2,296
∆ # Rebates (BEV&PHEV) 61 3,967 10,651 42,375 42465 44,905
∆ # Charging Stations 155 310 495 452 366 518

2.4.4 Demographic Information

Table (2.4) shows the actual EV buyers’ information from the surveys, including: income, whether owning

a detached house (as a proxy for ”having access to home charging”), and number of charging stations

nearby. Descriptive statistics are exhibited by buyers of different types of EVs: large BEVs, small BEVs,

and PHEVs. Income is given as a range in the original dataset, e.g. $50,000 to $74,999. In our analysis,

each individual’s income is assumed to be the mean of the income range he/she belongs to16. Number of

public charging stations nearby is derived from the EV buyer’s residence county and purchase year. I first

calculate for each Census Tract within a county, how many charging stations are within 30km range; then a

weighted average is calculated using these numbers, where the weights are given by purchase frequency of

each Census Tract; the weighted average varies by county and year, and is a used as proxy for number of

charging stations nearby.

Table 2.4: Demographic Information

Variable Mean Std. Dev. Min. Max. N
Large BEV (Tesla) Buyers
income ($1,000) 334.7 185.3 37.5 600 2334
own house 0.9 0.3 0 1 2334
charging stations in 30km (100) 1.1 0.5 0 2.5 2334
Small BEV (Non Tesla BEV) Buyers
income ($1,000) 170.7 110.7 37.5 600 6048
own house 0.8 0.4 0 1 6048
charging stations in 30km (100) 1.2 0.6 0 2.5 6044
PHEV Buyers
income ($1,000) 170.1 110.2 37.5 600 6065
own house 0.8 0.4 0 1 6065
charging stations in 30km (100) 1.1 0.6 0 2.5 6064

concrete date when a station is added on the site. The earliest date of these two data sources will be used as the “opening date”.
16The highest income group is documented as ”income greater than $500,000”, no upper limit of income is given. I use $600,000

as a proxy for highest income.
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2.5 Empirical Strategy

2.5.1 Discrete Choice Model of EVs

2.5.1.1 Model Setup

Consumer i makes a discrete choice of EVs from J alternatives. She gains utility ui j from the choice denoted

as Yi = j. Utility is composed of a systematic part vi j and a random part εi j which follows generalized

extreme value distribution.

ui j = vi j + εi j (2.2)

where i and j stand for consumer and EV model respectively. According to EV’s energy source and their

electric range, I partition the whole set of EVs into groups: PHEVs, longer-range BEVs, and shorter-range

BEVs. For simplicity, I use the term large BEVs(LBEV)/small BEVs(SBEV) interchangeably with longer-

range BEVs/shorter-range BEVs. 17 Until year 2017, Tesla stands out as the only BEV model that has a

range greater than 200 miles, whereas other BEVs’ ranges vary from 80 miles to 100 miles. Therefore the

categories large BEVs and small BEVs could also be deemed as Tesla and non-Tesla BEVs respectively.

The categorization is demonstrated in Figure 2.3. Then the utility function can be expressed as:

ui,g,m = vi,g,m + εi,g,m

where subscripts g stand for the group of PHEVs, LBEVs and SBEVs, m is the vehicle make.18 Therefore

each EV j could be identified by subscript(g,m).

vi,g,m depends on both vehicle characteristics zg,m and consumer demographic characteristics xi, and its

functional form closely follows predictions from the theoretical model.

For vehicle characteristics, I include price, annual fuel cost estimated by US EPA, and electric range

which determines the convenience of EV charging, and vehicle size (or volume). To capture the effect that

consumers with higher income can be less sensitive to EV price change (DeShazo et al. (2017)), I add an

interaction term of income and EV price Pj.

As for consumer characteristics, the model estimates the impact of income Ii, owning a detached house

Hi, density of public charging stations Si, and an interaction of Hi and Si for each category g: PHEVs,

longer-range BEVs, and shorter-range BEVs. Therefore the expression of vi,g,m is as below:

vi,g,m = γ1IiPj + γγγ222xxx jjj +βββ gggzzziii

where Ii is consumer i’s income; Pj is price of EV j; xxx jjj is a vector of EV j’s characteristics except price;

zzziii is a vector of consumer i’s characteristics. In order to draw conclusions on how consumer characteristics

17In the robustness analysis, another nesting structure is illustrated where choice is between PHEV and BEVs, and under the
BEV category is further partitioned into LBEVs and SBEVs.

18I do not differentiate vehicle model for a given vehicle make, which is constrained by our data. Fortunately, most EV producers
only have one model under their production line until year 2017. Exceptions include Ford and Tesla, for which I take the average
of vehicle attributes under each make to represent their EVs.
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affect preference to different types of EVs, the coefficients of zzziii are estimated for each EV group (PHEVs,

LBEVs, and SBEVs).

The model here follows the standard nested logit model (McFadden, 1978; Berkovec and Rust, 1985;

Goldberg, 1995) and assumes that standard error term εi j follows generalized extreme value distribution.

Consumers first choose within groups of PHEVs, LBEVs, and SBEVs, and then choose an EV model within

the group. A tree diagram depicting this decision process is shown in Figure 2.3. The joint probability of

choosing an EV (g,m) is:

Pi
g,m = Pi

g×Pi
m|g

where Pi
g,m denotes the joint probability of consumer i choosing EV (g,m); Pi

g is the probability of choosing

a group from the pool of PHEVs, LBEVs, and SBEVs; Pi
m|g represents probability of choosing an EV

conditional on the choice of the previous stage.

Figure 2.3: Nested Logit Tree Structure

Following the research cited above, choice probability of (g,m) will be given by nested logit formulas

that have the following general form:

Pi
g,m = Pi

g×Pi
m|g =

exp(X i
gθg + Ii

gλg)

∑
G
k=1 exp(X i

kθk + Ii
kλk)
×

exp(X i
g,mθg,m/λg)

∑
Mg
l=1 exp(X i

g,lθg,l/λg)

where

Ii
g = log

[
Mg

∑
l=1

exp(X i
g,lθg/λg)

]
The subscript g and m denote for choice on group g and make m respectively. X i

g represents a vector of

explanatory variables of choice g and θg is the parameter vector specific to group g to be estimated. Mg is

the choice set fo makes given that group g is chosen. Ii
g measures the expected aggregate utility of subset g.

Coefficients λ reflect the dissimilarity of alternatives within a nest. As shown by McFadden (1978), if λ ’s lie

within unit interval, the nested structure is consistent with random utility maximization; as λ approaches 1,

the distribution of the error term tends towards an iid extreme value distribution and the choice probabilities
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are given by multinomial logit model; λ equaling 0 means the error terms are perfectly correlated. In our

model, λ for Tesla in the second stage are constrained to equal 1 since they represent the only choice in that

nest.

2.5.1.2 Endogeneity

The previous discussion assumes that explanatory variables in the model are independent of the unobserved

factors. However, the number of public charging stations could be correlated with the error term, casting

doubt on the estimation result from the model previously described. EVs with different electric range have

varied demand on public charging station network, especially, we’ve illustrated that shorter range BEVs

would rely on public charging stations more than longer range BEVs and PHEVs. If consumers in a county

prefer shorter range BEVs due to reasons unknown to the researcher, and more charging stations are built due

to high demand brought by the shorter range BEVs, such reverse causal relationship would make “number

of public charging stations” an endogenous explanatory variable.

The following section discusses how to deal with the endogeneity issue. Note that since the choice

model is nonlinear, traditional methods such as instrumental variable could not be used. This paper uses the

control function approach (Train, 2009; Petrin and Train, 2010), which alleviates the endogeneity problem

by including an extra variable that conditions out the variation of unobserved factors that are correlated with

the endogenous explanatory variable. To elaborate the control function approach, let’s revisit the general

form of the utility function (2.2) from previous section, and revise it so that the deterministic part of the

utility vi j is expressed as a function of exogenous variables xi j, endogenous variables yi j, and individual

specific taste parameters βi:

ui j = v(xi j,yi j,βi)+ εi j (2.3)

Here yi j is the number of public charging stations, which might be correlated with the error term εi j, and

will lead to biased estimation results if the problem left unsolved.

First express the endogenous explanatory variables as a function of observed instruments zi j and unob-

served factors µi j:

yi j = w(zi j,γ)+µi j

µi j and εi j are independent of zi j, but µi j is correlated with εi j. Hence yi j is also correlated with εi j

which is the source of the endogeneity concern. Conditional on µi j, yi j will be independent of εi j under such

a setting, and this is the key to the control function approach. The following paragraphs discuss choice of

zi j.

Regarding to the endogenous deployment of public charging stations, two instrument variables are in-

cluded. The first one is a dummy variable suggesting whether the EV purchaser’s residence county gives

financial incentive on installing EV chargers. Such local government policies provides incentives to install

more EV chargers, thus bringing an exogenous shock to the chargers stock. The second IV is constructed

based on Li et al. (2017). They argue that grocery stores and supermarkets are major providers of public

chargers, yet their presence appeared long before the development of EVs, therefore the number of grocery

stores and supermarkets brings variation to charger stock and should not be correlated with unobserved vari-
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ables in the utility function. For similar reason, other amenities that are potential providers of EV charging

stations should be included in IV construction. Here I use the total number of grocery stores, supermarkets,

merchandise stores, and restaurants. This instrument satisfies the exclusion restriction because such ameni-

ties are established earlier than massive EV adoption. The decision to install EV charging stations involves

more than attracting local EV drivers — financial incentives from energy companies and car companies

are also a main driver. Moreover, since the number of such places with amenity remains stable overtime

whereas charging station network expands rapidly over the years, a year trend variable is also included in

the instruments. Suppose consumers’ taste towards different types of EVs does not change across year, then

year trend should not be correlated with the error terms in the utility function. The first-stage regression

results could be found in Table 2.5. The coefficients on both government incentives and number of local

amenities are both positive and significant at the 1% level.

Table 2.5: First-Stage Results for Charging Station Equation

Variable
government incentive on charging stations 0.683***

(0.126)
number of local amenities 0.0002***

(0.00003)
year trend 0.0569*

(0.0298)
Number of observations is 172.

The dependent variable is number of charging stations within 30 km radius of a county in a given year.

* p¡0.1, ** p¡0.05, *** p¡0.01

Regressing the endogenous explanatory variables yi j on the instruments zi j will give us a residual term

µi j, which captures variation of yi j driven by unobserved variables. Further decompose εi j to the part

explainable by µi j (i.e., the control function, CF) and a residual:

εi j = CF(µi j;λ )+ ε̃i j

Plugging in the above expression of εi j into the utility function (2.3) I will get:

ui j = v(xi j,yi j,βi)+CF(µi j;λ )+ ε̃i j (2.4)

In the utility function (2.4), the error terms are uncorrelated with the explanatory variables by construc-

tion, therefore the model can be estimated following standard steps as described in the previous section.

Regarding to the functional form of CF, a straightforward candidate is linear approximation: CF(µi j;λ )=

λ µi j, as is adopted in this paper.

To sum up, the control function approach takes two steps. First, regress the endogenous explanatory

variables yi j on the exogenous instruments zi j and obtain the residual terms µi j. In the second step, add

µi j to the original nested logit model as an extra explanatory variable and estimate the model following

the standard approach. Note that in the two-step estimation process, the µi j used in the second step is an
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estimate from the first step rather than the true µi j, the asymptotic sampling variance of the second step

estimator needs to be corrected (Petrin and Train, 2010). Here the bootstrap method is implemented to fix

this issue.

2.5.1.3 Results

Results using the control function approach is presented in Table 2.6. The first column shows the estimation

result using all observations in the survey (14,420 individuals with 10 EV choices for each person). The

results are generally as expected: (1) lower price, lower fuel cost, longer electric range, and larger size

will increase the choice probability; (2) interaction term of price and income is positive and statistically

significant, suggesting that higher-income consumers are less price sensitive.

The effect of public charging stations is strongest for shorter-range BEVs, which coincides with the

theory prediction. The intuition is that shorter-range BEVs rely on their battery as the sole energy source

and they have higher probability of getting stranded due to the limited range, hence their reliance on public

charging network is the most inelastic. The CF of public chargers is positive and statistically significant,

indicating that some factor benefiting EV adoption meanwhile also positively affecting public charger de-

ployment is omitted from the utility function specification.

Owning a detached house gives higher utility for BEVs than PHEVs, which is also intuitive since BEVs

rely more on charging facilities than PHEVs and owning a detached house provides the possibility of home

charging.

The interaction term of owning a detached house and public charger density is negative, which follows

the theory prediction that public charging matters more for drivers without access to home charging. This

result is not statistically significant, and it could be because the sample size of EV purchasers not owning a

detached house is too small, only about a quarter of those owning a detached house.

The second and third column in Table 2.6 present subsamples containing counties with higher population

density (population divided by geographical area) and lower population density respectively. The fourth and

fifth column divide the sample to North and South California. The results have similar sign to column (1)

using all observations.

Table 2.7 shows the estimation results not using alternative specifications. In Table 2.7, column (1) is

the preferred specification same as column (1) in Table 2.6; column (2) drops control function of charging

stations; column (3) drops the interaction of income and price; column (4) adds EV model fixed effects thus

dropped EV specific characteristics; column (5) adds an additional level of nest such that consumers choose

from BEVs and PHEVs first, and the BEV branch is further divided to LBEVs and SBEVs, the rest of the

model being the same. Results remain constant with the preferred specification.

2.5.2 Choice between EVs and ICEVs

The above section discusses the question ”Conditional on a consumer decides to purchase an EV, which

one will she choose”. However, one needs to know consumers’ decision rule to choose between EVs and

conventional ICEVs. Here I use the NHTS dataset and run a binary logit model to determine the factors

affecting the choice. Note that ideally one would like to estimate one nested logit choice model with the tree
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Table 2.6: Nested Logit Reg. of EV Choice with Control Functions

Choice Probability
All High Pop. Den. Low Pop. Den. North CA South CA

all EVs
price(1,000$) -0.019*** -0.009*** -0.037*** -0.042*** -0.006**

(0.003) (0.003) (0.007) (0.007) (0.002)
price(1,000$) 0.083*** 0.075*** 0.106*** 0.123*** 0.059***
× income (1,000,000$ ) (0.016) (0.025) (0.027) (0.029) (0.023)
annual fuel cost -0.983*** -0.891*** -1.284*** -1.898*** -0.469***

(0.155) (0.264) (0.228) (0.296) (0.163)
electric range 0.903*** 0.827*** 1.147*** 1.575*** 0.463***

(0.140) (0.242) (0.200) (0.242) (0.161)
size 0.306*** 0.240*** 0.464*** 0.697*** 0.113***

(0.048) (0.071) (0.082) (0.108) (0.040)
longer range BEV
income(1,000$) 0.004*** 0.004*** 0.003*** 0.002** 0.005***

(0.001) (0.001) (0.001) (0.001) (0.001)
own house 0.660*** 0.539* 0.826*** 0.595** 0.708***

(0.184) (0.325) (0.274) (0.279) (0.248)
charger density -0.036 -0.259 0.382 0.079 -0.064

(0.205) (0.322) (0.448) (0.329) (0.267)
house × charger density -0.041 0.001 -0.128 -0.034 -0.050

(0.080) (0.124) (0.169) (0.127) (0.105)
CF(charger density) -0.226*** -0.260 0.011 -0.108 -0.418***

(0.046) (0.165) (0.151) (0.100) (0.161)
constant -16.257*** -15.318*** -19.313*** -24.825*** -9.489***

(2.290) (4.109) (3.091) (3.723) (2.702)
shorter range BEV
income(1,000$) -0.000 -0.000 0.000 0.000 -0.000*

(0.000) (0.000) (0.000) (0.000) (0.000)
own house 0.221** 0.814*** 0.071 0.245 0.188

(0.097) (0.193) (0.135) (0.153) (0.129)
charger density 0.206** 0.690*** 0.659*** 0.576*** 0.131

(0.101) (0.177) (0.226) (0.175) (0.127)
house × charger density -0.032 -0.208*** 0.007 -0.048 -0.004

(0.042) (0.068) (0.088) (0.070) (0.053)
CF(charger density) -0.467*** -0.644*** 0.374*** 0.307*** -0.883***

(0.032) (0.132) (0.103) (0.073) (0.109)
constant -6.051*** -6.424*** -6.979*** -8.321*** -3.625***

(0.885) (1.530) (1.197) (1.488) (1.066)
shorter range BEV λ 0.634*** 0.522*** 0.891*** 1.103*** 0.347***

(0.097) (0.151) (0.151) (0.164) (0.119)
PHEV λ 2.360*** 1.865*** 3.774*** 6.209*** 1.041***

(0.386) (0.557) (0.764) (1.267) (0.366)
N 134491 68846 65645 63626 70865
Income is demeaned.

Standard errors in parentheses

* p < 0.1, ** p < 0.05, *** p < 0.01
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Table 2.7: Alternative Specifications: Nested Logit Reg. of EV Choice

Choice Probability
(1) (2) (3) (4) (5)

all EVs
price(1,000$) -0.019*** -0.022*** -0.020*** -0.019***

(0.003) (0.003) (0.004) (0.004)
price(1,000$) 0.083*** 0.095*** 0.199*** 0.083***
× income (1,000,000$ ) (0.016) (0.017) (0.005) (0.017)
annual fuel cost -0.983*** -1.141*** -0.924*** -0.979***

(0.155) (0.156) (0.153) (0.165)
electric range 0.903*** 1.043*** 0.854*** 0.899***

(0.140) (0.141) (0.140) (0.150)
size 0.306*** 0.354*** 0.289*** 0.305***

(0.048) (0.049) (0.048) (0.051)
longer range BEV
income(1,000$) 0.004*** 0.004*** 0.007*** 0.004***

(0.001) (0.001) (0.000) (0.001)
own house 0.660*** 0.667*** 0.660*** 0.663*** 0.657***

(0.184) (0.184) (0.183) (0.183) (0.188)
charger density -0.036 -0.006 -0.034 -0.037 -0.034

(0.205) (0.205) (0.205) (0.205) (0.206)
house × charger density -0.041 -0.040 -0.041 -0.040 -0.041

(0.080) (0.080) (0.080) (0.080) (0.080)
CF(charger density) -0.226*** -0.226*** -0.225*** -0.228***

(0.046) (0.045) (0.045) (0.050)
constant -16.257*** -18.569*** -15.409*** -16.188***

(2.290) (2.306) (2.279) (2.518)
shorter range BEV
income(1,000$) -0.000 0.000 -0.000** -0.000

(0.000) (0.000) (0.000) (0.000)
own house 0.221** 0.235** 0.220** 0.232** 0.222**

(0.097) (0.097) (0.097) (0.097) (0.098)
charger density 0.206** 0.271*** 0.209** 0.208** 0.206**

(0.101) (0.100) (0.101) (0.101) (0.101)
house × charger density -0.032 -0.028 -0.032 -0.029 -0.032

(0.042) (0.042) (0.042) (0.042) (0.042)
CF(charger density) -0.467*** -0.467*** -0.474*** -0.467***

(0.032) (0.032) (0.032) (0.033)
constant -6.051*** -6.981*** -5.760*** -6.026***

(0.885) (0.891) (0.886) (0.960)
EV model dummy N N N Y N
Three level nests N N N N Y
N 134491 134491 134491 134491 134491
Standard errors in parentheses

* p < 0.1, ** p < 0.05, *** p < 0.01
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structure in Figure (2.4). Unfortunately, the dataset of NHTS and CVRP could not be combined, since they

contain different variables (mainly granularity of households’ geographic location) and the CVRP merely

includes EV buyers. A nice feature about the NHTS dataset is that households in different states face various

dollar amounts of financial incentives, thus allowing me to identify the impact of financial incentives on

choice probability of EVs.

2.5.2.1 Logit Model

Utility of a consumer purchasing an EV is:

ui = x′iβ + εi

where x′i is consumer i specific demographic variable, which includes the dollar amount of financial incentive

provided in the residential state, relative density of charging stations (measured by number of charging

stations divided by number of gasoline stations in the residential state19), the number of vehicles owned by

the household, household size, home ownership status, income, etc.

Assuming (1) consumer i will purchase an EV when ui > 0 or an ICEV when ui <= 0 and (2) ε follows

logistic distribution, the probability of consumer i purchasing an EV conditional on buying a new car is:

pi =
exp(x′iβ )

1+ exp(x′iβ )
(2.5)

Figure 2.4: Ideal Nested Logit Tree Structure

19Using state population to normalize the number of charging stations will lead to qualitatively similar results.
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2.5.2.2 Results

Results of the logit model described above can be found in Table (2.8), where each column stands for an

alternative specification. The implications from various specifications are fairly consistent. First, density of

public charging stations have a positive impact on EV adoption, and the result stays after dealing with the

problem that charging stations density being endogenous to EV penetration rate. Specification (4) and (5) use

logged value of charging station density to capture the effect that marginal benefit of adding public charging

stations on EV adoption could be decreasing with the installation base of public charging stations. Second,

EV subsidy raises the probability of EV adoption. Specification (4) is chosen as the favorite specification

and will be used in counterfactual exercise.

Table 2.8: Logit Regression of Choice between EV/ICEV

Choice Odds Ratio
(1) (2) (3) (4) (5)

EVs
charging stations 5.470*** 6.101*** 7.267***

(0.417) (0.515) (1.083)
subsidy ($1,000) 0.176*** 0.114* 0.114* 0.113* 0.113*

(0.048) (0.059) (0.059) (0.060) (0.060)
home owner 0.522** 0.634*** 0.947** 0.638*** 1.012**

(0.232) (0.230) (0.398) (0.229) (0.419)
income ($1,000) 0.011*** 0.010*** 0.010*** 0.010*** 0.010***

(0.001) (0.001) (0.001) (0.001) (0.001)
household vehicle count -0.039 -0.062 -0.061 -0.062 -0.060

(0.057) (0.060) (0.060) (0.060) (0.060)
household size 0.080 0.062 0.060 0.061 0.059

(0.062) (0.062) (0.062) (0.062) (0.062)
CF(charging stations) 1.012*** 1.008*** 0.944*** 0.934***

(0.328) (0.315) (0.361) (0.348)
charging stations × -1.392
home owner (1.237)
log(charging stations) 7.508*** 9.112***

(0.674) (1.373)
log(charging stations) × -1.899
home owner (1.550)
constant -6.863*** -6.417*** -6.690*** -6.501*** -6.830***

(0.468) (0.522) (0.578) (0.529) (0.594)
N 29047 29047 29047 29047 29047
log pseudolikelihood -1.713×106 -1.688×106 -1.687×106 -1.686×106 -1.685 ×106

Logit regression is weighted using NHTS sample weight.

Number of charging stations of each state is divided by number of gas stations as normalization.

Standard errors in parentheses

* p < 0.1, ** p < 0.05, *** p < 0.01
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2.5.3 Counterfactual Exercise from Discrete Choice Model

With the estimation results from the above sections, we can calculate the choice probability of a specific EV

model j by multiplying the probability of purchasing an EV Pe with the probability of purchasing model j

conditional on choosing from EVs Pj|e:

Pe, j = Pe×Pj|e = Pe×Pg|e×Pm|g,e

so that the nested logit structure depicted in Graph (2.4) is estimated separately using two datasets. NHTS

dataset gives the choice probability of top level (ICEVs vs EVs) whereas the CVRP dataset pins down the

choice probability within the EV class. I conduct several counterfactual exercises by altering the policy

provided and see how the choice probability of different group of EVs would vary.

Table 2.9: Counterfactual Exercise from Discrete Choice Model

Panel A: Policy Impact on EV Share

status quo Policy (1) Policy (2) Policy(3)
EV share 5.7% 25.4% 5.4% 21.8%

Panel B: Policy Impact on Choice within EVs

status quo Policy (1) Policy (2) Policy(3)
share(Large BEVs/EVs) 16.2% 13.9% 16.2% 13.9%
share(Small BEVs/EVs) 41.8% 48.1% 41.8% 48.1%
share(PHEVs/EVs) 42% 42.7% 42% 42.8%

Panel C: Policy Impact on EV Choice Conditional on Buying a New Car

status quo Policy (1) Policy (2) Policy(3)
share(Large BEVs) 0.92% 3.53% 0.87% 3.03%
share(Small BEVs) 2.38% 12.2% 2.26% 10.5%
share(PHEVs) 2.39% 10.8% 2.31% 9.31%

Table (2.9) exhibits the counterfactual market share of EVs under alternative scenarios: policy (1):

doubling the number of public charging stations; policy (2): eliminate EV subsidies for household with

annual income greater than $ 200,000; policy (3): combination of both policy (1) and policy (2). Panel A

predicts the probability of buying an EV conditional on buying a new car, using the estimation result from

the binary logit model in Section 5.2; Panel B predicts probability of buying a specific group of EV (large

BEV, small BEV, or PHEV) conditional on buying an EV, using the estimation result from the nested logit

model in Section 5.1; Panel C shows product of Panel A and Panel B, which stands for probability of buying

some group of EV conditional on buying a new car. Note that the expression ”probability of an individual

buying a car” is interchangeable with ”predicted market share”, under such discrete choice model setting.

Results in Table (2.9) Panel C shows that: (1) doubling the number of public charging stations would

increase EV shares (of new cars sold) significantly and such effect is stronger with small EVs than large
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EVs; (2) removing the EV subsidy given to the more affluent households would cause a slight decrease in

EV shares; (3) combining the two policies together would lead to significant boost in EV shares, relative to

the status quo. A back-of-envelope calculation of the cost associated with policy (3) is shown as follows:

about 30% of households who purchased EVs have income greater than $200,000 (according to NHTS),

eliminating subsidies to such households in California in the year 2015 alone will save about $300 million.20

Doubling the number of public charging stations in California from the storage in year 2015 will cost about

$75 million. 21 Therefore, my estimation result shows that policy (3) which eliminates EV subsidy to

higher-income consumers and construct more public charging stations not only leads to higher EV sales, but

also costs less than the current subsidy scheme.

2.5.4 Regression with Aggregated Data

The previous section estimates consumer’s taste towards different types of EVs, benefiting from the avail-

ability of individual level data. Because Census Tract level data are more accurate on EV drivers’ geographic

location, I test the impact of public charging stations on EV adoption using aggregated Census Tract level

data.

2.5.4.1 Model Setup and Endogeneity Issue

For each group of PHEVs, LBEVs (Teslas), and SBEVs (non-Tesla BEVs), I run regressions on Census

Tract(CT)-year level observation:

ln(yit) = β0 +β1 ln(xit)+X
′
itγ +δt +σi + εit

where yit is the number of rebates of CT i in year t, xit is the number of charging stations within 30km

distance, Xit are control variables (income, education, household size, travel time to work, etc.), δt is year

fixed effect, and σi is CT fixed effect. The demographic information is averaged at CT-year level, provided

by American Community Survey.

The issue of endogenous number of charging stations is similar as described in earlier section. I rescue

such concern in two specifications. First, I added CT and year fixed effects to the regression, thus absorbing

unobserved Census Tract level characteristics. Second, I add IVs for number of charging stations nearby.

The IVs are number of places with amenity (grocery stores, supermarkets, merchandise stores, restaurants)

within 30km multiplied by the total number of charging stations outside of 30km radius of CT i in year t.

20Federal tax credits amounts to $7,500 and $4,000 for BEVs and PHEVs respectively. California Clean Vehicle Rebate Program
provides cash subsidy of $2,500 and $1,500 for BEVs and PHEVs respectively. In 2015, the total number of EV purchase in
California is 130,276. Further assume BEVs and PHEVs both occupy half of the EV market share, the total amount of subsidy
saved is 130276×30%× (0.5× ($7500+$2500)+0.5× ($4000+$1500)) = $302891700.

21In 2015, the stock of public charging stations in California is 2296. Assume 25% of them are DC fast charging stations and
75% of them are level II charging stations. The average cost of constructing a typical DC fast charging station is $50,000, and the
cost is $27,000 for a level II charging station Li et al. (2017). The total cost to double the public charging stations in California in
2015 is thus about: 2296× (0.25×$50000+0.75×$27000) = $75194000.
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2.5.4.2 Results

From the regressions using aggregated data, one can see that PHEVs and small BEVs benefit most from

density of public charging stations. Table 2.10, 2.11, 2.12 exhibit the regression results, in which column

(4) is the favorite specification, which includes Census Tract fixed effects, year fixed effects, and IV for

charging station density. Note that the geographic information is boiled down to Census Tract level, leaving

this analysis the one with most accurate estimate on public charging station density surrounding EV owners.

Table 2.10: Census Tract - Year Panel Regression, PHEVs

OLS OLS OLS GMM
Variable (a) (b) (c) (d)
log(no. charging stations within 30km) 0.124∗∗∗ 0.043∗∗∗ 0.146∗ 0.610∗∗∗

(0.014) (0.009) (0.073) (0.141)
log(mean income) 0.135 0.237∗∗ 0.381∗∗∗ 0.264∗∗∗

(0.098) (0.111) (0.106) (0.077)
log(mean income/median income) 0.245∗∗∗ 0.046 -0.207∗∗∗ -0.169∗∗∗

(0.056) (0.054) (0.044) (0.037)
log(no. detached house) 0.055∗∗∗ 0.016∗ 0.021∗∗∗ 0.028∗∗∗

(0.013) (0.009) (0.006) (0.009)
log(adult population) 0.254∗∗∗ 0.246∗∗∗ 0.151 0.137

(0.023) (0.024) (0.121) (0.102)
percentage(higher education) 1.057∗∗∗ 1.020∗∗∗ 0.233∗∗ 0.161∗

(0.182) (0.182) (0.108) (0.095)
log(time to work) 0.090∗ 0.171∗∗∗ 0.155∗ 0.114

(0.048) (0.052) (0.086) (0.074)
percentage(more than 2 vehicles) 0.426∗∗ 0.265 -0.129 -0.193

(0.207) (0.241) (0.121) (0.136)
year fixed effects No Yes Yes Yes
census tract fixed effects No No Yes Yes
N 47448 47448 47448 47442
adj. R2 0.335 0.501 0.399 0.341
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

2.5.4.3 Counterfactual Exercise: Indirect Network Effects and Simulation Results

The following section conducts counterfactual exercise using the aggregated regression results to analyze

how the EVs and charging stations will evolve under alternative policy bundles.

2.5.4.3.1 Model Setup The following model is built on Li et al. (2017). We categorize EVs to PHEVs,

small BEVs and large BEVs. Assume that EV sales qθ ,t depend on the number of public charging stations in

the market Nt , the price of the EV pθ ,t , and other product characteristics combined xθ ,t ; where θ ∈ {P,L,S}
denotes for EV type (PHEV, large BEV, small BEV respectively), and t denotes for time period. The EV

stock of type θ in period t is cumulative EV sale less scrappage, denoted as Qθ ,t = ∑
t
h=1 qθ ,h · st,h, where
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Table 2.11: Census Tract - Year Panel Regression, small BEVs

OLS OLS OLS GMM
Variable (a) (b) (c) (d)
log(no. charging stations within 30km) 0.112∗∗∗ 0.036∗∗∗ -0.004 0.634∗∗∗

(0.019) (0.012) (0.070) (0.168)
log(mean income) 0.127 0.220∗∗ 0.616∗∗∗ 0.455∗∗∗

(0.083) (0.096) (0.143) (0.090)
log(mean income/median income) 0.146∗∗ -0.049 -0.228∗∗∗ -0.176∗∗∗

(0.061) (0.063) (0.038) (0.031)
log(no. detached house) 0.069∗∗∗ 0.033∗∗∗ 0.004 0.014

(0.014) (0.010) (0.009) (0.012)
log(adult population) 0.254∗∗∗ 0.244∗∗∗ 0.166 0.145

(0.027) (0.029) (0.121) (0.094)
percentage(higher education) 1.269∗∗∗ 1.235∗∗∗ 0.401∗∗∗ 0.302∗∗

(0.136) (0.145) (0.129) (0.120)
log(time to work) -0.065 -0.003 0.186 0.130

(0.052) (0.054) (0.113) (0.095)
percentage(more than 2 vehicles) 0.258 0.106 -0.146 -0.234∗

(0.162) (0.186) (0.119) (0.131)
year fixed effects No Yes Yes Yes
census tract fixed effects No No Yes Yes
N 47448 47448 47448 47442
adj. R2 0.344 0.490 0.373 0.186
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

st,h is the survival rate at time t for EVs sold in time h. Assume the survival rate st,h is δ t−h, where δ < 1.

The number of charging stations that have been built Nt(QP,t ,QL,t ,QS,t ,zt) depends on the stock of EVs and

other variables combined zt that might affect the fixed cost of investment. The EV demand functions and

charging stations installment function are specified as below:

ln(qθ ,t) = βθ ,1 ln(Nt)+β2 ln(pθ ,t)+β3xθ ,t , for θ ∈ {P,L,S} (2.6)

ln(Nt) = γ1 ln(QP,t +QL,t +QS,t)+ γ2zt (2.7)

2.5.4.3.2 Feedback Loop The parameters βθ ,1 and γ1 capture the magnitude of the indirect network effect

on two sides. Feedback loop arises if βθ ,1 and γ1 are nonzero. Intuitively, shocks on EV sales in period t will

change the installed base of EVs in period t +1, causing the number of charging stations to adjust, which in

turn affect EV sales in period t + 1. If both βθ ,1 and γ1 are positive, then a policy shock that increases the

stock of EVs or charging stations will amplify its effect through the feedback loop.
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Table 2.12: Census Tract - Year Panel Regression, large BEVs (Teslas)

OLS OLS OLS GMM
Variable (a) (b) (c) (d)
log(no. charging stations within 30km) 0.047∗∗∗ 0.010∗∗∗ 0.118∗∗∗ 0.310∗∗∗

(0.007) (0.003) (0.025) (0.079)
log(mean income) 0.212∗∗∗ 0.261∗∗∗ 0.258∗∗∗ 0.267∗∗∗

(0.055) (0.058) (0.089) (0.087)
log(mean income/median income) 0.457∗∗∗ 0.365∗∗∗ -0.112∗∗∗ -0.111∗∗∗

(0.048) (0.034) (0.039) (0.039)
log(no. detached house) 0.028∗∗∗ 0.011∗ 0.009 0.011

(0.009) (0.006) (0.011) (0.013)
log(adult population) 0.085∗∗∗ 0.079∗∗∗ 0.001 -0.018

(0.017) (0.019) (0.066) (0.061)
percentage(higher education) 0.538∗∗∗ 0.512∗∗∗ 0.189∗∗ 0.172∗∗

(0.085) (0.089) (0.083) (0.084)
log(time to work) -0.022 0.005 0.103∗∗ 0.118∗∗

(0.024) (0.026) (0.051) (0.053)
percentage(more than 2 vehicles) 0.066 -0.012 -0.202∗∗ -0.245∗∗

(0.107) (0.117) (0.101) (0.123)
year fixed effects No Yes Yes Yes
census tract fixed effects No No Yes Yes
N 47448 47448 47448 47442
adj. R2 0.271 0.352 0.221 0.186
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

2.5.4.3.3 Steady State In a longer time span, if a steady state exists where purchases of EVs remain

at a certain number cross periods, then qθ ,t = qθ ,t+1 = ... = q∗
θ

. The equilibrium stock of EV will be

Q∗
θ
= q∗

θ
/(1− δ ), given Qθ ,t = ∑

t
h=1 qθ ,h · st,h and survival rate being st,h = δ t−h. At the steady state,

assume pθ ,t = pθ , xθ ,t = xθ (θ ∈ {P,L,S}), and zt = z. Combining equations (2.7) and (2.6), equilibrium

numbers of EVs (q∗P, q∗S, q∗L) and charging stations (N∗) are defined by the following system of equations:

ln(q∗P) = βP,1 ln(N∗)+β2 ln(pP)+β3xP

ln(q∗L) = βL,1 ln(N∗)+β2 ln(pL)+β3xL

ln(q∗S) = βS,1 ln(N∗)+β2 ln(pS)+β3xS

N∗ = exp[γ1 ln(
q∗P +q∗L +q∗S

1−δ
)+ γ2z]

(2.8)

2.5.4.3.4 Implications on Policy Choices Although difficulties arise when looking for analytical solu-

tions to the system of equations (2.8), we can still draw conclusions from the equilibrium conditions listed

in (2.8).
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We hereby compare the policy effect of subsidizing EV purchase in several initial periods against build-

ing more EV charging stations. Subsidizing EV purchase in initial periods is a common strategy adopted by

governments around the globe. Since it is a limited time discount of EVs, studies have shown that such poli-

cies greatly led to EV sales increase in the current period. Yet price of EVs will finally return to the original

level pθ once the subsidy budget is exhausted. The equilibrium number of periodical EV sales, cumulative

EV stock, number of charging stations would reach the same level as in the case where no subsidy is given.

The intuition is that although subsidies in the early periods might speed up EV adoption in the earliest stage,

the policy effect will not last as EV stock in the long run is determined by EV characteristics and prices.

Consider an alternative policy that aims at promoting EVs by constructing more charging stations.

Through the feedback loop illustrated in the model, this policy will also lead to an increase in EV pur-

chase. The advantage of this alternative policy is that the beneficial effect will last for all periods after. The

number of charging stations in the long term will be raised by the policy instead of converging to natural

equilibrium level N∗ determined in (2.8). The long term EV sales will be higher than the original equilibrium

if the number of charging stations with government-enforcing construction surpasses N∗.

By fixing the values of pθ ,t , xθ ,t , and zt , and assuming certain values for model parameters as in Li(2017),

we conduct simulation to show the effect of feedback loop. The parameters assumed are shown in Table

(2.13). The initial EV stock is zero: Qθ ,0 = 0, θ ∈ {P,L,S}. For each period, we sequentially solve functions

(2.6) and (2.7) for qP,t , qL,t , qS,t , and Nt , with condition Qθ ,t = qθ ,t +δQθ ,t−1, θ ∈ {P,L,S}.22 Figure (2.5)

shows the evolution of three types of EVs and charging stations under this base case.

Table 2.13: Parameters for Simulating Indirect Network Effects

Coefficients Values Variables Values
β1,P 0.62 pP 30000
β1,L 0.32 pL 70000
β1,S 0.66 pS 30000
β2 -1.2 xP 16
β3 1 xL 18
γ1 0.6 xS 16
γ2 1 z 2
δ 0.9

To simulate the policy effect of directly subsidizing EV purchase (call it policy A from here), we tem-

porarily deduct the subsidy amount from EV prices for the first 10 periods and solve for qP,t , qL,t , qS,t , and

Nt periodically.23 To mimic the actual policy of Californian EV purchasers, we set the subsidy amount to be

$10,000 and $5,500 for BEVs and PHEVs respectively.24

In another simulation, we evaluate policy that uses same amount of money to construct charging stations

(call it policy B from here) instead. For each period, we first calculate the subsidy amount which equals

22Due to the complex functional form, the simulation results are solved numerically using Matlab.
23We assume that charging stock accumulates hence the number of charging stations in each period no less than that in the last

period.
24US Federal Government provides a tax credit of $7,500 for BEV buyers and about $4,000 for PHEV buyers. California Clean

Vehicle Rebate Program gives cash rebates of $ 2,500 for BEVs and $1,500 for PHEVs.
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Figure 2.5: Indirect Network Effect — Base Case Scenario

5000qP,t + 10000qL,t + 10000qS,t . Then we calculate number of charging stations that can be built in this

period by dividing the subsidy amount by $27,000.25 With such policy interfere, number of charging stations

NB,t will no longer be endogenously determined by (2.6) and (2.7). When the number of subsidized charging

stations surpasses the original equilibrium level, i.e., Ns,t >Nt , the excess number of charging stations are not

supported by the same-period EV stock Q·,t and hence 2.7 does not hold in such case. In the opposite case

when Ns,t < Nt , then we assume that after Ns,t charging stations have been constructed by the government,

private firms will keep building charging stations to the equilibrium number Nt because of positive profit.

Therefore, number of EVs q·,t will always satisfy equation (2.6), whereas number of charging stations is the

bigger number between Ns,t and Nt .26

Figure (2.6) shows the simulated evolution process of EV adoption and charging station construction

under three scenarios: a base case, policy A that subsidizes EV purchasing, and policy B that subsidizes

charging stations. At least two important conclusions can be drawn from this figure.

First, policy A has instant effect on EV promotion but does not cause the long run equilibrium of EV

sales to increase, whereas policy B’s positive impact on EV sales remains after the policy period (10 years).

The reason is that factors determining equilibrium q∗
θ

and N∗ stay the same under policy A; however, under

policy B, number of charging stations will be raised exogenously and hence remaining at a higher level than

the original equilibrium.

Second, EVs that are more sensitive to public charging stations would experience highest sales increase

under policy B.

25We follow Li(2017) and assume average cost of building a charging station is at $27,000. Again we assume that charging
station stock accumulates across periods.

26The process of calculating EV sales qB,θ ,t and number of charging stations NB,t for each period is: (1) calculate how many
charging stations can be built with the government subsidy and add it to the existing charging station stock of last period, denote
the resulting number as Ns,t ; (2) calculate qθ ,t and Nt determined by (2.6) and (2.7); (3) if Nt > Ns,t , then NB,t = Nt , qB,θ ,t = qθ ,t ;
(4) if Nt ≤ Ns,t , then NB,t = Ns,t , qB,θ ,t = exp(βθ ,1 ln(NB,t)+β2 ln(pθ )+β3xθ ).
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Figure 2.6: qθ ,t and Nt under Different Scenarios

(a) PHEV sale (b) Large BEV sale

(c) Small BEV sale (d) Charging Stations

2.6 Conclusion
This paper demonstrates that smaller EVs are more inelastic towards public charging stations than larger

EVs, using both individual and aggregated data. The result proves the existence of “range anxiety” of EV

drivers — they are afraid of getting stranded on the road due to an exhausted vehicle battery. Such evidence

justifies the importance of improving EV charging infrastructure network when the policy maker tries to

promote EV adoption.

Since consumers with higher income are less price sensitive, it makes sense to decrease the amount of

financial incentive allocated to high income consumer group, so that government subsidies won’t be given

to “anyway adopters”. After estimating EV demand using discrete choice model, I calculated counterfactual

EV sales under alternative policies. The result shows that more EV sales could be achieved by eliminating

subsidies to high-income consumers and building more public charging stations, meanwhile this policy costs

less than the current government subsidy scheme.

Using a feedback model, I showed that constructing more charging stations will lead to more EV sales in
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the long run as they can benefit EV drivers through all periods, whereas subsidies only affect current period

EV sales.

Moreover, shorter range BEVs have a modest price compared to longer range BEVs, and are more

energy efficient compared to plug-in electric vehicles (PHEVs). Therefore subsidizing charging facility

instead of individual EV purchasers might contribute more to energy saving and air pollution reduction,

whereas reducing the concern that high-income potential buyers of luxurious longer range BEVs might free

ride government subsidy.
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Chapter 3

The Cost of Commuting Time Reliability:
Theoretical Advances using Reliability
Standards and Empirical Findings from
Metro Vancouver Traffic Data

3.1 Introduction
Despite its compelling economic benefits, congestion pricing remains under-utilized throughout the world.

Few major cities have adopted it, but where it is used—Singapore, Stockholm, and London—it is mostly

quite effective and motorists have adapted to it well. While resistance to congestion pricing remains

widespread in North America, New York is about to introduce congestion pricing in Manhattan (south of

Central Park) in 2021.1 In addition to tolling some bridges and (private) highway sections, there have been

a few experiments involving “Lexus lanes”: differential pricing for different lanes of the same highway.2

Hall (2018b) has explored this topic extensively and delivered notable new results that take into account

motorists’ heterogeneity. This heterogeneity comes in two dimensions: the time cost of commuters, and

their schedule inflexibility.

Theoretical and empirical work has highlighted the fact that motorists care not only about the actual

driving time, but also about the overall travel time that ensures the reliability of the commute. It matters

to commuters that they arrive on time, and thus they choose to arrive early to allow for the dispersion in

driving times. Naturally, varying road congestion during different times of the day leads to a distribution of

driving time. Motorists may have uncertainty about the road conditions that they encounter and the level of

congestion.

Motorists’ preferences for commuting time and reliability have been explored widely in the transporta-

1New York Times, March 26, 2019.
2Washington State’s SR 167 high occupancy toll (HOT) lanes; tolls range between 50 cents and $9 depending on congestion

level, 5am to 7pm.
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tion economics literature, which will be discussed in detail in the following section. We follow a recent

strand of literature, in particular Hall (2018b), who separates groups of flexible and inflexible commuters.

We also expand on Van den Berg and Verhoef (2011), who take commuter heterogeneity into account and

explore distributional outcomes.

This paper contributes to this stream of literature both on the theoretical and empirical level. On the

theory side, this paper introduces a novel form of treating the reliability problem. Rather than using a

schedule delay3 cost where the time cost of arriving early or being late needs to be made explicit, our model

introduces a reliability standard which links a measure of schedule inflexibility to the total travel time that is

required to meet the standard. It turns out that the required buffer time (schedule delay) can be approximated

well by a linear function of the standard deviation of the road travel (driving) time. Our second innovation is

to observe that the standard deviation of the driving time is a function of congestion. Traffic that is slower is

also more variable. We believe that this relationship has not been explored rigorously in the prior literature,4

and we provide a new estimation framework to investigate it. With this observation also comes the question

how road traffic is correlated across a road network.

Our empirical work uses data from traffic in the Metro Vancouver area to first identify congestion pat-

terns and estimate speed-volume relationships, followed by identifying how the standard deviation (and

coefficient of variation) changes as congestion increases. We find evidence that speed variability increases

with congestion levels as well. Difference in reliability may lead to different route choices, which plays

a role both for competing routes for motorists as well as for the transportation mode choice. A signifi-

cant part of our traffic data is obtained from Google’s Distance Matrix interface, which provides real-time

information about traffic conditions based on data provided voluntarily by users of their map application

and Android phones. Our work follows in the growing stream of work that uses geolocation data to infer

commuting behaviour (Calabrese et al., 2011; McNeill et al., 2017). In addition to the city-wide analysis,

we also focus on a selected number of bottlenecks where we observe speed and volume at hourly intervals.

We use a multiplicative heteroskedastic linear model to investigate the effect of congestion on speed and its

variance. Lastly, we also explore route choice issues in a simulation exercise that explores issues similar

to Hall (2018b) and Van den Berg and Verhoef (2011). We are interested in the sorting effect induced by

tolling, especially when competing routes offer a trade-off between time and reliability (one route may be

slower but less volatile than another route). Our simulation also investigates the correlation structure of time

costs with the degree of schedule inflexibility (for price-inelastic commuters) and with the cutoff time for

commutes that defines the extensive margin for price-elastic commuters.

To summarize, our paper makes four novel contributions. First, we introduce a new model using re-

liability standards to characterize schedule delay costs, and we demonstrate how to turn this into a very

effective analytic tool. Second, our empirical work looks at city-wide commuting patterns to identify the

importance of commuting time reliability, and we are able to quantify this importance effectively through

3Schedule delay refers to the difference between desired and actual arrival time.
4Fosgerau and Fukuda (2012) also investigate the variability of travel time, and they express the random travel time as a function

of the time of day: Tt = µ(t)+σ(t)Xt , where t is time of day, Tt is travel time, µ(t) is mean travel time, σ(t) is interquartile range
of travel time, and Xt is a standardized travel time. They find that µ(t) and σ(t) are positively correlated and vary strongly with t.
Our paper focuses on traffic volume instead of time of travel, as the root cause of such phenomenon.
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our theory-based decomposition into road condition and schedule inflexibility. Third, our bridge traffic

analysis demonstrates the effect that the variance of commuting time increases with congestion, and in dif-

ferent ways for different types of bottlenecks. Fourth, our simulation analysis stresses that the magnitude

of schedule delay costs can be significant, but that even suboptimal tolls result in strong sorting effects that

deliver almost all of the welfare gains from tolling. Even imperfect (limited-information) tolls can be highly

effective tolls.

3.2 Travel Time Reliability
Commuters care not only about how quickly they can get to work, but also how reliably. Being late for work

may come at a significant penalty if it occurs too frequently. Most employees therefore have a reliability

standard in mind when they plan how they commute to work, allowing for sufficient buffer time (known as

‘schedule delay’ in the literature) to make the journey. Traffic congestion slows down commutes, but it is the

variability of traffic congestion that contributes further to the time required for the commute by advancing

departure to a time that ensures arrival at the destination at the required time with sufficient likelihood.

Our research is predicated on the assumption that commuters have a better understanding of this reliability

standard than separate and distinct time cost of arriving early or late. This is a crucial point of departure

from previous work.

Considering the variability of travel time on different routes, there is a trade-off between average travel

time and travel time reliability. Under certain conditions a commuter may prefer the slower but safer route.

This argument holds across different route choices as well as across transportation modes. Driving a car to

work may be faster on average, but may also come at the greater risk of traffic delays due to congestion or

accidents. Some commuters may thus prefer slower but safer public transit options.

Empirical evidence in our paper suggests that increasing congestion not only slows down traffic but

also increases travel time variability. Congestion increases the mean travel time as well as the standard

deviation of travel time. This link has been previously suggested in the literature, but it has not been explored

rigorously in formal models. In this paper we provide empirical evidence about the magnitude of this link,

and we explore how it fits with a rigorous micro-economic model of pricing travel time reliability.

Our paper is related to at least three strands of literature. The first strand links travel time reliability

to commuters’ route choice. 5 There are in general two approaches to model travel time reliability in the

transportation literature: the scheduling delay approach and the centrality-dispersion approach.

The scheduling delay approach assumes that commuters leave early and keep a safety margin to avoid

being late. The earliest work can be traced to Gaver (1968) and Knight (1974). Small (1982) formulated a

model based on a utility maximization framework and defined commuters’ utility from travel time and time

of arriving early or late. Small’s work laid the foundation for the α-β -γ model, where α is the value of

travel time, and β and γ are the unit cost of the expected time of arriving early and late, respectively (Arnott

et al., 1994). Following this path, Tseng and Verhoef (2008) suggested that value of time varies by time of

5In the transportation engineering literature, Iida (1999) is among the earliest to propose the concept of “travel time reliability”,
which is defined by the probability that traffic can reach a given destination within a stated time. This literature addresses the
reliability of a road network whereas we focus more in heterogeneous commuters’ behavior.
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day, with evidence from stated preference data. Taking the uncertain travel time into account, Asensio and

Matas (2008) showed that the value of travel time variability is nonnegligible and highly depends on the

time restrictions faced by the individual. Noland and Small (1995) and Noland et al. (1998) extended Small

(1982); they further discussed the impact of travel time uncertainty on congestion policies. More recent

work in this line includes Bates et al. (2001), Fosgerau and Karlström (2010), and Xiao et al. (2017), which

all assume that travel time is a random variable and commuters take an early head start to arrive on time. Our

approach is similar, but we specifically assume that commuters have heterogeneous schedule inflexibility.

Commuters experience different schedule delays because they adhere to different reliability standards. The

traditional α-β -γ model assumes different unit time cost of travelling, and arriving early or late, therefore it

is able to account for how much late the commuter is. Our model does not differentiate the unit time cost and

assumes a single time cost for each commuter, with the commuter maintaining some probability of arriving

on time. Commuters might have better knowledge of their schedule inflexibility — how frequent they are

allowed to be late at work, instead of their unit time cost of various activities such as driving, and arriving

early or late. This difference allows us to take the dispersion of commuting time into consideration directly.

Our approach also provides a straight-forward extension of theoretical modelling of optimal tolls.

Our work has some similarity to Chen and Zhou (2010), who consider both reliability and unreliability

aspects of travel time variability for route choices. They assume that with a confidence level α the drivers

will arrive on time by leaving early and ensure some buffer time, while they also inspect the worst travel

times in the distribution tail of 1–α . Our work shares the focus on explicit probability distribution functions.

The centrality-dispersion approach assumes that commuters have aversion to travel time uncertainty.

Related models assume a utility function with a linear combination of mean and variance of travel time.

Jackson and Jucker (1982) introduced the mean-variance approach to quantify effects of travel time reli-

ability. They used surveys in which subjects were asked to choose among risky trips with random travel

times and discovered that some commuters prefer the more reliable route, even if the expected travel time

is higher. Abdel-Aty et al. (1997) followed the above method and used standard deviation as the dispersion

measure instead, and they reached similar conclusion. Small et al. (2005) collected traffic data on California

State Route 91 in the morning, with both stated and revealed preference data. They estimated a $21.46/h

value of time, and a $19.56/h value of reliability, where the reliability is defined by the difference between

the 80th and 50th percentile travel times.6

Recently many researches have investigated the schedule-delay approach together with the centrality-

dispersion approach. Carrion and Levinson (2013) showed that reliability of travel time is highly valued

through a revealed preference study, using three measures. Engelson and Fosgerau (2016) compared various

theoretical measures of the cost of travel time variability. Börjesson et al. (2012) found estimated values

of travel time variability differ significantly using different models, and they discussed the assumptions

required for each model to be justified. Li et al. (2016) proposed an integrated model of both approaches

6While our paper does not follow the centrality-dispersion approach, we mention several important contributions to this strand
of literature. Using survey data, de Palma and Picard (2005) find that risk aversion is larger for transit users, blue collars, and
for business appointments. Uchida (2014) estimated the value of travel time and reliability based on the risk-averse driver’s route
choice behavior in a road network. More research work following this path includes Polak (1987); Senna (1994); Devarasetty et al.
(2012); Kouwenhoven et al. (2014); Beaud et al. (2016).
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and justified its use through stated preference experiments. Travel time reliability is also surveyed elsewhere

(Noland and Polak, 2002; Small and Verhoef, 2007; Li et al., 2010; Carrion and Levinson, 2012; Taylor,

2013).

The second strand of related literature focuses on commuter heterogeneity and commuters’ valuation

of travel time and reliability. Arnott et al. (1994) argued that opposition to congestion pricing has shifted

the focus of research from efficiency considerations towards political acceptability (and thus distributional

outcomes). Road pricing becomes more viable politically when the tolling scheme benefits almost all ur-

ban commuters and does not create intensive losses on the minority. Their research thus focuses on the

heterogeneity of agents with respect to time cost, following Vickrey (1969). Key insights are related to the

distribution of the drivers with different time costs, notably those with different schedule delay costs. Their

work laid the foundations for heterogeneity in commuters’ schedule flexibility. Small et al. (2005) estimated

motorists’ heterogeneous valuation of time and reliability through a discrete choice model, with utility being

a function of toll, travel time, and reliability.

Lastly, this paper is also related to the literature on applying tolls to reduce the social cost of congestion.

Following the seminal work of Pigou (1920), many have researched how an efficient road tolling system

should be constructed. Nevertheless, methods for including travel time reliability in road tolling schemes

has not been developed much. Theoretical work on this aspect includes Small and Yan (2001) and Verhoef

and Small (2004). Small et al. (2005) and Small et al. (2006) explored toll policy design. Van den Berg

and Verhoef (2011) allowed agent preferences to differ across two dimensions: value of time and schedule

inflexibility. They demonstrated the possibility to generate a Pareto improvement by pricing a third of the

lanes and forgoing revenue by charging a negative toll off-peak. Hall (2018b)’s theoretical work concluded

that a carefully designed toll that is applied to some of the lanes of a highway could lead to a Pareto im-

provement. Hall (2018a) further extended the theory and used survey and traffic data to empirically estimate

the joint distribution of road users’ value of time, schedule inflexibility, and desired arrival time, and found

that the potential social welfare gains from such tolling scheme are substantial. In line with many studies

on traffic congestion, Hall’s research relies on an important premise that hypercongestion exists (Walters,

1961; Keeler and Small, 1977; Small and Chu, 2003) so that a toll can increase traffic throughput. However,

Anderson and Davis (2018) casted doubts on the existence of hypercongestion. Our research approach does

not require hypercongestion.7

The allocation of welfare gains also remains a central theme in policy discussions about mobility pricing.

Classic tolling schemes consider only commuters’ value of time, and many researchers concluded that com-

muters with higher valuation of time would gain by paying efficient tolls, whereas commuters with lower

valuation of time could suffer a loss prior to toll revenue redistribution (Cohen, 1987; Arnott et al., 1994).

7The notion of hypercongestion was introduced by Vickrey to refer to situations where traffic flow is inversely related to traffic
density. Network flow follows an inverse U-shape relationship with respect to network density. Network flow first increases as
network density rises, reaches a peak, and as network density rises further leads to a fall in network flow and possibly complete
gridlock. Travel on the positively-sloped portion of the inverse-U is considered ‘congested,’ and on the negatively-sloped portion it
is considered ‘hypercongested.’ There is a new class of models that address hypercongestion issues. Arnott (2013) introduced the
bathtub model for heavily congested downtown areas where traffic jams cause traffic flow to fall, and in which traffic density (the
level of the bathtub) is experiencing either normal (low-level congestion) or hypercongested traffic. Traffic velocity is negatively
correlated to traffic density. Time-varying congestion pricing can convert traffic jams into queues for entering into the downtown
area.
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More recently, Van den Berg and Verhoef (2011) consider bivariate continuous distributions of value of time

and schedule delay in their tolling scheme. They found that a majority of users could be left better off even

before toll revenue redistribution, with the commuters with intermediate value of schedule delays and lower

value of time suffering the greatest loss. Eliasson (2016) discussed the fairness of congestion charges from

distinct perspectives. Besides the traditional consumers’ perspective which includes monetary and time cost

in traveling, the author also discussed the citizens’ perspective that consider whether individuals’ views of

social issues are aligned with policy makers’ objective. The conclusions from both perspectives are similar

and suggest that middle-income groups win the most. Ke and Gkritza (2018) employed the Suits Index to

investigate impact of congestion tolling on urban and rural households. They found that congestion pricing

can be progressive on income for urban households, whereas regressive with regards to rural households,

with the difference caused by driving distance and income. Our simulation process will also use Suits Index

to inspect the equity aspect of the tolling scheme.

To sum up, we provided empirical evidence that increasing traffic volume increases not only the travel

time, but also (in most instances) its standard deviation. The estimation of this relationship using real-time

traffic data contributes to the literature of travel time reliability. Theoretically, our paper introduces an in-

novative measure of how travel time reliability affects commuters’ cost function. Our model of scheduling

delay specifically allows for heterogeneity of commuters’ time value and schedule inflexibility, which en-

ables us to assess the welfare impact of tolling on different groups of commuters. The welfare effects from

tolling reveal that the inflexible group of commuters benefit more than the flexible group in general, and that

more affluent commuters benefit more either by paying an efficient toll or through receiving a per-capita toll

refund when they abandon commutes.

3.3 Theory
Developing theory that is useful for empirical work typically requires choosing appropriate functional forms

that lead to tractable and estimable algebraic expressions. While much work has been done on the theoretical

foundations of optimal road tolling, we employ a set of assumptions that on one hand allow for sufficient

flexibility and on the other hand lead to empirically testable implications.

3.3.1 Approaches to Travel Time Reliability

The pertinent literature on travel time reliability refers to the travel time cost as the α-β -γ model (Arnott

et al., 1994), where α is the unit cost of expected travel (driving) time, β is the unit cost of the expected time

of arriving early and γ is the unit cost of the expected time of arriving late. Following the approach pioneered

by Vickrey (1973) for heterogeneous groups, the ratios α/β and α/γ are assumed identical across groups.

Van den Berg and Verhoef (2011) provides a recent application of this type of model, which provides for

very convenient interpretations of tolls when the heterogeneous commuters follow uniform distributions.

This approach circumvents an important complication: what is the empirical distribution of commuting

time and schedule delay costs? There are two parts to this question: how to quantify the cost per unit of

time, and how to quantify the probability of being late or arriving early. Essentially, there are different ways

on how to approach the γ part for the cost of arriving late.
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First, a motorist may incur a per-minute cost for arriving late that is (significantly) higher than the

ordinary time cost. For this one needs to model explicitly the tail of the distribution for late arrival. The

motorist minimizes total cost, which is the sum of (1) driving time priced at ordinary time cost, (2) early-

arrival time priced at a early-arrival cost, and (3) late-arrival time priced at the late-arrival cost. This may be

dubbed the “variable-cost lateness model” that is common in the literature.

Second, a motorist may incur a fixed penalty each time when arriving late. This again requires identi-

fying the tail of the distribution for late arrival. The motorist minimizes total travel cost, but the late-arrival

component is the product of late-arrival probability and penalty. This is the “fixed-cost lateness model.”

Third, a motorist may simply adhere to a reliability standard: plan driving so that arriving late occurs

infrequently and meets the motorist’s schedule inflexibility. This is the “reliability standard model.” We

choose to take this third route because it (a) does not require explicit knowledge of the late cost (either fixed

or variable), and (b) leads to particularly intuitive solutions. Our model shares the important features with

Lo et al. (2006) which they called “travel time budget model”.8 While they assume travel time follows a

normal distribution, we use log-normal and Fréchet distributions that have long right tails and fit the data

better. We arrive at a linearization technique that disaggregates the time mark-up factor into a route-specific

coefficient of variation and a multiplier that reflects commuters’ inflexibility. Our cleaner functional form

lends itself more readily to empirical work.

We begin by defining a motorist’s schedule inflexibility ψ ≥ 0 so that a ψ = 0 indicates that a commuter

does not care about being late and any positive number indicates increasing schedule inflexibility. In prob-

abilistic terms, a value of ψ = 0 will be associated with the median travel time. The odds of being late are

given by once in (ψ +2). We assume that travel time T is distributed with a cumulative distribution function

Φ(T ). Thus, the motorist chooses time to depart before desired arrival time T ∗ (driving time T plus ‘buffer

time’ to ensure timely arrival) so that the probability of arriving on time is

Φ(T ∗)≤ ψ +1
ψ +2

∈ [1/2,1) (3.1)

Specifically, we assume that travel times follow the long-tailed Fréchet distribution with minimum travel

time T ◦ > 0, shape parameter a ∈ (0,1), and scale parameter S > 0 so that

Φ(T ;T ◦,a,S) = exp

(
−
[

T −T ◦

S

]−1/a
)

(3.2)

The Fréchet distribution has the mean T̄ = T ◦+S ·Γ(1−a) and the variance σ2 = S2(Γ(1−2a)−Γ2(1−a)).

A commuter facing the schedule inflexibility ψ will therefore choose a travel time T ∗ that obeys

T ∗ = T ◦+S ·χa with χ ≡
[

ln
(

2+ψ

1+ψ

)]−1

(3.3)

8In Lo et al. (2006), the travel time budget is defined as sum of expected travel time and travel time margin: bp = E(Tp)+λσTp ,
where Tp is the random variable of travel timeon route p, E(Tp) and σTp are mean and standard deviation of Tp, λ is a parameter
that can be related to the probability that a trip arrives within the travel time budget. P{Tp ≤ bp = E(Tp)+λσTp}= ρ , where ρ is
the probability that the actual trip time is within the travel time budget.
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where the buffer time is the difference between T ∗ and the mean travel time T̄ . The transformation of ψ into

χ is nearly linear for large schedule inflexibility ψ; for example, for ψ =250 the value of χ =251.5 is just

0.006% larger than ψ .

Consider the following numerical example. A commuter’s mean travel time is 45 minutes, with a stan-

dard deviation of 6 minutes, and a best feasible travel time of 30 minutes. Then S= 12.38 and a= 0.24.

The parameters a and S can be recovered numerically from solving the two equations for mean and vari-

ance of the Fréchet distribution. Assuming that the commuter has a reliability requirement of ψ =50 (the

commuter can afford to be late to work five times a year), then T ∗ = 30+12.38(51.5)0.24 = 61.8 minutes.

The commuter should allow for an extra 17 minutes for the typical 45-minute commute in order to arrive on

time.

The distributional parameters T ◦, S and a are all functions of road congestion ṽ ∈ [0,1) and therefore

need to be extracted from the estimated values of mean, variance, and skewness as functions of ṽ, where

ṽ equals traffic volume divided by road capacity. We note that observing standard deviation and mean of

travel time — Tσ and Tµ , given T ◦, allows backing out a < 1/2 directly through

1+T 2
ρ =

Γ(1−2a)
Γ2(1−a)

=⇒ a(Tρ) (3.4)

where the coefficient of variation is defined as

Tρ ≡
Tσ

Tµ −T ◦
(3.5)

The value of a increases with Tρ . Having solved for a numerically immediately reveals S = (Tµ−T ◦)/Γ(1−
a). (N.B.: Γ(1−a) ∈ [1,1.772] for a ∈ [0,0.5].) The optimal time to depart before the desired arrival time is

T ∗ = T ◦+(Tµ −T ◦)
χa

Γ(1−a)
(3.6)

We revisit this equation after introducing the speed-volume relationship.

The Fréchet distribution is only one among many plausible choices. The shifted log-normal distribution

can be parameterized similarly with three parameters as

Φ

(
ln(T −T ◦)−µ

σ

)
≤ 1+ψ

2+ψ
(3.7)

where Φ(·) is the standard normal cumulative distribution function and so that

ln(T ∗−T ◦) = µ +σ · χ̃ with χ̃ ≡Φ
−1
(

1+ψ

2+ψ

)
(3.8)

and moments µ = ln(Tµ)−σ2/2 and σ2 = ln(1+T 2
σ /(Tµ −T ◦)2) = ln(1+T 2

ρ ) that can be obtained from

the observational mean Tµ and and standard deviation Tσ . Thus, using the coefficient of variation Tρ for
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simplification,

T ∗ = T ◦+(Tµ −T ◦)
exp
(

χ̃ ·
√

ln(1+T 2
ρ )
)

√
1+T 2

ρ

(3.9)

Consider again the numerical example with a commuter’s mean travel time of 45 minutes, with a stan-

dard deviation of 6 minutes, and a best feasible travel time of 30 minutes. Then Tρ = 0.4. With ψ =50 the

standard normal cumulative distribution function yields χ=2.07. Then T ∗= 30+(45−30)(2.220/1.077)=

60.9 minutes, or about 16 minutes more than the average trip time. The log-normal and Fréchet distributions

give very similar results.

Figure 3.1: Travel Time Variability and Travel Time Mark-Up
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It is helpful to illustrate the relationship between congestion variability and trip time. The coefficient of

variation Tρ is a dimensionless number. Similarly, the dimensionless metric

T∆ ≡
T ∗−T ◦

Tµ −T ◦
−1 =

T ∗−Tµ

Tµ −T ◦
(3.10)

is a measure of the travel time reliability mark-up: how much extra time is added for reliability relative to

the mean-to-minimum time difference. Figure 3.1 shows the mark-up for three values of ψ , 10 (late once

every two weeks), 50 (5 times late per year) and 250 (once late per year), for the log-normal distribution. In

the numerical example with Tρ=40%, the markup for ψ =50 is 106%. The fact that T∆ is a dimensionless

number proves to be helpful with the theoretical analysis but doesn’t immediately tell how much time a

commuter needs to add. The more intuitive and practical measure of the time markup over average travel
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time is

TΛ ≡
T ∗−Tµ

Tµ

= T∆

(
1− T ◦

Tµ

)
≈ H(ψ) · Tσ

Tµ

= H(ψ) ·Tν (3.11)

where Tν ≡ Tσ/Tµ is the ordinary coefficient of variation. In the above numerical example with H(ψ)=2.65

and Tν=0.133, the time markup is 35.3%, or 16 minutes on top of the average 45 minutes.

For empirical research as well as further theoretical modelling it is helpful to observe that the relationship

between Tρ and T∆ is nearly linear for any given ψ . Therefore, one may use an approximation:

Theorem 1 (Travel Time Reliability Markup) The travel time markup T∆ for commuters with schedule

inflexibility ψ is related to the parameters T ◦, Tµ , and Tσ of the full-trip travel time distribution (and

implicitly the coefficient of variation Tρ ) approximately through

T∆ ≈ H(ψ) ·Tρ ⇐⇒ T ∗ ≈ Tµ +H(ψ) ·Tσ = Tµ(1+TΛ) (3.12)

where H(ψ) is a positive and increasing function in ψ . The full travel time is larger than the mean driving

time by an amount that is proportional to the standard deviation of driving time by the factor H(ψ).

The above theorem suggests a particular schedule delay cost in the notation of the α-β -γ travel cost

model. It replaces the late cost with a reliability standard and treats the early arrival period the same as the

commuting period.

Figure 3.2: Travel Time Markup Factor
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This linearization is extremely useful for practical applications, and at the same time it is highly intuitive.

But how good it is this approximation empirically? The R2 statistics for the underlying regressions are

better than 0.99, which means that the linearization is easily justified. However, the different empirical

distributions deliver different H(ψ), as is illustrated in figure 3.2, which shows the schedule inflexibility
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measure ψ on a logarithmic scale on the horizontal axis and the empirically-estimated travel time markup

factor H(ψ) on the vertical axis. For very low levels of schedule inflexibility the markup factor is near one

and rises to below 4 for the log-normal distribution and above 5 for the Fréchet distribution.

The link between ψ and H(ψ) is nearly perfectly log-linear for the log-normal distribution, and only

slightly less so for the Fréchet distribution.The Fréchet distribution provides a link between ψ and H(ψ) that

is slightly steeper than the log-normal distribution and it delivers larger values of H(ψ) than the log-normal

distribution when ψ gets large. Table 3.1 provides approximations for the log-linear relationship between ψ

and H(ψ) for both distributions and estimation ranges of [10,250] and [50,250] respectively, corresponding

to figure 3.2.

Table 3.1: Log-Linear Approximation of H(ψ)

Distribution Approximation Fit (R2) Range (ψ)
Lognormal H(ψ) = 0.7656 · ln(ψ)−0.3698 0.9997 [10,250]
Lognormal H(ψ) = 0.7824 · ln(ψ)−0.4534 1.0000 [50,250]
Frchet H(ψ) = 1.3229 · ln(ψ)−2.2870 0.9894 [10,250]
Fréchet H(ψ) = 1.4998 · ln(ψ)−3.1711 0.9975 [50,250]

To summarize, the theoretical model yields insightful links between the statistics T∆ and Tρ through the

markup factor H(ψ), while practical applications will use the direct link between effective time markup TΛ

and the simple coefficient of variation Tν . Empirical work therefore needs to establish (1) which distribu-

tional assumption (Fréchet, Log-normal) provides a better approximation in order to choose the appropriate

H(ψ) approximation; and (2) how large the coefficient of variation Tν is in order to quantify the buffer

time that commuters add to their journeys. The two coefficients of variation Tν and Tρ are empirically quite

different in nature. Our empirical analysis shows that Tν and Tρ are virtually uncorrelated because the de-

nominators are quite different in nature. While Tρ measures the time variation Tσ with respect to the average

delay Tµ −T ◦, Tν measures it with respect to the average time Tµ . Our theoretical analysis that suggests

linearization hinges on the properties of Tρ rather than Tν , while the practical implications for the extra

schedule time hinges on Tν .

3.3.2 Route Choice

Commuters take their entire travel route into account. Their total travel time is the sum of road segments

k ∈K in route K so that ∑k∈K Tk with variance ∑k∈K ∑l∈K σkσlρkl with standard deviation σk of road

segment k and ρkl the correlation coefficient between individual road segments along route K . The nature

of this correlation is important. It can be positive when high traffic volume is spread throughout the road

system. It can also be negative when congestion at an “upstream” bottleneck is holding back traffic flow and

is thus relieving congestion “downstream”. For the commuter it is the total variance that matters, not the

partial variance at a particular road segment.

The commuter faces a choice between competing routes and will take both speed and reliability into
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account. First consider two untolled roads K ∈ {1,2} connecting A and B. The commuter chooses route

argmaxK {T ∗K } (3.13)

which may or may not be the same as choosing the route that is faster on average argmaxK (T K
µ ). Using the

approximation (3.12), it is possible to describe the choice between two routes 1 and 2 where we assume that

route 1 is, on average, faster than route 2: T 1
µ < T 2

µ . If a commuter chooses routes only based on average

travel time, that commuter will always choose route 1. However, when variability comes into play, the

commuter may prefer route 2 if it is more reliable than route 1 even though it is slower on average. Then

T ∗2 > T ∗1 implies T 2
µ +H ·T 2

σ > T 1
µ +H ·T 1

σ . Then the following result holds:

Theorem 2 (Route Choice with Schedule Inflexibility) If route 1 is on average faster than route 2 so that

T 1
µ < T 2

µ , then a commuter prefers route 2 over route 1 if the ratio of the difference in standard deviation to

the difference in mean travel time exceeds the inverse of H(ψ):

T 1
σ −T 2

σ

T 2
µ −T 1

µ

'
1

H(ψ)
(3.14)

As schedule inflexibility ψ increases and 1/H gets smaller, the commuter will prefer route 2 for ever

smaller differences in travel time variability. The numerical values for 1/H range from 0.82 (Fréchet distri-

bution and ψ =10) to 0.19 (Fréchet distribution and ψ =250).

Route choice involves multiple road segments. For the commuter only the entire trip matters, and in-

dividual road segments influence the overall trip planning. The main empirical complication arises from

the fact that studying total travel time requires looking at entire trips rather than road segments individually

because of the correlation structure that is captured by the correlation coefficients ρkl . The implication for

empirical work is that it is not sufficient to merely investigate the variability effect of road congestion at

individual points in the road network, but also the entire correlation structure.

3.3.3 Speed-Volume Relationship

The starting point for modelling congestion is a relationship between travel time T and traffic volume v on

a particular road. Travel time (T ) and speed (V ) are linked through the relationship V = L/T where L is

the length of the road. Thus travel time and speed can be used interchangeably. Empirical work mostly

uses speed, as this is easier to measure, while theoretical work prefers time, as this is more meaningful

conceptually.

Speed-volume relationships have been studied extensively and there are numerous functional forms that

have been explored. For theoretical purposes, an important choice is about whether to account for hyper-

congestion. The presence of hypercongestion leads to a backward-bending speed-volume relationship that

allows for two speed points for a given traffic volume: a (normal) congestion speed and a hypercongestion

speed. The presence of hypercongestion is a critical element in some models, especially in models that

follow the Arnott (2013) “bathtub” model and capture traffic flows in dense urban cores.

In our paper we work with Metro Vancouver traffic data that does not show strong evidence of hyper-
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congestion at key bottlenecks. We focus our analysis on situations with moderate levels of congestion, but

we acknowledge that our results will not extend to hypercongestion scenarios. We do not require hypercon-

gestion as a condition for deriving our results.

We explore two functional forms for the speed-volume relationship that avoid hypercongestion and

merely allow for congestion to approach the capacity limit, at which point travel speed approaches zero.9

The first functional form is taken from Pipes (1967). For a given road capacity c, travel time T is a

function of uncongested travel time T�, the road capacity utilization rate ṽ≡ v/c ∈ [0,1], and the curvature

coefficient ξ > 0 so that

T (v) = T�(1− v/c)−ξ (3.15)

The curvature ξ determines the congestivity of the road. As ξ increases, the roadway is easier and easier

to congest. In this version of the equation, values for ξ will be between zero and one, and in practice are

quite small. However, while this type of speed-volume equation and its cousins can be fitted relatively easily

to the data when it comes to the mean travel time, we are interested in dispersion and thus need to be careful

about how individual speed observations are scattered above or below the mean for a particular volume. We

will therefore need to adjust this equation to fit our empirical distribution functions and allow for a minimum

travel time T ◦. Conceptually, there is a “safe limit” on speed, which may well be above the posted speed

limit as the latter is set to control speed in traffic and not at free flow when the road is nearly empty.

The second functional form we consider is a generalization of the bureau of public roads(BPR) function

(Bureau of Public Roads, 1964):

T (v) = T�
[

1+κ

(v
c

)λ
]

(3.16)

By virtue of having three parameters, this form can provide a better fit for the data. However, it turns

out that estimating it in our framework will require non-linear techniques.

Our modelling is predicated on the assumption that there is a minimum travel time T ◦ < T�.

Even when a road is completely uncongested, there is variation around the travel time because of weather

conditions, time of day and lighting, or other factors. Our empirical travel time distribution thus requires

separating minimum and average travel time, and allowing this to vary under congestion. We therefore

reformulate (3.15) as a stochastic equation

T (vt)−T ◦

T�−T ◦
=
(

1− vt

c

)−ξ

exp(εt) (3.17)

where εt is an error term that is distributed normally with mean zero. The variance of the error term is

assumed to be independent of congestion, but when we turn to our empirical work we allow it to vary

with congestion as well. In equation (3.17), the new variable T� (roughly, the average speed without any

congestion) becomes an estimable parameter in addition to ξ . This formulation allows us to link up the

congestion function directly with our log-normal distribution function. When ln(T (v)−T ◦) is distributed

normally, we can estimate a congestion function for the mean commuting time, and we can additionally

9We have also tried fitting Vancouver bridge traffic data using other functional forms illustrated in Greenshields et al. (1935);
Drake and Schofer (1966), which are outperformed by the two models we finally choose.
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allow for the variance of commuting time to depend on congestion.

The modification in equation (3.17) is of significance. Effectively, we shift the coordinates of the distri-

bution so that ∀t : T (vt) ≥ T ◦. Comparing (3.17) with (3.15), the power term on the right hand side scales

up T�−T ◦ rather than T ◦, and the former is much smaller in magnitude than the latter. The result is that

we can expect much higher estimates of ξ when we estimate (3.17).

Figure 3.3: Speed-Volume Function
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Equation (3.17) can also be written in terms of speed rather than time, as showing speed in a diagram is

often more insightful than showing time for a given distance. Ignoring the effect of the stochastic term εt ,

the velocity V (v) as a function of traffic volume v is given by

V (v) =V ◦
[

1+
(

V ◦

V�
−1
)(

1− v
c

)−ξ

exp(εt)

]−1

(3.18)

The speed-volume chart in figure 3.3 illustrates the relationship between ṽ and speed for V ◦=100km/h

and V�=90km/h and three different ξ . When we estimate equation (3.17), our dependent variable will

become ln(Tt/T ◦−1), and as we observe speed, we replace this (identical in value) with ln(V ◦/Vi−1).

3.3.4 Speed-Volume Dispersion

A central theme in this paper is the empirical fact that congestion not only increases average travel time but

also increases the variability of travel time. The key metric for dispersion is the standard deviation of travel

time Tσ , or its normalized cousin, the coefficient of variation Tρ as defined in (3.5).

The analysis in the preceding section introduces functional forms (3.15) and (3.16) that capture the

effect of congestion on travel time. We have modified (3.15) to capture variation in commuting time and

be consistent with log-normal distributions through (3.17). This new formulation allows us to draw a link
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between variance and mean by assuming that Tρ , the coefficient of variation for commuting time mark-up,

is approximately constant. Then Tσ = Tρ(Tµ −T ◦). Using the linearization insight expressed in theorem 1

and equation (3.12) with H(ψ) as a function of the schedule inflexibility parameter, we are able to derive a

theorem about the commuting time under congestion

Theorem 3 (Commuting Time with Congestion and Schedule Infexibility) The commuting time for com-

muters facing schedule inflexibility ψ and travel time coefficient of variation Tρ is approximated by

T ∗(ṽ) = T ◦+(T�−T ◦) ·G(Tρ ,v) · (1+TρH(ψ)) (3.19)

if the traffic congestion follows (3.17) and the coefficient of variation of travel time Tρ is approximately

independent of the level of congestion.

As we will show in the empirical discussion of the paper further below, the function G is derived from

the properties of the log-normal distribution function and is given by

G(Tρ ,v) =

√
1+T 2

ρ

(1− v/c)ξ
(3.20)

and follows from the assumption of log-linearity of T −T ◦. Equation (3.19) compares directly to the com-

muter who is flexible. The log-linear distribution implies that the mean commuting time (without scheduling

inflexibility) is

Tµ(ṽ) = T ◦+(T�−T ◦) ·G(Tρ ,v) (3.21)

The difference of time that is added to the commute as buffer time is therefore given by (T�− T ◦) ·
G(Tρ ,v) ·Tρ ·H(ψ). Quantifying this will be important to gauge the effect that scheduling inflexibility has

on the total cost of commuting.

The assumption that Tρ is independent of the level of congestion is perhaps strong. We find empirical

evidence that supports this notion for across-city commutes. However, we find some traffic bottlenecks

where road congestion also increases variance more than proportionally and thus Tρ may increase with

congestion.

The discussion above only accounts for one dimension of dispersion: namely that for a given level of

congestion there are varying speed outcomes. There are several sources for this type of dispersion. The

composition of traffic can be different in terms of trucks and cars. There can be differences in weather

conditions that interact with the level of congestion. These physical reasons can all contribute to dispersion

that varies with the level of congestion.

There is also a second type of dispersion, which could be described as “congestion uncertainty.” Assume

that the speed-volume relationship does not exhibit dispersion in the time dimension. Rather, the commuter

does not know which volume of traffic she will encounter on a given day due to random demand shifters.

This means that a commuter may expect a certain amount of traffic on average, but with random dispersion.

Observationally, this does not make any difference for the planning by the commuter. Whether the dispersion

is caused by speed dispersion or volume dispersion, ultimately it is the commuting time that varies.
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3.3.5 Optimal Road Toll and Agent Heterogeneity

The optimal road toll problem has been described extensively, and what is added here is a more involved

treatment of agent heterogeneity in the presence of time cost dispersion and schedule inflexibility dispersion.

There are several ways of modelling the commuter’s choice problem: as a welfare maximization problem,

as a travel cost minimization problem, or a utility maximization discrete choice problem. Our starting point

is a travel cost minimization problem to derive the optimal tolls.

The planner’s objective is to choose a vector τττ of optimal link tolls to minimize total travel cost for

the i ∈ {1, ..,n} individuals, each choosing an individual route Ri with path elements δik = 1(k ∈ Ri), and

choosing to travel πi(τττ)∈{0,1} or not, so that the total social cost reflects individuals’ time cost ωi, schedule

inflexibility ψi, and cost zi of not travelling. The non-travel cost can also be viewed as the maximum duration

T∅
i that a commuter is willing to spend on this trip, which implies T∅

i = zi/ωi. All toll revenue is returned

to commuters, so from the point of view of the planner the toll revenue does enter into the cost problem.

This is an important consideration as otherwise the toll revenue could influence the commuting decision.

It is practical to group commuters into those with a flexible schedule (ψ = 0) and those with an inflexible

schedule (and a common ψ� 0) so that the first group has an extensive margin and respond to prices, while

the second group will always commute. Let α denote the fraction of inflexible commuters and 1−α the

fraction of flexible commuters. Further denote as π(τττ)∈ [0,1] the fraction of flexible commuters that choose

to drive after seeing posted tolls.

Aggregating these groups and averaging them yields the social cost function

C = min
τττ

[
αω̄

∗T̄ ∗(τττ)+(1−α)ω̄
(
π(τττ)T̄ (τττ)+(1−π(τττ))T̄∅)]n (3.22)

where ω̄ is the average time cost of flexible commuters and ω̄∗ is the average time cost of inflexible com-

muters, and where vk = ∑i δik is the number of commuters who take road k. Furthermore, T̄ ∗ and T̄ are the

average travel times of the inflexible commuters (including their schedule delay) and the flexible commuters

(who choose to travel), respectively. We also introduce T̄∅ under the assumption that zi and ωi are uncor-

related, an assumption we will relax in our empirical work. However, for expositional purposes we use this

assumption to derive analytically tractable results.

Total traffic volume is v= n[α+(1−α)π(τ)]. Therefore, the share of flexible commuters that commutes

is

π(τ) =
(v/n)−α

1−α
(3.23)

Inflexible commuters choose route Ri

Ri = argminδik

{
ω
∗
i T ∗ (vvv(τττ),ψ)+∑

k
δikτk

}
(3.24)

while flexible (inframarginal) commuters choose route Ri

Ri = argminδik

{
ωiT (vvv(τττ))+∑

k
δikτk

}
(3.25)
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conditional on making the trip

πi = 1

(
ωiT (vvv(τττ))+∑

k
δikτk < zi + εi

)
(3.26)

The above implies that a commuter makes the trip when the total cost of making the trip (travel time

cost and tolls) is smaller than the cost of avoiding the trip. This is simply another way of putting the discrete

choice problem and could be expressed similarly in utility terms.

If εi is assumed to be distributed as an independent and identical type I extreme value (i.e., Gumbel), the

conditional logit model emerges with an aggregate probability of making trips given by

π =
[
1+ exp(u(ω̄(T̄∅− T̄ (π))− τ̄))

]−1 (3.27)

This provides a solution to the optimal traffic flow v. Inverting the above demand function yields the optimal

toll:

τ̄ = ω̄(T̄∅− T̄ (π))− 1
u

ln
(

π

1−π

)
(3.28)

Unambiguously, the optimal toll increases when a lower travel volume (lower π) is required in optimum.

The cost minimum for C is found from the first-order condition for the optimal traffic volume v. In

turn, the travel demand function v(τ) reveals the optimal toll given optimal traffic volume v. It is important

to acknowledge the economic intuition underlying this principle of minimizing cost with respect to traffic

volume rather than optimal toll. The size of the toll does not matter for welfare because all revenue is

returned to economic agents. As long as the returned funds do not influence commuting behaviour, the

two-stage process of minimizing costs with respect to traffic volume and then finding the optimal toll for the

required volume is economically sound.

Before returning to the general case of a road network, consider the simple case of a single road. To

obtain a closed-form solution for the first-order condition, it is useful to introduce the variable travel time

(T −T ◦) elasticity

η ≡ d(T −T ◦)
dv

v
T −T ◦

= ξ

[
ṽ

1− ṽ

]
(3.29)

with respect to traffic volume v. We also introduce the time cost ratio ϕ ≡ ω̄∗/ω̄ to capture asymmetric time

costs. Note that ϕ > 1 when inflexible commuters have a higher time cost than flexible commuters.

We also make use of our congestion function (3.17), and we introduce a function

U(v)≡
[

T∅−T ◦

T�−T ◦

]
(1− v/c)ξ√

1+T 2
ρ

−1 (3.30)

which decreases with congestion v. The term in square brackets is a time ratio: the difference between

non-commute threshold and minimum time relative to the difference between average free-flow time and

minimum time. Further recall that η(v) increases in v, and thus U(v)/η(v) decreases with v. Thus the

first-order condition for a cost minimum reveals the following theorem:
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Theorem 4 (Optimal Single-Road Traffic Volume) For a single road travelled by α inflexible commuters

(with average time cost of ω̄∗ and average travel time T̄ ∗) and 1−α flexible commuters (with average time

cost of ω̄ , average travel time T̄ , and maximum trip time T̄∅), the optimal traffic volume is given by

v
n
= α

[
ϕ(1+H(ψ)Tρ)−1

U(v)/η(v)−1

]
(3.31)

which can be solved for v numerically.

We are interested in understanding how changes in the share α of inflexible commuters, as well as

changes in their degree of inflexibility ψ , affect the optimal traffic volume. We are also interested to know

how differences in travel cost between the two types of commuter matter. Is it reasonable to assume that

time costs are the same (ϕ=1), or will they differ substantially? It is clear that an increase in ϕ has a similar

effect as an increase in α , as both enter multiplicatively in the numerator.

The expression in square brackets in (3.31) must be greater than one because the share α of inflexible

commuters always commutes. For v/n > α , it must hold that ϕ(1+TρH(ψ))>U(v)/η(v). This says that

either the schedule inflexibility or the time cost ratio for the inflexible commuters must be large enough

to generate a solution that reduces the commutes of flexible commuters. Furthermore, we require that

numerator and denominator are both positive. For the numerator, this means that the schedule inflexibility

ψ must be large enough to compensate for a time cost ratio ϕ < 1 where the flexible commuters have a

higher cost than the inflexible commuters.10

Equation (3.31) is nonlinear in v and thus the effect of key parameters on optimal traffic volume can

only be identified through implicit function calculus. Defining (3.31) as F(v,α) = 0, it follows that

dv
dα

=−∂F/∂α

∂F/∂v
< 0 and

dv
dψ

=−∂F/∂ψ

∂F/∂v
< 0 (3.32)

Figure 3.4 illustrates the effect of inflexible commuter share on optimal traffic volume. It shows that as

the share of inflexible commuters increases, the optimal traffic volume decreases gently. However, as the

proportion of flexible commuters 1−α gets smaller and smaller, a larger and larger number of them have to

refrain from commuting to enable the optimal traffic volume to be attained. When α reaches about 58% in

this numerical simulation, it is optimal to induce all flexible commuters to stop commuting.

Figure 3.5 depicts the effect of an increase in schedule inflexibility on the optimal traffic volume. It

uses the same parameters as before except that α is fixed at one-half, and the factor H(ψ)Tρ is varied from

0 to the point where all inframarginal commuters stop commuting. As schedule inflexibility increases, the

relative importance of the inflexible commuters increases because these commuters add more and more extra

time to ensure timely arrival. As a result, the number of inframarginal commuters is pushed towards zero,

while the total share of commuters approaches the lower bound of α .

When there are no inflexible commuters (α = 0), there is a particularly simple solution for the optimal

10If the time cost of flexible commuters is high and the schedule inflexibility of the other commuters is low, then it makes no
economic sense to curtail the commutes of flexible drivers.
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Figure 3.4: Effect of Inflexible Commuter Share on Optimal Traffic Volume
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Figure 3.5: Effect of Schedule Inflexibility on Optimal Traffic Volume
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vehicle flow:
v
c
=

[
1

1+ξ/U(v)

]
=

π(τ)n
c

(3.33)

This non-linear equation can be solved for v.

3.3.6 Commuters’ Buffer Time

A planner who fails to take into account the buffer time (the time mark-up) of inflexible commuters will

solve a cost minimization problem where the planner falsely assumes that H = 0. Because of (3.31), the

linearization result that is implied there suggests that the numerator is treating changes in the time cost ratio

ϕ and changes in the mark-up factor 1+TρH(ψ) exactly the same. This means that there is a fundamental

equivalence in the way a researcher can treat the time mark-up for inflexible drivers and their time cost:

Theorem 5 (Reliability Pricing Equivalence) The optimal traffic volume (and thus optimal toll) depends

directly on

ϕ
∗ ≡ (ω̄∗/ω̄) · [1+TρH(ψ)] = ϕ(1+T∆) (3.34)

and therefore a higher time cost of inflexible drivers is observationally equivalent with a higher time-markup

T∆.

The implication is that a road toll that only allows for the differential time cost of inflexible drivers,

but not their time mark-up, will result in a suboptimal outcome as if the time cost of inflexible drivers had

been underestimated by a factor of 1+T∆. This result has important implications for empirical research.

Researchers need to estimate the “effective time cost” of inflexible commuters by estimating their nominal

time cost ω̄∗ and the degree of their schedule inflexibility ψ .

We can use theorem 1 about travel time reliability markup to characterize the total cost, noting that

T̄ ∗ = T̄ [1+H(ψ)Tν ], where Tν = T̄σ/T̄ is the ordinary coefficient of variation of commuting time. Then

C = nω̄T̄ [αϕ(1+H(ψ)T̄ν)+(1−α)(π +(1−π)Ω)] (3.35)

where Ω ≡ T̄∅/T̄ > 1 is the ratio of the threshold time for non-commuting to average commuting time.

Road tolls determine the share of flexible commuters π entering the road and decrease average travel time

T̄ and the coefficient of variation T̄ν . In the absence of tolling, π = 1. Then we can compare the cost with

reliability costs against the case where reliability costs are ignored (and thus H(ψ) = 0). Dividing the two

cost measures yields a measure of the schedule time cost:

Theorem 6 (Schedule Time Cost) Given the share of inflexible commuters α , schedule inflexibility ψ ,

commuting time coefficient of variation T̄ν , and time cost ratio ϕ of inflexible to flexible commuters, the

extra cost (in percent) induced by the presence of schedule time is given by

A ≡ 100% ·H(ψ) · T̄ν

[
1+

1−α

αϕ

]−1

(3.36)

in the absence of road tolls.

53



Effectively, equation (3.36) allows us to put an upper limit on the extra cost due to schedule inflexibility;

it is H(ψ)T̄ν . Furthermore, when the time cost of flexible and inflexible commuters is the same, then

the extra cost due to schedule time is simply proportional to the share of inflexible commuters so that

A = 100% ·αH(ψ)T̄ν .

3.3.7 Reliability Pricing in a Road Network

The results obtained so far paint a very simple picture about how reliability pricing can be brought into a

framework for optimal road tolling in a road network, which itself has been well established in the literature

already. The key modifications derived from the analysis in this paper is that researchers need to identify:

(a) the composition of commuters (the share α of inflexible commuters);

(b) the relative time cost (ϕ) of inflexible and flexible commuters;

(c) the schedule inflexibility (ψ) of commuters; and

(d) the coefficient of variation (Tν ) of commuting trip time.

It is the latter that is specific on individual routes, and thus empirical research will need to identify the

reliability of each road segment and identify how the variance of individual road segments adds up across the

multitude of trip patterns in a region. This is where the empirical research in this paper attempts to provide

some novel insights by studying commuting patterns in the Metro Vancouver region. Just how large are

these coefficients of variation across commuting trips? While our study does not identify the three other key

parameters (α , ϕ , and ψ), which require other microeconomic data sets from surveys, we aim to identify Tρ

and Tν from observed traffic flows.

3.4 Data
We utilize data from a variety of sources. From Statistics Canada’s National Household Survey 2016 we

observe commuting patterns among pairs of census tracts (CTs). A CT is a small areas that captures between

2,500 and 8,000 persons in census metropolitan areas (CMA). We employ data for the Metropolitan Van-

couver area (CMA code 933) area that encompasses the cities listed in table B.2 with a total of 482 census

tracts. The commuting patterns in the household survey only identifies 43,763 CT pairs with a minimum

number of commutes. We restrict our analysis to commutes with origin and destination CT both in Metro

Vancouver and exclude those trips that start or end outside Metro Vancouver.

We obtain travel time information from the Google Maps Distance Matrix API. This Application Pro-

grammer Interface (API) provides information on distance, normal travel time, and time in traffic for origin-

destination pairs, which we identify by longitude and latitude as the mid-points of census tracts. The API

employs a specific traffic model for calculating the time in traffic. Google employs live traffic data, which

it acquires from users of their navigation applications that share location information in real time. We use

their “best guess” model, whose reported duration in traffic is their best estimate of travel time given what

is known about both historical traffic conditions and live traffic.

In addition to the region-wide commuting pairs we also focus on several bottlenecks of traffic flows—

bridges and tunnels—which are well known to experience high levels of congestion during rush hour. Only

one of these, the Port Mann Bridge, was tolled between 2012 and 2017. We employ post-toll data, but note
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that the removal of the toll on September 1, 2017 led to a significant increase (about 30%) in traffic volume.

The main feature of our bottleneck data is our ability to match travel time through these bottlenecks in both

directions with volume measurements from the BC Ministry of Transportation Traffic Data Program.

3.4.1 Commutes among Census Tract Pairs

We sample 2,000 “typical” commuting trips and ensure that the sampling frequency is matched to the volume

of commutes reported in the Household Survey. Thus CT pairs with many commuters will be sampled

proportionally more than those with fewer commuters. Figure 3.6 shows the cumulative distribution of CT

pairs in descending order of traffic volume reported by the household survey. We sample by taking 2,000

routes so that the frequency with which we sample routes is weighted by the traffic volume.11

Figure 3.7, 3.8 and 3.9 describe the overall distribution of the sampled routes of census-tract pairs. The

distributions for distance and commuting time are noticeably right-skewed and thus have means that are

higher than their medians. In our sample the mean commuting distance is 13.5km (8.4mi) and takes 21

minutes. The average speed that we observe is about 35.6km/h (22.2mi/h); however some commutes can be

as slow as 10km/h and as fast as 70km/h.

Our commuting data lends itself to summarizing and analyzing region-wide patterns. We first look at

average commuting speed and commuting delay and try to explain how it varies during rush hour. Our

sample of 2000 trips across Metro Vancouver during seven half-hour intervals between 06:30 and 10:00

provides estimates of how the log of average speed and the average delay (measured as the log of the ratio

of observed travel time to normal travel time as reported by the Google API) depends on distance, time of

day, and day of week. Table 3.2 summarizes the results.

Column (A) in table 3.2 reveals that average speed increases with distance so that a 10% increase in

distance increases average speed by 2.4%. This effect is a result of longer commutes containing longer

sections of highway driving. The time of day effect is captured by a linear and square time effect that

suggests that speed is lowest (and delay is highest) around 08:30. Delays increase very little with distance.

A 10% increase in distance is associated only with an 0.5% increase in delay. The best days for commuting

are Mondays and Fridays, whereas other days of the week are slower. Weekends are excluded from the

analysis. We cluster standard errors in our analysis.

Column (B) in table 3.2 captures the delay, the log ratio of travel time in traffic to normal travel time.

Both figures are provided directly by the Google API. This means that under ideal conditions the observed

travel time may be higher or lower than the normal travel time. We again find a link to distance, but much

weaker than for speed. A 10% increase in distance increases delays by about half a percent. Delays are

smaller on Mondays and Fridays compared to the three other weekdays.

We use the available time distribution data in several ways. For each commuting trip we calculate

minimum travel times, and for each CT pair and time slot (2,000 times 7) we calculated mean and standard

deviation in order to obtain empirical estimates of Tν and Tρ that we analyze further. We also use the CT-pair

time-slot data set to estimate the parameters of the underlying Fréchet and Lognormal distributions in order

11We split the cumulative distribution into 2,000 segments by taking a route sample each time we cross the next 0.05% threshold
of cumulative volume.
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Figure 3.6: Census Tract Commuting Trip Sample
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Figure 3.7: Commuting Distance
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Figure 3.8: Commuting Time Distribution
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Figure 3.9: Commuting Speed Distribution
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Table 3.2: Determinants of Commuting Speed and Delay

(A) (B)
Dependent Variable¸ Speed Delay
Intercept¸ 2.951c (246.) −0.042c (8.85)
Distance ln(d) 0.242c (50.3) 0.045c (20.7)
Time of Day (linear) h−8 −0.053c (46.1) 0.056c (53.0)
Time of Day (squared) (h−8)2 0.055c (75.6) −0.054c (76.4)
Implied Peak Time [hour] 8.478c (828.) 8.524c (844.)
Monday¸ 0.021c (38.4) −0.020c (40.0)
Tuesday¸ −0.013c (27.0) 0.008c (22.2)
Thursday¸ −0.018c (30.4) 0.012c (26.1)
Friday¸ 0.026c (41.5) −0.023c (42.0)
Regression fit (R2)¸ 0.559 0.290
Observations¸ 685,993 685,993

Note: Statistical significance at the 95%, 99%, and 99.9% level of confidence is indicated by superscripts
a, b and c, respectively. Standard errors are clustered for the 2,000 commutes. Numbers in brackets are
t-statistics. The dependent variables are the log of observed speed and the log of the ratio of travel time
in traffic to normal travel time. The implied peak is the hour of minimum speed or maximum delay.
Wednesday is the base day for the regressions and thus is omitted. Weekends are excluded.

to determine which distribution describes the data more accurately. The result from this analysis allows us

to decide whether H(ψ) is more suitable based on either of the two distributions.

3.4.2 Bridge Data: Volume and Time

The commuting pattern data faces one important limitation: we do not observe traffic volumes directly.

The BC Ministry of Transportation collects data on traffic volumes at a number of measurement stations

across the region, including key bottlenecks (Opus International Consultants, 2014). Table 3.3 identifies the

locations we study. We obtain hourly data for one full year from October 2017 through September 2018.12

Two of our routes have alternating counterflow lanes. The Lions Gate Bridge has three lanes in total

and switches back and forth between 2+1 and 1+2 lanes in each direction. The George Massey Tunnel has

four lanes in total and switches between 1+3, 2+2, and 3+1 configurations. Our study of these routes tries to

control carefully for the times of day in which they are operated in a particular configuration as they follow

a set schedule during the day.

We have also obtained speed information through the Google Distance Matrix API in real time for road

segments of a few kilometers in length. We have sampled speeds in 5-minute intervals between 06:00 and

21:55, and at 15-minute intervals during the night. We have averaged the data at the hourly level to match

our bridge volume data.

Figure 3.10 shows the diurnal traffic volume for four of our bridges. The northbound and southbound

traffic can show significant asymmetries. While the traffic on the Second Narrows Bridge (connecting

12The publication of volume data for some bridges is lagging or has suffered from technical outages. We are missing data
for the Second Narrows Bridge in November 2017 and parts of July 2018. Our data for the Alex Fraser Bridge is missing from
March-September 2018.

58



Figure 3.10: Diurnal Direction Traffic Volume
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Figure 3.11: Speed Volume Charts
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Table 3.3: Traffic Bottlenecks in Metro Vancouver

Code Name Direction Lanes∗ Limit
PMB-N Port Mann Bridge Northbound (west) 2+3 90 km/h
PMB-S Port Mann Bridge Southbound (east) 2+3 90 km/h
GMT-N George Massey Tunnel Northbound 1/3 80 km/h
GMT-S George Massey Tunnel Southbound 1/3 80 km/h
AFB-N Alex Fraser Bridge Northbound 3 90 km/h
AFB-S Alex Fraser Bridge Southbound 3 90 km/h
LGB-N Lions Gate Bridge Northbound 1/2 60 km/h
LGB-S Lions Gate Bridge Southbound 1/2 60 km/h
SNB-N Second Narrows Bridge Northbound 2 70 km/h
SNB-S Second Narrows Bridge Southbound 2 70 km/h
∗ a/b indicates counterflow lanes minimum/maximum; a+b indicates separated lanes

Vancouver to North Vancouver) is quite balanced in both directions, the Alex Fraser Bridge has strong

northbound traffic in the morning and southbound traffic in the afternoon. The Oak Street Bridge connecting

Richmond to Vancouver has stronger northbound than southbound traffic in the morning.

Important for our research is the relation between traffic volume and commuting time. In figure 3.11 we

show scatter plots of hourly volume and speed for the same routes as in figure 3.10.13 They illustrate the

typical speed-volume link, although there is no clear prima facie evidence of hypercongestion. The new Port

Mann Bridge show few signs of significant congestion. Given its significant capacity, only traffic accidents

seem to slow down traffic noticeably.

3.5 Empirics

3.5.1 Travel Time Coefficient of Variation

Figures 3.12 and 3.13 provide histograms of the distribution of the two coefficients of variation Tρ =

Tσ/(Tµ − T ◦) and Tν = Tσ/Tµ . The first coefficient of variation is measured with respect to the average

delay Tµ −T ◦ and the second coefficient is measured with respect to the average time Tµ . We construct the

“best” travel time T ◦ for commuting trip i from observations across different times t, and then we allow for

a 10% faster drive under optimal conditions in order to allow for individual variation in driving behaviour.

T ◦i = 0.9min
t
{Tit} (3.37)

This procedure ensures that T ◦i is truly providing a floor for the travel time.

Empirically, we find that both measures are strongly positively correlated (about 0.88), as one would

expect when both measures share the same numerator. Both distributions have a long right tail. The travel

time markup coefficient of variation Tρ has a mean of 24%, whereas the commuting time coefficient of

variation has a mean of about 6.1%. Recall that each data point was sampled to represent roughly equal

13We show speed rather than time because of convention in the transportation literature.
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Figure 3.12: Coefficient of Variation Distribution: Time Markup Tρ
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Note: representative sample of 2000 trips across census tract pairs.

Figure 3.13: Coefficient of Variation Distribution: Travel Time Tν
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number of commuters.

We observe seven half-hour time blocks of morning commutes in Metro Vancouver, but we have only

time but no volume data. Therefore we construct a road congestion index (RCI) based on the average delay

that commuters incur:

RCIkt = 100% ·
(

T̄kt

T ◦k
−1
)

(3.38)

This proxy for actual traffic volume is zero when average travel time does not exceed the minimum (best)

travel time. It has a mean of 21.8% and median of 17.8%, and the 5th and 95th percentiles are 3% and 53%,

respectively.

Table 3.4: Congestion and Travel Time Coefficients of Variation

(A) (B) (C)
Dependent Variable¸ 100%Tν 100%Tρ 100%Tρ

Road Congestion Index¸ 0.093c (35.8) −0.148c (17.9)
Timeslot 07:00¸ −0.861c (5.08)
Timeslot 07:30¸ −3.659c (19.3)
Timeslot 08:00¸ −3.026c (13.2)
Timeslot 08:30¸ −1.579c (6.14)
Timeslot 09:00¸ 0.754b (2.58)
Timeslot 09:30¸ 1.029b (3.09)
Regression fit (R2)¸ 0.266 0.065 0.065
Observations¸ 14,000 14,000 14,000
CT Pair Fixed Effects¸ yes yes yes

Note: Statistical significance at the 95%, 99%, and 99.9% level of confidence is indicated by superscripts
a, b and c, respectively. Standard errors are clustered for the 2,000 commutes. Numbers in brackets are
t-statistics.

We are interested in identifying the extent to which the coefficients of variation increase or decrease

with the level of congestion. In Table 3.4 we report three regression specifications that link our observed

coefficients of variation to the RCI measure defined in (3.38). Column (A) finds that the ordinary coefficient

of variation Tν increases slightly with our road congestion index measure defined in (3.38). The empirical fit

(the R2 statistic) is somewhat weak at 0.266, but the intuition that variance increases with congestion more

than the average is intuitive. The estimated coefficient is relatively small, moving the RCI by 10%-points

shifts Tν by less than 1%-point.

The effect of congestion on Tρ is somewhat weaker and actually negative, reported in column (B). We

conclude from this that there is no case to be made that Tρ increases with congestion. The negative point

estimate rules that out convincingly. The estimation in column (B) is slightly sensitive to the choice of T ◦

in (3.37).14 The larger magnitude of the estimate is not surprising given that the mean Tρ is several times

larger than Tν . However, the fit in column (B) is much weaker than in column (A), and we conclude that it

is not unreasonable to assume that Tρ is not strongly influenced by congestion.

In column (C) we also use dummy variables to proxy for the effect of road congestion during different
14It is possible to find a T ◦ that would bring the estimate close to zero.
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time slots, with 06:30 as the baseline time slot. Tρ , with an average of about 21%, is slightly lower during

peak congestion. The overall explanatory power of road congestion with respect to Tρ is not very high.

There is a weak effect of congestion on Tρ , but the magnitude is not large enough to negate the theoretical

assumption to hold Tρ constant in our theoretical modelling.

Table 3.5: Schedule Time Cost [%]

Q1 Median Q3
Tν 3.89 5.24 7.93
ψ =16 6.82 9.19 13.90
ψ =40 9.55 12.86 19.46
ψ =100 12.26 16.51 24.97
ψ =250 15.05 20.27 30.66

Our analysis is also able to provide an evaluation of the overall cost of scheduling time as we are able

to estimate Tν for the Metro Vancouver region and match it with assumptions about schedule inflexibility of

commuters, the share of inflexible commuters, and the time cost ratio. Table 3.5 reports the median, as well

as first and third quartile (Q1 and Q3) of our empirical findings of Tν . We combine this information with

four assumptions of ψ , spaced apart at a factor of 2.5 from each other. A schedule inflexibility of ψ =16 is

rather low and can be considered the lowest plausible point. At ψ =40, the commuter is aiming to be late

no more than once every 8 weeks. At ψ=100 and ψ=250, the commuter does not want to be late late more

than once every 20 weeks and once a year, respectively. Our cautious “best estimate” is the median of Tν at

ψ =40, which suggests a schedule time cost of 12.3%. Individual commuters may experience more or less

schedule time. A very inflexible commuter (ψ =250) at the third quartile point may incur time costs close

to 30%.

Figure 3.14: Schedule Time Variation
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The schedule time factor TΛ that we calculate in table 3.5 is the maximum attainable individually, but

the overall time cost increase across all commuters—flexible and inflexible—depends also on the share of

inflexible commuters α and the time cost ratio ϕ of inflexible to flexible commuters. The contour plot in
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figure 3.14 illustrates how our key estimate of schedule time (for ψ=40 and median Tν ) varies with these two

parameters, based on our Schedule Time Theorem expressed in equation (3.36). The effect of differences in

ϕ are relatively modest as we explore a range from 1:2 to 2:1 in our diagram. A higher ϕ leads to a slightly

higher extra commuting cost. The stronger effect comes from the composition of commuters. When ϕ =1,

then A = αTΛ; the time cost increase is directly proportional to the share α of inflexible commuters.

3.5.2 Fréchet v. Lognormal: which provides a better fit?

Our discussion of the reliability standard hinges empirically on the choice of distribution for commuting

time. Our analysis employs both Fréchet and log-normal distributions as these are obvious choices for

non-negative distributions. However, there are important differences in the shape of these distributions:

for identical moments of mean and standard deviation, the Fréchet distribution has a more compressed and

focused shape than the log-normal distribution. (Figure B.1 in the appendix illustrates it.) The empirical

consequence of the choice of distribution function is reflected in our linear approximation H(ψ) of schedule

inflexibility as illustrated in figure 3.2. The Fréchet distribution has a higher slope of H(ψ), and has higher

values of H(ψ) when schedule inflexibility is high (roughly when ψ > 40). We are therefore interested in

providing empirical evidence about the relative merits of the distributional choice. Our commuting pattern

data enables us to do so as we observe distributions of commuting time across census tract pairs and time

slot.

Because our time dimension is limited (we only have 50 days), we exploit the fact that Tρ is not de-

pendent on the level of road congestion, and pool our data across the 7 different time slots. This means

that for every of our 2,000 census tract pairs (except the 50 that show no commuting time variation) we

have 7×50=350 observations at our disposal. Specifically, we estimate the following two log-likelihood

functions for the two distributions

LLFr =−∑
it

{
ln

(
a∑

k
skδkt

)
+

[
∑k skδkt

Tit −T ◦i

]1/a

−
(

1+
1
a

)
ln
(

∑k skδkt

Tit −T ◦i

)}
(3.39)

and

LLLn =−∑
it

{
ln
(

σ(Tit −T ◦i )
√

2π

)
+

[ln(Tit −T ◦i )−∑k µkδkt ]
2

2σ2

}
(3.40)

where δkt ≡ 1(k= t) is an indicator variable that is one when time period t matches the variable number

k. There are K + 1 parameters: one for each time slot and a “shape” parameter for the distribution. Our

identification strategy, which is based on Tρ being independent of road congestion, allows us to estimate a

single shape parameter for each CT pair while estimating one scale or locational parameter for each of the 7

time slots. Recall that in the Fréchet distribution the shape parameter a is a function of Tρ ; see equation (3.4).
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Figure 3.15: Log-Likelihood Comparison of Commuting Time Distribution
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It is not possible to directly test one distribution against the other using a test statistic. We employ the

Akaike information criterion AIC = 2K−2lnL, a measure of the relative quality of statistical models for a

given set of data. When comparing two models, the lower AIC indicates the better fit. Because both models

have the same number of parameters K, the measure we use to characterize the relative performance of the

two distributions is the metric

∆AIC≡ (−2LLFr)− (−2LLLn) (3.41)

Fréchet is preferred over lognormal if ∆AIC is negative, and lognormal is preferred over Fréchet if ∆AIC

is positive. We report the results of our analysis from running 2,000 pairs of regressions in figure 3.15,

a histogram of each of the ∆AIC we compute from our regression pairs. As is visible, the bulk of the

estimation results favour the lognormal distribution over the Fréchet distribution. We conclude, therefore,

that generally the lognormal distribution provides a better fit for commuting time distributions than the

Fréchet distribution.

The important implication of our analysis is therefore that our H(ψ) linear approximation of commuting

time mark-up as a function of schedule inflexibility (ψ) should be based on the lognormal distribution, and

thus the lower H(ψ) that are implied by this choice for larger ψ .

3.5.3 Route Choice: is there a speed-reliability trade-off?

We sample 2,000 commutes seven times a day across Metro Vancouver. How often do commuters take the

same route, and how many times will they find a better alternative on a different route? Our data set is able to

answer these questions. Table 3.6 shows the distribution of the number of routes commuters may take. Even

though the Google API will not provide the exact route, it provides the distance of the route recommended.
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We granularize the data by considering a route as different if the integer number of kilometers is different.

So routes that are 3.3km and 4.2km would be considered different, while routes that are 3.8km and 4.1km

would be considered roughly the same. This granularization is meant to suppress minute differences in

routes and focus instead on major route choice differences.

Table 3.6: Distribution of Route Choices among 2,000 Commutes

Routes 1 2 3 4 5 6 7 8 9 10+
Frequency 27.9% 27.3% 15.7% 9.7% 6.2% 4.5% 2.8% 1.8% 1.7% 2.6%

Roughly one third of commuters will only take one route, while about 60% take no more than two routes.

As the data in the table shows, there are some commutes that are much more variable, and some commutes

even observe more than ten routes. On average, commuters take 2.7 different routes. As commutes get

longer, obviously there are also more permutations of route segments. The table above does not reveal

the intensity of alternative route choices: when commuters take alternative routes, they may do so more

sparingly. We see that 70% of commutes are on the first route choice, and another 17% on the second route

choice, and another 6% on the third route choice. About 93% of commuters thus occur on the top three

route choices.

We also regress the number of routes on the log of distance. We employ a count regression using the

Poisson distribution and find a positive coefficient (0.64) that is highly statistically significant. It confirms

that route choices become more complex with greater distance.

Figure 3.16: Alternate Route Trade-Offs
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The focus of our paper is on commuter time reliability, and our line of inquiry thus takes us to the

question how a commuter’s usual route (defined as the route most often taken on a given commute) compares

with that commuter’s alternate routes (defined as all the routes taken less frequently). Our theoretical work

suggests that the coefficient of variation Tρ is the right measure to compare route performance in terms of
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variability, and thus we construct the difference ∆Tρ ≡ T A
ρ −T B

ρ as the metric that compares the alternate (A)

routes against the base (B) route. We construct a similar measure for the slowness of each of our commuting

routes: Tφ ≡ (T̄ − T ◦)/T ◦. This measures captures the markup of average travel time over fastest travel

time. To compare alternate (A) routes against base (B) routes, we construct ∆Tφ ≡ T A
φ
−T B

φ
as our measure

of difference in slowness. Some of our 2,000 commutes never use alternate routes or have no time variation,

which leaves us with 1,215 observations. In our diagram 3.16 we ignore eight outliers with unusually high

or low ∆Tφ and show a simple linear fit. The green lines divide the diagram into four quadrants.

On average, it is unsurprising that alternate routes are slower than preferred routes. What is less obvious

is how the route choice is related to the time variability of the route, our Tρ measure. The correlation in

figure 3.16 is striking: slower routes are associated with a reduction in variability. This means, as a stylized

fact, that alternate routes are slower but less risky. The mean ∆Tφ is about 0.12 (an increase from 0.37 for

base route to 0.49 for alternate route) and the mean ∆Tρ is about –0.11 (a drop from 0.40 for base route to

0.29 for alternate route). The conclusion from this exercise is that route choice is not just about speed, but

also about reliability. If it wasn’t, there should be no correlation in figure 3.16.

3.5.4 Bridge Traffic Analysis

In our citywide analysis we only have a rough proxy for congestion as we do not have flow data for all

segments of our sampled commutes. However, the BC Ministry of Transportation publishes hourly volume

data for a number of select bridges and tunnels that we have described in our data preview section. This

data enables us to link volume and speed data to answer the question how increasing congestion affects the

dispersion of commuting time. While this analysis allows us to observe the dispersion characteristics at

these bottlenecks, these findings are not representative of the entire commute. Bottlenecks are obviously

highly important for the overall commuting time and its dispersion, but queueing in front a bottleneck and

other spillovers are influencing the effect on the total commuting time. Commuters’ route choice and travel

decision depends on the total commuting time, including buffer time, but not on the travel time through

a bottleneck alone. Our empirical analysis reveals the magnitude of two key parameters: how congestion

increases travel time through the bottleneck, and how congestion increases (or decreases) the variance of

travel time. It is the latter that is a novel contribution of our paper.

In estimating the effect of congestion on commuting time and its dispersion, we employ a log-linear

version of (3.17). However, this approach requires us to introduce the minimum travel time T ◦ and road

capacity c as constants. The minimum travel, or analogously maximum speed V ◦, constrains the empirical

distribution. We define the maximum speed as

V ◦ ≡ bmax
t
{Vt}/0.9c (3.42)

which mirrors (3.37). We report this speed as an integer number and consider this 10% increase over

the highest observed speed as a plausible limit on what is still feasible under completely ideal conditions.

Naturally, this maximum speed is much higher than the average speed and the speed limit (V̄ ).15

15Nevertheless, there are always drivers who may exceed even what we consider a “generous” upper limit. In May 2018 it was
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We also need to define the capacity of each of our bridges and tunnels. There is an extensive literature on

rating road capacity. We rely on Hall (1975) and Federal Highway Administration (2016, 2017) to determine

the capacity of our multilane highways as

c = max{2200,1000+12.427 ·FFS} · Lanes
1+HV/200

(3.43)

where HV is the percentage of heavy traffic on the route, and with the free-flow speed (FFS) given by

FFS = 121.32− fLW− fLC [km/h] (3.44)

Here, fLW and fLC are adjustment factors for lane width and right shoulder later clearance, respectively.

The adjustment factor for lane width are 3.6m (0.00 km/h); 3.3m (3.06 km/h); 3.0m or less (10.62 km/h).

The adjustment factor for right shoulder lateral clearance is zero for grater than 1.8m, and a maximum of

5.8 km/h and 3.9 km/h for 2-lane and 3-lane roads, respectively, when no right shoulder is present. We

have rather incomplete information on the adjustment factors that are needed for our bridges and tunnels

because of widely different design characteristics. However, the posted speed limit V̄ reflects many of these

characteristics such as narrow lane width, absent shoulders, or concrete barriers on the side. We fall back on

a classic calculation by Johannesson (1931)

c =
⌊

2400
1+18.3/V̄

⌋
·Lanes (3.45)

that provides a remarkably sturdy approximation of lane capacity. We show the results of this formula in

table 3.7.

Table 3.7: Speed Limit-Capacity Relationship

Speed Limit [km/h] 50 60 70 80 90 100 110 120
Lane Capacity [vehicles] 1756 1839 1902 1953 1994 2028 2057 2082

We use multiplicative heteroskedastic linear regression (MHLR) to analyze our bridge traffic data and

determine how dispersion and travel time vary with the level of congestion. We estimate a linear model of

the form yi = xxxiβββ + εi with dependent variable yi and a vector of independent variables xxxi and i.i.d. errors

with mean zero and variance σ2
i . The variance function σ2

i = exp(zzziγγγ) is parametric and is explained by

variable vector zzzi. Equivalently, ln(σ2
i ) = zzziγγγ is linear. Thus we can estimate the MHLR log-likelihood

function

LL =−1
2

[
n ln(2π)+

n

∑
i=1

zzziγγγ−
(yi− xxxiβββ )

2

zzziγγγ

]
(3.46)

Stata, the statistical software that we use, has implemented this type of regression through the command

hetregress for the linear case. It is straight-forward to generalize this to the non-linear case.

reported that a Ferrari driver was fined $750 for clocking 210 km/h on Lions Gate Bridge. The posted speed limit is 60 km/h. There
is no limit to recklessness.
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We start out by noting that ln(Ti − T ◦) is normally distributed, and because T ◦ is a constant, yi ≡
ln(Ti/T ◦− 1) is also normally distributed. Empirically we normalize distance for our bridge and tunnel

analysis and thus we observe velocities Vi and infer V ◦. Therefore, for any distance, it holds that Ti/T ◦ =

V ◦/Vi. Thus we calculate yi = ln(V ◦/Vi−1). The mean is expected to follow a congestion function of the

types proposed in (3.15) and (3.16),16 and implemented in (3.17) as a stochastic version that fits with our

log-normality assumption for Ti−T ◦. The error term εi in (3.17) is distributed normally with mean zero and

variance σ2, which we allow to grow analogously to the mean. Thus we can estimate the linear system

yi = ln(T�/T ◦−1)−ξ ln(1− vi/c)+ εi (3.47)

ln(σ2
i ) = ln(Σ�)−ζ ln(1− vi/c) (3.48)

which provides estimates of T� and ξ in the mean equation, and Σ� and ζ in the variance equation. Hence,

we calculate the observational mean as

Tµ(ṽ) = T ◦+
[

T�−T ◦

(1− ṽ)ξ

]
· exp

(
Σ�/2

(1− ṽ)ζ

)
(3.49)

and the standard deviation as

Tσ (ṽ) = (Tµ(ṽ)−T ◦)

√
exp
(

Σ�

(1− ṽ)ζ

)
−1 (3.50)

and therefore

Tρ =
Tσ

Tµ −T ◦
=

√
exp
(

Σ�

(1− ṽ)ζ

)
−1 (3.51)

Note that when ζ = 0, the expression on the right turns into a constant
√

exp(Σ�)−1 and thus becomes

independent of congestion. This means that Tσ increases proportional to Tµ −T ◦ as congestion increases.

In the ζ =0 case,

Tµ(ṽ) = T ◦+
T�−T ◦

(1− ṽ)ξ

√
1+T 2

ρ (3.52)

When we interpret the results, it is useful to express T� as a speed equivalent, knowing that T�/T ◦ =

V ◦/V�. Thus, using the estimate of the intercept in the mean equation â = ln(T�/T ◦− 1), it follows that

V� = V ◦/(1+ exp(â)). Similarly, when we interpret the constant â = ln(Σ�) in the variance equation, we

report the corresponding initial T�ρ at ṽ=0 as
√

exp(exp(−â))−1.

If ζ is positive, then the coefficient of variation will decrease with congestion. However, if ζ is negative,

then the coefficient of variation will in fact increase with congestion. Both are possible outcomes. Both ξ

and ζ determine the travel time in (3.49). When ζ is positive, it reinforces the effect of ξ ; however, when

ζ is negative, it dampens the effect of ξ . The intuition is that a positive ζ increases the variance σ2 of the

log-normal distribution when congestion increases, while a negative ζ decreases that variance. Because of

16There is no log-linearization of the Pipes-Munjal congestion function because ln(1+κ(1− ṽ)λ ) does not allow separating κ and
λ . It is therefore necessary to estimate this version non-linearly. We leave this exercise for future study as the small improvements
in fit do not change our qualitative results in this section.
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the right-skewed shape of the log-normal distribution, increasing variance pulls up the arithmetic mean.

Table 3.8 reports the results of our estimation for several of our bridges, opposing traffic directions,

and different lane numbers due to counterflow traffic: the Alex Fraser Bridge northbound and southbound

(AFB-N and AFB-S); the Oak Street Bridge (OSB-N and OSB-S); the Second Narrows Bridge (SNB-N and

SNB-S); the Lions Gate Bridge (LGB-N and LGB-S) in two-lane mode; and the George Massey Tunnel

(GMT-N and GMT-S) in 2-lane normal mode and 3-lane counterflow mode. We are not presenting results

for the Massey Tunnel or the Lions Gate Bridge when only a single lane is in operation because these

phases are heavily driven by lane merging and queuing. Similarly, we do not show results for the Port Mann

Bridge because the bridge has distinct express and local lanes, while the volume data is aggregate. For this

bridge we are not able to discern separate volumes for the long-distance and local traffic, and the northbound

direction also has a complicated lane merger that results in capacity curtailment.

Table 3.8 first shows the relevant fixed parameters for our bridges and tunnels: the number of lanes,

posted speed limit, maximum speed inferred by (3.42), and road capacity inferred by (3.45). There are

two blocks of regression estimates in each column: the first for the mean equation (3.47), and the second

for the variance equation (3.48). The congestion effect estimates identify ξ and ζ , respectively. The two

constants are difficult to interpret without transformation. Therefore, we report the initial speed V� for

the mean equation and the initial Tρ for the variance equation. “Initial” means that these are the speeds

(or coefficients of variation) with zero congestion. We finally report the number of observations and the

Aikaike Information Criterion (AIC) for model selection purposes (noting that smaller AICs are better).

Our result for the Lions Gate Bridge northbound has a negative ξ estimate, which we attribute to a rather

high maximum speed compared to the initial speed. We discard this set of estimates as unreliable.

Overall, we find strong evidence that the congestion parameter ξ for the mean equation varies between

about 0.6 and 1.0. This means that, as can be expected, congestion strongly increases travel times. The

effect is somewhat more pronounced in some places than others. The Oak Street Bridge northbound has

much stronger congestion behaviour than southbound. This observation is consistent with the fact that the

northbound traffic transitions freeway traffic to urban (signal) traffic, while southbound a string of traffic

lights regulate the traffic volume onto the bridge.

Our key result concerns the variance equation and fully justifies our choice of using an MHLR model:

variance is strongly influenced by congestion. Our estimates of ζ generally tend to be mostly highly posi-

tive (in seven of twelve cases), and sometimes negative (in three of twelve cases). In some cases the results

are insignificant. The case of the Oak Street Bridge southbound is particularly interesting because it char-

acterizes transition from urban (signal) traffic to freeway traffic, so inflow to the bridge is throttled by the

signal phases. This results in the coefficient of variation being essentially constant. Where we see relative

unimpeded traffic flow, such as on the Alex Fraser Bridge, the variance also does not seem to increase with

congestion. The variances effect kicks in much stronger in the cases where some amount of queuing takes

places (northbound traffic on Oak Street, the Massey Tunnel, but also on the Second Narrows Bridge that

has strong on-ramp traffic merging onto it.

There are three key takeaways from this section. First, variance matters—a lot. Second, variance appears

to increase with congestion when traffic has strong “bottleneck” features, while the coefficient of variation
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Table 3.8: Estimation Results Bridge & Tunnel Traffic

Route AFB-N AFB-S OSB-N OSB-S
Lanes¸ 3 3 2 2
Speed Limit [km/h]¸ 90 90 60 60
Max. Speed [km/h]¸ 108 111 88 91
Road Capacity¸ 5982 5982 3678 3678
Constant (Mean Eq.)¸ −1.633c (158.) −1.648c (147.) −1.650c (361.) −1.719c (384.)
Congestion Effect¸ 0.669c (57.1) 0.692c (44.7) 1.010c (171.) 0.777c (89.3)
Initial Speed [km/h]¸ 90.355c (593.) 93.080c (553.) 73.820c (1359) 77.166c (1470)
Constant (Var. Eq.)¸ −1.607c (43.7) −1.644c (43.0) −2.933c (124.) −2.958c (107.)
Congestion Effect¸ −0.450c (8.96) −0.078 (1.39) 0.718c (32.4) −0.095 (1.74)
Initial Tρ¸ 0.471c (49.3) 0.462c (47.6) 0.234c (82.3) 0.231c (70.2)
Observations¸ 3,550 3,550 8,635 8,635
AIC¸ 3487.46 4098.71 4256.52 -1382.5

Route GMT-N GMT-S SNB-N SNB-S
Lanes¸ 2 2 3 3
Speed Limit [km/h]¸ 80 80 70 70
Max. Speed [km/h]¸ 103 102 101 99
Road Capacity¸ 3906 3906 5706 5706
Constant (Mean Eq.)¸ −1.515c (265.) −1.707c (320.) −1.683c (254.) −1.646c (247.)
Congestion Effect¸ 0.581c (51.0) 0.710c (73.0) 0.841c (76.6) 0.778c (74.1)
Initial Speed [km/h]¸ 84.437c (971.) 86.339c (1221) 85.176c (963.) 82.995c (928.)
Constant (Var. Eq.)¸ −2.657c (98.8) −2.823c (103.) −2.321c (83.1) −2.381c (85.3)
Congestion Effect¸ 0.918c (24.5) 0.815c (22.5) 1.227c (43.2) 1.090c (37.6)
Initial Tρ¸ 0.270c (71.8) 0.247c (70.8) 0.321c (68.2) 0.311c (68.5)
Observations¸ 5,821 5,821 7,560 7,560
AIC¸ 3839.87 2741.97 11339.3 9904.03

Route GMT-N GMT-S LGB-N LGB-S
Lanes¸ 3 3 2 2
Speed Limit [km/h]¸ 80 80 60 60
Max. Speed [km/h]¸ 102 95 67 50
Road Capacity¸ 5859 5859 3678 3678
Constant (Mean Eq.)¸ −1.759c (86.0) −1.731c (44.7) −0.541c (18.8) −1.361c (146.)
Congestion Effect¸ 0.896c (48.1) 0.764c (26.8) −0.352c (14.9) 0.344c (49.6)
Initial Speed [km/h]¸ 87.014c (333.) 80.712c (172.) 42.340c (94.7) 39.798c (526.)
Constant (Var. Eq.)¸ −2.289c (23.7) −1.072c (9.06) −1.478c (16.4) −3.221c (57.1)
Congestion Effect¸ 0.730c (10.6) −0.480c (4.95) −0.386c (5.02) 0.250c (8.35)
Initial Tρ¸ 0.327c (19.7) 0.639c (14.3) 0.506c (19.8) 0.202c (34.8)
Observations¸ 1,090 1,456 1,456 1,074
AIC¸ 1606.55 1769.55 1387.28 -78.424

Note: Statistical significance at the 95%, 99%, and 99.9% level of confidence is indicated by superscripts
a, b and c, respectively. Standard errors are clustered for the 2,000 commutes. Numbers in brackets are
t-statistics.
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remains relatively flat when congestion is less driven by merging traffic and queueing effects. Third, when

variance and mean both increase with congestion, the variance effect intensifies the mean effect because

of the right-skewed shape of the log-normal distribution. This in turn matters for reliability calculations:

schedule-sensitive drivers will avoid the roads that are getting excessively unpredictable and in tendency

favour alternative routes that trade-off more reliability against slower speed. This is one of the two topics

that we explore more deeply in our next section, which simulates route choice.

3.6 Simulation
The purpose of our simulation exercise is to explore competing routes where commuters can choose among

two options that differ in terms of volume, speed, and dispersion characteristics. As commuters can choose

routes, this problem is inherently more difficult to describe algebraically and instead is best addressed

through simulation. We have at the minimum two distributions to draw from randomly, and this makes

analytic solutions very difficult if not impossible to obtain. To focus on the essence of our model we simu-

late a simple two-road system. The framework we use can be used easily for more complex networks, but

by focusing on two competing routes we are able to better identify the sorting effect between flexible and

inflexible commuters. Our two routes can be envisioned either as two separated lanes of the same highway

(the “Lexus Lane” model), but they can also be envisioned as the choice between two transportation modes

(public transit and cars). Our analysis is applicable to either type of interpretation.

The interpretation of our analysis as a transportation mode choice requires some modification, however.

A car-owning commuter only decides between competing routes. A commuter choosing between competing

transportation modes will take the difference in transportation cost into account, which includes the variable

cost of an individual trip as well as the levelized fixed cost of the transportation mode. If ownership of a

car is treated as a sunk cost, the decision at the margin compares fuel cost against transit fare. In Metro

Vancouver, transit fares are divided into three zones ($2.95, $4.20, $5.70, respectively, for a single trip). A

typical 13.5km commute by car in Vancouver would cost about $2.00-$2.50, depending on the fuel efficiency

of the vehicle and the price of gasoline. In most instances, the car will be the cheaper option at the margin.

However, the difference in cost is negligible in comparison to the time cost difference, and we thus focus on

this alone in our simulation for route choice. We capture the cost trade-off by focusing on the asymmetry in

the route choice—slower but more reliable versus faster but more volatile—and using identical tolls on both

routes: identical per-trip prices regardless of commuting mode.

3.6.1 Simulation Configuration

Our simulation explores two scenarios that characterize the effect of reliability on commuting.

• Two symmetric roads with one road tolled. This configuration mirrors the ‘Lexus lane’ approach

studied by Hall (2018b). We are exploring how introducing a toll on one of two routes will improve

the allocation efficiency by sorting inflexible and flexible commuters.

• Two asymmetric roads with both roads tolled. With this configuration we are interested in the

trade-off between a slower but more predictable route (or mode) and a faster but more volatile route
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(or mode). One of the routes has a significantly higher Tρ than the other (double). Even without a toll,

commuters sort themselves so that inflexible commuters prefer the slower but safer route (or mode)

over the alternative. However, how much more sorting is induced by tolling?

The two scenarios allow us to determine how route choice is affected by policy (congestion pricing) and

by self-sorting based on route characteristics. The two scenarios are parameterized as shown in table 3.9.

We refer to the two competing routes as ‘A’ and ‘B’, where route ‘A’ is the tolled road in the ‘Lexus Lane’

scenario, and the slow-but-certain route in the ‘Asymmetry’ scenario.

Table 3.9: Simulation Scenario Parametrization

‘Lexus Lane’ ‘Asymmetry’
(Toll: A) (Toll: Both)

Parameter Symbol Unit A B A B
Lane Capacity c [vehicles/hr] 2200 2200 2200 2200
Minimum Travel Time T ◦ [min] 15 15 18 12
Initial Average Travel Time T� [min] 20 20 23 17
Congestivity ξ [–] 0.50 0.50 0.50 0.50
Coefficient of variation Tρ [–] 0.25 0.25 0.20 0.40

Table 3.10: Simulation Scope Parametrization

High Medium Low
Parameter Symbol (H) (M) (L)
Share of Inflexible Commuters α 0.8 0.6 0.4
Schedule Inflexibility ψ 250 100 40
Time Cost Ratio ϕ 1.25 1.00 0.80

For the time cost distribution we employ Canadian census data that identifies the individual income

in the Metro Vancouver region as CAD 44,700 and CAD 33,600 for mean and median, respectively, in

the year 2016. Following Small and Verhoef (2007), we assume that time cost is 50% of income. Based

on OECD estimates17 of 1,706 average annual hours actually worked per worker for Canada in 2016 we

determine a mean and median time cost of $13.10/h and $9.85, which we transform through the moments

of the lognormal distribution into µ = ln(median)= 2.0894 and σ =
√

2ln(mean/median)= 0.75567. In

accordance with the theoretical consideration, the cutoff time T∅
i that determines the cutoff cost through

the mean time cost ω̄ so that zi = ω̄T∅
i is drawn from an extreme value type I (Gumbel) distribution. We

calibrate this distribution by choosing a mean and median of 50 and 47 minutes, respectively.18

In table 3.10 we define the base parameterizations for our simulation. We explore our three key parameters–

the share of inflexible commuters, the schedule inflexibility, and the time cost ratio—at three levels that

characterize the low end, mid range, and high end of plausible parameterizations.

For the share of inflexible commuters (α) we argue that during the morning rush hour it likely exceeds

50% and think that 60% is a conservative estimate, but allow for a 40% and 80% alternatives. We thus have
17OECD.Stat time data table ANHRS.
18See details in the mathematical appendix.
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a bracketing of 20% between steps. For the degree of inflexibility we assume that a ψ of 100 (being late to

work 2-3 times per work year) is a reasonable standard, but also allow for a stricter level (once per year) and

a weaker level (once every 8 weeks). There is a ratio of 2.5:1 between each of the two steps for ψ . For the

time cost difference between the two commuter groups we start with a neutral assumption of 1:1, and allow

for a 25% deviation in either direction.

We thus have 3×3×3=27 cases that we explore. For each of these 27 scenarios we begin by dispatching

all commuters to fill up both routes, which provides our baseline against which we compare the results from

an optimal toll. We explore two optimal tolls: the full-information optimal toll that takes schedule delay

cost of the inflexible commuters into account, and the limited-information (sub-)optimal toll that only takes

observable driving time into consideration. For ease of reference, we call them ‘optimal’ and ‘classic’ tolls.

Where we need to distinguish between the two, we denote these outcomes with an asterisk (∗) or a bullet (•)

superscript. We describe the algorithm for computing the toll optimum below. Once we have computed the

two toll optima, we are interested in a number of different outcomes:

(a) the schedule delay premium A , expressed as a percentage, when everyone commutes (no toll);

(b) the optimal toll τ;

(c) the percentage share π of flexible commuters who decide to commute (with 1− π the share of non-

commuters;

(d) the utilization rates of both routes, ṽA and ṽB, as a percentage;

(e) the percentage share of inflexible commuters who prefer the tolled or slow-but-certain route φ I
A and the

percentage share flexible commuters who prefer the untolled or fast-but-volatile route φ F
B ;

(f) the cost savings ∆C achieved through the toll as a percentage reduction over the no-toll case.

Additionally, we will also explore distributional outcomes that we define further below.

3.6.2 Optimal Toll Algorithm

We have implemented our simulations both in C++ and Python code in order to cross-verify our simulation

methodology. This dual implementation strategy has reassured us that our algorithm is reliable. We use the

more-efficient C++ code for our high-replication results. Our optimal toll algorithm consists of five steps:

1. assign random time cost ωi and cutoff cost zi to each commuter (and in the expanded version, also

draw a random schedule inflexibility ψi);

2. dispatch all commuters sequentially, letting them choose optimal routes conditional on current levels;

3. reoptimize route choices until the choices of all commuters are stable;

4. find the optimal toll through golden section search (GSS)19 using a cost function that includes com-

muting time including schedule delay, but excludes tolls (as they are rebated uniformly per capita).

Each search step consists of assigning a new toll level, reoptimizing the route choices, and calculating

the cost function; and

5. find the ‘classic’ toll in the same way using a cost function that only includes travel time.

We are able to speed up the simulation runs by computing in advance the travel times, or the key parts

thereof, that correspond to each of the discrete capacity utilization points for each route. This means that

19We choose this method because it is robust even when the cost function is not smooth.
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we can rely on inexpensive additions and multiplications to compute final travel and commute times, rather

than computing power functions and square roots. This simple trick allows us to run between 30 and 70

simulations per second in our C++ code.

3.6.3 Results: Single and Dual Toll Scenarios

The first aim of our simulation exercise is the characterization of optimal tolls in the presence of distinct

commuter groups (flexible and inflexible) with different time costs, and where the degree of inflexibility

(the reliability standard) of the inflexible commuters may vary. Tables 3.11 and 3.12 present the results of

our simulation for the ‘Lexus Lane’ and ‘Asymmetry’ scenarios, respectively, where we interpret the second

scenario also as as a potential mode choice. Both tables show the results of the average of 1,000 simulation

runs.

Table 3.11: Simulation Results: ‘Lexus Lanes’ Scenario

Parameters Optimal Toll Classic Toll

α ψ ϕ A τ π ṽA ṽB φ I
A φ F

B ∆C τ π ∆C

L L L 11.21 1.19 81.3 77.9 90.8 60.0 65.2 −2.69 1.00 81.7 −2.64
L L M 12.78 1.32 80.7 76.7 91.3 66.3 71.4 −3.36 1.05 81.3 −3.26
L L H 14.37 1.46 79.8 75.2 91.8 72.1 77.6 −4.23 1.12 80.8 −4.06
L M L 14.38 1.31 81.0 77.4 91.0 63.0 68.1 −3.02 1.03 81.6 −2.90
L M M 16.40 1.45 80.3 76.1 91.5 69.1 74.3 −3.81 1.07 81.2 −3.61
L M H 18.46 1.61 79.4 74.5 92.0 74.6 80.4 −4.82 1.15 80.7 −4.52
L H L 17.66 1.44 80.7 76.8 91.2 65.6 70.7 −3.40 1.05 81.5 −3.20
L H M 20.13 1.59 79.9 75.4 91.7 71.5 76.9 −4.30 1.10 81.1 −3.97
L H H 22.64 1.77 78.9 73.7 92.3 76.7 82.9 −5.43 1.18 80.6 −4.96
M L L 18.00 1.61 78.8 80.9 92.9 56.1 71.6 −3.71 1.36 79.3 −3.64
M L M 19.61 1.84 77.6 79.8 93.2 60.0 80.8 −4.59 1.52 78.5 −4.48
M L H 21.11 2.12 76.4 78.5 93.5 63.2 88.8 −5.61 1.72 77.6 −5.47
M M L 23.09 1.79 78.2 80.4 93.0 58.0 75.9 −4.18 1.44 79.0 −4.05
M M M 25.17 2.06 77.1 79.2 93.3 61.6 84.7 −5.18 1.60 78.3 −4.99
M M H 27.08 2.37 75.8 78.0 93.6 64.3 91.9 −6.29 1.83 77.3 −6.06
M H L 28.33 2.01 77.7 79.9 93.2 59.6 79.8 −4.68 1.51 78.9 −4.47
M H M 30.87 2.31 76.5 78.6 93.5 62.8 88.0 −5.78 1.68 78.1 −5.46
M H H 33.26 2.65 75.4 77.5 93.8 65.2 94.4 −6.94 1.94 77.2 −6.60
H L L 26.11 2.11 74.6 85.5 94.9 52.3 78.9 −4.67 1.91 75.2 −4.64
H L M 27.20 2.45 73.2 84.8 95.0 53.8 89.1 −5.44 2.19 74.0 −5.39
H L H 28.15 2.78 72.3 84.4 95.1 54.8 95.7 −6.11 2.53 73.0 −6.07
H M L 33.51 2.38 74.0 85.2 94.9 53.1 83.9 −5.17 2.07 74.8 −5.11
H M M 34.91 2.76 72.7 84.6 95.1 54.3 92.7 −5.92 2.39 73.7 −5.85
H M H 36.12 3.13 71.9 84.2 95.1 55.0 97.6 −6.57 2.78 72.8 −6.51
H H L 41.12 2.67 73.4 84.9 95.0 53.7 88.1 −5.65 2.23 74.5 −5.54
H H M 42.85 3.05 72.4 84.4 95.1 54.7 95.2 −6.41 2.58 73.5 −6.30
H H H 44.34 3.49 71.7 84.1 95.2 55.1 98.6 −6.99 3.04 72.7 −6.91

Note: Initial schedule delay cost markup A in percent. Optimal toll τ in dollars. Flexible com-
muters commuting π in percent. Route utilization rates ṽ in percent. Share of commuter types I
and F taking routes A and B in percent. Cost savings over baseline ∆C in percent. Average of
1,000 simulation runs.
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Table 3.12: Simulation Results: ‘Asymmetry’ Scenario

Parameters Optimal Toll Classic Toll

α ψ ϕ A τ π ṽA ṽB φ I
A φ F

B ∆C τ π ∆C

L L L 7.33 3.92 70.1 76.0 79.9 100. 100. −5.35 3.92 70.1 −5.35
L L M 8.35 3.51 70.1 76.0 79.9 100. 100. −5.16 3.51 70.1 −5.16
L L H 9.39 3.14 70.1 76.0 79.9 100. 100. −4.96 3.14 70.1 −4.96
L M L 9.39 3.92 70.1 76.0 79.9 100. 100. −5.39 3.92 70.1 −5.39
L M M 10.70 3.51 70.1 76.0 79.9 100. 100. −5.18 3.51 70.1 −5.18
L M H 12.04 3.14 70.1 76.0 79.9 100. 100. −5.01 3.14 70.1 −5.01
L H L 11.54 3.92 70.1 76.0 79.9 100. 100. −5.40 3.92 70.1 −5.40
L H M 13.15 3.51 70.1 76.0 79.9 100. 100. −5.22 3.51 70.1 −5.22
L H H 14.79 3.14 70.1 76.0 79.9 100. 100. −5.05 3.14 70.1 −5.05
M L L 15.98 5.84 57.1 79.4 78.0 69.7 100. −9.73 5.23 61.3 −9.57
M L M 17.28 5.70 53.3 77.8 76.8 68.2 100. −11.04 5.05 58.5 −10.83
M L H 20.04 5.57 49.1 75.9 75.4 66.6 100. −12.41 4.85 55.5 −12.13
M M L 22.35 6.17 55.3 80.3 75.8 70.4 100. −10.99 5.32 61.2 −10.69
M M M 25.17 6.02 51.2 78.6 74.3 69.0 100. −12.41 5.09 58.6 −11.99
M M H 27.77 5.89 46.6 76.8 72.6 67.4 100. −13.96 4.92 55.5 −13.45
M H L 29.54 6.48 53.4 80.9 73.6 71.0 100. −12.17 5.33 61.4 −11.62
M H M 32.99 6.34 49.0 79.3 71.9 69.6 100. −13.73 5.13 58.7 −13.05
M H H 35.96 6.19 44.2 77.5 70.1 68.0 100. −15.44 4.95 55.6 −14.64
H L L 28.36 9.02 31.8 83.1 81.0 54.6 100. −13.23 7.37 42.9 −12.76
H L M 29.96 9.03 25.4 81.7 79.9 53.8 100. −14.75 7.26 37.8 −14.23
H L H 31.35 9.11 18.9 80.4 78.8 52.9 100. −16.31 7.19 32.0 −15.78
H M L 37.42 9.63 28.4 83.7 79.1 55.1 100. −14.80 7.47 42.7 −14.04
H M M 39.47 9.69 21.9 82.5 77.9 54.2 100. −16.43 7.35 37.5 −15.63
H M H 41.22 9.81 15.5 81.2 76.7 53.4 100. −18.03 7.28 31.7 −17.22
H H L 47.08 10.23 25.2 84.2 77.3 55.4 100. −16.20 7.53 42.6 −15.11
H H M 49.57 10.31 18.6 83.1 76.0 54.7 100. −17.94 7.41 37.4 −16.80
H H H 51.74 10.54 12.5 82.0 74.8 53.9 100. −19.62 7.32 31.7 −18.49

Note: Initial schedule delay cost markup A in percent. Optimal toll τ in dollars. Flexible commuters
commuting π in percent. Route utilization rates ṽ in percent. Share of commuter types I and F taking
routes A and B in percent. Cost savings over baseline ∆C in percent. Average of 1,000 simulation runs.

Both tables characterize 27 scenarios of combinations of the α , ψ , and ϕ parameters defined in table 3.10

as low (L), medium (M) and high (H). We consider the MMM scenario as our baseline—but we do not have

data to reliably identify any of the three parameters.

The column presenting the A measure reveals the empirical importance of the schedule delay cost.

When all vehicles are dispatched (no toll), the extra time due to schedule delay ranges from about 13% in

the LLL scenario to abut 46% in the HHH scenario in table 3.11 and about 7% to 52% in table 3.12. On

average, our model suggests that schedule delays add about 27% cost to inflexible commuters. For a 20-

minutes driving time, schedule delay adds another 5–6 minutes. It is immediately apparent that A increases

with all three parameters: a larger share of inflexible commuters, higher degree of inflexibility, and higher

time cost of inflexible commuters all increase the economic importance of schedule delay.

The full-information optimal toll (‘Optimal’ in both tables) is characterized in both tables with dollar

figures. In the single-toll case they range from $1.19 to $3.49, a significant range in relative terms (2.9:1).
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The toll induces a number of flexible drivers to cease commuting, and thus the share of flexible commuters

who continue to commute (π) varies between about 72% and 81%. A drop of traffic volume of up to 30%

due to tolls is perfectly within the range of what has been found in practice. As the cost A of schedule delay

increases, so does the toll, which in turn reduces π . The tolls that our model finds look quite reasonable in

terms of magnitude.

It may surprise at first glance that the utilization rate of roads is increasing when A goes up, but note

that as α goes up, the share π applies to a smaller cohort of commuters. So in the HHL scenario route A

will get utilized much more than in scenario LLH. What is clearly apparent, though, is that route A always

has a lower utilization rate of route B, a direct result of the toll. This wedge in utilization makes route A

faster than route B, allowing sorting of high-value commuters and low-value commuters. This result agrees

with Small and Yan (2001) and Verhoef and Small (2004) who address that commuter heterogeneity plays

an important role for such “Lexus Lane tolling” to work. The beneficial effect of tolling comes both from

reducing demand (a scale effect) and from sorting commuters (a composition effect). This becomes even

clearer when we turn to the question which commuter takes which route. Without tolling, commuters of

both types are perfectly indifferent between taking route A and B and we start with a 50:50 mix. Tolling

ensures that a higher fraction of inflexible commuters takes the tolled route A, and more flexible commuters

take the untolled route B. This sorting effort is strongest, unsurprisingly, win the HHH scenario.

The column ∆C shows the cost savings of the tolled equilibrium over the untolled equilibrium. The

overall cost savings that we find from tolling range from about 3% to 7%. They are highest in our MHH and

HHH scenarios: inflexibility is pronounced and inflexible commuters have higher time cost than flexible

commuters. Our cost measure assumes that all toll revenue is returned in full to commuters.

The limited-information optimal toll (‘classic’ in both tables) where the social planner sets the toll

based on observable driving time, but where commuters choose route based on their full information about

schedule delay, shows some rather important features that have strong implications for policy design. The

demand response from the ‘classic’ toll (identified by the magnitude of π) is rather similar to the full-

information optimal toll case. So even though the classic toll is always a bit too small and thus the induced

scale (demand) effect is a little less, the cost savings (∆C ) are quite comparable to the full-information case.

The conclusion is thus that even the suboptimal toll induces a sufficiently strong sorting effect that generates

most of the gains for commuters. In other words, even when schedule delay costs are large, incomplete

information about them does not result in hugely inefficient tolls.

We now turn to the dual-toll case where the routes are highly asymmetric. Recall that route A is slow

but predictable, and route B is fast but unpredictable. We make route A 6 minutes slower than route B (23

versus 17 minutes), but also make route A twice as reliable as route B by choosing appropriate Tρ values.

Table 3.12 shows the results. We now find that much higher tolls are needed to get the desired sorting

effect. For our low-α scenarios we find perfect sorting: inflexible commuters take route A, and flexible

commuters take route B. All the gains come from the demand (scale) effect, as the dual toll has a neutral

sorting effect. The self-sorting for the flexible types remains in place throughout our range of parameters.

Flexible commuters always prefer the faster route. However, as the toll increases, an increasing number

of low-time-cost inflexible commuters chooses to switch from A to B because route B is now less busy.
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The tolls that we compute cover again a wide range, and because they tend to be significantly higher than

in our first scenario, the demand response is much stronger. When schedule delay costs are high, the toll

strongly favours policies that benefit the group of inflexible commuters and starves off commutes from

flexible commuters.

We note again a key result with respect to cost savings (∆C ): there is hardly any difference between the

‘optimal’ and ‘classic’ tolls, which suggests again that the beneficial effect from tolls with respect to sorting

is induced very effectively even when the toll level is suboptimal. While perfect sorting occurs for the low-α

scenario, classic and optimal toll are actually the same because the tolls do not induce any sorting. Only

when the share of inflexible commuters is large enough to allow additional sorting, do we see a gap opening

between classic and optimal tolls.

Our Asymmetry scenario generates welfare gains from a demand effect, rather than through sorting. The

commuters are already self-sorting because of the asymmetry in road conditions, and thus there is not much

that can be gained from differential tolls. One key insight therefore is that asymmetric tolling is useful when

road conditions are similar, while symmetric tolling is useful when road conditions are dissimilar.

The results in table 3.12 can also be interpreted as mode choice: flexible commuters commute by car,

and most inflexible commuters prefer the (slower but more reliable) train. As the toll rises, some of the

inflexible commuters also commute by car because now the traffic density on route B decreases sufficiently

to make this route fast enough to remain competitive for inflexible commuters with low time cost. Tolling

increases the use of the reliable but slower route A and at the same time reduces congestion on the faster but

volatile route B.

What we have gained from comparing our two scenarios is one key insight: optimal tolling induces

sorting (composition) and demand (scale) effects. When conditions are similar across routes, the benefits

from tolling arrive more from the sorting effect and required tolls tend to be low. When conditions are

dissimilar across routes with a strong negative correlation of reliability and speed, then larger tolls are

needed to induce a stronger demand respond to relieve congestion because the heterogeneous commuter

groups self-select into the optimal routes already—it isn’t necessary to create the selection effect artificially.

3.6.4 Distributional Outcomes and Fairness

The distributional outcome of mobility pricing have received much attention because perceived unfairness

of such a pricing scheme is perhaps the most formidable obstacle to its implementation (Eliasson, 2016).

We pursue two strategies to characterize the distributional outcome. The first method looks at the net

gains of different commuter groups relative to our baseline no-toll scenario for the commuters in each of

five groups:

1. Inflexible commuters taking (tolled or slow-but certain) route A, W I
A.

2. Inflexible commuters taking (untolled or fast-but-volatile) route B, W I
B.

3. Flexible commuters taking (tolled or slow-but certain) route A, W F
A .

4. Flexible commuters taking (untolled or fast-but-volatile) route B, W F
B .

5. Flexible commuters who are not commuting because the commuting cost exceeds their cutoff cost,

W F
∅ .
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Table 3.13: Distributional Outcomes: ‘Lexus Lanes’ Scenario

Parameters Optimal Toll Classic Toll

α ψ ϕ SI◦ R W I
A W I

B W F
A W F

B W F
∅ SI R W I

A W I
B W F

A W F
B W F

∅ SI
L L L 45.9 122 93 10 1 18 116 44.2 104 89 12 9 19 101 44.5
L L M 46.9 133 121 5 −9 21 123 45.0 108 114 9 4 22 103 45.4
L L H 48.1 144 156 −2 −21 25 130 45.8 114 145 6 −2 26 107 46.3
L M L 45.8 133 110 8 −3 20 126 44.1 107 103 12 9 21 103 44.4
L M M 47.0 145 143 2 −15 24 133 44.9 110 131 9 4 25 105 45.4
L M H 48.3 158 183 −6 −30 29 140 45.8 117 167 6 −2 29 109 46.5
L H L 45.8 145 129 6 −8 23 135 43.9 109 118 12 9 24 105 44.4
L H M 47.1 158 168 −1 −22 27 143 44.9 113 149 9 4 27 107 45.5
L H H 48.6 172 213 −11 −39 32 150 45.9 120 189 6 −2 32 112 46.7
M L L 46.9 171 114 22 −5 34 159 44.8 147 111 24 6 33 139 45.1
M L M 48.0 193 146 20 −19 46 173 45.6 162 143 24 −2 44 150 46.0
M L H 49.1 219 183 17 −38 64 190 46.3 181 180 23 −13 59 163 46.7
M M L 46.9 189 134 22 −12 41 173 44.6 155 130 25 5 39 146 45.0
M M M 48.1 214 171 19 −29 56 189 45.5 171 166 25 −3 52 157 46.0
M M H 49.2 243 212 16 −50 78 209 46.2 193 207 25 −15 69 173 46.8
M H L 46.9 211 156 22 −20 49 189 44.4 162 149 27 5 45 152 45.0
M H M 48.2 238 197 19 −40 68 208 45.4 179 188 27 −3 60 164 46.1
M H H 49.4 270 240 15 −64 95 230 46.2 205 234 28 −16 81 184 47.0
H L L 48.3 238 139 44 −12 62 214 45.7 216 139 44 −1 60 197 45.9
H L M 49.0 274 173 49 −30 91 240 46.2 246 174 50 −15 86 220 46.5
H L H 49.7 309 207 54 −48 129 269 46.7 283 208 55 −32 121 250 46.9
H M L 48.3 267 162 48 −21 78 237 45.5 234 162 49 −4 73 212 45.8
H M M 49.1 307 198 54 −42 113 267 46.1 268 199 55 −20 104 239 46.5
H M H 49.8 347 233 59 −62 160 302 46.7 310 235 61 −39 146 275 47.0
H H L 48.2 298 186 53 −31 96 261 45.3 252 186 54 −7 88 227 45.8
H H M 49.2 338 225 59 −51 138 294 46.0 290 225 61 −23 124 258 46.5
H H H 49.9 386 259 66 −76 194 338 46.6 339 262 68 −46 174 303 47.0

Note: Suits Index (SI), with superscript ◦ for baseline; average annual rebate (R); welfare gain (W ) for
inflexible (I) and flexible (F) commuters taking routes A and B, or not commuting (∅). Optimal toll: full
information; classic toll: limited information. Average of 1,000 simulation runs. See appendix table B.3
for corresponding measures of average time cost by commuter group.

These five groups are strongly sorted by time costs. The commuters with the highest time cost prefer to

take the tolled route, while the commuters with the lowest time cost prefer to take the untolled route. The

W metrics are scaled up to 250 commutes per year in order to capture the annualized dollar value of the

changes in welfare. A positive W represents a gain over the untolled scenario, and a negative W represents

a loss over the untolled scenario.

In order to calculate distributional effects, we need to make a specific assumption about how the revenue

from the tolls are recycled. We assume that all commuters receive an equal share of the toll revenue.20

Our second approach follows a familiar approach for investigating the regressivity or progressivity of

tax policies, the Suits index. This method is also used in Ke and Gkritza (2018), who apply this measure to

20It would be easy to explore alternative assumptions such as not returning revenue to commuters, or only returning a fraction of
revenue to commuters.
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Table 3.14: Distributional Outcomes: ‘Asymmetric’ Scenario

Parameters Optimal Toll Classic Toll

α ψ ϕ SI◦ R W I
A W I

B W F
A W F

B W F
∅ SI R W I

A W I
B W F

A W F
B W F

∅ SI
L L L 45.8 805 −119 0 0 35 651 38.2 805 −119 0 0 35 651 38.2
L L M 46.7 721 −94 0 0 32 583 39.7 721 −94 0 0 32 583 39.7
L L H 47.8 644 −70 0 0 29 521 41.2 644 −70 0 0 29 521 41.2
L M L 45.8 805 −114 0 0 36 651 38.3 805 −114 0 0 36 651 38.3
L M M 46.8 720 −89 0 0 32 583 39.8 720 −89 0 0 32 583 39.8
L M H 47.9 644 −63 0 0 29 521 41.4 644 −63 0 0 29 521 41.4
L H L 45.8 805 −109 0 0 35 652 38.4 805 −109 0 0 35 652 38.4
L H M 46.9 720 −82 0 0 32 582 40.0 720 −82 0 0 32 582 40.0
L H H 48.1 644 −57 0 0 29 521 41.7 644 −57 0 0 29 521 41.7
M L L 47.1 1,209 178 −19 0 −103 749 37.5 1,104 180 3 0 −68 724 38.2
M L M 48.4 1,159 268 −8 0 −125 683 38.8 1,052 261 21 0 −82 664 39.5
M L H 49.6 1,109 311 138 0 −150 619 40.0 997 301 172 0 −95 604 40.8
M M L 47.1 1,266 192 109 0 −121 758 37.4 1,123 198 128 0 −69 729 38.3
M M M 48.6 1,212 250 220 0 −146 689 38.8 1,063 250 245 0 −81 666 39.8
M M H 49.9 1,159 325 333 0 −174 622 40.0 1,010 317 368 0 −96 607 41.1
M H L 47.0 1,318 192 287 0 −141 764 37.3 1,127 204 297 0 −68 729 38.5
M H M 48.6 1,261 251 426 0 −170 693 38.7 1,071 258 441 0 −81 667 40.0
M H H 50.1 1,203 341 550 0 −200 622 40.0 1,018 337 582 0 −95 606 41.4
H L L 48.4 1,948 214 120 0 −134 1,103 37.0 1,632 234 160 0 −58 986 38.1
H L M 49.3 1,922 279 183 0 −173 1,062 38.1 1,589 301 232 0 −80 929 39.3
H L H 50.0 1,908 358 252 0 −216 1,042 39.0 1,554 383 314 0 −106 881 40.3
H M L 48.3 2,063 240 207 0 −163 1,143 36.9 1,653 270 250 0 −58 989 38.4
H M M 49.3 2,044 311 286 0 −208 1,113 38.0 1,608 344 341 0 −82 932 39.6
H M H 50.1 2,038 392 372 0 −255 1,106 39.0 1,570 430 445 0 −108 882 40.6
H H L 48.3 2,174 259 306 0 −196 1,187 36.8 1,667 300 349 0 −60 991 38.6
H H M 49.4 2,158 334 405 0 −245 1,164 38.0 1,620 380 463 0 −83 931 39.8
H H H 50.2 2,174 416 509 0 −299 1,185 39.0 1,580 474 592 0 −109 883 40.9

Note: Suits Index (SI), with superscript ◦ for baseline; average annual rebate (R); welfare gain (W ) for inflexible (I)
and flexible (F) commuters taking routes A and B, or not commuting (∅). Average of 1,000 simulation runs. See
appendix table B.4 for corresponding measures of average time cost by commuter group.

data from Oregon. The Suits index (scaled up by 100 for easier use) is calculated as

SI = 100

[
1− 1

2 ∑
i
[T (yi)−T (yi−1)](yi− yi−1)

]
∈ [−100,+100] (3.53)

where yi is the cumulative share of income, which we proxy for by the time cost ωi, and the corresponding

cumulative time cost T (yi). Also, y0 = 0 and T (0) = 0. The Suits Index is negative when the policy is

regressive, and positive when the policy is progressive. We find that in all our simulations the Suits Index is

positive: the cost of commuting is progressive—time is more valuable to high-income earners.

The results of our analysis are reported in tables 3.13 and 3.14. We compare the Suits Index in the

baseline scenario S◦ against the corresponding outcomes for the ‘optimal’ and ‘classic’ tolls, and we report

the five W statistics for both types of tolls.
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So who gains, and who loses? As a reference point, it is useful to report the average rebate (R in the

tables) from the tolls, which is necessarily considerably more in the ’asymmetry’ case than the ’Lexus lane’

case because both routes are tolled. This amount is redistributed among the various commuter groups so

that on average nobody gains or loses because our setup mandates that all toll revenue goes back to all

commuters. Consider the baseline case in table 3.13. The average commuter pays $215 in tolls and gets

just as much back in rebates, for a net zero gain. However, the different commuter groups fare differently.

The affluent inflexible commuters who pay the toll and take route A tend to gain much more than the less

affluent inflexible commuters who end up taking the untolled route. The toll-induced sorting effect benefits

them the most. In some cases, especially when the overall proportion of inflexible commuters is small, the

less affluent group of inflexible commuters ends up with net losses in some cases. The mid-affluent flexible

commuters who take the tolled route A tends to lose as well, while the less affluent commuters who stay on

route B gain slightly—but this group is large. The most affluent flexible commuters will cease commuting,

and thus their gains tend to be the highest because they benefit from the rebate the most as their losses are

constrained by their cutoff time (reservation cost). The picture for the ‘classic’ toll case is qualitatively

similar, although the magnitudes are somewhat smaller.

The Suits Index summarizes the total distributional effect: there is a small drop in progressivity of the

cost of commuting, typically not more than a few percentage points. In other words, tolling does not radically

change the distributional outcomes in table 3.13. However, the picture in table 3.14 for the ‘asymmetry’

case reveals a different picture as the Suits Index drops about up to 10 percentage points. Tolling reduces

the progressivity of commuting costs much more noticeably.

The results in the Asymmetry scenario in table 3.14 differ in some important ways from those in ta-

ble 3.13. When the share of inflexible commuters is low, this group stands to lose, but when their share is

high, they gain significantly regardless of which route they take. Tolling clearly benefits the inflexible com-

muters, and it also benefits the flexible commuters with high time cost who cease commuting. Who pays

for it are the large number of flexible commuters who all take route B and pay the full toll, but increasingly

share their route with the less affluent inflexible commuters. Note that in table 3.14 there are many zeros,

which is because there are no travellers under such category, for example, no flexible travellers will ever

take the slower but more reliable route A.

If we interpret the Asymmetry scenario as a mode choice problem, then the inflexible commuters who

need to get to work are the ones that gain as long as they are the majority of commuters. Then the tolling

system works in their favour. The flexible commuters who can choose to commute or not will gain if they

are induced to stay home and lose if they still commute. That does not seem such an unfair outcome at

first because it shifts the burden from the inflexible commuters (who need to get to work) to the flexible

commuters (who could perhaps delay their trips). The only caveat is that the burden falls disproportionately

on the less affluent flexible commuters with the lowest time value. This is what shows in the large drop of

the Suits Index.
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3.6.5 Correlation Structure of Time Costs with Inflexibility and Non-Commutes

Our baseline simulation explored variations in the time cost and inflexibility in a limited fashion by consid-

ering high, medium, and low scenarios for the time cost ratio ϕ of inflexible to flexible commuters, and the

degree of inflexibility of the former group. We kept the decision about non-commutes “neutral” by keeping

the distribution of the cutoff time for non-commutes, T∅
i , uncorrelated with the time cost ωi.

The correlation between time cost and cutoff cost has not been explored systematically. We use our

simulation to vary the correlation of time cost with inflexibility, ρω,ψ and the correlation of time cost with

cutoff cost, ρω,z systematically between −1 and +1. We use 51 steps of 0.04, and thus 2,601 points in the

space spanned by the two correlation coefficients. We use 100 replications for each correlation point, for a

total of 260,100 simulations, and average over these replications. We illustrate our results in contour plots

for four key variables: the optimal toll, the share of flexible commuters commuting, the cost savings, and

the change in the Suits Index.

Figure 3.17: Simulation Results: Correlation Structure
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Figure 3.17 summarizes our results. Panel A shows the optimal toll τ; panel B shows the commuting

demand π of flexible commuters; panel C shows the cost savings ∆C from baseline (non-tolled) to optimal

(tolled) scenario; and panel D shows the change in the Suits Index between baseline (non-tolled) and optimal

(tolled) scenario. The four quadrants in each chart identify the four combinations of positive and negative

correlations. If we had data on the distributions for our individual commuters we could pin down a single

point in each diagram. By exploring the entire feasible range we hope to gain a better understanding how

much these correlations matter.

Overall, the correlation ρω,z of time cost with reservation price (cutoff time) for the flexible commuters

is the dominant influence, which is visible in the strong vertical patterns in panels A and B for the optimal

toll and demand response. The correlation ρω,ψ of time cost with the degree of inflexibility of inflexible

commuters matters much less in general.

For the optimal toll, the influence of a strong positive correlation between time cost and cutoff time is

visible in Panel A in figure 3.17. When affluent flexible commuters also have high cutoff costs, tolls need

to be higher. Consider the extreme case of perfect positive correlation when zi = ωiT̄∅ and all flexible

commuters have the same cutoff time for their trips. To induce commuters to stay at home, ever higher tolls

are needed to get a demand respond. If there is no (i.e., zero) correlation, on the other hand, this means that

commuters simply have a reservation price for each trip that is independent of their income and time cost.

In that case, tolls are just about half of what is needed as when ρω,z approaches perfect positive correlation.

Panel B corresponds to this and shows clearly that higher ρω,z correlation generates less and less of a demand

response.

Panels C and D in figure 3.17 explore the welfare implications of the correlation structure. Panel C

shows the cost reduction ∆C when going from no toll to optimal toll. The cost savings range from about

4 percent in the negative/negative quadrant to to over 7 percent in the positive/positive quadrant. Here, the

correlation structure of ρω,ψ between time cost and schedule inflexibility comes into play much stronger, as

the cost function is strongly influenced by the size of ψ .

Panel D shows the change in progressivity (∆SI) as captured by the change in the Suits Index when

going from no toll to optimal toll. The pattern in panel D is quite similar to the pattern in panel C. The

smallest changes to the progressivity of congestion occur again in the negative/negative quadrant, and the

largest changes in the positive/positive quadrant. The economic logic of what we find in panels C and D

is closely tied to the need to have higher tolls when the correlation coefficients increase to get the desired

outcome.

The main conclusion of our correlation structure analysis is that it matters significantly. In order to

design effective policy, we need to know more than just averages of the time cost, inflexibility, and reserva-

tion prices. Effective mobility pricing requires knowledge of the distribution of time cost, inflexibility, and

reservation prices, as well as the two correlations. Based on what we found in panel A for the optimal toll,

if we had incorrectly assumed zero correlations when in fact we had strong positive correlations, tolls would

be much too low.
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3.7 Caveats and Extensions
This empirical work in this paper explores commuting patterns in the Metro Vancouver region and demon-

strated the importance of schedule delay costs. We have been able to quantify this importance, and our

results also emphasize the importance to allow for congestion effects on the variance of commuting time.

But there are important limitations on our results, and these limitations lay out an agenda for future empirical

work in this area.

Our traffic data focuses on vehicle commutes. While this is a significant part of the overall commutes, it

does not account for public transit and other forms of transportation. Work on road tolls has often suffered

from an exclusive focus on road traffic without being able to quantify the substitution effects. In order to

address commuting reliability, we need to know the entire choice set of commuters. An obvious extension

of the work in this paper would be to investigate the reliability of public transit commuters where they are

available. Where are there margins of substitutions?

The biggest caveat of our empirical work is that we know little about the commuters making their

morning commutes. We do not know which part is truly inflexible, having to get to work, and which

part is flexible, being able to delay or cancel trips. We also do not know the degree of inflexibility—the

reliability standard that inflexible commuters adhere to. While we are able to make reasonable and plausible

assumptions about this standard (a big improvement over guessing parameters in the α-β -γ model), we do

not know the distribution of this measure ψ and how it is correlated with income or time cost ω . We also do

not know how the reservation price (cutoff time) for flexible commuters is distributed and could be correlated

with time cost ω . Our research shines a bright light on these gaps in our knowledge. Future empirical

work, especially stated preference work, needs to explore these distributions and their correlation structure

rigorously. Our work yields a better understanding of what to ask individual commuters in surveys,21 gaining

deeper insights into the crucial distributions of ω , ψ , and z, and the composition α of commuters.

With respect to designing road tolls and their distributional outcomes, our work highlights the impor-

tance of pinning down the aforementioned distributions. Almost inevitably, road tolls generate benefits to

some commuters and losses to other commuters. Our work shows clearly that these gains and losses de-

pend not only on the heterogeneity of the commuters, but also on the heterogeneity of road conditions (and

competing mode choices). If anything, our work suggests that the frontier of transportation research lies in

microeconomic studies of individual commuting behaviour. The literature on mobility pricing has come far

in demonstrating that such pricing is hugely beneficial—and London, Singapore, and Stockholm show that

this is not just a theoretical point. However, to overcome resistance to adopting mobility pricing especially

in North America, we need to gain a better understanding of the distributional outcomes region-wide and in

the presence of greater limitations on mode choice.

A major caveat in some of our theoretical and empirical work is the lack of allowing for variation across

departure times. We focus on morning commutes, but as our data from Metro Vancouver shows, congestion

follows a well-established pattern around a peak. Tolls that vary by time of day are the obvious answer to this

21Lo et al. (2006) has surveyed for the risk averse parameter λ in their paper, which is a similar measure to our reliability standard
ψ . We would like to conduct similar surveys and ask individuals their expected frequency of being late, which would be even more
intuitive.
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issue. We do not explore the mix of commuters that are at different points of their journey and the resulting

dynamics. However, we duly note that variation around departure times will also change the composition

of commuters: our key variables α , ψ , ϕ , and the various correlations associated with ω , ψ , and z are

all time dependent. An obvious extension of our work would involve exploring the dynamics effects of

composition changes. If the composition changes, the tolls need to change accordingly. Even if (untolled)

traffic volume were constant over time, the optimal toll could still change over time if the composition of

commuters changes.

We acknowledge other important caveats of our approach. We assume in our optimal-toll simulation

that motorists and toll-setters have full information on traffic conditions and commuter preferences (time

cost, schedule inflexibility). Research work such as Lindsey (2009) and Boyles et al. (2010) explores how

information asymmetry between motorists and toll-setters can affect the traffic outcome. Lindsey (2009)

showed in theory that with uncertain capacity, tolls could be justified for optimal capacity only if tolls are

set using information no less than drivers have. Boyles et al. (2010) discussed how optimal tolling scheme

can be designed for cases where travelers have either full information on traffic network or only know the

probability distributions, and tolls being static or could response to realized traffic. We acknowledge the

existence of information asymmetry by exploring a classic (limited information) toll scheme in comparison

to the full information optimal toll. We still allow for motorists to gain full information about the distribution

moments of traffic flow.

3.8 Conclusions
When commuters plan their work-daily trips, a significant share of them needs to allow for additional buffer

time to ensure that they arrive on time for work. This means that they need to take the dispersion of their

commuting time into account. Just how large is the cost that is added to commutes as a result of this schedule

delay? How much does the existence of this additional schedule delay affect optimal road tolling? If policy

makers do not take this extra cost into consideration, will policies based on incomplete information about

the true commuting time turn out to be significantly suboptimal?

The literature on congestion pricing has long acknowledged the importance of commuter heterogeneity.

This paper deviates from the conventional assumption of schedule delay costs and replaces this with a travel

time reliability standard that introduces an explicit metric of schedule inflexibility. This metric provides for

an economically intuitive relationship between the standard deviation of travel time and the total travel time

that allows sufficient buffer time upon arrival to meet the reliability standard. The notion of a reliability

standard has several advantages. It allows us to employ two empirical distributions of travel time—Fréchet

and log-normal—and link a measure of schedule inflexibility with the time mark-up on driving time. This

setup also lends itself very effectively to empirical work we conduct in our paper. The reliability standard

leads to a linearization technique that disaggregates the time mark-up factor into two separate components:

a route-specific coefficient of variation, and a multiplier that reflects the schedule inflexibility. This decom-

position technique allows us to model commuting time reliability very succinctly and derive new theoretical

insights about optimal road tolls.

Empirically, our paper explores three separate avenues. First, we have assembled data from real-time
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Google traffic data to determine commuting time across a sample of 2,000 commutes across the Metro Van-

couver region over a 10-week period. Second, we have also used such data to measure speeds at numerous

congestion points in the region: high-traffic bridges and tunnels. The latter we are able to link to traffic

volume measurements that allow us to infer speed-volume relationships and dispersions. Third, we use

simulation techniques to infer the effect of route characteristics on optimal tolling, and the effect of tolls on

distributional outcomes.

Our analysis of region-wide commuting patterns provides an estimate of the economic importance of

schedule delay cost, which we put at about 13% as our preferred estimate and an upper bound of 30%.

The overall importance of schedule delay costs depends significantly on the share of inflexible commuters,

which we are unable to ascertain. We also find evidence for a speed-reliability tradeoff: alternate routes are

slower but less risky.

Analysis of our bridge traffic data through multiplicative heteroskedastic linear regression reveals that

the variance of crossing time is related to the level of congestion, and not just the mean crossing time.

However, while we find a strong positive congestion effect on variance for several bridges, there are some for

which this pattern does not hold because of idiosyncracies in traffic management or differences in network

topology. Overall, we believe that our results reinforce the notion that the second-order effect of congestion

on the variance of travel time is important and in previous contributions to the literature has almost always

been ignored.

Our simulation explores route choice under two different scenarios: one where two roads are symmetric

but only one is tolled, and another one where two roads are asymmetric (one road is slower but more reliable)

but both are tolled. Optimal tolls induce both a scale (demand) effect and a composition (sorting) effect.

When route conditions are similar, even low-ish tolls can generate significant benefits from inducing sorting.

When route conditions are dissimilar and are negatively correlated in terms of speed and reliability (which

has similarities to transportation mode choice), we find that most of the traction comes from the demand

response and little additional sorting.

We also investigate the welfare effects by studying who would gain and lose from a toll. Commuting

costs are strongly progressive, and we find that tolls have a benign effect and tend to reduce progressiv-

ity as captured by the Suits Index. Overall, inflexible commuters stand to gain the most along with the

flexible commuters induced to stay home, based on the notion that toll revenue is distributed equally to all

commuters.

Our simulation study also sheds light on the use of a limited-information optimal toll in comparison to a

full-information optimal toll. The limited-information case involves information asymmetry between com-

muters and social planner, where the social planner only observes driving time and determines an optimal

toll without taking schedule delay into consideration, while commuters use their full private information to

determine route choice. We find, surprisingly, that an imperfect toll is not as bad as feared. In our ‘Lexus

Lane’ scenario even a toll that is somewhat too low will induce a strong sorting effect that will benefit com-

muters almost as much as the perfect full-information toll. In the asymmetric route case, the full-information

toll does generate benefits, but they are small in magnitude. These results are encouraging news: mobility

pricing does not have to be perfect as long as it induces a fair bit of sorting.
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Our paper makes several novel contributions. We introduce the notion of a reliability standard as a

viable and practical alternative to conventional α-β -γ cost models. Our modelling allows us to take the

dispersion of commuting time into consideration directly, and it provides for a straight-forward extension

of theoretical modelling of optimal tolls. The simplicity of our linearization approach makes this tool very

useful for future work in this area. Our empirical work based on Metro Vancouver commutes shows clearly

that dispersion matters, and we can put forward plausible estimates of the extra cost added by reliability

considerations. Our congestion points analysis allows us to estimate key characteristics of the speed-volume

relationship in the presence of dispersion. Simulation results also demonstrate that reliability considerations

can lead to strong self sorting of commuters across routes, and that optimal congestion prices don’t need

to be perfect to achieve the desired outcome. Even limited-information tolls can generate beneficial sorting

effectively.

Our research also suggests how future stated preference studies can better identify commuting behaviour

for empirical work: we need to ask commuters whether (or how many) trips are flexible or inflexible, and

how important it is to arrive on time. Asking people about how often they can afford to be late is much

more intuitive than asking them about the cost of being late or arriving early, which most commuters will

be unable to quantify. In order to gauge demand, it is also easier to ask flexible commuters at what duration

they would rather not make a trip in order to gauge the distribution of cutoff times. Importantly, our research

demonstrates the importance of the correlation of time cost with the measure of inflexibility (for inflexible

commuters) and cutoff cost (for flexible commuters).

We conclude our paper with two policy recommendations. First, to better understand the welfare im-

plications of mobility pricing, we need to study commuter heterogeneity better. Our paper has concrete

suggestions about the questions we need to ask commuters in order to determine their type, inflexibility,

and demand response. Second, policy makers need to address commuting reliability by providing options

(e.g., rapid public transit that is immune to road congestion) or by allowing commuters to self-sort through

prices. In addition to tackling congestion in urban cores (e.g., as is proposed for Manhattan), turning High-

Occupancy Vehicle (HOV) lanes into High-Occupancy Toll Lanes (HOT) lanes is probably among the most

practical options in North America.
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Chapter 4

Carbon Emission Disclosure and
Institutional Ownership

4.1 Introduction
With a growing attention on the global warming issue, legislation gradually emphasizes limiting the emission

amount of greenhouse gas (GHG). Carbon pricing mechanisms have been well established and implemented,

including cap-and-trade programs and carbon tax systems. Besides these legislation that explicitly sets a

price on carbon emission, non-pricing mechanisms also came into being to motivate companies to reduce

GHG emission, among which carbon reporting mechanism is one good example. Mandatory emission

reporting mechanisms such as US EPA’s greenhouse gas inventory track emission from individual facilities

and suppliers of certain fossil fuels and industrial gases. This study focuses on a voluntary carbon emission

disclosure program initiated by a global non-for-profit organization — Carbon Disclosure Project (CDP).

The objective of CDP is to raise more public attention towards big companies’ environmental impact and

to motivate companies to reduce their emission. CDP sends its annual report to more than 767 institutional

investors such as mutual funds, banks, insurance companies, etc., and it hopes that institutional investors

would take into account companies’ carbon footprints when they make investment decisions. If institutional

investors, upon receiving CDP reports, actually modify their portfolio to invest more on carbon efficient

companies, firms might take actions to gradually reduce their emission. In CDP’s news reports, it claimed

that companies that did a better job in disclosing carbon emission information to CDP experienced a superior

financial return, compared to the companies that do not disclose, or those disclose limited information. The

causal relationship between voluntary carbon emission disclosure and firms’ financial success, however, is

dubious, because such correlation could be driven by many other forces. For example, if cautious managers

are more likely to disclose their carbon emission and also more capable to bring profit to their firms, then

the financial success would not be caused merely by the carbon emission disclosure behavior.

The questions asked are: (1) whether higher institutional ownership ratio induce stronger incentive to

participate in such voluntary disclosure program, and (2) whether such disclosure cause a greater share of

institutional ownership. The reasons to focus on institutional ownership are as follows. First, institutional
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investors have more expertise in analyzing stock performance and hold a relatively stable number of shares,

as a result, it is generally better for a company to have higher institutional ownership ratio. Therefore insti-

tutional ownership is an indicator of firms’ financial success, and provides implication whether disclosing is

a signal of better future financial performance. Second, since CDP devotes to inform institutional investors

about large companies’ carbon emission information, it makes sense to analyze whether the disclosed in-

formation affects companies’ institutional ownership. Third, Kim and Lyon (2011) studied the relationship

between CDP disclosure and stock price, and found no evidence suggesting participation in CDP would

increase share prices. They further inferred that participation in CDP was not entirely voluntary but due

to pressure from shareholders, regulators, and the institutional investors involved in the CDP. Their work

provided a motivation to analyze institutional investors’ responses to CDP disclosure reports.

In order to answer the two questions, this study builds a simultaneous equations model which captures

the feature that both institutional ownership and CDP participation are endogenously determined and could

affect each other. The results show that within US S&P 500 companies, (1) higher institutional ownership

ratio lead to less disclosure to CDP, and (2) disclosure to CDP cause lower institutional ownership ratio.

4.2 Theoretical Framework

4.2.1 Motivation of Voluntary Carbon Disclosure

Voluntary disclosure of carbon emission information can be costly. First, by disclosing such information,

the company might lose its green consumers or green investors if its performance does not meet their ex-

pectations. Second, the company might be giving away its production information to its competitors, since

carbon emission is highly correlated with production activities. Third, the company seems to commit itself

to maintain its carbon emission level near its currently disclosed emission amount, by making the gesture

to participate in the CDP program. Why do some companies still disclose to CDP voluntarily, considering

such unnecessary costs? Do the disclosing companies really have superiority in carbon efficiency, or do they

do so mainly due to shareholder pressure?

Lyon and Maxwell (2004) provided several candidate models to unveil the true motivation for firms to

conduct voluntary environmental activities. First, this effort might be taken to attract green consumers or

green investors. If this motivation dominates, firms’ altruistic environmental activities should be followed

by their financial success either due to more profit raised from green consumers or more favored capital

investment from green investors. Second, this could be a strategic behavior to preempt the regulation makers

about the future environmental standard to be set for the industry. After firms indicate their current emission

level, it will become a benchmark when future regulations are designed. If firms claim that their efforts to

voluntarily reduce emission involve major capital investment, this sunk cost would become firms’ bargaining

power to persuade the regulation makers to loosen the environmental standard that was planned to be set.

In this case, such voluntary environmental activities might not be associated with superior environmental

performance or financial success. In one of their later studies, Lyon and Maxwell (2011) indicate that firms

engage in more self-regulation when they perceive a greater threat of government regulation. They focused

in firms’ disclosure behavior in US Department of Energy’s Voluntary Greenhouse Gas Registry and their
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actual emission. This program allows firms to choose to report emission amount at aggregate level or at

project level. Empirical results show that participants in this program engage in highly selective reporting

— the participants actually increase total emission during the reporting period while they report reduction

per project, however non-participants decrease aggregate emission over time.

Reid and Toffel (2009) verified the hypothesis that firms voluntarily disclose environmental information

due to shareholder pressure using CDP data. More specifically, firms will be more likely to participate in

CDP if it is targeted by a shareholder resolution on related topics such as environmental disclosure or climate

change. They also found that firms subject to greater regulatory threats will be more likely to participate in

CDP.

4.2.2 Impact of Voluntary Carbon Disclosure

Another question to ask is what impact will follow after a company discloses its carbon emission information

to the public. The positive effect of carbon disclosure is to increase the company’s transparency to the

public, therefore reducing its long term risk in case of future regulation towards carbon emission changes.

Meanwhile, the actual investment to reduce carbon emission might be against the company’s objective

of maximizing shareholders’ value. Therefore the financial impact of voluntary carbon disclosure can be

ambiguous.

On one hand, a related literature investigates the relationship between firms’ social responsibility (CSR)

and their financial performance, including stock return and institutional ownership, and suggests that such

voluntary environmental activities benefit companies’ financial performance. CSR counts for companies’ re-

sponsibility to the stakeholders in many aspects, including environment protection. Heiner (1983) suggested

that institutional investors are more capable than individual investors to assimilate and act upon information

about socially responsible corporate practices. Graves and Waddock (1994) found a positive relationship

between a company’s CSR and the number of institutions holding the company’s shares, yet the relationship

between CSR and the percentage of shares owned by institutions is not statistically significant. Taking one

step ahead, Cox et al. (2004) discovered that long-term institutional investment (defined by the shares held

by pension funds, life insurance companies, etc.) is positively related to CSR. They concluded that CSR

can be viewed as a significant determinant of firm exposure to long-term risks, therefore CSR can affect

long-term investors’ portfolio choice decision.

On the other hand, some studies suggest that voluntary carbon reduction activity leads to negative fi-

nancial impact. Fisher-Vanden and Thorburn (2011) assert that corporations that commit to reduce GHG

emission appear to be more likely to experience negative stock return, based on an empirical test regard-

ing companies announcing membership in EPA’s Climate Leaders. Jacobs et al. (2010) also found that

announcements of voluntary emission reductions are associated with significant negative market reaction.

4.2.3 Relationship between Voluntary Carbon Disclosure and Institutional Ownership

Responding to CDP is not mandatory, therefore firms will evaluate their benefits and potential risks when

deciding to disclose their carbon emission information. As explained above, firms’ decision to voluntarily

disclose their carbon emission, as a managerial strategy, and firms’ institutional ownership, as one aspect of
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financial performance, can affect each other simultaneously.

Firms’ disclosure in carbon emission might cause change in its institutional investors’ holding volume

and hence its institutional ownership. Such voluntary environmental activity could affect companies’ future

financial performance because it reveals information to its investors. If investors take such voluntary disclo-

sure activity as a good signal that the company is confident about its carbon emission amount and thus facing

less financial risk in case of future regulation change, they would be more likely to appreciate such disclo-

sure behavior. However, the reverse consequence might arise if either of the following situations happen.

First, heavy emitters in the past could easily reduce its emission intensity and pick the low-hanging fruit,

however the companies that have always been making investment to maintain low level of carbon emission

face more difficulties to further reduce their emission intensity. Second, heavy emitters might have more

incentive to preempt policy makers to loosen emission restriction level before any legislation is finalized,

therefore they could be more likely to disclose to CDP. If such adverse selection phenomenon indeed exists

and is recognized by the investors, the financial impact of voluntary disclosure could be negative. Besides, if

disclosing firms are exposed to higher regulation risk, the disclosure behavior might also imply future finan-

cial burden from investors’ perspective. Since CDP sends its annual reports to more than 767 institutional

investors which manage assets of more than US$ 92 trillion, a natural question to ask is whether institutional

investors of the S&P 500 companies react to whether they disclose to CDP. The reason that this study limits

within S&P 500 companies is that CDP currently only sends out questionnaires to the biggest companies

around the world, therefore within all US companies only S&P 500 companies are surveyed.

Meanwhile, institutional ownership could also affect firms’ disclosure decision. If the institutional in-

vestors demand more transparent information about the companies’ environmental performance which may

or may not cause the firm future legislation risk, then we would expect higher institutional ownership leads

to greater probability of disclosure. If instead, the institutional investors communicate directly with the com-

panies, requesting and analyzing their carbon emission amount, then the companies with high institutional

ownership would be less willing to disclose such information.

4.3 Model Specification
As described above, this study is mainly concerned with the relationship between companies’ decision in

voluntary disclosure of carbon emission information and their ratio of institutional ownership. To account

for the endogeneity between the disclosure decision and institutional ownership, I formulate a simultaneous

equations model and treat both of the variables as endogenous. Two equations are contained in this model,

one explaining the impact of disclosure on institutional ownership ratio, the other one explaining the causal

relationship from the opposite direction. Instrumental variables are added in both equations to identify the

true impact of the two endogenous variables. The model setup is as below.

InstOwnit =β0 +β1Disclit +β2IV1it +β3controls+

year dummies+ industrydummies+uit

(4.1)

91



Disclit =γ0 + γ1InstOwnit + γ2IV2it + γ3controls+

year dummies+ industrydummies+ vit

(4.2)

The measure of the variable InstOwn (institutional ownership) and Discl (disclosure dummy) will be

defined in the next section. Equation (4.1) measures how the disclosure dummy variable influences the

company’s institutional ownership, and equation (4.2) measures how different levels of institutional own-

ership affect the likelihood that a company would participate in CDP’s voluntary disclosure program. This

simultaneous equations model takes into account the endogeneity generated from reverse causal relation-

ship, with both equations containing the endogenous variables on both sides. The variables IV1 and IV2

serve as IVs for InstOwn and Discl correspondingly. In equation (4.1), the model assumes that Discl af-

fects InstOwn, however InstOwn also influences Discl reversely, if firms with different levels of institutional

ownership have various level of motivation to disclose to CDP. Adding an exogenous variable IV1 that only

correlates with InstOwn to the equation will minimize the reverse causality bias and helps identify the direct

impact of Discl on InstOwn. The explanation for equation (4.2) is similar. The objective of equation (4.2)

is to find out how institutional ownership ratio affects the decision to disclose to CDP, yet causality could

also arise from the opposite direction. The exogenous variable IV2 only correlates with Discl, and adding it

to equation (4.2) eliminates the reverse causality bias. Candidates for IVs will be discussed in the following

section.

4.3.1 Carbon Disclosure and Institutional Ownership Measures

The variable InstOwnit stands for stock i’s institutional ownership in year t, and institutional ownership

is defined by number of shares held by institutional investors divided by the total number of outstanding

shares. The dummy variable Disclit equals 1 if company i chose to answer the questionnaire from CDP in

year t, and equals 0 otherwise. The data source will be discussed in Section 4.4.

4.3.2 Instrumental and Control Variables

Instrumental variables need to be highly correlated with the regressors they serve as instruments for, but

unrelated to the error terms in the equation those regressors are used.

To select for an IV for Institutional Ownership, I use the conclusion from Falkenstein (1996) and Gom-

pers and Metrick (2001) that institutional investors prefer stocks with better liquidity and higher stock

prices. Therefore the IV chosen here is the share turnover (trading volume within a year/number of out-

standing shares at the end of the year) and stock price at the end of each year. These two variables should

be exogenous to firm’s disclosure decision, since there is no clear link between firm’s stock liquidity and

environmental performance or disclosure tradition.

The IV for Disclosure is “state greenness”, which will be defined and justified in the following. State

greenness is supposed to measure the environmental consciousness of the state that the company’s head-

quarter locates in. The more one state cares about environmental sustainability, the more likely firms locat-
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ing in that state would participate in such voluntary disclosure programs. However, where the company’s

headquarter locates should be independent of the company’s institutional ownership. To measure the state

greenness, I use the online searching frequency of “global warming” of each state from Google. Google

publishes the regional searching frequency of popular phrases on Gtrend, which is publicly available. An-

other IV used is firm’s clean energy strength which is a dummy variable taken from the KLD dataset. I

assume that firms known of using clean energy devote more to environment protection, therefore they could

be more likely to disclose to the public about their carbon emission.

The control variables that appear in both equations include accounting records such as firm size (mea-

sured by company market value and number of employees), revenue (measured by annual sales), and finan-

cial risk (leverage ratio, defined as total debt divided by total equity). Firms’ past environmental performance

and management skills could affect both the disclosure decision and institutional ownership, and therefore,

should be controlled. As a candidate, corporate social responsibility (CSR) characterizes firms’ true envi-

ronmental performance and management skills, however the data for some firms are missing. Therefore I

run regression models both with and without CSR data. In regression model 1, I include CSR data of: the

number of environmental strengths, the number of environmental concerns, the number of corporate gover-

nance strengths, and the number of corporate governance concerns. Regression model 2 does not include

CSR ratings in the control variables, and keeps all other variables the same as model 1.

4.4 Data

4.4.1 Carbon Disclosure Project

Carbon Disclosure Project(CDP) is an international organization that sends out annual surveys to the biggest

companies around the world to ask about their carbon emission information. Each year more than half com-

panies respond to the questionnaires and provide details about their carbon emission generated from pro-

duction process, energy use, or supply chain. From year 2006, CDP has gained attention from an increasing

number of institutional investors who subscribe for CDPs annual report at no charge or pay an annual fee to

achieve enhanced access to the dataset. The main difference of CDP compared to other disclosure programs

are that (1) it includes global carbon emission of a company, not just within a single country, and (2) this

emission data is at company level instead of facility level, and involves companies from all industries instead

of merely the emission intensive ones.

This study uses annual CDP reports containing US S&P 500 companies’ self-disclosed information

from year 2006 to 2013. In each year, every US S&P 500 company receives a questionnaire from CDP, and

some of them choose to respond to CDP voluntarily. CDP then compiles the annual report and makes the

data available to the public. Not only does CDP report the information provided by those companies who

answered the questionnaire, it also lists out which companies failed to participate in this voluntary disclosure

program. I use a disclosure dummy variable to indicate whether a company has replied to the questionnaire

in a specific year. The dummy variable equals 1 if the company disclosed its carbon emission information

to CDP in the referred year and it equals 0 otherwise.

In addition to studying firms’ disclosure decision, I also investigated the disclosure quality and the ac-
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tual carbon emission amount of those companies that gave back the questionnaire. In order to encourage

the companies to deliver high quality questionnaires, CDP assigns a disclosure score to each completed

questionnaire and highlights the companies with the highest scores. The more questions the company has

answered in the questionnaire, the higher its disclosure score is. Moreover, companies can gain credit in dis-

closure score if they manage to seek for external verification institution to verify their disclosed information.

I use this disclosure score to proxy for companies’ disclosure quality. The actual emission amount data is

used to calculate emission intensity which is defined by emission per employee. The emission accounted in

this study only includes emission generated from the actual production process but not that generated from

supply chain, because the latter information is disclosed by only a few companies.

4.4.2 Institutional Ownership

Data of stock holding volume and stock price information all comes from Thompson Reuter database. For

each stock, the database provides quarterly data of institutional ownership, share turnover, etc. Institutional

ownership of a stock is defined by the total amount of stock held by institutional investors (such as banks,

pension funds, charity funds, etc.) divided by the total number of outstanding shares. To create annual data

from quarterly data, I use the fourth quarter’s data as a representation. Stock turnover is the total number of

transactions of a stock within one year divided by the number of outstanding shares at year end.

4.4.3 Corporate Social Responsibility

Kinder, Lydenberg, Domini Research & Analytics (KLD) dataset provides annual rating of companies’ per-

formance in environment, employee relationships, governance, etc., which are known as corporate social

responsibility (CSR). The ratings come from a comprehensive research of firms’ financial statements, popu-

lar press, government reports, etc., and the database is widely used by institutional investors and scholars to

evaluate firms’ impact on the environment and stakeholders such as consumers, employees, communities,

etc.

This study mainly concerns with two aspects of CSR, environment and corporate governance. When

firms are making the decision of whether to voluntarily disclose their carbon emission information, which

is an environmental concern, their decisions are clearly depending on their true environmental performance.

Also, management skills, which can be captured by KLD dataset’s corporate governance rating, influences

a company’s disclosure behavior in general.

Each year, the KLD dataset gives a 1/0 score for firms strengths and concerns in some specific aspects.

The involved categories include environmental strengths, environmental concerns, corporate governance

strengths, and corporate governance concerns.1 The data is available from year 1995 to 2012.

The variables used in the regression model include: clean energy strength, transparency strength, number

1 Environmental strengths include: a. environmental beneficial products and services; b. pollution prevention; c. recycling;
d. clean energy; e. communications; f. property, plant, and equipment; g. others. Environmental concerns include: a. hazardous
waste; b. regulatory problems; c. ozone depleting chemicals; d. substantial emissions; e. agricultural chemicals; f. climate change;
g. other concerns. Corporate governance strengths include: a. limited compensation; b. ownership strength; c. transparency
strength; d. political accountability strength; e. public policy strength; f. others. Corporate governance concerns include: a. high
compensation; b. ownership concern; c. accounting concern; d. transparency concern; e. political accountability concern; f. public
policy concern; g. governance structures controversies; h. others.
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of environmental strengths other than clean energy, number of environmental concerns, number of corporate

governance strength other than transparency strength, and number of corporate governance concerns.

4.4.4 Firms’ Accounting Records

The regression model controls for some of the firms’ financial and accounting characteristics such as firm

size, profitability, industry. This data comes from Compustat North America database. The variables used

in this study include number of employees, equity, market value, financial leverage ratio, global industrial

code (GIC), revenue, etc.

Table 4.1 shows summary statistics and Table 4.2 shows cross correlations of the variables.

Table 4.1: Summary statistics

Variable Mean Std. Dev. Min. Max. N
disclosure 0.656 0.475 0 1 3300
institutional ownership 0.787 0.178 0 1 4871
state greenness 4.297 0.126 3.951 4.533 4363
log share turnover 0.562 0.811 -6.977 3.334 4863
clean energy strength 0.293 0.455 0 1 3517
transparency strength 0.21 0.408 0 1 2918
# environmental strengths 0.579 0.905 0 4 3517
# environmental concerns 0.522 1.013 0 5 3574
# corporate governance strengths 0.092 0.305 0 2 2918
# corporate governance concerns 0.679 0.746 0 4 3574
log employee number 2.827 1.449 -3.297 7.696 4467
log market value 9.315 1.123 2.724 13.348 4108
log financial leverage ratio 1.096 0.695 0.044 6.899 4394
log sales 8.926 1.248 0.443 13.07 4517
log stock price 3.551 0.967 -4.605 7.058 4286
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Table 4.2: Cross-correlation table

Variables (1) (2) (3) (4) (5) (6)
disclosure Institutional state log share clean transparency

Ownership greeness turnover energy strength
(1) disclosure 1.000

(2) Inst. Ownership -0.113 1.000
(0.000)

(3) state greenness 0.063 -0.031 1.000
(0.000) (0.041)

(4) log share turnover -0.106 0.324 -0.014 1.000
(0.000) (0.000) (0.376)

(5) clean energy strength 0.282 -0.204 0.051 -0.162 1.000
(0.000) (0.000) (0.004) (0.000)

(6) transparency strength 0.246 -0.208 0.030 -0.181 0.474 1.000
(0.000) (0.000) (0.115) (0.000) (0.000)

4.5 Regression Results and Discussion
Table 4.3 exhibits the regression results of the model defined by Equation (4.1) and Equation (4.2).

From Table 4.3, one can observe that both coefficients of disclosure dummy and institutional ownership

are negative and statistically significant, in both models. The results of model 1 directly reveals that: (1)

controlling the other characteristics of a firm, it would have 6.82 percent points less institutional ownership

if it changed from not disclosing to disclosing to CDP, and (2) controlling the other characteristics, the

probability that a firm voluntarily discloses its carbon emission information would decrease by 8.83 percent

points if its institutional ownership increased by 1 percent point. The coefficient given by model 2 is very

close to that of model 1.

An advantage of using simultaneous equations model is that one can learn the feedback effects of en-

dogenous variables. When the institutional ownership percentage changes, the probability of disclosure will

also modify, which again leads to variations in institutional ownership. Taking this feedback effect into ac-

count, the marginal effects of the two variables have on each other are different from the coefficients directly

read from the regression result table.

Considering the feedback effects, the results indicates: (1) controlling the other characteristics of a firm,

it would have 7.26 percent points less institutional ownership if it changed from not disclosing to disclosing

to CDP, and (2) controlling the other characteristics, the probability that a firm voluntarily discloses its

carbon emission information would decrease by 9.40 percent points if its institutional ownership increased

by 1 percent point.

Results show that higher institutional ownership does not lead to greater probability of disclosing. This

finding somehow contradicts the conjecture in the literature that firms might be voluntarily disclosing their

carbon emission information due to pressure from institutional investors (Kim and Lyon, 2011), although

CDP is designed to share firms’ carbon emission information with institutional investors. One possible

reason that firms with higher institutional ownership tend to hide their carbon emission information from
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Table 4.3: Simultaneous Equations Model

VARIABLES Model 1 Model 2
Discl InstOwn Discl InstOwn

institutional ownership -0.883*** -0.882**
(0.334) (0.310)

state greenness 0.154** 0.227***
(0.0759) (0.0694)

clean energy strength 0.129*** 0.158***
(0.0267) (0.0224)

number of environmental concerns 0.00216 -0.00948***
(0.0128) (0.00296)

number of environmental strengths 0.0168 0.00219
(0.0144) (0.00363)

transparency strength 0.0858***
(0.0268)

number of corporate governance strengths -0.0380 0.00619
(0.0331) (0.00773)

number of corporate governance concern 0.0208 0.00530
(0.0145) (0.00346)

log employees 0.0107 0.00294 0.0124 0.00311
(0.0151) (0.00361) (0.0130) (0.00314)

log market value 0.0310 -0.0346*** 0.0199 -0.0335***
(0.0195) (0.00480) (0.0182) (0.00476)

log leverage ratio 0.0160 -0.00149 0.00589 -0.00162
(0.0190) (0.00459) (0.0182) (0.00435)

log sale 0.00512 -0.00438 -0.0073 -0.0069
(0.0197) (0.00477) (0.0198) (0.0047)

disclosure -0.0682** -0.0684**
(0.0346) (0.0286)

log share turnover 0.0526*** 0.0487***
(0.00588) (0.0052)

log stock price 0.0360*** 0.0363***
(0.00434) (0.00399)

Constant 0.0565 1.052*** -0.267 1.073***
(0.578) (0.0371) (0.545) (0.0326)

Observations 2,013 2,013 2487 2487
R-squared 0.121 0.333 0.0987 0.3356

Standard errors in parentheses
2-digit industry FE, and year FE are included.

*** p<0.01, ** p<0.05, * p<0.1
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the public could be that firms communicate directly with their institutional investors about every aspect of

their business, therefore disclosing to the rest of the investors becomes less necessary.

Another result demonstrates that more disclosure leads to lower institutional ownership, which means the

disclosure behavior is not appreciated by institutional investors. If firms’ disclosure behavior are not driven

by philanthropic environmentalism, but by the motivation to manipulate the standard of future regulation

on GHG emission, then disclosure does not serve as a signal of greater possibility of financial success

in this case, therefore would not attract more institutional investment. This type of motivation amplifies

in states where environmental regulations are generally stricter and are more likely to charge for GHG

emissions in the future. That being the case, such regression result favors the perspective in existing literature

that companies who disclose more details face stronger regulatory threat. The IV “state greenness” brings

variation across different states, therefore distinct levels of state regulatory threat. If institutional investors

believe that disclosing firms will likely encounter unfavorable GHG regulation changes and incur financial

burden, the phenomenon that voluntary carbon disclosure results in lower institutional ownership could be

easily understood.

The relationship between institutional ownership with (1) disclosure quality (measured by the disclosure

score evaluated by CDP) and (2) emission intensity (emission from production process and energy use

divided by number of employees) is also examined using the same method — simultaneous equations model.

The regression results are in Table 4.4 and Table 4.5. The results indicate that these relationships are not

statistically significant. Therefore no conclusion can be drawn to say that the level of institutional ownership

would affect disclosure quality or actual emission intensity. This again strengthens the argument that such

voluntary disclosure behavior might not be due to pressure coming from institutional investors, since higher

institutional ownership ratio does not lead to better disclosure quality or lower emission intensity.

Nevertheless, comparing Table 4.3, Table 4.4 and Table 4.5, one can find that firms with greater number

of environmental strengths tend to have better disclosure quality, and that firms with greater number of

environmental concerns have higher level of emission intensity. The observations in these two regression

only include the firms that have responded to CDP. Therefore, although the voluntary disclosure activity

involves self-selection, the disclosed information can still reveal the firms’ true environmental performance.

4.6 Conclusion
This study looks at the causal relationship between firms’ decision in voluntarily disclosing its carbon emis-

sion information to CDP, a global non-for-profit organization that collects biggest firms’ carbon emission

data and publishes annual reports to make the data publicly available, and firms’ level of institutional own-

ership. A simultaneous equations model is used to capture the endogenous characteristic of this question.

The results show that the impact is negative and statistically significant, from both directions — the impact

of disclosure on institutional ownership and the impact of institutional ownership on the probability of dis-

closure. This suggests that disclosing firms might not be the most carbon efficient ones, but rather those

disclosing with other motivations such as preempting the regulators, and they could be subject to higher reg-

ulation risk. Therefore voluntary carbon disclosure mechanism such as CDP is sub-optimal in the attempt

to unveil firms’ environmental footprints to the public. Considering this point, firms’ voluntary disclosure
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to CDP can not serve as a positive signal of their greenness status or financial success potential. Mandatory

mechanisms should be considered in the future to realize the objective of disclosing firms’ carbon footprints

and motivating them to take action to reduce emission. If disclosure is mandatory, the information released

would directly inform investors of firms’ environmental performance, and there would be no selection prob-

lem in this case. Nevertheless, if investors want to learn some knowledge about firms’ true environmental

performance from CDP reports, they can specifically inspect the firms’ self-disclosed emission amount and

their disclosure quality, which is available only from the companies that chose to participate in CDP.

This study still faces a lot of challenges, and the most important one being finding a stronger instrumental

variable for the disclosure dummy variable. In cases where the companies’ headquarter location state affects

its institutional ownership, the IV would not be valid. This might happen if stocks of companies from some

specific states consistently show superior financial performance and are favored by institutional investors,

or if more institutional investors are located in some states and they tend to invest in companies that are

physically close to them because of lower information costs.

Another potential improvement of this research is to decompose institutional holding by various types

of institutional investors. For example, public investors might value more in corporate social responsibility

of the stocks they invest in, therefore more likely to invest in companies that are willing to disclose their

environmental performance. Moreover, some institutional investors, such as pension funds, may have longer

investment horizon than the others that favor short-term appreciation in stocks. If better environmental

performance requires higher operational cost in the short-term but brings cost-saving in the long-term, then

institutional investors with longer investment horizon would value more for firms that disclose to CDP.

As legislation changes, UK has launched a mandatory carbon reporting project and the legislation came

into effect in October 2013. All quoted companies in the UK are subject to this new regulation. An inter-

esting follow-up research could be conducted to discover this mandatory carbon reporting project and see

whether the companies that already participated in CDP emit more or less compared to the companies that

failed to respond to CDP. A better idea of whether there is adverse selection problem in participation in CDP

can be elicited with the new data from the UK’s mandatory reports.
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Table 4.4: Disclosure Quality and Institutional Ownership

VARIABLES disclosure quality institutional ownership
Institutional Ownership -15.44

(19.33)
state greenness 2.305

(5.116)
clean energy strength 6.499***

(1.589)
number of environmental concerns 0.234 -0.0118***

(0.788) (0.00393)
number of environmental strengths 2.606*** 0.00377

(0.853) (0.00604)
transparency strength 3.866**

(1.610)
number of corporate governance strengths 0.494 0.0174*

(2.025) (0.0105)
number of corporate governance concerns -0.825 -0.00437

(0.915) (0.00478)
log employees 0.775 0.00404

(0.984) (0.00513)
log market value 2.180* -0.0287***

(1.150) (0.00595)
log leverage ratio 0.982 0.00103

(1.135) (0.00610)
log sale -2.017 -0.0105

(1.292) (0.00677)
disclosure score -0.00143

(0.00100)
log share turnover 0.0709***

(0.00872)
log stock price 0.0334***

(0.00593)
Constant 47.31 1.080***

(34.65) (0.0619)

Observations 994 994
R-squared 0.197 0.384

Standard errors in parentheses
2-digit industry FE, and year FE are included.

*** p<0.01, ** p<0.05, * p<0.1
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Table 4.5: Emission Intensity and Institutional Ownership

VARIABLES emission intensity institutional ownership
institutional ownership -2.232

(1.875)
state greenness -0.202

(0.505)
clean energy strength 0.255*

(0.149)
number of environmental concerns 0.380*** -0.00193

(0.0693) (0.0145)
number of environmental strengths 0.0295 -0.00141

(0.0769) (0.00515)
transparency strength 0.0273

(0.138)
number of corporate governance strengths -0.191 0.00676

(0.183) (0.0134)
number of corporate governance concerns 0.0944 -0.00492

(0.0888) (0.00657)
log employees -0.790*** -0.0107

(0.0956) (0.0285)
log market value -0.0194 -0.0317***

(0.114) (0.00786)
log leverage ratio 0.0709 -0.00403

(0.113) (0.00782)
log sale 0.193 -0.00815

(0.119) (0.0108)
emission intensity -0.0160

(0.0348)
log share turnover 0.0726***

(0.0107)
log stock price 0.0303***

(0.00892)
Constant 5.953 1.107***

(3.709) (0.103)

Observations 717 717
R-squared 0.536 0.453

Standard errors in parentheses
2-digit industry FE, and year FE are included.

*** p<0.01, ** p<0.05, * p<0.1
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Chapter 5

Conclusion

In this dissertation, we investigate the efficiency of three existing or potential policies targeting on environ-

mental or urban transportation issues.

Chapter 2 suggests that in order to promote the adoption of electric vehicles (EVs), the government

should invest on building more public charging stations, in addition to providing cash incentives to individ-

ual EV purchasers. Meanwhile, subsidies giving to luxurious EVs or affluent consumers could be cut down.

Empirical results demonstrate that smaller EVs are more inelastic towards public charging stations than

larger EVs, because of a greater possibility of exhausting their batteries during a trip. Larger EVs, on the

other hand, are much more expensive and would be affordable by higher-income consumers. Empirical re-

sults show that more affluent consumers are less price sensitive, meaning that some of them would purchase

luxurious EVs with or without subsidies. Therefore, sizing down subsidies to higher-income EV purchasers

or to luxurious EVs while building more charging stations could contribute more to induce EV purchasing,

meanwhile reducing the concern that potential buyers of luxurious EVs might free ride government subsidy.

Chapter 3 characterizes the cost of travel time reliability and discusses the optimal tolling scheme that

considers for such cost. When commuters plan their work-daily trips, a significant share of them needs to

allow for additional buffer time to ensure that they arrive on time for work. Deviating from the conventional

assumption of schedule delay costs, we propose a travel time reliability standard that introduces an explicit

metric of schedule inflexibility. This setup allows linearization technique that disaggregates the time mark-

up factor into two separate components: a route-specific coefficient of variation, and a multiplier that reflects

commuter’s schedule inflexibility. This decomposition technique allows us to model commuting time relia-

bility very succinctly and derive new theoretical insights about optimal road tolls. Empirical results indicate

that schedule delay cost is economically important and that both mean and variation of travel time increase

with congestion level. Our simulation explores route choice of a two-road system under two different sce-

narios: (1) symmetric roads with one road being tolled, and (2) asymmetric roads with both being tolled.

Optimal tolls induce both a scale (demand) effect and a composition (sorting) effect. When route conditions

are similar, even low-ish tolls can generate significant benefits from sorting. When route conditions are

dissimilar and negatively correlated in speed and reliability, the most of the traction comes from the demand

response and little additional sorting. Through a welfare analysis we find that tolling reduces progressivity

of commuting cost.
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Chapter 4 looks at the causal relationship between firms’ decision in voluntarily disclosing its carbon

emission information and their level of institutional ownership. Although environmental performance does

not directly indicate financial success, it might put companies at risk in case of policy change, such as

carbon tax. Institutional investors are more sophisticated and might account for such risk in their investing

decisions. Moreover, due to the larger share of stocks held by institutional investors, they might put pressure

on companies to improve their environmental performance. To capture the endogenous characteristics of this

question (that comes from reverse causality), the study employs a simultaneous equations model. The results

show negative influence from both directions — the impact of disclosure on institutional ownership and the

impact of institutional ownership on the probability of disclosure. This suggests that disclosing firms might

not be the most carbon efficient ones, but rather those disclosing with other motivations such as preempting

the regulators, and they could be subject to higher regulation risk. Therefore voluntary carbon disclosure

mechanism is sub-optimal in the attempt to unveil firms’ environmental footprints to the public. Mandatory

mechanisms should be considered in the future to realize the objective of disclosing firms’ carbon footprints

and motivating them to take action to reduce emission.
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Appendix A

Appendix for Chapter 2

A.1 Proof of Propositions
Proof of Proposition 1:

From cost function (2.1) it is easy to show that cBEV,NHC,ij−cBEV,HC,ij > 0 and cPHEV,NHC,ij−cPHEV,HC,ij >

0 under reasonable assumption that cost of installing home charger amortized to each mile PS is trivial com-

pared to the other cost components. The intuition is that having a reliable charging spot saves the trouble

looking for public chargers meanwhile largely reducing the risk of getting stranded.

Proof of Proposition 2:

To simplify the analysis, assume that time to find a slow charging station (with level I&II chargers)

t1(SS,i j) and time to find a DC fast charging station t1(SF,i j) are both decreasing functions of total number of

charging stations Si in this region, i.e.,
∂ t1(SS,i j)

∂Si
< 0 and

∂ t1(SF,i j)

∂Si
< 0. The probability of failure to find

a public charging station is also assumed to be a decreasing function of Si, i.e.
∂ fi j(SS,i j,SF,i j)

∂Si
< 0. The

influence of number of charging station having on EV operational cost is as below:

∂ci j

∂Si
=



(HC,BEV) : qi j

[
wi

δR j

∂ t1,F
∂Si

+(
wits
R j

+ms)
∂ fi j

∂Si

]
(HC,PHEV) : 0

(NHC,BEV) :
wi

min(ri,R j)max(
⌊
δR j/ri

⌋
,1)

∂ t1,S
∂Si

+
wiqi j

δR j

∂ t1,F
∂Si

+(
wits
R j

+ms)
∂ fi j

∂Si

(NHC,PHEV) :
wi

min(ri,RPE, j)max(
⌊
RPE, j/ri

⌋
,1)

∂ t1,S
∂Si

(A.1)

From equation (A.1) it is easy to see that
∂ci j

∂Si
is non-positive in every case, and that

∂cNHC,BEV,i j

∂Si
<

∂cHC,BEV,i j

∂Si
,

∂cNHC,PHEV,i j

∂Si
<

∂cHC,PHEV,i j

∂Si
, i.e.,

∂ci j

∂Si
has greater absolute value for non home owners in

both cases of BEV and PHEV. The intuition is that EV owners without home chargers rely more on public
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chargers, whereas EV owners with access to home charging seldomly need to seek public chargers. There-

fore adding public charging stations bring most benefit to those without opportunity of home charging.

Proof of Proposition 3:

To prove Proposition 3, one needs to calculate derivative of
∂ci j

∂Si
regarding to R j. For home owners, one

can see:

∂ 2ci j

∂Si∂R j
=

∂qi j

∂R j
[

wi

δR j

∂ t1,F
∂Si

+(
wits
R j

+ms)
∂ fi j

∂Si
]

−qi j
wi

δR2
j

∂ t1,F
∂Si
−qi j

wits
R2

j

∂ fi j

∂Si

The above term is positive because
∂qi j

∂R j
< 0,

∂ t1,F
∂Si

< 0,
∂ fi j

∂Si
< 0, and all other parameters are positive.

Similarly, for non home owners, this term would be:

∂ 2ci j

∂Si∂R j
=− wi

g(R j)2 g′(R j)
∂ t1,S
∂Si

+
∂qi j

∂R j
(

wi

δR j

∂ t1,F
∂Si

)

−qi j
wi

δR2
j

∂ t1,F
∂Si
− wits

R2
j

∂ fi j

∂Si

where g(R j) = min(ri,R j)max(
⌊
δR j/ri

⌋
,1) and g′(R j) > 0, assuming fixed ri. Together with condition

∂qi j

∂R j
< 0,

∂ t1,S
∂Si

< 0,
∂ t1,F
∂Si

< 0,
∂ fi j

∂Si
< 0, and other parameters positive, one would reach conclusion that

the term above is positive.

Therefore, with or without access to home charging, a greater electric range would increase
∂ci j

∂Si
, while

decreasing its absolute value, i.e., the cost reduction effect brought by adding public charging stations de-

crease with BEV’s electric range.

Proof of Proposition 4:

For BEV owners with home charging:

∂ci j

∂R j
=

∂qi j

∂R j
[wi(

t1(SF)

δR j
+ t2, j + ri j

ts
R j

)+ ri jms]−qi jwi(
t1(SF)

δR2
j
+

ri jts
R2

j
)

∂ 2ci j

∂R j∂wi
=

∂qi j

∂R j
(
t1(SF)

δR j
+ t2, j + ri j

ts
R j

)−qi j(
t1(SF)

δR2
j
+

ri jts
R2

j
)

Since
∂qi j

∂R j
< 0 and other parameters are all positive, it follows that

∂ci j

∂R j
< 0 and

∂ 2ci j

∂R j∂wi
< 0.

For PHEV owners with home charging:

∂ci j

∂RPE, j
= wi

∂qi j

∂RPE, j
(

t1(SG)

δRPG, j
+ t3, j)
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∂ 2ci j

∂RPE, j∂wi
=

∂qi j

∂RPE, j
(

t1(SG)

δRPG, j
+ t3, j)

With
∂qi j

∂RPE, j
< 0, one can see

∂ci j

∂RPE, j
< 0 and

∂ 2ci j

∂R j∂wi
< 0.

For BEV owners without home charging:

∂ci j

∂R j
= wi

[
− t1(SS)

g(R j)2 g′(R j)+
∂qi j

∂R j
(
t1(SF)

δR j
+ t2, j)− (qi j

t1(SF)

δR2
j
+ ri j

ts
R2

j
)

]

∂ 2ci j

∂R j∂wi
=− t1(SS)

g(R j)2 g′(R j)+
∂qi j

∂R j
(
t1(SF)

δR j
+ t2, j)− (qi j

t1(SF)

δR2
j
+ ri j

ts
R2

j
)

where g(R j) = min(ri,R j)max(
⌊
δR j/ri

⌋
,1). With

∂qi j

∂R j
< 0 and g′(R j) > 0, one can see

∂ci j

∂RPE, j
< 0

and
∂ 2ci j

∂R j∂wi
< 0.

For PHEV owners without home charging:

∂ci j

∂RPE, j
= wi

[
− t1(SS)

gP(RPE, j)2 g′P(RPE, j)+
∂qi j

∂RPE, j
(

t1(SG)

δRPG, j
+ t3, j)

]
∂ 2ci j

∂RPE, j∂wi
=− t1(SS)

gP(RPE, j)2 g′P(RPE, j)+
∂qi j

∂RPE, j
(

t1(SG)

δRPG, j
+ t3, j)

where gP(RPE, j) = min(ri,RPE, j)max(
⌊
RPE, j/ri

⌋
,1). With

∂qi j

∂RPE, j
< 0 and g′P(RPE, j) > 0, one can see

∂ci j

∂RPE, j
< 0 and

∂ 2ci j

∂RPE, j∂wi
< 0.

Therefore, operational cost decreases with electric range, and such effect enlarges with wi — valuation

of time. The intuition is that EVs with longer electric range need to be charged less frequently and have

lower probability of getting stranded, thus reducing time cost of driving, and such characteristic would be

appreciated more by people with higher valuation of time.

A.2 Choice of Vehicles under Baseline Scenario
The choices within BEVs, PHEVs, and ICE vehicles rely on trade-off between time cost and monetary cost,

when price and vehicle attributes are the same. Using currently available car model attributes data listed

in Table 1 and assuming distribution of peoples’ daily driving distance ri follows log normal distribution

with µi = 3.25, σ2
i = 0.75, this section presents how the valuation of time can affect the operational cost of

BEVs, PHEVs, and ICEVs, thus flipping preference towards them.

The vehicles in Table A.1 are divided to two groups, within each group the vehicles are deemed as

substitutes with similar price and amenity. The vehicles in the same group are assumed to differ only in the

way they are refueled. The first group represents for energy efficient small vehicles which has one model

of ICEV, PHEV, BEV respectively, whereas the second group represents for luxurious vehicles which only
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includes an ICEV and a BEV1.

Table A.1: Characteristics of Representative EVs

Make-Type price electric range gas range mi/kWh mi/gallon refuel time
Toyota Prius $24,200 - 571 mi - 47.6 5 min
Chevrolet PHEV $25,185 38 mi 342 mi 2.9 37.1 5 min
Nissan BEV $22,065 84 mi - 3.3 - 30 min
BMW 740i $74,000 464 mi 22.2 5 min
Tesla BEV $59,900 208 mi - 2.9 - 40 min
Prices are MSRP deducting government tax incentives and tax rebates.

Refuel time is time to fill up the gas tank (PHEVs); for BEV it is to charge 80% of its battery capacity

under DC fast charging. The time is a coarse estimate with unit being minutes.

The cumulative distribution function of ri is shown in Figure A.1. With the currently popular EV fleets,

Chevy PHEV’s electric range can satisfy about 60% of the daily trips. BEV models Nissan and Tesla Model

S’s electric range cover 90% and 99% of daily trips respectively.

Figure A.1: Distribution of Daily Driven Distance

Using baseline assumptions on density of public chargers, I draw graphs (as shown in Figure A.2) that

show the impact of evaluation of time on vehicle choice, with cases differentiated by whether or not home

charging is available.

1PHEVs are currently absent in the luxurious vehicle class
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Figure A.2: Operational Cost of Small Vehicles

(a) with home charging (b) without home charging

In Figure A.3, I compare the operational cost of three popular small vehicle models: Nissan Leaf,

Chevrolet Volt, and Toyota Prius, each representing categories of BEV, PHEV, and ICEV. With home charg-

ing available, EV owners save time detouring for refueling, therefore EVs’ operational cost cuts lower than

ICEVs. PHEVs superior in quickly refuel with gasoline after its battery drains therefore they are more fa-

vored than BEVs for people with higher valuation of time. Without home charging, however, the time spent

on looking for public charging stations hinders EV adoption, leaving ICEVs the dominant choice for people

with valuation of an hour higher than 5$.

Figure A.3: Operational Cost of Large Vehicles

(a) with home charging (b) without home charging

This pair compares popular large vehicle models: Tesla Model S (BEV) and BMW 740i (ICEV). Lack-

ing for a large PHEV model, I include the Chevrolet Volt (PHEV) as a comparison. As Tesla’s luxury cars

have a long electric range that greatly reduce possibility of running out of battery, people with home charg-

ing will always find Tesla’s operational cost lowest. For people without access to home charging, those who

value an hour of time greater than 120$ will find BMW 740i, which serves as Tesla’s luxury counterpart,
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occur lower operational cost.

This section considers a baseline scenario where density of public charging stations is fixed and repre-

sentative vehicle models from category of BEV, PHEV, and ICEV are compared. One can intuitively find

that EV range and accessibility to home charging can make a big difference on EV’s operational cost.
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Appendix B

Appendix for Chapter 3

B.1 Glossary of Variables in Chapter 3

B.2 Probability Distributions and Random Variables
Our work makes extensive use of probability distributions. At times we calibrate our distributions to real-

world data such as mean and median income. For a random variable x that is distributed log-normally

with location and shape parameter µ and σ , it is straight forward to back out these parameters from the

observational mean (x̄) and median (x̃) with x̃ < x̄:

µ = ln(x̃) and σ =
√

2ln(x̄/x̃) (B.1)

and therefore the standard deviation sx and coefficient of variation cvx of x is given by

sx = x̄
√

(x̄/x̃)2−1 and cvx = sx/x̄ =
√
(x̄/x̃)2−1 (B.2)

We use a similar method to calibrate the Gumbel (extreme value type I) distribution. Using the Euler-

Mascheroni constant E = 0.57721566490153286 and the constant ln(ln(2)) =−0.366513, it follows that

σ = (x̄− x̃)/(E + ln(ln(2)) and µ = x̄−σE (B.3)

and the standard deviation as sx = σ ·π/
√

6 = 1.28255 ·σ .

Figure B.1 below shows the shapes of the Fréchet and Log-normal distributions for comparison for

identical empirical mean Tµ and standard deviation Tσ , as well as left boundary T ◦. The Fréchet distribution

has a more compact shape than the lognormal distribution for the same moments.
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Table B.1: Glossary of Variables in Chapter 3

Variable Description
ψ Motorist’s schedule inflexibility
T Travel time
T ∗ Optimal time to depart before desired arrival time
T ◦ Distributional parameter: minimum travel time
S Distributional parameter: scale parameter
a Distributional parameter: shape parameter
T̄ Mean of travel time
σ2 Variance of travel time
ṽ Road congestion: traffic volume divided by road capacity
Tµ Observed mean of travel time
Tσ Observed standard deviation of travel time
Tρ Coefficient of variation of travel time, Tρ ≡ Tσ

Tµ−T ◦

µ Parameter in the shifted log-normal distribution
σ Parameter in the shifted log-normal distribution
T∆ Measure of travel time mark-up, T∆ ≡

T ∗−Tµ

Tµ−T ◦

TΛ Measure of travel time mark-up, TΛ ≡
T ∗−Tµ

Tµ

Tν Ordinary coefficient of variation, Tν ≡ Tσ/Tµ

V Travel velocity
L Length of the road
v Traffic volume
c Road capacity
T� Uncongested travel time
ξ Curvature coefficient
V ◦ Maximum possible velocity
V� Uncongested traffic velocity
τττ Optimal link tolls
ω Individual time cost
z Cost of not travelling
T∅ Maximum duration that a commuter is willing to spend on a trip
π(τττ) Fraction of flexible commuters that choose to drive after seeing posted tolls
α Fraction of inflexible commuters
n Number of potential commuters
η Travel time elasticity, η ≡ d(T−T ◦)

dv
v

T−T ◦

ω̄ Average time cost of flexible commuters
ω∗ Average time cost of inflexible commuters
ϕ Time cost ratio
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Figure B.1: Comparison of Fréchet and Lognormal Distribution
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B.3 Data Description

Table B.2: Census Tracts in Vancouver Census Metropolitan Area (2016)

Municipality #

Burnaby 42
Coquitlam 25
Delta 19
Greater Vancouver A 5
Langley 30
Maple Ridge 15
New Westminster 13
North Vancouver 27
Pitt Meadows 4
Port Coquitlam 9
Port Moody 8
Richmond 39
Surrey 95
Vancouver 117
West Vancouver 8
White Rock 5
All Other 21

Total 482
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B.4 Additional Figures and Tables

Figure B.2: Simulation Results: Correlation Structure
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The four figures above show the results of the 51× 51× 100 simulation runs for the correlation space for ρω,ψ and ρω,z, the
correlation between time cost and inflexibility for the inflexible commuters and the correlation between time cost and cutoff time
(reservation price) for the flexible commuters. Panels and A and B show the utilization rates of routes A and B (tolled and untolled,
respectively), and panels C and D show the share of inflexible commuters taking route A and the share of flexible commuters taking
route B, respectively.
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Table B.3: Distributional Outcomes: Average Time Costs by Group in the ‘Lexus Lane’ single-toll
scenario with symmetric roads

Parameters Groups Optimal Toll Classic Toll

α ψ ϕ ω̄ I ω̄F ω I
A ω I

B ωF
A ωF

B ωF
∅ ω I

A ω I
B ωF

A ωF
B ωF

∅
L L L 11.72 14.65 16.48 4.58 17.56 6.87 32.30 16.42 4.56 17.49 6.84 32.60
L L M 13.10 13.10 17.40 4.66 16.62 6.54 28.51 17.31 4.61 16.50 6.50 28.93
L L H 14.65 11.72 18.46 4.71 15.78 6.20 25.06 18.34 4.65 15.62 6.15 25.59
L M L 11.72 14.65 16.02 4.39 18.01 7.07 32.12 15.94 4.35 17.89 7.02 32.57
L M M 13.10 13.10 16.97 4.45 17.06 6.72 28.30 16.85 4.39 16.89 6.66 28.89
L M H 14.65 11.72 18.11 4.51 16.28 6.36 24.89 17.95 4.42 16.03 6.29 25.58
L H L 11.72 14.65 15.66 4.21 18.46 7.26 31.88 15.55 4.16 18.30 7.20 32.47
L H M 13.10 13.10 16.63 4.27 17.53 6.89 28.07 16.49 4.19 17.29 6.81 28.83
L H H 14.65 11.72 17.76 4.32 16.78 6.51 24.62 17.57 4.21 16.42 6.43 25.48
M L L 11.72 14.65 17.09 4.85 18.11 7.20 30.73 17.03 4.82 18.03 7.17 31.10
M L M 13.10 13.10 18.40 5.12 17.80 7.01 27.02 18.31 5.08 17.68 6.99 27.46
M L H 14.65 11.72 20.00 5.46 17.82 6.77 23.73 19.87 5.40 17.61 6.76 24.22
M M L 11.72 14.65 16.80 4.72 18.86 7.50 30.53 16.72 4.69 18.75 7.46 31.03
M M M 13.10 13.10 18.15 5.01 18.69 7.27 26.81 18.03 4.95 18.50 7.25 27.41
M M H 14.65 11.72 19.79 5.37 18.89 6.98 23.62 19.60 5.28 18.57 6.98 24.21
M H L 11.72 14.65 16.53 4.61 19.67 7.77 30.31 16.41 4.56 19.49 7.73 31.01
M H M 13.10 13.10 17.93 4.91 19.63 7.51 26.58 17.76 4.83 19.32 7.48 27.37
M H H 14.65 11.72 19.64 5.30 20.08 7.15 23.49 19.39 5.18 19.61 7.16 24.20
H L L 11.72 14.65 17.75 5.11 18.57 7.47 28.83 17.71 5.10 18.53 7.46 29.11
H L M 13.10 13.10 19.53 5.60 19.06 7.35 25.36 19.48 5.57 18.99 7.35 25.65
H L H 14.65 11.72 21.66 6.18 19.95 7.03 22.54 21.60 6.15 19.85 7.06 22.76
H M L 11.72 14.65 17.60 5.06 19.73 7.82 28.55 17.54 5.04 19.65 7.82 28.94
H M M 13.10 13.10 19.45 5.56 20.42 7.59 25.26 19.38 5.53 20.30 7.62 25.63
H M H 14.65 11.72 21.62 6.16 21.59 7.17 22.45 21.54 6.12 21.45 7.22 22.73
H H L 11.72 14.65 17.50 5.02 20.95 8.12 28.40 17.42 4.99 20.84 8.13 28.89
H H M 13.10 13.10 19.38 5.53 21.90 7.81 25.14 19.28 5.49 21.73 7.85 25.56
H H H 14.65 11.72 21.60 6.15 23.41 7.27 22.44 21.50 6.11 23.21 7.33 22.75

Note: This table shows the average time cost by commuter groups corresponding to the welfare analysis
in table 3.13, the ‘Lexus Lane’ scenario. The group means are shown first, followed by the average time
cost for the five groups of commuters under an ‘optimal’ and ‘classic’ toll regime.

120



Table B.4: Distributional Outcomes: Average Time Costs by Group in the dual-toll scenario with
asymmetric roads

Parameters Groups Optimal Toll Classic Toll

α ψ ϕ ω̄ I ω̄F ω I
A ω I

B ωF
A ωF

B ωF
∅ ω I

A ω I
B ωF

A ωF
B ωF

∅
L L L 11.72 14.65 11.72 9.84 25.90 11.72 9.84 25.90
L L M 13.10 13.10 13.10 8.81 23.15 13.10 8.81 23.15
L L H 14.65 11.72 14.66 7.88 20.73 14.66 7.88 20.73
L M L 11.72 14.65 11.70 9.85 25.89 11.70 9.85 25.89
L M M 13.10 13.10 13.09 8.81 23.18 13.09 8.81 23.18
L M H 14.65 11.72 14.63 7.88 20.70 14.63 7.88 20.70
L H L 11.72 14.65 11.72 9.84 25.89 11.72 9.84 25.89
L H M 13.10 13.10 13.11 8.80 23.19 13.11 8.80 23.19
L H H 14.65 11.72 14.66 7.88 20.71 14.66 7.88 20.71
M L L 11.72 14.65 13.63 7.36 9.26 21.80 13.53 7.28 9.40 22.93
M L M 13.10 13.10 15.66 7.58 8.19 18.70 15.44 7.58 8.32 19.82
M L H 14.65 11.72 16.22 11.52 7.24 16.02 15.87 11.93 7.36 17.13
M M L 11.72 14.65 12.35 10.18 9.26 21.33 12.29 10.19 9.44 22.86
M M M 13.10 13.10 13.33 12.61 8.18 18.27 13.15 13.01 8.35 19.83
M M H 14.65 11.72 14.59 14.79 7.23 15.63 14.25 15.62 7.40 17.09
M H L 11.72 14.65 11.09 13.24 9.24 20.85 11.05 13.56 9.48 22.90
M H M 13.10 13.10 11.98 15.64 8.14 17.87 11.83 16.44 8.37 19.82
M H H 14.65 11.72 13.33 17.41 7.21 15.28 13.01 18.75 7.43 17.08
H L L 11.72 14.65 12.76 10.47 8.42 17.55 12.65 10.54 8.63 19.17
H L M 13.10 13.10 14.12 11.93 7.47 15.03 13.92 12.10 7.64 16.43
H L H 14.65 11.72 15.72 13.45 6.60 12.90 15.41 13.73 6.74 14.05
H M L 11.72 14.65 12.03 11.34 8.42 17.10 11.93 11.44 8.67 19.08
H M M 13.10 13.10 13.32 12.84 7.44 14.66 13.12 13.07 7.66 16.34
H M H 14.65 11.72 14.81 14.45 6.61 12.67 14.50 14.81 6.78 14.03
H H L 11.72 14.65 11.34 12.17 8.41 16.77 11.25 12.34 8.70 19.09
H H M 13.10 13.10 12.56 13.75 7.42 14.41 12.36 14.07 7.69 16.33
H H H 14.65 11.72 13.97 15.44 6.59 12.44 13.67 15.90 6.78 13.99

Note: This table shows the average time cost by commuter groups corresponding to the welfare analysis
in table 3.14, the ‘Asymmetry’ scenario. The group means are shown first, followed by the average time
cost for the five groups of commuters under an ‘optimal’ and ‘classic’ toll regime.
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