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Abstract

The use of remotely piloted aircrafts (RPAs) in fluvial geomorphology has improved the

ability to characterize streams at greater resolutions and spatial extents than was previously

attainable using traditional survey techniques. However, their use has been generally limited

to streams under ideal conditions that differ from the small, forested mountain channels

common in the Pacific Northwest. These channels have remained difficult to characterize

using modern techniques due to their dense canopies and rough terrain. A rapid and ob-

jective method of characterizing channel morphology across the river basin using a RPA is

presented in this dissertation to help overcome this challenge. First, the accuracy of RPAs

for extracting bed elevations, bathymetry and grain size along 3 km of Carnation Creek, a

small, forested stream on Vancouver Island, was investigated through a sub-canopy survey.

Relevant cross-sectional channel variables were then extracted to objectively characterize

channel morphologies across the river basin using a principal component analysis-clustering

(PCA-clustering) technique. Then the Shannon’s diversity index was used to characterize

the local diversity across the channel, and investigate the scale needed to study the system,

to ensure its heterogeneity was characterized. The results demonstrate that RPAs provide

a rapid alternative to characterizing these systems, through the construction of a 2–cm res-

olution digital elevation model spanning 3 km of channel, with a root-mean-square-error

of 0.093 m for exposed bed check points and 0.1 m for submerged bed check points. The

PCA-clustering analysis provided an objective means of classifying channel morphology with

a correct classification rate of 85%. Altogether, the results provide a precedent for using a

RPA to characterize the morphology and diversity of small, forested channels at a scale of

ecological relevance to the life histories of Pacific salmonids.
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Lay Summary

The use of remotely piloted aircrafts (also known as drones) in surveying stream systems

has become well established in the last decade. However, to date these applications have

been limited to streams with wide channels and minimal overhanging forest vegetation. The

objective of this dissertation is to demonstrate the utility of remotely piloted aircrafts for

sub-canopy surveying of a small, forested mountain channel at the basin-scale. The results

provide a rapid and objective method for characterizing patterns in channel morphology and

habitat diversity at a scale that is relevant to the life cycles of stream fishes.
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Chapter 1

Introduction

1.1 Background

Globally, wild salmon stocks are in decline. Their stressors are numerous, but their decline

is often attributed in part to degradation of their freshwater habitat (Nelson et al., 2015).

To remedy this, millions of dollars are annually put into restoration programs to improve

freshwater conditions (Bisson et al., 2009). Despite this large investment, the declines and

low rates of recovery in several stocks are still persistent, and may point to a broader misun-

derstanding of salmonids and their life requirements (Fausch et al., 2002; Bisson et al., 2009).

This may be because of an emphasis on designing channels to contain what is considered to

be ideal habitat, rather than restoring natural processes of the stream system itself. Pacific

salmon have diverse life histories, so it is logical to assume that they are adapted and well-

suited to the spatial and temporal diversity in habitat provided by the natural processes of

stream systems (Bisson et al., 2009). This is seen today by restoration frameworks that call

for the reestablishment of natural processes in streams, rather than altering these systems

to contain what is considered to be “good” habitat (Beechie et al., 2010).

The neglect for restoring natural processes in previous conservation frameworks likely

stems from prior conceptual theories that the ideal ecosystem is static and in equilibrium,

which leads to the notion that disturbance should be discouraged (Wallington et al., 2005).

However, there has since been a shift in ecological thinking that celebrates the variability

provided by the natural processes of stream systems and their capacity to provide an array

of aquatic habitats. The 1990s and early 2000s saw the rise of many notable studies that

encouraged the characterization of ecological processes in stream systems continuously and

at a scale relevant to species’ life histories (Fausch et al., 2002; Schlosser , 1991). The

“Riverscape Approach”to viewing aquatic habitat posited by Fausch et al. (2002), emphasizes

heterogeneity in streams as a critical factor influencing stream fish distribution and structure,
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and has been observed in other studies (e.g. White et al., 2008; Kim and Lapointe, 2011).

The logic for this approach is evident when considering that fish complete their life cycles

in streams at intermediate spatial scales between 1 and 100 kilometres in length (Fausch

et al., 2002). It therefore encourages characterization of streams at a scale relevant to these

processes. However, this has been a scale that has traditionally been difficult to characterize.

The present understanding of streams has been well informed by studies conducted at

both small scales (from the microhabitat and channel unit to reach extent) and large scales

(basin extent). It is the intermediate scale that has been lacking and that requires more

investigation (Fausch et al., 2002). With advances in remote sensing technologies, it is

becoming easier to survey this intermediate scale at high resolutions to address the gap

between conceptual theories such as the “Riverscape Approach” and empirical observation.

However, with the ability to collect high resolution and continuous data comes the challenge

of translating it into a meaningful form that can aid stream scientists in understanding and

managing these systems.

1.2 Classification of channel form

Classification schemes for characterizing channel morphology have held an important place

in fluvial geomorphology to help understand and analyze the natural world. While the

channel characteristics that they stem from, such as topography, grain size, and channel

width and depth, are continuous variables, at the morphological unit scale they do appear to

correspond with predictable channel controls. This can be observed in a recent study noting

the influence of characteristic width gradients on pool-riffle formation (Chartrand et al.,

2018). Discernable morphologies, such as pools and riffles, can also provide functionally

different habitat for aquatic species (e.g. Bisson et al., 1988; Flitcroft et al., 2012; Naman

et al., 2017). Therefore, classification of these channel types should provide a useful tool

for investigating relationships between salmonids and their physical environment. Several

classification schemes have been proposed that aid this goal (Frissell et al., 1986; Hawkins

et al., 1993; Rosgen, 1994), each of which may be tailored to the environment they were

developed in, thus limiting their broad-scale application (Nestler et al., 2016). Furthermore,

the use of these early classification schemes often requires qualitative and subjective decisions

from the observer for which channel type to prescribe to a channel unit. Because quantitative

relationships between channel characteristics and channel form exist, there should be an

opportunity for an improved objective classification scheme to be developed.

Early geomorphologists qualitatively noted the relationship between channel characteris-

tics and form through the Lane Balance (Equation 1.1) (Lane, 1955). Equation 1.1 reflects
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a balance between the slope (S), discharge (Q), sediment flux (Qs) and grain size (D) in a

channel under equilibrium conditions, as can be observed in nature.

D α
QS

Qs

(1.1)

Fluvial geomorphologists have since developed relationships that explain the processes

leading to a channel’s form. Chief among them is the shear stress equation (Equation 1.2),

which describes the force exerted by water on the bed, where water density (p) and gravity

(g) are constants and depth (d) and slope (S) describe the channel’s shape.

τ = ρgdS (1.2)

Equation 1.3 elucidates how the channel slope, sediment characteristics and scale can

inform a channel’s sediment transport regime (described by the shields number - the non-

dimensionalized shear stress) (Church, 2006). It can then be inferred that along a typical

channel, the transport regime will change along with the slope and roughness of the channel.

As demonstrated by Tamminga (2016), it is important to consider these relations to provide

a better understanding of how a stream may adjust to channel conditions and how that will

influence its morphology.

S = 1.65 τ ∗
D

d
(1.3)

With the channel characteristics noted above, there may be an opportunity to conduct an

objective characterization of channel morphologies that builds on a quantitative understand-

ing of these systems. As described above, there is a general theme for the prior equations to

include the following channel properties: hydraulic geometry, slope, and grain size charac-

teristics. Therefore, there is a theoretical basis for inclusion of these variables in a statistical

classification of channel types that could be conducted on and therefore best suited to a

particular region of interest. Development of such an objective and quantitative scheme is

likely advantageous as it would protect against human pre-conceived notions of channel type,

and may highlight patterns that would otherwise be missed in a visual classification.

1.3 Application of remotely piloted aircrafts and clas-

sification schemes to small streams

The use of remotely piloted aircrafts (RPAs) (e.g. Tamminga, 2016; Dietrich, 2017; Woodget

and Austrums , 2017) and efforts to objectively classify channel morphology at large spatial
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scales (Lindenschmidt and Long , 2013; Hugue et al., 2016) have both become emerging

research themes in fluvial geomorphology. However, the use of RPAs for studying riverscapes

has been limited in the types of environmental conditions it has been applied to. The

environments in which they have been tested in can be divided into two broad categories:

� Segments of larger channels (e.g. MacVicar et al., 2009; Tamminga, 2016).

� Small streams lacking a dense riparian canopy (e.g. Woodget and Austrums , 2017)

It appears that application of this tool to small, forested mountain channels is lacking.

Yet the ecological importance of these streams cannot be understated, and is seen by the

high numbers of salmonid species such as cutthroat trout and coho salmon that reside in

these systems (Rosenfeld et al., 2000). It has been postulated that several unique charac-

teristics of small streams may have led to this preference, including that the influence of

large wood on providing complex habitats is most effective in small, gravel-cobble bedded

streams (Rosenfeld et al., 2000). This suggests that despite their small size, these streams

are morphologically unique and can provide important habitat for salmonids. They also

comprise a significant portion of the channel network and are often degraded by industrial,

urban and agricultural activities (Rosenfeld et al., 2000). Acknowledgement of this can be

seen by the efforts in the 1970s to construct a long-running study at Carnation Creek to

assess the influence of logging treatments on ecological and geomorphological processes (see

Tschaplinski and Pike, 2017). Results of the study show that forestry can have long-term

impacts on habitat, through changing the temperature regime of the channel to changing

sedimentological processes (Tschaplinski and Pike, 2017). In conclusion, not only are the

dynamics of small stream systems unique, but these systems can also be severely influenced

by watershed management decisions, thus highlighting the need to provide observations that

can inform protection of these systems.

Despite a need to better understand small, forested stream systems, it appears that efforts

to survey them have not kept pace with remote sensing techniques seen in other stream

systems, likely because dense canopies often make viewing them from aerial platforms a

challenge. However, with the greater maneuverability and availability of RPAs, there may

be an opportunity to bring modern techniques to the surveying of small, forested channels.

Given the importance of small, forested streams in providing aquatic habitat to fish species,

improving field techniques and classification schemes in this environment may be beneficial.

With the advent of RPA technology there may lie an opportunity to more easily acquire

data at the basin-scale to link patterns in ecological and geomorphological processes in these

systems. To further this goal, the objective of this research is to provide a means of rapidly
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and objectively surveying and classifying small, forested stream systems to better inform

their management. This objective was investigated through answering the following research

questions:

� How can RPAs be used to characterize channel characteristics of a small, forested

channel at the basin-scale using a sub-canopy survey?

� How can continuous measurements of channel characteristics be used to rapidly and

objectively characterize patterns in channel morphology?

� What metrics can be used to characterize patterns in channel diversity, and what is

the necessary scale to study these systems for watershed management?

These research goals are addressed over two chapters of this thesis. The first chapter

provides an overview of the new technique employed to survey a small, forested mountain

channel and of how relevant channel features were extracted. The second chapter investigates

how these features can be used to objectively and near-continuously characterize patterns

in channel morphology, and provides some of the basin-scale conclusions that can be drawn

from the data.
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Chapter 2

Sub-canopy, remotely piloted aircraft

survey of channel features in a small,

forested mountain channel

2.1 Introduction

The use of RPAs in fluvial geomorphology has become well established in the last decade

with applications ranging from inventory of channel features to hydrodynamic flow mod-

elling of streams (e.g. Tamminga, 2016; Woodget and Austrums , 2017). To date, the use

of RPAs in such studies has several features in common. They are generally conducted on

smaller segments of the larger stream network and are limited to channels with ideal survey

conditions, where the streambed can be clearly viewed from a RPA flying above the forest

canopy. Such conditions are not commonly found in small, forested mountain channels that

are common in the Pacific Northwest. The temperate rainforest that these channels reside in

often results in the forest canopy blocking observations of the channel bed and banks from

RPA imagery collected above the forest canopy. While these channels compose a significant

portion of the channel network in the Pacific Northwest and provide important habitat for

many salmonids, it has remained a challenge to characterize them using techniques that

larger streams have benefited from.

The difficult terrain imposed by streams makes ground surveys of channel morphology a

demanding and time-consuming task, resulting in such surveys often being conducted in short

segments of a channel. Similarly, traditional methods of estimating sediment texture involve

a significant field component and are not well suited to surveying large areas frequently.

Because of the human resources required, these methods are at odds with the argument that
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it is better to attain coarser data on aquatic habitat at a scale relevant to aquatic processes

than detailed data at the wrong scale (Fausch et al., 2002). While imagery from airplane

and satellite platforms has provided an excellent method for landscape classification, its

applicability has been limited to environments such as those that lack riparian vegetation (in

arid or cleared agricultural environments) or wide streams with minimal riparian vegetation

in dense forested environments. Furthermore, these platforms are often limited in their

ability to map sediment texture due to their lower spatial resolution. Similarly, LiDAR has

proven successful in habitat studies such as large wood (LW) identification (see Abalharth

et al., 2015), but the method is often costly for commercial use. Furthermore, unless green

band LiDAR is used in conjunction with infrared LiDAR, the bathymetry cannot be mapped,

which makes this tool ineffective for characterizing the submerged bed (Muste et al., 2012).

In contrast, RPAs are becoming increasingly affordable and flight paths can be user-defined

to meet the unique needs of a study, but their use has also been limited to studies under

ideal environmental conditions.

Challenges in employing sub-canopy surveys may stem from the fact that image acqui-

sition for RPA-surveys often involves using vertical images (images taken where the camera

lens axis is perpendicular to the ground) with parallel flight paths to characterize an area, as

has been traditionally employed in airplane surveys for the last several decades (James and

Robson, 2014). However, the techniques used for traditional photogrammetry differ from

those employed in structure-from-motion (SFM) based photogrammetry, which may allow

for development of flight paths better suited to a sub-canopy survey. For traditional pho-

togrammetry, metric cameras with known internal camera geometries and lens distortions are

used in combination with two overlapping photos of known position and distance from one

another, to establish distances from the camera to features in the imagery (Dietrich, 2014).

With SFM-based photogrammetry, common features are identified in multiple images to

reconstruct the geometry of a site from which arbitrary camera positions and orientations

are generated automatically. This approach allows non-metric cameras to be used and the

freedom to collect images from a range of unknown positions and orientations.

Recently, there has been greater emphasis on testing flight patterns that deviate from

those used in traditional photogrammetry. Perhaps the most notable finding is the positive

effect incorporation of oblique and highly convergent imagery can have on overcoming errors

introduced from the non-metric cameras frequently used in RPA-surveys (Wackrow and

Chandler , 2011; James and Robson, 2014; Harwin et al., 2015). Non-metric cameras are light

and less costly than their metric counterparts, but are prone to greater distortions as they

are manufactured to a lower standard (Harwin et al., 2015). While this can be overcome by

a self-calibration of the camera in the SFM software, the incorporation of oblique-convergent
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imagery has been shown to minimize systematic errors in model outputs that often plague

projects where only imagery with a vertical orientation is employed (Harwin et al., 2015).

Through embracing these findings, there may be an opportunity to overcome the survey

challenges imposed by small, forested stream systems. Oblique imagery is likely advantageous

in streams where riparian vegetation may prevent the RPA from flying directly over the bank.

In this situation it may be possible to characterize these obstructed portions of the channel

through oblique and convergent imagery originating from a clear flight path below the canopy.

However, few studies to date provide guidelines for RPA-surveys conducted below the canopy

to characterize small, forested stream systems. This work seeks to provide a framework for

characterizing channel features in these systems and a first assessment of the accuracy and

coverage that can be acquired when employing RPAs in this new environment. To build this

framework, this chapter aims to meet three objectives:

� Investigate the influence of low elevation oblique-convergent imagery on the accuracy

of model outputs.

� Discuss techniques to filter overhanging vegetation that plagues models in these systems

and tools for extracting channel features such as bathymetry, sediment texture and

large wood.

� Evaluate the method against traditional total station survey data collected in the

channel.

2.2 Methods

2.2.1 Study area

Carnation Creek is a small gravel bed stream located on the southwest coast of Vancouver

Island (Figure 2.1). The watershed it resides in has been the site of a long-running, fish-

forestry interactions study, initiated in the 1970s, to assess the impact of different logging

treatments on the watershed. The stream is ∼8 km long and has a drainage area of ∼11

km2 (Tschaplinski and Pike, 2017).
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Figure 2.1: The Carnation Creek watershed, located on the south-west coast of Vancouver
Island. The start and end points of the RPA-survey are indicated on the map as thumbnails,
as well as the midpoints of the eight geomorphology study sections (SAs 2–9). Initially
study section one was established in the estuary, but has since been abandoned and was not
included in the survey. Coordinate system is NAD83 UTM Zone 10.

The watershed bears evidence of its glacial history through a stepped longitudinal profile

with alternating segments of mild and steep gradients (Reid et al., 2019), as is characteristic

of deglaciated systems (Brardinoni and Hassan, 2007). The first approximately 3 km of

the channel are mildly sloped and dominated by riffle-pool morphologies, after which the

channel narrows into a canyon that sees the onset of step-pool morphologies and provides a

barrier to fish passage (Reid et al., 2019). The average bankfull width of the lower channel

is approximately 15 m and the sediment texture of the bed varies from small gravels near

the mouth of the channel to coarser cobbles and boulders as the canyon is approached (Reid

et al., 2019). Anadromous salmon that inhabit the lower 3 km of channel include coho salmon

(Oncorhynchus kisutch), chum salmon (Oncorhynchus keta), rainbow trout (Oncorhynchus

mykiss) and cutthroat trout (Oncorhynchus clarki) (Tschaplinski and Pike, 2017).

Detailed channel morphology data have been collected through annual total station sur-

veys in eight study sections (SAs 2–9), seven of which are located downstream of the canyon

(SAs 2–8) (Figure 2.1). Initially a study section was established in the estuary (SA1) how-

ever, the site has since been abandoned and was not covered for this research. The most

upstream study section is study section nine, which is located above the canyon. The lower

study sections are 300–500 m apart and 5–10 bankfull widths in length (Reid et al., 2019).

The channel is located within the Coastal Western Hemlock Biogeoclimatic Zone of
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British Columbia (CWH) (Hartman et al., 1982). Western hemlock is the most common

tree species of the CWH, followed by red cedar and Douglas-fir (Pojar et al., 1991). In

logged areas, red alder is common and widespread (Pojar et al., 1991). As illustrated in

Figure 2.2, much of the channel is hidden below a dense forest canopy composed of both

coniferous and deciduous tree species. In order to characterize the majority of the channel

bed it would therefore be necessary to fly the RPA below the forest canopy. In July of 2018,

approximately 3.5 km of the channel was surveyed from the mouth of the channel to the

beginning of the canyon, as well as the lower half of SA9, over a period of ten days.

Figure 2.2: (a) Google Earth satellite imagery of Carnation Creek (Map data©Google 2019,
Maxar Technologies), showing the topography of the site, midpoints of study sections two
through eight, and location of the channel in yellow. (b) Canopy coverage in a section of
the channel upstream of a weir with a cable car that provides a relatively clear view of the
channel bed. (c) Nearly closed canopy coverage that partially obstructs view of the bed, as is
typical throughout the channel. Note that (b) and (c) were taken from an aircraft after fall,
which differ from the summer conditions present during the RPA-survey where the presence
of leaves led to more pronounced canopy coverage.
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2.2.2 Remotely piloted aircraft survey

The RPA-survey involved low-level flights conducted in tandem with placement of surveyed

Ground Control Points (GCPs). The RPA-survey was conducted using the DJI Phantom

4 Advanced, which contains a camera with a focal length of 8.8 mm (24 mm in 35 mm

format equivalent) and a field of view of 84◦. To remove the influence of the forest canopy

obstructing view of the channel, the RPA was flown manually below the canopy, which

resulted in flying heights ranging from approximately 3–15 m above ground level. Channel

segments were chosen that split the channel into approximately straight sections that were

40–60 m long and bounded by areas with rough terrain (e.g. channel-spanning log jams).

These segments provided manageable blocks along the channel to navigate with the RPA,

and would comprise individual photosets for image processing. The images were acquired in

automatic mode to mitigate the influence of changing lighting conditions along the channel

and at a capture rate of a photo every 2 s while moving at approximately 1 m/s to attain

maximum overlap between photos. In total, the approximately 3 km of surveyed channel

was broken into approximately 80 segments with 300–1000 photos each.

Each channel segment was initially flown with a traditional flight path consisting of

parallel flight lines with vertical imagery while striving to attain at least 60% side and forward

overlap, as has been noted as convention in other studies (Ortega-Terol et al., 2014). The

reach was then flown with oblique and convergent imagery, with an emphasis on ensuring

that the channel banks were well covered. To do this the camera was tilted at a low-

oblique angle (20–30◦ from vertical, see Figure 2.3a) and a flight path as shown in Figure

2.3b was employed. As illustrated, the RPA was first flown parallel to the bank with the

camera oriented in an upstream direction, and then the path was repeated with the camera

orientated in a downstream direction to acquire oblique-convergent imagery. These steps

were completed at multiple distances from the bank to ensure sufficient overlap with the

vertical photosets.
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Figure 2.3: (a) Channel cross section showing the oblique angles of the RPA’s camera (indi-
cated by the solid black line) for image acquisition of the banks. To characterize the channel
banks, the camera was tilted 20–30◦ from vertical. (b) Plan view of the flight path of the
RPA with the parallel flight lines shown as dashed lines. The outlined circles show the lo-
cations of a vertical image, and the arrows show the horizontal orientation of the camera
towards the channel banks for the oblique images described in (a)

We aimed to spread at least ten GCPs across each reach to georeference the imagery,

with the remainder serving as checkpoints to assess the accuracy of the model outputs. The

majority of the GCPs were distributed in a zig-zag fashion along dry exposed bars in the

periphery of the reaches, with a smaller number situated towards the centre. While there

does not appear to be a universally accepted number or distribution of GCPs required for

optimal model outputs at the time of writing (see Sanz-Ablanedo et al., 2018), this set up

was a balance between findings in the literature that suggest using between 4–15 GCPs
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with distributions either purely in the periphery, periphery with the addition of central

points, or uniformly across a site (Harwin et al., 2015; Agüera-Vega et al., 2016; Tonkin and

Midgley , 2016; Sanz-Ablanedo et al., 2018). Each GCP consisted of an orange 10 cm x 10 cm

ceramic tile with a central X marking the surveyed location. The location of the GCPs were

measured using a Leica TPS 1100 total station through a local survey that included shots

of well-established benchmarks in the study sections. These benchmarks were then used to

transform the coordinates into the projected coordinate system NAD83 UTM Zone 10 by

applying an affine transformation through an in-house script and the package ‘vec2dtransf’

in R (Carrillo, 2014).

2.2.3 Photogrammetry

Agisoft PhotoScan general workflow

The software Agisoft PhotoScan Professional (version 1.4.3) was used to generate dense

point clouds of each reach. These are 3D point clouds of the reach, containing millions of

points that are built from the matched points in the photoset (Henry , 2018). The steps it

employs to do this include aligning the photos through matching features across images, and

performing a bundle block adjustment in an arbitrary coordinate system that leads to the

formation of a sparse point cloud (Mayer and Kersten, 2018). The addition of GCPs for

georeferencing the model allows for this adjustment to be further optimized, which refines

the camera calibration. This can be an important step in mitigating the effect of systematic

errors in the model output derived from non-metric cameras. Following this a dense point

cloud of the optimized sparse cloud can be created. The incorporation of these steps in the

workflow is outlined in greater detail below.

Application to channel survey data

For this analysis, the Estimate Image Quality function in PhotoScan was first used to identify

low quality images, which were then visually assessed to identify blurry photos for removal.

Due to erroneous location measurements by the RPA’s on-board GPS, the image coordinates

were cleared prior to alignment. The erroneous measurements mostly occurred early on in

the flights, suggesting that the GPS had not yet connected to a suitable number of satellites

for accurate positioning prior to the beginning of some flights. The photos were then aligned

using medium accuracy, a key point limit of 40,000 and tie point limit of 2,000. A low density

point cloud was then generated to allow the GCPs to be easily identifiable. GCPs were then

selected on the point cloud and the appropriate coordinates were attributed to their position

in the photos. After updating the model, image residuals for the GCPs and tie points were
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viewed and adjusted in the reference pane as suggested by James et al. (2017) to ensure that

they would not be weighted too heavily in the optimization. Then the camera positions were

optimized with the GCPs selected to refine the camera calibration, leading to the generation

of a re-adjusted sparse point cloud. The final dense point cloud was then generated under

medium quality and with aggressive depth filtering. This workflow was repeated for each

reach to generate dense point clouds across the entire study area. Setting the accuracy of the

photo alignment and dense point cloud quality to medium was deemed a suitable balance

between processing time and representative model outputs.

2.2.4 Dense point cloud cleaning

The open source software Cloud Compare (version 2.1) was used to further clean the point

clouds. To remove the influence of vegetation obstructing bed points, the Cloth Simulation

Filter (Zhang et al., 2016) was applied to the clouds. Initially developed for processing of

LiDAR point clouds, this tool has rarely been applied to RPA derived point clouds in pre-

viously published studies, despite evidence suggesting its high performance relative to other

ground filtering algorithms (Yilmaz et al., 2017). Incorporation of this tool may allow RPAs

to overcome drawbacks noted by Tamminga et al. (2015), namely their explicit suitability

to streams with wide active channels where trees minimally obscure view of the channels.

To remove the influence of riparian vegetation, the tool inverts the point cloud and ‘drapes’

a simulated cloth (Zhang et al., 2016) over the inverted surface to approximate the terrain

of an area. The resolution of the cloth, and the maximum distance a point may be from

the cloud to still be considered part of the ground surface, can be altered to best suit the

environmental conditions. Setting the cloth resolution to a value of 0.1 m and maximum

distance between 0.5–1.0 m was found to adequately filter the bed points.

2.2.5 Water depth corrections

Point clouds generated from SFM suffer from the effect of refraction causing submerged bed

elevations to be over-estimated. To correct for this and develop bathymetry maps of the

channel, a script developed by Dietrich (2017) was used. A requirement of this script is

clear water allowing the channel bed to be viewed. During the study period, few opaque or

turbulent wetted channel areas were present due to low flow conditions, though a polarizing

filter was also fitted to the drone to mitigate the influence of surface reflections on the water

surface.

The method requires a water surface mesh to be delineated across the channel. By

determining the distance from the mesh to the SFM bed elevations below, the corrected
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water depth for a location on the bed can be calculated as a function of the multiple viewing

angles used to observe the location and through the application of a correction factor. Prior

to running the script, the clouds were sub-sampled to a spacing of 2 cm while retaining the

minimum height in each cell to further clean the clouds and ensure anomalous points from

overhanging vegetation were removed in Cloud Compare. For more details on the application

of this method, and how the input files were generated, see Dietrich (2017). Following the

correction, the uncorrected point clouds of the entire channel and corrected point clouds

for the wetted area were then transformed into 2 cm resolution Digital Elevation Models

(DEMs). These were merged together so that overlapping areas only retained the corrected

bed elevations. The corrected water depths were also extracted from the submerged point

clouds to create bathymetry rasters across the channel.

2.2.6 Sediment texture analysis

Grain size estimates of the exposed bed were acquired through establishing a relationship

between the roughness of the point cloud and the D50 and D84 of 22 field training sites

across the channel (Woodget and Austrums , 2017). Each field site was ∼1 m x 1 m and

was photographed by hovering the RPA ∼2 m above ground level. Using an in-house photo-

sieving GUI in Matlab the grain size distributions of each training site was determined. First

the photos of each site were scaled based on the known diamter of the GCPs in the images.

Then a 10x5 grid was overlaid on the photos, which allowed the b-axis of the 50 particles that

fell below the grid nodes to be measured for calculation of each site’s grain size distribution.

The roughness of each point in the point clouds was determined by using the ‘roughness

tool’ in Cloud Compare. This tool computes the roughness of each point relative to the

distance from the point to an ordinary least squares plane, fitted through the point and

its user specified neighbourhood. Prior to using this tool, areas of the cloud that did not

contain bed material (e.g. log jams or vegetated banks) were removed. Then the tool

was run with a specified neighborhood of 40 cm. As found by Woodget and Austrums

(2017), this neighborhood size appeared to provide a good balance between ensuring that

the largest clasts in the channel would be encompassed by the window and ensuring that

the neighborhood was likely to contain homogeneous material. Following the roughness

calculation, the training sites were extracted from the roughness clouds and exported as 2

cm rasters from which the mean roughness value for each raster was determined.

A linear model was then fit between both the D50 and D84 (Figure 2.4) of the training

sites against their mean roughness value. The equation of this line was then used to estimate

grain sizes across the entire channel. This was achieved in R by running a moving window
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of 1 m x 1 m across the roughness rasters. The mean roughness value for each window was

determined and its centre cell replaced with the estimated grain size based on the predictive

relationship (Equation 2.1), where D50p is the predicted grain size for the centre cell of the

window and Rw is the average roughness value of the cells in the window.
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Figure 2.4: Predictive grain size relationships between a given grain size (Dx) and the average
roughness value of the training sites.

D50p = 0.44 + 445.05Rw (2.1)

2.2.7 Large wood extraction

Large wood is an important variable to consider in aquatic habitat delineations as it can

provide both channel complexity and cover for aquatic species. Large wood was manually

digitized across the channel and the area of each piece calculated using the DEMs and

orthomosaics in ArcMap (version 10.6.1). Pieces of wood (larger than approximately 10 cm

in diameter and 1 m in length), that appeared to be exerting a control on channel form were

digitized individually, whereas log jams were digitized as polygons.
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2.3 Results

2.3.1 Accuracy assessment

Remotely piloted aircraft survey

A detailed assessment of the accuracy and reproducibility of the sub-canopy RPA results

was undertaken to determine the suitability of the technique. To do this, a small reach

was chosen early on in the photogrammetric processes that included the use of vertical and

intensive oblique imagery to characterize the banks. The reach was chosen as it was relatively

small for repeat processing (approximately 30 m in length and 10 m in width) and because

the presence of overhanging vegetation (Figure 2.5) made it a challenging reach to survey

that was representative of difficult portions of the channel. As shown in Table 2.1, a greater

number of photos included in the photoset was associated with a much greater time required

to generate the dense point cloud.

Figure 2.5: (a) Downstream view to a log jam at the beginning of the study reach. (b)
Upstream view showing the presence of deciduous branches and overhanging vegetation that
would require the RPA flight be low altitude and include oblique imagery. Note that the
images were taken during the fall total station survey, and therefore the water levels are
higher and leaf cover is lower than it was during the summer RPA-survey. Photos courtesy
of Iain Reid.
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Table 2.1: Computer processing time required for each photoset and GCP combination in
PhotoScan.

Photo
matching

Photo
alignment

Depth map
generation

Dense cloud
generation

Total time
Number of

photos
Number of

points in cloud

p1t1 13min 15s 5min 46s 35min 47s 3h 6min ∼4h 592 26,015,291
p2t1 4min 3s 2min 27s 8min 19s 30min 31s ∼45min 311 21,252,408
p3t1 3min 42s 3min 29s 8min 24s 25min 52s ∼40min 293 21,063,688
p4t1 5min 41s 1min 3s 18min 3s 9min 5s ∼35min 234 17,616,174
p1t2 13min 15s 5min 46s 36min 58s 3h 46min ∼4h 592 26,092,604
p2t2 4min 03s 2min 27s 8min 15s 29min 43s ∼45min 311 21,243,270
p3t2 3min 42s 3min 29s 8min 1s 24min 57s ∼40min 293 21,195,514
p4t2 5min 41s 1min 03s 17min 53s 9min 02s ∼35min 234 17,531,918
p1t3 13min 15s 5min 46s 36min 45s 3hr 5min ∼4h 592 29,941,363
p2t3 4min 03s 2min 27s 9min 07s 29min 37s ∼45min 311 21,311,393
p3t3 3min 42s 3min 29s 8min 01s 23min 29s ∼40min 293 20,824,947
p4t3 5min 41s 1min 03s 17min 45s 9min 03s ∼35min 234 17,608,597

Four combinations of photos were used, along with three combinations of GCPs as out-

lined in Table 2.2 and Figure 2.6, giving rise to twelve combinations of GCPs and photosets

that were run through PhotoScan to generate DEMs of the site. Using only odd or evenly

numbered photographs would allow for the creation of DEMs using two entirely unique

photosets, that allow for an assessment of the reproducibility of the model outputs.

Table 2.2: Photoset and ground control point (GCP) and check point (CP) combinations.

Modifier Description
p1 all photos
p2 odd photos
p3 even photos
p4 vertical photos only
t1 11 GCPs and 11 CPs
t2 5 edge GCPS and 17 CPs
t3 5 edge GCPs, 3 centre GCPs and 14 CPs
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Figure 2.6: (a) Ground control point (CP) and check point (CH) distribution for modifier
t1.(b) Ground control point (CP) and check point distribution (CH) for modifier t2.(c)
Ground control point (CP) and check point (CH) distribution for modifier t3. Coordinate
system is NAD83 UTM Zone 10.
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Following this, the difference between the estimated elevations from each DEM and the

actual elevations for the GCPs and CPs measured using the total station was determined. As

seen in Figure 2.7, the majority of the errors for all models was within 2 cm, suggesting that

the choice of flight path and GCP configuration had a small influence on the error. This was

further confirmed by plotting the values from each DEM against one another to calculate

their correlation coefficients (Table 2.3), which showed strong correlation between all DEMs

regardless of the combination used. The difference in the proportion of channel that could

be captured with the incorporation of oblique imagery, in contrast to the photosets where

only vertical images were used, can be visually compared in Figure 2.8.
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Figure 2.7: Boxplots showing the distribution of vertical error for the GCPs and CPs of
each accuracy assessment. The boxes represent the interquartile range (IQR) and the solid
black lines represent the median error for each photoset and GCP combination. The vertical
whiskers represent the extent of the smallest and largest errors within 1.5 times the IQR
below the 25th (Q1) or above the 75th (Q3) percentile, respectively. The dashed horizontal
line represents a vertical error of 0. The dots are outliers which are either less than Q1 -
1.5*IQR or greater than Q3 + 1.5*IQR.
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Table 2.3: Correlation matrix describing the similarity of the rasters (through their correla-
tion coefficients) generated for all twelve unique GCP and photoset combinations.

p1t2 p1t3 p2t1 p2t2 p2t3 p3t1 p3t2 p3t3 p4t1 p4t2 p4t3

p1t1 0.992 0.992 0.987 0.987 0.987 0.986 0.987 0.987 0.986 0.956 0.958
p1t2 0.997 0.991 0.993 0.992 0.99 0.992 0.991 0.991 0.959 0.962
p1t3 0.99 0.993 0.992 0.989 0.991 0.99 0.991 0.958 0.961
p2t1 0.99 0.994 0.988 0.989 0.989 0.987 0.956 0.958
p2t2 0.991 0.986 0.989 0.988 0.987 0.954 0.956
p2t3 0.988 0.99 0.989 0.987 0.957 0.959
p3t1 0.992 0.994 0.986 0.958 0.96
p3t2 0.994 0.987 0.958 0.96
p3t3 0.988 0.958 0.96
p4t1 0.963 0.966
p4t2 0.983

Figure 2.8: Difference in the proportion of bed that can be covered between only a vertical
image photoset (a) and the incorporation of oblique images (b). The DEM with both vertical
and oblique imagery (b) has more well defined channel banks as seen by the channel roughness
provided by bank vegetation towards the margins of the channel.
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The vertical error throughout the entire channel was estimated by comparing the eleva-

tions of check points not used for georeferencing the models to the elevations estimated by

the DEMs. In total, 1724 checkpoints were spread across the channel, 1203 of which were

located on the exposed bed and 521 of which were submerged below the water surface. The

metrics used to characterize the vertical error in the models were the root-mean-square-error

(RMSE) and the mean error (ME). The RMSE provides a measure of the spread of the

squared residuals (Equation 2.2) whereas the ME provides a measure of any potential posi-

tive or negative bias to the data (Equation 2.3). These values were chosen as they provide

comparable metrics to other accuracy assessments of RPA-surveys completed in the litera-

ture (e.g. Tamminga, 2016). The RMSE of the exposed bed points was found to be 0.093

m and 0.025 m for the ME (n = 1203), whereas for the submerged bed points the RMSE

and ME was 0.1 m and 0.025 m (n = 521), respectively. The overall spread of this error is

illustrated in Figure 2.9.

RMSE =

√∑n
i (zmod − zobs)

2

n
(2.2)

ME =

∑n
i (zmod − zobs)

n
(2.3)
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Figure 2.9: Density plot showing the distribution of vertical errors between the modelled
and total station measured elevations. The dashed line represents the mean error for the
datasets, and the solid line a vertical error of 0 m.
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Bathymetry analysis

To assess the accuracy of the corrected submerged bed elevations, two locations were chosen

in the channel where dense measurements of the bed were collected using the total station

(Figure 2.10). The values from the uncorrected and corrected DEMs were compared to these

true values as seen in Figures 2.11 and 2.12. Prior to the correction, these values deviated

from the 1:1 line due to the influence of refraction, with the deviation greater at larger water

depths. Following the correction, the observations plot along the 1:1 line, indicating that the

corrections were successful.

(a) (b)

Figure 2.10: Distribution of GCPs for the accuracy assessment of the bathymetry correction
at sites (a) and (b).The bed texture is displayed through a hillshade layer, with smoother
textures corresponding with finer material, and very rough textures towards the margins of
the channel corresponding with vegetated areas. The extent of the water surface is indicated
in blue, with darker blues corresponding with deeper sections of the channel.
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Figure 2.11: Comparison of the submerged bed elevations to the total station measured
elevation before and after the bathymetry correction for the site in Figure 2.10a. The 1:1
line is represented by the solid black line.
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Figure 2.12: Comparison of the submerged bed elevations to the total station measured
elevation before and after the bathymetry correction for the site in Figure 2.10b. The 1:1
line is represented by the solid black line.

2.3.2 Survey coverage

The area of channel covered by the RPA and total station in the eight geomorphology study

sections were compared to evaluate the total coverage obtainable from the RPA-survey. The

area of the channel covered compared to the study section boundaries is illustrated in Figures

2.13 and 2.14, and in Table 2.4. When including side channels in channel boundary, which
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were generally difficult to access with the RPA due to dense vegetation, it was possible

to capture approximately 80% of the bounding area, whereas when only considering the

main channel as a boundary, the RPA-survey captured approximately 87% of the bounding

area. As time didn’t permit all of SA9 to be surveyed with the RPA, the comparison is

based on just the lower half of the study section. Figure 2.15 illustrates a situation where

dense vegetation and large wood prevented the middle portion of the study section from

being captured. Figure 2.16 illustrates how oblique imagery allowed a deep pool covered by

overhanging vegetation to be characterized.

Figure 2.13: RPA coverage overlapped by the study section boundaries indicated in black
for SAs 2–5. The texture of the bed surface is displayed through a hillshade layer and the
water surface extent in blue, with deeper areas of the channel represented by a darker blue.
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Figure 2.14: RPA coverage overlapped by the study section boundaries indicated in black
for SAs 6–9. The texture of the bed surface is displayed through a hillshade layer and the
water surface extent in blue, with deeper areas of the channel represented by a darker blue.

Table 2.4: Percentages of the study section covered with the RPA relative to the total
station surveys. The comparisons are based on whether the reference boundary included
side channels (with side) or just the main channel (no side).

Study section RPA: with side (%) RPA:no side (%)
SA 2 90 90
SA 3 83 83
SA 4 54 74
SA 5 81 84
SA 6 91 91
SA 7 67 79
SA 8 94 94
SA 9 89 99
Average 81 87
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Figure 2.15: Coverage of study section five in an area with low canopy (a) and a missed
portion due to dense vegetation and a small log jam (b).The channel’s sediment texture is
characterized by a hillshade layer and the water extent in blue, with deeper areas corre-
sponding with darker blues. Note that the photo was taken in the fall when the water level
was higher than that during the RPA-survey. Photo courtesy of Iain Reid.
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Figure 2.16: Coverage of a deep pool in study section eight under dense riparian vegetation.
The channels sediment texture is characterized by a hillshade layer and the waters extent in
blue, with deeper areas corresponding with darker blues. Note that the photo was taken in
the fall when the water level was higher than it was during the RPA-survey. Photo courtesy
of Iain Reid.

2.4 Discussion

The results of this study provide a precedent for using RPAs to characterize channel mor-

phology in small, forested streams using sub-canopy imagery. In twelve field days, three

kilometers of channel were surveyed with an estimated coverage rate of 80%. The DEMs

and orthophotos created from these images were extremely high resolution at 2 cm / pixel

with a RMSE for the exposed elevations of 0.093 m and 0.1 m for the submerged bed el-

evations. This magnitude of error is comparable to values observed in other studies, such

as Tamminga et al. (2015), who reported a RMSE of 0.088 m for exposed portions of the

bed and 0.11 m for submerged portions of the bed, and Flener et al. (2013), who created

a DTM of a stream channel using RPA imagery that yielded a RMSE of 0.088 m as well.

In comparison to other airborne remote sensing techniques such as LiDAR, these results are
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comparable to those found by Legleiter (2012), who reported a vertical RMSE of 0.21 m.

However, the spacing of LiDAR datasets is often on the decimeter scale (Notebaert et al.,

2009; Legleiter , 2012; Abalharth et al., 2015), which may not be suitable for resolving the

sediment texture of the bed in the same manner as has been demonstrated in RPA-surveys

(e.g. Woodget et al., 2017). Furthermore, in comparison to LiDAR, RPA imagery offers an

affordable and often more accessible tool for characterizing these systems, especially when

trying to characterize the submerged bed, which requires the use of expensive green band

LiDAR (Muste et al., 2012).

From this high resolution imagery, we demonstrated the utility of methodologies devel-

oped by Woodget et al. (2017) and Dietrich (2017) for accurately extracting sediment texture

and bathymetry across the channel in a small, forested stream system. The RMSE values

for the submerged bed elevations are comparable to the RMSE values of the field studies

conducted by Dietrich (2017), who reported RMSE values ranging from 0.06–0.077 m for

different surveys of his study site. Using the roughness of the point cloud to derive estimates

of grain size across the channel, a strong predictive relationship was acquired for the D50 with

an r2 value of 0.92. This is comparable to the r2 values reported in other studies relating

image texture or roughness to predicted grain size (see Carbonneau et al., 2004; Tamminga

et al., 2015; Woodget et al., 2017).

The nature of small, forested streams, with their dense canopies, has long left the im-

pression that these characteristics preclude them from the benefits that larger streams have

experienced with RPA-surveys. However, through the incorporation of oblique-convergent

imagery these results demonstrate that sub-canopy flying of RPAs can provide reasonable

coverage of these systems at large spatial extents, as illustrated in Figure 2.8. This applica-

tion has several advantages over techniques traditionally used to characterize small, forested

streams. Pole-mounted photogrammetry, where a camera is attached to a pole suspended

several meters above the bed to collect imagery of a site (e.g. Bird et al., 2010) is perhaps

the most similar approach to surveying such streams to date. Using this method, Bird et al.

(2010), surveyed approximately 200m2 of the bed using 44 GCPs and 14 images that took

10 minutes to capture in a traditional photogrammetric workflow. This allowed the devel-

opment of a DEM with a ground resolution of 0.03 m and errors within a range of -0.2 to

0.2 m. In comparison to this technique, RPAs provide a greater capacity to collect a larger

number of images, which is required for SFM photogrammetry, in a shorter period of time.

For example, the channel segment used in the accuracy assessment (Figure 2.5), was approx-

imately 275 m2, and included the use of 592 photos which took approximately 20 minutes to

capture.

In contrast to a total station topographic survey, the sub-canopy RPA-survey allows the
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collection of a greater density of bed points that can be post-processed to provide continuous

measurements of grain size, water depths, large wood and bed elevations across the channel

at resolutions that would be challenging to achieve using a total station survey. It is also

worthwhile noting that while the total station survey allows for total coverage of the bed,

this is through much lower resolution data. The point clouds for the study sections from the

total station tend to vary between 500–1000 points, whereas the dense point clouds from the

RPA imagery contain millions of points per a reach.

As with each of the previously listed techniques, there are still drawbacks to sub-canopy

RPA-surveys. First, due to fallen trees obstructing flight paths and areas with dense low-

lying riparian vegetation completely obstructing view of the bed, there is still about 20% of

the channel that was not covered with this technique. Depending on the specific research

objective, this missing portion may be negligible given the greater longitudinal distance that

can be covered with the RPA. However, if assessment of the entire channel is required, it may

be necessary to consider a combined approach, such as inclusion of additional total station

measurements along with a spatial interpolation method to characterize portions of the

channel not observed with the RPA. For example, in delineating aquatic habitat, undercut

banks which are situated along the channel edges may be important to identify as they can

provide critical cover for salmonids (Nelson et al., 2015). These portions of the channel could

be roughly characterized with a modified total station survey that included coarse dimension

measurements of the undercuts. Furthermore, although LiDAR is more expensive, it is better

suited to penetrating through to the bed in densely vegetated portions of the channel. While

the cloth simulation filter did help to mitigate this limitation for the RPA imagery, it still

requires that there be viewing angles present that provide perspectives of partially obstructed

portions of the bed. In contrast to more traditional aerial platforms, the RPA provided the

opportunity to fly below the canopy and capture portions of the bed that would typically

be hidden from view of airplane or satellite platforms. However, a disadvantage of this close

range imagery is the greater number of photos required to characterize a site and therefore

the greater time required for processing the imagery.

There are certain environmental conditions to which the methods discussed in this chap-

ter may also not be suited. Notably, the techniques for extracting the bathymetry may not

be suitable for streams with highly turbid water that prevent observation of the submerged

bed. Furthermore, areas that were particularly difficult to survey included sections of the

channel with low-lying deciduous branches that spanned the channel, that while not fully

obstructing the view of the bed, prevented the passing of the RPA. Therefore, these tech-

niques may be most suited to small channels in relatively mature forests that have a more

open understory. Finally, while the field time for collecting the data was markedly reduced
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compared to a total station survey, this came at the cost of greater time required for pro-

cessing of the imagery. However, with improvements in processing and greater availability

of cloud computing resources, this is an area that may see improvement in the future.

Overall, this research helps to expand the toolkit available to geomorphologists for char-

acterizing small, forested streams. Prior to this work, the use of RPAs was restricted to wider

channels or those without dense riparian vegetation. The methods described provided high

resolution and continuous measurements of bathymetry, grain size and bed elevations that

are typically difficult to acquire in small, forested streams. If the corresponding salmonid

data were available at the same scale, this spatially continuous dataset would help to bridge

the gap between the conceptual theories of the Riverscape Approach proposed by Fausch

et al. (2002) and the distribution of salmonids in these systems. For example, through using

these data to delineate patterns in aquatic habitat in multiple watersheds with the corre-

sponding fish assemblage and abundance data, it may be possible to assess how patterns

in aquatic habitat diversity and connectivity impact fish populations. The demonstrated

ability to acquire these data provides a step towards helping to fully realize the influence of

basin-scale patterns in aquatic habitat on stream fishes.

2.5 Conclusion

This study provided a first attempt at testing the applicability of a sub-canopy RPA-survey

for characterizing channel morphology in a small, forested mountain channel. Through the

incorporation of oblique-convergent imagery, it was possible to survey 3 km of Carnation

Creek at a coverage rate of approximately 80%. Building on prior work analyzing RPA-

derived point clouds, information on channel features such as grain size and bathymetry were

extracted at resolutions that would be difficult to acquire using traditional survey methods

like a total station topographic survey. A drawback to this survey is the significant com-

putation power required to process the data. However, with recent technological advances

in cloud processing and photogrammetry software, this is an area that is likely to continue

to improve and help make the use of RPA-surveys accessible to the general public. Overall,

the methods were very successful in demonstrating the use of RPAs for characterizing small

streams with clear water and a relatively open sub-canopy. In contrast to other remote

sensing technologies, the RPA-survey described provides a less costly and readily deploy-

able alternative. In particular, this research provides precedent and will hopefully initiate

discussion on the role that RPAs can have in characterizing sub-canopy stream systems.
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Chapter 3

Rapid and objective classification of

channel morphology and diversity at

the basin-scale

3.1 Introduction

Advances in the understanding of the relationship between the life processes of some aquatic

species and their use of aquatic habitat demand a new approach to aquatic habitat mapping

that can be conducted at the basin-scale. This need is well noted by several papers in the

1990s that encouraged characterizing ecological processes in stream systems continuously at

a scale relevant to species’ life histories, deemed intermediate at 1–100 km in length (e.g.

Schlosser , 1991; Fausch et al., 2002). When considering the process-based channel morphol-

ogy classification scheme proposed by Montgomery and Buffington (1997), it follows that at

these scales streams may display unique characteristics, depending on the arrangement of

different morphologies and their driving processes. However, this presents a mismatch with

the scale generally used to study aquatic species. Traditional survey techniques are time-

consuming and tend to be conducted in study reaches 30–50 channel widths in length. This

scale may not be well-suited to characterizing heterogeneity in stream systems, and different

approaches to broad-scale mapping of aquatic habitat are needed.

In response to this need, there has been a recent proliferation of studies providing new

methodologies to characterize aquatic habitat at these large scales. For example, Linden-

schmidt and Long (2013) developed a GIS and principal component analysis (PCA) approach

to extract channel variables (sinuosity, fractal dimension, width and slope) from coarse DEMs

of large streams to identify areas with unique geomorphic characteristics. Several studies
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have since employed this approach to relate patterns in channel morphologies to patterns in

aquatic species assemblages (e.g. Meissner et al., 2016; Liu et al., 2017). However, to date

these variables have only been extracted at large scales, with sample sites located as far as

every 50 m along the longitudinal profile. While this may help to pull out broad basin-scale

patterns, this method is likely to miss heterogeneities across smaller streams that may have

an important effect on aquatic habitat. Furthermore, the model was developed for the Little

Saskatchewan River, Manitoba, an environment that is different from the small, forested

mountain channels common in the Pacific Northwest.

Similar to the work by Lindenschmidt and Long (2013), Hugue et al. (2016), developed

a technique to classify patterns in fast water and slow water channel morphologies across a

stream using a PCA. To do this, they used satellite imagery of a 17 km reach from which

they derived bathymetry data with 0.5 m resolution in the panchromatic and 2 m in the

multispectral. Application of a PCA to the wetted variables derived from a 2D hydrodynamic

model allowed them to identify channel types and characterize diversity across the channel

based on patterns in velocities and water depths. The meso-scale variables of the analysis

provided a good framework suited to identifying local heterogeneities across the channel.

An area that has not yet benefited from rapid characterization of channel morphology

using remotely sensed data, as demonstrated by Lindenschmidt and Long (2013) and Hugue

et al. (2016), is small, forested mountain channels. This research seeks to provide a framework

for characterizing basin-scale patterns in aquatic habitat of small, forested stream systems

that does not require a hydraulic analysis and is rather based on easily extractable metrics

from RPA imagery. To build this framework, the chapter aims to meet three objectives:

� Develop a rapid and objective means of characterizing channel morphology near-continuously

across the channel (at 1 m intervals) using a PCA-clustering technique on easily ex-

tractable RPA data.

� Build upon metrics for characterizing diversity to investigate patterns in channel mor-

phology diversity.

� Investigate the necessary scale required to study the system to ensure that its hetero-

geneity is captured.

A better understanding of the patterns in channel morphology and diversity is of impor-

tance as it is likely to facilitate improved conservation monitoring of these systems.
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3.2 Methods

3.2.1 Selection of channel variables

To classify the channel along the longitudinal profile, it was necessary to define a standardized

location along which observations would be extracted across the channel. The thalweg was

chosen for this purpose as it is a feature that could be easily identified across the channel and

would likely highlight patterns key to discriminating channel types, such as differences in

slope and water depth. To characterize patterns in channel morphology, five variables were

chosen for the classification: the hydraulic radius (Rh), local bed (Sl) and water surface slope

(Sws), reach bed slope (Sr), as well as the average D50 for cross sections along the thalweg.

These channel characteristics reflect larger basin-scale controls on channel morphology, such

as geology, climate and land-use that influence watershed conditions (e.g. streamflow and

sediment supply) which ultimately give rise to patterns in grain size, channel geometry, bed

slope and bed forms across the riverscape (Buffington and Woodsmith, 2003). The interplay

of these channel characteristics gives rise to unique channel morphologies, and it therefore

follows that their extraction should aid in the classification of channel types.

Incorporation of slope

Bed slope was included in the classification, as it helps inform the distribution of chan-

nel morphologies across the basin. Channel morphologies tend to progress from pool-riffle,

plane-bed, and step-pool to cascade morphologies with increasing channel slope (Montgomery

and Buffington, 1997). Of this sequence of morphologies, it is the pool-riffle unit that has

characteristics that provide both important and functionally different habitats for salmonids

(Hawkins et al., 1993). Pools, by nature of their deep and slow moving water, can provide

cover and refuge in low flow conditions. In contrast, riffles, which are characterized by fast

moving and shallow water, can be an important food source for salmonids via invertebrate

drift (Leung et al., 2009; Naman et al., 2018). It is generally accepted that glides (low ve-

locity, depth and slope) and runs (moderate velocity, depth and slope) represent transitional

morphologies between these two end members in channel morphology within the pool-riffle

unit (Wyrick et al., 2014). It is in these transitional environments, between the tail end

of pools and beginning of riffles, that fish tend to spawn, where differences in bed topogra-

phy lead to hyporheic exchange (Tonina and Buffington, 2009), that promote the necessary

well-oxygenated conditions for spawning habitat (Pfeiffer and Finnegan, 2017). Collectively,

the unique characteristics of each of these channel types within the pool-riffle unit provide

salmonids with an array of mesohabitats suited to their life histories. Therefore, the reach
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Figure 3.1: Diagram of a typical pool-riffle transition, based on Garcia et al. (2012). Note
the fining of bed material at the entry of the pool, and coarsening of bed material as the
riffle is approached.

scale slope was considered to help aid the discrimination between pool-riffle and plane-bed

morphologies closer to the canyon, and the local bed and water surface slope to discriminate

between pool, riffle, glide and run morphologies within the pool-riffle unit (Figure 3.1).

Incorporation of hydraulic geometry

The hydraulic radius (Rh) was extracted from the cross sections to provide a measure of the

channel’s hydraulic geometry. The hydraulic radius was calculated according to Equation

3.1, where A is wetted area and P is the wetted perimeter for the cross section. Essentially,

the hydraulic radius indicates how much of the area of water in a cross section is in contact

with the bed, with a larger hydraulic radius corresponding with portions of the channel that

have less friction imposed on the water and therefore the potential for greater flow velocities.

Rh =
A

P
(3.1)

Incorporation of channel roughness

To provide a measure of the grain roughness across the channel, the average D50 of the dry

exposed bars in a 0.5 m buffer around each cross section was extracted. According to the

Lane Balance (3.2) (Lane, 1955), in an equilibrium channel, grain size reflects a balance

between channel conditions, such as slope (S), discharge (Q) and sediment flux (Qs). The

interplay of these governing conditions determines channel morphology (Church M., 2002).

Indeed, there is a general coarsening in bed material from glides and pools with finer material

to riffles and runs (Garcia et al., 2012).

35



D α
QS

Qs

(3.2)

3.2.2 Extraction of channel variables

Thalweg extraction

To extract the thalweg, the River Bathymetry Toolkit (RBT), an ArcMap add-in, was applied

to the RPA-derived DEMs generated of the bed across Carnation Creek (McKean et al.,

2009). Inputs for the thalweg tool of the RBT include a detrended DEM, bankfull polygon

and channel centreline. The tool expects a DEM that approximates the valley and channel

bed, as opposed to roughness elements such as large wood, which the RPA imagery does

not provide. To mitigate this, a pseudo-valley was established by fitting a plane through the

point clouds of the channel bed and adding 1.5 m to the planes to approximate the channel

valley. Channel obstructions such as large wood were also clipped from the point clouds

in Cloud Compare and their bed elevations interpolated using inverse distance weighting to

create clean and complete DEMs of the channel bed. The cleaned DEMs were then merged

with the valley planes and the ‘detrend’ tool in the RBT applied to them.

To provide estimates of the channel centreline, the ‘collapse dual lines to centreline’ tool

was applied to polylines of the right and left bank in ArcMap. With the detrended DEM,

bankfull polygon and centreline as inputs, the thalweg was extracted using the ‘thalweg’ tool

of the RBT. The tool runs a least-cost-path analysis based on the centreline and channel

elevations, with deeper sections of the channel receiving a higher weighting to determine the

thalweg.

Feature extraction along thalweg

To characterize patterns in channel morphology along the thalweg, a function was developed

to sample points along the thalweg every metre at which the hydraulic radius (Rh), local

bed (Sl) and water surface slope (Sws), reach bed slope (Sr), as well as the average D50

for a neighbourhood were extracted from the RPA derived rasters of the bed elevations,

bathymetry and D50 as described below and illustrated in Figure 3.2. Cross sections where

the channel banks were not discernable (e.g. due to channel obstructions or dense low-lying

vegetation) were excluded from the analysis.
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Figure 3.2: Feature extraction set up. The Rh, Sl, Sws, and Sr were extracted every metre.
The average grain size was extracted every meter based on the average value of the D50

raster in a 0.5 m buffer around each cross-section line.

Slope extraction

The local slopes of the bed and water surface were calculated for each sampling location using

a function in R that fits a linear model through observations in a 15-metre window around

each sample site. This window size was chosen based on field observations at Carnation Creek

that suggested it would be sufficient for capturing smaller scale patterns in slope within the

pool-riffle unit. This was repeated for the reach-scale bed slope using a 45-metre window

based on previous knowledge that this is equal to the average pool-riffle spacing at Carnation

Creek (S. Bird, personal communications, April 2018).

Hydraulic radius extraction

In wide and shallow channels, the hydraulic radius can be well approximated by the water

depth. However, many of the pools along Carnation Creek occur in deep and narrow sections

of the channel, thus violating the wide channel approximation assumption. Therefore, the

hydraulic radius for all cross sections across the channel was calculated using Equation 3.1.

To calculate the length of the wetted perimeter, the wetted cross section lines were first

converted to 3D polylines in ArcMap using the ‘Interpolate Shape’ tool from the 3D Analyst

Toolbox. This attributes depths to the cross section lines every 10 cm from the bathymetry

rasters. The wetted perimeter of each cross section was determined by using the ‘Add Surface
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Information’ tool in ArcMap from the 3D Analyst Toolbox. For each wetted perimeter line,

the area below a plot of distance along cross section against water depth was then calculated

using the ‘trapz’ function in the Practical Numerical Math Function (‘pracma’) package in

R (Borchers , 2018). The hydraulic radius was then calculated as the wetted area at each

cross section divided by its wetted surface length.

D50 extraction

To provide a measure of the grain roughness across the channel, the average D50 of the dry

exposed bars in a 0.5 m buffer around each cross section was extracted. Together, these

variables summarize the channel form (Rh and S) and roughness (n, approximated by D50)

of each cross section, akin to the variables used for the Manning Equation (1891) (Equation

3.3), which provides an estimate of the channel’s velocity. Therefore, there is mathematical

impetus to using these variables to discriminate between slow-moving residual pools and

faster riffle morphologies that will provide unique aquatic habitats.

v =
1

n
R

2
3
hS

1
5 (3.3)

3.2.3 Principal component analysis

Using the extracted channel variables, an attempt was made to rapidly and objectively

characterize channel morphologies using a PCA and k-means clustering algorithm using the

package ‘stats’ in R (R Core Team, 2018). The general purpose of a PCA is to reduce the

number of dimensions in a dataset that contains interrelated variables while describing the

maximum amount of variation present (Jolliffe, 2002). This is achieved by a transformation

that projects the data along principal components, which are axes that best explain the

variation of the data, with the first component explaining the most variation, followed by

the remaining components (Jolliffe, 2002). Throughout the transformation, the relative

positions of the observations to one another remain the same. This allows components

which do not explain much of the variation to be removed, thereby allowing the data to

be visualized using fewer dimensions. Because the dataset was multi-dimensional, with five

variables over 2362 sampling sites, a PCA was an appropriate analysis tool to help simplify

and pull out patterns in the data, which is beneficial for k-means clustering.

Eigenvector selection

The PCA was first run using all five dimensions, from which a decision was made on how

many dimensions were necessary to explain the variation in the data. To make this decision,
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the cumulative percentage of variation explained by the principal components, as well as

the variation explained by each eigenvector was examined. Eigenvectors are vectors that

explain the directions along which the data varies, whereas eigenvalues explain the amount of

variation explained by each of the principal components. A commonly used rule to determine

the number of components to use is to choose a cut-off value between 70% and 90% for the

cumulative variance explained by the components (Jolliffe, 2002). The scree plot in Figure

3.3 shows that the first two and first three components explain 64.6% and 79.0% of the

variation in the dataset, respectively. This suggests that three components would be a

suitable number to retain. Considering the eigenvalues of the principal components (Figure

3.4) shows that the first two components have eigenvalues greater than or close to one. An

eigenvalue of less than one represents components which explain less variance than one of

the original variables (Jolliffe, 2002). However, to allow for sampling variation, it has been

suggested that an eigenvalue cut-off value of 0.7 may be appropriate (Jolliffe, 2002). As the

third component has an eigenvalue of 0.73, an argument can be further made for retaining

just the first three principal components.
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Figure 3.3: Scree plot of the variance explained by the principal components.
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3.2.4 K-means clustering

Following the PCA, a k-means clustering algorithm was run to identify clusters in the data

along the first three components. A k-means clustering algorithm is an unsupervised classifi-

cation that assigns observations from ‘n’ dimensions to clusters that allow the within-cluster

sum of squares to be minimized (Hartigan and Wong , 1979). A key decision in a clustering

analysis is determining the number of clusters to be used to classify the data. Initially when

adding more clusters, the variation within each group will steeply decrease, but eventually

there will be a point where the addition of more clusters has a marginal influence on decreas-

ing the within-cluster variance. This point, which would be located at an elbow or plateau

in a plot of clusters against within-cluster variance is often deemed an appropriate point to

choose as a cut-off (Flynt and Dean, 2016). To identify this location, the k-means clustering

algorithm was run with the number of clusters ranging from one to 20 (a value greater than

the number of morphologies to be expected at Carnation Creek) and a plot of within-cluster

variance against number of clusters examined. As seen in Figure 3.5, at about 5–7 clusters

the curve becomes much less steep, which matches well with the number of morphologies

one may expect at Carnation Creek, being pool, riffle, run, glide and plane-bed morphologies

near the canyon. Therefore, the k-means clustering algorithm was run with the number of

clusters set to six.
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Figure 3.5: K-means clustering plot demonstrating how the within groups sum of squares
decreases with the incorporation of more clusters.

3.2.5 Channel diversity classification

Following clustering of the cross-sectional variables, the mean values for each of the channel

variables of each cluster were examined and a channel type was attributed to each cluster.

This provided a continuous classification of channel types across Carnation Creek from the

mouth to the beginning of the canyon at 1 m intervals. From these data, a measure of chan-

nel diversity was acquired throughout the stream. To characterize the diversity of channel

morphology across the stream, a moving analysis using the Shannon diversity index (Shan-

non and Weaver , 1964) was conducted. The Shannon diversity index provides a measure

of the abundance and evenness in an area (Lloyd and Ghelardi , 1964). Whereas it is often

calculated with regard to species types in ecology, in the context of this research channel

types are instead considered, similar to the work of Harris et al. (2009). To calculate it, the

proportion of each channel type (pi) in an area is multiplied by the natural logarithm of the

proportion. This value for all the channel types present in the system is summed up yielding

the Shannon diversity index (Equation 3.4).

H = −
∑

pilnpi (3.4)
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3.2.6 Scale effects

Finally, a relevant question with regards to managing these systems is determining the scale

that needs to be surveyed to ensure that their heterogeneity is likely captured. To answer

this, the standard deviation of diversity was calculated for window sizes ranging from 15–600

m in length. It would be expected that eventually the standard deviation would approach a

finite value with increasing sample size, providing an estimate of how much of the channel

it is necessary to survey to ensure that its heterogeneity is captured.

3.3 Results

Interpretation of the PCA

The first three components from the PCA explained approximately 80% of the variation in

the data, with components one, two and three reflecting 45.11%, 19.3% and 14.6% of the

variation respectively. The contributions of each variable to each component are illustrated

in Figure 3.6, with larger contributions indicating that the variable has a greater influence on

the component. The first component is most largely represented by Sr, D50 and Sws (Figure

3.6a), the second by the Rh (Figure 3.6b), and the third by the Sl and D50 (Figure 3.6c).
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Figure 3.6: Variable contributions to Principal Components. The red-dashed line represents
the mean contribution of the variables at 20%.

The correlation circle, Figure 3.7, provides a representation of the quality and correlation

of the variables with one another along the first two components. Variables that are of high

quality along a dimension are represented by their high cos2 value and the greater distance

they plot from the circle’s centre. Variables that are closely related tend to plot close to one

another, while those that are inversely related tend to plot at 180◦ from one another, and

those with no relation tend to plot perpendicular to one another. As seen in Figure 3.7, D50,

Sr and Sws are of relatively high quality and plot in a slightly opposite direction to the Rh.

Sl is of relatively low quality, but plots in the same direction as D50, Sr and Sws, suggesting

that the variables are weakly correlated.
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3.3.1 Clustering analysis

After running the k-means clustering algorithm using six groupings on the first three compo-

nents, similar patterns appear in the biplot (Figure 3.8 and Figure 3.9), compared to those

observed in the correlation circle (Figure 3.7). For each cluster, the mean of each variable

was determined and the likely morphology attributed to it based on these values (Table 3.1).

Moving from left to right along the first dimension there is a transition from morphologies

with shallow bed and water surface slopes with finer material, to steeper morphologies with

coarser material (Figure 3.8). This appears to represent a transition from pool to riffle

morphologies along the first component. Within the riffle channel type, the classification

also captures a distinction between riffle morphologies with slightly coarser bed material,

which received the channel type “Riffle-coarse” (RiffleC) to characterize this change. Moving

down the y-axis, shallower environments are encountered with decreasing local bed slopes,

as indicated by the transition from pool to glide morphologies (Figure 3.8).
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Table 3.1: Means of channel variables for each cluster. l is the longitudinal distance, d is
the thalweg depth, Rh is the hydraulic radius, Sl is the local slope, Sws is the water surface
slope, Sr is the reach slope, D50 is the median grain size and W is the channel width.

Cluster l (m) d (m) Rh (m/m) Sl (m/m) Sws (m/m) Sr (m/m) D50 (cm) W (m)
RiffleC 2980 0.16 0.12 0.018 0.018 0.024 6.74 4.13
Plane-bed 3160 0.20 0.14 0.054 0.047 0.042 8.21 3.47
Riffle 1650 0.13 0.090 0.027 0.016 0.012 4.10 3.65
Glide 1470 0.28 0.16 -0.020 0.003 0.003 3.68 4.99
Run 1435 0.61 0.35 0.044 0.005 0.016 3.92 4.94
Pool 1420 1.04 0.60 -0.031 -0.004 0.000 3.66 5.99

−2

0

2

4

−5.0 −2.5 0.0 2.5 5.0 7.5
PC1 (45.11 % explained var.)

P
C

2 
(1

9.
3 

%
 e

xp
la

in
ed

 v
ar

.)

Morphology

Glide
Pool

Riffle
Plane−bed

RiffleC

Run

Figure 3.8: Biplot of each observation along PC1 and PC2. The groupings from the k-means
clustering analysis are colour-coded and their centroid outlined.
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Figure 3.9: Isolated biplot of each observation along PC1 and PC2 for the six clusters. The
groupings from the k-means clustering analysis are colour-coded and their centroid outlined.

3.3.2 Clustering accuracy assessment

To assess the accuracy of the clustering algorithm, 100 locations were randomly selected

along the thalweg and visually assigned to either glide, pool, run, riffle, riffleC , or plane-bed

morphologies according to Figure 3.1. These values were then compared to the morphologies

predicted by the PCA. As seen in Table 3.2, there was 85% agreement between the PCA

classified morphologies and visually classified morphologies. The riffle morphologies had the

lowest correct classification rate at 71.8% and 77.0% for the riffle and riffleC categories,

respectively. Glide and plane-bed morphologies had the highest classification rate at 97.4%

and 100%, respectively.
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Table 3.2: Accuracy assessment of morphology classification

Morphology % Correct
Glide 97.4
Pool 80.0
Run 84.6
Riffle 71.9
RiffleC 77.7
Plane-bed 100 .0
All 85.0

The trends of the clustering analysis generally match what is observed in the field. The

increase in the plane-bed morphology observed around 3000 m in Figure 3.10 corresponds

to what is observed at Carnation Creek (Figure 3.11). When approaching the canyon there

is a sudden and marked change in morphology, with the slope becoming steeper (Figure

3.12) and bed material much coarser, which the plane-bed cluster appears to capture. This

channel type is characterized by shallower water depths, very steep reach scale slopes (Sr =

0.042 m) and nearly double the average grain size (D50 = 8.21 cm) found in lower reaches

of the channel.
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Figure 3.10: Cumulative sum of channel morphologies along the stream’s longitudinal profile.
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Figure 3.11: Distribution of channel morphologies at Carnation Creek. At ∼3000 m up-
stream, there is a marked change in channel morphologies from the typical riffle-pool mor-
phologies to much steeper and shallower channel morphologies.
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Figure 3.12: Longitudinal profile along the thalweg of Carnation Creek.

In a heterogeneous area further downstream in the channel, the classification matches the

typical progression expected of channel morphologies (Figure 3.13) in a pool-riffle transition

area. The exit of the pool is classified as a glide, with negative channel slopes. As the slope

gets a little steeper we see shallow riffle type morphologies that meld into a deeper run at

the entry of the pool (Figure 3.13).
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Figure 3.13: The transition of channel morphology from riffles to pools in a heterogeneous
section of channel.
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The channel morphology classification is also sensitive to changes in bed slope and grain

size (Figure 3.14). This is evidenced in study section seven, where there is an initial coarsen-

ing in bed material and steepening in bed slope where a tributary enters the channel. Rather

than receiving a riffle classification (typical Sr = 0.012 m/m and D50 = 3.65 cm), this unique

section of the channel received the riffleC morphology classification which is characterized

by a slightly steeper slope and larger grain sizes (typical Sr = 0.024 m/m and D50 = 6.74

cm). Figure 3.14 demonstrates how the PCA-clustering technique can identify local areas

with unique morphological characteristics that may be missed in a traditional view of the

system.
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Figure 3.14: The influence of grain size and slope is indicated by the classification of riffleC
morphology in study section seven, where a tributary enters the channel.
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3.3.3 Scale effects

Because fish require an array of physical habitats to complete their life histories, it would

likely be useful from a management perspective to have a metric that characterizes patterns

in channel diversity across the river basin. Such a metric was provided by calculating the

Shannon’s diversity index of channel morphologies at one-metre intervals in a 45-metre win-

dow. As demonstrated in Figure 3.15, diversity fluctuates greatly at the 45-m scale, however,

there appears to be a trend towards decreased channel diversity as the canyon is approached.
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Figure 3.15: Shannon’s diversity across the channel based on a 45-metre window. Gaps in
the data correspond with locations where there were no survey observations in a window.

Finally, we were interested in assessing how much of the channel it was necessary to survey

to ensure that its heterogeneity was captured through analyzing the change in standard

deviation of channel diversity for different window sizes. This assessment was limited to the

lower three kilometers of the channel, prior to the onset of the plane-bed morphologies, which

are not used by anadromous salmon. The results of calculating the standard deviation of

the diversity metric for channel types from windows ranging from 15-600 m in length can be

observed in Figure 3.16. After a window size of around 200 m in length, there are marginal

decreases in the standard deviation of channel diversity with increasing window size. This

suggests that at around this distance, it is likely that the diversity of channel types will be

captured.
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Figure 3.16: Standard deviation of channel diversity.

3.4 Discussion

This study shows how RPA imagery can be used to objectively and rapidly characterize pat-

terns in channel morphology at the basin-scale of a small, forested mountain channel. Using

remotely sensed data and a PCA-clustering analysis, three kilometers of channel were char-

acterized along the longitudinal profile at 1 m intervals. This is a resolution and extent tra-

ditionally difficult to capture in small, forested channels, yet is of critical importance for the

life cycles of some aquatic species (Fausch et al., 2002). In contrast to prior PCA-clustering

analysis (Lindenschmidt and Long , 2013; Hugue et al., 2016), this research demonstrates

how easily extractable RPA-centric variables can be used without running computationally-

expensive flow models to classify the channel. Following a k-means clustering algorithm,

six unique channel morphologies were identified, with an overall correct classification rate of

85%.

A strength of the PCA is the ability to investigate patterns in the data that influenced the

observed classification. As illustrated in Figures 3.6 and 3.7, the general relations between

the variables comprising the three components used in the analysis match our geomorphic

understanding of stream systems. The first component is well represented by Sws, S45 and

D50, the second by Rh, and the third by Sl. Therefore, the first component is character-

ized by variables known to share clear trends along the longitudinal profile (Buffington and

Woodsmith, 2003), whereas the second and third describe more local conditions, relating to

the local channel geometry and slope respectively. As shown in Figure 3.7, Sws, S45 and

D50 are of relatively high quality and plot in a slightly opposite direction to Rh, indicating

that these two sets of variables are inversely related. Indeed, one would expect pools, areas

that tend to have smaller water surface and reach slopes to have a greater hydraulic radius.

As the D50 plots near Sws, S45, it is well correlated with reach scale patterns in slope, in-
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dicating that steeper portions of the channel are likely linked with coarser grain sizes, as

has been noted in the literature (Buffington and Woodsmith, 2003). Local channel slope was

the lowest quality variable, likely due to the array of channel slopes associated with similar

channel geometries in transitional areas. It was most well represented on PC3, which had

an eigenvalue of less than one, meaning that it explains less variation than a single variable

of the original untransformed dataset (Jolliffe, 2002). There could therefore be an argument

made for excluding PC3 from the analysis. However, it is the component which had the

strongest and highest quality representation of local channel slope (Figure 3.6c), which is

likely an important discriminator of meso-scale morphologies such as glides, which tend to

have local negative slopes. Therefore, the third component was included in the analysis, to

be conservative in ensuring local channel slope was well represented.

Examination of the classification from the PCA-clustering analysis revealed that there

was good agreement between the characteristics of the morphologies with those found in

previously published studies. As shown in Table 3.3, the mean values of the variables for

each assigned morphology are close to reference values found for the slope, depth and grain

size characteristics of similar channels. The accuracy of the PCA-clustering technique was

also tested against a visual classification of random locations along the channel. The greatest

disagreement in the channel morphologies came from the riffle and riffleC morphologies at

classification success rates of 71.9%, and 77.7% respectively. Determining the morphology

of transition zones, such as between runs and riffles appeared to be a source of confusion

between the classification schemes. In contrast, plane-bed and glide morphologies were eas-

ily distinguishable through their unique slopes and grain sizes (Table 3.1), thus leading to

their correct classifications. As the visual classification is subjective, it is not surprising

the two classification schemes do not have 100% agreement. Ultimately, the PCA-clustering

technique presented provides an objective alternative with a statistical basis.

Table 3.3: Comparison of average values for variables of each morphology to those found
in previously published studies. XChurch refers to values referenced from Church (1992),
XHogan to values referenced from Anonymous (1996), and XBuff. to values referenced from
Buffington and Woodsmith (2003), and XHelm to values reported in this research.

SChurch SHogan SBuff. SHelm D/dChurch D/dHogan D/dHelm

Morphology (m/m) (m/m) (m/m) (m/m) (m) (m) (m)
Riffle 0.02 0.005-0.015 0.001-0.02 0.012 <1.0 0.1-0.3 0.328
RiffleC - 0.015-0.03 - 0.024 - 0.3-0.6 0.411

Plane-bed 0.02-0.04 0.03-0.05 0.01-0.04 0.042 ∼1 0.6-1.0 0.419
Glide - - - 0.003 - - 0.134
Run - - - 0.016 - - 0.064
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A useful contribution of this research for watershed management was formed by the

metrics that were developed to characterize the channel’s heterogeneity. The application of

Shannon’s diversity index, a frequently used metric in ecology for investigating the structure

of ecosystems, was a new application in the assessment of diversity of channel morphology

of a small, forested stream. As demonstrated in Figure 3.15, there was a decrease in di-

versity with distance upstream, which matches observations in the field. Certainly as the

canyon is approached at around 3000 m, there is a decrease in diversity as the channel tran-

sitions to plane-bed morphologies. However, overall channel diversity fluctuates greatly at

the 45-metre reach scale, further elucidating the importance of considering the Riverscape

Approach for studying these systems that may not vary consistently and predictably. In

reality though, many long-term research experiments still rely on using discrete reaches to

understand watershed processes. Therefore, to provide a useful tool for managers, an esti-

mate was made on the required scale to study Carnation Creek to ensure its heterogeneity

was characterized. This was predicted to be approximately 200 m, and intriguingly is close

to the sediment storage wavelength identified by (Reid et al., 2019) for the system. This

number can provide insights for setting up studies like the one observed in Carnation Creek.

Perhaps the greatest strength of the PCA-clustering technique is its implicit suitability to

the study area of interest. Each stream is unique, and therefore it is possible that imposing

unit boundaries discovered in one stream will not yield realistic groupings in a new system.

Rather, the PCA-clustering technique finds natural groupings in the dataset that may be

better suited to the area of interest. The RPA-survey as a means of data collection also

provides an improvement over traditional methods. Extraction of channel widths typically is

a task that would require at least two people, and care must be taken in the field to properly

collect the data at systematic intervals and transcribe the measurements (Bisson et al.,

2007). In contrast, extracting data from the RPA-derived rasters leaves a raw dataset that

measurements can always be checked against, as well as the ability to adjust window sizes for

collecting the data as the needs of a study change. However, there were characteristics of the

analysis that limited its broad-scale applicability. First, it relied on using wetted variables,

in contrast to features like the bankfull width or depth to characterize the geometry of the

channel. This was done because some areas with low-lying overhanging vegetation made it

impossible to accurately determine the extent of the bankfull width. When considering the

needs of salmonids in the summer, the low flow conditions observed in July are what will

be of concern and what will determine the connectivity and distribution of certain channel

types across the riverscape. However, for more generalizable results, it could be worthwhile

to consider variables like the bankfull width, or the bankfull depth, which are less tied to

the wetted conditions observed at the time of the survey.
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Despite the limitations of the PCA, and classification schemes in general, they remain a

valuable tool in aiding the understanding of stream systems. These methods provide a tool

to facilitate the rapid, objective and unsupervised classification of channel morphologies at

the basin-scale, a scale identified of great importance for the life histories of some aquatic

species, but notoriously difficult to characterize. Future studies conducted at this scale,

along with observation of aquatic species across multiple watersheds, may lead to greater

understanding of the influence that basin-scale patterns in aquatic habitat may have on some

aquatic species, thereby helping to fully realize the utility of the Riverscape Approach.

3.5 Conclusion

The methods illustrated in this chapter provide a rapid and objective technique for char-

acterizing patterns in aquatic habitat at the basin-scale of a small, forested channel. This

is an environment of historic importance for aquatic species like coho salmon (Tschaplinski

and Pike, 2017), yet has not benefited from the large scale and high resolution analysis of

aquatic habitat facilitated through remote sensing that larger streams have experienced. Use

of RPA-derived rasters of bed morphology, bathymetry, and grain size in combination with a

PCA-clustering analysis of the channel morphology at 1-metre intervals provided characteri-

zation of this channel at an extent that would be difficult to attain using traditional methods.

This allowed for the analysis of the channel’s local diversity at the basin-scale, and inves-

tigation of the necessary scale required to capture its heterogeneity. For Carnation Creek,

this was observed to be approximately 200 m. The implications of this research are twofold.

First, prior to setting up monitoring experiments, care needs to be taken to ensure that the

cumulative sum of the study sections at least equals this scale length. Second, investigation

of the local diversity across the channel would help to ensure that study sections are well

distributed between areas of high and low diversity. Future research could involve a paired

catchment analysis to assess how diversity indexes vary between catchments with different

controlling factors (e.g. land-use), to assess if diversity may be a proxy for habitat suitability.

Ultimately, these results help to provide a means of bringing novel techniques used in larger

systems to the challenging conditions provided by small, forested river systems. This will

hopefully help to provide an opportunity for greater riverscape analysis in these systems.
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Chapter 4

Conclusion

The methodologies presented in this thesis advance the ability of stream scientists to objec-

tively characterize small, forested mountain channels at the basin-scale using high resolution

RPA imagery. Small, forested streams have long been notoriously challenging to characterize

using both traditional field and remote sensing techniques, by nature of their dense canopies

and challenging topography. Nonetheless, their importance cannot be understated, as seen

by the strong preference of salmonids like coho salmon and cutthroat trout for these systems

(Rosenfeld et al., 2000). The overall aim of this research was to provide tools to aid in the

understanding of these systems through developing a rapid RPA-survey for extracting rele-

vant channel metrics, so as to objectively characterize patterns in channel morphology at the

basin-scale. To do this, new techniques were required for the sub-canopy characterization of

the system. Chapters 2 and 3 detail these new techniques and test their application to the

larger stream network.

The research objective for Chapter 2 was to test the utility of a close range, sub-canopy

RPA-survey for characterizing a small, forested mountain channel. The closed canopy and

riparian vegetation of the channel precluded the ability to characterize the channel banks

using the vertical imagery that has dominated flight plans for stream surveys to date. This

challenge was overcome through the inclusion of oblique-convergent imagery that facilitated

characterization of hidden portions of the channel banks. An in-depth accuracy assessment

was conducted to investigate the difference in vertical error of checkpoints in DEMs created

through different flight path configurations. The assessment revealed that the inclusion of

oblique imagery provided greater coverage of the channel bed, as well as comparable vertical

errors to a flight plan with only vertical imagery. The vertical errors were within the cm scale,

which is suited to the reach-scale geomorphic analysis these data would generally be used for.

Techniques developed in previous studies were also successfully applied to the imagery for

extracting bathymetry and grain sizes across the channel, yielding similar error estimates to
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those reported in other studies. Application of this new data collection technique can provide

geomorphologists with the necessary tools to characterize patterns in channel characteristics

such as grain size, water depths and topography across the riverscape.

Building upon the methodology and channel data extracted in Chapter 2, the third

chapter provides a means of rapidly and objectively characterizing patterns in channel mor-

phology. Using a PCA and variables grounded in a theoretical understanding of channel

form, pool-riffle, transitional and plane-bed morphologies were classified continuously across

the stream network. The PCA-clustering technique is less subjective than a traditional

observation-based characterization of channel morphology across the stream network, and

avoids the potential for the human perception of the channel to influence the classification of

channel form. The scale investigated was also greater than what would be easily attainable

using traditional methods that yield a similar dataset, such as a total station topographic

survey. This is of importance, as the scale investigated with the RPA is a better match to the

life cycles completed by some aquatic species in the system (Fausch et al., 2002). Through

assessing the patterns in channel diversity across the riverscape, the necessary scale required

to capture the stream’s heterogeneity was also investigated.

Altogether, this dissertation demonstrates how the capabilities of RPA technology can

be used to improve the understanding of small forested mountain channels. The primary

contributions to fluvial geomorphology and ecology are:

� A new methodology using sub-canopy and oblique-convergent imagery to characterize

the topography, grain size and bathymetry of small, forested mountain channels.

� Demonstration of the applicability of this technique to surveying channels at a resolu-

tion and extent relevant to the life cycles of some aquatic species.

� A new framework for the rapid and objective characterization of channel morphology

at the basin-scale using easily extractable channel features, and application of these

data to investigating patterns in channel diversity across the riverscape.

From a management perspective, these contributions can be applied to streams to provide

a holistic view of channel morphology across the riverscape that will allow for the assessment

of the links between channel morphology and aquatic species at the riverscape scale. Indeed,

given the varying geology, climate and land-use conditions along streams, it is expected

that individual streams will display unique characteristics. This leads to the timely research

question postulated by Lapointe (2012), “How does the unique structure of a riverscape affect

salmonid community composition, population size, and stability?”. Through incorporation of

the techniques illustrated in this chapter, geomorphologists are now in a position to address
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the physical habitat component of this question. With advances in the ability to study fish

at this same scale, the ability to fully realize the utility and potential of the Riverscape

Approach is being approached.
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