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Abstract

This thesis proposes a solution for automated goal-driven exploration of Android
applications – a scenario in which a user, e.g., security auditor, needs to dynamically
trigger the functionality of interest in an application, e.g., to check whether user-
sensitive info is only sent to recognized third-party servers. As the auditor might
need to check hundreds or even thousands of apps, manually exploring each app
to trigger the desired behavior is too time-consuming to be feasible. Existing
automated application exploration and testing techniques are of limited help in this
scenario as well, as their goal is mostly to identify faults by systematically exploring
different app paths, rather than swiftly navigating to the target functionality.

The goal-driven application exploration approach proposed in this thesis, called
GOALEXPLORER, automatically generates an executable test script that directly
triggers the functionality of interest. The core idea behind GOALEXPLORER is
to first statically model the application UI screens and transitions between these
screens, producing a Screen Transition Graph (STG). Then, GOALEXPLORER uses
the STG to guide the dynamic exploration of the application to the particular target
of interest: an Android activity, API call, or a program statement. The results
of our empirical evaluation on 93 benchmark applications and 95 most popular
GooglePlay applications show that the STG is substantially more accurate than
other Android UI models and that GOALEXPLORER is able to trigger a target
functionality much faster than existing application exploration.
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Lay Summary

Goal-driven exploration of mobile applications is a scenario in which a user needs
to promptly trigger a specific functionality of an application, to explore its behavior.
Goal-driven exploration is useful in a variety of tasks, e.g. when a security auditor
needs to inspect an application for compliance with security protocols. Existing
application testing techniques are not suitable for goal-driven exploration because
they cannot promptly navigate to the functionality of interest.

In this thesis, we present our approach to goal-driven exploration, called GOAL-
EXPLORER. Our main insight is to first analyze the application without running
it and construct a model of its user interface. Then, we run the application and
use the constructed model for identifying a set of user gestures that navigate the
execution towards the desired, user-selected functionality.

The evaluation result shows that GOALEXPLORER performs substantially better
than other existing approaches, providing an efficient and effective solution to goal-
driven exploration.
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Chapter 1

Introduction

1.1 Problem Statement
Mobile applications (apps) have grown from a niche field to the forefront of modern
technology. Mobile phone users have now access to more than 5.5 million apps in
the major online stores [64] and at least as many more in alternative stores [12].
As our daily life becomes more dependent on mobile apps, various stakeholders,
including app developers, store owners, and security auditors, require efficient
techniques for validating the correctness, performance, and security of the apps.

Dynamic execution is a popular technique used for auditing [34, 37, 66, 72]
and validating [18, 45, 60, 33] mobile apps. For example, a security auditor often
monitors the network traffic generated by an app to ensure that user-sensitive info is
sent encrypted over the network [45, 60] and that it is sent to recognized third-party
servers only [18, 33]. It is common for the auditor to know which part of the
app is responsible for the functionality of interest, but dynamically triggering that
functionality is still a challenging task.

Consider, for example, a popular mobile personalization app, Zedge [74], which
provides access to a large collection of wallpapers, ringtones, etc. and has more
than a hundred million installs on Google Play. A security auditor exploring this
app can quickly determine that it uses the Facebook SDK [16] and allows the users
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to log in with their Facebook accounts. Such determination can be done by simply
browsing the app code: the Facebook login is triggered by a particular API from
the Facebook SDK [15]. Now, the auditor wishes to check what information is
transmitted during the login process and what information is granted by Facebook
when the user logs into their account [59].

Figure 1.1: Example App - ZEDGE.
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To perform this investigation, the auditor needs to generate a set of user gestures
that navigate the app to the Facebook login screen. For Zedge, that entails a
nontrivial sequence of steps shown in Figure 1.1: first, scroll all the way down
in the menu of all possible operations in Figures. 1.1(a-b) to the 11th menu item,
then click the “Settings” button in Figure 1.1(b) to open the “Settings" view, then
click “ZEDGE account” in Figure 1.1(c), and only then click on “Continue with
Facebook" in Figure 1.1(d).

Such a manual exploration, especially when one needs to analyze hundreds
or thousands of different apps, is time-consuming. Existing testing frameworks,
such as Espresso [24], UIAutomator [28], and Robotium [61], are not helpful in
this scenario as they are designed to provide the user a way to manually script test
cases and later repeatedly execute these test cases.

Automated app exploration techniques that exercise the app by generating user
gestures and system events [1, 5, 10, 32, 35, 46, 47, 48, 54, 65] are of limited
help as well. The goal of these techniques is to detect faults through a thorough
exploration of different app behaviors [42]. However, when there is a large number
of feasible paths to explore, these techniques will have difficulties to quickly
navigate to the functionality of interest. For the Zedge example in Figure 1.1, both
the most prominent automated app exploration and testing tools, Sapienz [48] and
Stoat [65], failed to reach the Facebook login screen after two hours of execution,
even when configured to prioritize previously unexplored paths. That is because
these techniques lack knowledge of which of the unexplored paths is most likely to
lead to the functionality of interest and thus end up exploring a large number of
possible unrelated paths.

1.2 Research Objective
In this thesis, we introduce a goal-driven app exploration approach and the associ-
ated tool, called GOALEXPLORER, which directly triggers a particular functionality
of interest. GOALEXPLORER combines a novel approach for modeling an app User
Interface (UI) as a Screen Transition Graph (STG) with a dynamic STG-driven app
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exploration technique. Given a particular target of interest – an Android activity,
API call, or a code statement, GOALEXPLORER automatically builds an executable
script that swiftly triggers the target.

We believe that our work would benefit stakeholders who are interested in
validating the behaviors of Android apps on a large scale, e.g., app store owners
and security auditors. The static UI model proposed in our work, STG, can also be
used by the research community to perform UI-related analyses, such as detecting
spurious UI transitions [75], e.g., when clicking on the “Settings" button directs
the user to the “Shopping" page.

1.3 Research Contributions
The idea of building a static UI model of an Android app is not new by itself. To the
best of our knowledge, A3E [5] was the first to build a static model of the Android
app UI, which only focused on Android activities. Gator [73] further extended this
model to capture information about the menu items and the widgets that facilitate
transitions between the modeled UI components, e.g. activities and menus.

However, the main building blocks of both these models are UI components
rather than their composition into UI screens. As such, they do not accurately
model the current Android UI framework [8] that allows composing screens from
multiple components, such as fragments, menus, drawers, etc. Thus, they will
misrepresent transitions originating in fragments, e.g., the transitions between
screens in Figures. 1.1(b) and (c). Moreover, they do not model states and transi-
tions triggered by background tasks and events (broadcast receivers, in Android
terminology). For example, an app relying on the Facebook login mechanism
can use a broadcast receiver to deliver login information to the interested app
components, as done in Zedge example in Figure 1.1: after the login is triggered in
Figure 1.1(e), the app broadcasts the login status and, in the case of a successful
login, additional meta-information such as the user email address, to the Controller

activity in Figure 1.1(f). Without modeling broadcast receivers, a goal-driven
exploration tool will fail to reach that screen.
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Our analysis shows that 63% of the top 100 apps from Google Play have at
least one screen transition originating from a fragment and 34% have at least one
transition originating from a background task or broadcast receiver. Modeling
these behaviors is thus critical for the goal-driven exploration task and we do so in
our work.

In addition, we introduce the concept of modeling UI screens as composition of
UI components rather than individual UI components. We empirically show that,
for our task, such approach is superior to the existing concepts of modeling app UI.

More specifically, our empirical evaluation of GOALEXPLORER on a large
number of Android apps from existing benchmarks and the Google Play store shows
that it is able to explore a substantially higher portion of each app when compared
with the static model generated by Gator, even if we extend Gator’s model to
include additional elements, such as fragments, services, and broadcast receivers.
When compared to state-of-the-art dynamic exploration and testing techniques, i.e.,
Sapienz [48] and Stoat [65], GOALEXPLORER is able to explore a similar portion
of each app, which attests to the accuracy of its statically-built model of screens and
transitions. However, GOALEXPLORER is able to reach the functionality of interest
substantially faster than the dynamic exploration tools: it takes GOALEXPLORER

47 seconds on average to trigger a target statement, compared with 710 seconds
and 861 seconds for the baseline tools, respectively. As such, GOALEXPLORER

provides an efficient solution to the goal-driven exploration problem in mobile
apps.

Interestingly, our analysis of network traffic associated with Facebook login in
Zedge helped revealing a potential security vulnerability in this app: after receiving
the OAuth [58] authentication/bearer token from Facebook, the app openly sends
it to its server. Such behavior is discouraged by the Internet Engineering Task
Force (IETF) [30] because any party holding the token can use it to access the
user private information, without any further proof of possession. According to
IETF, when sent over the network, bearer tokens have to be secured using a digital
signature or a Message Authentication Code (MAC) [30]. Zedge is not following
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these guidelines; thus, a man-in-the-middle can steal the token and access private
information of users logged into the app.

To summarize, this thesis makes the following major contributions:

• It defines the problem of goal-driven exploration for mobile apps: efficiently
triggering a functionality specified by the user.

• It shows that existing approaches are insufficient for performing goal-driven
exploration.

• It presents a technique for constructing a static model of an app UI called
Screen Transition Graph (STG) and using STG to generate an executable
script that triggers a specific functionality of interest defined by the user.

• It implements the proposed technique in a tool named GOALEXPLORER

and empirically shows its effectiveness on the 93 benchmark apps used
in related work and 95 top Google Play apps. Our implementation of the
GOALEXPLORER and its experimental evaluation package are available
online [2].

1.4 Thesis Organization
The remainder of this thesis is structured as follows:

• Chapter 2 provides the background on Android app component structure,
lifecycle, and UI.

• Chapter 3 reviews the related work.

• Chapter 4 presents our approach and its implementation.

• Chapter 5 outlines our evaluation methodology and presents the evaluation
results.

• Chapter 6 concludes the thesis, discusses the limitations of our approach and
threats to its validity, and presents the possible future research directions.
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Chapter 2

Background

In this chapter, we give the background on app component structure, lifecycle, and
UI.

2.1 Android Applications

2.1.1 App Components
Android apps are built from four main types of components — activities, services,
broadcast receivers, and content providers [23]. Activities are the main UI building
blocks that facilitate the interactions between the user and the app. Services

perform tasks that do not require UI, e.g., prefetching files for faster access or
playing music in the background after the user has switched to other activities.
Broadcast receivers are components that respond to notifications. A broadcast can
originate from

(i) the system, e.g., to announce that the battery is low,
(ii) another app, e.g., to notify that a file download is completed, or

(iii) from other app components, e.g., to notify that the login was completed
successfully.

Content providers manage access to data, e.g., for storing and retrieving contacts.
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Figure 2.1: Activity Lifecycle Events.

Except broadcast receivers, all app components must be declared in the man-
ifest file; the declarations include components’ basic properties, such as Java
handler classes. Broadcast receivers can be declared either in the manifest file or
dynamically in code by calling system API Context.registerReceiver.

2.1.2 Component Lifecycle
Unlike Java programs, an Android app does not have a main method; instead, each
app component implements its own lifecycle events. The activity lifecycle [20] is
shown in Figure 2.1. Once an activity is launched, the system calls its onCreate
method, followed by onStart and onResume. Developers specify the behavior
of these methods, e.g., the UI setup is typically done in onCreate. The activity
completes the initialization after onResume. It then enters a running state, and
begins handling callbacks, e.g., those triggered by user inputs or by system changes.
The activity is paused when it loses focus, and can eventually be stopped and
destroyed by the operating system.

The lifecycle of services is similar to that of activities, except additional
methods that handle service bindings, i.e., cases when other app components
maintain a persistent connection to a service. Binding is achieved by calling
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Context.bindService, followed by invocation of the onBind lifecycle method
of the service.

Broadcast receivers only have one lifecycle event, onReceive, to handle the
received events. Content providers do not expose any lifecycle events.

The transition between Android components relies on Intents, which explic-
itly or implicitly specify the target component and the data to be passed to that
component. An activity, service, or broadcast receiver can launch another activity or
service by calling corresponding Android API functions, such as startActivity
and startService, and passing the Intent as a parameter.

Broadcast receivers are registered with intent-filters, which specify the types
of events that the broadcast receiver handles. Once an event occurs, the system
will trigger the onReceive callback methods of all broadcast receivers registered
for this event. For example, an app can register a broadcast receiver listening
to changes of the network status and, in the onReceive callback, start a certain
activity or service once the device has acquired access to the Internet.

2.1.3 App UI Structure
An application screen is represented by an activity “decorated” by additional UI
components, such as fragments, menus, dialogs, and navigation drawers [23],
which correspond to modular sections of the screen. Figure 2.2 depicts such
modular composition of screens. The solid box in Figure 2.2a highlights the
container activity; its two hosted fragments are highlighted in Figure 2.2b.

A fragment is a re-usable UI component with its own lifecycle and event
handling. A fragment can be instantiated in multiple activities and must always be
hosted by at least one activity. Its lifecycle is directly affected by the owner activity,
e.g., when the owner activity is destroyed, all of its hosted fragment instances
are also destroyed. Fragment instances can be added, replaced, or removed from
the host activities through the FragmentTransaction APIs, forming different
screens of the same activity. Multiple fragments can exist in a single screen, as in
Figure 2.2b; a screen can have any number of fragments or no fragments at all.
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Figure 2.2: Application Screens.

Menus and navigation drawers are UI components used primarily to provide
additional options to the user. The former are typically used for system-wide events,
such as adjusting settings and the latter – to ease access to other app components,
e.g. launching new activities. Figure 2.2c shows the activity with a menu opened,
which allows the user to access system-wide actions, such as settings and search.
Figure 1.1(a) shows a drawer that occupies most of the screen and contains buttons
for navigating to other parts of the app. The user activates and deactivates menus
and drawers by interacting with their action buttons, such as the one in the top left
corner of Figure 1.1(c) and the top right corner of Figure 2.2c.

Dialogs are small windows that prompt the user to take an action before the
app can proceed with its execution, e.g., to agree to granting access to the device
location. Menus, navigation drawers, and dialogs must be hosted by either an
activity or a fragment.

UI components are composed of widgets, such as Buttons and TextViews,
which are called Views in the Android terminology. ViewGroups are invisible
containers used for grouping the widgets and specifying their layout before placing
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them inside the UI components. User mostly interacts with UI widgets and are
typically unaware of the app and UI components and their lifecycle.
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Chapter 3

Related Work

In this chapter, we discuss related work on testing Android apps (Section 3.1). We
then review desktop and web application testing approaches related to goal-driven
exploration (Section 3.2).

3.1 Android Testing
Our goal-driven exploration technique consists of two parts – a statically con-
structed UI model and a dynamic app exploration technique based on the model.
Thus, Section 3.1.1 focuses on existing Android UI models and Section 3.1.2
discusses existing automated app exploration techniques.

3.1.1 Existing Android UI Models
Approaches that statically construct an Android UI model, such as A3E [5] and
Gator [73], are the closest to our work. Activity Transition Graph (ATG) introduced
by Azim and Neamtiu in A3E [5] captures app activities and transitions between
these activities. It does not model other app components and does not model
actions that trigger the transitions, i.e., which user input triggers the transition
between activities. Window Transition Graph (WTG) introduced by Yang et al.
in Gator [73] extends ATG by addressing some of these limitations: it models
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the event handler for each transition and also incorporates menus and dialogs as
distinct nodes in the model. However, it does not consider fragments, drawers,
services, and broadcast receivers.

Due to these reasons, for the Zedge example in Figure 1.1, both ATG and WTG
will only include three nodes that correspond to the app activities: “Controller”,
which corresponds to the activity in Figures 1.1(a-c) and (f), “Authenticator”, for
the activity in Figure 1.1(d), and “Facebook”, for the activity in Figure 1.1(e),
which is implemented inside the Facebook SDK. ATG and WTG models will
include no transitions, as all transitions in this app originate from fragments. As
such, none of these models will contain the path that reaches the Facebook activity.
Moreover, the models do not account for broadcast receivers and thus no activity
that follows the Facebook login, e.g., the one in Figure 1.1(f), is reachable.

An even more severe drawback of these existing UI models is that they treat UI
components, such as activities and menus, as separate nodes. These models do not
accurately represent the composition of UI components into screens, which hinders
their applicability for the goal-driven exploration scenario: as the representations
do not include enough details to extract an executable path. In Chapter 4, we will
discuss this limitation in more detail, outline alternative ways to model Android UI
components and their relationships, and then present our proposed solution, Screen
Transition Graph.

A number of approaches build up on or extend ATG and WTG [9, 69, 71, 79].
For example, StoryDroid [9] statically renders the UI of each activity in ATG.
The goal of this visualization of an app UI is to assist app development process,
e.g. to provide recommendations for UI design and layout code. Wang and
Rountev [69] statically estimate the execution time of each WTG path based on the
compute-intensive API invocations along the path. Wu et al. [71] adopt a similar
approach to detect if any WTG path is energy-inefficient by statically estimating
the energy usage based on the energy-intensive API invocations along a WTG path.
CHIME [79] considers information about activity launch modes, which determine
how activities are placed in stack: e.g., an activity launched with “singleTask"
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mode is only allowed to have one instance and the latest instance will kill all other
instances of the same activity in the stack. By extends the modeling of transitions
in ATG with launch modes, CHIME produces a more accurate graph than A3E.
Yet, these approaches do not change the underlying design decisions related to the
representation of UI elements in a model, thus sharing all the limitations of these
models.

3.1.2 Automated App Exploration
The primary goal of automated app exploration techniques is to detect faults in apps.
These techniques are typically used by app developers to discover issues before
deployment [11]. Automated app exploration can also be used as the starting point
of analyses performed by app store maintainers and auditors, e.g. to verify security
of apps published to the store. As discussed earlier, existing app exploration
techniques are usually designed to test the whole app and not optimized to test only
the functionality of interest.

In the remaining of this section, we categorize the existing automated app
exploration techniques based on their main test methodologies, further dividing
this section into random testing, model-based testing, and symbolic execution.

Random Testing. Random testing techniques generate random, independent input
events sequences during the test session. Monkey [27] is the most famous of
such approaches, which is part of the official Android SDK Tools [22]. Monkey
randomly generates various input events, including user gestures and system events,
such as adjusting volume and capturing screenshots. Interestingly, up to date,
Monkey achieves largely the same app-level coverage for real-world apps as the
most advanced state-of-the-art exploration techniques [68].

Dynodroid [46] is another pseudo-random test generation tool that extends
Monkey with feedbacks that continuously adjust the weights of possible input
events. DiagDroid [41] randomly exercises apps and tracks the asynchronous exe-
cutions to detect the performance issues related to these asynchronous executions.
All such tools explore the app in a random manner, and are unable to rapidly trigger
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the exploration target for the goal-driven exploration scenario.

Model-based Testing. Model-based testing techniques automatically generate
test cases based on a model of the app under test. According to Kong et al. [42],
model-based testing is the most common Android testing methodology and 63%
of the techniques involve model-based testing steps. Most model-based app testing
techniques rely on a dynamically constructed model to facilitate the testing process.

For example, Stoat [65] builds a model at runtime that captures the application
screen states and input events that trigger the changes in screen states, e.g., button
clicks and signal strength change. Although Stoat also statically analyzes the apps,
it only uses static analysis to identify all possible input events for the app, especially
the system-level events that cannot be inferred during dynamic exploration. Stoat’s
dynamic model contains probabilities to transitions, which are mutated during the
model refinement stage, to prioritize generation of test that optimize for higher test
coverage and better fault detection.

Sapienz [48] is another state-of-the-art tool that seeks to maximize code cov-
erage and minimize the length of the generated test sequences in order to reveal
more faults in shorter time. It combines random exploration with pre-defined event
sequence patterns that capture complex interactions with the app. The dynamic
UI model in Sapienz contains widgets in the app UI; the set of model states is
continuously extended with states collected when interacting with the app widgets.

APE [31] represents the dynamic model as a decision tree and continuously
tunes it with the feedback obtained during testing to construct a finer-grained model
than Stoat [65] and Sapienz [48]. APE’s model contains attributes of all widgets,
e.g. to indicate whether the widget is clickable or not, whereas such attributes
are ignored in Stoat and Sapienz. For example, Stoat assumes that all items in a
list (ListView in Android terminology) behave equivalently, which is inaccurate
when the attributes of these items are completely different, e.g. one is clickable
and others are not.

Although the models used in these model-based testing techniques are different,
the basic idea is similar: dynamically build a model of the app and mutate it so
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that the generated tests achieve higher coverage and faults detection. Since these
tools focus on systematically executing the whole app to detect faults rather than
swiftly navigating to a particular functionality of interest, they are inefficient for
goal-driven exploration. Specifically, our experiments demonstrate that while Stoat
and Sapienz are able to achieve coverage similar to GOALEXPLORER, the time it
takes these tools to reach the target is substantially higher. That is because without
building an accurate static model and identifying the target upfront, it is difficult to
determine which part of the app to ignore/explore first.

Symbolic Execution. Another line of work explores approaches for generating
semantically meaningful inputs through symbolic execution to facilitate app explo-
ration. To perform symbolic execution on Android apps, several approaches [53,
39, 70] build a customized Dalvik virtual machine so that the app can be exercised
in a controlled environment. For example, IntelliDroid [70] statically resolves the
callgraph path constraints leading to the malicious behaviors of Android apps and
then executes the subject app in a customized Dalvik virtual machine with inputs
that force the execution to a specific callgraph path. Such approaches can only
apply to a specific version of Android, and the customized virtual machine has to
be rebuilt if an updated version of Android is available. In contrast, our approach
does not require such modifications.

Instead of building a customized virtual machine, a number of approaches [38,
52, 62, 70, 19] instrument the application to force executing a given callgraph path.
For example, Jensen et al. [38] proposed an approach that uses concolic execution
to generate input event sequences that force the execution towards the target line of
code in the callgraph. However, this approach only resolves the path constraints
within the component. It requires an UI model of the app to handle the transitions
between different components of the application, and is complementary to our
work on modeling UI screens and transition between these screens.

Moreover, approaches based on symbolic execution usually face the path
explosion problem [6]. The main sources of path explosion are loops and function
calls, and the event-driven nature of Android apps make it even more challenging.
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The existing techniques make simplifying assumptions to overcome path explosion,
which introduce inaccuracy in extracting the path constraints. In addition, the
complexity of symbolic execution grows exponentially with the code size. Most
of the symbolic execution approaches are evaluated on small open-source apps
or malware samples. However, our observation of running those techniques on
real applications reveals that the majority of the constraints that they manage to
resolve are related to if-conditions instead of UI-related operations. Due to these
limitations, the existing symbolic execution approaches are not applicable to the
goal-driven exploration.

3.2 Desktop and Web Testing
UI testing for desktop apps have been extensively studied mainly for executing
manually scripted test cases [49]. Techniques that generate UI models for desktop
apps [63, 3, 78] are closest to our work. For example, Palus [78] used static
analysis to refine dynamically-constructed model, generating test cases that detect
more bugs in Java applications. Gazoo [3] statically constructs a model of a
Java application, which is used to generate test cases that cover larger portion
of application and detect faults in the application. These UI testing approaches
are not applicable to automated UI tests in mobile apps as desktop apps normally
possess a single entrypoint and mobile apps have multiple entrypoints due to their
event-driven nature. However, these approaches have demonstrated the benefit of
using a statically construct model to guide the exploration.

As for web apps, app UI models often cannot be generated through static
analysis. Since the majority of the web apps are JavaScript-based, static techniques,
while work well on statically typed language, are error-prone in analyzing highly
dynamic JavaScript apps [56].

Given the difficulty in statically analyzing JavaScript applications, most of the
existing work focus on pure dynamic approaches [7, 13, 50, 51, 67, 17]. Guided test
generation techniques produce test suites that achieve a specific goal [67, 17] are
closest to our work in the area of web testing. For example, the goal of WATEG [67]
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is to achieve a higher coverage of specific business rules, such as calculating interest
rates, loan eligibility, and customer status in a banking application. WATEG relies
on the user for specifying business rules as predicates over the UI state of the app,
e.g. a credit card number is entered and Pay button is pressed. It then performs a
two-phase exploration: it first crawls the web app to construct a UI model of the
transitions while collecting the predicates and then executes the app to follow the
paths in the generated model that satisfy all required predicates.

FEEDEX [17] uses the coverage metrics measured during exploration session
to guide the exploration towards unexplored parts of the application. Yet, its goal
is different from ours, which is to trigger a functionality of interest. Moreover, all
these approaches generate app models solely from the data received during the
dynamic exploration. They are similar to the model-based testing techniques for
Android apps, which lack the knowledge of which unexplored path can lead to
the functionality of interest, hence not applicable to the goal-driven exploration
problem defined in this thesis.
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Chapter 4

GOALEXPLORER

This chapter introduces our approach for performing goal-driven exploration, which
is implemented in a tool called GOALEXPLORER [2]. The high-level overview of
GOALEXPLORER is presented in Figure 4.1. The shaded boxes are three major
steps of GOALEXPLORER; the main components of each step are depicted in white
boxes. The arrows indicate data or control flows between steps and components.

GOALEXPLORER obtains two inputs: the Android Package (APK) file of the
app and the target functionality of interest, which can be provided as an app activity,
an API call, or a code statement. For example, when monitoring the network traffic
related to the Facebook login scenario in Zedge, we set as target a Facebook API
call, as discussed in Chapter 1.

In the first step, GOALEXPLORER statically constructs the Screen Transition
Graph (STG) of the app (the STG Extractor component in Figure 4.1). It then
maps the target(s) to (possibly multiple) nodes of the graph (the Target Detector

component). Finally, it uses the graph to guide the dynamic exploration to a
reachable target node, starting with the one that has the shortest path from the
initial screen (the Dynamic Explorer component). Due to the conservative nature
of our static analysis, dynamic exploration can encounter infeasible paths; it then
backtracks and try the next shortest path to the same target or chooses the next
target, if multiple targets are specified.
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Figure 4.1: GOALEXPLORER Overview.

In what follows, we first introduce the STG and discuss our design choices. We
then describe the STG Extractor (Section 4.2), Target Detector (Section 4.3), and
Dynamic Explorer components (Section 4.4).

4.1 Screen Transition Graph
As discussed in Chapter 2, both Window Transition Graph (WTG) and its prede-
cessor, Activity Transition Graph (ATG), model UI components as distinct nodes
in the graph [5, 73]. Moreover, they do not model fragments, drawers, services
and broadcast receivers. As such, for the example app in Figure 1.1, these graphs
will only contain three activity nodes: elements #2, #3, and #4 presented with solid
lines in Figure 4.2.
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Account
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1
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Figure 4.2: WTG (solid lines) and WTG-E (solid and dotted lines) of Zedge.

Our “direct” extensions to this model, which we refer to as WTG-E, introduces
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a number of additional elements, presented with dotted lines in Figure 4.2. For
conciseness of the discussion, we only include in this snippet parts of the Zedge
shown in Figure 1.1:

• Assuming drawers are handled similar to menus, as they correspond to
similar UI concepts, element #1 in Figure 4.2 would represent the drawer
in Figures 1.1(a,b). Adding drawers would also lead to creating transitions
labeled “open drawer” and “close drawer” between elements #1 and #2.

• The transition labeled “settings” from element #1 to #2 would be contributed
by an analysis of the drawer behavior that launches a new activity.

• The “Account Manager” broadcast receiver, responsible for notifying other
app components when Facebook authentication is completed, would be
represented by element #5, and its corresponding incoming and outgoing
transitions.

• The fragments contributing to each activity could be represented by inner
boxes inside elements #2 and #3, as only these two activities have fragments
in this example. Representing the fragments would allow the model to
capture transitions from element #2 to #3 and #3 to #4, as these transitions
are triggered from fragments embedded in each corresponding activity.

However, even the extended WTG-E model is sub-optimal for producing the
execution scenario that leads to the Facebook login screen in the Zedge example.
That is because WTG-E’s main nodes are UI components rather than their com-
position to screens. Thus, the model cannot represent the actual screens, omitting
important information used for exploration.

For example, from the WTG-E graph in Figure 4.2, one can conclude that
“close drawer” action for element #1 that leads to element #2 – the “Controller”
activity, can be followed by the “ZEDGE account” action to reach element #3 –
the “Authenticator” activity. Such execution is not possible in practice as “ZEDGE
account” action is only enabled when the “Controller” activity is opened with
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the “settings“ fragment. However, when the app execution starts, the “Controller”
activity is rather opened with the “browse“ fragment, thus there is no option to
press the “ZEDGE account” button after closing the drawer. Without distinguishing
between these different states of the “Controller” activity (element #2), one cannot
successfully explore the application.

The Screen Transition Graph (STG) proposed in this work addresses this
limitation. It models application screens by representing the composition of the
container activity, hosted fragments, menus, navigation drawers, and dialogs on
each screen. Figure 4.3 shows the STG representation of the Zedge snippet
in Figure 1.1. Unlike in the WTG-E model, the “Controller” activity here is
represented by five different elements: #1-4 and #8. These elements correspond
to different compositions of fragments and drawers hosted by the activity. This
representation clarifies that the only possible path to the Facebook login activity
(element #6 in Figure 4.3) is to start from the “Controller” activity (element #1),
open the drawer (arriving at element #2), then press the ‘settings” option (arriving
at element #3). Only after that one can transition to elements #4, #5, and #6.
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Figure 4.3: STG of Zedge.

Moreover, after the Facebook login is completed, the execution arrives at
element #8, which is another instance of the “Controller” activity, but with the
“Account” fragment. It is clear from this representation that the user cannot press
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“ZEDGE Account” again, as can mistakenly be concluded from the WTG-E repre-
sentation in Figure 4.2.

The example demonstrates that the STG representation is more accurate than
the original WTG, and even WTG-E, for producing execution scripts in the goal-
driven exploration scenario. We empirically evaluate the differences between these
representations in Chapter 5. Below, we give a more formal definition of STG.

In STG, the main nodes Vs represent app screens and the supporting nodes Vr

and Vb represent services and broadcast receivers, respectively. Each screen node
in Vs consists of one container activity V A

s , zero or more fragments V F
s , zero or

one menu/drawer V M
s , and zero or one dialog V D

s . The collection of all screen
nodes corresponds to possible screens allowed in the app. Intuitively, an activity
with n fragments and one drawer could correspond to 2× 2n different screens
(all combination of fragments, with and without the drawer). Of course, not all
combinations are possible in a particular app, and we describe our screen extraction
algorithm in Section 4.2.

Supporting nodes are required as transitions between screens can pass through
these elements. The edges E in STG correspond to transitions between nodes
V =Vs∪Vr ∪Vb. Each edge e ∈ E has a label eτ which represents the event that
triggers the transition: either a user action, e.g. pressing the “ZEDGE account”
button to move from element #3 to #5, or an intent that triggers the broadcast
receiver event, e.g. the notification received by the system for transitioning from
element #7 to #8. Transitions that are triggered automatically, e.g., when a service
opens a UI dialog without any notifications or clicks, have no event triggers in the
model: eτ = /0.

4.2 STG Extractor
We now describe our approach for constructing STG. The STG Extractor consists of
three main components outlined in Figure 4.1: Topology Extractor, Screen Builder,
and Inter-Component Analyzer. These components contribute to collecting and
refining STG elements.
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4.2.1 Topology Extractor
Topology Extractor identifies the main app components, i.e., activities, services,
and broadcast receivers, and their call graphs. It relies on FlowDroid’s imple-
mentation [4] to extract the components from both the app source code and xml
files, to associate each components with its entry points, i.e., lifecycle events and
application-specific callback methods, and to build a call graph for the components
that comprise of the call graphs of the entry points. For example, an activity may
register callbacks that get invoked when a button is pressed; or a location update
is received, and the respective callback handler would then being linked to the
activity’s call graph and being analyzed between the onResume() and onPause()
lifecycle events of the activity.

App methods annotated with “@JavascriptInterface” can also be triggered by
JavaScript-enabled WebViews [29] . As the invocation of these methods depends
on the dynamic WebViews content delivered at runtime and cannot be determined
statically, Topology Extractor conservatively extends the call graph by assuming
that any JavaScript-enabled method in a component can be called by any JavaScript-
enabled component’s WebView.

Services and broadcast receivers collected by Topology Extractor are supporting
nodes in STG and are added directly to Vr and Vb, respectively. App screens in Vs

are built in the next step.

4.2.2 Screen Builder
A key insight of our approach is modeling the UI screens and the transitions
between the screens. To this end, Screen Builder analyzes the call graph of each
activity, collecting the hosted fragments, menus, dialogs, and navigation drawers.

Fragments can be defined statically in the activity layout file or dynamically in
code. Screen Builder starts by extracting the layout files using AXMLPrinter [55]
and then identifies fragments they declare. To collect fragment declarations in
code, Screen Builder scans the call graph of each activity, identifying fragment
transaction methods that add, remove, or replace fragments. The full list of such
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methods, collected from the Android Developer website [25], is available in our
online appendix [2].

The activity call graphs are scanned in multiple iterations. First, Screen Builder

analyzes the activity lifecycle events triggered when an activity is initialized: from
onCreate() to onResume(). Fragments collected from these lifecycle events will
appear in the ’base’ screen of the activity, which is displayed when the activity is
launched.

When collecting fragments, Screen Builder performs an inter-procedural flow-
sensitive analysis to identify fragment transaction methods s that add, remove, or
replace fragments. It then performs a context-sensitive point-to analysis on the
calling path of s, starting from the lifecycle event, to identify the Java type of the
fragment(s) handled in s. Once all fragments from the onCreate() to onResume()
lifecycle events of an activity A are processed, Screen Builder creates the “base”
screen node V A

s in Vs for the activity, with V F
s containing a (possibly empty) list of

the identified fragments.

Listing 4.1: Zedge code snippet.
1 public class AuthActivity extends BaseActivity {
2 protected void onCreate(Bundle bundle) {
3 initMainFragment();
4 }
5 protected void initMainFragment() {
6 FragmentManager manager = getSupportFragmentManager();
7 Fragment mFragment = new AuthFragment();
8 addFragment(manager, mFragment, R.id.output);
9 }

10 static addFragment(FragmentManager manager, Fragment fragment, int id
↪→ ) {

11 FragmentTransaction transaction = manager.beginTransaction();
12 transaction.add(id, fragment);
13 transaction.commit();
14 }
15 }

This process can be demonstrated on the simplified code snippet from Zedge
in Listing 4.1. In lines 12-13, a fragment fragment is added to the activity
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AuthActivity. The variable fragment can be traced back to the variable
mFragement in line 8, which is defined in line 7 and has the type AuthFragment.
This fragment addition is triggered from the onCreate lifecycle event in line
3. Thus, Screen Builder will create a screen node for AuthActivity with one
fragment of type AuthFragment.

Lifecycle methods issued when the activity is paused, stopped, or resumed, as
well as callback methods, can further add, remove, or replace fragments in the “base”
screen. Screen Builder thus analyzes possible lifecycle method invocation chains:
“onPause→ onResume" and “onPause→ onStop→ onRestart→ onResume" (see
Chapter 2) to extract the fragments from each of these chains. If the fragments in a
chain differ from the fragments in the “base” screen node V A

s , it adds a new screen
node V A

s′ for the activity A, which contains a union of fragments in V A
s and those

identified in the chain. It also adds a transition between V A
s and V A

s′ , with an empty
label, as this transition is triggered automatically by the system.

Fragments in callback methods are handled similarly. Since the order of
callbacks cannot be predicted, Screen Builder assumes the callbacks can occur
in any order; it thus creates a new screen V A

s′′ for any possible order of callback
methods which modify fragments of the “base” screen. For example, given two
callbacks c1 and c2, Screen Builder will create four additional screens augmenting
the “base” screen and the screens collected after analyzing the lifecycle events.
That is, each of the already created screens s will “cloned” to produce four new
screen: after applying c1 only, c2 only, c1 and c2, and c2 and c1.

Screen Builder also creates transition edges between these newly created
screens and sets the transition label eτ to be the action triggering the corresponding
callback. That is, for callbacks defined for UI widgets, e.g., of Button.onClick(),
Screen Builder sets as the transition label the label associated with the widget.
For the system event callbacks, LocationManager.onLocationChanged(), the
transition label is empty.

After fragments are handled, Screen Builder analyzes activity call graphs, as
well as its associated fragment call graphs, to identify methods initializing menus,
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drawers, and dialogs. The full list of such methods is obtained from the Android
Developer [26] and is available online [2]. Once an initialization of a menu, drawer,
and dialog is found, Screen Builder copies each relevant screen s for the activity A

into s′, adds the found menu, drawer, or dialog to s′, adds s′ to the set of all screen
nodes Vs, and creates a transition edge between s and s′. The transition label eτ is
set to be the action that triggers the callback method.

4.2.3 Inter-Component Analyzer
After the previous step, we have collected all screen nodes and the transitions
between screen nodes of the same activity but with different fragments, menus,
drawers, and dialogs. The Inter-Component Analyzer collects the inter-component
transitions between nodes corresponding to different Android components, e.g.
screens of different activities, services, and broadcast receivers. These transitions
are performed via Inter-Component Communication (ICC) methods that launch
new app components, e.g. startActivity and bindService. The target of the
transition is specified in the Intent parameter of these methods, either explicitly or
implicitly. We rely on FlowDroid’s integration with IccTA [43] to identify ICC
links between app components.

For each link where the source and target are services and/or broadcast receivers,
Inter-Component Analyzer simply creates the corresponding transition edge e in
STG, If the target of the transition is a broadcast receiver, the transition label eτ

is set to be the broadcast which triggers the event, as specified in the broadcast
receiver intent-filter. If the target of the transition is a service, eτ = /0, as this
transition is triggered “automatically”, without any user or system event.

Activities are represented by a number of screens and thus require a more
nuanced treatment. If a source of an ICC link is an activity A, Inter-Component

Analyzer identifies the activity entry point p from which the communication is
issued. It then finds all screen nodes in STG that correspond to A, which can be
reached from the “base” screen node of A via transitions associated with the action
that triggers p. It adds a transition from all these nodes to the nodes that represent
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the targets, labeling them with the action that triggers p. When the target is an
activity as well, Inter-Component Analyzer finds only the “base” screen node of
that activity and creates a transition to that node. That is because when a new
activity is launched, it starts in the initial screen; transitions between different
screens of the target activity are already handled by Screen Builder.

4.3 Target Detector
When the exploration target is specified in a form of an activity, Target Detector

simply traverses and marks all screen nodes that correspond to that activity. Reach-
ing any of these nodes will be considered reaching the target. For targets given as
an API, Target Detector scans the app call graph to find all statements that invokes
the given API. For targets given as a single statement, Target Detector simply finds
the statement in the app call graph.

Next, it maps the identified statements to STG nodes as follows: if a statement
is identified in a lifecycle event of a component, it marks all nodes that correspond
to that components as targets. If a statement is in a callback method, simply
reaching the component is insufficient as one also needs to invoke the callback
method itself. Therefore, Target Detector identifies the STG transitions labeled by
the action that triggers the callback and sets the destination of these transitions as
the targets.

4.4 Dynamic Explorer
Given an STG of the app and a set of targets, Dynamic Explorer performs goal-
driven exploration guided by the STG, to trigger at least one of these targets. It
has three main components outlined in Figure 4.1: Action Picker, Input Generator,
and Actuator, executing in a loop until a target node is reached.
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4.4.1 Action Picker
In each iteration, Action Picker first evaluates all possible actions enabled from the
current screen, such as clicking a button or filling a textual input field. For each
screen, the number of possible actions is determined by the number of widgets and
the type of each widget. We refer to all possible actions of a screen collectively as
the state of this screen. Action Picker retrieves the current activity and fragments
using an Android Debug Bridge (ADB) [21] shell dumpsys command and reads
the screen UI hierarchy using UIAutomator [28]. This information is used to map
the current screen to the corresponding node in STG and verify that the exploration
arrived at the intended STG node.

If Action Picker is already “locked” on a particular target, it performs a breadth-
first search on STG to find all paths from the current screen node S to that target
and sorts the paths from the shortest to the longest. It picks the next action from
the shortest path that leads to the new screen node S′ and checks if the action
is available on the screen. If so, it proceeds to the next step: Input Generator.
Otherwise, it attempts to change the state of the current screen S by dynamically
exploring the available actions until the transition to S′ is available. That is done
because some user actions do not trigger transitions between screens that are thus
absent from STG; yet, they rather toggle the state of the screen, which might enable
future transitions. For example, when adding an item to the shopping cart, an
application stays in the same screen. This action is still required to move to the
next screen – the checkout, which is only enabled when there is at least one item
added to the shopping cart.

To activate the actions that can enable future transitions, Action Picker adopts
a weighted UI exploration strategy, which was shown to efficiently discover new
states of a screen [46, 65]. The exploration strategy assigns each action e an
execution weight W (e), which is defined as:

W (e) =
α ∗Te +β ∗Ce

γ ∗Fe
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where Te is the event’s type, e.g., click, scroll; Fe is the event’s history execution
frequencies that measure how many times an event has been executed during
this exploration session. To avoid division by zero, Fe is initially set as 1 and it
increments each time the event has been executed. Ce is the number of unvisited
children widgets indicating how many of the widgets with Fe = 1 are in the screen
after the event e has been executed. α , β , γ are the weight parameters that Stoat [65]
carefully tuned based on their observation, hence we adopt the same value in Action

Picker, and set α , β , and γ to 0.4, 0.2, and 0.4 respectively.
If S′ cannot be reached within a certain number of attempts (currently set to 50

iterations), Action Picker backtracks and proceeds to the next path. If no action
is available on any of the paths reaching to the current target or if there is no
“working” target set yet, Action Picker performs a breadth-first search to find the
next available target and repeats the search for that target. It returns “unreachable”
if no action leading to any of the targets is found.

4.4.2 Input Generator
If an action towards a target is picked, Input Generator checks whether specific
textual inputs are necessary to successfully trigger the transition.

First, as many Google Play apps also require the user to log in for accessing
some of app features, an exploration tool cannot perform well without handling lo-
gin screens. We equip GOALEXPLORER with the ability to handle logins, assuming
that the login credentials are supplied as an optional input.

To this end, Input Generator analyzes the UI hierarchy of the current screen to
search for textual input fields, such as EditText. It further evaluates whether the
textual inputs requires login credentials. Similar to prior work [36], this is done by
checking whether the widget ID, text, hint, label, and content description match the
regular expressions associated with login and password strings, e.g., “username”,
“user id”, etc. The exact list of the patterns is listed in Table 4.1.

If a match is found, Input Generator enters the credentials into the correspond-
ing text fields. Otherwise, it feeds random strings to all textual input fields in the
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Table 4.1: Regular Expressions for Login Detection

Concept Regular Expression
username (?i) ( user | account | client | phone | card ) [\s\_\-]*( name | id | number )

(?i) ( log | sign ) [\s\_\-]* in[\s\_\-]* ( name | id | )
(?i) [e] mail

password (?i) ( pass | pin ) [\s\_\-]* ( word | code | )

current screen.

4.4.3 Actuator
Actuator fires the action selected by the Action Picker. Its implementation extends
the one of Stoat, which provides an automated framework that supports click, touch,
edit (enter random texts), navigation (e.g., back, scroll, menu). The original Stoat
only supports Android API level 19 (i.e., Android 4.4), and we extend it to support
newer Android platforms. Actuator also records all triggered actions, allowing us
to produce an executable test scripts for reaching the target.
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Chapter 5

Evaluation

We now describe our experimental setup and discuss evaluation results. Our aim is
to answer the following Research Questions (RQs):

• RQ1 (Coverage): What is the fraction of targets GOALEXPLORER can
reach and how does that compare with the baseline approaches?

• RQ2 (Performance): How fast can GOALEXPLORER reach the target and
how does that compare with the baseline approaches?

• RQ3 (Accuracy): What is the accuracy of the model constructed by GOAL-
EXPLORER and the ability of dynamic UI exploration to mitigate model
inaccuracy?

– RQ3.1 (FN): What is the fraction of cases when the model does not
contain transitions that exist in practice?

– RQ3.2 (FP-Dynamic): What is the fraction of cases when the model
contains transitions that exist but cannot be triggered dynamically?

– RQ3.3 (FP): What is the fraction of cases when the model contains
transitions that do not exist in practice?
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5.1 Experimental Setup

5.1.1 Methodology
To answer our research questions, we perform two main experiments. First, we
compare exploration that is based on STG with the exploration based on the WTG
and WTG-E models described in Section 4.1. At the time of writing, the WTG
model has been used as the foundation for practically all techniques that rely on
statically constructed UI model of a mobile app, e.g., [40, 76, 77, 69, 71]. As the
original WTG model introduced by Gator [73] cannot be directly used for goal-
driven app exploration, we extracted the model produced by Gator and plugged
it into our Dynamic Explorer. Moreover, since Gator’s implementation is not
compatible with the current Android API level that we use in our work (API level
23), Gator failed to run for most of the Google Play apps. We thus re-implemented
the WTG extraction process for apps with API level 23. We then extended WTG
to handle fragments, services, broadcast receivers, etc., producing the WTG-E
representation, as described in Section 4.11. That is, we compare STG with three
static models:

• WTG (Gator): the original implementation from Gator;

• WTG: our re-implementation of Gator’s model to handle modern apps;

• WTG-E: our extension of WTG to handle fragments, drawers, services and
broadcast receivers.

As a second line of experiments, we compare GOALEXPLORER with the state-
of-the-art automated exploration techniques: Sapienz [48] and Stoat [65]. We
run both tools with one hour allocated execution time for each target. We choose
that timeout following the tools’ own evaluation methodology: both Sapienz and
Stoat have used one hour execution time when comparing test coverage to other

1Concurrent to our work, similar extension was proposed in StoryDroid [9]; but its implementa-
tion is not publicly available.
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existing testing techniques. We used configuration parameters specified by the
papers describing these tools and kept default values for parameters not described
in the papers. We also experimented with modifying the configuration parameters,
to ensure the baseline is most favorable for the goal-driven exploration task, e.g.,
by increasing the sequence length and population size for Sapienz and prioritizing
coverage to test diversity for Stoat. As these adjustments did not affect the results,
we kept the default configurations.

Moreover, we extended both tools to handle login screens, as we did for
GOALEXPLORER (see Section 4.4). Specifically, we added the same login logic
that we used for our tool to that of Stoat. As the relevant source code of Sapienz is
not open-sourced (the motif part is only available as binary), we implemented a
login detection component which runs in parallel to Sapienz and constantly checks
if the execution arrived at the login screen. When it does, we pause Sapienz and
handle the login flow as we do for GOALEXPLORER and Stoat. The execution
time of this operation is negligible and is comparable to the handling of logins in
GOALEXPLORER and Stoat.

5.1.2 Exploration Targets
We experiment with two scenarios. In the first one, we set each activity of the
subject apps as the target, one at a time, and repeat the experiment for all activities
in an app. That allows us to align our results with those commonly reported
in related work. Then, we experiment with setting a code statement as a target,
investigating a more nuanced, goal-driven exploration scenario which motivates
our work. To this end, we pick a particular API, namely URL.openConnection,
identify all occurrences of this API in the subject apps, and set them as targets,
one at a time.

5.1.3 Subject Apps
A survey of automated testing tools by Choudhary et al. [11] used 68 open-source
F-Droid [14] apps in their survey, which de facto became a standard benchmark in
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analyzing automated testing tools. Both Sapienz [48] and Stoat [65] were evaluated
on that benchmark and the Stoat authors further extended the benchmark with
additional 25 F-Droid apps, producing a benchmark with 93 F-Droid apps in total.
We evaluate our approach on the same 93 benchmark apps.

In addition, since F-Droid apps are easier targets, we downloaded the 100 most
popular apps on the Google Play store as of July 31, 2018. This dataset allows
us to evaluate our approach on real applications commonly used in practice. Of
the 100 Google Play apps, five failed to run on the emulator (the decision to use
emulators for the experiments is discussed in the Environment sub-section below).
We thus excluded these five applications from further analysis, arriving at the set
of 93 benchmark and 95 Google Play apps. A detailed description of these apps is
available online [2].

5.1.4 Metrics
To answer RQ1 and RQ2, we measure the fraction of targets reachable by each
tool per app and the average time it takes to reach a target, respectively. The
goal of these experiments is to detect whether design choices implemented in
GOALEXPLORER allow us to cover a large fraction of app behaviors in a rapid
manner.

For RQ3, we manually establish the ground truth of all paths leading to all
reachable URL.openConnection targets in a subset of apps. Establishing ground
truth for closed-source Google Play apps is unrealistic because these apps are
largely obfuscated and manually tracking reachability of statements would not be
reliable. We thus selected 36 open-source apps from our benchmark, which are also
available on Google Play, to ensure we arrive at a representative and practically
valuable subset. For these 36 apps, the author of this thesis manually collected
the set of all reachable statements that invoke URL.openConnection API and
cross-validated the findings with another member of the research group. The set of
the analyzed apps and the constructed ground truth is available online [2].

We then analyze the main reasons preventing GOALEXPLORER from reaching
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some of these targets, i.e., cases when the correct path is missing in STG. We also
analyze the cases GOALEXPLORER encounters spurious STG paths that cannot
be followed due to the over-approximation made by our model construction, i.e.,
cases when the tool has explored a wrong path and needs to backtrack. The goal of
these experiments is to evaluate the accuracy of the model produced by our tool
and the ability of our dynamic explorer to recover from failures.

5.1.5 Environment
We run all tools on a 64-bit Ubuntu 16.04.4 physical machine with a 20-core CPU
(Intel Xeon), allocating 64GB of RAM for each tool. We run each app for one hour
with each of the compared tools; the total evaluation time thus exceeds 500 hours
only to answer RQ1 and RQ2. Therefore, we run the experiments on Android
emulators, to allow running multiple executions in parallel.

5.2 Results

5.2.1 RQ1 (Coverage)
Figure 5.1a shows the box and whisker plot representing the minimum, me-
dian, mean, and maximum percentage of activities reached by goal-driven ex-
ploration under four different models: WTG (Gator), WTG, WTG-E, and STG
(GOALEXPLORER). It also shows the fraction of activities reachable by the state-
of-the-art dynamic exploration tools: Sapienz and Stoat. The results are plotted
separately for the 93 benchmark F-Droid apps and the 95 Google Play apps.

Table 5.1a summarizes Figure 5.1a, reporting min, mean, median, and max
percentage of target activities triggered. For the benchmark apps, GOALEXPLORER

reaches between 17.9% and 100% of activities, with an average of 69.4% and a
median of 66.7%. For comparison, WTG and WTG-E reach 50.7% and 55.3%
of activities receptively, on average per app. The divergence between the results
of WTG (Gator) and WTG is because Gator cannot process 5 of the benchmark
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Figure 5.1: Coverage results for the benchmark and GooglePlay apps.

applications, resulting in crashes. These apps are excluded from the statistics
reported in the figure.

For Google Play apps, the differences between the UI models is much more
substantial. WTG (Gator) can only process nine out of 95 Google Play apps, thus
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Table 5.1: Coverage results for the benchmark and GooglePlay apps.

(a) Fraction of reachable activities in an app (higher is better).

Category Metrics Gator WTG WTG-E GoalExplorer Sapienz Stoat

Benchmark

Min 0 0 14.3 17.9 17.9 17.9
Mean 39.5 50.7 55.3 69.4 67.9 66.5
Median 37.5 50 50 66.7 66.7 66.7
Max 100 100 100 100 100 100

Google Play

Min 0 0.5 1.4 1.7 1.7 1.7
Mean 1.4 9.4 12.9 23.2 18.7 19.1
Median 0 7.4 11.1 19.6 17.2 16.7
Max 16.7 66.7 66.7 75 66.7 66.7

(b) Fraction of reachable openConnection statements in an app (higher is better).

Category Metrics Gator WTG WTGE GoalExplorer Sapienz Stoat

Benchmark

Min 0 0 0 50 0 0
Mean 17.4 21.3 51.7 85.9 73.4 79.5
Median 0 0 50 100 91.7 100
Max 100 100 100 100 100 100

Google Play

Min 0 0 0 0 0 0
Mean 1.7 20.9 31.1 57.9 55.6 57.5
Median 0 19 31.3 57.1 55.6 57.1
Max 50 100 100 100 100 100

its overall activity-level coverage is very low: around 1%. Our re-implementation
of Gator, WTG, can process all apps but covers around 9% of each app activity
on average. WTG-E increases the activity-level coverage to 12.9% on average,
as it is able to deal with fragments, services, and broadcast receivers. Finally,
GOALEXPLORER reaches the highest activity-level coverage of 23.2% on average,
due to its accurate representation of app screens. This result demonstrates that
only extending existing static models with handling of fragments, services, and
broadcast receivers, as we did in WTG-E, is less beneficial than the full set of
solutions GOALEXPLORER applies.
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Notably, GOALEXPLORER achieves similar (and even 3% higher) activity-level
coverage than the state-of-the-art dynamic exploration tools, for both benchmark
and the Google Play apps: for the benchmark apps, Sapienz and Stoat cover 67.9%
and 66.5% of activities per app on average, respectively, while GOALEXPLORER

covers 69.4%. For the Google Play apps, both tools reach around 19% of activities,
on average, while GOALEXPLORER covers 23.2%. That is an encouraging result for
GOALEXPLORER, showing that the STG model it builds statically is accurate and
comparable with the models constructed at runtime during the dynamic exploration.

Unlike for the benchmarks, none of the tools is able to reach 100% activity
level coverage for the Google Play apps. This is not a surprising result as most
of the benchmark apps are simple utility apps with limited functionality and a
relatively small number of activities (9 on average). In contrast, Google Play apps
contain complex logic and large number of activities (60 on average), some of
which might not be reachable at all [68].

Figure 5.1b and Table 5.1b show similar data for the the percentage of reachable
URL.open- Connection statements in an app. Here, GOALEXPLORER largely
outperforms other static UI models, triggering 85.9% target API statements on
benchmark apps, compared with 17.4%, 21.3%, and 51.7% for WTG (Gator),
WTG, and WTG-E, respectively. It again performs better than dynamic tools,
triggering 12.5% more target statements on average than Sapienz (85.9% v.s.
73.4% covered by Sapienz) and 6.4% more than Stoat (which covers 79.5%).

For GooglePlay apps, GOALEXPLORER also substantially outperforms other
UI models, triggering 57.9% of target statements, while other models trigger only
21% and 31% of the targets. GOALEXPLORER performs comparable with dynamic
tools: Sapienz triggers 55.6% of the target statements on average and Stoat –
57.4%.

39



To answer RQ1: Our experiments show that using STG model allows GOAL-
EXPLORER to trigger substantially more targets than for other statically-built
Android UI models, namely, WTG (Gator), WTG and WTG-E. Moreover,
GOALEXPLORER is as effective as the dynamic tools in the ability to reach a
certain target.

5.2.2 RQ2 (Performance)
To evaluate performance, we measure the minimum, mean, median, and maximum
time, in seconds, it takes GOALEXPLORER to reach a target activity or statement.
For fair comparison with dynamic tools, we run these tool for one hour each and
measure the time it takes a tool to reach each new target: an activity or a statement.
Such a comparison is more favorable for these tools, as we do not restart the tool
from scratch for any new target. We only present times of reaching targets that are
reachable by all of the compared tools, excluding the original Gator implementation
from our analysis as it runs only on 9 out of 188 apps.

Table 5.2a and Table 5.2b present the results of the comparison for a target
activity and statement, respectively. The results are also plotted in Figure 5.2, on a
logarithmic scale. The results show that GOALEXPLORER can reach a target much
faster than dynamic tools: for the benchmark apps, it takes GOALEXPLORER 13
seconds on average to reach a target activity and 17.6 seconds to reach a target
statement, compared with 453.7 and 480.7 seconds for Sapienz and 643.3 and
632.4 seconds for Stoat, respectively. For the Google Play apps, GOALEXPLORER

reaches the target activities in 26.3 seconds and target statements in 47.1 seconds,
on average, compared with 619.5 and 701.3 seconds for Sapienz and 763.5 and
860.9 seconds for Stoat, respectively. Not surprisingly, GOALEXPLORER performs
better than other static models – WTG (26.9 seconds for target activity and 57.0
seconds for statement) and WTG-E (27.2 seconds for target activity and 50.9
seconds for statement). Due to its more accurate representation of Android UI,
GOALEXPLORER encounters less backtracking, thus spends less time to trigger
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Figure 5.2: Performance results for the benchmark and GooglePlay apps.
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Table 5.2: Performance results for the benchmark and GooglePlay apps.

(a) Average time, in seconds, to reach an activity (lower is better).

Category Metrics WTG WTG-E GoalExplorer Sapienz Stoat

Benchmark

Min 3 2.8 2.1 2 3
Mean 12.1 12.2 13 453.7 634.3
Median 9.3 8.9 8.4 235 362
Max 40 46.2 85.4 2631 3539

Google Play

Min 5.3 4.4 5.3 2 2
Mean 26.9 27.2 26.3 619.5 763.5
Median 24.2 21.8 21.7 371 412.2
Max 95.6 106.2 76 3196.8 3495.8

(b) Average time, in seconds, to reach a openConnection (lower is better).

Category Metrics WTG WTGE GoalExplorer Sapienz Stoat

Benchmark

Min 6.7 7.2 7.6 24.5 91.9
Mean 16.5 17.4 17.6 480.7 632.4
Median 15 16.1 16.5 205.2 563.4
Max 35.1 38.3 33 1254.2 1282.2

Google Play

Min 2.4 2.4 2.3 2 2
Mean 56 50.4 47.1 710.3 860.9
Median 39.1 31 32.5 596.9 737.6
Max 271.6 213.5 190.4 2720.9 2931.7

the targets.
Our experiments also show that it takes GOALEXPLORER around 93 seconds

per app to build the static model. Even given this number, it outperforms dynamic
app exploration tools: since our exploration is guided by a static model, GOAL-
EXPLORER only performs the actions that lead to the target activity while Sapienz
and Stoat, by design, aim to trigger various functionalities, not necessarily those
leading to the target.
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To answer RQ2: GOALEXPLORER can trigger exploration targets substan-
tially faster than dynamic exploration tools, which shows its efficiency for the
goal-driven exploration scenario.

5.2.3 RQ3 (Accuracy)
To evaluate the accuracy, the author of this thesis manually identified all paths
leading to URL.openConnection statement in 36 apps, as discussed in Section 5.1.
The analyzed apps contain 127 such statements in total (3.53 per app). Out of
those, 102 are reachable (2.83 per app), 21 are in library methods that apps do not
use (which occurs in 8 apps), and the remaining 4 are in unused app methods (all
in the same app).

We analyze the accuracy of GOALEXPLORER along three directions:

• RQ3.1 (FN): What is the fraction of cases when the model does not contain
transitions that exist in practice? Such cases are False Negatives (FNs) of
our STG model.

• RQ3.2 (FP-Dynamic): What is the fraction of cases when the model con-
tains transitions that exist but cannot be triggered dynamically? Such cases
are False Positives (FPs) not handled by dynamic exploration.

• RQ3.3 (FP): What is the fraction of cases when the model contains transi-
tions that do not exist in practice? Such cases are False Positives (FPs) of
the model.

In what follows, we discuss these cases one by one and also list their implica-
tions on the ability of GOALEXPLORER to reach the desired target.

RQ3.1 (FN): Model Does Not Contain the Correct Transitions

When a correct transition does not exist in the model, GOALEXPLORER cannot
construct a complete path to the target and thus will not attempt to follow that path.
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In our sample, that happen in eight cases in total, in five apps. The reasons for
missing a transition (STG false negatives) are discussed below:

(I) Reflection: two transitions (in one app) are missing due to the limitation
in handling complex reflective calls. GOALEXPLORER relies on call graph
construction implemented by FlowDroid, which only handles reflective call
targets for constant string objects.

(II) Unmodeled Component: two transitions (in two apps) are missing due to
unmodeled components, such as App Widgets, which are miniature app
views that can be embedded in other apps, e.g. in the home screen. GOAL-
EXPLORER does not model these components as they are placed outside of
the main app.

(III) Intent Resolution: four transitions (in two apps) are missing due to failures
in resolving the targets of intents, e.g. which activity to be launch by the
intent. GOALEXPLORER relies on a constant propagation technique from
IC3 [57] to resolve the intents and identify the targets. When the constant
propagation failed, the correct transitions are missing in STG.

GOALEXPLORER finds alternative paths to avoid missing the targets for four
out of the eight missing transitions in STG; the remaining ones lead to four
missed targets – two are due to reflection and two are consequences of unmodeled
components. It should be noted that Sapienz and Stoat cannot trigger the latter two
missed targets.

RQ3.2 (FP-Dynamic): Model Contains Correct Transitions That Cannot be
Triggered

GOALEXPLORER encounters 44 correct transitions in 21 apps that it fails to trigger
dynamically (2.1 transitions per app). The main causes for such failures (false
positives of dynamic exploration) are discussed below:

(I) Event Order: in nine cases (in five apps, 1.8 transitions per app), a transition
is only possible under a certain order of events in a screen. For example, in
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the BookCatalogue app, the target can be reached only after the user marks
certain electronic books as an anthology. While dynamic explorer is able to
resolve many cases that require such interactions (17 cases got successfully
resolved in our data set), the correct resolution is not always guaranteed.

(II) Semantic Inputs: in 17 cases (in 11 apps, 1.54 transitions per app), meaning-
ful inputs (other than login credentials) are required explore the path to target.
For example, a valid zip code is required to start the search in the Mileage
app and an .mp3 file has to be selected for upload in AnyMemo. Neither
GOALEXPLORER nor the contemporary dynamic exploration techniques can
generate such semantic inputs.

(III) Remote Triggers: in 13 cases (in eight apps, 1.63 transitions per app), the
transitions can only be triggered given a certain response from the remote
server. For example, in SyncToPix, a target can only be triggered when the
app receives a certain reply from the server, to syncing data. During our
testing period, such reply was never received and none of the tools were able
to trigger these transitions.

(IV) Widget Identification: in 5 cases (all from the same app), transitions cannot
be triggered due to the failure in widget identification. GOALEXPLORER

relies on UIAutomator [28] to identify widgets where the input events,
e.g. clicks, should be applied. UIAutomator fails to locate the widget
that does not have a resource identification assigned. When that happens,
GOALEXPLORER delegates to the dynamic UI exploration, which randomly
interacts with the screen to hit the correct widget without locating it by the
resource identification.

Overall, the 44 transitions that GOALEXPLORER could not follow resulted in
missing 11 targets in nine apps; GOALEXPLORER finds alternative paths to the
remaining 33 targets. Sapienz and Stoat cannot trigger 10 of the missing targets
either.
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RQ3.3 (FP): Model Contains Transitions That Do Not Exist in Reality

GOALEXPLORER identifies spurious 42 transitions, in 27 apps (1.55 transitions
per app), that do not exist in reality (STG false positives). Below, we analyze the
causes for these false positives:

(I) Callback Sequence: in 28 cases (in 17 apps, 1.64 transitions per app) incor-
rect transitions in STG are caused by over-approximation in modeling the
sequence of the callbacks. Since the order of callbacks cannot be predicted
statically, GOALEXPLORER assumes that the callbacks can happen in any
order (see Screen Builder in Section 4.2.2), producing screens in STG that
are not feasible in practice.

(II) Fragment Properties: in 14 cases (in seven apps, 2.33 transitions per app)
incorrect transitions are due to not analyzing detailed fragment properties.
Apps can hide the fragments by setting its properties, i.e. changing the
visibility level to View.GONE. We only model the set of fragments but do
not track the properties of each fragment in our model, over-approximating
the set of fragments on a screen, some of which are invisible in practice.

While GOALEXPLORER over-approximates the set of possible transitions
when constructing STG, resulting in transitions that do not exist in reality, all
these transitions were “ignored” during exploration by backtracking and selecting
another path. In fact, none of them impacted the GOALEXPLORER’s ability to
triggering the targets. However, such spurious transitions, as well as transitions
that cannot be triggered (RQ3.2: false positives of dynamic exploration), prolong
the exploration as it takes time to resolve the false positives dynamically. Our
results demonstrate that the execution time of the tool is not substantially affected
by that and GOALEXPLORER still able to reach the target substantially faster than
dynamic tools.

Overall, GOALEXPLORER fails to reach 16 targets in 11 apps due to false nega-
tives (missing correct transitions) and false positives of dynamic exploration (being
unable to follow the correct transition). The baseline dynamic app exploration tools
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can reach two and four of these targets, for Sapienz and Stoat, respectively. At the
same time, GOALEXPLORER can reach 14 and 6 additional targets that these tools
cannot reach, respectively. We thus believe the results demonstrate that that the
statically constricted model is accurate enough to facilitate the goal-exploration
task.

5.2.4 Evaluation Summary
Overall, our experiments demonstrate that the combination of the static STG model
and the run-time exploration techniques applied by GOALEXPLORER is valuable
for the goal-driven exploration task. By using this techniques, tool is able to reach
substantially more targets than existing techniques based on static models of an
app UI. It is able to reach a comparable number of targets as the dynamic app
exploration techniques, only substantially faster, which further attest to the quality
and value of the statically-built model.

GOALEXPLORER is able to trigger 84.3% of all reachable targets, better than
the state-of-the-art dynamic app exploration techniques (72.5% for Sapienz and
78.4% for Stoat). The main reasons for GOALEXPLORER’s missed targets are
the absence of a certain event sequence and the lack of meaningful inputs, e.g.,
files of a certain type. GOALEXPLORER encounters transitions that cannot be
followed and backtracks 2.39 times per app, which does not substantially impact
the exploration time; it still triggers the target substantially faster than the baseline
dynamic tools.
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Chapter 6

Discussion

6.1 Summary
In this thesis, we first defined the problem of goal-driven exploration for Android
applications – directly triggering the functionality of interest in an application.
We then discussed existing approaches, demonstrating that most of the existing
approaches focus on systematically exercising the whole application rather than
swiftly navigating to the target functionality. As these approaches often lack the
knowledge of unexplored paths that are likely to lead to the functionality of interest,
they are not applicable to the goal-driven exploration scenario.

We proposed a goal-driven exploration approach that statically constructs a UI
model of the application to guide the dynamic exploration towards a particular tar-
get of interest: an Android activity, API call, or a program statement. We analyzed
the existing UI models of Android applications to find that they do not provide an
accurate representation for the goal-driven exploration, thus we presented a new
UI model – the Screen Transition Graph (STG). We implemented a tool, called
GOALEXPLORER, that constructs STG and uses it for goal-driven exploration.
We empirically evaluated GOALEXPLORER on 93 benchmark applications and
95 the most popular GooglePlay applications. The evaluation result showed that
the STG is substantially more accurate than other Android UI models and that
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GOALEXPLORER is able to trigger a target functionality much faster than existing
application exploration.

6.2 Limitations and Threats to Validity

6.2.1 Limitations
The main limitation of our approach is that it does not accurately model com-
binations of events on the same screen required to issue a transition. Our static
UI model over-approximates the set of possible transitions, thus some collected
transition paths might not be feasible in practice, due to such constraints, e.g.,
transitions requiring a certain combination of events or a specific system state.
However, GOALEXPLORER incorporates the dynamic exploration logic to handle
such cases at runtime, which has proven to be effective in our evaluation of the
tool.

Although we extended our implementation to handle login screens, GOALEX-
PLORER cannot handle screens that require other types of semantic inputs, such
as a zip code or a specific type of file. This limitation is common to many other
automated exploration approaches, and is left for future work.

Another limitation of our approach is tied with the weakness of static analysis:
GOALEXPLORER is not able to generate accurate UI models for apps that use na-
tive code, dependency injection, and complex reflective calls. As GOALEXPLORER

relies on existing static analysis tools, FlowDroid and Soot, for constructing the
static UI model of the app, the generated model might be incomplete when these
tools produce inaccurate results. Such limitation is common for any static analysis
tool. Although the model is not perfect, GOALEXPLORER demonstrates its useful-
ness by achieving even slightly higher coverage than existing dynamic automated
testing techniques.
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6.2.2 Threats to Validity
The external validity of our results might be affected by the selection of subject
apps that we used and our results may not necessarily generalize beyond our
subjects. Moreover, the benchmark F-Droid apps we used are from several years
ago, thus they may not represent the latest apps in functionality and app design.
We attempted to mitigate this threat by using “standardized" set of benchmark
apps and by extending this set to include the 95 top Google Play apps. As we
used most-popular real-world apps of considerable size, we believe our results will
generalize for other apps.

For internal validity, our static analysis relies on FlowDroid to construct the
callgraph and collect the callbacks. The validity of our results thus directly depends
on the accuracy of that tool.

6.3 Future Research Directions
We envision two possible directions for future work:

(1) Tackling transitions that require specific semantic inputs, e.g. zip code, is an
important challenge for future work. Recent work [44] proposed a Natural
Language Processing (NLP) approach to effectively generates semantic
textual inputs based on the textual contents of the screen. Integrating such
learning algorithms could potentially improve GOALEXPLORER.

(2) Another possible direction for future work is to improve the accuracy of
the statically-constructed STG. For example, GOALEXPLORER currently
analyzes the set of fragments in each screen without modeling the prop-
erties of these fragments, leading to the incorrect transitions discussed in
Section 5.2.3. Tracking the properties of fragments can help identify the
fragments that are set invisible and exclude them from the model, hence
producing a more accurate STG.

50



6.4 Conclusion
This thesis introduced GOALEXPLORER – a tool for goal-driven exploration of
Android applications. Such a tool is useful for scenarios when a security auditor
needs to automatically trigger a functionality of interest in an app. The main
contributions of GOALEXPLORER are

(a) the static technique for constructing STG – a model that represents UI screens
and transition between the screens, and

(b) an engine that uses STG to build an executable script that triggers the func-
tionality of interest.

Our empirical evaluation shows that the STG model introduced in GOALEX-
PLORER is more accurate than other existing static UI models of Android ap-
plications. That is because it models advanced UI elements used in contempo-
rary Android applications, including fragments, services, and broadcast receivers.
Moreover, unlike earlier work that models UI components, STG represents the
composition of these components to UI screens, which makes it more appropriate
for targeted-exploration executions. Compared to dynamic application exploration
and testing tools, GOALEXPLORER relies on the statically-build model of an
application, which allows it to reach the target substantially faster.

As future work, GOALEXPLORER can be extended to support semantic tex-
tual inputs, which can be done using NLP. Improving the accuracy of statically-
produced STG, e.g., by tracking the properties of fragments, is another possible
extension of this work.
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