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Abstract 

 

As the development of sensor and data storage technology, more data have become available for 

analysis. A commercial database stores the power flow data for more than 4000 Photovoltaic 

systems. Various optimization methods have been researched for reducing the PV system's cost 

by sizing each system component appropriately. For most of the existing optimization methods, 

they focus on the computational efficiency, system modelling or data availability. The 

disadvantage is they always assume the system's type and operation strategy are known. 

However, in the given database, the system's type is unlabeled. 

 

This thesis proposes a method for sizing PV systems based on their historical power flow data 

stored in the multivariate time-series format. The method is presented in three consecutive steps. 

In the first step, a validation rule is applied to filter out the problematic PV systems. The systems 

whose battery monitor is incorrectly installed can also be detected by the Gaussian Mixture 

Model (GMM) method, and the related data can be fixed afterward. In the second step, seven 

features are determined to differentiate the PV systems. The GMM method is applied to cluster 

the PV system based on the proposed features, so we can identify the system's type through 

visualizing the classification results. Once we know the system type, in the last step, the PV 

system is modelled mathematically. The Artificial Bee Colony (ABC) method is implemented 

based on the system model, historical data, and operation strategy to determine the optimal size 

of each system component. As an example, a stand-alone system is chosen to demonstrate the 

process that determines the sizes of the PV panel, diesel generator, and battery bank. 
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Lay Summary 

 

PV energy is an environmentally friendly source and the application of PV system may remit the 

emission of greenhouse gas and air pollution. Moreover, it becomes an ideal energy source for 

the communities in the remote areas, where the grid extension is not economical. However, its 

cost still concerns potential users, and especially, its initial capital cost is usually higher than 

other types of system. To make the PV energy more economical, this thesis proposes a procedure 

to minimize the overall cost of PV systems based on a database that records all systems’ 

historical power flow data. It first extracts a few features from the time-series data to obtain each 

system’s operation behaviour. Then, based on the selected features, similar systems are grouped. 

Therefore, cost functions can be formed for each group, and they are converted to an 

optimization problem to determine the most economical size of PV array, battery bank capacity 

and the power rating of a back-up diesel generator.  
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Chapter 1: Introduction 

 

Solar energy is clean and free from carbon dioxide emission during operation. It is an 

ideal alternative energy source that has been widely applied in various applications in recent 

years, especially for the communities in the rural area. However, the cost of a photovoltaic (PV) 

system remains the primary concern for potential customers. In an effort to reduce consumers’ 

year- round cost, researchers have been investigating ways to determine the sizes of different 

components in the PV system. This thesis will focus on the capacities of batteries, and the power 

ratings of diesel generators and PV panels. A private company has provided us a commercial 

database that contains information of over 4000 PV systems implemented around the world, 

including the time-series power flow data being analyzed in this study. From analyzing the given 

database, this thesis proposes a process to improve the sizing of the existing devices in the PV 

systems and suggests modification in the database for future analysis. 

 

1.1 Photovoltaic Generation 

 

The global demand for electricity has been increasing drastically for the past decades. 

The consumption of fossil fuel causes a significant negative impact on the environment such as 

air pollution, global warming, climate change, etc. Therefore, renewable energy has been 

attracting a large amount of attention in the recent two decades [1]. Among all the alternative 

ways to harvest energy, PV has been more widely adopted. Studies have shown that there are 

many opportunities to implement profitable PV systems which would also reduce CO2 emission 

[2] and benefit rural and remote communities[3], [4]. Compared to a PV system, diesel 
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generator-based systems have higher maintenance and operation costs [5]. In some remote areas, 

diesel is very expensive, and new extensions of the power grid is highly uneconomical [6]. In 

these cases, a stand-alone PV system or a micro-grid driven by PV generation will be more 

economical [7]. Although solar energy has many benefits over fossil fuel, the capital cost of a PV 

system is still high. This remains the leading limiting factor of the PV system implementation in 

rural areas [8]. In addition, PV has an uncertain and intermittent nature like other types of 

renewable energy. An energy storage system, such as a battery bank, can improve the stability 

and reliability for the consumer, but would require even more capital investment, increasing 

economic feasibility concerns [9]. 

 

1.2 The Given Commercial Database and The Commercial PV Systems 

 

This research is based on data stored in a given commercial database collected through 

PV-system solutions provided by owners. The PV-system product line includes the inverter, 

maximum power point tracker (MPPT), automatic generator starter (AGS), system control panel 

(SCP), communication box (ComBox), battery monitor, and user interface through the internet. 

Customers who acquire the PV-system product line would need to procure battery banks, a diesel 

generator and PV panels from a third-party manufacturer.  shows the layout of a fully extended 

system. In the system, devices are connected through an AC bus, a DC bus, and a 

communication bus. The arrows in the diagram show the possible directions of power flow. The 

functions of each component are described below. 
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Figure 1.1 Block diagram of a fully extended PV system in the given database 

 

1) Inverter: The inverter can convert DC to AC or AC to DC. It can also control the amount 

of energy drawn from each source and measure the amount of energy transmitted. The 

inverter acts as an interface between the DC bus, grid, backup source, and load. 

2) Grid: The grid can provide and intake AC power, usually considered reliable and has no 

limitation on power rating. Not all systems have a grid connection and some grids are not 

reliable. 

3) Diesel generator:  The diesel generator consumes diesel and generates stable AC energy. 

The power rating limits its output. In a PV system, it can act as either the primary energy 

source or the backup energy source. The diesel generator is usually installed when the 

grid is not accessible. 
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4) PV panels: The PV panels generate DC energy under solar radiation through the 

photovoltaic effect. Their output power relates to the panel's power rating, the strength of 

the radiation and the panel's orientation. 

5) MPPT: It is essentially a DC/DC converter which controls (usually by maximizing) the 

energy from the PV panels according to the panel's V-I characteristic curve. 

6) Battery: An electrical energy storage device. Most studied sites adopt lead-acid batteries 

and a few of sites install lithium-ion batteries. 

7) Load: A load in the system can be anything that consumes energy. In most cases, the 

primary purpose of a system is to satisfy the load's demand. However, some systems do 

not have a load, or their loads are minimal, in which case most of the generate energy 

will be injected to the grid. 

8) Battery monitor: It measures current, voltage, temperature, state of charge (SoC), average 

cycling depth, number of cycles, and remaining time of a lead acid battery bank. It can 

connect with a ComBox through a communication bus to update battery information in 

the database. 

9) AGS: The AGS can start or stop a generator based on the shared status information over 

the communication bus. It responds to a set of programmable requirements such as 

battery voltage, battery SoC and grid power. 

10) SCP: The SCP is a user interface that informs users of the system's status, warnings, and 

errors. The displayed information includes the battery's SoC, temperature, MPPT's 

harvest and the currents on each bus, etc. A user can also set configurations and 

parameters through the SCP.  



5 

 

11) ComBox: It is a communication device integrated with a web server. It uploads the 

system's status to the web server so users can use mobile devices or PCs to access the 

system's status. Comparing to an SCP, the ComBox enables remote monitoring and 

configuration. It also provides a more complexed visualization tool and analysis. 

 

The integrated web server is one of the system's features. It can collect data from each 

system. The information we will analyze comes from this collection. There are three types of 

data based on how they are updated: 

 

1) Manually updated data: It includes the devices' configuration, site name, address, battery 

size, and panel size, etc. They are entered manually by the user. 

2) Dynamic data: Dynamic data is measured and updated to the database automatically, but 

the database only stores the latest data. It includes the battery's temperature, SoC, voltage, 

etc. 

3) Historical data: In the database, only the system's power flow have historical data. In 

each site, seven types of power flow are available, including PV generation, load 

consumption, grid input, grid output, battery charged energy, battery discharged energy 

and generator's generation. All historical data are stored once every ten minutes. Figure 

1.2 gives an example of a PV system’s daily power flow profile. On a given day, the 

system only records three types of power flow; PV input, grid output and load output. 

The power flow profile helps the user to understand the system’s behaviour. Figure 1.2 

shows that the system generates solar energy and injects most of the energy to the 

connected grid. 
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Figure 1.2 Example of a system’s daily power flow profile 

 

1.3 Application of Commercial and Residential PV Systems 

 

The fully extended system shown in  includes all possible devices, but most PV systems 

only contain some devices. The PV systems in the given database are for various applications, a 

few possibilities are described below.  

 

1.3.1 Off-Grid Solar Power Systems 

 

For off-grid residences, PV is usually the primary power source for their load. The 

battery bank stores excessive power generated from PV panels during sunny periods for later 

usage. It’s usually combined with a diesel generator as a backup source in case the battery runs 

out of energy. Or the diesel generator can be the primary energy source. In this case, the adoption 



7 

 

of PV as secondary generation shortens the usage time of diesel generator and reduces the cost of 

fuel. 

 

1.3.2 Net Metering Systems 

 

The net metering systems aim to maximize the yield in power generation and the return 

of investment. In this type of application, the MPPT is directly connected to the inverter, and the 

battery is not included. If there is a load, power will be supplied by the PV system and/ or the 

power grid. Excessive power (or where there’s no load, all power) generated through the PV 

system are sold back to the grid. 

 

1.3.3 Storage and Backup Systems 

 

The grid is considered the primary source in these systems and the power generated 

through the PV system is stored in battery banks and only used for backup purposes. The inverter 

converts DC power from the battery to AC and seamlessly connects it to the load when the grid 

is not available. 

 

1.3.4 Self-Consumption with Storage Systems 

 

A self-consumption with storage system usually connects to the grid and has a DC-

coupled PV generation with storage. The application prioritizes energy usage from the DC bus 

until the battery SoC drops to a preset threshold, then switches to purchasing power from the 
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grid. This allows the battery bank to also act as a backup source when power from the grid is not 

available. When there is sufficient radiation, excessive power generated from PV panels charges 

the battery.  

 

 

1.4 Research Objectives 

 

To promote the use of solar power systems by satisfying demands and minimizing system 

cost, it is wise to design for appropriate sizes for each component in the system. The commercial 

database has been collecting power flow data from their PV systems for years. Even though 

there’s a massive amount of data collected, the data from different types of PV systems are 

mixed together and need to be classified and validated prior to further analysis. In this study, data 

analysis, visualization and simulation are implemented in MATLAB and R. The overall goal is 

divided into the following three objectives: 

 

1.4.1 Objective 1: Data Cleaning for the Database 

 

After looking through the data provided, some of the values appeared questionable. Poor 

data quality can be due to many reasons. The Gaussian mixture models (GMM) method is 

implemented in this thesis to identify erroneous connections of  the battery monitor to the 

system, and to correct the data accordingly. The GMM classification method tolerates outliers, 

has fewer parameters to be configured and allows clusters to overlap. For errors with unknown 
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causes, validation rules are applied to identify the valid data from the database. The invalid data 

are excluded from classification and analysis in Chapter 3. 

 

1.4.2 Objective 2: Identifying System’s Application Based on Power Flow Data 

 

As discussed previously, PV systems can be applied for different applications. Although 

all PV system users update their site status, they do not specify the application of their site. The 

system's application is important information because a system cannot be optimized without 

prior knowledge of the system's purpose of operation. From their power flow, it is possible to 

identify the primary source, operation strategy and the application. Both poor data quality and 

unique applications in systems can cause outliers in the database. The classification method 

should identify outliers. 

 

1.4.3 Objective 3: Sizing Panels, Battery Bank and Diesel Generator to Minimize 

System’s Cost 

 

Once the application is determined, it is possible to form a function representing its year-

round cost. Various types of costs may be associated with each component in a system. All costs 

should be formularized and summarized. The optimization purpose is to minimize the year-round 

cost with respect to constraints. This study proposes two methods: the first method is based on 

the given power flow data and optimizes the size of the battery. The second method is versatile, 

and sizes several components simultaneously. However, it needs additional information that the 

database does not provide. 



10 

 

Chapter 2: Data Cleaning 

 

The given database tracks more than 4000 PV systems, but only a portion of the systems 

directly monitor the battery's charging and discharging power flow. Our analysis only considers 

these PV systems because their data are more reliable. The raw data has many other quality 

issues, which will be discussed in this chapter. In order to filter out unreliable data and carry 

further analysis, a validation rule is proposed.  In addition, a method is proposed to detect the 

incorrect installation of the battery monitor and correct the data. 

 

2.1 Problems of Data Quality  

 

Each site has up to seven sets of historical data for analysis. However, there are various 

problems in the data, which will affect our analysis. Therefore, before the data are thoroughly 

analyzed, it is necessary to clean up the data itself. Different types of quality issues are treated 

differently. The data will be considered for analysis if their errors can be corrected, otherwise 

they will not be included in the analysis. The main issues with the data are discussed in sections 

2.1.1 to 2.1.5. 
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2.1.1 Dummy and Deleted Sites 

 

This database contains many dummy sites and deleted sites. These sites do not record 

valid energy flow information, so they are not useful for research. Deleted sites often have 

various problems, such as missing records, short history, or duplicate registrations. There is no 

data recorded at all in the example shown in figure 2.1. Therefore, these systems are excluded 

from further analysis. 

 

Figure 2.1 An example of dummy system’s daily power flow profile 

 

 

2.1.2 Missing Data 

 

The database provided is missing data. One situation is that a particular type of data is 

absent. Sometimes a type of energy flow exists within the system but is not recorded. The typical 
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case is the lack of PV power generation records. In this case, we cannot understand the 

behaviours of the site at all, and we cannot be sure what energy sources exist at the site. 

According to Figure 2.2, the battery was charged, and the load consumed energy at noon, but no 

energy was supplied through any means. The PV monitor is likely broken, but other potential 

causes (eg. an unmonitored source in the system, a broken generator monitor) cannot be 

excluded. 

 

 

Figure 2.2 An example of missing data 

 

Another situation is where the data is missing during a specific period. For example, no 

data was recorded for a few months, or the system only updates data once a week. The data 

collected in these situations can be very misleading. However, some sites only lose a few time 

steps of data, this type of loss will not affect the analysis of their overall behaviour. Figure 2.2 is 

an example of this case. It misses a few data points at noon, but the user can still understand the 

system’s behaviour.   
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2.1.3 Outliers 

 

Outliers may imply special events or may be caused by genuine system errors. In a grid-

tie system, a battery bank may operate as an alternative source. It usually does not supply energy 

to loads. However, when the grid fails the battery starts to discharge, and its data become 

outliers.  In another example, some data have no apparent explicable cause and are well outside 

the normal range, as shown in Figure 2.3.

 

Figure 2.3 An extreme value in the record 

 

2.1.4 Scaled Measurement 

 

Incorrect upscaling or downscaling can occur but is not easy to detect. It is usually due to 

a sensor installation error or wrong configurations, but the measured value is proportional to the 
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real value. In Figure 2.4, the generator input data is proportional to but greater than the battery 

charge data at night. There is no load or grid output during these hours. So theoretically the 

generator input should be equal to the battery charge data. We can deduce that at least one set of 

the measurements is scaled, but it is not possible to determine if either are valid. 

 

Figure 2.4 Scaled measurement in the database 

 

2.1.5 Device Installation Error 

 

The system has a default topology for measuring up to seven types of power flow. If a 

local installer installed the sensors or devices incorrectly, the data would not be describing what 

was intended to be measured. In Figure 2.5 the grid input and the load output change 

synchronously and drop to zero at noon, but the grid output increased significantly. A reasonable 

guess is that the PV panel coupled on the AC bus and the load output is measured incorrectly. 
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Figure 2.5 Wrong measurement due to incorrect device installation 

 

A prevalent mistake is that the battery monitors were installed at the wrong location or in 

the wrong direction. This type of error can be detected and corrected. The correction procedure is 

described in Section 2.3. 

 

2.2 Data Validation 

 

The database contains many quality problems which cause noise during data processing 

and analysis. Useful information may be undetectable under the noise, so the invalid data should 

be either removed or corrected. One straightforward method to validate data is based on the law 

of conservation of energy. 
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Figure 2.6 Seven measured power flow in the commercial and residential PV system. 

 

As the typology shown in figure 2.6, the inverter is a node in the system. According to 

the law of conservation of energy or Kirchhoff's current rule. The energy going into the node is 

equal to the energy out of the node: 

 𝐸𝐼𝑛[𝑡] = 𝐸out[𝑡] + 𝐸𝑙𝑜𝑠𝑠[𝑡], (2.1) 

where 

 𝐸𝐼𝑛[𝑡] = 𝐸𝑃𝑉𝐼𝑛[𝑡] + 𝐸𝐵𝑎𝑡𝑡𝐼𝑛𝑣[𝑡] + 𝐸𝐺𝑒𝑛𝐼𝑛[𝑡] + 𝐸𝐺𝑟𝑖𝑑𝐼𝑛[𝑡]  (2.2) 

 𝐸out[𝑡] = 𝐸𝑙𝑜𝑎𝑑[𝑡] + 𝐸𝐺𝑟𝑖𝑑𝑂𝑢𝑡[𝑡] + 𝐸𝐵𝑎𝑡𝑡𝐶ℎ𝑎𝑟[𝑡] (2.3) 

𝐸𝑃𝑉𝐼𝑛, 𝐸𝐵𝑎𝑡𝑡𝐼𝑛𝑣 , 𝐸𝐺𝑒𝑛𝐼𝑛, 𝐸𝐺𝑟𝑖𝑑𝐼𝑛, 𝐸𝑙𝑜𝑎𝑑 , 𝐸𝐺𝑟𝑖𝑑𝑂𝑢𝑡, 𝐸𝐵𝑎𝑡𝑡𝐶ℎ𝑎𝑟 are the seven power flows which have 

been recorded in the database. 𝐸𝑙𝑜𝑠𝑠 includes DC/AC conversion losses, and the energy for 

controller and communications. When the converted energy is large, the 𝐸𝑙𝑜𝑠𝑠 approximately 

equal to (1 − η)(𝐸𝑙𝑜𝑎𝑑 + 𝐸𝐺𝑟𝑖𝑑𝑂𝑢𝑡). The conversion efficiency is about 97%. Therefore, a site 

should satisfy the following approximation. 

 
𝐸𝑜𝑢𝑡[𝑡]

𝐸𝑖𝑛[𝑡]
≈ η (2.4) 
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Based on the data in the recent year, the injected energy and extracted energy in each site can be 

calculated. The calculated result can be plotted on the following scatter plot. 

 

Figure 2.7 Data validation based on the law of conservation of energy: comparison of extracted energy and 

injected energy. 

 

By observing the plot above, we can find that most sites are within the acceptable range 

which is represented by two guidelines, especially as the injected/ extracted energy increases. 

The slope of the line should be the conversion efficiency of the inverter. Because the 

approximation is based on some assumptions and the measurements may not be accurate, I leave 

a margin for all sites, any site satisfying the following inequation will be trusted, and their data 

are valid data. 

 0.85 ∗ 𝐸𝐼𝑛 < 𝐸out < 1.1 ∗ 𝐸𝐼𝑛 (2.5) 
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There are many reasons causing energy imbalance as discussed in Section 2.1. Any data 

quality issue may break the conservation. Since the database does not provide redundant 

measurements, it is impossible to correct those quality issues. Therefore, all sites which do not 

satisfy the inequality will not be considered in further analysis. 

 

2.3 Battery Charge and Discharge Data Correction 

 

As mentioned in Section 2.1.5, the battery monitor may be installed incorrectly. The 

default topology of the PV system is shown in Figure 2.6. The battery monitor should measure 

the power flow going into and out of the battery. However, the battery monitor was connected to 

measure the power flow out of the MPPT and the power flow into the inverter. These data were 

labeled as charged energy and discharged energy respectively on many sites. The typology of 

such sites is shown in Figure 2.8.

 

Figure 2.8 Battery monitor wrongly installed in the commercial and residential PV system and measuring 

incorrect battery charge and discharge power flow.  
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Even though the law of energy conservation is applied to validate the dataset, the error 

mentioned above will not be detected. If we treat the inverter as a node again we get the 

following equation for the typology shown in Figure 2.8: 

 𝐸𝐵𝑎𝑡𝑡𝐼𝑛𝑣[𝑡] + 𝐸𝐺𝑒𝑛𝐼𝑛[𝑡] = 𝐸𝑙𝑜𝑎𝑑[𝑡] + 𝐸𝐺𝑟𝑖𝑑𝑂𝑢𝑡[𝑡] + 𝐸𝑙𝑜𝑠𝑠[𝑡] (2.6) 

Due to the wrong sensor installation location, 

 𝐸𝑃𝑉𝐼𝑛[𝑡] =  𝐸𝐵𝑎𝑡𝑡𝐶ℎ𝑎𝑟[𝑡] (2.7) 

Adding both sides of the equations 2.6 and 2.7, according to the definition in equations 2.2 and 

2.3 we get, 

 𝐸𝐼𝑛[𝑡] = 𝐸out[𝑡] + 𝐸𝑙𝑜𝑠𝑠[𝑡] (2.8) 

Equation 2.8 is exactly the same as the validation rule (equation 2.1.) This means that the 

validation process cannot detect data collected through incorrectly installed battery monitors.  

 

To detect the error and fix it, the GMM classification is implemented by thinking the 

difference between the normal systems and the systems whose battery monitor is incorrectly 

installed. Therefore, the following three features are selected, and they are explained in detail.  

 

1) The ratio of battery charged energy to PV generation 

 

When the battery charge sensor is incorrectly installed, it measures the PV generation 

rather than charged energy. Therefore, the ratio of the two will be close to 1. In an efficient PV 

system, solar energy is preferably consumed directly rather than stored in a battery, because the 



20 

 

charging process causes energy losses and battery degradation. When the sensors are installed 

correctly, the ratio of battery charged energy to PV generation is low. 

 

2) The ratio of micro-cycling energy to battery charged energy 

 

A battery cannot charge and discharge at the same moment. Usually, it charges when the 

system generates spare energy and discharges when the load demands. During a short period, a 

battery may switch between the charge mode and discharge mode frequently. The behaviour is 

called micro-cycling. This behaviour usually happens during sunset and sunrise. During these 

periods, the demand for power is roughly equal to supplied power. Any perturbation will be 

buffered by the battery through micro-cycling. The amount of energy cycled during the micro-

cycling is small. It only takes a small portion of the charged energy. Therefore, when all sensors 

are installed correctly, the ratio should be low. However, because we prefer the PV energy to be 

consumed directly, the ratio of PV generation to the inverted energy will be close to 1.  

 𝐸𝑐𝑦𝑐𝑙𝑒𝑑[𝑡] = min (𝐸𝐵𝑎𝑡𝑡𝐶ℎ𝑎𝑟[𝑡], 𝐸𝐵𝑎𝑡𝑡𝐼𝑛𝑣[𝑡]) (2.9) 

 

3) The ratio of battery charged energy to battery discharged energy during the day 

 

During the daytime, PV usually generates energy to support loads, and the excess energy 

is stored into the battery. Since the PV is the primary source, the battery is unlikely to discharge. 

The ratio of discharged energy to charged energy should be close to zero.  
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As discussed previously, PV generation is equal to the measured battery charge energy in 

systems with incorrectly installed sensors. In the daytime, PV tends to supply energy to the 

loads, and the excessive energy is stored in the battery. Therefore, the inverted energy is less 

than the PV generation. The site wrongly measures PV generation as the charged energy, the 

amount of cycled energy is equal to the charged energy or discharged energy, whichever has a 

lesser value; the inverted energy is less than PV generation over time. Hence the cycled energy 

equals the measured discharged energy when the sensor is installed incorrectly, which implies 

the following equation. In other words, as noted in Table 2.1, Feature#3 equals Feature#2. 

 
𝐶𝑦𝑐𝑙𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦

𝑃𝑉 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛
=

𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦

𝐶ℎ𝑎𝑟𝑔𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦
 (2.10) 

 

 Normal systems Systems with incorrectly 

installed battery monitor 

Feature #1 Much lower than 1 Close to 1 

Feature #2 Close to 0 Greater than 0 

Feature #3 Close to 0 Equals feature #2 

Table 2.1 Expected features’ value with respect to normal systems and systems with incorrectly installed 

battery monitor. 

 

The three features for all sites are calculated based on the most recent year-round data. 

We set the amount of cluster to be six, and the GMM method generates the classification result 

as shown in Figure 2.9. The six categories are shown with different colours and symbols.   
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Figure 2.9 GMM classification result for identifying incorrectly installed battery monitor. 

 

The cluster consisting of the red hollow squares should be emphasized. Sites in this 

category are suspected of installing their battery monitors incorrectly. Their features’ value meet 

the expectations listed in Table 2.1. On the contrary, other clusters tend to have small values in 

the three features. They are classified into a different category according to their operation mode 

or behaviour. Details will be discussed in later chapters. 

 

Once the faulty systems are detected, their data can be corrected in the following steps. 

When the PV generation is greater than the demand, the excessive energy goes into the battery.  

 𝐸𝐴𝑐𝑡𝑢𝑟𝑒𝐵𝑎𝑡𝑡𝐶ℎ𝑎𝑟 = max (0，𝐸𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝐵𝑎𝑡𝑡𝐶ℎ𝑎𝑟 − 𝐸𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝐵𝑎𝑡𝑡𝐼𝑛𝑣) (2.11) 

When the PV generation is insufficient, the battery discharges to meet the demand. 
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 𝐸𝐴𝑐𝑢𝑡𝑢𝑟𝑒𝐵𝑎𝑡𝑡𝐼𝑛𝑣 = max (0，𝐸𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝐵𝑎𝑡𝑡𝐼𝑛𝑣 − 𝐸𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝐵𝑎𝑡𝑡𝐶ℎ𝑎𝑟)  (2.12) 

The errors in the database due to wrong installations is corrected. But it should be noted that their 

charged energy and discharged energy will not be positive at the same time step, which means 

we lose the information about their micro-cycling. 

 

2.4 Conclusion 

 

The database has many quality issues. To use accurate data, we only consider sites with a 

battery monitor. In 1168 sites with the battery monitor, 487 sites are either dummy sites or 

deleted. After applying the law of conservation of energy, 431 sites are valid. Within these sites, 

33 sites do not have PV generation and some sites record less than 50 days' data. Finally, we 

keep only consider 358 sites for further analysis. 

 

There are many possibilities for the invalid data and we only have limited information 

about each system, so it is very difficult to know the specific reasons that render the data invalid. 

Without knowing the cause, we cannot correct the wrong data. I excluded the invalid data 

because they behave like noise during the analysis and clustering process. They do not provided 

any helpful information and masks useful details.  

 

Three features are selected to identify sites with battery monitors installed incorrectly. 55 

faulty systems are found in the 358 sites. The verification process is done manually. Five 

systems on the cluster boundary and four systems at the center of the cluster are verified. The 
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four systems at the center of the cluster are correctly identified, but three out of five systems on 

the classification boundary are classified incorrectly. 
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Chapter 3: Site Classification 

 

As discussed in Section 0, the PV system can operate differently to achieve various 

purposes. In the previous chapter, the data is validated and corrected. However, different types of 

systems are mixed in the database.  It is impossible to optimize different systems in the same 

method because different PV systems are operated differently. Therefore, it is necessary to 

classify the PV systems according to their behaviours. Then, their operation purposes can be 

determined, and their component size can be optimized correspondingly. In this chapter, 

classification methods for multivariate time-series data are reviewed and feature selection are 

explained. Finally, the proposed method is implemented to classify the PV systems type. 

 

3.1 Classification Methods for Multivariate Time-Series Data 

 

Unsupervised classification organizes data that do not have class information into 

homogenous groups where the within-group-object similarity is maximized, and the between-

group-object similarity is minimized  [10],  [11], [12]. Classic classification methods, such as 

hierarchical method, density-based method, grid-based method, etc. are based on data described 

with static features [10], [12]. However, in recent decades, more data is stored in the time-series 

format due to the development of sensing, storage and processor technologies [11], [13]. In the 

real-word, many applications are dynamical, and their data are stored in the time-series format 

such as sale data, waveform, robotic status, ecology data and so on [10], [11], [14],  [15], [16], 

[17].  
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Compared to the static features, the time-series data are in much higher dimensions. 

Besides the complexity of computation, it is also challenging to compare the similarity of two 

time-series data. The multivariable situation makes the challenge more difficult. Relevant studies 

classify multivariate time-series data in three approaches: Raw-data-based (shape-based), 

feature-based, and model-based [10], [11]. The Raw-data-based method process the raw data 

directly to evaluate the similarity of two sets of data. The later studies tend to use a set of 

features or models to represent the raw data, then compare the similarities according to the 

elements and models [18]. In spite of the existing methods are different, they follow the same 

general idea, which is to reduce the data dimensions by transforming the raw data into a set of 

values.  

 

Košmelj [14] adopts the Iterative relocation clustering procedure as a classification 

method. The author also takes the generalized ward criterion function as the minimization 

objective to decide the number of clusters and perform optimization. As its contribution, the 

study [14] proposes the cross-sectional approach to measure the dissimilarity between two sets of 

multivariate time series data. This approach defines the dissimilarity between trajectories, then 

proposes a compound interest model to estimate the required time-dependent weights. As a case 

study, the method is implemented to classify 23 countries into five categories based on their 

consumption of different types of energy between 1976 to 1982. This method required vast 

computational resources and storage during the calculation process. In addition, it needs all time-

series data to have the same length for comparison. 
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Figure 3.1 [19] Example of earthquake and quarry blast  

 

As shown in Figure 3.1, explosion and earthquake waveform are similar in their time-

series records. To distinguish the two events from their multivariate time series data, some 

features are extracted such as relative amplitude, spectral ratio or relative power components 

[15]. The article introduces another approach based on the raw data. It applies the Kullback-

Leibler (KL) distance and the Chernoff Information Divergence to estimate the difference of 

sample spectral matrices and group average spectral matrices [15], followed by the K-means and 

hierarchical classification methods for further classification. However, in the case study, the 

author has known the data type already and uses the information for validating the proposed 

classification method.  

 

Like [15] , Shumway [20] also applies the KL discrimination information method to 

measure the differences between two time-frequency profiles. It adopts the hieratical clustering 
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classification method after evaluating profiles’ similarity.  The article claims that the method 

eliminates the decision about how to extract features. However, the author mentioned that 

aligning the arrival times is critical for the proposed method.  

 

Biernacki et al. [21] focus on comparing the Bayesian Information Criterion (BIC) and 

the Integrated Completed Likelihood (ICL) for choosing Gaussian mix model and the number of 

clusters. The work gives three case studies and claims that the BIC method tends to overestimate 

the number of clusters when the model does fit the data set well. On the contrary, the ICL 

method penalizes overlapping clusters. In my opinion, the mentioned BIC’s character can be 

beneficial in some situations. It can detect minor clusters and distinguish partially overlapped 

clusters. 

 

Ramoni et al. [16] represent multivariate time series data as a set of Markov Chains 

which describes transition probability of the data. The KL distance is used for measuring the 

similarity between two sets of Markov Chains, and the similarities are used as a guide for the 

searching process. The grouping process is to maximize a Bayesian scoring metric of the 

obtained clustering. 

 

Oates et al. [22] assume that a set of multivariate time series data are generated by 

Hidden Markov Models (HMM). It first applies the Dynamic Time Warping and the hierarchical 

classification methods to estimate the number of clusters and the initial clustering. The HMM of 

each cluster is trained by iteratively moving time series data between clusters until their 

likelihoods are maximized. To test the effectiveness of the method, the authors use two HMMs 
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to generate 40 sequences, each sequence with a length of 200 time steps, and then run the 

classification method on the dataset.  

 

Li et al. [17] also adapt the HMM for the multivariate time series data. The proposed 

Bayesian HMM clustering method chooses the number of states and clusters by maximizing the 

BIC. Then, it assigns objects to the corresponding clusters based on its object-to-HMM 

likelihood. The process finishes when the maximum likelihood achieved. The method is 

evaluated on both artificially generated data and ecology data using the Partition 

Misclassification Count metric. However, the testing data is relatively short (i.e., each sample 

has a length of 56 time steps). 

 

In a study, the multivariate time-series data is assumed to have the Markov property [12].  

The data is generated according to a series of unobservable states. The proposed process adopts 

the HMM method for classification and contains four steps which are determining the number of 

clusters, the structure for a partition size, the HMM structure and HMM’s parameter. To be more 

specific, it uses the K-means method or depth-first binary division to determine the structure of a 

give partition size. And the Partition Mutual Information Measure is applied to estimate the 

number of clusters. 

 

Ferreira et al. [23] propose a new method, namely CPT-M, based on the Principal 

Component Analysis. The author claims the 24-hour multivariate time series data can be reduced 

to two principal components while maintaining 95% of the variance of the data. The proposed 

method implements the PCA similarity matrix, dissimilarity matrix, multidimensional scaling 
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and date subtractive algorithm iteratively based on the two principal components to classify the 

studied dataset. 

 

Many methods have been proposed for classifying the multivariate time-series data as 

shown above. However, none of them are universal. Researchers chose the appropriate similarity 

measure for the data. And the appropriate measure depends on the nature of data. For example, 

Li et al.[17] assume their ecology data satisfies the HMM property. Therefore, they find HMM 

for each set of data and measures the similarity between HMMs. In another study [15],  

Kakizawa et al. mention the explosion and earthquake’s frequency profile are visually different. 

Therefore, the researcher applies KL distance for measuring the similarity of waveforms’ 

frequency profile.  

Among the reviewed studies, researchers have limited ways to verify their proposed method, 

because they usually do not know the type of each sample before classifying them. In [21], 

assessment is based on visualization of the classification results. Kakizawa et al. [15] have 

already known the type of data before the classification process and use the known information 

to evaluate the classification accuracy. Oates et al. [22] generate testing data using given models. 

Then, the researcher classifies the generated data and checks if the classification results match 

the original models. Košmelj, Ferreira and Li apply their proposed method to study cases but 

they do not evaluate the effectiveness of their proposed classification methods [14], [17], [23]. 

 

Even though the reviewed methods are very different, they share the same concept. They 

tend to reduce the dimensions of the original data, propose that a method to measure the 

similarity of two samples, and classify samples into corresponding groups. This thesis follows 
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the concept, to classify PV systems based on their power flow data, nine features are selected to 

distinguish the PV systems, and the details are shown in the following section. 

 

 

3.2 Features Extraction 

 

Feature selection is a process of reducing the dimensions of the original data. A site may 

have multiple energy sources, including PV,  grid input, and diesel generator. Sites’ operation 

behaviour may relate to their energy sources. Therefore, the first three features represent the 

weight of each energy source in a system.  

 𝐹1 =
𝐸𝑡𝑜𝑡.𝑃𝑉

𝐸𝑡𝑜𝑡.𝑖𝑛
  (3.1) 

 𝐹2 =
𝐸𝑡𝑜𝑡.𝐺𝑟𝑖𝑑.𝑖𝑛

𝐸𝑡𝑜𝑡.𝑖𝑛
  (3.2) 

 𝐹3 =
𝐸𝑡𝑜𝑡.𝐷𝑖𝑒𝑠𝑒𝑙

𝐸𝑡𝑜𝑡.𝑖𝑛
  (3.3) 

Where 

 𝐸𝑡𝑜𝑡.𝑖𝑛 =  ∑ 𝐸𝑃𝑉[𝑡] + 𝐸𝐺𝑟𝑖𝑑.𝑖𝑛[𝑡] + 𝐸𝐷𝑖𝑒𝑠𝑒𝑙[𝑡]𝑡  (3.4) 

 𝐸𝑡𝑜𝑡.𝐺𝑟𝑖𝑑.𝑖𝑛 =  ∑ 𝐸𝐺𝑟𝑖𝑑.𝑖𝑛[𝑡]𝑡  (3.5) 

 𝐸𝑡𝑜𝑡.𝑃𝑉 =  ∑ 𝐸𝑃𝑉[𝑡]𝑡  (3.6) 

 𝐸𝑡𝑜𝑡.𝐷𝑖𝑒𝑠𝑒𝑙 =  ∑ 𝐸𝐷𝑖𝑒𝑠𝑒𝑙[𝑡]𝑡  (3.7) 

The fourth feature is the ratio of grid output to the total energy input. The ratio shows the 

percentage of the energy dumped into the grid. The ratio can tell if the site is grid-tie or stand-

alone. The ratio can also distinguish self-consumption sites. 
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 𝐹4 =
𝐸𝑡𝑜𝑡.𝑔𝑟𝑖𝑑.𝑜𝑢𝑡

𝐸𝑡𝑜𝑡.𝑖𝑛
  (3.8) 

where 

 𝐸𝑡𝑜𝑡.𝐺𝑟𝑖𝑑.𝑜𝑢𝑡 =  ∑ 𝐸𝐺𝑟𝑖𝑑.𝑜𝑢𝑡[𝑡]𝑡  (3.9) 

The fifth feature is the ratio of battery charged energy over the total system input energy, 

which shows the battery utilization. Ideally, all input energy into the system should be consumed 

by the load directly. This may not always true as the charge and discharge process lead to energy 

loss and battery degradation.  

 𝐹5 =
𝐸𝑡𝑜𝑡.𝐶ℎ𝑎𝑟𝑔𝑒

𝐸𝑡𝑜𝑡.𝑖𝑛
  (3.10) 

where 

 𝐸𝑡𝑜𝑡.𝐶ℎ𝑎𝑟𝑔𝑒 =  ∑ 𝐸𝐵𝑎𝑡𝑡.𝐶ℎ𝑎𝑟𝑔𝑒[𝑡]𝑡  (3.11) 

The sixth feature is the ratio of the system input energy over the load from 10 p.m. to 3 

a.m. This feature indicates the site’s primary source at night. 

 𝐹6 =
𝐸𝑛𝑖𝑔ℎ𝑡.𝐺𝑟𝑖𝑑.𝑖𝑛。

𝐸𝑛𝑖𝑔ℎ𝑡.𝐿𝑜𝑎𝑑
  (3.12) 

where 

 𝐸𝑛𝑖𝑔ℎ𝑡.𝐺𝑟𝑖𝑑.𝑖𝑛 =  ∑ 𝐸𝐺𝑟𝑖𝑑.𝑖𝑛[𝑡]𝑡 𝑓𝑟𝑜𝑚 10 𝑝.𝑚.𝑡𝑜 3 𝑎.𝑚.  (3.13) 

 𝐸𝑛𝑖𝑔ℎ𝑡.𝐿𝑜𝑎𝑑 =  ∑ 𝐸𝐿𝑜𝑎𝑑[𝑡]𝑡 𝑓𝑟𝑜𝑚 10 𝑝.𝑚.𝑡𝑜 3 𝑎.𝑚.  (3.14) 

The last three features are the ratio of discharged energy overload in three periods. The 

three periods are 1) from 6 a.m. to 10 a.m. 2) from 10 a.m. to 2 p.m. and 3) from 2 p.m. to 6 p.m. 

Ideally, PV generates energy during the three periods. These features relate to the site’s operation 

mode. Some sites use a battery as a backup energy source. The three values could be low in this 
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case. Some sites may have high values to maximize the utilization of PV energy. For the peak-

shaving sites, they may discharge their battery during a specific period. 

 𝐹7 =
𝐸𝑝𝑒𝑟𝑖𝑜𝑑1.𝐵𝑎𝑡𝑡.𝐼𝑛𝑣

𝐸𝑝𝑒𝑟𝑖𝑜𝑑1.𝐿𝑜𝑎𝑑
 𝐹8 =

𝐸𝑝𝑒𝑟𝑖𝑜𝑑2.𝐵𝑎𝑡𝑡.𝐼𝑛𝑣

𝐸𝑝𝑒𝑟𝑖𝑜𝑑2.𝐿𝑜𝑎𝑑
  (3.15) 

 𝐹9 =
𝐸𝑝𝑒𝑟𝑖𝑜𝑑3.𝐵𝑎𝑡𝑡.𝐼𝑛𝑣

𝐸𝑝𝑒𝑟𝑖𝑜𝑑3.𝐿𝑜𝑎𝑑
  (3.16) 

where 

 𝐸𝑝𝑒𝑟𝑖𝑜𝑑1.𝐵𝑎𝑡𝑡.𝐼𝑛𝑣 =  ∑ 𝐸𝐵𝑎𝑡𝑡.𝐼𝑛𝑣[𝑡]𝑡 𝑓𝑟𝑜𝑚 6 𝑎.𝑚.  𝑡𝑜 10 𝑎.𝑚.  (3.17) 

 𝐸𝑝𝑒𝑟𝑖𝑜𝑑2.𝐵𝑎𝑡𝑡.𝐼𝑛𝑣 =  ∑ 𝐸𝐵𝑎𝑡𝑡.𝐼𝑛𝑣[𝑡]𝑡 𝑓𝑟𝑜𝑚 10 𝑎.𝑚.  𝑡𝑜 2 𝑝.𝑚.  (3.18) 

 𝐸𝑝𝑒𝑟𝑖𝑜𝑑3.𝐵𝑎𝑡𝑡.𝐼𝑛𝑣 =  ∑ 𝐸𝐵𝑎𝑡𝑡.𝐼𝑛𝑣[𝑡]𝑡 𝑓𝑟𝑜𝑚 2 𝑝.𝑚.  𝑡𝑜 6 𝑝..𝑚.  (3.19) 

 

3.3 Determining the Number of Clusters 

 

The Gaussian Mixture Model can always get a better representation of distribution by 

adding more components. In the extreme case, for a database containing N samples, an N-

component GMM will perfectly describe the distribution of the database. In this case, the 

database is classified into N clusters, and each cluster only contains one sample. Such 

classification does not help us to understand the commons among samples. Therefore, we want 

to achieve a higher likelihood without adding too many components. In [21], its case studies 

show the BIC able to distinguish the overlapped clusters. And in [18], it shows that the BIC is 

more accurate than another common method, Cheeseman-Stutz approximation when the clusters 

are similar or the number of objects in a cluster is small. Therefore, the Bayesian Information 

Criterion (BIC) method is applied to determine the number of clusters. 
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The Bayesian Information Criterion is proposed in 1978 to determine how many 

components should be included in the mixture.  It also helps to determine which covariance 

parameterization is suitable. Information Criterion is a variation of likelihood. It penalizes the 

use of parameters. As likelihood goes up with additional parameter used in the mixture model, a 

penalty term for the number of parameters is subtracted from the likelihood. 

𝐵𝐼𝐶𝐷,𝑁 =  2logL𝐷,𝑀(x|𝛹) − v log(M) 

Where 𝛹 = {𝛼1, … , 𝛼𝑁 , 𝜃1, … , 𝜃𝑁} are the parameters of the mixture model for the model 

D with N components, M is the sample size, and v is the number of parameters, the pair {D, N} 

which maximizes 𝐵𝐼𝐶𝐷,𝑁 is selected. In this case, the GMM classify the data into different 

clusters but remains similarity within each cluster. 

 

Similarly, the BIC also helps us to select the model. As discussed previously, a GMM 

contains several gaussian distributions, i.e. φ(x|θ) ~ 𝑁(𝜇, ∑). Each component represents the 

distribution of a cluster. These distributions are elliptical in the space, and centred at the mean 

vector μ and their shape are determined by the covariance matrix ∑. The parameterization of the 

covariance matrix can be obtained from eigen-decomposition in the form of  ∑ = 𝜆𝑫𝑨𝑫𝑇, where 

𝜆 controls the volume of the ellipsoid, A is a diagonal matrix controlling the shape of the 

ellipsoid to be more spherical or elliptical, and D is an orthogonal matrix that controls the 

orientation of the ellipsoid.  

 



35 

 

In GMM, we have the flexibility to control the parameterization of each covariance 

matrix. The shape, volume and orientation of each component can be constrained or be variable. 

Therefore, there are 14 models available with different constrains of parameterization of the 

covariance matrix [24]. Their features, corresponding model name and the decomposition of the 

covariance matrix are listed below. Each model has different performance on the same problem. 

BIC can also be used for selecting the best model for a specific problem by selecting the best pair 

{D, N} over all possibilities. 

 

 

Table 3.1 [24] Parameterizations of the within-group covariance matrix Σk for multidimensional data 

available in the mclust package, and the corresponding geometric characteristics. 

 

3.4 Site Classification Using GMM 

 

Nine features are selected in Section 3.4. The nine features should be in the range of zero 

to one.  However, there are some outliers in the feature space that take values much greater than 
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one, although we have processed the data cleaning process as discussed in Chapter 2. It implies 

undetected errors in the database. To reduce outliers' impact, sites whose features are in the range 

of [0, 1.5] are kept.  

 

Figure 3.2 BIC plot for models fitted to the proposed features.  

 

To determine the best model and the number of clusters. BIC is calculated for the 

different number of clusters and different model, as shown in Figure 3.2. According to the BIC 

method, we expect a dramatic drop once we have reached the best number of clusters. However, 

it can be seen that the BIC value does not decrease dramatically after reaching the peak point. It 

implies the systems are not clustered by their nature or the selected features are incomplete. 

Nevertheless, the volume-variate shape-variate orientation-variate (VVV) model fits the data 

best when the number of clusters equal to six. The dataset is classified based on the above 

configurations.  
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Cluster 
#1 

Cluster 
#2 

Cluster 
#3 

Cluster 
#4 

Cluster 
#5 

Cluster 
#6 

# of members 111 79 53 38 28 21 

PV (Feature #1) 8.58E-01 0.6058971 5.88E-01 2.72E-01 0.6881349 0.7157959  

GEN (Feature #2) 1.41E-01 0.0015475 3.33E-05 2.81E-05 0.0655136 0.1836868  

GRIDIN (Feature #3) 1.18E-03 0.3925554 4.12E-01 7.28E-01 0.2463515 0.1005174  

GRIDOUT (Feature #4) 1.50E-06 0.1057008 3.48E-01 2.90E-02 0.385891 0.0024344  

BATTCHA (Feature #5) 5.91E-01 0.2875284 3.50E-02 2.68E-02 0.2608557 0.5210347  

NIGHT (Feature #6) 1.14E-03 0.6976281 1.04E+00 1.03E+00 0.8676186 0.1115871  

P1 (Feature #7) 4.28E-01 0.1776547 2.58E-02 7.54E-03 0.6917205 0.3991075  

P2 (Feature #8) 7.59E-02 0.0776404 1.10E-02 9.03E-03 0.3574762 0.1399002  

P3 (Feature #9) 2.61E-01 0.2179475 2.00E-02 1.91E-02 0.4301292 0.380968 

Table 3.2 Means of each cluster in the classification results. 

 

Table 3.2 shows the classification results and the mean value of each cluster. From the 

mean values, we can get a general understanding of different types of sites in our database. 

Cluster #1 represents stand-alone sites as there is no grid input. Cluster #3 and #4 are the grid-tie 

sites which heavily rely on grid input and treat their battery as backup. Their battery stands by 

for most of the time and does not inject any energy to their systems. Compared to cluster #4, the 

sites in cluster #3 sell the extra energy to the grid as their grid output is very small. Cluster #6 is 

also grid-tied, but its features' value close to the cluster #1. Cluster #6 relies on PV generation, as 

the battery charges more than 50% of the generated energy, and the diesel generator activates 

sometimes. It implies their grid are not reliable. Compared to the cluster #3, cluster #2 and #5 

have more battery utilization. The sites in cluster #5 discharge their battery a lot, which is not 

preferable. The mean values imply the general characteristics of each type of PV system, but not 

all details. Each cluster is represented by a multivariate Gaussian distribution, which is defined 
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by a covariance matrix as shown in appendix table A.1 to A.6. For better illustration purpose, we 

drew the visualization of those distributions in Appendix B. 

 

The classification results contain six types of systems. From all scatter plots in Appendix 

B, I can see that most features are widely spread. The selected features are affected by 

meteorology, load, size and other factors and these factors vary case by case. The major 

differences are in the following aspects: energy-source priority, grid connection, and if the grid 

allows PV penetration. The features #7, #8 and #9 do not help in classifying peak-shaving 

systems. The peak shaving systems may be minorities in the database, or the selected features are 

not good enough. 

 

The proposed method identified the major PV system types and the outliers in the given 

database and grouped them into categories. By observation, the six categories are PV/diesel 

stand-alone systems, grid-tied PV systems, UPS systems that sell energy, UPS systems that do 

not sell energy, a group of non-conclusive systems and a group of outliers. Among the 

classification results, the classification of two UPS categories is very successful. Their features 

concentrate closely in the scatter plots, which indicates a good classification. On the contrary, 

other cluster’s features are scattered on the plots because their power flows are affected by the 

mentioned factors. 

 

The classification results also indicate some problems. First of all, the meaning of the 

fifth group is not very clear. My explanation is that the proposed method finds a pattern in the 

sites of cluster #5, but the pattern does not have any physical meaning. Another problem is that, 
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in the second group, there are two sub-categories: systems that sell energy and those do not sell 

energy to the grid. The problem can be eliminated by adding the number of clusters during the 

classification process. My explanation is that the proposed method tends to pick the major 

pattern and combines similar minorities into one group. In this case, the sub-category is too small 

and contains about only 20 systems. Therefore, the sub-category is merged into another cluster. 

 

3.5 Conclusion 

 

The classification for multivariate time-series data is difficult. Previous studies have 

proposed various method to reduce data dimensionality or to evaluate the similarity between two 

sets of data. However, there is not a universal solution to solve all classification problems. 

Regarding the given PV-system data, nine features are proposed to reduce the dimension of the 

original time-series data while keeping the difference between systems. GMM is also proposed 

because it is tolerant of the noise of outliers.  

 

Based on the proposed method, six clusters are formed. Four clusters are meaningful. 

They are PV/diesel stand-alone systems, grid-tied PV systems, UPS systems that are selling 

energy, a group of non-conclusive system and a group of outliers. As shown in Table 3.3, 281 

out of 330 (85%) systems’ application types are identified. There are 15% of the system 

classified as non-conclusive or outliers due to the data quality issue and the randomness of the 

data’s nature. 
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 Number of Systems in the Cluster Cluster Type 

Cluster#1 111 Stand-Alone 

PV/Diesel/Battery Hybrid 

System 

Cluster#2 79 Grid-tied PV/Battery Hybrid 

system 

Cluster#3 53 PV/UPS system allowed to 

inject energy to the grid 

Cluster#4 38 PV/UPS system without 

penetration 

Cluster#5 28 Outliers 

Cluster#6 21 Non-conclusive 

Table 3.3 Classification results and the application of system in each cluster 
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Chapter 4: Size Optimization of Battery Bank 

 

In chapter 3, four major types of PV systems are found in the given database, in which 

two types of systems are UPS. The size of the battery in the UPS system is usually decided by 

the user because it is highly related to the importance of the load and the backup time 

requirements [25]. Therefore, the battery size in the UPS is not optimized. The size of each 

component in two of the PV systems, i.e. the stand-alone diesel/PV/battery hybrid system and 

the grid-tied PV/battery system, will also affect the financial cost. Since the battery’s power flow 

information is available in the database and the battery’s degradation is significantly related to its 

energy cycling [26], this chapter proposes an optimization method for the battery size of the 

stand-alone diesel/PV/battery hybrid systems (cluster #1 in chapter 3) and the grid-tied 

PV/battery systems (cluster #2 in chapter 3) using batteries' cycling profile. Moreover, the 

optimization method is based the following three assumptions: (1) the battery’s biweekly cycling 

profile does not change significantly in any system, (2) the loss of battery capacity is due to 

energy cycling, and (3) any battery will die in 20 years at a constant rate.  

 

This proposed method determines the size of the battery bank in a given PV system to 

minimize its weekly battery degradation based on the system biweekly cycling profile and the 

relation between battery’s expected cycle life and its depth of discharge (DOD). To implement 

this method, a commercial database to calculate the system’s cycling profile which describes the 

amount of energy a battery bank cycles and the number of cycles in two weeks, as well as the 

expected cycle life vs. DOD from the battery manufacturer, is required. Figure 4.1 is an example 

of a battery’s expected cycle life vs. DOD based on test results. It tells the number of cycles the 
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battery can withstand at a specific DOD. For example, in figure 4.1, the specific battery can 

repeat 1150 times cycling at 50% DOD. In other words, each cycling at DOD = 50% costs the 

battery 1/1150 life. 

 

Figure 4.1 An example of expected cycle life vs. DOD from a battery manufactory  
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Figure 4.2 The flowchart of the proposed battery size optimization method 

 

The flowchart in figure 4.2 illustrates the procedures of the proposed optimization 

method. Its main steps are calculating cycling profile, calculating biweekly degradation, 
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optimizing battery size, and visualizing optimization result. The details of each step are 

explained in the following sections. 

 

4.1 Calculating Cycling Profile 

 

Chapter 3 has classified the given PV systems into six types. Because only cluster #1 and 

cluster #2 cycle their battery heavily, this optimization only considers the 190 systems in these 

two clusters. A new time-series variable is defined to represent the accumulated change of 

energy in the battery. The new variable's definition is shown below. The energy cycling profile is 

calculated based on this variable. 

 𝐸𝐴𝑐𝑐𝑢𝑚𝐶ℎ𝑎𝑛𝑔𝑒[𝑡] =  ∑ (𝐸𝐵𝑎𝑡𝑡𝐼𝑛𝑣[𝑡′] −  𝐸𝐵𝑎𝑡𝑡𝐶ℎ𝑎𝑟[𝑡′])𝑡
𝑡′=0  (4.1) 

Equivalently 

𝐸𝐴𝑐𝑐𝑢𝑚𝐶ℎ𝑎𝑛𝑔𝑒[𝑡0] =  𝐸𝐵𝑎𝑡𝑡𝐼𝑛𝑣[𝑡0] −  𝐸𝐵𝑎𝑡𝑡𝐶ℎ𝑎𝑟[𝑡0] (4.2) 

𝐸𝐴𝑐𝑐𝑢𝑚𝐶ℎ𝑎𝑛𝑔𝑒[𝑡] =  𝐸𝐵𝑎𝑡𝑡𝐼𝑛𝑣[𝑡] −  𝐸𝐵𝑎𝑡𝑡𝐶ℎ𝑎𝑟[𝑡] + 𝐸𝐴𝑐𝑐𝑢𝑚𝐶ℎ𝑎𝑛𝑔𝑒[𝑡 − ∆𝑡]       𝑤ℎ𝑒𝑛 𝑡 ≠ 𝑡0 

  (4.3) 
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Figure 4.3 Accumulated energy change before and after seasonal adjustment 

 

Figure 4.3 is an example of the accumulated change of energy in the battery over two 

weeks. The original line is calculated based on the data in the database. The downward trend of 

the original value is due to the energy conversion lost. Because the charged energy is measured 

at battery’s terminals, it is assumed that the measured charged energy was not converted to 

chemical energy completely. Therefore, the energy loss should not be treated as energy cycled in 

the battery. The 13-term moving average method is implemented to remove the seasonal effect. 

The detrend data will be used for further analysis. From the plot above, the pattern repeats every 

seven days. Therefore, the biweekly battery cycling profile should contain enough information 
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which can be used to estimate the battery degradation speed. The rain-flow counting method is 

applied to calculate the cycling depth and is repeated at each depth  [27]. The method converts a 

spectrum of varying stress into a set of simple stress reversals, which reduces the time-series data 

to a set of peaks and valleys that are imaged as a pagoda roof. Each peak is imaged as a source 

that drops water along the roof. The method counts the number of half-cycles when the water 

flow terminates.  

 

 

Figure 4.4 An example of battery’s year-round cycling profile 
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Figure 4.4 is an example of a cycling profile that is generated based on the proposed 

process and year-round power flow data. This battery has about 270 shallow cycling below 2 

kW⋅h and has a few deep cycles around 15 kW⋅h. If we can get battery bank size in the 

corresponding system, we will get its cycling DOD profile by using the following formula: 

 𝐷𝑂𝐷 =  
𝑐𝑦𝑐𝑙𝑖𝑛𝑔 𝑒𝑛𝑒𝑟𝑔𝑦

𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑠𝑖𝑧𝑒 
 (4.4) 

Therefore, once the battery size is known, the x-axis of the cycling profile can be converted to 

DOD. 

 

4.2 Calculating Biweekly Degradation 

 

To estimate the degradation due to energy cycling, it is necessary to convert the cycling 

energy to DOD as shown in Equation 4.4.  We assume we have the relationship between DOD 

and expected life, like Figure 4.1. The plot shows a function EC(DOD) that estimates the 

expected amount of cycles the battery can withstand at specific DOD. Therefore, the degradation 

due to cycling at DOD can be found as 

 𝐷(𝐷𝑂𝐷) =
1

𝐸𝐶(𝐷𝑂𝐷)
 (4.5) 
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Figure 4.5 Battery’s degradation due to one cycling 

 

 In Figure 4.5, twelve points are calculated based on the given battery’s expected cycle 

life from Figure 4.1. Then, the function of the expected amount of cycles the battery can 

withstand at specific DOD can be extrapolated as 

 

 𝐷(𝐷𝑂𝐷) = a × 𝐷𝑂𝐷2 + b × 𝐷𝑂𝐷 (4.6) 

Where a is 5.1581 × 10−4 and b is 1.456 × 10−3 in this case. In other words, the capacity loss 

due to one cycling becomes 

 

 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐿𝑜𝑠𝑠 (𝐷𝑂𝐷) = 𝐶𝑝𝑎𝑐𝑖𝑡𝑦 × 𝐷(𝐷𝑂𝐷) (4.7) 

 

If the total n energy cycles are represented by the notation DOD1, DOD2, DOD3……, DODn, the 

bi-weekly capacity loss can be expressed as, 

y = 5E-08x2 + 1E-05x
R² = 0.9994
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𝐵𝑖𝑤𝑒𝑒𝑘𝑙𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐿𝑜𝑠𝑠 𝐷𝑢𝑒 𝑡𝑜 𝐶𝑦𝑐𝑙𝑖𝑛𝑔 =  ∑ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐿𝑜𝑠𝑠(𝐷𝑂𝐷𝑖)

𝑛

𝑖=1

= 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 × ∑ 𝐷(𝐷𝑂𝐷𝑖)

𝑛

𝑖=1

= 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 × (𝑎 ∑ 𝐷𝑂𝐷𝑖
2

𝑛

𝑖=1

+ 𝑏 ∑ 𝐷𝑂𝐷𝑖

𝑛

𝑖=1

)

= (𝑎 ∑ (
𝐶𝑦𝑐𝑙𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑔𝑦𝑖

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
)

2𝑛

𝑖=1

+ 𝑏 ∑
𝐶𝑦𝑐𝑙𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑔𝑦𝑖

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑛

𝑖=1

) × 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

= 𝑎 ∑ (
𝐶𝑦𝑐𝑙𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑔𝑦𝑖

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
)

2𝑛

𝑖=1

+ 𝑏 ∑ 𝐶𝑦𝑐𝑙𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑔𝑦𝑖

𝑛

𝑖=1

 

  (4.8) 

Besides degradation due to cycling, the battery also degrades due to other reasons. 

According to the previous study, a battery dies in 20 years under the float charge condition [28]. 

Therefore, I assume the self-degradation rate is 1/20 each year and each year has 52 weeks. 

 

𝐵𝑖𝑤𝑒𝑒𝑘𝑙𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐿𝑜𝑠𝑠 𝐷𝑢𝑒 𝑡𝑜 𝑆𝑒𝑙𝑓 𝐷𝑖𝑔𝑟𝑒𝑑𝑎𝑡𝑖𝑜𝑛 = 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ×
1

20
×

1

26
=

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

520
 

Then 

𝐵𝑖𝑤𝑒𝑒𝑘𝑙𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐿𝑜𝑠𝑠

= 𝐵𝑖𝑤𝑒𝑒𝑘𝑙𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑙𝑜𝑠𝑠 𝐷𝑢𝑒 𝑡𝑜 𝐶𝑦𝑐𝑙𝑖𝑛𝑔

+ 𝐵𝑖𝑤𝑒𝑒𝑘𝑙𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐿𝑜𝑠𝑠 𝐷𝑢𝑒 𝑡𝑜 𝑆𝑒𝑙𝑓 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛

= (𝑎 ∑ (
𝐶𝑦𝑐𝑙𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑔𝑦𝑖

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
)

2𝑛

𝑖=1

+ 𝑏 ∑
𝐶𝑦𝑐𝑙𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑔𝑦𝑖

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑛

𝑖=1

) × 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

= 𝑎 ∑
𝐶𝑦𝑐𝑙𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑔𝑦𝑖

2

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑛

𝑖=1

+ 𝑏 ∑ 𝐶𝑦𝑐𝑙𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑔𝑦𝑖

𝑛

𝑖=1

+
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

520
 

  (4.9) 
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4.3 Optimizing Battery Size 

 

Section 4.2 has formed a quadratic function for biweekly capacity loss with respect to 

variable Capacity using a biweekly cycling profile. The optimized battery size and the minimized 

capacity loss can be achieved when the first derivative of the function equals to zero, expressed 

as 

 

𝐵𝑖𝑤𝑒𝑒𝑘𝑙𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐿𝑜𝑠𝑠′(𝐶𝑝𝑎𝑐𝑖𝑡𝑦) =  −5.1581 × 10−4 × ∑
𝐶𝑦𝑐𝑙𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑔𝑦𝑖

2

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦2

𝑛

𝑖=1

+
1

520
= 0 

Therefore, 

 Optimized Capacity =  √0.2682212 ∑ 𝐶𝑦𝑐𝑙𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑔𝑦𝑖
2𝑛

𝑖=1  (4.10) 

 

4.4 Visualizing Optimization Results and Discussion 

 

Figure 4.6 compares the optimized battery size vs. the installed battery size. Each circle 

represents the battery size in a PV system. The diagonal line represents that the battery size 

installed same to the optimization result. It can be seen from the diagram that the installed 

battery size is bigger than the optimized size in most systems.  The current battery size in all PV 
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systems is summarized in table 4.1.

 

Figure 4.6 Optimized battery size vs. battery size in reality 

 

Regarding the optimum battery size Number of systems 

Undersized systems 19 

Invalid systems 20  

Oversized more than 10 times  17 

Oversized more than 2 times but less than 10 times 84 

Oversized less than 2 times 50 

Table 4.1 A summary of the installed battery size compared to the corresponding optimal size  
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 Table 4.1 shows that oversize is common in the given PV systems. To understand the 

effect of battery size on the battery degradation, the power flow data from September 4th, 2017 

to September 20th, 2017 in system #26 are used as an example for the following analysis. 

According to the method proposed in Section 4.2, the biweekly capacity loss due to cycling and 

the biweekly capacity loss are evaluated with respect to different battery capacities. The 

evaluation results are plotted in Figure 4.7. As the battery capacity increases from zero, its bi-

weekly capacity loss drops. Once it passes the optimum point, the bi-weekly cost increases 

slowly. In this specific case, when the battery size is 400% of the optimal size, the capacity loss 

(cost) only increases 20% more than the optimal condition. Therefore, the oversize effect is not 

significant. The curve without considering self-degradation is monotone decreasing, which is 

suggesting infinity large battery. So, the speed of self-degradation plays an essential role in the 

optimization process. 

 

Figure 4.7 Bi-weekly capacity loss functions with respect to the change of battery size 
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 As discussed above, the oversizing does not affect the battery’s degradation significantly. 

To understand the relation between battery size and its degradation, Figure 4.8 is plotted to 

compare the degradation with respect to the optimum battery size and the degradation with 

respect to the given battery size. It is also deduced that the oversizing of the battery does not 

significantly deteriorate the battery’s degradation. However, the systems with a small battery 

tend to size their battery wrongly, which will result in much more capacity losses. Table 4.2 

summarizes the degree of degradation among systems. 

 

Figure 4.8 Minimized biweekly capacity loss vs. calculated capacity loss based on their battery size 
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Regarding the minimum battery degradation Number of systems 

Invalid systems 20 

Less than 110% of the least degradation 78 

110% to 150% of the least degradation 60 

150% to 200% of the least degradation 13 

More than 200% of the least degradation 17 

Table 4.2 A summary of the current battery size with respect to their biweekly degradation of battery 

 

As mentioned earlier, the proposed optimization method assumes the battery’s biweekly 

cycling profile does not change significantly. However, systems’ bi-weekly cycling profile can 

vary over a year. Figure 4.9 is plotted to understand how the change of cycling profile (i.g., each 

DOD changes) affects the optimal battery size. In the figure, when the profile changes 20%, the 

optimal battery size varies about 35%.  
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Figure 4.9 The effect of DOD’s variation on optimization result 
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Figure 4.10 The effect of variation of self-degradation on optimization result 

 

As self-degradation decreases (longer life expectancy), the optimal size increases and the 

right-side slope decreases. Based on the previous study, 10 years to 20 years would be a 

reasonable estimation [28]. The program was run assuming the life of the batteries being 15 

years and 20 years, respectively, and the size of the 15-year batteries is 86% compared to the 20-

years.  

 

Overall, in the given database, PV systems tend to oversize their battery bank, but the 

effect of oversizing battery is not significant. Only a few systems’ battery bank are wrongly sized 
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(i.g., a few battery bank degrade 50% faster than those with optimal battery size). It is worth 

mentioning that the assumptions made in this chapter restrict the optimization process because 

the battery degradation is not only caused by self-degradation and cycling. For example, over 

discharge and overheat are two situations out of the model’s consideration [25], [28]. However, 

the given database does not contain this information. 
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Chapter 5: Sizing for Multiple System Components 

 

Chapter 4 optimized the battery’s size based on their cycling profile to minimize capacity 

loss due to cycling. However, the PV panel size, diesel generator size can be other important 

variables. In this case, the battery’s cycling profile can be very different, and the previous 

assumption will no longer be solid. To consider other variables into consideration, this chapter 

discusses the methods that can size multiple components in a PV system.  

 

In the previous chapters, we identified the major system types in the database. 

Considering that the systems' applications are different, we may apply a different optimization 

method. In general, to size the battery capacity for a UPS system, we need to consider the length 

of reserve time required  [29] or interruption avoidance [30]. Regarding the stand-alone system, 

economic efficiency is usually maximized. And in the grid-tied system's cases, the cost function 

includes the cost of purchasing electricity and the yield of selling electricity. In some studies, the 

environmental effect is also considered. In addition, various constraints need to be considered 

regarding maximum power, maximum current and LLP. In the following case study, a stand-

alone PV/diesel/battery hybrid system is optimized using the Artificial Bee Colony (ABC) 

method based on historical data. The same method can be applied to other types of systems in the 

database, but the objective function, operation strategy and constraints need to be changed 

accordingly. 
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5.1 Review of PV System Sizing Method  

In a PV system, we expect the PV array is large enough to satisfy all the load demand. 

The battery bank capacity should also be large enough to supply energy during the consecutive 

cloudy days when the PV arrays are not productive. All devices costs include the initial capital 

cost and the maintenance cost in the latter days. Therefore, to minimize the overall cost, we 

should size all devices appropriately. 

 

 In general, PV system sizing is an optimization problem with respect to various 

constraints on the parameters including the max area for PV panel, maximum capacity of battery 

bank or maximum power from the grid. Load demand and radiation information are usually 

required for solving the sizing problem. In addition, case-dependent aspects should also be 

considered, such as tariff, system reliability, cost or carbon reduction.  Multiple sizing methods 

have been proposed or reported, such as intuitive method, numerical method, analytical method, 

evolution algorithm, and neural network. Other methods are based on commercial software, and 

the implementation is confidential [31], [32], [33]. 

 

5.1.1 Intuitive Method 

 

The intuitive method is based on rough estimation, and its process is simple. With the 

intuitive method, the PV panel should generate enough energy to satisfy the load, and the battery 

bank should also be able to support the load for a specific period. Previous studies took various 

factors into count when employing the intuitive method. 
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Chilundo et al. [29] designs a PV water pump system for a farming house. They estimate system 

demand based on daily water consumption. A long-term average of radiation is used to size its 

system.  Hereinafter is the brief illustration of this simple case:  

 

In [29], the authors design a PV system for water pumps. It estimates the energy required 

to supply a water flow by the equation, 

 𝑃𝐻 = 𝑄 × 𝑇𝐷𝐻 × 𝜌 × 𝑔,  (5.1) 

where Q is the water flow rate; TDH is called total dynamic head; 𝜌 is the water density, and g is 

the gravity acceleration. 

 

The PV panel should provide enough power for the water pump in the worst case. 

Therefore, the required PV panel rating is 

 𝑃𝑃𝑉 =
𝑃𝐻×𝐺𝑅𝐸𝐹

𝐺𝐺𝑙𝑜𝑏𝑒×𝐹𝑄×𝜂𝑄
 , (5.2) 

where 𝐺𝐺𝑙𝑜𝑏𝑒 is the global solar radiance on a horizontal surface; 𝐺𝑅𝐸𝐹is the incident solar 

radiance under standard testing conditions; 𝐹𝑄 is called quality factor of PV panels, and 𝜂𝑄is the 

efficiency of the water pump. 

 

 The study provides additional information for improving the estimation, such as a quality 

factor of different PV panels, the efficiency of different water pumps, and the average water 

consumption of different activities. The concept of such a method is simple that generated 

energy should satisfy the demanded energy in the worst case. However, such a system will waste 

PV energy in other scenarios. In the proposed equations, many empirical coefficients are 



61 

 

introduced, and the value may be not accurate in a different case. In addition, other studies 

employed the intuitive method for more complex cases.  

 

Sharma et al. [30] size an off-grid farming house. They suggest a tilt angle and uses 

average daily load and radiation for sizing panels. They measure the load demand between two 

consecutive days when the panel cannot provide enough energy for sizing battery. Sidrach-de-

Cardona [34] propose the worst-case data should be used for sizing its system, and the system 

will satisfy its load in all scenario. Bhuiyan et al. [35] size three off-grid systems. They introduce 

a heuristic parameter, battery autonomy day, describing how long its battery can support its load. 

However, they assign a value to parameter but does not discuss how to choose the value.  

 

It is worthy to note that the intuitive method is usually for a stand-alone system which has 

only a battery bank and PV panels. The method tends to introduce heuristic parameters and omit 

variation and uncertainty of load demand and radiation. The method can satisfy the load demand 

but fail to discuss how to optimize its size. However, the method is easy to calculate and 

understand. 

 

5.1.2  Numerical Method 

 

In contrast to the intuitive method, a numerical method concerns the randomness in solar 

radiation and load demand. It simulates the system's energy flow based on the historical data or 

simulated data and comes up with an index for comparison. Loss of load probability (LLP) is the 

popular index in the method as defined as follow: 
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 LLP =
𝑇𝑜𝑡𝑎𝑙 𝑈𝑛𝑠𝑒𝑟𝑣𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦

𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑚𝑎𝑛𝑑𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦
  (5.3) 

  

Tsalides et al.[36] simulate radiation using the formula of Gamier and Ohmura [37]. Based on 

the simulated radiation and load profile, the LLPs are calculated for the different combination of 

the tilt angle, battery size and PV array size. The authors select the tilt angle based on three types 

of the plots: LLP vs. PV array area, PV array area vs. battery capacity, and unserved energy vs. 

PV array area. However, the paper does not further discuss how to choose the most economical 

size of the PV array and battery.  
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Figure 5.1 A flow chart of the numerical method 
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As a typical example for the numerical method, Tsalides [36] simulates the solar 

radiation G(t) using a formula and defines four load profiles for each season. The PV array 

output is defined as a formula E (A, G(t), θ), where A is the area of PV panel and θ represents all 

other variables such as temperature, efficiency, solar cell absorptance and other coefficients. 

Based on the load profile and generation profile, system simulation can be implemented for 

different combinations of PV array area and battery capacity as shown in Figure 5.1. The system 

LLP can be derived from the simulation in each scenario. Then the results can be plotted in a 

graph. Figure 5.2 represents the possible combination of PV array area and battery capacity to 

make LLP equal to 0. The user can choose the most economical system solution from the curve. 

 

 

Figure 5.2 [36] Battery capacity vs. PV array area, indicated by least-squares fitting curves, for LLP = 0 and 

four different tilt angles, S = 40 °, 50 °, 60 ° and 70 °, of south-facing modules 

 Besides the error in the simulated load profile and generation profile, the method relies 

on a vast amount of computation. For any pair of battery capacity and PV array area, it needs to 

simulate for the year-round system status. Theoretically, there is an infinite number of possible 
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combinations. So, it takes a massive amount of computational resources to plot the accurate 

curve. The disadvantage can be worse when we process time-series data. 

 

             Differently, Shen [38] estimates PV outputs based on average daily radiation, maximum 

radiation in a day, and radiation hours. It introduces the ratio of PV panel and battery and then 

proposes a method to achieve the most economical combination of battery size and PV array 

size. While Kaldellis [39] forces the LLP to be zero and running simulation for different PV size 

and find the required battery capacity. They formulate the installment cost and finds the cheapest 

combination. It also notices that, for the specific application, the variation of tilt angle within 45 

to 60 degree does not notably affect the overall cost. Similar to [36], Egido [40] also use LLP 

index and simulation process. However, Egido validates two transposition methods from 

horizontal to tilted radiation by comparing the sizing results based on historical data and 

simulated data. They claim that the two transposition methods are not practical. One 

disadvantage of this method is that it is computationally expensive. 

 

5.1.3 Analytical Method 

 

Analytical methods put the day-to-day radiation variation into consideration. They tend to 

use a statistical model to describe the randomness and formularize system's behavioir and then 

optimize the size of the system. However, to apply a statistical model, various assumptions are 

made that do not always fit reality without justification. Besides, empirical parameters are 

introduced in formulas. Gordon [41] treats the battery sizing problem as a correlated stochastic 

problem. Gordon [41] assumes the PV generation in a day has three levels of possibilities: high, 
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medium and low. It calculates their probability, correlation, and persistence based on historical 

data. Then, the researcher solves the problem through a formula presented by E. H. Lloyd. With 

a focus on the long-term energy balance, Markvart et al. [42] design a PV system in London. The 

author splits year-round data to several climate cycles. Then, corresponding constraints are 

formed based on the average radiation and the number of consecutive below-average radiation 

days in each climate cycle. A system sizing formula can be formed that satisfies all constraints. 

While Demoulias [43] focus on the inverter's sizing for PV systems. It formularizes the inverter's 

efficiency, the DC power duration curve (PDC) for a specific system, and finally, the inverted 

power in AC. It finds the optimum inverter size by maximizing inverter's inverted energy. 

Finally, Arun [44] assumes the PV production in an hour follows a normal distribution. 

Therefore, it uses mean value, deviation to describe PV inputs. It also introduces a parameter, 

confidence level, and then convert the probability problem to a deterministic problem. Then, the 

battery size and PV array size can be determined through simulation. However, its validation 

shows that the proposed method tends to oversize slightly. As shown above, the analytical 

methods are very different from each other, and they are usually based on strict assumptions for 

a specific application. So, the methods are hard to be generalized. 

 

5.1.4 Metaphor-Based Metaheuristic 

 

The metaphor-based metaheuristic is a group of optimization methods which are inspired 

by nature. It is usually for problems with a large sample size that is impossible to be thoroughly 

sampled.  The method can provide a sufficiently good solution but not guarantee global 

optimality. Like the Evolutionary Algorithm (EA), it mimics the regeneration, mutation 
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recombination and selection process in animal's evolution [45]. The algorithm improves the 

numerical method as mentioned above, because it can solve problems that are constrained, 

multivariate or multi-objective. The metaphor-based metaheuristics based on much fewer 

assumptions, so it can be used for a wider range of problems. However, the algorithm contains 

some parameters need to be configured, and the configuration affects optimization speed and 

accuracy. To apply the metaphor-based metaheuristic to the PV system sizing problem, we must 

describe the power functions of each component (i.e., PV panels, battery, interaction with grid 

and generator), where the power functions are used to describe how the power generated, 

dissipated or stored. One or more objective functions, thus, can be formed. The metaphor-based 

metaheuristics can finally optimize the objective function(s) based on historical or simulated load 

data and meteorological information. For instance, Javadi [46] optimizes for a battery-based 

wind-turbine/PV system and considers capital, operational and replacement cost. The study tests 

the artificial bee colony (ABC) method and the particle swarm optimization (PSO) method in 

one case [46]. It concludes that both methods achieve similar results and the ABC method is 

faster than the PSO method. While Singh [47] analyzes a grid-tied biomass/PV/diesel hybrid 

system. It models the grid interaction and discusses how the sale capacity affects the system 

sizing. Different from the studies as mentioned above, Suchitra [48] applies the adaptive particle 

swarm optimization method optimizing for two objectives at the same time: minimizing not 

served energy and minimizing per unit price, rather than assuming LLP, Finally, Hameed [49] 

add reliability as a constraint of minimizing the system's life cycle cost by open-space particle 

swarm optimization method. From the papers shown above, we see that many metaphor-based 

metaheuristics work for the system sizing problem. It enables the analysis of a complex hybrid 

system. 
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Similar to the numerical methods, Metaphor-based metaheuristic needs the load profile 

and generation profile for the simulation process. However, instead of simulating for all possible 

variables’ combinations, it requires at least one objective function and solves for the variables. 

For example, Javadi [46] focus on minimizing the cost of a PV/ wind turbine/ battery hybrid 

system. Its objective function represents the system cost with respect to the size of the PV array, 

battery capacity, and power rating of wind-turbines.  In addition, the research [46] models the 

behavior of PV cells, wind generator and battery for simulation, and it also set the status 

constrains. Finally, both ABC and PSO methods are applied for solving the combination of 

variables that minimizes the year-round system cost. Compared with the numerical methods, the 

metaphor-based metaheuristic is more flexible; the objective can be changed for a different 

system and optimization purpose. It also allows multiple variables to be optimized all together. 

The ABC method is chosen for further implementation, and the method is explained in appendix 

C in detail.  

 

5.1.5 Artificial Neural Network 

 

An artificial neural network (ANN) is a set of interconnected processing units. Each unit 

takes inputs and passes its processing result as outputs. The connection between the two process 

units also has its weight. An ANN is good at representing the non-linear relationship and pattern 

detection. The information or detected pattern is stored in the ANN as interconnection's weights 

[50].  An ANN does not require formula's format of a pattern. However, the ANN needs a 

massive amount of data for training, and it is hard to explain the meaning of each weight. 
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With the ANN method, Khatib et al. [51] use four sites optimization results in [52] as 

training data for an ANN. It uses longitude, latitude, and LLP as inputs for determining PV/load 

and battery/load ratios. The fifth site's data is used for testing. The author trained ANN in [51] 

and achieves a similar result as [52]. Similar to [51], Hontoria et al. [53] train a Multilayer 

Perception network by backpropagation algorithm based on ten PV systems in Spain. The paper 

adds the yearly clearness index as an additional input and clams the proposed solution achieve 

better accuracy than the analytical method. With more site data, Mellit et al. [54] use 36 sites' 

data for training and introduces genetic algorithm during the training process. The proposed 

solution is compared with a feed-forward neural network trained by the Levenberg-Marquardt 

method. The trained networks are tested on four sites. Their proposed method gets a more 

accurate prediction.  

 

ANN is a model that learns from other studies’ optimization results and predict the 

optimal size for other PV systems. The researchers decide the connections within an ANN, 

number of layers, training method, inputs and outputs. And these are the main difference among 

different ANN methods.  For example, in [52], it implements a numerical method and finds the 

optimum PV array area for five PV systems. The optimization results are shown in Figure 5.3. It 

illustrates the optimal PV array size for five locations to achieve the different LLP requirement. 

The study  [51], then, adopted the results of [52] and designed an ANN. Its ANN model is 

designed to have four layers and connections are also shown in Figure 5.4. Latitude, longitude 

and LLP are set to be the input to predict the optimum battery capacity and the PV array size. 

The information displayed by the curves Johor Baharu, Kuching, Ipoh, and Alor Setar, in Figure 
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5.3 are used for training ANN model, and the curve of Kuala Lumpur is used for validation. It is 

compared with the model’s prediction to evaluate the model’s error. [52] claims that the 

validation’s mean error is only 1.2%. 

 

Figure 5.3 The calculated optimum PV array sizes with respect to the constrains of LLP for five 

PV systems 
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Figure 5.4 A example of ANN proposed by [28] for predicting the optimal PV array size and battery size 

 

The given example successfully predicted other method’s result with low error rate. 

However, it also seems that, to implement the ANN method, other methods should be 

implemented in advance to obtain the data for training, which seems redundant work if the model 

is overfit. Another potential problem is that the five locations studied in [52] and [51] are all in 

Malaysia. So, their climate at the five locations cannot be sufficiently heterogeneous and lose the 

results generalizability. The two studies did not mention the topology of the five system. 

Therefore, it will not be an appropriate method in our database, because the systems in the 

database are all around the world for various applications. 

 

 

5.2 Problem Formulation 

 

An optimization problem is essentially a mathematical problem looking for the global 

minimum or maximum of an objective function under certain constraints. In this study, the 

objective function describes the year-round cost of a PV system, and it must contain all types of 

costs. Therefore, the maintenance costs, operation costs and capital investment need to be 

considered. In this chapter, Section 5.2.1 formulates the objective function, Section 5.2.2 models 

each system component, Section, 5.2.3 discussed the constraints of the problem and the control 

strategy is defined in Section 5.2.4. 
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5.2.1 Objective Function 

 

The objective function is the annual cost of a hybrid PV system. The annual cost includes 

depreciation of assets, maintenance cost, and operation costs such as fuel cost. The system with 

the lower annual cost is considered as a better system. The function can be expressed as 

 

 𝐶𝑠𝑦𝑠 = 𝐶𝑝𝑣
𝑑 + 𝐶𝑝𝑣

𝑚 + 𝐶𝑏𝑡
𝑑 + 𝐶𝑏𝑡

𝑚 + 𝐶𝑔𝑒𝑛
𝑑 + 𝐶𝑔𝑒𝑛

𝑚 + 𝐶𝑔𝑒𝑛
𝑓

+ P, (5.4) 

 

where 𝐶𝑝𝑣
𝑑  is the annual depreciation of the PV panel, 𝐶𝑝𝑣

𝑚  is the annual maintenance cost of the 

PV panel, 𝐶𝑏𝑡
𝑑  is the annual depreciation of the battery, 𝐶𝑏𝑡

𝑚 is the annual maintenance cost of 

battery, 𝐶𝑔𝑒𝑛
𝑑  is the annual depreciation cost of a diesel generator, 𝐶𝑔𝑒𝑛

𝑚  is the annual maintenance 

cost of a diesel generator, 𝐶𝑔𝑒𝑛
𝑓

 is the annual fuel cost, P is penalty for energy deficit.  

The cost analysis is explained in detail in the following sections. 

 

(1) Annual Depreciation 

This study makes a simple assumption that the value of the assets depreciates at a 

constant rate over their lifetime. 

  𝐶𝑝𝑣,𝑏𝑡
𝑑 =

𝐶𝑝𝑢
𝑐𝑎𝑝

×N

𝐿
 , (5.5) 

where N is sizing variable (𝑃𝑃𝑉  𝑜𝑟 𝑁𝑏𝑡), 𝐶𝑝𝑢
𝑐𝑎𝑝

 is the capital cost of a unit of N. L is the lifetime of 

N (year). 
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Diesel generator’s lifetime is in hours. So, its depreciation cost should be rewritten as 

 𝐶𝑔𝑒𝑛
𝑑 =

𝐶𝑔𝑒𝑛
𝑐𝑎𝑝

×𝑃𝑔𝑒𝑛×365×∑ 𝑇(𝑡)𝑠
𝑡=1

𝐿𝑔𝑒𝑛
, (5.6) 

where 𝐿𝑔𝑒𝑛 is the rated lifetime of the diesel generator, and 𝑇(t) is the generator running time at 

time step t. 

 

(2) Annual Maintenance Cost 

This program assumes that, for PV and battery, maintenance cost is proportional to the 

device’s capital cost, and for a diesel generator, maintenance cost is proportional to its amount of 

time for the operation. For PV panel and battery, maintenance cost can be expressed as 

 𝐶𝑝𝑣,𝑏𝑡
𝑚 = 𝐶𝑝𝑢

𝑐𝑎𝑝 × N × 𝑀𝑝𝑣,𝑏𝑡, (5.7) 

where 𝑀𝑝𝑣,𝑏𝑡 is the coefficient for PV panel and battery maintenance cost (/year). 

Maintenance cost for diesel generator is 

 𝐶𝑔𝑒𝑛
𝑚 = 𝐶𝑔𝑒𝑛

𝑐𝑎𝑝 × 𝑃𝑔𝑒𝑛 × 365 × ∑ 𝑇(𝑡)𝑠
𝑡=1 × 𝑀𝑔𝑒𝑛, (5.8) 

where 𝑀𝑔𝑒𝑛 is the coefficient for diesel generator maintenance cost (/hour). 

 

(3) Fuel Cost 

Energy generated by diesel generator is originally from the chemical energy stored in 

fossil fuel. The diesel generator converters energy with an efficiency η𝑔𝑒𝑛. The amount of fuel 

can be determined. Fuel cost is 

 𝐶𝑔𝑒𝑛
𝑓

=
𝐶𝑔𝑒𝑛

𝑐𝑎𝑝
×𝑃𝑔𝑒𝑛×365×∑ 𝑇(𝑡)𝑠

𝑡=1 ×𝑃𝑑𝑖𝑒𝑠𝑒𝑙

𝐻𝑑𝑖𝑒𝑠𝑒𝑙×η𝑔𝑒𝑛
, (5.9) 

where, 𝐻𝑑𝑖𝑒𝑠𝑒𝑙 is the heat of combustion (kWh/Liter), 𝑃𝑑𝑖𝑒𝑠𝑒𝑙 is diesel price (/Liter). 
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(4) Penalty for Energy Deficit 

Reliability is crucial for a stand-alone system. The load cannot access any other energy 

source. So, PV, battery and diesel generator should satisfy all load’s need. Energy deficit will 

penalize the object function. The penalty is expressed as 

 P = r × 𝐸𝑑𝑒𝑓
2 , (5.9) 

where r is a coefficient to adjust the penalty. 𝐸𝑑𝑒𝑓 is the amount of energy deficit (kW.h). 

 

5.2.2 Component Modeling 

 

The objective function is formulated in Section 5.1.2. The objective function requires the 

values of the amount of energy deficit, the energy generated by a diesel generator, and the 

generator running time. These values are obtained based on a time-domain simulation that 

mimics the power flows in the PV system. To implement the simulation, each component is 

modelled as follows. 

(1) PV panel 

 

The output of a PV panel usually depends on radiation, rated power of the PV panel, 

temperature and losses due to shade, dirt or temperature. Some models also consider loss due to 

MPPT. In this study, the PV generation information is collected at MPPT. Therefore, the PV 

converting rate includes all the factors mentioned above. And the PV output energy at each time 

step is expressed as 

 𝐸𝑃𝑉(𝑡) = 𝑃𝑃𝑉 × 𝐺(𝑡),  (5.10) 
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where PPV is the size of the PV panel (kW), G is the PV converting rate (h). 

 

(2) Battery 

The battery is a passive component in the system. When spared energy generated, battery 

store energy. Vice versa. Because battery’s rating is based on output performance, the program 

assumes energy losses during charging battery. Therefore, when the battery is charging, 

 𝑆𝑂𝐶𝑏𝑡(𝑡 + 1) = 𝑆𝑂𝐶𝑏𝑡(𝑡) +
𝐸𝑝𝑣(𝑡)−𝐸𝑙𝑜𝑎𝑑(𝑡)−𝐸𝑑𝑢𝑚𝑝(𝑡)

𝑁𝑏𝑡
 × η, (5.11) 

where SOCbt is the state of charge of the battery, Eload is the energy consumed at load (kWh), 

Edump is the dumped energy (kWh), η is the battery charging efficiency. 

When the battery is discharging, 

 𝑆𝑂𝐶𝑏𝑡(𝑡 + 1) = 𝑆𝑂𝐶𝑏𝑡(𝑡) −
𝐸𝑝𝑣(𝑡)−𝐸𝑙𝑜𝑎𝑑(𝑡)−𝐸𝑑𝑢𝑚𝑝(𝑡)

𝑁𝑏𝑡
 , (5.12) 

and the discharged energy during the tth time step can be expressed as 

 𝐸𝑏𝑡(𝑡) = 𝑆𝑂𝐶𝑏𝑡(𝑡) − 𝑆𝑂𝐶𝑏𝑡(𝑡 + 1) (5.13) 

 

(3) Diesel Generator 

A diesel generator is the backup energy source for the system. It operates when PV and 

battery are insufficient to provide energy. Generated energy in a time step can be expressed as 

 𝐸𝑔𝑒𝑛(𝑡) =  𝑃𝑔𝑒𝑛 × 𝑇𝑔𝑒𝑛(𝑡), (5.14) 

where 𝑃𝑔𝑒𝑛 is the rated power for the diesel generator (kW), 𝑇𝑔𝑒𝑛 is the amount of time it 

operates in a time step (hour). 

 

(4) Invertor 
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The size of invertor should match the maximum power at the load. The maximum power 

at load is known. Therefore, the program treated it as a fixed cost and omitted it. This also 

simplifies the problem by reducing a variable. 

 

 

5.2.3 Constraints 

 

Power balance constraint, for any time step t, energy injected into the system should be 

equal to the energy dissipated at loads. The relationship can be represented by 

𝐸𝑝𝑣(𝑡) + 𝐸𝑏𝑡(𝑡) + 𝐸𝑔𝑒𝑛(𝑡) = 𝐸𝑑𝑢𝑚𝑝(𝑡) + 𝐸𝑙𝑜𝑎𝑑(𝑡) − 𝐸𝑑𝑒𝑓(𝑡),  (5.14) 

and the deficit energy is non-negative: 

 𝐸𝑑𝑒𝑓(𝑡) ≥ 0 (5.15) 

The constraints of the size of the PV panel, battery and diesel generator: 

 𝑃𝑃𝑉 , 𝑃𝑔𝑒𝑛, 𝑁𝑏𝑡 ≥ 0 (5.16) 

The constraint of the battery capacity: 

 1 ≥ 𝑆𝑂𝐶𝑏𝑡(𝑡) ≥ 0 (5.17) 

The constraint for diesel generator operation time is: 

 
24

𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑠 𝑖𝑛 𝑜𝑛𝑒 𝑑𝑎𝑦
≥ 𝑇𝑔𝑒𝑛(𝑡)  (5.18) 

 

5.2.4 Operational Strategy of Simulation 
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The electricity generated at PV panels have the highest priority because the generation 

does not cause additional cost. The proposed hybrid system adopts the following strategy: 

• If PV panels generate more energy than load demand, the spared energy will be stored in 

a battery until fully charged. 

• If the battery is fully charged, spared energy will be dumped. 

• If 𝐸𝑝𝑣(𝑡) + 𝐸𝑏𝑡(𝑡)  ≥ 𝐸𝑙𝑜𝑎𝑑(𝑡) ≥ 𝐸𝑝𝑣(𝑡), PV panels and batteries will cooperate and 

satisfy load demand. 

• If 𝐸𝑝𝑣(𝑡) + 𝐸𝑏𝑡(𝑡) + 𝐸𝑔𝑒𝑛(𝑡)  ≥ 𝐸𝑙𝑜𝑎𝑑(𝑡) ≥ 𝐸𝑝𝑣(𝑡) + 𝐸𝑏𝑡(𝑡), the diesel generator will 

start to satisfy load demand. The spare energy will charge the battery. 

• If 𝐸𝑙𝑜𝑎𝑑(𝑡) ≥ 𝐸𝑝𝑣(𝑡) + 𝐸𝑏𝑡(𝑡) + 𝐸𝑔𝑒𝑛(𝑡), the system will be unable to satisfy load 

demand. The energy deficit will be accumulated as a penalty in the objective function. 

 

5.3 Simulation Results and Discussions Case #1 

 

The first case study is based on a set of manipulated data, including a daily PV generation 

profile and a daily load profile. The data are manipulated based on a real system whose ID is 27 

in the given database. Its objective function is formulated according to Section 5.2 to size PV 

panel, generator and battery bank based on the daily profiles. The Artificial Bee Colony (ABC) 

method is implemented in this case to find a combination of variables’ value that minimize the 

objective function. Appendix C describes the algorithm of ABC in detail. 

 

  
Capital 

Cost 

Maintenance 

Cost 

Fuel 

Cost 
Lifetime 

PV panels 
3000 

$/kW 

0.7% of 

capital cost 

per year 

N/A 20 years 

Diesel 

generator 
278 $/kW 

0.2% of 

capital cost 

per hour 

0.9$ / 

Liter 

15000 

hours 
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Battery 
150 

$/kWh 

1% of 

capital cost 

per year 

N/A 4 years 

Table 5.1 Cost parameters for simulation. 

 

Perturbation 
Coefficient Population 

Max. 
iteration 

1 100 50 
Table 5.2 Control parameters for ABC algorithm in case study #1 

 

Diesel heat 
of 
combustion 

Diesel 
generator’s 
efficiency 

Battery 
charging 
efficiency 

10 kW/Liter 46% 60% 
Table 5.3 Other parameters required by the simulation 

 

The sizing process is implemented in MATLAB. According to the description in Section 

5.2.3 and Section 5.2.4, a simulation is run based on the given daily load profile and PV 

generation profile with a time step size of 10 minutes to simulate the power flows in the system. 

Many parameters need to be set before running the simulation. Table 5.1 shows the cost 

parameters for the simulation, Table 5.2 shows the control parameters for the ABC algorithm in 

the program, and other parameters are listed in Table 5.3.  

 

Figure 5.5 shows that the objective function converges to during the sizing process. The 

ABC algorithm takes only about 15 iterations to achieve a value at $282.1. After 50 iterations, 

the objective function outputs $275.4, and the corresponding sizes of the PV panel, battery and 

generator are determined. Besides the solution shown in Table 5.4,  cost analysis is implemented 

to estimate how money is spent. A sample is shown in Table 5.5.   
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Figure 5.5 Objective function converges to an value after 15 iterations  

 

Size of  
PV 
panel 

Size of 
battery 

Size of 
diesel 
generator 

Annual 
cost 

1.5414 
kW 

0.2993 
kWh 0 kW $275.40 

Table 5.4 Sizing result of case study #1 

 

  

Annual 
depreciation 
cost  

Annual 
maintenance 
Cost 

Fuel 
Cost 

PV panels $231.21 $32.37 N/A 

Diesel 
generator 0 0 0 

Battery $11.22 $0.45 N/A 
Table 5.5 Cost analysis of case study #1 
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Figure 5.6 Simulated system power flows based on the sizing solution of case study #1 

 

Figure 5.6 shows the simulated system power flows based on the sizing solution listed in 

Table 5.4. The ‘BATT-INV’ curve represents the amount of energy inverted from the battery. Its 

negative value means that the spare solar energy is charged to the battery. The other curves 

represent the PV generation and load demand. In the figure, the load demands energy and PV 

panels generate energy during the daytime, but the two time series do not perfectly match. The 

ABC method sizes the PV panel and battery so that the PV panels generate enough amount of 

energy to satisfy the demand. Meanwhile, the battery is large enough to buffer the mismatched 

energy.  
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Figure 5.7 Simulated battery usage of the battery in the case study #1 

 

Figure 5.7 shows the simulation result of the estimated battery usage in a day. The battery 

State of Charge (SoC) is fully utilized from the range of 0 to 1. In other words, the system does 

not need additional battery capacity. In this case, the simulation result validates the proposed 

method that the sizing result in Table 5.4 is neither oversized nor undersized. To further validate 

the proposed method, a more complex case is studied in Section 5.4. 

 

 

 

5.4 Simulation Results and Discussions Case #2 

Case study #1 is based on manipulated daily load and generation profiles to verify the 

effectiveness of the sizing method. In the case study #2, the same sizing method is implemented 

based on real year-round data to size a stand-alone PV system. The system named “red cabin” 
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(site ID 633) is selected from the given database. The database indicates that the system has 

installed 10 kW PV panels and a 5 kWh battery bank. However, its recorded peak generation 

power is only 1.64 kW in the year-round data. Therefore, in this case study, we assume that the 

system has installed 1.64 kW PV panels. Figure 5.4 only shows seven-day PV generation and 

load profiles for reader convenience, but the entire year-round data are used for sizing the PV 

system. 

 

Figure 5.8 Seven-day load and PV generation profile of case study #2 

 

Perturbation 
Coefficient Population 

Max. 
iteration 

1 300 150 
Table 5.6 Control parameters for ABC algorithm in case study #2 
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Cost parameters used in case study #2 are the same as those used in case study #1 (see 

Table 5.1 and Table 5.3). Control parameters are changed to adapt to the length of data as shown 

in Table 5.6. To test whether the method is sensitive for the initial conditions, fifty trials are run. 

In these fifty trials, PV size, battery size, and generator size are randomly initialized in the 

intervals of [0,10], [0,50], and [0,50] respectively. All these trials give similar sizing results, 

which proves that the method is not sensitive to the initial conditions. These fifty sizing results 

are listed in Appendix D in detail. According to the sizing results, power flows are simulated 

with a seven-day simulation plotted in Figure 5.9. Notice that the PV generation varies over the 

seven days. For example, the PV generation reached 2.5 kW on the sixth day, while no energy 

generated at all on the seventh day. The curve ‘BATT-INV’ represents the power discharged 

from the battery, and other time series are for PV generation, load demand, and generator’s 

generation. 

 

 

Size of  
PV 
panel 

Size of 
battery 

Size of 
diesel 
generator 

Annual 
cost 

2.99 kW 21.4 kWh 46.4 W $1459 
Table 5.7 Sizing results of case study #2 
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Figure 5.9 Simulated power flows of case study #2 according to the sizing results 

   

 To verify the effectiveness of the proposed sizing method, we enumerate 44541 

combinations of PV panel sizes, battery sizes, and generator sizes from the intervals [0,10], 

[0,50], and [0,10] respectively and uniformly. We run a simulation for each of them and 

calculate the corresponding year-round cost. Among these simulation results, the minimum cost 

is $1469, which is still higher than the cost given by the proposed sizing method in Table 5.7 at 

$1459. 
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Capital 

Cost 

Maintenance 

Cost 

Fuel 

Cost 
Lifetime 

PV panels 
4000 

$/kW 

0.7% of 

capital cost 

per year 

N/A 20 years 

Diesel 

generator 
278 $/kW 

0.2% of 

capital cost 

per hour 

0.6$ / 

Liter 

15000 

hours 

Battery 
150 

$/kWh 

1% of 

capital cost 

per year 

N/A 4 years 

Table 5.8 Changed cost parameters for simulation. 

 

Diesel heat 
of 
combustion 

Diesel 
generator’s 
efficiency 

Battery 
charging 
efficiency 

10 kW/Liter 46% 80% 
Table 5.9 Changed other parameters required by the simulation 

 

The effectiveness of the proposed method has been proved, but another test shows that 

the proposed method is sensitive to the pre-set parameters. To be more specific, the objective 

function contains many pre-set parameters. When the set of parameters changes, the sizing 

results will also change. Regarding case study #2, when the parameters change to numbers in 

Table 5.8 and 5.9, the sizing result will also change. The new sizing result is shown in Table 5.10 

and is very different from the previous sizing result in Table 5.7. 

 

Size of  
PV 
panel 

Size of 
battery 

Size of 
diesel 
generator 

Annual 
cost 

2.31 kW 21.8 kWh 46.8 W $1488 
Table 5.10 Sizing results of case study #2 with the changed parameters 
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This chapter discussed methods to select PV panel size, diesel generator size and battery 

size based on historical power flow data. After reviewing the sizing methods proposed by other 

researchers, the ABC method is adopted to size a PV system because the ABC method can size 

multiple variables at the same time for a hybrid PV system. To verify the proposed method, two 

cases are studied. In the first case, the proposed method can size the PV panel, battery, and 

generator altogether based on a given PV generation and load profiles. In addition, the sizing 

result matches intuition. In the second case, the proposed method is tested on real year-round 

data. Enumeration method compares the sizing result of the proposed method with all 44541 size 

combinations and shows that the cost of the proposed method is the lowest among all test cases. 

However, this method is proved to be quite sensitive to pre-set parameters. Therefore, to better 

implement the method to the given database, more accurate data need to be collected for better 

results. 
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Chapter 6: Conclusion and Future Work 

 

6.1 Conclusion  

 

This thesis is based on historical power flow data from the commercial database 

provided. We address the data quality issues then propose a validation rule and a correction 

method. The GMM classification method is implemented to detect the systems whose battery 

monitors are installed incorrectly, the data are then corrected accordingly. The thesis also 

propose a set of features to identify the type of PV systems using the GMM method. Knowing 

the type of the PV system is crucial for system sizing because the sizing process needs that 

information to form the corresponding objective function. In addition, some systems cannot be 

optimized based on the generation and load profiles. Like UPS, the battery size depends on the 

user’s preference. Finally, two sizing methods are proposed. One is to optimize battery size 

based on its cycling profile. The other is to size multiple components in a PV system using the 

Artificial Bee Colony method. 

 

The issues regarding the data quality in the database are addressed in Section 2.1. The 

law of conservation of energy is applied to verify the data. In addition, the systems are removed 

from further analysis if there are too many records missing, marked as a dummy site or had too 

short a history. As a result, only 290 out of the 4000 (5.8%) systems provided are selected for 

further analysis. Evidently the database has serious data quality issues. Many of the selected 290 

systems have their battery monitors connected incorrectly. The thesis proposes three features and 

implements the GMM method to detect the systems. Then we correct their power flow data. 
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It is necessary to know the type of the PV system in order for us to size the system 

correctly. In Chapter 3, nine features are chosen to reduce the dimensionality of the power flow 

data while keeping each site's characteristics. The GMM method is implemented to classify the 

290 PV systems. Six clusters are classified (see Table 3.3). Four main clusters are clearly 

identified, they make up 83% of the valid data analyzed in this thesis. The four clusters represent 

stand-alone PV/diesel/battery/hybrid systems, grid-tied PV/battery hybrid systems, PV/UPS 

systems that inject energy to the grid, and PV/UPS systems without grid penetration. The 

classification process also provids a cluster of outliers and a cluster of unknown operation. The 

UPS systems cannot be optimized in this thesis because their battery sizes depend on their design 

requirements which could be specific to each application, we are not provided with this type of 

information. 

 

Chapter 4 proposes an optimization method for sizing batteries for stand-alone 

PV/diesel/battery/hybrid systems and grid-tied PV/battery hybrid systems. It calculates the 

cycling profile for each system based on their battery charging power flow and battery discharge 

power flow. Then it derives an optimum battery size that minimized battery degradation due to 

cycling. As shown in Table 4.1, we can detect the whether the existing battery is too big or too 

small for each system and suggest the optimal size to the customers. Oversizing of batteries is 

very common in the given database, though this is not ideal, the model described in Chapter 4 

shows that oversizing the battery will not increase the cost as much as undersizing it. 
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Chapter 5 explores the possibility of sizing several system components simultaneously, 

including PV panels, generators and batteries. We propose a sizing method based on the ABC 

method for the stand-alone PV/diesel/battery/hybrid systems. Two case studies done in this 

thesis verified the effectiveness of the proposed sizing method. However, case study #2 shows 

that the proposed method is sensitive to other parameters which are not available in the given 

database. Due to the missing information, we cannot provide a conclusion for this specific set of 

data through this method. In comparison, Chapter 4 only optimizes the battery size based on its 

cycling profile to minimize the capacity loss due to cycling. 

 

 

6.2 Future Work 

 

First the database has some quality issues. From the validation result we can conclude 

that only a small portion of the data can be justified. Based on observations, missing data and 

scaled measurements are common in the database. On top of the wrong measurements, system 

modifications, additional unmonitored devices or multifunctional devices can also cause data 

quality issues. In many situations, we cannot figure out what causes missing or invalid data by 

simply reviewing the database. A feasible method is to add a verification procedure in the 

ComBox or SCP, which can warn the user once their measurements cannot be justified. The 

company can also provide the user with the system topology templets and let the user update 

which templet he or she adopts. In this way we are able to verify if their system is correctly 

installed. 
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The manufacturers of MPPTs and inverters should inform the customer of the 

equipment’s lifespans. This information is required for accurate cost estimation and system 

sizing process. The battery bank's life span is highly dependent on how it’s used in the system; 

the ambient temperature, maintenance and battery type are also important factors. Therefore, the 

battery bank's degradation model should be studied further. Battery manufacturers usually 

provide the battery life at specific depths of discharge. Current studies tend to choose a formula 

based on batteries’ lab performance. These tests are done under strict conditions at set 

temperatures and depths of each cycle. However, in real-world applications many other factors 

contribute to the degradation of batteries, making the given formulae too ideal. 

 

Accurate historical data can help us provide more realistic models of battery degradation. 

We can do this by using data-based modelling because of its advantage in solving non-linear 

problems. At this stage, the installed battery monitors are monitoring some very useful data such 

as SoC, current, voltage, estimated time for discharging, but none of this information is stored in 

the database. Some software modifications may enable data collection. The change in SoC and 

power usage can estimate the battery bank's capacity. Once data are collected on these 

parameters it is possible to study how the temperature, usage, current, and maintenance would 

affect the degradation and therefore the sizing of the battery. Typically a voltage lookup table is 

used to roughly estimate a battery's SoC. Using additional measurement devices such as an 

internal resistance measurement or a SoH measurement would provide a more accurate 

estimates. We should emphasize that it’s crucial to have information about the battery’s 

condition (eg. SoH, remaining life span, remaining capacity) before studies of battery 

degradation can be conducted. 
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Chapter 5 proposed the ABC method to size a PV system’s components. This method 

requires many additional parameters. I made reasonable assumptions in the two case studies, 

they are listed in Table 5.1, 5.3, 5.8 and 5.9. As discussed in case study #2, the sizing result is 

sensitive to these parameters. Without knowing the accurate parameters of each PV system, I 

cannot draw a conclusion of whether a device is oversized or not. For further analysis, additional 

information such as the distribution line capacity, buying price, selling price, grid connection and 

cost of outage is worth obtaining. 
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Appendices 

Appendix A  Covariance Matrices of Classification Results  

 

The following six covariance matrix are the PV systems’ classification results. Each matrix describes a Gaussian distribution in 

the features’ space. A smaller number in the matrix means a more concentrated distribution. The number in the A.1, A.2, A.3 and A.4 

are very small. And these four clusters’ application can be observed as mentioned in chapter 3. The values in A.5 is extremely bigger 

than other covariance matrices. Therefore, the fifth cluster is an outlier’s cluster. The visualization of each cluster is shown in 

Appendix B. 

 

A.1 Covariance Matrix of the First Classification Group 

2.02E-02 -2.02E-02 6.93E-05 1.91E-07 4.13E-03 4.95E-05 -1.12E-02 -5.03E-03 -4.09E-03 

-2.02E-02 2.04E-02 -1.51E-04 -2.14E-07 -4.16E-03 -9.18E-05 1.13E-02 5.07E-03 4.12E-03 

6.93E-05 -1.51E-04 8.12E-05 2.30E-08 3.08E-05 4.22E-05 -1.77E-04 -3.98E-05 -2.63E-05 

1.91E-07 -2.14E-07 2.30E-08 5.04E-07 1.07E-07 5.43E-08 -1.85E-07 -7.78E-08 -4.67E-08 

4.13E-03 -4.16E-03 3.08E-05 1.07E-07 7.93E-03 -1.31E-05 1.02E-03 -5.64E-04 1.16E-03 

4.95E-05 -9.18E-05 4.22E-05 5.43E-08 -1.31E-05 9.04E-05 -1.70E-04 -4.12E-05 -1.57E-05 

-1.12E-02 1.13E-02 -1.77E-04 -1.85E-07 1.02E-03 -1.70E-04 2.57E-02 5.95E-03 4.00E-03 

-5.03E-03 5.07E-03 -3.98E-05 -7.78E-08 -5.64E-04 -4.12E-05 5.95E-03 3.16E-03 2.13E-03 

-4.09E-03 4.12E-03 -2.63E-05 -4.67E-08 1.16E-03 -1.57E-05 4.00E-03 2.13E-03 6.55E-03 
Table A.1 Covariance matrix of the first classification group 
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A.2 Covariance Matrix of the Second Classification Group 

1.86E-01 1.66E-04 -1.86E-01 4.77E-02 1.00E-01 -2.10E-01 7.32E-02 3.05E-02 8.40E-02 

1.66E-04 9.43E-06 -1.75E-04 1.53E-04 -1.48E-04 -3.76E-04 9.37E-05 -5.49E-05 -3.39E-04 

-1.86E-01 -1.75E-04 1.87E-01 -4.79E-02 -1.00E-01 2.10E-01 -7.33E-02 -3.05E-02 -8.36E-02 

4.77E-02 1.53E-04 -4.79E-02 1.11E-01 -5.81E-02 9.55E-02 1.56E-02 3.71E-02 8.38E-03 

1.00E-01 -1.48E-04 -1.00E-01 -5.81E-02 1.40E-01 -2.33E-01 5.05E-02 1.72E-03 8.54E-02 

-2.10E-01 -3.76E-04 2.10E-01 9.55E-02 -2.33E-01 6.07E-01 -5.15E-02 3.02E-02 -8.56E-02 

7.32E-02 9.37E-05 -7.33E-02 1.56E-02 5.05E-02 -5.15E-02 8.45E-02 2.70E-02 2.45E-02 

3.05E-02 -5.49E-05 -3.05E-02 3.71E-02 1.72E-03 3.02E-02 2.70E-02 3.00E-02 3.90E-02 

8.40E-02 -3.39E-04 -8.36E-02 8.38E-03 8.54E-02 -8.56E-02 2.45E-02 3.90E-02 1.45E-01 
Table A.2 Covariance matrix of the second classification group 

 

A.3 Covariance Matrix of the Third Classification Group 

8.78E-03 8.22E-07 -8.78E-03 7.96E-03 5.30E-05 -3.03E-04 1.06E-04 -5.53E-05 1.24E-04 

8.22E-07 1.79E-07 -1.00E-06 2.09E-06 3.36E-07 -7.95E-06 -6.90E-07 -6.07E-07 -3.40E-08 

-8.78E-03 -1.00E-06 8.78E-03 -7.96E-03 -5.33E-05 3.11E-04 -1.05E-04 5.60E-05 -1.24E-04 

7.96E-03 2.09E-06 -7.96E-03 1.32E-02 -8.90E-04 2.09E-03 -1.11E-03 -1.95E-04 -3.38E-04 

5.30E-05 3.36E-07 -5.33E-05 -8.90E-04 1.29E-03 -1.09E-03 8.90E-04 1.77E-04 6.38E-04 

-3.03E-04 -7.95E-06 3.11E-04 2.09E-03 -1.09E-03 7.51E-03 -4.18E-04 2.74E-04 -4.15E-04 

1.06E-04 -6.90E-07 -1.05E-04 -1.11E-03 8.90E-04 -4.18E-04 1.31E-03 6.09E-04 8.07E-04 

-5.53E-05 -6.07E-07 5.60E-05 -1.95E-04 1.77E-04 2.74E-04 6.09E-04 4.98E-04 4.35E-04 

1.24E-04 -3.40E-08 -1.24E-04 -3.38E-04 6.38E-04 -4.15E-04 8.07E-04 4.35E-04 6.28E-04 
Table A.3 Covariance matrix of the third classification group 
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A.4 Covariance Matrix of the Fourth Classification Group 

5.35E-03 -4.41E-08 -5.35E-03 4.36E-04 2.33E-04 -1.28E-04 -4.33E-07 1.15E-04 2.82E-04 

-4.41E-08 6.81E-08 -2.39E-08 -7.01E-07 -3.12E-08 5.30E-07 4.83E-08 5.11E-10 -1.72E-07 

-5.35E-03 -2.39E-08 5.35E-03 -4.35E-04 -2.33E-04 1.27E-04 3.85E-07 -1.15E-04 -2.82E-04 

4.36E-04 -7.01E-07 -4.35E-04 1.92E-03 -2.61E-04 8.81E-04 -2.89E-05 5.67E-05 6.41E-05 

2.33E-04 -3.12E-08 -2.33E-04 -2.61E-04 5.08E-04 1.17E-05 6.36E-05 1.17E-04 2.67E-04 

-1.28E-04 5.30E-07 1.27E-04 8.81E-04 1.17E-05 2.97E-03 3.69E-05 3.34E-05 1.62E-05 

-4.33E-07 4.83E-08 3.85E-07 -2.89E-05 6.36E-05 3.69E-05 2.25E-05 2.44E-05 3.54E-05 

1.15E-04 5.11E-10 -1.15E-04 5.67E-05 1.17E-04 3.34E-05 2.44E-05 1.39E-04 2.38E-04 

2.82E-04 -1.72E-07 -2.82E-04 6.41E-05 2.67E-04 1.62E-05 3.54E-05 2.38E-04 5.44E-04 
Table A.4 Covariance matrix of the fourth classification group 

 

A.5 Covariance Matrix of the Fifth Classification Group 

1.34E+01 -2.52E+00 -1.09E+01 1.33E+01 5.84E+00 5.51E+00 2.98E+01 1.41E+01 1.58E+01 

-2.52E+00 2.72E+00 -2.06E-01 -2.95E+00 -4.29E-01 -5.34E+00 -6.02E+00 -1.91E+00 -1.95E+00 

-1.09E+01 -2.06E-01 1.11E+01 -1.04E+01 -5.41E+00 -1.66E-01 -2.38E+01 -1.22E+01 -1.39E+01 

1.33E+01 -2.95E+00 -1.04E+01 2.07E+01 -2.39E+00 1.80E+01 3.10E+01 1.05E+01 1.27E+01 

5.84E+00 -4.29E-01 -5.41E+00 -2.39E+00 2.12E+01 -6.02E+00 1.37E+01 1.49E+01 1.67E+01 

5.51E+00 -5.34E+00 -1.66E-01 1.80E+01 -6.02E+00 3.35E+01 1.60E+01 2.14E+00 4.05E+00 

2.98E+01 -6.02E+00 -2.38E+01 3.10E+01 1.37E+01 1.60E+01 6.86E+01 3.32E+01 3.74E+01 

1.41E+01 -1.91E+00 -1.22E+01 1.05E+01 1.49E+01 2.14E+00 3.32E+01 4.03E+01 3.71E+01 

1.58E+01 -1.95E+00 -1.39E+01 1.27E+01 1.67E+01 4.05E+00 3.74E+01 3.71E+01 3.61E+01 
Table A.5 Covariance matrix of the fifth classification group 
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A.6 Covariance Matrix of the Sixth Classification Group 

1.46E-01 -7.65E-02 -6.95E-02 -2.39E-03 8.03E-02 -7.89E-02 7.16E-02 -4.52E-03 4.29E-02 

-7.65E-02 5.68E-02 1.97E-02 5.66E-04 -2.58E-02 2.09E-02 -2.61E-02 1.25E-02 -3.74E-03 

-6.95E-02 1.97E-02 4.98E-02 1.83E-03 -5.45E-02 5.80E-02 -4.55E-02 -7.99E-03 -3.91E-02 

-2.39E-03 5.66E-04 1.83E-03 7.70E-05 -1.63E-03 2.19E-03 -1.34E-03 -2.07E-04 -1.06E-03 

8.03E-02 -2.58E-02 -5.45E-02 -1.63E-03 1.90E-01 -6.39E-02 1.95E-01 5.01E-02 1.13E-01 

-7.89E-02 2.09E-02 5.80E-02 2.19E-03 -6.39E-02 6.90E-02 -5.44E-02 -1.03E-02 -4.53E-02 

7.16E-02 -2.61E-02 -4.55E-02 -1.34E-03 1.95E-01 -5.44E-02 2.20E-01 6.45E-02 9.26E-02 

-4.52E-03 1.25E-02 -7.99E-03 -2.07E-04 5.01E-02 -1.03E-02 6.45E-02 4.08E-02 2.32E-02 

4.29E-02 -3.74E-03 -3.91E-02 -1.06E-03 1.13E-01 -4.53E-02 9.26E-02 2.32E-02 1.19E-01 
Table A.6 Covariance matrix of the sixth classification group 
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Appendix B   Scatter Plots of Classification Result 

Each cluster is plotted in different scatter plot matrix. By observing the features' distribution and their correlation, we can infer 

their operation strategy and then determine the appropriate sizing method. The visualization process can also verify the classification 

results and see if the results distinguish systems in the database clearly. 
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B.1 Scatter Plots of the First Classification Group 

 

Table B.1 Scatter plots of the first classification group 
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In the type-one systems, PV and diesel generator provides all required energy. They do not have any interaction with the grid, 

so they are stand-alone PV/diesel hybrid systems. This type of system tends to use more PV than the diesel generator, probably due to 

low operational cost. Moreover, about 50% of the energy charges their battery bank and used when PV is not available. So, we can 

expect more battery degradation in this type of system. We find some system uses a diesel generator for a large portion of energy 

generation. They may have cheap diesel sources but more likely for other reasons. When the PV panel is undersized, the generated 

energy is not enough for the load demand and diesel generator will start and provide the deficit energy. When the battery is 

undersized, the stored energy cannot satisfy load demand at night, and the diesel generator will be activated. To determine the reason, 

we need to know the SoC data, but this type of data is not available. Another observation is that feature #7 and #9 are widely 

distributed, and they do not correlate with other features. It may be due to the variety of their local climates. 
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B.2 Scatter Plots of the Second Classification Group 

  

Table B.2 Scatter plots of the second classification group 
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The type-two systems are grid-tied because the systems purchase energy from the grid (feature #3) or sell to the grid (feature 

#4). Feature #1 is distributed widely in the range of [0,1], which indicate that some system heavily relies on the PV energy, but some 

are not. We notice that feature #1, #3, #5 and #6 are correlated. The system which takes energy from the grid at night will also use less 

energy from the battery and lightly relies on PV energy. This observation may be due to the constraints of the available area for PV 

panels. We must consider such constraints in the optimization. When we observe the feature#8, we notice some systems have higher 

values. These systems may use battery energy during the peak hours to reduce the grid power and shave the peak. 
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B.3 Scatter Plots of the Third Classification Group 

 

Table B.3 Scatter plots of the third classification group 
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B.4 Scatter Plots of the Fourth Classification Group 

 

Table B.4 Scatter plots of the fourth classification group 
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The third and fourth groups' features are concentrated, which implies they are well classified. The two types of systems are the 

uninterruptable power supply because of their batteries neither charge nor discharge in a day. Type-three and type-four systems are 

different in feature #4. The type-three systems inject surplus PV energy into the connected grid. A UPS, like a backup source, drives 

their loads during the grid outage. To size these systems, we must consider the grid reliability and how long the UPS can withstand. 
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B.5 Scatter Plots of the Fifth Classification Group 

 

Table B.5 Scatter plots of the fifth classification group 
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The fifth class seems a group for outliers. All nine features should be in the range of [0,1] by their definition. In the covariance 

matrix of the fifth GMM component, most variances and covariances are bigger than one.  It indicates that the component covers most 

spaces. It more likely contains outliers. 
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B.6 Scatter Plots of the Sixth Classification Group 

 

Table B.6 Scatter plots of the sixth classification group 
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The sixth group's members are spread widely in the feature space. It seems a group for outliers like the fifth class. 

However, the model's covariance and variance value are small. It still indicates some specialties over other groups. My 

observation is that this group contains all diesel/PV grid-tied system. However, in the database, the number of such systems are 

very small. So, the classification result wrongly classifies a few systems into this group.
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Appendix C  Artificial Bee Colony Method 

 

In the section 1.4.2, it is shown that the numerical method is widely used for optimizing 

battery size and PV panel size for a stand-alone PV system based on load and illumination 

profiles. However, in the given database, there are many types of PV system and each system 

may have more than two variables to be optimized. The complexity of the numerical method 

grows exponentially with respect to the increment of variables. Therefore, the ABC is proposed 

to solve the problem. 

For example, to optimize a PV/ battery/ diesel generator hybrid stand-alone system, the 

numerical method needs to calculate the LLP with respect to the combination of PV array size 

(S𝑝𝑣), battery size (S𝑏𝑎𝑡𝑡) and the power rating of the diesel generator (S𝑔𝑒𝑛). The calculation of 

LLP relies on a simulation based on the historical data. LLP(S𝑝𝑣, S𝑏𝑎𝑡𝑡, S𝑔𝑒𝑛) represents the 

calculation result. There are a great number of possible combinations such as (1, 1, 1), (1, 1, 2) 

… (1, 1, S𝑚𝑎𝑥 𝑔𝑒𝑛) … (1, 2, S𝑚𝑎𝑥 𝑔𝑒𝑛), (1, 3, S𝑚𝑎𝑥 𝑔𝑒𝑛), …, (1, S𝑚𝑎𝑥 𝑏𝑎𝑡𝑡, S𝑚𝑎𝑥 𝑔𝑒𝑛), …, 

(S𝑚𝑎𝑥 𝑝𝑣, S𝑚𝑎𝑥 𝑏𝑎𝑡𝑡, S𝑚𝑎𝑥 𝑔𝑒𝑛). And the huge amount makes the work very complexed.  

On the contrary, the ABC method requires an objective function. In this case, the 

objective function is the overall cost of the system. 

Cost(S𝑝𝑣, S𝑏𝑎𝑡𝑡, S𝑔𝑒𝑛) 

The ABC method random the initial value of S𝑝𝑣, S𝑏𝑎𝑡𝑡, S𝑔𝑒𝑛 and makes perturbation for variable 

after each iteration until the optimization result achieved. 

The ABC algorithm is mimicking bee colony to optimize mathematical function. It can 

deal with non-leaner functions and constraints. A colony consists of three types of bees: 
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employed bees, onlooker bees, and scout bees. The number of employed bees, 𝑺𝑵, needs to be 

set. Bee’s locations, 𝑿𝒊 (𝒊 = 𝟏, 𝟐, 𝟑 … 𝑺𝑵), are possible solutions of the optimization problem. 

Each location is a D-dimensional vector. Value of the optimization problem can be calculated 

based on the given locations. The calculated values are the amount of the nectar, which also 

called fitness (𝑓𝑖𝑡𝑖). Each bee updates a new location and compare the nectar at the new location 

with the old one. If the new location has a better food source, the bee will memorize the new 

location, forget the old location, and share their best location with the whole colony. Each bee 

follows different rule to update their new location according to the bee’s type. The employed 

bees search the location around their old location. The onlooker bees tend to move to the 

locations has more nectar according to the shared information in the colony. The scout bees 

search randomly within the searching space. The employed bees and onlooker bees utilize the 

similar formula to generate the new location, 

𝑽𝒊,𝒋 =  𝑿𝒊,𝒋 + 𝚽𝒊,𝒋(𝑿𝒊,𝒋 − 𝑿𝒌,𝒋)        (1) 

where 𝑘 ∈ { 1, 2, … , 𝑺𝑵} and 𝑗 ∈ { 1, 2, … , 𝑫} .𝑽𝒊,𝒋 is one coordinate of new location. 𝑿𝒊,𝒋 is the 

old location’s coordinate. 𝚽𝒊,𝒋 is a random number between [-1, 1]. The employed bees chose k 

randomly, but the onlooker bees chose k location which has more nectar. The probability of 

choosing k location can be expressed as, 

𝑝𝑘 =
𝑓𝑖𝑡𝑘

∑ 𝑓𝑖𝑡𝑛
𝑆𝑁
𝑛=1

        (2) 

  

In the algorithm, a limit value need to be set as the limit for abandonment. If a bee’s 

location does not change after the predetermined number of cycles. The bee will behave as a 

scout bee. It will move to a random location without capering with the old food source. Assume 
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the abandoned location is 𝑿𝒊 and 𝑗 ∈ { 1, 2, … , 𝑫}. The operation of randomizing next location 

can be defined as: 

𝑿𝑖
𝑗

= 𝑿𝑚𝑖𝑛
𝑗

+ rand(0, 1)(𝑿𝑚𝑎𝑥
𝑗

− 𝑿𝑚𝑖𝑛
𝑗

)        (3) 

To run the algorithm, there values should be set: The number of employed bees (𝑺𝑵), the limit 

cycles for food source abandonment and the maximum cycling number (𝑴𝑪𝑵). The detailed 

ABC algorithm is given below: 

1. Initialize the population of solutions, 𝑿𝒊,𝒋, 𝒊 = 𝟏, 𝟐, 𝟑 … 𝑺𝑵, 𝒋 = 𝟏, 𝟐, 𝟑 … 𝑫  

2. Evaluate the 𝑓𝑖𝑡𝑖 for the whole population  

3. cycle=1 

4. repeat 

5. Produce new solutions 𝑽𝒊,𝒋for the employed bees by using (1) and evaluate the fitness of 

the new solutions 

6. Compare the fitness of the old solution and the new solution. Keep the solutions with 

higher fitness 

7. Calculate the probability values 𝑝𝑖 of the solutions 𝑿𝒊 by (2)  

8. Produce the new solutions 𝑽𝒊,𝒋 for the onlookers from the solutions 𝑿𝒊,𝒋 selected 

depending on 𝑝𝑖 and evaluate their fitness  

9. Compare the fitness of the old solution and the new solution. Keep the solutions with 

higher fitness 

10. Check if any bee stays at the same solution longer than the limit cycles for food source 

abandonment. if exists, abandon it and replace it with a new randomly produced solution 

𝑿𝒊,𝒋 by (3) 

11. Memorize the best solution of the whole colony  

12. cycle=cycle+1  

13. until cycle= 𝑴𝑪𝑵 

 

Three types of bee follow different rules updating their next solution. For the employed 

bees and onlooker bees, when they generate the new solutions, a random number between [-1, 1] 

participate the evaluation and give the algorithm certain level of randomness. But the variation is 

proportional to the distance between two bees, 𝑿𝒊,𝒋 − 𝑿𝒌,𝒋. When the two types of bee close to 

each other, the difference of 𝑿𝒊,𝒋, 𝑿𝒌,𝒋 could be very small. Without the help of scout bees, the 
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whole colony may be trapped at a local optimum solution. Therefore, the scout bee and limit 

cycles for food source abandonment are necessary. 

 

As discussed above, the ABC algorithm keeps generating new locations for employed 

bees and comparing the new locations with the old locations. The algorithm always memorizes 

the locations with better fitness. It is called greedy rule. In order to solve constrained problems, 

the ABC algorithm replaces the greedy rule with Deb's method. The Deb's method consists three 

steps: 1) Any solution within constraints is preferred to an infeasible solution, 2) Among two 

feasible solutions, the one with better fitness is preferred, 3) Among two infeasible solutions, the 

one violating constrains least is preferred. 

 

In the studied database, year-round power flows information is available. The climate at a 

specific location is unlikely to change dramatically. And the usage behavior of a system is also 

assumed to be similar year by year. In this case, the last-year power follows information can be 

summarized as a year-round profile and used for system optimization.  

 

To optimize sizes for battery, PV panel and a diesel generator in a system, an objective 

function need to be formed based on the system's purpose and limitation. The objective function 

can be a cost function in most cases and the function can be very complicated to includes 

different types of cost of all components in the system. The function can be too complicated to 

use the mathematical method.  The numerical method is able to solve non-linear functions and 

tolerant to the change of the objective functions.  
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The optimization problem brings challenges and the optimization method need to be 

chosen based on the challenges. We may optimize multiple variables together. The method is 

better to find the global optimal solution rather than trapped by a locally optimal solution. It must 

deal with constraints caused by physical limitation. The ABC algorithm satisfied all 

requirements and, therefore, chosen to optimize such a problem. 
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Appendix D  Sizing Results of the Second Case Study 

 

The following table shows the results of fifty sizing process for the second case study 

described in Section 5.5. Because randomness is the sizing method, the fifty trials give different 

sizing results. However, their results and annual costs are similar.  

 

 
 
 
 

Size of 
PV panel 

(kW) 

Size of 
battery 

(kWh) 

Size of 
diesel 

generator 
(kW) 

Annual 
cost ($) 

Trial 1 2.959907 21.42524 0.045997 1459.568 

Trial 2 2.984417 21.36711 0.046133 1459.242 

Trial 3 2.983289 21.36899 0.04658 1458.998 

Trial 4 2.984696 21.37994 0.046756 1459.696 

Trial 5 2.984507 21.36814 0.04615 1459.288 

Trial 6 2.983854 21.36732 0.047233 1459.367 

Trial 7 2.983474 21.37277 0.046151 1459.291 

Trial 8 2.960632 21.42309 0.046742 1459.45 

Trial 9 2.988146 21.35838 0.046521 1459.415 

Trial 10 2.958392 21.42942 0.04618 1459.359 

Trial 11 2.983484 21.37251 0.04726 1459.533 

Trial 12 2.987209 21.36372 0.046788 1459.503 

Trial 13 2.983546 21.37468 0.046665 1459.273 

Trial 14 2.98791 21.36049 0.047036 1459.627 

Trial 15 2.986266 21.37015 0.046212 1459.634 

Trial 16 2.985265 21.36875 0.046615 1459.329 

Trial 17 2.985312 21.36722 0.046747 1459.303 

Trial 18 2.984123 21.38088 0.046655 1459.612 

Trial 19 2.984049 21.38247 0.046726 1459.675 

Trial 20 2.983467 21.37111 0.046262 1459.17 

Trial 21 2.983789 21.37437 0.04644 1459.301 

Trial 22 2.986201 21.36235 0.046283 1459.287 

Trial 23 2.986118 21.36835 0.046893 1459.541 

Trial 24 2.961824 21.42397 0.046457 1459.654 

Trial 25 2.987711 21.35937 0.046804 1459.425 

Trial 26 2.984644 21.36728 0.046427 1459.173 

Trial 27 2.985293 21.36528 0.046555 1459.195 

Trial 28 2.986296 21.36389 0.046307 1459.355 

Trial 29 2.983645 21.36782 0.046649 1459.02 
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Trial 30 2.957862 21.43115 0.047159 1459.552 

Trial 31 2.984109 21.36871 0.046473 1459.131 

Trial 32 2.98409 21.37058 0.046351 1459.225 

Trial 33 2.984989 21.36451 0.047116 1459.345 

Trial 34 2.957931 21.42941 0.046846 1459.276 

Trial 35 2.983353 21.37048 0.04641 1459.081 

Trial 36 2.985285 21.36947 0.046484 1459.36 

Trial 37 2.983694 21.36892 0.046779 1459.102 

Trial 38 2.961738 21.42052 0.046505 1459.502 

Trial 39 2.982809 21.37338 0.046953 1459.204 

Trial 40 2.98733 21.35957 0.046493 1459.323 

Trial 41 2.985094 21.36741 0.046812 1459.294 

Trial 42 2.9856 21.36513 0.046591 1459.243 

Trial 43 2.98398 21.37035 0.04655 1459.169 

Trial 44 2.984061 21.36918 0.046104 1459.28 

Trial 45 2.983928 21.37251 0.046502 1459.245 

Trial 46 2.958114 21.44224 0.046351 1459.749 

Trial 47 2.987776 21.36055 0.04635 1459.464 

Trial 48 2.983056 21.37034 0.046735 1459.035 

Trial 49 2.986171 21.36539 0.047005 1459.5 

Trial 50 2.958373 21.43686 0.0464 1459.574 
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Appendix E  Gaussian Mixture Model  

  Previous studies have proposed various classification method for the multivariate time 

series data. And the method is significantly relying on nature of the given data. It is necessary to 

consider how to maximize the similarity between the within-group objects, meanwhile, minimize 

the similarity between the between-group objects. Therefore, based on the possible applications 

mentioned in section 1.3, seven features are proposed to distinguish PV systems. Ideally, the 

data’s dimension is reduced from a few hundred to seven while keeping their differences. In the 

proposed procedures, GMM method is implemented during the classification process because 

GMM method will provide the classification in round shape, allow overlaps, and have the 

potentiality to classify outliers into a group. 

 

The Gaussian Mixture Model (GMM) is a distribution-based clustering method. A GMM 

is the sum of M components describing the distribution density of N samples. A model can fit 

any distribution by increasing the number of components. Each component is described as a 

Gaussian distribution function with corresponding weight, mean value and covariance matrix. A 

multivariate Gaussian probability density function is defined as 

(x|θ) =
1

(2𝜋)
𝐷
2 |∑|

1
2

exp (−
(𝑥 − 𝜇)𝑇∑

1
2(𝑥 − 𝜇)

2
) 

Where θ = ( 𝜇, ∑), D is the model's dimension, μ is the mean vector and  ∑ is the covariance 

matrix. Then, the GMM can be defined as 

P(x|θ) = ∑ 𝛼𝑘φ(x|𝜃𝑘)

𝑀

𝑘=1
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Where k is the number of components in the GMM, α is the weight of the component and 

φ(x|𝜃𝑘) the probability density function. By definition, 𝛼 > 0 and ∑ 𝛼𝑘
𝑀
𝑘=1 = 1. 

Regarding a GMM, we can apply maximum likelihood method to estimate the weigh, covariance 

matrix and mean value for each component in the model. Its log-likelihood is given: 

logL(𝛼, 𝜃𝑘)  =   ∑ log (∑ 𝛼𝑘φ(𝑥𝑗|𝜃𝑘)

𝑀

𝑘=1

)

𝑁

𝑗=1

  

Then the function is a sum of logarithm functions, contains hidden variables (the cluster each 

sample belonging to), and contains many unknown parameters 𝛼, 𝜇, ∑. Therefore, the function 

must be solved through iterations. 

 

Expectation-Maximization algorithm is an iterative method to solve the likelihood 

maximization problem who contains hidden variables. At the beginning of the algorithm, 

parameters 𝛼, 𝜇, ∑ are initialized randomly. In each iteration, it contains two steps: the 

expectation step and the maximization step. 

1) E-step 

According to the value of 𝛼, 𝜇, ∑, the process calculates the probability of sample j 

belonging to model component k. 

𝛾𝑗𝑘 =
𝛼𝑘φ(𝑥𝑗|𝜃𝑘)

∑ 𝛼𝑘φ(𝑥𝑗|𝜃𝑘)𝑀
𝑘=1

 

where 𝑘 ∈ { 1, 2, … , 𝑴} and 𝑗 ∈ { 1, 2, … , 𝑵} . 

2) M-step 

Once all expectations are calculated, the GMM parameters can be updated.  
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 𝜇𝑘 =
∑ (𝛾𝑗𝑘𝑥𝑗)𝑁

𝑗=1

∑ 𝛾𝑗𝑘
𝑁
𝑗=1

 

 ∑𝑘 =
∑ 𝛾𝑗𝑘(𝑥𝑗 −  𝜇𝑘)(𝑥𝑗 −  𝜇𝑘)𝑇𝑁

𝑗=1

∑ 𝛾𝑗𝑘
𝑁
𝑗=1

 

𝛼𝑘 =
∑ 𝛾𝑗𝑘

𝑁
𝑗=1

𝑁
 

The algorithm repeats E-steps and M steps until all parameters converge. Then the GMM 

of the dataset is formed. For any new sample x, we can repeat the E-step to calculate the 

probabilities. The new sample will be assigned to the cluster with higher probability. 

 

The database has been recording power flows of more than 4000 sites. Each site may 

have different devices and run for a different purpose. Therefore, to optimize the device sizes of 

a system, it is important to understand the operation purpose of the site. For example, a grid-tied 

system may use a battery bank as a back-up source. Usually, only a small amount of energy 

cycles in the battery every day. But the site needs a big battery to prevent grid outage. In another 

case. If a site is stand-alone and has its own diesel generator, the battery only participates in the 

energy cycling. To optimize the battery size in such a system, all economic effects should be 

considered. 


