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Abstract 

 

Optimization of drug candidates involves modification of chemical structures in order to improve 

a compound’s desirable properties. We aim to use pharmacokinetic/pharmacodynamics (PK/PD) 

modelling to prioritize alterations in drug properties such as potency, clearance, and free drug 

concentrations in order to reduce the predicted efficacious dose. We have used simple 

differential equations and simulation software to build simple direct effect models to explore 

how changes in these factors affects a) maintenance of drug levels above 50% inhibition of a 

biological target or b) maintenance a certain efficacious area under the curve (AUC). We have 

demonstrated that when the pharmacodynamic target was to maintain >50% inhibition of a 

biological target, decreasing clearance led to greater decreases in predicted efficacious dose 

compared to improvements in potency. Changes in free drug levels affects both potency and 

clearance.  The overall effect on dose was dependent on whether the drug was a high, moderate, 

or low clearance drug. When the pharmacodynamics target was efficacious AUC, improvements 

in predicted efficacious dose changed linearly with improvements in clearance or potency.  

These results indicate that the choice of property to optimize depends on the pharmacodynamic 

endpoint. When target is an efficacious AUC, one can choose to improve either clearance or 

potency with similar effects in steady-state dose improvements. However, when the target is 

maintenance of a specific level of target inhibition, better gains in dose reduction can be made by 

improvement of clearance rather than potency.  Our study also demonstrates that application of 

PK/PD modelling can guide compound optimization in a more rational manner. 
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Lay Summary 

 

Creation and development of new medicines is a complex process. Drugs are discovered through 

many iterations of chemical modifications in order to identify a safe and effective drug.  

Chemical modifications are made to increase drug potency, so that drugs will work at lower 

doses.  Further, modifications are made to ensure the body will not eliminate the drug before it 

has a chance to produce a beneficial effect. However, we do not always know which 

modifications will be the most important to focus on. My research goal was to build a computer 

mathematical model that could help simulate and predict how changing characteristics of drugs 

will improve its dose. This model can help guide decision making in terms of which properties 

should be prioritized and may help improve efficiency in the drug discovery and development 

process.  
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Chapter 1: General Introduction 

 

Successful drug discovery is often a long and arduous process. Modern drug discovery involves 

screening chemical libraries to identify compounds with promising properties, followed by 

making chemical modifications to these chemical starting points, or ‘hits’ to make them more 

‘drug like’ [16, 37]. For a compound to be a good drug, it must be able to reach and interact with 

its target in vivo for a reasonable amount of time, and at a reasonable concentration in the body, 

reached with an acceptable dose [26]. Thus, it is of paramount importance to correctly identify 

properties that can be improved and optimize them in order to create a successful drug. 

 

1.1 Drug-Like Properties 

While initial screening involves looking for hits that will interact with a target of interest to 

produce a pharmacological effect, further chemical modifications are often geared toward giving 

the drug candidate acceptable pharmacokinetic and safety profiles, so it is appropriate for use in 

humans [35]. Drug-like properties are intrinsic properties of the molecules, and can be 

chemically altered to become more favourable [26]. Some properties of interest include the 

following: 

 

Structural properties: hydrogen bonding, molecular weight. 

Physiochemical properties: solubility, chemical stability, permeability, lipophilicity 

 Biochemical properties: protein and tissue binding, metabolism, drug potency 

Pharmacokinetic (PK) and toxicity: clearance, half-life, drug-drug interaction potential 
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The optimization process often involves balancing these properties to produce a clinical 

candidate that will be safe and efficacious [16]. Most of these properties can be altered by 

modifying the structure of a chemical hit, and oftentimes large batches of modifications are 

synthesized from the lead compound and comprehensively tested for each property in an effort to 

find compounds that have the best combination of all the properties [37]. 

 

1.1.1 Potency and Clearance 

Though several properties have been introduced above, the two properties of the greatest interest 

for this thesis are potency and clearance. The formal definitions for both terms are as follows: 

 

Potency: the concentration of drug necessary to produce an effect of a certain intensity. This is 

related to its minimal therapeutic concentration, and often expressed in terms of the 

concentration that gives the half-maximal response (EC50), or in the case of an inhibitor, the 

concentration that gives half-maximal inhibition (IC50).  

 

Clearance: the volume of blood that can be cleared of drug in a given time. This is often related 

to the drug’s elimination (metabolism, and excretion). The term is often abbreviated as CL. 

 

Going back to the earlier definition of what makes a good drug, it is clear that both of these 

properties have an important role. A drug must be able to interact with its biological targets at an 

acceptable concentration, which relates to its potency. A drug must also be able to stay in the 

body long enough to produce an effect, which is related to clearance. Of the two, chemical 

modifications that can enhance potency has been traditionally more focused on, with chemical 
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libraries often opting to include smaller molecules of more potent hits, and modifications to 

improve affinity of a molecule for its biological target [52, 12], and the multitude of techniques 

geared toward assessing potency as opposed to clearance [29]. On an intuitive level, this makes 

sense, as a highly potent drug would naturally require lower doses to achieve a satisfactory 

effect. However, improved clearance would also logically lower dose, since a drug that is cleared 

more slowly would have more time to interact with the target receptor, thus also requiring a 

smaller amount or at the very least less frequent dosing to achieve a desired effect. Thus far, 

there has not been a direct evaluation of which property has a more dramatic effect on the 

predicted efficacious dose. 

 

1.2 Issues with Traditional Methods of Drug Discovery 

As described above, methods of drug discovery and optimization makes use of screening 

chemical libraries for hits, followed by creating further chemical modifications to try and 

optimize compound properties. Taking all that in as a whole, we can quickly see that this is a 

time and resource consuming process. Historically, optimization has been a sequential process, 

with only one issue addressed at one time. In addition, affinity for the biological target was most 

commonly seen as the most important factor, and was often optimized at the expensive of other 

facets such as solubility, permeability, or metabolic stability [37]. This was of course inefficient, 

and often costly [30, 37]. In later years, high-throughput screening became more prevalent and 

became the major way of identifying leads for pharmaceutical companies [30].  Use of high 

throughput screening created a new issue of the need to be able to test a vast number of 

compounds. Libraries in the industry are often comprised of compounds representing millions of 

chemical variations [37]. There are theoretically infinite number of modifications that could be 
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made to hits identified from high throughput screens.  Therefore, screening entire compound 

collections is neither feasible nor meaningful [37]. Despite this, in the past it was thought that the 

screening of thousands to millions of compounds increases the probability of a hit, and thus large 

and unwieldy libraries were often generated with the hope to cover all possibilities, without 

consideration of the targets tested [24, 30, 37]. Newer research has found that this premise is 

often not the case, as the hit rate remained unsatisfactorily low despite the use of large libraries 

of compounds for screening [30, 25]. As well, there is the ever-present issue of false positives or 

false negatives that can mislead synthesis efforts [29]. In other words, brute testing of giant 

libraries, no matter how fast the technology, is still inefficient and resource intensive. 

 

Several attempts to combat this issue have emerged over the years. One change is a shift from 

activity-based screens, which often rely on chromophores or radioactive labels to measure the 

activity of a target, to affinity-based screens, which examines the direct binding of a molecule to 

a drug target without using labels that may create artifacts, as well as allowing for parallel 

processing of multiple variations of the target [3, 12]. Other examples include creation of more 

focused drug-like subsets based on structure-activity relationships [29, 37, 16], and using 

computer-based filtering tools to guide chemical modifications [47]. However, these methods 

just generate more information on compounds without providing any means to prioritize the 

importance of each property. 

 

One of the biggest reasons for failure of leads becoming successful drugs is arguably poor 

pharmacokinetics. As mentioned before, past thinking put focus mostly on affinity and binding 

to the molecular target.  However, Teague et al (2000) showed that many low-affinity leads have 



5 

 

led to successful drugs, often through optimization not just potency but also the pharmacokinetic 

profile [52]. These include well known examples such as progesterone to mifepristone and 

histamine to cimetidine [52]. Furthermore, poor pharmacokinetics has been linked to discovery 

inefficiencies and failures during clinical trials [16, 33]. Failure in the late stage of discovery and 

development has led much more significant losses in terms of time and resources [16, 37]. Since 

1991, recognition of poor pharmacokinetics being a major cause of attrition has led to 

pharmacokinetic assessment being implemented much earlier in the discovery and development 

pipeline, and has led to a dramatic decrease in this being a cause of attrition [16, 33].  

 

Poor pharmacokinetic profiles often result in much higher doses. Acetaminophen is an older drug 

with a poor PK profile, having a half-life of around 2 hours [20]. Thus, for effective treatment, 

typical dosing is around 325-500mg/pill, 2 doses every 4-6 hours [1]. This drug was developed 

before the importance of PK optimization was understood. Since then, most drug development 

processes incorporated optimization for PK parameters, and modern drugs typically have better 

profiles and lower doses [33]. For example, if we compare acetaminophen with rosuvastatin, a 

newer compound with a better PK profile and a half-life of 19 hours, the dosing regimen is 

markedly simpler, being 5-40mg/day, usually given as one dose per day [46, 14]. From these 

examples, we can see that drugs with better PK profiles lead to lower doses, which are generally 

easier to administer as they come in smaller or fewer pills. Furthermore, simpler and less 

frequent dosing regimens are typically associated with better adherence and compliance [50, 11]. 

Better compliance generally leads to better health outcomes, which would have both social and 

economic benefits.  

 



6 

 

An obvious conclusion from these examples, is that we need to optimize for both compound 

potency and PK in order to have a drug with desirable properties. Unfortunately, it is not always 

possible to optimize certain properties without compromising the others [52, 37]. Oftentimes, 

there is a focus on improving only drug potency, which can result in poor pharmacokinetic 

attributes such as absorption, distribution, metabolism, and/or elimination (ADME), preventing 

the candidate from progressing through clinical trials [37]. Furthermore, it is not always clear 

whether these properties would affect the final dose of drug candidates in a linear fashion, and 

there is a lack of direct comparisons of the contributions of each property to determining final 

dose. Since optimization of chemical leads is complex process and can lead to large many 

iterations of chemical modification before a drug candidate can be identified, there is an 

argument to be made for a more rational approach of prioritizing optimization of certain 

compound properties over others. 

 

1.3 Pharmacokinetic-Pharmacodynamic (PK/PD) Modeling 

With the advent of advanced computing power, pharmacokinetic-pharmacodynamic (PK/PD) 

modelling and simulation has become an important tool in the drug discovery process. It 

involves using mathematical equations to represent a biological system and is able to account for 

its dynamic nature [57]. These mathematical models allow for the quantitative assessment of 

relationships between drug exposure to effect and can account for the interplay between drug 

properties and biological systems in order to gain better insight into these relationships [57].   

Further, these models offer the ability to predict drug concentration-time, drug effect-time, and 

drug concentration-effect relationships based on dose, drug specific parameters, and biological 
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parameters [15]. As such, PK/PD models can be used to simulate and predict the influence of 

changes on drug dose when one or more drug properties are altered.   

 

These advantages have made PK/PD modeling an indispensable aid in preclinical drug 

development in terms of understanding efficacy, downstream decision making, and translation of 

pre-clinical data to the clinic [57]. Thus, it is no surprise that a majority of pharmaceutical 

companies are now incorporating such PK/PD analysis in their drug discovery and development 

process, with many planning to expend more resources in this direction [48].  

 

1.3.1 Direct-Effect Model 

Direct effect models are a type of PK/PD model that can be used to relate drug concentration in 

the body to its biological effect. In this type of model, there is an assumption that rapid 

equilibrium is achieved between the drug concentration in the blood and relevant target site in 

the body. In this situation, a change in concentration in the blood results in a simultaneous and 

direct pharmacodynamic response [57].  

 

A commonly used direct effect model is the Emax model, described by the Hill Equation: 

 

! =
!#$% ×	()

!(*+
) + ()

	

 

where Emax is the maximum effect, EC50 is the concentration producing the half-maximal effect, 

C is the concentration of drug, and n is the Hill coefficient [32]. Another form of the equation 
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exists when the drug in question is an inhibitor and wishes to represent effect as inhibition 

instead. The equation is as follows: 

- = 100 −
-#$% ×	()

-(*+
) + ()

 

 

In this case, I represent inhibitory effect, Imax is the maximum inhibitory effect, and IC50 is the 

concentration which produces 50% inhibitory effect. When there is no inhibition, the normal 

effect is at 100%, which decreases as concentration of inhibitor increases.  

 

The Emax or Imax model provides a simple yet effective framework for assessing the impact of not 

only changes in concentration on effect, but also changes in potency (as measured by EC50 or 

IC50) on effect. Since potency is one of the properties of interest to us, we will be using this 

framework to explore how alterations in potency can affect predicted dose.  

 

1.3.2 Hepatic Clearance Model 

It is well established that the liver is the major source of metabolism and clearance for drugs. 

This has led to the proposal of various hepatic clearance models that provide a mathematical 

framework to understand how the liver processes drug. One example is the ‘parallel tube’ model, 

which describes the liver as a series of parallel tubes that represent sinusoids through which drug 

travels. Enzymes are distributed evenly in each cross section of the sinusoid, and drug levels 

decrease as drug moves along the tube [39, 56]. Another is the ‘Dispersion’ model, in which 

drug movement in the liver can be described as being analogous to non-ideal flow in a packed-

bed chemical reactor [57].  Perhaps the most well-known hepatic clearance model, however, is 
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the well-stirred model, which we will be using as a framework to describe hepatic clearance in 

our studies [22, 45, 56]. 

 

The well-stirred model is relatively simple and can be represented by Figure 1. This model 

assumes that the liver is a single tank in which the inputted drug is well-mixed. It also assumes 

that only free or unbound drug (fu) is available for elimination. Drug is shuttled between the liver 

and rest of the body reservoir by the hepatic blood flow, termed Q. Each pass through the liver 

removes a certain amount of drug. The ratio of the amount of drug removed and the amount of 

drug inputted is termed the extraction ratio, represented as E.  Extraction ratio is determined by 

several factors, including hepatic blood flow, the intrinsic clearance (CLint), and the level of free 

drug, and can also be expressed in those terms (Figure 1). 

 

 

Figure 1: Schematic and equations representing the well-stirred model, a simple physiological model of hepatic 
clearance 
 

While hepatic blood flow (Q) is a physiological parameter and is not readily optimized, it is 

possible to chemically modify hits to improve intrinsic clearance, and/or improve free drug 

(1234$567 = 8! 

 

! = 	
(6) − (9:5

(6)
 

 

! = 	
;: ∗ (16)5

;: ∗ (16)5 + 8
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concentrations.  An example of improving intrinsic clearance in literature is the described 

chemical modification of the Bruton’s tyrosine kinase inhibitor GDC-0834, which was naturally 

highly metabolized in human studies, to be more metabolically stable (thus having a lower 

intrinsic clearance) [61].   In a second example, Fauber et al (2014) reported reducing 

lipophilicity of tertiary sulfonamide retinoic acid receptor-related orphan receptor gamma 

(RORc) inverse agonists in order to improve free drug concentrations and potency [19].  It is of 

interest for us to explore how improvements in intrinsic clearance and free drug concentrations 

may impact predicted efficacious dose, using the well-stirred model as a framework. 

 

1.4 Objective 

We have identified several problems with traditional drug discovery methods in terms of 

inefficient compound optimization, and potential attrition due to poor drug properties. We 

proposed that PK/PD models may be used to provide a more rational approach to compound 

selection and prioritization of drug properties to optimize in the drug discovery phase, 

specifically in the lead optimization/candidate selection phase of the drug discovery and 

development pipline [37]. The overarching goal of this thesis is to build PK/PD models that can 

predict changes in predicted effective dose when certain drug properties are changed for a given 

pharmacodynamic target. We hypothesize that we can use PK/PD models to prioritize drug 

properties and guide decisions in the drug optimization process.  

 

To test our hypothesis, we built models to explore two pharmacodynamic endpoints. The first 

pharmacodynamics endpoint was to maintain >50% inhibition of a biological target for 24 hours 
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following daily dosing.  The second pharmacodynamic endpoint was to target a specific 

efficacious  area under the curve (AUC). 

 

We constructed two different PK/PD models. Our first PK/PD model aimed to simply examine 

the effect of improvements in drug potency and clearance on the predicted efficacious dose,  Our 

second more complex PK/PD model aimed to study clearance more in depth, and specifically 

examined how improvements in intrinsic CL and unbound drug levels effects the predicted 

efficacious dose.   
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Chapter 2: Methods 

 

Construction of pharmacokinetic/pharmacodynamic models and subsequent simulations were 

performed using SAAM II (The Episilon Group, Charlottesville, VA).  

 

Area under the concentration time curve (AUC) and AUC of the effect curve were calculated 

using the trapezoid rule [21]. 

 

2.1 Study 1: Influence of Changes in Drug Candidate Potency and Clearance on 

Predicted Dose 

We aimed to study the effect of altering potency or clearance on the predicted dose required to 

maintain >50% inhibition at steady state for 24 hours, with once daily dosing. An improvement 

in potency is defined as a decrease in IC50, whereas improvement in clearance is defined as a 

decrease in total clearance (CL). 

 

2.1.1  Drug Starting Properties 

Our simulation starting point is a hypothetical drug compound with properties listed in Table 1. 

Our compound is an inhibitor with non-ideal properties, being high clearance and non-ideal 

potency. The predicted dose to achieve our PD target for this drug is 2910 mg.  
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Table 1: Starting properties of hypothetical test compound for study 1 
Property Value 
Apparent Vd 5 L/kg 
Starting Clearance 16 mL/min/kg 
Starting Potency IC50 = 250 nM 
ka 1 hr-1 

Values were chosen to create a starting compound with non-ideal properties (high clearance, low potency). Apparent 
Vd and ka were arbitrarily selected.  
 
 

For this hypothetical compound, we assume that the compound is metabolized by the liver such 

that hepatic clearance approximates total clearance, and as such the maximal clearance is capped 

at 20 mL/min/kg, which is the liver blood flow in humans.  

 

2.1.2 Model 1 

The first model that we used is represented by Figure 2 and described by equations 1 to 3.  This 

is a one-compartment, direct effect model with oral dosing. X0 represents the amount of drug in 

the oral compartment. We assume that drug absorption follows first order kinetics, and that 

elimination occurs only in the central compartment. Thus, the change in drug amount in the oral 

compartment is described by the following differential equation: 

 

=>?
=5

= −@$A+  Equation 1 

 

Where ka represents the first order oral absorption rate constant, which was arbitrarily assigned a 

value of 1 h-1.  
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Figure 2: Schematic of a one-compartment, direct-effect model. X0 and X1 represent the amount of compound in 
the oral and central compartment and PD represents the pharmacodynamics effect. 
 

After drug enters the central compartment, it is represented as X1, and is subject to elimination at 

a rate dependent on the drug’s clearance. We assume elimination from this compartment is first-

order, and that the first order elimination constant, ke, can be described as: 

 

@3 = 	(1 BC  Equation 2 

 

Where CL represents clearance (L/hr), and V represents the apparent volume of distribution (L), 

defined as Vd/F, where F refers to bioavailability after oral dosing. Thus, the change in drug 

amount in the central compartment (X1) can be described by the following differential equation: 

 

=>D
=5

= @$A+ − EF ∗ G
>D
H
I Equation 3 
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Where @$A+ describes the rate that the drug enters the central compartment via oral absorption, 

and EF ∗ G>D
H
I represents the rate of elimination of the drug from the central compartment.  

 

PD in the figure represents the pharmacodynamic effect of our drug. It is directly related to the 

drug concentration in the central compartment (X1/V) via the Hill equation. Since we are using 

an inhibitor, we used an Inhibitory Imax model where Imax is the maximal inhibition (%) and IC50 

is the concentration required for 50% inhibition.  The change in PD effect with time is described 

by the following differential equation: 

 

=JK

=5
= 100 −

LMNO×G
PD
Q
I
R

SETU
V WG

PD
Q
I
R  Equation 4 

 

Where n is the Hill coefficient, which was assigned a value of 1 for our simulations.  

 

2.1.3 Testing Change in Potency and Clearance on Predicted Dose 

Model 1 was used to perform simulations in order to identify the dose that could achieve our PD 

target of maintaining >50% inhibition for 24 hours at steady-state following once daily dosing 

for the hypothetical drug describe in Table 1.   

 

Additional simulations were performed in order to identify doses that achieve the defined PD 

target when potency was increased (250, 200, 150, 100, 75, 50, 25, 10, 4.3, 2.5, 1, 0.25 nM) or 

clearance was reduced (20, 18, 16, 14, 10, 6, 2 ml/min/kg).   Both potency and clearance were 



16 

 

adjusted in order to achieve a predicted target dose of 50 mg in a 70 kg human (about 0.71 

mg/kg).  

 

2.2 Study 2: Effect of Altering Unbound Drug Concentrations and Hepatic Intrinsic 

Clearance on Dose 

Our second study aimed to examine the effect of altering levels of free/unbound drug or hepatic 

intrinsic clearance on the predicted active dose. The PD endpoint of this study was to maintain 

>50% inhibition at steady state for 24 hours, with once a day dosing as described previously. An 

improvement in hepatic intrinsic clearance is defined as a decrease in CLint, and an improvement 

in unbound fraction is defined as an increase in fu.  

 

2.2.1 Drug Starting Properties  

Additional simulations were performed with a hypothetical drug with properties listed in Table 2.  

The difference in this study is that we assumed that the hypothetical drug had an unbound 

fraction of 0.05 making the total IC50 of 250 nM correspond to an unbound IC50 of 12.5 nM. 

 

Table 2: Starting properties of hypothetical test compound for study 2 
Property Value 
Apparent Volume of Distribution (V/f) 5 L/kg 
ka 1 hr-1 
Starting Fraction unbound (fu) 5% 
Starting Potency (Total Drug) IC50 = 250 nM 
Unbound IC50 12.5 nM 
Starting Extraction Ratio (E) 0.75 
Starting Intrinsic Clearance 1242 ml/min/kg 

Values were chosen to create a starting compound with non-ideal properties (high extraction ratio, low unbound 
fraction, and low potency). Intrinsic clearance of 1242 ml/min/kg was back calculated from E=0.75, which was set 
to be the threshold for a high extraction ratio. Unbound IC50 of 12.5 nM was calculated from the starting unbound 
fraction multiplied by the starting IC50 based on total drug (5% x 250nM). Apparent Vd and ka were arbitrarily 
selected.  
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2.2.2 Model 2 

A second model (Model 2) was constructed that allowed for investigation of changes in 

free/unbound drug concentrations and hepatic intrinsic clearance.  Briefly, the second model 

expanded on Model 1 (Figure 2) by replacing the CL term in Equation 3 with the following 

equation: 

 

EF = 8
XY∗Z[\R]

XY∗Z[\R]W^
  Equation 5 

 

Where Q refers to the hepatic blood flow (20.7 ml/min/kg), CLint refers to hepatic intrinsic 

clearance (L/hr), and fu refers to the unbound fraction of the drug.  

 

2.2.3 Alterations to Intrinsic Clearance 

Simulations were performed over a range of hepatic intrinsic clearances (CLint) (1242, 621, 414, 

310.5, 207, 138, 103.5, 69, 34.5 ml/min/kg) in order to identify doses that achieved the stated PD 

target.   

 

We began with a CLint of 1242 ml/min/kg because this was the CLint associated with a 

hypothetical drug with a high extraction ratio (E = 0.75) and a free fraction (fu) of 0.05.  Total 

clearances were back-calculated from each associated intrinsic clearance using Equation 5. 
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2.2.4 Alterations to Free Concentrations 

Simulations were performed in order to assess the influence of changes in free/unbound drug 

concentrations on the dose required to achieve the stated PD target (i.e. maintain >50% inhibition 

at steady state for 24 hours, with once a day dosing).   Specifically, unbound fractions of 5%, 

10%, and 20% were used in simulations.  Table 2 shows, the corresponding CL (for a high, low 

and moderate CL compound) and IC50 total associated with unbound fractions (Table 3). 

 

In Table 3, a high clearance was defined as a drug with an initial extraction ratio of 0.75, a 

moderate clearance was defined as having an initial extraction ratio of 0.5, and low clearance 

was defined as having an initial extraction ratio of 0.25. Intrinsic clearances for each category 

was calculated using the initial conditions (fu of 5%, Q of 20.7 ml/min/kg) and the extraction 

ratio equation (Figure 1). The values were as follows: CLint = 1242 ml/min/kg for E=0.75, CLint 

= 414 ml/min/kg for E = 0.50, and CLint = 138 ml/min/kg for E = 0.25. Total clearances were 

back-calculated using Equation 5, using the respective CLint for each extraction ratio category, 

and the fu being tested, and are shown in Table 3. The total IC50’s in Table 3 reflect how total 

IC50 would change with changed in fu in order to maintain an unbound IC50 of 12.5 nM.  
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Table 3: Total clearance and IC50 at various levels of free/unbound drug 
High Clearance (Initial E=0.75) Moderate Clearance (Initial E=0.5) Low Clearance (Initial E=0.25) 

 
fu 

Total 
Clearance 

(ml/min/kg) 

IC50 of 
total drug 

(nM) 

 
fu 

Total 
Clearance 

(ml/min/kg) 

IC50 of 
total drug 

(nM) 

 
fu 

Total 
Clearance 

(ml/min/kg) 

IC50 of 
total drug 

(nM) 
5% 15.5 250 5% 10.4 250 5% 5.2 250 

10% 17.7 125 10% 13.8 125 10% 8.3 125 

20% 19.1 62.5 20% 16.6 62.5 20% 11.8 62.5 

Starting fu was set at 5%, and improvement considered an increase in fu. Total clearances were back-calculated using an initial CLint = 1242 ml/min/kg for 
E=0.75, CLint = 414 ml/min/kg for E = 0.50, and CLint = 138 ml/min/kg for E = 0.25. IC50’s reflect how total IC50 changes in accordance to changes in fu.  
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2.3 Study 3: Effect of Potency and Clearance on Dose When PD Target is Efficacious 

Exposure (AUC) 

A third simulation study was performed in a similar manner to study 1 with the exception that 

the PD target was modified.  Rather than maintaining >50% inhibition for 24 hours at steady-

state following once-daily dosing, the new PD target was to maintain a certain efficacious AUC. 

For changes in clearance, we targeted the AUC of the concentration-time curve, which was 

arbitrarily set to 8 mg*h/L. For changes in potency, we targeted the AUC of the effect-time 

curve, which was arbitrarily set as 1200 %*h. The drug starting properties followed that of Table 

1, and the model was based on the Model 1, represented by equations 1 to 3. As before, potency 

and clearance are altered independently and predicted active doses associated with these 

alterations are identified. 
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Chapter 3: Results 

 

3.1 Results Where Pharmacodynamic Target is to Maintain >50% Inhibition of the 

Biological Target 

The following describes results where our PD target was maintenance of > 50% inhibition. The 

properties tested include potency, total clearance, intrinsic clearance, and unbound fraction. 

 

3.1.1 Influence of Potency and Clearance on Predicted Efficacious Dose in Study 1 

PK/PD simulations were performed using Model 1 to determine the predicted efficacious dose 

required to maintain >50% inhibition for 24 hours with once daily dosing for our hypothetical 

starting compound with the following properties: IC50 of 250 nM, clearance of 16 ml/min/kg, and 

apparent Vd of 5L/kg.  The predicted efficacious dose was for the hypothetical starting 

compound was determined to be 2910 mg in a 70 kg human.  The concentration versus time (PK 

profile) and effect versus time (PD profile) graphs for the hypothetical starting compound at this 

dose is shown in Figure 3. 

A B  

Figure 3: Concentration vs time and effect vs time profiles of hypothetical drug. Graphs show the simulation 

output of our starting compound, given orally at a dose that inhibits biological target for >50% at steady state for 24 

hours following once daily dosing.  Starting conditions for the hypothetical starting compound has the following 

properties: IC50 = 250 nM, CL = 16 ml/min/kg, apparent Vd = 5 L/kg in a 70 kg patient. A: Log(concentration) 

versus time curve. B: Effect (% inhibition) vs time curve.  
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3.1.2 Improvements in Potency 

PK/PD simulations were performed using Model 1 in order to identify predicted efficacious 

doses associated with improvements in compound potency.  Our goal was to reduce the dose of 

our hypothetical compound from 2910 mg to 50 mg in a 70 kg human. We tested a range of 

IC50’s from a starting value of 250 nM to 0.25 nM and identified an IC50 of 4.3 nM that was 

required to have a 50 mg dose achieve the PD target.   

 

The PK and PD profiles of the initial and final conditions are shown in Figure 4.  As shown in 

Figure 4A, the PK profile for the post-optimized compound (50 mg) retains the same shape as 

the pre-optimized compound (2910 mg) but is proportionally lower.  The PD profile for the pre 

and post optimization overlap (Figure 4B). 

 

The relationship between predicted efficacious dose over a range of potencies is summarized in 

Figure 5.  Overall, improvements in potency resulted in linear and proportional reductions in 

predicted efficacious doses (i.e. a 2x improvement in potency resulted in a 2x reduction in dose).    

 

 

 



23 

 

A  B  

Figure 4: Concentration vs time and effect vs time profiles of hypothetical drugs at the starting dose of 2910 
mg and the target dose of 50 mg after changes in potency. Graphs show the simulation output of our pre and post 

optimized compound given orally at a dose that inhibits biological target for >50% for 24 hours when given once 

daily. Starting conditions for the hypothetical compound has the following properties: IC50 = 250 nM, CL=16 

ml/min/kg and Vd = 5 L/kg in a 70kg patient. Final compound properties: IC50 = 4.3 nM, CL=16 ml/min/kg and 

apparent Vd = 5 L/kg. A: Log(concentration) versus time curve. B: Effect (% inhibition) vs time curve.  

 

 

 

Figure 5: Effect of improvements in potency on predicted active dose with PD target being >50% inhibition of 
target for 24 hours with once daily dosing. The start represents the starting conditions for a hypothetical starting 

compound with the following properties: IC50=250 nM, CL=16 ml/min/kg, and apparent Vd=5 L/kg in a 70kg 

patient.  The target represents conditions where the dose has been improved to 50 mg in a 70 kg patient.  
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3.1.3 Improvements in Clearance 

Simulations were performed using Model 1 in order to identify predicted efficacious doses 

associated with improvements in compound clearance. As before, our goal was to reduce the 

dose of our hypothetical compound from 2910 mg to 50 mg in a 70 kg human.  We tested a 

range of clearances from a starting value of 16 ml/min/kg to 2 ml/min/kg and identified a 

clearance of 3.1 mL/min/kg that was required to have a 50 mg dose achieve the PD target.   

 

The PK and PD profiles of the initial and final conditions are shown in Figure 6.  As shown in 

Figure 6A, the PK profile for the post-optimized compound (50 mg) has a much flatter profile 

compared to the pre-optimized compound (2910 mg) due to the reduction in clearance.  

Similarly, the PD profile for the post optimized compound is much more shallow. (Figure 6B). 

 

The relationship between predicted efficacious dose over a range of clearances is summarized in 

Figure 7.  Overall, improvements in clearance resulted in non-linear reductions in predicted 

efficacious dose, with the change being especially dramatic at higher clearances. 
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A B  

Figure 6: Concentration vs time and effect vs time profiles of hypothetical drugs at the starting dose of 2910 
mg and the target dose of 50 mg after changes in clearance. Graphs show the simulation output of our initial and 

final compounds given orally at a dose that inhibits biological target for >50% for 24 hours when given once daily. 

Starting conditions for the compound has the following properties: IC50=250 nM, CL=16 ml/min/kg, and apparent 

Vd=5L/kg in a 70kg patient. Final compound properties: IC50=250 nM, CL=3.1ml/min/kg. A: Log(concentration) 

versus time curves. B: Effect (% inhibition) vs time curves.  

 

 

Figure 7: Effect of improvements in clearance on predicted active dose with PD target being >50% inhibition 
of target for 24 hours with once daily dosing. The start represents the starting conditions for a hypothetical 

compound with the following properties: IC50=250 nM, CL=16 ml/min/kg, and apparent Vd=5 L/kg in a 70 kg 
patient.  The target represents conditions where the dose has been improved to 50 mg in a 70 kg patient.  

 

Overall, when comparing the effect of improvements in clearance versus improvements of 

potency on predicted efficacious dose, our simulations suggest that more gains (decrease to dose) 

can be made by improving clearance rather than potency. 
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3.1.4 Influence of Changes in Intrinsic Clearance and Unbound Drug on Predicted 

Efficacious Dose in Study 2 

As improvements in clearance provided greater improvements in predicted efficacious dose, we 

wished to explore the effect of alterations in intrinsic clearance and free drug levels, two factors 

that influence clearance, on predicted efficacious dose. The next set of simulations used Model 2 

to explore the effect of these changes on dose.  In these simulations, the properties of the 

hypothetical starting compound are shown in Table 2 of the Methods section. As with the 

previous section, our pharmacodynamic target remains inhibition of >50% of the biological 

target for 24 hours with once daily dosing. 

 

3.1.4.1 Improvements in Intrinsic Clearance 

Figure 8 and Table 4 show changes in clearance and predicted efficacious dose that occur with 

improvements in intrinsic clearance.  A reduction in intrinsic clearance results in a reduction of 

total clearance (Table 4). As intrinsic clearance is related to total clearance via the well-stirred 

model, the relationship between changes in intrinsic clearance and total CL is nonlinear in 

nature.  The reductions in intrinsic clearance results in slight non-linear improvements in 

predicted efficacious dose (Figure 8A).  As observed in the previous section, the relationship 

between CL (corresponding to the changes in intrinsic clearance) and predicted efficacious dose 

is very non-linear in nature with greater than proportional reductions in predicted efficacious 

dose with reductions in clearance (Figure 8B). 
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A:  B:   

Figure 8: Characterization of the effect of changes in intrinsic clearance on predicted active dose with PD 
target being >50% inhibition of target for 24 hours with once daily dosing.  Baseline hypothetical compound 

assumes 5% unbound drug and an IC50 of 12.5 nM free/unbound drug (calculated using 5% free and an IC50 of 250 

nM total drug) and apparent Vd=5 L/kg in a 70kg patient. A) effect of changes in intrinsic clearance on dose. B) 

effect of corresponding total clearances on dose. 

 

 

Table 4: Changes in CLint and its resultant changes in total clearance and dose required to 
inhibit biological target for >50% for 24 hours following once a day dosing. 
CLint (ml/min/kg) Dose (mg) Total Clearance 

(ml/min/kg) 
1242 2550 15.5 

621 1073 12.4 

414 594 10.4 

311 385 8.9 

207 209 6.9 

138 117 5.2 

104 79 4.1 

69 47 3.0 

35 21 1.6 

 

3.1.4.2 Improvements in Free Drug Concentrations 

Improvements in free concentrations (i.e, increase in unbound fraction (fu) has different effects 

on dose depending on whether the hypothetical starting compound is a high, moderate, or low 

clearance compound. For a high clearance compound, improvements in fu resulted in decreases 

in dose (Figure 9A). However, for both moderate and low clearance compounds, improvements 

in fu resulted in increases in dose (Figure 9B and 9C).  



28 

 

A:  

B:  

C:   

Figure 9: Characterization of the effect of changes in free-drug levels on predicted active dose with PD target 
being >50% inhibition of target for 24 hours with once daily dosing.  Baseline hypothetical compound assumes 

5% unbound drug and an IC50 of 12.5 nM free/unbound drug (calculated using 5% free and an IC50 of 250 nM total 

drug), and apparent Vd= 5 L/kg in a 70 kg patient. A). Effect of changes in free concentrations (fu) on predicted drug 

dose for a high clearance drug. B) Effect of changes in free concentrations (fu) on predicted drug dose for a moderate 
clearance drug C) Effect of changes in free concentrations (fu) on predicted drug dose for a low clearance drug Total 

IC50 was adjusted for each change in fu to maintain IC50 of 12.5 nM free/unbound drug.  
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As noted previously, the effect of an alteration in free concentrations is more complex in that it 

not only changes clearance but also alters total IC50. Specifically, as fu increases, the overall 

clearance also increases, and we would anticipate an increase in predicted dose. However, 

increased free concentrations would also result in more drug interacting with biological target 

receptors leading to lower total IC50 target concentrations. Lower IC50 target concentrations, 

would result in an anticipated decrease in predicted efficacious dose.  The final predicted 

efficacious dose is dependent on whether the change in CL or the change in total IC50 dominates. 

 

These results indicate that for high clearance compounds, increases in fu do not affect clearance 

greatly, thus the effect of changes in total IC50 dominates resulting in a decrease in predicted 

dose. However, when the drug is a low or moderate clearance compound, an increase in fu’s 

effect on clearance is more marked, and thus the predicted dose shows modest increases.  

 

Overall, these studies suggest that in most cases, the effect of clearance is the dominant factor in 

determining a predicted efficacious dose. While both potency and clearance play a role in a 

predicted active dose, the effect of improving clearance in general has a larger effect on reducing 

the predicted efficacious dose.  

 

3.2 Results Where Pharmacodynamic Target is an Efficacious AUC 

The following describes results where our PD target was maintenance of an efficacious area 

under the curve (AUC). The properties tested include only potency and total body  clearance.  
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3.2.1 Effect of Improvements in Potency and Clearance on Dose 

PK/PD simulations were performed using Model 1 in order to identify predicted efficacious 

doses associated with improvements in both compound potency and clearance.  As described in 

section 1, our goal was to reduce the dose of our hypothetical compound (described in Table 1 of 

Methods section) from 2910 mg to 50 mg in a 70 kg human.  The difference in this set of 

simulations is that rather than having a pharmacodynamic target of maintaining >50% inhibition 

of the biological target for 24 hours with once daily dosing, we now have a pharmacodynamic 

target of an efficacious AUC 

 

Figure 10 summarizes the change in predicted active dose associated with improvement in both 

potency and clearance.  In both cases, improvements in potency or clearance resulted in 

reasonably linear changes in the predicted active dose. Furthermore, similarly to data from our 

first study, changes in potency also caused proportional changes in dose (i.e. 2x improvement in 

potency resulted in a 2x decrease in dose) (Figure 10A). The exact values from each simulation 

are also summarized in Table 5 and Table 6. 

A B  

Figure 10: Effect of improvements in potency and clearance on predicted active dose with PD target being an 
efficacious AUC. The start represents the starting conditions for a hypothetical compound with the following 

properties: IC50=250 nM, CL=16 ml/min/kg, and apparent Vd= 5 L/kg in a 70 kg patient.  The target represents 

conditions where the dose has been improved to 50 mg in a 70 kg patient. A:  graph shows relationship of potency 
versus dose. B: graph shows the relationship of clearance versus dose.  
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Table 5: Changes in dose in response to changes in potency with PD target being an AUC 
IC50 (nM) Dose (mg) 

0.25 0.6 

1 2.4 

2.5 5.9 

10 23.8 

25 59.4 

50 118.8 

75 178.2 

100 237.6 

150 356.5 

200 475.3 

250 594.1 

 
 
Table 6: Changes in dose in response to changes in clearance with PD target being an AUC 
Clearance (ml/min/kg) Dose (mg) 

2 22.6 

3 50.0 

6 152.5 

10 314.6 

14 474.1 

16 551.6 

18 628.2 

20 704.3 

 

Our simulations suggest that when efficacious AUC is our PD target, there is no advantage to 

improving clearance over potency in the optimization process.  
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Chapter 4: Discussion and Conclusion 

 

In this thesis, we have demonstrated the ability to use quantitative pharmacokinetic-

pharmacodynamic models for the purpose of guiding drug optimization. While it has been long 

understood that various drug properties determine the active or efficacious dose of a drug, 

interrelationships between these drug properties and how they quantitatively determine the 

efficacious dose are rarely studied using a dynamic integrated system. Often times, optimization 

of chemical matter involves improvements of compound properties independently of one 

another. Considering the multitude of factors that can affect dose, it can be a daunting process to 

iteratively optimize each one, and wasteful to simply do large scale testing for all parameters 

[37].  Our work with PK/PD models illustrates how changes in compound properties and their 

impact on predicted efficacious dose can be evaluated through computer simulation.  In this way, 

the relative importance of each property can be prioritized allowing compound optimization to 

be performed in a more rational manner. 

 

It is important to note that our drug optimization goal was to reduce the dose needed to achieve a 

certain pharmacodynamic endpoint with daily dosing. One reason for this is that one cannot 

feasibly give too large of a dose to a patient, as it can lead to discomfort for the patient. 

Furthermore, it has been shown that simpler dosing regimens in which medication was given less 

frequently were associated with better adherence and compliance, which could lead to lower 

health care costs and better outcomes [50, 11]. Thus, our overarching goal in these studies was to 

use our PK/PD model to identify the most efficient way to modify drug properties in order to 

lower the active dose of our hypothetical compound to a reasonable once daily dose (i.e. 50 mg).  
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4.1 Potency and Clearance  

Our first studies established the important role clearance plays in lowering the drug dose when 

the PD endpoint is maintenance of >50% inhibition of a biological target for 24 hours following 

daily dosing which involved maintenance of an IC50 concentration.  Many common therapeutics, 

such as antibiotics that work using time-dependent killing (penicillins, cephalosporins), work in 

this fashion where minimum inhibitory concentrations have to be maintained for certain periods 

of time [13, 53].  It is important to note that our findings can be applied to any drug where 

specific target concentration or percent inhibition need to be maintained for activity.  

Maintenance of 50% inhibition was chosen for simplicity’s sake, since we are also using the IC50 

as a measure of potency. 

 

The simulations demonstrated that improvements in potency reduces dose in a 

linear/proportional fashion, providing clearance does not change. Potency is one of the most 

commonly modified properties [37], and it is intuitive to think that improving potency is the 

most important drug property for reduction of dose. In fact, early chemical hits often have 

terrible potency, and early hit optimization is often focused on bringing the potency into an 

acceptable, if not yet ideal, range to create a lead for further testing [37].  However, even in the 

late optimization phase, the effect of clearance, while acknowledged as important, is often not 

given the weight that it deserves. For example, studies that point out the importance of 

addressing clearance in apparent dose have suggested that the unfavourable aspects of a high 

clearance compound (increase in active dose) can be offset by improving potency [9].  Our data 

have shown that this is not entirely the case, since small changes in clearance can lead to large 

changes in predicted dose, especially for high-clearance compounds. Furthermore, the effect of 
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changes in clearance on dose is much more dramatic than that of potency.  This suggests that 

improved potency would likely be unable to compensate for an unacceptably high clearance 

when it comes to achieving an acceptable dose. This finding is of note since it suggests that one 

should consider prioritizing clearance as a parameter to optimize rather than potency as there are 

bigger gains in the reduction of the active dose.  

 

4.2 Intrinsic Clearance 

Hepatic intrinsic clearance (Clint) estimates for compounds are typically obtained from metabolic 

stability studies using microsomes or hepatocytes.  Intrinsic clearance is defined as the ability of 

the liver to clear drug in the absence of blow flow limitations and binding to cells or proteins in 

the blood.  In our Model 2, we related Clint to hepatic clearance using the well-stirred model [22, 

45, 55].  Our assumption is that our hypothetical compounds are metabolized primarily by liver 

such that hepatic clearance approximates total clearance.  The relationship between changes in 

intrinsic clearance and total clearance is not linear, but rather described by the equation 

(Equation 5 from methods):  

 

!" = $ %& ∗ ()*+,
%& ∗ ()*+, + $

 

 

Thus, reductions in intrinsic clearance does not correspond to proportional changes in total 

clearance. For example, if we half the intrinsic clearance, as demonstrated by the reduction in 

CLint from 1242 ml/min/kg to 621 m/min/kg, we would see total clearance drop from 15.5 

ml/min/kg to 12.4 ml/min/kg (Table 4). However, since total clearance has changed, we would 
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expect to see dramatic decreases in dose, as seen in our first set of studies with Model 1 (Figure 

9). As expected, decreases in intrinsic clearance resulted in reductions in dose (Figure 8A), and 

when we compare changes in dose to the total clearances that we back-calculated from the 

intrinsic clearances tested, we see that it follows the same non-linear relationship as seen in our 

PK/PD analysis using Model 1(Figure 7 and Figure 8B). We conclude then that reduction of a 

drug’s intrinsic clearance is an effective way to reduce dose due to the resulting decrease in total 

clearance. 

 

The importance of clearance in reducing active dose can be observed in drugs being used in 

clinical settings. One example is propranolol, a high clearance drug that is hepatically cleared. In 

patients with severe liver disease, their inherent ability to clear propranolol is lowered due to a 

lowering of propranolol’s intrinsic clearance. When given propranolol, these patients with liver 

disease exhibit a lower than normal total clearance, as well as longer half-life [5]. Propranolol is 

associated with recommended dose reductions in patients with liver disease where the hepatic 

intrinsic clearance of these drugs is reduced.    

 

4.3 Free/Unbound Concentrations 

The effects of increase in free/unbound drug concentration on dose is more complex. As free 

fraction increases, there is more drug available to interact with both the biological targets, as well 

as metabolic enzymes. Thus, changes in available free/unbound drug can change both drug 

clearance and in vivo drug potency (total IC50).  Increases in free drug concentrations results in a 

decrease in total IC50, which acts to decrease the efficacious dose.  In contrast, increased free 

drug concentrations (i.e. ↑ fu) results in an increase in total clearance, which acts to increase the 
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efficacious dose.  This effect of increases in free concentration (i.e. ↑ fu) is summarized in Figure 

11.  

 

 

Figure 11: Schematic describing the opposing effects of increasing free drug levels on drug potency, 
clearance, and active dose.  
 

Overall, the change in active dose due to increases in free drug concentrations is subject to the 

opposing effects of increasing potency and increasing clearance on the predicted efficacious 

dose.  

 

As mentioned previously, the well-stirred model is a model of hepatic clearance model that is 

described by the following equation (Equation 5 from methods):  

 

() = $. = 	$ %& ∗ ()*+,
%& ∗ ()*+, + $

 

 

According to the well-stirred model, hepatic drug clearance can be categories into three 

categories that are defined by the extraction ratio (E). Conventionally, high clearance drugs are 

defined as having E ³ 0.75, moderate clearance drugs have an E between 0.25 and 0.75, and a 
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low clearance drug has an E £ 0.25 [49, 55]. Changes in fu and Clint have different effects on 

high, moderate and low clearance drugs. 

 

For a high clearance compound, the CLint is much larger than Q, and thus the denominator of the 

equation would approximate fu * CLint.  In this case, the well-stirred model equation to simplify 

to the following:  

 

()~$  Equation 6 

 

For a low clearance compound, the Q is much larger than CLint, and thus the denominator of the 

well-stirred equation would roughly equal to Q. In this case, the well-stirred model equation 

would simplify to the following:  

 

()~%& ∗ ()*+,  Equation 7 

 

For moderate clearance compounds, the full equation for the well-stirred model applies 

(Equation 5). 

 

The described approximations of the well-stirred model for high, moderate and low clearance 

compounds aid in interpreting our results from our PK/PD simulations exploring the effect of 

increased free drug concentrations on predicted active does. As seen in Figure 9A, when free 

concentrations increase for a high clearance compound, the predicted dose decreases.  As hepatic 
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clearance approximates liver blood flow for a high clearance compound, the decrease in dose is 

driven by improved potency (i.e. lower total IC50) (Figure 11). 

 

When we examine similar PK/PD simulations with moderate and low clearance, we see increases 

in predicted dose with increases in free drug concentrations (↑ fu) (Figure 9B and 9C). For 

moderate and low clearance compounds, increase in fu results in increase in clearance (Equation 

5 and Equation 7).  Thus, for moderate and low clearance compounds, the increase in clearance 

(causes ↑ in dose) have a greater effect on dose than the increase of potency (causes ↓in dose). 

The effects described by our model are consistent with real life observations of real drugs where 

alterations of fu and free drug levels occur during certain disease state. Going back to our earlier 

example with propranolol (a high clearance drug), several studies have suggested that when 

levels of free drug are increased, there is a correlated increase in both drug effects and side 

effects [2, 58, 5].  These studies also indicate that the clearance of propranolol is not influenced 

by changes in free concentrations. [18, 58].  Dose reductions are recommended in this scenario, 

with one recommendation being 50% decrease in dose [2].  These results are consistent with 

what is predicted by our PK/PD analysis (see Figure 9A) which suggests that active doses 

decrease when free concentrations increase for a high clearance drug. 

 

If we examine drugs with moderate to low clearance, we see different patterns. In a systematic 

review by Uldemolins et al in 2011, several antimicrobials were found to be impacted by 

changes in protein binding in patients with severely low albumin levels (hypoalbuminemia) on 

account of disease, which resulted in increased free drug concentrations [54]. Higher than normal 

clearance levels were reported for several antimicrobials including fusidic acid [40, 53], 
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teicoplanin [38, 6, 51], ceftriaxone [36, 28], and ertapenem [7, 8, 4]. The changes in clearance of 

these drugs resulted in changes to dosing to in order to maintain steady-state levels that are still 

efficacious. These changes included more frequent dosing regimen, altering the route of 

administration to an intravenous infusion such as in the case of ceftriaxone [28], or 

recommendations of a higher loading dose, such as for teicoplanin [6, 38]. In general, we can 

surmise that increases in free drug levels are associated with dosing strategies aimed at 

delivering a greater amount of drug to patients. These results are consistent with what our model 

predicts: changes in free drug levels increase clearance, and thus requires a higher dose or a 

greater amount of drug administered over time to maintain the same effect despite theoretically 

increasing potency (lowering total IC50) (Figure 9B and 9C).  

 

4.4 Maintaining Efficacious Exposure (AUC) 

Our final set of PK/PD simulations were aimed at examining the effect of improving drug 

potency and clearance when the PD target is to maintain a specific efficacious AUC. Targeting a 

certain plasma concentration-time curve AUC is less common, but sometimes observed for drugs 

such as anti-cancer drugs. For example, axitinib is a vascular endothelial growth factor receptor 

tyrosine kinase inhibitor used in the treatment of renal cell carcinoma whose plasma exposure 

(AUC) has been shown to be correlated with clinical efficacy as well as adverse effects [27, 59]. 

Thus, we felt it important to examine the effects of clearance and potency changes on dose when 

the PD target is AUC. 

 

Our simulations found that when the pharmacodynamic target is to maintain an efficacious AUC, 

there is no advantage of optimizing clearance over potency, since dose decreased linearly with 
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improvements in both properties. This also demonstrates that the choice to prioritize one 

property over the other depends on the pharmacodynamic endpoint in question.  

 

4.5 Limitations and Future Directions 

One of the main limitations of this study is the limited number of scenarios covered.  For 

example, we explored only two PD targets, being: 1) maintaining >50% effect, and 2) 

maintaining an efficacious AUC.  However, there are merely two common PD targets, and may 

not apply to mechanisms of action for other drugs.  

 

Furthermore, we utilized only forms of the direct effect model as our mathematical framework. 

Other models exist models that can incorporate indirect or delayed effects [57].  It is possible the 

conclusions made here about how these drug properties affect dose may differ in drugs with 

differing mechanisms of action that were not mathematically characterized and explored. 

Exploring relationships between drug properties and their effect on efficacious doses for 

mechanisms of action, such as drugs that display delayed onset of effect, that we did not 

mathematically explore is a future direction to consider. 

 

Our studies only considered efficacy as the main goal. However, another aspect of developing 

good drugs is safety. While we did not explore this factor in detail during our studies, since it 

would add another layer of complexity beyond the scope of this thesis, our model may be used to 

examine this aspect as well. For example, we have shown that decreases in potency shifts the 

concentration-time profile downwards, which could have important implications when it comes 

to side effects that may occur at higher concentrations. As well, decreases in clearance creates a 
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flatter concentration-time profile, which could be important for drugs with narrow therapeutic 

windows.  Application of this sort of model when it comes to looking at candidate safety profiles 

is something to consider for further exploration and combining both safety and efficacy into our 

model will likely help further refine the results and guide optimization decisions.  

 

Finally, it is important to also acknowledge that these are only mathematical models, and as such 

may not completely describe a drug’s PK and PD in its entirety. The behavior of drugs in living 

systems are affected by many other factors, such as competition for binding, barriers to 

absorption, drug-drug or drug-food interactions, which were not covered in our simple model. 

Our main goal was to illustrate the value in utilizing PK/PD modeling and simulation as a tool to 

guide drug optimization decision making.   Our use of simple case studies was conducive in 

demonstrating its utility and serves as a starting point to build refined models that could more 

accurately represent real biological conditions in the future.  

 

4.6 Conclusion 

We have demonstrated the ability to use PK/PD modeling to guide drug optimization. We have 

found that the prioritization of drug properties during the optimization stage can be dependent on 

the specific pharmacodynamic endpoint targeted.  Overall, it seems that in most situations, 

prioritizing the optimization of clearance rather than potency can provide larger gains in 

reducing the predicted active dose. 
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