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Abstract

This thesis contains two chapters which reflect the two main viewpoints of modern
enumerative geometry.

In chapter II we develop a theory for stable maps to curves with divisible ramification.
For a fixed integer r > 0, we show that the condition of every ramification locus
being divisible by r is equivalent to the existence of an rth root of a canonical sec-
tion. We consider this condition in regards to both absolute and relative stable maps
and construct natural moduli spaces in these situations. We construct an analogue of
the Fantechi-Pandharipande branch morphism and when the domain curves are genus
zero we construct a virtual fundamental class. This theory is anticipated to have ap-
plications to r-spin Hurwitz theory. In particular it is expected to provide a proof of
the r-spin ELSV formula [SSZ’15, Conj. 1.4SSZ’15, Conj. 1.4] when used with virtual localisation.

In chapter IIII we further the study of the Donaldson-Thomas theory of the banana
threefolds which were recently discovered and studied in [Bryan’19Bryan’19]. These are smooth
proper Calabi-Yau threefolds which are fibred by Abelian surfaces such that the sin-
gular locus of a singular fibre is a non-normal toric curve known as a “banana con-
figuration”. In [Bryan’19Bryan’19] the Donaldson-Thomas partition function for the rank 3
sub-lattice generated by the banana configurations is calculated. In this chapter we
provide calculations with a view towards the rank 4 sub-lattice generated by a section
and the banana configurations. We relate the findings to the Pandharipande-Thomas
theory for a rational elliptic surface and present new Gopakumar-Vafa invariants for
the banana threefold.
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Lay Summary

In this thesis we use modern algebraic techniques to work on enumerative problems
that are motivated by mathematical physics. The objects being counted are complex
curves which are surfaces that don’t have edges (e.g. spheres, donuts, etc.) with some
extra structure. In string theory, these objects roughly translate to the path a vibrating
string would sweep out as it travels forward in time. We are interested in counting
the possible complex curves which can live within a given even-dimensional space. In
Chapter One, we develop the theory for a method of counting special sub-classes of
these complex curves. We use this theory to provide a generalisation of the classical
concept of Hurwitz numbers. In Chapter Two we provide an explicit computation of the
number are complex curves that can live within a space called the banana threefold. We
show that formulas obtained from these numbers have interesting properties related to
previous work.
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Introduction

There have been links between geometry and physics for millennia. Indeed, many
great discoveries from historical figures such as Newton, Maxwell and Einstein have
both arisen from and strengthened these links. However, some areas of geometry have
not always played significant roles in these links. Enumerative geometry was one of
these areas until relatively recently. The last thirty years have seen a rapid develop-
ment and expansion of the links between enumeration of geometric structures and
theoretical physics, particularly in the area of string theory.

This link can be intuitively described as follows: As a string moves around in space-
time, it sweeps out a Riemann surface called a “worldsheet”. In complex geometry,
this is one-dimensional, so we call it a curve. Counting curves, that live within a
spacetime, gives information about interactions and probabilities of changing states.

In studying curve enumeration, two main viewpoints have arisen:

Gromov-Witten Theory: Curves are external with a map to the space, and are
parameterised by the moduli space of stable maps,Mg(X,β).

Donaldson-Thomas Theory: Curves are internal with structure coming from an
embedding in the ambient space, and are parameterised by the Hilbert scheme
Hilbβ,1−g(X).

We should note that these viewpoints are not completely separate and they have been
proven equivalent in many cases. However, the techniques employed can vary greatly
between the two approaches. One key similarity between the two theories is that the
moduli spaces involved are not equidimensional, and a “virtual fundamental class” is
required for their definitions. This is an inherent technical issue which one must deal
with to use the theories.

This thesis reflects the separation of these two viewpoints by having each of the two
chapters devoted to one side. They are separate self-contained works, do not refer to
each other and have distinct notation.

Spin Structures and Map Enumeration

One link between theoretical physics and enumerative geometry was proposed by
Witten in 1991 during an investigation into two-dimensional quantum gravity. He con-
jectured that certain curve counts would satisfy the KdV integrable hierarchy. This
is a well known set of differential equations which possess soliton solutions. Witten’s
conjecture was subsequently proven by Kontsevich with an ingenious use of combina-
torial methods.

1



2 Introduction

There is another set of differential equations arising in soliton theory called the 2-
Toda Hierarchy. In some ways it can be thought of as a more fundamental object than
the KdV hierarchy. Okounkov and Pandharipande show in [OPOP] that this hierarchy
has solutions arising from a generalised form of Hurwitz numbers. Classically, Hur-
witz numbers count maps from smooth curves to the complex projective line where
ramification is specified to be simple. Okounkov and Pandharipande generalise this
definition using the representation theory of the symmetric group.

Moreover, it has since been conjectured in [SSZSSZ] that these generalised Hurwitz num-
bers are actually natural intersections on the moduli space of curves with r-spin struc-
ture. The form of this conjecture generalises the celebrated ELSV formula for classical
Hurwitz numbers. However a proof of the formula and its underlying geometric mech-
anism, has proved elusive.

In Chapter II, a moduli space is introduced that gives a geometric interpretation of the
objects being counted by these generalised Hurwitz numbers. These are called stable
maps with divisible ramification. They are maps where the ramification number at
every point is divisible by r.

The definition of such maps is clear for a smooth curve C . We simply specify that the
ramification divisor be divisible by r. However, when the curve is nodal this doesn’t
work because the ramification divisor cannot be defined. For a morphism f : C → P1

the ramification divisors is determined by the differential map df : f∗ΩP1 → ΩC . The
divisor construction relies on the fact that ΩC in invertible when C is smooth and
when C is nodal this is no longer the case.

In Chapter II we overcome this using the observation that the ramification divisor is
defined by a canonical section δ : OC → ωC ⊗ f∗ω∨P1 and this section is still well de-
fined when C is nodal. We then use the theory of r-spin structures to take an rth root
of this section. We show that this condition gives exactly the curves with ramification
order divisible by r.

There are three main results of Chapter II. The first is Theorem AA, which shows that the
space described above is an appropriate space for enumerative study. Namely that it is
a proper Deligne-Mumford stack. The theorem also gives a comparison between this
space and the moduli space of stable maps which is the main moduli space studied in
Gromov-Witten theory.

The second and third main results of Chapter II develop theory to allow enumerative
study of this space. Theorem BB gives an extension of the branching morphism of
[FPFP] and an interpretation of the ramification properties of maps with nodal domains.
A perfect obstruction theory for genus 0 is constructed in Theorem CC which allows
intersection theory to be used on this space. When combined, the three main theorems
allow the definition and future study of the generalised Hurwitz problem in a geometric
setting.

Enumeration of Subschemes in Calabi-Yau Threefolds

Many conventional string theory models require ten real dimensions. These consist of
the four usual dimensions, and six extra hidden “curled-up" ones coming from Calabi-
Yau threefolds (three complex dimensions). This makes Calabi-Yau threefolds a natural
choice for enumerative study.
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Even better, there are certain properties of Calabi-Yau threefolds that make the ex-
pected dimension of the Hilbert scheme zero. This suggests that counting subschemes
may be related to the Euler characteristic. In fact, Behrend showed in [B1B1] that the
virtual curve counting theory known as Donaldson-Thomas theory is a weighted Euler
characteristic.

However, computing Donaldson-Thomas invariants is very hard. Even when we use
the Euler characteristic approach. In fact computing them for compact threefolds is so
hard that the full Donaldson-Thomas theory is only known in computationally trivial
cases. An example of this is the product of a K3 surface with an elliptic curve. The
group action of the elliptic curve extends to the Hilbert scheme making all the invari-
ants trivial to compute. In non-trivial cases, there is not even a conjectural solution for
the full Donaldson-Thomas theory of a compact threefold. However, there are many
beautiful results that appear when we restrict our attention to subsets of the the full
theory.

These results will often not manifest themselves until one assembles the invariants into
a partition function. These are formal generating functions that store the enumerative
invariants as coefficients of power series expansions. Partition functions will often have
properties that are related to physical theories and modular forms. It is these prop-
erties and connections that make a full Donaldson-Thomas partition function highly
desirable.

Recent advances in techniques and the discoveries of new Calabi-Yau threefolds have
opened up new avenues for calculations in Donaldson-Thomas theory. One such tech-
nique was recently introduced by Bryan and Kool in [BKBK] for studying local elliptic sur-
faces. This method is extended in Chapter IIII to allow its use in a more general setting.
The full generality in which this method can be used is currently unknown. However,
it can certainly be used to study the Donaldson-Thomas theory of any Calabi-Yau
threefold when the curve classes can be understood and when the subschemes are
locally determined by monomial ideals.

In Chapter IIII these methods are then used to provide new calculations for the “banana”
Calabi-Yau threefold recently introduced in [BrBr]. This is a smooth proper Calabi-Yau
threefold which is fibred by Abelian surfaces such that the singular locus of a sin-
gular fibre is a non-normal toric curve known as a “banana configuration”. In [BrBr]
the Donaldson-Thomas partition function for the rank 3 sub-lattice generated by the
banana configurations is calculated. In Chapter IIII we provide calculations with a view
towards the rank 4 sub-lattice generated by a section and the banana configurations.
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Chapter I

The Moduli Space of Stable
Maps with Divisible
Ramification

Introduction

Consider a smooth curve X and the moduli space parameterising degree d maps
f : C → X where C is a smooth curve of genus g. This space is denoted by
Mg(X, d) and point a [f ] ∈Mg(X, d) has an associated exact sequence

0 −→ f∗ΩX ⊗ Ω∨C
δ∨−→ OC −→ ORf −→ 0 (I.1)

where Rf is the ramification divisor. If [f ] is a generic point then Rf is the union of
disjoint points on C . In other words, f has simple ramification everywhere.

As an alternative, we consider a space M1/r
g (X, d) where a generic point [f ] gives

a ramification divisor of the form Rf = r · p1 + · · · + r · pm for disjoint points
p1, . . . , pm ∈ C . Specifically, we defineM1/r

g (X, d) as the following sub-moduli space
ofMg(X, d):

M1/r
g (X, d) =

{ [
f : C → X

]
∈Mg(X, d)

∣∣∣ Rf = r ·D for some D ∈ Div(C)
}
/ ∼ .

In this chapter we construct a natural compactification of M1/r
g (X, d). We develop

the enumerative geometry of this space by constructing a virtual fundamental class in
the case g = 0 and by constructing a branch morphism.

The above construction of the ramification divisor relies on the domain curve C being
smooth. This means that ΩC is locally free and that df : f∗ΩX → ΩC is injective.
If C is allowed to be singular either of these may be false and we no longer have
a straightforward definition of ramification. This leads us to rephrase the moduli
problem using rth roots of δ which is defined in (I.1I.1). One can show thatM1/r

g (X, d)
is naturally isomorphic to:{[
f :C→X

]
∈Mg(X, d)

∣∣∣∣ There is a line bundle L on C , σ ∈ H0(L) and
an isom. L⊗r

e→ ωC ⊗ f∗ω∨X with e(σr) = δ.

}
/ ∼ .

5



6 CHAPTER I. STABLE MAPS WITH DIVISIBLE RAMIFICATION

We now have the moduli problem in a form which can be naturally compactified.
First we note that for nodal domain curves there is a natural morphism ΩC → ωC .
Here we have used standard notation for the sheaf of differentials and the dualising
sheaf noting that the latter is locally free. This is combined with the differential map
df : f∗ΩX → ΩC to obtain a morphism which we denote by

δ : OC −→ ωC ⊗ f∗ω∨X . (I.2)

Definition 1 Denote byM1/r

g (X, d) the moduli stack parameterising morphisms f :
C → X where

1. C is a genus g r-prestable curve (a stack such that the coarse space C is
a prestable curve, where points mapping nodes of C are balanced r-orbifold
points, and Csm ∼= C

sm
);

2. f is a morphism such that the induced morphism f : C → X on the course
space is a stable map;

3. there exists a line bundle L on C , an isomorphism e : L⊗r
∼→ ωC ⊗ f∗ω∨X , and

a morphism σ : OC → L such that e(σr) = δ, where δ is defined in (I.2I.2).

Remark 1 Throughout the chapter we will also be considering the same moduli prob-
lem in the context of stable maps relative to a point x ∈ X and a partition µ of d > 0.
The moduli space of relative stable mapsMg(X,µ) generically parameterises maps
where the pre-image of x is smooth and locally has monodromy given by µ. We will
leave the specifics of this moduli problem until section 1.11.1, however all of the following
results will hold whenM1/r

g (X, d) is replaced byM1/r

g (X,µ), and 2g−2−d(2gX−2)
is replaced by 2g − 2 + l(µ) + |µ|(1− 2gX).

Remark 2 The r-prestable curves in definition 11 arise naturally when taking rth roots
of line bundles on nodal curves [AJAJ, Ch1Ch1]. We review this in section 1.31.3.

Theorem A M1/r

g (X, d) is a proper DM stack. It is non-empty only when r divides
2g − 2− d(2gX − 2). The natural forgetful map

χ :M1/r

g (X, d) −→Mg(X, d)

is both flat and of relative dimension 0 onto its image. It is an immersion when restricted
toM1/r

g (X, d).

The image of χ has an explicit point-theoretic description. Let f : C → X be a stable
map and consider the locus in C where f is not étale. Following [VV, GVGV] a connected
component of this locus is called a special locus. A special locus will be one of the
following:

(a) A smooth point of C where f is locally of the form z 7→ za+1 with a ∈ N.

(b) A node of C such that on each branch f is locally like z 7→ zai with ai ∈ N.

(c) A genus g′ component B of C where f |B is constant and on the branches of C
meeting B the map f is locally of the form z 7→ zai with ai ∈ N.
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(a) (b) (c)

  1�=

Figure I.1: Loci with ramification order 3. (a) A smooth point where the map is locally
like z 7→ z3+1. (b) A node where the map is locally like z 7→ z2 on one branch
and z 7→ z on the other. (c) A genus one component meeting its complement at a
node, where the map is constant on the sub-curve and locally like z 7→ z2 on the
complement.

Note that a slightly different definition is used for the relative case (see remark 3.3.13.3.1).
Now, following [VV, GVGV] again, we define a ramification order (or sometimes simply
order ) for each type of special locus by:

(a) a. (b) a1 + a2. (c) 2g′ − 2 +
∑

(ai + 1).

This gives us an extended concept of ramification. There is also an extended concept
of branching constructed in [FPFP] which agrees with the ramification order assigned to
special loci. Specifically there is a well defined morphism of stacks which agrees with
the classical definition of branching on the smooth locus:

br : Mg(X, d) −→ Sym2g−2−d(2gX−2)X.

Theorem B The objects in M1/r

g (X, d) have the following ramification and branching
properties:

1. The closed points in the image of τ : M1/r

g (X, d) −→ Mg(X, d) are the closed
points ofMg(X, d) with the property:

“Every special locus of the associated map has order divisible by r”.

2. There is a morphism of stacks

br :M1/r

g (X, d) −→ Sym
1
r (2g−2−d(2gX−2))X

that commutes with the branch morphism of [FPFP] via the diagram

M1/r

g (X, d)
br //

χ
��

Sym
1
r (2g−2−d(2gX−2))X

∆��
Mg(X, d)

br // Sym2g−2−d(2gX−2)X

where ∆ is defined by
∑
i xi 7→

∑
i rxi.

Just like for regular stable mapsMg(X, d), the smooth-domain locusM1/r
g (X, d) can

be empty whileM1/r

g (X, d) is non-empty. For explicit examples consider degree one
maps to P1 with g > 0.
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The properties of M1/r

g (X, d) can be quite different to those of Mg(X, d). For ex-
ample, if we consider genus zero domains we have thatM0(X, d) is smooth, but in
generalM1/r

0 (X, d) is not. An explicit example of this isM1/3

0 (P1, 4), which is not
smooth as it contains components of dimensions 2 and 3. However, we do have the
existence of a virtual fundamental class for g = 0.

Theorem C M1/r

0 (P1, d) has a natural perfect obstruction theory giving a virtual fun-
damental class of dimension 1

r (2d− 2) = 1
rvirdim(M0(P1, d)).

The moduli space M1/r

g (P1, µ) has expected applications to r-spin Hurwitz theory.
For example, in genus 0 using both theorems BB and CC we have the following natural
intersection ∫

[M1/r
0 (P1,µ)]vir

br∗H
1
r (l(µ)+|µ|−2) (I.3)

where H is the hyperplane class in Sym
1
r (l(µ)+|µ|−2)P1 ∼= P 1

r (l(µ)+|µ|−2). This is a
direct analogue of the characterisation of simple Hurwitz numbers given in [FPFP, Prop.
2]. This was the first step towards a proof via virtual localisation of the ELSV formula.
After applying the virtual localisation techniques of [GPGP], (I.3I.3) is expected to be related
to the r-ELSV formula of [SSZSSZ, BKLPSBKLPS].

In the case where r = l(µ) + |µ| − 2 the spaceM1/r

0 (P1, µ) has virtual dimension 1.
These spaces are characterised by having exactly one free special locus of order r. In
this situation the intersections given in (I.3I.3) are expected to have a direct relation to
the completion coefficients and one-point invariants of [OPOP]:∫

[M0,1(P1,µ)]vir
ψr1ev

∗
1 [pt].

This chapter is structured as follows:

Section 11: Review the necessary theory of stable maps, r-prestable curves and line
bundles on twisted curves required for the construction ofM1/r

g (X, d) and its relative
version.

Section 22: Extend the theory of roots of line bundles to the space of stable maps,
construct the moduli spaceM1/r

g (X, d) and then prove theorem AA.

Section 33: Consider properties ofM1/r

g (X, d) related to branching and ramification
while proving theorem BB.

Section 44: Consider the cotangent complex of M1/r

g (X, d) and related properties
while proving theorem CC.

Conventions All stacks and schemes are over C. By local picture we will mean the
following. Let f : X → Y and g : U → V be morphisms of stacks. The local picture
of f at x ∈ X is the same as the local picture of g at u ∈ U if:

• There is an isomorphism between the strict henselization f sh : Xsh → Y sh of f
at x and the strict henselization gsh : U sh → V sh of g at u.
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Throughout the chapter we will consider both absolute and relative stable maps. The
theory will be similar so we introduce the following simplifying notation.

Notation:

• M is eitherMg(X, d) orMg(X,µ) for g ≥ 0, d > 0 and µ a partition of d.

• C →M is the associated universal curve.

• IfM isMg(X, d) (resp. Mg(X,µ)) then M is Mg (resp. Mg,l(µ)).

• The expected number of order r special loci in the generic case is denoted by
m. When M = Mg(X, d) we have m = 1

r (2g − 2 − d(2gX − 2)) and when
M =Mg(X,µ) we have m = 1

r (2g − 2 + l(µ) + |µ|(1− 2gX)).

• Throughout, the notation used for a space without r or 1
r will carry through to

analogous spaces involving r or 1
r . ForMg(X,µ) the two key spaces are:

– M[r] =M [r]

g (X,µ) and C[r] = C [r]

g (X,µ) defined in 2.1.32.1.3.

– M[ 1r ] =M[1/r]

g (X,µ) and C[ 1r ] = C[1/r]

g (X,µ) are defined in 2.3.12.3.1.33.

And the associated spaces are:

– Mr =M r

g (X,µ) and Cr = C rg (X,µ) defined in 2.12.1.

– M 1
r ,E =M

1
r
,E

g (X,µ) and C 1
r ,E = C

1
r
,E

g (X,µ) are defined in 2.1.12.1.1.

– M 1
r =M1/r

g (X,µ) and C1/r = C1/r

g (X,µ) are defined in 2.3.12.3.1.11.

1 Review of Stable Maps and r-Stable Curves

1.1 Stable Maps and Relative Stable Maps

For the rest of this chapter we will set X to be a non-singular projective curve. Recall
that a stable map f : C → X is a degree d morphism from a genus g prestable curve
to X which has no infinitesimal automorphisms. We denote byMg(X, d) the moduli
stack of these objects. Specifically this is the groupoid containing the objects:

ξ =
(
π : C → S, f : C → X

)
where π is a proper flat morphism and for each geometric point p ∈ S we have
fp : Cp → X is a degree d genus g stable map to X . A morphism ξ1 → ξ2 in
Mg(X, d) between objects ξi = (πi : Ci → Si, fi : Ci → X) is a commutative
diagram where the left square is cartesian:

S1

��

C1
π1oo

��

f1 // X

S2 C2
π2oo f2 // X

Let x be a geometric point of X and µ a partition of d > 0. As we mentioned in
remark 11, we will also be considering the moduli problem in the case of stable maps
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relative to (x, µ). We use the algebro-geometric definition of this moduli space and its
obstruction theory provided in [L1L1, L2L2].

The goal of relative stable maps is to parameterise maps where the pre-image of x lies
in the smooth locus of C and where the map has monodromy given by µ locally above
x. However, this condition will not give a compact space. The solution provided in
[L1L1] is to allow the target to degenerate in a controlled manner by allowing X to sprout
a chain of P1’s.

Specifically we can define the nth degeneration X[i] inductively from X[0] := X by:

• X[i+ 1] is given by the union X[i] ∪ P1 meeting at a node ni+1.

• The node n1 is at x ∈ X . For i > 0 the node ni+1 is in the ith component of
X[i+ 1], i.e. the node is not in X[i− 1] ⊂ X[i+ 1].

Then a degenerated target is a pair (T, t) where T = X[i] for some i ≥ 0 and t is a
geometric point in the smooth locus of ith component of T .

A genus g stable map to X relative to (µ, x) is given by(
h : C −→ T, p : T −→ X, q1, . . . , ql(µ)

)
where (C, qi) is a l(µ)-marked prestable curve, h is a genus g stable map sending qi
to t and p is a morphism sending t to x such that:

1. There is an equality of divisors on C given by h−1(t) =
∑
µiqi.

2. We have p|X is an isomorphism and p|T\X : T \X → {x} is constant.

3. The pre-image of each node n of T is a union of nodes of C . At any such node
n′ of C , the two branches of n′ map to the two branches of n, and their orders
of branching are the same.

4. The data has finitely many automorphisms (recall, an automorphism is a a pair
of isomorphisms a : C → C and b : T → T taking qi to qi and t to t such that
h ◦ a = b ◦ h and p = p ◦ b).

We denote by Mg(X,µ) the moduli stack of genus g stable maps relative to (µ, x).
This is the groupoid containing the objects:

ξ =
( C

π ��
S

qi
WW

,
T

π′ ��
S

t
WW

, h : C → T, p : T → X
)

where π and π′ are flat proper morphisms, h is a morphism over S and for each geo-
metric point z ∈ S we have ξz is a genus g stable map relative to (µ, x). Furthermore,
we require that in a neighbourhood of a node of Cz mapping to a singularity of Tz
we can choose étale-local coordinates on S, C and T with charts of the form SpecR,
SpecR[u, v]/(uv − a) and SpecR[x, y]/(xy − b) respectively such that the map is
of the form x 7→ αuk and y 7→ αvk with α and β units. A morphism ξ1 → ξ2 in
Mg(X,µ) between two appropriately label objects is a pair of cartesian diagrams

C1

π1 ��

a′ // C2

π2��
S1

a // S2

T1

π′1 ��

b′ // T2

π′2��
S1

b // S2

that are compatible with the other data (i.e. we have a′ ◦ q1,i = q2,i ◦ a, b′ ◦ t1 = t2 ◦ b,
b′ ◦ h1 = h2 ◦ a′ and p1 = p2 ◦ b′).
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1.2 The Canonical Ramification Section

As we saw in the introduction, for a moduli point [f ] ∈Mg(X, d) we have two natural
morphisms

f∗ωX −→ ΩC and ΩC −→ ωc (I.4)

which we can combine into a single morphism δ : OC → ωC ⊗ f∗ω∨X . This morphism
reflects the ramification properties of f which we will see in section 33. Hence, we will
call the bundle ωC ⊗ f∗ω∨X the ramification bundle of f .

Considering the universal curve π : Cg(X, d) → Mg(X, d). The above construction
still holds for the universal stable map f : Cg(X, d) → X . We then have a universal
section

δ : OCg(X,d) −→ R (I.5)

where we have denoted the universal ramification bundle R := ωπ ⊗ f∗ω∨X .

For the above case of stable maps we are interested in a subspace where a generic
point [f ] corresponds to a map f with a ramification divisor of the form Rf =
r · z1 + · · · + r · zm for disjoint points z1, . . . , zm. However, the key concept of
relative stable maps is that the ramification above a fixed point is determined by a
given divisor. The ramification is allowed to be free elsewhere.

Hence for the relative case we will be interested in a subspace ofMg(X,µ) where a
generic [f ] corresponds to a map f with a ramification divisor of the form:

Rf = Dµ + r · z1 + · · ·+ r · zm

whereDµ =
∑

(µi−1)qi is the ramification divisor supported at the points qi mapping
to x ∈ X . So, we are interested in taking rth roots of a section of the bundle
ωC⊗f∗ω∨X⊗OC(−Dµ) ∼= ωlog

C ⊗f∗(ω
log
X )∨. The situation is slightly more complicated

because of the possibility of a degenerated target. So we consider a general genus g
stable map to X relative to (µ, x) over S:

ξ =
( C

π ��
S

qi
WW

,
T

π′ ��
S

t
WW

, h : C → T, p : T → X
)
.

Now, letting q = q1 + · · · + ql(µ), we have three line bundles which we are interested
in:

ωlog
C/S = ωC/S(q), ωlog

T/S = ωT/S(t) and ωlog
X = ωX(x)

and we make choices of morphisms defining the divisors q, t and x respectively:

Dq : OC(−q)→ OC , Dt : OT (−t)→ OT and Dx : OX(−x)→ OX .
(I.6)

Now there is a unique choice of isomorphism p∗ωlog
X

∼→ ωlog
T/S such that the following

diagram commutes

p∗ωX
p∗Dx //

��

p∗ωlog
X

∼=
��

ωT/S
Dt // ωlog

T/S
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where the left vertical morphism is the natural morphism coming from (I.4I.4) applied to
p : T → X .

After using the isomorphism p∗ωlog
X

∼→ ωlog
T/S we are interested in a canonical mor-

phism h∗ωlog
T/S −→ ωlog

C/S . The construction used in (I.5I.5) breaks down here because
there we used the fact that ΩX ∼= ωX is locally free. In general, ΩT/S � ωT/S and
ΩT/S is not locally free, because of the nodes on the degenerated target. However, the
admissibility condition allows us to define a morphism h∗ωT/S −→ ωC/S directly.

Away from the nodes of T we can simply define the morphism in the usual way.
Locally at the nodes we have that S = SpecR, T = SpecR[x, y]/(xy − ξ) and
C = SpecR[u, v]/(uv − ζ) with the map h defined by

H : R[x, y]/(xy − ξ) −→ R[u, v]/(uv − ζ)
x 7−→ αua

y 7−→ βva

for α and β units and with H(ξ) = αβζa. Also, locally we have that ωT/X and ωC/X
are generated by

dx ∧ dy
(xy − ξ)

and
du ∧ dv
(uv − ζ)

respectively. Hence, we have a natural isomorphism locally defined by:

d(H(x)) ∧ d(H(y))(
H(x)H(y)− Φ(ξ)

) =
d(αua) ∧ d(βvb)(
αβuava − αβξa

) =
du ∧ dv
(uv − ζ)

.

Hence we have the following lemma.

Lemma 1.2.1. Let T sm be the smooth locus of T relative to S and B = h−1(T sm). There
is a canonical morphism δ̃ : h∗ωT/S −→ ωC/S such that:

1. The restriction δ̃|B to is the usual morphism (h|B)∗ωT sm/S → ωC/S ,

2. δ̃ is locally an isomorphism at the nodes of T .

Now, we restrict the morphism h to the smooth locus of C over S and denote these
by hsm and Csm respectively. The morphism from lemma 1.2.11.2.1 restricted to Csm is
injective and is the divisor sequence for the ramification divisor. Both the divisors q1 +
· · ·+ql(µ) and h−1(t) are in Csm. Now using the choices from (I.6I.6) it is straightforward

to show that there is now a unique map δ̃ log making the following diagram commute

h∗ωT/S
h∗Dt //

δ̃

��

h∗ωlog
T/S

δ̃ log

��
ωC/S

Dq // ωlog
C/S

Now, using the isomorphism p∗ωlog
X

∼→ ωlog
T/S we have the canonical morphism which

we desire:

δlog : OC/S −→ ωlog
C/S ⊗ f

∗(ωlog
T/S)∨. (I.7)

The above construction immediately lends itself to a universal construction. Consider
the universal curve π : Cg(X,µ) → Mg(X,µ), the universal degenerated target
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π′ : T → Mg(X,µ) with universal maps h : Cg(X,µ) → T and p : T → X , and
universal sections qi : Mg(X,µ) → Cg(X,µ) and t : Mg(X,µ) → T . Then we
make, once and for all, choices

Dq : OCg(X,µ)(−q)→ OCg(X,µ), Dt : OT (−t)→ OT and Dx : OX(−x)→ OX
(I.8)

which allows us to define the universal section

δlog : OCg(X,µ) −→ R
log

(I.9)

where we have denoted the universal ramification bundle Rlog
:= ωlog

π ⊗ f∗(ω
log
π′ )∨.

1.3 r-Prestable curves

Our moduli problem requires the use of nodal curves where the nodes have a balanced
r-orbifold structure. These curves are also called twisted curves and were introduced
in [AVAV] to study stable maps where the target is a DM stack. They have since been
extensively studied in [ACVACV, OO, AGVAGV, FJR1FJR1, FJR2FJR2]. In this chapter we are interested in
using them in relation to taking rth roots of line bundles, which have been studied in
[AJAJ, Ch1Ch1, Ch2Ch2].

Definition 1.3.1. Let S be a scheme. An r-prestable curve over S of genus g with n
markings is: ( C

π��
S

,
( C

S

xi
OO )

i∈{1,...,n}

)
where

1. π is a proper flat morphism from a tame stack to a scheme;

2. each xi is a section of π that maps to the smooth locus of C ,

3. the fibres of π are purely one dimensional with at worst nodal singularities,

4. the smooth locus Csm is an algebraic space,

5. the coarse space π : C → S with sections xi is a genus g, n-pointed prestable
curve (

C, π : C → S, (xi : S → C)i∈{1,...,n}
)

6. the local picture at the nodes is given by [U/µr]→ T , where

• T = SpecA, U = SpecA[z, w]/(zw− t) for some t ∈ A, and the action of
µr is given by (z, w) 7→ (ξrz, ξ

−1
r w).

We denote the space parameterising r-prestable curves by Mr
g,n. This space is shown

to be a smooth proper stack in [Ch1Ch1]. There is a natural forgetful map

Mr
g,n −→Mg,n

which maps an r-prestable curve to its coarse space. This map is flat and surjective of
degree 1, but it is not an isomorphism. Its restriction to the boundary is degree 1

r .

One can also consider r-orbifold structure at smooth marked points as well. Specifi-
cally we can include in the definition étale gerbes Xi → X which are closed sub-stacks
of the smooth locus of the curve Xi ↪→ Csm. The local picture at an r-orbifold marked
point is given by [V/µr]→ T , where

T = SpecA, V = SpecA[z], and the action of µr is given by z 7→ ξrz.
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1.4 Line Bundles and their rth Roots on r-Twisted Curves

The theory of rth roots on line bundles on prestable curves has origins related to
theta characteristics [CoCo]. This led naturally to the study of r-spin structures studied
in [J1J1, J2J2] using torsion free sheaves for rth roots. r-spin structures were also studied
using twisted curves in [AJAJ, Ch1Ch1, Ch2Ch2] and other methods in [CCCCCC]. The results of
[Ch1Ch1] will be of particular interest to us.

Consider a family of r-prestable curves C
γ→ C

π→ S, and let E be a line bundle on C
pulled back from C with relative degree divisible by r. Define the following groupoid
RootrC(E) containing as objects:(

h : Z → S, L, e : Lr
∼→ EZ

)
where h is a morphism of schemes, L is a line bundle on CZ and e is an isomorphism.

Theorem 1.4.1. [Ch1Ch1, Prop 3.7, Thm 3.9] In the situation above we have:

1. For each geometric point p ∈ S, we have r2g roots of Ep.

2. RootrC(OC) is a finite group stack.

3. RootrC(E) is a finite torsor under RootrC(OC).

4. RootrC(E)→ S is étale of degree r2g−1.

1.4.2. Consider an r-prestable curve over C with an r-orbifold marked point p. The
local picture at the marking p is given by [(SpecC[z])/µr] where the action of µr is
given by z 7→ ξrz. Consider a line bundle L supported at p. Then (the sheaf) L is
locally generated at p by φ = zn for n ∈ Z and we have φ(ξrz) = ξkrφ(z) for some
k ∈ Z/r. We call k the multiplicity of L at p.

Similarly, at a node q the the local picture is given by [(SpecC[u, v]/uv)/µr], where
the action of µr is given by (u, v) 7→ (ξru, ξ

−1
r v). So a line bundle L on C sup-

ported at q is locally generated by ψ = un1 − vn2 for n1, n2 ∈ Z \ {0} such that
ψ(ξru, ξrv) = ξarψ(u, v) for some a ∈ Z/r. In fact a is determined only up to a
choice of branch. Hence we obtain a pair numbers a, b ∈ Z/r with either a = b = 0
or a+ b = r. We call this pair the multiplicity of L at the node q.

We can also consider an associated sheaf on the coarse space C . Locally the coarse
space is given by the invariant sections of the structure sheaf. Then the sheaf L := γ∗L
is similarly given by the locally invariant sections of L. When C is a smooth curve L
is a line bundle. However when C is singular, then L is only torsion free in general.
Using these ideas one can easily show the following lemma is true.

Lemma 1.4.3. Let C be a r-prestable curve over C, with n smooth orbifold points x1, . . . , xn
and let β : C → C be the map forgetting the orbifold structure at the smooth points. Also
let L be a line bundle on C with multiplicities a1, . . . , an at the the orbifold points and let
D be the divisor

∑
aixi. Then for a section σ : OC → L there is a commuting diagram

where the bottom row is the divisor sequence:

OC

(β∗σ)r

��

OC

β∗(σ
r)

��
0 // (β∗L)r // β∗(Lr) // OD // 0
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2 Stable Maps with Roots of Ramification

Section 2 Notation: Recall the notation conventionnotation convention:

• M is eitherMg(X, d) orMg(X,µ) for g ≥ 0, d > 0 and µ a partition of d.

• C →M is the associated universal curve.

• IfM isMg(X, d) (resp. Mg(X,µ)) then M is Mg (resp. Mg,l(µ)).

• The expected number of order r special loci in the generic case is denoted by
m. When M = Mg(X, d) we have m = 1

r (2g − 2 − d(2gX − 2)) and when
M =Mg(X,µ) we have m = 1

r (2g − 2 + l(µ) + |µ|(1− 2gX)).

• Throughout, the notation used for a space without r or 1
r will carry through to

analogous spaces involving r or 1
r . ForMg(X,µ) the two key spaces are:

– M[r] =M [r]

g (X,µ) and C[r] = C [r]

g (X,µ) defined in 2.1.32.1.3.

– M[ 1r ] =M[1/r]

g (X,µ) and C[ 1r ] = C[1/r]

g (X,µ) are defined in 2.3.12.3.1.33.

And the associated spaces are:

– Mr =M r

g (X,µ) and Cr = C rg (X,µ) defined in 2.12.1.

– M 1
r ,E =M

1
r
,E

g (X,µ) and C 1
r ,E = C

1
r
,E

g (X,µ) are defined in 2.1.12.1.1.

– M 1
r =M1/r

g (X,µ) and C1/r = C1/r

g (X,µ) are defined in 2.3.12.3.1.11.

2.1 r-Stable Maps with Roots of the Ramification Bundle

In this subsection we will be considering the results of [Ch1Ch1] in the context of stable
maps. We will begin by considering stable maps where the domain curve is r-prestable.
We call these r-stable maps. The moduli stack of these and its universal curve fit into
the two cartesian squares:

Cr //

γ

��

Mr //

��

Mr

��
C //M //M

Now we will considering stable maps with an rth root of a line bundle. Let E be a line
bundle on C of degree divisible by r and define the line bundle E on Cr by E := γ∗E .

Definition 2.1.1. Denote by M 1
r ,E the moduli stack of r-stable maps with roots of E

which contains families: (
ξ, L, e : Lr ∼−→ Eξ

)
where

1. ξ is a family of r-stable maps inM;

2. L is a line bundle on Cξ ;

3. e is an isomorphism of line bundles on Cξ .
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Lemma 2.1.2. M 1
r ,E has the following properties:

1. M 1
r ,E is a proper DM stack.

2. When E is the trivial bundleM 1
r ,OC →Mr is a finite group stack.

3. The forgetful map M 1
r ,E → Mr is a finite torsor under M 1

r ,OC and is étale of
degree r2g−1.

Proof. Let a : S → Mr be the morphism of stacks defined by the family ξ ∈ Mr .
Also let C = (Cr)ξ and E = (E)ξ . Then we have the following cartesian diagrams:

RootrC(OC) //

��

M 1
r ,OC

��
S //Mr

RootrC(E) //

��

M 1
r ,E

��
S //Mr

The lemma now follows from theorem 1.4.11.4.1.

Definition 2.1.3. In the special case where E = R we callM 1
r ,R the moduli space

of r-stable maps with roots of the ramification bundle and denote it with the simplifying
notation:

M[r] :=M 1
r ,R.

2.2 Power Map of Abelian Cone Stacks

Let E be a line bundle on C of degree divisible by r and define the line bundle E on
C[r] by E := γ∗E where γ : Cr → C is the map forgetting the r-orbifold structure
of the curves. ConsiderM 1

r ,E , the space of r-stable maps with roots of E defined in
2.1.12.1.1 with universal curve π : C 1

r ,E →M 1
r ,E , universal section s :M 1

r ,E → C 1
r ,E and

universal rth root bundle L and isomorphism e : Lr ∼→ E .

Definition 2.2.1. For a line bundle F on C 1
r ,E , we define the the following notation:

1. Totπ∗F := Spec
M

1
r
,E

(
Sym•R1π∗(F∨ ⊗ ωπ)

)
which contains objects:(

ξ, σ : OC −→ Fξ
)

where ξ is an object ofM 1
r ,E and C := (C 1

r ,E)ξ (discussed in [CLCL, Prop 2.2] and
[CLLCLL, Thm 2.11]). Also, let α : Totπ∗F → M

1
r ,E denote the natural forgetful

map.

2. ψ : CTotπ∗F → Totπ∗F is the universal curve and α̂ : CTotπ∗F → C
1
r ,E is the

natural forgetful map.

3. TotF := Spec
C

1
r
,E

(
Sym• F∨

)
which contains objects:(

ζ, λ : OS −→ s∗Fζ
)

where ζ is an object of C 1
r ,E over S and s := sζ . Also, let α̌ : TotF → C 1

r ,E

denote the natural forgetful map.

Remark 2.2.2. Note that while we use the notation Totπ∗F , it is often the case that
π∗F is not locally free. This space is called an abelian cone in [BFBF].
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Let ζ be a family in C 1
r ,E over S with πζ = π : C → S and s := sζ . There is a

natural evaluation morphism e : CTotπ∗F → TotF defined by

e :
(
ζ, σ : OC −→ Fξ

)
7−→

(
ζ, s∗σ : OS −→ s∗Fζ

)
. (I.10)

This gives the following commutative diagram where the left-most square is Cartesian:

Totπ∗F

α
��

CTotπ∗F
ψoo e //

α̂
��

TotF

α̌
��

M 1
r ,E C 1

r ,E
π

oo C 1
r ,E

(I.11)

There are special cases when F = L and F = Lr and we have we have canonical
maps:

Definition 2.2.3. The rth power map overM 1
r ,E is the map τ : Totπ∗L → Totπ∗Lr

defined by: (
ξ, σ

)
7−→

(
ξ, σr

)
and the rth power map over C 1

r ,E is the similarly defined map τ̌ : TotL → TotLr .
Out of the two maps defined here, τ̌ is nicer. It is a fibre-wise r-fold cover of the total
space of TotLr ramified at the zero section. However, τ is the map more directly
related to out moduli problem.

Lemma 2.2.4. The rth power map overM 1
r ,E is factors via

Totπ∗L
τ //

ϕ %%

Totπ∗Lr

X
j

88

where j is a closed immersion and ϕ is the quotient by the following action of Zr on
Totπ∗L:

ζr ·
(
ξ, σ

)
=
(
ξ, ζr · σ

)
Proof. We first show that the image of τ is a closed substack of Totπ∗Lr . Denote the
closed immersion defined by taking the graph of τ by i : Totπ∗L → Totπ∗Lr×M 1

r
,E

Totπ∗L. Then τ factors via:

Totπ∗L �
� i //

τ **

Totπ∗Lr ×M 1
r
,E Totπ∗L

pr1
��

Totπ∗Lr

We claim that pr1 is a closed map. To see this we let ψ : CTotπ∗Lr → Totπ∗Lr be
the universal family. Then we have the following abelian cone stack over Totπ∗Lr

p : SpecTotπ∗Lr
(

Sym•R1ψ∗(ψ
∗L∨ ⊗ ωψ)

)
−→Totπ∗Lr

which is isomorphic over Totπ∗Lr to the pullback:

Totπ∗Lr ×M 1
r
,E Totπ∗L

∼ //

pr1
''

SpecTotπ∗Lr
(

Sym•R1ψ∗(ψ
∗L∨ ⊗ ωψ)

)
p

uu
Totπ∗Lr
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p is a closed map, so pr1 is also closed and im(τ) is a well defined closed substack. It
is clear that im(τ) is isomorphic to the quotient of Totπ∗L by the action of Zr .

2.3 Proof of Theorem AA

In this section we will prove theorem AA about the properties of M1/r . We will also
consider related spaces that contain extra information which we will denote byM[1/r]

andM(1/r). In particularM[1/r] will be the key space for study in the later sections
of this chapter.

Let π : C[r] →M[r] be the universal curve ofM[r] and f : C[r] → X be the universal
r-stable map and δ : OCr → R be the pullback by γ : Cr → C of canonical ramifica-
tion section defined in (I.5I.5) and (I.9I.9). Where γ is the map which forgets the r-orbifold
structure. Also let L be the universal rth root onM[r].

Definition 2.3.1. The moduli spaces of stable maps with divisible ramification are:

1. M1/r is the substack ofMr containing families ξ where there exists:

(a) a line bundle L on C := (Cr)ξ ;

(b) an isomorphism e : Lr
∼→ Rξ ;

(c) a morphism σ : OC → L;

such that e(σr) = δξ .

2. M(1/r) is the substack ofM[r] containing families ζ = (ξ, L, e) where ξ, L and
e are as above and there exists a morphism σ : OC → L as above.

3. M[1/r] is the substack of Totπ∗L containing families χ = (ξ, L, e, σ) where ξ,
L, e and σ are as above.

These three stacks are related by the following diagram where the horizontal arrows
are forgetful maps and the vertical arrows are inclusions.

M[ 1r ]

��

//M( 1
r )

��

//M 1
r

��
Totπ∗L //M[r] //Mr

After pulling back toM[r], the canonical ramification section δ : OCr → R and the
universal rth root e : Lr ∼→ R define a natural inclusion:

i′ : M[r] −→ Totπ∗Lr
ξ 7−→

(
ξ, e−1

ξ (δξ)
)
.

(I.12)

M[1/r] now fits into the following cartesian diagram defining ν :

M[ 1r ] i //

ν

��

Totπ∗L

τ

��
M[r]

i′
// Totπ∗Lr
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Lemma 2.2.42.2.4 shows thatM[1/r] is a proper DM stack. We have thatM(1/r) is the
quotient ofM[1/r] by the action of Z/r, showingM(1/r) is a closed substack ofM[r].
Also, since M[r] → Mr is proper we can define M1/r to be the closed substack
of Mr coming from the image of M(1/r). Hence we have proved theorem AA after
composing withMr →M, which is flat and proper.

Note that the forgetful mapM[1/r] →M(1/r) is étale of degree r. However, the map
M(1/r) →M1/r is more complicated and in general not étale. There are cases where
the map is étale such as when the genus is zero, then the map is degree 1/r. For
another example, consider the spaceM(1/r)

g (P1, 1) where the map is étale of degree
r2g−1.

3 Branching and Ramification of r-Stable Maps

Section 3 Notation: Consider the universal objects ofM[1/r]:

1. The universal curve, ρ : C[1/r] →M[1/r]

2. The universal stable map, f : C[1/r] → X and F : C[1/r] → X ×M[1/r]

3. The universal canonical section, δ : OC[1/r] → R

4. The universal rth root of δ, (L, e : Lr ∼→ R,σ : OC[1/r] → L)

For a family ξ over S inM[1/r] we will use the following notation

C := C[1/r]
ξ , ρ := ρξ , f := fξ , F := Fξ , δ := δξ , L := Lξ , e := eξ and σ := σξ .

We denote the expected number of order r ramification loci in the generic case by
m = 1

r (2g− 2−d(2gX − 2)) in the caseM =Mg(X, d) and m = 1
r (2g− 2 + l(µ) +

|µ|(1 − 2gX)) in the caseM = Mg(X,µ). For a morphism of sheaves a : A → B,
we will denote the associated complex in degree [−1, 0] by [a : A→ B].

3.1 Divisor Construction and the Branch Morphism for Stable Maps

As we saw in the introduction and discussed in 1.21.2 the ramification divisor is not well
defined for stable maps. However it is possible to define a branch divisor using the
canonical ramification section defined in 1.21.2. To do this, we must first review a con-
struction of Mumford [MFKMFK, §5.3] which allows us to assign a Cartier divisor to certain
complexes of sheaves.

Let Z be a scheme and recall that a complex of sheaves E• is torsion if the support
of each Hi(E•) does not contain any of the associated points of Z . Let E• be a
finite torsion complex of free sheaves on Z and let U ⊂ Z be the complement of⋃
i SuppHi(E•). Then E•|U is exact and U contains all the associated points of Z .

There are two ways to construct isomorphisms

detE•|U
∼−→ OU .

1. κ: This is a canonical isomorphism which arises from the exactness of E•|U .

2. Ψ: Which is from an explicit choice of isomorphism Ei
∼−→ OU for each i.
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So a choice of Ψ defines a section Ψ ◦ κ−1 ∈ H0(U,O∗U ). Also, it is shown in [FPFP,
Lemma 1] that if U contains all the associated points of Z then a section of H0(U,O∗U )
defines a canonical section λ of H0(Z,K∗). A different choice of Ψ amounts to
multiplication of λ by an element of H0(Z,O∗Z). In this way E• defines an element
of H0(Z,K∗/O∗Z). This construction also holds when E• is a perfect complex (i.e.
locally isomorphic to a finite complex of locally free sheaves).

Definition 3.1.1. Let E• be a perfect torsion complex. The divisor associated to E•

is the divisor constructed above and is denoted by div(E•).

The divisor construction has the following important properties.

Lemma 3.1.2. [FPFP, Prop 1] Let E• be a perfect torsion complex.

1. div(E•) depends only on the isomorphism class of E• in the derived category of Z .

2. If F is a coherent sheaf admitting a finite free resolution F •, then we have div(F ) :=
div(F •) is an effective divisor.

3. If D is an effective divisor then div(OD) = D.

4. The divisor construction is additive on distinguished triangles.

5. If h : Z ′ → Z is a base change such that h∗E• is torsion, then we have div(h∗E•) =
h∗div(E•).

6. If L is a line bundle then div(E• ⊗ L) = div(E•).

The divisor construction is used in [FPFP] to construct a morphism

br : M −→ Symm′X.

where m′ is the virtual dimension ofM. In particular, if ζ ∈ M is a family of stable
maps over S and pr2 : X×S → S is the projection, then they show that the canonical
ramification section (see 1.21.2) defines a pr2-relative effective Cartier divisor of degree
m′:

Bζ := div
(
R(Fζ)∗[OCζ

δζ−→ Rζ ]
)
.

Hence the map br is defined by ζ 7→ Bζ .

Remark 3.1.3. In [FPFP] the relative caseM =Mg(X,µ) is not considered. However,
the results and proofs required to define br work in this case when we use the section
δ constructed in section 1.21.2 and m′ = 2g − 2 − d(2gX − 2) is replaced by m′ =
2g − 2 + l(µ) + |µ|(1− 2gX).

3.2 A Branch Morphism for Maps with Divisible Ramification

We will show in this section that a branch morphism can be constructed for stable
maps with divisible ramification. The role of the canonical ramification section will be
replaced by its universal rth root.

Lemma 3.2.1. The direct image RF∗[OC
σ−→ L] is a perfect torsion complex.

Proof. Recall that F factors via the forgetful map to the coarse space F = F ◦γ where
F := (f, ρ). Also recall that γ∗ is an exact functor, so we have the quasi-isomorphism
RF∗[OC

σ−→ L] ∼= RF ∗[OC
γ∗σ−→ γ∗L]. F has finite tor-dimension, so RF ∗[γ∗σ] is

quasi-isomorphic to a finite complex of quasi-coherent sheaves on X × S flat over S.
Denote this complex by E•.
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Perfect is a local property so we can assume that S = SpecA. Also, let pr1 : X ×
S → X and pr2 : X × S → S be the natural projections. Thus we have that
M := pr∗1OX(1) is an ample line bundle on the fibres of pr2. Then for sufficiently
large n we have for each Ei the following properties:

1. Ai := ρ∗ρ∗(Ei ⊗Mn)⊗M -n is locally free.

2. The natural map ai : Ai −→ Ei is surjective.

Let Ki = ker ai and note that these sheaves are all flat over S. Hence, restricting to
the fibres of s ∈ S we have an exact sequence

0 −→ (Ki)s −→ (Ai)s
ai−→ (Ei)s −→ 0.

We have pr2 is smooth of relative dimension 1 so any module on the fibres has ho-
mological dimension at most 1. Thus showing that (Ki)s is locally free and hence
Ki is locally free. A finite complex of locally free sheaves quasi-isomorphic to E•

can be constructed from the total complex associated to the double complex of these
resolutions.

By [FPFP, Lemma 5] we can show RF∗[σ] is torsion on X × S by showing is when S
is a point. Define Y ⊂ C to be the locus where f is not étale and Z = f(Y ) ⊂ C .
Note that Z is a finite collection of points in X . Define C̃ = C \ Y with inclu-
sion j : C̃ → C and X̃ = X \ Z with inclusion i : X̃ → X . We also have that
Y = Supp(kerσ) ∪ Supp(cokerσ) so [j∗σ] is exact. Letting f̃ = f |C̃ be the restric-

tion we have i∗Rf∗[σ] = Rf̃∗[j
∗σ]. Hence, i∗Rf∗[σ] is exact also, showing that the

cohomology of Rf∗[σ] is supported on points.

Lemma 3.2.2. Let S = SpecA be Noetherian and let E be a line bundle on C . There
exists a ρ-relative line bundleM on C such that H0(C,M) and H0(C,M ⊗E) contain
sections which define injective morphisms.

Proof. Let G be the bundle ωρ ⊗ f
∗OX(3) which is an ample ρ-relative line bundle

on C . Let n ∈ N be large enough that both GN and E ⊗GN are generated by global
sections. We claim that M := γ∗GN has the desired properties. To see this note
that C is quasi-compact and so has a finite number of associated points. A standard
argument then shows that the subspaces of H0(C,GN ) and H0(C,E ⊗ GN ) which
are not injective morphisms will then have strictly lower dimension. Then consider the
isomorphism

γ∗ : H0(C,E ⊗M)
∼−→ H0(C,E ⊗GN )

and consider the pre-image s of a regular section s ∈ H0(C,E ⊗GN ). γ∗ is an exact
functor and γ∗K = 0 if and only if K = 0. Hence we have that s is injective if and
only if s is.

Lemma 3.2.3. Let M̃ be a relative line bundle on C and an injective morphism s : OC →
M̃ . Let D be the divisor on C defined by s∨. Then

D := div
(
RF∗

[
OD ⊗OC

id⊗σk−→ OD ⊗ Lk
])

= 0.

Proof. We first show that D is an effective divisor on X × S by considering the case
where S = SpecA. Note that the map forgetting the stack structure γ : C → C has
the property that γ∗ is left exact. Also, OD is supported in relative dimension 0, so D

is given by

D = div
(
F ∗
[
OD −→ γ∗(OD ⊗ Lk)

])
.
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We have that i : D → C is a relative effective divisor on C with coarse space
j : D → C . The natural map φ : D → S is quasi-finite and proper so it is also
finite. Thus D is affine which shows that (γ|D)∗(OD ⊗ Lk) is generated by global
sections and so has sections which give injective morphism.

Let Φ be a section of (γ|D)∗(OD ⊗ Lk) giving rise to an injective morphism. Then
since the divisor construction is additive on distinguished triangles we have:

D = div
(
F ∗j∗[Φ]

)
Also, Φ is regular so it is injective and we have D = div(F ∗j∗coker Φ). Hence showing
that it is a relative effective Cartier divisor.

The degree of a relative effective Cartier divisor for a smooth morphism is locally
constant. Hence we can compute the degree at geometric points. We see that the
degree of (D)z is zero for geometric points z ∈ S.

Corollary 3.2.4. There is an equality of divisors

div
(
RF∗[OC

σk→ Lk]
)

= div
(
RF∗(L⊗ [OC

σk→ Lk])
)

Proof. We have that div is additive on exact sequences. So, to show that two sequences
give the same divisor, it will suffice to show that the cone of a morphism between the
two complexes is the zero divisor.

We have two distinguished triangles coming from injective sections ofM andM⊗L−1,
where M is the line bundle from lemma 3.2.23.2.2:

[σk]
s1−→ [σk]⊗M −→ Cone(s1) −→ [σk][1]

[σk]⊗ L s2−→ [σk]⊗M −→ Cone(s2) −→ [σk][1]

We saw in the lemma 3.2.33.2.3 that div(Cone(s1)) = div(Cone(s2)) = 0 which shows
that [σk] and [σk]⊗ L have the same divisor.

Lemma 3.2.5. Let E•
a→ G•

b→ H• be morphisms in the derived category. Then there is
a distinguished triangle:

cone(a) −→ cone(b ◦ a) −→ cone(b) −→ cone(a)[1]

Proof. The result follows immediately from the following commuting diagram with
distinguished triangles for rows and columns:

E•
id //

a
��

E• //

b◦a
��

0 //

��

E•[1]

a[1]
��

G•
b //

��

H• //

��

cone(b) //

��

G•[1]

��
cone(a) //

��

cone(b ◦ a) //

��

cone(b) //

��

cone(a)[1]

��
E•[1]

id[1] // E•[1] // 0 // E•[2]
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Corollary 3.2.6. Let a : E → G and b : G→ H be morphisms of coherent sheaves. Then
there is a distinguished triangle:[

E
a−→ G

]
−→

[
E

b◦a−→ H
]
−→

[
G

b−→ H
]
−→

[
E

a−→ G
]
[1]

where [a], [b] and [b ◦ a] are considered to be in degree [−1, 0].

Proof. The proof is immediate from lemma 3.2.53.2.5.

Corollary 3.2.7. We have the equality of divisors on X × S:

div
(
RF∗[OC

σr−→ Lr]
)

= r · div
(
RF∗[OC

σ−→ L]
)

Proof. From corollary 3.2.63.2.6 we have the distinguished triangle:[
OC

σ−→ L
]
−→

[
OC

σn+1

−→ Ln+1
]
−→ L⊗

[
OC

σn−→ Ln
]
−→

[
OC

σ−→ L
]
[1].

After applying corollary 3.2.43.2.4 this shows that div
(
RF∗[σ

n+1]
)

= div
(
RF∗[σ

n]
)

+

div
(
RF∗[σ]

)
. The result follows from the induction hypothesis.

Corollary 3.2.8. (Theorem BB) The divisor div(RF∗[σ]) is relative effective and the asso-
ciated morphism bξ : S → Symm(X) defines a morphism of stacks:

br : M[1/r] −→ Symm(X)
ξ 7−→ bξ.

which satisfies the following commutative diagram:

M[1/r] br //

χ
��

SymmX

∆
��

M br // SymrmX

Proof. We have a natural quasi-isomorphism [σr]
∼→ [δ]. It is shown in [FPFP, 3.2] that

div(RF∗[δ]) is a relative effective divisor of degree rm. Hence, corollary 3.2.73.2.7 shows
that div(RF∗[σ]) is relative effective as well and is of degree m. Corollary 3.2.73.2.7 also
shows that the given diagram is commutative.

3.3 Special Loci of the Moduli Points

In this subsection we will prove theorem BB part 11 by considering the case when
S = SpecC and examining the ramification properties induced by the rth root con-
dition.

Following [VV, GVGV] we will call a special loci a connected component where the map
f : C → X is not étale. Then each special locus is one of:

1. A smooth point of C where f is locally of the form z 7→ za+1 with a ∈ N.

2. A node of C such that on each branch f is locally of the form z 7→ zai with
ai ∈ N.

3. A genus g component B of C where f |B is constant and on the branches of C
meeting B the map f is locally of the form z 7→ zai with ai ∈ N.

We can also define a ramification order to each type of locus by:
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1. a. (2) a1 + a2. (3) 2gB − 2 +
∑

(ai + 1).

Remark 3.3.1. We use a slightly different definition for stable maps relative to a point
x ∈ X . Let (h : C → T, p→ X) be over S = SpecC inM[1/r]

g (X,µ) with f = p ◦ h.
Then a special locus of f will be a connected component where the map h : C → T
is not étale and not in the pre-image of a node of x. Everything else is the same. This
agrees with lemma 1.2.11.2.1 which shows that δ will be an isomorphism at pre-images of
nodes of T .

We will show that the existence of an rth root of δ is equivalent to each of these special
loci having ramification order divisible by r.

Suppose we have ξ ∈M1/r over S = SpecC. Then locally on the coarse space C for
each of the types of special loci δ : OC → Rξ is of the form:

1. C[x]→ 1
xaC[x] given by a 7→ ax

a

xa .

2. C[x, y]/(xy)→ 1
xa1−xa2 C[x, y]/(xy) given by a 7→ ax

a1−xa2
xa1−xa2 .

3. At each node C[x, y]/(xy)→ 1
xai−xbi C[x, y]/(xy) given by a 7→ a xai

xai−xbi .

3.3.2. The rth root condition σr = e(δ) forces there to be local roots for special loci
of types 1 and 2. This forces the divisibility of the ramification order:

For type 1: Locally we must have σ being of the form C[x]→ 1
xa/r

C[x] and thus
r divides a.

For type 2: Pulling back from the coarse space via γ we see that δ is of the
form C[u, v]/(uv) → 1

ua1r−va2rC[u, v]/(uv). Then taking the rth root we see

that σ is of the form C[u, v]/(uv)→ ζkr
ua1−ζrva2 C[u, v]/(uv) for some k ∈ Z/r.

However, there are multiplicities e1 and e2 of L at the node with e1 + e2 = r or
e1 = e2 = 0. Also we have ai = ei + nir. Hence, r divides a1 + a2.

3.3.3. We now consider special loci of type 3. Suppose there is a genus g sub-curve B
of C where f |B is constant and on the branches of C meeting B, the map f is locally
of the form z 7→ zai with ai ∈ N.

Let A = C \ B and α : A t B → C be the partial normalisation of C separating the
contracted component B from A. Also, let pi be the pre-images of the nodes on A and
qi the pre-images on B. Finally, let ai and bi be the multiplicities of L corresponding
to the branches on the nodes on A and B respectively.

Now e restricts to an isomorphism eB : (LB)r
∼−→ (Rξ)B ∼= ωB(

∑
qi). We have a

map g : B → B which forgets the orbifold structure at the points qi. Pushing forward
via g we have the following isomorphism coming from lemma 1.4.31.4.3:

eB : (LB)r
∼−→ ωB(

∑
qi −

∑
biqi)

Hence, ωB(
∑
qi −

∑
biqi) must have degree divisible by r. Then r divides 2g − 2 +∑

(1− bi) and also divides 2g − 2 +
∑

(ai + 1).

Remark 3.3.4. To consider the relative case in 3.3.33.3.3 we must replace f : C → X by
h : C → T . Everything else remains the same.
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3.3.5. To finish the proof of the theorem we to show that such an rth root can be
constructed if the ramification loci are of the desired form. First we observe that there
is a tensor product decomposition of δ:

δ = δsm ⊗ δn ⊗ δcn

where δsm : OC → Rsm and δn : OC → Rn define the divisors of δ supported on
the smooth locus of C and nodes of C not meeting contracted components. Then
δcn : OC → Rcn is the unique section such that the above decomposition holds.

After reversing the reasoning of 3.3.23.3.2 we have rth roots σsm : OC → Lsm and
σn : OC → Ln of δsm and δn respectively. For the contracted components δcn the line
bundle Rcn will locally be of the form 1

uair−vbirC[u, v]/(uv) at the connecting nodes

and δcn will be of the form 1 7→ uair

uair−vbir . Then let Lcn be an rth root of Rcn which

is locally of the form 1
uai−ζrvbi

C[u, v]/(uv) at the connecting nodes and σcn will be

of the form 1 7→ uai

uai−vbi and identical to δcn elsewhere.

Hence we have proved theorem BB part 11.

4 Cotangent Complex ofM1/r

g (X, d)

Section 4 Notation: Recall the notation conventionnotation convention. The following diagram shows
the relationships between the relevant spaces. It is commutative and many of the
squares are cartesian.

Totπ∗Lr CTotπ∗Lr TotLr

M[r] C[r] C[r]

Totπ∗L CTotπ∗L TotL

M[r] C[r] C[r]

M[r] C[r]

M[ 1r ] C[ 1r ]
ρ

ψ e

π

β β̂ β̌

i

jπ

ϕ e′

π

α α̂ α̌

i′ j′

ν ν̂

τ τ̂ τ̌

f

f′

(I.13)

Here π and ρ are the universal curves of their respective spaces. The maps i and i′

are the natural inclusions defined by definition 2.3.12.3.1.33 and equation (I.12I.12) respectively.
The maps ϕ and ψ are the universal curves defined in 2.2.12.2.1 with e and e′ being the
natural evaluation maps defined by equation (I.10I.10). The power maps τ and τ̌ are
defined in 2.2.32.2.3 and τ̂ is the pullback by ϕ of τ . The maps α, α̂, α̌, β, β̂ and β̌ are
the natural projection maps. The maps j and j′ are pullbacks of i and i′ by ψ and ϕ
respectively. Lastly, we also define the maps f := i ◦ e and f′ := i′ ◦ e′.

We denote the expected number of special loci of order r in the generic case by
m = 1

r (2g− 2−d(2gX − 2)) in the caseM =Mg(X, d) and m = 1
r (2g− 2 + l(µ) +

|µ|(1− 2gX)) in the caseM =Mg(X,µ).
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4.1 Perfect Relative Obstruction Theory

Recall, that for a proper representable Gorenstein morphism a : X → Y of relative
dimension n with relative dualising sheaf ωa and any complexes F• ∈ D(X ) and
G• ∈ D(Y) one has the following functorial isomorphism coming from Serre duality
(see for example [BBHBBH, eq. C.12]):

HomD(X )

(
Ra∗F•,G•

) ∼−→ HomD(Y)

(
F•, a∗G• ⊗ ωa[n]

)
. (I.14)

Hence one obtains the following natural morphism by looking at the pre-image of the
identity:

Ra∗(a
∗G• ⊗ ωa)[n] −→ G•. (I.15)

Now, consider the following sub-diagram of (I.13I.13) coming from the topmost horizontal
square and the diagonal square:

M[1/r]

ν

��

C[1/r]ρoo

ν̂

��

f // TotL

τ̌

��
M[r] C[r]πoo f′ // TotLr

There are two natural maps arising from this diagram:

Rρ∗(ρ
∗Lν ⊗ ωρ)[1] −→ Lν and Lf∗Lτ̌ −→ Lν̂ ∼= ρ∗Lν .

Combining these two we can we define the following morphism:

φν : Rρ∗(Lf
∗Lτ̌ ⊗ ωρ)[1] −→ Lν .

We will show in this subsection that this morphism is a perfect relative obstruction
theory.

We will begin by examining a related morphism constructed in the same way. Specif-
ically, we consider the the following sub-diagram of (I.13I.13) coming from the middle
horizontal squares:

Totπ∗L

τ

��

CTotπ∗L
ψoo

τ̂

��

e // TotL

τ̌

��
Totπ∗Lr CTotπ∗Lr

ϕoo e′ // TotLr

(I.16)

As before we have two natural maps

Rψ∗(ψ
∗Lτ ⊗ ωψ)[1] −→ Lτ and Le∗Lτ̌ −→ Lτ̂ ∼= ψ∗Lτ .

which combine to obtain the morphism:

φτ : Rψ∗(Le
∗Lτ̌ ⊗ ωψ)[1] −→ Lτ .

The following lemma shows that φτ is a relative obstruction theory.
Lemma 4.1.1. There is a commuting diagram where the rows are distinguished triangles:

Lτ∗Rϕ∗
(
α̂∗L-r ⊗ ωϕ

)
[1] //

Lτ∗φα

��

Rψ∗
(
β̂∗L-1 ⊗ ωψ

)
[1] //

φβ

��

Rψ∗
(
Le∗Lτ̌ ⊗ ωψ

)
[1]

φτ

��

// Lτ∗Rϕ∗
(
α̂∗L-r ⊗ ωϕ

)
[2]

φτ [1]

��
Lτ∗Lα // Lβ // Lτ // Lτ∗Lα[1]

such that φβ and φα are relative obstruction theories. Moreover, φτ is also a relative
obstruction theory.
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Proof. Consider the leftmost square of (I.16I.16) and note that it is cartesian. The dis-
tinguished triangle arising from the cotangent complex gives the following diagram
where the rows are distinguished triangles:

Rψ∗(ψ∗Lτ∗Lα ⊗ ωψ)[1] //

��

Rψ∗(ψ∗Lβ ⊗ ωψ)[1] //

��

Rψ∗(ψ∗Lτ ⊗ ωψ)[1]

��

// Rψ∗(ψ∗Lτ∗Lα ⊗ ωψ)[2]

��
Lτ∗Lα // Lβ // Lτ // Lτ∗Lα[1]

(I.17)

We also have isomorphisms:

Rψ∗(ψ
∗Lτ ∗Lα ⊗ ωψ) ∼= Rψ∗Lτ̂

∗(ϕ∗Lα ⊗ ωϕ) ∼= Lτ ∗Rϕ∗(ϕ
∗Lα ⊗ ωϕ)

making the first column into the derived pullback of the canonical morphism from
equation (I.15I.15):

Rϕ∗(ϕ
∗Lα ⊗ ωϕ)[1] −→ Lα.

Now consider the rightmost square of (I.16I.16) and note that it has all morphisms over
C. This gives the following commutative diagram with distinguished triangles as rows,
noting that Lτ̂ ∗Le′∗Lα̌ ∼= Le∗Lτ̌ ∗Lα̌:

Lτ̂ ∗Le′∗Lα̌ //

��

Le∗Lβ̌ //

��

Le∗Lτ̌

��

// Lτ̂ ∗Le′∗Lα̌[1]

��
Lτ̂ ∗Lα̂ // Lβ̂ // Lτ̂ // Lτ̂ ∗Lα̂[1]

Lτ̂ ∗ϕ∗Lα //

∼=

OO

ψ∗Lβ //

∼=

OO

ψ∗Lτ

∼=

OO

// Lτ̂ ∗ϕ∗Lα[1]

∼=

OO
(I.18)

Also, note that Le∗Lβ̌ ∼= Le∗(β̌∗L∨) ∼= L(β̌◦e)∗L∨ ∼= β̂∗L∨ and similarly, Le′∗Lα̌ ∼=
α̂∗(Lr)∨. We now obtain the desired diagram by combining (I.18I.18) with (I.17I.17). We de-
note the appropriate morphisms by φτ , φβ and φα. It is shown in [CLCL, Prop. 2.5] that
φβ and φα are perfect relative obstruction theories.

To show that φτ is an obstruction theory it will suffice to show that H-1(cone(φτ )) =
H0(cone(φτ )) = 0. We have that β : Totπ∗Lr →M is representable, so H1(Lβ) =
0 andHi(φβ) = 0 for all i ≥ −1. Also, cone(φα) is quasi-isomorphic to a flat complex
F• which is zero in all degrees greater than −2. Now by definition Lτ ∗cone(φα) =
τ ∗F• also vanished in degrees greater than −2, making Hi(Lτ ∗φα) = 0 for all
i ≥ −1. The result now follows from taking the cohomology exact sequence of the
distinguished triangle of the cones:

H-1(cone(φβ)) // H-1(cone(φτ )) // H0(cone(Lτ ∗φα))

// H0(cone(φβ)) // H0(cone(φτ )) // H1(cone(Lτ ∗φα)).

Lemma 4.1.2. φν is the composition of Li∗φτ and the natural differential morphism
Li∗Lτ → Lν . In particular, φν is a relative obstruction theory.
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Proof. There is a commuting diagram, noting that there is an isomorphism Lj∗ψ∗Lτ ∼=
ρ∗Lj∗Lτ :

Lj∗Le∗Lτ̌ // Lj∗Lτ̂

��

Lj∗ψ∗Lτ
∼=oo

��
Lf∗Lτ̌ // Lν̂ ρ∗Lν

∼=oo

which gives the left square of the following diagram after applying the functor Rρ∗( _⊗
ωρ)[1] and using the isomorphism of functors Rρ∗(Lj∗ _ ⊗ ωρ)[1] ∼= Li∗Rψ∗( _ ⊗
ωψ)[1] :

Li∗Rψ∗(Le
∗Lτ̌ ⊗ ωρ)[1] //

∼=
��

Li∗Rψ∗(ψ
∗Lτ ⊗ ωψ)[1]

��

// Li∗Lτ

��
Rρ∗(Lf

∗Lτ̌ ⊗ ωρ)[1] // Rρ∗(ρ∗Lν ⊗ ωρ)[1] // Lτ̌

Now, Li∗φτ is the composition of the top row and φν is the composition of the bottom
row. Hence, φν is the composition of the desired morphisms.

The maps i and i′ are immersions and τ and ν are representable, so Li∗Lτ → Lν
is a relative obstruction theory (see for example [BFBF, §7]). We now consider the dis-
tinguished triangle of cones coming from composition of lemma 3.2.53.2.5. The reasoning
that φν is a relative obstruction theory is now the same as for φτ in the previous
lemma, lemma 4.1.14.1.1.

Lemma 4.1.3. The left derived pullback by f of the map τ̌ ∗Lα̌ → Lβ̌ is the map:

r j∗σr−1 : j∗β̂∗L-r −→ j∗β̂∗L-1

where σ is the universal rth root.

Proof. It will suffice to show this locally. The local situation is described by the diagram

A1 × U //

t
��

[A1 × U/G] //

��

TotL

τ̌
��

A1 × U //

a

��

[A1 × U/G] //

��

TotLr

α̌
��

U // [U/G] // C[r]

where U = SpecB, G is a finite group and t is defined by the morphism of B-algebras
B[z]→ B[w] with z 7→ wr . On U we have that L is given by an equivariant line bun-
dle E defined by a local generator φ. Then Lr corresponds to Er with φr .

We have that Lβ̌ ∼= Ωβ̌
∼= β̌∗L-1 and the last morphism is defined locally by dw 7→ 1

φ .

Similarly, Lα̌ ∼= Ωα̌ ∼= α̌∗L-r is defined by dz 7→ 1
φr and the map dτ̌ is defined by:

dt : B[w]⊗A[z]dz −→ A[w]dw
1⊗ dz 7−→ rwr−1dw.

Let σB ∈ B be the pullback of σ to U . Locally on U the map j is defined by the
section σB via the following map B[w]→ B : w 7→ σB . Hence, pulling back via j we
have that the map j∗dτ̌ is locally defined by:

j∗dt : B 1
φr −→ B 1

φ
1
φr 7−→ r(σB)r−1 1

φ .
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Theorem 4.1.4. The map φν : Rρ∗(Lf
∗Lτ̌ ⊗ ωρ)[1] −→ Lν is a perfect relative ob-

struction theory with relative virtual dimension (1 − r)m. (Note that rm is the virtual
dimension ofM[r]. This follows from the discussion after this theorem.)

Proof. Let ρ : C → S be a family in M[ 1r ]. In the derived category we have the
following isomorphisms

Lf∗Lτ̌ ⊗ ωρ ∼= Lf∗
(
[τ̌ ∗Lα̌ −→ Lβ̌]⊗ ωρ

) ∼= [ β̂∗L-r ⊗ ωρ −→ β̂∗L-1 ⊗ ωρ
]
.

Denote the restriction to S of this complex by

E• = [E−1
θ−→ E0] = [f∗ωX ⊗OC

id⊗σr−1

−→ f∗ωX ⊗ Lr−1] (I.19)

with the last equality following from lemma 4.1.34.1.3. Let M be a line bundle on C which
is ample on the fibres of ρ. Then for sufficiently large n we have for each Ei the
following properties:

1. ρ∗ρ∗(Ei ⊗Mn)⊗M -n −→ Ei is surjective.

2. R1ρ∗Ei ⊗Mn = 0.

3. For all z ∈ S we have H0(Cz, ρ
∗ρ∗(Ei ⊗Mn)⊗M -n) = 0.

Denote the locally free sheaf ρ∗ρ∗(E0⊗Mn)⊗M−n by AE0 and the associated map
from property 11 above by a. Then using the fibre product for modules we have the
following commuting diagram with exact rows

0 // ker(a) // G //

θ̃

��

E-1
//

θ

��

0

0 // ker(a) // AE0

a // E0
// 0

(I.20)

where G also fits into the exact sequence:

0 // G // E-1 ⊕AE0

(-θa)
// E0

// 0. (I.21)

The diagram in (I.20I.20) shows that there is an isomorphism [G
θ̃−→ AE0

] ∼= [E-1
θ−→ E0]

in the derived category.

The exact sequence in (I.21I.21) shows that G is locally free and hence the diagram in
(I.20I.20) contains only flat modules. Hence for z ∈ S we may restrict to the fibre Cz and
maintain exactness. Then using the snake lemma we have an isomorphism

ker θz ∼= ker θ̃z.

We claim that H0(Cz, ker θz) = 0. To see this take s ∈ H0(Cz, ker θz) and note that
s ∈ H0(Cz, E-1) and s is in the kernel of θz . From (I.19I.19) we know that (E-1)z = f∗zωX
and θz = σr−1

z , so θz only vanishes where fz is constant. Hence, we let B ⊂ Cz
be the union of components contracted by fz . Then we have Supp s ⊂ B and
(E-1)z|B = (f∗zωX)|B ∼= OB so we must have s = 0. Hence, H0(Cz, ker θz) =

H0(Cz, ker θ̃z) = 0.
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From property 33 of the definition of AE0
we have H0(Cz, (AE0

)z) ∼= 0. So the
following exact sequence shows that H0(Cz, Gz) = 0:

0 −→ H0(Cz, ker θ̃z) −→ H0(Cz, Gz) −→ H0(Cz, (AL̃)z)

Hence, we have that R1ρ∗G is locally free and Rρ∗G ∼= [R1ρ∗G][−1]. Moreover

Rρ∗[G
θ̃−→ AL̃] ∼= [R1ρ∗G

R1ρ∗θ̃−→ R1ρ∗AL̃][−1] is a complex of locally free sheaves
concentrated in degree [0, 1].

The virtual dimension follows immediately from Riemann-Roch for twisted curves (see
[AGVAGV, §7.2]) applied to E•.

The spaceM[r] has a natural perfect obstruction theory following from the construc-
tion of [B2B2, L2L2]. It will suffice to show that the space of r-stable maps Mr has a
perfect obstruction theory since by lemma 2.1.22.1.2 the mapM[r] →Mr is étale. Recall
the construction of the perfect obstruction theory for the moduli space of stable maps
M is defined via the relative to the forgetful morphism

Mg(X, d) −→Mg.

It is pointed out in [GVGV, §2.8] that in the case of relative stable maps the perfect
obstruction theory can be constructed relative to the morphism

Mg(X,µ) −→Mg,l(µ) × TX

where TX is the moduli space parameterising the degenerated targets. We have the
following two cartesian squares where the bottom arrows are flat:

Mr

g(X, d) //

pabs

��

Mg(X, d)

��
Mr
g

//Mg

Mr

g(X,µ) //

prel

��

Mg(X,µ)

��
Mr
g,l(µ) × TX //Mg,l(µ) × TX

We let p : Mr → X be one of pabs or prel maps depending on the choice of
Mr . Then we have a natural perfect relative obstruction for p by pulling back via
Mr →M:

φp : E•p −→ Lp.
Then a perfect obstruction theory forMr is given by the following cone construction:

E•p[−1] //

φp[−1]

��

p∗LX // F •Mm
//

φ

��

E•p

φp

��
Lp[−1] // p∗LX // LMr // Lν

Corollary 4.1.5. (Theorem CC) If g = 0 there is a perfect obstruction theory for M[1/r]

giving virtual dimension m. Moreover, sinceM[1/r] →M1/r is étale in genus 0, there is
a perfect obstruction theory forM1/r .

Proof. Let E• = Rρ∗(Lf
∗Lτ̌ ⊗ ωρ). Then there the following is a commutative

diagram with distinguished triangles for rows:

E•[−1] //

φν [−1]

��

ν∗LM[r]
// F • //

φ

��

E•

φν

��
Lν [−1] // ν∗LM[r]

// LM[1/r]
// Lν



4. COTANGENT COMPLEX OFM1/r

g (X, d) 31

Here F • is defined via the cone construction. As before we have an exact sequence of
cohomology of the cones:

H-1(cone(id)) // H-1(cone(φ)) // H-1(cone(φν))

// H0(cone(id)) // H0(cone(φ)) // H0(cone(φν)).

Which shows that H-1(cone(φ)) = H0(cone(φ)) = 0.
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Chapter II

The Donaldson-Thomas
Theory of the Banana
Threefold with Section Classes

1 Introduction

1.1 Donaldson-Thomas Partition Functions

Donaldson-Thomas theory provides a virtual count of curves on a threefold. It gives
us valuable information about the structure of the threefold and has strong links to
high-energy physics.

For a non-singular Calabi-Yau threefold Y over C we let

Hilbβ,n(Y ) =
{
Z ⊂ Y

∣∣∣ [Z] = β ∈ H2(Y ), n = χ(OZ)
}

be the Hilbert scheme of one dimensional proper subschemes with fixed homology
class and holomorphic Euler characteristic. We can define the (β, n) Donaldson-
Thomas invariant of Y by:

DTβ,n(Y ) = 1 ∩ [Hilbβ,n(Y )]vir.

Behrend proved the surprising result in [B1B1] that the Donaldson-Thomas invariants
invariants are actually weighted Euler characteristics of the Hilbert scheme:

DTβ,n(Y ) = e(Hilbβ,n(Y ), ν) :=
∑
k∈Z

k · e(ν−1(k)).

Here ν : Hilbβ,n(Y ) → Z is a constructible function called the Behrend function and
its values depend formally locally on the scheme structure of Hilbβ,n(Y ). We also
define the unweighted Donaldson-Thomas invariants to be:

D̂Tβ,n(Y ) = e(Hilbβ,n(Y )).

These are often closely related to Donaldson-Thomas invariants and their calculation
provides insight to the structure of the threefold. Moreover, many important prop-
erties Donaldson-Thomas invariants such as the PT/DT correspondence and the flop
formula also hold for the unweighted case [T1T1, T2T2].

33
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Figure II.1: A visual representation of the banana threefold. On the left the diagonal
S∆ and the anti-diagonal Sop are highlighted. On the right the two rational elliptic
surfaces S1 and S2 are highlighted.

The depth of Donaldson-Thomas theory is often not clear until one assembles the
invariants into a partition function. Let {C1, . . . , CN} be a basis for H2(Y,Z), chosen
so that if β ∈ H2(Y,Z) is effective then β = d1C1 + · · · + dNCN with each di ≥ 0.
The Donaldson-Thomas partition function of Y is:

Z(Y ) :=
∑

β∈H2(Y,Z)

∑
n∈Z

DTβ,n(Y )Qβpn

=
∑

d1,...,dN≥0

∑
n∈Z

DT(
∑
i diCi),n

(Y )Qdii p
n.

We also define the analogous partition function Ẑ for the unweighted Donaldson-
Thomas invariants.

Remark 1.1.1. This choice of variable is not necessarily the most canonical as shown
in [BrBr] where the variable p is substituted for −p. However, in this chapter we will
be focusing on the unweighted Donaldson-Thomas invariants where this choice makes
the most sense.

This partition function is very hard to compute and for proper Calabi-Yau threefolds,
the only known complete examples are in computationally trivial cases. However,
when we restrict our attention to subsets of H2(Y,Z) there are many remarkable re-
sults. Two case which we will be related to computations are the Schoen (Calabi-Yau)
threefold of [SS] and the banana (Calabi-Yau) threefold of [BrBr].

We will employ computational techniques developed in [BKBK] for studying Donaldson-
Thomas theory of local elliptic surfaces.

1.2 Donaldson-Thomas Theory of Banana Threefolds

The banana threefold is of primary interest to us and is defined as follows. Let
π : S → P1 be a generic rational elliptic surface with a section ζ : P1 → S. We will
take S to be P2 blown-up at 9 points which gives rise to 9 natural choices for ζ . The
associated banana threefold is the blow-up

X := Bl∆(S ×P1 S) (1)
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Figure II.2: On the left is a visual representation of the rational elliptic surfaces S1, S2

and Sop. On the right is the diagonal surface S∆. Note that the exceptional curves in
the fibres of the pencil have order 2.

where ∆ is the diagonal divisor in S×P1 S. The surface S is smooth but the morphism
π : S → P1 is not. It is singular at 12 points of S and this gives rise to 12 conifold
singularities of S ×P1 S that all lie on the divisor ∆. This makes X a conifold resolu-
tion of S ×P1 S. It is a non-singular simply connected proper Calabi-Yau threefold as
shown in [BrBr, Prop. 28].

The section ζ : P1 → S gives a section σ : P1 → X of the natural map pr : X → P1.
It also gives natural sections of the projections pri : X → S which we denote by S1

and S2. These are both divisors of X that are copies of the rational elliptic surface.
The diagonal ∆ and anti-diagonal ∆op of S ×P1 S are also divisors which are copies
of S. The anti-diagonal intersects the diagonal in a curve on ∆op, so it is unaffected
by the blow-up. We denote the anti-diagonal divisor in X by Sop and the proper
transform of the diagonal by S∆. The latter is a rational elliptic surface blown-up at
the 12 nodal points of the fibres.

The generic fibres of the map pr : X → P1 are Abelian surfaces of the form E × E
where E = π−1(x) is an elliptic curve that is the fibre of a point x ∈ P1. The projec-
tion map pr also has 12 singular fibres which are non-normal toric surfaces. They are
each compactifications of C∗ ×C∗ by a banana configuration and their normalisations
are isomorphic to P1 × P1 blown up at 2 points [BrBr, Prop. 24].

Definition 1.2.1. A banana configuration is a union of three curves C1∪C2∪C3 where
Ci ∼= P1 with NCi/X ∼= O(−1)⊕O(−1) and C1∩C2 = C1∩C3 = C2∩C3 = {z1, z2}
where z1, z2 ∈ X are distinct points. Also, there exist formal neighbourhoods of z1

and z2 such that the curves Ci become the coordinate axes in those coordinates. We
label these curves by their intersection with the natural surfaces in X . That is C1 is
the unique banana curve that intersects S1 at one point. Similarly, C2 intersects S2

and C3 intersects Sop.

The banana threefold contains 12 copies of the banana configuration. We label the
individual banana curves by C(j)

i (and simply Ci when there is no confusion). The
banana curves C1, C2, C3 generate a sub-lattice Γ0 ⊂ H2(X,Z) and we can consider
the partition function restricted to these classes:

ZΓ0
:=
∑
β∈Γ0

∑
n∈Z

DTβ,n(X)Qβpn.

In [BrBr, Thm. 4], this rank three partition function is computed to be:

ZΓ0 =
∏

d1,d2,d3≥0

∏
k

(1−Qd11 Q
d2
2 Q

d3
3 (−p)k)−12c(‖d‖,k) (2)
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Figure II.3: On the left is a depiction of the banana configuration. On the right is the
normalisation of the singular fibre Fban = pr−1(x) with the restrictions of the surfaces
S1, S2, Sop.

where d = (d1, d2, d3) and the second product is over k ∈ Z unless d = (0, 0, 0) in
which case k > 0. (Note the change in variables from [BrBr].) The powers c(‖d‖, k) are
defined by

∞∑
a=−1

∑
k∈Z

c(a, k)Qayk :=

∑
k∈ZQ

k2(−y)k(∑
k∈Z+ 1

2
Q2k2(−y)k

)2 =
ϑ4(2τ, z)

ϑ1(4τ, z)2

and ‖d‖ := 2d1d2 + 2d2d3 + 2d3d1 − d2
1 − d2

2 − d2
3.

Remark 1.2.2. We can pass to the unweighted ẐΓ0
from the weighted partition func-

tion ZΓ0
by the change of variables Qi 7→ −Qi and p 7→ −p.

We can include the class of the section σ to generate a larger sub-lattice Γ ⊂ H2(X,Z).
The partition function of this sub-lattice is currently unknown. The purpose of this
chapter is to make progress towards understanding this partition function. We will be
calculating the unweighted Donaldson-Thomas theory in the classes:

β = σ + (0, d2, d3) := σ + 0C1 + d2 C2 + d3 C3,

by computing the following the partition function

Ẑσ+(0,•,•) :=
∑

d2,d3≥0

∑
k∈Z

D̂Tβ,n(Y )Qd22 Q
d3
3 p

n,

which we give in terms of the MacMahon functions M(p,Q) =
∏
m>0(1 − pmQ)−m

and their simpler version M(p) = M(p, 1).

Theorem A The above unweighted Donaldson-Thomas functions are:

Ẑσ+(0,•,•) is:

Ẑ(0,•,•)

(1− p)2

∏
m>0

1

(1−Qm2 Qm3 )8(1− pQm2 Qm3 )2(1− p−1Qm2 Q
m
3 )2

where Ẑ(0,•,•) is the Q0
1 part of the unweighted version of the Γ0 partition function

(22) and is given by:

M(p)24
∏
d>0

M(Qd2Q
d
3, p)

24

(1−Qd2Qd3)12M(−Qd−1
2 Qd3, p)

12M(−Qd2Q
d−1
3 , p)12

.
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The connected unweighted Pandharipande-Thomas version of the above formula is
identified as the connected version of the Pandharipande-Thomas theory for a rational
elliptic surface [BKBK, Cor. 2] in the following corollary.

Corollary B The connected unweighted Pandharipande-Thomas partition function is:

ẐPT,Con
σ+(0,•,•) := log

(
Ẑσ+(0,•,•)

Ẑ(0,•,•)|Qi=0

)

=
−1

(1− p)2

∏
m>0

−1

(1−Qm2 Qm3 )8(1− pQm2 Qm3 )2(1− p−1Qm2 Q
m
3 )2

.

We will also be computing the unweighted Donaldson-Thomas theory in the classes:

β = b σ + (0, 0, d3), β = b σ + (0, 1, d3) and β = b σ + (1, 1, d3)

and the permutations involving C1, C2. So for i, j ∈ {0, 1} we define

Ẑ•σ+(i,j,•) :=
∑
b,d3≥0

∑
k∈Z

D̂Tβ,n(Y )QbσQ
d3
3 p

n.

The formulas will be given in terms of the functions which are defined for g ∈ Z:

ψg = ψg(p) :=
(
p

1
2 − p− 1

2

)2g−2

=

(
p

(1− p)2

)1−g

.

Theorem C The above unweighted Donaldson Thomas functions are:

1. Ẑ•σ+(0,0,•) is:

M(p)24
∏
m>0

(1 + pmQσ)m(1 + pmQ3)12m.

2. Ẑ•σ+(0,1,•) = Ẑ•σ+(1,0,•) is:

Ẑ•σ+(0,0,•) ·
((

12ψ0 +Q3(24ψ0 + 12ψ1) +Q2
3(12ψ0)

)
+QσQ3

(
12ψ0 + 2ψ1

))
3. Ẑ•σ+(1,1,•) is:

Ẑ•σ+(0,0,•)

·
( (

(144ψ-1 + 24ψ0 + 12ψ1) +Q3(576ψ-1 + 384ψ0 + 72ψ1 + 12ψ2)

+Q2
3(864ψ-1 + 720ψ0 + 264ψ1 + 24ψ2)

+Q3
3(576ψ-1 + 384ψ0 + 72ψ1 + 12ψ2) +Q4

3(144ψ-1 + 24ψ0 + 12ψ1)
)

+Qσ

((
12ψ0 + 2ψ1

)
+Q3

(
288ψ-1 + 96ψ0 + 44ψ1

)
+Q2

3

(
576ψ-1 + 600ψ0 + 156ψ1 + 24ψ2

)
+Q3

3

(
288ψ-1 + 96ψ0 + 44ψ1

)
+Q4

3

(
12ψ0 + 2ψ1

))
+Q2

σQ
2
3

(
144ψ-1 + 48ψ0 + 4

))
.
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The connected unweighted Pandharipande-Thomas versions of the above formula con-
tain the same information but are given in the much more compact form. In fact we
can present the same information in an even more compact form using the unweighted
Gopakumar-Vafa invariants n̂gβ via the expansion

ẐPT,Con
Γ (X)

=
∑

β∈Γ\{0}

∑
g≥0

∑
m>0

n̂gβ ψg(p
m) (−Q)mβ

=
∑

b, d1, d2, d3 ≥ 0
(b, d1, d2, d3) 6= 0

∑
g≥0

∑
m>0

n̂g(b,d1,d2,d2) ψg(p
m) (-Qσ)mb(-Q1)md1(-Q2)md2(-Q3)md3 .

As noted before, these express the same information as the above generating functions.
For β = (d1, d2, d3), these invariants are given in [BrBr, §A.5]. We present the new
invariants for β = bσ + (i, j, d3) where b > 0.

Corollary D Let i, j ∈ {0, 1}, b > 0 and β = bσ + (i, j, d3). The unweighted
Gopakumar-Vafa invariants n̂gβ are given by:

1. If b > 1 we have n̂gβ = 0.

2. If b = 1 then the non-zero invariants are given in the following table:

Table 1: The non-zero n̂gβ for β = σ + (i, j, d3) where i, j ∈ {0, 1} and d3 ≥ 0.

(d1, d2, d3) (0, 0, 0) (0, 1, 1) (1, 0, 1) (1, 1, 0) (1, 1, 1) (1, 1, 2) (1, 1, 3) (1, 1, 4)

g = 0 1 12 12 12 48 216 48 12

g = 1 0 2 2 2 44 108 44 2

g = 2 0 0 0 0 0 24 0 0

Remark 1.2.3. We note that the values given only depend on the quadratic form
‖d‖ := 2d1d2 + 2d1d3 + 2d2d3 − d2

1 − d2
2 − d3

3 appearing in the rank 3 Donaldson-
Thomas partition function of [BrBr, Thm. 4]. However, there is no immediate geometric
explanation for this fact.

Corollaries BB and DD will be proved in section 6.16.1.

1.3 Notation

The main notations for this chapter have been defined above in section 1.21.2. In partic-
ular X will always denote the banana threefold as defined in equation (11).

1.4 Future

The calculation here is for the unweighted Donaldson-Thomas partition function.
However, the method of [BKBK] also provides a route (up to a conjecture) of comput-
ing the Donaldson-Thomas partition function. The following are needed in order to
convert the given calculation:

1. A proof showing the invariance of the Behrend function under the (C∗)2-action
used on the strata.

2. A computation of the dimensions of the Zariski tangent spaces for the various
strata.
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A comparison of the unweighted and weighted partition functions of the rank 3 lattice
of [BrBr] reveals the likely differences:

In the variables chosen in this chapter one can pass from the unweighted to the
weighted partition functions by the change of variables Qi 7→ −Qi and p 7→ −p.

Moreover, the conifold transition formula reveals further insight by comparing to the
Donaldson-Thomas partition function of the Schoen variety with a single section and
all fibre classes, which was shown in [ObPiObPi] (via the reduced theory of the product of
a K3 surface with an elliptic curve) to be given by the weight 10 Igusa cusp form.

As we mentioned previously the Donaldson-Thomas partition function is very hard to
compute. So much so that for proper Calabi-Yau threefolds, the only known complete
examples are in computationally trivial cases. This is even true conjecturally and even
a conjecture for the rank 4 partition function is highly desirable. The work here shows
underlying structures that a conjectured partition function must have.

2 Overview of the Computation

2.1 Overview of the Method of Calculation

We will closely follow the method of [BKBK] developed for studying the Donaldson-
Thomas theory of local elliptic surfaces. However, due to some differences in geome-
try a more subtle approach is required in some areas. In particular, the local elliptic
surfaces have a global action which reduces the calculation to considering only the
so-called partition thickened curves.

Our method is based around the following continuous map:

Cyc : Hilb1(X)→ Chow1(X).

which takes a one dimensional subscheme to its 1-cycle. The fibres of this map are of
particular importance and we denote them by Hilb•Cyc

(
X, q

)
where q ∈ Chow1(X).

The bullet notation will be elaborated on further in this section.

Remark 2.1.1. No such morphism exists in the algebraic category. In fact we note
from [KK, Thm. 6.3] that there is only a morphism from the semi-normalisation
Hilb1(X)SN → Chow1(X). However, Hilb1(X)SN is homeomorphic to Hilb1(X),
which gives rise to the above continuous map.

Broadly, we will be calculating the Euler characteristics e
(
Hilbβ,n(X)

)
using the fol-

lowing method:

1. Push forward the calculation to an Euler characteristic on Chow1(X), weighted
by the constructible function (Cyc∗1)(q) := e

(
Hilb•Cyc(X, q)

)
. This is further

described in sections 2.22.2 and 2.32.3.

2. Analyse the image of Cyc and decompose it into combinations of symmetric
products where the strata are based on the types of subscheme in the fibres
Hilb•Cyc(X, q). This is done in section 33.

3. Compute the Euler characteristic of the fibres e
(
Hilb•Cyc(X, q)

)
and show that

they form a constructible function on the combinations of symmetric products.
This is done in section 55.

4. Use the following lemma to give the Euler characteristic partition function.
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Figure II.4: A depiction of the process for reducing to partition thickened curves.
Clockwise from the top-left we have: a) Consider a 1-cycle in the Chow scheme; b)
Consider the fibre of the given 1-cycle; c) Reduce to a computation on the open subset
of Cohen-Macaulay subschemes; d) Reduce to a computation on partition thickened
schemes.

Lemma 2.1.2. [BKBK, Lemma 32] Let Y be finite type over C and let g : Z≥0 → Z((p)) be
any function with g(0) = 1. Let G : Symd(Y ) → Z((p)) be the constructible function
defined by

G(ax) =
∏
i

g(ai)

where ax =
∑
i aixi ∈ Symd(Y ) and xi ∈ Y are distinct points. Then

∞∑
d=0

e(Symd(Y ), G)qd =

( ∞∑
a=0

g(a)qa

)e(Y )

To compute the Euler characteristics of the fibres (Cyc∗1)(q) := e
(
Hilb•Cyc(X, q)

)
we

use the following method made rigorous in section 44:

1. Consider the image of the fibre under the constructible morphism denoted κ :
Hilb1(X) → Hilb1(X) which takes a subscheme Z to the maximal Cohen-
Macaulay subscheme ZCM ⊂ Z .

2. Denote the open subset contain Cohen-Macaulay subschemes by Hilb•CM(X, q) ⊂
Hilb•Cyc(X, q).
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Figure II.5: A depiction of how the topological vertex is applied to calculate Euler
characteristic of a given strata.

3. Note the equality of the Euler characteristic e
(
Hilb•Cyc(X, q)

)
and that of the

weighted Euler characteristic e
(
Hilb•CM(X, q), κ∗1

)
where κ∗1 is the constructible

function (κ∗1)(p) = e(κ−1(p)).

4. Define a (C∗)2-action on Hilb•CM(X, q) and show that κ∗1(p) = κ∗1(α · p)

meaning e
(
Hilb•Cyc(X, q)

)
= e
(
Hilb•CM(X, q)(C∗)2 , κ∗1

)
. This technique is dis-

cussed in section 4.24.2.

5. Identify the (C∗)2-fixed points Hilb•CM(X, q)(C∗)2 as a discrete subset containing
partition thickened curves. These neighbourhoods and this action are given
explicitly in section 4.44.4.

6. Calculate the Euler characteristics e
(
Hilb•CM(X, q)(C∗)2 , κ∗1

)
using the Quot

scheme decomposition and topological vertex method of [BKBK]. The concept of
this is depicted in figure 2.12.1 and described below. Further technical details are
given in section 4.54.5.

The Euler characteristic calculation of e
(
Hilb•CM(X, q)(C∗)2 , κ∗1

)
for theorems AA and

CC follow similar methods but have different decompositions. The calculations are com-
pleted by considering the different types of topological vertex that occur for each fixed
point in Hilb•CM(X, q)(C∗)2 .

Since the fixed locus Hilb•CM(X, q)(C∗)2 will be disjoint we can consider individual
subschemes C ∈ Hilb•CM(X, q)(C∗)2 and their contribution to the Euler characteristic
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e
(
Hilb•CM(X, q)(C∗)2 , κ∗1

)
. To compute the contribution from C we must decompose

X as follows:

1. Take the complement W = X \ C .

2. Consider set of singularities of the underlying reduced curve. Denote this set
C�.

3. Define C◦ = Cred \ C� to be its complement.

The curve C will be partition thickened. So each formal neighbourhood of a point
x ∈ C� will give rise to a 3D partition. Similarly points on U ∈ C◦ will also give
rise to 3D partitions and points on W will give rise to the empty partition. Using
techniques from section 4.54.5 the Euler characteristics can then be determined.

This calculation for theorem AA is finalised in section 5.15.1. Generalities for the proof of
theorem CC are given in section 5.25.2 and the individual calculations are given in sections
5.35.3, 5.45.4 and 5.55.5.

2.2 Review of Euler characteristic

We begin by recalling some facts about the (topological) Euler characteristic. For
a scheme Y over C we denote by e(Y ) the topological Euler characteristic in the
complex analytic topology on Y . This is independent of any non-reduced structure of
Y , is additive under decompositions of Y into open sets and their complements, and
is multiplicative on Cartesian products. In this way we see that the Euler characteristic
defines a ring homomorphism from the Grothendieck ring of varieties to the integers:

e : K0(VarC) −→ Z.

If Y has a C∗-action with fixed locus Y C∗ ⊂ Y the Euler characteristic also has the
property e(Y C∗) = e(Y ).

The interaction of Euler characteristic with constructible functions and morphisms
also plays a key role in this chapter. Recall that a function µ : T → Z is con-
structible if µ(T ) is finite and µ−1(c) is the union of finitely many locally closed
sets for all non-zero c ∈ µ(T ). The µ-weight Euler characteristic is defined to be
e(Y, µ) =

∑
k∈Z k · e(µ−1(k)). Note that we have e(Y ) = e(Y, 1) where 1 is the

constant function.

For a scheme Z over C, a constructible morphism f : Y → Z is a finite collection of
morphisms fi : Yi → Zi where Y =

∐
i Yi and Z =

∐
i Z are decompositions into

locally closed subschemes. We can defined a constructible function f∗µ : Z → Z by

(f∗µ)(x) := e(f−1(x), µ).

This has the important property e(Z, f∗µ) = e(Y, µ). If ν : Z → Z is a constructible
function, then µ · ν is a constructible function on Y × Z and e(Y × Z, µ · ν) =
e(Y, µ) · e(Z, ν).

It will also be helpful to extend these definitions to the rings of formal power series in
Qi and formal Laurent series in p. This will allow us to make use of lemma 2.1.22.1.2.
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2.3 Pushing Forward to the Chow Variety

Recall that the Chow scheme Chow1(X) is a space parametrising the one dimensional
cycles of X . We will consider the subspace of this Chowβ(X) parametrising 1-cycles
in the class β ∈ H2(X,Z). We will then define a constructible morphism

ρβ :
∑
n

pnHilbβ,n(X)→ Chowβ(X).

The strategy for calculating the partition functions is to analyse Chowβ(X) and the
fibres of the map ρβ . These will often involve the symmetric product, and where pos-
sible we will apply lemma 2.1.22.1.2.

It will be convenient to employ the following • notations for the Hilbert schemes:

Hilbσ+(0,•,•),n(X) :=
∑

d2,d3≥0

∑
n∈Z

QσQ
d2
2 Q

d3
3 p

n Hilbσ+(0,d2,d3),n(X)

Hilb•σ+(i,j,•),n(X) :=
∑
b,d3≥0

∑
n∈Z

QbσQ
i
1Q

j
2Q

d3
3 p

n Hilbbσ+(i,j,d3),n(X)

and for the Chow schemes:

Chowσ+(0,•,•)(X) :=
∑

d2,d3≥0

QσQ
d2
2 Q

d3
3 Chowσ+(0,d2,d3)(X)

Chow•σ+(i,j,•)(X) :=
∑
b,d3≥0

QbσQ
i
1Q

j
2Q

d3
3 Chowbσ+(i,j,d3)(X)

where i, j ∈ {0, 1}. Note, that here he have viewed the Hilbert and Chow schemes
in the Grothendieck ring of varieties. We also extend the • notation to symmetric
products in the following way:

Sym•(Y ) :=
∑
n∈Z≥0

QnSymn(Y ),

an we use the following notation for elements of the symmetric product

ay :=
∑
i

aiyi ∈ Symn(Y )

where yi are distinct points on Y and ai ∈ Z≥0. We also denote a tuple of partitions
α of a tuple of non-negative integers a by α ` a.

Using the •-notation for the maps ρβ we create the following constructible morphisms:

ρ• : Hilbσ+(0,•,•),n(X) −→ Chowσ+(0,•,•)(X)

ηij• : Hilb•σ+(i,j,•),n(X) −→ Chow•σ+(i,j,•)(X)

and we also use the notation η• = η00
• + η01

• + η11
• . The fibres of these morphisms will

be subspaces of the Hilbert scheme parametrising one dimensional subschemes with
a fixed 1-cycle. Specifically, let C ⊂ X be a one dimensional subscheme in the class
β ∈ H2(X) with 1-cycle Cyc(C). Define Hilbn(X,Cyc(C)) ⊂ Hilbβ,n(X) to be the
subscheme.

Hilbn(X,Cyc(C)) =
{
Z ∈ Hilbβ,n(X)

∣∣ Cyc(Z) = Cyc(C)
}
.

The maps ρ• and η• are explicitly described in lemmas 3.5.33.5.3 and 3.5.13.5.1 respectively.
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3 Parametrising Underlying 1-cycles

3.1 Related Linear Systems in Rational Elliptic Surfaces

In this section we consider some basic results about linear systems on a rational ellip-
tic surface. Some of these result can be found in [BKBK, §A.1].

Recall our notation that π : S → P1 is a generic rational elliptic surface with a
canonical section ζ : P1 → S. Consider the following classical results for rational
elliptic surfaces from [MiMi, II.3]:

π∗OS ∼= π∗OS(ζ) ∼= OP1 , R1π∗OS ∼= OP1(−1) and R1π∗OS(ζ) ∼= 0.

After applying the projection formula we have the following:

π∗OS(dF ) ∼= π∗OS(ζ + dF ) ∼= OP1(d) (II.5)

as well as

R1π∗OS(dF ) ∼= OP1(d− 1) and R1π∗OS(ζ + dF ) ∼= 0. (II.6)

Lemma 3.1.1. We have the following isomorphisms:

H1(S,OS(dF )) ∼= H0(P1,OP1(d− 1)) and H1(S,OS(ζ + dF )) ∼= 0.

Proof. The second isomorphism is immediate from the vanishing of Riπ∗OS(ζ + dF )
for i > 0 (see for example [HH, III Ex. 8.1]) and H0(P1,OP1(d)) ∼= 0.

To show the first isomorphism we consider the following exact sequence arising from
the Leray spectral sequence:

H1(P1, π∗OS(dF ))→ H1(S,OS(dF ))→ H0(P1, R1π∗OS(dF ))→ 0

We have from (II.5II.5) that H1(P1, π∗OS(dF )) ∼= 0 and we have the desired isomorphism
after considering (II.6II.6).

Lemma 3.1.2. Consider a fibre F of a point z ∈ P1 by the map S → P1 and the image of
a section ζ : P1 → S. Then there are isomorphisms of the linear systems

|dF |S ∼= |ζ + dF |S ∼= |d z|P1 and |b ζ + F |S ∼= |z|P1 .

Proof. The isomorphism |ζ + dF |S ∼= |d z|P1 is immediate from the vanishing of
Riπ∗OS(ζ + dF ) for i > 0 and (II.5II.5) (see for example [HH, III Ex. 8.1]).

We continue by showing |dF |S ∼= |ζ+dF |S . Consider the long exact sequence arising
from the divisor sequence for ζ twisted by OS(ζ + dF ):

0→ H0(S,OS(dF ))
f→ H0(S,OS(ζ + dF ))→ H0(S, ζ∗OP1(ζ + dF ))

g→ H0(P1,OP1(d− 1))→ 0

where we have applied the results from lemma 3.1.13.1.1. from intersection theory we have
that ζ∗OP1(ζ + dF ) ∼= ζ∗OP1(d − 1). Hence, g is an isomorphism making f an iso-
morphism also.

The isomorphism |b ζ + F |S ∼= |z|P1 will follow inductively from the divisor sequence
for ζ on S:

0 −→ OS(kζ + F ) −→ OS
(
(k + 1)ζ + F

)
−→ Oζ

(
(k + 1)ζ + F

)
−→ 0.
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Intersection theory shows us that Oζ
(
(k+ 1)ζ +F

)
is a degree −k line bundle on P1

which shows that its 0th cohomology vanishes. Hence, we have isomorphisms:

H0
(
S,OS(F )

) ∼= · · · ∼= H0
(
S,OS(bζ + F )

)
.

3.2 Curve Classes and 1-cycles in the Threefold

Recall from definition 1.2.11.2.1 that the banana curves Ci are labelled by their unique
intersections with the rational elliptic surfaces

S1, S2 and Sop.

These are smooth effective divisors on X . Hence a curve C in the class (d1, d2, d3)
will have the following intersections with these divisors:

C · S1 = d2, C · S2 = d1 and C · Sop = d3.

The full lattice H2(X,Z) is generated by

C1, C2, C3, σ11, σ12, . . . , σ19, σ21, . . . , σ99

where the σij are the 81 canonical sections of pr : X → P1 arising from the 9
canonical sections of π : S → P1. However, there are 64 relations between the σij ’s
giving the lattice rank of 20 (see [BrBr, Prop. 28 and Prop. 29]).

Lemma 3.2.1. There are no relations in H2(X,Z) of the form:

n · σi,j + d1C1 + d2C2 + d3C3 =
∑

(k,l) 6=(i,j)

ak,l · σk,l + d′1C1 + d′2C2 + d′3C3

where n, ak,l, dt, d′t ∈ Z≥0 for all k, l ∈ {1, . . . , 9} and t ∈ {1, 2, 3}.
Proof. Any such relation must push forward to relations on S via the projections
pri : X → Si. However, S is isomorphic to P1 blown up at 9 points. The exceptional
divisors of these blow-ups correspond to the sections ζi : P1 → S. Hence

PicS ∼= PicP2 × ζ1 × · · · × ζ9 ∼= Z10

and there are are no relations of this form.

The next lemma allows us to consider the curves in our desired classes by decomposing
them.

Lemma 3.2.2. Let d1, d2, d3, b ∈ Z≥0 and i, j ∈ {0, 1}.
1. Let C be a Cohen-Macaulay curve in the class (d1, d2, d3). Then the support of C is
contained in fibres of the projection map pr : X → P1.

2. A curve C in the class σ + (d1, d2, d3) is of the form

C = σ ∪ C0

where C0 is a curve in the class (d1, d2, d3).

3. A curve in the class b σ + (i, j, d3) is of the form

C = Cσ ∪ C0

where Cσ is a curve in the class b σ and C0 is a curve in the class (i, j, d3). The
same result holds for permutations of b σ + (i, j, d3).

Proof. Consider a curve in one of the given classes and it’s image under the two
projections pri : X → Si. For (1) these must be in the classes |d1f1| and |d1f1|, for (2)
the classes |ζ + d1F1| and |ζ + d2F2|, and for (3) the classes |if1| and |jf1|. Lemma
3.1.23.1.2 now shows that the curve must have the given form.
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3.3 Analysis of 1-cycles in Smooth Fibres of pr

Consider a fibre Fx = pr−1(x) which is smooth. Then there is an elliptic curve E
such that Fx ∼= E × E. Consider a curve C with underlying 1-cycle contained in
E × E, then this gives rise to a divisor D in E × E. Hence we must analyse divisors
in E ×E and their classes in X . The class of such a curve is determined uniquely by
its intersection with the surfaces S1, S2 and Sop.

Lemma 3.3.1. Let C ⊂ X correspond to a divisor D in E × E.

1. If C is in the class (0, d2, d3) then d2 = d3 and D is the pullback of a degree d2

divisor on E via the projection to the second factor.

2. The result in (2) is true for (d1, 0, d3) and projection to the first factor.

Proof. If C is in the class (0, d2, d3) then it doesn’t intersect with the surface S2. When
we restrict to E × E this is the same condition as not intersecting with a fibre of the
projection to the second factor. The only divisors that this is true for are those pulled
back from E via this projection. It is clear that that the intersection with S2 is d2, and
that the intersection with Sop is d2 as well. Hence we have that d2 = d3. The proof
for part (2) is completely analogous.

Lemma 3.3.2. Let C ⊂ X be in the class (1, 1, d) and correspond to a divisor D in
E × E. Then d ∈ {0, . . . , 4} and occurs in the following situations:

1. If E has j(E) 6= 0, 1728 then:

(a) d = 0 occurs when D is a translation of the graph {(x,−x)}.
(b) d = 4 occurs when D is a translation of the graph {(x, x)}.
(c) d = 2 occurs when D is the union of a fibre from the projection to the first

factor and a fibre from the projection to the second factor.

2. If j(E) = 1728 and E ∼= C/i we have the cases (a) to (c) as well as:

(d) d = 2 occurs when D is a translation of the graph {(x,±ix)}.

3. If j(E) = 0 and E ∼= C/τ with τ = 1
2 (1 + i

√
3) we have the cases (a) to (c) as

well as:

(e) d = 1 occurs when D is a translation of the graph {(x,−τx)} or the graph
{(x, (τ − 1)x)}.

(f ) d = 3 occurs when D is a translation of the graph {(x, τx)} or the graph
{(x, (−τ + 1)x)}.

Proof. Denote the projection maps by pi : E × E → E and let C ⊂ X be in the class
(1, 1, d) and correspond to a divisor D in E ×E. Suppose D is reducible. Then from
lemma 3.3.13.3.1 we see that D must be the union p−1

1 (x1) ∪ p−1
2 (x2) where x1, x2 ∈ E

are generic points. We also have that D is in the class (1, 1, 2).

Suppose D is irreducible. The surfaces S1 and S2 intersect D exactly once and their
restrictions correspond the fibres of the projection maps pi : E ×E → E. So the pro-
jection maps must be isomorphisms when restricted to D. Hence D is the translation
of the graph of an automorphism of E.

All elliptic curves have the automorphisms x 7→ ±x. Also

• if E ∼= C/i (j-invariant j(E) = 1728) the E also has the automorphisms x 7→
±ix, and
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• if E = C/τ with τ = 1
2 (1 + i

√
3) (j-invariant j(E) = 0) then E also has the

automorphisms x 7→ ±τx and x 7→ ±(τ − 1)x.

So to complete the proof we have to calculate the intersections #(Γξ ∩ Sop) where
Γξ is the graph of an automorphism ξ. Also, Sop|Fx ∼= Γ−1 hence we calculate
#(Γξ ∩ Γ−1) = #{(x, ξ(x)) = (x,−x)} in the surface Fx. For all the elliptic curves
we have:

(a) #(Γ1 ∩ Γ−1) is given by the four 2-torsion points {0, 1
2 ,

1
2τ,

1
2 (1 + τ)}.

(b) #(Γ−1 ∩ Γ−1) = 0 since one copy can be translated away from the other.

For E ∼= C/i (j-invariant j(E) = 1728) we have:

(d) #(Γ±i ∩ Γ−1) is given by the two points {0, 1
2 (1 + τ)}.

For E = C/τ with τ = 1
2 (1 + i

√
3) (j-invariant j(E) = 0) we have:

(e) #(Γτ ∩ Γ−1) and #(Γ(1−τ)i ∩ Γ−1) are both determined by the three points
{0, 1

3 (1 + τ), 2
3 (1 + τ)}.

(f) #(Γ−τ ∩ Γ−1) and #(Γ(τ−1)i ∩ Γ−1) are both given by the single point {0}.

3.4 Analysis of 1-cycles in Singular Fibres of pr

We denote the fibres of the projection pr by Fx := pr−1(x). The singular fibres
are all isomorphic so we denote a singular fibre by Fban and its normalisation by
ν : F̃ban → Fban. From [BrBr, Prop. 24] we have that F̃ban

∼= Bl2 pt(P1 × P1) and if we
choose the coordinates on the P1’s so that the 0 and ∞ map to a nodal singularity,
then the two points blown-up are z1 = (0,∞) and z2 = (∞, 0).

Blz1,z2(P1 × P1)

bl

��

ν // Fban

P1 × P1

Also, we recall the decomposition of Si into

S◦i = Smi q Ni

where Ni are the 12 nodal fibres with their nodes removed and Smi = S◦i \ Ni. Let

Ni =
{
N

(1)
i , . . . , N

(12)
i

}
be the 12 nodal fibres with the nodes.

3.4.1. Denote the divisors in F̃ban corresponding to the banana curve Ci by C̃i and
C̃ ′i . They are identified in Fban by

ν(C̃i) = ν(C̃ ′i) = Ci.

For i = 1, 2 we also denote Ĉi = bl(C̃i) and Ĉ ′i = bl(C̃ ′i) inside P1 × P1. The curve
classes in F̃ban are generated by the collection of C̃i and C̃ ′i’s with the relations:

C̃1 + C̃3 ∼ C̃ ′1 + C̃ ′3 and C̃2 + C̃3 ∼ C̃ ′2 + C̃ ′3.
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Figure II.6: On the left is a depiction of the normalisation F̃ban and on the right is a
depiction of P1 × P1. Here bl is the map blowing up (0,∞) and (∞, 0). On the right
f1 and f2 are generic fibres of the projection maps P1 × P1 → P1 and on the left f̃1

and f̃2 are their proper transforms.

3.4.2. Let f1 and f2 be fibres of the projections P1 × P1 → P1 not equal to any Ĉi or
Ĉ ′i and let f̃1 and f̃2 be their proper transforms. Then we also have the relations:

f̃1 ∼ C̃1 + C̃3 and f̃2 ∼ C̃2 + C̃3.

Moreover, if D̃ is a divisor in F̃ban such that ν(D̃) is in the class (d1, d2, d3) then D
is in a class

a1C̃1 + a′1C̃
′
1 + a2C̃2 + a′2C̃

′
2 + a3C̃3 + a′3C̃

′
3

where ai + a′i = di.

Lemma 3.4.3. Let C ⊂ X correspond to a divisor D in Fban.

1. C is in the class (0, 0, d3) if and only if D has 1-cycle d3C3.

2. C is in the class (0, d2, d3) if and only if D has 1-cycle D̃ + a2C
(j)
2 + a3C

(j)
3

where D̃ is the pullback of a degree af divisor from the smooth part of N(j)
2 via the

projection Fban → N
(j)
2 such that af + a2 = D2 and af + a3 = D3. Moreover, D̃

is in the class (0, af , af ).

Proof. Let C ⊂ X be a curve in the class (0, d2, d3) and correspond to a divisor D in
Fban. There exists a divisor D̃ in F̃ban

∼= Blz1,z2(P1 × P1) with ν(D̃) = D.

From the discussion in 3.4.23.4.2 we have that bl(D̃) is in the class of d2f2 and is hence
in its corresponding linear system. So, D̃ is the union of the the proper transform of
bl(D̃) and curves supported at C̃3 and C̃ ′3. The result now follows.

Lemma 3.4.4. Let C ⊂ X be an irreducible curve in the class (1, 1, d) and correspond
to a divisor D in Fban. Then D is the image under ν of the proper transform under bl of
a smooth divisor in |f1 + f2| on |P1 × P1|. Moreover, the value of d is determined the
intersection of D with points in P = {(0, 0), (0,∞), (∞, 0), (∞,∞)}. That is, if D
intersects

1. (0, 0) and (∞,∞) only, then d = 2.

2. (0,∞) and (∞, 0) only, then d = 0.

3. (0, 0) only or (∞,∞) only, then d = 2.

4. (0,∞) only or (∞, 0) only, then d = 1.
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5. no points of P, then d = 2.

Moreover, there are no smooth divisors in |f1 + f2| on |P1 × P1| that intersect other combi-
nations of these points.

Proof. Let C ⊂ X be an irreducible curve in the class (1, 1, d) and correspond to a
divisor D in Fban. There exists an irreducible divisor D̃ in F̃ban

∼= Blz1,z2(P1 × P1)

with ν(D̃) = D. D̃ does not contain either of the exceptional divisor C̃3 and C̃ ′3.
Hence, it must be the proper transform of a curve in P1 × P1.

From the discussion in 3.4.23.4.2 we have that bl(D̃) is in the class of f1+f2 and is hence in
its corresponding linear system. The only irreducible divisors in |f1 + f2| are smooth
and can only pass through the combinations of points in P that are given. We refer to
the appendix 6.2.36.2.3 for the proof of this. The total transform in any divisor in |f1 + f2|
will correspond to a curve in the class C1 +C2 + 2C2. Hence the classes of the proper
transforms depend the number of intersections with the set {(0,∞), (∞, 0)}. The
values are immediately calculated to be those given.

3.5 Parametrising 1-cycles

We use the notation:

1. Bi = {b1i , . . . , b12
i } is the set of the 12 points in Si that correspond to nodes in

the fibres of the projection π : Si → P1.

2. S◦i = Si \Bi is the complement of Bi in Si

Lemma 3.5.1. In the case β = σ + (0, d2, d3) there is a constructible morphism ρ• where
Chowσ+(0,•,•)(X) has the decomposition:

Chowσ+(0,•,•)(X) = Sym•(S◦2 )× Sym•(B2)× Sym•(Bop).

Moreover, if x = (ay,mb2,nbop) ∈ Chowσ+(0,•,•)(X) then the fibre is given by
ρ−1
• (x) = Hilb•Cyc(X, q) where

q = σ +
∑
i

aipr−1
2 (yi) +

∑
i

miC
(i)
2 +

∑
i

niC
(i)
3 .

Proof. From lemma 3.2.23.2.2 part 22 it is enough to consider curves in the class (0, d2, d3).
Also from 3.2.23.2.2 part 11 we know that the curves are supported on fibres of the map
pr : X → P1. From lemma 3.3.13.3.1 part 11 we know that the curves supported on smooth
fibres of pr must be thicken fibres of the projection pr2 : X → S. Similarly we know
from lemma 3.4.33.4.3 part 22 that the curves supported on singular fibres of pr must be the
union of thicken fibres of pr2 and curves supported on the C2 and C3 banana curves.
The result now follows.

We also use the notation:

1. Ni ⊂ Si are the 12 nodal fibres of π : Si → P1 with the nodes removed and:

Ni = Nσi q N∅i where Nσi := Ni ∩ σ and N∅i := Ni \ σ.

2. Smi = S◦i \ Ni is the complement of Ni in S◦i and:

Smi = Smσi q Sm∅i where Smσi := Smi ∩ σ and Sm∅i := Smi \ σ.

3. J0 and J1728 to be the subsets of points x ∈ P1 such that π−1(x) has j-invariant
0 or 1728 respectively and J = J0 q J1728.
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4. L to be the linear system |f1 +f2| on P1×P1 with the singular divisors removed
where f1 and f2 are fibres of the two projection maps.

5. Ãut(E) := Aut(E) \ {±1}.

Remark 3.5.2. The following lemma should be parsed in the following way. For
i, j ∈ {0, 1} and b, d3 ∈ Z≥0, a subscheme in the class β = dσ + (i, j, d3) will have
1-cycle of the following form:

q = bσ +D +
∑
i

niC
(i)
3

where D is reduced and does not contain σ or and C(i)
3 . Then D is in the class (i, j, n)

for some n ∈ Z≥0.

The Chow groups parameterise the different possible D and these possibilities depend
on i and j:

• If i = j = 0 then D is the empty curve. If

• If i = 0 and j = 1 then D can be either a fibre of the projection pr2 or C(i)
2 .

• If i = j = i then and D then it can be combinations of fibres and banana
curves. It can also be neither of these in the cases we call diagonals.

Lemma 3.5.3. In the cases β = dσ + (i, j, d3) we have

Chow•σ+(i,j,•)(X) ∼= Z≥0 × Chow(i,j,•)(X)

which agrees with constructible morphisms ηij• and the following decompositions of Chow(i,j,•)(X):

1. For i = j = 0 we have the decomposition of Chow(0,0,•)(X) with parts:

(a) Sym•(Bop).

The corresponding fibres are then (η00
• )−1(x) = Hilb•Cyc(X, q) where:

(a) If x = nbop then q =
∑
i niC

(i)
3 .

2. For i = 0 and j = 1 we have a decomposition of Chow(0,1,•)(X) with parts:

(a) S◦2 × Sym•(Bop)

(b)
12

q
k=1

Sym•({bkop})× Sym•(Bop \ {bkop}).

The corresponding fibres are then (η01
• )−1(x) = Hilb•Cyc(X, q) where:

(a) If x = (y,nbop) then q = pr−1
2 +

∑
i niC

(i)
3 .

(b) If x = (akb
k
op,nbop) then q = akC

(k)
3 +

∑
i niC

(i)
3 .

3. For i = j = 1 we have a decomposition of Chow(1,1,•)(X) with parts:

(a) S◦1 × S◦2 × Sym•(Bop)
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(b)
12

q
k=1

S◦1 × Sym•({bkop})× Sym•(Bop \ {bkop})

(c)
12

q
k=1

S◦2 × Sym•({bkop})× Sym•(Bop \ {bkop})

(d)
12

q
k, l = 1
k 6= l

Sym•({bkop})× Sym•({blop})× Sym•(Bop \ {bkop, blop})

(e)
12

q
k=1

Sym•({bkop})× Sym•(Bop \ {bkop})

(f ) q Diag•

where Diag• will be defined by a further decomposition. The corresponding fibres of
(a)-(e) are (η11

• )−1(x) = Hilb•Cyc(X, q) where:

(a) If x = (y1, y2,nbop) then q = pr−1
1 (y1) + pr−1

1 (y2) +
∑
i niC

(i)
3 .

(b) If x = (y1, akb
k
op,nbop) then q = pr−1

1 (y1) + C
(k)
2 + akC

(k)
3 +

∑
i niC

(i)
3 .

(c) If x = (y2, akb
k
op,nbop) then q = pr−1

2 (y2) + C
(k)
1 + akC

(k)
3 +

∑
i niC

(i)
3 .

(d) If x = (akb
k
op, alb

l
op,nbop) then q = C

(k)
1 +C

(l)
2 + akC

(k)
3 + alC

(l)
3 +

∑
i niC

(i)
3 .

(e) If x = (akb
k
op,nbop) then q = C

(k)
1 + C

(k)
2 + akC

(k)
3 +

∑
i niC

(i)
3 .

For part (f ), Diag• is defined by the further decomposition:

(g) Sm1 × Sym•(Bop)

(h) q Sm2 × Sym•(Bop)

(i) q
y∈J

Eπ(y) × Ãut(Eπ(y))× Sym•(Bop)

(j)
12

q
k=1

L× Sym•({bkop})× Sym•(Bop \ {bkop}).

The corresponding fibres of (g)-(j) are (η11
• )−1(x) = Hilbn(X, q) where:

(g) If x = (y,nbop) then q = Dy +
∑
i niC

(i)
3 where Dy is the graph of the map

f(z) = z + x|Eπ(y)
in the fibre Fπ(y) = Eπ(y) × Eπ(y).

(h) If x = (y,nbop) then q = Dy +
∑
i niC

(i)
3 where Dy is the graph of the map

f(z) = −z + x|Eπ(y)
in the fibre Fπ(y) = Eπ(y) × Eπ(y).

(i) If x = (y,nbop) then q = Dy +
∑
i niC

(i)
3 where Dy is the graph of the map

f(z) = A(z) + x for some A ∈ Aut(Eπ(y)) \ {±1}.

(j) If x = (z, akb
k
op,nbop) then q = ν(L̃z) + akC

(k)
3 +

∑
i niC

(i)
3 where L̃z is

the proper transform of the divisor Lz in P1 × P1 and ν is the normalisation
of the kth singular fibre.

Proof. The decomposition Chow•σ+(i,j,•)(X) ∼= Z≥0 × Chow(i,j,•)(X) is immediate
from lemma 3.2.23.2.2 part 33. Hence it is enough to parametrise the curves in the class
β = (i, j, •). Also from 3.2.23.2.2 part 11 we know that the curves are supported on fibres
of the map pr : X → P1. We must have that

Cyc(C) = aσ +D +

12∑
i=1

miC
(i)
3 .

for some minimal reduces curve D in the class (1, 1, n) for n ≥ 0 minimal. The
possible D curves are described in lemmas 3.3.13.3.1, 3.3.23.3.2, 3.4.33.4.3 and 3.4.43.4.4. The result now
follows.
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4 Techniques for Calculating Euler Characteristic

4.1 Quot Schemes and their Decomposition

This section is a summary of required results from [BKBK]. First we consider the following
subscheme of the Hilbert scheme.

Definition 4.1.1. Let C ⊂ X be a Cohen-Macaulay subscheme of dimension 1. Con-
sider the Hilbert scheme of subschemes Z ⊂ X of class [Z] = [C] ∈ H2(X) and
χ(OZ) = χ(OC) + n for some n ∈ Z≥0. This contains the following closed sub-
scheme:

Hilbn(X,C) :=
{
Z ⊂ X such that C ⊂ Z and IC/IZ has finite length n

}
.

It is convenient to replace the Hilbert scheme here with a Quot scheme. Recall the
Quot scheme QuotnX(F) parametrising quotients F � Q on X , where Q is zero-
dimensional of length n. It is related to the above Hilbert scheme in the following
way.

Lemma 4.1.2. [BKBK, Lemma 5]. The following equality holds in K0(VarC)((p)):

Hilb•(X,C) = Quot•X(IC).

We also consider the following subscheme of these Quot schemes.

Definition 4.1.3. [BKBK, Def. 12] Let F be a coherent sheaf on X , and S ⊂ X a locally
closed subset. We define the locally closed subset of QuotnX(F)

QuotnX(F , S) :=
{

[F � Q] ∈ QuotnX(F)
∣∣ Supp(Qred) ⊂ S

}
.

This allows us to decompose the Quot schemes in the following way.

Lemma 4.1.4. [BKBK, Prop. 13] Let F be a coherent sheaf on X , S ⊂ X a locally closed
subset and Z ⊂ X a closed subset. Then if Z ⊂ S and and n ∈ Z≥0 there is a geometrically
bijective constructible morphism:

QuotnX(F , S) −→
∐

n1+n2=n

Quotn1

X (F , S \ Z)×Quotn2

X (F , Z).

4.2 An Action on the Formal Neighbourhoods

Let C ⊂ X be a one dimensional subscheme in the class β ∈ H2(X) with 1-cycle
q = Cyc(C). We recall the our notation that HilbnCyc(X, q) ⊂ Hilbβ,n(X) is the
following subscheme

HilbnCyc(X, q) :=
{

[Z] ∈ Hilbβ,n(X) | Cyc(C) = q
}
.

Furthermore, we define

HilbnCM(X, q) ⊂ HilbnCyc(X, q)

to be the open subscheme containing Cohen-Macaulay subschemes of Z .

Lemma 4.2.1. Suppose Z ⊂ X is a one dimensional Cohen-Macaulay subscheme such that:

1. Z has the decomposition Z = C∪
i
Zi where C is reduced and Zi∩Zj = ∅ for i 6= j.
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2. There are formal neighbourhoods Vi of Zi in X such that (C∗)2 acts on each and
fixes Zred

i .

3. If C̃ := C \ (∪Vi) then C̃ ∩ (∪Vi) is invariant under the (C∗)2-action on Vi.

Then there is a (C∗)2-action on HilbnCM(X,Cyc(Z)) such that if α ∈ (C∗)2 and Y ∈
HilbnCM(X,Cyc(Z)) then:

α · Y = C̃ ∪ α · (Y |∪Vi).

Proof. We show the action is well defined on a flat family in HilbnCM(X,Cyc(Z)). Let
such a family be given by the diagram:

Z �
� //

''

X × S
��
S

The reduced curves C,Zred
i and the neighbourhoods Vi must all be constant on the

family and we have a decomposition

Z = (C × S) ∪
i
Zi

where Zi ⊂ Vi × S. Hence, the action is given by

α · Z = (C̃ × S) ∪ α · (Z|∪(Vi×S)).

Consider the constructible map

κ : Hilb•Cyc(X, q) −→ Hilb•CM(X, q)

where Z ⊂ X is mapped to the maximal Cohen-Macaulay subscheme ZCM ⊂ Z . Then
we have

e
(

Hilb•Cyc(X, q)
)

= e
(

Hilb•CM(X, q), κ∗1
)

= e
(

Hilb•CM(X, q)(C∗)2 , κ∗1
)

(7)

where (κ∗1)(z) := e(κ−1(z)) and the last line comes from the following lemma.

Lemma 4.2.2. The constructible function κ∗1 is invariant under the (C∗)2-action. That
is if α ∈ (C∗)2 and z ∈ HilbnCM(X, q) then (κ∗1)(z) = (κ∗1)(α · x).

Proof. Let α ∈ (C∗)2 and z ∈ HilbnCM(X, q) correspond to Z ⊂ X . Also let Z̃ = ∪Zi
and Ṽ = Vi be as in lemma 4.2.14.2.1. Then the fibre κ−1(x) is the

κ−1(x) = Hilb•(X,Z) = Quot•X(IZ)

where the last equality is in K0(VarC)((p)) from lemma 4.1.24.1.2. Also from lemma 4.1.44.1.4
we have a geometrically bijective constructible morphism:

QuotnX(IZ) −→
∐

n1+n2=n

Quotn1

X (IZ , X \ Ṽ )×Quotn2

X (IZ , Ṽ ).

We have Iα·Z |X\Ṽ = IZ |X\Ṽ so Quotn1

X (IZ , X \ Ṽ ) ∼= Quotn1

X (Iα·Z , X \ Ṽ ). More-
over, we have isomorphisms

Quotn2

X (IZ , Ṽ ) ∼= Quotn2

Ṽ
(IZ |Ṽ )
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and ZṼ
∼= α · ZṼ so we have an isomorphism

Quotn2

X (IZ , Ṽ ) ∼= Quotn2

X (Iα·Z , Ṽ )

Taking Euler characteristic now shows that e
(
κ−1(x)

)
= e
(
κ−1(α · x)

)
.

4.2.3. We will now consider a useful tool in calculating Euler characteristics of the
form given in (77). First let z ∈ HilbnCM(X, q) correspond to Z ⊂ X such that Z is
locally monomial. Then the fibre κ−1(x) is

κ−1(x) = Hilb•(X,Z) = Quot•X(IZ)

where the last equality is in K0(VarC)((p)) from lemma 4.1.24.1.2. To compute this fibre we
employ the following method:

1. Decompose X by X = Z q W where W := X \ Z

2. Let Z� be set of singularities of Zred.

3. Let
∐
i Zi = Z \ Z� be a decomposition into irreducible components.

Then applying Euler characteristic to lemma 4.1.44.1.4 we have:

e
(
Quot•X(IZ)

)
= e
(
Quot•X(IZ ,W )

) ∏
z∈Z�

e
(
Quot•X(IZ , {z})

)∏
i

e
(
Quot•X(IZ , Zi)

)
.

4.3 Partitions and the topological vertex

We recall the terminology of 2D partitions, 3D partitions and the topological vertex
from [ORVORV, BCYBCY]. A 2D partition λ is an infinite sequence of decreasing integers that
is zero except for a finite number of terms. The size of a 2D partition |λ| is the sum of
the elements in the sequence and the length l(λ) is the number of non-zero elements.
We will also think of a 2D partition as a subset of (Z≥0)2 in the following way:

λ ! {(i, j) ∈ (Z≥0)2 | λi ≥ j ≥ 0 or i = 0}

A 3D partition is a subset η ⊂ (Z≥0)3 satisfying the following condition:

1. (i, j, k) ∈ η if and only if one of i, j or k is zero or one of (i−1, j, k), (i, j−1, k)
or (i, j, k − 1) is also in η.

Given a triple of 2D partitions (λ, µ, ν) we also define a 3D partition asymptotic to
(λ, µ, ν) is a 3D partition η that also satisfies the conditions:

1. (j, k) ∈ λ if and only if (i, j, k) ∈ η for all i� 0.

2. (k, i) ∈ µ if and only if (i, j, k) ∈ η for all j � 0.

3. (i, j) ∈ ν if and only if (i, j, k) ∈ η for all k � 0.

The leg of η in the ith direction is the subset {(i, j, k) ∈ η | (j, k) ∈ λ}. We analogously
define the legs of η in the j and k directions. The weight of a point in η is defined to
be

ξη(i, j, k) := 1−# {legs of η containing (i, j, k)}.

Using this we define the renormalised volume of η by:

|η| :=
∑

(i,j,k)∈η

ξη(i, j, k). (II.9)
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Figure II.7: A 3D partition asymptotic to
(
(2, 1), (3, 2, 2), (1, 1, 1)

)
. The partition

containing only the white boxes has renormalised volume −14. The partition including
the green boxes has renormalised volume −11.

The topological vertex is the formal Laurent series:

Vλµν :=
∑
η

p|η|

where the sum is over all 3D partitions asymptotic to (λ, µ, ν). An explicit formula for
Vλµν is derived in [ORVORV, Eq. 3.18] to be:

Vλµν = M(p)p−
1
2 (‖λ‖2+‖µt‖2+‖ν‖2)Sνt(p

−ρ)
∑
η

Sλt/η(p−ν−ρ)Sµ/η(p−ν
t−ρ)

4.4 Partition Thickened Section, Fibre and Banana Curves

In this subsection we consider non-reduced structure for curves in our desired classes.
The partition thickened structure will be the fixed points of a (C∗)2-action.

4.4.1. Recall that the section ζ ∈ S is the blow-up of a point in z ∈ P2. Choose once
and for all a formal neighbourhood SpecC[[s, t]] of z ∈ P2. The blow-up gives the
formal neighbourhood of ζ ∈ S with 2 coordinate charts:

C[[s, t]][u]/(t− su) ∼= C[[s]][u] and C[[s, t]][v]/(s− tv) ∼= C[[t]][v]

with change of coordinates s 7→ tv and u 7→ v−1. This gives the formal neighbourhood
of σ ∈ X with 2 coordinate charts:

C[[s1, s2]][u] and C[[t1, t2]][v]

with change of coordinates si 7→ tiv and u 7→ v−1. We call these coordinates the
canonical formal coordinates around σ ∈ X .

4.4.2. Now consider a reduced curve D in X that intersects σ transversely with length
1. When D is restricted to the formal neighbourhood of σ it is given by

C[[s1, s2]][u]/(a0u− a1, b0s1 − b1s2) and C[[t1, t2]][v]/(a0 − a1v, b0t1 − b1t2)

for some [a0 : a1], [b0 : b1] ∈ P1. We use this to define the change of coordinates:

s̃1 7→ b0s1 − b1s2 and s̃2 7→ b1s1 + b0s2

t̃1 7→ b0t1 − b1t2 and t̃2 7→ b1t1 + b0t2

We call these coordinates the canonical formal coordinates relative to D.
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Figure II.8: Depiction of the subscheme in C2 given by the monomial ideal
(y3, y2x, y1x2, y1x3, x4) associated to the partition (3, 2, 1, 1, 0 . . .).

Definition 4.4.3. Let C[[s1, s2]][u] and C[[t1, t2]][v] be either of the above canonical
coordinates. Then we define

1. The canonical (C∗)2-action on these coordinates by (s1, s2) 7→ (λ1s1, λ2s2)
and (t1, t2) 7→ (λ1t1, λ2t2).

2. Let λ = (λ1, . . . , λl, 0, . . .) be a 2D partition. The λ-thickened section denoted
by λσ is the subscheme of X defined by the ideal given in the coordinates by

(sλ1
2 , . . . , sl−1

1 sλl2 , s
l) and (tλ1

2 , . . . , tl−1
1 tλl2 , t

l).

We can now consider fibres of the projection map pr2 : X → S.

Definition 4.4.4. Let x ∈ S◦ and fx = pr−1
2 (x) the fibre. Then we define

1. Canonical coordinates on a formal neighbourhood Vx of fx are given by formal
coordinates C[[s, t]] of x in S under where Vx = fx × SpecC[[s, t]].

2. The canonical (C∗)2-action on these coordinates by (s, t) 7→ (λ1s, λ2t).

3. Let λ = (λ1, . . . , λl, 0, . . .) be a 2D partition. The λ-thickened fibre at x
denoted by λfx is the subscheme of X given by the ideal:

(tλ1 , . . . , sl−1tλl , sl)

4.4.5. We now consider a canonical formal neighbourhood of the banana curve C3.
We follow much of the reasoning from [BrBr, §5.2]. Let x ∈ S correspond to a point
where π : S → P1 is singular. Let formal neighbourhoods in the two isomorphic
copies of S be given by

SpecC[[s1, t1]] and SpecC[[s2, t2]]

and the map S → P1 be given by r 7→ siti. Then the formal neighbourhood of a
conifold singularity in X is given by

SpecC[[s1, t1, s2, t2]]/(s1t1 − s2t2),

and the restriction to a fibre of the projection S ×P1 S → P1 is

SpecC[[s1, t1, s2, t2]]/(s1t1, s2t2).

Now, blowing up along {s1 = t2 = 0} (which is canonically equivalent to blowing up
along {s1 − t1 = s2 − t2 = 0}), we have the two coordinate charts:

C[[s1, t2, s2, t2]][u]/(s1 − ut2, s2 − ut1) ∼= C[[t1, t2]][u], and

C[[s1, t2, s2, t2]][v]/(t1 − vs2, t2 − vs1) ∼= C[[s1, s2]][v],



4. TECHNIQUES FOR CALCULATING EULER CHARACTERISTIC 57

where the change of coordinates is given by t1 7→ vs2 , t2 7→ vs1 and u 7→ v−1. We
call these coordinates the canonical formal coordinates around the banana curve
C3.

4.4.6. With these coordinates we have:

1. Then the restriction to the fibre of pr : X → P1 is

C[[t1, t2]][u]/(t1t2u) and C[[s1, s2]][v]/(s1s2v).

2. The banana curve C3 is given by

C[[t1, t2]][u]/(t1, t2) and C[[s1, s2]][v]/(s1, s2).

4.4.7. Similar to 4.4.24.4.2 we also consider canonical relative coordinates for a C3 banana
curve. Recall 3.4.43.4.4 and let D is the image under ν : F̃ban → Fban of the proper trans-
form under bl : Bl(0,∞),(∞,0)(P1 × P1)→ P1 × P1 of a smooth divisor in |f1 + f2| on
|P1 × P1|.

If D intersects (0, 0) then the restriction of D to the formal neighbourhood of C3 is
given by:

C[[s1, s2]][v]/(s1 − as2, v)

for some a ∈ C∗. In this case we define canonical formal coordinates relative to D
around a C3 banana by the following change of coordinates.

s̃1 7→ s1 − as2 and s̃2 7→ s1 + as2

t̃1 7→ at1 + t2 and t̃2 7→ −at1 + t2

We similarly define the same relative coordinates if for D intersects (∞,∞) in the
ideal (−at1 + t2, u). Note that these coordinates are compatible if D intersects both
(0, 0 and (∞,∞).

Definition 4.4.8. Let C[[s1, s2]][u] and C[[t1, t2]][v] be either the canonical coordinates
or relative coordinates.

1. The canonical (C∗)2-action on these coordinates is defined by

(s1, s2, v) 7→ (λ1s1, λ2s2, v) and (t1, t2, u) 7→ (λ2t1, λ1t2, u).

2. Let λ = (λ1, . . . , λl, 0, . . .) be a 2D partition. The λ-thickened banana curve
C3 denoted by λC3 is the subscheme of X defined by the ideal given in the
coordinates by

(sλ1
2 , . . . , sl−1

1 sλl2 , s
l
1) and (tλ1

1 , . . . , tl−1
2 tλl1 , t

l
2).

(Note the change in coordinates compared to definition 4.4.34.4.3.)

Remark 4.4.9. If D intersects both (0, 0) and (∞,∞) and λC3 is partition thickened
in the coordinates relative to D. Then ideals for D ∪ λC3 at the points (0, 0) and
(∞,∞) are

(sλ1
2 , . . . , sl−1

1 sλl2 , s
l
1) ∩ (s1, v) and (tλ1

1 , . . . , tl−1
2 tλl1 , t

l
2) ∩ (t2, u)

respectively. These both give 3D partitions asymptotic to (λ, ∅,�).
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Lemma 4.4.10. Let D be as described in the first paragraph of 4.4.74.4.7. If let V be the
formal neighbourhood of C3 in X . If D intersects (0, 0) and/or (∞,∞) then use the
relative coordinates of 4.4.74.4.7, otherwise use the canonical coordinates of 4.4.54.4.5. Then D ∩ V
is invariant under the (C∗)2-action.

Proof. We have D ∩ V 6= 0 if and only if it intersects at least one of (0, 0), (0,∞),
(∞, 0), (∞,∞). The possible combinations are:

1. (0, 0) and/or (∞,∞): This is by construction of the relative coordinates.

2. Exactly one of (0,∞) or (∞, 0): Then D is given by the ideal (v − a, s1) or
(v − a, s2) for some a ∈ C∗, which are (C∗)2-invariant.

3. (0,∞) and (∞, 0): Then D is given by the ideal (v− a, s1s2) for some a ∈ C∗
which is (C∗)2-invariant.

4.4.11. It is also shown in [BrBr, §5.2] that there are the following formal coordinates on
C2 compatible with the canonical formal coordinates around C3:

C[[s1, v]][s2] and C[[t1, u]][t2]

where the change on coordinates is given by s2 7→ t2, s1 7→ t1t2 and v 7→ t2u. We
can define partition thickenings and a compatible (C∗)2-action in these coordinates.

Definition 4.4.12. Let C[[s1, v]][s2] and C[[t1, u]][t2] be the above canonical coordi-
nates.

1. The canonical (C∗)2-action on these coordinates is defined by:

(s1, v, s2) 7→ (λ1s1, v, λ2s2) and (t1, u, t2) 7→ (λ2t1, u, λ1t2).

2. Let µ = (µ1, . . . , µk, 0, . . .) be a 2D partition. The µ-thickened banana curve
C2 denoted by µC2 is the subscheme of X defined by the ideal given in the
coordinates by

(sµ1

1 , . . . , vk−1sµk1 , vk) and (tµ1

1 , . . . , uk−1tµk1 , uk).

(Note the change in coordinates compared to definition 4.4.84.4.8.)

3. Let λ = (λ1, . . . , λl, 0, . . .) be another 2D partition. The (µ, λ)-thickened
banana curve denoted is the union µC2 + λC3.

Remark 4.4.13. The C2 and C3 banana curves meet in exactly 2 points. At these two
points a (µ, λ)-thickened banana curve will define define two 3D partitions. One will
be asymptotic to (µ, λ, ∅) the other will be asymptotic to (µt, λt, ∅) (or equivalently
(λ, µ, ∅)).
Remark 4.4.14. The partition thickened curves described in this section are easily
shown to be the only Cohen-Macaulay subschemes supported in these neighbour-
hoods that are invariant under the (C∗)2-action. This is because the invariant Cohen-
Macaulay subschemes must be generated by monomial ideals.

Lemma 4.4.15. Let λ = (λ1, . . . , λl, 0, . . .) and µ = (µ1, . . . , µk, 0, . . .) be a 2D parti-
tions. Then we have the holomorphic Euler characteristics :

1. χ(Oλσ) = 1
2

(
‖λ‖2 + ‖λt‖2

)
,

2. χ(Oλfx) = 0,

3. χ(OµC2 ∪ λC3) = |η1|+ |η2|+ 1
2

(
‖µ‖2 + ‖µt‖2 + ‖λ‖2 + ‖λt‖2

)
where |ηi| are

the renormalised volumes of the minimal 3D partitions associated to (µ, λ, ∅) and
(µt, λt, ∅).

Proof. (2) is straightforward and the rest are from [BrBr, Prop. 23].
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4.5 Relation between Quot Schemes on C3 and the Topological Vertex

This section is predominately a summary of required results from [BKBK]. For 2D parti-
tions λ, µ and ν we define the following subscheme of C3:

Cλ,µ,ν = Cλ,∅,∅ ∪ C∅,µ,∅ ∪ C∅,∅,ν ⊂ SpecC[r, s, t]

where Cλ,∅,∅ is defined by the idea Iλ,∅,∅ := (tλ1 , . . . , tl−1sλl , sl), with C∅,µ,∅ and
C∅,∅,ν being cyclic permutations of this. Also define the ideal by Iλµν = Iλ∅∅ ∩ I∅µ∅ ∩
I∅∅ν

Now we consider the Quot scheme of length n quotients that are supported at the
origin and we employ the following simplifying notation:

Quotn(λ, µ, ν) := QuotnC3(Iλµν , {0})

The quotients parametrised here have kernels that are the ideal sheaf of a one-
dimensional scheme Z with underlying Cohen-Macaulay curve Cλ,µ,ν . The embedded
points of this scheme are all supported at the origin, but Z doesn’t have to be locally
monomial. We use the following variation of the notation for the topological vertex:

Ṽλµν := e
(
Quot•(λ, µ, ν)

)
∈ Z[[p]].

Lemma 4.5.1. Let C be a partition thickened section, fibre or C3-banana curve thickened
by λ. Then

1. If x ∈ C is a smooth point then e
(
QuotnX(IC , {x})

)
= Ṽλ∅∅.

2. If C is a thickened nodal fibre then e
(
QuotnX(IC , {x})

)
= Ṽλλt∅.

Let C ′ be a reduced curve intersecting C at y ∈ C such that IC′ ∩ IC is locally monomial
and there are formal local coordinates C[[r, s, t]] at y such that:

1. IC′ ∩ IC = (tλ1 , . . . sl−1tλl , sl) ∩ (r, s) then e
(
QuotnX(IC , {x})

)
= Ṽλ∅�.

2. IC′∩IC = (tλ1 , . . . sl−1tλl , sl)∩(r, s)∩(r, t) then e
(
QuotnX(IC , {x})

)
= Ṽλ��.

Proof. The proof is the same as [BKBK] Lemma 15.

Lemma 4.5.2. Let D be a one dimensional Cohen-Macaulay subscheme of X .

1. We have:

e
(
QuotnX(ID, X \D)

)
=
(
Ṽ∅∅∅

)e(X)−e(C)

.

2. Let λ be a 2D partition and λC ⊂ D be either a partition thickened section, fibre or
C3 banana and let T be finite set of points on C such that C \ T is smooth. Then

e
(
QuotnX(ID, C \ T )

)
=
(
Ṽλ∅∅

)e(C)−e(T )

.

Proof. The argument is the same as that given for equation (9) in [BKBK].

The standard (C∗)3-action on C3 induces an action on the Quot schemes. The in-
variant ideals I ⊂ C[r, s, t] are precisely those generated by monomials. Also, since
there is a bijection between locally monomial ideals and 3D partitions we see that

Ṽλµν = e
(
Quot•(λ, µ, ν)(C∗)3)

=
∑
η

pn(η)
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where we are summing over 3D partitions asymptotic to (λ, µ, ν) and n(η) is the
number of boxes not contained in any legs. Note that that the lowest order term in
Ṽλµν is one, which is not true about Vλµν in general. In fact we have the relationship:

Vλµν = p|ηmin|Ṽλµν

where ηmin is the 3D partition associated to Cλµν , and | · | is the renormalised volume
defined in eqn (II.9II.9).

Lemma 4.5.3. If λ is a 2D partition then we have the following equalities:

1. Vλ∅∅ = Ṽλ∅∅

2. Vλ�∅ = p−λ1 Ṽλ�∅

3. Vλ�� = p−λ1−λt1 Ṽλ��

4. Vλλt∅ = p−‖λ‖
2

Ṽλλt∅

Proof. Parts (1), (2) and (4) are directly from [BKBK] lemma 17. For part 3, there are λ1

boxes that are in the λ-leg and one of the �-legs. There are λt1 boxes that are in
the λ-leg and the other �-leg. There is one box that is contained in all three so the
renormalised volume is calculated to be

(λi − 1)(1− 2) + (λti − 1)(1− 2) + (1)(1− 3) = −λi − λti

Let
Ψ•,•(a,m) :=

∑
α`a

∑
µ`m

p
1
2 (‖α‖2+‖αt‖2+‖µ‖2+‖µt‖2)(V∅µαV∅µtαt)

5 Calculating the Euler Characteristic from the Fibres
of the Chow Map

5.1 Calculation for the class σ + (0, •, •)

We now recall some previously introduced notation:

1. Bi = {b1i , . . . , b12
i } is the set of the 12 points in Si that correspond to nodes in

the fibres of the projection π : Si → P1.

2. S◦i = Si \Bi is the complement of Bi in Si

3. Ni ⊂ Si are the 12 nodal fibres of π : Si → P1 with the nodes removed and:

Ni = Nσi q N∅i where Nσi := Ni ∩ σ and N∅i := Ni \ σ.

4. Smi = S◦i \ Ni is the complement of Ni in S◦i and:

Smi = Smσi q Sm∅i where Smσi := Smi ∩ σ and Sm∅i := Smi \ σ.

Now from lemma 3.5.13.5.1 we can further decompose Chowσ+(0,•,•)(X) as:

Sym•(Smσ2 )× Sym•(Nσ2 )× Sym•(Sm∅2)× Sym•(N∅2)× Sym•(B2)× Sym•(Bop).
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Figure II.9: Depiction of the decomposition of the Chow sub-scheme that parametrises
the vertical fibres of pr2. The red dots indicate when the fibres don’t intersect the
section i.e. Sm∅2 and N∅2. The white dots indicate when the fibres do intersect the
section i.e. Smσ2 and Nσ2 .

Moreover, if q = (ax, cy,dz, lw,mb2,nbop) ∈ Chowσ+(0,•,•)(X) then the fibre is
given by ρ−1

• (q) ∼= Hilb•Cyc(X, q) where

q = σ +
∑
i

aipr−1
2 (xi) +

∑
i

cipr−1
2 (yi)

+
∑
i

dipr−1
2 (zi) +

∑
i

lipr−1
2 (wi) +

∑
i

miC
(i)
2 +

∑
i

niC
(i)
3 .

5.1.1. Suppose C is Cohen-Macaulay with the cycle given above. Note that C can be
decomposed into a part supported on C2 and C3 and a part supported away from
the banana configuration. This gives the following formal neighbourhoods and (C∗)2-
actions:

1. Let Ui be the formal neighbourhood of C(i)
2 ∪C

(i)
3 in X . These have a canonical

(C∗)2-action described in 4.4.84.4.8 and 4.4.124.4.12.

2. Let Vi be the formal neighbourhood of pr−1
2 (yi) in X . These have a canonical

(C∗)2-action described in definition 4.4.44.4.4 and σ∩Vi is either empty of invariant
under this action.

Hence the conditions of lemma 4.2.14.2.1 are satisfied and there is a (C∗)2-action defined
on HilbnCM(X, q). Using the partition thickened notation introduced in section 4.44.4 we
introduce the subschemes:

Cα,γ,δ,λ,µ,ν := σ∪
i

(
α(i)fxi

)
∪
i

(
γ(i)fyi

)
∪
i

(
δ(i)fzi

)
∪
i

(
λ(i)fwi

)
∪
i

(
µ(i)C

(i)
2

)
∪
i

(
ν(i)C

(i)
3

)
and their ideals Iα,γ,δ,λ,µ,ν in X where α, γ, δ, λ, µ and ν are tuples of partitions
of a, c, d, l,m and n respectively. Then using this notation we can identify the fixed
points of the action as the following discrete set:

Hilb•CM
(
X, q

)(C∗)2
=

∐
α ` a, γ ` c, δ ` d,
λ ` l, µ `m, ν ` n

{
Cα,γ,δ,λ,µ,ν

}
.
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Figure II.10: Visual depictions of Cohen-Macaulay subschemes in the fibres of ρ•
that are supported away from the banana configurations. On the left is a general
subscheme and on the right is a partition thickened curve which is a fixed point of the
(C∗)2-action.

Using the result of 4.2.24.2.2 we have

e
(

Hilb•Cyc(X, q)
)

= e
(

Hilb•CM(X, q)(C∗)2 , κ∗1
)

=
∑

α ` a, γ ` c, δ ` d,
λ ` l, µ `m, ν ` n

e
(

(Hilb•(X,Cα,γ,δ,λ,µ,ν)
)

=
∑

α ` a, γ ` c, δ ` d,
λ ` l, µ `m, ν ` n

e
(

Quot•X(Iα,γ,δ,λ,µ,ν)
)
.

5.1.2. Using the decomposition method of 4.2.34.2.3 following method:

1. Decompose X by X = W q Cα,γ,δ,λ,µ,ν where W := X \ Cα,γ,δ,λ,µ,ν .

2. Let C�α,γ,δ,λ,µ,ν be set points given by the following disjoint sets:

(a) σ�α := σ ∩ Cred
α

(b) σ�γ := σ ∩ Cred
γ

(c) C�γ the set of nodes of Cγ

(d) C�λ the set of nodes of Cλ

(e) B� = ∪
i
(C

(i)
2 ∩ C

(i)
3 ).

3. Denote the components supported on smooth reduced sub-curves by:

(a) σ◦ := σ \ σ�

(b) C◦α := Cα \ σ�α
(c) C◦γ := Cγ \ (σ�γ ∪ C�λ)

(d) C◦λ := Cλ \ C�λ
(e) C◦µ := Cµ \B�

(f) C◦ν := Cν \B�
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5.1.3. Then applying Euler characteristic to lemma 4.1.44.1.4 we have:

e
(
Quot•X(Iα,γ,δ,λ,µ,ν)

)
= e
(
Quot•X(Iα,γ,δ,λ,µ,ν ,W )

)
e
(
Quot•X(Iα,γ,δ,λ,µ,ν , σ

◦)
)

e
(
Quot•X(Iα,γ,δ,λ,µ,ν , σ

�
α)
)
e
(
Quot•X(Iα,γ,δ,λ,µ,ν , C

◦
α)
)

e
(
Quot•X(Iα,γ,δ,λ,µ,ν , σ

�
γ)
)
e
(
Quot•X(Iα,γ,δ,λ,µ,ν , C

�
γ)
)
e
(
Quot•X(Iα,γ,δ,λ,µ,ν , C

◦
γ)
)

e
(
Quot•X(Iα,γ,δ,λ,µ,ν , Cδ)

)
e
(
Quot•X(Iα,γ,δ,λ,µ,ν , C

�
λ)
)
e
(
Quot•X(Iα,γ,δ,λ,µ,ν , C

◦
λ)
)

e
(
Quot•X(Iα,γ,δ,λ,µ,ν , B

�)
)
e
(
Quot•X(Iα,γ,δ,λ,µ,ν , C

◦
µ)
)
e
(
Quot•X(Iα,γ,δ,λ,µ,ν , C

◦
ν)
)

Applying lemmas 4.5.14.5.1 and 4.5.24.5.2 we have:

e
(
Quot•X(Iα,γ,δ,λ,µ,ν)

)
=
(
Ṽ∅∅∅

)e(W )(
Ṽ�∅∅

)e(σ◦)
∏
i

(
p−αiṼα(i)�∅

)∏
i

(
Ṽα(i)∅∅

)−1

∏
i

(
p−γiṼγ(i)�∅

)∏
i

(
Ṽγ(i)(γ(i))t∅

)∏
i

(
Ṽγ(i)∅∅

)−1

∏
i

(
Ṽδ(i)∅∅

)0

∏
i

(
Ṽλ(i)(λ(i))t∅

)∏
i

(
Ṽλ(i)∅∅

)0

∏
i

(
p
χ
(
O
µ(i)C

(i)
2 ∪ ν

(i)C
(i)
3

)
Ṽµ(i)ν(i)∅Ṽ(µ(i))t(ν(i))t∅

)∏
i

(
Ṽµ(i)∅∅

)0∏
i

(
Ṽν(i)∅∅

)0

.

We note that e(X) = 24 and e(σ) = 2 and:

p
χ
(
O
µ(i)C

(i)
2 ∪ ν

(i)C
(i)
3

)
Ṽµ(i)ν(i)∅Ṽ(µ(i))t(ν(i))t∅

= p
1
2 (‖µ(i)‖2+‖(µ(i))t‖2+‖ν(i)‖2+‖(ν(i))t‖2)Vµ(i)ν(i)∅V(µ(i))t(ν(i))t∅.

So from lemma 4.5.34.5.3 we now have we have

e
(
Quot•X(Iα,γ,δ,λ,µ,ν)

)
=
(
V∅∅∅

)24(V�∅∅
V∅∅∅

)2∏
i

( V∅∅∅
V�∅∅

Vα(i)�∅
Vα(i)∅∅

)
∏
i

( V∅∅∅
V�∅∅

p‖γ
(i)‖2 Vγ(i)�∅Vγ(i)(γ(i))t∅

V∅∅∅Vγ(i)∅∅

)∏
i

(
p‖λ

(i)‖2 Vλ(i)(λ(i))t∅

V∅∅∅

)
∏
i

(
p

1
2 (‖µ(i)‖2+‖(µ(i))t‖2+‖ν(i)‖2+‖(ν(i))t‖2)

Vµ(i)ν(i)∅V(µ(i))t(ν(i))t∅

V∅∅∅V∅∅∅

)
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We now define the functions:

1. gSmσ : Sym•(Smσ2 ) −→ Z((p)) is defined by gSmσ (a) = V∅∅∅
V�∅∅

∑
α`a

Vα�∅
V
α(i)∅∅

,

2. gNσ : Sym•(Nσ2 ) −→ Z((p)) is defined by gNσ (c) = V∅∅∅
V�∅∅

∑
γ`c

p‖γ
(i)‖2 Vγ�∅Vγγt∅

V∅∅∅Vγ∅∅
,

3. gSm∅ : Sym•(Sm∅2) −→ Z((p)) is defined by gSm∅(d) =
∑
δ`d

1,

4. gN∅ : Sym•(N∅2) −→ Z((p)) is defined by gN∅(l) =
∑
λ`l

p‖λ
(i)‖2 Vλλt∅

V∅∅∅
,

5. gB : Sym•(B2)× Sym•(Bop) −→ Z((p)) is defined by the equation

gB(m,n) =
∑

µ(i) ` mi
ν(i) ` ni

p
1
2 (‖µ(i)‖2+‖(µ(i))t‖2+‖ν(i)‖2+‖(ν(i))t‖2)

V
µ(i)ν(i)∅V(µ(i))t(ν(i))t∅

V∅∅∅V∅∅∅
.

So the constructible function (ρ•)∗1 : Chowσ+(0,•,•)(X) → Z((p)) is calculated for
q = (ax, cy,dz, lw,mb2,nbop) by:(
(ρ•)∗1

)
(q)

= e
(
ρ−1
• (q)

)
=

∑
α ` a, γ ` c, δ ` d,
λ ` l, µ `m, ν ` n

e
(

Quot•X(Iα,γ,δ,λ,µ,ν)
)

=
(
V∅∅∅

)24(V�∅∅
V∅∅∅

)2∏
i

gSmσ (ai)
∏
i

gNσ (ci)
∏
i

gSm∅(di)
∏
i

gN∅(li)
∏
i

gB(mi, ni).

So we can now apply lemma 2.1.22.1.2 to obtain:

e
(

Chowσ+(0,•,•)(X), (ρ•)∗1)
)

=
(
V∅∅∅

)24(V�∅∅
V∅∅∅

)2( V∅∅∅
V�∅∅

∑
α

(Q2Q3)|α|
Vα�∅
Vα∅∅

)e(Smσ)

( V∅∅∅
V�∅∅

∑
γ

(Q2Q3)|γ|p‖γ‖
2 Vγ�∅Vγγt∅
V∅∅∅Vγ∅∅

)e(Nσ)

(∑
δ

(Q2Q3)|δ|
)e(Sm∅)(∑

λ

(Q2Q3)|λ|p‖λ‖
2 Vλλt∅
V∅∅∅

)e(N∅)
e
(

Sym•(B2)× Sym•(Bop), GB

)
where GB is the constructible function

GB : Sym•(B2)× Sym•(Bop)→ Z((p))

defined by GB(mb2, bop) :=
12∏
i=1

gB(mi, ni). However, since B2 = {b12, . . . , b12
2 } and

Bop = {b1op, . . . , b12
op} we have:

Sym•(B2)× Sym•(Bop) ∼=
12∏
i=1

Sym•
(
{b(i)2 }

)
× Sym•

(
{b(i)op }

)
.
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Which gives us:

e
(

Sym•(B2)× Sym•(Bop), GB

)
=

12∏
i=1

e
(

Sym•
(
{b(i)2 }

)
× Sym•

(
{b(i)op }

)
, gB

)

=

(∑
µ,ν

Qµ2Q
ν
3p

1
2 (‖µ‖2+‖µt‖2+‖ν‖2+‖νt‖2)Vµν∅Vµtνt∅

V∅∅∅V∅∅∅

)12

5.1.4. Applying the vertex formulas of lemmas 6.3.66.3.6, 6.3.26.3.2 and corollary 6.3.46.3.4 we have

e
(

Chowσ+(0,•,•)(X), (ρ•)∗1)
)

= M(p)24

(
1

1− p

)2
(∏
d>0

(1−Qd2Qd3)

(1− pQd2Qd3)(1− p−1Qd2Q
d
3)

)−10

(∏
d>0

M(p,Qd2Q
d
3)

(1− pQd2Qd3)(1− p−1Qd2Q
d
3)

)12

(∏
d>0

1

(1−Qd2Qd3)

)10(∏
d>0

M(p,Qd2Q
d
3)

(1−Qd2Qd3)

)−12

(∏
d>0

M(Qd2Q
d
3, p)

2

(1−Qd2Qd3)M(−Qd−1
2 Qd3, p)M(−Qd2Q

d−1
3 , p)

)12

=
M(p)24

(1− p)2

∏
d>0

1

(1−Qd2Qd3)8(1− pQd2Qd3)2(1− p−1Qd2Q
d
3)2(∏

d>0

M(Qd2Q
d
3, p)

2

(1−Qd2Qd3)M(−Qd−1
2 Qd3, p)M(−Qd2Q

d−1
3 , p)

)12

Which completes the proof of theorem AA.

5.2 Preliminaries for classes of the form •σ + (i, j, •)

We recall from lemma 3.5.33.5.3 that there is a decomposition of Chow•σ+(i,j,•)(X) such
that for any point q ∈ Chow•σ+(i,j,•)(X) the fibre is

(η•)
−1(q) ∼= Hilb•Cyc(X,Cyc(C))

for some one dimensional subscheme C of X with

Cyc(C) = q = aσ +D +

12∑
i=1

miC
(i)
3 (II.10)

where D is a one dimensional reduced subscheme of X . We see from lemma 3.5.33.5.3 that
the intersection of D with σ has length 0, 1 or 2. We consider the following formal
neighbourhoods around components of C :

1. Let Ui be the formal neighbourhood of C(i)
3 in X . These have a canonical

(C∗)2-action described in 4.4.84.4.8 and the (C∗)2-invariance of D ∩ Ui is shown in
lemma 4.4.104.4.10.
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Figure II.11: Depiction of two typical curves (away from C3) in the class bσ + (1, 1, d).

2. Let V be the formal neighbourhood of σ in X with the coordinates:

(a) If #(D ∩ σ) = 0, 2 the let V have the canonical coordinates of 4.4.14.4.1 of and
(C∗)2-action described in 4.4.34.4.3.

(b) If #(D ∩ σ) = 1 the let V have the canonical coordinates of 4.4.24.4.2 of and
(C∗)2-action described in 4.4.34.4.3.

By construction the restrictions of D to these neighbourhoods are invariant under
these actions. Hence the conditions of lemma 4.2.14.2.1 are satisfied and there is a (C∗)2-
action defined on HilbnCM(X,Cyc(C)). We introduce the notation for subschemes of
X :

Cα,µ = Cα,µ(1),...,µ(12) = ασ ∪ D
12
∪
i=1

µiC
(i)
3

and their ideals Iα,µ. Then using this notation we can identify the fixed points of the
action as the following discrete set:

Hilb•CM
(
X, q

)(C∗)2
=

∐
α`a, µ`m

{
Cα,µ

}
.

Using the result of 4.2.24.2.2 we have

e
(

Hilb•Cyc(X, q)
)

= e
(

Hilb•CM(X, q)(C∗)2 , κ∗1
)

=
∑

α`a, µ`m

pχ(OCα,µ )e
(

(Hilb•(X,Cα,µ

)
=

∑
α`a, µ`m

pχ(OCα,µ )e
(

Quot•X(Iα,µ

)
.

Where the holomorphic Euler characteristic χ(OCα,µ) is given by the following lemma.

Lemma 5.2.1. The holomorphic Euler characteristic of Cα,µ is:

χ(OCα,µ) = χ(OD) +
(
χ(Oασ)− |D ∩ ασ|

)
+
( 12∑
i=1

χ(O
µ(i)C

(i)
3

)−
12∑
i=1

|D ∩ µ(i)C
(i)
3 |
)
.
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Proof. This is immediate from the exact sequence decomposing Cα,µ into irreducible
components:

0→ OCα,µ → OD ⊕ χ(Oασ)⊕
i
O
µ(i)C

(i)
3
→ χ(OD∩ασ)⊕

i
O
D∩µ(i)C

(i)
3
→ 0

5.2.2. Using the decomposition method of 4.2.34.2.3 we take the following steps:

1. Decompose X by X = W q Cα,µ where W := X \ Cα,µ.

2. Let C�α,µ be set points given by the following disjoint sets:

(a) D� is the set of nodes of D \ (σ ∪i C(i)
3 ).

(b) D∗ is the set singularities of D \ (σ ∪i C(i)
3 ) that are locally isomorphic it

the coordinate axes in C3.

(c) σ� := σ ∩D,

(d) B�i = (C
(i)
3 ∩D) for i ∈ {1, . . . , 12},

Note that D� ∪D∗ is the set of singularities of D \ (σ ∪i C(i)
3 ).

3. Denote the components supported on smooth reduced sub-curves by:

(a) D◦ = D \ (D� ∪D∗),
(b) σ◦ := σ \ σ�,

(c) B◦i = C(i)
3 \B�i for i ∈ {1, . . . , 12}.

5.2.3. Then applying Euler characteristic to lemma 4.1.44.1.4 we have:

pχ(OCα,µ )e
(

Quot•X(Iα,µ

)
= e
(

Quot•X(Iα,µ,W
)

pχ(OD)e
(

Quot•X(Iα,µ, D
◦
)
e
(

Quot•X(Iα,µ, D
�
)
e
(

Quot•X(Iα,µ, D
∗
)

pχ(Oασ)−|D∩ασ|e
(

Quot•X(Iα,µ, σ
◦
)
e
(

Quot•X(Iα,µ, σ
�
)

12∏
i=1

p
χ(O

µ(i)C
(i)
3

)−|D∩µ(i)C
(i)
3 |
e
(

Quot•X(Iα,µ, B
◦
i

)
e
(

Quot•X(Iα,µ, B
�
i

)
5.2.4. We have that e(X) = 24 and e(σ) = e(C

(i)
3 ) = 2. So the Euler characteristic

of W is:

e(W ) = e(X)− e(σ)−
12∑
i=1

e(C
(i)
3 )− e(D◦)− e(D�)− e(D∗)

= −2− e(D◦)− e(D�)− e(D∗)

Hence now have from lemma 4.5.24.5.2 that the first two lines from above will be:

Ψ(D) := pχ(OD)
(
Ṽ∅∅∅

)e(W )(
Ṽ�∅∅

)e(D◦)(
Ṽ��∅

)e(D�)(
Ṽ���

)e(D∗)
= pχ(OD)

(
V∅∅∅

)−2
(
V�∅∅
V∅∅∅

)e(D◦)(
p
V��∅
V∅∅∅

)e(D�)(
p2V���

V∅∅∅

)e(D∗)
The intersection of D and ασ will determine the third line. From lemma 4.5.24.5.2 and
lemma 4.5.34.5.3 it will be one of:
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1. p
1
2 (‖α‖2+‖αt‖2)

(
Ṽ∅∅αṼ∅∅α

)
= p

1
2 (‖α‖2+‖αt‖2)

(
V∅∅αV∅∅αt

)
2. p

1
2 (‖α‖2+‖αt‖2)−l(αt)

(
Ṽ�∅αṼ∅∅α

)
= p

1
2 (‖α‖2+‖αt‖2)

(
V�∅αV∅∅αt

)
3. p

1
2 (‖α‖2+‖αt‖2)−l(αt)−l(α)

(
Ṽ�∅αṼ∅�α

)
= p

1
2 (‖α‖2+‖αt‖2)

(
V�∅αV�∅αt

)
4. p

1
2 (‖α‖2+‖αt‖2)−(l(α)+l(αt)−1)

(
Ṽ��αṼ∅∅α

)
= p

1
2 (‖α‖2+‖αt‖2)+1

(
V��αV∅∅αt

)
Similarly the factors of the fourth line will determined by the intersections D∩C(i)

3 to
be (the fourth comes from 4.4.94.4.9):

1. p
1
2 (‖α‖2+‖αt‖2)

(
Ṽ∅∅αṼ∅∅αt

)
= p

1
2 (‖α‖2+‖αt‖2)

(
V∅∅αV∅∅αt

)
2. p

1
2 (‖α‖2+‖αt‖2)−(l(αt)+l(α))

(
Ṽ�∅αṼ�∅αt

)
= p

1
2 (‖α‖2+‖αt‖2)

(
V�∅αV�∅αt

)
3. p

1
2 (‖α‖2+‖αt‖2)−(l(α)+l(αt))

(
Ṽ∅�αṼ∅�αt

)
= p

1
2 (‖α‖2+‖αt‖2)

(
V�∅αV�∅αt

)
4. p

1
2 (‖α‖2+‖αt‖2)−2l(αt)

(
Ṽ∅�α

)2

= p
1
2 (‖α‖2+‖αt‖2)

(
V∅�α

)2

5. p
1
2 (‖α‖2+‖αt‖2)−2(l(α)+l(αt)−1)

(
Ṽ��αṼ��αt

)
= p

1
2 (‖α‖2+‖αt‖2)+2

(
V��αV��αt

)
5.2.5. We can calculate e

(
Hilb•Cyc(X, q)

)
using the above results and notation from

5.2.45.2.4:

e
(

Hilb•Cyc(X, q)
)

=
∑

α`a, µ`m

pχ(OCα,µ )e
(

Quot•X(Iα,µ

)

= Ψ(D)Φσ(a)

12∏
i=1

Φi(mi).

where Φσ and Φi are determined by the intersections of σ and C(i)
3 respectively to be

one of the following functions:

1. Φ∅,∅(a) :=
∑
α`a

p
1
2 (‖α‖2+‖αt‖2)(V∅∅αV∅∅αt)

2. Φ−,∅(a) :=
∑
α`a

p
1
2 (‖α‖2+‖αt‖2)(V�∅αV∅∅αt)

3. Φ−,−(a) :=
∑
α`a

p
1
2 (‖α‖2+‖αt‖2)(V�∅αV�∅αt)

4. Φ−, | (a) :=
∑
α`a

p
1
2 (‖α‖2+‖αt‖2)(V∅�α)2

5. Φ+,∅(a) :=
∑
α`a

p
1
2 (‖α‖2+‖αt‖2)+1(V��αV∅∅αt)

6. Φ+,+(a) :=
∑
α`a

p
1
2 (‖α‖2+‖αt‖2)+2(V��αV��αt)



5. EULER CHARACTERISTIC OF THE FIBRES OF THE CHOW MAP 69

5.3 Calculation for the class •σ + (0, 0, •)

From lemma 3.5.33.5.3 have the decomposition of Chow•σ+(0,0,•)(X) into:

Z≥0 × Sym•(Bop)

Recall equation (II.10II.10) from section 5.25.2 and the notation:

Cyc(C) = aσ +D +

12∑
i=1

miC
(i)
3 .

In this class we have D = ∅. Hence we have the following summary of results from
5.2.45.2.4 and 5.2.55.2.5.

χ(OD) = 0

e(η-1• (a,m)) = 1
(V∅∅∅)2

·QaσΦ∅,∅(a) ·
12∏
i=1

Qmi3 Φ∅,∅(mi)

Now we have:

e
(
Z≥0 × Sym•(Bop), (η•)∗1

)
=

1

(V∅∅∅)2

(∑
a

QaσΦ∅,∅(a)

)(∑
m

Qm3 Φ∅,∅(m)

)12

= M(p)24
∏
m>0

(1 + pmQσ)m(1 + pmQ3)12m.

Where the last equality is from 6.3.46.3.4 part 22 and 6.3.26.3.2 part 11.

5.4 Calculation for the class •σ + (0, 1, •)

Recall the previously introduced notation:

1. Bi = {b1i , . . . , b12
i } is the set of the 12 points in Si that correspond to nodes in

the fibres of the projection π : Si → P1.

2. S◦i = Si \Bi is the complement of Bi in Si

3. Ni ⊂ Si are the 12 nodal fibres of π : Si → P1 with the nodes removed and:

Ni = Nσi q N∅i where Nσi := Ni ∩ σ and N∅i := Ni \ σ.

4. Smi = S◦i \ Ni is the complement of Ni in S◦i and:

Smi = Smσi q Sm∅i where Smσi := Smi ∩ σ and Sm∅i := Smi \ σ.

Now from lemma 3.5.33.5.3 we can further decompose Chow•σ+(0,1,•)(X) into the four
parts:

1. Z≥0 × Smσ2 × Sym•(Bop)

2. Z≥0 × Sm∅2 × Sym•(Bop)

3. Z≥0 × Nσ2 × Sym•(Bop)

4. Z≥0 × N∅2 × Sym•(Bop)

5.
12

q
k=1

Z≥0 × Sym•({bkop})× Sym•(Bop \ {bkop})
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Recall equation (II.10II.10) from section 5.25.2 and the notation:

Cyc(C) = aσ +D +

12∑
i=1

miC
(i)
3 .

Each part will be characterised by the type of D. We consider parts (1)-(4) separately
to part (5).

5.4.1. Parts (1)-(4): In parts (1)-(4) the curve D is a fibre of the projection pr2 : X → S.
The following table is the summary of results from 5.2.45.2.4 and 5.2.55.2.5 when applied to the
particular D’s arising in each strata:

Z≥0 × U × Sym•(Bop).

U = Nσ1 e(U) = 12 χ(OD) = 0

e(η-1• (a, x,m)) = Q1Q3p
(V��∅)

(V�∅∅)(V∅∅∅)
2 ·QaσΦ−,∅(a) ·

12∏
i=1

Qmi3 Φ∅,∅(mi)

U = N∅1 e(U) = −12 χ(OD) = 0

e(η-1• (a, x,m)) = Q1Q3p
(V��∅)
(V∅∅∅)3

·QaσΦ∅,∅(a) ·
12∏
i=1

Qmi3 Φ∅,∅(mi)

U = Smσ1 e(U) = −10 χ(OD) = 0

e(η-1• (a, x,m)) = Q1Q3
1

(V�∅∅)(V∅∅∅)
·QaσΦ−,∅(a) ·

12∏
i=1

Qmi3 Φ∅,∅(mi)

U = Sm∅1 e(U) = 10 χ(OD) = 0

e(η-1• (a, x,m)) = Q1Q3
1

(V∅∅∅)2
·QaσΦ∅,∅(a) ·

12∏
i=1

Qmi3 Φ∅,∅(mi)

The union of parts (1)-(4) is Z≥0 × S◦2 × Sym•(Bop) so we have:

e
(
Z≥0 × S◦2 × Sym•(Bop), (η•)∗1

)
= e
(
Z≥0 × Smσ2 × Sym•(Bop), (η•)∗1

)
q e

(
Z≥0 × Sm∅2 × Sym•(Bop), (η•)∗1

)
q e

(
Z≥0 × Nσ2 × Sym•(Bop), (η•)∗1

)
q e

(
Z≥0 × N∅2 × Sym•(Bop), (η•)∗1

)
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Which becomes:

e
(
Z≥0 × S◦2 × Sym•(Bop), (η•)∗1

)
= e(Smσ2 )Q1Q3p

(V��∅)

(V�∅∅)(V∅∅∅)2

(∑
a

QaσΦ−,∅(a)

)(∑
m

Qm3 Φ∅,∅(m)

)12

q e(Sm∅2)Q1Q3p
(V��∅)

(V∅∅∅)3

∑
a≥0

QaσΦ∅,∅(a)

∑
m≥0

Qm3 Φ∅,∅(m)

12

q e(Nσ2 )Q1Q3
1

(V�∅∅)(V∅∅∅)

∑
a≥0

QaσΦ−,∅(a)

∑
m≥0

Qm3 Φ∅,∅(m)

12

q e(N∅2)Q1Q3
1

(V∅∅∅)2

∑
a≥0

QaσΦ∅,∅(a)

∑
m≥0

Qm3 Φ∅,∅(m)

12

From lemmas 6.3.26.3.2, 6.3.46.3.4 and 6.3.56.3.5 we have:

1. V∅∅∅ = M(p)

2. V�∅∅ = M(p) 1
1−p

3. V��∅ = M(p) p
2−p+1
p(1−p)2

4.
∑
m≥0Q

mΦ∅,∅(m) = M(p)2
∏
m>0

(1 + pmQ)m

5.
∑
m≥0Q

mΦ−,∅(m) = M(p)2 1 +Q

1− p
∏
m>0

(1 + pmQ)m

So we have:

e
(
Z≥0 × S◦2 × Sym•(Bop), (η•)∗1

)
= QσQ1Q3M(p)24

(∏
m>0

(1 + pmQσ)m(1 + pmQ3)12m

)(
2 + 12

p

(1− p)2

)

= QσQ1Q3M(p)24

(∏
m>0

(1 + pmQσ)m(1 + pmQ3)12m

)
(2ψ1 + 12ψ0)

5.4.2. Part (5): We have 12 separate isomorphic strata:

Z≥0 × Sym•({bkop})× Sym•(Bop \ {bkop}).

These parameterise when D = C
(k)
2 . The following is the summary of results from

5.2.45.2.4 and 5.2.55.2.5.
U = {k} e(U) = 1 χ(OD) = 1

e(η-1• (a,mk,m)) =

Q1p
1

(V∅∅∅)2
·QaσΦ∅,∅(a) ·Qmk3 Φ−,−(mk) ·

12∏
i = 1
i 6= k

Qmi3 Φ∅,∅(mi)

From lemmas 6.3.26.3.2 and 6.3.46.3.4 we have:

1. V∅∅∅ = M(p)
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2.
∑
m≥0Q

mΦ∅,∅(m) = M(p)2
∏
m>0

(1 + pmQ)m

3.
∑
m≥0Q

mΦ−,−(m) = M(p)2(ψ0 + (ψ1 + 2ψ0)Q+ ψ0Q
2)
∏
m>0

(1 + pmQ)m

Since the strata are isomorphic we have:

e
( 12

q
k=1

Z≥0 × Sym•({bkop})× Sym•(Bop \ {bkop}), (η•)∗1
)

= 12 e
(
Z≥0 × Sym•({bkop})× Sym•(Bop \ {bkop}), (η•)∗1

)
= 12 Q1

1

(V∅∅∅)2

∑
a≥0

QaσΦ∅,∅(a)

∑
m≥0

Qm3 Φ−,−(m)

∑
m≥0

Qm3 Φ∅,∅(m)

11

= 12 Q1M(p)24

(∏
m>0

(1 + pmQσ)m(1 + pmQ3)12m

)(
ψ0 + (ψ1 + 2ψ0)Q3 + ψ0Q

2
3

)
5.4.3. Thus combining parts (1)-(5) we have that the overall formula is:

e
(

Chow•σ+(0,1,•)(X), (η•)∗1
)

= Q1M(p)24

(∏
m>0

(1 + pmQσ)m(1 + pmQ3)12m

)
·
(

12
(
ψ0 + (2ψ0 + ψ1)Q3 + ψ0Q

2
3

)
+QσQ3

(
12ψ0 + 2ψ1

))

5.5 Calculation for the class •σ + (1, 1, •)

We have a decomposition from lemma 3.5.33.5.3 of Chow(1,1,•)(X) into the parts:

(a) S◦1 × S◦2 × Sym•(Bop)

(b)
12

q
k=1

S◦1 × Sym•({bkop})× Sym•(Bop \ {bkop})

(c)
12

q
k=1

S◦2 × Sym•({bkop})× Sym•(Bop \ {bkop})

(d)
12

q
k, l = 1
k 6= l

Sym•({bkop})× Sym•({blop})× Sym•(Bop \ {bkop, blop})

(e)
12

q
k=1

Sym•({bkop})× Sym•(Bop \ {bkop})

(f) q Diag•

We also recall the notation from equation (II.10II.10) from section 5.25.2 and the notation:

Cyc(C) = aσ +D +

12∑
i=1

miC
(i)
3 .

Each part will be characterised by the type of D. We will consider each case (a)-(f)
separately and will use the following the previously introduced notation throughout:
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1. Bi = {b1i , . . . , b12
i } is the set of the 12 points in Si that correspond to nodes in

the fibres of the projection π : Si → P1.

2. S◦i = Si \Bi is the complement of Bi in Si

3. Ni ⊂ Si are the 12 nodal fibres of π : Si → P1 with the nodes removed and:

Ni = Nσi q N∅i where Nσi := Ni ∩ σ and N∅i := Ni \ σ.

4. Smi = S◦i \ Ni is the complement of Ni in S◦i and:

Smi = Smσi q Sm∅i where Smσi := Smi ∩ σ and Sm∅i := Smi \ σ.

We will also use the new notation:

D :=
{

(x, x) ∈ S◦1 × S
}
.

5.5.1. Part (a): We have the following stratification of S◦1 × S◦1 :

1.
(

(Nσ1 × Nσ2 ) ∩D q (Smσ1 × Smσ2 ) ∩D
)

2. q
(
Nσ1 × Nσ2 \D q Nσ1 × Smσ2 q Smσ1 × Nσ2 q Smσ1 × Smσ2 \D

)
3. q

(
Nσ1 × N∅2 \D q (Nσ1 × N∅2) ∩D q Nσ1 × Sm∅2 q Smσ1 × N∅2

q Smσ1 × Sm∅2 \D q (Sm∅1 × Smσ2 ) ∩D

)

4. q
(

N∅1 × Nσ2 \D q (N∅1 × Nσ2 ) ∩D q N∅1 × Smσ2 q Sm∅1 × Nσ2
q Sm∅1 × Smσ2 \D q (Smσ1 × Sm∅2) ∩D

)

5. q
(

N∅1 × N∅2 \D q (N∅1 × N∅2) ∩D q Sm∅1 × N∅2 q N∅1 × Sm∅2
q Sm∅1 × Sm∅2 \D q (Sm∅1 × Sm∅2) ∩D

)
Here we have grouped by the number and type of intersection with σ.

Grouping (1): The following table is the summary of results from 5.2.45.2.4 and 5.2.55.2.5 for the
strata in grouping (1):

Z≥0 × U × Sym•(Bop).

U = (Nσ1 × Nσ2 ) ∩ D e(U) = 12 χ(OD) = −1

e(η-1• (a, x,m)) =

Q1Q2Q
2
3p

(V��∅)
2

(V�∅∅)
2(V∅∅∅)2

·QaσΦ+,∅(a) ·
12∏
i=1

Qmi3 Φ∅,∅(mi)

U=(Smσ1 × Smσ2 ) ∩ D e(U)=−10 χ(OD) = −1

e(η-1• (a, x,m)) = Q1Q2Q
2
3p
−1 1

(V�∅∅)
2 ·QaσΦ+,∅(a) ·

12∏
i=1

Qmi3 Φ∅,∅(mi)

From lemmas 6.3.26.3.2 and 6.3.46.3.4 we have:

1. V∅∅∅ = M(p)

2. V�∅∅ = M(p) 1
1−p

3. V��∅ = M(p) p
2−p+1
p(1−p)2
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4.
∑
m≥0Q

mΦ∅,∅(m) = M(p)2
∏
m>0

(1 + pmQ)m

5.
∑
m≥0Q

mΦ+,∅(m) = M(p)2(1+ψ0 +(ψ1 +2ψ0)Q+ψ0Q
2)
∏
m>0

(1+pmQ)m.

So the contribution is:

Q1Q2Q
2
3M(p)24

(∏
m>0

(1 + pmQσ)m(1 + pmQ3)12m

)
(ψ0 + (ψ1 + 2ψ0)Qσ + ψ0Q

2
σ)

·

(
2
(
p4 + 8p3 − 12p2 + 8p+ 1

)
(p− 1)2p

)

Grouping (2): The following table is the summary of results from 5.2.45.2.4 and 5.2.55.2.5 for
the strata in grouping (2):

Z≥0 × U × Sym•(Bop).

U = Nσ1 × Nσ2 \ D e(U) = 132 χ(OD) = 0

e(η-1• (a, x,m)) =

Q1Q2Q
2
3p

2 (V��∅)
2

(V�∅∅)
2(V∅∅∅)2

·QaσΦ−,−(a) ·
12∏
i=1

Qmi3 Φ∅,∅(mi)

U = Nσ1 × Smσ2 e(U) = −120 χ(OD) = 0

e(η-1• (a, x,m)) =

Q1Q2Q
2
3p

(V��∅)
(V�∅∅)

2(V∅∅∅)
·QaσΦ−,−(a) ·

12∏
i=1

Qmi3 Φ∅,∅(mi)

U = Smσ1 × Nσ2 e(U) = −120 χ(OD) = 0

e(η-1• (a, x,m)) =

Q1Q2Q
2
3p

(V��∅)
(V�∅∅)

2(V∅∅∅)
·QaσΦ−,−(a) ·

12∏
i=1

Qmi3 Φ∅,∅(mi)

U=Smσ1 × Smσ2 \ D e(U) = 110 χ(OD) = 0

e(η-1• (a, x,m)) = Q1Q2Q
2
3

1
(V�∅∅)

2 ·QaσΦ−,−(a) ·
12∏
i=1

Qmi3 Φ∅,∅(mi)

From lemmas 6.3.26.3.2 and 6.3.46.3.4 we have:

1. V∅∅∅ = M(p)

2. V�∅∅ = M(p) 1
1−p

3. V��∅ = M(p) p
2−p+1
p(1−p)2

4.
∑
m≥0Q

mΦ∅,∅(m) = M(p)2
∏
m>0

(1 + pmQ)m

5.
∑
m≥0Q

mΦ−,−(m) = M(p)2 1

p
(ψ0 + (ψ1 + 2ψ0)Q+ ψ0Q

2)
∏
m>0

(1 + pmQ)m.
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So the contribution is:

Q1Q2Q
2
3M(p)24

(∏
m>0

(1 + pmQσ)m(1 + pmQ3)12m

)
1

p
(ψ0 + (ψ1 + 2ψ0)Q+ ψ0Q

2)

·

(
2
(
p4 + 8p3 + 48p2 + 8p+ 1

)
(p− 1)2

)

Grouping (3): The following table is the summary of results from 5.2.45.2.4 and 5.2.55.2.5 for
the strata in grouping (3):

Z≥0 × U × Sym•(Bop).

U = Nσ1 × N∅2 \ D e(U) = −132 χ(OD) = 0

e(η-1• (a, x,m)) =

Q1Q2Q
2
3p

2 (V��∅)
2

(V�∅∅)(V∅∅∅)
3 ·QaσΦ−,∅(a) ·

12∏
i=1

Qmi3 Φ∅,∅(mi)

U = (Nσ1 × N∅2) ∩ D e(U)=−12 χ(OD) = −1

e(η-1• (a, x,m)) =

Q1Q2Q
2
3p

2 (V��∅)
3

(V�∅∅)
3(V∅∅∅)2

·QaσΦ−,∅(a) ·
12∏
i=1

Qmi3 Φ∅,∅(mi)

U = Nσ1 × Sm∅2 e(U) = 120 χ(OD) = 0

e(η-1• (a, x,m)) =

Q1Q2Q
2
3p

(V��∅)
(V�∅∅)(V∅∅∅)

2 ·QaσΦ−,∅(a) ·
12∏
i=1

Qmi3 Φ∅,∅(mi)

U = Smσ1 × N∅2 e(U) = 120 χ(OD) = 0

e(η-1• (a, x,m)) =

Q1Q2Q
2
3p

(V��∅)
(V�∅∅)(V∅∅∅)

2 ·QaσΦ−,∅(a) ·
12∏
i=1

Qmi3 Φ∅,∅(mi)

U=Smσ1 × Sm∅2 \ D e(U) = −110 χ(OD) = 0

e(η-1• (a, x,m)) = Q1Q2Q
2
3

1
(V�∅∅)(V∅∅∅)

·QaσΦ−,∅(a) ·
12∏
i=1

Qmi3 Φ∅,∅(mi)

U=(Sm∅1 × Smσ2 ) ∩ D e(U) = 10 χ(OD) = −1

e(η-1• (a, x,m)) = Q1Q2Q
2
3

(V��∅)
(V�∅∅)

3 ·QaσΦ−,∅(a) ·
12∏
i=1

Qmi3 Φ∅,∅(mi)

From lemmas 6.3.26.3.2, 6.3.46.3.4 and 6.3.56.3.5 we have:

1. V∅∅∅ = M(p)

2. V�∅∅ = M(p) 1
1−p
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3. V��∅ = M(p) p
2−p+1
p(1−p)2

4.
∑
m≥0Q

mΦ∅,∅(m) = M(p)2
∏
m>0

(1 + pmQ)m

5.
∑
m≥0Q

mΦ−,∅(m) = M(p)2 1 +Q

1− p
∏
m>0

(1 + pmQ)m

The contribution from grouping (3) is:

Q1Q2Q
2
3M(p)24

(∏
m>0

(1 + pmQσ)m(1 + pmQ3)12m

)(
1 +Qσ
1− p

)

·

(
2
(
p2 + 10p+ 1

) (
p4 − 2p3 + 8p2 − 2p+ 1

)
(p− 1)3p

)

Grouping (4): The results for grouping (4) are identical to those of grouping (3) under
the symmetry of the banana threefold.

The contribution from grouping (4) is:

Q1Q2Q
2
3M(p)24

(∏
m>0

(1 + pmQσ)m(1 + pmQ3)12m

)(
1 +Qσ
1− p

)

·

(
2
(
p2 + 10p+ 1

) (
p4 − 2p3 + 8p2 − 2p+ 1

)
(p− 1)3p

)

Grouping (5): The following table is the summary of results from 5.2.45.2.4 and 5.2.55.2.5 for
the strata in grouping (5):

Z≥0 × U × Sym•(Bop).

U = N∅1 × N∅2 \ D e(U) = 132 χ(OD) = 0

e(η-1• (a, x,m)) = Q1Q2Q
2
3p

2 V��∅)
2

(V∅∅∅)4
·QaσΨ∅,∅(a) ·

12∏
i=1

Qmi3 Φ∅,∅(mi)

U = (N∅1 × N∅2) ∩ D e(U) = 12 χ(OD) = −1

e(η-1• (a, x,m)) =

Q1Q2Q
2
3p

2 (V��∅)
3

(V�∅∅)
2(V∅∅∅)3

·QaσΨ∅,∅(a) ·
12∏
i=1

Qmi3 Φ∅,∅(mi)

U = Sm∅1 × N∅2 e(U) = −120 χ(OD) = 0

e(η-1• (a, x,m)) = Q1Q2Q
2
3p

(V��∅)
(V∅∅∅)3

·QaσΨ∅,∅(a) ·
12∏
i=1

Qmi3 Φ∅,∅(mi)
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U = N∅1 × Sm∅2 e(U) = −120 χ(OD) = 0

e(η-1• (a, x,m)) = Q1Q2Q
2
3p

(V��∅)
(V∅∅∅)3

·QaσΨ∅,∅(a) ·
12∏
i=1

Qmi3 Φ∅,∅(mi)

U=Sm∅1 × Sm∅2 \ D e(U) = 110 χ(OD) = 0

e(η-1• (a, x,m)) = Q1Q2Q
2
3

1
(V∅∅∅)2

·QaσΨ∅,∅(a) ·
12∏
i=1

Qmi3 Φ∅,∅(mi)

U=(Sm∅1 × Sm∅2) ∩ D e(U)=−10 χ(OD) = −1

e(η-1• (a, x,m)) = Q1Q2Q
2
3

(V��∅)
(V�∅∅)

2(V∅∅∅)
·QaσΨ∅,∅(a) ·

12∏
i=1

Qmi3 Φ∅,∅(mi)

From lemmas 6.3.26.3.2 and 6.3.46.3.4 we have:

1. V∅∅∅ = M(p)

2. V�∅∅ = M(p) 1
1−p

3. V��∅ = M(p) p
2−p+1
p(1−p)2

4.
∑
m≥0Q

mΦ∅,∅(m) = M(p)2
∏
m>0

(1 + pmQ)m

Q1Q2Q
2
3M(p)24

(∏
m>0

(1 + pmQσ)m(1 + pmQ3)12m

)

·

(
2
(
p2 + 10p+ 1

) (
p4 − 2p3 + 8p2 − 2p+ 1

)
(p− 1)4p

)

Summing the contributions from the above groupings we arrive at the overall contri-
bution from part (a):

e
(
Z≥0 × S◦1 × S◦2 × Sym•(Bop), (η•)∗1

)
= Q1Q2Q

2
3QσM(p)24

(∏
m>0

(1 + pmQσ)m(1 + pmQ3)12m

)
·
(
120ψ0 +Qσ

(
144ψ2

0 + 48ψ0 + 4
))

5.5.2. Part (b)-(c): By the symmetry of X we only need to consider part (b), with part
(c) being completely analogous. For each k ∈ {1, . . . , 12} we begin by decomposing
S◦1 into the following six parts:

Smσ1 q Sm∅1 q N
σ,(k)
1 q N

σ,c
1 q N

∅,(k)
1 q N

∅,c
1

where N
σ,(k)
1 is the connected component of Nσ1 corresponding the the kth banana

configuration and N
σ,c
1 is its complement in Nσ1 . The same definition is true for N∅1.
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We use the above size part decomposition for

Z≥0 × S◦1 × Sym•({bkop})× Sym•(Bop \ {bkop}).

The following table is the summary of results from 5.2.45.2.4 and 5.2.55.2.5 for this stratification.

U = N
σ,c
1 e(U) = 11 χ(OD) = 1

e(η-1• (a, x, n,m)) =

Q1Q2Q3p
2 (V��∅)

(V�∅∅)(V∅∅∅)
2 ·QaσΦ−,∅(a) ·Qn3 Φ-,-(n)

12∏
i = 1
i 6= j

Qmi3 Φ∅,∅(mi)

U = N
∅,c
1 e(U) = −11 χ(OD) = 1

e(η-1• (a, x, n,m)) =

Q1Q2Q3p
2 (V��∅)

(V∅∅∅)3
·QaσΦ∅,∅(a) ·Qn3 Φ-,-(n)

12∏
i = 1
i 6= j

Qmi3 Φ∅,∅(mi)

U = N
σ,(k)
1 e(U) = 1 χ(OD) = 0

e(η-1• (a, x, n,m)) =

Q1Q2Q3p
2 (V���)

(V�∅∅)
2(V∅∅∅)

·QaσΦ−,∅(a) ·Qn3 Φ-,-(n)
12∏
i = 1
i 6= j

Qmi3 Φ∅,∅(mi)

U = N
∅,(k)
1 e(U) = −1 χ(OD) = 0

e(η-1• (a, x, n,m)) =

Q1Q2Q3p
2 (V���)

(V�∅∅)(V∅∅∅)
2 ·QaσΦ∅,∅(a) ·Qn3 Φ-,-(n)

12∏
i = 1
i 6= j

Qmi3 Φ∅,∅(mi)

U = Smσ1 e(U) = −10 χ(OD) = 1

e(η-1• (a, x, n,m)) =

Q1Q2Q3p
1

(V�∅∅)(V∅∅∅)
·QaσΦ−,∅(a) ·Qn3 Φ-,-(n)

12∏
i = 1
i 6= j

Qmi3 Φ∅,∅(mi)

U = Sm∅1 e(U) = 10 χ(OD) = 1

e(η-1• (a, x, n,m)) =

Q1Q2Q3p
1

(V∅∅∅)2
·QaσΦ∅,∅(a) ·Qn3 Φ-,-(n)

12∏
i = 1
i 6= j

Qmi3 Φ∅,∅(mi)

From lemmas 6.3.26.3.2, 6.3.46.3.4 and 6.3.56.3.5 we have:

1. V∅∅∅ = M(p)

2. V�∅∅ = M(p) 1
1−p

3. V��∅ = M(p) p
2−p+1
p(1−p)2

4. V��� = M(p)p
4−p3+p2−p+1
p2(1−p)3

5.
∑
m≥0Q

mΦ∅,∅(m) = M(p)2
∏
m>0

(1 + pmQ)m
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6.
∑
m≥0Q

mΦ−,∅(m) = M(p)2 1 +Q

1− p
∏
m>0

(1 + pmQ)m

7.
∑
m≥0Q

mΦ−,−(m) = M(p)2 1

p
(ψ0 + (ψ1 + 2ψ0)Q+ ψ0Q

2)
∏
m>0

(1 + pmQ)m.

There are 12 singular fibres of pr. So, we have that the combined contribution from
parts (c) and (d) is:

e
( 12

q
k=1

S◦1 × Sym•({bkop})× Sym•(Bop \ {bkop}), (η•)∗1
)

+e
( 12

q
k=1

S◦2 × Sym•({bkop})× Sym•(Bop \ {bkop}), (η•)∗1
)

= 24Q1Q2Q3QσM(p)24

(∏
m>0

(1 + pmQσ)m(1 + pmQ3)12m

)
· (ψ0 + (ψ1 + 2ψ0)Q3 + ψ0Q

2
3) (12ψ0 + 4ψ1 + ψ2)

5.5.3. Part (d)-(e): Parts (d) and (e) parametrise the cases when D is the union of C(k)
2

and C(l)
2 . We have the spaces:

1.
12

q
k, l = 1
k 6= l

Sym•({bkop})× Sym•({blop})× Sym•(Bop \ {bkop, blop}),

2.
12

q
k=1

Sym•({bkop})× Sym•(Bop \ {bkop}).

The following table is the summary of results from 5.2.45.2.4 and 5.2.55.2.5 for this stratification.

U = {(k, l)}, k 6= l e(U) = 1 χ(OD) = 2

e(η-1• (a, c, d,m)) =

Q1Q2p
2 1

(V∅∅∅)2
·QaσΦ∅,∅(a) ·Qc3Φ-,-(c) ·Qd3Φ-,-(d)

12∏
i = 1
i 6= j, k

Qmi3 Φ∅,∅(mi)

U = {(k, k)} e(U) = 1 χ(OD) = 0

e(η-1• (a,mk,m)) =

Q1Q2
1

(V∅∅∅)2
·QaσΨ∅,∅(a) ·Qmk3 Φ+,+(mk)

12∏
i = 1
i 6= j

Qmi3 Φ∅,∅(mi)

From lemmas 6.3.26.3.2, 6.3.46.3.4 and 6.3.56.3.5 we have:

1. V∅∅∅ = M(p)

2.
∑
m≥0Q

mΦ∅,∅(m) = M(p)2
∏
m>0

(1 + pmQ)m

3.
∑
m≥0Q

mΦ−,−(m) = M(p)2 1

p
(ψ0 + (ψ1 + 2ψ0)Q+ ψ0Q

2)
∏
m>0

(1 + pmQ)m.

4.
∑
m≥0Q

mΦ+,+(m)

= M(p)2
∏
m>0

(1+pmQ)m
(
Q4(2ψ0+ψ1)+Q3(8ψ0+6ψ1+ψ2)+Q2(12ψ0

+10ψ1 +2ψ2)+Q(8ψ0 +6ψ1 +ψ2)+(2ψ0 +ψ1)
)
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There are 136 choices for two distinct fibres. Hence the contribution from part (d) is:

e
( 12

q
k, l = 1
k 6= l

Sym•({bkop})× Sym•({blop})× Sym•(Bop \ {bkop, blop}), (η•)∗1
)

= 132Q1Q2M(p)24

(∏
m>0

(1 + pmQσ)m(1 + pmQ3)12m

)
(ψ0 + (ψ1 + 2ψ0)Q3 + ψ0Q

2
3)2.

The 12 singular fibres give the contribution of (e) as:

e
( 12

q
k=1

Sym•({bkop})× Sym•(Bop \ {bkop}), (η•)∗1
)

= 12Q1Q2M(p)24

(∏
m>0

(1 + pmQσ)m(1 + pmQ3)12m

)
·
((
Q2

3ψ0 +Q3(2ψ0 + ψ1) + ψ0

)2
+
(
Q4

3(2ψ0 + ψ1) +Q3
3(8ψ0 + 6ψ1 + ψ2)

+Q2
3(12ψ0 + 10ψ1 + 2ψ2)

+Q3(8ψ0 + 6ψ1 + ψ2) + (2ψ0 + ψ1)
))
.

Summing the contributions of (d) and (e) we have:

Q1Q2M(p)24

(∏
m>0

(1 + pmQσ)m(1 + pmQ3)12m

)
·
(

144
(
Q2

3ψ0 +Q3(2ψ0 + ψ1) + ψ0

)2
+ 12

(
Q4

3(2ψ0 + ψ1) +Q3
3(8ψ0 + 6ψ1 + ψ2)

+Q2
3(12ψ0 + 10ψ1 + 2ψ2)

+Q3(8ψ0 + 6ψ1 + ψ2) + (2ψ0 + ψ1)
))
.

5.5.4. Part (f): Recall from lemma 3.5.33.5.3 that part (f), Diag• has the further decompo-
sition:

(g) Sm1 × Sym•(Bop)

(h) q Sm2 × Sym•(Bop)

(i) q
y∈J

Eπ(y) × Ãut(Eπ(y))× Sym•(Bop)

(j)
12

q
k=1

L× Sym•({bkop})× Sym•(Bop \ {bkop}).

Where we have used the notation:

1. J0 and J1728 to be the subsets of points x ∈ P1 such that π−1(x) has j-invariant
0 or 1728 respectively and J = J0 q J1728.

2. L to be the linear system |f1 +f2| on P1×P1 with the singular divisors removed
where f1 and f2 are fibres of the two projection maps.

3. Ãut(E) := Aut(E) \ {±1}.

5.5.5. Parts (g)-(i):
The results for parts (g)-(i) will all be very similar. The key differences are:

1. The overall factor of Q3 may be different.
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2. The Euler characteristics of the space parametrising the D’s may be different.

We define U to be one of

(g) Sm1 noting that e(Sm1 ∩ {σ}) = −10 and e(Sm1 \ {σ}) = 10.

(h) Sm2 noting that e(Sm2 ∩ {σ}) = −10 and e(Sm2 \ {σ}) = 10.

(i) Eπ(y) for y ∈ J noting that e(Eπ(y) ∩ {σ}) = 1 and e(Eπ(y) \ {σ}) = −1.

U ∩ {σ} χ(OD) = 0

e(η-1• (a, x,mk,m)) =

Q1Q2Q
n
3

1
(V�∅∅)(V∅∅∅)

·QaσΦ−,∅(a) ·
12∏
i=1

Qmi3 Φ∅,∅(mi)

U \ {σ} χ(OD) = 0

e(η-1• (a, x,mk,m)) = Q1Q2Q
n
3

1
(V∅∅∅)2

·QaσΦ∅,∅(a) ·
12∏
i=1

Qmi3 Φ∅,∅(mi)

From lemmas 6.3.26.3.2, 6.3.46.3.4 and 6.3.56.3.5 we have:

1. V∅∅∅ = M(p)

2. V�∅∅ = M(p) 1
1−p

3.
∑
m≥0Q

mΦ∅,∅(m) = M(p)2
∏
m>0

(1 + pmQ)m

4.
∑
m≥0Q

mΦ−,∅(m) = M(p)2 1 +Q

1− p
∏
m>0

(1 + pmQ)m

The overall factors of Qn3 are calculated in 3.3.23.3.2 to be:

1. n = 4 for (g) and n = 0 for (h).

2. If j(E) = 1728 and E ∼= C/i then

- n = 2 occurs when D is a translation of the graph {(x,±ix)}.

3. If j(E) = 0 and E ∼= C/τ with τ = 1
2 (1 + i

√
3) then

- n = 1 occurs when D is a translation of the graph {(x,−τx)} or the graph
{(x, (τ − 1)x)}.

- n = 3 occurs when D is a translation of the graph {(x, τx)} or the graph
{(x, (−τ + 1)x)}.

Lastly, in a generic pencil we have e(J0) = 4 and e(J1728) = 6.

Hence the contribution for parts (g)− (i) is:

Q1Q2QσM(p)24

(∏
m>0

(1 + pmQσ)m(1 + pmQ3)12m

)(
−10 + 8Q3 + 12Q2

3 + 8Q3
3 − 10Q4

3

)
5.5.6. Part (j):
In the appendix 6.2.26.2.2 we give the following decomposition for L into parts:
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1. Lσ(0,0),(∞,∞) q L∅(0,0),(∞,∞) q Lσ(0,∞),(∞,0) q L∅(0,∞),(∞,0)

2. q Lσ(0,0) q L∅(0,0) q Lσ(∞,∞) q L∅(∞,∞)

3. q Lσ(0,∞) q L∅(0,∞) q Lσ(∞,0) q L∅(∞,0)

4. q Lσ∅ q L∅∅.

The Euler characteristics of the parts of this decomposition are computed in 6.2.36.2.3 and
the overall factors of Q1, Q2 and Q3 are calculated in lemma 3.4.43.4.4.

Grouping (1): The following table is the summary of results from 5.2.45.2.4 and 5.2.55.2.5 for the
strata in grouping (1):

Z≥0 × U × Sym•({bkop})× Sym•(Bop \ {bkop}).

Note that the vertex is different for L(0,0),(∞,∞) as described in 4.4.94.4.9.

U = Lσ(0,0),(∞,∞) e(U)=1 χ(OD) = 1

e(η-1• (a, x,mk,m)) =

Q1Q2Q
2
3p

1
(V�∅∅)(V∅∅∅)

QaσΦ−,∅(a)Qmk3 Φ−, | (mk)
12∏
i = 1
i 6= j

Qmi3 Φ∅,∅(mi)

U = L∅(0,0),(∞,∞) e(U)=−1 χ(OD) = 1

e(η-1• (a, x,mk,m)) =

Q1Q2Q
2
3p

1
(V∅∅∅)2

QaσΦ∅,∅(a)Qmk3 Φ−, | (mk)
12∏
i = 1
i 6= j

Qmi3 Φ∅,∅(mi)

U =Lσ(0,∞),(∞,0) e(U) = 1 χ(OD) = 0

e(η-1• (a, x,mk,m)) =

Q1Q2
1

(V�∅∅)(V∅∅∅)
·QaσΦ−,∅(a) ·Qmk3 Φ+,∅(mk)

12∏
i = 1
i 6= j

Qmi3 Φ∅,∅(mi)

U =L∅(0,∞),(∞,0) e(U) = −1 χ(OD) = 0

e(η-1• (a, x,mk,m)) =

Q1Q2
1

(V∅∅∅)2
·QbσΦ∅,∅(b) ·Qm3 Φ+,∅(m)

12∏
i = 1
i 6= j

Qdi3 Φ∅,∅(di)

From lemmas 6.3.26.3.2, 6.3.46.3.4 and 6.3.56.3.5 we have:

1. V∅∅∅ = M(p)

2. V�∅∅ = M(p) 1
1−p

3.
∑
m≥0Q

mΦ∅,∅(m) = M(p)2
∏
m>0

(1 + pmQ)m

4.
∑
m≥0Q

mΦ−,∅(m) = M(p)2 1 +Q

1− p
∏
m>0

(1 + pmQ)m

5.
∑
m≥0Q

mΦ−,−(m) = M(p)2 1
p (ψ0 + (ψ1 + 2ψ0)Q+ ψ0Q

2)
∏
m>0

(1 + pmQ)m.
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6.
∑
m≥0Q

mΦ−, | (m) = M(p)2(ψ0 + (2ψ0 + ψ1)Q+ (ψ0 + ψ1)Q2)
∏
m>0

(1 + pmQ)m.

7.
∑
m≥0Q

mΦ+,∅(m) = M(p)2(ψ1 +ψ0 +(ψ1 +2ψ0)Q+ψ0Q
2)
∏
m>0

(1+pmQ)m

So the after accounting for the 12 singular fibres we have the contribution from group-
ing (1) as:

Q1Q2M(p)24

(∏
m>0

(1− pmQσ)m(1− pmQ3)12m

)
· 12QσQ

2
3

(
(ψ0 + ψ1) +Q3(2ψ0 + ψ1) + 2Q2

3ψ0 +Q3
3(2ψ0 + ψ1) +Q4

3(ψ0 + ψ1)
)

Grouping (2): We compute the results for L(0,0) with L(∞,∞) being completely analo-
gous. The following table is the summary of results from 5.2.45.2.4 and 5.2.55.2.5 for the strata
in grouping (2):

Z≥0 × U × Sym•({bkop})× Sym•(Bop \ {bkop}).

U = Lσ(0,0) e(U)=−1 χ(OD) = 1

e(η-1• (a, x,mk,m)) =

Q1Q2Q
2
3p

1
(V∅∅∅)2

QaσΦ−,∅(a)Qmk3 Φ−,∅(mk)
12∏
i = 1
i 6= j

Qmi3 Φ∅,∅(mi)

U = L∅(0,0) e(U)=1 χ(OD) = 1

e(η-1• (a, x,mk,m)) =

Q1Q2Q
2
3p

(V�∅∅)
(V∅∅∅)3

QaσΦ∅,∅(a)Qmk3 Φ−,∅(mk)
12∏
i = 1
i 6= j

Qmi3 Φ∅,∅(mi)

From lemmas 6.3.26.3.2, 6.3.46.3.4 and 6.3.56.3.5 we have:

1. V∅∅∅ = M(p)

2. V�∅∅ = M(p) 1
1−p

3.
∑
m≥0Q

mΦ∅,∅(m) = M(p)2
∏
m>0

(1 + pmQ)m

4.
∑
m≥0Q

mΦ−,∅(m) = M(p)2 1 +Q

1− p
∏
m>0

(1 + pmQ)m

Accounting for both L(0,0) and L(∞,∞), the contribution for grouping (2) is:

Q1Q2M(p)24

(∏
m>0

(1 + pmQσ)m(1 + pmQ3)12m

)
· (−24)QσQ

2
3 (ψ0 +Q3ψ0)

Grouping (3): We compute the results for L(0,∞) with L(∞,0) being completely analo-
gous. The following table is the summary of results from 5.2.45.2.4 and 5.2.55.2.5 for the strata
in grouping (3):

Z≥0 × U × Sym•({bkop})× Sym•(Bop \ {bkop}).
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U = Lσ(0,∞) e(U)=−1 χ(OD) = 1

e(η-1• (a, x,mk,m)) =

Q1Q2Q3p
1

(V∅∅∅)2
QaσΦ−,∅(a)Qmk3 Φ−,∅(mk)

12∏
i = 1
i 6= j

Qmi3 Φ∅,∅(mi)

U = L∅(0,∞) e(U)=1 χ(OD) = 1

e(η-1• (a, x,mk,m)) =

Q1Q2Q3p
(V�∅∅)
(V∅∅∅)3

QaσΦ∅,∅(a)Qmk3 Φ−,∅(mk)
12∏
i = 1
i 6= j

Qmi3 Φ∅,∅(mi)

From lemmas 6.3.26.3.2, 6.3.46.3.4 and 6.3.56.3.5 we have:

1. V∅∅∅ = M(p)

2. V�∅∅ = M(p) 1
1−p

3.
∑
m≥0Q

mΦ∅,∅(m) = M(p)2
∏
m>0

(1 + pmQ)m

4.
∑
m≥0Q

mΦ−,∅(m) = M(p)2 1 +Q

1− p
∏
m>0

(1 + pmQ)m

Accounting for both L(0,∞) and L(∞,0), the contribution for grouping (3) is:

Q1Q2M(p)24

(∏
m>0

(1 + pmQσ)m(1 + pmQ3)12m

)
· (−24)QσQ

2
3 (ψ0 +Q3ψ0)

Grouping (4): The following table is the summary of results from 5.2.45.2.4 and 5.2.55.2.5 for
the strata in grouping (4):

Z≥0 × U × Sym•({bkop})× Sym•(Bop \ {bkop}).

U = Lσ∅ e(U)=2 χ(OD) = 1

e(η-1• (a, x,mk,m)) = Q1Q2Q
2
3p

(V�∅∅)
(V∅∅∅)3

QaσΦ−,∅(a)
12∏
i=1

Qmi3 Φ∅,∅(mi)

U = L∅∅ e(U)=−2 χ(OD) = 1

e(η-1• (a, x,mk,m)) = Q1Q2Q
2
3p

(V�∅∅)
2

(V∅∅∅)4
QaσΦ∅,∅(a)

12∏
i=1

Qmi3 Φ∅,∅(mi)

From lemmas 6.3.26.3.2, 6.3.46.3.4 and 6.3.56.3.5 we have:

1. V∅∅∅ = M(p)

2. V�∅∅ = M(p) 1
1−p

3.
∑
m≥0Q

mΦ∅,∅(m) = M(p)2
∏
m>0

(1 + pmQ)m



6. APPENDIX 85

4.
∑
m≥0Q

mΦ−,∅(m) = M(p)2 1 +Q

1− p
∏
m>0

(1 + pmQ)m

So the contribution for grouping (4) is:

Q1Q2M(p)24

(∏
m>0

(1 + pmQσ)m(1 + pmQ3)12m

)
· 24QσQ

2
3ψ0

Combining groupings (1)-(4) we have the overall contribution for part (j) is:

Q1Q2M(p)24

(∏
m>0

(1 + pmQσ)m(1 + pmQ3)12m

)
· 12Qσ

(
(ψ0 + ψ1) +Q3ψ1 +Q3

3ψ1 +Q4
3(ψ0 + ψ1)

)
6 Appendix

6.1 Connected Invariants and their Partition Functions

For the rank four sub-lattice Γ ⊂ H2(X,Z) generated by a section and banana curves,
we can consider the connected unweighted Pandharipande-Thomas invariants. They
are defined formally via the following partition function

ẐPT,Con
Γ (X) := log

(
ẐΓ(X)

Ẑ(0,•,•)|Qi=0

)
.

For the partition function in theorem AA we consider the first terms of the expansion
in Qσ and Q1:

ẐΓ(X)

Ẑ(0,•,•)|Qi=0

=
Ẑ(0,•,•)

Ẑ(0,•,•)|Qi=0

+Qσ
Ẑσ+(0,•,•)

Ẑ(0,•,•)|Qi=0

+ · · ·

=
Ẑ(0,•,•)

Ẑ(0,•,•)|Qi=0

(
1 +Qσ

Ẑσ+(0,•,•)

Ẑ(0,•,•)
+ · · ·

)
.

So the first terms of the expansion in Qσ and Q1 of the connected partition function
are:

ẐPT,Con
Γ (X) =

Ẑ(0,•,•)

Ẑ(0,•,•)|Qi=0

−Qσ
Ẑσ+(0,•,•)

Ẑ(0,•,•)
+ · · · .

In particular we have the connected version of Ẑσ+(0,•,•) as:

ẐPT,Con
σ+(0,•,•) =

−1

(1− p)2

∏
m>0

1

(1−Qm2 Qm3 )8(1− pQm2 Qm3 )2(1− p−1Qm2 Q
m
3 )2

,

proving corollary BB. For the partition function in theorem CC we consider the first
terms of the expansion in Q1 and Q2:

ẐΓ(X)

Ẑ(0,•,•)|Qi=0

=
Ẑ(0,•,•)

Ẑ(0,•,•)|Qi=0

(
1 +Q1

Ẑ•σ+(1,0,•)

Ẑ•σ+(0,0,•)
+Q2

Ẑ•σ+(0,1,•)

Ẑ•σ+(0,0,•)
+Q1Q2

Ẑ•σ+(1,1,•)

Ẑ•σ+(0,0,•)
+ · · ·

)
.
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So the first terms of the expansion in Q1 and Q2 of the connected partition function
are:

ẐPT,Con
Γ (X) = log

(
Ẑ(0,•,•)

Ẑ(0,•,•)|Qi=0

)
−Q1

Ẑ•σ+(1,0,•)

Ẑ•σ+(0,0,•)
−Q2

Ẑ•σ+(0,1,•)

Ẑ•σ+(0,0,•)

+Q1Q2

(
Ẑ•σ+(1,0,•)Ẑ•σ+(0,1,•)(

Ẑ•σ+(0,0,•)
)2 −

Ẑ•σ+(1,1,•)

Ẑ•σ+(0,0,•)

)
+ · · ·

In particular we have the connected version of Ẑ•σ+(0,0,•) as

ẐPT,Con
•σ+(0,0,•) = log

(
Ẑ•σ+(0,0,•)

Ẑ(0,•,•)|Qi=0

)

= log

(∏
m>0

(1 + pmQσ)m(1 + pmQ3)12m

)

=
∑
n>0

pn

(1− pn)2

(−Qσ)n

n
+
∑
n>0

12
pn

(1− pn)2

(−Q3)n

n

=
∑
n>0

ψ0(pn)
(−Qσ)n

n
+
∑
n>0

12ψ0(pn)
(−Q3)n

n

and the connected version of Ẑ•σ+(0,1,•) (and also of Ẑ•σ+(1,0,•)) given by:

ẐPT,Con
•σ+(0,1,•) = −

((
12ψ0 +Q3(24ψ0 + 12ψ1) +Q2

3(12ψ0)
)

+QσQ3

(
ψ0 + 2ψ1

))
and the connected version of Ẑ•σ+(1,1,•) given by:

ẐPT,Con
•σ+(1,1,•)

=
(

12
(
Q4

3(2ψ0 + ψ1) +Q3
3(8ψ0 + 6ψ1 + ψ2) +Q2

3(12ψ0 + 10ψ1 + 2ψ2)

+Q3(8ψ0 + 6ψ1 + ψ2) + (2ψ0 + ψ1)
))

+Qσ

((
12ψ0 + 2ψ1

)
+Q3

(
48ψ0 + 44ψ1

)
+Q2

3

(
216ψ0 + 108ψ1 + 24ψ2

)
+Q3

3

(
48ψ0 + 44ψ1

)
+Q4

3

(
12ψ0 + 2ψ1

))
.

Corollary DD now follows immediately.

6.2 Linear System in P1 × P1

In this section we consider a stratification of the following linear system in P1 × P1

with strata determined by the intersections of the associated divisors with a collection
of points.

Consider the fibres of the projection maps pri : P1 × P1 → P1 and a fibre from each
fi. The linear system in P1 × P1 defined by the sum of a fibre from each map is
|f1 + f2| = P3. This is the collection of bi-homogeneous polynomials of degree (1, 1):{

ax0y0 + bx0y1 + cx1y0 + dx1y1 = 0
∣∣∣ [a : b : c : d] ∈ P3

}
6.2.1. There are five points in P1 × P1 that are of interest to us:

σ =
(
[1 : 1], [1 : 1]

)
and P :=

{
(0, 0), (0,∞), (∞, 0), (∞,∞)

}
.
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Lσ(0,0),(∞,∞) : Lσ(0,0) : Lσ∅ :

L∅(0,0),(∞,∞) : L∅(0,0) : L∅∅ :

Figure II.12: Depictions of the curves in the decomposition of the linear system |f1+f2|
on P1 × P1.

where we have used the standard notation 0 = [0 : 1] and ∞ = [1 : 0]. We will
decompose |f1 +f2| into strata based on which points the divisor intersects. Consider
a divisor D ∈ |f1 + f2|. Then D passes through:

1.
(
0, 0
)
if and only if d = 0;

2.
(
0,∞

)
if and only if c = 0;

3.
(
∞, 0

)
if and only if b = 0;

4.
(
∞,∞

)
if and only if a = 0.

6.2.2. Define the following convenient notation for y, x ∈ P:

1. Sing ⊂ |f1 + f2| is the subset of singular divisors.

2. L∅ ⊂
(
|f1 + f2| \ Sing

)
is the subset of smooth curves not passing through any

points of P .

3. Lx ⊂
(
|f1 + f2| \ Sing

)
is the subset of smooth curve passing through x but no

other points of P .

4. Lx,y ⊂
(
|f1 + f2| \ Sing

)
is the subset of smooth curve passing through x and y

but no other points of P.

5. Also let Lσ∅ , L
σ
x and Lσx,y be subsets of L∅, Lx and Lx,y respectively with the

further condition that the curves pass through σ.

6. Let L∅∅, L
∅
x and L∅x,y be the complements of Lσ∅ , L

σ
x and Lσx,y in L∅, Lx and Lx,y

respectively.

With this notation we have the following decomposition of |F1 + F2|:

|F1 + F2| = Sing q L(0,0),(∞,∞) q L(0,∞),(∞,0)

q L(0,0) q L(0,∞) q L(∞,0) q L(∞,∞)

q L∅.

6.2.3. We now consider the strata of this collection and their Euler characteristics:
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ban: A curve in |f1 +f2| is singular if and only if the equation for the curve factorises:

ax0y0 + bx0y1 + cx1y0 + dx1y1 = (αx0 + βx1)(γy0 + δy1) = 0

where [α : β], [γ : δ] ∈ P1. Hence Sing ∼= P1 × P1 and the Euler characteristic
is e(ban) = e(|f1 + f2|) = 4.

Lx,y : We consider for x = (0, 0) and y = (∞,∞) with the case (0,∞) and (∞, 0)
being completely analogous. The points [a : b : d : c] ∈ |f1 + f2| correspond
to a curve passing through x and y if and only if a = d = 0. Moreover, this is
singular when either b = 0 or c = 0. Hence Lx,y ∼= P1 \{0,∞} and e(Lx,y) = 0.

The set Lσx,y is when b+ c = 0, which is a point in P1. So we have e(Lσx,y) = 1

and e(L∅x,y) = 1.

Lx: We consider the case x = (0, 0) with the other cases being completely analogous.
So the subspace of all divisors passing through x is [a : b : d : c] ∈ |f1 + f2|
where d = 0. This is a P2 ⊂ P3. The subspace where the curve doesn’t
pass through one of the other points is where a, b, c 6= 0 which is given by
C∗×C∗ ∼= P2 \

(
{a = 0}∪{b = 0}∪{c = 0}

)
. None of the equations for these

curves factorise since such a factorisation would require either b = 0 or c = 0.
Hence, Lx ∼= C∗ × C∗ and e(Lx) = 0.

The subset Lσx is defined by the further condition a+ b+ c = 0 which gives

Lσx =
{

[a : b : c] ∈ P2
∣∣∣ a, b, c 6= 0 and a+ b = 1

}
∼= C∗ \ pt

Hence we have the Euler characteristics e(Lσx) = −1 and e(L∅x) = 1.

L∅: The set of curves not passing through any points of P is given by{
[a : b : c : d] ∈ |f1 + f2|

∣∣∣ a, b, c, d 6= 0
}
∼=
{
b, c, d ∈ (C∗)3

}
The singular curves are given by the factorisation condition:

x0y0 + bx0y1 + cx1y0 + dx1y1 = (x0 + βx1)(y0 + δy1)

which is the condition that d = bc. So the subspace of curves which are singular
is (C∗)2 ⊂ (C∗)3. Hence L∅ ∼= {(b, c, d) ∈ (C∗)3|b 6= dc} and e(L∅) = 0.

Lσ∅ is given by the further condition that b+ c+ d = 0, so we have:

Lσ∅
∼=
{

(b, c, d) ∈ (C∗)3
∣∣∣ d 6= bc and 1 + b+ c+ d = 0

}
∼=
{

(b, c) ∈
(
C∗
)2 ∣∣∣ (b+ 1)(c+ 1) 6= 0 and b+ c 6= −1

}
∼=
{

(b, c) ∈
(
C∗ \ {−1}

)2 ∣∣∣ b+ c 6= −1
}

∼=
(
C∗ \ {−1}

)2 − (C \ {2pt}
)
.

Hence we have the Euler characteristics e(Lσ∅ ) = 2 and e(L∅∅) = −2.
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6.3 Topological Vertex Formulas

In this section of the appendix we collect some useful formulas for partition functions
involving the topological vertex.
Define the “MacMahon” notation:

M(p,Q) =
∏
m>0

(1− pmQ)−m

and the simpler version M(p) = M(p, 1).

Lemma 6.3.1. We have the equality:

Vλ��Vλ∅∅ =
1

p
Vλ∅∅Vλ∅∅ + Vλ�∅Vλ∅�

Proof. We prove the equivalent equation:

V��ν
V∅∅ν

=
1

p
+

V�∅νV∅�ν
(V∅∅ν)2

From the definition we have:

V��ν
V∅∅ν

=
1

p

∑
η⊂�

S�/η(p−ν−ρ)S�/η(p−ν
t−ρ)

=
1

p

(
S�/∅(p

−ν−ρ)S�/∅(p
−νt−ρ) + S�/�(p−ν−ρ)S�/�(p−ν

t−ρ)
)

=
V�∅νV∅�ν

(V∅∅ν)2
+

1

p

Lemma 6.3.2. We have

1. V∅∅∅ = M(p)

2. V�∅∅ = M(p) 1
1−p

3. V��∅ = M(p) p
2−p+1
p(1−p)2

4. V��� = M(p)p
4−p3+p2−p+1
p2(1−p)3

Proof. Part (11) is immediate from the definition. For part (22) we have:

V�∅∅ = M(p)p−
1
2S∅(p

−ρ)
∑
η

S�/η(p−ρ)S∅/η(p−ρ)

= M(p)
1

1− p

For part (33) we have:

V��∅ = M(p)p−1S∅(p
−ρ)

∑
η

S�/η(p−ρ)S�/η(p−ρ)

= M(p)p−1
(
S�/∅(p

−ρ)S�/∅(p
−ρ) + S�/�(p−ρ)S�/�(p−ρ)

)
= M(p)p−1

( p

(1− p)2
+ 1
)

= M(p)
p2 − p+ 1

p(1− p)2
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Part (44) follows from parts (22) and (33) and lemma 6.3.16.3.1:

V��� =
1

p
V�∅∅ +

V��∅V�∅�
V�∅∅

6.3.3. It is shown in [BrBr, §4.3] the Donaldson-Thomas partition function of this is
computed to be:∑

ν,α,µ

Q
|ν|
1 Q

|α|
2 Q

|µ|
3 p

1
2 (‖ν‖2+‖νt‖2+‖α‖2+‖αt‖2+‖µ‖2+‖µt‖2)(VνµαVνtµtαt).

=
∏

d1,d2,d3≥0

∏
k

(1− (−Q1)d1(−Q2)d2(−Q3)d3pk)−c(‖d‖,k)

where d = (d1, d2, d3) and the second product is over k ∈ Z unless d = (0, 0, 0) in
which case k > 0. The powers c(‖d‖, k) are defined by

∞∑
a=−1

∑
k∈Z

c(a, k)Qayk :=

∑
k∈ZQ

k2(−y)k(∑
k∈Z+ 1

2
Q2k2(−y)k

)2 =
ϑ4(2τ, z)

ϑ1(4τ, z)2

and ‖d‖ := 2d1d2 + 2d2d3 + 2d3d1− d2
1− d2

2− d2
3. Also, if we recall the notation that

ψg :=

(
p

(1− p)2

)1−g

then we have the following corollary.

Corollary 6.3.4. We have:

1.
∑
α,µ

Q
|α|
2 Q

|µ|
3 p

1
2 (‖α‖2+‖αt‖2+‖µ‖2+‖µt‖2)(V∅µαV∅µtαt)

= M(p)2
∏
m>0

M(Qm2 Q
m
3 , p)

2

(1−Qm2 Qm3 )M(−Qm−1
2 Qm3 , p)M(−Qm2 Q

m−1
3 , p)

2.
∑
α
Q|α|p

1
2 (‖α‖2+‖αt‖2)(V∅∅αV∅∅αt) = M(p)2

∏
m>0

(1 + pmQ)m

3.
∑
α
Q|α|p

1
2 (‖α‖2+‖αt‖2)+1(V�∅αV�∅αt)

= M(p)2(ψ0 + (ψ1 + 2ψ0)Q+ ψ0Q
2)
∏
m>0

(1 + pmQ)m

4.
∑
α
Q|α|p

1
2 (‖α‖2+‖αt‖2)+2(V��αV��αt)

= M(p)2
∏
m>0

(1+pmQ)m
(
Q4(2ψ0+ψ1)+Q3(8ψ0+6ψ1+ψ2)+Q2(12ψ0

+10ψ1 +2ψ2)+Q(8ψ0 +6ψ1 +ψ2)+(2ψ0 +ψ1)
)

Proof. These are all coefficients of the partition function in 6.3.36.3.3. For example part (3)
is the coefficient of Q1

1Q
0
2.

Lemma 6.3.5. We have the following equalities:

1.
∑
α
Q|α|p

1
2 (‖α‖2+‖αt‖2)(V�∅αV∅∅αt) = M(p)2 1 +Q

1− p
∏
m>0

(1 + pmQ)m
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2.
∑
α
Q|α|p

1
2 (‖α‖2+‖αt‖2)+1(V��αV∅∅αt)

= M(p)2((ψ0 + ψ1) + (2ψ0 + ψ1)Q+ ψ0Q
2)
∏
m>0

(1 + pmQ)m

3.
∑
α
Q|α|p

1
2 (‖α‖2+‖αt‖2)+1(V�∅α)2

= M(p)2(ψ0 + (2ψ0 + ψ1)Q+ (ψ0 + ψ1)Q2)
∏
m>0

(1 + pmQ)m

Proof. Part (1) is given by:∑
α

Q|α|p
1
2 (‖α‖2+‖αt‖2)(Vα�∅Vαt∅∅)

= p−
1
2M(p)2

∑
α

Q|α|
∑
η

Sαt/η(p−ρ)S�/η(p−ρ)
∑
δ

Sα/δ(p
−ρ)S∅/δ(p

−ρ)

= p−
1
2M(p)2

∑
α

Q|α|
(
Sαt(p

−ρ)S�(p−ρ) + Sαt/�(p−ρ)
)
Sα(p−ρ)

= p−
1
2M(p)2

(
S�(p−ρ)

∑
α⊃∅

Sαt/∅(p
−ρ)Sα/∅(Qp

−ρ) +
∑
α⊃�

Sαt/�(p−ρ)Sα/∅(Qp
−ρ)
)

After applying [MaMa, Eqn. 2, pg. 96] the equation becomes

p−
1
2M(p)2

∏
i,j>0

(1 + pi+jQ)(
S�(p−ρ)

∑
τ⊂∅

S∅/τ (p−ρ)S∅/τ (Qp−ρ) +
∑
τ⊂∅

S∅/τt(p
−ρ)S�/τ (Qp−ρ)

)
= p−

1
2M(p)2

∏
m>0

(1 + pmQ)m(1 +Q)
p

1
2

1− p
.

Part (2) follows from lemma 6.3.16.3.1 and corollary 6.3.46.3.4:∑
α

Q|α|p
1
2 (‖α‖2+‖αt‖2)+1(V��αV∅∅αt)

=
∑
α

Q|α|p
1
2 (‖α‖2+‖αt‖2)(V∅∅αV∅∅αt) +

∑
α

Q|α|p
1
2 (‖α‖2+‖αt‖2)+1(V�∅αV�∅αt).

Part (3) is given by:∑
α

Q|α|p
1
2 (‖α‖2+‖αt‖2)+1(V�∅α)2

=
∑
α

Q|α|p
1
2 (‖α‖2+1)(Vα�∅) p

1
2 (‖αt‖2+1)(V∅α�)

= M(p)2
∑
α

Q|α|S�(p−ρ)
∑
δ

Sα/δ(p
−�−ρ)S∅/δ(p

−�−ρ)

S∅(p
−ρ)

∑
η

Sαt/η(p−ρ)S�/η(p−ρ)

= M(p)2S�(p−ρ)
∑
α

Sα(Qp−�−ρ)
(
Sαt(p

−ρ)S�(p−ρ) + Sαt/�(p−ρ)
)

After applying [MaMa, Eqn. 2, pg. 96] the equation becomes

M(p)2S�(p−ρ)(1 +Q)
∏
m>0

(1 +Qpm)m
(
S�(p−ρ) + S�(p−�−ρ)

)
.
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The result follows from a quick computation involving V∅�� = V��∅ showing that

S�(p−ρ)S�(p−�−ρ) = S�(p−ρ)2 + 1.

Lemma 6.3.6. The following are true

1.
∑
α
Q|α| =

∏
d>0

1

(1−Qd)

2.
∑
α
Q|α|

(Vα�∅)

(Vα∅∅)
=

1

1− p
∏
d>0

(1−Qd)
(1− pQd)(1− p−1Qd)

3.
∑
α
p‖α‖

2

Q|α|
(Vααt∅)

(V∅∅∅)
=
∏
d>0

M(p,Qd)

(1−Qd)

4.
∑
α
p‖α‖

2

Q|α|
(Vααt∅)(Vα�∅)

(Vα∅∅)(V∅∅∅)
=

1

1− p
∏
d>0

M(p,Qd)

(1− pQd)(1− p−1Qd)

Proof. The first is a classical result and the other three are the content of [BKYBKY, Thm.
3].
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