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Abstract  

Secondary progressive MS (SPMS) is a late stage neurological disease characterized by 

chronic worsening. Enhanced prediction of SPMS progression could improve clinical trial 

design and may inform patient/physician treatment decisions, but the task is difficult since 

MS is characterized by heterogeneity in terms of clinical features, genetics, pathogenesis, 

and treatment response. The Expanded Disability Status Scale (EDSS), is a nominal MS 

disability scale for describing physical disability that is often incorrectly treated as a 

continuous variable. Machine learning (ML) models identify relationships between features 

and outcome, while deep learning (DL) adds on automatic feature extraction from low-level 

data. Although both have been applied to MS classification and early-stage transition 

prediction, late-stage MS disability progression prediction is lacking. The contributions of 

this thesis are the design, implementation, and evaluation of 1) ML using user-defined 

features (UDF), 2) DL using automatically extracted brain lesion mask features (BLM) for 

predicting SPMS disability progression, and 3) an evaluation of the impact on performance 

when EDSS is misused as a continuous variable. SPMS participants (n=485) in a 2-year 

placebo-controlled (negative) trial of MBP8298 were labelled progressors if a 6-month-

sustained increase in EDSS (≥1.0 and ≥0.5 for a baseline of ≤5.5 and ≥6.0 respectively) was 

observed within 24 months. UDF included EDSS, Multiple Sclerosis Functional Composite 

component scores, T2 lesion volume, brain parenchymal fraction, disease duration, age, and 

sex. Logistic regression (LR), ensemble support vector machines (enSVM), random forest 

(RF), and AdaBoost decision trees (AdBDT) were trained using UDF only. DL networks 

were trained to extract BLM features and predict progression with and without UDF. The 
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primary outcome was the area under the receiver operating characteristic curve (AUC). Of 

the 485 participants, 115 progressed. When using continuous EDSS, AdBDT and RF had a 

greater AUC (60.3% and 56.2%) than enSVM (52.1%) and LR (44.7%), and DL using only 

BLM features outperformed LR using UDF (55.0% vs. 45.0%). UDF did not improve DL. 

RF and AdBDT were robust to EDSS treatment. SPMS trial cohorts selected by ML, DL, or 

both, could identify those at highest risk for progression, enabling smaller, shorter studies.   
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Lay Summary 

Secondary progressive MS (SPMS) is a late stage neurological disease characterized by 

chronic worsening. Unfortunately, accurate prognoses are difficult to obtain as past clinical 

scores and traditional magnetic resonance imaging (MRI) measurements have poor 

predictive value of future disability and individual disease courses vary greatly. Artificial 

intelligence (AI) has the ability to learn complex patterns from seemingly random data. This 

thesis presents two AI approaches, machine learning and deep learning, for predicting 

disability progression in secondary progressive MS, a late disease stage characterized by 

chronic worsening which results in lasting disability. The prediction task was approached by 

training several machine learning models to discover relationships between progression, 

clinical disease scores and imaging biomarkers, as well as a deep learning model to 

automatically extract predictive features from brain lesion masks. Additionally, this thesis 

presents the impact on machine and deep learning models that incorrectly processing one 

clinical disease scale can cause. 
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 Chapter 4 utilized brain lesion masks generated for the SPMS MBP8298 study 

mentioned above using the methodologies described in Section 2.1 by the original 

researchers. The author, M. Law, performed all image pre-processing described in Section 

4.2. Design of the deep learning networks was inspired by Dr. Youngjin Yoo et al and their 
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Chapter 1:  

Introduction 

1.1 Multiple Sclerosis 

Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease of the central 

nervous system (CNS), characterized by the destruction of the myelin sheath that surrounds 

and insulates axons of nerve cells. Myelinated axons allow for saltatory conduction of a 

nerve impulse (the jumping of nerve impulses between gaps between consecutive myelin 

sheaths known as nodes of Ranvier), thereby negating the otherwise required sequential 

depolarization of the entire cell membrane (a much slower process). The demyelination of 

axons in CNS results in scarring, disruption of nerve impulses, nerve fiber damage, and 

ultimately axonal death, resulting in clinical presentations and disease progressions that may 

vary greatly between individuals. Some symptoms of MS include extreme fatigue, lack of 

coordination, weakness, tingling, impaired sensation, vision and bladder problems, cognitive 

impairment, and mood changes.  
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Figure 1-1 Heterogeneity of Multiple Sclerosis. An illustration of the high degree of variability in disease 

progression. Adapted from [1].  

 

MS is a chronic disease and most patients experience varying rates and severity of 

eventual permanent disability (Figure 1-1). There are four clinical forms of MS outlined by 

the McDonald diagnostic criteria: clinically-isolated syndrome (CIS), primary progressive 

(PPMS), relapsing-remitting (RRMS), and secondary progressive (SPMS) [2]. While some 

MS patients experience uninterrupted disability progression from disease onset (PPMS), the 

majority of MS patients start with the relapsing-remitting phase (characterized by acute 

worsening from which patients may or may not fully recover and periods of remission) 

before advancing into the secondary progressive phase (SPMS) [3]. 

1.1.1 Secondary Progressive Multiple Sclerosis 

Unlike PPMS where disability gradually worsens from disease onset, secondary progressive 

multiple sclerosis is a retrospective diagnosis based on a history of gradual worsening 

without acute disease worsening that follows a relapsing-remitting disease course, [2]. Figure 

1-2 illustrates hypothetical PPMS, RRMS and SPMS disease courses for visualization of the 

different disability progressions.  
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Figure 1-2 Example of primary progressive (PP) MS, relapsing-remitting (RR) MS  and secondary 

progressive (SP) MS. PPMS (dashed) is characterized by chronic disease worsening from onset. RRMS 

(orange) is characterized by acute disability that may leave permanent deficits, and SPMS is 

characterized by chronic disease worsening following a history of RRMS  

 

1.1.2 Clinical Scores for Multiple Sclerosis 

The Expanded Disability Status Scale (EDSS) is the most commonly used clinical score for 

summarizing disability in MS. Although EDSS was designed as an ordinal (ordered 

categorical) variable, it is often treated as a continuous variable. EDSS ranges from 0 to 10 in 

0.5 increments, signifying increasing disability from absence of neurological deficits to death 

caused by MS. An individual’s EDSS score is a combination of the scores of eight functional 

systems – pyramidal, cerebellar, brain stem, sensory, bowel and bladder, visual, cerebral, and 

other [4]. While EDSS provides a simple overview of a patient’s disability, it focuses heavily 

on physical disability and less on the highly variable and nuanced cognitive impacts of MS.  

 Unlike EDSS, the Multiple Sclerosis Functional Composite (MSFC) was developed 

as a composite measure for summarizing arm/hand, leg, and cognitive function assessed 
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through three neurological function tests – a timed 25-foot walk (T25W) for assessing leg 

function, a 9-hole peg test (9HPT) for evaluating arm function, and a paced auditory serial 

addition test (PASAT) for assessing cognitive function. To obtain an individual’s MSFC 

score, the Z-score of the three tests (commonly obtained by standardizing results to the Task 

Force Dataset) are averaged [5].  

 

1.2 Magnetic Resonance Imaging 

Magnetic resonance (MR) imaging (MRI) is a non-radiating and non-invasive imaging 

method commonly used for visualizing human anatomy. Two-dimensional or three-

dimensional images of the body are obtained by first aligning randomly oriented protons of 

hydrogen atoms in water molecules to an external magnetic field. The protons are then 

stimulated by radiofrequency (RF) pulses. As the atoms realign with the external magnetic 

field, RF signals are generated. These are detected by antennas and reconstructed into an 

image. Tissue is characterized by two relaxation time constants, T1 and T2. T1 relaxation time 

constant determines the rate at which excited protons realign with the external magnetic 

field, while T2 relaxation time constant determines the rate of RF signal decay following 

excitation. By altering the two parameters of the excitation RF pulse, repetition time and 

echo time, three image types with unique tissue contrast characteristics – T1-weighted (T1w), 

T2-weighted (T2w), and proton density weighted (PDw) – can be produced. Additional 

sequences (e.g. fluid-attenuated inversion recovery, diffusion weighted, flow sensitive, etc.) 

can also be produced by introducing new parameters which further manipulate the RF pulses. 

To detect specific pathologies, contrast agents may also be used. Figure 1-3 shows sample 

T1w, T2w, and PDw brain MR images. 
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Figure 1-3 Examples of brain MR images. Left: T1-weighted (T1w) with contrast MRI. Middle: T2-

weighted (T2w) MRI. Right: proton density weighted (PDw) MRI. 

 

1.2.1 Magnetic Resonance Imaging in Multiple Sclerosis 

MR images of the brain and spinal cord are used most commonly for the identification of 

brain and spinal cord lesions. Depending on the clinical presentation of MS, MRI evidence 

demonstrating one or both of lesion dissemination in space and in time, may be required for a 

diagnosis of clinically definite MS (CDMS). Dissemination in space refers to the spatial 

distribution of lesions within the CNS, while dissemination in time refers to evidence of 

active lesions across time [6].  

MR imaging is also extremely valuable for the monitoring of MS disease progression. 

Individual or a combination of MR images may be used to extract imaging biomarkers 

including but not limited to white matter lesion counts, lesion volume, brain atrophy, and 

gadolinium-enhancing lesions indicating new disease activity [7].   
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1.3 Artificial Intelligence 

Artificial intelligence (AI) refers to computer systems that are able to perform tasks that 

normally require human intelligence. A small subset of such tasks includes image 

recognition, image segmentation, object detection, language processing, and classification.  

Machine learning is a branch of AI that uses computational algorithms to learn how 

to perform a specific task (i.e. classification) from a set of training data, after which it can 

perform the task with new data. Machine learning can be broken down into unsupervised or 

supervised learning. In unsupervised learning, algorithms learn hidden patterns in unlabeled 

training data. This is useful for discovering new relationships within a dataset and is more 

akin to data mining [8]. With supervised learning, the algorithm learns from a set of labelled 

training data; each example in the training data has a corresponding target output and the 

algorithm learns the relationships between features in the dataset and the desired output.  

Deep learning is an evolution of artificial intelligence from machine learning wherein 

the learning algorithm is composed of multiple processing layers that enable the learning of 

various levels of abstraction that are used as features for classification. This approach breaks 

free from the limitation of learning from the data in their raw form that exists with 

conventional machine learning approaches [9].  

The key difference between machine learning and deep learning is that with machine 

learning, the algorithm learns relationships between given features to accomplish a given 

task, while deep learning performs feature extraction as well.  
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1.3.1 Supervised Machine Learning for Binary Classification 

Several machine learning approaches have seen wide-spread application for the classification 

task. These approaches are logistic regression, support vector machines, decision tree, and 

ensemble classifiers. 

1.3.1.1 Logistic Regression 

Logistic regression (LR) is the conventional statistical model for learning linear relationships 

between explanatory variables and categorical response variables (such as the presence or 

absence of disease) in many healthcare and clinical applications.  

  For a continuous response variable with one explanatory variable 𝑥 ≔ {𝑥1}, the 

expected response variable 𝑌 given 𝑥 is denoted by 𝐸(𝑌|𝑥) and has the form shown in 

Equation  (1.1).  

𝐸(𝑌|𝑥) = 𝛽0 + 𝛽1𝑥1 (1.1) 

In the case of a binary variable, the conditional mean outcome is bound between zero 

and one, such that 0 ≤ 𝐸(𝑌|𝑥) ≤ 1, and is achievable with the logistic distribution. The 

resulting logistic regression model 𝜋(𝑥) is shown in Equation (1.2). The logit transformation 

of 𝜋(𝑥), 𝑔(𝑥), enables properties of the linear regression model such as linear parameters 

and continuous explanatory variables (Equation (1.3)). Given 𝑥, the outcome variable 𝑦 is 

expressed as 𝑦 = 𝜋(𝑥) + 𝜖, where 𝜖 is the error from the conditional mean. In the binary 

case, as discussed, the probability is 𝜋(𝑥) when 𝑦 = 1 and 1 − 𝜋(𝑥) when y = 0.  

𝜋(𝑥) = 𝐸(𝑌|𝑥) =
𝑒𝛽0+𝛽1𝑥1

1 + 𝑒𝛽0+𝛽1𝑥1
 (1.2) 

𝑔(𝑥) = ln [
𝜋(𝑥)

1 − 𝜋(𝑥)
] = 𝛽0 + 𝛽1𝑥1 (1.3) 
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The parameters (i.e. 𝛽0 and 𝛽1) in logistic regression are estimated by optimization of 

the log-likelihood function to obtain the maximum likelihood estimates 𝛽̂. The log-likelihood 

function 𝐿(𝛽) for 𝑛 pairs of 𝑥 and 𝑦, {(𝑥𝑖, 𝑦𝑖), 𝑖 ∈ 1 … 𝑛} is:  

𝐿(𝛽) = ∑{𝑦𝑖 ln[𝜋(𝑥𝑖)] + (1 − 𝑦𝑖) ln[1 − 𝜋(𝑥𝑖)]}

𝑛

𝑖=1

 (1.4) 

Equation (1.4) can then be differentiated for 𝛽0 and 𝛽1 and 𝛽̂ obtained by setting the 

derivatives to zero. The nonlinearity of the resulting derivatives requires iterative numerical 

methods for solving [10]. The importance or contribution of each explanatory variable to the 

model output can be directly assessed from the |𝛽̂| for each variable, provided that the data 

has been scaled such that the range of each explanatory variable is similar (e.g. standardizing 

to a mean of zero and variance of one). Another method of data scaling robust to outliers is 

the removal of the median and scaling to the interquartile range of each explanatory variable. 

1.3.1.2 Support Vector Machines 

The support vector machine (SVM) is a machine learning technique for classification 

problems that aims to learn from input data, an optimal hyperplane with optimal class 

separation. This is achieved by the identification of support vectors that define the optimal 

margin – the largest separation between two classes. An example of the two-class separation 

by an optimal hyperplane is shown in Figure 1-4.  
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Figure 1-4 An example of an optimal hyperplane and margin in 2-dimensional space, defined by support 

vectors (gray boxes) that is learned by a support vector machine. Source: [11] 

  

SVMs achieve this by first mapping the 𝑛-dimensional input vector 𝑥 from its input 

space to a higher, 𝑁-dimensional feature space using 𝑁-dimensional vector functions 𝜙. 

Classification of an input vector 𝒙 is then done by applying a decision function (i.e. 𝑠𝑖𝑔𝑛 

function) on the decision surface function 𝑓(𝑥) (Equation (1.5), where 𝐾(𝒙, 𝒙𝒊) is a kernel 

function applied to the input vectors 𝒙 and support vectors 𝒙𝒊. Support vectors 𝒙𝒊 and 

weights 𝛼𝑖 is found by solving the dual quadratic problem described in [11].  

𝑓(𝒙) = ∑ 𝑦𝑖𝛼𝑖𝐾(𝒙, 𝒙𝒊)

𝑙

𝑖=1

  (1.5) 

  The choice of 𝐾 determines the type of decision surface that is used to perform 

classification. Two common choices of kernels are the linear kernel and the radial basis 

function (RBF) kernel. The linear kernel SVM (linSVM) is similar to that of logistic 

regression with the improved generalizability due to its fitting to a set of support vectors 

instead of the complete dataset. The RBF kernel (𝐾𝑅𝐵𝐹 = exp {−
|𝒙−𝒙𝒊|𝟐

𝜎2 }) produces SVMs 
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with a non-linear decision surface and is particularly useful for learning non-linear 

relationships but is more at-risk of overfitting. 

1.3.1.3 Decision Trees 

Decision trees (DT) learn simple decision rules from the input data to perform the 

classification task. Given a labelled dataset, the DT determines some criterion that splits the 

data (parent node) into two subsets (child nodes), each with decreased class impurity 

compared to its parent. This process can be repeated indefinitely until the DT is perfectly fit 

to the training data by allowing the tree to grow until there are no misclassifications of the 

training data. To classify new data, the tree simply follows the decision rules determined 

during training. 

 

 

Figure 1-5 Example of node splitting s of node t into nodes tL and tR with proportions pL and pR . Source: 

[12] 

 

 Core to the construction of a DT is the calculation of node impurity, denoted by 𝑖. A 

common impurity measure that constructs class probability trees is Gini impurity. The tree is 
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constructed such that impurity decreases (Δ𝑖 < 0) when splitting a parent node 𝑡 into the 

child nodes 𝑡𝐿 and 𝑡𝑅 (Figure 1-5). Impurity change is calculated by Equation (1.6):  

Δ𝑖(𝑠, 𝑡) = 𝑖(𝑡) −  𝑝𝐿𝑖(𝑡𝐿) − 𝑝𝑅𝑖(𝑡𝑅) (1.6) 

where 𝑝𝐴 and 𝑝𝐵 are the proportions of 𝑡 that go into nodes 𝑡𝐴 and 𝑡𝐵 [12]. The 

generalizability of a DT is mainly governed by model parameters that define maximum tree 

depth or node splitting requirements; node splitting requirements may be impurity based (i.e. 

node impurity before splitting and the decrease in impurity resulting from a split) or based on 

properties of the resulting child nodes (i.e. number of samples in the child node). The 

decision rules governing each split, 𝑠, can be determined by identifying the split with the 

greatest decrease in impurity from: a) all possible decision rules or b) a random set of 

decision rules.  

The two DT-based ensemble classifiers that are explored in this thesis are the random 

forest and AdaBoost-DT classifiers. 

1.3.1.4 Ensemble Classifiers 

Ensemble classifiers are a collection of classifiers whose individual class predictions are used 

to determine the final class prediction. To construct an ensemble classifier, 𝑁-classifiers are 

first trained individually. The prediction of each classifier is then aggregated to produce one 

final prediction for the ensemble classifier, commonly by majority-voting or averaging the 𝑁 

individual predictions. As the name implies, majority voting predicts a sample’s class based 

on the class represented by the majority of individual classifiers. Averaging calculates the 

average of the probabilistic outputs.  

 Individual classifiers are typically trained on bootstrapped samples – this results in 

classifiers that are not identical. Unique classifiers can also be trained by introducing 
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randomness to each classifier (e.g. random forests), changing model parameters (e.g. 

AdaBoost-DT), or training classifiers on different subsamples of the original dataset. The 

main benefit of ensemble classifiers is a reduced likelihood of overfitting.  

1.3.1.4.1 Random Forest 

The random forest classifier (RF) is a collection of DT classifiers, each trained on a random 

subset of features from the input dataset with/without bootstrapped samples. Complexity, and 

therefore generalizability, is controlled by the number of DTs in the random forest, the 

complexity of the individual trees that make up the random forest, and the correlation 

between the trees [13]. While the original RF uses majority voting, probabilistic predictions 

can be averaged as well. 

1.3.1.4.2 AdaBoost 

An AdaBoost classifier is an ensemble of 𝑁-classifiers 𝑐𝑖 for 𝑖 = 1, … , 𝑁 whose initial 

classifier 𝑐0 is trained with uniform sample weights and additional classifiers 𝑐𝑖 are trained 

sequentially using sample weights updated based on the misclassification error of the 

previous classifier 𝑐𝑖−1 [14]. The final output of an AdaBoost classifier is a weighted 

majority-vote of the individual classifiers.  

1.3.2 Supervised Convolutional Deep Learning Networks for Classification 

Convolutional deep learning networks, referred to as deep learning networks (DLN) herein, 

consists of a convolutional neural network (CNN) for feature extraction connected to a dense 

neural network (DNN) for class output, and is commonly used for image recognition and 

classification tasks. 

DLNs are commonly trained using stochastic gradient descent (SGD) and 

backpropagation [9]. SGD attempts to minimize an objective function by tweaking model 



 

13 

 

parameters with a fixed step-size in a direction that decreases the objective function. Another 

increasingly popular variant of SGD is Adam, which uses adaptive step sizes [15].  

1.3.2.1 Convolutional Neural Network 

The convolutional neural network is structurally similar to the ventral visual cortex pathway 

[16]. A typical CNN consists of an input (visible) layer and 𝐿-convolutional layers. Each 

convolutional layer 𝑙 ≔ {1,2, … 𝐿} learns abstract representations of the preceding layer’s 

output 𝑋𝑙−1. This is achieved by first convoluting the layer input 𝑋𝑙−1 with the current 

layer’s learnable set of flipped filter kernels (𝑊𝑙 ⟼ 𝑊̃𝑙) of 𝑘 filters where 𝑊𝑙 ≔

{𝑊1
𝑙, 𝑊2

𝑙, … , 𝑊𝐾
𝑙 }, and then applying learnable biases 𝐵𝑙 ≔ {𝐵1

𝑙 𝐵2
𝑙 , … , 𝐵𝐾

𝑙 }. The activations of 

layer 𝑙, 𝑿𝒍, is then the element-wise transformation by some non-linear activation function 

𝑓(∙), where 𝑿𝒍 ≔ {𝑋1
𝑙 , 𝑋2

𝑙 , … , 𝑋𝐾
𝑙 }. A single feature space (activation of layer 𝑙 for filter 𝑘) is 

shown in Equation (1.7). 

𝑋𝑘
𝑙 = 𝑓(𝑊̃𝑘

𝑙 ∗ 𝑿𝒍−𝟏 + 𝐵𝑘
𝑙 ) (1.7) 

Convolution introduces translational invariance, and as the weights of the filters are shared 

by the convolution operation, the number of parameters to be tuned is reduced.  

Pooling layers are typically placed between convolutional layers to reduce the spatial 

dimensionality of individual feature spaces. This is done by subsampling of the feature space 

through the aggregation of neighboring activations into a single activation with an 

aggregating function (e.g. max, min, mean). By controlling the size of the neighborhood, 

varying degrees of invariance to shift and perturbances can be introduced to the feature 

spaces at the cost of reduced spatial resolution. An example of a convolutional layer 

followed by a pooling layer is shown in Figure 1-6. 
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Figure 1-6 Example of a 3D convolutional layer with 3 filters and an arbitrary pooling layer for reducing 

data dimensionality that would be found in a CNN 

 

In a DLN, CNNs are used to extract features that are used for classification. This is 

commonly achieved by flattening the last set of feature spaces into a 1-dimensional feature 

vector that is then used as the input to a dense neural network. 

1.3.2.2 Dense Neural Network 

A dense neural network (DNN) for classification tasks consists of one or more hidden dense 

layers sandwiched between an input (visible) layer and an output layer of class predictions.  

Figure 1-7 illustrates an example of a 2 hidden layer DNN with 3 input features and one 

output.  
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Figure 1-7 Example of a DNN with 2 hidden layers with 5 nodes, an input layer with 3 nodes, and an 

output layer with a single node 

 

 Dense layers are also called fully-connected layers, as all nodes within a layer are 

connected to all of the nodes both preceding and succeeding it. For the 𝑙th layer consisting of 

𝑁𝑙 nodes and an input vector 𝒙 (which may be the input layer or the activations of a 

preceding layer), the activation 𝑎𝑛 of node 𝑛 ≔ {1,2, … , 𝑁},  is calculated by Equation (1.8), 

where 𝑾 and 𝑏𝑛 are the learnable set of weights for each element of 𝒙 and a node specific 

bias respectively. To allow for the learning of non-linear relationships, a non-linear 

activation function 𝑓(∙) is applied to the otherwise linear combination of inputs. 

𝑎𝑛 = 𝑓(𝑾𝒏
𝑻𝒙 + 𝑏𝑛) (1.8) 

 To train a DNN, a labelled dataset 𝐷 with 𝑇 samples, 𝐷 ≔ {𝒙𝒊, 𝒚𝑖}𝑖=1
𝑇 , where 𝒙𝑖 is the 

input vector for one sample and 𝑦𝑖 is the corresponding true class label, is passed through the 

DNN to obtain the predicted class 𝑦̂. Weights and biases are iteratively updated such that the 

average of a loss function over all samples is minimized. For classification, the cross-entropy 

loss is optimized by SGD (or a variant, such as Adam) and backpropagation [9].  

 In DLNs, the connection between the CNN and DNN allows for backpropagation of 

loss gradients from the output layer of the DNN to the first convolutional layer of the CNN. 
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This enables the CNN to update weights in its convolutional filters to extract the most useful 

features for classification by the DNN.  

 

1.4 Literature Review of AI Applications in Multiple Sclerosis 

Supervised learning has enabled the development of disease-specific decision support 

machines for classification and prediction, but the use of machine and deep learning in 

multiple sclerosis lags behind that of other neurological disorders. One literature survey of 

publications using AI with neuroimaging in neurological disorders resulted in 209 papers, of 

which only 8 papers (3.8%) were in MS, compared to 61 (29.1%) in Alzheimer’s, 21 (10.0%) 

in schizophrenia, and 20 (9.6%) in depression [17].  

1.4.1 Machine Learning in Multiple Sclerosis 

Most applications of AI in MS are for detection, disease course classification, or differential 

diagnosis of MS from other neurological disorders. In [18], RF was used to classify MS 

patient disease course using clinical and lesion MR metabolic features, and was able to 

obtain F1-scores, the harmonic average of precision and recall, of up to 87%. SVM was used 

in [19] to differentiate RRMS patients from healthy volunteers with 89% accuracy using 

fractional anisotropy maps, structural and functional connectivity extracted from MR images, 

and in [20] to differentiate between the MS disease courses using grey matter measures and 

functional connectivity patterns extracted from MR images.  

Predictive applications of AI in MS have mostly been focused on the prediction of 

conversion from CIS to MS since time matters in the management of MS – earlier diagnosis 

allows for earlier treatment, resulting in longer life expectancies [21]. SVMs have been used 

to predict CIS to MS conversion within 1 and 3 years with 71.4% and 68% accuracy 
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respectively from lesion features and clinical/demographic characteristics in [22]. A random 

forest used in [23] was able to predict CIS-MS conversion within 3 years with 84.5% 

accuracy using shape and intensity features extracted from computer-assisted manual lesion 

segmentations. In [24], SVMs were used to predict 2-year CIS-MS conversion from image-

based lesion geometric features and clinical/demographical features with 70.4% accuracy. 

Only one study has evaluated the use of machine learning for predicting binary disability 

progression with an ensemble of linear SVM, using longitudinal clinical, demographical, and 

MRI data [25]. While they achieved an overall prediction sensitivity up to 86%, this was 

only observed in individuals with low disability scores.  

1.4.2 Deep Learning in Multiple Sclerosis  

While deep learning has been used for unsupervised feature learning from MR images that 

correlate with clinical scores [26] and for segmentation tasks [27][28], clinical deep learning 

applications for MS detection are fairly limited. Yoo et al. used a DLN in [29] to learn spatial 

features from multimodal MR images for differentiating between MS patients and healthy 

volunteers with an accuracy of 87.9%, and in [30] for the differential diagnosis of MS from 

Neuromyelitis Optica spectrum disorders with 81.3% accuracy. For prediction, Yoo et al. 

developed a DLN that extracted predictive features from brain lesion patterns [31]. These 

features were then used in conjunction with user-defined clinical and MRI features to predict 

CIS-MS conversion with 75.0% accuracy.  

 

1.5 Motivation 

Although studies of clinical machine learning and deep learning applications in multiple 

sclerosis exist, they are heavily skewed towards MS detection and disease course 
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classification, differential diagnosis, and prediction of CIS to MS conversion. In regard to the 

prediction of disability progression, there has only been one study that evaluated machine 

learning on a population skewed towards low disability.  

 Early diagnosis and treatment of MS is important, and understandably, more research 

focus has been on the prediction of conversion from CIS to MS, but it is also important not to 

neglect individuals that are in the later stages of their disease course and/or have higher 

disability than newly diagnosed individuals. Alas, there exists a knowledge gap with respect 

to the use of artificial intelligence for the prediction of disability progression in individuals 

with moderate disability (i.e. PPMS and SPMS). Both PPMS and SPMS are characterized by 

increasing disability over time - their unpredictability, in addition to the research gap, makes 

the task of predicting disability progression in SPMS enticing and valuable.  

Existing research on applications of machine learning in multiple sclerosis then raises 

two simple questions. Firstly, is there, if any, added prognostic value to using conventional 

machine learning techniques for predicting disability progression in SPMS? And secondly, 

can DLNs learn features from 3-dimensional imaging data, as it does for predicting CIS-MS 

conversion in [31] and differential diagnosis of neuromyelitis optical spectrum disorders 

from MS in [30], that have prognostic value for disability progression prediction in SPMS?  

 

1.6 Thesis Contributions 

This thesis presents three main contributions: 

1. Short-term binary confirmed disability progression prediction in SPMS from 

user-defined features using non-parametric machine learning approaches: SVM 

and RF have been shown to perform well for MS disease course classification and 
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prediction of CIS-MS conversion using user-defined features. We implemented and 

evaluated four conventional ML classifiers: LR, and three ensemble classifiers (linear 

SVM, RF, and AdaBoost-DT), for predicting 18-month confirmed disability 

progression in SPMS using only baseline clinical, demographical, and pre-defined 

MRI features. We show that non-parametric ML (RF and AdaBoost-DT) has higher 

predictive performance for predicting short-term disability progression than 

parametric approaches and prevalence-based prediction when the EDSS predictor 

was preprocessed as a continuous input variable. 

2. Short-term binary confirmed disability progression prediction in SPMS using 

deep learned features from brain lesion masks: Deep learning has been shown to 

automatically extract features from brain lesion masks for predicting CIS to MS 

conversion. We explored whether it can learn features from brain lesion masks to 

predict disability progression in SPMS. A DLN was developed and trained to 

automatically extract features from brain lesion masks. Predictive performance of 

deep-learned features was evaluated with and without the use of user-defined features 

against LR using only user-defined features. We show that the DLN is able to learn 

lesion mask features with greater predictive value than user-defined features for 

predicting disability progression when EDSS was analyzed as a continuous variable.  

3. Impact of continuous vs. categorical analysis of EDSS on conventional machine 

learning and deep learning performance in predicting SPMS disability 

progression: We evaluated the performance of ML and DL models for predicting 

SPMS disability progression when EDSS was used as a categorical variable in 

addition to its use as a continuous variable and showed that linear parametric ML 
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models, LR and enSVM, performed better when EDSS was treated as a categorical 

variable as opposed to a continuous variable. The non-parametric ML models, RF and 

AdBDT, had similar performance regardless of how EDSS was used. Non-parametric 

ML models were less affected by how EDSS was analyzed with respect to feature 

contributions to model training. DLNs were also robust to the treatment of EDSS – 

features were extracted from brain lesion masks independent of EDSS. We showed 

that non-parametric ML models are more robust to data handling and are likely the 

models of choice when using data without domain specific knowledge or information 

regarding proper data preprocessing. 
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Chapter 2:  

Materials and Generation of User-Defined Features 

The BioMS dataset is comprised of clinical, demographical, and MRI data from a negative 2-

year randomized, double-blind, placebo-controlled phase III study with participation from 47 

centers across 10 countries that evaluated the efficacy and safety of MBP8298 in patients 

diagnosed with SPMS. The detailed study design can be found in [32]. 

 

2.1 Brain Lesion Masks 

Binary brain lesion masks were generated using a semi-automatic 2-D region growing 

technique used in [33] from T2 and PDw MR images with dimensions 256 x 256 x 50 and 

voxel dimensions of 1mm x 1mm x 3mm. Seed points initially placed on lesions by 

radiologists were interactively grown by trained technicians, constrained by automatically 

generated sample points of white matter (WM), grey matter (GM), and cerebral spinal fluid 

(CSF) closest to the selected seed for lesion growing. The methods used for automated 

sampling of WM, GM and CSF are also detailed in [33]. Figure 2-1 illustrates an example of 

the semi-automatic method for brain lesion mask generation.  
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Figure 2-1 Semi-automatic method used for generating brain lesion masks. Left: A PDw scan with 

automatically generated sample points (blue = WM, green = GM, yellow = CSF) and radiologist-planted 

lesion seed points (red dots). Lesions are first grown from the seed points, but additional supporting 

points can be added (red +) if the grown lesion is not adequate. Lesions are grown from a selected red dot 

or + (circled in red), and is constrained by the closest WM, GM, and CSF dots (enclosed in diamonds). 

The grown lesion is the orange area. Right: a T2w/PDw histogram with WM, GM and CSF illustrated. 

The red area is the intensity space that the region can grow towards. Source: [33]  

 

2.2 User-Defined Features 

Clinical features were comprised of baseline EDSS score, MSFC, and the MSFC component 

Z-scores (9HPT, T25W, PASAT). Demographical features included disease duration and age 

in years at baseline, as well as biological sex. MRI features included baseline T2 lesion 

volume (burden of disease, BOD) and brain parenchymal fraction (BPF). BOD was 

calculated by multiplying the voxel volume of a brain lesion mask with the voxel 

dimensions. For example, a brain lesion mask with 100 lesion voxels with voxel dimensions 

of 2mm by 2mm by 2mm would have a BOD of 800 mm3. BPF was calculated using 
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Equation (2.1) from the volume of the intradural space, 𝑉𝑖𝑛𝑡𝑟𝑎𝑑𝑢𝑟𝑎𝑙 , and CSF volume, 𝑉𝐶𝑆𝐹, 

calculated from intradural and CSF masks [34]. 

𝐵𝑃𝐹 =
𝑉𝑖𝑛𝑡𝑟𝑎𝑑𝑢𝑟𝑎𝑙 − 𝑉𝐶𝑆𝐹

𝑉𝑖𝑛𝑡𝑟𝑎𝑑𝑢𝑟𝑎𝑙
 (2.1) 

 

2.3 Confirmed Disability Progression Definition 

Time to confirmed disability progression 𝑡𝐶𝐷𝑃 was determined as the time from baseline until 

an EDSS increase greater than or equal to 1.0 was observed in individuals with a baseline 

EDSS less than or equal to 5.5, or an increase greater or equal to 0.5 was observed in 

individuals with a baseline EDSS greater than 5.5.  

Subjects were labelled as positive (CDP+), for confirmed disability progression 

(CDP) if 𝑡𝐶𝐷𝑃 was within 24 months of baseline. Those whose initial increase occurred after 

18 months of baseline were labelled negative (CDP-) since individuals with 𝑡𝐶𝐷𝑃 > 18 

months were unable to have their EDSS confirmed 6 months later (their confirmation date 

surpasses the study end date). 

 

2.4 Filtering  

539 of 612 randomized subjects (88%) completed the study. Data from both control 

and treatment arms of the MBP8298 study was filtered to remove participants with multiple 

missing visits or data entries at any given visit. This included participants that did not have a 

complete set of baseline clinical scores (EDSS, MSFC, 9HP, T25W, PASAT) or missing 

baseline BOD or BPF. Imputation was not performed for participants missing multiple data 

entries for multiple reasons. Imputation would require assumptions be made regarding the 
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underlying population distribution. Additionally, within a short time-frame, consecutive 

clinical and MRI measurements are known to be noisy. Imputing missing temporal values 

with interpolation or extrapolation is unlikely to accurately approximate the true value. Only 

one missing disease duration (time since first MS diagnosis) was replaced with the mean 

diagnosis duration of the study cohort. One missing disease duration entry was replaced with 

the mean disease duration of the study sample. A total of 485 subjects were retained. Data 

breakdown is illustrated in Figure 2-2. 

 

 

Figure 2-2 Dataset Breakdown. Of the whole dataset, 485 of 539 (90%) was used, and only 23.7% 

progressed within 18 months.  

 

The characteristics of the baseline features of the 485 patients included in the study 

sample can be found in Table 2-1.  
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Table 2-1 Characteristics of user-defined demographical, clinical, and MRI features 

 CDP+ (n = 115) CDP- (n = 370) Overall (n = 485) 

Demographical Features 

# of Females 74 (64.3%) 237 (64.1%) 311 (64.1%) 

Mean age [years] (SD) 50.3 (8.2) 51.1 (7.9) 50.9 (8.0) 

Mean durationa [years] (SD) 9.1 (4.4) 9.3 (5.1) 9.3 (5.0) 

Clinical Features 

Median EDSS (25th, 75th %tile) 6.0 (4.5, 6.0) 6.0 (4.5, 6.5) 6.0 (4.5, 6.5) 

Mean T25Wb [Z] (SD) 0.08 (1.52) 0.05 (1.54) 0.06 (1.54) 

Mean 9HPb [Z] (SD) -0.02 (0.93) 0.07 (0.95) 0.05 (0.95) 

Mean PASATb [Z] (SD) 0.05 (1.02) 0.01 (1.00) 0.02 (1.01) 

Magnetic Resonance Imaging Biomarkers 

Median T2 BOD [mm3] 

 (25th, 75th %tile) 

10403.9 

(3392.5, 19796.4) 

9012.0  

(3730.3, 19889.3) 

9321.4  

(3621.6, 19872.8) 

Mean BPF (SD) 0.7559 (0.0473) 0.7520 (0.0474) 0.7530 (0.0476) 
a Disease duration (time since first MS diagnosis), b Standardized to the Task Force Dataset [5] 
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Chapter 3:  

Machine Learning for Predicting Short-term Confirmed 

Secondary Progressive Multiple Sclerosis Progression 

3.1 Overview 

An ensemble of linSVM (enSVM) as suggested by [25], a random forest, and AdaBoost-DT 

(AdBDT), an AdaBoost classifier constructed with decision trees, were evaluated against the 

logistic regression classifier for predicting 18-month binary confirmed disability progression 

using user-defined clinical, demographic, and MRI features only. Generalizability was 

estimated using 10-fold stratified cross validations (10CV).  

 Data analysis and experiments were performed in Python 3.6. All classifiers were 

built and trained using Scikit-learn 0.21 with default parameters [35]. Statistical analyses 

were performed using Pandas 0.23.4 [36] and SciPy 1.1.0 [37]. 

 

3.2 Classifier Training and Evaluation with 10CV 

Classifiers were trained and evaluated for generalizability using 10-fold stratified cross 

validations (10CV). The 485 subjects were shuffled and split into 10 non-overlapping groups 

with approximately the same class frequencies as the whole sample; this allowed for ten 

cycles (folds) of training and validation (Figure 3-1). Each fold used one unique group 

(containing 10% of the subjects) for validation while the remaining groups (90% of subjects) 

were used for training each classifier.  
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Figure 3-1 Example of 10-fold stratified cross validation where training and validation data for each fold 

have same class proportions as the whole sample 

 

3.2.1 Data Preprocessing 

Classifiers were trained to predict 18-month confirmed disability progression using the user-

defined features discussed in Section 2.2. Each user-defined feature (with the exception of 

sex) in the training data of each 10CV fold were transformed by removal of median values 

and data scaled according to the interquartile range. Statistics calculated from the training 

data were then used to scale the validation data. 

3.2.2 Class Imbalance 

As can be seen in Figure 2-2, the dataset has slightly over three times more CDP- than CDP+ 

individuals. To prevent classifiers from biasing learning and predictions for CDP-, random 

under-sampling was applied on the training data for each fold of 10x10CV prior to being 

used by classifiers for training. Random under-sampling randomly selects CDP- patients to 

omit from classifier training so that data presented to classifiers have equal class 

representation.  
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3.2.3 Model Parameters 

enSVM is a 10-classifier ensemble of linSVM. Each individual linSVM was trained on a 

randomly under-sampled subset of the training data. The enSVM class output is the average 

probabilistic output of the ten individual linSVMs.   

 The random forest classifier was constructed with 100 decision trees, each trained 

using two randomly chosen user-defined features from a bootstrapped sample from randomly 

under-sampled training data.  

 AdaBoost-DT is an AdaBoost classifier constructed from 50 decision tree stumps 

(max tree depth of 1) each trained on the same class-balanced dataset following the 

AdaBoost training algorithm described in Section 1.3.1.4.2. 

 The logistic regression classifier fit a logistic regression model on the class-balanced 

dataset using L2 regularization.  

3.2.4 Performance Evaluations 

The overall performance of each model was estimated by their ability to separate classes 

(CDP+ and CDP-) and to predict progression (CDP+) or non-progression (CDP-), by 

averaging the performance on the validation datasets in each 10-CV cycle.  

The area under the receiver-operator characteristic curve (AUC) was used as the 

primary outcome. AUC summarizes each models’ ability to separate the two classes. An 

AUC of 50% indicates no better than random separation, AUC of 0% indicates inversed class 

separation (i.e., all CDP+ classified as CDP-, and vice versa), while an AUC of 100% 

indicates perfectly separated classes. 
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To assess performance on predicting progression, precision/positive predictive value 

(PPV), change in pre- to post-positive predictive value (PPV), and recall were used, and are 

defined as in Equations (3.1), (3.2), and (3.3) respectively. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛/𝑃𝑃𝑉 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

(3.1) 

Δ𝑃𝑃𝑉 = 𝑃𝑃𝑉 − 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝐶𝐷𝑃+ (3.2) 

𝑅𝑒𝑐𝑎𝑙𝑙/𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

(3.3) 

Precision, or positive predictive value (PPV) is the proportion of predicted 

progressors that progressed. Change in pre- to post-positive predictive value (PPV) shows 

the change in probability that an individual predicted to progress will progress compared to 

the baseline likelihood defined by the prevalence of progression.  

Model performance in predicting non-progression was evaluated using the following 

negative predictive value (NPV), change in pre- to post-negative predictive value (NPV), 

and specificity, and are defined in Equations (3.4), (3.5), and (3.6) respectively. 

𝑁𝑃𝑉 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

(3.4) 

Δ𝑁𝑃𝑉 = 𝑁𝑃𝑉 − 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝐶𝐷𝑃− (3.5) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

(3.6) 

Like PPV, NPV is the proportion of predicted non-progressors that did not progress. 

NPV is the change in probability that an individual predicted to be CDP- does not progress 

compared to the baseline likelihood of non-progression defined by the prevalence of non-

progression. Specificity is the percentage of CDP- that were correctly classified as CDP-. 
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3.2.5 EDSS analysis as categorical variable 

Despite the Kurtzke Expanded Disability Status Scale (EDSS) commonly used as a 

continuous variable due to its characterization as a range from 0 to 10 in 0.5 increments, it is 

in fact an ordered categorical MS clinical disability scale. To evaluate the impact of EDSS 

treatment on classifier performance, categorical EDSS was assessed in addition to the 

primary analysis of EDSS as a continuous variable for predicting disability progression in 

SPMS. 

3.2.6 Feature Importance to Classifier Training 

As each classifier learns differently (e.g. parametric versus non-parametric, linear versus 

non-linear, etc.), we examined the importance of the user-defined features for training each 

classifier. The contribution, 𝐶, of each feature 𝑥 in the logistic regression and ensemble SVM 

classifier was calculated from the classifier coefficients 𝑐 and represented as a percentage 

using Equation (3.7).  

𝐶(𝑥) =
|𝑐𝑥|

∑ |𝑐𝑖|
8
𝑖=0

× 100% 
(3.7) 

RF and AdaBoost predictor importance were determined by their individual impact 

on decreasing impurity at a tree/forest node (see Section 1.3.1.3) and was extracted from the 

classifier at the end of its training.  

3.2.7 Statistical Analysis 

Paired t-tests with a significance threshold of 𝑃 < .05 were performed on all evaluated 

performance metrics to compare classifier generalizability. 
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3.3 Experimental Results 

Classifiers were evaluated based on their classification performance on the validation data, as 

well as the importance of each feature on the training of the classifiers, for each fold of the 

10 repeated 10-fold cross validations. 

3.3.1 Classifier Performance 

Classifier performance was evaluated when EDSS was treated as a continuous and 

categorical variable separately. 

3.3.1.1 EDSS as a Continuous Variable  

A summary of model AUC performance can be seen in Table 3-1. When the LR model was 

applied to the validation data, the model assigned the wrong class more often than the correct 

class (AUC = 44.7%) which indicates an inability to identify a generalizable decision 

boundary. In contrast, the remaining models performed better than random guessing. 

AdaBoost produced the highest AUC, achieving a 15.5% improvement compared to LR, and 

8.1% compared to enSVM. No significant difference was observed between AdaBoost and 

RF AUC. 
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Table 3-1 Summary of area under the curve validation performance for logistic regression (LR), 

ensemble of linear support vector machines (enSVM), random forest (RF) and AdaBoost-DT (AdBDT) 

when EDSS was treated as a continuous variable 

Ref. 

Model 

% AUC 

n = 10 

Mean % AUC Difference a 

n = 10, df = 9 

enSVM-Ref. RF-Ref. AdBDT-Ref. 

Mean SD Errorb 95% CI P 95% CI P 95% CI P 

LR 44.7 6.3 14.3 (-1.5, 16.3) 0.09 (3.3, 19.7) <.01 (9.4, 21.6) <.001 

enSVM 52.1 7.3 16.4   (-3.5, 11.7) 0.26 (2.6, 13.6) <.01 

RF 56.2 9.6 21.8     (-2.0, 10.0) 0.17 

AdBDT 60.3 4.3 9.6       
a paired t-test, b 95% margin of error 

 

 

AdaBoost outperformed enSVM and LR in terms of precision by 5.3%, and 6.3% 

respectively. No significant PPV was observed in logistic regression and SVM, while 

random forest and AdaBoost both performed better than prevalence-based random 

classification with PPVs of 3.6% (P < .05) and 5.3% (P < .0001) respectively. These 

findings are summarized in Table 3-2. 

 

Table 3-2 Summary of validation precision and change from pre- to post-positive predictive value of 

logistic regression (LR), ensemble of linear support vector machines (enSVM), random forest (RF) and 

AdaBoost-DT (AdBDT) when EDSS was treated as a continuous variable 

Ref. 

Model 

% Precision 

n = 10 

Mean % Precision Difference a 

n = 10, df = 9 
Mean  

% 

PPVc 

n = 10 

enSVM-Ref. RF-Ref. AdBDT-Ref. 

Mean SD Errorb 95% CI P 95% CI P 95% CI P 

LR 22.7 4.5 10.2 (-5.5, 7.5) 0.73 (0.6, 8.6) 0.03 (2.4, 10.2) <.01 -1.0 

enSVM 23.7 6.0 13.7   (-1.7, 8.9) 0.16 (1.0, 9.6) 0.02 -0.0 

RF 27.3 4.2 9.4     (-2.1, 5.5) 0.35 3.6* 

AdBDT 29.0 2.6 5.8       5.3* 
a paired t-test, b 95% margin of error, c compared to progression prevalence of 23.7%, * statistically 

significant ΔPPV at P < .05 
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When assessing each model’s sensitivity (its ability to correctly identify CDP+ from 

all CDP+), logistic regression and enSVM only identified 49.0% and 50.5% of CDP+, 

whereas RF and AdBDT were able to sensitivity 54.9% and 60.9% of CDP+. No significant 

differences were observed between model sensitivity. A summary of model sensitivity is 

shown in Table 3-3. 

 

Table 3-3 Summary of validation sensitivity of logistic regression (LR), ensemble of linear support vector 

machines (enSVM), random forest (RF) and AdaBoost-DT (AdBDT) when EDSS was treated as a 

continuous variable 

Ref. 

Model 

% Sensitivity 

n = 10 

Mean % Sensitivity Difference a 

n = 10, df = 9 

enSVM-Ref. RF-Ref. AdBDT-Ref. 

Mean SD Errorb 95% CI P 95% CI P 95% CI P 

LR 49.0 15.2 34.3 (-18.9, 21.7) 0.88 (-4.5, 16.3) 0.23 (-0.6, 24.4) 0.06 

enSVM 50.5 17.9 40.6   (-11.3, 20.3) 0.54 (-3.0, 24.0) 0.11 

RF 54.9 11.0 24.9     (-3.6, 15.6) 0.19 

AdBDT 60.9 11.7 26.5       
a paired t-test, b 95% margin of error 

 

 

We also considered model performance on detecting the larger proportion of CDP- by 

assessing their negative predictive values (Table 3-4) and specificity (Table 3-5). 

Logistic regression correctly identified CDP- 75.7% of the time while enSVM 

correctly identified 77.3% of CDP-. Both RF and AdBDT outperformed LR with mean 

NPVs of 79.6% and 82.0% respectively. AdBDT was able to increase CDP- accuracy over 

prevalence-based random prediction with a NPV of 5.7% (P < .001).  
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Table 3-4 Summary of validation negative predictive value and change from pre- to post-negative 

predictive value of logistic regression (LR), ensemble of linear support vector machines (enSVM), 

random forest (RF) and AdaBoost-DT (AdBDT) when EDSS was treated as a continuous variable 

Ref. 

Model 

% NPV 

n = 10 

Mean NPV Difference a 

n = 10, df = 9 
Mean  

% 

NPVc 

n = 100 

enSVM-Ref. RF-Ref. AdBDT-Ref. 

Mean SD Errorb 95% CI P 95% CI P 95% CI P 

LR 75.7 5.0 11.2 (-4.7, 7.9) 0.58 (0.1, 7.5) 0.04 (2.3, 10.1) <.01 -0.6 

enSVM 77.3 5.5 12.4   (-3.0, 7.6) 0.36 (0.3, 9.1) 0.04 1.0 

RF 79.6 4.9 11.0     (-1.4, 6.2) 0.19 3.3 

AdBDT 82.0 3.5 8.0       5.7* 
a paired t-test, b 95% margin of error, c compared to non-progression prevalence of 76.3%, * statistically 

significant ΔNPV at P < .05 

 

Logistic regression identified less than half of the individuals without progression. 

enSVM, random forest and AdBDT were identified more than half (50.8%, 54.6% and 

54.1% respectively) of the non-progressors. No statistically significant differences were 

observed between the various machine learning models with respect to specificity.  

 

Table 3-5 Summary of validation specificity of logistic regression (LR), ensemble of linear support vector 

machines (enSVM), random forest (RF) and AdaBoost-DT (AdBDT) when EDSS was treated as a 

continuous variable   

Ref. 

Model 

% Specificity 

n = 10 

Mean % Specificity Difference a 

n = 10, df = 9 

enSVM-Ref. RF-Ref. AdBDT-Ref. 

Mean SD Errorb 95% CI P 95% CI P 95% CI P 

LR 48.9 9.5 20.1 (-6.8, 10.5) 0.63 (-1.7, 13.1) 0.12 (-0.9, 11.1) 0.09 

enSVM 50.8 7.0 15.7   (-2.0, 9.6) 0.17 (-2.8, 9.2) 0.25 

RF 54.6 5.5 12.5     (-5.3, 4.3) 0.80 

AdBDT 54.1 5.1 11.5       
a paired t-test, b 95% margin of error 
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3.3.1.2 EDSS as a Categorical Variable 

While RF and AdBDT had greater AUCs with continuous EDSS, the analysis of EDSS as a 

categorical variable resulted in enSVM achieving the greatest AUC of 67.6%. enSVM 

outperformed LR, RF, and AdBDT by 8.0%, 7.1% and 9.7% respectively. Results are 

summarized in Table 3-6. 

 

Table 3-6 Summary of area under the curve validation performance for logistic regression (LR), 

ensemble of linear support vector machines (enSVM), random forest (RF) and AdaBoost-DT (AdBDT) 

when EDSS was treated as a categorical variable 

Ref. 

Model 

% AUC 

n = 10 

Mean % AUC Difference a 

n = 100, df = 99 

enSVM-Ref. RF-Ref. AdBDT-Ref. 

Mean SD Errorb 95% CI P 95% CI P 95% CI P 

LR 59.6 11.1 25.1 (4.2, 11.7) <.01 (-3.8, 5.6) 0.67 (-7.9, 4.3) 0.53 

enSVM 67.6 9.3 21.1   (-11.4, -2.8) <.01 (-13.9, -5.6) <.01 

RF 60.5 12.5 28.4     (-8.6, 3.3) 0.34 

AdBDT 57.9 7.3 16.6       
a paired t-test, b 95% margin of error 

 

  

No significant differences in precision were observed between classification models 

when categorical EDSS was used. All models performed better than prevalence-based 

random classification (Table 3-7). 
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Table 3-7 Summary of validation precision and change from pre- to post-positive predictive value of 

logistic regression (LR), ensemble of linear support vector machines (enSVM), random forest (RF) and 

AdaBoost-DT (AdBDT) when EDSS was treated as a categorical variable 

Ref. 

Model 

% Precision 

n = 10 

Mean % Precision Difference a 

n = 10, df = 9 
Mean  

%  

PPVc 

n = 10 

enSVM-Ref. RF-Ref. AdBDT-Ref. 

Mean SD Errorb 95% CI P 95% CI P 95% CI P 

LR 31.5 6.2 14.1 (-1.7, 4.6) 0.32 (-6.1, 3.9) 0.64 (-6.1, 2.7) 0.41 7.8* 

enSVM 33.0 7.4 16.8   (-6.8, 1.7) 0.20 (-7.9, 1.5) 0.16 9.3* 

RF 30.4 7.6 17.3     (-4.3, 3.1) 0.72 6.7* 

AdBDT 29.8 4.1 9.2       6.1* 
a paired t-test, b 95% margin of error, c compared to progression prevalence of 23.7%, * statistically 

significant ΔPPV at P < .05 
 

  

No significant differences were observed in model sensitivity performance when 

EDSS was treated as a categorical variable (Table 3-8). 

 

Table 3-8 Summary of validation sensitivity of logistic regression (LR), ensemble of linear support vector 

machines (enSVM), random forest (RF) and AdaBoost-DT (AdBDT) when EDSS was treated as a 

categorical variable 

Ref. 

Model 

% Sensitivity 

n = 10 

Mean % Sensitivity Difference a 

n = 10, df = 9 

enSVM-Ref. RF-Ref. AdBDT-Ref. 

Mean SD Errorb 95% CI P 95% CI P 95% CI P 

LR 63.6 16.8 38.0 (-3.6, 5.4) 0.66 (-15.5, 0.1) 0.05 (-13.1, 7.8) 0.58 

enSVM 64.5 17.3 39.2   (-18.0, 0.8) 0.07 (-14.4, 7.2) 0.47 

RF 54.2 15.2 34.3     (-2.8, 12.9) 0.18 

AdBDT 58.3 12.6 28.5       
a paired t-test, b 95% margin of error 

 

  

With respect to negative predictive value, the treatment of EDSS as a categorical 

variable resulted in enSVM outperforming RF by 3.5%. All models performed better than 

prevalence-based prediction of non-progression. Results are summarized in Table 3-9. 
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Table 3-9 Summary of validation negative predictive value and change from pre- to post-positive 

predictive value of logistic regression (LR), ensemble of linear support vector machines (enSVM), 

random forest (RF) and AdaBoost-DT (AdBDT) when EDSS was treated as a categorical variable 

Ref. 

Model 

% NPV 

n = 10 

Mean NPV Difference a 

n = 10, df = 9 
Mean  

% 

NPVc 

n = 10 

enSVM-Ref. RF-Ref. AdBDT-Ref. 

Mean SD Errorb 95% CI P 95% CI P 95% CI P 

LR 84.0 5.8 13.2 (0.8, 2.4) 0.31 (-6.3, 0.7) 0.10 (-5.8, 2.4) 0.37 7.7* 

enSVM 84.7 5.9 13.3   (-6.7, -0.5) 0.03 (-6.0, 1.1) 0.16 8.4* 

RF 81.2 6.6 14.9     (-2.1, 4.3) 0.45 4.9* 

AdBDT 82.3 5.0 11.3       6.0* 
a paired t-test, b 95% margin of error, c compared to non-progression prevalence of 76.3%, * statistically 

significant ΔNPV at P < .05 
 

  

No significant differences were observed between model specificity when EDSS was 

analyzed as a categorical variable. Findings are summarized in Table 3-10. 

 

Table 3-10 Summary of validation specificity of logistic regression (LR), ensemble of linear support 

vector machines (enSVM), random forest (RF) and AdaBoost-DT (AdBDT) when EDSS was treated as a 

categorical variable 

Ref. 

Model 

% Specificity 

n = 10 

Mean % Specificity Difference a 

n = 10, df = 9 

enSVM-Ref. RF-Ref. AdBDT-Ref. 

Mean SD Errorb 95% CI P 95% CI P 95% CI P 

LR 57.6 6.9 15.5 (-2.3, 6.6) 0.30 (-4.9, 9.2) 0.51 (-6.2, 2.4) 0.34 

enSVM 59.7 7.1 16.2   (-5.5, 5.5) 1.00 (-9,2, 1.1) 0.11 

RF 59.7 9.0 20.5     (-10.7, 2.6) 0.20 

AdBDT 55.7 5.1 11.6       
a paired t-test, b 95% margin of error 

 

 

3.3.2 Feature Importance on Classifier Training 

Feature importance on classifier training was assessed for when EDSS was treated as a 

continuous variable, and separately for when it was treated as a categorical variable. To 
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examine the influence of each predictor on model output, we looked at how much each 

predictor contributed to each model and noticed qualitative differences in predictor 

importance for each linear model (LR and RF), and each non-linear model (RF and AdBDT). 

3.3.2.1 EDSS as a Continuous Variable 

Continuous EDSS played a larger role in prediction (composing 22.0% and 30.2% of LR and 

enSVM respectively), while T25W played the smallest role (2.5% and 1.4% of LR and 

enSVM respectively). Sex contributed more to LR (11.6%) and enSVM (7.6%) than it did to 

the better performing non-linear models – only contributing to 1.8% of the random forest 

model and 0.3% with the AdBDT. Table 3-11 summarizes the findings. 

 

Table 3-11 Feature importance on classifier training of logistic regression (LR), ensemble of linear 

support vector machines (enSVM), random forest (RF) and AdaBoost with decision trees (AdBDT) when 

EDSS was treated as a continuous variable 

Predictor 
LR enSVM RF AdBDT 

Mean (SD) Errora Mean (SD) Errora Mean (SD) Errora Mean (SD) Errora 

Age 10.5 (2.6) 9.6 7.4 (5.1) 11.6 11.0 (0.5) 1.2 7.8 (4.2) 9.4 

Sex 12.8 (7.4) 16.7 6.7 (6.3) 11.7 1.8 (0.2) 0.5 0.8 (1.0) 2.3 

Dur. b 7.3 (4.2) 9.4 4.3 (3.9) 8.9 10.7 (0.8) 1.9 4.4 (2.8) 6.3 

Cont. EDSS 23.5 (8.6) 19.3 32.6 (6.7) 15.2 10.3 (0.9) 1.9 11.4 (2.8) 6.4 

T25W 3.5 (4.1) 9.2 1.4 (1.0) 2.2 16.0 (1.3) 2.9 19.4 (5.6) 12.6 

9HP 15.2 (8.8) 19.9 21.3 (3.4) 7.6 14.8 (1.0) 2.2 25.0 (4.2) 9.6 

PASAT 9.5 (9.4) 21.3 6.5 (5.2) 11.9 10.2 (1.0) 2.3 6.0 (4.7) 10.7 

T2 BOD 7.3 (2.6) 6.0 2.8 (2.6) 6.0 12.7 (0.7) 1.7 16.0 (6.5) 14.8 

BPF 10.5 (6.2) 14.1 17.1 (4.6) 10.4 12.6 (0.8) 1.8 9.2 (5.1) 11.5 
a 95% margin of error, b Disease Duration 

 

  

In regard to the distribution of predictor contribution, while all predictors (with the 

exception of sex) contributed fairly equally in random forest classification, enSVM relied 

more on continuous EDSS, 9HP, and brain parenchymal fraction. LR and AdaBoost were 
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intermediate of the enSVM and RF. A plot of the feature contributions to each model is 

shown in Figure 3-2. 

 

 

Figure 3-2 Feature importance to classifier training and predictions when EDSS was treated as a 

continuous variable, where EDSS = continuous EDSS 

 

3.3.2.2 EDSS as a Categorical Variable 

When EDSS was treated as a categorical variable, it became much more important than all 

other predictors in LR and enSVM, contributing to 78.5% and 98.7% of the model’s training. 

Findings are summarized in Table 3-12. 
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Table 3-12 Feature importance on classifier training of logistic regression (LR), ensemble of linear 

support vector machines (enSVM), random forest (RF) and AdaBoost with decision trees (AdBDT) when 

EDSS was treated as a categorical variable 

Predictor 
LR enSVM RF AdBDT 

Mean (SD) Errora Mean (SD) Errora Mean (SD) Errora Mean (SD) Errora 

Age 4.8 (1.7) 3.9 0.1 (0.1) 0.2 10.6 (0.8) 1.7 8.2 (4.2) 9.4 

Sex 3.8 (2.0) 4.5 0.1 (0.1) 0.1 1.9 (0.3) 0.6 0.8 (1.0) 2.3 

Dur. b 1.5 (1.1) 2.4 0.1 (0.1) 0.2 9.7 (0.6) 1.2 4.8 (1.7) 3.8 

Cat. EDSS 78.5 (5.6) 12.8 98.7 (0.1) 2,2 14.4 (0.9) 2.1 17.4 (1.6) 3.7 

T25W 1.7 (2.1) 4.7 0.5 (0.3) 0.7 15.2 (0.8) 1.8 16.2 (4.3) 9.6 

9HP 3.7 (1.8) 4.1 0.2 (0.2) 0.5 14.5 (1.2) 2.7 24.4 (4.9) 11.0 

PASAT 1.8 (1.7) 3.9 0.1 (0.2) 0.4 10.0 (0.7) 1.5 4.6 (2.5) 5.7 

T2 BOD 1.7 (1.5) 3.3 0.1 (0.2) 0.4 11.9 (0.7) 1.6 14.8 (4.6) 10.5 

BPF 2.5 (1.8) 4.0 0.1 (0.1) 0.2 11.8 (0.4) 0.9 8.8 (5.2) 11.7 
a 95% margin of error, b Disease duration 

 

 

Unlike LR and enSVM which are linear models, the distribution of feature 

contribution to the training and predictions of both non-parametric models (RF and AdBDT) 

when EDSS was treated as a categorical variable (Figure 3-3) was similar to when EDSS was 

treated as a continuous variable (Figure 3-2). The disproportionate dependence of LR and 

enSVM on EDSS for model training when it was treated as a categorical variable can also be 

seen in Figure 3-3.  
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Figure 3-3 Feature importance to classifier training and predictions when EDSS was treated as a 

categorical variable, where EDSS = categorical EDSS 



 

42 

 

Chapter 4:  

Automated Feature Extraction from Lesion Masks using 

Deep Learning for Predicting Short-term Confirmed 

Secondary Progressive Multiple Sclerosis Progression 

4.1 Overview 

The prognostic value of DLN-extracted brain lesion features was evaluated using a lesion 

mask DLN (lmDLN) classifier, which uses only lesion mask extracted features as 

independent variables, as well as a user-defined and deep-learned features combined DLN 

(coDLN) classifier. These DLNs were compared against L2-regularized LR using only user-

defined clinical, demographic, and MRI features. Performance generalization was estimated 

using 10-fold cross validation.  

All experiments, data processing, and statistical analyses were performed in Python 

3.6 unless otherwise stated. Pandas 0.23.4 [36] and NumPy 1.15.4 [37] were used for data 

processing and statistical analysis. Logistic regression fitting using user-defined features was 

performed using Scikit-learn 0.21 [35]. The DLNs used for feature extraction and prediction 

were constructed and trained using Keras 2.1.6 [38] with Tensorflow 1.8.0 [39] on Nvidia 

Titan X graphics processing units.  
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4.2 Preprocessing of Brain Lesion Masks 

4.2.1 Image Registration 

Binary lesion masks with dimensions 256 x 256 x 50 and voxel dimensions 1 x 1 x 3 mm 

were generated by experts using a semi-automated method from T2w and PDw MRIs. The 

lesion masks were spatially aligned by applying transformations derived from the 12 degree-

of-freedom affine registration used to align the T2w brain MR images to the MNI152 T1 

1mm brain template and cropped to the same dimensions (182 x 218 x 182). Affine image 

registration was performed using FSL FLIRT [40, 41]. 

4.2.2 Signed Distance Transform 

MS lesions are typically very dispersed, and the direct use of brain lesion masks can result in 

noise patterns being learned [31]. The signed Euclidean-distance transform [42] (EDT) was 

applied to the lesion masks to increase information density by assigning the Euclidean 

distance at each voxel to the closest lesion as the voxel intensity in the transformed image 

(Figure 1). EDT was applied using itk-SNAP’s Convert3D tool [43]. A Gaussian filter (𝜎=2) 

was applied to the lesion masks before they were down-sampled by a factor of 2. To permit 

valid consecutive convolutions and pooling operations, the transformed lesion masks were 

padded from 91 × 109 × 91 to 96 × 112 × 96. Figure 4-1 shows a sample slice from a brain 

lesion mask and the same slice after the Euclidean-distance transform. 
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4.3 Deep Learning Network Architectures 

Identical CNNs were used to learn features from brain lesion masks in lmDLN and coDLN, 

while different DNNs were used for prediction of disability progression (depending on 

whether it used solely lesion distribution features, or combined them with user-defined 

clinical, demographic, and MRI features). An overview of data flow in both DLNs is shown 

in Figure 4-2. 

Figure 4-1 Euclidean distance transform of brain lesion mask. Left: Example slice of a brain lesion 

mask. Right: Slice from 3D Euclidean distance transform of lesion mask 
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Figure 4-2 Overview of lesion mask deep learning network (lmDLN) and combined deep learning 

network (coDLN) data flow with identical CNN, differing DNN pathways, and dropout layers illustrated.  

 

The CNN used for extracting features from the signed distance transformed lesion 

masks is comprised of three convolutional layers, each using leaky rectified linear unit 

(LeakyReLU) activation for introducing nonlinearity [44]. The convolutional layers 

consisted of 12, 24, and 48 filters of sizes 7x7x7, 5x5x5, and 3x3x3 respectively with max-

pooling layers of size 2x2x2 used after each convolutional layer for dimensionality 

reduction. The output of the final max-pooling layer was then flattened into a one-

dimensional feature vector and used as input to the DNNs. Figure 4-3 illustrates the CNN 

architecture used for learning lesion mask features. 
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Figure 4-3 Detailed CNN architecture for both lmDLN and coDLN. Input and output refer to the input 

shape and output shape of each layer, arranged as (batch size, width, length, depth, channels) for 3D 

layers, and (batch_size, length) for 1D vectors. The CNN takes in signed distance transformed 3D lesion 

masks (InputLayer). The final flattened activations are fed into the DNNs. 

 

The flattened features from the CNN were then passed into one dense layer with 

LeakyReLU activation to learn relationships between the 96,768 lesion mask features and 

reduce feature dimensionality to 256. In lmDLN, these 256 features were then passed as 
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independent variables into a logistic regression layer which performed classification. In 

coDLN, the 256 lesion mask features were concatenated with the user-defined clinical and 

demographic features before being passed into the logistic regression layer for classification. 

Logistic regression layers were constructed from a dense layer with sigmoid activation. 

To regularize the DLNs, dropout layers with 50% dropout were placed before the 

logistic regression layer. During training, the dropout layers randomly set 50% of the 

activations of the preceding layer to zero so that in each training epoch, random units and 

connections are dropped; this has been shown to greatly reduce overfitting by preventing 

learnable units from co-adapting to the data [45]. When validating, the dropout layers were 

disabled, and layer weights were adjusted to reflect the dropout frequency impact on weight-

learning. Both lmDLN and coDLN DNNs are illustrated in Figure 4-4. 
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Figure 4-4 DNN for lmDLN (left) and coDLN (right). Input and output refer to the data shape (batch 

size, vector length). Dropout was applied during training only. Orange: Flattened CNN activations are 

passed through a dense layer and a LeakyReLU activation layer. Blue: Activations are concatenated with 

user-defined features. Green: Logistic regression layer is 1 output sigmoid-activated  

 

All layer weights were initialized with the He normal initializer used in [46], which 

draws samples from a zero-centered, truncated normal distribution with a standard deviation 

of √
2

𝑓𝑎𝑛𝑖𝑛
, where 𝑓𝑎𝑛𝑖𝑛 is the number of input units to the weight tensor.  

 

4.4 Training and Evaluation with 10CV 

Ten-fold cross validation (as described in Section 3.2) was used to train and evaluate 

classifiers on their estimated generalization performance. 
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4.4.1 Data Processing 

After class imbalance was corrected, the training data of each fold was scaled using the same 

outlier-robust approach discussed in Section 3.2.1. To scale the signed distance transform 

lesion masks, each pixel location was treated as an individual feature, and outlier-robust 

scaling was performed by calculating median and IQR statistics across the training dataset 

for each pixel location.   

4.4.2 Class Imbalance 

To prevent class imbalance from biasing DLN learning and LR fitting towards predicting 

non-progression (as non-progression has a class frequency of 76.3% versus progression with 

23.7%), random under-sampling was performed on the training data of each fold in the 

10CV. Details regarding random under-sampling can be found in Section 3.2.2. 

4.4.3 Deep Learning Network Training Parameters 

DLNs were trained for each fold of 10CV using the Adam optimizer as discussed in [15], 

with an initial learning rate of 1e-6, in mini-batches of 32, for 350 epochs. 

4.4.4 Performance Evaluations 

Classification performance of lmDLN, coDLN, and LR was evaluated on their ability to 

separate progressors from non-progressors, their ability to predict progression, as well as 

their ability to predict non-progression. The same metrics used in Chapter 3: were used here; 

additional details on the metrics can be found in Section 3.2.4. 

4.4.5 EDSS analysis as categorical  

As discussed in Section 1.1.2, EDSS is commonly used as a continuous variable despite it 

being an ordinal variable. The performance of logistic regression and coDLN was evaluated 

with EDSS analyzed as a continuous variable and as a categorical variable. 
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4.4.6 Statistical Analysis 

Paired t-tests were performed on all metrics used to evaluate classifier generalizability. A 

significance threshold of P < .05 was used.  

 

4.5 Experimental Results 

4.5.1 EDSS as a Continuous Variable 

While the conventional logistic regression was only able to achieve an AUC of 45.0%, both 

deep learning approaches performed significantly better. The lesion mask deep learning 

network performed 10.1% better (AUC=55.0%) while the addition of clinical, demographic, 

and user-defined MRI data in the coDLN (AUC=55.2%) did not improve performance. A 

summary of AUC performance can be seen in Table 4-1. 

 

Table 4-1 Summary of area under the curve validation performance for logistic regression using only 

user-defined features (LR), lesion mask only deep learning network (lmDLN), and the combined user-

defined and lesion mask features deep learning network (coDLN) when EDSS was treated as a 

continuous variable 

Ref. 

Model 

% AUC 

n = 10 

Mean % AUC Difference a 

n = 10, df = 9 

lmDLN – Ref. coDLN – Ref. 

Mean SD Errorb Mean 95% CI P Mean 95% CI P 

LR 45.0 8.3 6.2 10.0 (0.2, 19.8) 0.04 10.2 (0.6, 19.8) 0.04 

lmDLN 55.0 8.2 6.2    0.3 (-1.3, 1.8) 0.72 

coDLN 55.2 8.7 6.5       
a paired t-test, b 95% margin of error 

 

 

Both DLNs achieved significantly higher precision (27.0% with lmDLN and 26.8% 

with coDLN) than logistic regression (22.2%). There was no difference in precision between 
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lmDLN and coDLN. Logistic regression performed worse than random class assignment 

based on progression prevalence (23.7%) whereas the lesion mask and combined deep 

learning networks provided an improvement in positive pre- to post-test probability of 3.3% 

and 3.1%, respectively. Table 4-2 summarizes these findings. 

 

Table 4-2 Summary of validation precision and change from pre- to post-positive predictive value of 

logistic regression using only user-defined features (LR), lesion mask only deep learning network 

(lmDLN), and the combined user-defined and lesion mask features deep learning network (coDLN) when 

EDSS was treated as a continuous variable 

Ref. 

Model 

% Precision 

n = 10 

Mean % Precision Difference a 

n = 10, df = 9 

Mean  

% 

PPVc 

n = 10 
lmDLN – Ref. coDLN – Ref. 

Mean SD Errorb Mean 95% CI P Mean 95% CI P 

LR 22.2 4.9 3.7 4.8 (0.8, 8.9) 0.02 4.6 (0.4, 8.8) 0.03 -1.5 

lmDLN 27.0 3.8 2.9    -0.2 (-2.0, 1.7) 0.82 3.3* 

coDLN 26.8 3.1 2.3       3.1* 
a paired t-test, b 95% margin of error, c compared to progression prevalence of 23.7% 

*statistically significant PPV (P < 0.05) 

 

 

  

Although both lmDLN and coDLN had higher sensitivity than LR, on average 

identifying 54.8% and 53.0% of progressors in test sets compared to the 45.1% of 

progressors identified by LR, the differences were not significant. A summary of sensitivities 

is shown in Table 4-3. 

 

 

 

 

 



 

52 

 

 

Table 4-3 Summary of sensitivity of logistic regression using only user-defined features (LR), lesion mask 

only deep learning network (lmDLN), and the combined user-defined and lesion mask features deep 

learning network (coDLN) when EDSS was treated as a continuous variable 

Ref. 

Model 

% Sensitivity 

n = 10 

Mean % Sensitivity Difference a 

n = 10, df = 9 

lmDLN – Ref. coDLN – Ref. 

Mean SD Errorb Mean 95% CI P Mean 95% CI P 

LR 45.1 16.1 12.1 9.8 (-1.2, 20.8) 0.08 8.0 (-3.4, 19.4) 0.15 

lmDLN 54.8 10.3 7.7    -1.8 (-6.6, 3.0) 0.42 

coDLN 53.0 8.1 6.1       
a paired t-test, b 95% margin of error 

 

Both networks had greater mean NPV over LR, but only the lesion mask deep 

learning network significantly outperformed logistic regression in classifying non-

progressors as measured by the negative predictive value, achieving an NPV of 79.1% (4.2% 

better than LR). coDLN achieved an improvement of NPV over non-progression prevalence 

(negative pre- to post-test probability) of NPV=2.4%. The addition of user-defined 

predictors in coDLN did not result in any NPV changes. Findings of NPV are found in Table 

4-4. 
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Table 4-4 Summary of negative predictive value and change from pre- to post-negative predictive value 

of logistic regression using only user-defined features (LR), lesion mask only deep learning network 

(lmDLN), and the combined user-defined and lesion mask features deep learning network (coDLN) when 

EDSS was treated as a continuous variable 

Ref. 

Model 

% NPV 

n = 10 

Mean % NPV Difference a 

n = 10, df = 9 

Mean  

% 

NPVc 

n = 10 
lmDLN – Ref. coDLN – Ref. 

Mean SD Errorb Mean 95% CI P Mean 95% CI P 

LR 74.9 5.2 3.9 4.2 (0.5, 7.8) 0.03 3.7 (-0.1, 7.5) 0.05 -1.4 

lmDLN 79.1 4.6 3.5    -0.4 (-2.7, 1.8) 0.66 2.8 

coDLN 78.7 3.3 2.5       2.4* 
a paired t-test, b 95% margin of error, c compared to non-progression prevalence of 76.3% 

*statistically significant NPV (P < 0.05) 

 

 

  

There were no significant differences in model specificity, with logistic regression 

detecting 51.3% of non-progressors, while lmDLN and coDLN identified 53.5% and 54.3%, 

respectively. DLN-learned lesion mask features, with or without user-defined features, did 

not improve the identification rate of non-progressors. These findings can be found in Table 

4-5. 
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Table 4-5 Summary of specificity of logistic regression using only user-defined features (LR), lesion mask 

only deep learning network (lmDLN), and the combined user-defined and lesion mask features deep 

learning network (coDLN) when EDSS was treated as a continuous variable 

Ref. 

Model 

% Specificity 

n = 10 

Mean % Specificity Difference a 

n = 10, df = 9 

lmDLN – Ref. coDLN – Ref. 

Mean SD Errorb Mean 95% CI P Mean 95% CI P 

LR 51.3 13.4 10.1 2.2 (-6.0, 10.4) 0.57 3.0 (-6.0, 12.0) 0.47 

lmDLN 53.5 8.9 6.7    0.8 (-1.6, 3.2) 0.47 

coDLN 54.3 9.7 7.3       
a paired t-test, b 95% margin of error 

 

4.5.2 EDSS as a Categorical Variable 

No differences were observed in model AUC when EDSS was treated as a categorical 

variable as opposed to a continuous variable. These findings are summarized in Table 4-6. 

Both DLNs were more stable with respect to AUC performance, with 95% margins of error 

of 6.1% and 6.2% respectively compared to LR with a 9.8% margin of 95% error. 

 

Table 4-6 Summary of area under the curve validation performance for logistic regression using only 

user-defined features (LR), lesion mask only deep learning network (lmDLN), and the combined user-

defined and lesion mask features deep learning network (coDLN) when EDSS was treated as a 

categorical variable 

Ref. 

Model 

% AUC 

n = 10 

Mean % AUC Difference a 

n = 10, df = 9 

lmDLN – Ref. coDLN – Ref. 

Mean SD Errorb Mean 95% CI P Mean 95% CI P 

LR 59.9 13.0 9.8 -5.0 (-16.6, 6.6) 0.35 -4.7 (-16.1, 6.8) 0.38 

lmDLN 54.9 8.2 6.1    0.4 (-0.7, 1.4) 0.45 

coDLN 55.3 8.2 6.2       
a paired t-test, b 95% margin of error 
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Similar model stability was observed in DLN precision performance (Table 4-7) 

where lmDLN and coDLN had tighter 95% margins of error of 2.9% and 2.7% compared to 

LR with a margin of 8.1%. Both DLNs outperformed prevalence-based random progression 

prediction by 3.3% and 3.0% respectively despite no significant differences observed 

between LR and DLN precision. 

 

Table 4-7 Summary of validation precision and change from pre- to post-positive predictive value of 

logistic regression using only user-defined features (LR), lesion mask only deep learning network 

(lmDLN), and the combined user-defined and lesion mask features deep learning network (coDLN) when 

EDSS was treated as a categorical variable 

Ref. 

Model 

% Precision 

n = 10 

Mean % Precision Difference a 

n = 10, df = 9 

Mean  

% 

PPVc 

n = 10 

lmDLN – Ref. coDLN – Ref. 

Mean SD Errorb Mean 95% CI P Mean 95% CI P 

LR 29.1 10.8 8.1 -2.1 (-10.1, 6.0) 0.49 -2.4 (-10.3, 5.5) 0.51 5.3 

lmDLN 27.0 3.8 2.9    -0.3 (-2.3, 1.6) 0.72 3.3* 

coDLN 26.7 3.6 2.7       3.0* 
a paired t-test, b 95% margin of error, c compared to progression prevalence of 23.7% 

*statistically significant PPV (P < 0.05) 
 

 

No significant differences were observed in classifier sensitivity between LR, lmDLN 

and coDLN. These findings are summarized in Table 4-8. Compared to LR with a 18.5% 

margin of error, both lmDLN and coDLN had smaller margins of 7.7% and 6.5% 

respectively. 
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Table 4-8 Summary of sensitivity of logistic regression using only user-defined features (LR), lesion mask 

only deep learning network (lmDLN), and the combined user-defined and lesion mask features deep 

learning network (coDLN) when EDSS was treated as a categorical variable 

Ref. 

Model 

% Sensitivity 

n = 10 

Mean % Sensitivity Difference a 

n = 10, df = 9 

lmDLN – Ref. coDLN – Ref. 

Mean SD Errorb Mean 95% CI P Mean 95% CI P 

LR 58.0 24.6 18.5 -3.1 (-20.7, 14.5) 0.70 -5.7 (-22.6, 11.3) 0.47 

lmDLN 54.8 10.3 7.7    -2.6 (-6.7, 1.5) 0.19 

coDLN 52.3 8.6 6.5       
a paired t-test, b 95% margin of error 

 

 

No significant differences were observed in negative predictive values of the three 

classifiers. Only LR achieved a significant NPV of 6.1%. NPV and NPV results are 

summarized in Table 4-9. 

 

Table 4-9 Summary of negative predictive value and change from pre- to post-negative predictive value 

of logistic regression using only user-defined features (LR), lesion mask only deep learning network 

(lmDLN), and the combined user-defined and lesion mask features deep learning network (coDLN) when 

EDSS was treated as a categorical variable 

Ref. 

Model 

% NPV 

n = 10 

Mean % NPV Difference a 

n = 10, df = 9 

Mean  

% 

NPVc 

n = 10 
lmDLN – Ref. coDLN – Ref. 

Mean SD Errorb Mean 95% CI P Mean 95% CI P 

LR 82.4 7.5 5.6 -3.3 (-9.5, 2.9) 0.26 -3.9 (-9.2, 1.4) 0.13 6.1* 

lmDLN 79.1 4.6 3.5    -0.6 (-2.5, 1.3) 0.49 2.8 

coDLN 78.5 3.3 2.5       2.2 
a paired t-test, b 95% margin of error, c compared to non-progression prevalence of 76.3% 

*statistically significant NPV (P < 0.05) 

 

 

 

No significant differences were observed in classifier specificities between LR, 

lmDLN, and coDLN. Findings are summarized in Table 4-10. 



 

57 

 

Table 4-10 Summary of specificity of logistic regression using only user-defined features (LR), lesion 

mask only deep learning network (lmDLN), and the combined user-defined and lesion mask features 

deep learning network (coDLN) when EDSS was treated as a categorical variable 

Ref. 

Model 

% Specificity 

n = 10 

Mean % Specificity Difference a 

n = 10, df = 9 

lmDLN – Ref. coDLN – Ref. 

Mean SD Errorb Mean 95% CI P Mean 95% CI P 

LR 57.8 9.8 7.4 -4.3 (-13.0, 4.3) 0.29 -3.2 (-13.1, 6.6) 0.48 

lmDLN 53.5 8.9 6.7    1.1 (-2.4, 4.5) 0.49 

coDLN 54.6 9.8 7.4       
a paired t-test, b 95% margin of error 
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Chapter 5: Discussion & Conclusion 

In most studies of prognostic factors for disability progression, predictive models use 

statistical approaches such as linear regression for continuous response prediction or logistic 

regression for binary response prediction [47] and Cox regression or Kaplan-Meier analyses 

for survival analysis [48]. These analyses do not provide any estimation of their 

generalizability on samples not used for model fitting. For example, logistic regression was 

used to evaluate brain atrophy and lesion load as prognostic factors for predicting EDSS 

score at 10 years [49]. 𝑅2 values were reported for model goodness of fit to the data, but no 

estimation of how the model would perform on data not used for model fitting was provided. 

Our study evaluated model performance based on their estimated generalizability by 

validating models on data withheld from training in each cycle of 10CV.  

 

5.1 Predicting SPMS Disability Progression with Machine Learning and 

User-defined Features 

5.1.1 Treating EDSS as a Continuous Variable 

In our study population of 485 SPMS participants, we found that RF and AdBDT 

outperformed the naïve, black-box implementation of logistic regression typically seen in 

data science in separating CDP+ from CDP- (AUC), CDP+ predictive accuracy (PPV), and 

CDP- predictive accuracy (NPV) only when EDSS was analyzed as a continuous variable. In 

fact, when continuous EDSS was used, on average, the black-box implementation of logistic 

regression identified less than half of progressors and non-progressors in our study 

population.  
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We observed that using an ensemble of linear SVMs, there was no significant 

difference in performance compared to logistic regression. These findings were in line with 

those by Zhao et al. when using only baseline features [25]. This may be due to the 

limitations of its linearity as there was no evidence of improvement over prevalence-based 

random CDP+ or CDP- prediction. On the other hand, random forest and the AdaBoost 

ensemble of simple decision trees were not restricted to linear relationships and 

outperformed logistic regression and linear support vector machines in predictive accuracies 

PPV and NPV. Performance between random forest and AdBDT was comparable, with no 

statistically significant difference between AdBDT and RF performance. Both non-linear 

machine learning methods increased the accuracy of predicting progression over prevalence-

based random prediction while only AdaBoost resulted in a significant NPV.  

Despite improvements in PPV and NPV demonstrated by RF and AdaBoost, no 

statistically significant improvements were observed in their sensitivity and specificity 

measures over enSVM and LR. This may be due to the relatively small validation sets 

(approximately 48 samples per validation dataset) generated by 10-CV.  

Logistic regression continues to be the standard approach in modeling binary 

disability progression in multiple sclerosis, evaluated based on goodness of fit and not on 

generalizability. However, our findings suggest that the linear assumption for modeling 

disability progression in SPMS and black-box implementations of LR in data science should 

be questioned. As we have shown, non-linear classification models outperformed the black-

box implementations of linear models.  

Analyzing predictor contributions to each of the models, we can see that both linear 

models heavily depended on baseline EDSS on predicting progression. In contrast, T25W 
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contributed the least. This led us to hypothesize that there may be a linear relationship 

present between continuous EDSS and progression which is lacking with T25W. However, 

both linear models performed worse than the non-linear methods which were able to make 

use of the information provided by T25W. Additionally, we found that sex as a predictor had 

a near-zero contribution on non-linear models, which suggests that it may potentially have no 

value for predicting progression in SPMS. We observed sex to be used more generously in 

logistic regression and enSVM which once again may solely be due to the existence of a 

linear relationship. Ultimately, these linear relationships were inadequate in optimizing the 

linear models for prediction of CDP.   

5.1.2 Treating EDSS as a Categorical Variable 

When EDSS was treated as a categorical variable, performance increases were more notable 

in LR and enSVM. enSVM achieved a significantly higher AUC than LR, RF, and AdBDT. 

The increased AUC of RF was not as much as the linear classifiers, while AdBDT had a 

slightly lower AUC compared to using continuous EDSS. Although there were no significant 

differences in classifier precision when using categorical EDSS and all classifiers performed 

better than a prevalence-based random prediction, the pre- to post-positive predictive values 

of LR and enSVM were greater than RF and AdBDT. Additionally, while LR and enSVM 

NPV were outperformed by RF and AdBDT when using continuous EDSS, these differences 

were eliminated when EDSS was analyzed as a categorical variable. No significant 

improvement was observed in LR and enSVM NPV with continuous EDSS, but categorical 

EDSS resulted in improvements in both of these classifiers.  

 Although continuous EDSS saw EDSS contributing the greatest to model training for 

LR and enSVM and it was hypothesized that it had the strongest linear relationship of all 
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user-defined features, the treatment of EDSS as a categorical variable resulted in a much 

greater gap between EDSS contribution and that of the other user-defined features. The 

dependency on EDSS by both linear classifiers was much greater with categorical EDSS 

(Figure 3-3) than it was with continuous EDSS, demonstrating the sensitivity of linear 

classifiers on pre-processing of input data.  

Unlike the linear parametric classifiers, the non-parametric classifiers were less 

affected by how EDSS was treated, with comparable performance metrics between analyzing 

EDSS as a categorical or continuous variable. Qualitative analysis of predictor contributions 

between using continuous EDSS and categorical EDSS showed similar patterns. RF and 

AdBDT both relied on a set of decision rules for constructing decision boundaries and were 

less affected by how variables are treated. This allows them to be more robust than LR and 

enSVM where domain knowledge is important in correctly analyzing input data.  

 

5.2 Deep learning brain lesion masks for predicting SPMS disability 

progression 

5.2.1 Treating EDSS as a Continuous Variable 

A basic deep learning network for automated extraction of lesion distribution features from 

binary lesion masks was able to improve distinguishability of progressors and non-

progressors by approximately 10% based on area under the receiver-operator characteristic 

curve, and detection of progressors (PPV) and non-progressors (NPV) by 4.8 and 4.2% 

respectively compared to logistic regression. While there were no additional improvements 

by adding user-defined demographic with continuous EDSS, clinical and MRI features with 
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the deep-learned lesion mask features with respect to AUC, PPV, NPV, sensitivity, and 

specificity, these features improved the positive and negative post-test probabilities (PPV 

and NPV) by reducing variance in predictions. 

The improvements in PPV and NPV over the naïve multivariate logistic regression of 

user-defined features when using deep-learned features from binary lesion masks may be due 

to its ability to consider spatial information in addition to volumetric information from the 

masks. In conventional MRI metrics such as BPF and T2LV, spatial information is lost. 

Additionally, as disability monitored by EDSS is weighted towards physical disabilities, it is 

likely that the DLN placed heavier weighting on lesions located in regions of the brain that 

affect mobility – a hypothesis which would require further testing. Deep learning has 

previously been used by Yoo et al. for predicting conversion from CIS to MS using deep-

learned features from brain lesion masks and was also shown to outperform multivariate 

logistic regression [31]. 

5.2.2 Treating EDSS as a Categorical Variable 

Benefits of both DLNs on this dataset over naïve logistic regression was lost when 

categorical EDSS was used in the user-defined features mainly due to the improved 

performance in LR, similar to the changes discussed in Section 5.1.2 when EDSS was 

analyzed as a categorical variable with ML. Although no significant difference in 

performance was observed between LR, lmDLN, and coDLN, the lesion mask DLN was able 

to use solely features from transformed binary lesion masks to match LR predictive 

performance using user-defined features. Both lmDLN and coDLN were also more stable in 

performance as they had tighter 95% error margins in AUC, PPV, and sensitivity. The 
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stability of the DLNs also enabled them to have statistically significant improvements in 

PPV.  

Although LR performance increased when using categorical EDSS, the 

improvements did not translate to the use of categorical EDSS in coDLN. We hypothesize 

that this may be due to the ratio between lesion mask features and EDSS (256:1) entering the 

logistic regression layer of coDLN. It is likely that the improvements due to categorical 

EDSS are trumped by the number of lesion mask features entering the logistic regression 

layer. Additionally, as lmDLN performed as well as LR, in conjunction with a small sample 

size (discussed later), it is possible that there was not enough variance in the data for 

additional relationships between lesion mask features and user-defined features to be learned. 

 

5.3 Challenges and Limitations 

While the models developed from this study provide an improvement in performance over 

the conventional black-box implementation of the logistic regression model and prevalence-

based baseline performance when continuous EDSS was used, additional work has to be 

done. A definition of progression defined by an increase in EDSS is weighted towards 

physical disabilities and mobility issues. Using a broader or more comprehensive definition 

of progression that includes changes in cognition as well as mobility may provide improved 

prediction results.  

Our sample of 485 is considered small for machine learning and deep learning 

purposes and demonstrates a difficulty in training machine learning models – the need for 

large amounts of data. Only 23.7% of the study population (115 participants) were 

progressors. This sample size is unlikely to fully capture the variation of lesion distributions 
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or user-defined features for modelling with either logistic regression or deep learning and is 

likely the main contributor to the observed trend in higher NPVs than PPVs. We hypothesize 

that in a larger dataset, the improvements in PPV and NPV would be better reflected in 

model sensitivity and specificity. This may also contribute to the increased precision and 

negative predictive value of deep learning not being reflected in sensitivity and specificity, as 

test sets in each 10CV fold had approximately only 49 participants. As discussed in Section 

5.1.2, while there were minimal differences between LR, enSVM, RF, and AdBDT when 

using categorical EDSS, both RF and AdBDT made use of more user-defined features than 

LR and enSVM. With a larger sample size, RF and AdBDT may be able to outperform LR 

and enSVM by better learning relationships within non-EDSS predictors whose variance, 

necessary to represent the population, was unfortunately not captured in the limited data set 

used in our experiments. 

In addition to the limited sample size, we also only used baseline data for prediction 

and a basic method for integrating user-defined features. The inclusion of longitudinal data, 

both user-defined features as well as lesion masks, may provide important information on the 

rate of change that could add predictive value. 

With respect to user-defined features, only a small set of predictors were used in our 

experiments. The improvement in performance using non-parametric models may be 

amplified by the inclusion of additional predictors whose relationships with progression may 

be better captured using non-linear or non-parametric methods. Other methods of joint 

modelling may improve the results of combining automatically learned features with user-

defined features.  
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Finally, the generalizability of these results is limited to identifying short-term 

progression. The non-progressors may show evidence of disability progression after the 2-

year study window. 

 

5.4 Concluding Statements & Future Work 

Existing research on AI applications in MS have mostly been focused on classification and 

disease state transitions. Our work is one of many steps required to develop a clinically-

usable prognostic tool. Even in its current form, its improvement over a prevalence-based 

classification scheme and logistic regression may aid in streamlining clinical trial recruitment 

and suggests that non-linear modeling may be better suited for evaluating the prognostic 

value of factors of progression.  

In the design of clinical trials and statistical testing, balanced designs are preferred 

over unbalanced design when possible. Balanced designs results in tests with greater 

statistical power as it gives the maximal information regarding treatment differences [50]. In 

[51], it was shown that unbalanced randomized control trials (RCT) results often favor new 

treatments when compared to balanced trials. While control/treatment groups can be 

balanced, unforeseen group imbalances may arise over the duration of the trial. The ideal 

RCT should consider time-dependent changes (i.e. progression) in the cohort and reduce 

potential group imbalances. The identification of those most at risk of disability progression 

during a trial and most likely to benefit from treatment would improve the efficiency of the 

trial and the power associated with treatment effect findings.  

Machine learning applications in Alzheimer’s disease for clinical trial enrichment and 

design have been shown to enable smaller trials with high statistical power by selecting 
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participants at higher risk of cognitive decline [52, 53]. Based on our results, the use of the 

AdaBoost model would hypothetically reduce the imbalance between progressors and non-

progressors by identifying five more progressors and five fewer non-progressors in every 100 

individuals screened for study eligibility, regardless of whether EDSS was analyzed as a 

continuous or categorical variable. The incorporation of predictive machine learning models 

into SPMS clinical trial design may allow those at highest risk of disease worsening to access 

experimental therapies and yield treatment findings with acceptable statistical power using a 

smaller study cohort.  

Deep learning was able to extract self-taught lesion distribution features from binary 

lesion masks. A deep learning network using only the binary lesion masks was superior to 

logistic regression of user-defined features when continuous EDSS was used for predicting 

short-term confirmed disability progression in our cohort of SPMS. When categorical EDSS 

was used, the same DLN using only brain lesion masks performed as well as naïve logistic 

regression. Regardless of how EDSS was analyzed, the use of lesion mask features led to 

more stable performance.   

From our experiments, we showed that machine learning is more robust to data 

processing methods. Unlike the simple ML models such as LR and enSVM, non-parametric 

RF and AdaBoost-DT performance was robust to changes in how EDSS was processed. Non-

parametric models appear to be less sensitive to data processing methods, making them more 

suitable for applications where the proper treatment of input features is unclear. Feature 

importance in RF and AdBDT were also more resilient to changes in how EDSS was 

processed.  
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Future work would look at increasing sample size (particularly that of progressors), 

including longitudinal lesion mask data and user-defined features, experimenting with 

different definitions of progression, using different DL network architectures, and validating 

the models on an independent dataset. The visualization of automatically learned features 

may also provide additional insight into MS pathology and pathogenesis. 
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