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Abstract

Simplex gradients, essentially the gradient of a linear approximation,
are a popular tool in derivative-free optimization (DFO). In 2015, a product
rule, a quotient rule and a sum rule for simplex gradients were introduced by
Regis [33]. Unfortunately, those calculus rules only work under a restrictive
set of assumptions. The purpose of this thesis is to provide new calculus
rules that work in a wider setting. The rules place minimal assumptions on
the functions involved and the interpolation sets. The rules further lead to
an alternative approach to gradient approximation in situations where the
rules could be applied. We analyze the new approach, provide error bounds,
include some testing on numerical stability and accuracy.
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Lay Summary

Differential calculus studies instantaneous rate of change of a function.
For a function of several variables, the instantaneous rate of change of a
function is captured in a vector called the gradient. The gradient of a func-
tion is highly valued to solve an optimization problem. Unfortunately, in
many modern optimization problems, gradients are not available or simply
not reliable. For those reasons, we approximate the latter using accessible
information about our optimization problem. One method that was proven
to be efficient is called the simplex gradient. The main contributions of this
thesis are to introduce calculus rules for simplex gradients such as a product
rule, a quotient rule, and a chain rule. Those rules have the same structure
as those for true gradients plus a term that can be viewed as an error term.
Removing the error terms from the formulas lead to new techniques to gra-
dient approximations. We demonstrate that it is advantageous to use these
new techniques in certain situations.
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Preface

This thesis has been adapted from a manuscript co-authored with Dr.
Warren Hare at the University of British Columbia, Okanagan Campus.
The manuscript has been submitted for publication to SIAM Journal on
Optimization [22].
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strom’s Set . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 5 Testing the Product Rule on Moré, Garbow and Hill-
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À mes parents:

Merci pour tout ce que vous avez fait pour moi.
Merci d’avoir continuer de croire en moi malgré toutes ces années difficiles.
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Chapter 1

Introduction

Calculus is considered to have been developed in the seventeenth century
by Isaac Newton and Gottfried Wilhelm Leibniz. It is the mathematical
study of continuous change. One major branch is called differential calculus.
It studies instantaneous rate of change of a function f . When a function
involves several variables, the instantaneous rate of change can be computed
through use of a vector called the gradient of f .

Gradients are an extremely powerful tool in optimization. Before saying
why gradients are valuable, let us define the branch of mathematics named
optimization. Optimization is the study of mathematical problem of mini-
mizing or maximizing a function f possibly subject to some constraints [4].
In this thesis, we always assume we want to minimize a problem. With this
definition in mind, it is now clear why optimization is such a popular branch
of mathematics in modern research. Indeed, a lot of recent mathematical
problems involve minimizing the cost of some procedures or projects.

To solve an optimization problem, we cannot deny the importance of
gradients. The gradient of our function f at a point x represents the di-
rection of the greatest rate of increase of our function f at x. Thus, the
negative gradient represents the greatest rate of decrease of f at x. Hence,
one rudimentary strategy is to follow the direction of the negative gradient
to reduce the value of a function. Unfortunately, the gradient of our objec-
tive function f , the function we want to minimize, is not always available
or even reliable. Let us provide situations where this is the case.

First, a common optimization problem where the gradient is not avail-
able to the optimizer is when the objective function comes from a computer
simulation [4]. Even though the objective function could be fully differ-
entiable (and so the gradient of f exists everywhere), the output does not
include derivatives. For instance, the simulation could only return the func-
tion value f(x) for some input x. In this situation, it is not possible to
use directly gradient-based method such as the well-known Quasi-Newton
method [5, Chapter 4].

Second, Noisy optimization problems are a classic example where the
gradient of the objective function f is not reliable. Roughly speaking, a
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Chapter 1. Introduction

noisy function is a function with small perturbations that produces several
quick increases and decreases of the function values. Figure 1 illustrates
such a function. This noisy function is the sum of the well-behaved func-
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Figure 1: An Example of Noisy Function

tion f(x) = x2 and small perturbations coming from normally distributed
random numbers. In real-life applications, these small oscillations could
be caused by experimental or measurement errors [8]. We can see that
gradient-based methods may easily become trapped in one of the several
local minimizers, the values of the independent variable x associated to the
minimum function values f(x).

To solve the previous examples, it should now be clear that we cannot use
the true gradient of the objective function f . The modern branch of mathe-
matics that is interested by those previous problems is called derivative-free
optimization.

Derivative-free optimization is the mathematical study of optimization
algorithms that do not employ first order information such as gradients [4].
Note that we did not claim first order information does not exist. Indeed,
The objective function can be fully differentiable but for some justifiable
reasons, we do not use first order information directly.

In Derivative-free optimization, it is crucial to understand that, more
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Chapter 1. Introduction

often than not, the explicit functions are unknown to the optimizer. The
functions are hidden in what we refer to a blackbox. A blackbox is any
process that returns an output whenever we provide an input, but the inner
workings of the process are not analytically available [4]. Indeed, a computer
simulation is a type of blackbox. A second type of blackbox is laboratory ex-
periments. As we have seen, conducting a laboratory experiment can return
a noisy function. Moreover, we often do not know the explicit mathematical
functions involved in our experiment.

A legitimate question to ask is how can we solve those optimization
problems?

Instead of using the gradient of our objective function f directly, we can
approximate the latter with available and reliable information we possess
on f . One method that was proven to be efficient is to build the simplex
gradient of f . Simplex gradients are essentially the gradient of a linear
approximation.

Suppose we want to approximate the gradient of the function f(x) = x2

at the point x = 1. Assume that the only information we possess is that
f(1) = 1 and f(2) = 4. We can build a linear function passing through
f(1) = 1 and f(2) = 4. The slope of this linear function, which is equal to
3, represents the simplex gradient of f at x = 1. Note that the true gradient
of f at x = 1 is equal to 2. Figure 2 illustrates this example. We see that
the simplex gradient of f at x = 1 is not extremely accurate. To obtain an
accurate simplex gradient, we need to obtain information about our function
f closer to x = 1. This simple example demonstrates the importance of the
sample set, the set of points used to build our approximation of the gradient.

Derivative-free optimization methods have been effectively applied to a
wide range of fields: oil production problems [15, 20], molecular geometry
[2, 26], helicopter rotor blade design [6, 7, 35], research on water resources [1,
17, 27, 29], alloy and process design [9, 18, 19] and engineering applications
[3, 13] to name a few. Undeniably, the value of derivative-free methods and
simplex gradients is now well-established.

Now that we have a better understanding of derivative-free optimization
and simplex gradients, let us present a brief history of this branch of mathe-
matics and introduce specific details about derivative-free optimization and
simplex gradients.

We can classify derivative-free methods into two main categories: model-
based methods and direct search methods. In both categories, simplex gra-
dients can play an important role.

In derivative-free optimization, a model-based method approximates the
objective function with a model function and then utilizes the model function
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Figure 2: An Example of Simplex Gradient

to guide the optimization. The beginning of model-based methods occurred
in 1969 when Winfield presented his Ph.D thesis Function and functional
optimization by interpolation in data tables [37]. However, model-based
methods in derivative-free optimization were generally considered too com-
putationally expensive until the mid 1990’s when Powell developed rigorous
analysis for a method based on linear interpolation [32]. This led to the
development of simplex gradients. Simplex gradients are now frequently
used in derivative-free optimization. More recently, a meticulous theory on
building models was developed by Conn, Scheinberg and Vicente [10, 11].
The main value of simplex gradients in model-based methods is to deter-
mine a descent direction of the true function [4, Chapter 10]. Even when
the objective function is nonsmooth, simplex gradients can be defined and
can help solve the optimization problem [12].

A direct search method is a type of method that works from an incum-
bent solution and analyzes a collection of trial points to find improvement in
the objective function. If no improvement is found then a step size parameter
is adjusted. Initial works on direct search methods include Hooke and Jeeves
[23] and Nelder and Mead [30] published in the 1960’s. In 2007, Custódio
and Vicente suggested various strategies to improve the performance of di-

4



Chapter 1. Introduction

rect search methods using the simplex gradient [14]. A year after, Custódio
et al. demonstrated that the efficiency of direct search methods can be im-
proved by reordering the poll directions according to descent indicators built
from simplex gradients. Moreover, they defined a new stopping criterion for
direct search methods involving the simplex gradient [12].

Several properties of simplex gradients were analyzed in Iterative Meth-
ods for Optimization [25]. Error bounds for the simplex gradient were pro-
vided and the notion of centered simplex gradient was introduced. There-
after, the importance of the sample set geometry (poisedness) which is used
to build the simplex gradient was deeply investigated [11? ]. In 2010, the
strong dependence between the geometry of the sample set and global con-
vergence of a model-based algorithm was revealed [34]. The utility of simplex
gradients in nonsmooth optimization is an active area of research. On that
topic, Bortz and Kelley presented some benefits of using simplex gradients
to solve noisy optimization problems [8].

In 2015, a publication by Regis proposed some calculus rules for the
simplex gradient: a product rule, a quotient rule and a sum rule [33]. Un-
fortunately, those rules only work under a restrictive set of assumptions.
Moreover, those rules did not have the same structure as the calculus rules
for the true gradient. In 2017, Hare began investigating compositions of
functions [21].

There are two main achievements presented in this thesis. First, we
introduce a rigorous repertoire of calculus rules for the generalized simplex
gradient. These rules work in a wider setting than the one introduced by
Regis [33]. Indeed, the following calculus rules can be used regardless of the
number of points in the sample set and place minimal assumptions on the
sample set. It also places minimal assumptions on the functions involved.
It turns out that the calculus rules introduce in this thesis have the same
structure as the true gradient plus a term E that can be viewed as an error
term. Removing the term E from the formula leads to new techniques to
approximate gradients. This represents the second main achievement of this
thesis. This new approach, named generalized simplex calculus gradient, has
interesting benefits. For instance, in the quotient rule and the power rule, it
allows us to remove some assumptions on the functions involved. Also, under
a certain assumption on the sample set, this new approach suits perfectly
linear functions as it returns the true gradient of the objective function.

Since limited information about the functions involved is available to
the optimizer, it can be difficult to decide on which gradient approximation
technique to use on a specific problem. Information about the Lipschitz
constants may be useful. In that sense, we propose an algorithm to make this
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Chapter 1. Introduction

decision based on an approximation of the Lipschitz constants in Chapter
7.

To support the relevance of this thesis, let us present an example where
one could use this new technique to approximate the gradient. Suppose the
functions fi(x) for all i ∈ {1, 2, . . . , n} are blackboxes returning the probabil-
ity of an event taking place depending on a variable x ∈ Rd. Assume we are
interested in minimizing the probability of these n events happening simulta-
neously. In other words, we want to minimize F (x) = f1(x) · f2(x) · · · fn(x).
Then the generalized calculus gradient could be employed to solve this prob-
lem. The product rule developed allows us to consider the blackboxes sepa-
rately rather than considering this problem as one function F = f1 ·f2 · · · fn.

This thesis is structured as follows. In Chapter 2, we define the general-
ized simplex gradient and introduce some basic definitions. We also provide
some preliminary results and definitions that are useful in the subsequent
chapters. In Chapter 3, we provide a product rule, a quotient rule and a
power rule. In Chapter 4, we introduce a general chain rule for the general-
ized simplex gradient. In Chapter 5, we explore the potential of the calculus
rules. The role of the term E in the formulas is examined. We demonstrate
that novel gradient approximation techniques can be achieved by removing
this error term. The behaviour of linear functions when used in the gen-
eralized simplex calculus gradient formulas is analyzed. Error bounds for
the generalized simplex calculus gradients are also developed. In Chapter
6, we compare the numerical stability of the generalized simplex gradient,
the generalized simplex gradient using the calculus rule, and the generalized
simplex calculus gradient. Also, numerical experiments are conducted using
Moré, Garbow and Hillstrom’s Test Set [28]. Lastly, Chapter 7 summa-
rizes the work we have accomplished, proposes an algorithm to approximate
Lipschitz constants, and suggests some topics to explore in future research.
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Chapter 2

Preliminary Definitions

In this chapter, we present the definition of generalized simplex gradient
and an error bound for the latter. First, we start with some basic definitions
that are useful in the next chapters and we also introduce some of the
notation used throughout this thesis.

2.1 Basic Notation and Definitions

Throughout this thesis, we use the following notation. Note that, in
general, we follow the notation of [4].

N Set of all natural numbers: {0, 1, 2, . . . }

N+ Set of all positive natural numbers: {1, 2, . . . }

R Set of all real numbers.

R+ Set of all positive real numbers.

Rd Set of all d dimensional real vectors.

Note that we represent an element of Rd as a column vector.
Unless stated otherwise, we use d, k, m, n and p to denote elements in

N+.
The open ball centered at x0 with radius ∆ > 0, denoted B (x0,∆), is

defined as
B (x0,∆) = {x ∈ Rd : ‖x− x0‖ < ∆}.

The closed ball of the same type is denoted B̄ (x0,∆).
A m × d real matrix A, denoted A ∈ Rm×d, is an array of scalars con-

sisting of m rows and d columns. The element of A in row i and column j
is called the i, j-entry of A and is denoted Ai,j .

For a matrix A ∈ Rm×d, we denote the transpose of A by AT .
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2.1. Basic Notation and Definitions

The norm of a vector x =
[
x1 x2 . . . xd

]T
is denoted by ‖x‖ and

should be taken as the `2 norm (Euclidean norm) unless stated otherwise.
We have

‖x‖ = ‖x‖2 =
√

(x1)2 + (x2)2 + · · ·+ (xd)2.

In R, we use the notation | · | to denote the norm of a scalar.
Given a matrix A, we use the induced matrix norm

‖A‖ = ‖A‖2 = max{‖Ax‖2 : ‖x‖ = 1}.

The identity matrix in Rd×d is denoted Id.
If A ∈ Rd×d, that is A is a real square matrix, then we denote the

determinant of A by det(A). When det(A) 6= 0, we say A is invertible and
we denote the inverse of A by A−1.

For nonsquare matrices, we can use a generalization of the inverse matrix
which is called pseudoinverse. The most known type of matrix pseudoinverse
is the Moore-Penrose Pseudoinverse [24].

Definition 2.1 (Moore-Penrose Pseudoinverse). Let A ∈ Rm×d. A matrix,
denoted A†, is called the Moore-Penrose pseudoinverse of A and satisfies the
following four equations:

i. AA†A = A

ii. A†AA† = A†

iii. (AA†)T = AA†

iv. (A†A)T = A†A.

Note that every matrix A ∈ Rm×d has a unique Moore-Penrose pseu-
doinverse A† [24].

Definition 2.2 (Linearly Independent). A set of vectors {v1, v2, . . . , vm} in
Rd is linearly independent if and only if the only solution to

m∑
i=1

λivi = 0, λi ∈ R,

is λi = 0 for all i ∈ {1, 2, . . . ,m}.

When A ∈ Rm×d has linearly independent columns, a formula to com-
pute A† is

A† =
(
ATA

)−1
AT ∈ Rd×m.

8



2.1. Basic Notation and Definitions

This particular pseudoinverse is a left inverse as A†A = Id.
When A ∈ Rm×d has linearly independent rows, a formula to compute

A† is
A† = AT

(
AAT

)−1 ∈ Rd×m.

This particular pseudoinverse is a right inverse as AA† = Im.
The rank of a matrix A ∈ Rm×d, denoted rank(A), is the maximal

number of linearly independent columns of A. We say a matrix A ∈ Rm×d

has full rank if and only if its rank equals the largest possible rank for a
matrix of the same dimension.

Furthermore, we say a matrix A ∈ Rm×d has full column rank if and only
if every columns of A are linearly independent. Similarly, we say a matrix
A ∈ Rm×d has full row rank if and only if every rows of A are linearly
independent.

We now turn our attention to some basic notations and definitions related
to functions.

The notation f ∈ C0 means that f is continuous and f ∈ Ck means that
f is k times differentiable and all partial derivatives are continuous up to the
kth order. We use the term smooth to refer to the situation where f ∈ C2.
Note that if f ∈ Ck where k ≥ 2, then f is smooth.

We now introduce the notion of Lipschitz continuity which is a stronger
concept than continuity.

Definition 2.3 (Lipschitz Continuity). Let f : Rd → R. We say the func-
tion f is Lipschitz continuous on the set Ω ⊆ Rd if and only if there exists
a scalar Lf ≥ 0 for which

‖f(x)− f(y)‖ ≤ Lf‖x− y‖ for all x, y ∈ Ω. (2.1)

If it exists, the smallest scalar Lf satisfying Equation (2.1) is called the
Lipschitz constant of f on the set Ω.

Furthermore, we say f is locally Lipschitz continuous at x0 ∈ Rd if and
only if f is Lipschitz continuous on some open ball centered at x0. That is,
there exists Lf ≥ 0 and ∆ > 0 such that

‖f(x)− f(y)‖ ≤ Lf‖x− y‖ for all x, y ∈ B (x0,∆) .

Writing f ∈ C0+ with constant Lf near x0 means that f is Lipschitz
continuous with Lipschitz constant Lf on some open ball B (x0,∆).

9



2.2. Generalized Simplex Gradient

2.2 Generalized Simplex Gradient

The purpose of this section is to defined the generalized simplex gradient
and present an error bound between the generalized simplex gradient and
the true gradient.

First, we introduce some basic definitions and investigate why the word
simplex shows up in the name of this method to approximate a gradient.

Definition 2.4 (Convex set). A set Ω is convex if and only if given any two
points x, y ∈ Ω and any θ ∈ [0, 1], we have

θx+ (1− θ)y ∈ Ω.

In other words, the line segment joining any two points in Ω is entirely
contained in Ω.

Definition 2.5 (Convex Hull). The convex hull of a set X , denoted conv(X ),
is the smallest convex set containing X .

In R2, the convex hull of a certain set X may be visualized as the shape
enclosed by a rubber band stretched around X . We can now define a simplex.

Definition 2.6 (Simplex). A simplex in Rd is the convex hull of exactly
d+ 1 distinct points that has nonempty interior.

For example, in R a simplex is an interval. In R2, a simplex is a triangle.
In R3, it is a triangular-based pyramid.

Given a set of sample points X = {x0, x1, . . . , xd} ⊂ Rd, we work with
the convex hull of X to verify if conv(X ) forms a simplex. Figure 3 illustrates
the convex hull of the set X = {[1 1]T , [3 3]T , [3 1]T } ⊂ R2. In this example,
conv(X ) clearly forms a simplex.

Now, let us consider the set X = {[1 1]T , [2 1]T , [3 1]T } ⊂ R2. Then
conv(X ) does not form a simplex since conv(X ) has an empty interior.

In higher dimensions of Rd, it can be difficult to tell if conv(X ) forms a
simplex or not. Fortunately, the following proposition introduces a simple
test to check if the convex hull of a set forms a simplex.

Proposition 2.7 (Simplex Test). [4, Theorem 2.5]
Let X = {x0, x1, . . . , xd} be a set of d + 1 points in Rd. Let S(X ) =[

x1 − x0 x2 − x0 . . . xd − x0
]
∈ Rd×d. Then conv(X ) forms a simplex if

and only if S(X ) is invertible.

10



2.2. Generalized Simplex Gradient

Figure 3: The Convex Hull of X Forms a Simplex

We are now ready to define the simplex gradient of f over the set X .
Consider a set of points X = {x0, x1, . . . , xd} ⊂ Rd. Treating X as interpo-
lation points, we can build an interpolation model LX (x) = α0 +αTx, where
α0 ∈ R and αT =

[
α1 α2 . . . αd

]
∈ Rd. We are seeking the values of α0

and α such that
LX (xi) = f(xi), for all xi ∈ X .

We get a system of d + 1 linear equations and d + 1 unknowns. In matrix
form, we have 

1 (x0)
T

1 (x1)
T

...
...

1 (xd)T



α0

α1
...
αd

 =


f(x0)
f(x1)

...
f(xd)

 . (2.2)

To tighten notation, let

f(X ) =


f(x0)
f(x1)

...
f(xd)

 and X =
[
x0 x1 . . . xd

]
.

11



2.2. Generalized Simplex Gradient

We can rewrite Equation (2.2) as

[
1 X T

] [α0

α

]
= f(X ), (2.3)

where 1 ∈ Rd+1 is the vector of all ones. We want Equation (2.3) to have
a unique solution. Hence, we require

[
1 X T

]
to be invertible. The term

poised refers to this particular situation.

Definition 2.8 (Poised for Linear Interpolation). We say the set X =
{x0, x1, . . . , xd} ⊂ Rd is poised for linear interpolation if and only if the
matrix

[
1 X T

]
∈ Rd+1×d+1 is invertible.

The next proposition demonstrates the relation between being poised for
linear interpolation and simplices.

Proposition 2.9 (Simplex Test Continued). [4, Proposition 9.1]
Let X = {x0, x1, . . . , xd} ⊂ Rd. Then the following are equivalent.

i. The sample set X is poised for linear interpolation.

ii. The convex hull conv(X ) forms a simplex.

iii. The matrix S(X ) =
[
x1 − x0 x2 − x0 . . . xd − x0

]
is invertible.

We can now see the intimate link between being poised and simplices.
For this reason, the gradient of the linear interpolation function LX is called
the simplex gradient.

Definition 2.10 (Simplex Gradient). Let f : Rd → R and let the sample
set X = {x0, x1, . . . , xd} ⊂ Rd be poised for linear interpolation. The sim-
plex gradient of f over X , denoted ∇Sf(X ), is the gradient of the linear
interpolation function LX of f over X . That is

∇Sf(X ) = ∇LX (x) = α.

Note that the notation for the simplex gradient uses the symbol X since
the simplex gradient is defined through the elements of the sample set X .
Also, note that the order of the elements in the set X does not matter.
Indeed, changing the order of the elements in X only swap rows in Equation
(2.2) and so the solution of the linear system is unchanged.

Let us introduce a simple formula for computing the simplex gradient.

12



2.2. Generalized Simplex Gradient

Proposition 2.11 (Computing the Simplex Gradient). [4, Proposition 9.2]
Let f : Rd → R, and let X = {x0, x1, . . . , xd} ⊂ Rd be poised for linear

interpolation. Also, let

S = S(X ) =
[
x1 − x0 x2 − x0 . . . xd − x0

]
∈ Rd×d,

and

δf = δf (X ) =


(f(x1)− f(x0))

T

(f(x2)− f(x0))
T

. . .

(f(xd)− f(x0))
T

 ∈ Rd.

Then the simplex gradient of f over X is

∇sf(X ) = S−T δf .

It is worth mentioning that the usual definition of δf does not need a
transpose operator in every row. But for a function f where the output is
in a higher dimension than R (such functions are considered in Chapter 4),
it is important to include the transpose operator in every row so that δf is
well-defined.

Example 2.12 (Computing a Simplex Gradient). Let f : R2 → R : y 7→
y21 + y22, and let the sample set of points X = {[0 0]T , [δ 0]T , [0 δ]T }, where
δ ∈ R+. Then

∇sf(X ) = S−T δf

=

[
δ 0
0 δ

]−T [
δ2 − 0
δ2 − 0

]
=

[
δ
δ

]
.

Note that

∇f(x0) =

[
0
0

]
.

In the previous example, we see that the simplex gradient of f over X is
not an accurate approximation of the true gradient of f at x0 when δ is far
from 0. We get an accurate simplex gradient by choosing δ near 0.

13



2.2. Generalized Simplex Gradient

Two assumptions to calculate simplex gradients are that the sample set
X contains exactly d + 1 elements and X is poised for linear interpolation.
One may wonder if we can extend this concept of simplex gradients to the
case where X does not contain exactly d+ 1 elements. Also, can we remove
the assumption that X is well-poised? Generalized simplex gradients allow
us to remove those two restrictions on X . To accomplish this, we take
advantage of the properties of the Moore-Penrose pseudoinverse. In the rest
of this thesis, we use the notation 〈·〉 to denote an ordered set.

Definition 2.13 (Generalized Simplex Gradient). Let X = 〈x0, x1, . . . , xk〉
be an ordered set of k+ 1 points in Rd. The generalized simplex gradient of
f over X is

∇sf(X ) =
(
ST
)†
δf . (2.4)

Note that the set X is now an ordered set of points. It has been proved
that the order of the set X affects our calculation of the generalized simplex
gradient when the set X contains more than d+ 1 points in Rd [33, Propo-
sition 3]. In particular, the position of x0 must be fixed. For this reason,
we now consider an ordered set of points X in the rest of this thesis. Also,
note that the sample set X does not necessarily form a simplex anymore.

We use the term determined to refer to the case where k = d and
rank(S) = d. We use the term underdetermined to refer to the case where
rank(S) < d. Lastly, we use the term overdetermined to refer to the case
where k > d and rank(S) = d.

If we are in the determined or overdetermined cases, and f ∈ C1+, an
error bound between the generalized simplex gradient and the true gradient
can be defined [33]. The accuracy of this bound is measured in term of
∆ = max1≤i≤k ‖xi − x0‖, the radius of X .

Proposition 2.14 (Error Bound). Let X be an ordered set of k + 1 points
in Rd where k ≥ d, and let S(X ) have full rank. Assume that f ∈ C1+
with Lipschitz constant L∇f ≥ 0 on an open domain O containing conv(X ).
Define

εsf(X ) =

√
k

2
L∇f

∥∥∥∥(Ŝ (X )T
)†∥∥∥∥∆,

where Ŝ(X ) = S(X )/∆. Then

‖∇sf(X )−∇f(x0)‖ ≤ εsf(X ).

14



2.2. Generalized Simplex Gradient

The proof can be done in a similar way than the one in [33, Proposition
7]. Note that the above Proposition 2.14 consider the convex hull conv(X )
instead of the closed ball B̄ (x0,∆) in [33, Proposition 7] . The proof is
still valid since it holds that ∇f (x0 + t(xi − x0)) , t ∈ [0, 1], is Lipschitz
continuous for all i ∈ {1, 2, . . . , k}. Considering conv(X ) instead of B̄ (x0,∆)
provides a more accurate error bound since it can decrease the value of the
Lipschitz constant L∇f .

Also, note that the previous proposition assumes k ≥ d. Indeed, if k < d
we can drive the absolute error ‖∇sf(X )−∇f(x0)‖ to infinity.

Example 2.15 (The Absolute Error Goes to Infinity). Let f : R2 → R :
y 7→ y1 + βy2, where β ∈ R, and let X = 〈[0 0]T , [1 0]T 〉.
Note that L∇f = 0 on R2 for any β ∈ R.
We have

∇sf(X ) =
(
ST
)†
δf

= [1 0]† [1]

=

[
1
0

]
,

and

∇f(x0) =

[
1
β

]
.

Hence, driving β −→∞, we get

‖∇sf(X )−∇f(x0)‖ −→ ∞.

Therefore, the error bound defined in Proposition 2.14 is not valid in the
underdetermined case.

Now that we have an equation to compute the generalized simplex gra-
dient of a function f over a sample set X and presented the significant
definitions and notation, we are ready to introduce calculus rules for the
generalized simplex gradient.
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Chapter 3

Product, Quotient and
Power Rules

Throughout this chapter let f and g be functions from Rd to R.
A product rule for the simplex gradient of two functions was introduced

by Regis in 2015 [33, Proposition 10]. However, the rule only works when
the number of points in the set X is equal to d+ 1 and under the strong as-

sumption that the matrices
(
S(X )T

)†
and diag (g(x1), . . . , g(xk)) commute.

We begin by providing a product rule that can be used regardless of the
number of points k+1 in the sample set X (obviously we need k ≥ 1 for the
matrix S and the vector δf to be well-defined). Thereafter, we introduce a
product rule for n functions, a quotient rule and a power rule that also work
regardless of the number of elements in the sample set X .

First, let us define the product difference vector.

Definition 3.1 (Product Difference Vector). Let X = 〈x0, x1, . . . , xk〉 be
an ordered set of k+ 1 points in Rd. The product difference vector of f and
g over X is

δf |g = δf |g(X ) =


(f(x1)− f(x0))(g(x1)− g(x0))
(f(x2)− f(x0))(g(x2)− g(x0))

...
(f(xk)− f(x0))(g(xk)− g(x0))

 .
Note that the product difference vector is the componentwise multipli-

cation δf � δg = δf |g. The product difference vector allows us to create a
product rule for the generalized simplex gradient of fg over X . The result-
ing rule is structurally similar to the product rule for the true gradient plus
a term denoted Efg. Without further ado, let us introduce the product rule.

Theorem 3.2 (Product Rule). Let X = 〈x0, x1, . . . , xk〉 be an ordered set
of k + 1 points in Rd. Then

∇s(fg)(X ) = f(x0)∇sg(X ) + g(x0)∇sf(X ) + Efg,
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where Efg =
(
ST
)†
δf |g.

Proof. We have

∇s(fg)(X ) =
(
ST
)†
δfg

=
(
ST
)† f(x1)g(x1)− f(x0)g(x0)

...
f(xk)g(xk)− f(x0)g(x0)


=
(
ST
)†

f(x0)g(x1)− f(x0)g(x0)
...

f(x0)g(xk)− f(x0)g(x0)

+

f(x1)g(x0)− f(x0)g(x0)
...

f(xk)g(x0)− f(x0)g(x0)


+

f(x1)g(x1) + f(x0)g(x0)− f(x0)g(x1)− f(x1)g(x0)
...

f(xk)g(xk) + f(x0)g(x0)− f(x0)g(xk)− f(xk)g(x0)




= f(x0)
(
ST
)† g(x1)− g(x0)

...
g(xk)− g(x0)

+ g(x0)
(
ST
)† f(x1)− f(x0)

...
f(xk)− f(x0)


+
(
ST
)† (f(x1)− f(x0))(g(x1)− g(x0))

...
(f(xk)− f(x0))(g(xk)− g(x0))


= f(x0)∇sg(X ) + g(x0)∇sf(X ) +

(
ST
)†
δf |g .

Notice that the product rule is symmetric, in the sense that the formula
for∇s(fg)(X ) is identical to the formula created from∇s(gf)(X )1. Also, we
point out that, in the specific case where k = d, the product rule presented
in this thesis does not have the same structure than the product rule for
simplex gradients introduced by Regis in [33].

The product rule immediately produces the following corollary for the
generalized simplex gradient of fn over X . Note that, in this thesis, we
define 00 to be equal to 1.

1We mention this as the product rule presented in [33, Proposition 10] does not share
this property.
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Corollary 3.3 (Power Rule for a Positive Integer Exponent).
Let X = 〈x0, x1, . . . , xk〉 be an ordered set of k + 1 points in Rd and

n ∈ N+. Then

∇sf
n(X ) = n[f(x0)]

n−1∇sf(X ) + Efn ,

where

Efn =
(
ST
)†(n−1∑

i=1

[f(x0)]
n−1−iδf |f i

)
.

Proof. We prove this by induction on n. When n = 1, we have

∇sf(X ) = 1∇sf(X ) + 0

= 1[f(x0)]
0∇sf(X ) +

(
ST
)†( 0∑

i=1

[f(x0)]
−1δf |f1

)
,

since an empty sum is equal to zero.

Next, assume the equation is true for n = ` for some integer ` ≥ 1. Consid-
ering ∇sf

`+1(X ), we see that

∇sf
`+1(X ) = ∇s

(
f `(X )f(X )

)
= [f(x0)]

`∇sf(X ) + f(x0)∇sf
`(X ) +

(
ST
)†
δf |f`

= [f(x0)]
`∇sf(X )

+ f(x0)

(
`[f(x0)]

`−1∇sf(X ) +
(
ST
)† `−1∑

i=1

[f(x0)]
`−1−iδf |f i

)
+
(
ST
)†
δf |f`

= [f(x0)]
`∇sf(X ) + `[f(x0)]

`∇sf(X )

+
(
ST
)†
f(x0)

`−1∑
i=1

[f(x0)]
`−1−iδf |f i +

(
ST
)†
δf |f`

= (`+ 1)[f(x0)]
`∇sf(X ) +

(
ST
)†(`−1∑

i=1

[f(x0)]
`−iδf |f i + δf |f`

)

= (`+ 1)[f(x0)]
`∇sf(X ) +

(
ST
)†(∑̀

i=1

[f(x0)]
`−iδf |f i

)
.

Hence, the equation is also true for n = `+1. The induction is complete.
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Next, we extend the product rule for the general case of n functions. To
prove the product rule for the simplex gradient of n functions, we require
the following Lemma 3.4.

Lemma 3.4. Let fi : Rd → R for all i ∈ {1, 2}. Then

δf1f2 = f1(x0)δf2 + f2(x0)δf1 + δf1|f2 .

Proof. We have

δf1f2 =

(f1f2)(x1)− (f1f2)(x0)
...

(f1f2)(xk)− (f1f2)(x0)


=

(f1f2)(x1)− (f1f2)(x0) + f1(x0)f2(x1)− f1(x0)f2(x1) + f1(x1)f2(x0)− f1(x1)f2(x0)
...

(f1f2)(xk)− (f1f2)(x0) + f1(x0)f2(xk)− f1(x0)f2(xk) + f1(xk)f2(x0)− f1(xk)f2(x0)



= f1(x0)

f2(x1)− f2(x0)...
f2(xk)− f2(x0)

+ f2(x0)

f1(x1)− f1(x0)...
f1(xk)− f1(x0)


+

(f1(x1)− f1(x0)) (f2(x1)− f2(x0))
...

(f1(xk)− f1(x0)) (f2(xk)− f2(x0))


= f1(x0)δf2 + f2(x0)δf1 + δf1|f2 .

Proposition 3.5 (Product Rule for n Functions). Let fi : Rd → R for all
i ∈ {1, 2, . . . , n} where n ≥ 2. Then

∇s (f1f2 · · · fn) (X ) =
n∑

i=1

∏
j 6=i

fj(x0)

∇sfi(X ) + Ef1f2···fn ,

where

Ef1f2···fn =
(
ST
)†δf1f2···fn − n∑

i=1

∏
j 6=i

fj(x0)

 δfi

 .
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Proof. We prove this by induction on n. When n = 2, using Lemma 3.4, we
have

∇s (f1f2) (X ) = f2(x0)∇sf1(X ) + f1(x0)∇sf2(X ) +
(
ST
)†
δf1|f2

= f2(x0)∇sf1(X ) + f1(x0)∇sf2(X )

+
(
ST
)†

(δf1f2 − f1(x0)δf2 − f2(x0)δf1)

=
2∑

i=1

∏
j 6=i

fj(x0)

∇sfi(X ) +
(
ST
)†δf1f2 − 2∑

i=1

∏
j 6=i

fj(x0)

 δfi

.
Next, suppose the equation is true for n = ` for some integer ` ≥ 2.

Define g = f1f2 · · · fn. Considering ∇s (f1f2 · · · fnfn+1) (X ), we see that

∇s (f1f2 · · · fn+1) (X ) = ∇s (gfn+1) (X )

= fn+1(x0)∇sg(X ) + g(x0)∇sfn+1(X ) +
(
ST
)†
δg|fn+1

= fn+1(x0)

 n∑
i=1

∏
j 6=i

fj(x0)

∇sfi(X )

+ Ef1f2···fn) + g(x0)∇sfn+1(X ) +
(
ST
)†
δg|fn+1

=

n+1∑
i=1

∏
j 6=i

fj(x0)

∇sfi(X )


+ fn+1(x0)Ef1f2···fn +

(
ST
)†
δg|fn+1

.

To complete the proof, we must show

fn+1(x0)Ef1f2···fn +
(
ST
)†
δg|fn+1

= Ef1f2···fnfn+1 .

Indeed, we have

fn+1(x0)En +
(
ST
)†
δg|fn+1

= fn+1(x0)
(
ST
)†δg − n∑

i=1

∏
j 6=i

fj(x0)

 δfi

+
(
ST
)†
δg|fn+1

=
(
ST
)† fn+1(x0)δg − fn+1(x0)

 n∑
i=1

∏
j 6=i

fj(x0)

 δfi

+ δg|fn+1


=
(
ST
)† fn+1(x0)δg + g(x0)δfn+1 + δg|fn+1

−

n+1∑
i=1

∏
j 6=i

fj(x0)

 δfi


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=
(
ST
)†δf1···fnfn+1 −

n+1∑
i=1

∏
j 6=i

fj(x0)

 δfi

 (by Lemma 3.4)

= Ef1f2···fnfn+1 .

Therefore, the equation is true for n = `+ 1 and the induction is complete.

The following Corollary 3.6 presents an alternative formula whenever all
fi for i ∈ {1, 2, . . . , n} are equal.

Corollary 3.6. Let f : Rd → R and n ∈ N+. Then

∇sf
n(X ) = n[f(x0)]

n−1∇sf(X ) + Efn ,

where

Efn =
(
ST
)† (

δfn − n[f(x0)]
n−1δf

)
.

Proof. The result is obtained easily by letting fi = f for all i ∈ {1, 2, . . . , n}
in Proposition 3.5.

Note that Corollary 3.3 and Corollary 3.6 provide two different formulas
to calculate ∇sf

n(X ). Let us show that there are equivalent.

Lemma 3.7. Let X = 〈x0, x1, . . . , xk〉 be an ordered set of k + 1 points in
Rd and n ∈ N+. Then

n−1∑
i=1

[f(x0)]
n−1−iδf |f i = δfn − n[f(x0)]

n−1δf .

Proof. We have

n−1∑
i=1

[f(x0)]
n−1−iδf |f i = [f(x0)]

n−2δf |f + [f(x0)]
n−3δf |f2

+ · · ·+ f(x0)δf |fn−2 + δf |fn−1

= [f(x0)]
n−2 (δf2 − f(x0)δf − f(x0)δf

)
+ [f(x0)]

n−3 (δf3 − f(x0)δf2 − [f(x0)]
2δf
)

+ · · ·+ f(x0)
(
δfn−1 − f(x0)δfn−2 − [f(x0)]

n−2δf
)

+ δfn − f(x0)δfn−1 − [f(x0)]
n−1δf
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by Lemma 3.4. After cancelations we get

n−1∑
i=1

[f(x0)]
n−1−iδf |f i = −[f(x0)]

n−1δf − [f(x0)]
n−1δf − · · · − [f(x0)]

n−1δf︸ ︷︷ ︸
n times

+δfn

= −n[f(x0)]
n−1δf + δfn .

Aware of the product rule, we can develop a quotient rule for generalized
simplex gradients.

Theorem 3.8 (Quotient Rule). Let X = 〈x0, x1, . . . , xk〉 be an ordered set
of k+1 points in Rd for which g(x0), g(x1), . . . , g(xk) are all nonzero. Then

∇s

(
f

g

)
(X ) =

g(x0)∇sf(X )− f(x0)∇sg(X )

[g(x0)]2
− E f

g
,

where

E f
g

=

(
ST
)†

g(x0)
δ f

g
|g.

Proof. By the product rule, we have

∇sf(X ) = ∇s

(
f

g
· g
)

(X )

=

(
f

g

)
(x0)∇sg(X ) + g(x0)∇s

(
f

g

)
(X ) +

(
ST
)†
δ f

g
|g.

Solving for ∇s

(
f
g

)
(X ) gives

∇s

(
f

g

)
(X ) =

g(x0)∇sf(X )− f(x0)∇sg(X )

[g(x0)]2
−
(
ST
)†

g(x0)
δ f

g
|g.

Note that Theorem 3.8 requires g(x0) 6= 0, g(x1) 6= 0, . . . , g(xk) 6= 0.
This is needed to ensure δ f

g
|g does not include any division by zero. The

quotient rule introduced by Regis in 2015 also requires this assumption [33,
Proposition 11].

The following corollary is used to prove the power rule for a negative
integer exponent.
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Corollary 3.9. Let X = 〈x0, x1, . . . , xk〉 be an ordered set of k + 1 points
in Rd for which f(x0), f(x1), . . . , f(xk) are all nonzero. Then

∇s

(
1

f

)
(X ) = −∇sf(X )

[f(x0)]2
−
(
ST
)†

f(x0)
δ 1

f
|f .

Finally, we conclude this chapter by presenting the power rule for a
negative integer exponent.
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Proposition 3.10 (Power Rule for a Negative Integer Exponent).
Let X = 〈x0, x1, . . . , xk〉 be an ordered set of k+1 points in Rd for which

f(x0), f(x1), . . . , f(xk) are all nonzero and n ∈ N+. Then

∇sf
−n(X ) = n[f(x0)]

−n+1∇s

(
1

f

)
(X ) +

(
ST
)†(n−1∑

i=1

[f(x0)]
−n+1+iδf−1|f−i

)
.

It follows that

∇sf
−n(X ) = −n[f(x0)]

−n−1∇sf(X )− Ef−n ,

where

Ef−n =

(
ST
)†

[f(x0)]n

(
nδ 1

f
|f −

n−1∑
i=1

[f(x0)]
1+iδf−1|f−i

)
.

Proof. By the power rule for a positive integer exponent,

∇s

(
1

f

)n

(X ) = n

((
1

f

)
(x0)

)n−1
∇s

(
1

f

)
(X )

+
(
ST
)†(n−1∑

i=1

((
1

f

)
(x0)

)n−1−i
δf−1|f−i

)

= n[f(x0)]
−n+1∇s

(
1

f

)
(X ) +

(
ST
)†(n−1∑

i=1

[f(x0)]
−n+1+iδf−1|f−i

)

which proves our first claim.

By Corollary 3.9,

∇sf
−n(X ) = n[f(x0)]

−n+1

(
−∇sf(X )

[f(x0)]2
−
(
ST
)†

f(x0)
δ 1

f
|f

)

+
(
ST
)†(n−1∑

i=1

[f(x0)]
−n+1+iδf−1|f−i

)

= −n[f(x0)]
−n−1∇sf(X )−

n
(
ST
)†
δ 1

f
|f

[f(x0)]n
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Chapter 3. Product, Quotient and Power Rules

+
(
ST
)†(n−1∑

i=1

[f(x0)]
−n+1+iδf−1|f−i

)

= −n[f(x0)]
−n−1∇sf(X )−

(
ST
)†

[f(x0)]n

(
nδ 1

f
|f −

n−1∑
i=1

[f(x0)]
1+iδf−1|f−i

)
.

We now turn out attention to a more advanced calculus rule, the chain
rule.
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Chapter 4

Chain Rule

Throughout this chapter, let f : Rp → R and g : Rd → Rp, where

g(y) =


g1(y)
g2(y)

...
gp(y)

 ∈ Rp.

Let X = 〈x0, x1, . . . , xk〉 be an ordered set of k + 1 points in Rd and define

g(X ) = 〈g(x0), g(x1), . . . , g(xk)〉

to be an ordered set of k + 1 points in Rp.
Before inaugurating the chain rule, let us present some matrices involved

in the formula. Note that

S(g(X )) =
[
g(x1)− g(x0) . . . g(xk)− g(x0)

]
∈ Rp×k

and

δf (g(X )) =

f (g(x1))− f (g(x0))
...

f (g(xk))− f (g(x0))


=

(f ◦ g)(x1)− (f ◦ g)(x0)
...

(f ◦ g)(xk)− (f ◦ g)(x0)


= δf◦g(X ) ∈ Rk.

In the next definition, we define the generalized simplex Jacobian of g
over X in order to make the notation tighter.
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Chapter 4. Chain Rule

Definition 4.1 (Generalized Simplex Jacobian Matrix). Let g : Rd → Rp :

y 7→
[
g1(y) g2(y) . . . gp(y)

]T
. Then the generalized simplex Jacobian Js

of g over X is a p× d real matrix defined as

Jsg(X ) =


∇sg1(X )T

∇sg2(X )T

...
∇sgp(X )T

 .
Theorem 4.2 (Chain Rule). Let f : Rp → R and g : Rd → Rp. Then

∇s(f ◦ g)(X ) = (Jsg(X ))T ∇sf(g(X ))− Ef◦g,

where

Ef◦g =
(
S(X )T

)† (
S (g(X ))T

(
S(g(X ))T

)† − Ik

)
δf (g(X )).

Proof. We have

∇s(f ◦ g)(X ) =
(
S(X )T

)†
δf◦g(X )

=
(
S(X )T

)† (
S(g(X ))T

(
S(g(X ))T

)† − Ê) δf◦g(X ),

where

Ê = S(g(X ))T
(
S(g(X ))T

)† − Ik.

In order to make the notation tighter, let Y = g(X ).

Now, using δf◦g(X ) = δf (g(X )) = δf (Y), we find

∇s(f ◦ g)(X ) =
((
S(X )T

)†
S(Y)T

(
S(Y)T

)† − (S(X )T
)†
Ê
)
δf (Y)

=
(
S(X )T

)†
S(Y)T

(
S(Y)T

)†
δf (Y)−

(
S(X )T

)†
Ê δf (Y).
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Chapter 4. Chain Rule

Notice that S(Y)T =

(g(x1)− g(x0))
T

...
(g(xk)− g(x0))

T

 = δg(X ).

Hence,

∇s(f ◦ g)(X ) =
[
∇sg1(X ) ∇sg2(X ) . . . ∇sgp(X )

]
∇sf(Y)−

(
S(X )T

)†
Ê δf (Y)

=


(∇sg1(X ))T

(∇sg2(X ))T

. . .
(∇sgp(X ))T


T

∇sf(Y)−
(
S(X )T

)† (
S(Y)T

(
S(Y)T

)† − Ik

)
δf (Y)

= (Jsg(X ))T ∇sf(g(X ))− Ef◦g.

The next corollary demonstrates that the term Ef◦g vanishes whenever
k ≤ p and S(g(X )) has full rank.

Corollary 4.3. Let f : Rp → R and g : Rd → Rp. Let X = 〈x0, x1, . . . , xk〉
be an ordered set of k+1 points in Rd and g(X ) = 〈g(x0), g(x1), . . . , g(xk)〉
be an ordered set of k + 1 points in Rp. Suppose S(g(X )) has full column
rank (i.e. k ≤ p and S (g(X )) has full rank). Then

∇s(f ◦ g)(X ) = (Jsg(X ))T ∇sf(g(X )).

Proof. Since S(g(X )) has full column rank, S(g(X ))T has full row rank.

This implies that S(g(X ))T has right inverse
(
S(g(X ))T

)† ∈ Rp×k. Thus

E =
(
S(X )T

)† (
S(g(X ))T

(
S(g(X ))T

)† − Ik

)
δf (g(X ))

=
(
S(X )T

)†
(Ik − Ik) δf (g(X ))

= 0.

Therefore, ∇s(f ◦ g)(X ) = (Jsg(X ))T ∇sf(g(X )).

We now have presented all the calculus rules. We see that all of them
have the same structure as the calculus rules for the true gradient plus a
term E that can be viewed as an error term. Indeed, the term E can be
viewed as an error term in the sense that, when all the functions involved
are linear, removing the term E from the formulas presented in Chapter
3 and Section 4 can provide an exact approximation of the true gradient.
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Chapter 4. Chain Rule

However, in general, removing the term E from the calculus rules does not
imply we get the value of the true gradient.

In Chapter 5, we explore the effects of removing the term E in the
formulas. Removing E from the formulas leads to a new approach to gra-
dient approximation in situations where the calculus rules could be applied.
Moreover, removing the term E in the quotient rule and the power rule for
a negative exponent allows us to remove some assumptions on the function
values of the sample set X . Therefore, this new approach can also be applied
in situations where the calculus rules were not applicable.
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Chapter 5

Generalized Simplex
Calculus Gradient

First of all, let us summarize the work achieved so far and present all
the calculus rules from Chapter 3 and Chapter 4 in Table 1.

Let us introduce new notation. We employ ∇sp(·)(X ),∇sq(·)(X ) and
∇sc(·)(X ) to denote the product rule, quotient rule and chain rule respec-
tively that do not include the term E. We also use ∇sp(·)(X ) for the power
rule since it is a particular case of the product rule. We refer to these new
approaches to approximate gradients as the generalized simplex calculus gra-
dients . We formally define these in equations (5.1), (5.3),(5.4), and (5.2)
and present an overview of these rules in Table 2.

The purpose of this section is to compare both approaches: the general-
ized simplex calculus gradient and the generalized simplex gradient.

Throughout this chapter, let Ŝ(X ) = S(X )/∆.
In this chapter, we provide error bounds for generalized simplex calculus

gradients and examples where ∇sp(·)(X ),∇sq(·)(X ),∇sc(·)(X ) are more ac-
curate than the generalized simplex gradient ∇s(·)(X ) and vice versa. We
begin by showing that when S(X ) has full row rank, the generalized simplex

Table 1: The Calculus Rules for Generalized Simplex Gradients
Rule Formula E
Product
fg

f(x0)∇sg(X ) + g(x0)∇sf(X ) + Efg

(
ST
)†
δf |g

Product
f1 · · · fn

∑n
i=1

(∏
j 6=i fj(x0)

)
∇sfi(X )+Ef1···fn

(
ST
)† (

δf1···fn −
∑n

i=1

(∏
j 6=i fj(x0)

)
δfi

)
Positive
power

n[f(x0)]
n−1∇sf(X ) + Efn

(
ST
)† (∑n−1

i=1 [f(x0)]
n−1−iδf |f i

)
Negative
power

−n[f(x0)]
−n−1∇sf(X )− Ef−n

(ST )
†

[f(x0)]n

(
nδ 1

f
|f −

∑n−1
i=1 [f(x0)]

1+iδf−1|f−i

)
Quotient g(x0)∇sf(X )−f(x0)∇sg(X )

[g(x0)]2
− E f

g

(ST )
†

g(x0)
δ f

g
|g

Chain (Jsg(X ))T ∇sf(g(X ))− Ef◦g
(
S(X )T

)† (
S (g(X ))T

(
S(g(X ))T

)† − Ik

)
δf (g(X ))
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Chapter 5. Generalized Simplex Calculus Gradient

Table 2: Generalized Simplex Calculus Gradients
Rule Formula Relation to ∇s(·)(X )

Product
fg

∇sp(fg)(X ) = f(x0)∇sg(X ) + g(x0)∇sf(X ) ∇s(·)(X ) = ∇sp(·)(X ) + E(·)

Product
f1 · · · fn

∇sp(f1 · · · fn)(X ) =

n∑
i=1

∏
j 6=i

fj(x0)

∇sfi(X ) ∇s(·)(X ) = ∇sp(·)(X ) + E(·)

Positive
power

∇sp(f
n)(X ) = n[f(x0)]

n−1∇sf(X ) ∇s(·)(X ) = ∇sp(·)(X ) + E(·)

Negative
power

∇sp(f
−n)(X ) = −n[f(x0)]

−n−1∇sf(X ) ∇s(·)(X ) = ∇sp(·)(X )− E(·)

Quotient ∇sq(f/g)(X ) =
g(x0)∇sf(X )− f(x0)∇sg(X )

[g(x0)]2
∇s(·)(X ) = ∇sq(·)(X )− E(·)

Chain ∇sc(f ◦ g)(X ) = (Jsg(X ))T ∇sf(g(X )) ∇s(·)(X ) = ∇sc(·)(X )− E(·)

gradient of a linear function is equal to the true gradient.

Lemma 5.1. Let f : Rd → R : y 7→ aT y + c where a ∈ Rd and c ∈ R.
Suppose S(X ) has full row rank. Then ∇sf(X ) = ∇f(x0).

Proof. We have

∇sf(X ) =
(
ST
)† f(x1)− f(x0)

...
f(xk)− f(x0)


=
(
ST
)† (aTx1 + c)− (aTx0 + c)

...
(aTxk + c)− (aTx0 + c)



=

(x1 − x0)T
...

(xk − x0)T


† (x1 − x0)T

...
(xk − x0)T

 a.
Since S has full row rank,

(
ST
)†

is a left inverse. Therefore,∇sf(X ) = a.

We point out that it is not possible for the matrix S to have full row
rank in the underdetermined case (rank(S) < d). This makes sense since
underdetermined simplex gradients do not capture enough information to
guaranteed a perfect approximation of ∇f(x0). Example 2.15 can be used
to illustrate this fact.
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5.1. Product Rule

5.1 Product Rule

Let us define the generalized simplex product gradient of fg over X

∇sp(fg)(X ) = f(x0)∇sg(X ) + g(x0)∇sf(X ). (5.1)

The next corollary shows that ∇sp(fg)(X ) is perfectly accurate when f and
g are linear functions.

Corollary 5.2. Let f and g be linear functions from Rd to R. Suppose
S(X ) has full row rank. Then

∇sp(fg)(X ) = ∇(fg)(x0).

Proof. This follows from Lemma 5.1.

Hence, ∇sp(fg)(X ) is always as good or better than∇s(fg)(X ) whenever
f and g are linear functions and S(X ) has full row rank. The following
example illustrates this fact.

Example 5.3. Let f : R2 → R : y 7→ y1 − y2 and g : R2 → R : y 7→ y1 + y2.
Consider the ordered set X =

〈
[1 1]T , [2 1]T , [1 2]T

〉
. We get

∇sp(fg)(X ) = 0 · ∇sg(X ) + 2 · ∇sf(X )

=

[
2
−2

]
= ∇(fg)(x0),

and

∇s(fg)(X ) =

[
2
−2

]
+ Efg

=

[
2
−2

]
+

[
1 0
0 1

] [
(1− 0)(3− 2)

(−1− 0)(3− 2)

]
=

[
3
−3

]
.

We can extend ∇sp(fg)(X ) to the case of n functions. We get

∇sp(f1f2 · · · fn)(X ) = (f1f2 · · · fn−1)(x0)∇sfn(X )

+ (f1f2 · · · fn−2fn)(x0)∇sfn−1(X ) + . . .

+ (f1f3f4 · · · fn)(x0)∇sf2(X )

+ (f2f3 · · · fn)(x0)∇sf1(X ).
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5.1. Product Rule

Recall that by the Fundamental Theorem of Algebra, every single variable
degree n polynomial with complex coefficients has, counted with multiplicity,
exactly n complex roots [36, Theorem 2.4]. Hence, ∇sp(f1f2...fn)(X ) is
an exact approximation whenever f = f1f2 · · · fn (where fi : R → C, i ∈
{1, 2, . . . , n} are linear functions) is a real polynomial of degree n and X has
full row rank. In the next example, let i denote the imaginary number such
that i2 = −1.

Example 5.4 (Factorizing a Single Variable Polynomial). Let f : R→ R :
y 7→ y4 − 1 and X = 〈1, 2〉. Then

f = f1f2f3f4

= (y − 1)(y + 1)(y − i)(y + i).

We get

∇sp(f1f2f3f4)(X ) = 0 · ∇sf4(X ) + 0 · ∇sf3(X ) + 0 · ∇sf2(X )

+ 2(1− i)(1 + i)∇sf1(X )

= 4

= ∇f(x0).

Note that

∇sf(X ) = 4 + Ef

= 15.

Once again, the previous example shows the enormous improvement in
accuracy that can be made using the generalized simplex product gradient
when the functions involved are linear.

Now, let us present an error bound for the generalized simplex product
gradient ∇sp(fg)(X ).

Theorem 5.5 (Error Bound for ∇sp(fg)(X )). Let X be an ordered set of
k + 1 points in Rd. Assume that S(X ) has full row rank, f, g ∈ C1+ with
Lipschitz constant L∇f ≥ 0 and L∇g ≥ 0 in an open domain O containing
conv(X ). Define

εsp(fg)(X ) =

√
k

2
(|f(x0)|L∇g + |g(x0)|L∇f )

∥∥∥∥(Ŝ (X )T
)†∥∥∥∥∆.

Then

‖∇sp(fg)(X )−∇(fg)(x0)‖ ≤ εsp(fg)(X ).
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5.1. Product Rule

Proof. We have ‖∇sp(fg)(X )−∇(fg)(x0)‖

= ‖f(x0)∇sg(X ) + g(x0)∇sf(X )− (f(x0)∇g(x0) + g(x0)∇f(x0))‖
≤ |f(x0)| ‖∇sg(X )−∇g(x0)‖+ |g(x0)| ‖∇sf(X )−∇f(x0)‖

≤
√
k

2
(|f(x0)|L∇g + |g(x0)|L∇f )

∥∥∥∥(Ŝ (X )T
)†∥∥∥∥∆

by Proposition 2.14.

Analyzing this error bound, we get the following Corollary 5.6 that pro-
vides sufficient conditions to obtain an exact approximation of ∇(fg)(x0).

Corollary 5.6. Let the assumptions of Theorem 5.5 hold. If any of the
following cases hold, then

∇sp(fg)(X ) = ∇(fg)(x0).

i. The function values f(x0) = 0 and g(x0) = 0.

ii. The functions f and g are linear.

iii. The function f is linear and f(x0) = 0.

iv. The function g is linear and g(x0) = 0.

We would like to answer the following question: when is the generalized
simplex product gradient ∇sp(fg)(X ) more accurate than the generalized
simplex gradient ∇s(fg)(X )?

Comparing their respective error bound gives us a good indicator to
answer this question. Recall that the product of Lipschitz continuous func-
tions on a bounded domain Ω is Lipschitz continuous on that domain Ω [16,
Section 12.7].

Corollary 5.7. Let the assumptions of Theorem 5.5 hold and so ∇ (fg) is
Lipschitz continuous on O with Lipschitz constant L∇(fg) ≥ 0 . If

|f(x0)|L∇g + |g(x0)|L∇f < L∇(fg)

then the error bound εsp(fg)(X ) is smaller than the error bound εs(fg)(X ).

In practice, we do not know the value of the Lipschitz constants L∇f , L∇g
and L∇(fg). For this reason, it is improbable that we know which gradient
approximation has a smaller error bound. A technique to approximate the
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5.1. Product Rule

Lipschitz constants is presented in Chapter 7. Based on the approximation
of the Lipschitz constants, a decision can be made.

Example 5.8 provides an example where the true absolute error for the
generalized simplex product gradient ∇sp(fg)(X ) is smaller than ∇s(fg)(X )
and Example 5.9 provides an example where the true absolute error for the
generalized simplex product gradient∇sp(fg)(X ) is greater than∇s(fg)(X ).

Example 5.8. Let f : R→ R : y 7→ ey and g : R→ R : y 7→ 2ey. Consider
the ordered set X = 〈0, 1〉. First, let us find the error bounds for∇sp(fg)(X )
and ∇s(fg)(X ). Note that L∇f = e, L∇g = 2e and L∇(fg) = 8e2 on [0,1]. It
follows that

|f(x0)|L∇g + |g(x0)|L∇f = 4e ≈ 10.87.

The error bounds are εsp(fg)(X ) = 2e ≈ 5.44 and εs(fg)(X ) = 4e2 ≈ 29.56.
The true absolute errors are

‖∇sp(fg)(X )−∇(fg)(x0)‖ ≈ 2.87 ≤ εsp(fg)(X )

and

‖∇s(fg)(X )−∇(fg)(x0)‖ ≈ 8.78 ≤ εs(fg)(X ).

Example 5.9. Let f : R → R : y 7→ e−y
2

and g : R → R : y 7→ e−y
3
.

Consider the ordered set X = 〈0, 1〉. We have L∇f = 2, L∇g = 3/e and
L∇(fg) ≈ 2.81 on [0,1]. It follows that

|f(x0)|L∇g + |g(x0)|L∇f =
3

e
+ 2 ≈ 3.10.

The error bounds are εsp(fg)(X ) = 3
2e + 1 ≈ 1.55 and εs(fg)(X ) ≈ 1.40.

The true absolute errors are

‖∇sp(fg)(X )−∇(fg)(x0)‖ ≈ 1.26 ≤ εsp(fg)(X )

and

‖∇s(fg)(X )−∇(fg)(x0)‖ ≈ 0.86 ≤ εs(fg)(X ).

Note that all the results obtained for ∇sp(fg)(X ) (Corollary 5.2, Theo-
rem 5.5, Corollary 5.6 and Corollary 5.7) can be extended to the case of the
product of n functions. Let us present an error bound for the generalized
simplex product gradient ∇sp(f1f2 · · · fn)(X ).
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Proposition 5.10 (Error Bound for ∇sp(f1f2 · · · fn)(X )). Let X be an or-
dered set of k + 1 points in Rd. Assume that S(X ) has full row rank and
fi ∈ C1+ are Lipschitz continuous with Lipschitz constant L∇fi ≥ 0, i ∈
{1, 2, . . . , n}, in an open domain O containing conv(X ).

Define

εsp(f1f2 · · · fn)(X ) =

√
k

2

 n∑
i=1

∏
j 6=i

|fj(x0)|

L∇fi

∥∥∥∥(Ŝ (X )T
)†∥∥∥∥∆.

Then

‖∇sp(f1f2 · · · fn)(X )−∇(f1f2 · · · fn)(x0)‖ ≤ εsp(f1f2 · · · fn)(X ).

Proof. We have

‖∇sp(f1f2 · · · fn)(X )−∇(f1f2 · · · fn)(x0)‖
=
∥∥(f1f2 · · · fn−1)(x0)∇sfn(X )− (f1f2 · · · fn−1)(x0)∇fn(X )

+ · · ·+ (f2f3 · · · fn)(x0)∇sf1(x0)− (f2f3 · · · fn)(x0)∇f1(x0)
∥∥

≤ |(f1f2 · · · fn−1)(x0)| ‖∇sfn(X )−∇fn(x0)‖
+ · · ·+ |(f2f3 · · · fn)(x0)| ‖∇sf1(X )−∇f1(x0)‖

≤ |(f1f2 · · · fn−1)(x0)|
√
k

2
L∇fn

∥∥∥∥ (Ŝ (X )T
)†∥∥∥∥∆

+ · · ·+ |(f2f3 · · · fn)(x0)|
√
k

2
L∇f1

∥∥∥∥ (Ŝ (X )T
)†∥∥∥∥∆

=

√
k

2

 n∑
i=1

∏
j 6=i

|fj(x0)|

L∇fi

∥∥∥∥(Ŝ (X )T
)†∥∥∥∥∆.

Once again, analyzing the previous error bound, we get Corollary 5.11
that provides sufficient conditions for ∇sp(f1f2 · · · fn)(X ) to be an exact
approximation of the true gradient ∇(f1f2 · · · fn)(x0).

Corollary 5.11. Let the assumptions of Proposition 5.10 hold. If any of
the following cases hold, then

∇sp(f1f2 · · · fn)(X ) = ∇(f1f2 · · · fn)(x0).

i. The function values fi(x0) = 0 and fj(x0) = 0 for i, j ∈ {1, 2, . . . , n}.
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ii. The function fi is linear for all i ∈ {1, 2, . . . , n}.

iii. The function fi is linear and fi(x0) = 0 for i ∈ {1, 2, . . . , n}.

Corollary 5.6 and Corollary 5.11 are highly restrictive. Nevertheless, it
provides two cases where the generalized simplex product gradient is a better
or as good approximation than the generalized simplex gradient ∇s(·)(X ).

Next we investigate the particular case where all fi, for i ∈ {1, 2, . . . , n},
are equal.

5.2 Power Rule

Let us define the generalized simplex product gradient of fn over X

∇spf
n(X ) = n[f(x0)]

n−1∇sf(X ), (5.2)

where n is a nonzero integer and f(x0) is nonzero whenever n is negative.
Note that ∇spf

n(X ) only requires f(x0) to be nonzero when n is a
negative integer which is not sufficient in Proposition 3.10. Hence, Equation
(5.2) is less restrictive than the power rule for a negative integer. First, we
introduce an error bound for ∇spf

n(X ).

Proposition 5.12 (Error Bound for ∇spf
n(X )). Let f : Rd → R and let

n be a nonzero integer. Let X be an ordered set of k + 1 points in Rd for
which f(x0) is nonzero whenever n is a negative integer. Assume that S(X )
has full row rank and f ∈ C1+ with Lipschitz constant L∇f ≥ 0 in an open
domain O containing conv(X ). Define

εspf
n(X ) =

√
k

2

(
|n||f(x0)|n−1L∇f

) ∥∥∥∥(Ŝ (X )T
)†∥∥∥∥∆.

Then

‖∇spf
n(X )−∇fn(x0)‖ ≤ εspfn(X ).

Proof. We have

‖∇spf
n(X )−∇fn(x0)‖ =

∥∥nf(x0)
n−1∇sf(X )− nf(x0)

n−1∇f(x0)
∥∥

≤ |n||f(x0)|n−1 ‖∇sf(X )−∇f(x0)‖

≤
√
k

2

(
|n||f(x0)|n−1L∇f

) ∥∥∥∥(Ŝ (X )T
)†∥∥∥∥∆

by Proposition 2.14.
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5.2. Power Rule

Corollary 5.13. Let the assumptions of Proposition 5.12 hold. If any of
the following cases hold, then

∇spf
n(X ) = ∇fn(x0).

i. The function f is linear.

ii. The function value f(x0) = 0 and n ∈ N+.

Next, we provide an example where the error bound εspf
n(X ) is smaller

than εsf
n(X ) independent of the ordered set X and an example where

∇spf
n(X ) is less accurate than ∇sf

n(X ).

Example 5.14. Let f : R → R : y 7→ y2 + 1, n = 2 and so f2 : R → R :
y 7→ y4 + 2y2 + 1. Let X = 〈x0, x1〉. Without loss of generality, assume that
x0 < x1 (since we are in the determined case, the elements x0 and x1 can
be rearranged if necessary). Note that the Lipschitz constants are L∇f = 2
and L∇f2 = maxy∈[x0,x1] |4(3y2 + 1)| on [x0, x1]. It follows that

n[f(x0)]
n−1L∇f = 4(x20 + 1).

Since

4(x20 + 1) ≤ L∇f2

= max 4(3y2 + 1) for any y ∈ [x0, x1],

the error bound εspf
2(X ) is smaller than the error bound εsf

2(X ). Notice,
if X = 〈1, 2〉, the error bounds are εspf

2(X ) = 4 and εsf
2(X ) = 26. The

true absolute errors are∥∥∇spf
2(X )−∇f2(x0)

∥∥ = 4 ≤ εspf2(X )

and ∥∥∇sf
2(X )−∇f2(x0)

∥∥ = 13 ≤ εsf2(X ).

Example 5.15. Let f : R→ R : y 7→ −y2 + 10, n = 2 and so f2 : R→ R :
y 7→ y4 − 20y2 + 100. Let X = 〈1, 2〉. Note that the Lipschitz constants are
L∇f = 2 and L∇f2 = 28 on [1, 2]. It follows that

n[f(x0)]
n−1L∇f = 36.
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5.2. Power Rule

The error bounds are εspf
2(X ) = 18 and εsf

2(X ) = 14. The true absolute
errors are ∥∥∇spf

2(X )−∇f2(x0)
∥∥ = 18 ≤ εspf2(X )

and ∥∥∇sf
2(X )−∇f2(x0)

∥∥ = 9 ≤ εsf2(X ).

Lastly, let us provide two examples for a negative integer n. Example
5.16 illustrates the benefit of using ∇spf

n(X ) and Example 5.17 provides an
example where ∇spf

n(X ) is not better than ∇sf
n(X ).

Example 5.16. Let f : R→ R : y 7→ y, n = −2 and so f−2 : R→ R : y 7→
y−2. Let X= 〈10−6, 1 + 10−6〉. The Lipschitz constants are L∇f = 0 and
L∇f−2 = 6× 1024 on [10−6, 1 + 10−6]. We have

|n|[f(x0)]
n−1L∇f = 0.

It follows that the error bound for ∇spf
−2(X ) is enormously smaller than

the error bound for ∇sf
−2(X ) as εspf

−2(X ) = 0 and εsf
−2(X ) = 3× 1024.

The true absolute errors are∥∥∇spf
−2(X )−∇f−2(x0)

∥∥ = 0 ≤ εspf−2(X )

and ∥∥∇sf
−2(X )−∇f−2(x0)

∥∥ = 2× 1018 ≤ εsf−2(X ).

Example 5.17. Let f : R→ R : y 7→ ey, n = −2 and so f−2 : R→ R : y 7→
e−2y. Let X = 〈0, 1〉. The Lipschitz constants are L∇f = e and L∇f−2 = 4
on [0,1]. We have

|n|[f(x0)]
n−1L∇f = 2e.

It follows that the error bound for ∇spf
−2(X ) is bigger than the error bound

for ∇sf
−2(X ) as εspf

−2(X ) = e and εsf
−2(X ) = 2. The true absolute errors

are ∥∥∇spf
−2(X )−∇f−2(x0)

∥∥ = 1.4365 ≤ εspf−2(X )

and ∥∥∇sf
−2(X )−∇f−2(x0)

∥∥ = 1.1353 ≤ εsf−2(X ).

We continue our investigation by looking at the generalized simplex quo-

tient gradient of
(
f
g

)
over X , denoted ∇sq

(
f
g

)
(X ).
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5.3. Quotient Rule

5.3 Quotient Rule

Let f : Rd → R and g : Rd → R. Let X be an ordered set of k+ 1 points
in Rd for which g(x0) is nonzero. Define the generalized simplex quotient

gradient of
(
f
g

)
over X

∇sq

(
f

g

)
(X ) =

g(x0)∇sf(X )− f(x0)∇sg(X )

[g(x0)]2
. (5.3)

Notice that ∇sq

(
f
g

)
(X ) does not require g(x1), g(x2), . . . , g(xk) to be all

nonzero which is the case for ∇s

(
f
g

)
(X ) in Theorem 3.8. Hence, the gen-

eralized simplex quotient gradient is less restrictive than the quotient rule.
This provides a good motive to use the generalized simplex quotient gradient
over the generalized simplex gradient in certain situations.

Theorem 5.18 (Error Bound for ∇sq

(
f
g

)
(X )). Let f : Rd → R and g :

Rd → R. Let X be an ordered set of k + 1 points in Rd for which g(x0) is
nonzero. Assume that S(X ) has full row rank, f ∈ C1+ and g ∈ C1+ with
Lipschitz constant L∇f ≥ 0 and L∇g ≥ 0 in an open domain O containing
conv(X ). Define

εsq

(
f

g

)
(X ) =

√
k

2

(∣∣∣∣ 1

g(x0)

∣∣∣∣L∇f +

∣∣∣∣ f(x0)

[g(x0)]2

∣∣∣∣L∇g)∥∥∥∥(Ŝ (X )T
)†∥∥∥∥∆.

Then ∥∥∥∥∇sq

(
f

g

)
(X )−∇

(
f

g

)
(x0)

∥∥∥∥ ≤ εsq (fg
)

(X ).

Proof. We have∥∥∥∥∇sq

(
f

g

)
(X )−∇

(
f

g

)
(x0)

∥∥∥∥
=

∥∥∥∥g(x0)∇sf(x0)− f(x0)∇sg(X )− (g(x0)∇f(x0)− f(x0)∇g(x0))

[g(x0)]2

∥∥∥∥
≤
∣∣∣∣ 1

g(x0)

∣∣∣∣ ‖∇sf(X )−∇f(x0)‖+

∣∣∣∣ f(x0)

[g(x0)]2

∣∣∣∣ ‖∇sg(X )−∇g(x0)‖

≤
√
k

2

(∣∣∣∣ 1

g(x0)

∣∣∣∣L∇f +

∣∣∣∣ f(x0)

[g(x0)]2

∣∣∣∣L∇g)∥∥∥∥(Ŝ (X )T
)†∥∥∥∥∆

by Proposition 2.14.
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5.3. Quotient Rule

Corollary 5.19. Let the assumptions of Theorem 5.18 hold. If f and g are
linear functions, then

∇sq

(
f

g

)
(X ) = ∇

(
f

g

)
(x0).

Now, let us compare the error bound εsq

(
f
g

)
(X ) and εs

(
f
g

)
(X ). As-

sume that f
g is Lipschitz continuous with Lipschitz constant L∇ f

g
on O. We

see that εsq

(
f
g

)
(X ) is smaller than εs

(
f
g

)
(X ) whenever∣∣∣∣ 1

g(x0)

∣∣∣∣L∇f +

∣∣∣∣ f(x0)

[g(x0)]2

∣∣∣∣L∇g < L∇ f
g
.

Next we provide one example where ∇sq

(
f
g

)
(X ) is more accurate than

∇s

(
f
g

)
(X ) and one example where ∇sq

(
f
g

)
(X ) is worse than ∇s

(
f
g

)
(X ).

Example 5.20. Let f : R→ R : y 7→ 1 and g : R→ R : y 7→ y.
First, let us consider the ordered set X1 = 〈10−6, 0〉. The Lipschitz

constants are L∇f = 0 and L∇g = 0. Note that the Lipschitz constant L∇ f
g

is not defined on [0, 10−6]. Also, ∇s

(
f
g

)
(X1) is not defined since there is

a division by zero in the vector δ f
g
. On the other hand, the error bound

εsq

(
f
g

)
(X1) = 0, and so the true absolute error is∥∥∥∥∇sq

(
f

g

)
(X1)−∇

(
f

g

)
(x0)

∥∥∥∥ = 0 ≤ εsq
(
f

g

)
(X1).

Second, consider the ordered set X2 = 〈10−6, 1 + 10−6〉. Note that the
Lipschitz constant L∇ f

g
is now define on [10−6, 1+10−6] : L∇ f

g
= 2×1018. It

follows that the error bounds are εsq

(
f
g

)
(X2) = 0 and εs

(
f
g

)
(X2) = 1018.

The true absolute errors are∥∥∥∥∇sq

(
f

g

)
(X2)−∇

(
f

g

)
(x0)

∥∥∥∥ = 0 ≤ εsq
(
f

g

)
(X2)

and ∥∥∥∥∇s

(
f

g

)
(X2)−∇

(
f

g

)
(x0)

∥∥∥∥ = 1012 ≤ εs
(
f

g

)
(X2).
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5.4. Chain Rule

Example 5.21. Let f : R→ R : y 7→ y3, g : R→ R : y 7→ y2 and X = 〈1, 2〉.
The Lipschitz constants are L∇f = 12, L∇g = 2 and L∇ f

g
= 0 on [1,2]. It

follows that the error bounds are εsq

(
f
g

)
(X ) = 7 and εs

(
f
g

)
(X ) = 0. The

true absolute errors are∥∥∥∥∇sq

(
f

g

)
(X )−∇

(
f

g

)
(x0)

∥∥∥∥ = 3 ≤ εsq
(
f

g

)
(X )

and ∥∥∥∥∇s

(
f

g

)
(X )−∇

(
f

g

)
(x0)

∥∥∥∥ = 0 ≤ εs
(
f

g

)
(X ).

5.4 Chain Rule

We now turn attention to the chain rule. Let us begin by focusing on
compositions of linear functions. The next proposition shows that the term
Ef◦g vanishes in ∇s(f ◦ g)(X ).

Proposition 5.22 (Chain Rule for Linear Functions). Let f : Rp → R :
y 7→ aT y+c1 and g : Rd → Rp : y 7→ By+c2 where a ∈ Rp, B ∈ Rp×d, c1 ∈ R
and c2 ∈ Rp. Suppose S(g(X )) has full rank. Then

∇s(f ◦ g)(X ) = (Jsg(X ))T ∇sf(g(X )).

Proof. If k ≤ p, then the result follows from Corollary 4.3. Now, suppose
k > p. We have

Ef◦g =
(
S(X )T

)† (
S (g(X ))T

(
S(g(X ))T

)† − Ik) δf (g(X ))

=
(
S(X )T

)†
S(g(X ))T∇sf(g(X ))−

(
S(X )T

)†
δf (g(X ))

=
(
S(X )T

)†
S(g(X ))T∇f(g(x0))−

(
S(X )T

)†
δf (g(X )),

as ∇sf(g(X )) = ∇f(g(x0)) whenever f is a linear function and S(g(X )) has
full row rank (Proposition 5.1).

Finally,

Ef◦g =
(
S(X )T

)†
S(g(X ))Ta−

(
S(X )T

)†
δf (g(X )) (since ∇f(g(x0)) = a)

=
(
S(X )T

)†
S(g(X ))Ta−

(
S(X )T

)†
S(g(X ))Ta

= 0

as δf (g(X )) = S(g(X ))Ta for linear functions.
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5.4. Chain Rule

In the previous proposition, note that even though the term Ef◦g is
equal to 0 does not necessarily mean that ∇s(f ◦ g)(X ) = ∇(f ◦ g)(x0). The
following example illustrates this situation.

Example 5.23. Let f : R→ R : y 7→ y and g : R2 → R : y 7→ y1 + y2. Let

X =
〈[

0 0
]T
,
[
1 0

]T
,
[
2 0

]T〉
.

Then S (g(X )) has full rank and ∇(f ◦ g)(x0) 6= ∇s(f ◦ g)(X ).

Details We have g(X ) = 〈0, 1, 2〉. It follows that S (g(X )) =
[
1 2

]
has

full rank.
The gradient of (f ◦ g) at x0

∇(f ◦ g)(x0) = (Jg(x0))
T ∇f (g(x0))

=

[
1
1

]
.

But the simplex gradient of (f ◦ g) over X

∇s(f ◦ g)(X ) = (Jsg(X ))T ∇sf (g(X ))

=

[
1
0

]
.

In the previous example, note that S(X ) =

[
1 2
0 0

]
does not have full

row rank. By adding the assumption that both S(X ) and S (g(X )) have full
row rank, we get the following result.

Proposition 5.24 (∇s(f ◦ g)(X ) = ∇(f ◦ g)(x0)). Let f : Rp → R : y 7→
aT y + c1 and g : Rd → Rp : y 7→ By + c2 where a ∈ Rp, B ∈ Rp×d, c1 ∈ R
and c2 ∈ Rp. Suppose S(X ) and S(g(X )) have full row rank. Then

∇s(f ◦ g)(X ) = ∇(f ◦ g)(x0).
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5.4. Chain Rule

Proof. We have

∇s(f ◦ g)(X )

= (Jsg(X ))T ∇sf(g(X )) (by Proposition 5.22)

=


∇sg1(X )T

∇sg2(X )T

...
∇sgp(X )T


T

∇sf(g(X ))

=


∇sg1(X )T

∇sg2(X )T

...
∇sgp(X )T


T

∇f (g(x0)) (as S (g(X )) has full row rank and f linear)

=


∇g1(x0)T
∇g2(x0)T

...
∇gp(x0)T


T

∇f (g(x0)) (as S(X ) has full row rank and g is linear)

= ∇(f ◦ g)(x0).

Let us provide an example for the previous proposition.

Example 5.25. Let g : R3 → R2 : y 7→ By where B =

[
1 1 1
1 −1 −1

]
and let

f : R2 → R : y 7→ aT y where a =

[
2
−2

]
. Let X =

〈0
0
0

 ,
1

0
0

 ,
0

1
0

 ,
0

0
1

〉.

Then g(X ) =

〈[
0
0

]
,

[
1
1

]
,

[
1
−1

]
,

[
1
−1

]〉
. Note that X and g(X ) have full

row rank. We have

∇s(f ◦ g)(X ) = (Jsg(X ))T ∇sf(g(X ))

=

[
1 1 1
1 −1 −1

]T [
2
−2

]
=
[
0 4 4

]T
= ∇(f ◦ g)(x0).
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5.4. Chain Rule

Now, we define the generalized simplex chain gradient of (f ◦ g) over X

∇sc(f ◦ g)(X ) = (Jsg(X ))T ∇sf(g(X )). (5.4)

The next theorem provides an error bound for ∇sc(f ◦ g)(X ).

Theorem 5.26 (Error Bound for ∇sc(f ◦ g)). Let g : Rd → Rp, f : Rp → R
and X be an ordered set of k+ 1 points in Rd. Assume that S(X ), S(g(X ))
have full row rank. Also, assume g ∈ C1+ with Lipschitz constant L∇g ≥ 0 in
an open domain O1 containing conv(X ) and f ∈ C1+ with Lipschitz constant
L∇f ≥ 0 in an open domain O2 containing conv(g(X )). Denote Lgi ≥ 0 to
be the Lipschitz constant for gi in O1 for all i ∈ {1, 2, . . . , p}. Define

εsc(f ◦ g)(X ) =
√
k p

2

(√
k Lg∗ L∇f

∥∥∥∥(Ŝ (g(X ))T
)†∥∥∥∥+ ‖∇f(g(x0))‖L∇g∗

)∥∥∥∥(Ŝ (X )T
)†∥∥∥∥∆∗,

where

∆∗ = max
{

∆X ,∆g(X )

}
Lg∗ = max{Lgi : i = 1, . . . , p}
L∇g∗ = max{L∇gi : i = 1, . . . , p}

Ŝ(X ) = S(X )/∆X

Ŝ(g(X )) = S(g(X ))/∆g(X ).

Then

‖∇sc(f ◦ g)(X )−∇(f ◦ g)(x0)‖ ≤ εsc(f ◦ g)(X ).

Proof. We have

‖∇sc(f ◦ g)(X )−∇(f ◦ g)(x0)‖
= ‖ (Jsg(X ))T ∇sf (g(X ))− (Jg(x0))

T ∇f (g (x0)) ‖
= ‖ (Jsg(X ))T ∇sf (g(X ))− (Jsg(X ))T ∇f (g (x0)) + (Jsg(X ))T ∇f (g (x0))− (Jg(x0))

T ∇f (g (x0)) ‖

≤ ‖ (Jsg(X ))T ‖‖∇sf (g(X ))−∇f (g (x0)) ‖+ ‖∇f (g (x0)) ‖‖ (Jsg(X )− Jg(x0))
T ‖.

Note that

‖∇sf (g(X ))−∇f (g (x0)) ‖ ≤
√
k

2
L∇f

∥∥∥∥(Ŝ (g(X ))T
)†∥∥∥∥∆g(X )
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5.4. Chain Rule

by Proposition 2.14, and

‖ (Jsg(X )− Jg(x0))
T ‖ =

∥∥∥∥∥∥∥∥
(∇sg1(X )−∇g1(x0))T

...

(∇sgp(X )−∇gp(x0))T


T
∥∥∥∥∥∥∥∥

≤ ‖∇sg1(X )−∇g1(x0)‖
+ · · ·+ ‖∇sgp(X )−∇gp(x0)‖

≤
√
k

2
∆X

∥∥∥∥(Ŝ (X )T
)†∥∥∥∥ (L∇g1 + · · ·+ L∇gp

)
≤
√
k p

2
L∇g∗

∥∥∥∥(Ŝ (X )T
)†∥∥∥∥∆X .

Also,

‖ (Jsg(X ))T ‖ =

∥∥∥∥∥∥∥∥
∇sg1(X )T

...
∇sgp(X )T


T
∥∥∥∥∥∥∥∥

≤ ‖∇sg1(X )‖+ · · ·+ ‖∇sgp(X )‖

≤
∥∥∥∥(Ŝ (X )T

)†∥∥∥∥∥∥∥∥ δg1∆X

∥∥∥∥
+ · · ·+

∥∥∥∥(Ŝ (X )T
)†∥∥∥∥∥∥∥∥ δgp∆X

∥∥∥∥
≤
∥∥∥∥(Ŝ (X )T

)†∥∥∥∥√k Lg1

+ · · ·+
∥∥∥∥(Ŝ (X )T

)†∥∥∥∥√k Lgp

≤
√
k p Lg∗

∥∥∥∥(Ŝ (X )T
)†∥∥∥∥ .

All together,

‖∇sc(f ◦ g)(X )−∇(f ◦ g)(x0)‖

≤
√
k p Lg∗

∥∥∥∥(Ŝ (X )T
)†∥∥∥∥
√
k

2
L∇f

∥∥∥∥(Ŝ (g(X ))T
)†∥∥∥∥∆g(X )

+ ‖∇f(g(x0))‖
√
k p

2
L∇g∗

∥∥∥∥(Ŝ (X )T
)†∥∥∥∥∆X
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5.4. Chain Rule

≤
√
k p

2

(√
k Lg∗ L∇f

∥∥∥∥(Ŝ (g(X ))T
)†∥∥∥∥+ ‖∇f(g(x0))‖L∇g∗

)∥∥∥∥(Ŝ (X )T
)†∥∥∥∥∆∗.

The following corollary provides an alternative error bound for the gen-
eralized simplex chain gradient ∇sc(f ◦ g)(X ).

Corollary 5.27. Let the assumptions of Theorem 5.26 hold. Let Lf ≥ 0
denote the Lipschitz constant of f on O2. Then

‖∇sc(f ◦ g)(X )−∇(f ◦ g)(x0)‖

≤ kp

2

(
Lg∗ L∇f + Lf L∇g∗ + L∇f L∇g∗

∆∗
2

)∥∥∥∥(Ŝ (g(X ))T
)†∥∥∥∥∥∥∥∥(Ŝ (X )T

)†∥∥∥∥∆∗.

Proof. Let us consider the term(√
k Lg∗ L∇f

∥∥∥∥(Ŝ (g(X ))T
)†∥∥∥∥+ ‖∇f(g(x0))‖L∇g∗

)
in the error bound presented in Theorem 5.26. By adding and substracting
‖∇sf(g(X ))‖L∇g∗ ,

√
k Lg∗ L∇f

∥∥∥∥(Ŝ (g(X ))T
)†∥∥∥∥+ ‖∇f(g(x0))‖L∇g∗

=
√
k Lg∗ L∇f

∥∥∥∥(Ŝ (g(X ))T
)†∥∥∥∥+ ‖∇sf(g(X ))‖L∇g∗ − ‖∇sf(g(X ))‖L∇g∗

+ ‖∇f(g(x0))‖L∇g∗

≤
√
k Lg∗ L∇f

∥∥∥∥(Ŝ (g(X ))T
)†∥∥∥∥+ ‖∇sf(g(X ))‖L∇g∗

+ ‖∇f(g(x0))−∇sf(g(X ))‖L∇g∗

≤
√
k Lg∗ L∇f

∥∥∥∥(Ŝ (g(X ))T
)†∥∥∥∥+ ‖∇sf(g(X ))‖L∇g∗

+

√
k

2
L∇f

∥∥∥∥(Ŝ (g(X ))T
)†∥∥∥∥∆g(X )L∇g∗

≤
√
k Lg∗ L∇f

∥∥∥∥(Ŝ (g(X ))T
)†∥∥∥∥+

∥∥∥∥(Ŝ (g(X ))T
)†∥∥∥∥∥∥∥∥ δf◦g

∆g(X )

∥∥∥∥L∇g∗
+

√
k

2
L∇f

∥∥∥∥(Ŝ (g(X ))T
)†∥∥∥∥ ∆g(X )L∇g∗

≤
√
k Lg∗ L∇f

∥∥∥∥(Ŝ (g(X ))T
)†∥∥∥∥+

∥∥∥∥(Ŝ (g(X ))T
)†∥∥∥∥√k Lf L∇g∗

47



5.4. Chain Rule

+

√
k

2
L∇f

∥∥∥∥(Ŝ (g(X ))T
)†∥∥∥∥ ∆g(X )L∇g∗

=
√
k

∥∥∥∥(Ŝ (g(X ))T
)†∥∥∥∥(Lg∗ L∇f + Lf L∇g∗ + L∇f L∇g∗

∆g(X )

2

)
.

It follows that

‖∇sc(f ◦ g)(X )−∇(f ◦ g)(x0)‖

≤ kp

2

(
Lg∗ L∇f + Lf L∇g∗ + L∇f L∇g∗

∆∗
2

)∥∥∥∥(Ŝ (g(X ))T
)†∥∥∥∥∥∥∥∥(Ŝ (X )T

)†∥∥∥∥∆∗.

Analyzing the previous error bounds, we find when the generalized sim-
plex chain gradient ∇sc(f ◦ g)(X ) is an exact approximation of the true
gradient ∇(f ◦ g)(x0).

Corollary 5.28. Let the assumptions of Theorem 5.26 hold. If f and g are
linear functions then

∇sc(f ◦ g)(X ) = ∇(f ◦ g)(x0).

Note that if g is Lipschitz continuous on a set O1 and f is Lipschitz con-
tinuous on a set O2 such that g(O1) ⊆ O2 then f ◦ g is Lipschitz continuous
on O1. Thus, L(f◦g) is well-defined on O1.

Let us give an example where ∇sc(f ◦ g)(X ) is a better approximation
than ∇s(f ◦ g)(X ) and one example where ∇sc(f ◦ g)(X ) is not a better ap-
proximation. By Corollary 4.3, recall that S(g(X )) cannot have full column
rank if we want the term Ef◦g not equal to 0 in the formula for ∇s(f ◦g)(X ).
Hence, the following examples consider sample sets of points where S(g(X ))
does not have full column rank.

Example 5.29. Let f : R → R : y 7→ 1/(y + 1) and g : R → R : y 7→ y2.
First, consider the ordered set X1 = 〈0, 0.5, 1〉. Note that Lg∗ = 2, L∇g∗ = 2,
L∇f = 2 and L∇(f◦g) = 2 on [0, 1]. Using Theorem 5.26 and Proposition
2.14, the error bounds are εsc(f ◦ g)(X1) ≈ 3.48 and εs(f ◦ g)(X1) ≈ 1.27.
The true absolute errors are

‖∇sc(f ◦ g)(X1)−∇(f ◦ g)(x0)‖ ≈ 0.47 ≤ εsc(f ◦ g)(X1)

and

‖∇s(f ◦ g)(X1)−∇(f ◦ g)(x0)‖ ≈ 0.48 ≤ εs(f ◦ g)(X1).
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Now let us consider X2 = 〈0, 0.5,−0.5, 1〉. The Lipschitz constants are now
Lg∗ = 2, L∇f = 16, L∇g∗ = 2 and L∇(f◦g) = 2 on [−0.5, 1]. The error
bounds are εsc(f ◦ g)(X2) ≈ 36.96 and εs(f ◦ g)(X2) ≈ 1.42.

The true absolute errors are

‖∇sc(f ◦ g)(X2)−∇(f ◦ g)(x0)‖ ≈ 0.36 ≤ εsc(f ◦ g)(X2)

and

‖∇s(f ◦ g(X2)−∇(f ◦ g)(x0)‖ ≈ 0.33 ≤ εs(f ◦ g)(X2).
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Chapter 6

Numerical Experiments

In this chapter, we first explore the numerical stability of the formulas
introduced previously. Second, we investigate the numerical accuracy of
generalized simplex calculus gradients on Moré, Garbow and Hillstrom’s
Set [28].

Note that all the functions f considered in the next sections are differ-
entiable at x0. Indeed, the gradient of f at x0 must exist for the absolute
error and the relative error to be well-defined.

All numerical calculations are performed using MATLAB 2018a. Note
that MATLAB constructs the double-precision data type according to IEEE
Standard 754.

6.1 Numerical Stability

6.1.1 Product Rule

We begin by investigating the numerical stability of the product rule.
Let us denote the generalized simplex gradient that uses the product rule by
∇spe(·)(X ). We have presented three approaches to build an approximation
of the gradient. Indeed, we can approximate ∇(fg)(x0) with:

(i) ∇s (fg) (X ) =
(
ST
)†
δfg (Def. 2.10)

(ii) ∇spe (fg) (X ) = f(x0)∇sg(X ) + g(x0)∇sf(X ) + Efg (Theorem 3.2)

and

(iii) ∇sp (fg) (X ) = f(x0)∇sg(X ) + g(x0)∇sf(X ) (Eq. (5.1)).

Let us provide three examples. We include the table for the first example
in the current section. For the remaining examples, tables are provided in
the appendix. We present one example where each approach is the most
stable.
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6.1. Numerical Stability

Let us clarify some details about the tables. The parameter βm is defined
as

βm = 10−m, m ∈ N. (6.1)

The role of βm is to shrink S(X ): S(X )m = βmS(X ).
The absolute error for a gradient approximation technique, for instance

∇s(·)(X ), is denoted by AE ∇s(·)(X ) and equal to

AE = ‖∇s(·)(X )−∇(·)(x0)‖.

The relative error for ∇s(·)(X ), denoted RE ∇s(·)(X ), is

RE =
AE

‖∇(·)(x0)‖
.

For the purpose of this thesis, we say that the formula becomes unstable
at m = ` whenever the relative error at ` is greater than the relative error at
`−1, or, the relative error at ` is equal to zero and all the relative errors are
not equal to zero for m = 1, 2, . . . , `−1. Essentially, we are looking for points
where any pattern in the value of the relative error changes drastically. This
concept of stability is an indicator of how small ∆ can be before numerical
errors occur. Since ∆ is intimately linked to the accuracy of our approxima-
tion, stability also provides information about the maximal accuracy that
an approximation technique can reach on the functions considered.

In the following tables, a boldfaced number exhibits when a formula
becomes unstable.

Example 6.1. Let f : R→ R : y 7→ log y and g : R→ R : y 7→ ey. Consider
X = 〈2, 3〉. Table 3 shows that ∇s(fg)(X ) is the most stable. Indeed,
∇s(fg)(X ) becomes unstable when βm = 10−10. Using the approaches
∇spe(fg)(X ) and ∇sp(fg)(X ), the formulas become unstable at a bigger
value of βm: at βm = 10−9. For this reason, we say that ∇s(fg)(X ) is the
most stable.

Example 6.2. Let f : R → R : y 7→ y and g : R → R : y 7→ y. Consider
X = 〈4, 5〉. Appendix Table 6 shows that ∇spe(fg)(X ) is the most stable.

Theoretically, ∇sp(fg)(X ) is perfectly accurate since f and g are linear
functions and S(X ) has full row rank. However, numerical errors show up
at βm = 10−11.

Example 6.3. Let f : R→ R : y 7→ √y and g : R→ R : y 7→ √y. Consider
X = 〈1, 2〉. Appendix Table 7 shows that ∇sp(fg)(X ) is the most stable.

Note that ∇s(fg)(X ) and ∇spe(fg)(X ) are the most accurate approxi-
mation since fg is a linear function and S(X ) has full row rank.
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6.1. Numerical Stability

Table 3: An Example Where ∇s(fg)(X ) is the Most Stable

βm RE ∇s(fg)(X ) RE ∇spe(fg)(X ) RE ∇sp(fg)(X )

100 9.2197e-01 9.2197e-01 3.3805e-01
10−1 6.2907e-02 6.2907e-02 1.9900e-02
10−2 6.0714e-03 6.0714e-03 1.8702e-03
10−3 6.0500e-04 6.0500e-04 1.8584e-04
10−4 6.0479e-05 6.0479e-05 1.8572e-05
10−5 6.0477e-06 6.0477e-06 1.8571e-06
10−6 6.0474e-07 6.0474e-07 1.8568e-07
10−7 6.0080e-08 6.0313e-08 1.8407e-08
10−8 9.1121e-09 9.5759e-09 5.3853e-09
10−9 8.8912e-10 1.7861e-08 1.8281e-08
10−10 5.0283e-07 1.2142e-07 1.2138e-07

6.1.2 Power Rule for a Positive Integer

Let us denote the generalized simplex gradient that uses the power rule
for a positive integer n by ∇spe(·)(X ). We use the same notation as the
product rule since the power rule is a particular case of the product rule.
We have three approaches to build an approximation of the gradient. Indeed,
we can approximate ∇(fg)(x0) with:

(i) ∇sf
n(X ) =

(
ST
)†
δfn (Definition 2.10)

(ii) ∇spef
n(X ) = n[f(x0)]

n−1∇sf(X ) + Efn (Corollary 3.3)

and

(iii) ∇spf
n(X ) = n[f(x0)]

n−1∇sf(X ) (Equation (5.2)).

As before, we provide three examples.

Example 6.4. Let f : R2 → R : y 7→ 5ey1−4πy2 +0.00001πe and let n = 3.

Consider X =

〈[
0√
π

]
,

[
e2

0

]
,

[
0
π2

]〉
. Appendix Table 8 shows that∇sf

3(X )

is the most stable.
Note that f is a linear function and S(X ) has full row rank but the

relative error for ∇spf
3(X ) is not equal to 0 due to numerical errors.

Example 6.5. Let f : R → R : y 7→ y + 2 and let n = 4. Consider
X = 〈4, 5〉. Appendix Table 9 shows that ∇spef

4(X ) is the most stable and
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6.1. Numerical Stability

∇spf
4(X ) is the most accurate since f is a linear function and S(X ) has

full row rank. It is worth mentioning that the values of the relative errors
change drastically from βm = 10−15 to βm = 10−16. This is likely due from
rounding errors with tiny numbers rounded to the nearest integer.

For this last example, we compare the absolute errors since the true
gradient of the function at x0 is equal to zero.

Example 6.6. Let f : R2 → R : y 7→ y101 + y102 and let n = 5.

Consider X =

〈[
0
0

]
,

[
1
0

]
,

[
0
1

]〉
. Appendix Table 10 shows that∇spf

5(X )

is the most stable.
Theoretically, note that ∇spf

5(X ) is an exact approximation of ∇f5(x0)
as f(x0) = 0 (Corollary 5.13).

Also, note that this table contains numbers extremely close to 0. This
can be explained by the fact that MATLAB allows subnormal numbers [31].

6.1.3 Quotient Rule

We denote the generalized simplex gradient that uses the quotient rule by
∇sqe(·)(X ). We have introduced three approaches to build an approximation
of the gradient. The gradient of f over g at x0 can be approximated with:

(i) ∇s

(
f

g

)
(X ) =

(
ST
)†
δ f

g
(Def. 2.10)

(ii) ∇sqe

(
f

g

)
(X ) =

g(x0)∇sf(X )− f(x0)∇sg(X )

[g(x0)]2
− E f

g
(Theorem 3.8)

and

(iii) ∇sq

(
f

g

)
(X ) =

g(x0)∇sf(X )− f(x0)∇sg(X )

[g(x0)]2
(Eq. (5.3)).

Next we provide three examples.

Example 6.7. Let f : R → R : y 7→ y2 and g : R → R : y 7→ y . Consider

X = 〈4, 5〉. Appendix Table 11 shows that ∇
(
f
g

)
(X ) is stable and accurate.

Example 6.8. Let f : R → R : y 7→ 1 and g : R → R : y 7→ log(y) .

Consider X = 〈2, 3〉. Appendix Table 12 shows that ∇sqe

(
f
g

)
(X ) is the

most stable.

Example 6.9. Let f : R → R : y 7→ 1 and g : R → R : y 7→ y . Consider

X = 〈10−8, 1 + 10−8〉. Appendix Table 13 shows that ∇sq

(
f
g

)
(X ) is stable

and accurate.
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6.1.4 Power Rule for a Negative Integer

Let us denote the generalized simplex gradient that uses the power rule
for a negative integer −n by ∇spe. Once again, we have three approaches
to build an approximation of the gradient. We can approximate ∇f−n(x0)
with:

(i) ∇sf
−n(X ) =

(
ST
)†
δf−n (Definition 2.10)

(ii) ∇spef
−n(X ) = −n[f(x0)]

−n−1∇sf(X )− Ef−n (Proposition 3.10)

and

(iii) ∇spf
−n(X ) = −n[f(x0)]

−n−1∇sf(X ) (Equation (5.2)).

Once again, we provide three examples.

Example 6.10. Let f : R→ R : y 7→ 0.0001πy + 0.0001π and let −n = −3.
Consider X = 〈0, 3π,−π〉. Appendix Table 14 shows that ∇sf

−3(X ) is the
most stable. In theory, note that ∇spf

−3(X ) is an exact approximation of
∇f−3(x0).

Example 6.11. Let f : R → R : y 7→ y + 2 and let −n = −6. Consider
X = 〈4, 5〉. Appendix Table 15 shows that ∇spef

−6(X ) is the most stable.
Theoretically, note that∇spf

−3(X ) is an exact approximation of∇f−3(x0)
since f is a linear function and S(X ) has full row rank. However, numerical
errors emerge at βm = 10−11.

Example 6.12. Let f : R → R : y 7→ y and let −n = −5. Consider
X =

〈
2−8, 1 + 2−8

〉
. Appendix Table 16 shows that ∇spf

−n(X ) is stable
and perfectly accurate since f is a linear function and S(X ) has full row
rank.

6.1.5 Chain Rule

Lastly, we investigate the numerical stability of the chain rule. Let us de-
note the generalized simplex gradient that uses the chain rule by ∇sce(·)(X ).
We have three approaches to build an approximation of the gradient. We
can approximate ∇(f ◦ g)(x0) with:

(i) ∇s (f ◦ g) (X ) =
(
ST
)†
δf◦g (Definition 2.10)

(ii) ∇sce (f ◦ g) (X ) = (Jsg(X ))T ∇sf(g(X ))− Ef◦g (Theorem 4.2)

54



6.2. Numerical Accuracy

and

(iii) ∇sc (f ◦ g) (X ) = (Jsg(X ))T ∇sf(g(X )) (Equation (5.4)).

Finally, we provide three examples.

Example 6.13. Let f : R2 → R : y 7→ (y1 + y2)
2 and let g : R2 → R2 : y 7→[ √

y1 + y2√
y1 + 2y2

]
. Consider X =

〈[
1
1

]
,

[
2
2

]
,

[
3
3

]〉
. Appendix Table 17 shows

that ∇s(f ◦ g)(X ) is the most stable.
Note that S(X ) and S(g(X )) do not have full row rank in this example.

We see that the relative errors for the three approaches do not decrease as
βm decreases.

Example 6.14. Let f : R2 → R : y 7→ 0.00001y1 − 10000y2 + 2 and

the inner function g be g : R2 → R2 : y 7→
[
0.000001y1 − 100y2 + 2

1000y1 + 0.00001y2

]
.

Consider X =

〈[
0
0

]
,

[
−9
0

]
,

[
0
−9

]
,

[
1

99999

]〉
. Appendix Table 18 shows

that ∇sce(f ◦ g)(X ) is the most stable.
Note that S(X ) and S(g(X )) have full row rank. Nevertheless, due to

numerical errors, we do not obtain a relative error equal to 0 using ∇sc(f ◦
g)(X ).

Example 6.15. Let f : R → R : y 7→ √y and let g : R → R : y 7→ y2.
Consider X = 〈2, 3, 4, 5〉. Appendix Table 19 shows that ∇sc(f ◦ g)(X ) is
the most stable. Note that (f ◦ g) is a linear function and S(X ) have full
row rank. Hence, ∇s(f ◦ g)(X ) and ∇sce(f ◦ g)(X ) are perfectly accurate.
However, numerical errors emerge at β−1 = 10−1.

6.2 Numerical Accuracy

In this section, we investigate the numerical accuracy of generalized sim-
plex calculus gradients using the functions defined in Moré, Garbow and
Hillstrom’s Set [28]. First, we compare the generalized simplex gradient
∇s(f ◦ g)(X ) with the generalized simplex chain gradient ∇sc(f ◦ g)(X ).
Second, we compare the generalized simplex gradient ∇s(f1 · · · fp)(X ) with
the generalized simplex product gradient ∇sp(f1 · · · fp)(X ). The sample
set of points used on every problem is X = 〈x0, x0 + e1, . . . , x0 + ed, x0 −
e1, . . . , x0 − ed〉 where x0 is the starting point defined in [28].
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6.2. Numerical Accuracy

Let us define β to be a real number in the interval (0,1]. The role of β is
to shrink the matrix S(X ). Our goal is to determine the largest value of β
ncessary to obtain a relative error less than 10−3. To achieve this goal, we
do the following.

1. Let β = 1. Compute the approximate gradient and the resulting
relative error. If the relative error is less than 10−3, then stop (return
β = 1).

2. Compute the approximate gradient using β ∈ {10−1, 10−2, . . . , 10−8}
and the resulting relative error, until a value is found that gives a
relative error less than 10−3. If none of these values provide a relative
error less than 10−3, then return error.

3. Apply a bisection method with a tolerance of 10−6 to find the highest
value of β that returns a relative error less than 10−3.

Our findings are presented in Tables 4 and 5. In the tables, a boldfaced
number is associated with the approach that does better on a certain prob-
lem. A boldfaced and underlined number means that, not only the gradient
approximation technique does better but also, the value of β is at least one
order of magnitude higher. In other words, the associated method does
significantly better.

Table 4 provides our results regarding the chain rule. The outer function
used is f : Rp → R : y 7→

∑p
i=1 ‖yi‖2. In the table, the dimension of the do-

main of the inner function g is given by d and the dimension of the codomain
by p. In general, the generalized simplex gradient ∇s(f ◦ g)(X ) does better
as supported by the average and median calculated. However, only three
values of β are boldfaced and underlined. While the generalized simplex
gradient is slightly more accurate, both approaches perform similarly on 32
problems.

Some precautions are necessary to generalize these results and claim that
the generalized simplex gradient is a better approximation than the gener-
alized simplex chain gradient. Indeed, we have only considered one outer
function f . Choosing another outer function could affect our conclusion
regarding the accuracy of both methods.

The results of the second numerical experiment are presented in Table
5. The dimension of the domain is given by d and the number of functions
fi is given by p. In this case, we compare the generalized simplex gradi-
ent ∇sF (X ) where F = f1 · f2 · · · fp, and the generalized simplex product
gradient ∇sp(f1f2 · · · fp)(X ). The latter is the clear winner. Except for the

56



6.2. Numerical Accuracy

problem Box3D, the generalized simplex product gradient does better on
every problem.

Note that all problems from Moré, Garbow and Hillstrom’s Set contain
functions that are not linear except LinearFR, LinearR1 and LinearR1W0.
We see that, even when all the functions fi for i ∈ {1, 2, . . . , p} are not
linear in a certain problem, the generalized simplex product gradient perform
better than the generalized simplex gradient.

While we must still be cautious about drawing any universal conclusions,
since there is only really one way to create an experiment where the product
rule would be applied this result seems more likely to be generalizable.
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Table 4: Testing the Chain Rule on Moré, Garbow and Hillstrom’s Set

Description β to Attain RE ≤ 10−3

Function d p ∇s(f ◦ g)(X ) ∇sc(f ◦ g)(X )

1. Rosenbrock 2 2 2.20e-02 1.76e-02
2. Freudenstein 2 2 4.15e-02 1.12e-02
3. PowellBS 2 2 1 3.83e-04
4. BrownBS 2 3 1 1
5. Beale 2 3 3.19e-02 3.19e-02
6. Jenrich 2 4 9.56e-03 9.56e-03
7. Helical 3 3 6.65e-02 6.55e-02
8. Bard 3 15 4.27e-02 4.27e-02
9. Gaussian 3 15 7.48e-03 7.48e-03
10. Meyer 3 16 1 1
11. Gulf 3 20 7.18e-03 7.18e-03
12. Box3D 3 3 6.41e-01 7.29e-01
13. PowellS 4 4 6.24e-02 4.58e-02
14. Wood 4 6 1.00e-01 1.00e-01
15. Kowalik 4 11 2.65e-02 2.65e-02
16. Brown 4 4 8.83e-01 3.15e-01
17. Osborne1 5 33 2.09e-04 2.09e-04
18. Biggs 6 6 1.30e-01 1.30e-01
19. Osborne2 11 65 1.26e-02 1.26e-02
20. Watson 31 31 1 4.47e-02
21. RosenbrockE 4 4 2.52e-02 2.02e-02
22. PowellExt 8 8 6.29e-02 4.48e-02
23. Penalty1 4 5 1.47e-01 1.47e-01
24. Penalty2 6 12 2.92e-02 2.92e-02
25. VariablyDim 7 9 1.04e-01 1.04e-01
26. Trigonometric 7 7 6.44e-03 3.21e-03
27. BrownAlm 9 9 1 1
28. DiscreteBnd 5 5 1.56e-02 6.99e-03
29. DiscreteInt 3 3 2.12e-02 1.63e-02
30. BroydenTri 5 5 2.74e-02 2.02e-02
31. BroydenBan 8 8 2.05e-02 1.69e-02
32. LinearFR 10 13 1 1
33. LinearR1 10 10 1 1
34. LinearR1W0 10 10 1 1
35.Chebyquad 4 5 6.31e-03 1.98e-03

Average 3.01e-01 2.28e-01
Median 4.27e-02 3.19e-02
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Table 5: Testing the Product Rule on Moré, Garbow and Hillstrom’s Set

Description β to Attain RE ≤ 10−3

Function d p ∇s(f1 . . . fp)(X ) ∇sp(f1 . . . fp)(X )

1. Rosenbrock 2 2 7.82e-02 1
2. Freudenstein 2 2 1.74e-02 4.03e-02
3. PowellBS 2 2 2.71e-02 1
4. BrownBS 2 3 1 1
5. Beale 2 3 2.72e-02 8.41e-02
6. Jenrich 2 4 1.67e-02 2.25e-02
7. Helical 3 3 1 1
8. Bard 3 15 7.65e-03 8.51e-02
9. Gaussian 3 15 9.15e-06 4.60e-02
10. Meyer 3 16 2.28e-04 1
11. Gulf 3 3 1.03e-02 1.09e-02
12. Box3D 3 3 6.91e-01 5.95e-01
13. PowellS 4 4 3.30e-02 1
14. Wood 4 6 1.99e-01 1
15. Kowalik 4 11 9.03e-04 1.68e-02
16. Brown 4 4 3.43e-01 1
17. Osborne1 5 33 1.03e-05 1
18. Biggs 6 6 3.39e-03 1
19. Osborne2 11 65 3.28e-04 3.81e-02
20. Watson 2 31 5.77e-03 1
21. RosenbrockE 4 4 7.89e-02 1
22. PowellExt 8 8 3.29e-02 1
23. Penalty1 4 5 2.34e-01 1
24. Penalty2 6 12 5.24e-02 1
25. VariablyDim 7 9 1.19e-01 1
26. Trigonometric 7 7 1.73e-03 1
27. BrownAlm 9 9 8.78e-01 1
28. DiscreteBnd 5 5 8.26e-04 1
29. DiscreteInt 3 3 3.38e-02 1
30. BroydenTri 5 5 3.09e-02 1
31. BroydenBan 8 8 2.30e-02 1
32. LinearFR 10 13 6.28e-02 1
33. LinearR1 10 10 5.90e-02 1
34. LinearR1W0 10 10 6.81e-02 1
35.Chebyquad 2 2 1.05e-02 1

Average 1.47e-01 7.69e-01
Median 3.09e-02 1
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Chapter 7

Conclusion

The new calculus rules introduced in this thesis provide an attractive
framework that holds for underdetermined, determined and overdetermined
simplex gradients and under minimal assumptions. The calculus rules for
generalized simplex gradients can be written in a similar way than those for
the true gradients plus a term E. Removing the term E from the calculus
rules leads to several new approaches for approximating gradients. The
new approaches that we named generalized simplex calculus gradients have
some interesting benefits. In particular, under certain assumptions, they
suit perfectly linear functions. In regards to the quotient rule and the power
rule for a negative exponent, the new approaches further allow us to remove
the assumption that g(xi) 6= 0 for all i ∈ {1, 2, . . . , k}.

Error bounds for generalized simplex calculus gradients were presented.
Analyzing those error bounds, we obtained results regarding when general-
ized simplex calculus gradients are exact approximations of the true gradi-
ents.

In regards to the chain rule, it is enchanting to see that, when k ≤ p and
S(g(X )) has full rank, the term Ef◦g vanishes and we get back the chain
rule for the true gradient. In all cases, the term Ef◦g vanishes for linear
functions whenever S(g(X )) has full rank. Furthermore, we showed that
the chain rule is perfectly accurate for linear functions whenever S(X ) and
S (g(X )) have full row rank.

The results allowed us to state three novel approaches to approximate,
for instance, the true gradient ∇(fg)(x0): the generalized simplex gradient
∇s(fg)(X ) (Definition 2.13), the generalized simplex gradient ∇s(fg)(X )
using the product rule (Theorem 3.2) and the generalized simplex product
gradient ∇sp(fg)(X ) (Equation (5.1)). From a numerical perspective, we
showed that, at least in some cases, the generalized simplex gradient that
uses the calculus rule and the generalized simplex calculus gradient can
improve the stability of our calculations. We provided three examples for
each calculus rule illustrating a situation where each approach is stable.
These examples also showed the important gain in accuracy we can obtain
using the calculus rules or the generalized simplex calculus gradients.
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Chapter 7. Conclusion

Based on the numerical experiments executed on Moré, Garbow and
Hillstrom’s Set, the performance of the generalized simplex gradient and the
generalized simplex chain gradient is almost similar. In general, the general-
ized simplex gradient does slightly better than the generalized simplex chain
gradient. The results of the second experiment using the generalized sim-
plex product are striking. Even when the p functions involved are not linear,
the generalized simplex product performed better except on one problem,
Box3D. These results demonstrate all the potential of this new approach.

In practice, it can be difficult to determine which approach does better
on a certain problem. One strategy to determine the best approach could
be to approximate the Lipschitz constants involved. Let us provide a rough
algorithm that may be used inside an optimization routine. Algorithm 1
proposes a procedure to decide between the generalized simplex gradient
∇s(fg)(X ) and the generalized simplex product gradient ∇sp(fg)(X ) based
on an approximation of the Lipschitz constants.

Algorithm 1: Approximating the Lipschitz Constants

Given an optimization problem involving a function F = f · g where
f : Rd → R and g : Rd → R. At iteration j ∈ N+:

0. Input

X j = 〈xj0, . . . , x
j
k〉 sample set of points

xj−10 x0 at iteration j − 1

∇̃f j−1, ∇̃gj−1, ∇̃F j−1 gradient approximation of f, g and F at xj−10
1. Approximate the Lipschitz constants
Assume xj0 6= xj−10 . Then

L̃∇f =
‖∇sf(X j)− ∇̃f j−1‖
‖xj0 − x

j−1
0 ‖

L̃∇g =
‖∇sg(X j)− ∇̃gj−1‖
‖xj0 − x

j−1
0 ‖

L̃∇F = min

{
‖∇sF (X j)− ∇̃F j−1‖

‖xj0 − x
j−1
0 ‖

,
‖∇spF (X j)− ∇̃F j−1‖

‖xj0 − x
j−1
0 ‖

}
2. Update
if |f(xj0)|L̃∇g + |g(xj0)|L̃∇f ≤ L̃∇F then

∇̃F j = ∇spF (X j)
else

∇̃F j = ∇sF (X j)
end

We believe that these calculus rules are promising on several topics re-
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Chapter 7. Conclusion

lated to derivative-free optimization. Future research directions include the
following.

i. More testing and investigation on the numerical stability and accu-
racy of the calculus rules for the generalized simplex gradient and the
generalized simplex calculus gradients.

ii. Exploring the calculus rules of the centered difference simplex gradient
[25, Definition 6.2.3].

iii. Building a framework of calculus rules for an approximation of the
Hessian.

iv. Building an accurate algorithm to approximate the Lipschitz constants
of funtions hidden in blackboxes.

v. Application in DFO algorithms. Using the calculus rules for the gen-
eralized simplex gradient in DFO algorithms is a wide topic that is
still untouched.
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Table 6: An Example Where ∇spe(fg)(X ) is the Most Stable

βm RE ∇s(fg)(X ) RE ∇spe(fg)(X ) RE ∇sp(fg)(X )

100 1.2500e-01 1.2500e-01 0.0000e+00
10−1 1.2500e-02 1.2500e-02 0.0000e+00
10−2 1.2500e-03 1.2500e-03 0.0000e+00
10−3 1.2500e-04 1.2500e-04 0.0000e+00
10−4 1.2500e-05 1.2500e-05 0.0000e+00
10−5 1.2500e-06 1.2500e-06 0.0000e+00
10−6 1.2479e-07 1.2500e-07 0.0000e+00
10−7 1.3323e-08 1.2500e-08 0.0000e+00
10−8 0.0000e+00 1.2500e-09 0.0000e+00
10−9 0.0000e+00 1.2500e-10 0.0000e+00
10−10 0.0000e+00 1.2500e-11 0.0000e+00
10−11 1.1102e-16 1.2499e-12 1.1102e-16
10−12 0.0000e+00 1.2501e-13 0.0000e+00
10−13 0.0000e+00 1.2434e-14 0.0000e+00
10−14 0.0000e+00 1.3323e-15 0.0000e+00
10−15 0.0000e+00 0.0000e+00 0.0000e+00

Table 7: An Example Where ∇sp(fg)(X ) is the Most Stable

βm RE ∇s(fg)(X ) RE ∇spe(fg)(X ) RE ∇sp(fg)(X )

100 4.4409e-16 2.2204e-16 1.7157e-01
10−1 0.0000e+00 8.8818e-16 2.3823e-02
10−2 2.2204e-14 1.6320e-14 2.4876e-03
10−3 0.0000e+00 1.0814e-13 2.4988e-04
10−4 2.2206e-12 1.8795e-12 2.4999e-05
10−5 2.2205e-11 1.2707e-11 2.5000e-06
10−6 2.2204e-10 1.9969e-10 2.4980e-07
10−7 0.0000e+00 5.7509e-10 2.4425e-08
10−8 0.0000e+00 2.5000e-09 0.0000e+00
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Table 8: An Example Where ∇sf
n(X ) is the Most Stable

βm RE ∇sf
n(X ) RE ∇spef

n(X ) RE ∇spf
n(X )

100 8.1428e+00 8.1428e+00 4.1759e-16
10−1 6.0580e-01 6.0580e-01 1.3205e-16
10−2 6.4301e-02 6.4301e-02 1.3787e-15
10−3 6.4721e-03 6.4721e-03 3.2365e-14
10−4 6.4763e-04 6.4763e-04 1.5178e-13
10−5 6.4767e-05 6.4767e-05 1.7094e-13
10−6 6.4768e-06 6.4768e-06 3.1848e-11
10−7 6.4764e-07 6.4762e-07 6.7907e-11
10−8 6.7528e-08 6.6897e-08 2.1322e-09
10−9 2.8393e-08 2.1361e-08 1.5138e-08
10−10 2.2519e-08 5.3541e-08 5.4180e-08
10−11 2.4845e-06 1.5436e-06 1.5436e-06

Table 9: An Example Where ∇spef
n(X ) is the Most Stable

βm RE ∇sf
n(X ) RE ∇spef

n(X ) RE ∇spf
n(X )

100 2.7894e-01 2.7894e-01 0.0000e+00
10−1 2.5279e-02 2.5279e-02 0.0000e+00
10−2 2.5028e-03 2.5028e-03 0.0000e+00
10−3 2.5003e-04 2.5003e-04 0.0000e+00
10−4 2.5000e-05 2.5000e-05 0.0000e+00
10−5 2.5000e-06 2.5000e-06 0.0000e+00
10−6 2.4997e-07 2.5000e-07 0.0000e+00
10−7 2.4672e-08 2.5000e-08 0.0000e+00
10−8 9.8686e-09 2.5000e-09 0.0000e+00
10−9 1.3158e-07 2.5000e-10 0.0000e+00
10−10 6.5791e-07 2.5000e-11 0.0000e+00
10−11 3.2895e-06 2.4999e-12 1.3158e-16
10−12 6.5785e-05 2.5001e-13 0.0000e+00
10−13 1.6388e-03 2.5132e-14 0.0000e+00
10−14 3.3670e-03 2.5001e-15 0.0000e+00
10−15 1.8519e-01 2.6316e-16 0.0000e+00
10−16 1.0000e+00 1.0000e+00 1.0000e+00
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Table 10: An Example Where ∇spf
n(X ) is the Most Stable

βm AE ∇sf
n(X ) AE ∇spef

n(X ) AE ∇spf
n(X )

100 1.4142e+00 1.4142e+00 0.0000e+00
10−1 1.4142e-49 1.4142e-49 0.0000e+00
10−2 1.4142e-98 1.4142e-98 0.0000e+00
10−3 1.4142e-147 1.4142e-147 0.0000e+00
10−4 1.4142e-196 1.4142e-196 0.0000e+00
10−5 1.4142e-245 1.4142e-245 0.0000e+00
10−6 1.4142e-294 1.4142e-294 0.0000e+00
10−7 0.0000e+00 0.0000e+00 0.0000e+00

Table 11: An Example Where ∇s

(
f
g

)
(X ) is Stable and Accurate

βm RE ∇s(
f
g )(X ) RE ∇sqe(

f
g )(X ) RE ∇sq(

f
g )(X )

100 0.0000e+00 0.0000e+00 2.5000e-01
10−1 0.0000e+00 3.9968e-15 2.5000e-02
10−2 0.0000e+00 5.7732e-15 2.5000e-03
10−3 0.0000e+00 2.5691e-13 2.5000e-04
10−4 0.0000e+00 2.0690e-12 2.5000e-05
10−5 0.0000e+00 4.4202e-11 2.5000e-06
10−6 0.0000e+00 4.2186e-10 2.4958e-07
10−7 0.0000e+00 1.6454e-09 2.6645e-08
10−8 0.0000e+00 2.5000e-09 0.0000e+00
10−9 0.0000e+00 2.5000e-10 0.0000e+00
10−10 0.0000e+00 2.5000e-11 0.0000e+00
10−11 1.1102e-16 2.5001e-12 1.1102e-16
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Table 12: An Example Where ∇sqe

(
f
g

)
(X ) is the Most Stable

βm (1) RE ∇s(
f
g )(X ) (2) RE ∇sqe(

f
g )(X ) (3) RE ∇sq(

f
g )(X )

100 4.8836e-01 4.8836e-01 1.8907e-01
10−1 8.8366e-02 8.8366e-02 2.4197e-02
10−2 9.6180e-03 9.6180e-03 2.4917e-03
10−3 9.7038e-04 9.7038e-04 2.4992e-04
10−4 9.7125e-05 9.7125e-05 2.4999e-05
10−5 9.7134e-06 9.7134e-06 2.5000e-06
10−6 9.7151e-07 9.7137e-07 2.5002e-07
10−7 9.7287e-08 9.6560e-08 2.4425e-08
10−8 1.1768e-08 7.2135e-09 0.0000e+00
10−9 1.4326e-07 7.2135e-10 0.0000e+00
10−10 1.4234e-06 7.2135e-11 0.0000e+00
10−11 5.6907e-06 7.2134e-12 0.0000e+00
10−12 5.1831e-05 7.2138e-13 0.0000e+00
10−13 6.5773e-04 7.2117e-14 0.0000e+00
10−14 2.6846e-03 7.4677e-15 0.0000e+00
10−15 3.9094e-02 6.4009e-16 0.0000e+00
10−16 1.0000e+00 1.0000e+00 1.0000e+00
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Table 13: An Example Where ∇sq

(
f
g

)
(X ) is Stable and Accurate

βm (1) RE ∇s(
f
g )(X ) (2) RE ∇sqe(

f
g )(X ) (3) RE ∇sq(

f
g )(X )

100 1.0000e+00 1.0000e+00 2.0000e-16
10−1 1.0000e+00 1.0000e+00 2.0000e-16
10−2 1.0000e+00 1.0000e+00 2.0000e-16
10−3 9.9999e-01 9.9999e-01 2.0000e-16
10−4 9.9990e-01 9.9990e-01 2.0000e-16
10−5 9.9900e-01 9.9900e-01 2.0000e-16
10−6 9.9010e-01 9.9010e-01 2.0000e-16
10−7 9.0909e-01 9.0909e-01 2.0000e-16
10−8 5.0000e-01 5.0000e-01 2.0000e-16
10−9 9.0909e-02 9.0909e-02 2.0000e-16
10−10 9.9010e-03 9.9010e-03 2.0000e-16
10−11 9.9900e-04 9.9900e-04 2.0000e-16
10−12 9.9990e-05 9.9990e-05 2.0000e-16
10−13 9.9999e-06 9.9999e-06 2.0000e-16
10−14 1.0000e-06 1.0000e-06 2.0000e-16
10−15 1.0016e-07 1.0000e-07 2.0000e-16
10−16 1.5220e-08 1.0000e-08 2.0000e-16
10−17 4.3380e-08 1.0000e-09 2.0000e-16
10−18 3.8723e-07 1.0000e-10 2.0000e-16
10−19 6.8405e-06 1.0000e-11 2.0000e-16
10−20 4.4430e-05 1.0002e-12 2.0000e-16
10−21 6.3422e-04 1.0020e-13 2.0000e-16
10−22 5.8039e-03 1.0200e-14 2.0000e-16
10−23 5.0840e-02 1.2000e-15 2.0000e-16
10−24 9.9280e-02 4.0000e-16 2.0000e-16
10−25 1.0000e+00 1.0000e+00 1.0000e+00
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Table 14: An Example Where ∇sf
−n(X ) is the Most Stable

βm RE ∇sf
−n(X ) RE ∇spef

−n(X ) RE ∇spf
−n(X )

100 9.7989e-01 9.7989e-01 1.5771e-16
10−1 5.0233e-01 5.0233e-01 1.5771e-16
10−2 1.3970e-01 1.3970e-01 9.4624e-16
10−3 1.6070e-02 1.6070e-02 1.1039e-15
10−4 1.6309e-03 1.6309e-03 9.4466e-14
10−5 1.6334e-04 1.6334e-04 2.5911e-13
10−6 1.6336e-05 1.6336e-05 7.3993e-12
10−7 1.6336e-06 1.6336e-06 2.3877e-11
10−8 1.6446e-07 1.6444e-07 1.0746e-09
10−9 1.3732e-08 1.3566e-08 2.7702e-09
10−10 1.1368e-08 1.7614e-08 1.9248e-08
10−11 2.6473e-07 3.6540e-07 3.6524e-07

Table 15: An Example where ∇spef
−n(X ) is the Most Stable

βm RE ∇sf
−n(X ) RE ∇spef

−n(X ) RE ∇spf
−n(X )

100 3.9657e-01 3.9657e-01 0.0000e+00
10−1 5.5835e-02 5.5835e-02 0.0000e+00
10−2 5.8075e-03 5.8075e-03 0.0000e+00
10−3 5.8307e-04 5.8307e-04 0.0000e+00
10−4 5.8331e-05 5.8331e-05 0.0000e+00
10−5 5.8333e-06 5.8333e-06 0.0000e+00
10−6 5.8329e-07 5.8333e-07 0.0000e+00
10−7 5.6712e-08 5.8333e-08 0.0000e+00
10−8 2.7539e-09 5.8333e-09 0.0000e+00
10−9 8.7820e-08 5.8333e-10 0.0000e+00
10−10 8.7820e-07 5.8333e-11 0.0000e+00
10−11 8.7820e-06 5.8335e-12 1.5808e-16
10−12 6.2228e-05 5.8346e-13 0.0000e+00
10−13 1.7198e-03 5.8330e-14 0.0000e+00
10−14 3.1516e-03 5.2165e-15 0.0000e+00
10−15 6.7871e-02 6.3231e-16 0.0000e+00
10−16 1.0000e+00 1.0000e+00 1.0000e+00
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Table 16: An Example where ∇spf
−n(X ) is Stable and Accurate

βm RE ∇sf
−n(X ) RE ∇spef

−n(X ) RE ∇spf
−n(X )

100 9.9922e-01 9.9922e-01 0.0000e+00
10−1 9.9219e-01 9.9219e-01 0.0000e+00
10−2 9.2201e-01 9.2201e-01 0.0000e+00
10−3 4.6869e-01 4.6869e-01 0.0000e+00
10−4 7.2437e-02 7.2437e-02 0.0000e+00
10−5 7.6344e-03 7.6344e-03 0.0000e+00
10−6 7.6754e-04 7.6754e-04 0.0000e+00
10−7 7.6795e-05 7.6795e-05 0.0000e+00
10−8 7.6800e-06 7.6800e-06 0.0000e+00
10−9 7.6796e-07 7.6800e-07 0.0000e+00
10−10 7.7195e-08 7.6800e-08 0.0000e+00
10−11 8.6736e-09 7.6800e-09 0.0000e+00
10−12 0.0000e+00 7.6800e-10 0.0000e+00
10−13 0.0000e+00 7.6800e-11 0.0000e+00
10−14 0.0000e+00 7.6799e-12 0.0000e+00
10−15 0.0000e+00 7.6810e-13 0.0000e+00
10−16 0.0000e+00 7.6561e-14 0.0000e+00
10−17 0.0000e+00 7.9936e-15 0.0000e+00
10−18 0.0000e+00 7.1054e-16 0.0000e+00
10−19 1.0000e+00 1.0000e+00 1.0000e+00
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Table 17: An Example Where ∇s(f ◦ g)(X ) is the Most Stable

βm RE ∇s(f ◦ g)(X ) RE ∇sce(f ◦ g)(X ) RE ∇sc(f ◦ g)(X )

100 1.8049e-01 1.8350e-01 1.8401e-01
10−1 1.8049e-01 1.8376e-01 1.8089e-01
10−2 1.8049e-01 1.8375e-01 1.8375e-01
10−3 1.8049e-01 1.8354e-01 1.8350e-01
10−4 1.8049e-01 1.8350e-01 1.8351e-01
10−5 1.8049e-01 1.8389e-01 1.8389e-01
10−6 1.8049e-01 1.8350e-01 1.8350e-01
10−7 1.8049e-01 1.8350e-01 1.8350e-01
10−8 1.8049e-01 1.8350e-01 1.8350e-01
10−9 1.8049e-01 1.8350e-01 1.8350e-01
10−10 1.8049e-01 1.8350e-01 1.8350e-01
10−11 1.8049e-01 1.8350e-01 1.8350e-01
10−12 1.8049e-01 1.8352e-01 1.8352e-01
10−13 1.8049e-01 1.8361e-01 1.8361e-01
10−14 1.8089e-01 1.8619e-01 1.8619e-01

Table 18: An Example Where ∇sce(f ◦ g)(X ) is the Most Stable

βm RE ∇s(f ◦ g)(X ) RE ∇sce(f ◦ g)(X ) RE ∇sc(f ◦ g)(X )

100 1.8626e-16 1.8626e-16 3.7253e-16
10−1 1.8627e-16 5.4817e-22 5.5879e-16
10−2 2.1233e-21 1.8626e-16 1.8626e-16

75



Table 19: An Example Where ∇sc(f ◦ g)(X ) is the Most Stable

βm RE ∇s(f ◦ g)(X ) RE ∇sce(f ◦ g)(X ) RE ∇sc(f ◦ g)(X )

100 0.0000e+00 0.0000e+00 8.9792e-03
10−1 2.2204e-16 2.2204e-16 2.1395e-04
10−2 0.0000e+00 1.1102e-16 2.3926e-06
10−3 1.1102e-16 0.0000e+00 2.4204e-08
10−4 2.2204e-16 2.2204e-16 2.4232e-10
10−5 4.4409e-16 3.3307e-16 2.4238e-12
10−6 0.0000e+00 0.0000e+00 2.4203e-14
10−7 1.1102e-16 2.2204e-16 2.2204e-16
10−8 2.2204e-16 2.2204e-16 0.0000e+00
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Index

Ball
Closed, 7
Open, 7

Blackbox, 3

Convex hull, 10
Convex set, 10

Derivative-free optimization, 2
Determined, 14
Direct search method, 4

Fundamental theorem of algebra,
33

Generalized simplex calculus
gradient, 30

Generalized simplex chain
gradient, 45

Generalized simplex product
gradient, 32, 37

Generalized simplex quotient
gradient, 40

Generalized simplex gradient, 14
Chain rule, 27
Error bound, 14
Formula, 14
Power rule, 18, 24
Product rule, 16, 19
Quotient rule, 22

Generalized Simplex Jacobian, 27
Gradient, 1

Identity matrix, 8

Linearly independent, 8
Lipschitz continuity, 9

Model-based method, 3

Noisy function, 1
Norm, 7
Numerical stability, 50

Optimization, 1
Overdetermined, 14

Poised, 12
Pseudoinverse

Moore-Penrose, 8

Rank, 9
Full column, 9
Full row, 9

Simplex, 10
Simplex gradient, 3

Formula, 13
Smooth, 9

Underdetermined, 14

77


	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	1 Introduction
	2 Preliminary Definitions
	2.1 Basic Notation and Definitions
	2.2 Generalized Simplex Gradient

	3 Product, Quotient and Power Rules
	4 Chain Rule
	5 Generalized Simplex Calculus Gradient
	5.1 Product Rule
	5.2 Power Rule
	5.3 Quotient Rule
	5.4 Chain Rule

	6 Numerical Experiments
	6.1 Numerical Stability
	6.1.1 Product Rule
	6.1.2 Power Rule for a Positive Integer
	6.1.3 Quotient Rule
	6.1.4 Power Rule for a Negative Integer
	6.1.5 Chain Rule

	6.2 Numerical Accuracy

	7 Conclusion
	Bibliography
	Appendix
	Index

