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Abstract

In this thesis, we examine two problems that, on the surface, seem like pure group theory problems, but turn

out to both be problems concerning counting integers with restrictions on their prime factors. Fixing an odd

prime number q and a finite abelian q-groupH = Zqα1×Zqα2×· · ·×Zqαj , our first aim is to find a counting

function,D(H,x), for the number of integers n up to x such thatH is the Sylow q-subgroup of (Z/nZ)×. In

Chapter 2, we prove that D(H,x) ∼ KHx(log log x)j/(log x)1/(q−1), where KH is a constant depending

on H .

The second problem that we examine in this thesis concerns counting the number of n up to x for

which (Z/nZ)× is cyclic and for which (Z/nZ)× is maximally non-cyclic, where (Z/nZ)× is said to be

maximally non-cyclic if each of its invariant factors is squarefree. In Chapter 3, we prove that the number

of n up to x such that (Z/nZ)× is cyclic is asymptotic to 3
2x/ log x and that the number of n up to x such

that (Z/nZ)× is maximally non-cyclic is asymptotic to Cfx/(log x)1−ξ, where ξ is Artin’s constant and Cf
is the convergent product,

Cf =
15

14Γ(ξ)
lim
x→∞

( ∏
p≤x

p−1 square-free

(
1 +

1

p
+

1

p2

)∏
p≤x

(
1− 1

p

)ξ )
.

It turns out that both of these problems can be reduced to problems of counting integers with restrictions

on their prime factors. This allows the problems to be addressed by classical techniques of analytic number

theory.
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Lay Summary

In mathematics, we have structures called groups, which are basically sets of objects which satisfy certain

characteristics. If q is a prime number, a q-group is a group whose total number of elements is a power of q.

A subgroup of a group G is a collection of elements in G who form a smaller group on their own and the

Sylow q-subgroup of G, is a subgroup which has qk elements, where qk is the largest power of q which

divides the total number of elements in G.

The first goal of this thesis is to fix an odd prime number q and a q-group H , and find a function that

counts groups whose Sylow q-subgroup is H . The second goal of this thesis is to find functions that counts

groups that are maximally non-cyclic. Note that we define maximally non-cyclic in Chapter 3.
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Preface

This thesis is comprised of joint work with Dr. Greg Martin. We plan on submitting our results for publica-

tion.
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Chapter 1

Introduction

Problems concerning counting integers with restrictions on their prime factors has been a topic of interest

to number theorists for many years. The study of squarefree integers, as well as friable integers (integers

without large prime factors), are perfect examples of such problems. Of particular interest, in 1908, Landau

published a paper [3] in which he investigated the question of counting integers up to x that can be written as

the sum of two squares. Fermat had previously shown that this problem was equivalent to counting integers

n that satisfied the following condition: if p is a prime congruent to 3 modulo 4 and r is the largest positive

integer such that pr divides n, then r is even. Similarly, in 2012, Ford, Luca and Moree published a paper [2]

in which they investigated the problem of counting the number of integers n such that φ(n) is not divisible

by q, where q is some fixed prime number. This is equivalent to counting the number of integers n such

that q2 does not divide n and if p is a prime divisor of n, then p is not congruent to 1 modulo q.

Abstract algebra, and in particular, group theory, can be a useful perspective from which to analyze such

problems. For instance, it turns out that Ford, Luca and Moree’s problem in [2] is equivalent to counting

the integers n up to x for which the Sylow q-subgroup of (Z/nZ)× is trivial. In response to a talk by Lee

Troupe in 2017 at the Alberta Number Theory Days, Colin Weir asked if it was possible to count, for a fixed

prime q and a fixed finite abelian q-group H , the number of n up to x for which H is the Sylow q-subgroup

of (Z/nZ)×. This is the exact question that we will investigate throughout Chapter 2 of this thesis.

Let Z×n = (Z/nZ)× be the multiplicative group of integers modulo n. Also, let q be a fixed odd prime

and let Gq(n) denote the Sylow q-subgroup of Z×n , that is, the unique subgroup of Z×n of order qk, where qk

is the highest power of q that divides φ(n). Note that, throughout Chapter 2, q is always considered to

be this fixed odd prime. Further, let (q;α1, α2, . . . , αj) denote the q-group Zqα1 × Zqα2 × · · · × Zqαj ,
where α1, . . . , αj are positive integers, Zqαi is the cyclic group of integers modulo qαi for each i and

α1 ≥ α2 ≥ · · · ≥ αj . Given a q-group, (q;α1, α2, . . . , αj), our goal is to count the number of positive

integers n for which Gq(n) = (q;α1, α2, . . . , αj).
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The main result of Chapter 2 is given in the following theorem.

Theorem 1.0.1. For a finite abelian q-group H , let D(H,x) = #{n ≤ x : Gq(n) = H}. Suppose that q is

an odd prime and that H = (q;α1, α2, . . . , αj). Then,

D(H,x) = KH

(
x(log log x)j

(log x)1/(q−1)

)
+O

(
x(log log x)j−1

(log x)1/(q−1)

)
,

where KH is a constant that depends on the group H that will be defined in Theorem 2.7.1.

In Chapter 3, we shift our focus to a different problem concerning counting integers with restrictions on

their prime factors. This problem involves cyclic and maximally non-cyclic groups, where a finite abelian

group is said to be maximally non-cyclic if each of its invariant factors is squarefree. Here, we show that the

number of n up to x such that Z×n is cyclic is asymptotic to 3/2 · x/ log x. The main result of this Chapter 3

is given in the following theorem.

Theorem 1.0.2. The number of integers n up to x such that Z×n is maximally non-cyclic is asymptotic to

Cfx/(log x)1−ξ, where

ξ =
∏
p

(
1− 1

p(p− 1)

)
is Artin’s constant and Cf is the convergent product,

Cf =
15

14Γ(ξ)
lim
x→∞

( ∏
p≤x

p−1 square-free

(
1 +

1

p
+

1

p2

)∏
p≤x

(
1− 1

p

)ξ )
.
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Chapter 2

Counting Finite Abelian Groups with a
Prescribed Sylow q-Subgroup

2.1 Setup

In order to achieve our goal, we will introduce the following useful notation. For a finite abelian q-group H

and a positive integer k, let D(H,x) be defined as in Theorem 1.0.1 and let

Dk(H,x) = #{n ≤ x : qk ‖ n,Gq(n) = H}, where qk ‖ n denotes that qk | n and qk+1 - n.

We will spend most of this chapter evaluating D0((q;α1, . . . , αj), x), since, as we will show in Sections

2.5 and 2.6, Dk((q;α1, . . . , αj), x) is closely related to D0((q;α1, . . . , αj), x), for all k ≥ 1. Since this

is the case where q - n, we can write n as the product of primes n = 2βpβ1

1 p
β2

2 · · · p
βt
t where β ≥ 0,

β1, β2, . . . , βt > 0 and q 6= pi for each 1 ≤ i ≤ t. Then, we can apply Chinese Remainder Theorem, to get

that

Z×n ∼= Z×
2β
× Z×

p
β1
1

× Z×
p
β2
2

× · · · × Z×
p
βt
t

∼= Z×
2β
× Z

φ(p
β1
1 )
× Z

φ(p
β2
2 )
× · · · × Z

φ(p
βt
t )

∼= Z×
2β
× Z

p
β1−1
1
× Zp1−1 × Z

p
β2−1
2
× Zp2−1 × · · · × Z

p
βt−1
t
× Zpt−1.

Now, note that Z×
2β

will be isomorphic to the trivial group if β is 0 or 1, Z2 if β is 2 and Z2β−2 ×Z2 if β

is at least 3. So, it follows that Z×
2β

will not contribute to the Sylow q-subgroup since for any odd prime q,

Gq(n) will be made up of only odd factors and the factorization of Z×
2β

only contains even factors. Also,

note that since q 6= pi for each 1 ≤ i ≤ t, it follows that none of the Z
p
βi−1

i

factors will contribute to Gq(n)

either. So, it follows that Z×n will have the same Sylow q-subgroup as Zp1−1 × Zp2−1 × · · · × Zpt−1.
Thus, we have that Gq(n) = (q;α1, . . . , αj) if and only if the following conditions are satisfied:
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• For each αi in {α1, . . . , αj} such that αi 6= αk for all k 6= i, there exists a unique prime divisor pi of

n such that pi ≡ 1 (mod qαi ) and pi 6≡ 1 (mod qαi+1).

• If there is a subset {αk, αk+1, . . . , αk+m} of {α1, . . . , αj} such that αk = αk+1 = · · · = αk+m,

then, there exists a unique set of m+ 1 distinct primes, {pk, pk+1, . . . , pk+m}, up to relabelling, such

that if pi is in {pk, pk+1, . . . , pk+m}, then pi ≡ 1 (mod qαi ) and pi 6≡ 1 (mod qαi+1).

• For all prime divisors p of n such that p 6= pi for any 1 ≤ i ≤ j, we have that p 6≡ 1 (mod q).

Now, by definition of D and Dk, notice that,

D((q;α1, . . . , αj), x) = #{n ≤ x : Gq(n) = (q;α1, . . . , αj)}

=

∞∑
k=0

Dk((q;α1, . . . , αj), x).

Using similar reasoning as above, if qα1+2 divides n, then the Sylow q-subgroup of Z×n will include a

Zqα1+1 , and thus, will not be (q;α1, . . . , αj). Therefore, we can see that Dk((q;α1, . . . , αj), x) will be

equal to zero if k is greater than or equal to α1 + 2 and so,

D((q;α1, . . . , αj), x) =

α1+1∑
k=0

Dk((q;α1, . . . , αj), x). (2.1)

Before we can say more about D0, we need the following two definitions.

Definition 2.1.1. For a nonzero integer x, define νq(x) to be the largest nonnegative integer k such that qk

divides x.

Definition 2.1.2 (Conjugate Partition). Let (β1, β2, . . .) be a partition. Then, we define the conjugate par-

tition (b1, b2, . . .) of (β1, β2, . . .) to be the partition whose Ferrers diagram is the transpose of the Ferrers

diagram of (β1, β2, . . .). In other words, we define (b1, b2, . . .) to be the conjugate partition of (β1, β2, . . .)

if bi = #{k : βk ≥ i} for each natural number i.

The following proposition will be very useful in evaluating D0.

Proposition 2.1.3. Let H = (q;α1, α2, . . . , αj) . Then,

D0(H,x) = CH
∑
p1≤x

νq(p1−1)=α1

∑
p2≤x/p1
p2 6=p1

νq(p2−1)=α2

· · ·
∑

pj≤x/p1···pj−1

pj 6=p1,...,pj−1

νq(pj−1)=αj

∑
m≤x/p1···pj

q-m
(t 6=p1,...,pj and t|m)⇒t6≡1 (mod q)

1, (2.2)

where t is prime. Here,

CH =

α1−1∏
k=1

1

(ak − ak+1)!
,

where (a1, . . . , aα1) is the conjugate partition of (α1, . . . , αj).

4



Proof. First, notice that∑
p1≤x

νq(p1−1)=α1

∑
p2≤x/p1
p2 6=p1

νq(p2−1)=α2

· · ·
∑

pj≤x/p1···pj−1

pj 6=p1,...,pj−1

νq(pj−1)=αj

∑
m≤x/p1···pj

q-m
(t 6=p1,...,pj and t|m)⇒t6≡1 (mod q)

1,

counts the number of natural numbers n = p1p2 · · · pjm up to x where p1, . . . , pj are primes and the

following two statements hold:

• for each i = 1, 2, . . . , j, pi ≡ 1 (mod qαi ) and pi 6≡ 1 (mod qαi+1),

• m is an integer not divisible by q such that if t is a prime divisor of m, with t 6= p1, . . . , pj , then q

does not divide t− 1.

Comparing this sum to our above conditions on D0, we can see that the only difference between it and D0,

is that, in this sum, we count the ‘good’ n up to x multiple times if the αi are not distinct. So, every time we

get a sequence of m repeated α values, we need to multiply by 1/m! to ensure that we only count distinct

values of n.

Notice that for each k = 1, 2, . . ., by definition of conjugate partitions, ak − ak+1 ≥ 0 since

{` : α` > k + 1} ⊂ {` : α` > k}. For any k, such that ak − ak+1 is equal to 0 or 1, 1/(ak − ak+1)! = 1,

and thus, multiplying the above nested sum by 1/(ak − ak+1)! will have no effect. Now, notice that,

ak − ak+1 = m > 1 for some k,m if and only if there is some 1 ≤ i < j such that αi = αi+1 = · · · =

αi+m−1 = k + 1. Thus, if we have m repeated α values all equal to k + 1, we need to multiply by

1/(ak − ak+1)! = 1/m!.

The above proposition follows from here.

2.2 Selberg–Delange Method

We will start by introducing the version of the Selberg–Delange Method given in [5]. In order to do so, we

will first define two important properties of Dirichlet series.

Definition 2.2.1 (From [5]). Let z ∈ C, c0 > 0, 0 < δ ≤ 1,M > 0. We say that a Dirichlet series F (s) has

the property P(z; c0, δ,M) if the Dirichlet seriesG(s; z) := F (s)ζ(s)−z may be continued as a holomorphic

function for σ ≥ 1− c0/(1 + log+ |τ |), and, in this domain, satisfies the bound |G(s; z)| ≤M(1 + |τ |)1−δ .

Note that, for τ > 0, log+ |τ | = max{0, log τ}.

Definition 2.2.2 (From [5]). Let z ∈ C, c0 > 0, 0 < δ ≤ 1,M > 0. We say that a Dirichlet series

F (s) =
∑
n≥1 ann

−s has the property T(z, w; c0, δ,M) if F (s) has property P(z; c0, δ,M) and if there

exists a sequence of non-negative real numbers {bn}∞n=1 such that |an| ≤ bn(n = 1, 2, . . .), and the series∑
n≥1 bnn

−s satisfies P(w; c0, δ,M) for some complex number w.

5



Now, we can state a version of the Selberg–Delange method, adapted from Theorem 5.2 of [5], by setting

N = 0.

Theorem 2.2.3 (Selberg–Delange Method). Let F (s) :=
∑
n≥1 ann

−s be a Dirichlet series that has the

property T(z, w; c0, δ,M). Then, for x ≥ 3, A > 0, |z| ≤ A, and |w| ≤ A, we have∑
n≤x

an = x(log x)z−1
{
G(1; z)

Γ(z)
+O

(
M

log x

)}
,

where G is as in Definition 2.2.1 and Γ is the Euler Gamma function.

Proof. Let F (s) :=
∑
n≥1 ann

−s be a Dirichlet series that has the property T(z, w; c0, δ,M), x ≥ 3,

A > 0, |z| ≤ A, and |w| ≤ A. Then, setting N = 0 in Theorem 5.2 of [5], we get that∑
n≤x

an = x(log x)z−1
{

λ0(z)

(log x)0
+O(MR0(x))

}

= x(log x)z−1
{
λ0(z) +O(MR0(x))

}
.

Now, by Equation (5.16) of [5], we have that

R0(x) = e−c1
√
log x +

1

log x
,

where c1 is some positive constant. Then, since e−c1
√
log x � 1/ log x, it follows that R0(x) � 1/ log x,

and thus, ∑
n≤x

an = x(log x)z−1
{
λ0(z) +O

(
M

log x

)}
.

Now, by Equation (5.13) in [5], we have that

λ0(z) =
1

Γ(z)

∑
h+j=0

1

h!j!
G(h)(1; z)γj(z) =

G(1; z)γ0(z)

Γ(z)
,

where the γj are entire functions of z, that satisfy

Z(s; z) =
∑
j≥0

1

j!
γj(z)(s− 1)j ,

on the disk |s− 1| < 1 where

Z(s; z) =
((s− 1)ζ(s))z

s
.

Then, since Z(1; z) = 1 (p.279 of [5]), we can see that,

1 = Z(1; z) =
1

0!
γ0(z) = γ0(z).

6



Therefore, λ0(z) = G(1; z)/Γ(z), and thus,∑
n≤x

an = x(log x)z−1
{
G(1; z)

Γ(z)
+O

(
M

log x

)}
.

In this section, our goal is to find an asymptotic formula for the following sum:∑
m≤x/p1···pj

q-m
(t6=p1,...,pj and t|m)⇒t 6≡1 (mod q)

1,

where t is prime.

However, in order to achieve this goal, we will start by using the Selberg Delange theorem to find an

asymptotic formula for: ∑
n≤x

p|n⇒p 6≡1 (mod q)

1.

First, as setup, let

an =

{
1, if p 6≡ 1 (mod q) for all p | n
0, otherwise

and let F (s) :=
∑∞
n=1 ann

−s. Then, since an is a multiplicative function of n, we can write F as an Euler

product in the following way: F (s) =
∏
p 6≡1 (mod q) (1− p−s)−1. Now, let G(s; z) := F (s)ζ(s)−z . In order

to find an asymptotic formula for ∑
n≤x

p|n⇒p 6≡1 (mod q)

1,

we need the following series of three propositions.

Proposition 2.2.4. Let A(s) = F (s)q−1ζ(s)−(q−1)
∏
χ (mod q) L(s, χ). Then, A(s) can be analytically con-

tinued to σ > 1/2, where σ is the real part of s.

Proof. First, we can replace F (s), ζ(s), and L(s, χ) by their Euler products in the definition of A(s) to get

A(s) =
∏

p 6≡1 (mod q)

(
1− 1

ps

)−(q−1)∏
p

(
1− 1

ps

)q−1 ∏
χ (mod q)

∏
p

(
1− χ(p)

ps

)−1

=
∏

p≡1 (mod q)

(
1− 1

ps

)q−1 ∏
χ (mod q)

∏
p

(
1− χ(p)

ps

)−1

7



So, we can write,

A(s) =
∏
p

gp

(
1

ps

)
where

gp(x) =

{
(1− x)q−1 , if p ≡ 1 (mod q)

1 , if p 6≡ 1 (mod q)

} ∏
χ (mod q)

(1− χ(p)x)−1.

By the generalized binomial theorem, (1 − x)q−1 = 1 − (q − 1)x + O(x2), and (1 − χ(p)x)−1 =

1 + χ(p)x+O(x2). From this, we get that,

∏
χ (mod q)

(1− χ(p)x)−1 =
∏

χ (mod q)

(1 + χ(p)x+O(x2)) = 1 +

 ∑
χ (mod q)

χ(p)

x+O(x2).

By the orthogonality relations for χ, we know that

∑
χ (mod q)

χ(p) =

{
q − 1, if p ≡ 1 (mod q),

0, if p 6≡ 1 (mod q).

Thus, ∏
χ (mod q)

(1− χ(p)x)−1 =

{
1 + (q − 1)x+O(x2), if p ≡ 1 (mod q),

1 +O(x2), if p 6≡ 1 (mod q).

So,

gp(x) =

{
1− (q − 1)x+O(x2), if p ≡ 1 (mod q)

1, if p 6≡ 1 (mod q)

}{
1 + (q − 1)x+O(x2), if p ≡ 1 (mod q)

1 +O(x2), if p 6≡ 1 (mod q)

}
= 1 +O(x2),

and thus,

A(s) =
∏
p

(
1 +O

(
1

p2s

))
, (2.3)

which converges for σ > 1/2.

Proposition 2.2.5. LetA(s) be defined as in Proposition 2.2.4. Then,G(s, 1−1/(q−1)) can be analytically

continued to s = 1.

Proof. First, notice that by rearranging the functions in the definition of A(s), we get that

F (s)q−1 = A(s)ζ(s)q−1
∏

χ (mod q)

L(s, χ)−1. (2.4)

8



Consider L(s, χ0)−1, where χ0 is the principal Dirichlet character modulo q. Notice that we can use alge-

braic manipulations to rewrite L(s, χ0)−1 in the following way:

L(s, χ0)−1 =
∏
p

(
1− χ0(p)

ps

)
=
∏
p 6=q

(
1− 1

ps

)
=

(
1− 1

qs

)−1∏
p

(
1− 1

ps

)

=

(
1− 1

qs

)−1
ζ(s)−1. (2.5)

Therefore, from equation (2.4), we have that

F (s)q−1 = A(s)ζ(s)q−1
(

1− 1

qs

)−1
ζ(s)−1

∏
χ 6=χ0

L(s, χ)−1

= A(s)ζ(s)q−2
(

1− 1

qs

)−1 ∏
χ 6=χ0

L(s, χ)−1. (2.6)

Thus, since G(s; z) = F (s)ζ(s)−z , we have that,

G (s; 1− 1/(q − 1)) = F (s)ζ(s)−(q−2)/(q−1)

= F (s)(q−1)/(q−1)ζ(s)−(q−2)/(q−1)

=
(
F (s)q−1ζ(s)−(q−2)

)1/(q−1)
=

A(s)ζ(s)q−2
(

1− 1

qs

)−1 ∏
χ 6=χ0

L(s, χ)−1ζ(s)−(q−2)

1/(q−1)

=

A(s)

(
1− 1

qs

)−1 ∏
χ 6=χ0

L(s, χ)−1

1/(q−1)

. (2.7)

Note that the analytic continuation of G(s; 1− 1/(q − 1)) to s = 1 follows from equations (2.3) and (2.7),

since L(1, χ) is non-zero for χ non-principal.

Before stating Proposition 2.2.7, we need the following definition.

Definition 2.2.6. Let m be an integer and let n be a positive integer such that (m,n) = 1. Then, we say that

k is the order of m modulo n if k is the smallest positive integer such that mk ≡ 1 (mod n).

Proposition 2.2.7. For a prime number p, let kp be the order of p modulo q. Then,

G(1; 1− 1/(q − 1)) = (1− 1/q)
−1/(q−1) ∏

p 6=q
p 6≡1 (mod q)

(1− 1/pkp)−1/kp
∏
χ 6=χ0

L(1, χ)−1/(q−1).

9



Proof. First, from equation (2.6), we get that

A(s) = F (s)q−1ζ(s)−(q−2)
(

1− 1

qs

) ∏
χ 6=χ0

L(s, χ)

= (1− 1/qs)
∏

p 6≡1 (mod q)

(1− 1/ps)
−(q−1)∏

p

(1− 1/ps)
q−2 ∏

χ 6=χ0

(∏
p

(1− χ(p)/ps)
−1

)
.

Now, when p ≡ 1 (mod q), the local factor is

(1− 1/ps)
q−2 ∏

χ 6=χ0

(1− χ(p)/ps)
−1

= (1− 1/ps)
q−2

(1− 1/ps)
−(q−2)

= 1.

Similarly, when p = q, the local factor is

(1− 1/ps) (1− 1/ps)
−(q−1)

(1− 1/ps)
q−2 ∏

χ 6=χ0

(1− χ(p)/ps)
−1

=
∏
χ 6=χ0

(1− 0/ps)
−1

= 1.

For all other p, the local factor is

(1− 1/ps)
−(q−1)

(1− 1/ps)
q−2 ∏

χ 6=χ0

(1− χ(p)/ps)
−1

= (1− 1/ps)
−1 ∏

χ 6=χ0

(1− χ(p)/ps)
−1

=
∏

χ (mod q)

(1− χ(p)/ps)
−1
.

Now, by the generalized binomial theorem, we have that (1− χ(p)/ps)
−1

= 1 + χ(p)/ps +O(1/p2s).

So, ∏
χ (mod q)

(
1− χ(p)p−s

)−1
=

∏
χ (mod q)

(1 + χ(p)p−s +O(p−2s))

= 1 +

 ∑
χ (mod q)

χ(p)

 p−s +O(p−2s))

= 1 +O(p−2s),

as expected since A(s) converges for σ > 1/2 by Proposition 2.2.4.

Thus, we have that

A(s) =
∏
p 6=q

p 6≡1 (mod q)

∏
χ (mod q)

(1− χ(p)/ps)−1,

where A(s) converges for σ > 1/2, and hence,

A(1) =
∏
p 6=q

p 6≡1 (mod q)

∏
χ (mod q)

(1− χ(p)/p)−1,

10



is convergent.

Now, we will evaluate the innermost product. First, letting x = 1/p, we get that∏
χ (mod q)

(1− χ(p)/p)−1 =
∏

χ (mod q)

(1− χ(p)x)−1.

For any prime p, let kp be the order of p modulo q. Then, since each kth
p root of unity occurs exactly

(q − 1)/kp times among the values χ(p) as χ varies over all Dirichlet characters modulo q, we have that

∏
χ (mod q)

(1− χ(p)x)−1 =

kp∏
j=1

(1− e2πij/kpx)−(q−1)/kp .

Now, since

xkp − 1 =

kp∏
j=1

(x− e2πij/kp),

we have that,

1− 1/xkp =

kp∏
j=1

(1− e2πij/kp/x).

Thus, replacing x by 1/x, we see that

1− xkp =

kp∏
j=1

(1− e2πij/kpx).

Thus,
kp∏
j=1

(1− e2πij/kpx)−(q−1)/kp = (1− xkp)−(q−1)/kp .

So, it follows that, ∏
χ (mod q)

(1− χ(p)x)−1 = (1− xkp)−(q−1)/kp ,

and thus,

A(1) =
∏
p 6=q

p 6≡1 (mod q)

(1− 1/pkp)−(q−1)/kp .

Now, setting s = 1 in

G (s; 1− 1/(q − 1)) =

A(s)

(
1− 1

qs

)−1 ∏
χ 6=χ0

L(s, χ)−1

1/(q−1)

11



we get that

G (1; 1− 1/(q − 1)) = A(1)1/(q−1) (1− 1/q)
−1/(q−1) ∏

χ 6=χ0

L(1, χ)−1/φ(q)

= (1− 1/q)
−1/(q−1) ∏

p 6=q
p 6≡1 (mod q)

(1− 1/pkp)−(q−1)/kp
∏
χ 6=χ0

L(1, χ)−1/(q−1)

The following corollary to the Selberg–Delange Theorem gives an asymptotic formula for the desired

sum.

Corollary 2.2.8. Let p be a prime number. Then, for x ≥ 3,∑
n≤x

p|n⇒p 6≡1 (mod q)

1 = Bqx(log x)−1/(q−1) +O(x(log x)−1−1/(q−1)),

where

Bq =
G(1; 1− 1/(q − 1))

Γ(1− 1/(q − 1))
,

and G(1; 1− 1/(q − 1)) is as in Proposition 2.2.7.

Proof. We will start by establishing some of the parameters required for the Selberg–Delange Theorem.

First, let z = 1− 1/(q − 1) and recall that

G(s; 1− 1/(q − 1)) = A(s)1/(q−1)
(

1− 1

qs

)−1/(q−1) ∏
χ 6=χ0

L(s, χ)−1/(q−1).

Note that A(s) converges for σ > 1/2 and (1− 1/qs)
−1/(q−1) is well-defined for σ > 0. Now, from The-

orem 11.3 of [4], it follows that if none of the Dirichlet characters χ (mod q) have an exceptional zero, then

there exists an absolute constant c > 0 such thatL(s, χ) has no zeros in the region σ > 1− c/ log(q(|τ |+ 4)).

Note that since log+ |τ | and log(|τ |+4) differ by at most log(5), it follows that there exists a constant c > 0

such that L(s, χ) has no zeros in the region σ > 1− c/ log+(q|τ |). Now, since

1− c/ log+(q|τ |) = 1− c/ log q

1 + log+ |τ |/ log q
< 1− c/ log q

1 + log+ |τ |
,

we have that if L(s, χ) has no zeros in the region σ > 1 − c/ log q
1+log+ |τ |/ log q , then, L(s, χ) has no zeros in

the region σ > 1 − c/ log q
1+log+ |τ | , and thus,

∏
χ 6=χ0

L(s, χ)−1/(q−1) will be analytic for σ > 1 − c/ log q
1+log+ |τ | .

Now, suppose that some Dirichlet character χmodulo q has an exceptional zero, β ∈ R, 1−c/ log+(q|τ |) <
β < 1. Then, we have that L(s, χ) has no zeros in the region σ > 1 − (1 − β)/(1 + log+ |τ |). Indeed, if

σ > 1− (1− β)/(1 + log+ |τ |), then 1− β > (1− β)/(1 + log+ |τ |) > 1− σ, and thus, σ > β.

12



Therefore, putting everything together, we can see that G(s; 1 − 1/(q − 1)) is analytic in the region

σ > 1 − c0
1+log+ |τ | , where c0 = c/ log q, where c is the constant defined in Theorem 11.3 of [4], if every

Dirichlet character χ (mod q) has no exceptional zero, and c0 = 1− β if there is some Dirichlet character χ

modulo q such that χ has an exceptional zero β.

Now, sinceA(s) converges for σ > 1/2, we have that |A(s)|1/(q−1) � 1 in the region σ > 1− c0
1+log+ |τ | .

Similarly, since (1 − 1/qs)−1/(q−1) is well-defined for σ > 0, (1 − 1/qs)−1/(q−1) � 1 in the region

σ > 1− c0
1+log+ |τ | . Therefore, we have that

|G(s; 1− 1/(q − 1))| = |A(s)|1/(q−1)
∣∣∣∣1− 1

qs

∣∣∣∣−1/(q−1) ∏
χ 6=χ0

|L(s, χ)|−1/(q−1) �
∏
χ 6=χ0

|L(s, χ)|−1/(q−1).

Now, by Theorem 11.4 of [4], we know that L(s;χ)−1 � log(q(|τ |+ 4)). From this, it follows that∏
χ 6=χ0

|L(s, χ)|−1/(q−1) �
∏
χ 6=χ0

| log(q(|τ |+ 4))|1/(q−1) = | log(q(|τ |+ 4))|1−1/(q−1).

Fix ε > 0. Then, since

lim
|τ |→∞

log(q(|τ |+ 4))

(1 + |τ |)ε
= 0,

we have that log(q(|τ |+ 4)) = o((1 + |τ |)ε), and thus, log(q(|τ |+ 4))� (1 + |τ |)ε.
Therefore, we get that

|G(s; 1− 1/(q − 1))| �
∏
χ 6=χ0

|L(s, χ)|−1/(q−1) � (log(q(|τ |+ 4)))1−1/(q−1) � (1 + |τ |)ε(1−1/(q−1)).

Since this is true for arbitrarily small positive values of ε, it follows that |G(s; 1− 1/(q − 1))| � (1 + |τ |)1−δ ,
for 0 < δ ≤ 1, and thus that, |G(s; 1− 1/(q − 1))| ≤M(1 + |τ |)1−δ , for some M > 0.

So, at this point, we can apply Theorem 2.2.3 with z = 1− 1/(q − 1) to get that, for x ≥ 3,∑
n≤x

an = x(log x)−1/(q−1)
{
G(1; 1− 1/(q − 1)

Γ(1− 1/(q − 1))
+O

(
M

log x

)}

= x(log x)−1/(q−1)
{
Bq +O

(
1

log x

)}
= Bqx(log x)−1/(q−1) +O

(
x(log x)−1−1/(q−1)

)
.

Therefore, for x ≥ 3,∑
n≤x

p|n⇒p6≡1 (mod q)

1 = Bqx(log x)−1/(q−1) +O(x(log x))−1−1/(q−1).

13



The following proposition will be useful in evaluating the innermost sum of equation (2.2).

Corollary 2.2.9. Let x be a real number and let p1, . . . , pj be distinct prime numbers such that x/p1 · · · pj ≥
3 and q 6= pi for any 1 ≤ i ≤ j. Then,

∑
m≤x/p1···pj

q-m
(t 6=p1,...,pj and t|m)⇒t6≡1 (mod q)

1 = Bq
x

p1 · · · pj

(
log

x

p1 · · · pj

)−1/(q−1)(
1− 1

q

) j∏
i=1

(
1− 1

pi

)−1

+O

(
x

p1 · · · pj

(
log

x

p1 · · · pj

)−1−1/(q−1))
,

where t is prime.

Proof. We will start by rewriting the sum as follows,∑
m≤x/p1···pj

q-m
(t 6=p1,...,pj and t|m)⇒t6≡1 (mod q)

1 =
∑

m≤x/p1···pj

bm,

where

bm =

{
1, if q - m and, for t 6= p1, . . . , pj , we have t | m⇒ t 6≡ 1 (mod q),

0, otherwise .

Define F2(s) =
∑∞
m=1 bmm

−s. Then,

F2(s) =

∞∑
m=1

bmm
−s =

∏
r prime

(
1 +

br
rs

+
br2

r2s
+ · · ·

)

=

j∏
i=1

(
1 +

1

psi
+

1

p2si
+ · · ·

) ∏
r prime
r 6=q

r 6≡1 (mod q)

(
1 +

1

rs
+

1

r2s
+ · · ·

)

=

j∏
i=1

(
1− 1

psi

)−1 ∏
r prime
r 6=q

r 6≡1 (mod q)

(
1− 1

rs

)−1

=

(
1− 1

qs

) j∏
i=1

(
1− 1

psi

)−1 ∏
r prime

r 6≡1 (mod q)

(
1− 1

rs

)−1
.

Now, define G2(s; z) = F2(s)ζ(s)−z . Our next aim is to find an explicit formula for G2. We will start
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by defining A2(s) such that F2(s)q−1 = A2(s)ζ(s)q−1
∏
χ (mod q) L(s, χ)−1. Then,

A2(s) = F2(s)q−1ζ(s)−(q−1)
∏

χ (mod q)

L(s, χ)

=

(
1− 1

qs

)q−1 j∏
i=1

(
1− 1

psi

)−(q−1) ∏
r prime

r≡1 (mod q)

(
1− 1

rs

)q−1 ∏
χ (mod q)

 ∏
r prime

(
1− χ(r)

rs

)−1
=

(
1− 1

qs

)q−1 j∏
i=1

(
1− 1

psi

)−(q−1)
A(s),

where A(s) is defined as in the proof of Proposition 2.2.4. Thus, since A(s) converges for σ > 1/2, it

follows that A2(s) also converges for σ > 1/2.

Now recall from equation (2.5) that L(s, χ0)−1 = ζ(s)−1(1− q−s)−1. Therefore, we have that

F2(s)q−1 = A2(s)ζ(s)q−1ζ(s)−1
(

1− 1

qs

)−1 ∏
χ 6=χ0

L(s, χ)−1

=

(
1− 1

qs

)q−1 j∏
i=1

(
1− 1

psi

)−(q−1)
A(s)ζ(s)q−2

(
1− 1

qs

)−1 ∏
χ6=χ0

L(s, χ)−1.

Then,

G2(s; 1− 1/(q − 1)) = F2(s)ζ(s)−(q−2)/(q−1)

= (F2(s)(q−1)ζ(s)−(q−2))1/(q−1)

=

(1− 1

qs

)q−1 j∏
i=1

(
1− 1

psi

)−(q−1)
A(s)

(
1− 1

qs

)−1 ∏
χ 6=χ0

L(s, χ)−1

1/(q−1)

=

(
1− 1

qs

) j∏
i=1

(
1− 1

psi

)−1
G(s; 1− 1/(q − 1)),

where G is defined as in Proposition 2.2.7.

Then, since x ≥ 3p1 · · · pj , we can apply Theorem 2.2.3 with z = (q − 2)/(q − 1) to get:

∑
m≤x/p1···pj

bm =
x

p1 · · · pj

(
log

x

p1 · · · pj

)−1/(q−1)(
G2(1; 1− 1/(q − 1))

Γ(1− 1/(q − 1))

)

+O

(
x

p1 · · · pj

(
log

x

p1 · · · pj

)−1−1/(q−1))
.

Now, since

G2(1; 1− 1/(q − 1)) =

(
1− 1

q

) j∏
i=1

(
1− 1

pi

)−1
G(1; 1− 1/(q − 1)),
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it follows that, ∑
m≤x/p1···pj

q-m
t6=p1,...,pj and t|m⇒t6≡1 (mod q)

1

= Bq
x

p1 · · · pj

(
log

x

p1 · · · pj

)−1/(q−1)(
1− 1

q

) j∏
i=1

(
1− 1

pi

)−1
+O

(
x

p1 · · · pj

(
log

x

p1 · · · pj

)−1−1/(q−1))
.

2.3 Other Important Tools

We will start this section by giving a lemma and a proposition that will be very useful throughout this thesis.

Lemma 2.3.1. Let δ > 0. Then, for x > y1+δ ,

log x�δ log
x

y
.

Proof. First, since x > y1+δ , we have that x1/δ > y(1+δ)/δ . Now, notice that we can rewrite x1/δ as

follows:

x1/δ = x1/δ+1−1 = x(1+δ)/δ−1 = x(1+δ)/δ/x.

So, we have that x(1+δ)/δ/x > y(1+δ)/δ. From here, we get the following biconditional statements:

x(1+δ)/δ/x > y(1+δ)/δ ⇐⇒ x < (x/y)(1+δ)/δ.

Thus, it follows that

log(x) <
1 + δ

δ
log

(
x

y

)
�δ log

(
x

y

)
.

Proposition 2.3.2. Let y be a positive real number. Then, for x > y2,(
log x

y

)−α
= (log x)−α +Oα

(
(log x)−1−α log y

)
.

Proof. First, we can see that (
log x

y

)−α
= (log x− log y)−α

= (log x)−α
(

1− log y

log x

)−α
.
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Now, let f(t) = (1 − t)−α. Then, since f(0) = 1, f is differentiable at t = 0 and f is continuous for

|t| ≤ 1/2, it follows that f(t) = 1 + Oα(t) for |t| ≤ 1/2. Since x > y2, we have that log y/ log x < 1/2.

So, (
1− log y

log x

)−α
= 1 +Oα

(
log y

log x

)
.

Substituting this back in to our above product, we get that(
log x

y

)−α
= (log x)−α

(
1 +Oα

(
log y

log x

))
= (log x)−α +Oα

(
(log x)−1−α log y

)
.

The next seven propositions lead to Propositions 2.3.11 and 2.3.12 which will both be useful in evaluating

the nested sum in equation (2.2).

Before stating the next proposition we need the following definition.

Definition 2.3.3. Let α be a real number such that α 6∈ N. Then,

Hα(z) = −
∞∑
n=0

α

n− α
zn.

Note that, by the ratio test, Hα(z) converges for |z| < 1.

Proposition 2.3.4. Let α > 0 such that α 6∈ N and let x > 1. Then, for u in the domain (1, x),∫
log(x/u)−α

(
1

u log u

)
du =

Hα(1− log u/ log x)− 1

α(log(x/u))α
+ C.

Proof. We will prove the above proposition by showing that

d

du

[
Hα(1− log u/ log x)− 1

α(log(x/u))α

]
= log(x/u)−α

(
1

u log u

)
.

Let z = 1− log u/ log x. Then, z log x = log x− log u = log(x/u), and thus,

d

du

[
Hα(1− log u/ log x)− 1

α(log(x/u))α

]
=

d

dz

[
Hα(z)− 1

α(z log x)α

](
dz

du

)
.

Since 1 < u < x, we have that 0 < 1 − log u/ log x < 1, and thus, |z| = |1 − log u/ log x| < 1. So, z is

in the region of convergence of Hα(z), which allows us to differentiate the infinite sum term by term in the
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following computation. Using quotient rule to differentiate the first part, we see that

d

dz

[
Hα(z)− 1

α(z log x)α

]
=

d

dz

[
−
∑∞
n=1

α
n−αz

n

α(z log x)α

]

=
−α(z log x)α

∑∞
n=1

nα
n−αz

n−1 + α2(log x)αzα−1
∑∞
n=1

α
n−αz

n

α2(z log x)2α

=
−α2(log x)αzα

[∑∞
n=1

n
n−αz

n−1 −
∑∞
n=1

α
n−αz

n−1
]

α2(z log x)2α

=
−
∑∞
n=1 z

n−1

(z log x)α

=
−
∑∞
n=0 z

n

(z log x)α
.

Then, since
1

1− z
=

∞∑
n=0

zn,

we have that
d

dz

[
Hα(z)− 1

α(z log x)α

]
= − 1

(1− z)(z log x)α
.

Since z = 1− log u/ log x, we can see that

d

dz

[
Hα(z)− 1

α(z log x)α

]
= − 1

(log u/ log x)(log(x/u))α
= − log x

(log u)(log(x/u))α
,

and
dz

du
= − 1

u log x
.

Therefore, putting everything together, we get the following:

d

du

[
Hα(1− log u/ log x)− 1

α(log(x/u))α
+ C

]
=

d

dz

[
Hα(z)− 1

α(z log x)α

](
dz

du

)
=

(
− log x

log u(log(x/u))α

)(
− 1

u log x

)
=

1

u(log u)(log(x/u))α

Thus, we have shown that

d

du

[
Hα(1− log u/ log x)− 1

α(log(x/u))α
+ C

]
= (log(x/u))−α

(
1

u(log u)

)
,

which proves the proposition.
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Proposition 2.3.5. Let α > 0 such that α 6∈ N. For y ≥ 9,∫ √y
2−

log(y/u)−α
(

1

u log u

)
du =

log log y

(log y)
α +Oα

(
1

(log y)α

)
.

Proof. First, by Proposition 2.3.4, we have that∫ √y
2−

log(y/u)−α
(

1

u log u

)
du =

Hα(1− log u
log y )− 1

α(log(y/u))α

∣∣∣∣
√
y

2−

=
Hα

(
1− log y

2 log y

)
− 1

α
(
1
2 log y

)α −
Hα

(
1− log 2

log y

)
− 1

α(log(y/2))α

=
Hα

(
1
2

)
− 1

α
2α (log y)α

−
Hα

(
1− log 2

log y

)
− 1

α(log(y/2))α
.

We will start by simplifying the minuend of the above subtraction. By definition of Hα, we have that

Hα

(
1

2

)
− 1 = −

∞∑
n=1

α

n− α

(
1

2

)n
.

Now, since 1/2 is inside the region of convergence for Hα(z), we can see that this sum converges. So, we

have that,

Hα

(
1

2

)
− 1�α 1,

and thus,
Hα

(
1
2

)
− 1

α
2α (log y)α

= Oα

(
1

(log y)α

)
.

Now, we will find an asymptotic formula for the subtrahend. To do this, let z = 1 − log 2/(log y) and

consider Hα(z)− 1− α log(1− z). Rewriting Hα and log(1− z) as sums and simplifying, we get,

Hα(z)− 1− α log(1− z) = −
∞∑
n=1

α

n− α
zn − α

∞∑
n=1

(−1)n+1

n
(−z)n

= −α
∞∑
n=1

1

n− α
zn + α

∞∑
n=1

1

n
zn

= α

∞∑
n=1

−α
n(n− α)

zn

= −α2
∞∑
n=1

1

n(n− α)
zn.

Since y ≥ 9, we have that |z| = |1− log 2/ log y| < 1, and so,

−α2
∞∑
n=1

1

n(n− α)
zn ≤

∣∣∣∣∣−α2
∞∑
n=1

1

n(n− α)
zn

∣∣∣∣∣ ≤ α2
∞∑
n=1

∣∣∣∣ 1

n(n− α)

∣∣∣∣�α 1.
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It follows that,

Hα(z)− 1− α log(1− z)�α 1,

and thus,

Hα(1− log 2/ log y)− 1 = α log(log 2/ log y) +Oα(1).

Therefore, we have that:

Hα

(
1− log 2

log y

)
− 1

α(log(y/2))α
=
α log(log 2/ log y) +Oα(1)

α(log(y/2))α

=
log log 2− log log y

(log(y/2))α
+Oα

(
1

(log(y/2))α

)
= − log log y

(log(y/2))α
+Oα

(
1

(log(y/2))α

)
.

Now, since y ≥ 3 > 21+1/2, we can apply Lemma 2.3.1 to the above error term, to get

Hα

(
1− log 2

log y

)
− 1

α(log(y/2))α
= − log log y

(log(y/2))α
+Oα

(
1

(log y)α

)
.

Also, since y ≥ 9 > 22, we can apply Proposition 2.3.2 to the denominator of the above main term, to

get

Hα

(
1− log 2

log y

)
− 1

α(log(y/2))α
= − log log y

(log y)
α +O

(
log 2 log log y

(log y)1+α

)
+Oα

(
1

(log y)α

)
= − log log y

(log y)
α +O

(
log log y

(log y)1+α

)
+Oα

(
1

(log y)α

)
= − log log y

(log y)
α +Oα

(
1

(log y)α

)
.

Putting everything together, we can see that,∫ √y
2−

log(y/u)−α
(

1

u log u

)
du =

log log y

(log y)
α +Oα

(
1

(log y)α

)
.

Proposition 2.3.6. Let α > 0 such that α 6∈ N, let β ∈ N, and let y ≥ 9. Then,

∑
p≤√y

νq(p−1)=β

1

p

(
log

y

p

)−α
=

log log y

qβ (log y)
α +Oα

(
1

(log y)α

)
.
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Proof. Define M(x) as follows:

M(x) =
∑
p≤x

νq(p−1)=β

1/p =
∑
p≤x

p≡1 (mod qβ )
p 6≡1 (mod qβ+1)

1/p

=
∑
p≤x

p≡1 (mod q)β

1/p−
∑
p≤x

p≡1 (mod qβ+1)

1/p.

Then, using Mertens’ Theorem [4, Corollary 4.12], we can simplify M(x) as follows:

M(x) =

(
1

φ(qβ)
− 1

φ(qβ+1)

)
log log(x) + cqβ − cqβ+1 +O(1/ log x)

=
1

qβ
log log(x) + c+O(1/ log x)

where c is a constant depending on qβ . Then, we have that

∑
p≤√y

νq(p−1)=β

1

p

(
log

y

p

)−α
=

∫ √y
2−

log
(y
u

)−α
d(M(u))

=

∫ √y
2−

log
(y
u

)−α
d

(
1

qβ
log log u+ c+O

(
1

log u

))
=

1

qβ

∫ √y
2−

log
(y
u

)−α( du

u log u

)
+

∫ √y
2−

log
(y
u

)−α
d

(
O

(
1

log u

))
.

By Proposition 2.3.5, we know that∫ √y
2−

log(y/u)−α
(

1

u log u

)
du =

log log y

(log y)
α +Oα

(
1

(log y)α

)
,

and thus,

∑
p≤√y

νq(p−1)=β

1

p

(
log

y

p

)−α
=

log log y

qβ (log y)
α +Oα

(
1

(log y)α

)
+

∫ √y
2−

log
(y
u

)−α
d

(
O

(
1

log u

))
.
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Now, we will evaluate the remaining integral, using Riemann-Stieltjes integration:∫ √y
2−

log (y/u)
−α

d

(
O

(
1

log u

))
=
(

log
(y
u

))−α
O

(
1

log u

) ∣∣∣∣
√
y

2−

−
∫ √y
2−

O

(
1

log u

)(
−α

(
log
(y
u

))−α−1(u
y

)(
− y

u2

))
du

=

(
1

2
log y

)−α
O

(
2

log y

)
−
(

log
(y

2

))−α
O

(
1

log 2

)
+O

(∫ √y
2−

log(y/u)−α−1
(

1

u log u

)
du

)

= O

(
1

(log y)1+α

)
+O

(
1

(log (y/2))
α

)
+O

(∫ √y
2−

log(y/u)−α−1
(

1

u log u

)
du

)
.

By Lemma 2.3.1, since y ≥ 9, we have that

1

log(y/2)
� 1

log y
.

Therefore, we have that∫ √y
2−

log (y/u)
−α

d

(
O

(
1

log u

))
= O

(
1

(log y)1+α

)
+O

(
1

(log y)
α

)
+O

(∫ √y
2−

log(y/u)−α−1
(

1

u log u

)
du

)

= O

(
1

(log y)
α

)
+O

(∫ √y
2−

log(y/u)−α−1
(

1

u log u

)
du

)
.

Now, by Proposition 2.3.5, we have that∫ √y
2−

log(y/u)−α−1
(

1

u log u

)
du =

log log y

(log y)
1+α +Oα

(
1

(log y)1+α

)
= Oα

(
log log y

(log y)
1+α

)
.

Thus, we get that∫ √y
2−

log (y/u)
−α

d

(
O

(
1

log u

))
= O

(
1

(log y)
α

)
+Oα

(
log log y

(log y)
1+α

)

= Oα

(
1

(log y)
α

)
.
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Therefore, it follows that

∑
p≤√y

νq(p−1)=β

1

p

(
log

y

p

)−α
=

log log y

qβ (log y)
α +Oα

(
1

(log y)α

)
.

Proposition 2.3.7. Let α > 0 such that α 6∈ N. For y ≥ 9,∫ y/3

√
y

log(y/u)−α
(

1

u log u

)
du = O

(
1

(log y)α

)
+O

(
1

log y

)
.

Proof. First, by Proposition 2.3.4, we have that∫ y/3

√
y

log(y/u)−α
(

1

u log u

)
du =

Hα(1− log u
log y )− 1

α(log(y/u))α

∣∣∣∣y/3√
y

=
Hα

(
1− log(y/3)

log y

)
− 1

α(log 3)α
−
Hα

(
1− log y

2 log y

)
− 1

α
(
1
2 log y

)α
=
Hα

(
log 3
log y

)
− 1

α(log 3)α
−
Hα

(
1
2

)
− 1

α
2α (log y)α

. (2.8)

As seen in the proof of Proposition 2.3.5,

Hα

(
1
2

)
− 1

α
2α (log y)α

= O

(
1

(log y)α

)
.

Now, we will simplify the minuend of the right-hand side of equation (2.8). By definition of Hα, we

have that

Hα(log 3/ log y)− 1 = −
∞∑
n=1

α

n− α

(
log 3

log y

)n
.

Now, since this sum is bounded on the closed disc corresponding to log 3/ log y ≤ 1/2, we have that, for

y ≥ 9,

Hα(log 3/ log y)− 1� log 3

log y
� 1

log y
.

Putting everything together, we can see that,∫ y/3

√
y

log(y/u)−α
(

1

u log u

)
du = O

(
1

(log y)α

)
+O

(
1

log y

)
.
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Proposition 2.3.8. Let α > 0 such that α 6∈ N, let β ∈ N, and let y ≥ 9. Then,∑
√
y<p≤y/3

νq(p−1)=β

1

p

(
log

y

p

)−α
= O

(
1

(log y)α

)
+O

(
1

log y

)
.

Proof. Define M(x) as in Proposition 2.3.6. Then, we have that∑
√
y<p≤y/3

νq(p−1)=β

1

p

(
log

y

p

)−α
=

∫ y/3

√
y

log
(y
u

)−α
d(M(u))

=

∫ y/3

√
y

log
(y
u

)−α
d

(
1

qβ
log log u+ c+O

(
1

log u

))
=

1

qβ

∫ y/3

√
y

log
(y
u

)−α( du

u log u

)
+

∫ y/3

√
y

log
(y
u

)−α
d

(
O

(
1

log u

))
.

By Proposition 2.3.7, we know that∫ y/3

√
y

log(y/u)−α
(

1

u log u

)
du = O

(
1

(log y)α

)
+O

(
1

log y

)
,

and thus,∑
√
y<p≤y/3

νq(p−1)=β

1

p

(
log

y

p

)−α
= O

(
1

(log y)α

)
+O

(
1

log y

)
+

∫ y/3

√
y

log
(y
u

)−α
d

(
O

(
1

log u

))
.

Now, we will evaluate the remaining integral, using Riemann-Stieltjes integration:∫ y/3

√
y

log (y/u)
−α

d

(
O

(
1

log u

))
=
(

log
(y
u

))−α
O

(
1

log u

) ∣∣∣∣y/3√
y

−
∫ y/3

√
y

O

(
1

log u

)(
−α

(
log
(y
u

))−α−1(u
y

)(
− y

u2

))
du

= (log 3)−αO

(
1

log(y/3)

)
−
(

1

2
log y

)−α
O

(
2

log y

)
+O

(∫ y/3

√
y

log(y/u)−α−1
(

1

u log u

)
du

)

= O

(
1

log(y/3)

)
+O

(
1

(log y)1+α

)
+O

(∫ √y
2−

log(y/u)−α−1
(

1

u log u

)
du

)
.
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By Lemma 2.3.1, since y ≥ 9, we have that

1

log(y/3)
� 1

log(y)
.

Therefore, we have that∫ y/3

√
y

log (y/u)
−α

d

(
O

(
1

log u

))
= O

(
1

log y

)
+O

(
1

(log y)1+α

)

+O

(∫ y/3

√
y

log(y/u)−α−1
(

1

u log u

)
du

)

= O

(
1

log y

)
+O

(∫ y/3

√
y

log(y/u)−α−1
(

1

u log u

)
du

)
.

Now, by Proposition 2.3.7, we have that∫ y/3

√
y

log(y/u)−α−1
(

1

u log u

)
du = O

(
1

(log y)1+α

)
+O

(
1

log y

)
= O

(
1

log y

)
.

So, we get that ∫ y/3

√
y

log (y/u)
−α

d

(
O

(
1

log u

))
= O

(
1

log y

)
,

and thus, ∑
√
y<p≤y/3

νq(p−1)=β

1

p

(
log

y

p

)−α
= O

(
1

(log y)α

)
+O

(
1

log y

)
.

Proposition 2.3.9. Let α > 0 such that α 6∈ N, let β ∈ N, let y ≥ 9 and let {w1, w2, . . . , wn} be a set of

primes. Then,

∑
p≤y/3

p 6=w1,w2,...,wn
νq(p−1)=β

1

p

(
log

y

p

)−α
=

log log y

qβ (log y)
α +On

(
1

(log y)min{α,1}

)
.

Proof. First, notice that

∑
p≤y/3

p 6=w1,w2,...,wn
νq(p−1)=β

1

p

(
log

y

p

)−α
=

∑
p≤y/3

νq(p−1)=β

1

p

(
log

y

p

)−α
+O

(
n∑
i=1

1

wi

(
log

y

wi

)−α)
.
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Since, by Lemma 2.3.1 (
log

y

wi

)−α
� (log y)−α,

we have that
n∑
i=1

1

wi

(
log

y

wi

)−α
�

n∑
i=1

1

wi
(log y)−α = (log y)−α

n∑
i=1

1

wi
�n (log y)−α.

Now, to simplify the main term, we can split it up as follows∑
p≤y/3

νq(p−1)=β

1

p

(
log

y

p

)−α
=

∑
p≤√y

νq(p−1)=β

1

p

(
log

y

p

)−α
+

∑
√
y<p≤y/3

νq(p−1)=β

1

p

(
log

y

p

)−α
.

From here, we can apply Propositions 2.3.6 and 2.3.8 directly to get that∑
p≤y/3

νq(p−1)=β

1

p

(
log

y

p

)−α
=

log log y

qβ (log y)
α +O

(
1

(log y)α

)
+O

(
1

(log y)α

)
+O

(
1

log y

)
.

Therefore, we have that∑
p≤y/3

p 6=w1,w2,...,wn
νq(p−1)=β

1

p

(
log

y

p

)−α
=

log log y

qβ (log y)
α +On

(
1

(log y)min{α,1}

)
.

Proposition 2.3.10. Let α > 0 such that α 6∈ N, y ≥ 9, β ∈ N and let {w1, . . . , wn} be a set of primes.

Then, ∑
p≤y/3

p 6=w1,...,wn
νq(p−1)=β

1

p2
(log(y/p))−α � (log y)−min{α,1}.

Proof. In order to prove the proposition, we will split the sum in the following way:

∑
p≤y/3

p 6=w1,...,wn
νq(p−1)=β

1

p2
(log(y/p))−α =

∑
p≤y/3

νq(p−1)=β

1

p2
(log(y/p))−α +O

(
n∑
i=1

1

w2
i

(
log

y

wi

)−α)
.

Since, by Lemma 2.3.1 (
log

y

wi

)−α
� (log y)−α,

we have that
n∑
i=1

1

w2
i

(
log

y

wi

)−α
�

n∑
i=1

1

w2
i

(log y)−α = (log y)−α
n∑
i=1

1

w2
i

� (log y)−α.
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Then, to bound the main term, we will split it up as follows:∑
p≤y/3

νq(p−1)=β

1

p2
(log(y/p))−α =

∑
p≤√y

νq(p−1)=β

1

p2
(log(y/p))−α +

∑
√
y<p≤y/3

νq(p−1)=β

1

p2
(log(y/p))−α.

For the first sum on the right-hand side, since we are summing over primes p that are at most
√
y, we can

bound the sum as follows: ∑
p≤√y

νq(p−1)=β

1

p2
(log(y/p))−α ≤

∑
p≤√y

νq(p−1)=β

1

p2
(log(y/

√
y))−α

=

(
1

2
log y

)−α ∑
p≤√y

νq(p−1)=β

1

p2

� (log y)−α,

since the sum of 1/p2 over all primes p is convergent.

Then, we can bound the remaining sum as follows:

∑
√
y<p≤y/3

νq(p−1)=β

1

p2
(log(y/p))−α ≤ (π(y/3)− π(

√
y))

(
1

(
√
y)2

)(
log

(
y

y/3

))−α

≤ π(y/3)(1/y)(log 3)−α

� y/3

log(y/3)

(
1

y

)
� 1

log(y/3)
.

Now, since y ≤ 31+1, we can apply Lemma 2.3.1 to get that∑
√
y<p≤y/3

νq(p−1)=β

1

p2
(log(y/p))−α � 1/ log y.

Thus, we get that∑
p≤y/3

p 6=w1,...,wn
νq(p−1)=β

1

p2
(log(y/p))−α � (log y)−α + (log y)−1 � (log y)−min{α,1}.

The following two propositions will be very useful in evaluating D0.

27



Proposition 2.3.11. Let α > 0 such that α 6∈ N, let β ∈ N, let y ≥ 9 and let {w1, w2, . . . , wn} be a set of

primes. Then,

∑
p≤y/3

p 6=w1,w2,...,wn
νq(p−1)=β

1

p

(
log

y

p

)−α(
1 +O

(
1

p

))
=

log log y

qβ (log y)
α +On

(
1

(log y)min{α,1}

)
.

Proof. First, notice that we can split the sum as follows,

∑
p≤y/3

p 6=w1,w2,...,wn
νq(p−1)=β

1

p

(
log

y

p

)−α(
1 +O

(
1

p

))

=
∑
p≤y/3

p 6=w1,w2,...,wn
νq(p−1)=β

1

p

(
log

y

p

)−α
+O

( ∑
p≤y/3

p 6=w1,w2,...,wn
νq(p−1)=β

1

p2

(
log

y

p

)−α)
.

Then, we can apply Propositions 2.3.9 and 2.3.10 to get the desired result.

Proposition 2.3.12. Let α > 0 such that α 6∈ N, let β, k ∈ N, let y ≥ 9 and let {w1, w2, . . . , wn} be a set

of primes. Then,

∑
p≤y/3

p 6=w1,w2,...,wn
νq(p−1)=β

1

p

(
1 +O

(
1

p

))(
(log log(y/p))k

(log(y/p))
α +O

(
(log log y)k−1

(log(y/p))min{α,1}

))

=
(log log y)k+1

qβ logα y
+On

(
(log log y)k

(log y)min{α,1}

)
.

Proof. First, we can break the above sum into multiple sums as follows:

∑
p≤y/3

p 6=w1,w2,...,wn
νq(p−1)=β

1

p

(
1 +O

(
1

p

))(
(log log(y/p))k

(log(y/p))
α +O

(
(log log y)k−1

(log(y/p))min{α,1}

))

=
∑
p≤y/3

p 6=w1,w2,...,wn
νq(p−1)=β

(log log(y/p))k

p (log(y/p))
α +O

( ∑
p≤y/3

p 6=w1,w2,...,wn
νq(p−1)=β

(log log(y/p))k

p2 (log(y/p))
α

)

+O

( ∑
p≤y/3

p 6=w1,w2,...,wn
νq(p−1)=β

(log log y)k−1

p(log(y/p))min{α,1}

)
.
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We will start by simplifying the error terms. Starting with the first error term, notice that∑
p≤y/3

p 6=w1,w2,...,wn
νq(p−1)=β

(log log(y/p))k

p2 (log(y/p))
α �

∑
p≤y/3

p 6=w1,w2,...,wn
νq(p−1)=β

(log log y)k

p2 (log(y/p))
α

= (log log y)k
∑
p≤y/3

p 6=w1,w2,...,wn
νq(p−1)=β

1

p2 (log(y/p))
α .

Then, by Proposition 2.3.10, we get that∑
p≤y/3

p 6=w1,w2,...,wn
νq(p−1)=β

1

p2 (log(y/p))
α �

1

(log y)min{α,1} ,

and thus ∑
p≤y/3

p 6=w1,w2,...,wn
νq(p−1)=β

log log(y/p)

p2 (log(y/p))
α �

(log log y)k

(log y)min{α,1} .

Now, to simplify the second error term, we can apply Proposition 2.3.9 to get that∑
p≤y/3

p 6=w1,w2,...,wn
νq(p−1)=β

(log log y)k−1

p(log(y/p))min{α,1} = (log log y)k−1
∑
p≤y/3

p 6=w1,w2,...,wn
νq(p−1)=β

1

p(log(y/p))min{α,1}

� (log log y)k−1
log log y

(log y)min{α,1}

=
(log log y)k

(log y)min{α,1} .

Now, we will evaluate the main term. First, notice that

∑
p≤y/3

p 6=w1,w2,...,wn
νq(p−1)=β

(log log(y/p))k

p (log(y/p))
α =

∑
p≤y/3

νq(p−1)=β

(log log(y/p))k

p (log(y/p))
α +O

(
n∑
i=1

(log log(y/wi))
k

wi (log(y/wi))
α

)
.

As shown in the proof of Proposition 2.3.9,

n∑
i=1

1

wi (log(y/wi))
α �n (log y)−α,

and thus,
n∑
i=1

(log log(y/wi))
k

wi (log(y/wi))
α � (log log y)k

n∑
i=1

1

wi (log(y/wi))
α �n

(log log y)k

logα y
.

29



Splitting the remaining sum into two sums, we get that∑
p≤y/3

νq(p−1)=β

(log log(y/p))k

p (log(y/p))
α =

∑
p≤√y

νq(p−1)=β

(log log(y/p))k

p (log(y/p))
α +

∑
√
y<p≤y/3

νq(p−1)=β

(log log(y/p))k

p (log(y/p))
α .

Starting with the second sum on the right-hand side of the equation, we can see that∑
√
y<p≤y/3

νq(p−1)=β

(log log(y/p))k

p (log(y/p))
α ≤

∑
√
y<p≤y/3

νq(p−1)=β

(log log y)k

p (log(y/p))
α = (log log y)k

∑
√
y<p≤y/3

νq(p−1)=β

1

p (log(y/p))
α .

Then, applying Proposition 2.3.8, we get that∑
√
y<p≤y/3

νq(p−1)=β

1

p (log(y/p))
α �

1

(log y)min{α,1} ,

and thus, ∑
√
y<p≤y/3

νq(p−1)=β

(log log(y/p))k

p (log(y/p))
α �

(log log y)k

(log y)min{α,1} .

Now, we will focus on the first sum on the right-hand side of the equation. By Proposition 2.3.2, since

y ≥ p2, we have that

log(y/p) = log y +O

(
log p

log2 y

)
.

Furthermore, notice that
log p

log2 y
≤

log
√
y

log2 y
� 1

log y
.

So, it follows that

(log log(y/p))k =

(
log

(
log y +O

(
1

log y

)))k
=

(
log log y + log

(
1 +O

(
1

log2 y

)))k
=

(
log log y +O

(
1

log2 y

))k
=

k∑
j=0

(
k

j

)
(log log y)k−j

(
O

(
1

log2 y

))j

= (log log y)k +

k∑
j=1

(
k

j

)
(log log y)k−j

(
O

(
1

log2 y

))j

= (log log y)k +

k∑
j=1

O

((
k

j

)
(log log y)k−j

log2j y

)
.
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The largest error term will occur when j is smallest, ie. when j = 1. Thus,

(log log(y/p))k = (log log y)k +Ok

(
(log log y)k−1

log2 y

)
.

Therefore, we have that∑
p≤√y

νq(p−1)=β

(log log(y/p))k

p (log(y/p))
α =

(
(log log y)k +Ok

(
(log log y)k−1

log2 y

)) ∑
p≤√y

νq(p−1)=β

1

p (log(y/p))
α .

Then, applying Proposition 2.3.6, we get that∑
p≤√y

νq(p−1)=β

1

p (log(y/p))
α =

log log y

qβ (log y)
α +O

(
1

(log y)α

)
.

Therefore, we get the following∑
p≤√y

νq(p−1)=β

(log log(y/p))k

p (log(y/p))
α =

(
(log log y)k +Ok

(
(log log y)k−1

log2 y

))(
log log y

qβ logα y
+O

(
1

logα y

))

=
(log log y)k+1

qβ logα y
+O

(
(log log y)k

logα y

)
+Ok,q

(
(log log y)k

(log y)2+α

)
=

(log log y)k+1

qβ logα y
+O

(
(log log y)k

logα y

)
.

Thus, we have shown that∑
p≤y/3

p 6=w1,w2,...,wn
νq(p−1)=β

(log log(y/p))k

p (log(y/p))
α =

(log log y)k+1

qβ logα y
+O

(
(log log y)k

(log y)min{α,1}

)
+On

(
(log log y)k

logα y

)

=
(log log y)k+1

qβ logα y
+On

(
(log log y)k

(log y)min{α,1}

)
,

and thus, that

∑
p≤y/3

p 6=w1,w2,...,wn
νq(p−1)=β

1

p

(
1 +O

(
1

p

))(
(log log(y/p))k

(log(y/p))
α +O

(
(log log y)k−1

(log(y/p))min{α,1}

))

=
(log log y)k+1

qβ logα y
+On

(
(log log y)k

(log y)min{α,1}

)
.

The final definitions and propositions in this section will be important in order to evaluate multiply nested

sums recursively in the next section.
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Definition 2.3.13. For k, α1, . . . , αi ∈ N, define

Sq(x; k) =
(log log x)k

(log x)1/(q−1)
+Oq

(
(log log x)k−1

(log x)1/(q−1)

)
,

and define

Sq(x; k;α1, . . . , αi)

=
∑

p1≤x/3
νq(p1−1)=α1

1

p1

(
1 +O

(
1

p1

)) ∑
p2≤x/3p1
p2 6=p1

νq(p2−1)=α2

1

p2

(
1 +O

(
1

p2

))
· · ·

∑
pi≤x/3p1···pi−1

pi 6=p1,...,pi−1

νq(pi−1)=αi

[
1

pi

×
(

1 +O

(
1

pi

))(
(log log(x/p1 · · · pi))k

(log(x/p1 · · · pi))1/(q−1)
+Oq

(
(log log(x/p1 · · · pi−1))k−1

(log(x/p1 · · · pi))1/(q−1)

))]
.

Notice that the expressions Sq(x; k) and Sq(x; k;α1, . . . , αi) are given by asymptotic, not explicit, for-

mulas. For instance, when i = 1, applying Proposition 2.3.12, we get that

Sq(x; k;α1) =
∑

p1≤x/3
νq(p1−1)=α1

1

p1

(
1 +O

(
1

p1

))(
(log log(x/p1))k

(log(x/p1))1/(q−1)
+Oq

(
(log log x)k−1

(log(x/p1))1/(q−1)

))

=
(log log x)k

qα1(log x)1/(q−1)
+Oq

(
(log log x)k−1

(log x)1/(q−1)

)
=

1

qα1
Sq(x; k).

Here, we are not claiming that Sq(x; k;α1) is exactly equal to 1
qα1

Sq(x; k), but rather that these two expres-

sions have identical main terms and error terms of equal magnitude.

This observation generalizes to any natural number i, resulting in the following proposition.

Proposition 2.3.14. Let Sq be defined as in Definition 2.3.13 and let i, k and α1, . . . , αi be positive integers.

Then,

Sq(x; k;α1, . . . , αi) =
1

qαi
Sq(x; k + 1;α1, . . . , αi−1),

where the equals sign signifies that the two expressions have the same main terms and error terms of equal

magnitude.

Proof. As defined above,

Sq(x; k;α1, . . . , αi)

=
∑

p1≤x/3
νq(p1−1)=α1

1

p1

(
1 +O

(
1

p1

)) ∑
p2≤x/3p1
p2 6=p1

νq(p2−1)=α2

1

p2

(
1 +O

(
1

p2

))
· · ·

∑
pi≤x/3p1···pi−1

pi 6=p1,...,pi−1

νq(pi−1)=αi

[
1

pi

×
(

1 +O

(
1

pi

))(
(log log(x/p1 · · · pi))k

(log(x/p1 · · · pi))1/(q−1)
+Oq

(
(log log(x/p1 · · · pi−1))k−1

(log(x/p1 · · · pi))1/(q−1)

))]
.
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Applying Proposition 2.3.12 to the innermost sum, we get the following:

Sq(x; k;α1, . . . , αi)

=
∑

p1≤x/3
νq(p1−1)=α1

1

p1

(
1 +O

(
1

p1

))
· · ·

∑
pi−1≤x/3p1···pi−2

pi−1 6=p1,...,pi−2

νq(pi−1−1)=αi−1

[
1

pi−1

(
1 +O

(
1

pi−1

))

×
(

(log log(x/p1 · · · pi−1))k+1

qαi(log(x/p1 · · · pi−1))1/(q−1)
+Oq

(
(log log(x/p1 · · · pi−1))k

(log(x/p1 · · · pi−1))1/(q−1)

))]
=

1

qαi

∑
p1≤x/3

νq(p1−1)=α1

1

p1

(
1 +O

(
1

p1

))
· · ·

∑
pi−1≤x/3p1···pi−2

pi−1 6=p1,...,pi−2

νq(pi−1−1)=αi−1

[
1

pi−1

(
1 +O

(
1

pi−1

))

×
(

(log log(x/p1 · · · pi−1))k+1

(log(x/p1 · · · pi−1))1/(q−1)
+Oq

(
(log log(x/p1 · · · pi−2))k

(log(x/p1 · · · pi−1))1/(q−1)

))]
,

since
(log log(x/p1 · · · pi−2pi−1))k

(log(x/p1 · · · pi−1))1/(q−1)
� (log log(x/p1 · · · pi−2))k

(log(x/p1 · · · pi−1))1/(q−1)
.

Definition 2.3.15. Let γ be a positive real number and let α1, . . . , αi be positive integers. Then, define

Eq(x, γ;α1, . . . , αi) =
∑

p1≤x/3
νq(p1−1)=α1

1

p1

∑
p2≤x/3p1
p2 6=p1

νq(p2−1)=α2

1

p2
· · ·

∑
pi≤x/3p1···pi−1

pi 6=p1,...,pi−1

νq(pi−1)=αi

1

pi

(
log

x

p1 · · · pi

)−γ
.

Proposition 2.3.16. Let Eq be defined as in Definition 2.3.15. Then,

Eq(x; γ;α1, . . . , αi−1, αi)�q log log(x)Eq(x; γ;α1, . . . , αi−1).
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Proof. Applying Proposition 2.3.9 to the innermost sum of Eq(x; γ;α1, . . . , αi−1, αi), we get:

Eq(x; γ;α1, . . . , αi)

=
∑

p1≤x/3
νq(p1−1)=α1

1

p1

∑
p2≤x/3p1
p2 6=p1

νq(p2−1)=α2

1

p2
· · ·

∑
pi≤x/3p1···pi−1

pi 6=p1,...,pi−1

νq(pi−1)=αi

1

pi

(
log

x

p1 · · · pi

)−γ

�
∑

p1≤x/3
νq(p1−1)=α1

1

p1

∑
p2≤x/3p1
p2 6=p1

νq(p2−1)=α2

1

p2
· · ·

∑
pi−1≤x/3p1···pi−2

pi−1 6=p1,...,pi−2

νq(pi−1−1)=αi−1

1

pi−1

(
log log(x/p1 · · · pi−1)

qαi(log(x/p1 · · · pi−1))γ

)

�q

∑
p1≤x/3

νq(p1−1)=α1

1

p1

∑
p2≤x/3p1
p2 6=p1

νq(p2−1)=α2

1

p2
· · ·

∑
pi−1≤x/3p1···pi−2

pi−1 6=p1,...,pi−2

νq(pi−1−1)=αi−1

1

pi−1

(
log log(x/p1 · · · pi−1)

(log(x/p1 · · · pi−1))γ

)

≤
∑

p1≤x/3
νq(p1−1)=α1

1

p1

∑
p2≤x/3p1
p2 6=p1

νq(p2−1)=α2

1

p2
· · ·

∑
pi−1≤x/3p1···pi−2

pi−1 6=p1,...,pi−2

νq(pi−1−1)=αi−1

1

pi−1

(
log log x

(log(x/p1 · · · pi−1))γ

)

= (log log x)Eq(x; γ;α1, . . . , αi−1).

2.4 Evaluating D0

Since we can only apply Corollary 2.2.9 if x/p1 · · · pj ≥ 3, we will start by splitting D0 from equation (2.2)

into two multiply nested sums such that x/p1 · · · pj ≥ 3 in the first sum and x/p1 · · · pj < 3 in the second

sum. Doing so, we get

D0(H,x) = CH
∑

p1≤x/3
νq(p1−1)=α1

∑
p2≤x/3p1
p2 6=p1

νq(p2−1)=α2

· · ·
∑

pj≤x/3p1···pj−1

pj 6=p1,...,pj−1

νq(pj−1)=αj

∑
m≤x/p1···pj

q-m
t 6=p1,...,pj and t|m⇒t 6≡1 (mod q)

1

+ CH
∑
p1≤x

νq(p1−1)=α1

∑
p2≤x/p1
p2 6=p1

νq(p2−1)=α2

· · ·
∑

x/3p1···pj−1<pj≤x/p1···pj−1

pj 6=p1,...,pj−1

νq(pj−1)=αj

∑
m≤x/p1···pj

q-m
t6=p1,...,pj and t|m⇒t6≡1 (mod q)

1. (2.9)

The following two propositions will evaluate the first and second sum of equation (2.9) respectively.
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Proposition 2.4.1.

CH
∑

p1≤x/3
νq(p1−1)=α1

∑
p2≤x/3p1
p2 6=p1

νq(p2−1)=α2

· · ·
∑

pj≤x/3p1···pj−1

pj 6=p1,...,pj−1

νq(pj−1)=αj

∑
m≤x/p1···pj

q-m
t 6=p1,...,pj and t|m⇒t 6≡1 (mod q)

1

= BqCH

(
q − 1

q1+
∑j
i=1 αi

)
x(log log x)j

(log x)1/(q−1)
+Oq

(
x(log log x)j−1

(log x)1/(q−1)

)
.

Proof. Throughout this proof, let

J := CH
∑

p1≤x/3
νq(p1−1)=α1

∑
p2≤x/3p1
p2 6=p1

νq(p2−1)=α2

· · ·
∑

pj≤x/3p1···pj−1

pj 6=p1,...,pj−1

νq(pj−1)=αj

∑
m≤x/p1···pj

q-m
t 6=p1,...,pj and t|m⇒t 6≡1 (mod q)

1.

By Corollary 2.2.9, we get that

J = CH
∑

p1≤x/3
νq(p1−1)=α1

∑
p2≤x/3p1
p2 6=p1

νq(p2−1)=α2

· · ·
∑

pj≤x/3p1···pj−1

pj 6=p1,...,pj−1

νq(pj−1)=αj

[
Bq

x

p1 · · · pj

(
log

x

p1 · · · pj

)−1/(q−1)

×
(

1− 1

q

) j∏
i=1

(
1− 1

pi

)−1
+O

(
x

p1 · · · pj

(
log

x

p1 · · · pj

)−1−1/(q−1))]

= BqCHx

(
1− 1

q

) ∑
p1≤x/3

νq(p1−1)=α1

· · ·
∑

pj≤x/3p1···pj−1

pj 6=p1,...,pj−1

νq(pj−1)=αj

1

p1 · · · pj

(
log

x

p1 · · · pj

)−1/(q−1) j∏
i=1

(
1− 1

pi

)−1

+O

(
x

∑
p1≤x/3

νq(p1−1)=α1

∑
p2≤x/3p1
p2 6=p1

νq(p2−1)=α2

· · ·
∑

pj≤x/3p1···pj−1

pj 6=p1,...,pj−1

νq(pj−1)=αj

1

p1 · · · pj

(
log

x

p1 · · · pj

)−1−1/(q−1))

Now, since (
1− 1

pi

)−1
= 1 +O

(
1

pi

)
,
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we have that,

J = BqCHx

(
1− 1

q

)
×

∑
p1≤x/3

νq(p1−1)=α1

∑
p2≤x/3p1
p2 6=p1

νq(p2−1)=α2

· · ·
∑

pj≤x/3p1···pj−1

pj 6=p1,...,pj−1

νq(pj−1)=αj

1

p1 · · · pj

(
log

x

p1 · · · pj

)−1/(q−1) j∏
i=1

(
1 +O

(
1

pi

))

+O

(
x

∑
p1≤x/3

νq(p1−1)=α1

∑
p2≤x/3p1
p2 6=p1

νq(p2−1)=α2

· · ·
∑

pj≤x/3p1···pj−1

pj 6=p1,...,pj−1

νq(pj−1)=αj

1

p1 · · · pj

(
log

x

p1 · · · pj

)−1−1/(q−1))

= BqCHx

(
1− 1

q

) ∑
p1≤x/3

νq(p1−1)=α1

1

p1

(
1 +O

(
1

p1

)) ∑
p2≤x/3p1
p2 6=p1

νq(p2−1)=α2

1

p2

(
1 +O

(
1

p2

))
· · ·

∑
pj≤x/3p1···pj−1

pj 6=p1,...,pj−1

νq(pj−1)=αj

1

pj

(
log

x

p1 · · · pj

)−1/(q−1)(
1 +O

(
1

pj

))

+O

(
x

∑
p1≤x/3

νq(p1−1)=α1

1

p1

∑
p2≤x/3p1
p2 6=p1

νq(p2−1)=α2

1

p2
· · ·

∑
pj≤x/3p1···pj−1

pj 6=p1,...,pj−1

νq(pj−1)=αj

1

pj

(
log

x

p1 · · · pj

)−1−1/(q−1))
.

(2.10)

We will start by focusing on the nested sum in the main term. Applying Proposition 2.3.11 to the
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innermost sum, we get that:

∑
p1≤x/3

νq(p1−1)=α1

1

p1

(
1 +O

(
1

p1

))
· · ·

∑
pj≤x/3p1···pj−1

pj 6=p1,...,pj−1

νq(pj−1)=αj

1

pj

(
log

x

p1 · · · pj

)−1/(q−1)(
1 +O

(
1

pj

))

=
∑

p1≤x/3
νq(p1−1)=α1

1

p1

(
1 +O

(
1

p1

))
· · ·

∑
pj−1≤x/3p1···pj−2

pj−1 6=p1,...,pj−2

νq(pj−1−1)=αj−1

[
1

pj−1

(
1 +O

(
1

pj−1

))

×
(

log log(x/p1 · · · pj−1)

qαj (log(x/p1 · · · pj−1))1/(q−1)
+Oq

(
1

(log(x/p1 · · · pj−1))1/(q−1)

))]
=

1

qαj

∑
p1≤x/3

νq(p1−1)=α1

1

p1

(
1 +O

(
1

p1

))
· · ·

∑
pj−1≤x/3p1···pj−2

pj−1 6=p1,...,pj−2

νq(pj−1−1)=αj−1

[
1

pj−1

(
1 +O

(
1

pj−1

))

×
(

log log(x/p1 · · · pj−1)

(log(x/p1 · · · pj−1))1/(q−1)
+Oq

(
1

(log(x/p1 · · · pj−1))1/(q−1)

))]
. (2.11)

Now, it follows that if we apply Proposition 2.3.14 to the nested sum in equation (2.11) j − 1 times, we

will get that

∑
p1≤x/3

νq(p1−1)=α1

1

p1

(
1 +O

(
1

p1

))
· · ·

∑
pj≤x/3p1···pj−1

pj 6=p1,...,pj−1

νq(pj−1)=αj

1

pj

(
log

x

p1 · · · pj

)−1/(q−1)(
1 +O

(
1

pj

))

=
1

q
∑j
i=1 αi

(log log x)j

(log x)1/(q−1)
+Oq

(
(log log x)j−1

(log x)1/(q−1)

)
.

Thus, from equation (2.10), we have that

J = BqCHx

(
1− 1

q

)(
1

q
∑j
i=1 αi

(log log x)j

(log x)1/(q−1)
+Oq

(
(log log x)j−1

(log x)1/(q−1)

))

+O

(
x

∑
p1≤x/3

νq(p1−1)=α1

1

p1

∑
p2≤x/3p1
p2 6=p1

νq(p2−1)=α2

1

p2
· · ·

∑
pj≤x/3p1···pj−1

pj 6=p1,...,pj−1

νq(pj−1)=αj

1

pj

(
log

x

p1 · · · pj

)−1−1/(q−1))

= BqCH

(
q − 1

q1+
∑j
i=1 αi

)
x(log log x)j

(log x)1/(q−1)
+Oq

(
x(log log x)j−1

(log x)1/(q−1)

)

+O

(
x

∑
p1≤x/3

νq(p1−1)=α1

1

p1

∑
p2≤x/3p1
p2 6=p1

νq(p2−1)=α2

1

p2
· · ·

∑
pj≤x/3p1···pj−1

pj 6=p1,...,pj−1

νq(pj−1)=αj

1

pj

(
log

x

p1 · · · pj

)−1−1/(q−1))
.
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Now, we will evaluate the error term. Applying Proposition 2.3.16 to the error term j times, we get that

x
∑

p1≤x/3
νq(p1−1)=α1

1

p1

∑
p2≤x/3p1
p2 6=p1

νq(p2−1)=α2

1

p2
· · ·

∑
pj≤x/3p1···pj−1

pj 6=p1,...,pj−1

νq(pj−1)=αj

1

pj

(
log

x

p1 · · · pj

)−1−1/(q−1)
�q

x(log log x)j

(log x)1+1/(q−1) .

Therefore, we have that

J = BqCH

(
q − 1

q1+
∑j
i=1 αi

)
x(log log x)j

(log x)1/(q−1)
+Oq

(
x(log log x)j−1

(log x)1/(q−1)

)
+Oq

(
x(log log x)j

(log x)1+1/(q−1)

)
.

Now, since log log x� log x, we have that

(log log x)j

(log log x)j−1
� (log x)1+1/(q−1)

(log x)1/(q−1)
,

and thus,
x(log log x)j

(log x)1+1/(q−1) �
x(log log x)j−1

(log x)1/(q−1)
.

So,

J = BqCH

(
q − 1

q1+
∑j
i=1 αi

)
x(log log x)j

(log x)1/(q−1)
+Oq

(
x(log log x)j−1

(log x)1/(q−1)

)
.

Proposition 2.4.2.

CH
∑
p1≤x

νq(p1−1)=α1

∑
p2≤x/p1
p2 6=p1

νq(p2−1)=α2

· · ·
∑

x/3p1···pj−1<pj≤x/p1···pj−1

pj 6=p1,...,pj−1

νq(pj−1)=αj

∑
m≤x/p1···pj

q-m
t 6=p1,...,pj and t|m⇒t 6≡1 (mod q)

1�q
x(log log x)j−1

log x
.

Proof. First, notice that, in this sum, x/p1p2 · · · pj < 3 and thus,∑
m≤x/p1···pj

q-m
t 6=p1,...,pj and t|m⇒t6≡1 (mod q)

1 ≤ 2.
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So, we get that

CH
∑
p1≤x

νq(p1−1)=α1

∑
p2≤x/p1
p2 6=p1

νq(p2−1)=α2

· · ·
∑

x/3p1···pj−1<pj≤x/p1···pj−1

pj 6=p1,...,pj−1

νq(pj−1)=αj

∑
m≤x/p1···pj

q-m
t6=p1,...,pj and t|m⇒t 6≡1 (mod q)

1

≤ CH
∑
p1≤x

νq(p1−1)=α1

∑
p2≤x/p1
p2 6=p1

νq(p2−1)=α2

· · ·
∑

x/3p1···pj−1<pj≤x/p1···pj−1

pj 6=p1,...,pj−1

νq(pj−1)=αj

2

= 2CH
∑
p1≤x

νq(p1−1)=α1

∑
p2≤x/p1
p2 6=p1

νq(p2−1)=α2

· · ·
∑

x/3p1···pj−1<pj≤x/p1···pj−1

pj 6=p1,...,pj−1

νq(pj−1)=αj

1

Notice that if x/p1 · · · pj−1 < 3, then ∑
x/3p1···pj−1<pj≤x/p1···pj−1

pj 6=p1,...,pj−1

νq(pj−1)=αj

1 = 0.

Therefore, we can assume that x/p1 · · · pj−1 ≥ 3. Similarly, if x/p1 · · · pi−1 < 3 for any i, then∑
pi≤x/p1···pi−1

pi 6=p1,...,pi−1

νq(pi−1)=αi

1 = 0.

Thus, we have the following equality:

2CH
∑
p1≤x

νq(p1−1)=α1

∑
p2≤x/p1
p2 6=p1

νq(p2−1)=α2

· · ·
∑

x/3p1···pj−1<pj≤x/p1···pj−1

pj 6=p1,...,pj−1

νq(pj−1)=αj

1

= 2CH
∑

p1≤x/3
νq(p1−1)=α1

∑
p2≤x/3p1
p2 6=p1

νq(p2−1)=α2

· · ·
∑

x/3p1···pj−1<pj≤x/p1···pj−1

pj 6=p1,...,pj−1

νq(pj−1)=αj

1.
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Applying the prime number theorem to the innermost sum, we get that

2CH
∑

p1≤x/3
νq(p1−1)=α1

∑
p2≤x/3p1
p2 6=p1

νq(p2−1)=α2

· · ·
∑

x/3p1···pj−1<pj≤x/p1···pj−1

pj 6=p1,...,pj−1

νq(pj−1)=αj

1

≤ 2CH
∑

p1≤x/3
νq(p1−1)=α1

∑
p2≤x/3p1
p2 6=p1

νq(p2−1)=α2

· · ·
∑

pj−1≤x/3p1···pj−2

pj−1 6=p1,...,pj−2

νq(pj−1−1)=αj−1

π(x/p1p2 · · · pj−1)

�
∑

p1≤x/3
νq(p1−1)=α1

∑
p2≤x/3p1
p2 6=p1

νq(p2−1)=α2

· · ·
∑

pj−1≤x/3p1···pj−2

pj−1 6=p1,...,pj−2

νq(pj−1−1)=αj−1

x/p1 · · · pj−1
log(x/p1 · · · pj−1)

= x
∑

p1≤x/3
νq(p1−1)=α1

1

p1

∑
p2≤x/3p1
p2 6=p1

νq(p2−1)=α2

1

p2
· · ·

∑
pj−1≤x/3p1···pj−2

pj−1 6=p1,...,pj−2

νq(pj−1−1)=αj−1

1

pj−1 log(x/p1 · · · pj−1)
.

Next, we can apply Proposition 2.3.16 j − 1 times, to get that,

2CH
∑

p1≤x/3
νq(p1−1)=α1

∑
p2≤x/3p1
p2 6=p1

νq(p2−1)=α2

· · ·
∑

x/3p1···pj−1<pj≤x/p1···pj−1

pj 6=p1,...,pj−1

νq(pj−1)=αj

1�q
x(log log x)j−1

log x

�q
x(log log x)j−1

(log x)1/(q−1)
.

Therefore, combining Propositions 2.4.1 and 2.4.2, we have shown that,

D0(H,x) = BqCH

(
q − 1

q1+
∑j
i=1 αi

)
x(log log x)j

(log x)1/(q−1)
+Oq

(
x(log log x)j−1

(log x)1/(q−1)

)
.

2.5 Evaluating D1(H, x)

First, by definition of D1, we have that

D1((q;α1, . . . , αj), x) = #{n ≤ x : q ‖ n,Gq(n) = (q;α1, . . . , αj)}

= #{n ≤ x/q : q - n,Gq(n) = (q;α1, . . . , αj)}

= D0((q;α1, . . . , αj), x/q)
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So, applying our results from the previous section, we get that

D0(H,x/q) = BqCH

(
q − 1

q1+
∑j
i=1 αi

)
x(log log x/q)j

q(log x/q)1/(q−1)
+Oq

(
x(log log x/q)j−1

q(log x/q)1/(q−1)

)

= BqCH

(
q − 1

q2+
∑j
i=1 αi

)
x(log log x/q)j

(log x/q)1/(q−1)
+Oq

(
x(log log x)j−1

(log x/q)1/(q−1)

)
.

As shown in the proof of Proposition 2.3.12,

(log log(x/q))j = (log log x)j +Oj

(
(log log x)j−1

log2 x

)
.

Also, by Proposition 2.3.2, if we suppose that x > q2, then

(log x/q)−1/(q−1) = (log x)−1/(q−1) +Oq

(
(log x)−1−1/(q−1)

)
.

Therefore,

x(log log x/q)j

(log x/q)1/(q−1)
= x

(
(log log x)j +Oj

(
(log log x)j−1

log2 x

))(
(log x)−1/(q−1) +Oq

(
(log x)−1−1/(q−1)

))
=

x(log log x)j

(log x)1/(q−1)
+Oq

(
x(log log x)j

(log x)1+1/(q−1)

)
+Oj

(
x(log log x)j−1

(log x)2+1/(q−1)

)
=

x(log log x)j

(log x)1/(q−1)
+Oq

(
x(log log x)j

(log x)1+1/(q−1)

)
.

Now, since we are assuming that x > q2, we can apply Lemma 2.3.1 to get that

x(log log x)j−1

(log x/q)1/(q−1)
� x(log log x)j−1

(log x)1/(q−1)
.

Thus, we have that

D0(H,x/q) = BqCH

(
q − 1

q2+
∑j
i=1 αi

)(
x(log log x)j

(log x)1/(q−1)
+Oq

(
x(log log x)j

(log x)1+1/(q−1)

))
+Oq

(
x(log log x)j−1

(log x)1/(q−1)

)
= BqCH

(
q − 1

q2+
∑j
i=1 αi

)(
x(log log x)j

(log x)1/(q−1)

)
+Oq

(
x(log log x)j−1

(log x)1/(q−1)

)
,

since
x(log log x)j

(log x)1+1/(q−1) �
x(log log x)j−1

(log x)1/(q−1)
.
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2.6 Evaluating Dk(H, x) for k ≥ 2

In this section, we show that for all k ≥ 2, Dk(H,x) will contribute to the error term of D(H,x).

Proposition 2.6.1. Let H = (q;α1, . . . , αj). Then, for k ≥ 2,

Dk(H,x)�H
x(log log x)j−1

(log x)1/(q−1)
.

Proof. Let k ≥ 2. Recall, from Section 2.1, that by definition,Dk(H,x) = #{n ≤ x : qk ‖ n,Gq(n) = H}.
Notice that we can rewrite the above set as Dk(H,x) = #{n ≤ x/qk : q - n,Gq(qkn) = H}. Now, by the

Chinese Remainder Theorem, since q is an odd prime and q - n,

Z×
qkn
∼= Z×

qk
× Z×n ∼= Zφ(qk) × Zφ(n) ∼= Zqk−1 × Zq−1 × Zφ(n).

If k − 1 6∈ {α1, α2, . . . , αj}, it follows that Dk(H,x) = 0, and thus, our proposition will be trivially

true. So, assume that αi = k − 1 for some i ∈ {α1, . . . , αj}. Then, it follows that

Dk((q;α1, . . . , αj), x) = #{n ≤ x/qk : q - n,Gq(n) = (q;α1, . . . , αi−1, αi+1, . . . , αj)}

= D0((q;α1, . . . , αi−1, αi+1, . . . , αj), x/q
k).

Since

D0((q;α1, . . . , αj), x) = BqCH

(
q − 1

q1+
∑j
i=1 αi

)
x(log log x)j

(log x)1/(q−1)
+Oq

(
x(log log x)j−1

(log x)1/(q−1)

)
,

we have that

D0((q;α1, . . . , αi−1, αi+1, . . . , αj), x/q
k)�H

x(log log x)j−1

(log x)1/(q−1)
.

So, by the above proposition, we can see that

α1+1∑
k=2

Dk((q;α1, . . . , αj), x)�H
x(log log x)j−1

(log x)1/(q−1)
.

2.7 Evaluating D(H, x)

Theorem 2.7.1. Let q be an odd prime, let H = (q;α1, α2, . . . , αj), and for a prime number p, let kp be the

order of p modulo q. Then,

D(H,x) = KH

(
x(log log x)j

(log x)1/(q−1)

)
+OH

(
x(log log x)j−1

(log x)1/(q−1)

)
,
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where

KH = BqCHEq,

where

Bq =
1

Γ(1− 1/(q − 1))

(
(1− 1/q)

−1/(q−1) ∏
p 6=q

p 6≡1 (mod q)

(1− 1/pkp)−1/kp
∏
χ 6=χ0

L(1, χ)−1/(q−1)
)
,

CH =

α1−1∏
k=1

1

(ak − ak+1)!
,

and

Eq =
q2 − 1

q2+
∑j
i=1 αi

.

Proof. Recall from equation (2.1) that

D((q;α1, . . . , αj), x) =

α1+1∑
k=0

Dk(q;α1, . . . , αj).

Inputting the values of Dk found in Sections 2.4, 2.5 and 2.6, we get that

D(H,x) = BqCH

(
q − 1

q1+
∑j
i=1 αi

)
x(log log x)j

(log x)1/(q−1)
+BqCH

(
q − 1

q2+
∑j
i=1 αi

)(
x(log log x)j

(log x)1/(q−1)

)
+OH

(
x(log log x)j−1

(log x)1/(q−1)

)
= BqCH

(
q − 1

q1+
∑j
i=1 αi

)
x(log log x)j

(log x)1/(q−1)

(
1 +

1

q

)
+OH

(
x(log log x)j−1

(log x)1/(q−1)

)

= BqCH

(
q2 − 1

q2+
∑j
i=1 αi

)
x(log log x)j

(log x)1/(q−1)
+OH

(
x(log log x)j−1

(log x)1/(q−1)

)
= KH

(
x(log log x)j

(log x)1/(q−1)

)
+OH

(
x(log log x)j−1

(log x)1/(q−1)

)
.
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Chapter 3

Counting Function for Maximally
Non-cyclic Multiplicative Groups

3.1 Setup

Rather than focusing on local Sylow subgroups, we now wish to focus on the global structure of a group,

and in particular, whether or not a group is cyclic. While not directly related to the problem we have spent

the first part of the thesis solving, the problem that we are about to introduce is of a similar nature. Counting

functions of the number of integers n up to x such that Z×n is cyclic is a topic that has been well studied

in number theory. Consider, for instance, the following proposition, which can easily be proved using well

known results.

Proposition 3.1.1.
#{n ≤ x : Z×n is cyclic} ∼ 3

2

x

log x
.

Proof. First, we know that Z×n is cyclic if and only if n = 1, 2, 4, pr or 2pr, where p is an odd prime and r

is a positive integer. Then,

#{n ≤ x : Z×n is cyclic} = 3 +
∑
pr≤x
p odd

1 +
∑

2pr≤x
p odd

1

= 3 +
∑
pr≤x
p odd

1 +
∑

pr≤x/2
p odd

1.
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Since 2r ≤ x if and only if r ≤ log x/ log 2, we have that∑
pr≤x
p odd

1 =
∑
pr≤x

1 +O(log x),

and thus,

#{n ≤ x : Z×n is cyclic} = 3 +
∑
pr≤x

1 +
∑

pr≤x/2

1 +O(log x).

Now, notice that we can rewrite the sum of prime powers up to x as follows,∑
pr≤x

1 =
∑
p≤x

1 +
∑
p2≤x

1 +
∑
p3≤x

1 + · · ·

=
∑
p≤x

1 +
∑

p≤x1/2

1 +
∑

p≤x1/3

1 + · · ·

= π(x) + π(x1/2) + π(x1/3) + · · ·

= π(x) +O(x1/2) +O(x1/2) + · · · ,

and similarly, we can rewrite the sum of prime powers up to x/2 as follows,∑
pr≤x/2

1 =
∑
p≤x/2

1 +
∑

p2≤x/2

1 +
∑

p3≤x/2

1 + · · ·

=
∑
p≤x/2

1 +
∑

p≤(x/2)1/2
1 +

∑
p≤(x/2)1/3

1 + · · ·

= π(x/2) + π((x/2)1/2) + π((x/2)1/3) + · · ·

= π(x/2) +O(x1/2) +O(x1/2) + · · · .

If r > log x/ log 2, then for any prime p, pr ≥ 2r > 2log x/ log 2 = x, and thus, we get∑
pr≤x

1 = π(x) +
log x

log 2
O(x1/2) = π(x) +O(x1/2 log x)

and ∑
pr≤x/2

1 = π(x/2) +
log x

log 2
O(x1/2) = π(x/2) +O(x1/2 log x).

Now, by the Prime Number Theorem, we have that∑
pr≤x

1 =
x

log x
+O

(
x

log2 x

)
+O(x1/2 log x)

and ∑
pr≤x/2

1 =
x/2

log(x/2)
+O

(
x/2

log2(x/2)

)
+O(x1/2 log x).
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If we assume that x > 4, we can apply Lemma 2.3.1 and Proposition 2.3.2 to get that∑
pr≤x/2

1 =
x

2

(
(log x)−1 +O

(
log 2

log2 x

))
+O

(
x

log2 x

)
+O(x1/2 log x)

=
x

2 log x
+O

(
x

log2 x

)
+O(x1/2 log x).

Thus, so far, we have shown that

#{n ≤ x : Z×n is cyclic} = 3 +
x

log x
+

x

2 log x
+O

(
x

log2 x

)
+O(x1/2 log x).

Since log3 x� x1/2 implies that x1/2 log3 x� x, and thus, x1/2 log x� x/ log2 x, we have that

#{n ≤ x : Z×n is cyclic} =
3

2

x

log x
+O

(
x

log2 x

)
.

Thus, from here, it follows that

#{n ≤ x : Z×n is cyclic} ∼ 3

2

x

log x
.

This has led us to ask, what would make a group as non-cyclic as possible? Before we can define this,

we need to define the primary decomposition and invariant factor decomposition of a group.

Definition 3.1.2 (Primary Decomposition). The primary decomposition of a finite abelian group G is the

unique decomposition

G ∼= Zk1 × Zk2 × · · · × Zkt

such that k1, k2, . . . , kt are powers of primes.

Definition 3.1.3 (Invariant Factor Decomposition). The invariant factor decomposition of a finite abelian

group G is the unique decomposition

G ∼= Zd1 × Zd2 × · · · × Zd`

such that d1 | d2 | · · · | d`.

Now, we can give the definition of a maximally non-cyclic group.

Definition 3.1.4. Let G be a finite abelian group of order m, for some positive integer m. Let the following

be its invariant factor decomposition:

Zd1 × Zd2 × · · · × Zd` ,

where d1 | d2 | · · · | d`. Then, we call G maximally non-cyclic if any of the four following equivalent

conditions hold:
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(1) for any prime q, its Sylow q-subgroup is of the form

Zq × Zq × · · · × Zq;

(2) d` is minimal among all finite abelian groups of order m;

(3) dj is squarefree for every 1 ≤ j ≤ `;

(4) each factor of the primary decomposition of G is of the form Zp for some prime p.

Below is a proof that the four conditions are indeed equivalent.

Proof. Let G be a group of order m with invariant factor decomposition,

Zd1 × Zd2 × · · · × Zd` ,

where d1 | d2 | · · · | d`. Also, let {p1, p2, . . . , ps} be the set of all primes which divide m.

(1) =⇒ (4): First, we can write G as

G =

s⊕
i=1

Gpi

where, for each i, Gpi is the Sylow pi-subgroup of G. By condition (1), Gpi is of the form Zpi × · · · × Zpi
for every i. Thus, it follows that

G =

s⊕
i=1

mi⊕
j=1

Zpi ,

for some positive integers m1, . . . ,ms. Notice that this must be the primary decomposition of G by defini-

tion of primary decomposition, and thus, condition (4) holds.

(4) =⇒ (3): Assume condition (4) holds. Then, since we construct the invariant factor decomposition

of G by combining factors from the primary decomposition whose orders are relatively prime, and every

factor from the primary decomposition is, by assumption, of the form Zp for some prime p, it follows that

each dj is squarefree.

(3) =⇒ (2): Suppose that condition (3) holds. By construction of the invariant factor decomposition, we

know that d` dividesm and that pi divides d` for each 1 ≤ i ≤ s. Then, since d` is squarefree, it follows that

each pi must divide d` exactly once. Therefore, we must have that d` = p1p2 · · · ps. Now, suppose thatG′ is

another finite abelian group of order m with invariant factor decomposition, Zd′1 × Zd′2 × · · · × Zd′
`′

, where

d′1 | d′2 | · · · | d′`′ . Then, d′`′ must also be divisible by pi for each i in {1, 2, . . . , s}. So, p1p2 · · · ps | d′`′ ,
and thus, d` | d′`′ , which implies that d` ≤ d′`′ . Since G′ was chosen arbitrarily, it follows that d` must be

minimal among all finite abelian groups of order m.

(2) =⇒ (1): We will argue this implication by contrapositive. Suppose that there exists some prime

pj , 1 ≤ j ≤ s, such that the Sylow pj-subgroup of G is of the form Zpα1
j
× Zpα2

j
× · · · × Zpαkj where
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1 ≤ α1 ≤ α2 ≤ · · · ≤ αk and αk > 1. Without loss of generality, we can assume that j = 1. Then,

pαk1 must divide di for some 1 ≤ i ≤ `. Since d1 | d2 | · · · | d`, it follows that pαk1 divides d`. So,

pαk1 p2 · · · ps | d` since pi divides d` for each 1 ≤ i ≤ s. However, from our previous cases, we can see that

it is possible to find a finite abelian group of order m such that d` = p1p2 · · · ps which is clearly a smaller

d` than pαk1 p2 · · · ps since αk > 1. Thus, in this case, d` is not minimal among all finite abelian groups of

order m.

We remark that these four equivalent conditions imply that l is maximal among all finite abelian groups

of order m, however this implication doesn’t go both ways. For instance, consider the following two finite

abelian groups of order 36: G1
∼= Z2 × Z18 and G2

∼= Z6 × Z6. Here, l = 2 for both groups. From their

invariant factor decompositions, we can see that their primary factor decompositions areG1
∼= Z2×Z2×Z9

and G2
∼= Z2 × Z2 × Z3 × Z3. Here, it is easy to see that G2 satisfies condition (1) of our definition, but

that G1 does not, since its Sylow 3-subgroup is Z9.

Lemma 3.1.5. Let G ∼= G1 × G2 × · · · × Gj , where G,G1, . . . , Gj are finite abelian groups. Then, G is

maximally non-cyclic if and only if G1, . . . , Gj are maximally non-cyclic.

Proof. By condition (4) of Definition 3.1.4, G is maximally non-cyclic if and only if each factor of its

primary decomposition is of the form Zp for some prime p. SinceG andG1×G2×· · ·×Gj are isomorphic,

their primary decompositions will be identical. So, each factor of the primary decomposition of G1 ×G2 ×
· · ·×Gj will be of the form Zp, and thus, for each 1 ≤ i ≤ j, the primary decomposition ofGi can only have

factors of the form Zp. By condition (4) of Definition 3.1.4, each Gi must be maximally non-cyclic.

Our goal throughout the remainder of this chapter is to estimate the counting function for the number of

n up to x such that Z×n is maximally non-cyclic. First, applying Chinese Remainder Theorem to Z×n , we get

that

Z×n ∼= Z×2α ⊕
⊕
pβ‖n
p odd

Z×
pβ

∼= Z×2α ⊕
⊕
pβ‖n
p odd

Zφ(pβ),

where α ≥ 0 is an integer. Note that by Lemma 3.1.5, Z×n will be maximally non-cyclic if and only if Z×2α
and Zφ(pβ) for each odd prime p with pβ ‖ n are all maximally non-cyclic.

We will start by focusing on the factor corresponding to 2. If α is 0 or 1, then Z×2α will be the trivial
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group. Otherwise,

Z×2α ∼=


Z2, if α = 2

Z2 × Z2, if α = 3

Z2α−2 × Z2, if α ≥ 4.

Notice that condition (1) from Definition 3.1.4 will not be satisfied if α is greater than 3. Thus, it follows

that in order for Z×n to be maximally non-cyclic, we require that 24 does not divide n. Now, let p be an odd

prime divisor of n and suppose that pβ ‖ n. Then,

Zφ(pβ) ∼=


Zp−1, if β = 1

Zp × Zp−1, if β = 2

Zpβ−1 × Zp−1, if β ≥ 3.

Here, we can see that condition (1) from Definition 3.1.4 will not be satisfied if α is greater than 2 or if p−1

is divisible by a square. Thus, it follows that in order for Z×n to be maximally non-cyclic, we require that if

p is an odd divisor n, then p3 does not divide n and p− 1 is squarefree. Therefore, we have that

#{n ≤ x : Z×n is maximally non-cyclic}

= #{n ≤ x : 24 - n, p3 - n for any odd prime p, and p | n⇒ p− 1 is squarefree}.

So, we can see that this is another case of counting integers with restrictions on their prime factors.

3.2 Useful Propositions

In order to find a counting function for the number of n up to x such that Z×n is maximally non-cyclic, we

first need to state and prove some useful propositions.

Proposition 3.2.1. For any positive integer n,

n

φ(n)
=
∑
d|n

µ(d)2

φ(d)
.

Proof. First, since φ(n) = n
∏
p|n(1− 1/p), we have that

n

φ(n)
=

n

n
∏
p|n(1− 1/p)

=
∏
p|n

(1− 1/p)−1.

Notice that n/φ(n) is a multiplicative function since both n and φ(n) are multiplicative functions. Also, we

can see that
∑
d|n

µ(d)2

φ(d) is a multiplicative function since it is the divisor sum of a multiplicative function.
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Since both n/φ(n) and
∑
d|n

µ(d)2

φ(d) are multiplicative functions, showing that they are equal is equivalent to

checking that they agree on powers of primes. So, let q be a prime and let α be a positive integer. Then,

qα

φ(qα)
=
∏
p|qα

(1− 1/p)−1 = (1− 1/q)−1 =
q

q − 1
,

and ∑
d|qα

µ(d)2

φ(d)
= 1 +

1

q − 1
=

q

q − 1
.

Therefore, from this, it follows that n
φ(n) =

∑
d|n

µ(d)2

φ(d) for any positive integer n.

Proposition 3.2.2. For any real number x,∑
n≤x

n

φ(n)
=
ζ(2)ζ(3)

ζ(6)
x+O(x1/2).

Proof. First, by Proposition 3.2.1, we have that∑
n≤x

n

φ(n)
=
∑
n≤x

∑
d|n

µ(d)2

φ(d)
.

So, by switching the order of summation, we get∑
n≤x

n

φ(n)
=
∑
d≤x

µ(d)2

φ(d)

∑
n≤x
d|n

1 =
∑
d≤x

µ(d)2

φ(d)

⌊x
d

⌋
.

Now, since bx/dc = x/d+O(1), we have that

∑
n≤x

n

φ(n)
=
∑
d≤x

µ(d)2

φ(d)

(x
d

+O(1)
)

= x
∑
d≤x

µ(d)2

dφ(d)
+O

(∑
d≤x

1

φ(d)

)

= x

∞∑
d=1

µ(d)2

dφ(d)
+O

(
x
∑
d>x

1

dφ(d)
+
∑
d≤x

1

φ(d)

)
. (3.1)

Note that the convergence of the sum in the main term of (3.1) follows from (3.2). Then, since µ(d)2/dφ(d)

is a multiplicative function, we can rewrite the coefficients of the main term of (3.1) as an Euler product as
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follows,

∞∑
d=1

µ(d)2

φ(d)
· d−1 =

∏
p

(
1 +

µ(p)2

φ(p)
p−1 +

µ(p2)2

φ(p2)
p−2 + · · ·

)
=
∏
p

(
1 +

1

p− 1
p−1 + 0 + 0 + · · ·

)
=
∏
p

(
1 +

1

p(p− 1)

)

=
∏
p

(
p2 − p+ 1

p(p− 1)

)
.

Now multiplying the numerator and denominator by (p + 1)(p3 − 1) and then dividing the numerator and

denominator by p6, we get the following chain of equalities:

∞∑
d=1

µ(d)2

dφ(d)
=
∏
p

(
p6 − 1

p(p2 − 1)(p3 − 1)

)

=
∏
p

(
1− 1/p6

(1− 1/p2)(1− 1/p3)

)

=

∏
p(1− p−2)−1

∏
p(1− p−3)−1∏

p(1− p−6)−1
.

Since the Euler product representation of Riemann’s zeta function is ζ(s) =
∏
p(1 − p−s)−1, we can see

that
∞∑
d=1

µ(d)2

dφ(d)
=
ζ(2)ζ(3)

ζ(6)
.

Now, we will simplify the error term of (3.1). First, since φ(d)�ε d
1−ε for any positive ε, taking ε = 1/2,

we get that

x
∑
d>x

1

dφ(d)
� x

∑
d>x

1

d3/2
� x

∫ ∞
x

1

t3/2
dt = x

(
− 2

t1/2

) ∣∣∣∣∞
x

= x · 2

x1/2
� x1/2 (3.2)

and ∑
d≤x

1

φ(d)
�
∑
d≤x

1

d1/2
�
∫ x

1

1

t1/2
dt = 2t1/2

∣∣∣∣x
1

= 2x1/2 − 2� x1/2.

Substituting our revised main term and our simplified error term back into (3.1), we get that∑
n≤x

n

φ(n)
=
ζ(2)ζ(3)

ζ(6)
x+O(x1/2).
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Proposition 3.2.3. For any real number y, ∑
n>y

1

nφ(n)
� 1

y
.

Proof. First, notice that we can rewrite the above sum as follows,∑
n>y

1

nφ(n)
=
∑
n>y

n

φ(n)
· 1

n2
.

Then, since f(t) = 1/t2 is a continuous function, we can use a Riemann-Stieltjes integral to evaluate the

above sum: ∑
n>y

1

nφ(n)
=

∫ ∞
y

1

t2
d

(∑
n≤t

n

φ(n)

)

=
1

t2

∑
n≤t

n

φ(n)

∣∣∣∣∞
y

−
∫ ∞
y

∑
n≤t

n

φ(n)
d

(
1

t2

)
= − 1

y2

∑
n≤y

n

φ(n)
+ 2

∫ ∞
y

1

t3

∑
n≤t

n

φ(n)
dt.

Now, since
∑
n≤x

n
φ(n) � x by Proposition 3.2.2, we have that

∑
n>y

1

nφ(n)
� 1

y2
· y + 2

∫ ∞
y

1

t3
· tdt

=
1

y
+ 2

(
−1

t

) ∣∣∣∣∞
y

� 1

y
.

Definition 3.2.4. Let ξ be Artin’s constant, that is,

ξ =
∏
p

(
1− 1

p(p− 1)

)
.

Proposition 3.2.5. Let C be any positive real constant. Then,

#{p ≤ x : p− 1 is squarefree} = li(x)ξ +O

(
x

(log x)C/2

)
,

where ξ is defined as in Definition 3.2.4 and

li(x) =

∫ x

0

dt

ln t
.
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Proof. First, notice that,

#{p ≤ x : p− 1 is squarefree } =
∑
p≤x

(µ(p− 1))2.

Then, since (µ(p− 1))2 =
∑
d2|p−1 µ(d) (equation (2.4) on p.36 of [4]), we have that

#{p ≤ x : p− 1 is squarefree } =
∑
p≤x

∑
d2|p−1

µ(d)

=
∑
d2≤x

∑
p≤x
d2|p−1

µ(d)

=
∑
d2≤x

µ(d)
∑
p≤x
d2|p−1

1

=
∑
d≤
√
x

µ(d)π(x; d2, 1).

By Corollary 11.21 from [4], for d2 < (log x)C ,

π(x; d2, 1) =
li(x)

ϕ(d2)
+OC(xe−c1

√
log x),

where c1 is a positive constant. So,∑
d≤(log x)C/2

µ(d)π(x; d2, 1) =
∑

d≤(log x)C/2
µ(d)

(
li(x)

ϕ(d2)
+OC(xe−c1

√
log x)

)

= li(x)
∑

d≤(log x)C/2

µ(d)

ϕ(d2)
+OC

(
(log x)C/2xe−c1

√
log x

)
.

Since φ(d2) = dφ(d), we can see that∑
d≤(log x)C/2

µ(d)

ϕ(d2)
=
∑
d≥1

µ(d)

dφ(d)
+O

( ∑
d>(log x)C/2

1

dφ(d)

)

=
∏
p

(
1− 1

p(p− 1)

)
+O

(
1

(log x)C/2

)
= ξ +O

(
1

(log x)C/2

)
.

The second equality above is valid due to Proposition 3.2.3. Thus, so far, we have that∑
d≤(log x)C/2

µ(d)π(x; d2, 1) = li(x)ξ +O

(
li(x)

(log x)C/2

)
+OC

(
(log x)C/2xe−c1

√
log x

)
.
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Now, we can use the trivial estimate π(x; d2, 1)� 1 + x/d2, to get that∑
(log x)C/2<d≤

√
x

µ(d)π(x; d2, 1)�
∑

(log x)C/2<d≤
√
x

(
1 +

x

d2

)
�

∑
(log x)C/2<d≤

√
x

( x
d2

)
, since d >

√
x

< x
∑

(log x)C/2<d

(
1

d2

)

< x

∫ ∞
(log x)C/2−1

1

t2
dt

� x

(log x)C/2
.

Thus,

∑
d≤
√
x

µ(d)π(x; d2, 1)

= li(x)ξ +O

(
li(x)

(log x)C/2

)
+OC

(
(log x)C/2xe−c1

√
log x

)
+O

(
x

(log x)C/2

)
.

Now, since lix� x/ log x, we have that∑
d≤
√
x

µ(d)π(x; d2, 1)

= li(x)ξ +O

(
x

(log x)1+C/2

)
+OC

(
(log x)C/2xe−c1

√
log x

)
+O

(
x

(log x)C/2

)
= li(x)ξ +O

(
x

(log x)C/2

)
+OC

(
(log x)C/2xe−c1

√
log x

)
.

Now, since

lim
x→∞

(log x)C

ec1
√
log x

= 0,

we have that (log x)C = o(ec1
√
log x), and thus (log x)C � ec1

√
log x. From here, it follows that

x(log x)C/2

ec1
√
log x

� x

(log x)C/2
,

and thus, ∑
d≤
√
x

µ(d)π(x; d2, 1) = li(x)ξ +O

(
x

(log x)C/2

)
.
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Let A = {p : p− 1 is squarefree}. Then, we can calculate the density d(A) of A as follows:

d(A) = lim
x→∞

#{p ≤ x : p− 1 is squarefree }
π(x)

Notice that, as stated in the next proposition, d(A) turns out to be Artin’s constant.

Proposition 3.2.6. d(A) = ξ, where ξ is as defined in Definition 3.2.4.

Proof. First, by Proposition 3.2.5,

d(A) = lim
x→∞

li(x)ξ +O
(

x
(log x)C/2

)
π(x)

= lim
x→∞

(
li(x)

π(x)
ξ +O

(
x

π(x)(log x)C/2

))
.

Now, by the Prime Number Theorem, we have that

x

π(x)(log x)C/2
� x log x

x(log x)C/2
= (log x)1−C/2.

Let C > 2. Then, 1− C/2 < 0, and so, as x goes to infinity, the above error term goes to 0.

Also, by the Prime Number Theorem, we know that

lim
x→∞

li(x)

π(x)
= 1.

Therefore, it follows that, d(A) = ξ.

3.3 Counting integers n such that Z×n is maximally non-cyclic

In order to prove Proposition 3.3.2, we will need to use the Wirsing-Odoni Method. Below is a statement of

the method taken directly from [1]:

Proposition 3.3.1 (Wirsing Odoni Method). Let f be a multiplicative function. Suppose that there exist

constants u and v such that 0 ≤ f(pr) ≤ urv for all primes p and all positive integers r. Suppose also that

there exist real numbers ω > 0 and 0 < β < 1 such that∑
p<P

f(p) = ω
P

logP
+O

(
P

(logP )1+β

)
as P →∞. Then the product over all primes

Cf =
1

Γ(ω)

∏
p

(
1 +

f(p)

p
+
f(p2)

p2
+
f(p3)

p3
+ · · ·

)(
1− 1

p

)ξ
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converges (hence is positive), and∑
n<N

f(n) = CfN(logN)ω−1 +Of (N(logN)ω−1−β)

as N →∞.

Proposition 3.3.2.
#{n ≤ x : Z×n is maximally non-cyclic} ∼ Cf

x

(log x)1−ξ
,

where ξ is as defined in Definition 3.2.4 and Cf is the convergent product,

Cf =
15

14Γ(ξ)
lim
x→∞

( ∏
p≤x

p−1 squarefree

(
1 +

1

p
+

1

p2

)∏
p≤x

(
1− 1

p

)ξ )
.

Proof. Recall that, as shown in Section 3.1,

#{n ≤ x : Z×n is maximally non-cyclic}

= #{n ≤ x : 24 - n, p3 - n for any odd prime p, and p | n⇒ p− 1 is squarefree}.

Let

f(n) =

{
1, if 24 - n, p3 - n for any odd prime p and p | n⇒ p− 1 is squarefree,

0, otherwise.

Then, f is multiplicative and for any prime p and natural number r, 0 ≤ f(pr) ≤ 1 ≤ 2 · r1. Also, by

Proposition 3.2.5, we have that ∑
p≤x

f(p) = #{p ≤ x : p− 1 is squarefree}

= li(x)ξ +O

(
x

(log x)C/2

)
.

Since

li(x) =
x

log x
+O

(
x

log2 x

)
,

we get that ∑
p≤x

f(p) =

[
x

log x
+O

(
x

log2 x

)]
ξ +O

(
x

(log x)C/2

)

=
x

log x
ξ +O

(
x

(log x)min(2,C/2)

)
.
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Choosing C > 4, we get that,∑
p≤x

f(p) = ξ
x

log x
+O

(
x

(log x)2

)

= ξ
x

log x
+O

(
x

(log x)1+β

)
,

where 0 < β < 1. Then, applying Proposition 3.3.1, we get that

Cf =
1

Γ(ξ)

∏
p

(
1 +

f(p)

p
+
f(p2)

p2
+
f(p3)

p3
+ · · ·

)(
1− 1

p

)ξ

=
1

Γ(ξ)
·
(
1 + 1

2 + 1
4 + 1

8

)(
1 + 1

2 + 1
4

) lim
x→∞

( ∏
p

p−1 squarefree

(
1 +

1

p
+

1

p2

)∏
p

(
1− 1

p

)ξ )

=
15

14Γ(ξ)
lim
x→∞

( ∏
p

p−1 squarefree

(
1 +

1

p
+

1

p2

)∏
p

(
1− 1

p

)ξ )

converges and ∑
n≤x

f(n) = Cfx(log x)ξ−1 +Of
(
x(log x)ξ−1−β

)
.

The statement of the proposition follows directly from this.
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Chapter 4

Conclusion

To conclude, throughout this thesis, we have examined multiple counting functions of integers with restric-

tions on their prime factors. First, in Chapter 2, we proved that for a fixed odd prime q and a fixed q-group

H = Zqα1 ×Zqα2 ×· · ·×Zqαj , the counting function for the number of n up to x for which H is the Sylow

q-subgroup of Z×n is

D(H,x) = KH

(
x(log log x)j

(log x)1/(q−1)

)
+OH

(
x(log log x)j−1

(log x)1/(q−1)

)
,

where KH is a constant that depends on H . Then, in Chapter 3, we proved that the number of n up to x

such that Z×n is cyclic is asymptotic to 3
2x/ log x and that the number of n up to x such that Z×n is maximally

non-cyclic is asymptotic to Cfx/(log x)1−ξ, where ξ is Artin’s constant and Cf is the convergent product,

Cf =
15

14Γ(ξ)
lim
x→∞

( ∏
p≤x

p−1 squarefree

(
1 +

1

p
+

1

p2

)∏
p≤x

(
1− 1

p

)ξ )
.

As a next step, given a fixed finite abelian groupG of orderm, it might be interesting to consider the problem

of finding an asymptotic formula for the number of n up to x such that G is not contained in Z×n .
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