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Abstract

In this thesis, we examine two problems that, on the surface, seem like pure group theory problems, but turn
out to both be problems concerning counting integers with restrictions on their prime factors. Fixing an odd
prime number g and a finite abelian g-group H = Zgeq X Zgas X - - - X Zge; , our first aim is to find a counting
function, D(H, x), for the number of integers n up to = such that H is the Sylow ¢-subgroup of (Z/nZ)*. In
Chapter 2, we prove that D(H, z) ~ Kyz(loglogz)’ /(logz)'/(4=1), where Ky is a constant depending
on H.

The second problem that we examine in this thesis concerns counting the number of n up to x for
which (Z/nZ)* is cyclic and for which (Z/nZ)* is maximally non-cyclic, where (Z/nZ)* is said to be
maximally non-cyclic if each of its invariant factors is squarefree. In Chapter 3, we prove that the number
of n up to z such that (Z/nZ)* is cyclic is asymptotic to 3z /log x and that the number of n up to x such
that (Z/nZ)* is maximally non-cyclic is asymptotic to Cyz/(log 2)*~¢, where £ is Artin’s constant and C'y

is the convergent product,

oo (I () I0-5))

p<w p<w
p—1 square-free

It turns out that both of these problems can be reduced to problems of counting integers with restrictions
on their prime factors. This allows the problems to be addressed by classical techniques of analytic number

theory.
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Lay Summary

In mathematics, we have structures called groups, which are basically sets of objects which satisfy certain
characteristics. If ¢ is a prime number, a g-group is a group whose total number of elements is a power of q.
A subgroup of a group G is a collection of elements in G who form a smaller group on their own and the
Sylow g-subgroup of G, is a subgroup which has ¢* elements, where ¢* is the largest power of ¢ which
divides the total number of elements in G.

The first goal of this thesis is to fix an odd prime number ¢ and a ¢g-group H, and find a function that
counts groups whose Sylow g-subgroup is H. The second goal of this thesis is to find functions that counts

groups that are maximally non-cyclic. Note that we define maximally non-cyclic in Chapter 3.
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Preface

This thesis is comprised of joint work with Dr. Greg Martin. We plan on submitting our results for publica-

tion.
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Chapter 1

Introduction

Problems concerning counting integers with restrictions on their prime factors has been a topic of interest
to number theorists for many years. The study of squarefree integers, as well as friable integers (integers
without large prime factors), are perfect examples of such problems. Of particular interest, in 1908, Landau
published a paper [3[] in which he investigated the question of counting integers up to x that can be written as
the sum of two squares. Fermat had previously shown that this problem was equivalent to counting integers
n that satisfied the following condition: if p is a prime congruent to 3 modulo 4 and r is the largest positive
integer such that p” divides n, then r is even. Similarly, in 2012, Ford, Luca and Moree published a paper [2]
in which they investigated the problem of counting the number of integers n such that ¢(n) is not divisible
by g, where q is some fixed prime number. This is equivalent to counting the number of integers n such
that g2 does not divide n and if p is a prime divisor of 7, then p is not congruent to 1 modulo q.

Abstract algebra, and in particular, group theory, can be a useful perspective from which to analyze such
problems. For instance, it turns out that Ford, Luca and Moree’s problem in [2f] is equivalent to counting
the integers n up to z for which the Sylow g-subgroup of (Z/nZ)* is trivial. In response to a talk by Lee
Troupe in 2017 at the Alberta Number Theory Days, Colin Weir asked if it was possible to count, for a fixed
prime ¢ and a fixed finite abelian g-group H, the number of n up to = for which H is the Sylow ¢-subgroup
of (Z/nZ)*. This is the exact question that we will investigate throughout Chapter 2 of this thesis.

Let ZX = (Z/nZ)* be the multiplicative group of integers modulo n. Also, let ¢ be a fixed odd prime
and let G, (n) denote the Sylow g-subgroup of Z%, that is, the unique subgroup of Z of order ¢*, where ¢*
is the highest power of ¢ that divides ¢(n). Note that, throughout Chapter 2, ¢ is always considered to
be this fixed odd prime. Further, let (¢; o1, g, ..., ;) denote the g-group Zgeys X Zgez X -+ X Ly,

q“7
where o, ..., a; are positive integers, Zgo; is the cyclic group of integers modulo ¢®¢ for each ¢ and
a1 > ag > --- > aj. Given a g-group, (¢; a1, ®,...,q;), our goal is to count the number of positive
integers n for which G4(n) = (¢; o1, a2, . .., ;).



The main result of Chapter 2 is given in the following theorem.

Theorem 1.0.1. For a finite abelian ¢-group H, let D(H,z) = #{n < xz: G4(n) = H}. Suppose that g is
an odd prime and that H = (¢; o1, g, . .., ;). Then,

x(loglog x) ) L0 (x(loglogx)jl) )

D(H,z) = Kn ((1ng)1/<q—1> (log z)1/(a=1)

where K is a constant that depends on the group H that will be defined in Theorem [2.7.1]

In Chapter 3, we shift our focus to a different problem concerning counting integers with restrictions on
their prime factors. This problem involves cyclic and maximally non-cyclic groups, where a finite abelian
group is said to be maximally non-cyclic if each of its invariant factors is squarefree. Here, we show that the
number of n up to x such that Z;* is cyclic is asymptotic to 3/2 - 2/ log . The main result of this Chapter 3

is given in the following theorem.

Theorem 1.0.2. The number of integers n up to x such that Z is maximally non-cyclic is asymptotic to

Cyz/(logz)l=¢, where
1
521;[ <1_p(p—1)>

is Artin’s constant and C'; is the convergent product,

i (I () I0-3) )

p<z p<zx
p—1 square-free



Chapter 2

Counting Finite Abelian Groups with a

Prescribed Sylow ¢-Subgroup

2.1 Setup

In order to achieve our goal, we will introduce the following useful notation. For a finite abelian ¢-group H
and a positive integer k, let D(H, x) be defined as in Theorem and let
Dy(H,x) = #{n < z: ¢* | n, G4(n) = H}, where ¢* || n denotes that ¢* | n and ¢"*** { n.

We will spend most of this chapter evaluating Do ((¢; a1, . .., &), ), since, as we will show in Sections
2.5 and 2.6, Dy ((g; v, ..., ;),x) is closely related to Do((g; a1, ...,y ), ), for all £ > 1. Since this
is the case where ¢ 1 n, we can write n as the product of primes n = 25195a ! p§2 pf “ where § > 0,
B1,B2,--.,08: > 0and q # p; foreach 1 < ¢ < ¢. Then, we can apply Chinese Remainder Theorem, to get
that

X ~~ X X X X
Ly R Lys X L5, X L5, X o+ X L5,
Py 2 Py

%Z;ﬂXZ X 7 ~~~><Z¢

2y X
o))~ To(py?) (")

X
2755 ¥ prlfl X Lipy—1 % Zpgrl X Lipy—1 X =+ X prtfl X Lipp—1-

Now, note that Z;ﬁ will be isomorphic to the trivial group if S is 0 or 1, Zs if S is 2 and Zgs-2 X Zs if 8

is at least 3. So, it follows that Z;ﬂ will not contribute to the Sylow g-subgroup since for any odd prime g,
Gg¢(n) will be made up of only odd factors and the factorization of Z.; only contains even factors. Also,
note that since g # p; for each 1 < 4 < ¢, it follows that none of the prrl factors will contribute to Gq(n)
either. So, it follows that Z  will have the same Sylow g-subgroup as Zy,, _1 X Zp,—1 X -+ X Zp, _1.

Thus, we have that G,(n) = (¢; a1, . .., «;) if and only if the following conditions are satisfied:



e Foreach a; in {cv,...,a;} such that a; # oy, for all k # ¢, there exists a unique prime divisor p; of
n such that p; = 1 (mod ¢*?) and p; # 1 (mod ¢®i*1).

o If there is a subset {ak, k+1,. .., Qptm} Of {aa,...,;} such that ap = g1 = -+ = Agtme
then, there exists a unique set of m + 1 distinct primes, {pg, Pk+1, - - - , Pk+m }» Up to relabelling, such

that if p; is in {p, Prs1,-- -, Phrm}. then p; = 1 (mod ¢**) and p; Z 1 (mod g +1).
e For all prime divisors p of n such that p # p; for any 1 <4 < j, we have that p #Z 1 (mod q).

Now, by definition of D and Dy, notice that,
D((g;01,...,05),z) = #{n <xz: Gy(n) = (g;01,...,05)}

= ZDk((Q;ala .. 'aaj)ax)'
k=0

Using similar reasoning as above, if ¢® 72 divides n, then the Sylow g-subgroup of ZX will include a
Zgor+1, and thus, will not be (g¢; a1, ..., ;). Therefore, we can see that Dy((q; a1, ..., a;),x) will be
equal to zero if k is greater than or equal to oy + 2 and so,

a;+1
D((Qv Qly.nny Oéj),l') = Z Dk((qv A1y ,Oé]'),.’E). (21)
k=0
Before we can say more about D, we need the following two definitions.

Definition 2.1.1. For a nonzero integer z, define v,(z) to be the largest nonnegative integer k such that ¢*

divides z.

Definition 2.1.2 (Conjugate Partition). Let (31, 32, ...) be a partition. Then, we define the conjugate par-
tition (by,be,...) of (81, B2,...) to be the partition whose Ferrers diagram is the transpose of the Ferrers
diagram of (f1, B2, . ..). In other words, we define (b1, bo, .. .) to be the conjugate partition of (51, B2, .. .)
if b; = #{k: B > i} for each natural number :.

The following proposition will be very useful in evaluating Dy.

Proposition 2.1.3. Let H = (¢; a1, az, ..., a5 ) . Then,

Dy(H,z) = Cy Z Z Z Z 1, (2.2)

p1<z p2<z/p1 p;<x/p1---pj—1 m<x/p1-p;
vg(p1—1)=a1  pa#p: DjFD1 s >Dj—1 qtm
vg(p2—1)=0x ve(pj—1)=a; (t#p1,...,p; and t{m)=t£1 (mod q)

where ¢ is prime. Here,

051—1 1

Cn = H (ar — axs1)!’

iy \ak k+1)!

where (a1, ..., aq, ) is the conjugate partition of (a1, ..., a;).



Proof. First, notice that

I DD D L

p1<z p2<z/p1 pi<x/p1pj-1 m<x/p1-p;
ve(p1—1)=a1 P27£D1 DiFP1,--Pj—1 gtm
vg(p2—1)=aq ve(pj—1)=aj (t#p1,...,p; and t|m)=>t#1 (mod q)
counts the number of natural numbers n = pips---p;m up to x where pq,...,p; are primes and the

following two statements hold:
o foreachi=1,2,...,j,p; =1 (mod ¢*') and p; # 1 (mod ¢**1),

e m is an integer not divisible by ¢ such that if ¢ is a prime divisor of m, with ¢ # p1,...,p;, then ¢

does not divide ¢ — 1.

Comparing this sum to our above conditions on Dy, we can see that the only difference between it and Dy,
is that, in this sum, we count the ‘good’ n up to x multiple times if the «; are not distinct. So, every time we
get a sequence of m repeated « values, we need to multiply by 1/m! to ensure that we only count distinct
values of n.
Notice that for each k = 1, 2, .. ., by definition of conjugate partitions, a;, — ax4+1 > 0 since

{l: ap > k+1} C {€: ay > k}. For any k, such that a, — agy1 isequalto O or 1, 1/(ax — ax+1)! = 1,
and thus, multiplying the above nested sum by 1/(ar — ax+1)! will have no effect. Now, notice that,
ar — ak+1 = m > 1 for some k, m if and only if there is some 1 < ¢ < jsuchthat ; = ajy1 = -+ =
Qitm—1 = k + 1. Thus, if we have m repeated « values all equal to k£ + 1, we need to multiply by
1/(ax — agy1)! = 1/ml.

The above proposition follows from here. O

2.2 Selberg-Delange Method

We will start by introducing the version of the Selberg—Delange Method given in [5]. In order to do so, we

will first define two important properties of Dirichlet series.

Definition 2.2.1 (From [3])). Let z € C,¢o > 0,0 < 6 < 1, M > 0. We say that a Dirichlet series F'(s) has
the property P(z; co, 6, M) if the Dirichlet series G(s; z) := F(s)¢(s)* may be continued as a holomorphic
function for ¢ > 1 — co/(1 4 log™ |7|), and, in this domain, satisfies the bound |G(s; 2)| < M (1 + |7|)*~°.

Note that, for 7 > 0, log™ |7| = max{0,log7}.

Definition 2.2.2 (From [5]])). Let z € C,¢g > 0,0 < § < 1,M > 0. We say that a Dirichlet series
F(s) = >_,>; ann™ has the property T(z,w;co,d, M) if F'(s) has property P(z;co,d, M) and if there
exists a sequence of non-negative real numbers {b,, }5 ; such that |a,,| < b,(n = 1,2,...), and the series

Y n>1 bnn ™ satisfies P(w; co, §, M) for some complex number w.



Now, we can state a version of the Selberg—Delange method, adapted from Theorem 5.2 of [5]], by setting
N =0.

Theorem 2.2.3 (Selberg-Delange Method). Let F'(s) := }_, -, a,n~° be a Dirichlet series that has the
property T (z, w; cg, 9, M). Then, forz > 3, A > 0, |z| < A, and |w| < A, we have

. )

n<zx

where G is as in Definition 2.2.1 and I' is the Euler Gamma function.

Proof. Let F'(s) := }_ -, apn~° be a Dirichlet series that has the property J(z,w;co,d, M), x > 3,
A>0,]|z] < A, and |w| < A. Then, setting N = 0 in Theorem 5.2 of [5]], we get that

Z an, = z(log a:)z_l{ (li\)og(go + O(MRo(x))}

= z(log m)z_l{)\o(z) + O(MRO(:c))}.

n<x

Now, by Equation (5.16) of [5]], we have that

1
RQ(]J) — efclx/logm +

logx’

where c; is some positive constant. Then, since e~ ¢1V1°8% < 1/log x, it follows that Ry(z) < 1/logz,

S an = x(logx)21{)\o(z) +0 (13;:5) }

n<z

and thus,

Now, by Equation (5.13) in [5]], we have that

M) = X s = S
+j=0

where the y; are entire functions of z, that satisfy

Z(s;z) = %%—(z)(s — 1)/,

j>07"

on the disk |s — 1| < 1 where

s
Then, since Z(1;z) = 1 (p.279 of [5]]), we can see that,

1= 21:2) = g(2) = 20(2).



Therefore, A\o(z) = G(1;2)/T'(z), and thus,

S a, = x(logm)21{G1£2;)Z) i) (kf\gC) }

n<zx

In this section, our goal is to find an asymptotic formula for the following sum:

> )

m<z/p1p;
qtm
(t#p1,...,p;j and t|m)=t#1 (mod q)

where ¢ is prime.

However, in order to achieve this goal, we will start by using the Selberg Delange theorem to find an

> 1.

n<lx
p|ln=>pZ1 (mod q)

asymptotic formula for:

First, as setup, let
1, ifp#1(modg)forallp|n
p =
0, otherwise

and let F(s) := Y~ | a,n~*. Then, since a,, is a multiplicative function of n, we can write F' as an Euler
(1—p=%)"". Now, let G(s; z) := F(s)((s)~. In order

> o

n<z
pln=pZ1 (mod q)

product in the following way: F'(s) = [, mod o)

to find an asymptotic formula for

we need the following series of three propositions.

Proposition 2.2.4. Let A(s) = F(s)7'¢(s)~ (@D ]

tinued to o > 1/2, where o is the real part of s.

+ (mod g (8, X). Then, A(s) can be analytically con-

Proof. First, we can replace F'(s), ((s), and L(s, x) by their Euler products in the definition of A(s) to get

w= T (-5 m-5)" 1)

pZ1 (mod q) P X (mod g) P
1\ x()\ "~
- I () I TI(-
p=1 (mod q) X (mod g) p



So, we can write,

91 (5)

gp<x>={ = ’?fpz“m"d@} I -

1 JdAfpF1modg) | coia

where

By the generalized binomial theorem, (1 — z)?~! = 1 — (¢ — 1)z + O(2?), and (1 — x(p)z)~! =
1+ x(p)z + O(z?). From this, we get that,

[T a-xw2)'= [[ O+xz+0G*) =1+ Y x(p)|z+0@?.

X (mod q) X (mod q) X (mod q)

By the orthogonality relations for y, we know that

q—1, ifp=1(modyq),
> xlp) = .

X (mod ) 0, if p #Z 1 (mod gq).
Thus,
1 1+ (¢g— 1Dz +O0(z?), ifp=1(modyq),
II a=xpa)" = O .
x (mod q) 1+ O(=?), if p# 1 (mod q).
So,
(2) 1—(¢g—1z+0(2?), ifp=1(modq) 1+ (g— 1)z +O0(2?), ifp=1(modq)
€Tr) =
I 1 if p £ 1 (mod q) 1+ O(22), if p £ 1 (mod q)
=1+ 0(z?),
and thus,
H(1+O< )) (2.3)
P
which converges for o > 1/2. O

Proposition 2.2.5. Let A(s) be defined as in Proposition Then, G(s,1—1/(g—1)) can be analytically

continued to s = 1.

Proof. First, notice that by rearranging the functions in the definition of A(s), we get that

F(s)*™t = A(s)S()* " [ Llso0™" (2.4)

X (mod q)



Consider L(s, xo) !, where o is the principal Dirichlet character modulo q. Notice that we can use alge-

braic manipulations to rewrite L(s, o) ! in the following way:

S (2R (CORTS (0

P p#q
1 —1
= (1 — ) ¢(s)7 L (2.5)

Therefore, from equation (2.4)), we have that

-1

()7 = A(s)C(s)7? (1—;3) ¢ I L0

1
—a@ee (1= 1) ] Lo 26)

Thus, since G(s; z) = F(s)((s)™*, we have that,

G(s;1—1/(qg—1)) = F(s)¢(s)~4=2/(a=1)
= F(s) (a—1)/(a— UC() (g—2)/(a—1)

( )7 1< —(q— 2))1/(q_1)

1/(g—1)

I

—

|
SIe
\_/

H L(s,x)"*¢(s) —(q-2)
XFX0
1/(g=1)

Q2.7)

I
b
—
=
7N
—

I
=
~_

L
=
»
=
S~—

i

Note that the analytic continuation of G(s;1 — 1/(g — 1)) to s = 1 follows from equations (2.3) and 2.7),

since L(1, x) is non-zero for x non-principal. O
Before stating Proposition [2.2.7} we need the following definition.

Definition 2.2.6. Let m be an integer and let n be a positive integer such that (m,n) = 1. Then, we say that

k is the order of m modulo n if k is the smallest positive integer such that m* = 1 (mod n).

Proposition 2.2.7. For a prime number p, let k,, be the order of p modulo g. Then,

G1=1/(q=1) = (1 =1/q) /0 T (@ =1/ph)= /% I L7,

PF#q XFX0
p#1 (mod q)



Proof. First, from equation (2.6), we get that

A = Fe 90 (1 ) T 260

XFX0

=a-1¢) [[ a-1p)"“ ”H -1/p) " ] (H(l—x(p)/ps)_1>~

p#1 (mod q) X#Xo \ P
Now, when p = 1 (mod q), the local factor is

=12 [ a—xw)/p) =@ —-1/p)" 2 (1 -1/p") 7P =1.

X7#X0

Similarly, when p = g, the local factor is

(1=1/p) (1 =1/p)" P a—1/p)" T A =xw)/p) = [[ A-0/p") " =1.

X#Xo0 X#X0
For all other p, the local factor is
(1=1/p) "V a—1p) 2 [T A=xw/p) " =0-1/p)"" [ 0 =x)/p) "
X#X0 X7#X0
= I a-xw/m)™
X (mod q)

Now, by the generalized binomial theorem, we have that (1 — x(p)/p*) "' = 1+ x(p)/p* + O(1/p*).
So,
—s\ 1 —s —2s
II G=—xpr)" = ] Q+x@p*+0@*))

X (mod q) X (mod q)

=1+ > x| p 7 +00™*)

X (mod q)

—1—|—O( —25)

as expected since A(s) converges for o > 1/2 by Proposition [2.2.4}

Thus, we have that
A= I I a-x@/m)™

p7#q X (modgq)
p#1 (mod q)

where A(s) converges for o > 1/2, and hence,

An="II II a-xw/m,

p#q X (modq)
pZ1 (mod g)

10



is convergent.

Now, we will evaluate the innermost product. First, letting = 1/p, we get that
II a-xw/m"'= ] @-x@)"
X (mod q) X (mod q)

For any prime p, let k, be the order of p modulo ¢q. Then, since each kg’ root of unity occurs exactly

(¢ — 1)/k, times among the values x(p) as x varies over all Dirichlet characters modulo ¢, we have that

k}”
[T a=xwa) " =T - emi/Frg)y=ta=D/ks,
X (mod g) j=1
Now, since
kp
CUkp 1= H(x _ e27rij/kp)’
j=1
we have that,
kp
1—1/ab = [ = ™9/ /).
=1
Thus, replacing x by 1/x, we see that
kP
1— Q?kp _ (1 627Tij/kpl‘)
j=1
Thus,
kp
H(l _ eZﬂ'ij/k,,x)—(q—l)/kp _ (1 _ xkp)—(q—l)/kp.
j=1
So, it follows that,
[T (1= xwa)™ = (1 —ae)=la=D/ke,
X (mod q)

and thus,
A(l) = H (1 — l/pkp)*(qfl)/kp.
PF£q
pZ1 (mod q)

Now, setting s = 1 in

Glst-1/a- )= (46 (1- 1) ] £l

11



we get that

G (11 -1/(g = 1) = AWV (1= 1/g)” @Y T L1, )7/
X#X0

= (-1~ T @ —yyphn) @D T L~V
pF#4q X#Xo0
p#1 (mod g)
O

The following corollary to the Selberg—Delange Theorem gives an asymptotic formula for the desired

sum.

Corollary 2.2.8. Let p be a prime number. Then, for z > 3,

E 1 = Byz(logz)~ Y=Y 4 O(z(logz) 1~/ (a=1),
n<x
pln=p#1 (mod q)

where

o G- 1/ 1)
q )
Ir(1-1/(¢-1))
and G(1;1 —1/(q — 1)) is as in Proposition[2.2.7]

Proof. We will start by establishing some of the parameters required for the Selberg—Delange Theorem.

First,let z = 1 — 1/(q — 1) and recall that

G(s;1—1/(q—1)) = A(s)"/(a=D) (1 - 1) Ve 1T Zes, )/t
¢ X#X0

Note that A(s) converges for o > 1/2 and (1 — 1/q3)_1/(q_1) is well-defined for ¢ > 0. Now, from The-

orem 11.3 of [4], it follows that if none of the Dirichlet characters x (mod ¢) have an exceptional zero, then

there exists an absolute constant ¢ > 0 such that L(s, x) has no zeros in the region o > 1 — ¢/ log(q(|7| + 4)).

Note that since log™ |7| and log(|7| +4) differ by at most log(5), it follows that there exists a constant ¢ > 0

such that L(s, ) has no zeros in the region o > 1 — ¢/log™ (q|7|). Now, since

3 c/loggq <l c/logq
1 +log™ |7|/logq 1+log™|7|’

1—c/log"(q|7]) =1

c/logq
I+log* |7/ logq
. _ _c/logq —1/(g—1) w; : _ _c/logq
the region o > 1 — =721, and thus, [Tty L(s:X) will be analytic for o > 1 — 7= EE

Now, suppose that some Dirichlet character x modulo g has an exceptional zero, 3 € R, 1—¢/log™ (¢|7|) <
B < 1. Then, we have that L(s, ) has no zeros in the region o > 1 — (1 — 8)/(1 + log™ |7|). Indeed, if
o>1—(1-p)/(1+1logt|7]),then1—3 > (1—B)/(1+log" |7]) > 1 — 0, and thus, o > 3.

we have that if L(s, x) has no zeros in the region o > 1 — , then, L(s, x) has no zeros in

12



Therefore, putting everything together, we can see that G(s; 1 — 1/(¢ — 1)) is analytic in the region

oc>1-— where ¢y = ¢/ log q, where c is the constant defined in Theorem 11.3 of [4], if every

<o
I+log™T [7]°
Dirichlet c;aragctc‘erl X (mod ¢) has no exceptional zero, and ¢y = 1 — 3 if there is some Dirichlet character x
modulo ¢ such that x has an exceptional zero f.

Now, since A(s) converges for o > 1/2, we have that | A(s)|*/(~1) < 1 in the region o > -y
Similarly, since (1 — 1/¢*)71/(@=1) is well-defined for o > 0, (1 — 1/¢*)~*/(@1) <« 1 in the region

o>1-— Therefore, we have that

(&)
1+log™ |7]*

—1/(a-1)
1
1— —

S

(Glsi1=1/(g = 1)| = [A()] /@ IT 12601/ < T s0) /0,

XFXo X#X0

Now, by Theorem 11.4 of [4], we know that L(s; x) ™% < log(q(|7| + 4)). From this, it follows that

H IL(s,x)| "D « H 1 log(q(|7] + 4))| @~ = |log(q(|7] + 4))|* =/ (@=D,
X#Xo X#X0

Fix € > 0. Then, since log(q(lr] + 4)
. o) T+
Ak g&W
we have that log(q(|7] +4)) = o((1 + |7])¢), and thus, log(q(|7]| + 4)) < (1 + |7])¢.
Therefore, we get that

=0,

1G(s;1=1/(g = 1) < [] IL(s.x)I7 0 < (log(q(|7] + 4)) /@71 (14 [ =1/ la= 1),
XFX0

Since this is true for arbitrarily small positive values of e, it follows that |G(s; 1 — 1/(¢ — 1))| < (1 + |7])1 79,
for 0 < & < 1, and thus that, |G(s;1 —1/(g — 1))] < M(1 + |7])!~?, for some M > 0.
So, at this point, we can apply Theorem with 2 =1—1/(¢ — 1) to get that, for 2 > 3,

> an = (logaz) /7Y { GF((I{ — /1({1(3_1;)) o (kf\g x) }

n<x
1/ (g— 1
= allog) e {Bq o (ng) }

= Byz(logz) /=Y + O (w(logw)_l_l/(q_l)) .

Therefore, for xz > 3,

Z 1= BqCC(IOg.Z‘)il/(qil) —|—O(x(1ogz))71*1/(‘1*1)'
n<x
pln=p#1 (mod q)

13



The following proposition will be useful in evaluating the innermost sum of equation (2.2).

Corollary 2.2.9. Let = be areal number and let py, . .., p; be distinct prime numbers such that z/p; - - - p; >
3and g # p; forany 1 <14 < j. Then,

—-1/(g—1) j -1
Z 1 H 1
p1- P p1- Py q/ ; Di

m<a/p1-p;
—1-1/(¢q—1)
+ 0 I <log * > ,
p1---Dj pP1--Dpj

Proof. We will start by rewriting the sum as follows,

> 1= > bn,

m<ax/p1-p; m<z/p1-p;
gqtm
(t#p1,...,p; and t|m)=>t#1 (mod q)

gtm
(t#p1,...,p; and t|m)=t#1 (mod q)

where ¢ is prime.

where

bm =

1, ifg{mand, fort # pq,...,p;, wehavet|m =t # 1 (mod q),
0, otherwise .

Define Fy(s) = >.°°_, bym™*. Then,

m=1
= —s b, br2
m=1 T prime
J
1 1 1 1
—H(1+s+zs+"'> 11 <1+s+2s+"'>
i=1 i Pi T prime r "

r#q
r#1 (mod q)

(-3 I (-5

T prime

r#q
rZ1 (mod q)

LN WO

T prime
rZ1 (mod q)

Now, define Ga(s; z) = Fa(s)((s)™%. Our next aim is to find an explicit formula for G5. We will start

14



by defining Ay(s) such that F5(s)?~" = Aa(s)¢(5)9 " 1, moa g L(5,x) " Then,

Ag(s) = Fa(s)7'¢()" ) [ Lls)

X (mod q)

(om0 (o) (o)

T prime x (mod g) \ 7 prime
r=1 (mod q)

1 q—1 J 1 —(g—1)
=1-— 1—— A(s),
( q3> 1:[1( pf) (=)

where A(s) is defined as in the proof of Proposition [2.2.4] Thus, since A(s) converges for o > 1/2, it

follows that As(s) also converges for o > 1/2.
Now recall from equation (2.3)) that L(s, xo) ™' = ¢(s)7'(1 — ¢~*)~!. Therefore, we have that

Fy(s)™ = Ag(s)C(s)*¢(s)"" (1 - ql) I] s~

XFX0
1\
(-3)
q ,

7

: (1- 1><> A (1- 1) I 2.

b X7X0
Then,
Ga(s;1—1/(q—1)) = Fy(s)¢(s)~ 4=/ (a=1)

= (Fy(s) @ V¢ (s)~ a2/ (a=1)

= (1 - ;)q_lili[l <1 - plf>_(q_1) A(s) (1 _ qls) - I;IOL(S,X)—l 1/(a=1)
) <1 . q1&> E <1 - plf)_lG(S?l —1/(¢ - 1)),

where G is defined as in Proposition2.2.7]
Then, since 2 > 3p; - - - p;, we can apply Theorem with z = (¢ — 2)/(q — 1) to get:

X T, <1°g P iE-pj)l/(ql) <G2r(<11;1—1/1(/q(z_1);))>

m<x/p1-p; J
—1-1/(q—1)
+0 ( v <1og v ) ) .
prop \pueep;

J

Now, since

3

(1 _ 1>1 G(1;1—1/(q - 1)),

bi

G- 1/g-1) = (1-1)

1

15



it follows that,

> 1

m<x/p1-pj

qtm
t#p1,...,p; and tjm=-t#Z1 (mod q)

—1/(g—1) J -1
1 1
P1--Pj P1--Pj q i1 Di
—1-1/(q—1)
+0 ( ’ <10g v ) ) .
P1---Pj P1---Pj

2.3 Other Important Tools

We will start this section by giving a lemma and a proposition that will be very useful throughout this thesis.
Lemma 2.3.1. Let § > 0. Then, for z > y'*°,
x
logx <5 log —.
Y

Proof. First, since = > y', we have that 21/% > y(179)/9  Now, notice that we can rewrite z'/® as

follows:
pU/0 — p1/6+1-1 _ L (148)/5-1 _ x(H‘S)/‘S/x.

So, we have that 2:(119)/9 /2 > ¢(1+9)/3 'From here, we get the following biconditional statements:

2OHO/8 115 GO+ g o (3/4)1+0)/6,

1
log(x) < +9 log <$) < log (:c) )
0 y Y

Proposition 2.3.2. Let y be a positive real number. Then, for z > g2,

Thus, it follows that

(10g2) " = (log )~ + Ox ((log ) '~ logy) .

Proof. First, we can see that
(log f) = (logx — logy) ™«

= (log )™ (1 - 10gy> h

log x

16



Now, let f(t) = (1 — t)~*. Then, since f(0) = 1, f is differentiable at t = 0 and f is continuous for
[t| < 1/2, it follows that f(t) = 1 + O4(t) for |t| < 1/2. Since z > y?, we have that logy/logx < 1/2.
So,

1 - 1
1-28Y%)  —140,(2Y).
log x lo

g T
Substituting this back in to our above product, we get that

fsg) " — s (150, (122))

log x
= (logz) ™™ + Oq ((logz) "'~ logy) .

O
The next seven propositions lead to Propositions[2.3.11|and[2.3.12|which will both be useful in evaluating
the nested sum in equation (2.2).

Before stating the next proposition we need the following definition.

Definition 2.3.3. Let « be a real number such that o ¢ N. Then,

n—«oa
n=0

Note that, by the ratio test, H, (z) converges for |z| < 1.

Proposition 2.3.4. Let o > 0 such that & ¢ N and let « > 1. Then, for « in the domain (1, z),

/log(x/u)_CY <1> iy — Hall—logu/loga) — 1

ulogu a(log(z/u)) +C.

Proof. We will prove the above proposition by showing that

A [ ().

ulogu
Let z = 1 — logu/log x. Then, zlog x = log z — logu = log(z/u), and thus,

d {Ha(l —logu/logzx) — 1

a(log(x/u))™ ] B di [5((1;_” (d) '

du du
Since 1 < u < x, we have that 0 < 1 —logu/logz < 1, and thus, |z| = |1 — logu/logz| < 1. So, z is

in the region of convergence of H, (z), which allows us to differentiate the infinite sum term by term in the
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following computation. Using quotient rule to differentiate the first part, we see that

d [Ha(z)_l] d l—ZZ"“ﬂZ”]

dz |a(zlogx)® T dz afzlogx)®

—a(zlogx)® Y 07 ) a2l 4o (loga)* 27 Y00 o2

a?(zlogx)?e

—a2(log)=® [0 et = oy w2

a?(zlog x)?™

DY
~ (zlogx)™
_ 2
(zlogx)>
Then, since
1 oo
1—2 = Z Z5
n=0
we have that
d [Ha(z) =11 _ 1
dz |a(zlogz)e| (1 —2)(zlogx)e’

Since z = 1 — log u/ log =, we can see that

d {Ha(z)—l]:_ 1 log =

dz [a(zlogz)” (logu/log z)(log(x/u))*  (logu)(log(z/u))*’
and
dz 1
du  ulogx’

Therefore, putting everything together, we get the following:

A= - ) (0

T dz du

N (‘1ogu<11§gg<§/u>>a> (‘uligz>

u(log u)(log(x/u))*

Thus, we have shown that

d [Hqy(1—logu/logz) —1
du a(log(z/u))>

0] = tostain (s ).

u(logu)

which proves the proposition.
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Proposition 2.3.5. Let o > 0 such that o ¢ N. Fory > 9,

Vi . 1 log log y 1
/— logly/w) <ulogu> = (log y)* O ((logy)@)'

Proof. First, by Proposition [2.3.4] we have that

Vi 1 L Ho(1— ) -1V
/, log(y/u) (ulogU> = O4(102;(;/?0) 2-
CH(1-gpg) -1 H (1) -1
N a( logy) a(log(y/2))>
Ha(h) -1 Ha(1-E) -
5= (logy)® a(log(y/2))*

We will start by simplifying the minuend of the above subtraction. By definition of H,, we have that

()-r-Eaza )

Now, since 1/2 is inside the region of convergence for H,(z), we can see that this sum converges. So, we

1
H, (=) -1<,1,
(2) <

H, (%) -1 1
2 (logy)™ On <(10gy)“> '

Now, we will find an asymptotic formula for the subtrahend. To do this, let z = 1 — log2/(logy) and

have that,

and thus,

consider H,(z) — 1 — alog(1 — z). Rewriting H,, and log(1 — z) as sums and simplifying, we get,

& a n+1
Ha(z)flfalog(lfz):fzn_ faz )"
n=1
:—a"z::ln_az"—i—anz::lﬁz”

:azn(nfoz
oo 1 N
:_a2;7n(n—a)z .

Since y > 9, we have that |z| = |1 — log2/log y| < 1, and so,

_ 2§ R g 2§ . )
@ nzln(n—a)z = nzln(n—a)z

o]

<a®)
n(n —

n=1

< 1.
i
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It follows that,
Hy(z) =1 —alog(l — 2) <4 1,
and thus,
H,(1—1log2/logy) — 1 = alog(log2/logy) + Ou(1).

Therefore, we have that:

Ha (1 - fﬁéf,) -1 _ alog(log2/logy) + Oa(1)
a(log(y/2))* a(log(y/2))*
_ loglog2 —loglogy ( 1 )
(log(y/2))* “ \ (log(y/2))~

loglogy

1
- - + o - .
(log(y/2))~ ((log(y/z))a)
Now, since y > 3 > 2'+1/2 we can apply Lemma to the above error term, to get
log 2
Ha (1_1(;?1;)_1 B loglogy ( 1 )
a(log(y/2))* (log(y/2))> =~ \(logy)> )

Also, since y > 9 > 22, we can apply Proposition to the denominator of the above main term, to
get

log 2
H, (1_lo§y)_1 :_loglogy+0<log21oglogy>+O ( 1 >
a(log(y/2))~ (log y)* (log y)1+ “\(logy)*

loglogy ( loglogy ) < 1 )
=——"—2+0| ———= | +0s | ——
(logy) (logy)t+ (log y)*
loglogy < 1 )
- Y10, .
(logy) (logy)*

Putting everything together, we can see that,

Vi 1 loglog y 1
1 - T Mog )™ " 7@ '
/— o&w/v) (ulogu> du (logy)” © ((logy)a>

Proposition 2.3.6. Let @ > 0 such thata ¢ N, let 5 € N, and let y > 9. Then,

1 A loglogy 1
Z - IOg — = 7{3 (10 )()/ + Oa 7(10 )oc .
p< vy p p q gy gy
vq(p—1)=8
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Proof. Define M (x) as follows:

M(z) = Z 1/p= Z 1/p

vq(p—1)=8 p=1 (mod ¢*)
p#1 (mod ¢°T1h)

= > 1p- > 1

p<w p<w
p=1 (mod q)B p=1 (mod q5+1)
Then, using Mertens’ Theorem [4, Corollary 4.12], we can simplify M (x) as follows:

1 1
M(x) = <¢(q5) — ¢(q5+1)> loglog(x) 4 ¢4 — cgs+1 + O(1/log x)

1
= ] loglog(x) + ¢+ O(1/log )

where c is a constant depending on ¢”. Then, we have that

1 —a VY AN
3 <logy> :/ tog (£) " a(as(wy)
£ p\ "p u
PVY
ve(p—1)=p
1

\/§ —a 1
:/7 log(f) d| —loglogu+c+ O @

Q
iy

By Proposition [2.3.5] we know that

4 1 loglogy 1
] —a =
st (ulogu>d“ aogy)”()“((logy)a)’

and thus,
1 - log1 1 vy —a 1
2 <1°gy> - Boiogziaw"(a >a>+/ log (1) d<0<1
vy P P q” (logy ogy - u ogu
ve(p—1)=p8

21
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Now, we will evaluate the remaining integral, using Riemann-Stieltjes integration:

/;ﬂlog (y/u)"d <O <1o;u>) - (log (%))_QO <1o;u> ,-
o) () () ()

~(3ler) 0 ()~ (2 (%) "0 (55)
+0 </_ﬂlog(y/u)a1 (uligu>
=0 (wgg=) + (wgarmr)
)

+0 </ﬁ10g(y/u)a1 (uligu

By Lemma[2.3.1] since y > 9, we have that

1 1
< .
log(y/2) — logy

VY

Therefore, we have that

- weroa(o (55)) = (s 0 (are)
+0 (/Qﬁlog(y/u)_a_l <u1;gu) du>
=0 (aogly)“) +0 (/Zﬂlog(y/u)_o‘_l (ulsgu) du) .

Now, by Proposition [2.3.3] we have that

vy 1 loglogy 1
1 Tot du=—""" 404 | —r
/— og(y/v) (ulogu) " (log y)Ha O ((103 Z/)Ho‘)

loglogy
= Oa <1+a :
(logy)
Thus, we get that

[ oo (553)) = (i) o (s




Therefore, it follows that

1 - log1 1
> o (eel) = 0 (e )
vy PN q° (log y) (log y)
vqe(p—1)=8
O
Proposition 2.3.7. Let @ > 0 such that o ¢ N. Fory > 9,
v/3 1 1 1
/ 10g(y/u)_a( )duzO( ) —|—O< )
Vi ulogu (logy)« logy
Proof. First, by Proposition[2.3.4] we have that
y/3 1 H l_logu _1¥/3
/ log(y/U)“"< )du: a logy)a
i ulogu a(log(y/u)) i
H (1_10g(y/3))_1 H (1_ logy)_l
_ @ logy - @ 2logy
a(log 3)« o (1log y)a
log 3
Ha (1) -1 Ha(h) -1
- - . (2.8)
a(log 3)“ 3 (logy)™

As seen in the proof of Proposition [2.3.3]

M -0 ((logly)“> '

Now, we will simplify the minuend of the right-hand side of equation (2.8). By definition of H,, we

have that

o0 l n
Ha(logS/logy)—lz—Z e <0g3>.

fmn—a logy

Now, since this sum is bounded on the closed disc corresponding to log 3/logy < 1/2, we have that, for

y=>9,
log 3 1

logy  logy’

H,(log3/logy) — 1 <

Putting everything together, we can see that,

/jy/g tostu/u) (uligU) =0 <(10g1y)°‘> o (10;1/) '
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Proposition 2.3.8. Let o > O suchthat « € N, let 5 € N, and let y > 9. Then,

> () 0 () -0 ()

VI<p<y/3
ve(p—1)=p

Proof. Define M (x) as in Proposition Then, we have that

5 (et = e () o

VI<p<y/3 vy

ve(p—1)=p
y/3 —a 1 1
/ log(g) d(ﬁloglogu—l—c—i-O( ))
Vi U q log u

/3 o
5 (D) ()

VY
—« 1
)00 ()
log u
By Proposition[2.3.7] we know that

y/3
—|—/ log(
y/3
/ 1og(y/u)a( ! >du—0< ! >+O< ! >,
i ulogu (log y)« logy
and thus,

i
1 o 1 1 v/3 —a 1

3 <logy> :0(1 a)+0<1 >+/ 1og(9) d(O(l ))
S A - (logy) ogy N u ogu
ve(p—1)=p

IS

IS

Now, we will evaluate the remaining integral, using Riemann-Stieltjes integration:

/f/ st (0 (1)) = (0 (1) "0 (1) ;

(k) (o (e ) (2) ()
= (log3)~*0 <1og(1y/3)) ( 1ogy>_a0<10gy>
(</>>(<>)

+0 </ﬁlog(y/u)a1 (uligu) du> .

24
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By Lemma[2:31] since y > 9, we have that

L1
log(y/3) ~ log(y)’

Therefore, we have that

[y a0 () = () +© ()
+0 (/\;/3 log(y/u)~>* (uligu) du)
=0 (loéy) +0 (/\/?;/3 log(y/u) 1 (uligu) du) .

Now, by Proposition [2.3.7] we have that

y/3 . 1
log(y/u) ) du=0
NG ulogu

So, we get that

y/3 1
log (y/u)"*d (O
/ﬁ g (y/u) ( <logu

2 119 <log i) =0 <(10g1y)"> o (10;1/) '

VY<p<y/3
ve(p—1)=p

and thus,

O

Proposition 2.3.9. Let & > O such that « & N, let 8 € N, let y > 9 and let {w;,wa, ..., w,} be a set of

primes. Then,

1 e log 1 1
) (10gy>  osony ((10 )mm{al}).
e p q” (logy gy
PAWL,W2,..., Wn

vq(p—1)=p
Proof. First, notice that
Z = (log y> = Z = <log y) +0 (Z — <10g y) ) .
Wy w;
p<y/3 P P p<y/3 P P i=1

PAWI,Wa,..., Wy, ve(p—1)=p
ve(p—1)=B
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Since, by Lemma[2.3.]]
<log y) < (logy)™°,

w;
we have that
“ 1
— <log y> < Z ~(logy)~* = (logy) ™ > =~ < (logy) ™"
i Wi Wi ‘
Now, to simplify the main term, we can split it up as follows
1 - 1 e 1 e
Z - <log y> = Z - (log y) + Z - (log y) .
p<y/3 p p P<VY b b VI<p<y/3 b b
vq(p—1)=8 vq(p—1)=B vq(p—1)=p
From here, we can apply Propositions [2.3.6]and 2.3.8] directly to get that
1 - logl 1 1 1
o) o k) ) o ()
. P\ P ¢’ (logy) (log y)= (logy)~ logy
?7‘1/1/)3 s
vq(p—1)=

Therefore, we have that

1 e log1 1
Z - (10g y) _ BOEOOg?ja +o, ((10 ERe 1}> )
p<3r3 D p q 2y gy
p;éwl,w27~~-7wn

vq(p—1)=p
U

Proposition 2.3.10. Let & > Osuch that o« ¢ N,y > 9, # € N and let {wy,...,w,} be a set of primes.
Then, 1
> F(log(y/in))_a < (logy)~ min{en1},

p<y/3
PFWL .., Wn
ve(p—1)=p

Proof. In order to prove the proposition, we will split the sum in the following way:

> st = X piaog(y/p))-uo(z;(logg)_).

p<y/3 p<y/3 i=1
PAWT ..., Wy, vq(p—1)=p8

ve(p—1)=p
Since, by Lemma[2.3.1]
<1og y) < (logy)~¢,
w;

we have that

3

=) -

—Qx

< (logy)

~ 1 v\~ —a e
Z w2 <log w) < Z logy = (logy) A

i=1 v

@
Il
-
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Then, to bound the main term, we will split it up as follows:

> 2 (log(y/p)~® = > ]%(log(y/p))’“+ > ]%(log(y/p))’“-

p<y/3 <Y VI<p<y/3
ve(p—1)=p ve(p—1)=p ve(p—1)=p

For the first sum on the right-hand side, since we are summing over primes p that are at most ,/y, we can

bound the sum as follows:

3 I%(log@/p))*as 3 éaog(y/\/@»*a
p<\Y p<VY

ve(p—1)=5 ve(p—1)=p
1 e 1
~(5em) X 5
P
p<\VY
”q(P—l):B
< (logy)™*,

since the sum of 1/p? over all primes p is convergent.

Then, we can bound the remaining sum as follows:

S S 0og(u/p) " < (x(u/3) — 7(vi) ((\/1@)2) (o (2))

VI<p<y/3
ve(p—1)=p

<7(y/3)(1/y)(log3)~*
y/3 (1>
L —F—= |-
log(y/3) \y
1
L —F.
log(y/3)
Now, since y < 3'*1, we can apply Lemma to get that

1 —
> —(log(y/p))"* < 1/logy.
VY<p<y/3

ve(p—1)=p
Thus, we get that

> %(log(y/p))’“ < (logy)~® + (logy) "' < (logy)~ ™in{et}

p<y/3
PAWL,...,Wn
ve(p—1)=p

The following two propositions will be very useful in evaluating Dy.
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Proposition 2.3.11. Let @ > Osuch that &€ N, let 3 € N, lety > 9 and let {wy, wo, ..., w,} be a set of

primes. Then,

1 e 1 log lo 1
Z (logy> (1+O(>)ﬂg gya+0n ( 1}>.
p p p q° (logy) (log y)minte,
p<y/3
PAWL,W2,...,Wn
ve(p—1)=p

Proof. First, notice that we can split the sum as follows,

£ () (+0(3)

p<y/3
PFAWL,W2,...,Wn
vqe(p—1)=8
1 @ 1 @
= Z - <logy) +O( Z — (logy> )
p p p p
p<y/3 p<y/3
PAWL W4, Wi, PAWL W, e, Wy
ve(p—1)=8 vq(p—1)=8
Then, we can apply Propositions [2.3.9/and [2.3.10]to get the desired result. O

Proposition 2.3.12. Let o« > Osuchthat « ¢ N, let 8,k € N, let y > 9 and let {w,ws,...,w,} be a set

of primes. Then,

T (0 0(0)) (o (i) )
PEWT,W2,..., W

ve(p—1)=p

(loglogy)**' - ( (loglogy)*
q° log™y "\ (log y)min{es1} )

Proof. First, we can break the above sum into multiple sums as follows:

2, (o) (Tt o (@mremn))

p<y/3
PAWL,W2,..., Wy
ve(p—1)=p
-y (loglog(y/p))* N 0( > (loglog(y/p))’“)
- « 2 [e%
s p (log(y/p)) =T p? (log(y/p))
O Tulo- 125"
(loglogy)—* )
ro( X ).
min{a,1}
vorrs  PUlos(y/p))
PAWL,W2,..., W
ve(p—1)=p
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We will start by simplifying the error terms. Starting with the first error term, notice that

log lo k log lo k
3 (loglog(y/p)) 3 (loglogy)

<
2 (lo o 2 (lo @
S p?oe(y/p) os P (loe(y/p)
PAWL,W2,...,Wn PFAWL, W2, ., W,
ve(p—1)=p vq(p—1)=8
1
= (loglogy)* > = S
lo
oors P (log(y/p)
PAWL,W2,...,Wn,
ve(p—1)=p

Then, by Proposition 2.3.10] we get that

1 1
> 5 < : ,
p? (log(y/p)*  (log y)minfe.1}

p<y/3
PAWL W2, Wn,
vq(p—1)=8
and thus .
3 loglog(y/p)  _(loglogy)
2 @ min{a,1} "’
oSrs PP Uoey/p)”  (logy)
PAWL,W2,..., Wy
ve(p—1)=p
Now, to simplify the second error term, we can apply Proposition[2.3.9]to get that
(loglog y)*~* 1 1
Z loglogy)* Z :
min{a,1} ( min{a,1}
verrs  PUos(y/p)) vy pllog(y/p))
PAWL,W2,..., Wy PAWL,W2,...,Wn
ve(p—1)=8 vq(p—1)=8

w1 loglogy

log 1 —_—
<< ( Og Og y) (log y)mm{a,l}
(loglog y)*

- (log y)min{e1}”

Now, we will evaluate the main term. First, notice that

> (loglog(y/p))* _ > (loglog(y/p))" i (log log(y/w:))* |
5o, plos(y/p)” S5, pog(y/p)” < w; (log(y/w;))"
PAWL,W2,..., Wy, Vq(Pi—l):ﬁ
vqe(p—1)=8
As shown in the proof of Proposition 2.3.9}

n

1 —
> oty < Oosn) ™

and thus,

n

" (loglog(y/w;))* & 1 (loglog y)*
— s loglogy 7 <n o .
; w; (log(y/w;))" <! ) ;w (log(y/w:)) log™y
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Splitting the remaining sum into two sums, we get that

(loglog(y/p)* (loglog(y/p))* (loglog(y/p))*
2 ploau/n)” ~ 2 plosu/n) |2 p(oslu/n)
ve(p—1)=p ve(p—1)=8 ve(p—1)=p

Starting with the second sum on the right-hand side of the equation, we can see that

loglog(y/p))* log log y)* 1
I T Il L T S
VY<p<y/3 VY<p<y/3 VY<p<y/3
ve(p—1)=0 ve(p—1)=8 ve(p—1)=8

Then, applying Proposition [2.3.8] we get that

1 1
3 «t
@ min{e,1}’
ey P logly/p))"  (ogy)
ve(p—1)=p

and thus,

(loglog(y/p))* (loglog y)*
2 p (log(y/p))" < (log y)min{e1}’
VY<p<y/3
vq(p—1)=p
Now, we will focus on the first sum on the right-hand side of the equation. By Proposition 2.3.2] since

y > p?, we have that

log p
foa(y/p) = logy+0 (152 ).
log” y
Furthermore, notice that

1
10g2p < og;/zj< 1 .
log” y log” y logy
So, it follows that

(loglog(y/p))* = ( log <10gy+0< : )>)k

(

fostons s (10 (- )))’
(o ()
3 (5 s (0 (i) )

= (loglog y)* + i (f) (loglog )" (O ( : >>J

= log®y

= (loglogy)* + zijo <<k> (loglog.y)k_j) .

log™ y




The largest error term will occur when j is smallest, ie. when j = 1. Thus,

1 1 k—1
(loglog(y/p))* = (loglogy)* + Oy ((ogog2y)) :
log“y
Therefore, we have that

k

W* og log y)* M I
p;g p (oz(y/p)" —<(1g1gy) JrOk( og? 4 >) p;:y o g0/

ve(p—1)=p ve(p—1)=p

Then, applying Proposition [2.3.6] we get that

Z 1 ~ loglogy N ( 1 )

1 “ T g8 @ 1 a )’
(pgﬁﬁp(og(y/p)) q” (logy) (logy)
ve(p—1)=

Therefore, we get the following

5 St~ (tsos -0 (M52)) (R o ()

P<VY
ve(p—1)=p8
log log y)*+1 log log y)* log log y)*
=— 40| ——F O —= =
q%log™y log® y “\ (logy)?te
_ (loglogy)™**  /(loglogy)*
~ ¢Plogy log%y )

Thus, we have shown that

k k+1 k k
$ (loglog(y/p))" _ (loglogy) 40 (loglog y) Lo, (log 1oag y)
(log y)min{e.1} log™y

« /g Y
p<y/3 p (log(y/p)) qPlog®y
PFEWL,W2,..., Wn

ve(p—1)=p
ol (loslonyt

B qﬂ logo‘ Y (]Og y)min{a,l}
and thus, that
k k—1
3 1<1 n 0<1)> ((loglog(y/pl) Lo ( (1oglog ) 1 ) )
v<grz P p (log(y/p)) (log(y/p))min{a1}

PAWL,W2,..., W
ve(p—1)=8

_ (loglog y)*+? 0. (_(loglog y)*
 ¢Plog®y "\ (log y)min{es1} )7

O

The final definitions and propositions in this section will be important in order to evaluate multiply nested

sums recursively in the next section.
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Definition 2.3.13. For k, a1, ..., a; € N, define

log log )¥ log log z)F—1
S, (23 k) = (loglog ) Oq((ogogw) )

o (]ng)l/(q—l) (1og x)l/(q—l)

and define

Sq(x;k;ala < '7ai)

= oaleeG) 2 onleG) 2L

p1<z/3 p2<z/3p1 pi<z/3p1-pi—1
vg(p1—1)=a1 P2#p1 PiFP1se-sPi—1
vq(p2—1)=a2 vg(pi—1)=ay
1 log1 coep))E log1 ceepip))EE
" <1+0 ()) ( (loglog(x/p1 1p))1 Lo, ((Og og(z/p1 D 1))1 ))}
pi (log(x/py - - - pi)) /@~ D (log(z/p1 - -~ ps))t/(a=D)
Notice that the expressions S,(x; k) and S, (z; k; o, . . ., o) are given by asymptotic, not explicit, for-

mulas. For instance, when ¢ = 1, applying Proposition[2.3.12] we get that

st~ T (100 (3)) (s (ki)

p1<z/3
Vq(Plfl):al
(loglog z)* (loglog z)F~1
o g (10g$)1/(f1—1) a (logx)l/(q—l)
1

Here, we are not claiming that S, (x; k; a1 ) is exactly equal to q%lSq(a:; k), but rather that these two expres-
sions have identical main terms and error terms of equal magnitude.

This observation generalizes to any natural number ¢, resulting in the following proposition.

Proposition 2.3.14. Let S, be defined as in Definition|2.3.13|and let 4, k and a1, . . . , a; be positive integers.
Then,
1

Selxsk+Liar,. .., a-1),

g

Se(mksar,...,aq) =

where the equals sign signifies that the two expressions have the same main terms and error terms of equal

magnitude.

Proof. As defined above,

Sq(x;k;alv"'vai)

ST HeR) 5 bee@) x I

p1<z/3 p2<z/3p1 pi<z/3p1-pi_1
vg(p1—1)=a1 P2#P1 DiFP1y--sPi—1
vg(p2—1)=o ve(pi—1)=ay

<(1+0(5)) (fatnsirin +ou (VG sctiar )|
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Applying Proposition[2.3.12]to the innermost sum, we get the following:

Sq(mQ k;ala < '7ai)

- T p(em) T (o)

p1<z/3 pi—1<z/3p1---pi—2
vg(p1—1)=a1 Pi—17P1;--sPi—2
vg(pi—1—1)=a;_1

(loglog(z/p1 -+ pi—1))F*! (loglog(z/p1 -+ pi—1))*
. (q (log(a/pr - pi) /@ (aog(x/m . -pi1>>1/<q1>>)]

e Zoa(eoG)) 2 )

p1<z/3 pi—1<w/3p1-pi—2
ve(p1—1)=a1 Pi—1FP1;--,Di—2
vg(pi—1—1)=a; 1

(log IOg(x/pl o 'pi—1))k+1 (log log(ﬂ?/pl e 'pi—z))k
. ((log(w/p1-~-pi1))1/(q” O ((10g(x/p1~--p¢1))1”‘11)))} ’

since
(loglog(x/p1 - - pi—2pi-1))" _ (loglog(z/p1---pi—2))*
(log(x/py - -~ pi—1))¥/ (4= (log(x/p1 - - - pi—1))t/ 4=V
Definition 2.3.15. Let v be a positive real number and let oy, . . . , ; be positive integers. Then, define
1 1 1 x -
AP YT VI SUD VR 4 (TP I
pi</3 p2<z/3p: pi<a/3p1-pioa L
vg(p1—1)=a1 P2#P1 PiFP1ye-sPi—1
vg(p2—1)=as ve(pi—1)=0ay;

Proposition 2.3.16. Let E, be defined as in Deﬁnitionm Then,

Ey(z;y;a1,... i1, 05) <g loglog(x) By (575 a1, ...y a1).
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Proof. Applying Proposition[2.3.9to the innermost sum of Eg(x;7; o1, ..., 1, ;), we get:

Eq(x;75a17 <. '7ai)

- Y LY Ly (e t)

P1 D2 p

p1<z/3 p2<a/3p1 pi<z/3p1-pic1
vg(p1—1)=a P2#£D1 DiFD1ye5Pi—1
vg(p2—1)=az vg(pi—1)=a;

< Y L 3 L 3 ‘1 <10g10g(x/p1~--pi_1))

i (] e Yy

p1<z/3 p1 p2<z/3p1 P2 Pi71§$/3171"'17i72p271 q (Og(x/pl pz*l))
ve(p1—1)=a1 P2#p1 DPi—17P1;--Pi—2
vq(p2—1)=0 vg(pi—1—1)=a;_1

1 1 1 (loglog(z/p1 - pi-1)

R I VI I Dl e e
p1<z/3 p2<z/3p1 pi—1<x/3p1---pi—2
ve(p1—1)=a1 P2#£P1 Di—1#P1s-Di—2
vg(p2—1)=az vg(pi—1—1)=a;_1

1 1 1 loglog x

DS S oo Y (e )
p1<z/3 p2<z/3p1 Pi—1<x/3p1--pi—2
vg(p1—1)=aq P2#P1 Pi—17P1,--,Pi—2
vg(p2—1)=az vg(pi—1—1)=a;—1

= (loglog z) Ey(z;v; a1, .., -1).

2.4 Evaluating D,

Since we can only apply Corollary ifz/p1---p; > 3, we will start by splitting D from equation (2.2))
into two multiply nested sums such that /p; - - - p; > 3 in the first sum and x/p; - - - p; < 3 in the second

sum. Doing so, we get

Dy(H,x)=Cn Y > > > 1

p1<z/3 p2<z/3p1 pj<z/3p1-pj—1 m<x/p1-p;
vg(p1—1)=a; P27#D1 PiFPL,Pj—1 gtm
vg(p2—1)=az ve(pj—1)=a; t#p1,...,p; and t|m=-tZ1 (mod q)
+0n ) S S S 1. (2.9
p1<T p2<z/p1 ®/3p1-pj—1<p; <x/p1-pji-1 m<z/p1-p;
ve(p1—1)=a1 P27£D1 DPiFP1,Pj—1 gtm
vg(p2—1)=az ve(pj—1)=q; t#p1,...,p; and tjm=-t#1 (mod q)

The following two propositions will evaluate the first and second sum of equation (2.9) respectively.
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Proposition 2.4.1.

T VD YD > >

m<z/p1-p;

p1<z/3 p2<z/3p1 pj<x/3p1--pj-1
ve(p1—1)=a1 DP2#D1 DiFEP1,e-Dj—1 gtm
vg(p2—1)=az ve(pj—1)=a; t#p1,...,p; and t|m=>t#1 (mod q)
-1 log1 J logl J-1
B [ 1= x(ogfgxl Oq(x(ogogx)l ).
q1+Ei:1 a; (logx) /(g—=1) (logx) /(g—1)

Proof. Throughout this proof, let

P YD VD S >

p1<z/3 p2<x/3p1 pj<x/3p1--pj-1 m<x/p1-p;
ve(p1—1)=o0a P27#Pp1 DiFP1yPi—1 gtm
vg(p2—1)=az ve(pj—1)=c; t#p1,...,p; and t|m=-tZ1 (mod q)

By Corollary [2.2.9] we get that

J=C B,—2 1 e\
D YD D S [ ()

p1<z/3 p2<x/3p1 pj<z/3p1-pj-1
ve(p1—1)=a; pP27#P1 DjFDP1,--Pj—1
vg(p2—1)=az ve(pj—1)=ay
1\ ¢ 1\ ! ~1-1/(¢-1)
><<1>H<1> + O v <1og x ) }
qa/ ;3 bi P1---Ppj P1---Ppj

1 1 T *1/(‘1*1)j
=B,Chaz(1- - e lo
Cue(1-1) % S o ley) L

p1<z/3 pj<z/3p1-pj—1
vg(p1—1)=aq PjFEP1y-Pj—1
vq(pj—1)=ay

I

1
1— —
Pi

.

1 BN VLG
SCICHED DENED SRR DR TR G )

p1<z/3 p2<z/3p1 p;<x/3p1-pj—1
vg(p1—1)=a1 P2#£p1 PjFEP1L,-Dj—1
vg(p2—1)=as ve(pj—1)=ay
Now, since
-1
1 1
Di Di
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we have that,

1

[ O S
D S S S AL e B ||

1(+0(3))

p1<z/3 p2<xz/3p1 p;<z/3p1-pj-1 i=
ve(p1—1)=a; P27£D1 DiFDPL,-Pj—1
vg(p2—1)=az vq(pj—1)=0y
1 x *1*1/(‘1*1)
ICHD YD YT (o =) )
p1<z/3 p2<z/3p1 pjéz/?)plmpj—lpl P L
ve(p1—1)=ay P27£D1 DiFP1,Pj—1
vg(p2—1)=as ve(pj—1)=0y
1 1 1 1 1
() S H(io() ¥ L(iso(L).-
q < P1 Y41 b2 P2
p1<z/3 p2<z/3p1
ve(p1—1)=a pP2#£p1

vg(p2—1)=az

—-1/(a—-1)
A Gl )
pj P1--Pj pj

pj<x/3p1-pj-1
PjFPLsePj—1

vq(pj—1)=0;
-1-1/(g—1)
1 1 1 T
ICHD YD DI T DI (TR )
p1<z/3 p1 p2<z/3p1 Pjﬁm/3pl"'PJ—1pj presbs
ve(p1—1)=ay pP27#P1 DjFP1,--Pj—1
vg(p2—1)=az ve(pj—1)=0y

(2.10)

We will start by focusing on the nested sum in the main term. Applying Proposition [2.3.11] to the
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innermost sum, we get that:

s 3o

p1<z/3
ve(p1—1)=a1

>

pj7fp1,...
vq(pj—1)=ay

>

p1<z/3
vg(p1—1)=ay

pj<z/3p1-pj—
Pj—1

o (o)

) (e(y)
s (oG

J

1
— <10g
Dj

1

)y

pj—1<x/3p1--pj—2
Dj—1FD1,-,Dj—2
vg(Pj—1—1)=a; 1

1 Pj—1

|
|

))

o loglog(x/p1---pj-1)
q%i (log(z/py - -~ pj—1))/ (@D "\ (log(z/py -+ pj_1))+/ a1
J i
1 1 1 1
= > <1+O(>)-~ > [ . <1+0< :
¢ p1<z/3 P P pi—1<x/3p1-pj_2 Pj—1 Pj—1
ve(p1—1)=cu Pj1FP1Dj 2
ve(pj—1—1)=a;_1
" ( loglog(a/p1---pj-1) ( 1
(log(z/p1 -+ - pj—1))t/(a=1) \ (log(x/p1 -+ pj—1))t/(a=1)

will get that

))

—1/(¢—1)
1 1 )
Z (1—1—0())... Z v<log T > (1—}—0({
p1<z/3 4! P1 ps <3y 1 Dj P1e--Dj P;
ve(p1—1)=0a Dy DL Dy
ve(pj—1)=0y
_ 1 (oglogap ) ((logloga}!
B qXi=1ai (logz)t/(a=1) 9\ (logz)/(@-1) )

Thus, from equation (2.10), we have that

1

(loglog )’

(loglog )71

I_yai (logx)1/(

1
=B 1—-
J qCHil’( q) (qz

+o<x 3 pil 3

1

p1<z/3 p2<z/3p1
vg(p1—1)=ou p2#£p1
ve(p2—1)=as
qg—1 z(loglog x)
= BqCH <q1+zz=l al> (log x)l/(q—l)
1 1
+0| =z — —
( ; Y4 Z P2
p1<z/3 p2<z/3p1
vg(p1—1)=a1 P2#£P1

vg(p2—1)=az

o

>

pj<z/3p1-pj—1
Pj?épl
vg(pj—1)=0y

q—1) (log z)l/(Q*l)

1
— (log
Dj
(loglog )7t

i
s ( (log 2)1/ta~D >

1
> (e
pj<z/3p1-pj—1 Pj

PiFP1,e-Pj—1
vq(pj—1)=a;

)

x
p1--

> —1-1/(g—1) >

.....

x

pl...

—1-1/(g-1)
p-) )

J
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Now, it follows that if we apply Proposition[2.3.14]to the nested sum in equation (2.11) j — 1 times, we



Now, we will evaluate the error term. Applying Proposition [2.3.16]to the error term j times, we get that

1 1 1 x —1-1/(e=n z(loglog )
D YD DI R DR (e < T

b D1 b

p1<z/3 p2<a/3p: pj<e/3p1pi_1 Y J
ve(p1—1)=a P27#P1 DPiFEP1,--Pj—1
vg(p2—1)=az vg(pj—1)=ay

Therefore, we have that

B qg—1 z(loglog x) x(loglog z)7~1 x(loglog )7
o= mion (st ) e + o (e ) 0t )

Now, since log log = < log =, we have that

(loglog )’ (log z)1*1/(a=1)
(loglog x)i—1 (log z)t/(a=1) ~

and thus, ) )
z(loglog z)? z(loglogz)/ !
(logx)lJrl/(q*l) (logx)l/(qfl) ’
So,
_ qg—1 z(loglog x) x(loglog z)7~1
7 B <q1+231ai> (log z)1/(a=1) 0 (logz)t/(a=1) )~
O
Proposition 2.4.2.
x(loglog z)7~1
W ¥ Y - % S it
p1<z p2<z/p1 z/3p1-pj—1<p; <x/p1-pj-1 m<x/p1--p;
vg(pr—l)=ca  pa#p PiFP1,-5Pj—1

gtm
vg(p2—1)=02 ve(pj—1)=ay t#p1,...,p; and t|m=-t#1 (mod q)

Proof. First, notice that, in this sum, z/p1ps - - -pj < 3 and thus,

Z 1<2.

m<z/p1-pj

qtm
t#p1,...,p; and tjm=-t#1 (mod q)
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So, we get that

cr Y R 3 mq;w 1

z/3p1--pj—1<p;j<x/p1-pj-1

p1<z p2<z/p1
vg(p1—1)=a1 P27#P1 PiFP1,--Pj—1 qtm
vg(p2—1)=az ve(p;j—1)=a; t#p1,...,p; and tjm=-t#1 (mod q)

<Cu Z Z Z 2

x/3p1-pj—1<pj<w/p1-pj-1

p1<z p2<z/p1
ve(p1—1)=a1  pa#p PjFPLy s Pj—1
vg(p2—1)=a2 vq(pj—1)=0y

=20y Z Z Z 1

x/3p1-pj—1<p;<x/p1pj-1

p1<w p2<z/p1
vg(p1—1)=a1 P2#D1 DiFP1y--sPj—1
vg(p2a—1)=az ve(pj—1)=a;

Notice that if x/p; - - - pj_1 < 3, then

> 1=0.

z/3p1---pj—1<pj<x/p1-pj-1
PjFEPLsePj—1
vg(pj—1)=a;

Therefore, we can assume that z/p; - - - p;—1 > 3. Similarly, if /p1 - - - p;—1 < 3 for any ¢, then

> 1=

pi<x/p1---pi—1
PiFP1se-sDi—1
vg(pi—1)=a;

Thus, we have the following equality:

20y Z Z Z 1

p1<zw p2<z/p1 x/3p1--pj—1<p;<x/p1--pj-1

ve(p1—1)=a1  p2#p1 PjFPLsPj—1
vg(p2—1)=az ve(p;j—1)=a;

=20y Z Z Z 1.

p1<z/3 p2<z/3p1 z/3p1--pj—1<p;j<x/p1-pj-1

vg(p1—1)=a1  p27#p1 PiFEDL D1
vg(p2—1)=a2 ve(pj—1)=0y
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Applying the prime number theorem to the innermost sum, we get that

20y Z Z Z 1

p1<z/3 p2<z/3p1 x/3p1-pj—1<pj<x/p1-pj-1
ve(p1—1)=a1  p27#p1 PjFEPLysPj—1
vg(p2—1)=o ve(pj—1)=0;
<2CH E E E W(m/pIPQ"'pjfl)
p1<z/3 p2<x/3p1 pj—1<x/3p1---pj—2
ve(pr—1)=a1  p27#p1 Pj—17P1,--sPj—2
vg(p2—1)=a2 ve(pj—1—1)=aj_1
x/p1--pi—1
< log(z/p1---pj-1)
p1<z/3 p2<z/3p1 pj—1<x/3p1---pj—2
vg(p1—1)=a1 P2#p1 Pj—17P1,--Pj—2
ve(pz—1)=az vg(pj—1—1)=aj_1
1 1 1
1 1 log(x/pL--piy
p1<z/3 P p2<z/3p1 p pj—1<z/3p1---pj—2 Pj e\x/p P
vg(p1—1)=a1 P27#P1 Pj—17P1s--Pj—2
vg(p2—1)=a2 ve(pj—1—1)=0j 1

Next, we can apply Proposition[2.3.16] j — 1 times, to get that,

1

log1 i
200 Y, > ¥ 1<<qff(0gk§)gg;>

p1<z/3 p2<z/3p1 x/3p1-pj—1<p; <x/p1-pj—1
ve(pr—1)=a1  p2#p1 PjFPLseDj—1
vq(p2—1)=c2 ve(pj—1)=a;
z(loglog z)7~1

q (log (p)l/(‘I*l) ’

Therefore, combining Propositions [2.4.T|and 2.4.2] we have shown that,

g—1 x(loglog )’ x(loglog x)7 1
Sy - T O /a1 )
g HXiziai ) (logz)t/(@ (log z)t/ (4

Dy(H,z) = B,Cn <

2.5 Evaluating D (H, x)

First, by definition of D1, we have that

Di((g;0u,...,05),2) =#{n <z: q||n,Gq(n) = (g;01,...,a;5)}
=#{n<z/q: qtn,Gy(n) = (g;a1,...,j)}
= DO((q;ala' .- ,OLj),SC/q)
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So, applying our results from the previous section, we get that

g—1 z(loglogz/q)!  , (w(loglogz/q)’~"
g+l | g(loga/q)t/ (@ = 7\ g(logx/q)t/ (4=

g—1 x(loglog xz/q)’ < z(loglog z)7~1 >
=B,C : +0, | ——————— | .
- <qz+zz=1ai> (logz/q) /(=1 " 79\ (logz/q)/(a=D

DO(Ha x/q) = BqCH (

As shown in the proof of Proposition [2.3.12]

(loglog )1 >

(loglog(z/q))’ = (loglogx)’ + O; < 5
log” x

Also, by Proposition [2.3.2] if we suppose that z > ¢2, then
(logz/q)~ /= = (logz)~"/(==1) 4 O, ((1og x)—l—l/(q—l)) .

Therefore,

a(loglogz/q)’ i ((loglogz)i~! e s
(loga/q)/@D ~ ° (loglog z)’ + O T gt ((10{596) + 0, ((loga;) ))

x(log log x) x(log log x) 0., z(loglog x)i 1
(]ng)l/(q—l) T (log;(;)l""l/(q—l) J (]ng)2+1/(q—1)
_ a(loglogz)? z(loglog x)

B (loggj)l/(q—l) q (logx)l“'l/(q—l) ’

Now, since we are assuming that z > ¢, we can apply Lemma to get that

x(loglog z)7~1 x(loglog x)7 1
(log x/q)l/(q_l) (1og 1‘)1/((1_1) ’

Thus, we have that

_ q—1 x(loglog )7 a(loglog )
Do(H,x/q) = B,Cn <q2+231°ﬂ‘> ((log:c)l/(ql) + 0, (log z)+1/(a=1)

z(loglogx)/ !
+01 (Qorm s

qg—1 z(loglog x)? x(loglog z)7~1
=B,C v O, | ————"——
a~H <q2+231 a; ) ((logx)l/(ql) T (log;p)l/(Q*l) ’

since . .
x(log log x) z(loglog x)7 1

(10g$)1+1/(q_1) (logg(;)l/(q—l) ’
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2.6 Evaluating D;(H,x) for k > 2

In this section, we show that for all £ > 2, Dy (H, ) will contribute to the error term of D(H, x).

Proposition 2.6.1. Let H = (¢; v, ..., ;). Then, for k > 2,

z(loglogz)/ 1

Proof. Letk > 2. Recall, from Section 2.1, that by definition, Dy, (H,z) = #{n < z: ¢* || n, G4(n) = H}.
Notice that we can rewrite the above set as Dy (H,z) = #{n < z/q": ¢t n,G,(¢"n) = H}. Now, by the

Chinese Remainder Theorem, since ¢ is an odd prime and ¢ 1 n,
Z;kn = Z;k X Z;( = Z¢(qk) X Z¢(n) = qu—l X Zq,1 X Z¢(n)~

Ifk—1¢{a,a,...,a;}, it follows that Dy (H,z) = 0, and thus, our proposition will be trivially

true. So, assume that a; = k — 1 for some i € {aq, ... ,aj}. Then, it follows that

Dk(((ﬂ@l,...,@j),ﬂ?) = #{n S :E/qk: qunan(n) = (q;ala"'7ai—laai+1a"'7aj)}

= DO((q;ala sy QG 1, 0041, . .,Oéj),l‘/qk).

Since

' . - g—1 z(loglog x) z(loglogz)/ 1
Do((gz e, - -, ), @) = ByC <q1+251 ai> (log z)t/(a=1) +0q (log x)t/(a=1) )’

we have that .
x(loglog x)7 1

DO((Q§a17~-~aai—laai+17~-~70‘j)ax/qk) <H W-

O
So, by the above proposition, we can see that
a1+1 .
x(loglog z)7~1
Z Di((gon, ... 0)),2) <o ———7 7
P (log CL’) /(g—1)
2.7 Evaluating D(H, )
Theorem 2.7.1. Let g be an odd prime, let H = (g; a1, a2, . . ., ¢;), and for a prime number p, let &, be the

order of p modulo ¢q. Then,

B z(loglog x) x(loglog z)7~1
D(H,z) = Ky ((logx)l/(ql) +0n (logz)t/(@=1) )’
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where

Ky = B,CuEy,
where
1 _ _ _ _ _
Bq:I‘lll((l_l/Q) 1/(g—1) H (1_1/pk';n) 1/kp H L(LX) 1/(q 1)>’
( B /(q - )) PFq X#X0
p#1 (mod q)
051—1 1
Cu =[] ——
# kl;[l (ar — art1)!
and
-1

a q2+25:1 a;
Proof. Recall from equation (2.1)) that

a1+1
D((g;aq,...,05),x) = Z Di(g;a1,...,a4).
k=0

Inputting the values of Dy, found in Sections 2.4, 2.5 and 2.6, we get that

DUix)Zl%CH< a1 )‘“bgngy +zch< -1 )(ﬂibgbg@j>

q1+Z{:1 a; (log (p)l/(qfl) q2+Z{:1 a; (log 1’)1/(‘1*1)

z(loglog )i 1
+0n (Toris

q—1 x(log log x) ( 1) <J;(1og log x)j_1>
= B,C . 1+ )40 2
- H <q1+zzl a; ) (]Qg aj)l/(q_l) q H (log ;1;)1/(‘1_1)

2 j j—1
B ¢ —1 z(loglog x)? z(loglog x)?
= BqCH <q2+231 ozi) (log CE)l/(q—1) +On (1og x)l/(q—l)

_ x(loglog x) x(loglog x)7 1
_KH((logx)l/m—l) +On (log z)/(@=1) )
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Chapter 3

Counting Function for Maximally

Non-cyclic Multiplicative Groups

3.1 Setup

Rather than focusing on local Sylow subgroups, we now wish to focus on the global structure of a group,
and in particular, whether or not a group is cyclic. While not directly related to the problem we have spent
the first part of the thesis solving, the problem that we are about to introduce is of a similar nature. Counting
functions of the number of integers n up to x such that ZX is cyclic is a topic that has been well studied
in number theory. Consider, for instance, the following proposition, which can easily be proved using well
known results.

Proposition 3.1.1.
X

3
#{n <wx:Z) is cyclic} ~ STogs’

Proof. First, we know that Z¢ is cyclic if and only if n = 1,2, 4, p" or 2p”, where p is an odd prime and r

is a positive integer. Then,

#{n <x:Z) iscyclic} =3 + Z 1+ Z 1

p" <z 2p" <z

p odd p odd
=3+ E 1+ E 1.

p'<z p'<z/2

p odd p odd
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Since 2" < z if and only if r < log 2/ log 2, we have that

Z 1= Z 1+ O(logz),

p <z pr<z
p odd

and thus,

#{n <x:Z) iscyclic} =3 + Z 1+ Z 1+ O(log x).
p" <z pr<z/2

Now, notice that we can rewrite the sum of prime powers up to x as follows,

D=1+ > 1+ > 1+

pr<z p<z p2<z p3<x
=31+ Y 1k Y e
p<z p<zl/2 p<zl/3

=7(z) + 7(z'/?) + w(a}3) + - ..
= 7(x) + O + O(z'/?) 4 -- -,

and similarly, we can rewrite the sum of prime powers up to /2 as follows,

D=1+ > 14 Y I+

pr<z/2 p<z/2 p2<z/2 p3<x/2
ST Y e Y e
p<z/2 p<(z/2)1/2 p<(z/2)1/3

= m(@/2) + 7((x/2)"?) + 7((2/2)"*) +
=7(z/2) + O} + O(z'/?) + - - - .

If r > log x/ log 2, then for any prime p, p" > 2" > logz/log2 — 4 and thus, we get

Z 1= ioigO(:rl/z) = n(z) + O(z*/?log z)
pr<x

and

1
Z 1=mn(z/2)+ ng O(z'/?) = w(x/2) + O(z'/? log ).
pr<z/2

Now, by the Prime Number Theorem, we have that

le < +O( >—|—O( Y2 10g x)
log log” x

p"<z

and

= z/2 2% log x
> 1= o x/2> <1og2<x/2>>+0( log z).

pr<z/2
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If we assume that 2 > 4, we can apply Lemma[2.3.T|and Proposition [2.3.2]to get that

31 g ((ng)-l +0 (110‘“’;2» +0 (ﬂ) +0(z?log z)

pr<a/a og” x og” x

x X
= O O(z/?log z).
Slogz + (logzz) + O(z"/*logx)

Thus, so far, we have shown that

x x x
< z: ZY is cyclic} = 3 ——+0 O(z'/?log z).
#{n < x:Z,) is cyclic} +10g:v+210g:c+ <log2x)+ (x*/“log x)

Since log® 2 < /2 implies that z'/2 log® & < z, and thus, 2'/2 log 2 < x/ log® x, we have that

. . 3 x
#{n <z:Z) iscyclic} = logs +0 (bgzx> .

Thus, from here, it follows that

T

3
<z:Z)i lic} ~ — .
#{n < x:Z) is cyclic} 2oz

O

This has led us to ask, what would make a group as non-cyclic as possible? Before we can define this,

we need to define the primary decomposition and invariant factor decomposition of a group.

Definition 3.1.2 (Primary Decomposition). The primary decomposition of a finite abelian group G is the
unique decomposition
ngkl XZk2 Xoee XZkt

such that k1, ko, . . . , k; are powers of primes.

Definition 3.1.3 (Invariant Factor Decomposition). The invariant factor decomposition of a finite abelian

group G is the unique decomposition
G =g, X Lgy X -+ X Lq,
such thatdy | dg | -+ | dy.
Now, we can give the definition of a maximally non-cyclic group.

Definition 3.1.4. Let GG be a finite abelian group of order m, for some positive integer m. Let the following

be its invariant factor decomposition:
Zdl XZd2 Xoeee XZdw

where dy | dy | -+ | dg. Then, we call G maximally non-cyclic if any of the four following equivalent

conditions hold:
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(1) for any prime g, its Sylow g-subgroup is of the form

Lg X Lg X -+ X Lqg;

q»

(2) dg is minimal among all finite abelian groups of order m;

(3) dj is squarefree for every 1 < j < 4;

(4) each factor of the primary decomposition of G is of the form Z,, for some prime p.
Below is a proof that the four conditions are indeed equivalent.

Proof. Let G be a group of order m with invariant factor decomposition,
Zd1 XZd2 Xoeee XZdl,

where dy | dy | -+ | dg. Also, let {p1, po, ..., ps} be the set of all primes which divide m.
(1) = (4): First, we can write G as

G= é qu‘,
i=1

where, for each 7, Gy, is the Sylow p;-subgroup of G. By condition (1), Gy, is of the form Z,, x - -- X Zj,

for every ¢. Thus, it follows that

S my
¢=PDz.
i=1 j=1
for some positive integers my, ..., ms. Notice that this must be the primary decomposition of G by defini-

tion of primary decomposition, and thus, condition (4) holds.

(4) = (3): Assume condition (4) holds. Then, since we construct the invariant factor decomposition
of G by combining factors from the primary decomposition whose orders are relatively prime, and every
factor from the primary decomposition is, by assumption, of the form Z,, for some prime p, it follows that
each d; is squarefree.

(3) = (2): Suppose that condition (3) holds. By construction of the invariant factor decomposition, we
know that dy divides m and that p; divides dy for each 1 < ¢ < s. Then, since d; is squarefree, it follows that
each p; must divide d, exactly once. Therefore, we must have that dy = p1ps - - - ps. Now, suppose that G’ is
another finite abelian group of order m with invariant factor decomposition, Zg;, X Zgy X -+ X Zd;,’ where

Y1 dy |-+ | dp. Then, dj must also be divisible by p; for each 7 in {1,2,...,s}. So, p1p2---ps | djy,
and thus, d; | dj,, which implies that d; < d},. Since G’ was chosen arbitrarily, it follows that d, must be
minimal among all finite abelian groups of order m.

(2) = (1): We will argue this implication by contrapositive. Suppose that there exists some prime

pj» 1 < j < s, such that the Sylow pj;-subgroup of G is of the form Z,o1 X Zjo2 X -+ X Z,>x Where
J J J
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1< a; €ay £--- < ap and a, > 1. Without loss of generality, we can assume that j = 1. Then,
p7T* must divide d; for some 1 < ¢ < £. Since dy | da | --- | dy, it follows that pi™* divides d;. So,
p‘f"“ D2+ ps | dg since p; divides d; for each 1 < i < s. However, from our previous cases, we can see that
it is possible to find a finite abelian group of order m such that d; = pyps - - - ps which is clearly a smaller
dy than p{*ps - - - ps since oy, > 1. Thus, in this case, d; is not minimal among all finite abelian groups of

order m.
O

We remark that these four equivalent conditions imply that / is maximal among all finite abelian groups
of order m, however this implication doesn’t go both ways. For instance, consider the following two finite
abelian groups of order 36: G; = Zy X Z1g and G = Zg X Zg. Here, | = 2 for both groups. From their
invariant factor decompositions, we can see that their primary factor decompositions are G1 == Zo X Zia X Zg
and Go = Zo X Zo X Z3 X Z3. Here, it is easy to see that GG, satisfies condition (1) of our definition, but

that GG; does not, since its Sylow 3-subgroup is Zg.

Lemma 3.1.5. Let G = G x G2 x --- x Gj, where G, Gy, ..., G are finite abelian groups. Then, G is

maximally non-cyclic if and only if G1, ..., G are maximally non-cyclic.

Proof. By condition (4) of Definition [3.1.4] G is maximally non-cyclic if and only if each factor of its
primary decomposition is of the form Z,, for some prime p. Since G and G X G'3 X - - - x G; are isomorphic,
their primary decompositions will be identical. So, each factor of the primary decomposition of G; X G3 X
---x G will be of the form Z,, and thus, for each 1 < 4 < j, the primary decomposition of G; can only have
factors of the form Z,,. By condition (4) of Definition each GG; must be maximally non-cyclic. O

Our goal throughout the remainder of this chapter is to estimate the counting function for the number of
n up to = such that Z< is maximally non-cyclic. First, applying Chinese Remainder Theorem to Z,<, we get
that

X A 7 X X
nzie ML
p’ln
p odd

o Z;Q &) @ Z¢(p;e),

where @ > 0 is an integer. Note that by Lemma 3.1.5} ZX will be maximally non-cyclic if and only if Z5,
and Zg,s) for each odd prime p with p? || n are all maximally non-cyclic.

We will start by focusing on the factor corresponding to 2. If «v is 0 or 1, then ZJ, will be the trivial
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group. Otherwise,
Zs, ifa=2
Lo 2 Lo x Zo, ifa=3
Zoa-2 X Lo, ifa >4
Notice that condition (1) from Definition will not be satisfied if « is greater than 3. Thus, it follows
that in order for Z to be maximally non-cyclic, we require that 2* does not divide n. Now, let p be an odd

prime divisor of 7 and suppose that p” || n. Then,

Zp1, ifg=1
Z¢(pﬁ) = Zp X prl, lfﬁ =2
Zp/i—l X Zp_l, lfﬁ > 3.

Here, we can see that condition (1) from Definition will not be satisfied if « is greater than 2 orif p — 1
is divisible by a square. Thus, it follows that in order for Z to be maximally non-cyclic, we require that if

p is an odd divisor n, then p? does not divide n and p — 1 is squarefree. Therefore, we have that

#{n < x: Z) is maximally non-cyclic}

= #{n < x:2*{n,p*{nfor any odd prime p, and p | n = p — 1 is squarefree}.

So, we can see that this is another case of counting integers with restrictions on their prime factors.

3.2 Useful Propositions

In order to find a counting function for the number of n up to z such that Z is maximally non-cyclic, we

first need to state and prove some useful propositions.

Proposition 3.2.1. For any positive integer n,

Proof. First, since ¢(n) = n]],, (1 —1/p), we have that

n n

o " nILLa -1y - Ha-un

pln

Notice that n/¢(n) is a multiplicative function since both n and ¢(n) are multiplicative functions. Also, we

2
can see that ) djn % is a multiplicative function since it is the divisor sum of a multiplicative function.
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Since both n/¢(n) and > dln % are multiplicative functions, showing that they are equal is equivalent to
checking that they agree on powers of primes. So, let ¢ be a prime and let « be a positive integer. Then,

(e

q -1 -1 q
= 1-1/p =(1-1/q = —,
s = O yp 7 =017 = 0

plg

and )2 )
R e

d|q™ 4 q

Therefore, from this, it follows that % => dln % for any positive integer n. O

Proposition 3.2.2. For any real number z,

o _CRKE) e
256 = cw) O

n<lz

Proof. First, by Proposition[3.2.1] we have that

n 11(d)?
P 3P My

n<x

So, by switching the order of summation, we get

no_ o ud)? o ad)? |
,Z;W*d; o(d) ,;1*(12 o(d) FiE
d|n

Now, since |x/d| = x/d + O(1), we have that
no o pd)? e
2 5 = 2y (a+om)

11(d)? 1
=3 o )

d<z d<zx
= P +O(x L 1). 3.1
2 dg(d) 22 dg(d) dZ o(d)

Note that the convergence of the sum in the main term of (3:1)) follows from (3.2). Then, since 1(d)?/d¢(d)

is a multiplicative function, we can rewrite the coefficients of the main term of (3.1)) as an Euler product as
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follows,

opd)? (p) ue)? o
2o _rp[(”w)p )
1;[(1+11p1+0+0+ )
1
~11(t+ 5505)

Now multiplying the numerator and denominator by (p + 1)(p® — 1) and then dividing the numerator and

denominator by p®, we get the following chain of equalities:

e} U(d)Q - p6—1
;dd)(d) _1;[ (p(p2 -1 - 1))
1—-1/p
H( )
L -p?) L0 -p) !

H (1—p=%)~t

Since the Euler product representation of Riemann’s zeta function is {(s) = Hp(l —p~%)7L, we can see

. = P C2))
p(d?  C2)C3
2 a0 = c®)

Now, we will simplify the error term of (3.1)). First, since ¢(d) >, d*~¢ for any positive ¢, taking € = 1/2,

we get that

1 1 9 00 9 .
1 1 - R
v 2 o) €T d3/2<<””/x ot = x( t1/2>’w =o€ (3:2)

and
=272 9 < /2,

1 1
27<<Zﬁ<</ 12dt—2tl/2
old) i dY Y

Substituting our revised main term and our simplified error term back into (3.1), we get that

DL R

1

n<x
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Proposition 3.2.3. For any real number y,
Sl
Synen) oy
Proof. First, notice that we can rewrite the above sum as follows,

1 n 1
2. o)~ 2 g

n
n>y

Then, since f(t) = 1/t2 is a continuous function, we can use a Riemann-Stieltjes integral to evaluate the

above sum:
> e, w(Zew)

n>y
1 n | > n 1
— - —d
7 2L 5w, / 2 50 (=)
1 n >*1 n
= +2/ — —dt
2o 2, B 2o

Now, since >, ., 70y << x by Proposition , we have that

Z#«i y+2/ool tdt
Soné(n) Ty y B

oo

Definition 3.2.4. Let £ be Artin’s constant, that is,

=T 550)

Proposition 3.2.5. Let C be any positive real constant. Then,

#{p < x: p — 1is squarefree} = li(x){ + O ((log:vx)C/Q) ,
where £ is defined as in Definition |3.2.4]and
Todt
li(z) = —.
o Int
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Proof. First, notice that,

#{p < x: p— 1lissquarefree } = Z(u(p —1))=%

p<z

Then, since (u(p — 1))? = 2_a2|p—1 #(d) (equation (2.4) on p.36 of [4]), we have that

#{p <x:p—1lissquarefree } = > > pu(d

p<zd?|p—1

=Y > wd)

d?<z p<Zlz
d?|p—1

= ud > 1

d2<zx p<z
d?|p—1

= Z p(d)m(z; d?,1).
<z

By Corollary 11.21 from [4], for d? < (log z)®,

li(z) —c1y/1
m(x;d?, 1) = + O¢(ze= V08T
¢(d?)
where c; is a positive constant. So,
S ude(ad) = ) ( 235 + Oclae=e+/°5%))
d<(log z)C/2 d<(10gw c/2
= li(x) Z ((d )) + Oc¢ ((log z)C2ge Vlo“) .
d<(log z)C/2

Since ¢(d?) = d¢(d), we can see that

>

ch *O( 2 d¢1<d>>

gad

d<(log z)C/2 d>1 d>(log z)C/2
1 1
(- 5555) 0 (o)
1;[ ( plp - 1)) (log z)©/2
= é“ +0 #
- (logn)2 )

The second equality above is valid due to Proposition[3.2.3] Thus, so far, we have that

> uldm(ed 1) =li(@) +0 (blgl(;;)w) +Oc ((1oga:)0/2ze*cn/@) :

d<(log x)°/? (
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Now, we can use the trivial estimate 7(x; d?,1) < 1+ x/d?, to get that

> @ n< Y (1+ %)

(logz)€/2<d<\/z (logz)€/2<d<\/z

< Z (%) , since d > \/x

(logz)€/2<d<\/z

(logz)€/2<d

e 1
(logz)C/2 -1 l

xT

< (og )07

Thus,

> wldm(w;d,1)
d<vE

= li(z)¢ + O ((blgl(f))w) +0c ((log x)c/%e_“m) +0 (Mi)o/g) :

Now, since liz < z/log x, we have that

> w(d)m(w;d* 1)
<V

T z —Clm z
= h(x){ +0 (W) + Oc¢ ((log x)c/Qxe log ) +0 (W)

=li(z)§ + O <(logi)c/2> +Oc¢ ((log x)c/2xe*cl\/@> .

Now, since
. (logx)“
hm —_—
z—00 ec1Vlogw

we have that (log z)¢ = o(e“V!°8 %), and thus (log x)¢ < V187 From here, it follows that

:O7

z(logz)¢/? < x
ec1 Vlog x (IOg x)C/2 ’

and thus,

d;ﬁ,u(d)ﬂ(x; d?,1) =li(z)§ + O ((logm)C/Q> .
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Let A = {p: p — 1is squarefree}. Then, we can calculate the density d(A) of A as follows:

d(A) = lim #{p < z:p—1issquarefree }

z—00 71'(1')

Notice that, as stated in the next proposition, d(A) turns out to be Artin’s constant.

Proposition 3.2.6. d(A) = £, where ¢ is as defined in Definition[3.2.4]

Proof. First, by Proposition [3.2.5]

d(A) = lim li(z )f-i-O(W)

z—00 71'(:5)

= i (5560 (o))

Now, by the Prime Number Theorem, we have that

T xlogx

1-C/2
(@) (og )2 < Z(log )02 '

— (log)

Let C > 2. Then, 1 — C/2 < 0, and so, as x goes to infinity, the above error term goes to 0.
Also, by the Prime Number Theorem, we know that

lim li(z)

= 1.
T—00 7'((1'

Therefore, it follows that, d(A) = &.

3.3 Counting integers n such that Z > is maximally non-cyclic

In order to prove Proposition[3.3.2] we will need to use the Wirsing-Odoni Method. Below is a statement of

the method taken directly from [/1]:

Proposition 3.3.1 (Wirsing Odoni Method). Let f be a multiplicative function. Suppose that there exist

constants v and v such that 0 < f(p”) < wr? for all primes p and all positive integers r. Suppose also that

there exist real numbers w > 0 and 0 < 8 < 1 such that

> @) 1ogP O<(10g1€)1+5)

p<P

as P — oo. Then the product over all primes




converges (hence is positive), and
Y f(n)=CyN(log N)*~" + O (N(log N)*~'~7)
n<N

as N — oo.

Proposition 3.3.2.
x

(og )¢
where ¢ is as defined in Definition[3.2.4]and C} is the convergent product,

15 11 1\¢
=mrgim (I (4545 II(-5) )

p—1 squarefree

#{n < x: Z;; is maximally non-cyclic} ~ C

Proof. Recall that, as shown in Section 3.1,

#{n < z:Z) is maximally non-cyclic}

=#{n < x:2*{n,p®{n for any odd prime p, and p | n = p — 1 is squarefree}.
Let

f(n) 1, if2*¢n,p*{n for any odd prime p and p | n = p — 1 is squarefree,
n)=
0, otherwise.

Then, f is multiplicative and for any prime p and natural number 7, 0 < f(p") < 1 < 2. rl. Also, by
Proposition [3.2.5] we have that

Z f(p) = #{p < x: p— 1is squarefree}

: =li(z)¢ + O ((logfcj)c/z> '

x x
li(z) = +0 ;
l(fE) logx (10g2$)

- [0 (2] -0 )

p<z

Since

we get that

X X
= Ol ————~= ) .
10g$€ + ((log x)mln(?,C/Z) )
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Choosing C' > 4, we get that,

2 I 1ogx+0<<lo§x>2>

p<lx
x T
B glogx +0 ((loga:)“rﬁ) ’

where 0 < 8 < 1. Then, applying Proposition[3.3.1] we get that

p
p—1 squarefree

“arin (I (e ) T(-5))

p—1 squarefree

converges and

> f(n) = Cra(logz) ™" + Oy (x(logx)* ' 77).

The statement of the proposition follows directly from this.
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Chapter 4

Conclusion

To conclude, throughout this thesis, we have examined multiple counting functions of integers with restric-
tions on their prime factors. First, in Chapter 2, we proved that for a fixed odd prime ¢ and a fixed g-group
H = Zgor X Ligoz X -+ - X Ly , the counting function for the number of n up to x for which H is the Sylow
g-subgroup of ZX is

x(log log x) ) (x(log log x)j_1>
T | tO0u | o )

D(H7 l‘) =Kn ((]ng)l/(q_l) (loggj)l/(q—l)

where K is a constant that depends on H. Then, in Chapter 3, we proved that the number of n up to =
such that Z¢ is cyclic is asymptotic to %x / log x and that the number of n up to x such that Z¢ is maximally

non-cyclic is asymptotic to Cyz/(log x)'~¢, where ¢ is Artin’s constant and (' is the convergent product,

oo (I (3R I05) )

p<z p<z
p—1 squarefree

As anext step, given a fixed finite abelian group G of order m, it might be interesting to consider the problem

of finding an asymptotic formula for the number of n up to x such that GG is not contained in Z,*.

58



Bibliography

(1]

(2]

(3]

(4]

(5]

Steven Finch, Greg Martin, and Pascal Sebah. Roots of unity and nullity modulo n. Proc. Amer. Math.
Soc., 138(8):2729-2743, 2010.

Kevin Ford, Florian Luca, and Pieter Moree. Values of the Euler ¢-function not divisible by a given
odd prime, and the distribution of Euler-Kronecker constants for cyclotomic fields. Math. Comp.,
83(287):1447-1476, 2014.

Edmund Landau. Uber die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Min-
destzahl der zu ihrer additiven Zusammensetzung enforderlichen Quadrate. Arch. der Math. und Phys.,
13(3):305-312, 1908.

Hugh L. Montgomery and Robert C. Vaughan. Multiplicative number theory. I. Classical theory, vol-

ume 97 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge,
2007.

Gérald Tenenbaum. Introduction to analytic and probabilistic number theory, volume 163 of Graduate

Studies in Mathematics. American Mathematical Society, Providence, RI, third edition, 2015. Translated
from the 2008 French edition by Patrick D. F. Ton.

59



	Abstract
	Lay Summary
	Preface
	Table of Contents
	Introduction
	Counting Finite Abelian Groups with a Prescribed Sylow q-Subgroup
	Setup
	Selberg–Delange Method
	Other Important Tools
	Evaluating D0
	Evaluating D1(H,x)
	Evaluating Dk(H,x) for k2
	Evaluating D(H,x)

	Counting Function for Maximally Non-cyclic Multiplicative Groups
	Setup
	Useful Propositions
	Counting integers n such that Zn is maximally non-cyclic

	Conclusion
	Bibliography

