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Abstract

High-grade serous ovarian cancer (HGSC) is the most common and lethal histotype of

epithelial ovarian cancer. Often presenting as multi-site disease, HGSC exhibits extensive

malignant clonal diversity with widespread but non-random patterns of disease dissemination.

The proclivity of HGSC toward clonally heterogeneous disease is thought to underlie the

prevalence of treatment-resistant disease. Yet, the factors that influence the spatial distribution

of cancer clones in HGSC remain largely uncharacterized. Hypothesizing that distinct peritoneal

niches formed by microenvironmental cell types shape the observed patterns of clonal dynamics

in HGSC, the primary aim of this thesis was to understand how microenvironmental factors

influence malignant cell evolutionary dynamics.

To establish the experimental substrate for this thesis, I led the construction of a cohort

of 148 tumour samples from 41 HGSC cases (Chapter 2). In addition to coordinating clinical

case identification, I oversaw and learned how to create patient-derived xenograft models and

conduct single cell experiments from patient tumours. Leveraging this resource, I explored

whether local immune microenvironment factors shape tumor progression properties at the

interface of tumor-infiltrating lymphocytes and cancer cells (Chapter 3). Through multi-region

study with whole-genome sequencing, immunohistochemistry, image analysis, gene expression

profiling, and T- and B-cell receptor sequencing, I identified three immunologic subtypes across

samples associated with patterns of malignant clonal diversity. These findings were consistent

with immunological pruning of tumor clones. Finally, in order to explore the non-lymphocytic

components of the tumour microenvironment, I developed an automated approach to cell

type identification from single cell RNA-seq data that eliminates the manual work involved in

traditional workflows reliant on post-hoc expert annotation (Chapter 4). I demonstrated how

this method performs superiorly to state-of-the-art workflows for cell type identification and

applied the method to profile the HGSC microenvironment.

Collectively, this work highlights multiple interfaces of evolutionary interplay between malig-

nant and non-malignant cells in the HGSC microenvironment, identifying novel mechanisms

by which tumour cells escape from immune recognition. These results will inform the inter-

pretation of results from immunotherapy clinical trials and set the stage for comprehensive

microenvironment profiling in large HGSC cohorts and other cancers.
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Lay Summary

Ovarian cancer is one of the leading causes of death from cancer in the developed world. Over

50% of patients with the most common type of ovarian cancer, high-grade serous ovarian cancer,

die within 5 years of diagnosis. While most patients get better initially with treatment, the disease

eventually becomes resistant. These cancers often contain multiple distinct subpopulations of

cancer cells. Treatment that works on one cancer cell population may not on others, allowing

the cancer to survive. Tumours also contain non-cancerous cell types, including cells from the

immune system. Some of these non-cancerous cell types are linked to how long patients survive.

The goal of this work is to understand how these cell types affect cancer cell growth. In doing

so, we may be able to change the way non-cancerous cells interact with cancer cells to treat

ovarian cancer.
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Chapter 1

Introduction

Cancer is a disease of the genome and one of the leading causes of death in Canada [4]. Most

cancers develop from a single cell that undergoes successive cycles of expansion, diversification,

and pruning [5]. Thus, cancers are non-homogeneous mixtures of genomically and phenotypically

distinct populations of tumour cells called clones. The process by which these clones expand,

shrink, and diversify over time is known as clonal evolution [5]. The phenotypic diversity of

cancer cells generated by clonal evolution explains some cases of resistance, where pre-existing,

treatment-resistant clones survive initial therapeutic assault and expand to give rise to tumour

cells present at relapse [6].

Importantly, these processes do not occur in isolation. Malignant cells occupy niches shared

by non-malignant cells, such as lymphocytes, macrophages, fibroblasts, adipocytes, and pericytes

[7]. These cells can have tumour-promoting or inhibitory functions that alter the evolutionary

trajectories of tumour cells. For example, tumour-infiltrating lymphocytes (TILs) can respond

to tumour-associated antigens, mounting anti-tumour immune responses [8]. On the other

hand, cancer-associated fibroblasts can promote metastasis, angiogenesis, and tumour cell

proliferation through extracellular matrix remodelling and cytokine secretion [9]. Together,

the dynamic network of interactions formed by malignant and non-malignant cells forms the

tumour microenvironment (TME). Like tumour cells, the composition and properties of the

microenvironment can change over carcinogenesis, progression, and treatment [7]. Understanding

how the microenvironment shapes the evolutionary histories of tumours will aid in predicting

how tumours will respond to treatment.

I investigate these phenomena in high-grade serous ovarian cancer (HGSC), a subtype

of ovarian cancer characterized by rampant dissemination throughout the peritoneal cavity,

forming an ideal substrate for investigating how tumour cells evolve in diverse microenvironmental

contexts. In Section 1.1, I review the epidemiology and pathophysiology of HGSC. In Section 1.2,

I discuss the current understanding of clonal diversity in HGSC. Section 1.3 provides a brief

overview of the microenvironmental cell types most relevant to HGSC, and Section 1.4 reviews

contemporary experimental and computational approaches to study tumour evolution and the
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microenvironment. Finally, Section 1.5 outlines the central aims of this thesis – to characterize

the TME of HGSC and understand how non-malignant cells impact malignant evolutionary

dynamics.

1.1 High-grade serous ovarian cancer

1.1.1 Epidemiology

In North America, ovarian cancer is the leading cause of death from gynecological malignancies

and the fifth most common cause of cancer death [10]. The most common histopathological

subtype of ovarian cancer, high-grade serous ovarian cancer, makes up 70% of diagnoses and has

a 5-year survival rate of under 50% [10]. HGSC patients often present with peritoneal spread

to invasive foci in the omentum, small bowel, and other organs. The current standard-of-care

treatment, primary debulking surgery followed by combination platinum-taxane chemotherapy,

is effective at treating the primary tumour, but the disease almost always recurs (80%) [11].

Despite extensive research into developing new screening and therapeutic strategies, patient

survival has not improved substantially over the last 3 decades [12].

HGSC is typically sporadic, with approximately 10-20% of cases being hereditary [13].

Most of these correspond to germline BRCA1 or BRCA2 variants, which are associated with

superior response to platinum chemotherapy due to the impaired ability of BRCA-mutated

tumours to repair platinum-induced DNA damage through homologous recombination (HR)

[14, 15]. The recent introduction of poly ADP-ribose polymerase (PARP) inhibitors for HGSC,

a class of drugs that exploits synthetic lethality by impairing compensatory DNA repair

pathways, has demonstrated improved outcomes especially among HR-deficient (HRD) cases

[16, 17]. Nevertheless, outcomes remain bleak, especially for cases without HRD which constitute

approximately half of HGSC [3].

1.1.2 Pathophysiology

Traditionally, HGSC was thought to originate from the ovaries in cortical inclusion cysts of

ovarian surface epithelium [18]. While some studies still support an ovarian origin of HGSC, most

new evidence points toward the epithelium of the distal fallopian tube as the anatomic origin of

HGSC in the majority of cases (Figure 1.1) [19, 20]. Serous tubal intraepithelial carcinoma

(STIC) lesions found on the fallopian tubes of BRCA carriers share genomic features of HGSC

[21]. Furthermore, phylogenetic analysis of mutations present in STICs and HGSC tumours

from the same patients has established these lesions as the precursors to most occurrences of
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HGSC [21].

Figure 1.1: Fallopian tube origin hypothesis of HGSC pathogenesis. HGSC is thought to be
derived from fallopian tube epithelial cells that acquire TP53 mutations. These cells may eventually
develop into histologically detectable STIC lesions. STICs seed the ovary and possibly also metastatic
lesions elsewhere. Used with permission from https://www.cancer.gov/news-events/cancer-currents-
blog/2017/ovarian-cancer-fallopian-tube-origins (Carolyn Hruban).

Almost all HGSC tumours harbour mutations in TP53, which occur as an early event in

disease progression [14, 22]. Approximately 18% of cases have somatic BRCA1 or BRCA2

variants, which are largely exclusive with CCNE1 amplification (20%); together, when combined

with germline variants and epigenetic silencing, approximately half of all HGSC cases have HRD

[14]. The prevalence of TP53 mutations and HRD leads to incompetence in DNA repair. Thus,

widespread chromosomal aberrations, aneuploidy, and severely disrupted karyotypes are defining

characteristics of HGSC. Other genes affected by recurrent mutations and copy number events
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include MYC (> 20%), PIK3CA (17%), NF1 (12%), RB1 (11%), KRAS (11%), PTEN (7%),

and CDK12 (3%) [14].

Recently, integrated genomic analyses of single-nucleotide (SNVs) and structural variants

(SVs) derived from whole-genome sequencing studies of HGSC have revealed 2 major genomic

subtypes of HGSC: homologous recombination-deficient (HRD) and foldback inversion-associated

(FBI) [3, 23]. HRD cases, comprising approximately 50% of HGSC, are primarily defined by

the presence of the HRD-associated SNV signature along with short deletions and tandem

duplications. BRCA1 and BRCA2 -mutated tumours are included in this subgroup and are

defined by distinct SV signatures (BRCA1 by short tandem duplications and BRCA2 by short

deletions) [3]. FBI tumours make up most of the remainder of cases (40%) and harbour foldback

inversions – duplicated sequences that face away from a breakpoint [3]. Foldback inversions

are thought to arise through successive breakage-fusion-bridge cycles, co-occur with CCNE1

amplification, and are associated with poor survival in HGSC [24]. A third tandem duplicator

subgroup, associated with CDK12 mutations, accounts for a final, minor fraction of cases (10%)

[25] and has been linked to the worst outcomes in a recent preprint [26].

1.2 Intra- and inter-tumoural heterogeneity in HGSC

The clonal evolution theory of cancer cell populations posits that tumours arise from a single

origin and diversify through acquisition of genomic alterations over time [5]. Ultimately, this

process gives rise to genotypically distinct populations of cells, called clones, with corresponding

phenotypes (Figure 1.2). Computational methods permit identification of clones based on

somatic variants from bulk and single-cell DNA sequencing data (Section 1.4.1).

Figure 1.2: Pre-existing heterogeneity in a tumour increases the likelihood of treatment
resistance due to the presence of a resistant clonal population. The red, resistant popula-
tion expands following treatment due to a selective bottleneck. Used with permission from
https://www.nature.com/articles/nrclinonc.2017.166.
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Previous studies in HGSC have revealed a significant degree of clonal diversity in treatment-

näıve tumours. On average, only 50% of mutations are shared across all samples from a tumour

[27, 28]. Through detailed Bayesian probabilistic phylogenetic reconstruction of clonal lineages,

our group has recently shown that tumours can harbour clones from divergent evolutionary

lineages with markedly different mutational profiles [29]. Clonal diversity also exists between

tumours from an individual patient, and there is significant cellular migration between metastatic

sites [29]. Maximum parsimony reconstruction of clonal dissemination patterns in HGSC is

consistent with monoclonal and polyclonal seeding from a single diverse site, typically an ovary

or fallopian tube, in most cases [29]. However, recent organoid studies have established that

multicellular aggregates (MCAs) are significantly more successful than single cells at invading

ovarian mesothelium [30, 31]. These MCAs can contain phenotypically and morphologically

distinct populations of cells [30]. Metastatic foci in mouse models implanted with phenotypically

mixed tumour cells also contained phenotypically mixed populations [31]. Thus, successful

metastatic spread likely involves multicellular aggregates rather than single cells, hinting at

the possibility that polyclonal seeding and reseeding followed by pruning may be a common

occurrence.

Contrary to the assumption that the intraperitoneal space allows for indiscriminate admixture

of tumour cells, we have observed restricted clonal mixing in the majority of HGSC patients [29].

As such, local factors, such as the tumour microenvironment, may be involved in patterning

clonal seeding and establishment. Understanding how these factors affect clonal migration may

offer crucial insights into developing strategies to contend with the burden of metastatic disease

in HGSC.

1.3 The tumour microenvironment in HGSC

Solid tumours are ecosystems populated by a milieu of malignant and non-malignant cell

types, including tumour cells, fibroblasts, immune cells, endothelial cells, and adipocytes

(Figure 1.3) [7]. Collectively, these cell types and the interactions that occur between them

compose the tumour microenvironment (TME). Tumour cells can shape the composition of the

TME, sustaining growth and proliferation while evading immune-mediated elimination [32, 33].

Likewise, the TME can impose extrinsic pressures such as hypoxia, altering the metabolic

processes of tumour cells and contributing to the development of ’cancer hallmark’ traits [32].

Inflammatory mediators in the TME can contribute to tumourigenesis through the pro-growth

activity of cytokines released during inflammation [32]. These reciprocal interactions between

tumour cells and the rest of the TME represent molecular targets that can potentially be
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exploited by therapeutics.

Figure 1.3: Repertoire of immune and non-immune cell types in the tumour microenvironment.
Used with permission from http://tcr.amegroups.com/article/view/1549/2264.

1.3.1 The immune microenvironment

Populations of immune cells in the TME include cytotoxic T cells, helper T cells, regulatory

T cells, B cells, NK cells, macrophages, and granulocytes (Figure 1.3) [32]. In HGSC, the

immune microenvironment is dominated by T cells, B cells, and macrophages [1, 34, 35].

As in virtually every solid cancer type, cytotoxic (CD8+) tumour-infiltrating lymphocytes

(TILs) have been associated with increased survival in HGSC [36–38]. Ordinarily, T cells

recognize and respond to aberrant peptides presented by the Major Histocompatibility Complex

(MHC/HLA). Recent studies have reported that CD8+ TILs can recognize somatically mutated

peptides in HGSC, suggesting that TIL mount anti-tumour responses in part through neoantigen

recognition [39]. Survival is more strongly associated with intraepithelial rather than stromal

CD8+ TIL, implying that spatial localization of TIL is important for anti-tumour immunity

[40]. Immunohistochemistical studies have identified that these intraepithelial CD8+ T cells
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preferentially express CD103, an integrin subunit involved in epithelial localization of normal

intraepithelial lymphocytes, as well as activation and cytolytic markers [40], supporting the

interpretation that intraepithelial CD8+ T cells are involved in anti-tumour immunity.

However, CD8+ T cells do not function independently. In addition to CD8+ T cells,

the presence of additional TIL types – B cells and plasma cells – is associated with superior

outcomes in HGSC [38]. T and B cells spatially co-localized in tertiary lymphoid structures and

other lymphoid aggregates may support interactions between these cell types in the context of

anti-tumour immunity (Figure 1.4) [41]. B and plasma cells may be involved in anti-tumour

immunity through autoantibody production, direct cytotoxicity, Th1/Th2 polarization, and

antigen presentation (Figure 1.4) [42]. However, the relative contribution of each of these

mechanisms in HGSC is poorly understood. On the other hand, regulatory CD4+CD25+FOXP3+

T cells curtail T effector functions by inhibiting type 1 cytokine (IFNγ, IL-2) production and T

cell proliferation [34, 43, 44].

Figure 1.4: T cell- and B cell-mediated mechanisms of antitumour immunity. CD8+ T cells exert
direct cytotoxic effects on tumour cells through granzyme and perforin secretion. CD4+ T cells
can license dendritic cells to induce activation of CD8+ T cells, and activate B cells. Used with
permission from Brad Nelson AACR 2017.

During acute infection, T cells differentiate into effector populations to mount antigen-specific

responses. Following antigen clearance, these effector populations shrink to small memory T
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cell pools capable of rapid reactivation upon future encounter with the same antigen. In the

tumour microenvironment, however, prolonged exposure of effector T cells to antigen-depending

signalling can lead to the development of an “exhausted” phenotype characterized by progressive

impairment of effector activity [45]. In HGSC, CD8+ T cell infiltration is linked to expression

of exhaustion markers PD-1 and CTLA4, and CD8+CD103+ TIL are associated with PD-1

positivity by immunohistochemistry [46, 47]. Nevertheless, CD8+PD-1+ TIL appear to retain

some degree of effector functionality and are associated with superior patient survival [47].

The use of immune checkpoint inhibitors — monoclonal antibodies that block receptor-ligand

interactions implicated in T cell exhaustion — to mobilize exhausted T cells has been associated

with superior clinical trajectories compared to standard-of-care therapy in melanoma and some

types of lung and colorectal cancer [8, 48]. However, despite the prevalence of PD-1+ and

CTLA4+ TIL in HGSC, response rates to checkpoint inhibitor blockade in HGSC have been

disappointing [49, 50]. As such, our understanding of immune checkpoints in HGSC remains

incomplete.

Thus far, most studies of anti-tumour immunity have focused on the adaptive immune system.

However, the observation that some patients show T cell priming to tumour-associated antigens

prior to treatment (“spontaneous” T cell priming) has driven inquiry into understanding the

innate immune mechanisms that ultimately give rise to intratumoural T cell infiltration. The

major cell types involved in innate immunity include NK cells, macrophages, and dendritic cells

[51]. NK cells are lymphocytes that express inhibitory receptors that bind to HLA complexes,

and are thus thought to selectively target tumour cells that lack HLA expression. Consequently,

tumour cells that downregulate HLA evade T cell recognition are vulnerable to NK-mediated

cytotoxicity through granzyme and perforin release [52]. Macrophages, a type of leukocyte in

the monocyte lineage, engulf abnormal cells or cellular debris through phagocytosis. The two

main phenotypic subtypes of macrophages are pro-inflammatory, phagocytic M1 macrophages

and tissue repair-associated M2 macrophages. In the context of the tumour microenvironment,

M1 macrophages arise earlier in tumourigenesis, tend to promote inflammation and generally

oppose tumour progression, whereas M2 macrophages dominate tumours at the time of diagnosis

and are generally immunosuppressive and pro-tumourigenic [51]. However, the inflammatory

response associated with M1 macrophages may also induce carcinogenesis [53]. In HGSC,

M2-associated expression signatures have been linked to a stromal reorganization phenotype and

inferior outcomes [54], whereas M1-associated genes including type I interferons are associated

with superior patient survival [55]. Tumour transplantation into type I IFNR(-/-) mice resulted

in reduced T cell responses against tumour antigens due to deficiencies in CD8+ T cell priming

by antigen presenting cells (APCs), demonstrating that type I interferon signalling is necessary

8



for antitumour immunity. Studies to investigate factors upstream of type I interferon signalling

in the tumour microenvironment have highlighted the STING (stimulator of DNA sensing genes)

DNA sensing pathway [56]. STING is activated by the presence of cytosolic DNA – typically

from intracellular pathogens, such as viruses and parasites – inducing innate immunity through

type I interferon production. In tumours, STING pathway activation has been associated with

the presence of tumour-derived DNA in APCs, and STING-deficient mice show defective T cell

priming [57]. Thus, STING-dependent sensing of tumour DNA may lead to type I interferon

production and T cell priming in cancers. However, this mechanism has yet to be shown in the

context of HGSC specifically.

1.3.2 Other microenvironmental factors

Major non-immune cellular populations in the HGSC microenvironment include fibroblasts and

endothelial cells. Fibroblasts are the major non-immune cellular component of the tumour

stroma, involved in wound healing and responsible for extracellular matrix (ECM) deposition

and maintenance through collagen and matrix metalloproteinase (MMP) production. In cancers,

fibroblasts can be co-opted to facilitate tumour progression, transitioning to a myofibroblastic

phenotype characteristic of cancer-associated fibroblasts (CAFs) [58]. CAFs are thought to

promote tumour progression through a number of mechanisms including pro-growth signalling,

vascular stabilization, and ECM remodelling [58]. Mechanistic studies have revealed a link

between fibroblasts and platinum resistance in HGSC, demonstrating that fibroblasts can

diminish intranuclear platinum accumulation in cancer cells in vitro [59].

Angiogenesis refers to the formation of new vasculature from existing blood vessels. Tumour

cells rapidly proliferate, requiring the complementary development of vasculature to sustain

increasing nutrient and oxygen demand. When angiogenesis cannot keep up with tumour growth,

tumour regions that receive insufficient perfusion eventually become necrotic [60].

The inner lining of normal blood vessels is composed of a monolayer of squamous cells, called

endothelial cells, that restrict influx and efflux between the vascular lumen and surrounding tissue.

In contrast, tumour vasculature often displays an altered phenotype characterized by endothelial

cell disorganization and abnormal branching [61]. The defective endothelium is associated with

increased vascular permeability, faciltating nutrient extravasation and hematogenous metastasis

[60]. The tumour endothelium can also act as a physical barrier to immune cell infiltration,

preventing circulating lymphocytes from reaching certain tumour regions to mount anti-tumour

immune responses [61]. Ultimately, the formation of tumour-associated endothelium is thought

to be mediated by cancer cells. Tumour cells can alter normal endothelium by secreting pro-

angiogenic and vasodilatory factors, such as vascular endothelial growth factor (VEGF), and
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imposing biomechanical strain by encroaching on the vasculature itself [61]. Additionally, some

groups have observed evidence of vasculogenic mimicry, where tumour cells are capable of

trans-differentiating into endothelial-like cells to form “pseudo-vasculature” [62].

Cancer cell growth and metabolism can also be influenced by other microenvironmental factors.

Lack of oxygenation – hypoxia – in poorly perfused regions of the tumour microenvironment

leads to various tumour cell adaptations including pro-angiogenic signalling and an increased

reliance on anaerobic respiration to maintain adenosine triphosphate (ATP) production [63].

Anaerobic respiration through glycolysis results in extracellular accumulation of tumour-derived

lactate, impairing the ability of intratumoural T cells to perform glycolysis within hypoxic

microenvironments [64]. Thus, tumour hypoxia can impair TIL activity. Moreover, lactate can

induce angiogenesis and promote tumour cell migration [65]. Correspondingly, the expression of

hypoxia-associated factors is associated with decreased overall survival and chemoresistance in

HGSC [66].

1.4 Emerging approaches to study tumour heterogeneity and

the microenvironment

1.4.1 Phylogenetic approaches for reconstructing tumour evolution

Genomic heterogeneity in cancers can be assayed with bulk or single cell sequencing. Bulk

genomic sequencing generates sequencing reads from DNA derived from thousands to billions of

cells that can be mapped onto a reference genome to identify germline and somatic variants

(Figure 1.5) [67]. Currently, the most widely-used methods for bulk DNA sequencing are shotgun

sequencing technologies, which generate millions of overlapping reads, providing a coarse view

of genomic heterogeneity through analysis of the sequencing depth and allelic fraction of each

variant (Figure 1.5) [67]. Recently developed single cell sequencing technologies utilize cellular

barcodes that allow each read to be mapped back to its source cell so constituent genotypes

of mixed cellular populations can be directly profiled [68]. However, these technologies were

not available widely or at scale until recently. Furthermore, key tradeoffs between sequencing

depth for variant calling and coverage uniformity for copy number profiling in single cell whole-

genome sequencing, discussed in Section 1.4.3.1, confound complete reconstruction of cell-level

genotypes. Meanwhile, bulk whole-genome sequencing, which yields aggregate measurements of

variant abundance for all sampled cells, has been successfully employed to characterize tumour

evolution and profile driver mutations in many cancer types [1, 27, 29, 69, 70]. Evaluating

genetic heterogeneity from bulk sequencing data demands statistical methods that can robustly
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deconvolute clonal genotypes, abundances, and phylogenetic relationships in the presence of

contaminating normal cells and aneuploidy.

Figure 1.5: Whole-genome sequencing of heterogeneous cellular populations generates allelic read
counts which are proportional to mutational prevalence (accounting for copy number and cellularity).
Mutational prevalence values can be deconvolved, e.g. with PyClone [71], to yield clonal genotypes and
prevalences. Used with permission from https://www.nejm.org/doi/full/10.1056/NEJMra1204892..
Reproduced with permission from [72], Copyright Massachusetts Medical Society.

Somatic variant calling from whole-genome sequencing data yields single-nucleotide variants

(SNVs), short insertions and deletions (indels), copy number profiles (CNVs), and structural

variant calls (SVs). In the majority of the discussion below, I focus on SNVs as these are

typically the most common class of somatic variants. For each SNV, some reads map to the

alternative (somatically mutated) allele, while the remainder map to the germline allele. The

fraction of reads mapped to the alternative allele (henceforth referred to as the variant allele

fraction, or VAF) can be used to compute the total cellular prevalence of clones harbouring the

variant after accounting for the fraction of contaminating normal cells and allelic copy number
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(Figure 1.5). Well-established methods such as PyClone [71] and SciClone [73] exploit allelic

read counts and copy number profiles with Bayesian mixture models to identify mutational

clusters: groups of SNVs present at similar cellular prevalence from shared clonal membership.

However, clones present at similar proportions within a tumour can confound these models, due

to significant overlap between clone-specific SNV clusters [71]. Data for multiple samples with

shared clonal populations – for instance, from multiple metastatic sites within a patient or from

different timepoints – provides greater resolution for resolving these scenarios [29, 71].

In order to construct a clonal phylogeny from SNV clusters, cluster acquisition events must

be temporally ordered. Two computational models that tackle this problem are CITUP [74]

and LiCHEE [75]. Fundamentally, these methods rely on a set of common assumptions: (1) the

total cellular prevalence of SNV clusters from distinct lineages cannot exceed the prevalence of

their most recent common ancestor (pigeonhole principle), (2) each SNV is acquired only once

(infinite sites assumption) and cannot be lost, and (3) descendant SNV clusters must have lower

cellular prevalence than their immediate ancestors. Other tools, such as PhyloWGS [76], perform

mutation clustering and phylogeny inference simultaneously by leveraging distributions of trees

to describe clonal mixing proportions. Intratumoural heterogeneity can be quantified following

clonal decomposition. Heterogeneity can be expressed in terms of the relative proportions

of clonal populations (mixture entropy) and in terms of the genotypic divergence between

co-existing clones (phenotypic divergence) [29].

Each of the computational methods for mutation cluster inference and phylogeny reconstruc-

tion described above relies on key assumptions to reduce the search space of valid solutions.

However, these assumptions may be invalid under certain realistic regimes. SciClone ignores

non-diploid and copy number neutral loss-of-heterozygosity (LOH) regions of the genome [73],

rendering it unsuitable for highly aneuploid cancer types such as HGSC. While PyClone uses

information from copy number-altered regions, it does not allow for multiple variant clonal

populations with different copy number profiles at any given locus [71]. Variants falling in regions

of subclonal (non-integer) copy number may violate this assumption. Moreover, a small number

of loci likely violate the infinite sites assumption imposed by phylogeny inference methods.

Single cell sequencing, described in Section 1.4.3, can help resolve clonal substructure in these

regimes. For instance, a recent method called ddClone [77] jointly leverages bulk and single cell

variant information to infer clonal subpopulation abundances based on genotypes informed by

single cell sequencing.
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1.4.2 T and B cell receptor sequencing

Lymphocyte differentiation from common lymphoid progenitors in the bone marrow proceeds

through a ordered series of events marked by the acquisition of certain cell surface proteins (e.g.

CD3, CD4, CD8, CD19, CD20) and antigen-specific receptor molecules [78, 79]. The eventual

antigenic specificity of each lymphocyte is determined by the structure of its antigen-specific

receptor – the T cell receptor (TCR) or B cell receptor (BCR) in T or B cells, respectively

(Figure 1.6) [80]. To contend with the enormous space of potential antigens, a diverse repertoire

of T and B cell receptor sequences are generated by somatic rearrangement of constituent germline

variable (V), diversity (D), and joining (J) gene segments (Figure 1.6).
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BCR TCR

DNA: V(D)J recombination

Figure 1.6: Top: Structure of a membrane-bound B cell receptor (BCR) and an α:β T cell receptor
(TCR). The outer portions of the BCR/TCR, primarily composed of variable (V) chain sequence,
are directly involved in epitope binding. Bottom: Depiction of the combinatorial diversity generated
from V(D)J recombination and somatic hypermutation (for BCRs). Used with permission from
https://www.cell.com/trends/immunology/fulltext/S1471-4906(14)00155-0.

In germline DNA, multiple V, D, and J variants are present (Figure 1.6). During somatic

VDJ rearrangement, a D gene variant is first joined to a J gene, followed by V gene addition to

the resulting D-J fragment. This process is faciltated by V(D)J recombinase, a collection of

enzymes including RAG1, RAG2, TdT, and Artemis that bind to recombination signal sequences

flanking V, D, and J genes [80]. For some TCR/BCR subunits, recombination occurs directly

between V and J genes without the D segment. In α:β T cells – the dominant subpopulation

of T cells – the TCR is composed of one VJ α subunit and one VDJ β subunit [80]. Similarly,
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BCRs are composed of heavy (VDJ) and light (VJ) chains. Thus, the combinatorial space of V,

D, and J germline genes forms the basis for T and B cell receptor diversity. Additional sequence

diversity arises from terminal deletion and insertion events that occur at the ends of V, D, and

J sequences during recombination (Figure 1.6) [80]. These junctional sequences, together with

the end of the V and beginning of the J segments (and in TCR-β/BCR-heavy chains, the entire

D gene) comprise the hypervariable portion of the TCR/BCR referred to as the CDR3 [80]. In

B cells, somatic hypermutation introduces additional variants, primarily SNVs, concentrated in

the CDR3 region (Figure 1.6) [81]. In total, the estimated sequence diversity of TCRs and

BCRs generated through V(D)J recombination exceeds 1015 [82].

Due to the immense sequence diversity created through V(D)J recombination, the probability

of two clonally unrelated T or B cells sharing the same receptor sequence is highly unlikely.

Thus, TCR/BCR sequencing enables identification and quantification of clonally related families

of T and B cells [83]. Expanded clonal families are thought to correspond to T and B cells

that have been stimulated by antigen to proliferate. TCR/BCR repertoire profiling can be

performed using either genomic DNA or RNA templates as starting material [83, 84]. Genomic

DNA-based protocols enable direct quantification of lymphocyte abundance, as each T/B cell

only produces one productive TCR/BCR species. However, genomic DNA protocols require V-

and J-gene-specific primers that can result in PCR bias [84], and are prone to off-target priming

of non-rearranged VDJ genes [85]. RNA-based protocols enrich for and amplify TCR/BCR-

derived RNA or cDNA using sequence-specific primers to V and/or C genes [84]. Clone-specific

read counts derived from RNA-based TCR/BCR sequencing roughly correspond to clonotype

abundance, but are affected by variability in TCR/BCR expression levels [85]. Nevertheless,

RNA-based methods generally capture more receptor sequence diversity than DNA-based

protocols. Furthermore, RNA-based methods can utilize 5’ rapid amplification of cDNA ends

(RACE) PCR from constant region sequences, minimizing primer bias [84].

Following data generation, the readouts of TCR/BCR sequencing are processed by TCR/BCR

clonotype calling methods to reconstruct the T/B cell clonotype repertoire. Several pipelines

have been developed for TCR clonotype calling, including MiXCR [86], LymAnalyzer [87], and

IMSEQ [88]. These methods rely on a similar framework: (1) initial alignment of input sequence

reads to germline V, D, and J segments, (2) assignment of mapped sequence reads into clones

according to sequence identity, usually by the CDR3 region, and (3) correction of sequence

errors by merging clones with high sequence similarity. BCR clonotype calling can be similarly

performed, but somatic hypermutation complicates clone assignment as BCR clonotypes from

the same clonal family may harbour CDR3 sequences with multiple nucleotide mismatches.

Thus, relaxing the similarity threshold for clonal merging may be more appropriate for calling
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BCR clonotypes [86]. Alternatively, a recently developed approach for BCR repertoire inference

uses Hidden Markov Models to describe the generative process of V(D)J recombination and

somatic hypermutation [89, 90]. However, this approach is currently slow for large datasets

(execution time of hours for datasets with > 105 reads).

Most TCR/BCR sequencing methods target the TCRβ and BCR-heavy chains, as these

contain D genes and thus have greater diversity than TCRα and BCR-light chains. However,

T cells with the same TCRβ chain can harbour different TCRα chains. A recently developed

assay from Adaptive Biotechnologies, pairSEQ, allows for paired sequencing of TCRα and β

chains from the same individual cells [91]. Single cell TCR/BCR sequencing also permits direct

assessment of α:β pairing.

1.4.3 Single cell methods

1.4.3.1 Single cell DNA sequencing

Single cell DNA sequencing aims to bring the readouts of bulk genome sequencing – SNVs,

CNVs, and SVs – to the cellular level. In the context of cancer genomics, single cell DNA

sequencing offers distinct advantages over bulk sequencing in identifying rare clonal populations

in heterogeneous tumours and resolving phylogenetically divergent clonal mixtures to understand

the mechanistic bases of tumour progression (Figure 1.7). Analysis of single cell DNA sequencing

data has provided insights into patterns of intratumoural genomic heterogeneity in patient-derived

xenograft models [29, 92], spatial invasion of breast cancer clones [93], and chemoresistance in

triple-negative breast cancer [94].
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Figure 1.7: a) Depiction of single cell WGS library preparation by DLP. Single cells are isolated
in individual wells, and lysed. The resulting DNA is tagmented prior to amplification to allow for
computational identifiation of PCR duplicates and thus accurate recovery of copy number variants.
b) Single cells can be clustered into clones with similar copy number profiles; the resulting clonal
consensus copy number profiles can be used to build a phylogenetic tree. Used with permission from
https://www.nature.com/articles/nmeth.4140/figures/introduction/1.

To date, no singular single cell DNA sequencing technology has been widely adopted across

cancer genomics. Generally, single cell DNA sequencing technologies aim to optimize coverage

depth, breadth, uniformity, and accuracy to faithfully recapitulate single cell genotypes. However,

virtually all single cell DNA sequencing technologies exhibit key tradeoffs in one or more of

these areas. Most single cell DNA sequencing workflows can be divided into 3 steps: (1) cell

isolation, (2) DNA amplification, and (3) amplicon sequencing and interpretation (Figure 1.7)

[95]. Differences in how DNA amplification is performed primarily underlie the key tradeoffs

associated with single cell DNA sequencing technologies. Isothermal amplification methods

such as multiple displacement amplification (MDA) are highly sensitive and generate high

coverage depth, allowing for detailed interrogation of SNVs and indels at the cost of coverage

uniformity [95]. Consequently, isothermal methods are unsuitable for CNV assessment. On

the other hand, degenerate oligonucleotide primed PCR (DOP-PCR) employs thermocycling

to recover amplification products with lower coverage bias but inferior depth [96]. Further

improvements in coverage uniformity were provided by direct library preparation (DLP), a

nanolitre-volume protocol carried out in a microfluidic device requiring no pre-amplification,

designed for single cell WGS (Figure 1.7) [97]. DLP has been successfully employed to recover

whole genome copy number profiles of cell lines and patient-derived xenograft samples [98].

“Pseudobulk” aggregation of single cell readouts from DLP faithfully recapitulates bulk whole
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genome sequencing SNV profiles at similar coverage depth [97]. DLP can distinguish clonal

populations of cancer cells defined by distinct copy number profiles, which can be leveraged to

reconstruct pseudobulk SNV, CNV, and SV profiles at the clone level (Figure 1.7). A recently

developed commercial assay from 10x Genomics also recovers whole genome CNV profiles at the

single cell level [99], but the performance of this method has yet to be rigorously validated.

Single cell DNA sequencing can also be targeted to particular regions of the genome through

target-specific amplification or capture, enabling superior coverage depth and breadth in targeted

regions at the cost of uniformity [95]. This enables long-range variant phasing, which can be

employed to validate clonal genotypes proposed by statistical deconvolution of bulk genomes

[77, 92].

1.4.3.2 Single cell transcriptomics

Transcriptomics provides measurements of cellular phenotype through quantification of relative

RNA abundance. Contemporary bulk transcriptome technologies such as microarrays and

RNA sequencing (RNA-seq) have enabled quantitation of gene expression in tumour samples,

establishing prognostically relevant transcriptomic subtypes and microenvironmental properties

of many cancers [100–103]. However, the aggregate measurements provided by bulk transcrip-

tomics are affected by cell type composition, making direct interrogation of malignant, immune,

and stromal phenotypes difficult (Figure 1.8). Single cell RNA-sequencing generates whole

transcriptomes at the single cell level, enabling direct assessment of individual cellular pheno-

types, tissue composition, gene regulation, and cell state evolution throughout development and

differentiation (Figure 1.8).
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Figure 1.8: When applied to heterogeneous cellular populations, single cell RNA-sequencing can
simultaneously recover single cell transcriptomes and cell type proportions in a nearly unbiased
manner. In contrast, bulk RNA-seq recovers average expression profiles. Deconvolution methods can
recover cell type proportions, but these usually require prior information on cell type expression
profiles [104]. Image provided by 10x Genomics from https://community.10xgenomics.com/t5/10x-
Blog/Single-Cell-RNA-Seq-An-Introductory-Overview-and-Tools-for/ba-p/547.

Over the past decade, single cell mRNA-seq technologies have matured from digital tran-

scriptomic assessment of a single cell to droplet-based technologies capable of profiling thousands

of cells per run [105]. Most single cell RNA-seq protocols can be divided into 4 main steps: (1)

initial sample preparation, (2) single cell capture, (3) nucleic acid extraction and amplification,

and (4) sequencing of amplified products; primarily differing from one another in (2) and (3).

Fluorescence-activated cell sorting (FACS), microdroplet and microfluidic technologies enable

high-throughput capture of hundreds to millions of single cells, but require dissociated tissue

samples as input [105]. The enzymatic treatments used in tissue dissociation can introduce

phenotypic changes marked by upregulation of immediate early genes (IEGs) such as FOS

and JUN [106, 107]. Laser-capture microdissection (LCM) and micropipetting enable single

cell capture from intact tissue specimens, but require manual isolation of single cells [105]. A

recently developed method, SPLiT-seq, uses combinatorial barcoding to bypass cell capture

altogether [108]. Following single cell capture and cell lysis, mRNA can be amplified by poly-T

priming and second strand synthesis or 5’ template switching synthesis. Template switching

amplification, employed in the SmartSeq and STRT-Seq protocols, enables full-length transcript

coverage with reduced bias while other methods suffer from 3’ bias due to incomplete reverse

transcription [109]. Recently, 10x Genomics has released a droplet-based commercial platform
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for single cell RNA-seq that quantifies the abundance of 3’ transcript fragments for thousands

of cells per sample [110].

Imperfections in cell capture, reverse transcription, and amplification present unique technical

challenges for single cell RNA-seq data analysis. During cell capture, multiple or dead cells may

be collected in place of a single viable cell [105]. Cell lysis introduces ambient RNA that can

contaminate libraries generated from live cells [110]. Due to Poisson sampling, many transcript

species may not be reverse transcribed prior to amplification, leading to transcript dropout

unremedied by increasing sequencing depth. Amplification bias can also lead to dropout for

similar reasons [105]. Moreover, single cell RNA-seq data generated from different centers,

reagent pools, or reaction chips is not directly comparable due to sizeable batch effects [111].

These batch effects can overwhelm or obscure subtle phenotypic differences between similar cell

types or states.

As such, proper quality control is a critical step in single cell RNA-seq analysis. Ruptured

cells are first removed by identifying libraries enriched for mitochondrial transcripts, indicating

loss of cytoplasmic transcripts due to increased cell membrane permeability [112]. Doublets can

be identified experimentally by imaging in plate- or well-based protocols or cell hashing with

barcoded antibodies [113], and computationally by expression of mutually exclusive cell type

markers. A recently developed tool, SoupX, removes signal from ambient RNA [114]. Some

models for single cell RNA-seq data employ negative binomial distributions with zero-inflation

to model transcript counts subject to dropout [115]. Alternatively, imputation approaches such

as MAGIC attempt to correct for dropout by using information from similar cells [116]. Many

different batch correction methods have been employed in single cell RNA-seq analysis. Batch

effect correction by linear regression [117] can improve concordance between datasets generated

from similar input material across different centers, but can also introduce biases when working

with samples with different cellular composition. In these scenarios, more sophisticated batch

effect correction methods that adjust transcript expression based on shared cellular populations

across batches can be employed [118–120].

The readouts of single cell RNA-seq can be used to understand tissue composition, develop-

mental trajectories, and gene networks. Single cell RNA-sequencing allows for virtually unbiased

assessment of cell types by dimensionality reduction and subsequent unsupervised clustering.

This approach has been employed in various tissue types and organisms to quantify known and

novel cell types [110, 121–123]. In the cancer context, these methods have been used to profile the

phenotypic subsets of immune and stromal cells in the microenvironment and their relationships

with patient survival [124–126]. Algorithms that model continuous transitions between cell

states – pseudotime algorithms [127–130] – have been developed to delineate phenotypic changes
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that occur during cell differentiation from stem cells to terminally differentiated cells [131]. The

wealth of individual measurements provided by contemporary single cell RNA-seq methods

has enabled regulatory network reconstruction at unprecedented scale [132]. The networks

identified by these algorithms could be feasibly used to improve orthogonally collected single cell

RNA-seq data through imputation [133]. In summary, single cell RNA-seq enables simultaneous

profiling of both cancer cell and microenvironment phenotypes to study cancer-microenvironment

interplay.

1.5 Problem statement

Despite extensive effort being made to identify new therapeutic targets for HGSC, long-term

outcomes have remained bleak for many patients. Crucially, most patients present with advanced

stage disease characterized by within- and between-site heterogeneity [27, 29]. This genomic

heterogeneity provides considerable substrate for selection to act on, and is thus thought to lead

to the development of resistance. However, the observation that tumour-infiltrating lymphocyte

abundance is associated with superior outcomes [36] hints at the tantalizing possibility that

intratumoural immune infiltration may be able to contend with genomic heterogeneity.

Apart from T cells, the microenvironmental properties of HGSC and their associations with

genomic and clinical features remain poorly understood. Initial efforts have been made to

understand the role of B cells and plasma cells in HGSC [38, 41], but their antigenic targets

and interacting partners in the HGSC microenvironment are unclear [42]. Even less is known

about non-immune cell types such as fibroblasts and endothelial cells. Transcriptome-based

subtyping of HGSC by independent groups identified 4 prognostically distinct subgroups largely

distinguished by immune and stromal markers [14, 101], implying that stromal cell types also

influence disease progression in HGSC.

In this thesis, I set out to investigate the evolutionary interplay between malignant and

non-malignant cells in HGSC. Many HGSC cases present with disseminated disease, providing an

incredible opportunity to study tumour evolution across distinct peritoneal microenvironments.

In Chapter 2, I describe the assembly of a collection of 148 tumours from 41 patients, the largest

multi-site HGSC cohort to date I am aware of (Figure 1.9). I co-ordinated an integrated team

of clinical and research personnel to identify and notify the team of potential HGSC cases for

collection on a weekly basis, and helped devise methods for single cell processing and data

curation from these samples. I outline the steps from clinical case identification to sample

processing that generated the experimental substrate used in the following chapters. In addition,

these samples will be used in future work involving drug testing of patient-derived xenograft
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models and single cell whole-genome sequencing. While patient-derived xenografts are poor

models for directly studying tumour-microenvironment interaction, they enable drug sensitivity

testing of clones from different microenvironmental contexts. In Chapter 3, I interrogate the

interface of lymphocytic and malignant evolutionary dynamics in HGSC, described in a Cell

publication (Figure 1.9) [1]. I was responsible for the bulk of computational work described in

this chapter, including most of the integrative analysis, clonal inference, human leukocyte antigen

loss-of-heterozygosity analysis, gene expression, TCR/BCR-seq analysis, and large portions of

the histologic image analysis. The last section of this thesis extends the work of Chapter 3 to

other non-malignant cell types using single cell RNA-sequencing (Figure 1.9). I describe a

probabilistic method for identifying known cell types from single cell RNA-seq data in Chapter 4,

demonstrating its utility on simulated data. Finally, I apply this approach to single cell RNA-seq

data from spatial samplings collected in Chapter 2 to comprehensively characterize the HGSC

microenvironment. I led the work desribed in this chapter, helping formulate the model and

conduct most of the analysis on simulated and real data.

Chapter 2 
- Accrual of (multi-site)

HGSC cases 

Chapter 3 
- Analysis of the evolutionary

interfaces between the immune

microenvironment and cancer

clones 

Fresh tissue samples
Patient-derived

xenografts

Frozen and

preserved tissue

samples

Immune profiling
Bulk whole-genome

sequencing

Chapter 4 
- Profiling of immune and non-

immune cell types in the HGSC

microenvironment at single cell

resolution 

Future work 

- Mechanisms of drug resistance

related to microenvironmental

properties 

Single cell RNA-seq Single cell WGS

Figure 1.9: Outline of relationships between thesis chapters. White boxes (single cell WGS and
future work) correspond to elements that were not performed as part of this thesis.
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Chapter 2

Collection and processing of

multi-site HGSC samples for

high-throughput sequencing, PDX

creation, and single cell experiments

2.1 Introduction

The high prevalence of multi-site disease and well-described site-to-site genomic, transcriptomic,

and microenvironmental variation in HGSC necessitates study of multiple tumour foci from

the same patient to understand disease pathogenesis. However, only a handful of groups have

attempted to conduct multi-site studies of HGSC, and these studies have been restricted to small

cohort sizes [27–29]. These initial studies have exemplified the degree of inter-site heterogeneity in

HGSC and raised questions on how this heterogeneity affects prognostically relevant associations

between genomic features and the tumour microenvironment [29]. Systematic collection of

multi-site HGSC cases at scale will be required to decipher the evolutionary mechanisms by

which HGSC tumours develop treatment resistance and thwart immunologic surveillance in vivo.

Patient-derived xenograft (PDX) models are laboratory mice transplanted, usually subcuta-

neously or subcapsularly, with human tumour cells. Under the assumption that these models

faithfully recapitulate the phenotypic properties of their source tumours, PDXs serve as malleable

systems for studying tumour evolution and drug response. Most PDXs are constructed from

immunodeficient mice to prevent transplant rejection, but newer methods enable establishment

of ‘humanized’ PDX models that contain human-like immune systems. Thus far, PDXs that

recapitulate genomic properties of their source tumours have been established for several cancer

types including ovarian cancer [134], breast cancer [135], and B cell lymphomas [136].

Despite extensive profiling of clonal heterogeneity in HGSC [27–29], the genomic and
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transcriptomic properties of clones associated with treatment resistance remain unknown.

Identifying the hallmarks of clones associated with treatment resistance and dissemination may

provide critical insights into predicting response and personalizing therapeutic regimens for

HGSC patients. One of the aims of this chapter will be to build PDXs for each tumour in a

cohort of multi-site HGSC patients in order to study tumour evolution in response to treatment

pressure. These PDXs will serve as an ideal substrate for interrogating the relative fitness of

clonal genotypes and the reproducibility of clonal dynamics between clones derived from different

tumour microenvironments in response to external selection pressure.

In order to supplement the tumour cell-focused view of tumour evolution provided by

PDX modeling, another aim of this chapter is to create experimental substrates and methods

for profiling the tumour microenvironment of HGSC. To date, most studies of the HGSC

microenvironment utilize histologic image analysis for cell type quantification or bulk gene

expression profiling for phenotypic analysis [14, 36, 38, 41, 101]. However, routine histologic

image analysis and immunohistochemistry can only capture a limited number of cell types, and

deconvolving cell type proportions and transcriptomes from bulk gene expression profiles is

difficult. Single cell RNA sequencing, with technologies such as SMART-Seq [109], Drop-Seq

[121], and 10x Chromium [110], enables simultaneous capture of cell type abundances and

transcriptomes, but its use for studying solid tumours, especially ovarian cancers, is limited.

Most single cell RNA-seq experiments thus far have utilized material from peripheral blood

or mouse models, which yield high quality data due to the minimal extent of manipulation

required to obtain viable single cell suspensions. In the context of profiling gross HGSC tissue

specimens, methods for preparing single cell suspensions and libraries must be optimized to

minimize technical effects on microenvironmental composition and phenotypes [106, 107].

With the goal of profiling the pre-treatment microenvironment and clonal dynamics of HGSC

in response to treatment, we systematically collected a cohort of multi-site HGSC cases. In this

chapter, I outline the process of sample accrual, from case identification to sample processing and

PDX construction, that served as the basis for the work described in Chapter 3 and Chapter 4.

2.2 Materials and Methods

2.2.1 Summary of accrual process

Surgeons and senior surgical residents identified potential HGSC cases at local hospitals, including

Vancouver General Hospital (VGH) and the University of British Columbia (UBC) Hospital.

Consents and peripheral blood were obtained for each patient prior to surgery, and cases were
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prioritized if possible as first or second on surgical slates.

Surgeons sent debulking specimens for initial processing by hospital research assistants and

medical technologists. Following initial pathologic assessment to confirm diagnosis of HGSC,

specimens were transferred to the BC Cancer Research Center (BCCRC) for further laboratory

work involving preparation and preservation of material for bulk sequencing, PDX establishment,

and single cell RNA sequencing. Final pathologic assessment was performed by a trained

pathologist at VGH and non-HGSC cases were retroactively removed from the study.

The overall accrual pipeline is shown in Figure 2.1. Each of these steps are described

further in the sections below.
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Figure 2.1: Clinical and research pipelines for processing high-grade serous ovarian cancer cases.
Steps in red are executed at the hospital (either Vancouver General Hospital or the University of
British Columbia Hospital) by clinical personnel; steps in red are carried out at BC Cancer by
research personnel.
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2.2.2 Patient cohort

Pre-operatively, patients were screened based on the following criteria: (1) clinical suspicion

of HGSC based on history, imaging and blood work, (2) no prior treatment, i.e. chemo- or

radiotherapy, and (3) patient consent. All cases – except for those dedicated for single cell

RNA-seq pilot experiments – were additionally required to have at least 2 tumour foci from

anatomically distinct masses or distal regions of a single mass that could be collected. Recurrence

specimens were obtained from patients that presented for a subsequent operation related to

their disease.

2.2.3 Collection of surgical specimens and peripheral blood

Patient consent was obtained prior to specimen collection and banking and documented at

VGH or UBC Hospital Laboratory (Research Ethics Board numbers H08-01411 and H18-01090).

Specimens of consented patients were placed into cold media and brought to the clinical

laboratory by the messenger porter. Following this, each specimen was assigned a unique

research identifier and processed as per VGH/UBC Anatomical Pathology specimen handling

procedures (Figure 2.1).

Each case was initially assessed to determine whether or not the disease was HGSC and

if sufficient material was available for research purposes. Specimens for cases where sufficient

material was available from multiple tumour foci (or a single tumour focus for single cell RNA-seq

experiments) were considered eligible. For cases with multiple sites, each site was sent out

individually upon collection to minimize delay to sample processing.

Peripheral blood was separately collected in purple/pink top (plasma and buffy coat) and

red top (serum) tubes (Figure 2.1). Blood components were spun down and transferred into

labelled cryovials, snap frozen in liquid nitrogen and stored in the -80◦C freezer.

2.2.4 Sample preparation

Each specimen was assigned a unique anonymous research identifier linked to a case identifier

(Section 2.2.12). Specimens were placed in a Petri dish and measured. One millilitre cryovials

corresponding to each aliquot type to be created (formalin, flash frozen, transplant, viable

frozen, and remainder) were prepared (Figure 2.1). A 1mm piece was first cut and placed in

the formalin cryovial containing 1mL formalin. The remaining pieces were chopped finely on a

cell culture dish and used to create the remaining aliquots.

A small portion of the finely chopped tissue was aliquoted into a stomacher bag containing

1mL of media, while the remaining tissue was set on ice for single cell dissociation (and single
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cell RNA-seq). The stomacher machine was run for 60 seconds at normal settings to further

dissociate the sample. One hundred microlitres of the supernatant was added to the transplant

vial, with the rest aliquoted to the viable frozen vial. The remaining chunks of tissue in the

stomacher bag were added to the remainder vial. Following this, the transplant and viable frozen

vials were spun down and 1mL of freezing media was added to each vial. Transplant, viable

frozen, and remainder vials were placed in a Mr. Frosty freezing container (Thermo Scientific)

to be gradually frozen overnight, and transferred to the -80◦C freezer the next day. Flash frozen

vials were placed into a cryobox and stored directly in the -80◦C freezer. Formalin vials were

sent for embedding and hematoxylin and eosin (H&E) staining.

2.2.5 Patient-derived xenograft creation

For each specimen, the aliquot set aside for xenografting was used for PDX construction. When

possible, PDXs were created from freshly processed aliquots; otherwise, aliquots set aside for

xenografting were viably frozen for transplantation at a later date.

Each transplantation vial was divided into 4 equally-sized aliquots of approximately 250

microlitres each in Eppendorf tubes. Aliquots were spun down for 5 minutes at 1200rpm. Pellets

were resuspended in 200 microlitres of 50% Matrigel and kept on ice until transplantation.

Each aliquot was subcutaneously injected into a NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (Nod-

Scid-gamma, NSG) or NOD.Cg-Rag1tm1MomIl2rgtm1Wjl/SzJ (Nod-Rag-gamma, NRG) mouse

aged 5-12 weeks with a 21-gauge needle. Mice were placed in cages (up to 4 mice per cage,

identified by ear punching) and monitored weekly initially and more frequently as humane or

experimental endpoints were reached. Following euthanasia, mice were biopsied and tumours

were collected and frozen.

2.2.6 Whole-genome sequencing of patient tumours

DNA was extracted from flash frozen tumour sample aliquots using the Qiagen Blood and Tissue

Extraction Kit. DNA samples were submitted for sequencing at the BC Genome Sciences Centre

(BCGSC). For all tumor and corresponding normal (blood) samples, sequencing was performed

using Illumina HiSeq2500 whole genome shotgun v4 chemistry with paired-end 125bp reads.

Samples were sequenced to an average of 96X coverage [1].

2.2.7 Single cell RNA-seq pilot project

For all suspected HGSC cases (single and multi-site), a portion of each specimen was set aside

for single cell suspension creation and subsequent library preparation with the 10x Genomics
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3’ or 5’ gene expression kits [110]. Various sample dissociation times, enzyme mixture, and

viability assessment methods were piloted (Table 2.2). The workflow is shown in Figure 2.2.
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Figure 2.2: Single cell RNA-sequencing workflow from fresh tissue samples to analysis.
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2.2.8 Single cell dissociation

For each specimen, the portion set aside for single cell RNA-seq was used to prepare a single

cell suspension.

2.2.8.1 37C protease

After weighing in a cell culture dish, tissue was transferred into a gentleMACS C tube and

pipetted up and down using a wide bore pipette tip. GentleMACS programs h tumour 01,

h tumour 02, and h tumour 03 were run, with samples incubated for 30 minutes at 37◦C under

continuous rotation using the MACSmix Tube Rotator between programs. Miltenyi Biotec

enzymes H (200µl), R (100µl) and A (25µl) were used for dissociation. Following dissociation,

cells were assessed for viability using the cell counter (5µl cells + 5µl trypan blue) under a

microscope. Cells were then pelleted by centrifugation for 5 minutes at 4◦C, resuspended in

freezing media, placed in Mr. Frosty overnight, and frozen at -80◦C.

2.2.8.2 6C protease

After weighing in a cell culture dish, tissue was transferred into a gentleMACS C tube, and one

millilitre of 10 mg/mL Bacillus lichenformis protease (Creative Enzymes NATE-0633; henceforth

referred to as 6C protease) was added to each 25 mg of tissue. The resulting solution was

incubated and mechanically disrupted at 6◦C. Depending on the sample, two different protocols

were used for mechanical disruption. The first protocol involved pipetting up and down for 15

seconds every minute for a total of 15 minutes. The second protocol utilized the Miltenyi Biotec

MACS Separator (programs h tumour 01, h tumour 02, h tumour 03) with the 6C protease

for 30 minutes or 1 hour. Dissociation specifications for each sample are listed in Table 2.1.

Following dissociation, cells were assessed for viability using the cell counter (5µl cells + 5µl

trypan blue) under a microscope. Cells were then pelleted by centrifugation for 5 minutes at

4◦C, resuspended in freezing media, placed in Mr. Frosty overnight, and frozen at -80◦C.

Patient Sample Anatomic site Digestion 10x Method

62 VOA11019SA-37
RLQ site

metastasis
37C collagenase 4h 3’ GE

62 VOA11019SA-CD3
RLQ site

metastasis
37C collagenase 4h 3’ GE

62 VOA11019SA-CD45
RLQ site

metastasis
37C collagenase 4h 3’ GE
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62 VOA11019SA-6
RLQ site

metastasis
o/n 6C 3’ GE

63 VOA11095SA
Posterior Cul de

Sac
o/n 6C

63 VOA11095SB Splenic Stricture o/n 6C

63 VOA11095SC Left Ovary o/n 6C

63 VOA11095SD Epiploica Sigmoid o/n 6C

63 VOA11095SE Right Ovary o/n 6C

63 VOA11095SF Omentum o/n 6C

64 VOA11213SA Ovary MACS 37C 1h 5’ GE

64 VOA11213SB Omentum MACS 37C 1h 5’ GE

64 VOA11213SC Bowel MACS 37C 1h 5’ GE

64 VOA11213SC Bowel 37C collagenase 1h

65 VOA11083A Pelvic o/n 6C

65 VOA11083B Pelvic o/n 6C

65 VOA11083C Right Ovary o/n 6C

65 VOA11083D Omentum o/n 6C 3’ GE

65 VOA11083E Cecum o/n 6C

66 VOA11088A
Left Fallopian

Tube
o/n 6C

66 VOA11088B Omentum o/n 6C

67 VOA11220SA Right Ovary MACS 37C 30min 5’ GE

67 VOA11220SB Gastric Nodule MACS 37C 30min

67 VOA11220SC Omental Nodule MACS 37C 30min 5’ GE

67 VOA11220SD Rectal Sigmoid MACS 37C 30min 5’ GE

68 VOA11243SA Uterus Surface 6C 1hr

68 VOA11243SB Right Ovary 6C 1hr

68 VOA11243SC Right Tube 6C 1hr

68 VOA11243SD Left Ovary 6C 1hr

68 VOA11243SE Omentum 6C 1hr

68 VOA11243SF Pouch of Douglas 6C 1hr

68 VOA11243SA Uterus Surface 6C O/N
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68 VOA11243SB Right Ovary 6C O/N

68 VOA11243SC Right Tube 6C O/N

68 VOA11243SD Left Ovary 6C O/N

68 VOA11243SE Omentum 6C O/N

68 VOA11243SF Pouch of Douglas 6C O/N

69 VOA11265SA Omentum MACS 6C 1hr

69 VOA11265SB
Left fallopian

tube nodule
MACS 6C 1hr

70 VOA11267-6 Left adnexal mass MACS 6C 1hr 5’ and 3’ GE

70 VOA11267-37 Left adnexal mass MACS 37C 1hr 5’ and 3’ GE

71 VOA11294SA Left Ovary MACS 6C 1hr

71 VOA11294SA Left Ovary MACS 37C 1hr

71 VOA11294SB
Small Bowel

Tumour
MACS 6C 1hr

71 VOA11294SC Right Ovary MACS 6C 1hr

71 VOA11294SC Right Ovary MACS 37C 1hr

71 VOA11294SD
Left Ovarian

Tumour
MACS 6C 1hr

71 VOA11294SD
Left Ovarian

Tumour
MACS 37C 1hr

71 VOA11294SE
Surface Uterine

Tumour
MACS 6C 1hr

71 VOA11294SF Omentum MACS 6C 1hr

71 VOA11294SF Omentum MACS 37C 1hr

72 VOA11558SA Omentum MACS 6C 1hr

73 VOA11543SA Left Ovary MACS 6C 1hr 5’ GE

73 VOA11543SB Right Ovary MACS 6C 1hr 5’ GE

C2 VOA11229 Right Ovary MACS 6C 30mins

C2 VOA11229 Right Ovary MACS 6C 1 hour

E2 VOA11520SA Right Ovary MACS 6C 1hr

E2 VOA11520SA Right Ovary MACS 37C 1hr
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Table 2.1: Identifiers of samples used for 10x Chromium library preparation and/or sequencing.
The tissue dissociation protocols and types of 10x Chromium library preparation are listed for each
sample.

2.2.8.3 Post-dissociation wash

Enzymatically dissociated samples were thawed, spun down, and washed with 1mL PBS twice

to remove the dimethyl sulfoxide (DMSO) present in freezing media. Samples were then diluted

with cold HFN and washed with trypsin, dispase, and DNAse while gently pipetting up and

down. Cold ammonium chloride was added to bloody samples. Cells were assessed for viability

using the cell counter (5µl cells + 5µl trypan blue) under a microscope, and kept on ice.

2.2.9 Viability sorting and assessment

Viability sorting was performed for samples with <75% viability after post-dissociation wash,

with a target viability of ≥75% viability (Figure 2.2). Cells were spun down and the pellet

resuspended in 100µl of Miltenyi Dead Cell Removal MicroBeads and incubated at room

temperature for 15 minutes. Viable cell enrichment was performed using the positive selection

column type MS with a MACS Separator. Cells were then placed on ice for 10X Genomics

scRNAseq library preparation.

2.2.10 Single cell RNA-seq library preparation and quality control

Single cell RNA-seq libraries were prepared following the 10x Genomics protocols for 3’ or 5’

gene expression library construction [110]. The concentration and amount of cells and reagents

added corresponded to the protocol requirements for obtaining 3000 cells with data [137].

2.2.11 Sequencing of single cell RNA-seq libraries

Sequencing of 10x Genomics 3’ single cell RNA-seq or 5’ single cell RNA-seq libraries was

performed on an Illumina NextSeq 500 at high throughput with 75bp paired-end reads at the

UBC Biomedical Research Centre (sequencing the terminal 58bp of R2). The target sequencing

depth for each sample was 50,000 read pairs per cell, as recommended by 10x Genomics [137].

However, as fewer cells (than targeted during library preparation) were recovered for several

samples, the actual sequencing depth per cell varied from 50,000 to 1,000,000 read pairs/cell.
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2.2.12 Data curation

Each patient enrolled in the study was assigned a unique anonymous research identifier. Samples

from the same patient were assigned unique identifiers associated with a common patient

identifier. To preserve patient privacy, the corresponding confidential patient identifiers, patient

consents, and clinical data (survival status, treatment, age, name, etc.) were stored in a clinical

database inaccessible to research personnel.

A structured query language (SQL) database was used to store sample information (collection

date, anatomic site of collection, matched normal available) associated with each research

identifier. Additionally, PDX model information associated with each specimen (transplantation

date, transplantation site, mouse model type, PDX identifier, mouse date-of-birth, passage

number, euthanasia/termination date, necropsy findings, and tumour size) was stored in the

SQL database. Physical sample locations were tracked in an OpenSpecimen database.

2.3 Results

2.3.1 Accrual of 41 HGSC cases

Forty-eight ovarian cancer cases – 8 single-site and 40 multi-site – were accrued from May 2015

to September 2018 (Table 2.2). On confirmatory pathologic assessment, 41 were HGSC, 2 clear

cell ovarian cancer, 2 endometroid, 1 serous borderline, 1 carcinoma with sarcoma elements, and

1 Krukenberg (Table 2.2). In total, 148 HGSC samples have been collected from these cases

(Figure 2.3). Whole-genome sequencing has been performed on 56 samples from 14 of these

HGSC cases (Table 2.3). Library construction for single cell RNA-seq has been performed

on 43 samples from 17 HGSC cases; of these, 11 samples from 6 patients have been sequenced

(Table 2.1).

Patient Histotype # samples # transplanted

24 HGSC 1 1

25 HGSC 4 4

26 HGSC 1 1

28 HGSC 3 3

29 HGSC 7 6

30 HGSC 7 7

31 HGSC 9 9

32 HGSC 6 6
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37 HGSC 4 4

38 HGSC 3 3

41 HGSC 4 4

42 HGSC 5 5

43 HGSC 5 0

44 HGSC 4 4

45 HGSC 3 3

46 HGSC 4 4

47 HGSC 5 5

48 HGSC 4 3

49 HGSC 4 4

50 HGSC 4 4

51 HGSC 3 3

52 HGSC 4 4

53 HGSC 3 3

56 HGSC 1 0

57 HGSC 4 3

59 HGSC 2 2

60 HGSC 2 2

61 HGSC 1 0

62 HGSC 1 0

63 HGSC 6 6

64 HGSC 3 3

65 HGSC 5 0

66 HGSC 2 2

67 HGSC 4 4

68 HGSC 6 6

69 HGSC 2 2

70 HGSC 1 0

71 HGSC 6 6

72 HGSC 1 0

73 HGSC 2 0

74 HGSC 2 2
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B1 Serous borderline 4 4

C2 CCOC 1 0

CCOC1 CCOC 4 4

CS1 Carcinoma w/ sarcoma-like 4 4

E1 Endometroid 5 5

E2 Endometroid 2 2

K1 Krukenberg 2 0

Table 2.2: Patient identifiers, histotype as determined by final pathologic evaluation, and the
number of tumour samples collected per case. The number of tumour samples transplanted (to
create PDX models) is also shown.
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Figure 2.3: HGSC sample accrual since the beginning of the study (first collected sample).
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Patient Sample Anatomic site

25 VOA6428AX omentum site 1

25 VOA6428BX right ovary site 1

25 VOA6428CX right ovary site 2

25 VOA6428DX right ovary site 3

26 VOA6491X left ovary site 1

28 VOA7640CX left fallopian tube distal site 1

28 VOA7640AX omentum site 1

28 VOA7640BX left fallopian tube proximal site 1

29 VOA7648DX omentum site 1

29 VOA7648CX ascites site 1

29 VOA7648BX cul-de-sac site 1

29 VOA7648EX sigmoid colon site 1

29 VOA7648FX round ligament site 1

29 VOA7648AX diaphragm site 1

30 VOA7652EX omentum site 1

30 VOA7652GX left pelvic wall site 1

30 VOA7652DX right fallopian tube site 1

30 VOA7652BX left ovary site 1

30 VOA7652FX sigmoid site 1

30 VOA7652AX right ovary site 1

30 VOA7652CX left fallopian tube site 1

31 VOA7668EX ileal tumour site 1

31 VOA7668JX left fallopian site 1

31 VOA7668AX pelvic sidewall site 1

31 VOA7668BX right ovary site 1

31 VOA7668DX small bowel serosa site 1

31 VOA7668HX uterine surface site 1

31 VOA7668CX right fallopian tube site 1

31 VOA7668GX left ovary site 1

31 VOA7668FX anterior cul-de-sac site 1

32 VOA7685FX omentum site 1

32 VOA7685AX left ovary site 1

32 VOA7685EX right ovary site 1
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32 VOA7685DX omental nodule site 1

32 VOA7685BX left ovary site 2

32 VOA7685CX left ovary site 3

37 VOA8841ax right ovary site 1

37 VOA8841bx retrosigmoid serosa site 1

37 VOA8841cx omentum site 1

38 VOA9127ax right ovary site 1

38 VOA9127bx left ovary site 1

41 VOA9465ax cul de sac site 1

41 VOA9465bx uterine serosa site 1

41 VOA9465cx omentum site 1

41 VOA9465dx left fallopian tube site 1

43 VOA7255ax right ovary site 1

43 VOA7255bx left ovary site 1

43 VOA7255cx right fallopian tube site 1

43 VOA7255ex peritoneal nodule site 1

44 VOA9655ax right ovary site 1

44 VOA9655bx left ovary site 1

44 VOA9655cx left ovarian cyst site 1

46 VOA9921ax left ovary site 1

46 VOA9921bx omentum site 1

46 VOA9921cx left fallopian tube site 1

47 VOA9955cx right ovary site 1

Table 2.3: Sample and patient identifiers of HGSC samples used for whole genome sequencing.

2.3.2 Construction of patient-derived xenograft models

Thus far, 128 samples from 38 HGSC cases have been engrafted in PDXs (total of 275 PDXs,

see Table 2.4 for a full list and Figure 2.4 for established PDXs). Up to 4 models per passage

were created from each primary tumour. In total, 52 samples from 19 patients have grown

macroscopically visible tumours. Engraftment (growth/establishment) rates of HGSC tumours

at the model, sample, and patient level for NSG vs. NRG strains are shown in Table 2.5.

Engraftment rates for NRG mice were lower than those for NSG mice (Table 2.5). Engraftment

rates as a function of time since transplant are shown in Figure 2.5. Approximately 70% of

39



models that eventually engrafted had already established a mass by 300 days (Figure 2.5A).

Out of all models that were euthanized, approximately 50% had grown tumours after 100 days

since surgery (Figure 2.5B). The rates shown in Figure 2.5B appear to decrease over time

because the humane endpoint for most models that do not grow tends to occur later than for

those that do (Figure 2.6); models that do not grow are euthanized based on health/age, while

those that do are euthanized based on health/tumour size.

Patient Sample PDX ID Strain Grown

24 VOA5576 Y55761 NSG 0

24 VOA5576 Y55762 NSG 1

24 VOA5576 Y55763 NSG 1

24 VOA5576 Y55764 NSG 1

24 VOA5576 Y557631 NSG 1

24 VOA5576 Y557632 NSG 1

24 VOA5576 Y557633 NSG 0

24 VOA5576 Y557634 NSG 1

25 VOA6428A Y6428A1 NSG 1

25 VOA6428A Y6428A2 NSG 0

25 VOA6428A Y6428A3 NSG 1

25 VOA6428B Y6428B1 NSG 0

25 VOA6428B Y6428B2 NSG 0

25 VOA6428B Y6428B3 NSG 1

25 VOA6428C Y6428C1 NSG 1

25 VOA6428C Y6428C2 NSG 0

25 VOA6428C Y6428C3 NSG 1

25 VOA6428D Y6428D1 NSG 1

25 VOA6428D Y6428D2 NSG 0

25 VOA6428B Y6428B31 NSG 1

25 VOA6428B Y6428B32 NSG 1

25 VOA6428B Y6428B33 NSG 1

25 VOA6428B Y6428B34 NSG 1

25 VOA6428B Y6428B341 NSG 1

25 VOA6428B Y6428B342 NSG 0

25 VOA6428B Y6428B343 NSG 1

25 VOA6428B Y6428B344 NSG 1
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26 VOA6491 Y64911 NSG 1

26 VOA6491 Y64912 NSG 1

26 VOA6491 Y64913 NSG 1

26 VOA6491 Y64914 NSG 1

28 VOA7640A Y7640A1 NSG 1

28 VOA7640A Y7640A2 NSG 1

28 VOA7640B Y7640B1 NSG 0

28 VOA7640B Y7640B2 NSG 0

28 VOA7640C Y7640C1 NSG 1

28 VOA7640C Y7640C2 NSG 1

29 VOA7648A Y7648A1 NSG 1

29 VOA7648A Y7648A2 NSG 1

29 VOA7648D Y7648D1 NSG 1

29 VOA7648D Y7648D2 NSG 1

29 VOA7648B Y7648B1 NSG 1

29 VOA7648B Y7648B2 NSG 1

29 VOA7648E Y7648E1 NSG 1

29 VOA7648E Y7648E2 NSG 1

29 VOA7648C Y7648C1 NSG 1

29 VOA7648C Y7648C2 NSG 1

29 VOA7648F Y7648F1 NSG 1

29 VOA7648F Y7648F2 NSG 1

30 VOA7652A Y7652A1 NSG 1

30 VOA7652A Y7652A2 NSG 1

30 VOA7652B Y7652B1 NSG 1

30 VOA7652B Y7652B2 NSG 1

30 VOA7652C Y7652C1 NSG 0

30 VOA7652C Y7652C2 NSG 1

30 VOA7652D Y7652D1 NSG 0

30 VOA7652D Y7652D2 NSG 1

30 VOA7652E Y7652E1 NSG 0

30 VOA7652E Y7652E2 NSG 0

30 VOA7652F Y7652F1 NSG 0
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30 VOA7652F Y7652F2 NSG 0

30 VOA7652G Y7652G1 NSG 1

30 VOA7652G Y7652G2 NSG 0

31 VOA7668A Y7668A1 NSG 1

31 VOA7668A Y7668A2 NSG 1

31 VOA7668B Y7668B1 NSG 1

31 VOA7668B Y7668B2 NSG 1

31 VOA7668C Y7668C1 NSG 1

31 VOA7668C Y7668C2 NSG 1

31 VOA7668D Y7668D1 NSG 1

31 VOA7668D Y7668D2 NSG 1

31 VOA7668E Y7668E1 NSG 1

31 VOA7668E Y7668E2 NSG 1

31 VOA7668F Y7668F1 NSG 1

31 VOA7668F Y7668F2 NSG 1

31 VOA7668G Y7668G1 NSG 0

31 VOA7668G Y7668G2 NSG 0

31 VOA7668H Y7668H1 NSG 0

31 VOA7668H Y7668H2 NSG 1

31 VOA7668J Y7668J1 NSG 1

31 VOA7668J Y7668J2 NSG 1

32 VOA7685A Y7685A1 NSG 0

32 VOA7685A Y7685A2 NSG 0

32 VOA7685B Y7685B1 NSG 1

32 VOA7685B Y7685B2 NSG 1

32 VOA7685C Y7685C1 NSG 0

32 VOA7685C Y7685C2 NSG 0

32 VOA7685D Y7685D1 NSG 1

32 VOA7685D Y7685D2 NSG 1

32 VOA7685E Y7685E1 NSG 1

32 VOA7685E Y7685E2 NSG 1

32 VOA7685F Y7685F1 NSG 1

32 VOA7685F Y7685F2 NSG 1
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37 VOA8841A Y8841A1 NSG 1

37 VOA8841A Y8841A2 NSG 0

37 VOA8841B Y8841B1 NSG 0

37 VOA8841B Y8841B2 NSG 0

37 VOA8841C Y8841C1 NSG 1

37 VOA8841C Y8841C2 NSG 0

37 VOA8841D Y8841D1 NSG 0

37 VOA8841D Y8841D2 NSG 0

38 VOA9127A Y9127A1 NSG 0

38 VOA9127A Y9127A2 NSG 0

38 VOA9127B Y9127B1 NSG 0

38 VOA9127B Y9127B2 NSG 0

38 VOA9127C Y9127C1 NSG 0

38 VOA9127C Y9127C2 NSG 0

41 VOA9465A Y9465A1 NRG 0

41 VOA9465A Y9465A2 NRG 1

41 VOA9465B Y9465B1 NRG 0

41 VOA9465B Y9465B2 NRG 0

41 VOA9465C Y9465C1 NRG 1

41 VOA9465C Y9465C2 NRG 1

41 VOA9465D Y9465D1 NRG 0

41 VOA9465D Y9465D2 NRG 0

42 VOA10243SA Y10243SA1 NSG 1

42 VOA10243SA Y10243SA2 NSG 1

42 VOA10243SB Y10243SB1 NSG 1

42 VOA10243SB Y10243SB2 NSG 1

42 VOA10243SD Y10243SD1 NSG 1

42 VOA10243SD Y10243SD2 NSG 1

42 VOA10243SC Y10243SC1 NSG 0

42 VOA10243SC Y10243SC2 NSG 1

42 VOA10243SE Y10243SE1 NRG 1

42 VOA10243SE Y10243SE2 NRG 1

44 VOA9655A Y9655A1 NRG 0
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44 VOA9655A Y9655A2 NRG 0

44 VOA9655B Y9655B1 NRG 0

44 VOA9655B Y9655B2 NRG 0

44 VOA9655C Y9655C1 NSG 0

44 VOA9655C Y9655C2 NSG 0

44 VOA9655D Y9655D1 NSG 0

44 VOA9655D Y9655D2 NSG 0

45 VOA9907A Y9907A1 NSG 1

45 VOA9907A Y9907A2 NSG 1

45 VOA9907B Y9907B1 NSG 0

45 VOA9907B Y9907B2 NSG 1

45 VOA9907C Y9907C1 NSG 0

45 VOA9907C Y9907C2 NSG 0

46 VOA9921A Y9921A1 NSG 1

46 VOA9921A Y9921A2 NSG 1

46 VOA9921B Y9921B1 NSG 0

46 VOA9921B Y9921B2 NSG 1

46 VOA9921C Y9921C1 NSG 1

46 VOA9921C Y9921C2 NSG 1

46 VOA9921D Y9921D1 NSG 0

46 VOA9921D Y9921D2 NSG 0

47 VOA9955A Y9955A1 NSG 0

47 VOA9955A Y9955A2 NSG 0

47 VOA9955B Y9955B1 NSG 0

47 VOA9955B Y9955B2 NSG 0

47 VOA9955C Y9955C1 NSG 0

47 VOA9955C Y9955C2 NSG 0

47 VOA9955D Y9955D1 NSG 0

47 VOA9955D Y9955D2 NSG 0

47 VOA9955E Y9955E1 NSG 1

47 VOA9955E Y9955E2 NSG 0

48 VOA7294A Y7294A1 NSG 0

48 VOA7294A Y7294A2 NSG 0
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48 VOA7294B Y7294B1 NSG 0

48 VOA7294B Y7294B2 NSG 0

48 VOA7294C Y7294C1 NSG 0

48 VOA7294C Y7294C2 NSG 0

49 VOA9186A Y9186A1 NSG 0

49 VOA9186A Y9186A2 NSG 0

49 VOA9186B Y9186B1 NSG 0

49 VOA9186B Y9186B2 NSG 0

49 VOA9186C Y9186C1 NSG 1

49 VOA9186C Y9186C2 NSG 0

49 VOA9186D Y9186D1 NSG 0

49 VOA9186D Y9186D2 NSG 0

50 VOA9453a Y9453a1 NRG 1

50 VOA9453a Y9453a2 NRG 1

50 VOA9453b Y9453b1 NRG 0

50 VOA9453b Y9453b2 NRG 0

50 VOA9453c Y9453c1 NRG 0

50 VOA9453c Y9453c2 NRG 1

50 VOA9453d Y9453d1 NRG 0

50 VOA9453d Y9453d2 NRG 1

51 VOA10288SA Y10288SA1 NRG 0

51 VOA10288SA Y10288SA2 NRG 0

51 VOA10288SB Y10288SB1 NRG 1

51 VOA10288SB Y10288SB2 NRG 1

51 VOA10288SC Y10288SC1 NRG 0

51 VOA10288SC Y10288SC2 NRG 0

52 VOA10429SA Y10429SA1 NRG 0

52 VOA10429SA Y10429SA2 NRG 0

52 VOA10429SB Y10429SB1 NRG 0

52 VOA10429SB Y10429SB2 NRG 0

52 VOA10429SC Y10429SC1 NRG 0

52 VOA10429SC Y10429SC2 NRG 0

52 VOA10429SD Y10429SD1 NRG 0
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52 VOA10429SD Y10429SD2 NRG 0

53 VOA10471SA Y10471SA1 NRG 0

53 VOA10471SA Y10471SA2 NRG 0

53 VOA10471SB Y10471SB1 NRG 0

53 VOA10471SB Y10471SB2 NRG 0

53 VOA10471SC Y10471SC1 NRG 1

53 VOA10471SC Y10471SC2 NRG 1

57 VOA10863SB Y10863SB1 NRG 0

57 VOA10863SB Y10863SB2 NRG 0

57 VOA10863SC1 Y10863SC11 NRG 0

57 VOA10863SC1 Y10863SC12 NRG 0

57 VOA10863SC2 Y10863SC21 NRG 0

57 VOA10863SC2 Y10863SC22 NRG 0

59 VOA10439SA Y10439SA1 NRG 0

59 VOA10439SA Y10439SA2 NRG 0

59 VOA10439SB Y10439SB1 NRG 0

59 VOA10439SB Y10439SB2 NRG 0

60 VOA10497SA Y10497SA1 NRG 0

60 VOA10497SA Y10497SA2 NRG 0

60 VOA10497SB Y10497SB1 NRG 0

60 VOA10497SB Y10497SB2 NRG 0

63 VOA11095SA Y11095SA1 NSG 0

63 VOA11095SA Y11095SA2 NSG 0

63 VOA11095SB Y11095SB1 NSG 0

63 VOA11095SB Y11095SB2 NSG 0

63 VOA11095SC Y11095SC1 NSG 0

63 VOA11095SC Y11095SC2 NSG 0

63 VOA11095SD Y11095SD1 NSG 0

63 VOA11095SD Y11095SD2 NSG 0

63 VOA11095SE Y11095SE1 NRG 0

63 VOA11095SE Y11095SE2 NRG 0

63 VOA11095SF Y11095SF1 NRG 0

63 VOA11095SF Y11095SF2 NRG 0
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64 VOA11213SA Y11213SA1 NRG 0

64 VOA11213SA Y11213SA2 NRG 0

64 VOA11213SB Y11213SB1 NRG 0

64 VOA11213SB Y11213SB2 NRG 0

64 VOA11213SC Y11213SC1 NRG 0

64 VOA11213SC Y11213SC2 NRG 0

66 VOA11088A Y11088A1 NRG 0

66 VOA11088A Y11088A2 NRG 0

66 VOA11088B Y11088B1 NRG 0

66 VOA11088B Y11088B2 NRG 0

67 VOA11220SA Y11220SA1 NRG 0

67 VOA11220SA Y11220SA2 NRG 0

67 VOA11220SB Y11220SB1 NRG 0

67 VOA11220SB Y11220SB2 NRG 0

67 VOA11220SC Y11220SC1 NSG 0

67 VOA11220SC Y11220SC2 NSG 0

67 VOA11220SD Y11220SD1 NSG 0

67 VOA11220SD Y11220SD2 NSG 0

68 VOA11243SA Y11243SA1 NRG 0

68 VOA11243SA Y11243SA2 NRG 0

68 VOA11243SB Y11243SB1 NRG 0

68 VOA11243SB Y11243SB2 NRG 0

68 VOA11243SC Y11243SC1 NSG 0

68 VOA11243SC Y11243SC2 NSG 0

68 VOA11243SD Y11243SD1 NSG 0

68 VOA11243SD Y11243SD2 NSG 0

68 VOA11243SE Y11243SE1 NRG 0

68 VOA11243SE Y11243SE2 NRG 0

68 VOA11243SF Y11243SF1 NRG 0

68 VOA11243SF Y11243SF2 NRG 0

69 VOA11265SA Y11265SA1 NRG 0

69 VOA11265SA Y11265SA2 NRG 0

69 VOA11265SB Y11265SB1 NRG 0
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69 VOA11265SB Y11265SB2 NRG 0

71 VOA11294A Y11294A1 NRG 0

71 VOA11294A Y11294A2 NRG 0

71 VOA11294B Y11294B1 NRG 0

71 VOA11294B Y11294B2 NRG 0

71 VOA11294C Y11294C1 NRG 0

71 VOA11294C Y11294C2 NRG 0

71 VOA11294D Y11294D1 NRG 0

71 VOA11294D Y11294D2 NRG 0

71 VOA11294E Y11294E1 NRG 0

71 VOA11294E Y11294E2 NRG 0

71 VOA11294F Y11294F1 NRG 0

71 VOA11294F Y11294F2 NRG 0

74 VOA11258SA Y11258SA1 NRG 0

74 VOA11258SA Y11258SA2 NRG 0

74 VOA11258SB Y11258SB1 NRG 0

74 VOA11258SB Y11258SB2 NRG 0

B1 VOA7618A Y7618A1 NSG 0

B1 VOA7618A Y7618A2 NSG 0

B1 VOA7618B Y7618B1 NSG 0

B1 VOA7618B Y7618B2 NSG 0

B1 VOA7618C Y7618C1 NSG 0

B1 VOA7618C Y7618C2 NSG 1

B1 VOA7618D Y7618D1 NSG 0

B1 VOA7618D Y7618D2 NSG 1

CCOC1 VOA6851A Y6851A1 NSG 0

CCOC1 VOA6851A Y6851A2 NSG 0

CCOC1 VOA6851B Y6851B1 NSG 0

CCOC1 VOA6851B Y6851B2 NSG 0

CCOC1 VOA6851C Y6851C1 NSG 0

CCOC1 VOA6851C Y6851C2 NSG 0

CCOC1 VOA6851D Y6851D1 NSG 0

CCOC1 VOA6851D Y6851D2 NSG 0
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CS1 VOA6873A Y6873A1 NSG 0

CS1 VOA6873A Y6873A2 NSG 0

CS1 VOA6873B Y6873B1 NSG 0

CS1 VOA6873B Y6873B2 NSG 0

CS1 VOA6873C Y6873C1 NSG 0

CS1 VOA6873C Y6873C2 NSG 0

CS1 VOA6873D Y6873D1 NSG 1

CS1 VOA6873D Y6873D2 NSG 1

E1 VOA7298A Y7298A1 NSG 0

E1 VOA7298A Y7298A2 NSG 0

E1 VOA7298B Y7298B1 NSG 0

E1 VOA7298B Y7298B2 NSG 0

E1 VOA7298C Y7298C1 NSG 0

E1 VOA7298C Y7298C2 NSG 0

E1 VOA7298D Y7298D1 NSG 0

E1 VOA7298D Y7298D2 NSG 0

E1 VOA7298E Y7298E1 NSG 0

E1 VOA7298E Y7298E2 NSG 0

E2 VOA11520SA Y11520SA1 NSG 0

E2 VOA11520SA Y11520SA2 NSG 0

E2 VOA11520SB Y11520SB1 NSG 0

E2 VOA11520SB Y11520SB2 NSG 0

Table 2.4: Inventory of ovarian PDXs created from patient primary tumours. The strain of mouse
used (NSG or NRG) and whether or not a macroscopically visible tumour was grown and harvested
from each model (1 = grown, 0 = not grown) are indicated.
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Figure 2.4: Accrual of established PDXs since the beginning of the study (first collected sample).

NRG NSG

Models 102 173

Samples 51 77

Patients 18 20

Models grown 13 88

Patients w/ grown models 5 14

Samples w/ grown models 8 44

Grown models (1 yr) 35% 58%

Grown samples (1 yr) 50% 64%

Grown patients (1 yr) 67% 77%
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Table 2.5: Summary statistics for PDX collection by strain for HGSC tumours. The number
patients and samples with at least 1 grown PDX, along with the engraftment rate (by model, sample,
and patient) for models collected ≥ 1 year ago are shown.
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Figure 2.5: (a) Cumulative distribution function of engrafted and euthanized tumours for HGSC
PDXs at the level of models, samples, and patients. (b) Percent of engrafted and euthanized tumours
(out of all euthanized tumours) as a function of engraftment time. Statistics summarized at the level
of models, samples, and patients.
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Figure 2.6: Time from surgery to euthanasia for PDX models that do and do not grow tumours.

2.4 Discussion

Prognosis for HGSC patients has remained poor (5-year survival approx. 35%) over the last few

decades [138]. Despite the development of many new therapies including PARP inhibitors [16],

platinum resistant HGSC remains difficult to manage [139]. Extensive clonal heterogeneity across

space is thought to be a key factor that engenders therapeutic resistance in this devastating

disease. In some cases, tumour-intrinsic mechanisms of resistance such as BRCA mutation

reversion [15, 140] and upregulation of drug efflux transporters have been observed. Initial

in vitro work has revealed a microenvironment-mediated mechanism of resistance involving

fibroblasts and lymphocytes [59]. Yet, the mechanistic underpinnings of resistance in HGSC

in the majority of cases – especially in platinum-refactory foldback inversion-subtype tumours
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[3] – remain unknown. Patient-derived xenografts that faithfully recapitulate tumour histology,

genomics, and expression patterns offer ideal model systems for studying drug response in

HGSC. The combination of single cell-resolution assays and PDX models enables accurate

characterization of rare clonal genotypes and phenotypes that underlie treatment resistance.

Tracking clonal prevalence trajectories in PDXs will serve as the basis for understanding the

contribution of genomic subtypes to platinum resistance and for predictive modeling of clonal

dynamics to inform therapeutic regimen choices for patients.

The multi-site nature of HGSC necessitates collection of multiple tumour sites per patient

to obtain a comprehensive view of the treatment-näıve clonal repertoire. To this end, our

cohort constitutes the largest set of multi-site high-grade serous ovarian cancer patients we are

aware of, with high-quality specimens for genomic, transcriptomic, and proteomic analysis and

matched patient-derived xenograft models. Our model-level engraftment rate of approximately

50% after 100 days (Figure 2.5A) is within the range of previously described values (48% to

90%) [141–143]. In addition, we have demonstrated that high-quality single cell copy number

profiles can be derived from similarly constructed PDX models [97, 98]. Thus, our PDXs can

be leveraged to investigate drug response and clonal dynamics in HGSC over time and space.

As the determinants of successful HGSC tumour engraftment are largely unknown, we note

that certain aspects of the engrafted cohort may not be completely representative of all HGSC

tumours. Moreover, despite the similarity between model types, engraftment rates appeared to

be higher in NSG mice than NRG mice. Thus, analyses using these models will have to account

for possible biases in cohort composition and differences between model types. Engraftment

rates may be improved by subcapsular transplantation in the kidney. Our future work will

entail single cell whole-genome sequencing of carboplatin-treated PDX models to reveal and

develop predictive models for clonal dynamics under treatment selection pressure. Additionally,

we have established single cell dissociation protocols for single cell RNA-sequencing that will

enable microenvironment decomposition.

The cohort established in this chapter sets the groundwork for studying interactions between

malignant and immune cells in HGSC in Chapter 3 and studying single cell properties and

microenvironment composition in Chapter 4.
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Chapter 3

The evolutionary interface between

tumour-infiltrating lymphocytes and

cancer cells in multi-site HGSC

3.1 Introduction

High-grade serous ovarian cancer (HGSC) exhibits the highest disease mortality among gyneco-

logic cancers. Despite recent progress with poly ADP-ribose polymerase (PARP) inhibitor-based

synthetic lethal approaches exploiting homologous recombination deficiency [16], HGSC remains

incurable in most cases. Characterized by profound genomic instability and clonal diversity,

HGSC often presents with widespread peritoneal dissemination. Multi-site studies have revealed

genomic intratumoral heterogeneity (ITH) as a correlate to poor survival [28], as well as specific

patterns of malignant cell spread within the peritoneal cavity [27]. Importantly, the physical

distribution of malignant clones across the peritoneal cavity is non-random, with the majority

of sites exhibiting clonal homogeneity and a minority of sites harboring diverse clones [29]. This

raises the hypothesis that region-specific properties, including immunologic components of the

tumor microenvironment, may modulate malignant cell invasion and expansion, thereby shaping

evolutionary selection.

HGSC patients with abundant CD8+, CD4+, CD20+, and plasma cell tumor-infiltrating

lymphocytes (TILs) are associated with favorable clinical outcomes [36, 38, 41, 144]. TILs

can respond to and temporally track neoantigens [39] and mitigate resistance to platinum

chemotherapy [59]. However, much of our understanding of the immune response in HGSC

derives from single biopsies; far less is known about spatial immunologic variation across distal

tumor foci. Histologic imaging has revealed that lymphocyte abundance can vary between

tumor foci in HGSC [145]. Furthermore, lymphocyte expression signatures are linked to

patterns of metastasis [146]. A single case report has described immunologic variation across

relapse specimens [147]; however, given the immunomodulatory effects of chemotherapy [148],
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understanding of pre-treatment spatial variation is still lacking.

Beyond immunologic features, prognostic mutational processes in HGSC through analysis of

point mutation, copy number, and rearrangement features has indicated a prominent association

between foldback inversions (FBIs) and poor response to platinum-based chemotherapy [3].

FBI-dominated tumors, which comprise approximately 40% of HGSC, tend to be exclusive

to homologous-recombination-deficient (HRD) cases and bear a distinct pattern of high-level

amplifications colocalized with foldback rearrangements typical of breakage-fusion-bridge pro-

cesses [3, 24]. How mutational processes co-vary with immune response characteristics in HGSC

remains poorly understood. This will become of central importance as clinical trials assaying

synthetic lethal compounds targeting DNA repair processes combined with immune-modulation

therapies read out.

We surmised that localized selective pressures imposed by immune microenvironments shape

the distribution of malignant clones during disease progression. Thus, we systematically profiled

the inter-relationship of clonal diversity, mutational processes, and immunologic response across

a cohort of patients and multi-region samples. Genome-sequencing-based clonal decomposition,

transcriptome-based T and B cell receptor sequencing, multicolor immunohistochemistry (IHC),

and histologic image analyses were applied. Our results elucidate the landscape of cell-type

interactions at the interface of malignant and immune cells across 212 samples from 38 patients.

We show that samples robustly segregate into three distinct TIL subtypes, reflecting little or no

immune infiltration, stromal infiltration, and combined epithelial and stromal infiltration. We

reveal an association between these classes and malignant clone diversity properties. Regions

with highest levels of epithelial immune infiltration exhibit the lowest malignant clone diversity,

neoantigen depletion, and subclonal loss of heterozygosity (LOH) at human leukocyte antigen

(HLA) loci as evidence of purifying selection. Moreover, T cell clonotypes, but not B cell

clonotypes, spatially track with tumor clones in patients with heavily infiltrated tumors. Finally,

we show combinatorial prognostic effects between mutational processes and immune infiltration

with foldback inversions exhibiting high risk even in the presence of high cytotoxicity. In

aggregate, our findings illuminate molecular and evolutionary properties at the immune-malignant

interface in HGSC with new insights on how tumor progression and clonal dissemination are

driven by immune-related selective pressures.
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3.2 Materials and Methods

3.2.1 Experimental Model and Subject Details

3.2.1.1 Sample acquisition, consent, & surgery

Ethical approval for this study was obtained from the University of British Columbia (UBC)

Research Ethics Board. Women (biological sex: XX) undergoing debulking surgery (primary

or recurrent) for carcinoma of ovarian/peritoneal/fallopian tube origin were approached for

informed consent to bank tumor tissue. Cases of high-grade serous carcinoma where more than

one sample was collected were chosen for this analysis. Clinicopathologic and outcome data were

collected by chart review. Consistent with the practice at UBC and BC Cancer, all patients with

high-grade serous ovarian cancer (HGSC) are referred to the hereditary cancer clinic and offered

genetic testing for BRCA1 and BRCA2 mutations (http://www.bccancer.bc.ca/screening/

Documents/HCP_GuidelinesManuals-HBOCCriteria.pdf).

For consented patients, when multiple tumor sites were encountered intraoperatively, effort

was made to bank as many sites as possible. Samples were flash frozen and stored according to

conditions outlined below. For cases where multiple tumor sites were encountered but not all

anatomic sites could be frozen (e.g., due to unavailability of trained staff), archival specimens

stored within our pathology department were used. All samples were from removed structures

during attempts at optimal debulking; hence the majority of samples were from omentum and

ovarian sites.

Platinum sensitive is defined as no relapse within 6 months of the chemotherapy stop date.

3.2.1.2 Sample preservation & histologic evaluation

When adequate tumor volume was available, multiple tissue samplings were obtained from each

tissue specimen. Up to 5 samplings were taken from a given tumor, with effort made to equally

space samples while staying within grossly apparent tumor tissue. Each sampling was cut into

three pieces, yielding two end-pieces for cryovials and a middle portion placed in 10% buffered

formalin. End pieces were homogenized manually and with a paddle blender (Stomacher). All

paraffin-embedded blocks, including formalin-fixed tumor samples and molecular-fixed fallopian

tubes, were sectioned and stained with hematoxylin and eosin prior to expert histopathological

review to confirm the presence of high-grade serous carcinoma. Pieces from the same sampling

were given the same sample identifier for the analysis steps described below.
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3.2.2 Method Details

3.2.2.1 WGSS library construction & sequencing

Frozen tumor samples from 14 patients (patients 11-17, 25, 26, 28-32, total 71 samples) were

submitted for library construction and sequencing. Sample size was determined by availability

of resectable, cryopreserved tissue, and DNA quality. For all tumor and normal samples, DNA

extraction was followed by library construction and sequencing using Illumina HiSeq2500 whole

genome shotgun v4 chemistry with paired-end 125bp reads. Samples were sequenced to an

average of 96X coverage. Patients 1-4, 7, 9, and 10 were previously sequenced according to

specifications described in [29].

3.2.2.2 Targeted bulk sequencing analysis

Target selection For each patient we performed targeted sequencing on (11-17), a total of 192

positions were deeply sequenced, including 4 experimental controls, a TP53 variant, heterozygous

germline SNPs lost in dominant loss of heterozygosity (LOH) events, lost SNVs that could and

could not be explained by copy number events, and SNVs inferred to originate at each node of

the sample phylogeny obtained by applying the stochastic Dollo approach (infinite sites with

loss model) [29] (Supplemental Table A.1). SNVs were sampled as evenly as possible across

nodes.

Data for patients 1-4, 7, 9, and 10 was obtained from [29], and used as input for section

Clonal analysis onward.

Primer design Primers targeting the positions described above were designed using primer3.

The full list of primers is included in Supplemental Table A.1. Optimal primer length

was 27nt (18-30nt) and products were designed to be 150-250nt long with 53-61◦C melting

temperature. Breslauer thermodynamic correction and Schildkraut and Lifson salt correction

settings in primer3 were used. Additionally, primers targeting SNVs were required to pass the

following preliminary filters: minimum of 5 alignments to the genome as given by BLAT for

each primer, and each primer position at least 30nt away from the target SNV.

Primers were additionally tested using a combination of UCSCs in silico PCR tool (http:

//genome.ucsc.edu/cgi-bin/hgPcr) aligned against the reference hg19 genome and custom

in-house code (Canadas Michael Smith Genome Sciences Centre) to verify a unique hit and

check that the variant was located within 150bp of the nearest end of the amplicon to ensure

coverage in an Illumina NextSeq 150bp paired end read. The primers were tagged with Illumina

adapters to enable a direct sequencing approach that precludes the need for adaptor ligation
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during sample preparation. The Illumina adaptor tags were: 5’-CGCTCTTCCGATCTCTG-3’ on

the forward amplicon primer and 5’-TGCTCTTCCGATCTGAC-3’ on the reverse amplicon primers.

PCR and Illumina sequencing Genomic DNA templates were used as starting material to

generate PCR products. PCR was set up using Phusion DNA polymerase (Fisher Scientific,

USA) according to the manufacturers specifications. The standard PCR conditions used were

an initial denaturation at 98◦C for 30 s, followed by 35 cycles of 98◦C for 10 s, 60◦C for 15 s

and 72◦C for 8 s, and a final extension at 72◦C for 10 minutes.

Amplicons were pooled by template for sequencing sample preparation. Sample preparation

involved a second round of amplification using Phusion DNA polymerase with 6 PCR cycles

using PE primer 1.0-DS (5’-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCC

GATCTCTG-3’) and a custom PCR Primer (5’-CAAGCAGAAGACGGCATACGAGATNNNNNNGTGACTGG

AGTTCAGACGTGTGCTCTTCCGATCTGAC-3’) that contains a unique six-nucleotide ’index’ shown

as N’s. PCR products were cleaned up using PCRClean DX beads (Aline Biosciences, USA).

DNA quality was assessed using the Caliper LabChip GX High Sensitivity Assay (Caliper Life

Sciences, USA) and DNA quantity was measured using a Qubit dsDNA HS assay kit on a Qubit

fluorometer (Life Technologies, USA).

The indexed libraries were pooled together and sequenced on the Illumina NextSeq500

platform with paired-end 150bp reads using v2 chemistry reagents.

3.2.2.3 Immunohistochemistry

All reagents were from Biocare Medical (Pacheco, CA) unless otherwise stated. Slides of

formalin-fixed, paraffin embedded tissue were deparaffinized and rehydrated through xylene and

graded alcohols. Antigen retrieval was performed using Diva Decloaker in a Biocare decloaking

chamber at 125◦C for 30 s. Slides were then rinsed with water, marked with PAP pen and

loaded into the Biocare Intellipath FLX autostainer. Slides were blocked with peroxidazed-1

and background sniper for 5 minutes and 10 minutes respectively then a cocktail of either

CD8 (1/250, clone C8/144B, Cell Marque, Rocklin, CA) and CD3 (1/500, clone SP7, Spring

Biosciences, Pleasanton, CA), or CD79a (1/400, clone SP18, Spring Biosciences, Pleasanton,

CA) and CD138 (1/200, clone B-A38, Biocare Medical, Pacheco, CA) in Da Vinci Green diluent

was added for 30 minutes at room temperature. Following a wash step, Mach2 Doublestain

#2 polymer was added for 30 minutes at room temperature and then antigens detected with

IP Ferengi Blue chromogen for 7 minutes followed by IP DAB chromogen for 5 minutes. To

denature the first round of antibodies, slides were removed from the autostainer and placed in

pre-warmed SDS-glycine pH 2.0 solution for 45 minutes at 50◦C with periodic agitation. Slides

59



were then washed with water and replaced in the autostainer for the 2nd round of staining.

CD20 (1/300, clone L26, Biocare Medical, Pacheco, CA) diluted in Da Vinci Green diluent

was added to the slides and incubated for 30 minutes at room temperature. Mach2 Mouse-AP

polymer or Mach2 Rabbit-AP polymer was added for 30 minutes at room temperature to detect

CD20. Warp red chromogen was added to the slide for 7 minutes, hematoxylin at a 1/5 dilution

was then added for 5 minutes. The slides were then washed, air-dried and coverslipped with

Ecomount coverslipping medium.

3.2.2.4 Nanostring gene expression

FFPE samples were deparaffinised with xylene and washed with 100% ethanol. Tissue was

then extracted using QIAGEN miRNeasy FFPE Kit, following the protocol for purification

of total RNA (including miRNA) from FFPE tissue sections. RNA quality was assessed with

Nanodrop. 500ng of high quality RNA (260/280 ratio of 1.7-2.3 and A260/230 ratio of 1.8-2.3)

for each sample was used in the Nanostring assay (PanCancer Immune Profiling panel [149]

additionally containing markers for high-grade serous ovarian cancer subtypes C1, C2, C4, and

C5 [150]). Data was normalized with the voom function from the R package limma and TMM

normalization. Samples flagged by nSolver (Nanostring Technologies) were removed from further

analysis.

3.2.2.5 TCR & BCR sequencing

In the text below, TRB and IGH refer to TCR-β chain and Ig-heavy chain, respectively.

RNA was extracted from frozen tissue using the miRNeasy Mini kit. Quality (260/280)

and quantity were determined using Nanodrop. Total RNA samples were also QC checked

using the Caliper HT RNA HiSens assay (Caliper Life Sciences, USA). Samples ranging from

60-255ng RNA were re-arrayed into a 96-well plate. First-strand cDNA was synthesized from the

total RNA samples using the SMARTScribe Reverse Transcriptase from Clontech, BNA oligo,

TRB and IGH gene specific primers at a concentration of 0.5uM. Reactions were incubated

on a tetrad using the following program: 90mins at 42◦C, 15mins at 70◦C and 2mins at 4◦C.

Using cDNA as a template, first round PCR for TRB and IGH was set up using Phusion DNA

polymerase (Fisher Scientific, USA) according to manufacturers specifications. The gene specific

primers used were TRB 5’-TCTCTGCTTCTGATGGCTCAAAC-3’ and IGH 5’-ACACCGTCACCGGTTCG

G-3’. The PCR conditions used were an initial denaturation of 98◦C for 30 s, followed by 35

cycles of 98◦C for 10 s, 55◦C for 10 s and 72◦C for 20 s, and a final extension at 72◦C for 5

minutes. PCR products were size selected and cleaned up using PCRClean DX beads (Aline
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Biosciences, USA). Using first round PCR product as a template, a nested round of PCR for

TRB and IGH was set up using Phusion DNA polymerase (Fisher Scientific, USA) according to

manufacturers specifications. The gene specific primers used were TRB 5’-TGCTCTTCCGATCT

GACAGCGACCTCGGGTGGGAACA-3’ and IGH 5’-TGCTCTTCCGATCTGACAAGACSGATGGGCCCTTGGT-3’.

The PCR conditions used were an initial denaturation of 98◦C for 30 s, followed by 10 cycles

of 98◦C for 10 s, 65◦C for 10 s and 72◦C for 20 s, and a final extension at 72◦C for 5 minutes.

PCR products were cleaned up using PCRClean DX beads (Aline Biosciences, USA).

TRB and IGH amplicons were pooled by template for sequencing sample preparation. Sample

preparation involved a second round of amplification using Phusion DNA polymerase with 6

PCR cycles using PE primer 1.0-DS (5’-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGA

CGCTCTTCCGATCTCTG-3’) and a custom PCR Primer (5’-CAAGCAGAAGACGGCATACGAGATNNNNNN

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGAC-3’) that contains a unique six-nucleotide ’index’

shown here as N’s. Products were cleaned up using PCRClean DX beads (Aline Biosciences,

USA). DNA quality was assessed using the Caliper LabChip GX High Sensitivity Assay (Caliper

Life Sciences, USA) and DNA quantity was measured using a Qubit dsDNA HS assay kit on a

Qubit fluorometer (Life Technologies, USA).

The indexed libraries were pooled together and sequenced on the Illumina HiSeq platform

with paired-end 250bp reads using v2 chemistry reagents.

3.2.3 Quantification and Statistical Analysis

3.2.3.1 WGSS analysis

Alignment Reads were aligned to the hg19 reference genome downloaded from http://www.

bcgsc.ca/downloads/genomes/9606/hg19/1000genomes/bwa_ind/genome/GRCh37-lite.fa.

Alignments were performed using bwa [151] using the aln and sampe commands. Duplicates

were flagged with Picard http://broadinstitute.github.io/picard/.

SNV and indel calling Somatic SNVs were called using both Strelka 1.0.14 [152] and

MutationSeq 4.2.0 [153] with default parameters. Somatic indels were additionally called with

Strelka. We considered a somatic SNV high quality if it was predicted by both MutationSeq

and Strelka to be present in any sample from a patient, not necessarily the same sample for

each program. Germline SNVs and indels were called with samtools mpileup and bcftools call

1.4.1, with default parameters.

Gene name, predicted effect and impact of SNVs and indels were annotated using SnpEff

4.0e. Mappability scores were annotated for each position using precomputed values down-
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loaded from UCSC (http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/

wgEncodeMapability/release3/wgEncodeCrgMapabilityAlign50mer.bigWig). For downstream

analysis we only considered variants with a mappability score > 0.99.

Breakpoint calling We used deStruct [154] and lumpy [155] to call breakpoints from WGS

data. deStruct breakpoints were filtered for those with at least 2 discordant reads, and at least

2 split reads. Additional filters removed breakpoints for which the reconstructed sequence was

less than 120nt, and removed breakpoints with read data likelihood less than 20. Following

this, the intersection of deStruct and lumpy predictions was taken, and events lying within

poor mappability regions, with break distance ≤ 30bp, and deletions with breakpoint size <

1000bp were excluded [3]. Furthermore, breakpoints overlapping germline structural variation

as determined from the database of genomic variants or identification of a similar event in the

matched normal sample. Classification of breakpoint and rearrangement type was performed

according to [3].

Copy number calling We applied ReMixT [156] to predict allele and clone-specific copy

number from WGS samples. ReMixT jointly infers clone and allele specific copy number of both

segments and breakpoints, allowing for increased statistical strength for detecting subclonal

rearrangements associated with subclonal copy number changes. Additionally, ReMixT uses

haplotype blocks obtained from phased SNPs to increase the power for detecting small allelic

imbalances resulting from subclonal copy number changes. ReMixT was run on each patients

full set of WGS samples with default parameters. Accurately inferred clone specific segment

copy number was used to calculate the length-normalized proportion of segments predicted with

divergent clonal copy number.

In order to call high-level amplification (HLAMP), we employed identical methods to [3].

We ran TITAN [157] on WGS data to infer logR values; HLAMP was called for segments with

median logR values > 1.

Identifying BRCA variants Point mutations and indels in BRCA1 and BRCA2 were called

from germline and somatic WGS data, as described above. Variants with high SnpEff-annotated

impact were used. Somatic BRCA status was determined from variant calls. Where available,

clinical test results were used to determine germline BRCA status; germline variant calls were

used for patients that did not consent to clinical testing. Clinically-determined BRCA status is

shown in Table 3.1.
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3.2.3.2 Clonal analysis

Mutation cluster inference We ran PyClone 0.13.0 [71] in multi-sample mode to perform

initial clonal analysis. Parental copy number and tumor content estimates from ReMixT along

with reference and alternative allele counts from deep sequencing data of SNVs (PCR and

Illumina sequencing) were used as input for PyClone. The following SNVs were filtered out for

clonal analysis: germline SNVs, SNVs absent (probability < 0.01) in all samples in a patient

(probabilities computed from a binomial test, assuming a sequence error rate of 0.001), and

SNVs on sex chromosomes. The MCMC chain was run for 100,000 iterations, with a burn-in of

50,000. Posterior plots were visually inspected to confirm convergence. Flat cluster assignments

were produced from posterior similarity matrices using the MPEAR method described in [71].

SNVs with broad posterior cellular prevalence distributions (width of 95% credible interval ≥
0.2) far from the corresponding cluster median (difference of ≤ 0.05) were excluded from further

analysis. Additionally, clusters absent or present at low prevalence in all samples (median cluster

prevalence across SNVs ≤ 0.05 in all samples), with only one SNV, or with ≥ 50% SNVs lost

were filtered out.

Archival samples without a corresponding flash frozen sample (i.e., no copy number pre-

dictions) were excluded from this initial analysis. They are reintroduced in section Clonal

phylogenies & postprocessing.

Clonal phylogenies & postprocessing Filtered PyClone results were provided as input to

LICHeE, a multi-sample cancer lineage inference method [75], to elucidate clonal phylogenies.

LICHeE was run in cellular prevalence mode (-cp), with additional options -completeNetwork

-sampleProfile. Other parameters were set to the defaults. The top ranking lineage tree from

LICHeE was kept.

To remove artifacts (e.g., falsely called low prevalence clones) and obtain clonal prevalences

for archival samples, clonal prevalences were refined by resampling alternative and reference allele

counts for deeply sequenced tumor samples and matched peripheral blood (normal) according

to the following Bayesian generative model, adapted from [29]. We suppress indices for samples

as these can be treated independently.

We assume that the alternative allele counts of SNV n in the matched normal and tumor

samples, bnnormal and bntumor, respectively, are distributed as:

bnnormal|pnnormal ∼ Binomial(dnnormal, p
n
normal) (3.1)
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and

bntumor|ψn, Zn = c, pnnormal ∼ BetaBinomial(dntumor, ξ(ψ
n, φc, t, pnnormal), σtumor) (3.2)

where dnnormal and dntumor correspond to the total read depth of SNV n in the normal and tumor

sample, respectively, pnnormal is the probability of observing the alternative allele of SNV n in

the normal sample, σtumor is the dispersion parameter, Zn is the cluster membership of SNV n,

and ξ(ψn, φc, t, pnnormal), using similar notation to [71], is given by:

ξ(ψn, φc, t, pnnormal) =
(1− t)c(gN )

Tn
pnnormal +

tφcψn

Tn

where ψn is the copy number genotype of SNV n in the tumor variant population, t is tumor

content, c(gN ) = 1 is the copy number genotype of the alternative allele in the normal population,

total copy number Tn = 2(1 − t) + ψnt, and φc is the cellular prevalence of PyClone cluster

c, which can be expressed as the summation of clonal prevalences fj over clones that contain

PyClone cluster c. That is:

φc =
∑

j:Gc
j=1

fj

where Gc
j is a binary indicator of whether clone j contains PyClone cluster c. We then assume

the following distributions over the parameters in equations 3.1 and 3.2:

f ∼ Dirichlet(κ)

ψn ∼ Categorical(1)

pnnormal ∼ Beta(ζ ∗ σnormal, (1− ζ) ∗ σnormal)

with κ the Dirichlet parameter as defined in [29], and σnormal the dispersion parameter. The

value ζ corresponds to twice the mean allelic fraction of alternative alleles in the normal sample

(twice because we model c(gN ) = 1). In essence, our model is analogous to that of [29], but we

now consider the probability of sampling a variant allele from non-tumor cells to be nonzero,

equal to pnnormal, rather than 0.

Informally, the model can be described as follows. For each tumor sample:

1. Generate clonal prevalences
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2. Compute the cellular prevalence of a mutation n by summing the prevalences of all clones

containing the PyClone cluster associated with n

3. Generate the SNV-specific normal contamination fraction pnnormal and allelic count data for

the matched normal sample

4. Based on the contamination fraction, apply a modified PyClone likelihood model to simulate

allelic count data in the tumor sample

The normal contamination fraction can be interpreted as the allelic fraction of SNV n in

the matched normal, likely due to sequence errors or contamination. Samples with low tumor

purity are particularly confounded by these issues; the addition of step 3 and modification of

step 4 relative to [29] helps eliminate erroneously identified rare clones in these samples.

We set the following hyperparameter values: σtumor = σnormal = 200 and κ as a repeating

vector of 0.01. The effect of our setting for κ is to assume clonal purity unless there is substantial

evidence for the contrary.

The Hamiltonian Monte Carlo chain was run for 10,000 iterations, with an additional burnin

of 5000. Posterior plots were visually inspected for convergence. Clones falling below a prevalence

threshold (< 90% of the posterior distribution of clonal prevalence > 0.01) were removed.

Due to difficulties in lineage construction for patients with several samples composed of

divergent clonal lineages [29], results for patients 3 and 9 were taken from previously analyzed

single-cell sequencing data [29].

Clonal architecture distance Pairwise similarity between clonal compositions (within a

given patient) was computed using a modified version of the weighted uniFrac measure, to simul-

taneously incorporate clonal architecture and phylogeny information. First, clonal phylogenies

from Section 3.2.3.2 were taken as ground truth and used to recompute cellular prevalences for

all SNVs (ψa and ψb) determined by WGS, where a and b denote the samples being compared.

Clonal distance was computed as the summation of the differences in cellular prevalences across

SNVs, or equivalently ||ψa −ψb||1.

Measures of intratumoral heterogeneity Sample mixture entropy and clone divergence

were defined as in [29]. In order to compute divergence, SNVs from WGS data were assigned to

PyClone clusters - and transitively, clones - by maximum likelihood according to the PyClone

likelihood model [71]. Proportion subclonality (copy number based measure) was computed as

the proportion of the genome with subclonal copy number according to results from ReMixT.

Heterogeneity index, a combined measure of intratumoral heterogeneity incorporating both clone

prevalences and phylogenetic relationships, was computed as the sum of relative phylogenetic
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divergence between all pairs of distinct clones, weighted by clonal prevalence. The heterogeneity

index is the mean phylogenetic divergence between a randomly selected pair of tumor cells

from a sample (based on inferred clonal composition). Formally, for a sample A with clone set

C(A) = {ci} and corresponding prevalences pi (where 0 < pi < 1,
∑

i pi = 1):

HI(A) =
∑

cj ,ck∈C(A)

pjpkD(cj , ck)

where D(cj , ck) is the relative phylogenetic divergence between clones cj and ck, defined as:

D(cj , ck) =
|Scj ∪ Sck | − |Scj ∩ Sck |

|Scj ∪ Sck |

where Sci is the set of WGS SNVs assigned to clone ci. By construction, the heterogeneity index

obtains values between 0 and 1. Intratumoral heterogeneity values for each sample are listed in

Supplemental Table A.2.

Samples were also assigned to clonal mixture classes (pure, chain, branched) based on the

phylogenetic relationships between constituent clones. Pure samples contained a single clone;

chain samples contained clones along a single lineage (in other words, the minimal spanning tree

is a line); branched samples contained at least 2 clones that were not ancestors/descendants of

each other (in other words, the minimal spanning tree contains a bifurcation).

The significance of differences in the 3 clone-derived intratumoral heterogeneity measures

(entropy, clone divergence, heterogeneity index) between the 3 TIL subtypes was assessed with

the Kruskal-Wallis test (Figure 3.7A). Post hoc comparisons were made with Dunns test

(P-values were BH corrected).

To assess the significance of differences in subclonal copy number proportion between the 3

TIL subtypes, ANOVA was performed (aov function in R) with subclonal CN proportion as the

dependent variable (logit-transformed, as subclonal CN proportion values lie between 0 and 1,

exclusive), TIL subtype and cellularity as independent variables (to control for tumor cellularity).

The residual plot did not indicate any substantial deviations from normality, with relatively

constant variance across the fitted range. Post hoc comparisons were made with Tukeys range

test (P-values were BH corrected).

3.2.3.3 RNA-seq analysis

RNA-seq raw counts for 54 primary HGSC tumors from the Australian Ovarian Cancer Study

(OV-AU) [158] were downloaded from the International Cancer Genome Consortium (ICGC)

Data Portal. Ensembl Gene IDs were mapped to gene symbols using biomaRt. Duplicate entries
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were summarized by taking the mean of expression values. Raw counts were normalized using

voom from the R package limma with quantile normalization.

3.2.3.4 Mutation signature analysis

Data Mutation signatures were jointly inferred for 102 multi-site HGSC tumors (21 patients),

62 primary HGSC tumors from the Australian Ovarian Cancer Study with BAM files [158], and

133 additional ovarian tumors (59 HGSC, 35 clear cell, 10 germinal cell, and 29 endometrioid) [3]

(Supplemental Table A.5). Note that a POLE hypermutant (one of the endometrioid cases)

was excluded from the original set of 133 cases described in [3], and while 93 cases were available

from the Australian Ovarian Cancer Study, only 62 had BAM files on the data portal. Similarly

processed variant calls to WGSS analysis were obtained from [3]. In order to avoid counting the

same variant more than once, the union of SNVs from all samples for each multi-site HGSC

patient was analyzed together as a ’meta-sample’.

Signature inference & clustering Signatures and proportions were inferred from WGS

SNV and rearrangement (structural variation, SV) calls (section WGSS analysis) by applying

the multimodal correlated topic model method [26]. For SNVs, the pentanucleotide context of

each variant is considered. Rearrangements (deletions, duplications, inversions, and foldback

inversions) were binned by breakpoint distance (<10kb, 10kb-100kb, 100kb-1Mb, 1Mb-10Mb,

>10Mb) and microhomology length [26, 159]. The optimal number of SNV and SV clusters was

determined using the elbow method on model log-likelihoods [26]. The probable identity of each

point mutation signature is as follows: P-MMR-1 mismatch repair (MMR), P-HRD homologous

recombination deficiency (HRD), P-UM ultramutator-associated mutation signature (present

at very low levels in the HGSC samples; primarily observed because of an endometrial sample

from [3]), P-APOBEC APOBEC, P-AGE age signature, and P-MMR-2 uncertain, but with

a strikingly similar T→C substitution pattern to the MMR signature. Sample-specific and

non-ancestral mutation signatures were calculated by adding signature assignment weights for

all constituent variants. For non-ancestral analysis (Figure 3.12D), non-ancestral SNVs were

defined as those not present (and not called as ancestral) in all samples from that patient, and

samples with fewer than 50 non-ancestral SNVs or SVs were excluded. Prior to clustering

(Figure 3.12A, Figure 3.11C,D), signature proportions were scaled across the entire pooled

cohort to a standard Gaussian distribution. Hierarchical clustering was performed with Wards

method and a Pearson correlation-based distance measure (d = (1− r)/2, where r is the Pearson

correlation coefficient). For patients in the discovery cohort with more than 2 samples, molecular

subtype annotations on the heatmap correspond to the mode of subtype assignments for each
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patient. The 4 described subtypes (HRD-DEL, HRD-DUP, FBI, and TD) were recovered using

the dynamicTreeCut R package (or equivalently, by cutting the dendrogram into 4 clusters).

Association with immune markers RNA-seq expression data (see RNA-seq analysis, Nanos-

tring analysis) from a set of 54 untreated primary OV-AU cases was used for the comparison

depicted in Figure 3.12C.

Differential gene expression Differential gene expression analysis between mutation signa-

ture clusters for ICGC OV-AU cases (see RNA-seq analysis) was carried out using the limma

method (R package). limma results for HRD versus FBI, TD versus FBI, and HRD versus TD

contrast matrices were fed as input to the R package GAGE for gene set enrichment analysis

using KEGG pathways. Pathways significantly up- or downregulated with Q ¡ 0.01 were re-

garded as significant. Results of differential expression analysis are shown in Figure 3.13 and

Supplemental Table A.6.

TCGA foldback inversions A set of n = 433 TCGA ovarian serous cystadenocarcinoma

cases with complete copy number, clinical, hg19 exome BAM files, and array-based gene

expression data was selected for analysis [14]. Selected TCGA cases are listed in Supplemental

Table A.7. Expression data was downloaded from the TCGA data portal and clinical data was

downloaded from the TCGA Pancancer project under Synapse (ID: syn1461171).

Array gene expression data was preprocessed with the voom function from limma (R package),

using quantile normalization. The median of normalized expression values for genes associated

with cytotoxicity (derived from Nanostring PanCancer Immune Profiling Panel annotations

[149]) was computed. Samples were stratified into immune-high and immune-low classifications

by thresholding on median cytotoxicity score across the cohort (Supplemental Table A.7). To

threshold on FBI status, foldback-amplification colocalization status (FBI-AMP High, FBI-AMP

Low, No AMP) for all cases was retrieved from [3]. We performed a survival analysis on FBI

groups after subsetting by immune cluster. The log-rank test was used to compare survival

outcomes between subgroups.

A Cox proportional hazards model was also fit to the overall survival data, using foldback-

amplification colocalization status as a discrete explanatory variable, interaction terms between

cytotoxicity score and FBI-HLAMP status, along with control variables for age of pathologic

diagnosis and treatment regimen (columns immunotherapy, additional immunotherapy, additional

drug therapy, and additional chemotherapy in the Synapse table). Age of diagnosis was

binned into < 50, 50-70, and > 70 categories, and along with immunotherapy and additional
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chemotherapy used as stratification variables (as these originally violated the proportionality

assumption). Patients without available data for age of diagnosis (5) were excluded. To assess the

validity of the proportional hazards assumption, the cox.zph function the survival R package

was used. None of the individual proportionality assumption tests or the global test were

violated.

The R formula for the model was:

1 coxph ( s u r v i v a l ˜ mutation s i gna tu r e subgroup + cy t o t o x i c i t y : mutation s i gna tu r e

subgroup + s t r a t a ( age binned ) + s t r a t a ( immuno therapy ) + s t r a t a ( add i t i ona l

chemo therapy ) + add i t i o na l drug therapy + add i t i o na l immuno therapy , data )

To evaluate the significance of the model including the cytotoxicity× FBI-HLAMP interaction

term, we constructed an identical model, but with a cytotoxicity score as an explanatory variable

without the interaction terms with FBI-HLAMP. A likelihood ratio test was performed on the

resulting fits of the 2 models.

3.2.3.5 Immunohistochemistry analysis

Tissue segmentation & cell counting Slides were scanned using the Vectra Multispectral

Imaging System (Perkin Elmer) and 20 random 20× images (high-powered fields, HPFs) collected

for each sample. The resulting multispectral images were then analyzed using Inform software

(Perkin Elmer) with the resulting cell segregation data consolidated using Spotfire (Tibco).

Phenotyping algorithms were created by 2 independent researchers (K.M., S.L.) and the results

validated by a 3rd researcher (A.W.Z.). Briefly a training set of 10 images, selected to be

histologically diverse on visual inspection, was used by each of the researchers to train Inform

to recognize the different phenotypes of interest in each image. Training was run until at least

98% validation accuracy was achieved. The 2 algorithms were compared and visual inspection

used to confirm the cell counts. TIL densities for each image were calculated by normalizing

validated TIL counts by total area covered by tissue in the image (in units of cells/HPF). Overall

TIL densities for each slide were similarly calculated, but using the summation of TIL counts

and area across all constituent images. Epithelial and stromal TIL densities employed similar

calculations, with counting and area restricted to epithelial/stromal regions identified by tissue

segmentation (Inform). Thus, a cell was called epithelial if it fell within epithelial regions

identified by Inform, and stromal if it fell within identified stromal regions.

69



Correlations between TIL densities Correlations between TIL densities (epithelial and

stromal CD8+, CD4+, CD20+, and plasma cell) were quantified with Spearmans correlation

coefficient (Figure 3.9A) and P values of their significance were adjusted for multiple testing

with the Benjamini-Hochberg method.

Clustering Hierarchical clustering of TIL density profiles was performed using Wards method

with Euclidean distance. Heatmap values were obtained by normalizing (to a standard Gaussian

distribution) across samples for each TIL type. For Figure 3.1B,C, only samples with valid

epithelial and stromal TIL densities (i.e., non-zero epithelial and stromal tissue area) are shown.

Additionally, for Figure 3.1B, only samples with both TIL density and Nanostring expression

data are shown. The optimal number of clusters (3) was determined with the Dunn index.

Malignant clone similarity and TIL subtype To compare whether samples from the

same TIL subtype were more clonally similar (within patients), we used a nested ranks test

(nestedRanksTest R package), treating patient as a random effect. Specifically, for each pair

of samples within a patient, we (1) categorize them as belonging to the same, or different TIL

subtypes (til cluster comparison); and (2) compute clonal composition similarity as per

Clonal architecture distance (clonal similarity). Then, we run:

1 nestedRanksTest ( c l o n a l s im i l a r i t y ˜ t i l c l u s t e r comparison | pat i en t id , data )

3.2.3.6 Nanostring analysis

Molecular subtyping Ground truth molecular subtypes for a training set of 62 primary

HGSC tumors from [158] were obtained from the authors. Matched RNA-seq data for these

tumors was obtained from the International Cancer Genome Consortium (project OV-AU)

and normalized according to section RNA-seq analysis. The resulting expression profiles were

pooled with Nanostring-derived expression profiles, and subjected to batch effect correction with

the ComBAT R package. To confirm the effectiveness of batch correction, expression profiles

from all samples were hierarchically clustered. Samples from different batches were not clearly

segregated.

Following this, a k-nearest neighbors classifier (k = 5) was trained and applied to the data

using the [158] molecular subtypes as ground truth. Six-fold cross-validation accuracy of 85.8%

on ground truth data was obtained, similar to that reported in [150]. As comparison, the

diagonal LDA classifier attained an inferior 80.9% cross-validation accuracy and was thus not
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used. To further test these molecular subtypes, a subset of 62 tumors was additionally profiled

with the Affymetrix U133A2 microarray platform. As described in [27], the expression data from

these tumors was normalized with RMA and quantile normalization, corrected for batch effects

with ComBAT, pooled with TCGA array expression data (see TCGA foldback inversions), and

subjected to another level of batch effect correction with ComBAT. Following the methods

of TCGA [14], consensus non-negative matrix factorization (NMF) was applied to determine

molecular subtypes (k = 4). NMF-derived subtypes and k-nearest neighbor-derived subtypes

were largely concordant (mutual information: 0.74).

Overrepresentation of each molecular subtype or set of molecular subtypes within each

IHC-based subgroup (N-TIL, S-TIL, ES-TIL) was computed relative to the other 2 subgroups

and other molecular subtypes with Fishers exact test.

Pathway signature analysis Genes were grouped on the basis of pathway annotations from

the Nanostring PanCancer Immune Profiling panel [149]. Metagene expression values were

constructed by taking the median of expression values for constituent genes in each pathway.

3.2.3.7 TCR/BCR-seq analysis

Alignment and clonotype calling Alignment to germline TCR and BCR segments was

performed with mixcr align from MiXCR 2.0 [86], using the human IMGT reference (https:

//github.com/repseqio/library-imgt/releases, commit d993d704553c0a1e905c702ab93

c99c0001b30d9). Reads mapping to the same clonotype were clustered using mixcr assemble,

and the resulting TRB and IGH clonotypes were exported with mixcr export. Clonotypes

were identified by V and J germline gene names and CDR3 nucleotide sequence. All other mixcr

parameters were set to the defaults.

Decontamination and quality control Clonotypes with fewer than 5 assigned reads were

immediately removed. In order to filter out potential cross-sample contamination, clonotypes

shared between samples from different patients were identified. Clonotypes present at an absolute

prevalence (read count) in one sample > 25 times lower than in another sample from a different

patient were removed (from the former sample). Consistent with contamination, samples (from

different patients) arranged close by on each 96-well PCR plate contained a larger number of

shared clonotypes. Finally, clonotypes that produced non-functional (frameshift or premature

stop) receptor sequences were removed.

Prior to computing repertoire diversity or similarity, TCR/BCR reads were randomly

downsampled (using the minimal nonzero library size across the cohort, for TCR/BCR separately)
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were randomly downsampled (10 times) with replacement from each sample to account for

differences in library size. Mean clonotype abundances across these resamplings were used for the

computations described below, and the corresponding statistics are reported in Supplemental

Table A.2.

Calculating repertoire diversity The following indices of diversity were calculated:

• Number of unique clonotypes

• Shannon’s entropy

• Efron-Thisted index

• D50 index (https://patents.google.com/patent/WO2012097374A1/en)

The Efron-Thisted index estimates the total repertoire diversity (by estimating the number

of unseen clonotypes), and the D50 index quantifies the preponderance of rare clonotypes in a

repertoire.

Correlations between repertoire diversity and ITH were computed as Spearmans rank

correlation, using the first 2 measures listed above.

Repertoire similarity analysis Pairwise similarity between TCR/BCR repertoires A and

B was calculated with the Morisita-Horn index (R package vegan):

S(A,B) =
2
∑N

i=1AiBi

|A||B|(
∑N

i=1 A
2
i

|A|2 +
∑N

i=1 B
2
i

|B|2 )

where Ai denotes the number of reads associated with clonotype i in repertoire A, |A| and |B|
are the total number of clonotype reads in A and B, respectively, and N is the number of unique

clonotypes in A ∪B.

Correlation with clonal composition TCR repertoire and clonal dissimilarity matrices

were computed as described above. These dissimilarities were correlated with Mantels test.

Uncorrected P -values are reported in Figure 3.10 and Figure 3.5.

3.2.3.8 TCR clonotype classification

Previous studies have revealed differences in the physicochemical properties of CDR3 sequences

[160] and VJ (Vβ-Jβ) gene usage [161] between CD8+ and CD4+ T cells. We designed a binary

classifier to predict the class (CD8+ or CD4+) of a T cell receptor based on both germline VJ

genotype and physicochemical properties of the TCR CDR3 sequence.
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Training data To train the classifier, unprocessed TCR sequence data from flow-sorted naive

CD8+ and CD4+ mononuclear cells derived from 18 unrelated healthy donors were obtained

from a previous study [162]. We made an effort to obtain TCR-sequence data of flow sorted

CD8+ and CD4+ T cells from other sources as well [160, 161], but these data were short-read

or had been preprocessed (with no raw sequence files available), and thus not amenable to

uniform downstream analysis. While these training data were derived from naive T cells, [161]

have reported that there are no significant differences in Vβ and Jβ usage between naive and

memory T cells (for both CD4+s and CD8+s separately). For the analysis described below,

we operated under the assumptions that differences in VJ gene usage patterns and CDR3

physicochemical features between CD4+ and CD8+ T cells are similar in the training and multi-

site HGSC datasets. We later assessed the validity of these assumptions by comparing predicted

CD8/CD4 abundance with results from immunohistochemistry (see Classifier). Alignment

and clonotype calling were carried out according to the methods described in Alignment and

clonotype calling. Twenty percent of the data, stratified by class, was randomly split off for

testing; 5-fold cross-validation was carried out on the remaining 80%.

Features V and J genotypes were binarized (80 features). Additionally, Atchley factors (R

package HDMD) quantifying the physicochemical properties of amino acids at each position in

the CDR3 were used (5n features, where n is the CDR3 amino acid length). Separate classifiers

were trained for each length category between 11 and 18 amino acids (0.70 of all clonotypes).

The distribution of V and J gene usage was comparable between training and test data.

Classifier A binary gradient-boosted tree classifier was trained on the data described in section

Alignment and clonotype calling. Training with 5-fold cross-validation was allowed to proceed

until 100 consecutive rounds of no improvement in validation accuracy. Based on area under

the receiver operating characteristic curve, the gradient-boosted tree classifier outperformed

random forest, logistic regression, support vector machine (SVM), and extreme value regression

classifiers. The classifier was then applied to clonotype calls from TCR-seq data of multisite

HGSC samples to predict whether each clonotype was CD8-type or CD4-type. Clonotypes

assigned to either class with >80% probability were kept.

Clonotype distribution broadness across tumor samples within each patient was computed

with Simpsons diversity index on the vector of per-sample relative clonotype prevalence values

(R package vegan). The significance of differences in the distribution broadness between CD4+

and CD8+ associated TCRs was evaluated by computing the average of CD4+ and CD8+ TCR

distribution broadness values within each patient, and applying the Wilcoxon signed-rank test
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for paired data between the two groups.

3.2.3.9 Neoantigen analysis

HLA typing Four-digit HLA class I types were determined from WGS data for each multisite

and background patient (see Neoantigen depletion score) using OptiType [163]. OptiType was

run on the WGS bam of the normal sample.

Sample-level HLA LOH prediction For OV-AU and [3] patients, HLA class I loss-of-

heterozygosity (LOH) was called from tumor and matched normal bams as well as OptiType

4-digit HLA types using LOHHLA [52]. HLA LOH was called for an allele if the estimated

copy number (with binning and B-allele frequency settings) was < 0.5 and the significance of

allelic imbalance p < 0.1 (paired t test, no duplicate counts). A less stringent P -value threshold

(compared to [52]) was used due to the lower depth of the input bams.

Clone-level HLA LOH prediction We devised a Bayesian statistical extension to call

clone-level HLA LOH from multi-sample WGS data leveraging clonal phylogenies and clonal

compositions inferred from Clonal phylogenies & postprocessing as input. Inference is done

separately for each heterozygous HLA locus and patient. We define:
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T Tumor clone phylogeny
c = {cj : j ∈ C} Set of HLA locus copy number genotypes, one

for each clone
θ ”Stay” rate between copy number states
fs,j Prevalence of clone j in tumor sample s
rs,i,1 ∈ N0 Read depth at polymorphic site i for allele 1 in

sample s
rs,i ∈ N0 Total read depth at polymorphic site i in sample

s (sum of allele 1 and 2)
ρs Cellularity/tumor content of tumor sample s
ψs Ploidy of tumor sample s
ωs,i Allele 1 fraction at polymorphic site i in sample

s
νs Total copy number of HLA locus in sample s
µs,i Mean parameter for total read depth at site i in

sample s
Ms Multiplicative factor between WGS library sizes

of tumor sample s and the matched normal sam-
ple

Ni ∈ N0 Observed read depth at site i in matched normal
sample

L Set of all polymorphic sites between the 2 alleles
at a given HLA locus

S Set of all tumor samples for a given patient
C Set of all clones in a given patient

Ploidy and cellularity estimates are assumed to be known and equal to the estimates from

ReMixT [156]. We present our graphical model:
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c

Tθ

ωs,i

ρs

fs,j

rs,i,1

µs,i

rs,i

νs

Ni

Msψs

s ∈ S

i ∈ L

j ∈ C

We begin by defining the clone-specific copy number genotype at a given HLA locus cj as a

(cj,1, cj,2) tuple (allele 1 copy number and allele 2 copy number, respectively), where allele 1

can be arbitrarily assigned to either one of the 2 HLA alleles at a heterozygous locus without

loss of generality. Given a clonal phylogeny T , we assume that the latent clone-specific copy

number genotype at a given HLA locus evolves according to a Markov chain with transition rate

1− θ, ”stay rate” θ and the initial state distribution defined to be uniform across all possible

genotypes. The transition and stay rates can be described by an n-by-n transition matrix P (n

is the total number of genotype states) with diagonal entries Pii = θ and non-diagonal entries

satisfying
∑

j,j 6=i Pij = 1− θ. In addition, the total transition probability 1− θ is divided evenly

amongst all valid transitions (transitions from zero to non-zero allelic copy number are deemed

invalid, as an allele cannot be acquired from nothing).

We use Markov chain Monte Carlo (MCMC) to sample from the posterior of c, the assignment

of genotypes to clones described above. In what follows we describe our proposed distributions

for the observed data given c. We assume that, given c, the observed read depth of allele 1,

rs,i,1, is distributed as:

rs,i,1|c ∼ BetaBinomial(rs,i, ωs,i, σ),

where σ is the dispersion parameter and ωs,i, the fraction of allele 1 in tumor sample s (accounting
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for normal contamination), is given by:

ωs,i =
∑
j∈C

ρsfs,jcj,1 + (1− ρs).

To then anchor the total copy number estimates, we use data from the matched normal bam.

Given c, we assume that the total observed read depth at site i in sample s, rs,i, follows:

rs,i|c ∼ NegBinomial(µs,i, α),

where α is the hyperparameter of the Gamma-distributed rate parameter in the negative binomial,

and µs,i, the expected read depth of polymorphic site i, can be computed as:

µs,i =
νs

ψsρs + 2(1− ρs)
×Ms ×Ni,

with νs, the total copy number at the HLA locus under consideration for sample s, accounting

for normal contamination, given by:

νs =
∑
j∈C

ρsfs,j(cj,1 + cj,2) + 2(1− ρs).

The space of possible clonal genotypes cj is restricted to those with total copy number

≤ 6. The dispersion parameter σ for the beta binomial distribution is set to 200, and α for the

negative binomial distribution is set to 0.5.

We consider the following prior distribution for the stay rate of the genotype Markov chain:

θ ∼ TruncNormal(π, δ, 0, 1),

where 0 and 1 correspond to the lower and upper bounds of the truncated normal distribution,

and the mean and standard deviation π and δ were set to be relatively uninformative (0.75 and

0.4, respectively).

MCMC was run for 100,000 iterations, using 50,000 additional tuning iterations. HLA LOH

for a given clone j and allele a was called when ≥ 90% of the posterior trace supported cj,a = 0.

Identification of putative neoepitopes All 8 to 11-mer peptides overlapping nonsynony-

mous SNVs were considered candidate epitopes. MHC-I binding affinity was computed for every

mutant and corresponding wild-type allele using netMHCpan-3.0 [164]. Percentile binding scores

of ≤ 2%, where the mutant epitope had equal or better affinity than the wild-type epitope, were
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considered as putative neoepitopes. In cases of HLA LOH, predicted neoepitopes associated

with the lost HLA allele were excluded (for subclonal HLA LOH, a neoepitope was only excluded

if all clones containing the neoepitope also exhibited loss of the corresponding HLA allele).

Neoantigen depletion score Neoepitopes were predicted from nonsynonymous SNVs in a

background set of ovarian tumors consisting of 62 primary HGSC tumors from the Australian

Ovarian Cancer Study [158] and 59 additional HGSC tumors [3], following the methods described

above. Following similar methods to [165], the probability of generating at least one overlapping

neoepitope from each trinucleotide pattern was determined.

For each considered tumor sample (from the multi-site HGSC cohort), the expected rate of

neoepitope-generating SNVs was calculated from the trinucleotide context of synonymous SNVs

and the expected rate of nonsynonymous SNVs per synonymous SNV for each trinucleotide

pattern. Mathematically, define N̄s to be the expected number of nonsynonymous SNVs per

synonymous SNV with trinucleotide pattern s and B̄s to be the expected number of neoepitope-

generating SNVs per nonsynonymous SNV with pattern s. Then, for a given sample i, define Yi

as the set of synonymous SNVs and Ni the set of nonsynonymous SNVs. We can write:

Npred,i =

Yi∑
m

N̄s(m)

Bpred,i =

Yi∑
m

N̄s(m)B̄s(m)

where Npred,i and Bpred,i are the expected number of nonsynonymous SNVs and neoepitope-

generating SNVs in sample i under the null model, respectively. s(m) is the trinucleotide pattern

for synonymous SNV m. Denote Bobs,i to be the observed number of neoepitope-generating

SNVs in i, and Nobs,i = |Ni| the observed number of nonsynonymous SNVs in i. We then define

the neoantigen depletion score is:

Ei =

Bobs,i

Nobs,i

Bpred,i

Npred,i

Lower values of this score were interpreted as evidence of higher neoantigen depletion.

The within-patient relationship between the response, neoantigen depletion score and the

covariate, epithelial CD8+ TIL density was modeled with a Bayesian linear mixed model with

patient-specific random intercepts. Samples with fewer than 3 nonsynonymous mutations were
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excluded. The corresponding R code (using the MCMCglmm R package) was:

1 MCMCglmm( log ( observed neoant igen r a t i o / expected neoant igen r a t i o ) ˜ E CD8

re s ca l ed , random=˜ pat i en t id , data=data , fami ly = ” gauss ian ” , n i t t = 500000 ,

th in = 500 , burnin = 50000 , p r i o r = p r i o r )

where observed neoantigen ratio/expected neoantigen ratio corresponds to Ei, epithelial

CD8+ TIL density values were rescaled between 0 and 1, the residual covariance prior was set

to be relatively uninformative (V = 1 and nu = 0.002 in R), and likewise for the random effect

prior (V = 1, nu = 1, alpha.mu = 0, alpha.V = 1000 in R). For the fixed effect coefficient, an

uninformative prior with mean 0 and variance 1010 was used. Lack of autocorrelation in the

MCMC traces was confirmed with autocorr from the coda R package. Posterior densities of

parameter estimates were checked to ensure certain assumptions of the model (e.g. fixed effect

being Gaussian-distributed) were met. Reported significance values correspond to area under

the (right) tail of the posterior distribution of the fixed effect coefficient.

The across-patient relationship was computed similarly, but with no patient-specific intercept

term. To compute subclonal- or clonal-specific correlations, observed nonsynonymous mutations

(and transitively, neoepitopes) were classified based on the clonal phylogenies inferred in Clonal

phylogenies & postprocessing. Similar correlations between subclonal neoantigen depletion and

epithelial CD8+ TIL densities were observed using multilevel analysis (intrapatient Spearman’s

correlation p = 0.034 across the cohort and p = 6.1105 in patients containing samples with

highest epithelial CD8+ TIL densities; all between-patient p > 0.2).

Lymphocyte marker expression and HLA LOH CD3D, CD8A, and CD8B expression

values was extracted from Nanostring expression data for HGSC cases from [3] and RNA-seq

expression data from OV-AU cases (see RNA-seq analysis). As expression data from few genes

was available from the Nanostring data, expression values were modeled as a function of HLA

LOH using the nested ranks test (nestedRanksTest R package; gene expression as the dependent

variable, HLA LOH status as the explanatory variable, and cohort as a random effect). P -values

representing significance of the HLA LOH coefficient are shown in Figure 3.7H.

The corresponding R code for the nested ranks test is:

1 nestedRanksTest ( exp r e s s i on ˜ loh s t a tu s | cohort , data = data )
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3.2.3.10 Histologic image analysis

Cell classification and tissue segmentation QuPath v.0.1.2 (https://qupath.github.

io/) was used to detect epithelial tissue and presumptive lymphocytes on hematoxylin & eosin

(H&E) pathology slides. Briefly, slides were subjected to superpixel segmentation following

automated tissue detection, and intensity features calculated for superpixels. A random trees

classifier was trained (by P.T.H.) to distinguish epithelial (tumor) and stromal regions from

whitespace and other tissues using small sub-regions from 10 slides on the basis of 145 super-

pixel features to produce tissue segmentation masks. QuPaths cell detection algorithm was

subsequently used to detect individual cells, and an additional random trees classifier trained to

distinguish putative immune cells on the basis of 22 cellular features. Trained classifiers are

available from the authors.

Hotspot identification Cell location (coordinate) data for tumor epithelial regions from the

classifier were used as input for Getis-Ord Gi hotspot detection [166]. Getis-Ord Gi hotspots

denote regions with statistically significant clustering of a variable of interest. Getis-Ord Gi

hotspots were identified for each cell type (cancer and lymphocyte).

To identify hotspots, a grid composed of squares with side length s = 30 pixels was first

applied to each tissue section image. Only epithelial regions of each image were considered.

Grid squares devoid of cells were excluded from further analysis by applying a binary mask.

Neighborhood weights were computed using a neighborhood size of 4s [167]. Getis-Ord Gi

G∗i values for each grid square i were computed using localG from spdep. For each image,

permutation testing (400 random permutations of grid point counts) was applied to compute

empirical P-values of G∗i . Regions with associated pi < 0.05 were called as hotspots.

Samples with no identifiable epithelial regions from which to call hotspots were excluded.

Cancer-immune hotspot colocalization Spatial colocalization between cancer and immune

hotspots was computed with the following statistics [167]:

• fC = proportion of cancer cell hotspots that are also lymphocyte hotspots

• fI = proportion of lymphocyte hotspots that are also cancer cell hotspots

• fCI = fractional area of tumor occupied by colocalized cancer-lymphocyte hotspots

3.2.4 General statistical methods

Unless otherwise indicated, correlations between continuous data types were computed using

Spearman’s correlation coefficient and hierarchical clustering was performed with Ward’s method
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on pairwise Euclidean distances. Sample sizes (n) for statistical comparisons are shown in the

respective figures and supplemental figures. p < 0.05 was considered statistically significant (after

adjusting for multiple testing with the BH method). All Dunns test P -values were BH-adjusted.

All boxplot whisker ends correspond to Q1 (first quartile) - 1.5IQR (interquartile range) and Q3

+ 1.5IQR. Sample size estimation was not performed.

3.3 Results

3.3.1 High-Resolution Multi-site Profiling of Immune and Malignant Popu-

lations in the HGSC Tumor Microenvironment

We assembled a cohort of 212 tumor samples from 38 HGSC patients (Figure 3.1). Multiple

samples per patient were collected via primary debulking surgery from ovary, omentum, and other

distant metastatic sites (except some relapse samples from patients 7, 11, and 23; Table 3.1).

TIL densities were measured by multicolor IHC, cell-type colocalization with 20× histologic

images, clonotype diversity in T and B cell populations with T and B cell receptor sequencing

(TCR-/BCR-seq), total mRNA gene expression from the 770-gene Nanostring PanCancer Immune

Profiling Panel (Cesano, 2015) augmented with 39 molecular subtyping probes [150], mutational

signatures and clonal diversity of malignant cells from whole-genome sequencing (WGS; mean

depth: 86×), and deep amplicon sequencing (mean depth: 16 278×, median number of loci: 188,

Supplemental Table A.1) (Figure 3.2). Both WGS and immune data (IHC, TCR/BCR-seq,

or Nanostring) were obtained for 101 samples from 21 of 38 patients.
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Figure 3.1: (A and B) (A) Experiments conducted on each tumor sample. Hierarchical clustering
(Wards method on L2-distances) of TIL densities from (B) discovery cohort of 119 samples from 20
patients. (C) Additional cohort of 69 samples from 17 patients. Median expression of select immune
pathways also shown in (B). Heatmap values standardized and clipped between 2 and 2. Samples
with zero epithelial/stromal areas were removed. (D) Distribution of TIL subtypes by patient.
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Patient Age Stage Recurrence RFS Status OFS BRCA status

1 72 IIIC no N/A NED 71 screen negative

2 76 IIIC yes 12 DOD 45 screen negative

3 69 IIIC yes 25 AWD 73 screen negative

4 53 IIIA yes 50 AWD 71 screen negative

7(a) 47 IIIC yes 8 DOD 52 screen negative

8 62 IIIC no N/A NED 65

BRCA1 mut and

unclassified

BRCA2 variant

9 53 IIIB yes 5 DOD 32 unknown

10 74 IIIC no N/A NED 59 unknown

11(b) 53 IIIB yes 32 AWD 174 BRCA2 mut

12 62 IIIC yes 15 DOD 44 screen negative

13 80 IV no N/A NED 40 screen negative

14 58 IIIC yes 7 DOD 36 screen negative

15 61 IIIC no N/A NED 38 BRCA1 VUS

16 72 IIIC yes 23 AWD 35 screen negative

17 56 IIIC yes 19 AWD 32
BRCA2 and

MUTYH variant

18 56 IIIC yes 19 DOD 34 unknown

19 59 IIIA no N/A NED 32 screen negative

20 64 IIIA no N/A NED 10 unknown

21 79 IIIC yes 4 DOD 45 screen negative

22 73 IIIC yes 22 AWD 75

rare BRCA2

variant (2680GA)

likely benign

23(c) 65 IIIC yes 9 DOD 75 screen negative

24 40 IIIB yes 22 DOD 66 screen negative

25 46 IIIC yes 6 AWD 23 screen negative

26 55 IB no N/A NED 14 unknown

28 83 IIIC yes 4 AWD 16 unknown

29 19 IV yes 5 AWD 16 BRCA1 mut

30 38 IIIC no N/A NED 13 screen negative
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31 38 IIIC yes 10 AWD 16 BRCA1 mut

32 46 IIIC yes 1 AWD 14 screen negative

37 81 IIIB no N/A NED 12 unknown

38 80 IIC no N/A NED 6 unknown

41 68 IIIC no N/A NED 8 screen negative

42 54 IIIC no N/A NED 4 unknown

43 70 IIIC yes 5 AWD 20 screen negative

44 35 IIIC no N/A NED 6 unknown

45 79 IIIC no N/A NED 5 unknown

46 77 IIIC no N/A NED 6 unknown

47 45 IIIC no N/A NED 4 unknown

Table 3.1: Studied patients and samples. Age refers to age (in years) at diagnosis. Recurrence-free
survival (RFS) and overall survival (OFS) are indicated in months. BRCA status was determined
through clinical testing. Current disease status: NED, no evidence of disease; AWD, alive with
disease; DOD, dead of disease. (a): BrnM and BrnMA1 14 months, RPvM and BwlImA6 33 months
post-diagnosis; (b): Pv1, Rct1, Rct2 139 months post-diagnosis; (c): LOv1 14 months post-diagnosis
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Figure 3.2: Schematic Diagram Depicting Sample Collection, Experimental Modalities, and
Analysis Workflows Applied to the Data.

3.3.2 Tumor-Infiltrating Lymphocyte Subtypes Reveal Extensive Intrapa-

tient Variation in Immune Responses across Peritoneal Sites

We began by profiling 188 tumor samples from 37 patients with multicolor IHC for CD8+

T cells (CD3+CD8+), CD4+ T cells (CD3+CD8-), CD20+ B cells (CD20+), and plasma

cells (CD79a+CD138+). All but three patients were surveyed at multiple sites, providing an

unprecedented view of intrapatient spatial variation. CD8+ T cells were the most abundant TIL

type (0-1125.65 cells per high-powered field [HPF], median: 53.08), while CD20+ B cells were

the rarest (0-136.77 cells per HPF, median: 2.74). Densities of all TIL types were correlated

(Figure 3.3), with extensive variation across the cohort (Figure 3.3).
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Figure 3.3: (A) Correlations between overall TIL densities. Color indicates Spearmans , P-values
shown inside each cell. (B) Overall CD8+, CD4+, CD20+, and plasma cell densities across the
cohort. Bars colored by patient.

Using TIL densities as input features, we first analyzed a discovery cohort of 119 samples

from 20 patients. Hierarchical clustering revealed three major TIL subtypes: N-TIL (tumors

sparsely infiltrated by TILs), S-TIL (tumors dominated by stromal TILs), and ES-TIL (tumors

with substantial levels of both epithelial and stromal TILs) (Figure 3.1 and Supplemental

Table A.2). Based on orthogonal Nanostring probe counts, gene expression values for immune-

associated pathways, including cytotoxicity, cytokines, and T cell- and B cell-associated genes,
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were comparable between S-TIL and ES-TIL but lower in N-TIL (Figure 3.1). The three

TIL subtypes mapped to previously described gene expression subtypes (C1, C2, C4, and C5)

of HGSC [150]. N-TIL was enriched for C4 and C5 tumors (p < 10−5, Fishers exact test),

while S-TIL was overrepresented for C1 tumors (p < 0.01, Fishers exact test) and ES-TIL

for C2 tumors, respectively (p < 10−5, Fishers exact test; Figure 3.1 and Supplemental

Table A.2), suggesting previously reported HGSC gene expression subtypes [14, 101] largely

reflect immune cell content. We analyzed IHC data from an additional cohort of 69 samples

from 17 patients and observed a similar N-TIL, S-TIL, and ES-TIL distribution (Figure 3.1),

indicating reproducibility of the TIL subtypes. Among patients with ≥2 treatment-naive samples,

14 of 31 patients harbored only one TIL subtype: seven were N-TIL only, six were ES-TIL only,

and one was S-TIL only. The remaining 17 of 31 patients harbored tumors from more than

one TIL subtype (Figure 3.1), and five patients harbored samples from all three subtypes,

indicating extensive variation in immune response within patients.

While the ES-TIL pattern suggests active cytolytic TIL response against tumor cells, the

presence of TILs in an epithelial region does not necessarily indicate active engagement with

malignant cells. We therefore used histologic image analysis to profile microscopic spatial

relationships between cancer cells and TILs. For each sample, we leveraged hematoxylin

and eosin (H&E) images to identify cancer cell and lymphocyte “hotspots” within the tumor

epithelium–i.e., regions of local aggregation relative to epithelial cellular density (Figure 3.4).

We computed three measures of cancer-lymphocyte hotspot colocalization [167]: fC (the fraction

of cancer cell hotspots that are lymphocyte hotspots); fI (the fraction of lymphocyte hotspots

that are cancer cell hotspots), and fCI (fractional tissue area occupied by colocalized cancer-

lymphocyte hotspots) (Supplemental Table A.2). ES-TIL tumors exhibited high levels of

overlap between cancer and lymphocyte hotspots, while S-TIL samples contained relatively

low overlap (all p < 0.05, Kruskal-Wallis test, Figure 3.4). Thus, in S-TIL tumors, the rare

immune cells that enter epithelial compartments appear to fail to engage with tumor cells,

possibly due to lack of recognition. Although N-TIL tumors have negligible levels of TIL, they

nonetheless showed occasional immune cells that could be evaluated by hotspot analysis. Where

measureable, N-TIL tumors showed similar levels of colocalization as ES-TIL (Figure 3.4).
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Figure 3.4: (A) Epithelial cancer cell and lymphocyte hotspots for representative N-, S-, and
ES-TIL examples. (B) Histology of a cancer cell hotspot. Yellow arrow: cancer cell. (C) Histology
of a colocalized cancer-lymphocyte hotspot. Blue arrow: lymphocyte. (D) Comparison of epithelial
cancer-lymphocyte hotspot colocalization between TIL subtypes. P -values from Kruskal-Wallis test;
post hoc comparisons (Benjamini-Hochberg adjusted) from Dunn’s test. Whisker ends correspond to
Q1 -1.5*IQR and Q3 +1.5*IQR.
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3.3.3 Evidence for Purifying Malignant Clonal Selection at Tumor Sites with

High Epithelial Lymphocyte Infiltration

We next evaluated whether regional variation in TIL subtypes provided insight into the evolution-

ary trajectories and dissemination patterns of malignant clones. Using WGS on cryopreserved

tissues (102 samples from 21 patients, of which 31 from 7 patients were previously described in

[29]), we profiled somatic single-nucleotide variants (SNVs), allele-specific copy number, and

rearrangements (Supplemental Table A.2) as markers of malignant clones. In addition, we

performed deep amplicon sequencing on 97 samples from 14 of these patients (66 frozen and

31 formalin-fixed samples) to calculate clonal phylogenies and the clonal composition of each

sample (Figure 3.5). We then related quantitative attributes of malignant clone composition

to the N-TIL, S-TIL, and ES-TIL subtypes.

89



Figure 3.5: Patients are ordered by significance of the association between BCR repertoire
and clonal composition dissimilarities. Chords denote shared clonotypes, width proportional to
clonotype count, colored by publicity (number of samples containing a clonotype). Shared clonotypes:
publicity≥2, private clonotypes: publicity = 1. Arc length (along circumference) is proportional
to total clonotype count. Tumor clone composition and phylogenies shown external to each circle.
Samples without BCR-seq data shown separately below each circle. TIL subtypes indicated by N
(N-TIL), S (S-TIL), and ES (ES-TIL) labels. Uncorrected Mantel’s test P -values between BCR
repertoire dissimilarity and clonal dissimilarity shown below patient labels.
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For each sample, we computed three continuous measures of malignant clone complexity:

mixture entropy (the mixture distribution of clones present within a sample), clone divergence

(the maximum phylogenetic distance between clones present within a sample; see [29]), and

heterogeneity index (the mean phylogenetic distance between a randomly selected pair of

clones within a sample, weighted by abundance). We also computed an orthogonal measure

from WGS directly with copy-number analysis ([156]; Supplemental Table A.2). All four

measures of ITH were correlated (all p ¡ 0.1, significance of Spearman ρ; Figure 3.6). For

quality control, we confirmed entropy, clone divergence, and heterogeneity index were not

correlated with tumor purity (all p > 0.2; Figure 3.6). We evaluated the associations between

measures of malignant clone complexity and the three TIL subtypes over all treatment-näıve

samples. ES-TIL samples were lower for all four ITH measures relative to S-TIL and N-TIL

samples (Figure 3.7; accounting for tumor purity in the subclonal copy-number comparison)

with mixture entropy, heterogeneity index, and subclonal copy number statistically significant.

Accordingly, clonally pure tumors had the highest epithelial CD8+ TIL densities (Figure 3.6).

Despite the association between TIL and ITH, clonal similarity between intrapatient sites

was not associated with TIL subtype (p > 0.3, nested ranks test; Figure 3.6). For example,

omentum sites 1 and 2 from patient 17 had comparable clonal composition, while ovary site 1

contained different clones (Figure 3.5); however, omentum site 1 was ES-TIL subtype, whereas

omentum site 2 and ovary site 1 were N-TIL subtype (Supplemental Table A.2). Together,

these data are consistent with epithelial TIL abundance as a negative determinant of regional

malignant clonal complexity.
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Figure 3.6: (A) Correlations between ITH measures. Asterisks indicate significance of Spearmans
correlation (legend shown in D). (B) Correlations between tumor cellularity and ITH. P -values of
Spearmans correlation are shown. (C) Epithelial CD8+ TIL densities for pre-treatment samples,
stratified by clonal mixture type. P-value from the Kruskal-Wallis test shown. Whisker ends
correspond to Q1 - 1.5*IQR and Q3 + 1.5*IQR. Significance of post hoc Dunn’s test shown (legend
in D). (D) Degree of similarity in tumor clone composition for pre-treatment samples with different
or identical TIL subtypes. Subtype comparisons were made within patients; mean similarity across
all comparisons was used. Lines connect comparisons made within the same patient. Nested ranks
test P -value is shown. Whisker ends correspond to Q1 -1.5*IQR and Q3 +1.5*IQR. (E) Correlation
matrix between TIL densities and Nanostring-derived expression of inhibitory immune checkpoint
genes. Asterisks indicate significance of Spearmans correlation.
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Figure 3.7: (A) Clonal measures of ITH by TIL subtype. p values from Kruskal-Wallis tests;
asterisks indicate post hoc significance (Benjamini-Hochberg adjusted) from Dunns test. Whisker
ends correspond to Q1 -1.5*IQR and Q3 +1.5*IQR. (B) Subclonal copy-number proportion by TIL
subtype. P value from ANOVA, controlling for cellularity. Asterisks indicate post hoc significance
from Tukey’s range test. Whisker ends correspond to Q1 -1.5*IQR and Q3 +1.5*IQR. (C) Ratio
between observed and expected neoantigen rates for pre-treatment samples in patients with highest
sample-level epithelial CD8+ densities (indicated by bar color). (D-G) For patients with subclonal
HLA class I LOH, (left) clonal phylogeny showing HLA LOH events and (right) logR values for
samples with and without HLA LOH based on clonal composition. a:RPvM and LOv1 did not have
IHC data. (Bottom) Clonal composition and epithelial CD8+ density of each sample. (D) Patient
1. (E) Patient 15. (F) Patient 7. HLA-C*07:01:01:01 was not as visually depleted in RPvM due
to low cellularity (38%). (G) Patient 13. Sample labels defined in Supplemental Table A.2. (H)
Expression of lymphocyte markers in cases with none or any HLA LOH for [3] (Nanostring) and
OV-AU (RNA sequencing) cohorts. P values from nested ranks test. Whisker ends correspond to
Q1 -1.5*IQR and Q3 +1.5*IQR.

The negative association between epithelial TIL densities and malignant clone diversity could be

explained by clonally complex tumors suppressing development of ES-TIL microenvironments

and/or tumor clones undergoing immune-mediated purifying selection in the presence of high

epithelial TIL density. In the latter scenario, subclonal (non-ancestral) neoepitopes might serve

as targets of T cell recognition and hence show evidence of depletion at ES-TIL sites. To test this,

we used NetMHCpan [164] to computationally predict neoepitopes from nonsynonymous somatic

SNVs (Supplemental Table A.3), categorizing each neoepitope as clonal or subclonal through

phylogenetic analysis. For each sample, we then quantified neoantigen depletion by comparing

observed to expected (computed on an independent cohort of 121 primary HGSC samples)

neoantigen rates. Within patients, samples with higher epithelial CD8+ density exhibited higher

levels of subclonal neoantigen depletion (lower observed/expected subclonal neoantigen rate,

p = 0.09, linear mixed model; Supplemental Table A.3), but not clonal neoantigen depletion

(p > 0.3), compared to other samples from the same patient. This association was pronounced

in patients containing samples with the highest epithelial CD8+ TIL densities (p = 0.001, linear

mixed model; Figure 3.7). In contrast, no significant association was observed between stromal

CD8+ TIL density and clonal or subclonal neoantigen depletion (all p > 0.2, linear mixed

model). Thus, samples with high epithelial CD8+ TILs show evidence of immune editing of

subclonal neoantigens, raising the possibility that immune-driven purifying selection underlies

the observed reduction in malignant cell diversity at TIL-rich sites.

In tumors with high epithelial CD8+ TIL densities, we postulated that the few remaining

tumor clones might have avoided immune-related negative selection through clonal expansion of

cells lacking neoantigen- or other tumor antigen-presenting HLA alleles. We used a Bayesian

statistical extension of the LOHHLA algorithm [52] to analyze WGS data for clone-specific HLA
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class I allele loss. Of 14 patients evaluated, we identified four patients harboring clonal HLA

LOH and four with subclonal HLA LOH (one patient had both; Supplemental Table A.4).

In three out of four patients with subclonal HLA LOH, the samples with the highest epithelial

CD8+ TIL densities contained tumor clones with subclonal HLA LOH (Figure 3.7), including

two of the patients (1 and 15) that demonstrated subclonal neoantigen depletion. An exception

was patient 13, where subclonal HLA LOH was observed despite all samples having low epithelial

CD8+ TIL density (Figure 3.7; no samples were ES-TIL). Nevertheless, these findings suggest

that tumor clones at ES-TIL sites have, in some cases, escaped immune clearance by somatic

genomic loss of HLA haplotypes. We next examined the prevalence of HLA LOH in orthogonal

WGS external cohorts [3, 158]. HLA LOH was found in 33.3% of samples (OV-AU: 34.7%,

Wang: 32.1%) and was associated with significantly higher expression of lymphocyte markers

(Figure 3.7), establishing a link between HLA LOH and higher TIL levels.

To provide context, we also considered other known mechanisms of immune escape, including

anatomic site, disruption of antigen presentation machinery [168], and expression of immuno-

suppressive factors [165, 169]. TIL subtype was not significantly associated with any specific

anatomic location (Fishers exact test, p > 0.05, Supplemental Table A.2), and no point

mutations, indels, or copy-number losses in antigen presentation machinery molecules were

observed in ES-TIL samples. However, consistent with expectation from previous reports [165],

we found that inhibitory immune checkpoint molecules were generally upregulated in tumors

with high epithelial CD8+ TIL density (Figure 3.6).

3.3.4 T Cell, but Not B Cell, Clonotypes Show Evidence of Tumor Clone

Tracking

We next investigated whether T and B cell clonotypes associate with tumor clones. We applied

TCR β chain and BCR heavy-chain sequencing to total RNA from 116 samples (27 patients) and

defined the clonotype-level composition of T and B cell populations in each sample (Figure 3.8

and Figure 3.9, Supplemental Table A.2). TCR diversity was positively correlated with

IHC-based CD8+ and CD4+ TIL densities (all Spearman p < 10−5; Figure 3.9). Similarly,

BCR diversity was positively correlated with CD20+ and plasma cell densities (all Spearman

p < 0.01; Figure 3.9). S-TIL and ES-TIL tumors had significantly more diverse TCR and BCR

repertoires than N-TIL tumors (Figure 3.8 and Figure 3.9) and a higher proportion of rare

clonotypes (Figure 3.9). None of the four ITH measures were significantly associated with

TCR or BCR diversity across treatment-naive samples (all Spearman p > 0.3), indicating that

diverse malignant populations do not recruit similarly diverse TIL repertoires.
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Figure 3.8: (A) Number of unique TCR clonotypes, prevalences of top 10 clonotypes (gray = all
others), and CD8+ and CD4+ TIL density for each sample. (B) Comparison of unique TCR and
BCR clonotype counts between TIL subtypes. p values from Kruskal-Wallis tests; asterisks indicate
post hoc significance (Benjamini-Hochberg adjusted) from Dunn’s test. (C) Distribution of pairwise
TCR similarity for each patient. Whisker ends correspond to Q1 -1.5*IQR and Q3 +1.5*IQR. (D
and E) Scatterplot of mean intrapatient TCR similarity and (D) CD8+ TIL density and (E) CD4+
TIL density. P value of Spearman ρ shown. (F) Mean repertoire broadness for CD8+ and CD4+
type clonotypes in each patient. P value from Wilcoxon signed-rank test. Post-treatment tumors
excluded in (B), (C), (D), (E), and (F).
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Figure 3.9: (A) Unique BCR clonotype count, relative frequencies of the top 10 BCR clonotypes
(gray = all other clonotypes), CD20+ and plasma TIL density for each sample. (B and C) Correlations
between (B) overall CD8+ and CD4+ densities and TCR diversity; (C) overall CD20+ and plasma
densities and BCR diversity. Diversity was quantified as the (1) number of unique clonotypes and
(2) the entropy of the clonotype abundance distribution. BH-adjusted P -values of Spearmans are
shown. (DF) TCR and BCR repertoire diversity across TIL subtypes. Diversity was measured by
(D) Shannon entropy of clonotype prevalences, (E) Efron-Thisted index, and (F) D50 index. Whisker
ends correspond to Q1 - 1.5*IQR and Q3 + 1.5*IQR. P -value from Kruskal-Wallis tests shown;
asterisks indicate post hoc Dunn’s test significance. (G) Correlation between mean intrapatient TCR
and BCR repertoire similarity. Spearman correlation P-value is shown. (H) Correlation between
mean intrapatient BCR repertoire similarity and CD20+ TIL density. P -value of Spearman ρ
is shown. (I) Correlation between mean intrapatient BCR repertoire similarity and plasma cell
density. P -value of Spearman ρ is shown. (J) Consistency between CD8+/CD4+ ratios from
immunohistochemistry and from TCR-based prediction. P -value of Spearman ρ is shown.

We next ascertained the degree of homogeneity (similarity) between TCR and BCR repertoires

across spatial samples within patients. This revealed marked variation in both intrapatient TCR

and BCR similarity across the cohort (Figure 3.8 and Figure 3.9). Considering patients with

at least three samples, the extent of intrapatient TCR and BCR repertoire similarities were

correlated (Spearman p < 0.1), but with notable exceptions (Figure 3.9). Patient 15 had high

TCR similarity (ranked 2nd out of 20 patients), but not BCR similarity (14th), while patients 10

and 21 had high BCR similarity (3rd and 5th), but not TCR similarity (15th and 20th). Mean

intrapatient BCR similarity was not significantly correlated with IHC-based CD20+ or plasma

cell density (all Spearman p > 0.2, Figure 3.9). However, mean intrapatient TCR similarity was

strongly associated with CD8+ (Spearman p < 0.01), but not CD4+, TIL density (Figure 3.8),

suggesting that CD8+ TILs were more broadly distributed (shared) across tumor sites compared

to CD4+ TILs. To test this, we trained a classifier to separate TCRs as CD8+ type or CD4+

type on the basis of V/J genes and physicochemical properties of the hypervariable domain.

The ratio of CD8+-/CD4+-type TCRs was correlated with the ratio of CD8+/CD4+ densities

by IHC (Spearman p < 0.01; Figure 3.9). Corroborating our predictions, CD8+-type TCRs

were significantly more broadly distributed than CD4+-type TCRs (p < 0.001; Figure 3.8).

Having established that TCR-/BCR-based immune profiles vary across space, we asked how this

variation is related to the spatial distribution of tumor clones. Pairwise T cell repertoire similarity

was significantly correlated with malignant clone composition similarity in 7 out of 13 patients

(Figure 3.10). Importantly, this relationship was significant in 5 of 6 patients with the highest

epithelial CD8+ TIL densities (patients 1, 2, 9, 15, and 17), consistent with T cell clonotypes

spatially tracking tumor clones in patients with high epithelial CD8+ TILs. This association

held in the same six patients when considering only major TCR clonotypes (most abundant

clonotypes constituting the top 50% of reads within each patient), but was only significant in
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patients 2, 9, and 12 when considering minor clonotypes (all other clonotypes), indicating that

the most abundant clonotypes drove this effect. In contrast, pairwise BCR similarity was not

significantly correlated with tumor clone similarity in any patient (Figure 3.5), suggesting an

absence of spatial tracking between B cells and tumor clones.
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Figure 3.10: Patient 2 aside, cases ordered by significance of association between TCR repertoire
and clonal composition dissimilarities (uncorrected Mantel’s test p values). Chords denote shared
clonotypes, width proportional to clonotype count, colored by publicity (number of samples containing
a clonotype). Shared: publicity ≥ 2; private: publicity = 1. Purple arrow: chord denoting clonotypes
shared only between right ovary sites 1 and 2. Green arrow: clonotypes shared only between omentum
sites 1 and 2. Tumor clone composition and phylogenies next to each circle. TIL subtypes indicated
as N (N-TIL), S (S-TIL), and ES (ES-TIL). Patient 7 excluded, as only two samples had TCR and
tumor clone data.
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3.3.5 Mutation Signatures Prognostically Associate with Patient-Level Im-

munologic Features

We next investigated interaction of malignant and immune infiltration from the perspective of

mutational processes operating in HGSC. We previously identified two prognostically relevant

mutation signature-associated subtypes: H-HRD and H-FBI [3]. Here, we explored whether

those subtypes could explain the observed variation in immune infiltration within and between

patients. We pooled WGS data from our 21 cases with 195 additional single-site ovarian cancer

cases (133 from [3] and 62 from OV-AU in the International Cancer Genome Consortium [ICGC])

and applied a novel multimodal correlated topic model (MMCTM) [26], identifying six SNV and

seven rearrangement signatures (Figure 3.11 and Supplemental Table A.5). Hierarchical

clustering by signature proportions identified four major clusters (Figure 3.12, Supplemental

Table A.5): one subtype (HRD-DEL) dominated by the point mutation signature associated

with homologous recombination deficiency (P-HRD) along with a short deletion signature

(R-SDEL) associated with BRCA2 mutations [159], a second subtype (HRD-DUP) with P-HRD

and a short tandem duplication signature (R-SDUP) associated with BRCA1 mutations [159], a

third subtype (FBI) characterized by an FBI rearrangement signature (R-FB) associated with

breakage-fusion-bridge [3], and a fourth, minor subtype distinguished by medium and large

tandem duplications (TDs) (R-MDUP and R-LDUP, respectively) associated with CDK12 point

mutations [25, 26].
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Figure 3.11: (A and B) Jointly inferred SNV and rearrangement signature profiles from MMCTM.
Point mutation signatures: P-AGE, age associated; P-HRD, homologous recombination deficiency;
P-APOBEC, APOBEC associated; P-MMR-1 + P-MMR-2, mismatch-repair associated. P-UM:
ultramutator-associated (virtually absent in HGSC). Rearrangement signatures: R-TDUP, tandem
duplications; R-SDUP, short duplications; R-MDUP, medium length duplications; R-LDUP, long
duplications; R-SDEL, short deletions; R-MDEL, medium length deletions; R-FB, foldback inversions;
R-TR, translocations. Pentanucleotide contexts are shown for each SNV signature and relative
prevalences of deletions, duplications, inversions, foldback inversions, and translocations are shown
for each rearrangement signature. For rearrangements, microhomology length is labeled. (C)
Standardized proportions of each mutation signature for multisite HGSC, OV-AU, and HGSC [3]
samples, showing clustering of samples from the same patient. (D) Standardized proportions of each
mutation signature for multisite HGSC, OV-AU, and HGSC [3] samples, where only non-ancestral
mutations were considered for the multisite HGSC cohort. Heatmap values were clipped between 4
and 4.
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Figure 3.12: (A) Signature proportions in HGSC cases standardized and clipped from 4 to 4.
Dendrogram computed with Ward’s method on Pearson correlation dissimilarities. ITH: multisite
cohort from this study. (B) Fractions of ES-none, ES-mixed, and ES-pure patients across mutational
subtypes. (C) Expression of select immune-associated pathways across mutational subtypes in
OV-AU. P values (Benjamini-Hochberg adjusted) from Kruskal-Wallis test; asterisks indicate post
hoc significance (Benjamini-Hochberg adjusted) from Dunn’s test. Survival analysis of 433 TCGA
patients. Whisker ends correspond to Q1 -1.5*IQR and Q3 +1.5*IQR. (D) Hazard ratios, 95%
confidence intervals, and P values from Cox regression of overall survival. Interaction terms indicated
by colons; e.g., CTX:No AMP: effect of cytotoxicity in No AMP subtype. (E) Differences in overall
survival between FBI-HLAMP subgroups for tumors with low/high cytotoxicity. P values from
log-rank test.

Using this grouping of samples, we asked how immune response characteristics co-segregated

with mutational signatures. Unlike TIL subtypes, mutational subtypes were largely invariant

within patients (Figure 3.11), indicating that mutational processes cannot explain intrapatient

heterogeneity in TIL subtypes. We next asked whether mutational subtypes related to the

mixture of TIL subtypes within each patient. Focusing on the ES-TIL subtype, we categorized

patients with multi-sample IHC data as ES-none (no ES-TIL samples), ES-mixed (both ES-TIL

and N-TIL/S-TIL samples), or ES-pure (all samples ES-TIL). The HRD subtypes contained the

only three ES-pure patients (out of 12 HRD patients), although this did not reach significance

with respect to the other mutational subtypes (Fishers exact test, p = 0.23; Figure 3.12).

Expression values of immune-associated pathways [149] for 54 OV-AU cases revealed that

cytotoxicity, antigen processing, cytokine, and T cell markers were highest among HRD tumors

(Figure 3.12), concordant with similar findings in ER+ breast cancer [170] and among BRCA1-

mutated tumors in HGSC [34]. Relative to HRD tumors, TD tumors had similar expression

of immune markers, whereas FBI tumors were significantly depleted of these (Figure 3.12).

Corroborating these findings, differential expression analysis of OV-AU cases revealed that

antigen processing, TCR/BCR signaling, cytotoxicity, and cytokine pathways were upregulated

in HRD and TD relative to FBI (Q < 0.01), while none of these were differentially expressed

between HRD and TD (Figure 3.13 and Supplemental Table A.6).
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Figure 3.13: Pathway annotations derived from KEGG. Fold change indicated as, e.g., HRD
versus TD: mean log2 fold change in expression from HRD to TD (> 0 = higher in HRD). Q-values
computed with the BH procedure; Q < 0.01 was considered significant. Selected immunologic
pathways are highlighted; significant hits are additionally labeled.

Colocalized foldback inversions and focal high-level amplifications (HLAMPs), thought to be

reflective of breakage-fusion-bridge, have been associated with poor outcomes in HGSC [3]. We

asked whether immune activity could be used to further stratify foldback-enriched tumors into
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subgroups with distinct survival outcomes. Using gene expression data for 433 ovarian cystade-

nocarcinoma cases from the Cancer Genome Atlas (TCGA [14]; Supplemental Table A.7),

we jointly modeled the effects of colocalized foldback-HLAMP events and cytotoxicity expression

with a Cox proportional hazards model, controlling for age of diagnosis and therapeutic regimen.

In agreement with [3], high levels of colocalized foldback-HLAMP events were associated with

significantly shorter overall survival (hazard ratio: 1.64, 95% CI: 1.06–2.52, p < 0.05; Fig-

ure 3.12). The association between cytotoxicity and survival differed between FBI-HLAMP

groups (p < 0.05, likelihood ratio test between Cox models with and without cytotoxicity ×
FBI-HLAMP interaction). In cases with no HLAMP events, cytotoxicity was significantly associ-

ated with a decreased hazard ratio (0.52, 95% CI: 0.29–0.92, p < 0.05; Figure 3.12). However,

among cases with colocalized foldback-HLAMP events, the hazard ratio for cytotoxicity was

not significant (FBI-AMP low: 0.97, 95% CI: 0.71–1.34, p > 0.3; FBI-AMP high: 1.24, 95% CI:

0.91–1.69, p > 0.1; Figure 3.12), suggesting that HLAMP-positive foldback-containing tumors

harbor prognostic effects that are independent of immune response. We then median-stratified

cases into low- and high-cytotoxicity groups. Low FBI was associated with significantly longer

overall survival among tumors with high cytotoxicity (log-rank p < 0.05; Figure 3.12), but not

low cytotoxicity (log-rank p > 0.2; Figure 3.12). Together, the covarying effects of immune

activity and mutational processes suggest a combinatorial prognostic effect with high immune

activity and low prevalence of FBIs leading to the best outcomes, while FBI-bearing patients

have poor outcomes even in the presence of high immune activity.

3.4 Discussion

Our results illuminate evolutionary properties at the malignant-immune interface of HGSC. In

patients with the highest epithelial TIL densities, our data are consistent with active pruning of

malignant cell diversity by TIL through subclonal neoepitope recognition, resulting in expansion

of clones harboring neoantigen loss and/or HLA LOH. The underlying mechanism likely involves

tracking of tumor clones across peritoneal space by T cell clones, but not B cell clones. As such,

immune infiltrates impose selective constraints, shaping patterns of malignant spread and clonal

diversity in HGSC. Our findings do not exclude the possibility that T cells can also recognize

clonal neoepitopes [171]; however, subclonal neoepitopes, which have been reported to have

higher predicted immunogenicity than clonal neoepitopes [147], may be under stronger negative

selection. Moreover, depletion of clonal neoantigens could result in complete tumor elimination

and therefore go clinically undetected.

The presence of extensive intrapatient immune variation prior to treatment highlights potential
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shortcomings of prognostic stratification and study of the immune microenvironment from

single biopsies. The widespread multi-site variation we observed suggests that even a single site

harboring relative immune privilege may be sufficient to engender resistant disease, regardless of

active immune responses in distal intraperitoneal regions. We suggest immunologically sheltered

havens may plausibly act as reservoirs of clonal diversity from which malignant clones impacting

disease relapse might emerge. As a preliminary illustrative example, ES-pure patients had better

outcomes (5 of 6 no evidence of disease [NED] or alive with disease [AWD], 5 of 6 platinum

sensitive, median progression-free survival [PFS] for relapsed patients was 19 months) than

ES-mixed and ES-none patients (8 of 11 and 11 of 14 NED or AWD, 7/9 and 7/11 platinum

sensitive, median PFS for relapsed patients was 9.3 and 7.1 months, respectively).

Our data show for the first time a prognostically relevant interaction between mutational

processes and immune response in HGSC. Notably, foldback inversions associate with poor

outcomes, even in highly cytotoxic tumor microenvironments. Thus, in contrast to point

mutations resulting from mismatch repair deficiency [48], FBIs likely represent a class of non-

immunogenic genomic aberrations. Conversely, our findings also provide context for explaining

superior outcomes observed in BRCA1- and BRCA2-mutated HGSC [34]. In contrast to previous

reports that BRCA1 disruption, but not BRCA2 disruption, is associated with elevated TILs

[34, 172], we observe comparably high immune activity between BRCA1-associated (HRD-

DUP), BRCA2-associated (HRD-DEL), and TD subtypes. Shared deficiencies in homologous

recombination between HRD and TD subtypes [173] may result in patterns of rearrangements

or point mutations [3] responsible for eliciting these immune responses [170].

Our study provides context for clinical trials investigating various classes of immunotherapy

in ovarian cancer (e.g., immune checkpoint blockade, adoptive T cell transfer, neoepitope

vaccination, combination immunotherapy with PARP inhibition). A recent case study tracking

immune response over time in a HGSC patient with a remarkable clinical trajectory [147]

demonstrated that spatiotemporal variation of the immune microenvironment relates specifically

to treatment sensitivity of malignant clones. We reveal that immune-microenvironment spatial

variation exists prior to treatment and is prevalent in the HGSC patient population. Given that

efficacy of PD-1 axis blockade hinges on pre-existing adaptive immunity [174], immunologically

privileged sites on an otherwise highly infiltrated background may explain the limited success

of immunotherapy in HGSC to date [49, 50]. While some tumors contain abundant TILs,

lack of cancer cell-lymphocyte colocalization and reduced tumor-immune engagement in S-TIL

sites may result from a failure of immune recognition or region-specific barriers to infiltration.

Consequently, TIL abundance alone is an insufficient predictor of active immune response. Even

at sites patterned by extensive epithelial TILs, neoantigen depletion and apparent positive
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selection of clones harboring HLA LOH may render checkpoint blockade ineffective.

Despite these challenges, our findings inform on several potential therapeutic solutions. While

FBI cases exhibit poor prognostic profiles independently of immune properties, HRD cases,

typically associated with fewer foldback inversions, likely represent optimal candidates for

immunotherapy approaches. Thus, mutational processes considered in conjunction with immune

properties will aid in interpretation of newly initiated clinical trials examining combination

PARP inhibition with checkpoint-blockade approaches. Furthermore, if obstacles to infiltration

at immunologically privileged sites can be surmounted, our findings hint at the tantalizing

potential that such tumor sites may represent targetable cancer cell populations, owing to their

limited neoantigen and HLA depletion at baseline.

As the cancer evolution field progresses toward a more rigorous understanding of the fitness of

heterogeneous clones within disease spectra and over temporal dimensions [175], external selective

pressures imposed by the immune system must be considered as highly relevant factors. Here we

show that high-resolution measurement of the immune microenvironment together with clonal

decomposition analysis is tractable and yields novel insight into forces shaping malignant cell

diversity and intraperitoneal spread. Broadly disseminated intraperitoneal disease at diagnosis

in HGSC remains a formidable clinical problem. Our study informs on how regional variation

at the interface of immunological and cancer cells controls dissemination and diversification of

clones and simultaneously identifies microenvironmental and malignant cell properties to exploit

in future immuno-oncologic therapeutic strategies for HGSC.

109



Chapter 4

Probabilistic cell type assignment of

single-cell transcriptomic data

reveals spatiotemporal

microenvironmental dynamics in

human cancers

4.1 Introduction

Gene expression observed at the single-cell resolution in human tissues enables studying the cell

type composition and dynamics of mixed cell populations in a variety of biological contexts,

including cancer progression. Cell types inferred from single-cell RNA-seq (scRNA-seq) data are

typically annotated in a two-step process, whereby cells are first clustered using unsupervised

algorithms and then clusters are labeled with cell types according to aggregated cluster-level

expression profiles [176]. Myriad methods for unsupervised clustering of scRNA-seq have been

proposed, such as SC3 [177], Seurat [178], PCAReduce [179], and PhenoGraph [180], along with

studies evaluating their performance across a range of settings [181, 182]. However, clustering

of low-dimensional projections may limit biological interpretability due to i) low-dimensional

projections not encoding variation present in high-dimensional inputs [183] and ii) overclustering

of populations that are not sufficiently variable.

Furthermore, even in the context of robust clustering which recapitulates biological cell states

or classes, few principled methods for annotating clusters of cells into known cell types exist. In

contrast to unsupervised statistical frameworks, this latter step is a supervised, or classification

problem. Typical workflows employ differential expression analysis between clusters to manually

classify cells according to highly differentially expressed markers, aided by recent databases
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linking cell types to canonical gene-based markers [184]. In situations where investigators wish

to identify and quantify specific cell types of interest with known marker genes across multiple

samples or replicates, such workflows can be cumbersome, and differences in clustering strategies

can affect downstream interpretation [181]. Alternatively, cell types may be assigned by gating

on marker gene expression, but this strategy is difficult to implement in practice as (i) gating

is difficult for more than a few genes and relies on knowledge of marker gene expression levels

and (ii) cells that fall outside these gates will not be assigned to any type, rather than being

probabilistically assigned to the most likely cell type.

Another approach to cell type annotation is to leverage ground-truth single-cell transcriptomic

data from labeled and purified cell types to establish robust profiles against which new data can

be compared and classified. For example, scmap-cluster [185] calculates the medioid expression

profile for each cell type in the known transcriptomic data, and then assigns input cells based on

maximal correlation to those profiles. However, this approach requires existing scRNA-seq data

for purified cell populations of interest. Given the technical effects associated with differences in

experimental design and processing, expression profiles for reference populations may not be

directly comparable to those for other single-cell RNA-seq experiments [186].

We assert that statistical cell type classification approaches leveraging prior knowledge in the

literature (or from experiments) will be an effective complement to unsupervised approaches for

quantitative decomposition of heterogeneous tissues from scRNA-seq data. Therefore, to address

the analytical challenges inherent in both clustering and mapping approaches, we developed

CellAssign, a scalable statistical framework that annotates and quantifies both known and de

novo cell types in scRNA-seq data. CellAssign automates the process of annotation by encoding

a set of a priori marker genes for each cell type. The statistical model then classifies the most

likely cell type for each cell in the input data, using a marker gene matrix (cell type-by-gene).

The model allows for flexible expression of marker genes, assuming that marker genes are more

highly expressed in the cell types they define relative to others. Implemented in Google’s

Tensorflow framework, CellAssign is highly scalable, capable of annotating thousands of cells in

seconds while controlling for inter-batch, patient and site variability. We evaluated CellAssign

across a range of simulation contexts and on ground truth data for FACS-purified H7 human

embryonic stem cells (HSCs) at various differentiation stages [187], showing that CellAssign

outperforms both clustering and correlation based methods—more readily discriminating closely

related cell types—and is robust to errors in marker gene specification. In addition, we applied

CellAssign to two novel datasets generated to profile spatiotemporal tumor microenvironment

(TME) dynamics in human cancers. Using the CellAssign approach, we demonstrated tumor

‘ecosystem’ spatial diversity in untreated high-grade serous ovarian cancer through variable
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composition in stromal and immunologic cell types comprising the TME and variation in key

pathways across malignant cell populations including immune evasion, epithelial-mesenchymal

transition and hypoxia. Temporal dynamics were also exemplified using the CellAssign approach.

We generated scRNA-seq libraries from matched diagnostic and relapsed pairs of follicular

lymphoma samples, with one case having undergone histologic transformation to an aggressive

lymphoma. We show compositional and phenotypic changes, including T-cell activation and

HLA downregulation in cancer cells upon transformation, pointing towards an evolutionary

interplay with cancer cells escaping immune recognition following transformation. In aggregate

we conclude the CellAssign approach provides a robust new statistical framework through which

disease dynamics in tissues comprised of mixed cell populations can be quantified and interpreted

to ultimately uncover new properties and understanding of disease progression.

4.2 Methods

4.2.1 The CellAssign model

4.2.1.1 Model description

Let Y be a cell-by-gene expression matrix of raw counts for N cells and G genes. Suppose

among those cells we have C total cell types, each of which is defined by high expression of

several “marker” genes. We encode the relationship between cells and marker genes through a

binary matrix ρ, where ρgc = 1 if gene g is a marker for cell type c and 0 otherwise. To relate

cells to cell types, we introduce an indicator vector z = {zn} that encodes to which of the C cell

types each cell belongs -

zn = c if cell n of type c.

In order to assign cells to cell types we perform statistical inference of the probability that each

cell is of a given cell type for which we must compute the quantity p(zn = c|Y, Θ̂), where Θ̂ are

the MAP estimates of the model parameters.

Let sn be the size factor for cell n and X be a P ×N matrix of P covariates (such as patient of

origin). Then our model is

E[yng|zn = c] = µngc
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where

Mean log expression︷ ︸︸ ︷
logµngc = log sn︸ ︷︷ ︸

Cell size factor

+

Cell type︷ ︸︸ ︷
δgcρgc + βg0︸︷︷︸

Base expression

+

Other covariates (incl. batch)︷ ︸︸ ︷
P∑

p=1

βgpxpn

with the constraint that δgc > 0.

The intuition here is that we expect the expression of gene g in cell type c is multifactorial,

influenced by a cell type specific factor δgc if gene g is a marker for cell type c, combined with

covariates expected from batch effects and other arbitrary sources. In this way we put no

restriction that marker genes can’t be expressed in other cell types and that they must be highly

expressed in their cell type, only that they exhibit higher expression in the cells of type for

which they are a marker. The quantity δgc corresponds to the average log fold change that gene

g is over-expressed in cell c, which only occurs for marker genes for cell types since ρgc must

equal 1 for this to contribute to the likelihood. By default we impose a lower bound such that

δ > log 2, making the interpretation that a marker gene must be over-expressed by a factor of 2

relative to cells for which it is not a marker, but this is left as an option for the user. We also

control for technical or sample effects through the matrix X.

The user can specify whether or not to put a lognormal shrinkage prior over δgc values, where

the mean and variance parameters of the lognormal are initialized to 0 and 1, respectively. In

plot labels, cellassign shrinkage refers to the version of CellAssign with this option turned

on.

4.2.1.2 Inference

The likelihood is given by

yng|zn = c ∼ NB(µngc, φ̃ngc)

where NB is the negative binomial distribution parametrized by a mean µ and a µ-specific

dispersion φ̃ngc. We define φ̃ngc as a sum of radial basis functions dependent on the modelled

mean µngc as proposed by a recent publication [188]:

φ̃ngc =

B∑
i=1

ai × exp(−bi × (µngc − xi)2)

where ai and bi represent RBF parameters to be fitted, B is the total number of centers in the

RBF, and xi is center i. The centers are set to be equally spaced apart from 0 to the maximum
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number of counts max yng.

Using EM for inference, the latent variables are z ≡ {zn} while the model parameters to be

maximized are δ = {δgc}, β = {βg0, βgp}, a = {ai}, and b = {bi}.

E-step Compute

γnc := p(zn = c|yn, δ
(t−1),β(t−1),a(t−1),b(t−1)) =

∏
gNB(µngc, φ̃ngc)∑

c′
∏

g′ NB(µng′c′ , φ̃ng′c′)
,

where θ(t) is the value of some parameter θ at iteration t. We then form the Q function

Q(δ(t),β(t),a(t),b(t)|δ(t−1),β(t−1),a(t−1),b(t−1))

= Ez|Y,δ(t−1),β(t−1),φ(t−1)

[
log p(Y|π, δ(t),β(t),φ(t))

]
=

N∑
n=1

C∑
c=1

γnc

G∑
g=1

logNB(yng|µngc, φ̃ngc)

M-step During the M-step we optimize the above Q-function using the ADAM optimizer

[189] as implemented in Google’s Tensorflow [190]. By default we use a learning rate of 0.1,

allow a maximum of 105 ADAM iterations per M-step, and consider the M-step converged when

the change in the Q function value falls below 10−4%. By default we consider the EM algorithm

converged when the change in the marginal log likelihood falls below 10−4%.

Initialization The following initializations are used for model parameters:

• βgp is drawn from a N (0, 1) distribution

• log δgc is drawn from a N (0, 1) distribution truncated at [log(δmin), 2]

• a is initialized to 0

• b is initialized to twice the square difference between successive spline bases

To deal with convergence to local optima, multiple random initializations of log δgc and βgp can

be used for each run (5 by default). The number of spline bases is set to 20 by default, but the

model appears to be fairly insensitive to this setting in the tested range of 5 to 40.
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4.2.2 Simulation

4.2.2.1 Model description and rationale

Initially, we attempted to simulate multi-group data from the splatter model. We employed

10x Chromium data for peripheral blood mononuclear cells (PBMC) [110] with cell type labels

derived from [191] to determine realistic parameter estimates for the differential expression

component of the model (see below). In order to do so, group-specific log fold-change (logFC)

values were drawn from a mixture distribution of a central, narrow Gaussian-Laplace mixture

(representing non-differentially expressed genes) and two flanking, absolute value-transformed

Gaussians (representing downregulated/upregulated genes). This mixture distribution was fitted

to logFC values derived from differential expression analysis (see below).

However, inspection of posterior predictive samples for multiple fits, using labeled single cell

RNA-seq data from [110] and FACS-purified data from Koh et al. [187] (Figure 4.1A,B,

Figure 4.2A,B), revealed that this model systematically underestimates extreme logFC values

(Figure 4.1C, Figure 4.2C). Thus, to accommodate the heavier tails present in observed data,

we augmented the splatter model by replacing the flanking absolute value-transformed Gaussian

components with bounded Student’s t distributions. Posterior predictive logFC distributions from

this modified model better fit the observed data (Figure 4.1D, Figure 4.2D). Consequently,

we used this model to perform simulation analysis.
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Figure 4.1: Fitting single cell RNA-seq simulation models to the Zheng PBMC 68k dataset, using
cell type annotations provided in [191]. (a) Log fold change values computed from differential
expression analysis between naive CD8+ and naive CD4+ T cells. (b) ‘Null’ log fold change values
computed by randomly splitting naive CD8+ T cells into equally sized halves 10 times. (c) Quantile-
quantile (QQ) plot comparing observed log fold change values between naive CD8+ and naive CD4+
T cells and posterior predictive samples from the splatter model (Methods). (d) Quantile-quantile
(QQ) plot comparing observed log fold change values between naive CD8+ and naive CD4+ T cells
and posterior predictive samples from the modified model (Methods).
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Figure 4.2: Fitting single cell RNA-seq simulation models to the Koh et al. [187] dataset of
FACS-purified cell types. (a) Log fold change values computed from differential expression analysis
between human embryonic stem cells (hESCs) and day 3 somite cells (ESMT). (b) ‘Null’ log fold
change values computed by randomly splitting naive anterior primitive streak cells into equally sized
halves 10 times. (c) Quantile-quantile (QQ) plot comparing observed log fold change values between
hESC and ESMT cells and posterior predictive samples from the splatter model (Methods). (d)
Quantile-quantile (QQ) plot comparing observed log fold change values between hESC and ESMT
cells and posterior predictive samples from the modified model (Methods).

4.2.2.2 Model fitting

The models described above were fit to logFC values derived from real data. Using the

labeled 10x Chromium data for 68k PBMCs [110], differential expression was performed with

the findMarkers function from the R package scran [192]. To generate corresponding null
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distributions of logFC values for non-differentially expressed genes, we split data for each cell

type into equally sized halves 10 times, running findMarkers to compare the resulting halves. A

central Gaussian-Laplace mixture (µ = 0) was first fit to the null logFC values. The distribution

of posterior predictive logFC values appeared to be consistent with observed logFC values for

this null component (Figure 4.1D). Following this, the entire mixture distribution was fitted

to logFC values for pairs of distinct cell types, using maximum a posteriori (MAP) estimates

of parameters for the central Gaussian-Laplace component. Posterior distributions of model

parameters were inferred using the no U-turn sampler (NUTS) in pymc3, using 4 independent

chains, 1000 tuning iterations, and 2500 additional iterations per chain. Trace plots and the

Gelman-Rubin diagnostic were used to assess convergence.

4.2.2.3 Simulating multi-group data

Expression count matrices were simulated using a modified version of the splatter package.

Log fold change values were simulated according to our model instead of the splatter model.

Other settings were kept identical. We used MAP estimates of µ+, µ−, σ+, σ−, ν+, and ν−,

determined by fitting our simulation model to (1) logFC values between naive CD4+ and

naive CD8+ T cells (Figure 4.1A); and (2) logFC values between B cells and CD8+ T cells

(Section 4.2.2.1) for the differential expression component. The proportion of downregulated

genes out of differentially expressed genes was set to 0.5 (i.e. equally probable for a differentially

expressed gene to be downregulated vs. upregulated). Three “groups” (cell types) were simulated

at equal proportions. Other parameters for splatter were fitted from 10x Chromium data for

4,000 T cells available from 10x Genomics.

To assess the performance of CellAssign relative to other clustering methods across a range

of pd values (proportion of genes differentially expressed between each pair of cell types), pd

was chosen from {0.05, 0.15, 0.25, 0.35, 0.45, 0.55}. (The true MAP estimate of pd was 0.0746

for naive CD4+ vs. naive CD8+ T cells, and 0.153 for B vs. CD8+ T cells.) The number of

simulated cells, n, was set to 2000, and 1000 were randomly set aside for training (for scmap

and correlation-based supervised clustering).

To assess the robustness of CellAssign to misspecification of the marker gene matrix ρ, pd was

set to 0.25 and the number of simulated cells n to 1500.

Simulations were run 9 times with unique random seeds for each combination of parameter

settings.
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4.2.2.4 Clustering multi-group data

Count matrices were normalized with scater normalize and the top 50 principal components

were computed from the top 1000 most variable genes. For phenograph, Seurat (resolu-

tion ∈ {0.4, 0.8, 1.2}), k-means, densitycut, and dynamicTreeCut, unsupervised clustering was

performed on the values of these top 50 PCs. For SC3, the entire normalized SingleCellExperi-

ment object was passed as input instead. For supervised methods (scmap-cluster [185] and

correlation-based [110]), expression data for both training and evaluation sets was provided.

For CellAssign, the raw count matrix was provided as input, along with a set of marker genes

selected based on simulated log fold change and mean expression values. Specifically, a gene

was defined as a marker gene if it was in the top 5th percentile of differentially expressed genes

according to logFC and the top 10th percentile of differentially expressed genes according to

mean expression. In simulations of robustness to marker gene misspecification, a proportion of

randomly selected entries in the marker gene matrix ρ were flipped from 0 to 1 (or vice versa).

4.2.2.5 Mapping clusters to true groups

For assignments derived from unsupervised clustering, clusters were mapped to simulated groups

by first performing differential expression between each cluster and the remaining cells. Following

this, we computed the Spearman correlation between these logFC values and the simulated

(true) logFC values for each simulated group. Each inferred cluster was mapped to most highly

correlated simulated group based on Spearman’s ρ where ρ > 0 and P ≤ 0.05. Clusters that

could not be mapped based on these criteria were marked as ‘unassigned’.

4.2.2.6 Benchmarking

We generated synthetic datasets for benchmarking from the modified splatter model (Sec-

tion 4.2.2.1) with Student’s t parameters µ = 0.1, σ = 0.1, ν = 1 and the proportion of

differentially expressed genes per cell type set to 20%. Synthetic datasets of various sizes

(number of cells N ∈ {1000, 2000, 4000, 8000, 10000, 20000, 40000, 80000} and number of cell

types C ∈ {2, 4, 6, 8} with a balanced number of cells per type were generated. Markers for

CellAssign were selected from genes in the top 20th percentile in terms of log fold change among

differentially upregulated genes and the top 10th percentile in terms of expression. CellAssign

was run with 2, 4, 6, and 8 markers per cell type, with a maximum minibatch size of 5000 cells.

Five separate CellAssign runs were timed for each combination of parameters.
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4.2.3 Koh et al. dataset

This section refers to the scRNA-seq dataset from [187].

4.2.3.1 Preprocessing and normalization of single cell RNA-seq data

Preprocessed data was obtained from the R package DuoClustering2018 [181, 187]. Celltypes

with both single cell RNA-seq data and bulk RNA-seq data were used: hESC (day 0 human

embryonic stem cell), APS (day 1 anterior primitive streak), MPS (day 1 mid primitive streak),

DLL1pPXM (day 2 DLL1+ paraxial mesoderm), ESMT (day 3 somite), Sclrtm (day 6 sclerotome),

D5CntrlDrmmtm (day 5 dermomyotome), D2LtM (day 2 lateral mesoderm). Normalization

and dimensionality reduction was performed with scater normalize, runPCA, runTSNE, and

runUMAP. The top 500 most variable genes were used to compute the top 50 principal components,

and the top 50 PCs were used as input for t-SNE and UMAP.

4.2.3.2 Identification of marker genes from bulk RNA-seq data

Differential expression analysis results for bulk RNA-seq data for the same cell types was used

to compute the relative expression of each gene in each cell type. Briefly, bulk RNA-seq log

fold change values obtained from [187] were used to compute log-scale relative gene expression

levels. Next, we identified gene-specific thresholds for defining the cell types in which each gene

is a marker. For each gene, relative expression levels across cell types were sorted in ascending

order, denoted as E1, ..., EC , where C is the total number of cell types. The maximum difference

between sorted expression levels, max1≤i<C(Ei+1 − Ei), was then computed. Denote the index

i for gene g in which this difference is maximal ig. For gene g, cell types in which relative

expression values were equal to or greater than Eig+1 were considered cell types with gene g as

a marker. Genes with a maximum difference value in the the top 20th percentile were used as

marker genes.

4.2.3.3 CellAssign

CellAssign was run on count data using the marker gene matrix defined from bulk RNA-seq

data described above. Three random initializations of expectation-maximization were used with

shrinkage priors on δgc turned on (Section 4.2.1.1). Results from the run that reached the

highest marginal log-likelihood at convergence were kept.
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4.2.3.4 Unsupervised clustering

Unsupervised clustering was performed on the top 50 PCs with phenograph [193] and Seurat [178]

(resolution ∈ {0.4, 0.8, 1.2} and on the SingleCellExperiment object of raw and normalized

counts with SC3 [177]. Inferred clusters were mapped to true (FACS-purified) cell types by

computing the pairwise Spearman correlation between mean expression vectors for each cluster

and each true cell type. Each cluster was treated as the cell type it was most strongly positively

associated with by Spearman’s ρ.

4.2.4 High-grade serous ovarian cancer

4.2.4.1 Sample preparation, library preparation, and sequencing

Sample preparation, library preparation, and sequencing steps are described in Chapter 2

(see Section 2.2.8). Cell dissociation was carried out at 6◦C to maximize lymphocyte yield

(O’Flanagan et al., unpublished). The 10x Chromium 5’ gene expression kit was used for single

cell RNA-seq library preparation.

4.2.4.2 Preprocessing and normalization of single cell RNA-seq data

Raw sequence files were processed with CellRanger v2.1.0. The resulting filtered count matrices

were read into SingleCellExperiment objects. Outlier cells according to quality control

parameters (≥ 3 median absolute deviations from the median) were filtered out using the scater

R package. Additionally, cells with ≥ 20% mitochondrial UMIs or ≥ 50% ribosomal UMIs were

removed. Size factors were computed using quickCluster and computeSumFactors from the

scran R package. Following this, data normalization was performed using scater normalize.

Principal components analysis was performed on the resultant normalized logcounts for the top

1000 most variable genes. The first 50 PCs were used as input for t-SNE and UMAP.

4.2.4.3 CellAssign

The following marker gene list was used for CellAssign [194–197]:

• B cells: VIM c, MS4A1 c, CD79Ac, PTPRC c, CD19 c, BANK1 [194]

• CD4 T cells: VIM c, CD2 c, CD3Dc, CD3E c, CD3Gc, CD28 c, PTPRC c, CD4 c

• Cytotoxic T cells: VIM c, CD2 c, CD3Dc, CD3E c, CD3Gc, CD28 c, PTPRC, CD8Ac, CD8Bc,

PRF1 c, GNLY c, NKG7 c, KLRC1 c

• Monocyte/Macrophage: VIM c, CD14 c, FCGR3Ac, CD33 c, ITGAX c, ITGAM c, CD4 c,

PTPRC c, LYZ c
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• Epithelial/cancer cell: EPCAM c, MUC1 c, CDH1 c, MYC c

• Stromal cell: VIM c, ECEL1 [198], KLHDC8A[198], MUM1L1 [198], ARX [198], ACTA2 c

• Endothelial cells: VIM c, EMCN c, CLEC14A [199], CDH5 c, PECAM1 c

c: canonical marker

CellAssign was run with default parameters, the shrinkage prior on δgc values turned on, and 5

random initializations. Patient was added as an additional covariate into the design matrix X

(Section 4.2.1.1). The best result according to marginal log-likelihood at convergence was kept.

Optimization was considered converged after 3 consecutive rounds of no improvement (relative

change in log-likelihood < 10−5). MAP assignments from CellAssign were used for downstream

analysis.

4.2.4.4 Unsupervised clustering

Cells with a total probability of at least 0.99 for the stromal cell type were subsetted. The top

50 PCs from preprocessing were provided as input to densitycut, which was run with default

parameters.

4.2.5 Follicular lymphoma

4.2.5.1 Sample preparation

Leftovers from clinical flowed samples were collected and frozen in fetal calf serum containing

10% DMSO. Cells were thawed and washed according to the steps outlined in the 10X Genomics

Sample Preparation Protocol. Cells were stained with PI for viability and sorted in the BD

FACSAria Fusion using a 85um nozzle. Sorted cells were collected in 0.5 ml of medium,

centrifuged and diluted in 1X PBS with 0.04% bovine serum albumin.

4.2.5.2 Library preparation and sequencing

Cell concentration was determined by using a Countess II Automated Cell Counter and approx-

imately 3,500 cells were loaded per well in the Single Cell 3’ Chip. Single cell libraries were

prepared according to the Chromium Single Cell 3’Reagent Kits V2 User Guide. Single cell

libraries from two samples were pooled and sequenced on one HiSeq 2500 125 base PET lane.

4.2.5.3 Preprocessing and normalization of single cell RNA-seq data

Raw sequence files were processed with CellRanger v2.1.0. The resulting filtered count matrices

were read into SingleCellExperiment objects. Outlier cells according to quality control
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parameters (≥ 3 median absolute deviations from the median) were filtered out using the scater

R package. Additionally, cells with ≥ 10% mitochondrial UMIs or ≥ 60% ribosomal UMIs were

removed. Size factors were computed using quickCluster and computeSumFactors from the

scran R package. Following this, data normalization was performed using scater normalize.

Principal components analysis was performed on the resultant normalized logcounts for the top

1000 most variable genes. The first 50 PCs were used as input for t-SNE and UMAP.

Cell cycle scores were computed with cyclone from the scran package [192, 200].

4.2.5.4 scvis analysis

scvis train (v0.1.0) [201] was run with default settings on the top 50 PCs to produce a 2-

dimensional embedding of the follicular lymphoma data. Early stopping was added to scvis,

so that the model would terminate after 3 successive iterations of no improvement (relative

improvement in ELBO < 10−5). The resultant model was saved and used for mapping in

Section 4.2.6.4.

4.2.5.5 CellAssign

The following marker gene list was used for CellAssign:

• B cells: CD19 c, MS4A1 c, CD79Ac, CD79Bc, CD74 c, CXCR5 [202]

• Cytotoxic T cells: CD2 c, CD3Dc, CD3E c, CD3Gc, TRAC c, CD8Ac, CD8Bc, GZMAc,

NKG7 c, CCL5 c, EOMES c

• Follicular helper T cells: CD2 c, CD3Dc, CD3E c, CD3Gc, TRAC c, CD4 c, CXCR5 c,

PDCD1 c, TNFRSF4 [194], ST8SIA1 [194], ICA1 [194], ICOS [194]

• Other CD4+ T cells: CD2 c, CD3Dc, CD3E c, CD3Gc, TRAC c, CD4 c, IL7R [194]

c: canonical marker

CellAssign was run with default parameters, the shrinkage prior on δgc values turned on, and 5

random initializations. Patient was added as an additional covariate into the design matrix X

(Section 4.2.1.1). The best result according to marginal log-likelihood at convergence was kept.

Optimization was considered converged after 3 consecutive rounds of no improvement (relative

change in log-likelihood < 10−5). MAP assignments from CellAssign were used for downstream

analysis.

4.2.5.6 Classifying B cells

B cells from CellAssign were further subclassified into ‘malignant’ or ‘nonmalignant’ groups

according to expression of the constant region of the immunoglobulin light chain (kappa or
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lambda type) and the results of PCA. Seurat [178] (resolution = 0.8) was used to separate B

cells into clusters, based on the top 50 PCs. Following this, the sole cluster associated with

IGKC (immunoglobulin light chain kappa-type constant region) expression was designated as

nonmalignant. We further reasoned this was the case based on the cluster containing a mixture

of T1 and T2 cells and constituting only a minor subset of the B cells.

4.2.5.7 Differential expression between timepoints

Differential expression analysis between timepoints for a given celltype and patient was performed

using voom from the limma package for each patient and cell type separately, with timepoint

as the independent variable. Genes with low expression (< 500 UMIs in total across all cells)

were removed. P -values were adjusted with the Benjamini-Hochberg method, and genes with

Q ≤ 0.05 were considered differentially expressed. Differential expression between malignant

and nonmalignant B cells was performed similarly, but using the formula ~malignant status +

timepoint + malignant status:timepoint to control for timepoint and any interactions.

4.2.5.8 Reactome pathway enrichment analysis

Pathway analysis was performed for the top 50 most upregulated and top 50 most downregulated

genes (separately) by log fold change from limma (where Q ≤ 0.05, filtering out ribosomal and

mitochondrial genes). Overrepresentation of Reactome [203] pathways was assessed using the R

package ReactomePA. Pathways were considered significantly overrepresented if the adjusted

P -value ≤ 0.05 and at least 2 genes from the pathway were present.

4.2.5.9 Comparing malignant cells between timepoints

Log fold change values from the findMarkers function (filtering out ribosomal and mitochondrial

genes) from scran were used as input for gene set enrichment analysis with the fGSEA R package,

using default parameters with 10,000 permutations, and the hallmark pathway gene set [204].

Annotations for cell cycle-associated pathways (E2F targets, G2M checkpoint, and mitotic

spindle) were taken from [204]. BH-adjusted P -values for differences in proliferation marker

expression (MKI67 and TOP2A) were also computed with the findMarkers function from

scran, using default parameters.

4.2.5.10 Somatic variant calling

Somatic single-nucleotide variants (SNVs), indels, and breakpoints for both cases were obtained

from [205]. Annotations from the Nanostring PanCancer Immune Profiling panel were used to
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identify antigen processing and presentation genes [149].

4.2.5.11 HLA loss-of-heterozygosity analysis

HLA class I typing was performed using matched normal bams [205] with OptiType [163].

Following this, HLA class I loss-of-heterozygosity (LOH) was called from tumor and matched

normal bams as well as OptiType 4-digit HLA types using LOHHLA [52]. HLA LOH was called

for an allele if the estimated copy number (with binning and B-allele frequency settings) was

< 0.5 and the significance of allelic imbalance p < 0.05 (paired t test, no duplicate counts).

4.2.6 Reactive lymph node data

4.2.6.1 Sample preparation

Cell suspensions from patients with reactive lymphoid hyperplasia but no evidence of malignant

disease and collagen disease were used. Leftovers from clinical flowed samples were collected and

frozen in FCS containing 10%DMSO. The day of the experiment cell suspensions were rapidly

thawed at 37◦C, and washed according to the steps outlined in the 10X Genomics Sample

Preparation Protocol. Cells were stained with DAPI and viable cells (DAPI negative) were

sorted on a FACS ARIAIII or FACS Fusion (BD Biosciences) instrument.

4.2.6.2 Library preparation and sequencing

Approximately 8,700 cells per sample were loaded into a Chromium Single Cell 3’ Chip kit v2

(PN-120236) and processed according to the Chromium Single Cell 3’Reagent kit v2 User Guide.

Libraries were constructed using the Single 3’ Library and Gel Bead Kit v2 (PN-120237) and

Chromium i7 Mulitiplex Kit v2 (PN-120236). Single cell libraries from two samples were pooled

and sequenced on one HiSeq 2500 125 base PET lane.

4.2.6.3 Preprocessing and normalization of single cell RNA-seq data

Preprocessing steps for the reactive lymph node data were identical to those for single cell

RNA-seq data, described in Section 4.2.5.3.

4.2.6.4 scvis analysis

The identities of the top 1000 most variable genes and PCA loadings from follicular lymphoma

data analysis were used to compute a 50-dimensional embedding for the reactive lymph node
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data. Following this, the resultant 50 PCs were provided as input to scvis map [201], using the

model trained in Section 4.2.5.4 and default settings.

4.3 Results

4.3.1 Automated assignment of cell types with CellAssign

The CellAssign statistical framework (Figure 4.3) models observed gene expression as a

composite of cell type-specific, library size, and batch effects, using raw single cell RNA-seq

counts from a heterogeneous cellular population as input. To enable automated cell type

classification, marker gene information is provided a priori to CellAssign in the form of a set of

marker genes for each modeled cell type. The sole assumption for a marker gene to be indicative

of a cell type is that it is should be over-expressed in that cell type relative to all others - it may

still be expressed in all cells and variable between others. Information on other experimental and

biological covariates - such as batch and patient-of-origin - can also be encoded as a standard

design matrix. Using this information, CellAssign employs a hierarchical Bayesian statistical

framework to determine the probability that each cell belongs to each of the modeled cell types,

along with estimates of the model parameters including the relative expression of marker genes in

each cell type and the systematic effects of other covariates on marker gene expression patterns.

To prevent misclassification when unknown cell types are present, CellAssign can assign cells

that do not belong to any of the provided cell types to an ‘unassigned’ group.
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Figure 4.3: (a) Overview of CellAssign. CellAssign takes raw count data from a heterogeneous single-cell RNA-seq population,
along with a set of known markers for various cell types understudy. Using CellAssign for inference, each cell is probabilistically
assigned to a given cell type without any need for manual annotation or intervention, accounting for any batch or sample-specific
effects. (b) An overview of the CellAssign probabilistic graphical model. (c) The random variables and data that form the model,
along with the distributional assumptions and description.
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4.3.2 Performance of CellAssign relative to state-of-the-art unsupervised

and supervised classification methods

While CellAssign is the only method to-date that can automatically assign cells to cell types based

on prior marker gene associations, we sought to demonstrate its performance was competitive

compared to standard workflows including unsupervised clustering followed by manual curation

and methods that map cells to existing data from purified populations. We employed an adapted

version of the splatter model to simulate single cell RNA-seq data for multiple cell populations

(Methods). On simulated data for 80000 cells from 2 cell types, CellAssign completed in under

2 minutes, and appeared to scale at worst linearly in the number of cell types and marker genes

used per cell type (Figure 4.4). In order to select realistic parameter settings for simulation,

we fitted the splatter model to data for näıve CD8+ and CD4+ T cells from peripheral blood

mononuclear cell (PBMC) data. Simulations were conducted across a wide range of values for the

fraction of differentially expressed genes (0.05 to 0.55), to represent cellular mixtures of similar

and distinct cell types. Following this, we evaluated the performance of each unsupervised

(Seurat [178], SC3 [177], phenograph [193], densitycut [206], dynamicTreeCut [207], k-means)

and supervised (scmap-cluster [185], correlation-based [110]) clustering methods for single cell

RNA-seq data (Methods). Half of the simulated cells (n=2000 total, n=1000 training, n=1000

evaluation) were set aside for training the supervised methods. Marker genes for CellAssign

were selected based on simulated log-fold change values and mean expression (Methods),

and maximum a posteriori (MAP) cell type probability estimates were treated as cell type

assignments. For all values of the fraction of differentially expressed genes, CellAssign performed

comparably or superior to alternative workflows in terms of accuracy and F1 score (Figure 4.5A,

Supplemental Table B.1). As expected, supervised methods generally performed better than

unsupervised methods (Figure 4.5A).
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Figure 4.4: Benchmarking results for CellAssign across a range of simulated data set sizes (number
of cells), number of cell types being inferred, and number of marker genes per cell type. (a) Runtime
(to convergence, defined as a relative change in log-likelihood < 10−3 between successive iterations,
as a function of data set size and the number of marker genes used per cell type, on simulated data
(Methods). Two cell types were used. (b) Runtime (to convergence, defined as a relative change in
log-likelihood < 10−3 between successive iterations, as a function of the number of cell types and
the number of marker genes used per cell type, on simulated data. One thousand cells were used.
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Figure 4.5: Performance of CellAssign on simulated data. (a) Accuracy and cell-level F1 score
(Methods) for varying proportions of differentially expressed genes per cell type, with other
differential expression parameters set to MAP estimates determined from comparing naive CD8+
and naive CD4+ T cells (Methods). CellAssign was provided with a set of marker genes (Methods);
all other methods were provided with all genes. cellassign shrinkage refers to a version of CellAssign
with a shrinkage prior on δ (Methods). (b) Accuracy and cell-level F1 score for varying proportions
of differentially expressed genes per cell type, with other differential expression parameters set to
MAP estimates determined from comparing naive CD8+ and naive CD4+ T cells. All methods
were provided with the same set of marker genes. (c) Correspondence between true simulated log
fold change values and log fold change (δ) values inferred by CellAssign. R and Rs refer to the
Pearson correlation between true and inferred logFC values for cellassign and cellassign shrinkage,
respectively. (d) Performance of CellAssign where a certain proportion of entries in the marker gene
matrix are flipped at random. Differential expression parameters used for these simulations were
based on those determined from comparing B and CD8+ T cells.130



In case CellAssign’s superior performance was due to being provided solely with informative

marker genes compared to transcriptome-wide data provided to other methods, we repeated our

simulations providing other methods with exactly the same data as CellAssign. Nonetheless,

CellAssign performed superiorly to the other tested methods (Figure 4.5B). Similar results

were obtained on data simulated from parameter estimates fitted to B cells and CD8+ T

cells (Figure 4.6A,B, Supplemental Table B.1). Moreover, CellAssign accurately infers the

relative expression of marker genes in each cell type (all R >0.958; Figure 4.5C, Figure 4.6C).
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Figure 4.6: Simulation performance across a range of proportions of differentially expressed genes,
using differential expression parameters derived from comparing B and CD8+ T cells. (a) Accuracy
and cell-level F1 score (Methods) for varying proportions of differentially expressed genes per cell
type. CellAssign was provided with a set of marker genes (Methods); all other methods were
provided with all genes. (b) Accuracy and cell-level F1 score for varying proportions of differentially
expressed genes per cell type. All methods were provided with the same set of marker genes. (c)
Correspondence between true simulated log fold change values and log fold change (δ) values inferred
by CellAssign. R and Rs refer to the Pearson correlation between true and inferred logFC values for
cellassign and cellassign shrinkage, respectively.
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We next assessed the robustness of CellAssign to mis-specification of the association of marker

genes to cell types. While CellAssign assumes information for user-provided marker genes

is complete and correct, in reality this may not always be the case. For example, a shared

marker gene may be incorrectly specified as a cell type-specific marker gene due to incomplete

prior information or human error. Thus, we tested the robustness of CellAssign to marker

gene mis-specification by changing a proportion of entries in the binary marker gene matrix

from 0 to 1 or vice-versa at random. Supplied with data for 5 marker genes per cell type,

CellAssign maintained comparable performance in scenarios where up to 30% of matrix entries

were mis-specified (Figure 4.5D, Supplemental Table B.1). This robustness to marker

mis-specification is maintained even when the simulated cells belong to transcriptionally similar

cell types containing few highly differentially expressed genes. For example, when cells were

simulated based on the degree of dissimilarity between näıve CD4+ and näıve CD8+ T cells,

the accuracy of CellAssign predictions was comparably high in scenarios where 20% of marker

gene matrix entries were mis-specified (Figure 4.7, Supplemental Table B.1).
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Figure 4.7: Simulation performance across a range of proportions of randomly flipped entries in
the binary marker gene matrix, using differential expression parameters derived from comparing
naive CD8+ and naive CD4+ T cells.
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We also assessed the performance of CellAssign on real single cell RNA-seq data. We first

applied CellAssign to data for FACS-purified H7 human embryonic stem cells in various stages

of differentiation [187]. Using bulk RNA-seq data from the same cell types, we defined a

set of 84 marker genes for CellAssign based on differential expression results (Supplemental

Table B.2; Methods). CellAssign performed superiorly to the most competitive unsupervised

methods from systematic analysis (SC3, Seurat) [181] in terms of accuracy and cell type-level

F1 score (Figure 4.8A-D,F; Methods). Similar results were obtained for comparisons using

only expression data for the marker genes (Figure 4.8E,G). Crucially, CellAssign was able to

distinguish anterior primitive streak (APS) and mid primitive streak (MPS) cells, while no other

method could reliably do so (Figure 4.8).
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Figure 4.8: Performance (accuracy and cell type-level F1 score, Methods) of CellAssign and the
best-performing clustering methods evaluated by [181] on FACS-purified H7 human embryonic stem
cells in various stages of differentiation. t-SNE plots of (a) ground-truth FACS annotations; (b)
CellAssign-derived annotations; (c) SC3 clusters (using all genes); (d) Seurat clusters (resolution =
0.8, using all genes); (e) Seurat clusters (resolution = 0.8, using the same marker gene set used by
CellAssign); (f) Seurat clusters (resolution = 1.2, using all genes); (g) Seurat clusters (resolution =
1.2, using the same marker gene set used by CellAssign).
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4.3.3 Profiling the malignant and nonmalignant composition of high-grade

serous ovarian cancer

To profile the microenvironment of HGSC, we sequenced the transcriptomes of 6298 cells from 4

spatially collected pre-treatment biopsies of 3 patients with HGSC (Table 4.1; sample identifiers

correspond to those from Chapter 2). Following data preprocessing, we used CellAssign to

identify 7 known cell types including epithelial cells, endothelial cells, other stromal cells, CD4

T cells, cytotoxic T cells, B cells, and monocytes, and visualized the normalized data using

principal components analysis (PCA) and t-distributed stochastic neighbour embedding (t-SNE)

(Figure 4.9A,B, Figure 4.10A,B, Methods). These cell type assignments appeared to be con-

sistent with the expression patterns of well-known marker genes [104, 195–197] (Figure 4.9C).

Overall, epithelial cells were the dominant cell type (52.8% of assigned cells), composing 20% to

86% of assigned cells across samples (Figure 4.10A). Multiple clusters of epithelial cells were

observed in both samples from patient 73, suggestive of clonally distinct malignant cell subpop-

ulations or a mixture of malignant and nonmalignant epithelial populations (Figure 4.9A,B).

While most epithelial cell clusters in t-SNE space were largely patient-specific, most nonmalignant

clusters, such as endothelial cells, stromal cells, and monocytes, contained cells from multiple

patients (Figure 4.9A,B). Lymphocytes were rare, composing only 4.3% of all cells (B cells:

1.4%, CD4 T cells: 2.2%, cytotoxic T cells: 0.7%). Most B cells appeared to express CD79A and

SDC1 (CD138 ) but not MS4A1 (CD20 ), consistent with plasma cells [208] (Figure 4.9C).

Patient Sample ID Site Raw Filtered Temperature

70 70LAdnx6 VOA11267

Left

adnexal

mass

506 280 6

72 72Om VOA11558SA Omentum 559 282 6

73 73LOv VOA11543SA Left ovary 2818 2707 6

73 73ROv VOA11543SB Right ovary 2415 2125 6

Table 4.1: HGSC samples profiled by single cell RNA-seq. Raw and filtered correspond to raw and
preprocessed cell counts, respectively.
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Figure 4.9: CellAssign infers the composition of the HGSC microenvironment. (a) t-SNE plot of
HGSC single cell expression data, labeled by sample. (b) t-SNE plot of HGSC single cell expression
data, labeled by maximum probability assignments from CellAssign. (c) Expression of select marker
genes CD3E (for T cells [104]), GZMA (for CD8 T cells [104]), EPCAM (for epithelial cells [195]),
VIM (for mesenchymal cells), PECAM1 (for endothelial cells [197]), CD79A (for B cells [104]), LYZ
(for monocytes [104]), SDC1 (for plasma cells [208]), and MS4A1 (for non-plasma B cells).

137



0%

25%

50%

75%

100%

70
_L

Adn
x−

6

72
_O

m

73
_L

Ov

73
_R

Ov

Sample

P
ro

po
rt

io
n

a

B
 cells

C
D

4 T
 cells

C
ytotoxic T

 cells

M
onocyte/M

acrophage

E
pithelial cell

S
trom

al cell

E
ndothelial cells

other

S
am

ple
C

elltype

0

0.2

0.4

0.6

0.8

1b

Celltype

B cells
CD4 T cells

Cytotoxic T cells
Endothelial cells

Epithelial cell
Monocyte/Macrophage

Stromal cell
Unassigned

Sample

64_Ov
64_Om

67_ROv
70_LAdnx−6

70_LAdnx−37
72_Om

73_LOv
73_ROv

Figure 4.10: Proportions and probabilities of cell type assignments. (a) Proportions of each
CellAssign-assigned celltype in each sample. (b) Cell-level probabilities from the CellAssign model,
labeled by maximum probability celltypes and sample.

4.3.4 Stromal subpopulations in the ovarian cancer microenvironment

Having profiled the immune microenvironment in Chapter 3, we next surveyed stromal cell

populations in the HGSC microenvironment. Considering cells assigned to the stromal cell type

(i.e. stromal cells with the exception of endothelial cells) with a probability of at least 0.99 by

CellAssign, we performed unsupervised clustering with densitycut [206] (Figure 4.11A,B),

revealing 6 clusters. Reasoning that stromal cells from different anatomic sites may express

different markers, we interrogated the expression profiles of ovarian stroma-specific markers.

Based on the expression of MUM1L1 and ARX [198], we annotated clusters 1 and 2 as

ovarian stromal cells, consistent with the ovarian or adnexal origin of cells from these clusters

(Figure 4.11A-C). In contrast, cluster 5, which corresponds to cells from an omental sample

(72 Om) did not express these markers (Figure 4.11A-C). Following this, we explored genes
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associated with other microenvironmental populations, including pericytes, myofibroblasts, and

smooth muscle cells. Based on the expression of PLN, MYH11, and ACTA2 [209–211], we

putatively labeled cluster 4 as vascular smooth muscle (Figure 4.11D). Most smooth muscle

cells are VIM (vimentin) negative and desmin positive, but vascular smooth muscle contains a

predominance of vimentin [212] (Figure 4.9C). While cluster 3 also contained MYH11 -expressing

cells, the pattern of expression in t-SNE space was not homogeneous. MYH11 expression in

cluster 3 negatively correlated with the expression of pericyte markers THY1, CD248, and

PDGFRB [213] (Figure 4.11D). As such, cluster 3 likely contains a mixture of pericytes

and myofibroblasts. Thus, the HGSC microenvironment contains multiple phenotypically-

distinct stromal subpopulations that resemble ovarian stromal cells, extraovarian stromal cells,

myofibroblasts, pericytes, and vascular smooth muscle cells.
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Figure 4.11: Stromal subpopulations in the HGSC microenvironment. (a) t-SNE projection of
stromal (and non-endothelial) populations in the HGSC microenvironment, labeled by sample. (b)
t-SNE projection of stromal populations in the HGSC microenvironment, labeled by CellAssign-
assigned cell type. (c) Expression of ovarian stromal marker genes MUM1L1 and ARX in the HGSC
microenvironment [198]. (d) Expression of various stromal, pericyte, and muscle-associated genes in
the HGSC microenvironment.
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4.3.5 Dissecting the lymphocyte composition of follicular lymphoma

To demonstrate the utility of CellAssign for microenvironment analysis in another cancer type,

we sequenced the transcriptomes of 9754 cells from serially collected lymph node biopsies of 2

patients with follicular lymphoma (FL1018: 4321 cells; FL2001: 5433 cells). Histopathological

transformation to an aggressive subtype of B cell lymphoma, diffuse large B cell lymphoma

(DLBCL), occurred in one patient (FL1018), while early progression (4 years after initial

treatment with rituximab) occurred in the other (FL2001) (Figure 4.12A). Following data

preprocessing and normalization, we applied principal components analysis (PCA) and uniform

manifold approximation and projection (UMAP, [214]), revealing 5 major clusters in the reduced-

dimension projections (Figure 4.12B). Three clusters appeared to be relatively pure for cells

from a single patient, while the other 2 clusters comprised a mixture of cells from both patients.

Leveraging marker gene information derived from the literature (Supplemental Table B.2;

Methods), we applied CellAssign to identify 4 major B and T cell populations across these

clusters (Figure 4.12C). One of the mixed clusters exclusively contained T cells, while the other

4 clusters were largely B cell-specific (Figure 4.12C). These cell type assignments appeared

to be consistent with the expression patterns of well-known marker genes, such as CD3D and

CD2 for T cells, CD79A and MS4A1 (CD20 ) for B cells, CCL5, CD8A, and GZMA for CD8+

T cells, CD4, CXCR5, and ICOS for T follicular helper cells, and CD4 for other CD4+ T

cells (Figure 4.12D, Figure 4.13, Methods). No evidence of regulatory T cells (FOXP3 and

IL2RA expression), NK cells (NCAM1 expression), and myeloid cells (CD14 /CD16 and LYZ

expression) was detected.
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Figure 4.12: CellAssign infers the composition of the follicular lymphoma microenvironment. (a)
Sample collection times for FL1018 (transformed FL) and FL2001 (progressed FL). FL1018 is alive
while FL2001 was lost to followup (indicated by the red rectangle). The number of cells collected for
each sample is indicated. (b) UMAP plot of follicular lymphoma single cell expression data, labeled
by sample. (c) UMAP plot of follicular lymphoma single cell expression data, labeled by maximum
probability assignments from CellAssign. (d) Expression of select marker genes CD79A (for B cells),
CD3D (for T cells), CCL5 (for CD8+ T cells), and ICOS (for T follicular helper cells).
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We next interrogated the identity of each B cell cluster. Of the B cell clusters, three were almost

exclusively comprised of cells from a single patient, while one was a mixture of cells from both

patients (Figure 4.14A). Reasoning that nonmalignant B cells were likely more phenotypically

similar across timepoints than cancer cells, we hypothesized that the mixed cluster contained

nonmalignant B cells. To explore this further, we examined immunoglobulin light chain constant

domain expression across these clusters (Figure 4.14B). Each clonally identical population of B
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cells produces immunoglobulins containing a single class of immunoglobulin light chain (κ/IGKC

or λ/IGLC ), created through V(D)J recombination. Whereas normal lymphoid organs typically

contain a 60:40 ratio of κ- to λ-expressing B cells [215], we observed a substantial departure

from this ratio among all B cells in both patients (Figure 4.14B). Notably, the majority of the

three patient-specific clusters were exclusively IGLC+, consistent with expansion of a malignant

IGLC+ cell, while the mixed cluster contained both IGKC+ and IGLC+ cells (Figure 4.14B).

Hypothesizing that the IGKC :IGLC ratio in nonmalignant B cells should be similar to that

for normal lymphoid organs, we applied CellAssign to the mixed cluster, using IGKC as a

marker of IGKC+ cells and IGLC2 and IGLC3 as markers of IGLC+ cells (IGLC1 and IGLC7

were not expressed; Supplemental Table B.2). Out of the 774 cells that were assigned to

either group, 456 cells (58.9%) were classified as IGKC+ (FL1018: 67/106 (63.2%), FL2001:

389/668 (58.2%)), consistent with results for normal lymphoid organs (Figure 4.15). Finally,

we attempted to delineate nonmalignant B cells by comparing B cell expression patterns to

those derived from lymph node B cells from healthy donors. Using scvis [201], we first trained

a variational autoencoder to produce a 2-dimensional embedding of the follicular lymphoma

single cell RNA-seq data. Following this, we applied scvis to map similarly processed single cell

RNA-seq data for reactive lymph node (RLN) B and T cells from four healthy donors onto this

embedding. Concordant with our other predictions, RLN-derived T cells mapped to follicular

lymphoma-derived T cells and RLN-derived B cells mapped to the mixed cluster of follicular

lymphoma-derived B cells (Figure 4.14C, Figure 4.16). Thus, the mixed cluster is comprised

of nonmalignant B cells, while the other 2 clusters represent malignant B cells. Corroborating

this, differential expression analysis revealed that these malignant B cells express significantly

higher levels of follicular lymphoma-associated markers, such as BCL2 and BCL6 [216–218],

than nonmalignant B cells (all Q < 1.8e-07; Figure 4.17, Supplemental Table B.3).
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Figure 4.17: Differential expression results for malignant vs. nonmalignant B cells in (a) FL1018
and (b) FL2001. Comparisons was performed accounting for timepoint and potential interactions
between malignant status and timepoint using a multivariate linear model described in Methods.
Genes upregulated among malignant cells have logFC values > 0. P -values were adjusted with the
Benjamini-Hochberg method.
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4.3.6 CellAssign uncovers compositional and phenotypic changes in the fol-

licular lymphoma microenvironment

We next asked how the relative abundance of each cell type differed after transformation or

early progression. While the overall proportion of B cells in both cases was higher in the second

timepoint, the relative proportion of nonmalignant B cells decreased dramatically (FL1018:

12.2% to 1.4%; FL2001: 44.4% to 1.4%) (Figure 4.14D). Thus, malignant B cells appear to

dominate the B cell population upon transformation or early progression. Among T cells, the

relative proportions of each cell subtype were comparable in FL1018 and FL2001 at the first

timepoint, with T follicular helper cells and CD4+ T cells composing the majority of T cells and

cytotoxic T cells the minority (Figure 4.14E,F). However, compared to the consistent pattern

of B cell dynamics seen across both patients, T cell compositional dynamics upon transformation

or early progression appeared to be divergent (Figure 4.14F). Cytotoxic T cells dominated

the recurrence sample in FL1018, whereas T follicular helper cells became the major T cell

population following progression.

Additionally, we looked at whether these compositional changes in the follicular lymphoma

microenvironment were accompanied by phenotypic changes in nonmalignant cell populations

between timepoints. To address this, we performed differential expression analysis across

timepoints for each patient and cell type separately (Supplemental Table B.3). In FL1018,

differential expression analysis revealed upregulation of immune-associated pathways [203],

such as cytokine signalling and toll-like receptor pathways, among cytotoxic T cells in the

transformed sample (Figure 4.18A). Similar results were observed for T follicular helper

and CD4+ T cells (Supplemental Table B.3). T cell activation and effector molecules

including CD69, IFNG, GZMA, and PRF1 were also significantly upregulated in the second

timepoint among cytotoxic T cells in FL1018 [219] (Figure 4.14G). Likewise, CD69 was

significantly upregulated among T follicular helper and CD4+ T cells in the recurrence sample

(all Q < 9.1e-07; Figure 4.19). Among cytotoxic T cells in FL2001, other immune related

pathways such as antigen presentation and TCR/BCR signalling were upregulated in the early

progressed sample, but GZMA and IFNG were not significantly differentially expressed between

timepoints (Figure 4.18A, Figure 4.14G). Ubiquitin-associated genes and pathways were

significantly upregulated in T follicular helper cells and CD4+ T helper cells in FL2001 as well

(Supplemental Table B.3). In nonmalignant B cells, no significantly differentially expressed

pathways were observed in either patient apart from upregulation of general adaptive immune

system genes encompassing canonical B cell markers such as CD79A, CD79B, and HLA molecules

in FL2001 (Supplemental Table B.3). Thus, transformation, and to a lesser extent early
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progression, appears to be accompanied by T cell activation.
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Figure 4.18: Significantly enriched Reactome pathways (BH-adjusted P -value ≤ 0.05) among the
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Up to 30 pathways are shown in either plot (Methods).
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Figure 4.19: Differentially expressed genes for (a) T follicular helper and (b) other CD4 T cells
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4.3.7 Malignant cell dynamics associated with early progression and trans-

formation

Having explored the temporal dynamics of nonmalignant cells, we next investigated tran-

scriptomic changes in malignant B cells. At a high level, malignant B cells from FL1018T1

and FL1018T2 were more distinct in UMAP space and were less concordant than those from

FL2001T1 and FL2001T2 (Pearson’s correlation coefficient between mean sample expression

profiles = 0.97 and 0.982 in FL1018 and FL2001, respectively), suggesting higher levels of

transcriptomic divergence upon transformation compared to early progression (Figure 4.14A).

To analyze the nature of these differences in malignant cell transcriptomes, we performed differ-

ential expression and gene set enrichment analysis of malignant B cells across timepoints using

cancer hallmark pathways (Supplemental Table B.3). Proliferation and cell cycle-associated

pathways, including MYC targets, E2F targets, and G2M checkpoint-associated genes, were sig-

nificantly upregulated in the recurrence sample of FL1018 (all Q <0.0016), suggesting an increase

in proliferative potential following transformation [204] (Figure 4.20A). While MYC targets

were also upregulated following recurrence in FL2001 (Q =0.0043), the cell cycle-associated

E2F and G2M pathways were not (all Q >0.34), and the cell cycle-associated mitotic spindle

pathway was significantly downregulated (Q = 0.0043; Figure 4.20B). Based on these findings,

we explored the distribution of cell cycle-associated genes in malignant cells. Overlaying the

expression of MKI67 and TOP2A onto the UMAP embedding for malignant B cells revealed

putative replicative clusters in both patients (Figure 4.20C,E). In the transformed but not

early progressed case, a larger proportion of malignant cells from the recurrence sample appeared

to be associated with these replicative clusters (Figure 4.20C,E), and differential expression

analysis showed significant upregulation of MKI67 and TOP2A in the recurrence sample (all Q <

7e-07. Correspondingly, cell cycle analysis with cyclone [200] revealed that a higher proportion

of cycling (S or G2/M phase) malignant cells was present following transformation in FL1018

(Figure 4.20D). In contrast, we observed a reduced proportion of cycling T follicular helper,

cytotoxic, and CD4+ T cells in FL1018 (Figure 4.20D). Consistent with the findings from

pathway analysis, there were fewer cycling malignant cells in the recurrence sample of FL2001

(Figure 4.20F). Therefore, transformation, but not progression, appears to be associated with

increased replication among malignant cells.
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Figure 4.20: Temporal changes in malignant cells in the follicular lymphoma microenvironment.
(a,b) Pathway enrichment scores computed by fGSEA for differentially enriched (adjusted P ≤ 0.05)
and cell cycle-associated pathways among malignant cells between timepoints for (a) FL1018 and (b)
FL2001 (Methods). Pathways with a positive enrichment score are upregulated in T2 compared
to T1 samples. P -values were adjusted with the Benjamini-Hochberg method. (c,e) UMAP plots,
labeled by sample and proliferation marker expression (MKI67 and TOP2A), for (c) FL1018 and (e)
FL2001. (d,f) Proportion of cells assigned to be in non-G1 cell cycle phases (S/G2/M) by cyclone

across timepoints in (d) FL1018 and (f) FL2001. (g) Normalized expression of HLA class I genes
and select HLA class II genes across timepoints in FL1018 and FL2001.
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Several immune-associated pathways, including complement and interferon gamma response, were

downregulated in the recurrence sample of FL1018 (Figure 4.20A, Supplemental Table B.3).

To interpret these findings, we looked at genes that were most downregulated in the recurrence

sample based on effect size and significance (Figure 4.21). Among these were HLA class I and

II genes, including HLA-A, HLA-B, HLA-C, B2M, HLA-DRA, and HLA-DRB1. In order to

further investigate the temporal dynamics of HLA expression, we analyzed HLA expression levels

in both nonmalignant and malignant B cells across timepoints. In both patients, HLA class I and

II genes were expressed at lower levels in malignant B cells compared to nonmalignant B cells

(all Q < 0.037; Figure 4.20G,H; Methods). Moreover, HLA expression levels in nonmalignant

B cells were similar between timepoints (Figure 4.20G,H). However, while the expression of

HLA genes in malignant cells from FL2001 was comparable across timepoints, malignant cells

in the transformed case expressed significantly lower levels of HLA genes at recurrence (all Q <

9.6e-24; Figure 4.20G,H). Corroborating these findings, differential expression and pathway

analysis revealed that the HLA class I antigen presentation pathway was downregulated in

malignant cells from FL1018 upon transformation (Q = 0.019; Figure 4.22, Supplemental

Table B.3). Coupled with the increase in cytotoxic proportion among T cells and upregulation

of T cell activation markers in FL1018T2 compared to FL1018T1, these results are consistent

with immune escape in response to T cell activation following histologic transformation. Asking

whether these results could be explained by genomic changes in antigen processing or presentation

genes, we analyzed whole-genome sequencing data to profile somatic single nucleotide variants

(SNVs), indels, and copy number alterations. No variants in these genes or loss-of-heterozygosity

of HLA class I genes were detected in either sample from FL1018. However, coding mutations

in the histone acetyltransferase CREBBP, recently reported to be associated with HLA class

II downregulation [220], were detected in all samples from both patients, providing a possible

explanation for the lower HLA class II expression observed among malignant cells.
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Figure 4.21: Differentially expressed genes between malignant B cells from T2 vs. T1 in (a) FL1018
and (b) FL2001. Genes upregulated in T2 have log fold change values > 0. HLA class I genes and
select HLA class II genes are highlighted. P -values were adjusted with the Benjamini-Hochberg
method.
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Figure 4.22: Significantly enriched Reactome pathways (BH-adjusted P -value ≤ 0.05) among
the top 50 most downregulated genes (ranked by log fold change) in FL1018. No pathways were
significantly downregulated in FL2001.
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4.4 Discussion

We developed a computational method to automatically annotate single cell RNA sequencing

data into cell types based on pre-defined marker gene information. Our approach systematically

determines cell type expression patterns and assignment probabilities based solely on the

assumption that marker genes are highly expressed in their respective cell types, eliminating

the need for manual cluster annotation or existing training data for cell type mapping methods.

In simulations and on real scRNA-seq data from purified populations, CellAssign’s accuracy

was comparable or superior to state-of-the-art workflows based on unsupervised clustering

and mapping methods, and ran in a minute on datasets of tens of thousands of cells. We

additionally demonstrate how bulk RNA-seq data can enable marker gene identification for

accurate discrimination of phenotypically similar cell types with CellAssign.

We subsequently applied CellAssign to dissect the microenvironment composition of spatially-

and temporally-collected samples from HGSC and follicular lymphoma. We show how CellAssign

can not only delineate multiple malignant and nonmalignant epithelial, stromal, and immune

cell types, but also identify subpopulations defined by arbitrary marker genes, uncovering

IGKC:IGLC ratios among nonmalignant B cells in follicular lymphoma consistent with those

for normal lymphoid structures [215]. While these analyses are constrained by restricted cohort

size, they provide first-of-kind examples of spatiotemporal dynamics and microenvironment

interplay interpreted through leveraging prior knowledge of cell types in a prinicipled statistical

approach.

We note that CellAssign is intended for scenarios where well understood marker genes exist.

Poorly characterized cell types (or unknown cell types or cell states) may be invisible to

the CellAssign approach. Furthermore, we make no a priori distinction between “medium”

or “high” expression of the same marker in two different cell types, though these could be

incorporated by extending the model to accommodate constraints between different δ parameters.

Nevertheless, we suggest a large proportion of clinical applications profiling complex tissues

start with hypotheses relating the composition of known cell types to disease states. As such,

CellAssign fills an important role in the scRNA-seq analysis toolbox, providing interpretable

output from biologically motivated prior knowledge that is immune to common issues plaguing

unsupervised clustering approaches [183].

The volume of scRNA-seq data will increase over time in two important ways: (i) the number

of cell types profiled will increase, thereby expanding databases of known marker genes and

(ii) scRNA-seq data will become more widely available in research and clinical settings [221].

CellAssign is therefore poised to provide scalable, systematic and automated classification of
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cells based on known parameters of interest, such as cell type, clone-specific markers, or genes

associated with drug response. Furthermore, by appropriately modifying the observation model

CellAssign can easily be extended to annotate cell types in data generated by other single-cell

measurement technologies such as mass cytometry. We anticipate the CellAssign approach will

help unlock the potential for large scale population-wide studies of cell composition of human

disease and other complex tissues through encoding biological prior knowledge in a robust

probabilistic framework.
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Chapter 5

Conclusions and Future Directions

Despite extensive efforts to find effective therapies, prognosis for patients with high-grade serous

ovarian cancer remains bleak. High-grade serous ovarian cancer patients often present with

clonally heterogeneous disease with spread to peritoneal sites including the contralateral ovary,

omentum, and pelvic wall. The extent of intratumoural heterogeneity in HGSC is thought

to contribute to the prevalence of recurrence following initial treatment with standard-of-care

combination platinum-taxane chemotherapy, with treatment resistant-clones escaping elimination.

Nevertheless, the presence of TILs is associated with superior outcomes, hinting at the tantalizing

possibility that the immune system may be able to contend with intratumoural heterogeneity in

HGSC.

Consequently, the primary goal of this thesis was to profile the immune microenvironment, and

more broadly, the tumour microenvironment in HGSC. This would improve understanding of the

underlying spatial characteristics driving differential patterns of clonal seeding and proliferation

in HGSC. In addition, given the recent success of immunotherapies in other cancer types,

including checkpoint inhibitors in melanoma [222, 223] and CAR T-cells in B cell lymphomas

[224], this work may help inform immunotherapeutic strategies for HGSC. The broad implications

of this work are summarized below.

Assembly of an extensively profiled and largest published multi-site cohort of

HGSC cases to date. Chapter 2 described the construction of our multi-site HGSC co-

hort which I led, encompassing clinical case identification and sample processing for genomic,

imaging, single cell, and patient-derived xenograft studies. The patient-derived xenografts will

be used to study clonal evolution in response to drug perturbation with cytotoxic and DNA

damaging agents such as platinum compounds and PARP inhibitors, and the single cell materials

will set the foundation for biological studies that leverage the CellAssign method described

in Chapter 4. This resource acts as the bedrock for the multimodal profiling study described

in Chapter 3, the single cell RNA-sequencing analysis of HGSC described in Chapter 4, and

planned future work (Section 5.1).

Deciphering multiple interfaces of evolutionary interplay between tumour and im-
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mune cells in HGSC. To investigate the interplay between immune and malignant cells

underlying the spatial distribution of clones in HGSC, we profiled 212 multi-site HGSC samples

from 38 patients, including cases collected as part of Chapter 2 with whole-genome sequencing,

targeted sequencing and clonal deconvolution, Nanostring expression assays, histologic image

analysis, immunohistochemistry, and T- and B-cell receptor sequencing. From this work, I

uncovered 3 major subtypes of HGSC based on the spatial distribution of lymphocytes between

tumour epithelium and stroma, with imaging and sequencing-based evidence of tumour-immune

interaction in extensively infiltrated (ES-TIL) samples. I extended and applied probabilistic

methods for clonal decomposition, revealing lower intratumoural heterogeneity among highly

infiltrated samples, with some cases exhibiting loss-of-heterozygosity of HLA class I loci. The

findings from this work include the novel discovery of immune escape mechanisms in HGSC (HLA

loss-of-heterozygosity) despite T cell tracking of tumour clones among highly infiltrated tumour

samples, providing an explanation for the poor responses to immune checkpoint inhibitors

observed in HGSC to date.

Discovery of prognostically relevant associations between mutational processes and

immunologic signatures. In Chapter 3, I also applied a novel topic model-based approach

developed by [26] to quantify mutational signatures associated with defective DNA damage repair

in HGSC. Building on first-of-kind work by [3] identifying 2 major genomic subtypes in HGSC, we

identified 4 major subtypes of HGSC, further subdividing the homologous recombination-deficient

subtype and introducing a new tandem duplicator subtype with distinct survival outcomes

and immunologic infiltration patterns [26] previously classified as foldback inversion-type [1].

Additionally, I describe a novel association between low immunologic infiltration and foldback

inversion-harbouring tumours, along with a prognostic association between immune infiltration

and mutational processes whereby immune infiltration is associated with superior overall survival

in HRD but not FBI cases. In light of recent success with PARP inhibitor maintenance therapy

in HGSC [17], these findings provide context for combination immunotherapy-PARP inhibitor

therapies in clinical trials.

Developing an automated, scalable method for microenvironmental cell type iden-

tification from single cell transcriptomic data. Extending the work I led on exploring the

immune composition of HGSC in Chapter 3, I developed a novel marker gene-based probabilistic

approach to identifying known cell types from single cell RNA-seq data (Chapter 4). The

CellAssign model uses a hierarchical Bayesian framework to systematically assign input cells

to known cell types while accounting for any additional experimental covariates such as batch

effects in a scalable, automated fashion. CellAssign only requires binary marker gene informa-

tion, rather than the purified single cell RNA-seq data required by supervised methods, and
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performs superiorly or comparably to state-of-the-art methods. I apply CellAssign to high-grade

serous ovarian cancer and follicular lymphoma, demonstrating the utility of CellAssign for

microenvironmental deconvolution and revealing interplay between malignant and immune cells.

CellAssign sets the stage for scalable inference of cell types in large-scale single cell RNA-seq

studies of cancer that are beginning to emerge, including our ongoing single cell RNA-seq work

in high-grade serous ovarian cancer.

5.1 Future Directions

5.1.1 Understanding the molecular basis of immunologic infiltration patterns

in HGSC

Chapter 3 identified 3 major patterns of immunologic infiltration in HGSC characterized by

the absence of TIL (N-TIL), stromally-restricted TIL (S-TIL), and epithelial and stromal TIL

(ES-TIL). While our work identified potential mechanisms by which ES-TIL tumours may

escape from immune recognition, it does not explain the lack of epithelial immune infiltration in

N-TIL and S-TIL tumours. Tumours with lower immune infiltration generally harbour higher

subclonal neoantigen loads, suggesting that antigen deficiency does not underlie the lack of

observed immune infiltrate. Furthermore, anatomic location was not significantly associated with

particular patterns of immune infiltration. How S-TIL tumours manage to exclude TIL from

epithelial areas remains unknown. One possibility is that S-TIL tumours contain stromal barriers

that physically prevent TIL entry into epithelial regions. The predominance of fibroblasts in

S-TIL tumours may inhibit T cell effector function through TGFβ production [225]. Recent work

by [226] proposes an alternative cancer cell-mediated mechanism for epithelial TIL exclusion in

triple-negative breast cancer, whereby immune infiltration in S-TIL patterns is more consistent

with the presence of an TIL repellent produced by tumour cells than with physical blockade

by desmoplastic elements. Moreover, the mechanisms that N-TIL tumours employ to escape

from immune recognition remain a mystery. Laser capture microdissection-assisted RNA-seq

and single cell RNA-sequencing may provide crucial insights into malignant or nonmalignant

phenotypes that contribute to immune cell exclusion. These methods enable investigation of

site-specific, clone-level phenotypes associated with N-TIL and S-TIL patterns. They also allow

for deeper investigation of other microenvironmental cell types classically associated with immune

regulation, including macrophages and fibroblasts. Multi-site cohorts, which intrinsically control

for patient-specific factors and minimize batch effects associated with single cell processing,

provide ideal substrate for these types of studies. Understanding the mechanisms underlying
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immune exclusion in antigen-harbouring tumours may open therapeutic avenues for improving

the delivery and efficacy of cancer immunotherapies.

5.1.2 Deciphering the mechanisms of treatment resistance in HGSC

The patterns of clonal dynamics across space explored in Chapter 3 and [29] highlight the

extensive intra- and intertumoural heterogeneity that exists at the time of diagnosis in HGSC.

While it is believed that clonal heterogeneity underlies treatment resistance by providing genetic

substrate for evolution to act upon, the molecular mechanisms that are ultimately responsible

for recurrent disease in the context of treatment with standard-of-care chemotherapy, apart

from secondary mutations in BRCA genes [15], remain largely unknown. In Chapter 3, we

present evidence for subclonal immune escape, including neoantigen depletion and HLA loss-of-

heterozygosity, that may allow certain clones to escape immune-mediated elimination. This may

help explain some cases of resistance, where platinum-taxane chemotherapy leads to cell death,

inducing a systemic abscopal-like anticancer response. More generally however, phenotypic

alterations in cancer cells that affect drug influx and efflux, metabolism, and proliferation

may lead to chemotherapeutic resistance. Drug challenge studies in model systems, such as

patient-derived xenografts (PDXs), provide controlled systems in which to study clonal dynamics

in response to treatment. Chapter 2 describes the construction of a first-of-kind multi-site

HGSC PDX cohort intended for this purpose.

Broadly speaking, resistance mechanisms can be classified as intrinsic—encoded in the genome—

or adaptive—mediated by epigenetic or context-specific factors, such as the microenvironment,

and reflected in the transcriptome and proteome. The advent of scalable, low-bias single cell

whole-genome sequencing technologies for clonal reconstruction and single cell transcriptome

sequencing technologies for malignant cell phenotyping can help identify rare resistant clones and

distinguish these two categories of resistance. This can be accomplished through experimental

integration of single cell data from multiple modalities through combined genome-transcriptome-

proteome sequencing or computational integration with methods such as clonealign [227]. Clonal

populations that persist in drug-treated PDX models across multiple replicates and models

derived from multiple diagnostic metastases may contain variants that can be profiled with these

methods. Candidate variants could be further studied in cell lines with CRISPR perturbation.

Emerging methods for fitness modeling from the population genetics literature can be leveraged

to quantify the selective advantage conferred by each variant and genotype and predict future

clonal dynamics. Humanized mouse models can also be used to transplant human hematopoietic

stem cells in PDXs, enabling study of clonal dynamics in similar microenvironmental contexts

[228, 229].
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5.1.3 Deconvolution of the HGSC microenvironment

Despite extensive literature profiling lymphocytes in HGSC [36, 38, 41] including our own

(Chapter 3, [1]), few studies have characterized the cell type composition of the entire HGSC

microenvironment. Other cell types, including macrophages and fibroblasts, are major compo-

nents of the tumour microenvironment but remain largely uncharacterized in HGSC. One recent

study attempted to address this question in a small cohort of epithelial ovarian cancers including

5 HGSC cases [230], but this sample size was insufficient to capture single cell phenotypes

reflecting the complete diversity of microenvironmental profiles according to bulk expression

profiling [101]. Indeed, our initial investigation of the HGSC microenvironment using single cell

RNA-seq revealed several additional populations, such as pericytes and non-collagen expressing

ovarian stromal cells (Chapter 4). Larger cohorts are needed to phenotypically and prognos-

tically characterize these rare microenvironmental subpopulations. Given mounting evidence

implicating the immune and non-immune microenvironment along with interactions between

microenvironmental cell types in HGSC disease progression [1, 59, 147], treatment decisions

informed by mathematical modeling of cancer clones (Section 5.1.2) will have to be interpreted

in the context of the microenvironment. In Chapter 4, we developed an automated method for

systematically identifying cell types from single cell RNA-seq data. As single cell transcriptome

studies on large cohorts of HGSC tumours begin to emerge, our method will enable cell type

identification at scale while controlling for batch effects.

Furthermore, the roles of cell types that have been profiled in HGSC, particularly B cells and

plasma cells, are unclear. While the presence of B and plasma cells is associated with superior

outcomes in tumours that contain T cells [38, 41], the mechanisms by which these cell types act

are largely unknown. In a preprint related to Chapter 3 [231], I explored the phylogeographics

of B cell clones across space in multi-site HGSC, uncovering evidence suggesting that B cells are

active participants in the anticancer immune response. B cells may act as antigen presenting

cells for T cells, produce antibodies against tumour antigens, or exert direct cytotoxic effects

[42]. Single cell transcriptomics may help to resolve the role of individual B cell clones. The 10X

Chromium technology enables paired recovery of single cell transcriptomes and B cell receptor

sequences, allowing B cell clones to be matched up to cellular phenotypes. This will enable

phenotypic profiling of tumour-reactive B cell clones identified through clonal frequency analysis

or antibody reactivity assays.

Finally, molecular subtyping from bulk expression data has yielded 4 major subtypes of HGSC

that appear to be associated with microenvironmental features [14, 101]. Certain subtypes (C1

[101], mesenchymal [14]) are generally associated with worse outcomes, though the significance
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of this finding varies between studies. Single cell transcriptomics will uncover the cell types and

cell type-specific phenotypes that ultimately underlie each subtype. Furthermore, single cell

RNA-seq applied to large cohort studies will decode phenotypically-distinct subtypes of each

cell type, including cancer cells.

5.1.4 In situ profiling of the tumour microenvironment

Multi-site studies of HGSC have reproducibly shown that the properties of both malignant

cells and the surrounding microenvironment can differ appreciably between peritoneal foci,

even within the same macroscopic tumour [1, 27, 29, 147, 232]. Tumours may contain both

immune-privileged niches capable of supporting diverse clonal populations and highly infiltrated

areas in which clonal pruning has occurred [1]. Beyond microenvironmental cell type composition

(Chapter 3, Chapter 4), in situ spatial profiling of single cell phenotypes may yield important

insights into microenvironment-malignant cell interactions. For example, the chemotherapeutic

resistance properties associated with fibroblasts and abrogated by T cells in vitro [59] may be

dependent on spatial proximity between fibroblasts, cancer cells, and T cells. Likewise, clones

bearing HLA loss-of-heterozygosity may reside in adjacent regions to cytotoxic T cells. These

studies may also help decipher the mechanisms behind TIL exclusion in N-TIL and S-TIL

tumours. Spatial transcriptomic profiling can be performed with techniques such as merFISH

[233]. A recent study has described 3D intact-tissue spatial transcriptomics with a novel method

called STAR-MAP that leverages DNA barcoding with SEDAL sequencing to simultaneously

obtain readouts of up to 1000 genes [234]. These technologies allow for deep investigation of

spatial interactions between microenvironmental cell types.

Alternatively, spatial patterns in the tumour microenvironment can be studied at lower depth

but at scale. Cell type identification and pattern recognition from histologic images has been

used to prognostically stratify cancers [145, 167]. In Chapter 3, we profiled histologic images

to identify cancer-immune cell hotspots associated with highly infiltrated tumours, suggesting

direct cell type interaction. Cell type interactions can be further studied using spatial statistics.

For instance, Gibbs point process models model pairwise interactions between collections of

points, inferring the relative attractive or repulsive force between each pair of cell types. Immune

recognition of cancer cells may be read out as attractive forces between immune and cancer

cells. In summary, spatial profiling of histologic images from large cohorts may yield additional

insights beyond those associated with lymphocyte abundance or TIL cluster (N-TIL, S-TIL,

ES-TIL).
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5.1.5 Guiding precision immunotherapies for HGSC

Cell-based immunotherapies, such as CAR T cell therapies, rely on selective expansion of immune-

reactive T cell clones. Understanding the properties of these clones prior to perturbation, such

as immune exhaustion marker expression, may be important to stratifying patients likely to

respond to cell-based immunotherapies. Reactive T cell clones can be isolated with traditional

MHC multimer assays, but transcriptome sequencing can only be done post-expansion when

phenotypes have likely changed substantially. Paired single cell RNA-sequencing and TCR-seq

presents a unique opportunity for phenotypic profiling of tumour-reactive T cells at diagnosis.

Reactive T cell clones identified by MHC multimer or ELISPOT assays can be mapped to single

cell RNA-seq data using the cell-specific barcodes in the 10X Chromium protocol. This may

reveal unique properties of tumour-reactive T cells that can be deconvolved from bulk RNA-seq

data to stratify patients and inform immunotherapeutic options at the time of diagnosis.

5.2 Concluding Remarks

The work presented in this thesis advances our understanding of clonal dynamics and the tumour

microenvironment in HGSC. At the beginning of my thesis, I set out to understand the factors

influencing evolutionary dynamics across space in ovarian cancer. These studies leverage first-of-

kind multimodal experimental design with spatial sampling to reveal some of the first evidence of

immune-cancer evolution in ovarian cancer, and set the stage for further systematic investigation

of the microenvironment in HGSC and other cancer types. The next major advances will be

enabled by in situ methods that can provide spatial evidence of interaction within individual

tumour samples, and temporal sampling to profile malignant-immune evolutionary dynamics

in recurrent disease. Resolving the tumour-microenvironment interface in HGSC will pave

the way for therapeutic options that exploit non-malignant cell types to overcome the clonal

heterogeneity pervasive to the disease.
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Borchmann, Joseph P. McGuirk, Ulrich Jäger, Samantha Jaglowski, Charalambos An-

dreadis, Jason R. Westin, Isabelle Fleury, Veronika Bachanova, S. Ronan Foley, P. Joy

Ho, Stephan Mielke, John M. Magenau, Harald Holte, Serafino Pantano, Lida B. Pacaud,

201



Rakesh Awasthi, Jufen Chu, zlem Anak, Gilles Salles, and Richard T. Maziarz. Tisagenle-

cleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. New England

Journal of Medicine, page NEJMoa1804980, 12 2018.

[225] Jennifer L Barnas, Michelle R Simpson-Abelson, Sandra J Yokota, Raymond J Kelleher,

Richard B Bankert, and Richard B. Bankert. T cells and stromal fibroblasts in human tumor

microenvironments represent potential therapeutic targets. Cancer microenvironment :

official journal of the International Cancer Microenvironment Society, 3(1):29–47, 3 2010.

[226] Xuefei Li, Tina Gruosso, Dongmei Zuo, Atilla Omeroglu, Sarkis Meterissian, Marie-

Christine Guiot, Adam Salazar, Morag Park, and Herbert Levine. Infiltration of CD8+ T

cells into tumor-cell clusters in Triple Negative Breast Cancer. bioRxiv, page 430413, 10

2018.

[227] Kieran R Campbell, Adi Steif, Emma Laks, Hans Zahn, Daniel Lai, Andrew McPherson,

Hossein Farahani, Farhia Kabeer, Ciara O’Flanagan, Justina Biele, Jazmine Brimhall,

Beixi Wang, Pascale Walters, IMAXT Consortium, Alexandre Bouchard-Côté, Samuel

Aparicio, and Sohrab P Shah. clonealign: statistical integration of independent single-cell

RNA &amp; DNA-seq from human cancers. bioRxiv, page 344309, 6 2018.

[228] Richard B. Bankert, Sathy V. Balu-Iyer, Kunle Odunsi, Leonard D. Shultz, Raymond J.

Kelleher, Jennifer L. Barnas, Michelle Simpson-Abelson, Robert Parsons, and Sandra J.

Yokota. Humanized Mouse Model of Ovarian Cancer Recapitulates Patient Solid Tumor

Progression, Ascites Formation, and Metastasis. PLoS ONE, 6(9):e24420, 9 2011.

[229] Nicole C Walsh, Laurie L Kenney, Sonal Jangalwe, Ken-Edwin Aryee, Dale L Greiner,

Michael A Brehm, and Leonard D Shultz. Humanized Mouse Models of Clinical Disease.

Annual review of pathology, 12:187–215, 1 2017.

[230] Andrew J. Shih, Andrew Menzin, Jill Whyte, John Lovecchio, Anthony Liew, Houman

Khalili, Tawfiqul Bhuiya, Peter K. Gregersen, and Annette T. Lee. Identification of

grade and origin specific cell populations in serous epithelial ovarian cancer by single cell

RNA-seq. PLOS ONE, 13(11):e0206785, 11 2018.

[231] Allen W. Zhang, Andrew McPherson, Katy Milne, David R. Kroeger, Phineas T. Hamilton,

Alex Miranda, Tyler Funnell, Sonya Laan, Dawn R. Cochrane, Jamie L. P. Lim, Winnie

Yang, Andrew Roth, Maia A. Smith, Camila de Souza, Julie Ho, Kane Tse, Thomas

Zeng, Inna Shlafman, Michael R. Mayo, Richard Moore, Henrik Failmezger, Andreas

202



Heindl, Yi Kan Wang, Ali Bashashati, Scott D. Brown, Daniel Lai, Adrian N. C. Wan,

Cydney B. Nielsen, Alexandre Bouchard-Cote, Yinyin Yuan, Wyeth W. Wasserman,

C. Blake Gilks, Anthony N. Karnezis, Samuel Aparicio, Jessica N. McAlpine, David G.

Huntsman, Robert A. Holt, Brad H. Nelson, and Sohrab P. Shah. The interface of

malignant and immunologic clonal dynamics in high-grade serous ovarian cancer. bioRxiv,

page 198101, 10 2017.
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Chapter 3 Supplementary Materials

Supplementary Table A.1 Related to: Figure 3.10. Primers used for deep amplicon sequencing
and clonal inference.

Supplementary Table A.2 Related to: Figure 3.1, Figure 3.8, and Figure 3.4. TIL densities,
TIL-based clusters, molecular subtypes, epithelial colocalization measures from histologic image
analysis, somatic SNV and rearrangement counts, ITH measures, and TCR and BCR repertoire
diversity. NA: cannot be computed/data not available.

Supplementary Table A.3 Nonsynonymous SNVs and the highest predicted affinity neoepitope
for each neoantigen, after filtering for HLA LOH. Observed and expected subclonal neoantigen rates,
and subclonal neoantigen depletion indices for each multisite HGSC sample.

Supplementary Table A.4 Related to: Figure 3.7. HLA-A, HLA-B, and HLA-C germline calls
and LOH predictions for multisite HGSC patients. The “clonality” column indicates whether the
LOH event is clonal or subclonal.

Supplementary Table A.5 Related to: Figure 3.12. Mutation signature proportions and
mutational subtype assignments for multisite HGSC (labeled as ITH), OV-AU, and [3] (labeled as
OV133) patients.

Supplementary Table A.6 Related to: Figure 3.12. Differentially expressed genes between HRD
(HRD-DUP + HRD-DEL), FBI, and TD groups in the OV-AU cohort.

Supplementary Table A.7 Related to: Figure 3.12. Foldback-HLAMP status and cytotoxicity
expression values for TCGA ovarian serous cystadenocarcinoma samples.
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Supplementary Table B.1 Performance measures on simulated data.

Supplementary Table B.2 Marker gene matrices used in analysis.

Supplementary Table B.3 Pathway enrichment results for follicular lymphoma data, by celltype.
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