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Abstract 

 

Many seismology applications such as earthquake hypocenter determination, source 

mechanism analysis, and hydrocarbon reservoir imaging, require accurate compressional and 

shear wave arrival time picking. Traditionally different seismological organizations have relied 

on human expert manual picking of seismic wave arrival and labeling. However as the number of 

seismic stations around the world rapidly grows, the need for automatic phase picking algorithms 

is increasing and requires the employment of large datasets. These algorithms need to distinguish 

between the different seismic phases, and accurately measure their onset.  

This thesis proposes a seismic signal processing pipeline application for automatic time 

picking of seismic compression waves (P) and shear waves (S). The algorithm picking accuracy 

is evaluated on quarry blasts seismic traces, and compared to manual expert picking. The 

proposed pipeline consists of three main segments: The data pre-processing segment focuses on 

Empirical Mode Decomposition (EMD) as a method of deconstructing multicomponent signals 

into monocomponent signals, followed by the Singular Spectral Analysis (SSA) method as a 

denoising filter. The data processing segment computes the instantaneous frequency (IF) using 

weighted least squares and Tychonov regularization with quadratic constraints. The data post-

processing segment uses seismic signal IF estimation to pick the compressional and shear waves 

arrival times. 
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Lay summary 

Applications such as earthquake source location determination, and object proximity 

determination using sonar, require accurate wave arrival time measurements. Traditionally, for 

seismic signal different seismological organizations have relied on human expert manual picking 

of seismic wave arrival and labeling, or, at least reviewing picks that have been automatically 

picked. However, in recent years multiple deployments of dense seismic arrays make manual 

picking impractical due to the huge data that these arrays are collecting. This gives rise to the 

need for reliable, efficient and accurate automatic phase-picking algorithms. This thesis proposes 

a seismic signal processing pipeline application for automatic time picking of seismic 

compression waves (P) and shear waves (S). The algorithm picking accuracy is evaluated on 

quarry blast seismic traces, and compared to manual expert picking. 
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Chapter 1 

 

 

1-  Introduction 

As the number of seismic stations around the world rapidly grows, the need for automatic 

phase picking algorithms is increasing and requires the employment of large datasets. These 

algorithms need to distinguish between the different seismic phases, and accurately measure their 

onset. Different approaches to automate phase picking have been developed over the years. The 

goal of which is to develop a robust, and accurate automatic picking algorithm [34]. Allen in [30] 

defines the concept of the characteristic function, as the “function that is evaluated over 

segments of the seismogram, and identifies changes that correspond to the arrival of the seismic 

phase of interest.” Such functions can be energy and frequency functions, or the envelope 

functions. 

In this work, we take advantage of the instantaneous frequency property of any signal, and 

in particular seismic signals, to define a characteristic function to detect compressional and shear 

wave arrivals. The proposed algorithm provides phase arrival time estimates. We also measure 

the quality and the robustness of the algorithm picks, which is based on the instantaneous 

frequency function of the seismic signal. 

Instantaneous frequency is a time-varying parameter that defines the location of the signal 

spectral peak as a function of time. This thesis covers the development of an IF estimation 

accompanied with an algorithm implementation to estimate the instantaneous frequency of 

quarry blasts seismic traces, and to use this IF representation to accurately detect the 

compressional and shear wave arrival times. 
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Instantaneous frequency representation can sometimes have physical meaning. One 

example of this is when the signal is a monocomponent signal with only a single or a narrow 

band of frequencies at each time instant [1]. For multicomponent signals, the single 

instantaneous frequency value gives only an average frequency value at each time instant. This 

has very little physical meaning and hence, a decomposition of the signal is required to extract 

the several signal components or monocomponent modes present in the signal prior to estimating 

the instantaneous frequency of each mode. 

1.1 Seismic phase picking 

Many seismology applications such as earthquake hypocenter determination [4], source 

mechanism analysis [5], and hydrocarbon reservoir imaging [6], require accurate compressional 

and shear wave arrival time picking. Traditionally different seismological organizations have 

relied on human expert manual picking of seismic wave arrival and labeling, or, at least 

reviewing picks that have been automatically picked [7]. However, in recent years multiple 

deployments of dense seismic arrays such as the K-net array in the region of Japan [8] and the 

USArray deployed in the USA [9], make manual picking impractical due to the huge data that 

these arrays are collecting. This gives rise to the need for reliable, efficient, and accurate 

automatic phase-picking algorithms. 

The field of seismic signal analysis and phase onset detection still remains an active field 

of research [34]. One of the first and still often used algorithms uses the method of average short-

term and long-term ratio (STA/LTA) as a characteristic function[35], [31]. Other approaches 

utilizing different variations of the characteristic function where also used[36], [37]. More 

recently, research studies show that seismic waves are non-stationary, and hence, non-stationary 

methods that involve higher order statistics should be used for analysis [38].  
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Compressional and shear wave onset picking are commonly achieved by expert 

seismologists. This could result in the introduction of error, dependent on the seismologist’s 

experience and personal assessment, and on the signal-to-noise ratio level of seismograms. This 

type of error was studied by Zeiler and Velasco [29], they compared how various institutions 

pick seismograms. They gathered data through the International Seismological Center (ISC) for 

five regions throughout the world. They presented measurement results from a single highly 

experienced analyst, and then presented measurement results obtained by different institutions 

that reported common arrival times. As far as we are aware this is the largest study of its kind. 

We use these results in our comparison in Chapter 5. In addition, we compare our compressional 

and shear wave time picking performance to a recently published paper by Bogiatzis and Ishii 

[34]. They propose a continuous wavelet decomposition algorithm for automatic detection of 

compressional and shear wave arrival times. In Chapter 5 we compare the results from both [29], 

and [34], with the results obtained using the proposed algorithm in this thesis. 

 

1.2 Classical instantaneous frequency definition 

Gabor proposed a method for generating a unique complex signal “Analytical signal (AS)” 

from a real signal by using the Hilbert transform. Gabor’s method for obtaining the AS was 

achieved by first finding the Fast Fourier transform (FFT) of the real signal.  He then suppressed 

the negative frequency amplitudes and multiplied the positive frequency amplitudes by two, 

demonstrating equivalence to the following time domain representation: 

 

  ! ! =  ! ! +  ! ℋ ! ! = ! ! +  !" ! , (1.1) 
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where ! !  is the analytical signal (AS), ! !  is the original real signal, and ! !  is the Hilbert 

transform ℋ  of the signal ! !  with the Hilbert transform defined as  

 

  ℋ ! ! =  ! !
! ! − !

!!

!!
 !". (1.2) 

 

The analytical signal can also be written in polar form as shown in equation (1.3).  

 

   ! ! =   ! !  !!" ! = ! ! +  !" ! , (1.3) 

 

where ! !  represents the instantaneous magnitude with respect to time, and ! !  represents the 

instantaneous phase with respect to time. We can calculate the instantaneous magnitude ! !  and 

instantaneous phase ! !  from the analytical signal as follows  

 

 
! ! =   ! ! ! + ! ! ! , (1.4) 

   ! ! =  tan!! ! !
! ! . (1.5) 

 

By differentiating the instantaneous phase ! !  with respect to time, we can obtain the 

instantaneous angular frequency (IAF) ! ! , and the instantaneous frequency ! !  as 

demonstrated in equations (1.6) and (1.7) respectively: 
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 ! ! = ! ! !
!" , (1.6) 

   ! ! =  ! !
2! . (1.7) 

 This work was previously presented in [65]. 

1.3 Stationary and non-stationary signals  

When dealing with any time-series analysis, we are faced with the important question of 

determining whether the analyzed signal is stationary or non-stationary. A stationary time series 

signal loosely speaking is one whose statistical properties remain constant over time, whereas, 

non-stationary times series signals have changing statistical properties over time. Generally 

speaking, analysis methods used for stationary time series signals should not be used on non-

stationary time series signals, as doing so runs the risk of obtaining completely misleading or 

meaningless results. 

When analyzing time series signals, there are two common and established methods or 

models of analysis, the probability model and the spectral model. Statisticians in particular lean 

more towards the probability model. This is because of the familiarity of concepts such as the 

mean and covariance values and the whole statistical process terminology and methods. 

However, there is an equivalent and parallel way of analyzing time series signals. The spectral or 

“frequency” approach is apparently a more natural approach when dealing with signal processing 

and engineering problems. This model determines how much energy is present in the time series 

signal as a function of frequency. However it is worth noting that the statistical model and the 

spectral model are two sides of the same coin [2]. 

First let us define some important concepts in the probability model. Consider a random 

process ! ! . Let ! !! , ! !! , …, ! !!  denote the values of the random process observed at 

times !!, !!, …, !! respectively. Let the joint distribution function for this random process be 
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!! !! ,! !! ,…,! !! !!, !!,… , !! . If we shift the observation of the random process by time !, we 

obtain a different set of random process observations ! !! + ! , ! !! + ! , …, ! !! + !  and 

the joint distribution function for this data set is !! !!!! ,! !!!! ,…,! !!!! !!, !!,… , !! [3] 

A random process is said to be strictly stationary if this condition is satisfied 

 !! !! ,! !! ,…,! !! !!, !!,… , !! = !! !!!! ,! !!!! ,…,! !!!! !!, !!,… , !! . (1.8) 

 

A more relaxed definition of stationary is wide-sense stationary (or second order 

stationary). A random process ! !  is said to be wide-sense stationary if the following conditions 

hold[3]: 

1. For k = 1, we have 

 !! ! ! = !! !!! !  !"# !"" ! !"# !.  (1.9) 

In other words, if the first order distribution function of the random process is 

independent of time and hence the mean value is constant. 

2. For k = 2 and τ = t!, we have 

 !! !! ,! !! !!, !! = !! ! ,! !!!!! !!, !!  !"# !"" !! !"# !!. (1.10) 

In other words, the second order distribution function of the random process depends 

only on the time difference and not on the absolute time value. Hence the covariance is 

only dependent on the time shift ! and not on the particular time at which the random 

process is observed. 

Let us now move to the connection between the probability model and the spectral model 

[2]. A time series ! !  is said to be stationary if it can be written as a discrete sum of sinusoids. 
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 ! ! = !! exp ! 2!!!! + !!
!∈!

 !"# ! !"#$%&' !"#$%& (1.11) 

It exists as a sum of elements, which have constant instantaneous amplitude !! and constant 

instantaneous frequency !!. 

As previously stated, a signal ! !  is said to be stationary (throughout the rest of this thesis we 

will refer to stationary as meaning wide sense stationary unless otherwise stated as strictly 

stationary) if both the mean and covariance or autocorrelation function E ! !!  !∗ !!  are 

independent of time. We can then show that the associated signal ! !  or its unique analytical 

signal equivalent are stationary only if its elements have constant instantaneous amplitude A! 

and constant instantaneous frequency !!. Thus, a time series is said to be non-stationary if one of 

these assumptions become invalid. 

To illustrate this with a simple example [3] let us consider the monotone sinusoidal signal  

 ! ! = ! cos 2!!!! + ! . (1.12) 

 

Let us assume that both the amplitude ! and the center frequency !! are constant, and the phase 

angle ! is a random variable with a uniform distribution function over the interval –!,! . That 

is  

 
!! ! =

1
2!        − ! ≤  ! ≤ !
!"#$           !"#!$ℎ!"!.

 (1.13) 

 

First we calculate the mean value µ! as follows  
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 !! = ! ! ! = ! !  !! ! !"
!

!!
 

= !
2! cos 2!!!! + ! !"

!

!!
= 0. 

(1.14) 

Hence the mean value is constant and independent of time. 

Now we move into calculating the second order distribution using the autocorrelation function 

!! !  of ! !  as follows: 

 !! !  = ! ! ! + !  ! !  

= ! !! cos 2!!!! + 2!!!! + ! cos 2!!!! + !  

= !!
4! cos 4!!!! + 2!!!! + 2! !"

!

!!
+ !!
4! cos 2!!!! !"

!

!!
 

!! ! = !!
2 cos 2!!!! . 

(1.15) 

The first term integrates to zero due to symmetry, and we are left with the term that only depends 

on the time shift ! and independent of the absolute time value. 

The results from equations (1.14) and (1.15) demonstrate that the sinusoidal time series 

! !  is stationary when the phase ! is a random variable. However, if the amplitude ! or the 

frequency !! are random variables, the mean value in equation (1.14) will become time-

dependent, and the first term in the covariance calculation equation (1.15) will be present. 

Therefore, the autocorrelation function !! !  will depend on absolute time !. 

1.4 Monocomponent and multicomponent signals 

As stated earlier, the instantaneous frequency is a time-varying parameter (for non-

stationary signals), which defines the location of the signal spectral peak as a function of time. 

This only gives physical meaning for a monocomponent signal with only a single frequency or a 

narrow band of frequencies at each time instant. Therefore, for multicomponent signals 
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consisting of several monocomponent signals, the direct instantaneous frequency estimation has 

no physical meaning. Since most real signals are multicomponent in nature, a decomposition of 

the signal into its dominant monocomponent signals is necessary prior to estimating the 

instantaneous frequency for each monocomponent signal. 

1.5 Thesis objectives, novelty and intuition 

Our prime objective is to create a seismic signal-processing pipeline application to pick the 

arrival times of seismic compression waves (P) and shear waves (S) from noisy seismic traces 

generated by multiple quarry blasts. Accurate onset time picking is vital in constraining physical 

seismic models. This is especially important and is difficult for shear waves. The proposed 

pipeline consists of three segments: 

1. The data pre-processing segment focuses on Empirical Mode Decomposition (EMD) as a 

method of deconstructing multicomponent signals into monocomponent signals, 

followed by the Singular Spectral Analysis (SSA) method as a denoising filter. 

2. The data processing segment computes the instantaneous frequency (IF) for the 

denoised, intrinsic mode signals (narrowband signals which are the output of the EMD 

process) using weighted least squares and Tychonov regularization with quadratic 

constraints. 

3. The data post-processing segment uses seismic signal IF estimation to pick the 

compressional and shear waves arrival times by examining each waves’ time-frequency 

characteristics to discriminate between P and S wave arrivals, whose onsets have 

different frequency components. 
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The embodiment of the novel contribution is the unique integration of the three segments 

described above to achieve the novel time picking of P waves and S waves from noisy quarry 

blast data.  In Chapter 5 we look at algorithm implementation on real seismic data generated 

from quarry blasts and its application in seismic feature detection using the output instantaneous 

frequency estimation to detect compressional and shear wave arrival times. The intuition applied 

to develop the algorithm design space is based on the following: 

1. Implementation of Empirical Mode Decomposition (EMD) to decompose seismic 

wideband signals into its primary narrowband components, which function like quasi-

carriers, and enabling the application of classical IF estimation. In addition we derive a 

method for threshold cutoff selection based on the pre-signal noise level. 

2. Integration of a data-driven noise compensated model with signal IF slope-weighted 

regularization and quadratic inequality constraints. This results in an algorithm well 

matched to the noisy quarry data target application. We derivative a penalty weight, !, 

for the IF slope (!"!" ) term that is dependent on the noise variance. The use of the L2 norm 

is based on the absence of frequency outliers in the seismic signals.  

3. Noise versus signal power needed to quantify and establish the validity of the final 

results, based on noise power threshold. 

 

1.6 Thesis organization 

The thesis is structured as follows. In Chapter 2, in the first section we start out with the 

basic instantaneous frequency definition, background theory, and elaborate on the history of 

instantaneous frequency and its limitations. In the second section we cover the Empirical Mode 

Decomposition method for multicomponent signal decomposition and describe the process used. 
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In Chapter 3, we begin the process of algorithm design, where we cover first the core algorithm 

(data processing algorithm) to obtain the instantaneous frequency. This chapter is divided into 

three parts, each of which deals with an individual term in the minimization problem and 

performance evaluation results associated with each term using synthetic data. In Chapter 4, we 

continue the algorithm design process adding in two additional processing blocks. The 

preprocessing block covers empirical mode decomposition, singular spectrum analysis, and 

principal component analysis. In Chapter 5, we perform a detailed case study where we present 

results on seismic data obtained from quarry blast seismic recordings from a quarry mine in 

Jordan. 
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Chapter 2 

 

2-  Theory 

2.1 Instantaneous frequency theory   

Frequency is defined in machines as the number of oscillations per unit of time. A unique 

case is a simple harmonic motion, in which the acceleration is proportional to the displacement 

and points towards the equilibrium position [10]. 

A simple illustration of this is a body moving in a circle at a uniform speed. If we project 

the radius vector that represents the body movement on to the horizontal axis, we obtain a 

harmonic motion as show in Figure 2.1. At a particular time instant !, this projection has a 

displacement, velocity and acceleration as shown in equations (2.1), (2.2) and (2.3).  

 

Figure 2.1 Simple harmonic motion projection !(!) of an object rotating on circle with uniform 
angular speed !, where ! = !". 
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 ! ! = ! cos !" , (2.1) 

 !" !
!" = −!" sin !" , (2.2) 

 !!! !
!!! = −!!! cos !" = −!!! ! . (2.3) 

 

Equation (2.3) is a second order differential equation. We can relate displacement to the 

frequency by solving Equation (2.3) and obtain a more general solution as follows 

 ! ! = !! !!"# + !! !!!"# , (2.4) 

where !! and !! depend on the initial values of displacement and velocity. In what follows we 

will only consider the first term, which corresponds to positive frequency (counter-clockwise 

rotation). 

The simple harmonic motion can be used to describe some practical application such as the 

movement of a traveling waving inside a material (seismic wave traveling through the ground) in 

which the motion of the particles at a fixed point represents a harmonic motion with the number 

of waves passing through a point representing the frequency of the wave. As stated earlier in our 

introduction, and more generally speaking, any signal ! !  can be presented as a sum of 

weighted harmonics. We can find the contribution (coefficients) of each harmonic using the 

Fourier transform (FT), defined as  

                                      ! ! = ! ! !!!"#
!

!!
!", (2.5) 

where ! !  characterizes the whole signal ! ! . In turn, we can use ! !  to reconstruct the 

original synthetic signal as  

                                  ! ! = ! ! !!"#!
!! !", (2.6) 

where  frequency spectrum ! !  is time independent.. To summarize, stationary signals can be 

represented as a weighted sum of sine and cosine harmonics, where the amplitude and phase are 
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time independent. However, for non-stationary signals both amplitude and/or phase can be time 

dependent.  

2.1.1 History of instantaneous frequency 

Before we move ahead with defining the instantaneous frequency (IF) through the Hilbert 

Transform, we will first give a brief historical background on IF. A detailed examination of this 

history can found in Boashash [10]. In this section we will discuss particular fundamental 

historical milestones that will help in giving a better understanding of the definition. 

We start with Van Der Pol’s [11] definition of instantaneous frequency. He proposed an 

expression of the phase angle as an integral of the IF. In his efforts to formulate a definition for 

IF, he starts by analyzing an expression for a simple harmonic signal 

                                      ! ! = ! cos !" + !! . (2.7) 

 

Van Der Pol uses the following nomenclature: ! is the angular frequency, !! is the phase 

constant, ! is the amplitude and the whole argument of the cosine !" + !!  is the phase. He 

argues that defining the phase as the whole argument has the advantage of allowing for a 

consistent definition for phase difference between two signal oscillations with different 

frequencies. This phase difference is then simply a linear function of time, just as in one signal 

oscillation the phase is already a function of time. 

The approach taken by Van Der Pol begins with a definition of an amplitude modulation 

scheme, by making ! in equation (2.7) a function of time:  

 ! ! = !! 1+!" ! . (2.8) 

 

In equation (2.8), ! !  is the modulating signal, ! is the modulation depth and !! is the 

amplitude constant. ! or ! !  in this case is the instantaneous amplitude. 
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In a similar manner, we can define the phase modulation by modulating the phase constant ! in 

equation (2.7) and thus obtain  

 ! ! = !! 1+!" ! . (2.9) 

 

In addition, by substituting equation (2.9) into equation (2.7) we obtain  

 ! ! = ! cos !" + ! !  

=  ! cos !" + !!!" ! + !! . (2.10) 

However, to define frequency modulation Van Der Pol noted that it would be wrong simply to 

substitute the angular frequency ! in equation (2.7) with  

                                   ! ! = !! 1+!" ! . (2.11) 

 

By substituting equation (2.11) into equation (2.7), the resulting phase in equation (2.12) does 

not have the same format as equation (2.10), leading to the following physical inconsistency as 

shown: 

 ! ! = ! cos ! ! ∗ ! + !!  

=  ! cos !!! + !!!"# ! + !! . (2.12) 

Instead, he argued that by reformulating equation (2.7) as 

                                 ! ! = ! cos ! ! !"!
! + !! , (2.13) 

an equation similar to equation (2.7) is obtained, with frequency modulation encapsulated as 

! ! .  By substituting equation (2.11) into equation (2.13) we obtain  

 ! ! = ! cos ! ! !"
!

!
+ !!  

=  ! cos !!! +!!! ! ! !"
!

!
+ !! , 

(2.14) 

which is the right expression for frequency modulation oscillation  
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Van Der Pol relates the above formulation to the definition of instantaneous frequency. We 

note that a vector can represent any harmonic oscillation in the complex plane (Argand plane). 

The length of the vector represents the amplitude. The angle between the vector and the real axis 

represents the phase as demonstrated in Figure 2.2. We can find our simple harmonic signal in 

equation (2.7) by finding the projection of the complex vector on the real axis. 

 

Figure 2.2 Harmonic motion represented in complex form where ! ! = ! !! !"!! , ! ! =
! !"# !"+ ! , ! ! = !"+ !. 

 

From the instantaneous phase, we obtain the angular velocity (or angular frequency) as the time 

derivative of the instantaneous phase. In the simple harmonic oscillation of equation (2.7), the 

instantaneous phase is derived from !" + !! . Therefore the angular frequency is obtained as 

follows: 

 !"#$%!& !"#$%#&'( = ! !ℎ!"#
!" = ! !" + !!

!" = !. (2.15) 

We can also us this in our frequency modulation equation (2.14), where by differentiating the 

phase with respect to time we obtain the instantaneous angular frequency as  
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 !"#$%"$%"&'(# !"#$%!& !"#$%#&'(
= !
!" !! 1+!" ! !"

!

!
+ !! =  ! !

= !! 1+!" ! . 
(2.16) 

 

The next important step in the definition of instantaneous frequency was made by Gabor. 

In his paper titled Theory of Communication published in 1945 [12], Gabor proposed a method 

for generating a unique complex signal from a real signal. Before moving ahead, it is worth 

noting that this complex signal will only have physical meaning under certain conditions which 

will be discussed later. 

Gabor’s motivation for finding a complex representation of a signal was to obtain the 

central frequency moments for a signal. The n’th moment is defined for a signal ! !  with a 

frequency spectrum ! !  as 

 
!! =  

!! ! ! !!
!! .!"

! ! !!
!! .!" . (2.17) 

This definition is not applicable if the signal ! !  is a real signal, as ! ! ! is an even function 

and hence all the odd moments would be zero. Only by using the complex representation of a 

signal is this possible to calculate it’s central frequency moments. To arrive at this complex 

signal representation, or as it is more formally known, the analytical signal (AS), we must first 

look at the simple harmonic case.  

Gabor noted that any sine or cosine functions maybe represented as a complex exponential 

(!!"#), which is a compact mathematical representation that is easy to work with. One such 

representation is  
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 cos !" = ℜ! !!"# , 
sin !" = −ℜ! !"!!" . (2.18) 

The harmonics are represented by the real part of a single rotating complex vector. Taking this 

into account let us choose a simple real signal ! !  given by 

 ! ! = ! cos !" + !"#$ !" . (2.19) 

We can write x(t) in complex form, ! ! , given by 

 ! ! = ! ! + !" ! = ! − !" !!"# . (2.20) 

 

Equation (2.20) can be thought of as, adding an imaginary signal !" !  to the real signal ! !  to 

form this complex function ! ! . Alternatively, we can write equation (2.20) as  

 ! ! = ! cos !" + ! sin !" + ! ! sin !" − ! cos !" . (2.21) 

By comparing equation (2.20) and (2.21), we observe that the function ! !  was derived from 

the real signal ! !  by the replacement of cos !"  with sin !"  and sin !"  with −cos !" . In 

other words the function ! !  is in quadrature to the function ! ! . Therefore, when combining 

! !  and !" !  we form the complex function ! ! . This is achieved systematically by replacing 

cos !"  with !!"# and sin !"  with −!"!"#. 

More generally, for any real signal ! ! , (not necessary a simple harmonic signal) we can obtain 

its analytical signal (complex function) ! ! by first representing ! !  as a real Fourier integral, 

and then replacing the cos !"  and sin !"  with !!"# and −!"!"# respectively. This is shown in 

equation (2.22).  
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! ! = ! ! cos !" + ! ! sin !"

!

!
 !" 

! ! = ! ! − j! !
!

!!
!!"# !" . 

(2.22) 

An alternative way of finding the complex function arises from a deeper understanding of the 

previous process. First, we have to introduce an alternative representation of the basic harmonic 

function cos !"  and sin !" , which is given as  

 cos !" = 1
2 !!"# + !!!"# , 

sin !" = 1
!2 !!!" − !!!!" . 

(2.23) 

The double-sided amplitude spectrum plot for one of our harmonic function is given in Figure 

2.3. This is the same for both the cos !"  and sin !"  functions. We observe from Figure 2.3 

that the two frequency peaks are at ! and –!. Therefore, when we represent a harmonic signal 

(cos !"  for example) with a complex exponential !!"#, we are essentially suppressing the 

negative frequency component !!!"# in equation (2.23), and multiplying the positive frequency 

component !!"# by two. This important observation was made by Gabor and lent an easier way 

to obtain the analytical signal ! !  from our real signal. The exact process that was outline by 

Gabor in [12] was as follows, “suppress the amplitudes belonging to negative frequencies and 

multiply the amplitudes of the positive frequencies by two”.  
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Figure 2.3 Simple harmonic signal spectrum. 
 

Gabor also showed that we could obtain a time domain transformation between the real 

signal ! !  and complex signal j! !  using the inverse Fourier transform. The signal ! !  that is 

associated with ! !  can be obtaining using equation (2.24), with the equation derivation found 

in [13]: 

 
! ! =  1! ! ! !"

! − !

!

!!
. (2.24) 

 

This integration, deconstructed as follows, is given by 

 
=  lim

!→!
+

!!!

!!
 

!

!!!

!

!!
, (2.25) 

 

which denotes the Cauchy’s principal value. In a similar manner we can obtain ! !  from ! !  

 
! ! =  −1! ! ! !"

! − !

!

!!
. (2.26) 

The associated functions ! !  in equations (2.24), and ! !  in equation (2.26) are known as the 

Hilbert transform pairs. 
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Ville [14] combined the works of Gabor [12] and Carson and Fry [15] to define the 

instantaneous frequency using Gabor’s complex analytical signal representation. Any complex 

signal maybe considered as the result of the modulation of their envelope by a carrier, which is 

itself frequency modulated. We can define a signal ! !  using its complex signal unique 

equivalent as,  

 ! ! = ℜ! ! ! !! !"#$(!) , (2.27) 

with ! !  defined as the envelope of analytical signal ! ! , with instantaneous phase 

!"#$ ! .. 

Equation (2.27) defines the signal ! !  as the real part of the amplitude modulation of 

!! !"#$ (!)  by the envelope ! ! . Alternatively, ! !  can be defined as the real part of the 

frequency modulation of the envelope ! !  by the carrier !! !"#$ (!) .  Therefore, we can 

define the instantaneous frequency as. 

 !(!) = 1
2!

!
!" arg ! !  . (2.28) 

Let us consider two examples. For a simple monotone harmonic signal ! !  we can obtain its 

complex signal representation as 

 ! ! = cos !" + ! , 
! ! = !! !"!! , (2.29) 

with ! !  in this case being equal to one. The instantaneous frequency can therefore be derived 

from the phase, arg ! ! = !" + ! , as follows  

 ! = 1
2!  !!" arg ! ! = !

2!. (2.30) 

As a second example, let us consider a modulated sinusoidal signal ! !  
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 ! ! = cos !" cos !"  

= 1
2 cos ! + ! ! + cos ! − ! ! .     !ℎ!"! ! > ! > 0 

(2.31) 

We can obtain its unique complex signal as follows.  

 ! ! = 1
2 !! !!! ! + !! !!! !  

= 1
2 !! !" + !!! !" !!"# = cos !" !!"# , 

(2.32) 

where the envelope ! ! = cos !"  and the phase arg ! ! = !"  and so the instantaneous 

frequency equals  

 ! = 1
2!  !!" βt =

!
2! . (2.33) 

The instantaneous frequency is the carrier frequency !!! and ! !  is the envelope as defined. 

Note the importance of the fact that the coefficients of ! in the exponential are positive; 

neglecting this would lead to the inversion of the roles of ! and ! and would produce absurd 

results. 

From the previous two examples Ville noted that the higher frequency value !/2! is the 

carrier frequency. This was not a random result, but rather was an outcome of the following 

proposition. For any real signal ! !  we can write a function ! !  [14] 

 ! ! = ! ! !!"#      !ℎ!"! ! > 0. (2.34) 

We think of ! !  as the frequency modulation of the signal ! !  by !!"#. This is essentially the 

frequency translation of the spectrum of ! !  by the amount !. At the point when all the 

negative frequency spectrum of ! !  is shifted to the positive frequencies side the function ! !  

becomes the analytical complex signal ! !  [14]. This proposition is based on a more general 

fact: For a signal to be an analytical complex signal, for all values of t, its spectrum must have 

only positive frequency values with no negative frequency components [14]. 
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2.1.2 Interpretation of Hilbert generated instantaneous frequency and analytical signal  

Interpretation of the IF generated from Hilbert transform (HT) is often a subject of 

controversy. The most obvious of which is the fact that a real signal can be represented in 

complex form in many other ways. We can represent a signal with either an amplitude modulated 

(AM) signal and a constant carrier (phase), or, as a frequency modulated (FM) signal with a 

constant amplitude or a mixture of both. Although the analytical signal (AS) generated from the 

Hilbert transform is unique in giving rise to such complex expression as discussed earlier, this 

complex expression does not always correspond to any physical meaning. 

In this section we will cover the main conditions that a signal or the HT-generated AS must 

meet to give rise to a meaningful IF. The main two conditions as discussed by Boashash [10] are: 

A. The signal has to be a monocomponent (narrow band-pass) signal with a locally zero 

mean; 

B. The condition under which the Hilbert transform represents the quadrature component. 

The motivations for these conditions are described in what follows.  

A. Monocomponent and zero mean condition: 

Deriving the IF from the AS of a multicomponent signal makes little physical sense. 

This is because the computed IF is a result of the weighted average sum of all the frequency 

components at a particular instant.  

As for the zero mean criteria, we use a simple example to illustrate this condition. We chose 

the simple function ! ! , employed by Huang et al [1], given by 

 ! ! = ! + cos !"  , (2.35) 

where ! is a random constant. 
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The Hilbert transform can be found directly as 

 ! ! = sin !" . (2.36) 

Using equation (2.28) to compute IF we obtain 

 ! = 1
2!  !(1+ a sin !" )

1+ 2! cos !" + !! . (2.37) 

The IF computed from equation (2.37) is dependent on the constant !. To obtain the true IF 

value, which we know to be ! = !
!!, we must set the constant ! in equation (2.37) to zero. 

Therefore, to obtain a meaningful IF estimation, the mean signal value must be equal to 

zero. Both these conditions can be satisfied, as we will see in the next section using the 

Empirical Mode Decomposition method. 

 

B. Hilbert transform condition: 

The conditions for this are summarized most successfully by the Bedrosian and Nuttall 

theorems [16]. The Bedrosian theorem is a condition that sets the limitation on the frequency 

separation of the HT of the carrier from the envelope. To illustrate this let us consider an FM 

signal ! !  given by 

 ! ! = ! ! cos ! !  , (2.38) 

where ! !  is the time-dependent amplitude, and ! !  is the time-dependent phase. The 

corresponding AS for ! !  is  

 ! ! = ! ! cos ! ! + !ℋ ! ! cos ! ! . (2.39) 

For the Hilbert transform separation described above to hold true, we must have that 

 ℋ ! ! cos ! ! = ! ! ℋ cos ! ! . (2.40) 

The separation of the envelope is only possible if the Fourier spectrum of the envelope and 

the Fourier spectrum of the carrier are non-overlapping. In other words, the spectrum 
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! ! = ℱ ! !  lies in ! < !! and the spectrum ℱ cos (!(!)  lies in ! > !!. The proof 

for this can be obtained using Bedrosian Product Theorem found in [10]. 

As for the Nuttall Theorem which is discussed in [10] and [16], this theorem questions the 

conditions under which we can accurately compute the quadrature component using the HT, 

or more simply stated when could we write  

 ℋ cos ! ! = sin ! !  (2.41) 

Considerable research has been conducted on this topic [16], [17], which try to identify the 

error measurement between the ideal quadrature and HT-generated quadrature. However, in 

practice for most real signals this error is negligible. 

2.2 Empirical mode decomposition (EMD) 

Huang first introduced the empirical mode decomposition method in 1998 [1]. The 

motivation behind his work was that the Hilbert transform could only be meaningfully applied to 

a limited number of signals, which are narrow band-pass signals. As discussed in the previous 

section, to obtain a meaningful IF from the Hilbert transform, the signal has to be 

monocomponent with zero mean. One way to satisfy both conditions is by applying the empirical 

mode decomposition method. 

The empirical mode decomposition method assumes that for a typical time-series dataset, 

the data consists of many distinctive single intrinsic modes of oscillation. The data comprises 

many different coexisting modes at any given time, with each of the intrinsic modes 

superimposed on the remaining modes. Each of these oscillatory modes can be linear or non-

linear, but will have the same number of extrema and zero-crossings. Furthermore, each of these 

intrinsic modes will be symmetrical with respect to the local mean. 
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To summarize, for an oscillatory mode to represent an intrinsic mode function (IMF) it must 

satisfy:  

A. The number of the extrema and of zero-crossings must be equal or have a difference of 

one at most. 

B. The mean value of the envelope defined by the local maxima and the envelope defined by 

the local minima is zero at any time point.  

In addition, it is also worth noting that each IMF represents the simple harmonic function 

counterpart, with the distinction that for the IMF, the amplitude and frequency are functions of 

time, whereas the harmonic function has a constant amplitude and frequency. Let us now move 

on to the procedure of extracting IMF’s from a given signal. 

2.2.1 The sifting procedure  

Details of this procedure can be found in Huang et al [1]. In this section we will summarize 

the six main steps described in the list below: 

1. First, we take the whole time series data ! ! , shown in Figure 2.4 (a), and locate all the 

local maxima points. We then connect all the local maxima points together using a cubic 

spline function. Then we identify all the local minima points and connect them also with 

a cubic spline function.  

2. Then, we find the mean function for the local maxima and minima spline function for the 

whole data set, which is designated as !!.This is shown in Figure 2.4 (b). 

3. We obtain the first proto-IMF function ℎ! as shown in Figure 2.4 (c), by subtracting the 

local mean function !! from our data set to obtain  

 ℎ! = ! ! −!!. (2.42) 
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Figure 2.4: Illustration of the sifting process. (a) Original time series data example ! ! . (b) 
Maxima spline function (red dashed line), Minima spline function (blue dashed line) and local 
mean function (thick solid black line). (c) Proto-IMF function that is the difference between 
original time series function ! !  and local mean function. 
 

4. We repeat steps 1 through 3 again taking our proto-IMF function as the original ! !  

function. We do this by taking the ℎ! data set and identifying the maxima and minima 

cubic spline envelopes. Then we subtract the new mean function !!! from ℎ!, where the 

new mean function !!!is calculated from maxima and minima cubic spline envelops. We 

repeat this step ! number of times as shown in equation (2.43). The reason we repeat this 

step several times is because for a real signal we won’t be able to identify all the maxima 

and minima points from the first round. 
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 ℎ!! = ℎ! −!!! 

. 

. 

ℎ!! = ℎ! !!! −!!! 

(2.43) 

After repeating the sifting processing ! number of times we obtain our first IMF which 

we will designate as !! = ℎ!!. The number of times we need to perform the sifting 

process in practice is between 4 to 8 times for each IMF component [18].  

5. After obtaining the first IMF !! which should contain the majority of the high frequency 

(shortest periods) components of the signal ! ! . We subtract !! from our signal ! !  to 

obtain the residual !!. 

 !! = ! ! − !!. (2.44) 

 

6. After obtaining our first IMF !! we repeat the steps 1 through 4 again to obtain the 

second IMF !! but using !! instead of ! !  in equation (2.42) as our input signal for the 

sifting process. This procedure is repeated k number of times to obtain all subsequent 

residual signal !! and the corresponding IMF’s !!. 

 !! = !! − !! 
. 

. 

!! = !!!! − !! 

(2.45) 

 

The sifting process can be stopped finally when the components !! or !! become too 

small or the residual function !! becomes a monotonic function. 

  



 29 

The original signal ! !  can be represented as 

 
! ! = !!

!

!!!
+ !! (2.46) 

Thus, a decomposition of the signal into ! IMF functions is achieved, which satisfy the 

conditions needed for a meaningful HT.  
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Chapter 3 

 

 

3-  Algorithm design 

In this chapter and Chapter 4 we cover the algorithm design for instantaneous frequency 

estimation. The approach we take to examine the algorithm design in this thesis is based upon 

addressing the first of two broad issues when dealing with signal analysis. The first issue is 

solution stabilization. By this we mean the accuracy of the final solution, which is addressed in 

the data processing section of current chapter. The second issue is multicomponent signal 

decomposition and low signal to noise ratio.  This will be covered in Chapter 4.  

Although in this chapter we focus only on the data processing section, the overall algorithm 

design consists of three main parts as follows 

1. Data Preprocessing, which we will cover in Chapter 4; 

2. Data Processing, which we will cover in this chapter; 

3. Data Postprocessing, which we will cover in Chapter 4. 

 

3.1 Data processing 

The way this section is organized is summarized in the flow diagram presented in Figure 3.1. 

Each processing block in the flow diagram represents a subsection of the current chapter, where 

we examine in detail the function of the process and the goals we aim to achieve. We also 

exemplify some of the processes with performance evaluation segments using synthetic data.  
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Figure 3.1 Data processing algorithm flow diagram. 
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3.1.1 Problem formulation 

To put it simply, our problem is taking a real signal ! ! , which can be non-stationary and 

nonlinear, and numerically using compute its instantaneous frequency. Using the Hilbert 

transform (HT) and consequently the analytical signal (AS), we can find a unique complex 

representation for our signal as follows 

  

 ! ! = ! ! + !" ! = ! ! !!" !  

!ℎ!"!,! ! = !! ! + !! !  !"#  

! ! = tan!! ! !
! !  . 

(3.1) 

We can then use equation (2.28) to find the Instantaneous Frequency (IF) from our instantaneous 

phase as follows 

 !(!) = 1
2!

!" !
!" = 1

2!
!
!" tan!! ! !

! ! , (3.2) 

 !(!) = 2!" = ! ! !! ! − ! ! !! !
!! ! + !! ! = ! ! !! ! − ! ! !! !

!! ! , (3.3) 

 

where !! !  and !! !  are the first order derivatives of ! !  and ! !  respectively. ! !  is the 

envelope of the analytical signal ! !  computed in equation (3.1). 

To solve equation (3.3) numerically, we need to reformulate the equation into matrix format. To 

do this we first must sample our continuous time signal ! ! . Thus, obtain the discrete time 

version ! ! !" !, where ! and its corresponding discrete Hilbert transform ! are represented by 

vectors of length N. We can than write equation (3.3) as follows 

 !" = !, (3.4) 
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where ! is a diagonal square matrix with ! dimensions whose elements represent the sampled 

squared envelope function !! ! . We can directly compute the diagonal elements of the matrix ! 

as follows 

 ! = ! ! + ! !. (3.5) 

Furthermore, the measurement vector !, of length !, can also be derived as shown in equation 

(3.6). 

 ! = ! ⋅ ∆!∆! − ! ⋅
∆!
∆! ,  (3.6) 

where ⋅  is an element-wise multiplication of two vectors. Both  ∆!∆! and ∆!∆!  are the first order 

derivatives of ! and ! with respect to time respectively. We will use the spectral method to 

compute the first order derivatives of ! and !. This turns out to be vital in reducing the first 

derivative error and obtaining accurate IF estimation. 

 

3.1.2 Performance evolution criteria and intuition 

In this section we set out some of the intuition behind our selection of the simulated signals 

properties, and specify the error metrics used to evaluate the performance of our proposed 

method. We also stipulate the comparative algorithm (STFT) used here, and hope to clarify the 

reasoning behind our selection.  

1. The criteria we used for selecting the synthetic signals are two properties: the frequency-

band (0 Hz to 20 Hz), and SNR levels (0 dB and, 10 dB). These are similar to the 

properties of seismic traces that are generated by man-made events, more specifically, 

properties of quarry blast traces, which are of main interest to us as part of our case study 

in Chapter 5.  
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2. We compare the performance of our algorithms using two types of synthetic signals: 

constant frequency harmonic signals, and chirp signals. The intuition behind the former is 

to demonstrate the contribution each of the terms has in our proposed method has in 

stabilizing the solution. In particular, we focus on reducing the effect of noise, by 

incorporating the noise variance into the minimization problem using the ! and, !! 

parameters. The chirp signal is used later on in this chapter to demonstrate the effect of 

the frequency variance on the IF estimation. 

3. We compare our proposed algorithm results to the classical time-frequency centroid 

spectral method (STFT) as point of a reference throughout the evaluation. The reason for 

our selection is that STFT is based on an alternative time-frequency technique for 

computing the IF, where as our proposed method is based on the analytic signal method. 

The STFT method is a well-established method for IF estimation, and we think is 

equivalent to our proposed model in terms computational complexity. 

4. We use the root mean square error (RMSE) metric as the error evolution metrics through 

this thesis, which is given as follow(3.11)s: 

 
!"#$ = !! −  !!

!!
!!!

! , (3.7) 

 

where !! represents the actual ideal frequency value, !! represents the estimated frequency 

value, and ! is the number of samples. 

 

3.1.2.1 Performance evaluation 

In this section we evaluate the solution obtained by directly estimating the instantaneous 

frequency. We solve for ! using equation (3.4), by computing the matrix ! using equation (3.5) 
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and the vector ! using equation (3.6) using the one-sided finite-difference method to evaluate the 

derivatives. We now consider the following examples: 

 

1. Synthetic signal. We use a constant frequency sinusoidal signal ! !  that is corrupted by 

zero mean AWGN represented in equation (3.8), where !! = 10 !". At the end of this 

chapter and the following chapter we compare the results from two constant frequency 

signals with different !"# levels (!"# = 10.0 !", !"# = 0 !", which represents 

worse case scenario with signal power equal to noise power.) 

 ! ! = sin 2!!!! + !"#$% (3.8) 

 

 

Figure 3.2 Simple monotone signal ! ! = !"# !"!!! + !"#$% amplitude and spectrogram 
plots. The monotone signal duration is only from 25 seconds to 180 seconds, and the rest of the 
interval is pure noise. 
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2. Comparative algorithm. We compare the results obtained from our proposed algorithm to 

a time-frequency energy distribution method, based on the first frequency moment of the 

squares modulus of the short-time Fourier transform (STFT) using a Gaussian window. 

The algorithm uses a 32-sample window size with a 16-sample overlap.  

 SNR (dB) RMSE 
!" = ! IF solution 10 3.631 
STFT centroid frequency 10 0.026 

Table 3-1 Performance comparison between STFT centroid method, and !" = ! IF solution. 
 

From Table 3-1, we observe that solving for IF directly using equation (3.4) produces an 

unstable result with a large IF error when compared to the true IF value. In addition, we find that 

the STFT centroid frequency method outperforms the direct solution approach. The STFT 

algorithm works by allocating the maximum PSD value for each time instance and then connects 

the corresponding frequency values to obtain the instantaneous frequency estimation. 

 

3.1.3 Spectral method 

If we take a real signal x t  and sample it at a sampling frequency f! we obtain a vector x 

of length N. The Fourier spectrum for x n  can be found using Fast Fourier transform (FFT), 

which is denoted as X X k . 

 ! ! = !!" ! !  (3.9) 

We also know that the relationship between a signal and its first order differentiation with 

relation to its Fourier transform is given by 

 !" !
!"    !"#$%&$ !"#$%&"'(    !"# !  . (3.10) 

Hence using both equations (3.11)(3.9), and (3.10), we can numerically compute ∆!∆!  for our 

vector ! as illustrated in equation (3.11): 
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 ∆!
∆! = !""# ! ⋅ !  

!ℎ!"!,! ! = !!!!                       0 ≤ ! < !
−!!! 2! − !       ! ≤ ! < 2! 

(3.11) 

with the function ! !  plotted in Figure 3.3. The first order differentiation function ! !  is 

dependent on both angular frequency !, and the sampling frequency !! used to sample data set 

! ! . 

 

Figure 3.3 ! !  function plot, where !! = !. 

 

After computing and constructing both matrix !, which is given in equation (3.5) and 

vector ! computed from equation (3.6), we can now look into solving our linear equations using 

weighted least squares.  
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3.1.4 Weighted least squares 

First, let us reformulate equation (3.4) as a weighted least squares minimization problem, 

with the corresponding solution 

 
! =  arg min

!
!!
!
! !" − !

!

!
, (3.12) 

where !! is the weight matrix,  !
! is the second norm (Euclidean norm) squared and min

!
 is 

notation that specifics the value ! that minimizes the objective function. The normal solution to 

equation (3.12)  ! can be obtained from equation (3.13). 

 !!!!!! = !!!!!. (3.13) 

 

To obtain more insight into the weighted least squares solution and the role of !!, we take 

a step back to equation (3.4), where in practice, equation (3.4) can be amended to include the 

noise in our measurement vector ! as follows. 

 !" = ! − !, (3.14) 

where ! is the error (or noise) in our measurement vector !. This noise can be characterized by 

its mean ! and variance !!! for independent noise and !!"!  (for dependent noise). 

 ! = ! !! , 
!!! = ! !!! ,  

!!"! = ! !!!! . 
(3.15) 

The variance scale value infers the following: A small !!! value implies a more accurate !! 

measurement, where as a large !!! value implies that the measurement values !! are less reliable. 

If we weight each equation by selecting the elements of the matrix !! in such away that 

(!!")! = !
!!"!

, where (!!")! are the corresponding elements of the matrix !!. The best-fit solution 

! can then be calculated from equation (3.13), which takes into account these weights and the 
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reliability of each measurement value !!. We are able to show this is true for the more general 

case, where !! = Σ!! and Σ!! is the inverse of the noise covariance matrix [19]. 

 

Σ = ! !!! =

!!!
!!!!
.
.!!!!

!!!!
!!!
.
.!!!!

    …     

!!!!
!!!!
.
.
!!!

. (3.16) 

We now show that the choice of !! = Σ!! minimizes the expected error in our best-fit solution 

!. The normal equation for any choice of !! and the corresponding solution can be obtained as 

follows.  

 !!!!!! = !!!!!. 
!ℎ!"ℎ !"#$%, ! = !!!!! !!!!!!! = !", (3.17) 

where  ! = !!!!! !!!!!!, and !" = !!!!! !!!!!!! = !  is the identity matrix.  

We can also compute the covariance matrix for our output error ! − ! ; which is the output 

error in our estimates, when ! = ! − !" is the input error in our measurements. Therefore, 

 !"#$"# !""#": ! − ! = !" −  !" = !"# − !" 

= ! !" − ! = −!". (3.18) 

In a similar manner to equation (3.16) we can compute the covariance matrix ! of the output 

error ! − !  in equation (3.18) as follows. 

 ! = ! ! − ! ! − ! ! = ! !"!!!!  

= !  ! !!!   !! = !Σ!! (3.19) 

We can show that ! is as small as possible when the !! matrix used in ! is Σ!!. This gives the 

best linear unbiased estimate for the solution ! [19]. Therefore, if we select !! = Σ!! the 

corresponding matrix ! that is denoted as !∗ for distinction. The new covariance matrix ! can be 

calculated as follows. 
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 ! = ! ! − ! ! − ! ! = !∗Σ!∗! 

= !!Σ!!! !!!!Σ!! Σ Σ!!! !!Σ!!! !! = !!Σ!!! !!. (3.20) 

Selecting any other value for !! will give a different value for !, which is expected. However 

the value of ! is smallest when the matrix !! used in ! equals Σ!!. The full proof for this can be 

found in Strang’s book computational science and engineering [19]. 

 

3.1.4.1 Performance evaluation 

We repeat the same performance evaluation described in section 3.1.2 and use the same 

criteria. We solve for ! using equation (3.13) by computing the matrix ! from equation (3.5) 

and the vector ! from equation (3.6). As for the value of !!, we use a simple constant value 

diagonal matrix, where (!!)! = !
!!!

. This is done under the assumption that the noise is AWGN, 

where the value of !!! = ! !!!  is computed from the pre-signal (noise only) section of the 

signal. 

 SNR (dB) RMSE 
!!!!!! = !!!!! IF solution 10 0.0516 
STFT centroid frequency 10 0.0268 

Table 3-2 Performance comparison between STFT centroid solution, and !!!!!! = !!!!! IF 
solution. 

 

From Error! Reference source not found. we can compare the performance of both methods, 

where it is clear that the STFT centroid frequency method outperforms the weighted least 

squares method. However, there is great improvement in the IF estimation compared to the direct 

solution.	

3.1.5 Quadratic constraints as a quadratic inequality constraints 
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3.1.5 Quadratic constraints as a quadratic inequality constraints 

In finding the solution for equation (3.13), we likely know the range of frequency values 

for the target solution. This additional information can be incorporated into the least squares 

minimization problem as a quadratic inequality constraint as follows: 

 min
!

!" − ! !
!      !. ! !! − !! ! ≤ !!, 

!ℎ!"!, ! < ! < !, !! = ! − ! !

4 ,! = ! + !
2 , 

(3.21) 

where !, ! are the upper and lower frequency cutoffs respectively. For simplicity we assumed 

that frequency over the interval ! < ! < ! has a uniform distribution with mean ! and variance 

!!. 

By finding the Lagrange dual function for equation (3.21), and applying a penalty matrix !! 

(where !! = !"#$ !! ), we then solve for ! as follows: 

 
! = !"#min

!
      !" − ! !

!    +     !!
!
! ! − !

! 

!
        (3.22) 

The normal equation and solution to equation (3.22) , ! can be obtained from equation (3.23): 

 (!!! + !!)! = !!! + !!!. (3.23) 

 

In practice, to find the optimal values for the penalty matrix elements of !!, we run the solution 

through a loop until the constraints are satisfied [20]. This work was previously presented in 

[65]. 

3.1.5.1 Performance evaluation 

In this section we present some synthetic signal results using only the quadratic inequality 

constraints as an additional term to our least squares minimization problem. This is to show the 

independent contribution this term brings in helping to stabilize the solution. The evaluation 

criteria used here is the same as the one use in section 3.1.2. 
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 SNR (dB) RMSE 
(!!! + !!)! = !!! + !!! IF solution 10 0.0441 
STFT centroid frequency 10 0.0268 

Table 3-3 Performance comparison between STFT centroid solution, and (!!!+ !!)! =
!!!+ !!! IF solution. 
 

 

The results obtained in Table 3-3 show only slight improvement in the evaluation metrics 

compared to the weighted least squares. However, that was somewhat expected. The quadratic 

constraints term required the solution to fall within a predefined frequency band, which in this 

case was mostly satisfied with weighted least squares term. 

3.1.6 Least squares Tychonov regularization 

 In equation (3.4) the matrix A has a determinant near zero. Therefore, in order to solve 

for the instantaneous frequency vector (!), we reformulate the problem by introducing the 

objective functional given by 

 
!(!) =  !!

!
! !" − !

!

!
+ ! !" !

! (3.24) 

 

In equation (3.24), the first term represents the weighted least squares as previously derived in 

equation (3.12), and the second term represents the L2 regularization term, known as Tychonov 

regularization. The objective of the regularization term is to stabilize the solution for !. 

However, this requires a judicious choice of the numerical value of !. 

The solution (!) is obtained by minimizing !(!), i.e.  

 
! = !"#min

!
!(!) = !"#min

!
!!
!
! !" − !

!

!
+ ! !" !

!   (3.25) 
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The choice of ! for the minimization in equation (3.25) was previously derived in [64], and is 

given by  

 
 ! = !!!

2 ∆! !

! !
. (3.26) 

 

where !!! represents the noise variance, and ∆! is the sampling interval.  

For the application in this thesis we choose ! =  ! 2∆!, where !, the first order central 

difference matrix, is given by, 

 

! =

0
1
.
.
 

0
 
0

−1
0
.
.

 
0
 
0

0
−1
.
.

 
0
 
0

    …     

0
0
.
.
1
 
0

 

0
0
.
.
0
 
1

…

0
0
.
.
−1

 
0

  (3.27) 

 

The final normal equation that yields our solution, !, is given by, 

 (!!! +  !!!!)! = !!! 

!ℎ!"!,    ! =  !/4∆!! 
(3.28) 

 

3.1.6.1 Performance evaluation 

In this section we conduct a performance evaluation with the additional Tychonov 

regularization term to our least squares terms, where we solve for ! in equation (3.28) using the 

value of ! from equation (3.26). As in the previous section, the same criteria and synthetic signal 

are used as described in section 3.1.2. We note that the introduction of the Tychonov 

regularization term significantly improved the performance of our proposed method solution, and 

outperforms the STFT method. 
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 SNR (dB) RMSE 

(!!! + !!!!)! = !!! IF solution 10 0.0173 

STFT centroid frequency 10 0.0268 

Table 3-4 Performance comparison between STFT centroid solution, and (!!!+ !!!!)! =
!!! IF solution. 
  

 

3.1.7 Putting it all together 

Finally, we are at the stage of combining all the terms together to obtain one minimization 

objective function. By combining equations (2.12), (2.22), and (3.25), we obtain 

 
! = !"#min

!
       !!

!
! !" − !

!

!
+ ! !" !

! + !!
!
! ! − !

!

!
      . (3.29) 

And to solve for ! we use the following normal equation 

 !"#$%& !"#$%&'(: (!!!!! + !!! + !!)! = !!!!! + !!!. 

!ℎ!"!, !! =!!  ! 
(3.30) 

 

3.1.7.1 Performance evaluation 

In this section, we conduct a performance evaluation with all the terms combined where we 

solve for ω in equation (3.30). This evaluation is performed on two types of synthetic signals, 

constant frequency harmonic signals and chirp signals as shown below: 

1. Constant frequency harmonic signal. 

The synthetic signal is represent by ! !  given in equation (3.8). The signal consists of 

constant frequency harmonic signal and AWGN. The results presented in Table 3-5 

compares the performance of our proposed method with a classical STFT method at two 

SNR (0 dB, and 10 dB) levels. 
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Figure 3.4 Top plot: IF estimation by solving the equation (!!!!!+ !!! + !!)! = !!!!!+
!!!. Bottom plot: IF estimation using STFT centroid frequency. 
 

 SNR (dB) RMSE 

(!!!!! + !!! + !!)! = !!!!! + !!! IF solution 10 0.0173 

STFT centroid frequency 10 0.0268 

(!!!!! + !!! + !!)! = !!!!! + !!! IF solution 0 0.0205 

STFT centroid frequency 0 0.0744 

Table 3-5 Performance comparison between STFT centroid solution, and (!!!!!+ !!! +
!!)! = !!!!!+ !!! IF solution. 
 

The results from Figure 3.4 and Table 3-5 are very encouraging. The performance of the 

weighted least squares Tychonov regularization method slightly outperforms the STFT 

centroid method. 

 

2. Chirp signal 

We now present the simulation results for tracking a linear IF function. s t , which 

represents a chirp signal that is corrupted by zero mean AWGN as given in equation (3.31). 
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The results presented in Table 3-6 compares the performance of our proposed method with a 

classical STFT method at two SNR (0 dB, and 10 dB) levels.  

 

 ! ! = sin 2! !! +
!
2 ! ! + !"#$%  

 !ℎ!"!,      ! =  (!! − !!)(!! − !!)
 (3.31) 

 !! = 15 !",     !! = 5 !",   !! = 25 !"#,   !! = 180 !"#.   

 

 

Figure 3.5 Down-chirp signal ! ! = !"#$%+  !"#$% amplitude and spectrogram plots. The 
chirp signal duration is only from 25 seconds to 180 seconds, and the rest of the interval is pure 
noise. The average SNR is equal to 10 dB 
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Figure 3.6 Top plot: IF estimation by solving the equation (!!!!!+ !!! + !!)! = !!!!!+
!!!. Bottom plot: IF estimation using STFT centroid frequency. The average SNR is equal to 10 
dB 
 

 SNR (dB) RMSE 

(!!!!! + !!! + !!)! = !!!!! + !!! IF solution 10 0.259 

STFT centroid frequency 10 0.166 

(!!!!! + !!! + !!)! = !!!!! + !!! IF solution 0 1.18 

STFT centroid frequency 0 1.03 

Table 3-6 Performance comparison between STFT centroid solution, and (!!!!!+ !!! +
!!)! = !!!!!+ !!! IF solution. 

 

The performance of the weighted least squares Tychonov regularization method slightly 

underperforms when compared with the STFT centroid method, as shown Figure 3.6 and 

Table 3-6. However, we note that for the weighted least squares Tychonov regularization 

method most of the error in the IF estimation, is incurred at the edges. This edge effect is 

expected because of the sharp frequency change, which is heavily penalized.  
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Chapter 4 

 

 

4-  Algorithm design extension 

In this chapter we add and discuss two additional blocks to our algorithm and the 

motivation behind them. As we alluded to in the previous chapter, the goal for the algorithm 

expansion is to allow for the implementation of the algorithm on a wider class of signals. More 

specifically, we will be looking into empirical mode decomposition as a method to deconstruct 

multicomponent signals into monocomponent signals, which can then be analyzed to obtain the 

instantaneous frequency using the data processing method. In addition, due to the performance 

drop in the data processing block in a high noise environment, we will implement the Singular 

Spectral Analysis method as a denoising step to improve the SNR of the signal. Lastly, we 

introduce the postprocessing block later in this chapter, the aim of which is the extraction of 

certain features of interest from the signal under consideration. 
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Figure 4.1 Data preprocessing algorithm flow diagram. 
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4.1 Data preprocessing 

This processing block can be divided into four main sub-blocks as illustrated in Figure 4.1. 

The main goals for these processing blocks are: 

1. Decompose a multicomponent signal into monocomponent intrinsic mode functions 

(IMF). This is achieved using Empirical Mode Decomposition (EMD). 

2. The second goal is noise reduction using singular value decomposition. This is achieved 

using two methods: Principal Component Analysis (PCA) and Singular Spectrum 

Analysis (SSA). 

4.1.1 Data restructuring 

The aim of this section is to organize the data set and introduce some notations. Frequently, 

in data analysis and algorithm design, we start out with a collection of data that was aggregated 

over time and stored. This data is then used to design an optimal data analysis algorithm. 

However, it has become good practice to split the data set prior to the analysis and design phase   

into at least two sets: 

1. A training set that is used to build and train or develop the algorithm and find the optimal 

parameter values. 

2. A test set that is only used as a performance measure for the algorithm.  

The training set usually contains most of the data to be processed, whereas the test set has a 

small fraction of the data and its main purpose is to avoid over-fitting of the model to the data. 

Specifically for this thesis application, the input data set used is a collection of seismic 

time series, where we refer to each time series as an event (or example) consisting of ! samples. 

In the data-restructuring block, we split the input data set into a training set denoted as !!"#$% that 

contains 80% of the events used. The !!"#$% set is constructed as a matrix with ! × ! 
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dimensions, where ! is the number of events used in the training, and ! is the length of each 

time series event. The second set is the !!"#!, which contains the remaining 20% of the events. 

The !!"#! set is also structured into a matrix with ! × ! dimensions, where ! is the number of 

events used in the test set, and ! is the length of each time series event which is the same as the 

training set.  

The general notation used here is, any data set is denoted by a capital letter (!) followed by 

a subscript denoting which set we are referencing to (i.e. training set, test set or portions of that 

set), and to which process this matrix is an output. For example, the training set matrix that is an 

output of the EMD process is denoted as !!"#$%_!"#. We also denote each event or equivalently 

each column in these matrices with a small letter (!) notation that is followed by a subscript of 

the column indices ! and the process it belongs too, for example !!_!"#. The focus in this chapter 

and the following chapter will be on the training set unless specified otherwise. 

4.1.2 Empirical mode decomposition 

The process for decomposing a multicomponent signal into its IMFs was described in 

Chapter 2 using Huang et al [1] sifting process. The implementation of this process in this study 

was achieved using an algorithm design that was published in the Matlab Center File Exchange 

by Alan Tan [21]. The algorithm implements the sifting process to generate multiple IMF’s from 

a multicomponent signal. It is worth noting two points with regards to the implementation of the 

EMD process in this thesis: 

1. The signal used in the EMD process is a multicomponent signal, and hence if the signal 

is a monocomponent signal the process is redundant; 
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2. The number of IMF’s selected for the IF analysis will depend on the relative power 

contribution of each IMF to the whole signal. This is exemplified in Chapter 5, where 

only the first three IMF’s are used for the IF computation. 

4.1.2.1 Performance evaluation 

In this section we evaluate the performance of the Empirical Mode Decomposition 

processing block. The evaluation is based on the IF values computed using equation (4.1). The 

difference between equation (4.1) and equation (3.30) is the addition of the weighting factor λ, 

which is used to optimize the solution for each IMF. We follow the same evaluation criteria 

outlined in the previous chapter but only present results for signals composed of two chirp 

signals as follows. 

 !"#$%& !"#$%&'(: (!!!!! + !"!! + !!)! = !!!!! + !!!. (4.1) 

 

The signal s t  represents two chirp signals s! t , and s! t  and corrupted by zero mean 

AWGN, represented by equation (4.2) and plotted in Figure 4.2, where SNR = 10 dB and, f!, f! 

for s! t  and f!, f! for s! t  represent the start and end frequency for each chirp signal, 

respectively.  

 !! ! = sin 2! !! +
!!
2 ! !  

!! ! = sin 2! !! +
!!
2 ! !  

! ! = !! ! + !! ! + !"#$%. 

 

 !ℎ!"!,      !! =  (!! − !!)(!! − !!)
,     !! =

(!! − !!)
(!! − !!)

 (4.2) 

 !! = 10 !",     !! = 5 !", !! = 6 !",     !! = 1 !",    
!! = 25 !"#,   !! = 180 !"#.  
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Figure 4.2 Signal amplitude and spectrogram plots for !! ! , and !! !  chirp signals. 
 

Similarly, to the constant frequency harmonic signal we present the results for the IF 

estimation using both WLSTR and STFT for two cases: IF estimation without applying EMD 

and, IF estimation after applying EMD to the input signal. 
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A. IF estimation without applying the EMD processes. 

 

Figure 4.3 IF estimation without applying EMD. Top plot: IF estimation using weighted least 
squares Tychonov regularization with quadratic constraints (WLSTR) method. Bottom plot: IF 
estimation using STFT centroid frequency method. 
 

From Figure 4.3 we see that both algorithms are unable to correctly identify the true IF 

values (two constant frequency signals in this case), and instead estimate the average IF 

value. 

 

B. IF estimation after applying the EMD process.  

Figure 4.4 illustrates the signal amplitude and spectrogram plots for both !"#1 and 

!"#2, where it is apparent that the EMD algorithm block was successful in separating the 

two chirp signals !! !  and !! ! . 
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Figure 4.4 Signal amplitude and spectrogram plots for both IMF1 and IMF2. 
 

The IF plots in Figure 4.5 (Top) illustrate the IF estimation solution using the weighted 

least squares Tychonov regularization with quadratic constraints (WLSTR) algorithm. The IF 

plots in Figure 4.5 (Bottom) illustrate the IF solution using the STFT centroid frequency 

method.  

 

Methods SNR 
(dB) 

RMSE IMF1 RMSE IMF2 RMSE IMF2 

EMD + WLSTR  10 0.28 
(!=1) 

0.11 
(!=1) 

0.03   
(!=1e2) 

EMD + STFT 10 0.24 0.15 0.15 

EMD + WLSTR 0 0.85 
(!=1) 

0.905 
(!=1) 

0.58  
(!=1e3) 

EMD + STFT 0 0.98 1.21 1.21 

Table 4-1 Performance comparison between EMD + WLSTR method, and EMD + STFT 
centroid frequency method.  
 

We note that for IMF2 in last column of Table 4-1 the error is reduced in our proposed 

method by increasing the value of λ. From Figure 4.5, and Table 4-1, we find that the 
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WLSTR method outperforms the STFT method for IMF2 estimation. This is more apparent 

at lower frequency (IMF2), and lower SNR levels (SNR = 0). Nevertheless, both methods see 

degradation in performance as the SNR decreases. This degradation in performance prompts 

the need for a filtering/denoising stage prior to performing the IF estimation.  This is 

examined in the next section. 

 

Figure 4.5 Top plot: IF estimation using EMD + WLSTR method. Bottom plot: IF estimation 
using EMD + STFT centroid frequency method. 
 
4.1.3 Principal component analysis (PCA)  

Principal component analysis is a well-established technique that has been employed 

successfully in feature reduction, data compression, and noise reduction. The three main features 

that underpin the PCA technique are,  

1. The technique is non-stationary; 

2. PCA is a data reduction technique and some of the original data will be lost; 

3. The technique deconstructs a matrix ! into its orthonormal column space (principal 

components), and variance (eigenvalues) associated with each column vector. 
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Principal component analysis approximates a matrix ! as a sum of rank one matrices. As 

an example, let us take a matrix ! that is an !-by- ! matrix. Its singular value decomposition is 

given in equation (4.3). 

 ! = !Σ!! , (4.3) 

where ! is the orthonormal column space matrix, !! is the orthonormal row space matrix, and Σ 

is the diagonal singular value matrix (standard deviation !) in descending order. An approximate 

representation of the matrix ! can be written as follow. 

 ! = !! + !!…+ !!, (4.4) 

where ! = min !,! , and each !! matrix is rank one matrices. Furthermore, we can represent 

the matrix !!, given in equation (4.5) as the outer product of !! (!"ℎ column of !), with !!! 

(transpose of the !"ℎ column of !), and multiplied by the singular value !!. The contribution !! 

makes to the matrix ! is determined by the value of !!. 

 !! = !!!!!!! , (4.5) 

 

Alternatively, we can think of equation (4.5) as the standard deviation (!!) of the data (!) 

along the !! dimension. A large !! value specifies that most of the data is present in the !! 

dimension, and vice versa.  If we truncate the summation in equation (4.4) to ! terms, where 

! < !. Then the matrix ! can be approximated as !! (rank ! matrix approximation to the matrix 

!) given by, 

 !! = !! + !!…+ !! . (4.6) 

 

Subsequently, since the singular values !! in the matrix Σ are in decreasing order,  the accuracy 

of this approximation increases as the rank increases.  
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One way to evaluate the value of ! is by setting a threshold value that represents a 

percentage of standard deviation !! for the data set along different dimensions. As we will see in 

Chapter 5, the seismic data is formatted into a matrix (!!"#$%) with each column represents a 

trace. We construct the matrix !!"#$%_!"#$% from the training set !!"#$% that represents the pre-

signal noise section of each seismic event. The matrix !!"#$%_!"#$% has the same number of 

columns as !!"#$%. However, it only consists of the first 1000 rows (time points, which represent 

pure background noise. By performing the singular value decomposition on both matrices !!"#$% 

and !!"#$%_!"#$%  we obtain 

 !!"#$% = !!"#$%Σ!"#$%!!"#$%! 

!!"#$%_!"#$% = !!"#$%_!"#$% Σ!"#$%_!"#$% !!"#$%_!"#$% 
! , (4.7) 

we then compute the threshold value using equation (4.7), where we sum the elements across the 

diagonal matrix Σ i.e.  

 
!ℎ!"#ℎ!"# = 1−

!"# !"#$%&#' Σ!"#$%_!"#$% 

!"# !"#$%&#' Σ!"#$%
. (4.8) 

 

The threshold value represents the percentage of noise standard deviation compared to the whole 

signal noise standard deviation. In practice the threshold values used are above 90%. 

The rank ! of the reduced matrix can then be computed by looping over the diagonal elements of 

the matrix Σ!"#$%, and summing the singular values in descending order, as illustrated in the 

algorithm below 
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Algorithm: Rank reduction 

Input: Threshold value from Equation (4.6), !ℎ!"#ℎ!"# 

Output: Rank of reduced matrix, ! 

 

Initialization: !,! = !"#$ Σ!"#$% ,   ! = min !,!  

For   ! = 1 !" ! 

         ! = !"# !"#$%&#' Σ!"#$% 1 !" !
!"# !"#$%&#' Σ!"#$%

 

If      ! ≥ !ℎ!"#ℎ!"#,     ! = !, End 

End. 

(4.9) 

 

This process is done for each IMF matrix separately. After which, we compute the denoised 

signal !!_!""#$% from the signal !! signal, as shown below. 

 !!_!""#$% = !!"#$%_!"#$%"# !!"#$%_!"#$%"#!!! , 

!!"#$%_!"#$%"# =

.

.
!!
 .
.

.

.
!!
 .
.

    …     

.

.
!!
 .
.
, 

(4.10) 

where !!"#$%_!"#$%"# is the reduced rank orthonormal column matrix, !! is a single seismic 

event, and !!_!""#$% is the same seismic event after denoising. 

 

4.1.4 Singular spectrum analysis (SSA) 

Singular spectrum analysis (SSA) is implemented here as a denoise step for a time series 

signal. Although in the previous section PCA was also used as a denoising method, we will use 

SSA as an additional step to more effectively boost the SNR in a high noise environment. 
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Singular spectrum analysis is a non-stationary time series spectral estimation method. It 

combines the works of Karhunen [22] and Loève [23]in spectral decomposition and Mañé [24] 

and Taken [25]in an embedding theorem. This is also a well-established method for noise 

reduction of a time series signal and a full description of the process can be found in [26]. The 

following steps are implemented in the algorithm. 

1. First step: Embedding 

The time series is mapped into a sequence of lagged vectors of size !, by forming ! 

lagged vectors as shown in equation (4.11), where ! = ! − ! + 1 and ! is the length of 

the time series signal ! [26]. The embedded matrix ! is then given as 

 

! =

!!
!!
.
.!!

!!
!!
.
.!!!!

    …     

!!
!!!!
.
.!!

, 

! = !!, !!, !!…  , !! . 

(4.11) 

2. Second step: Singular value decomposition 

This implements a similar technique used in principal component analysis to find a 

reduced rank matrix !!"#$%"# from the embedded matrix !. The value of ! is obtained by 

setting a threshold that represents a ratio between, the actual denoised data standard 

deviation present in the signal, and the whole signal standard deviation that includes 

noise.  

For our times series signal !, we assume that the first ! samples are pre-signal noise only 

(channel noise), which we denote as !!"#$%. However, prior to performing the SSA 

method on the whole signal !, we first preform the embedding step on the noise !!"#$% to 

obtain the matrix !!"#$%, which is given in equation (4.12): 
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 !!"#$% = !!, !!, !!…  , !!  

!!"#$% =

!!
!!
.
.!!

!!
!!
.
.!!!!

    …     

!!
!!!!
.
.!!

. (4.12) 

 

We now compute the singular value decomposition of the matrix 

!!"#$% = !!"#$%Σ!"#$%!!"#$%! and obtain Σ!"#$%. Σ!"#$% is then used as input in computing 

the threshold cutoff value as follows. 

 
!ℎ!"#ℎ!"# = 1− !"# !"#$%&#' Σ!"#$%

!"# !"#$%&#' Σ!
, (4.13) 

where the Σ! matrix is the singular value matrix computed from the input signal 

embedded matrix ! = !!Σ!!!!. The threshold value in equation (4.13) represents the 

percentage of the denoise signal standard deviation compared to the whole signal plus 

noise standard deviation. The rank ! of the reduced matrix !!"#$%"# can then be 

computed by, looping over and summing the singular values along the diagonal of the 

matrix Σ! in descending order, as illustrated in the algorithm below: 

 

 

Algorithm: Rank reduction  

Input: Threshold value from Equation (4.12), !ℎ!"#ℎ!"# 

Output: Rank of reduced matrix, ! 

Initialization: !,! = !"#$ Σ! ,   ! = min !,!  

For   ! = 1 !" ! 

         ! = !"# !"#$%&#' Σ! 1 !" !
!"# !"#$%&#' Σ!

 

If      ! ≥ !ℎ!"#ℎ!"#,     ! = !, End 

End. 

(4.14) 
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The reduced rank matrix !!"#$%"# is then derived as follows 

 !!"#$%"# = !!Σ!_!"#$%"#!!! 

 

Σ!_!"#$%"# =  

!!
0
.
.

 

0
.
0

0
!!
.
.

 
0
.
0

    …     

0
0
.
.!!
.
0

 

0
0
.
.
0
.
0

…

0
0
.
.
0
.
0

 . 

(4.15) 

 

3. Third step: reconstruction 

Finally, we transform the matrix !!"#$%"# back into a time series signal using the 

diagonal averaging method [26]. 

The implementation of the singular spectral analysis in this thesis is done using an algorithm 

published at MATLAB Center File Exchange by Andreas [27]. However, the rank reduction 

process, described in step two, is an added modification to the original algorithm and 

implemented as a part of this research. 

4.1.4.1 Performance evaluation 

In this section we implement the EMD and SSA processing blocks, without any PCA 

block. This final process is applied prior to the data processing step, which estimates the 

instantaneous frequency. As was the case in the previous performance evaluation section, we 

compare the performance of the weighted least squares Tychonov regularization with quadratic 

constraints (WLSTR) method equation (4.1), and the short time frequency transform (STFT) 

centroid frequency method.  
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We use the same criteria as described in section 4.1.2.1. The same signal s t , previously 

analyzed, represents two chirp signals s! t , and s! t  corrupted by zero mean AWGN and is 

represented by equation (4.2). . After applying the EMD process (Figure 4.4), and then the SSA 

process to the input signal s t  we obtain  IMF1 and IMF2, which is given in Figure 4.6. 

 

Figure 4.6 Signal amplitude and spectrogram plots after SSA processing for both IMF1 and 
IMF2. 

 

From Figure 4.7, and Table 4-2, we find that the SSA+WLSTR method outperforms the 

STFT method for both IMF1 and IMF2 estimations. We also note that for IMF2, in last column 

of Table 4-2, the error is reduced in our proposed method by increasing the value of λ. In 

addition, by comparing the results from Table 4-1 (without SSA) with the results from Table 4-2, 

the SSA process improves the overall performance of the algorithm for IMF1, especially at high 

SNR levels. However, the slight degradation in performance for IMF2 is due to the over 

regularization for low frequency components 
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Figure 4.7 Top plot: IMF1 IF estimation using weighted least squares Tychonov regularization 

with quadratic constraints (WLSTR) method. Bottom plot: IMF2 IF estimation using STFT 

centroid frequency method. 

Methods SNR 
(dB) 

RMSE IMF1 RMSE IMF2 RMSE IMF2 

EMD + WLSTR  10 0.2 
(!=1) 

0.09 
(!=1) 

0.06 
(!=1e2) 

EMD + STFT 10 0.24 0.15 0.15 

EMD + WLSTR 0 0.74 
(!=1) 

1.006 
(!=1) 

0.81 
(!=1e3) 

EMD + STFT 0 0.98 1.21 1.21 

Table 4-2 Performance comparison between EMD + WLSTR method, and EMD + STFT 
centroid frequency method.  
 

 

4.1.5 Performance comparison with state-of-the-art methods for chirp model estimation 

Many natural signals are not stationary, ranging from radar and biomedical signals to 

seismic measurements and human speech, may be modeled as signals with instantaneous 

frequencies (IF) that vary slowly over time [54]. An investigation of the harmonic chirp model 
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[55 -58] found that these models were more accurate than the traditional harmonic models in 

many practical scenarios where the IF of the signal is not stationary.  

The formulation of efficient estimation algorithms for chirp signal models has received a 

lot of attention in the literature. These algorithms focused on estimating the start frequency, and 

frequency rate for signals only containing a single chirp. Some of the methods described in the 

literature use maximum likelihood formulation [46], least squares minimization [47] , sample 

covariance matrix estimation techniques [48] ,as well as integrated cubic phase function 

estimators [49] .  

Alternatively, Fourier based time-frequency estimation methods, like the Wigner-Ville 

distribution, and the reassigned spectrogram methods, are used as rough initial estimates, which 

are refined using image processing techniques to fit a linear chirp model [59]–[61]. These 

methods also tend to generally perform better for a wider range of signal models [51]. However, 

methods such as the reassignment spectrogram method typically require large data sets for high 

accuracy IF localization [62].  

These nonparametric methods typically suffer from poor resolution and high variance (as 

observed on spectrograms), but have a computational efficiency advantage. Alternatively, 

parametric methods often have better resolution and accuracy. However, they suffer two major 

disadvantages [51]: typically they require some a priori knowledge of the signal, and sometimes 

have a convergence-problem due to poor initialization.  

When using the chirp model the parameters are the amplitudes of the harmonics, the start 

frequency, and the fundamental chirp rate. Most of these works assume that the amplitude of the 

linear chirp signals is constant or normalized. Such signals are characterized by the phase 
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function, the instantaneous frequency, which is a function of the starting frequency and the 

frequency rate [45].  

To perform the comparison, we compare our proposed IF estimation model 

(SSA+WLSTR), using the chirp signal model, with two parametric methods: The first method 

published in 2018, by X. Meng, A. Jakobsson, et al [45], proposes a parametric model amplitude 

and IF estimation for chirp signals, were they introduce the predefined dictionary Z!, to solve for 

the unknown parameters. The second method published in 2004, by L. Qi et al [50], presents a 

parameter estimation of multicomponent LFM signal based on the discrete fractional Fourier 

transform (DFRFT). We use the amplitude modulated chirp signal model defined in [45], where 

the starting frequency is !! = 0.105 !", with a frequency rate of ! = 2×10!! !"/!, sampling 

rate of 1 !", and the AM part of the signal defined by ! !  The analytical representation in 

Figure 4.8 is given as follows. 

 ! ! = ! !  sin 2! !! +
!
2 ! ! + !"#$%.  

 !ℎ!"!,      ! =  (!! − !!)(!! − !!)
,    

! ! = 0.5 sin 0.06! + 0.16 + 0.04! + 0.9 
(4.16) 

 !! = 0.105 !",     !! = 0.2 !",    

!! = 50 !"#,   !! = 150 !"#.  
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Figure 4.8 Signal amplitude and spectrogram plots for ! ! , chirp signal. 
 

We evaluate the estimation performance of the proposed algorithm using the root mean squared 

error (RMSE). The results are presented in Figure 4.10, which combine the simulation results 

from our proposed algorithm (SSA+WLSTR) with the simulation results of the two alternative 

methods. 
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Figure 4.9 The performance comparison between, proposed method (SSA+WLSTR), Method 1 
proposed in [45], (see Figure . 9 in [45]), and Method 2 proposed in [50] for a single linear chirp 
signal. 
 

From Figure 4.10, we observe that our proposed algorithm considerably underperforms when 

compared to the current state-of-the-art (Model 1) [45]. However, we are not far from the 

performance level of Model 2 [50]. In attempt to justify and clarify our results, we present the 

underpinning assumption for the above methods. 

The fractured Fourier transform method (FRFT) is interpreted as a decomposition of 

signal into orthonormal linear frequency modulated (LFM) functions in the fractional Fourier 

domain, in which it is considered a time-frequency analysis method and has close relationships 

with other time-frequency analysis tools (e.g. WVD). The discrete FRFT (DFRFT) 

implementation uses the decomposition algorithm proposed in [63], which is derived from the 

FRFT definition. This algorithm decomposes the computation of DFRFT into a convolution, 

which can be computed by FFT. It is worth noting that the numerical computation of the DFRFT 

is much more complicated than that of discrete Fourier transform (DFT) [50].  
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The Model 1 proposed in [45] employs a parametric model using a weighted combination of 

splines to model the time-varying nature of the signal amplitudes. In addition a complex 

dictionary refinement technique is employed to obtain high accuracy IF estimations, as observed 

from our results. The Model 1 algorithm predefines the dictionary search parameters for the 

chirp signal model, and restricts its solution space. The authors achieved this high accuracy by 

increasing the number of dictionary parameters (for spline modeling), which increased the 

computational complexity (large-dimensional matrices) that would be exasperated with large 

data size. The authors utilized a parallel-distributed optimization framework (ADMM) to 

overcome these issues. 

As noted earlier, under the assumption stated for each algorithm, the results using Model 

1 represent the state-of-the-art results in IF estimation. Moreover, the DFRFT method proposed 

in [50], and our proposed method also works well under the same assumptions. It should be 

noted that unlike both methods, our proposed method does not make a prior assumption on the 

signal form (chirp model and LFM), and finds the parameters directly from the time series, and is 

not based on the approximation using the spline basis and the dictionary used in Model 1. The 

resulting low RMSE for Model 1 is not surprising, because this estimation is not extracted 

directly from the very noisy waveform. The advantage Model 1 algorithm has is the application 

of modeling the amplitude using the spline basis functions resulting in the increased accuracy of 

estimating the frequency parameters. As can be seen, the SSA+WLSTR estimate can achieve 

low RMSE in high SNR situations, and also performs as well as the DFRFT (Model 2) method 

for lower SNRs, though the proposed method does suffer an error-offset from the DFRFT 

method. The reason, we think, for this offset between our proposed method and DFRFT is the 

high susceptibility of our model to error due to directly differentiating the signal. Finally, It 
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should be stressed that the Model 1 estimate assumed that the phase model of the chirp signal is 

quadratic in time. In contrast, our proposed method does not utilize any a priori information, and 

is not based on a specific signal model. We further note that as the DFRFT is implemented using 

a discrete form algorithm, it will suffer the effects of its resolution limitation. It can be concluded 

that our proposed method can provide an effective way to estimate the frequency parameters 

simultaneously, although there is considerable work to be done to improve the accuracy to the 

level matching the state-of-art models. 

4.2 Data postprocessing  

In this last section, we go through the two processing blocks used in the postprocessing section, 

which is outlined in the algorithm flow diagram in Figure 4.10. The output instantaneous 

frequency from the data processing section is used as input postprocessing section. This section 

is application specific, meaning that, the feature detection process in this case, is specifically 

designed for the problem of seismic wave (compressional and shear) onset detection.  
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Figure 4.10 Data postprocessing algorithm flow diagram. 
 

4.2.1 Power threshold cutoff 

The application of the power cutoff algorithm to the output Instantaneous frequency 

estimation, is achieved through the following steps: 

1. Compute pre-signal (channel noise) instantaneous signal power. Assuming the input 

signal is ! ! , and the first !! samples are only noise, denoted as !!! ! , we compute the 

instantaneous signal and noise power as follows: 
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 !"#$%& ! !  !"#$%        !" = 20 log ! !  

!"#$% !!! ! !"#$%        !"!"#$% = 20 log !!! !  
(4.17) 

 

2. Set threshold value and evaluate !". The threshold value is set to the maximum power 

value !"!"#$%, which is calculated from equation (4.18), shown below.  

 !ℎ!"#ℎ!"# = max !"!"#$%  

!"#$ !!!!"#!!"#  !" ! !  ∶   !" ≤ !ℎ!"#ℎ!"# 
(4.18) 

3. The instantaneous frequency estimation is filtered using !!!!"#!!"#, where all IF values 

with indices !!!!"#!!"# are omitted. This is illustrated in the bottom plot of Figure 4.11. 

The power threshold cutoff step is performed separately for each instantaneous frequency IMF 

output. To help illustrate this, we use the same synthetic signal (two constant frequency signals) 

The computed output IF for each IMF is then filtered using the power threshold cutoff process to 

produce the filtered (or cutoff) IF estimation. This is illustrated in Figure 4.11, which shows the 

IF estimation before and after the threshold cutoff is applied. 
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Figure 4.11 Top plot: IMF1 and IMF2 IF estimation using weighted least squares Tychonov 
regularization with quadratic constraints (WLSTR) method. Bottom plot: IMF1 and IMF2 IF 
estimation after a threshold cutoff is applied. 
 

4.2.2 Feature detection 

In this section, the objective is to define features of interest that can be extracted from the 

seismic data set. As stated at the postprocessing introduction, the method used to extract these 

features is application and feature dependent. Therefore, this section will not contain a specific 

algorithm; rather, the definition and characteristics for these features are given. In Chapter 5 a 

specific detection algorithm is given, with some onset phase picking results.  

The compressional and shear waves are types of seismic phases that are the two main 

modes of propagation of acoustic energy in solid material. In the case of a compressional wave, 

the material particles oscillate in the direction of the propagating wave, and the speed at which 

the compressional wave travels through a medium depends on the bulk elasticity modulus. The 

oscillation of a shear wave occurs perpendicular to the direction of the propagating wave, and the 
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speed of shear wave propagation depends on the shear elasticity modulus. The compressional 

wave is the fastest wave to propagate through the solid material. Hence it is the first to arrive at 

the detection station. In addition, the compressional wave frequency spectrum occupies a higher 

frequency band than the other seismic phases (only specifically for quarry blast seismic events). 

Therefore, if we can accurately detect this frequency spike, we can estimate the arrival time of 

the compressional wave. However, since shear waves travel slower than compressional waves, 

they arrive later. The shear wave frequency spectrum also occupies a high frequency band that is 

slightly lower than the compressional wave frequency band. Using these characteristics for the 

compressional and shear wave, a method is developed in Chapter 5 to detect the phase onset 

picking using the filtered IF output. 
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Chapter 5 

 

 

5-   Seismic case study 

In this chapter we cover the implementation of the algorithm design discussed in Chapters 

3 and 4. The chapter is divided into the following sections: 

1. Input data set - This section describes the raw data set source and type, as well as data 

restructuring method and notations. 

2. Algorithm structure and parameter setting - We cover the overall algorithm structure, 

bringing together all the processing blocks discussed in the previous chapters. We also 

explain the parameters settings for the final algorithm; 

3. Algorithm implementation and results - In this section, a detailed discussion of the 

algorithm implementation process is given, with a summary of the results at the end. 

 

5.1 Input data set 

5.1.1 Input data source  

The data set is taken from a collection of seismic events recorded over a two-year period, 

using a three-component seismometer. The recording station HRFI, located at latitude 30.04° ! 

and longitude 35.04° !, recorded a three-component sequence of 338 quarry blasts, shot by the 

Jordan Phosphate Mines Company from January 2015 to March 2016. The geographic centroid 

of these blasts has an estimated location 29.9° ! and longitude 36.3° !. The station HRFI, 

located in southern Israel, approximately 50 km north of Eilat, is part of the NDC Cooperating 

National Facility (CNF as defined by the Comprehensive Test Ban Treaty Organization) seismic 
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network, which is part of the Israeli Seismic Network operated by the Geophysical Institute of 

Israel. HRFI is home to a three-component broadband STS-2 seismometer connected to 

Quanterra digitizer with a sampling rate of 40Hz.  

 

5.1.2 Data restructuring  

The raw daily seismic data recordings are segmented into 338 events using the 

compressional wave (P-wave) arrival time picks as reference points. The P-wave arrival time 

picks were estimated by an expert geophysicist, and denoted as !!"#$% !"#$. The seismic data 

segments are extracted from the raw daily seismic data recording, by setting the segment start 

time to !!"#$% !"#$ − 30 seconds, and the stop time to !!"#$% !"#$ + 50 seconds. The resulting 

seismic data segment then consists of 3200 samples. Figure 5.1 illustrates a daily seismic 

recording example from the HFRI recording station, on the 1th of January 2015. The 

compressional wave arrival time picks (!!"#$% !"#$) are also highlighted on Figure 5.1, where the 

fourth phase arrival from Figure 5.1 is extracted and shown in Figure 5.2. 

As described in the data restructuring section of Chapter 4, the total set of 338 seismic 

events are split into two sets.  The training, used to train the algorithm and optimize the 

parameter settings, consists of 80% of the events, or 250 seismic events. The test set consists of 

the remaining 20% of the events. This set is only used to evaluate the general performance of the 

algorithm. We also band-pass filter each of the seismic events using a seventh order Butterworth 

filter, with a frequency band between 0.1 and 16 Hz, prior to the EMD process. 
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Figure 5.1 Raw seismic data recording from HRFI station (Z component), which was recorded 
on 1th Jan 2015. The dotted line specifies the expert pick arrival time for the compressional 
waves. 

 

Figure 5.2 Extracted seismic data segment taken from the fourth compressional wave arrival. 
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5.2 Algorithm structure and parameter setting 

Illustrated in Figure 5.3 are the main three processing blocks. In this section we cover each of the 

processing blocks separately, and emphasize the main parameter setting for each block. The term 

parameter is used loosely here to mean the general algorithm settings. This includes some 

standard parameter settings, such as, the Tychonov regularization parameter !, in addition to 

non-standard parameters setting such as the training set matrix size or the number of IMF 

components used in the analysis.   

5.2.1 Data preprocessing  

In Chapter 4 we covered the data-preprocessing algorithm in detail, which is summarized 

in the left flow diagram block of Figure 5.3. Other than the restructuring block, this section 

consists of an additional three blocks, which will be discussed here. 

1. Empirical mode decomposition (EMD).  

This processing block decomposes a multicomponent signal into its monocomponent 

intrinsic mode functions (IMF). The main parameter setting here is the number of IMF’s 

chosen for analysis, which is set to the first three IMF’s, denoted as IMF1, IMF2 and IMF3.  

2. Principal component analysis (PCA). 

PCA is one of the measures used for noise reduction, in addition to SSA. The main parameter 

settings for PCA are: the matrix size for both !!"#$% and !!"#$%_!"#$% , as given in equations 

(4.7). The !!"#$% matrix is of 3200 by 250 dimensions, and the corresponding 

!!"#$%_!"#$% matrix has dimensions of 1000 by 250.  

3. Singular spectrum analysis (SSA)  

The goal here is further noise reduction using the singular spectrum analysis method. 

Similar to PCA, the main parameters are the size of the embedded matrices ! and !!"#$% 
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given by equations (4.11), and (4.12). For !, the number of time series samples is ! = 3200, 

and if we set the number of rows ! = 1024, we obtain ! = ! − ! + 1 = 2177, which is the 

number of lagged columns. In an analogous way for the !!"#$% noise matrix, where has 

! = 1000, and we set ! = 900 to obtain ! = ! − ! + 1 = 101 lagged columns.
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Figure 5.3 Algorithm flow diagram, consisting of the three the main blocks. First is the Data Preprocessing, second is the Data 
Processing and third is the Data postprocessing.
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5.2.2 Data processing 

The data processing block, middle block in Figure 5.3, is the next process, which is used to 

compute the instantaneous frequency for each intrinsic mode function. This processing block 

function is described in Chapter 3. Therefore, in this section, we only highlight the main 

parameter settings used for the case study: 

1. Compute !! and !.  

To compute !! and !, we first find Σ!"#$%_!"#$% from the singular value decomposition 

of the matrix !!"#$%_!"#!" found in equation (4.7).  Then we find !! and ! using the following 

equations 

 
!!! =

!"# !"#$%&#' Σ!"#$%_!"#$%
!  

!! = Σ!! = (!!! ∗ ! (!"#$%&%' !"#$%&))!! 

 ! = !!! ! !. 

(5.1) 

 

2. Compute !!  

!! is found in the quadratic constraints term in equation (3.30), which is used to solve 

for the instantaneous frequency. To compute !!, we set the values of ! = 0.1 !" and 

! = 16 !" in equation (3.21). 

5.2.3 Data postprocessing 

The post signal-processing block is the following step in the data processing stream. The 

main goal for this process is to extract information regarding certain features of interest. This 

section is divided into two subsections 
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1. Power threshold cutoff  

The power threshold cutoff process, is used to filter the IF estimation as described in 

Chapter 4. The size for noise matrix !!"#$%_!"#$%  has already been set in the PCA section, 

which is the only parameter setting. Section 4.2.1 presents the steps to compute the filtered IF 

output. 

2. Feature detection 

The two main features we aim to detect are the first arrival times for the compressional 

and shear waves. The compressional wave is the first to be detected, and therefore it is the 

fastest wave to travel through ground. It usually occupies a higher frequency spectrum than 

any other seismic phase. Thus, when analyzing the IF for a seismic signal we are able to 

distinguish a compressional wave onset, as the first high frequency peak on an IF plot. 

The shear wave is the second fastest wave to travel through ground after the 

compressional wave. A high frequency spectrum also characterizes the shear wave. However, 

the average frequency spectrum values are less than that of the compressional wave. In 

practice, compressional wave detection using the signal IF is much easier to accomplish than 

the shear wave. This is due to the multiple compressional wave echoes that conceal the shear 

wave arrival. This will become evident as we go through the implementation of the algorithm 

in the next section. 

 

5.3 Algorithm implementation and results 

In this section we go through each of the processing blocks shown in Figure 5.3 and 

exemplify some intermediate and final results of the algorithm. In doing so, we first start with 

our training set of 250 segments of seismic events, which are used mainly for noise 
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characterization. We then take a single event from the training set to illustrate and compute 

results. In our case to explain the results we will use the seismic event given in Figure 5.4,, 

which was one of the events recorded from the HFRI station (Z-component) on the 1st January 

2015. Since this is the fourth event or equivalently the forth column in the training matrix, we 

denote this as !!.  

5.3.1 Empirical mode decomposition 

The input for this processing block is a multicomponent signal, which for our case is the 

seismic signal event !! in Figure 5.4. The results obtained are three dominant and unique 

monocomponent signals, the Intrinsic Mode Functions (IMF), which for our seismic event are 

!!_!"#!, !!_!"#! and !!_!"#!, as shown in Figure 5.5.  

 

Figure 5.4 Example seismic event !!. 
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Figure 5.5 Plot of the first three IMF’s !!_!"#$, !!_!"#$ and !!_!"#$. 
 

5.3.2 Principal component analysis 

To demonstrate the function and simplify the results for this processing block we split it 

into two steps. First, we perform PCA on the training set matrices !!"#$%_!"#!, !!"#$%_!"#! and 

!!"#$%_!"#!. For this we estimate the threshold value for each IMF matrix in our training set using 

equation (4.8).  Then using equation (4.9) we compute ! (the reduced rank) for each IMF matrix. 

The figures shown below are the singular values log-linear plots for each IMF matrix. For 

example, Figure 5.6 illustrates the singular value log-linear plot for the !!"#$%_!"#! training 

matrix, which has a threshold value of 0.9778 resulting in the rank reduction of the IMF1 

training matrix from 250 to ! = 150. Similarly, we present the equivalent results for the 

!!"#$%_!"#! training matrix in Figure 5.7, and the !!"#$%_!"#! training matrix in Figure 5.8. 
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Figure 5.6 Singular value plot for !!"#$%_!"#$ training set, with a threshold value as indicated. 
 

 

 

Figure 5.7 Singular value plot for !!"#$%_!"#$ training set, with a threshold value as indicated. 
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Figure 5.8 Singular value plot for !!"#$%_!"#$ training set, with a threshold value as indicated. 
 

The next step is to project the IMF seismic events components !!_!"#!, !!_!"#! and 

!!_!"#!, that are shown in Figure 5.5, into the reduced rank matrix space using equation (4.10). 

The resulting IMF seismic signals are denoted as !!_!"#_!"#!, !!_!"#_!"#! and !!_!"#_!"#!, which 

are illustrated in Figure 5.9. 
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Figure 5.9 Projected IMF signals !!_!"#_!"#$, !!_!"#_!"#$ and !!_!"#_!"#$. 
 

5.3.3 Singular spectrum analysis 

The singular spectrum analysis process as discussed in the previous chapter serves a 

similar function as the PCA method, in that we are trying to filter the signal and reduce the noise 

prior to estimating the instantaneous frequency. Furthermore, because the SSA process 

incorporates an SVD stage that is applied to the embedded matrix (Chapter 4), the threshold 

value and the reduced rank ! are also computed as part of the SSA process. The input for this 

process are the three IMF signals !!_!"#_!"#!, !!_!"!_!"#! and !!_!"#_!"#!, and after following the 

steps outlined in the SSA process by first converting the time series signal into a time-lag matrix 

in the embedding step, an SVD step follows. We use equation (4.13) to compute the threshold 

value, and equation (4.14) to compute the reduced rank ! for each IMF embedded matrix. This is 

illustrated in Figure 5.10, Figure 5.11, and Figure 5.12 for !!_!"#_!"#!, !!_!"#_!"#!, and 

!!_!"#_!"#! respectively. 
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Figure 5.10 Singular Value plot for IMF1 component !!_!"#_!"#$. 
 

 

 

Figure 5.11 Singular Value plot for IMF2 component !!_!"#_!"#$. 
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Figure 5.12 Singular Value plot for IMF3 component !!_!"#_!"#$. 
 

The output of these processes are also three IMF signals denoted as !!_!!"_!"#!, !!_!!"_!"#! and 

!!_!!"_!"#!, as illustrated in Figure 5.13 below. 

 

Figure 5.13 SSA process output signals !!_!!"_!"#$, !!_!!"_!"#$ and !!_!!"_!"#$. 
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To better visualize the output signals !!_!!"_!"#!, !!_!!"_!"#! and !!_!!"_!"#! in Figure 5.13. The 

plot in Figure 5.14 shows the same output signals with a smaller y-axis scale. 

 

Figure 5.14 SSA process output signals !!_!!"_!"#$, !!_!!"_!"#$ and !!_!!"_!"#$ with a smaller 
Y-axis scale. 

 

5.3.4 Data processing 

The data-processing block is used to solve for the instantaneous frequency, the details of 

which are found in Chapter 3. The inputs to this processing block are the three IMF components 

s!_!!"_!"#$, s!_!!"_!"#$ and s!_!!"_!"#$. However, before moving ahead and solving for the 

output IF, we first recap an important point made in Chapter 2, in relation to the condition under 

which the Hilbert transform closely represents quadrature component.  
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 For a complex analytic signal the polar representation can be written as follows. 

 ! ! = ! !  !!!" ! , (5.2) 

where the envelope ! ! , and the carrier phase ! ! , must have sufficient spectral separation for 

! !  to be valid analytical signal. If the power spectral density (PSD) for the envelope and carrier 

functions are non-overlapping then the condition in section 2.1.2 is satisfied. The PSD plots for 

the envelope and carrier spectral functions, for our example, seismic signal are illustrated in 

Figure 5.15. The plots demonstrate the spectral frequency band occupied by each function for 

each IMF, where we assume that only 90% of the signal power is used to determine the 

frequency band for each function.  

The results from Figure 5.15 demonstrate the following results. For the IMF1 signal there 

is no overlapping between the envelope and carrier spectral functions, with a small frequency 

gap of 0.2 Hz. However, for IMF2 and IMF3 the envelope and carrier spectral functions overlap, 

where for IMF2 the overlap is around 0.6 Hz, and for IMF3 the over overlap is around 0.5 Hz. 

The exact frequency overlap value depends on the seismic signal. However, after analyzing the 

entire seismic training set we observe these results. For the IMF1 signal there is rarely any 

overlap between the envelope and carrier spectral functions with a varying frequency gap. For 

the IMF2 and IMF3 signals the opposite is true and the envelope and carrier spectral functions 

overlap with varying overlap bandwidth. The effect of this frequency overlap is the resultant 

distortion of the Hilbert transform. This distortion causes significant error in the IF estimation. In 

summary, we conclude that the IMF1 signal has the most reliable IF estimate. It closely 

resembles real seismic signal frequency characteristics. However, both IMF2 and IMF3 have 

some degree of distortion in their IF estimates. This distortion is inversely proportional to the 

overlapping frequency width of the envelope and carrier spectral functions.  
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Figure 5.15 PSD plot. (A) IMF1 envelope spectral functions. (B) IMF1 carrier spectral 
functions. (C) IMF2 envelope spectral functions. (D) IMF2 carrier spectral functions. (E) IMF3 
envelope spectral functions. (F) IMF3 carrier spectral functions. 
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We now run the processing block to obtain the IF for each of the IMF component as shown 

in Figure 5.16. 

 

Figure 5.16 Instantaneous frequency estimation for IMF1, IMF2 and IMF3. The output IF 
estimation after the processing block. 

 

5.3.5 Data postprocessing  

This processing block is optional and application dependent. In other words, the processing 

done here is to extract certain features or characteristics about the signal under analysis using the 

estimated instantaneous frequency. In our case we are analyzing seismic signals and our goal is 

to be able to detect the arrival of two types of waves, which are the compressional and shear 

waves.  

5.3.5.1 Power threshold cutoff 

In order to facilitate the detection process, we first apply a simple power threshold cutoff 

process using the noise power level, the details of which were covered in the previous chapter. 
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The input to this processing blocks are the three instantaneous frequency estimation for IMF1, 

IMF2 and IMF3 as shown in Figure 5.16, and the output is the filtered instantaneous frequency 

plot for each IMF as given in Figure 5.17. Similar work in using the power threshold cutoff 

method was presented in [65]. 

 

Figure 5.17 Instantaneous frequency estimation after power threshold cutoff. 
 

5.3.5.2 Feature detection 

Now we come to the feature detection step, where we aim to detect the compressional and 

shear waves onset time. In many seismology applications such as earthquake hypocenter 

determination [4], source mechanism analysis [5] and hydrocarbon reservoir imaging [6], in 

which accurate compressional and shear wave arrival time picking is required. Traditionally, 

different seismological organizations have relied on human expert manual picking of seismic 

wave arrival and labeling, or at least reviewing picks that have been automatically picked [7].  

However, manual picking is not totally objective and is prone to error. The accuracy of the phase 



 95 

picking depends on several factors such as the distance from station to source, signal-to-noise 

ratio (SNR), sampling rate, filters, and waveform shape (sharp or emergent). In [28] Diehi et al 

argue that a significant number of errors are made by the network analyst in picking phase 

onsets, Zeiler and Velasco[29] show similar phase picking error results from several 

seismological centers. Zeiler and Velasco[29] estimate that the average root mean square error 

(RMSE) in onset arrival time is around 0.435 seconds for P-wave arrivals, and 5.53 seconds for 

S-wave arrivals. The development of automatic algorithms for different phase onset picking has 

been approached by researchers such as Allen (1978) on automatic earthquake recognition [30], 

Bear and Kardolfer (1987) on automatic phase picker for local and teleseismic events [31], 

Taylor et al (2011) on arrival time estimation from seismic waves using a manifold-based 

approach [32], Baillard et al (2014) on automatic P and S wave picking for local seismic 

networks [33] and Gentili and Michelini on application of neural networks and high-order 

statistics for arrival picking [44]. However, the problem still remains a non-trivial one and an 

active field for research[34].  

The seismic data used in this thesis is from a quarry blast mining facility, as detailed at the 

beginning of the chapter, and is noted for being very noisy and difficult for shear wave onset 

detection. The source of this difficulty in detection is outside the scope of this thesis, but we will 

briefly mention some of these issues later on. What we propose in this section is a method 

through the inspection of the IF curve given in Figure 5.17 to estimate onset time picks for each 

of the arrivals. Figure 5.18 illustrates the compressional and shear wave portion of the IF 

estimation in Figure 5.17 and the predicted onset times obtained by using this method. 

Compressional waves (P-waves) are much easier to detect when compared to the shear 

waves. They travel faster than any other wave and are the first to arrive at the monitoring station. 
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P-waves have a higher energy in comparison to shear waves, making them easier to detect. 

Compressional waves also have a sharp onset shape compared to the shear waves, which have an 

emerging onset characteristic. Although compressional waves are comparatively easier to detect, 

a high non-stationary noise environment still present a challenge.  

We now investigate a method of P-wave onset and S-wave onset detection that utilizes the 

instantaneous frequency characteristics of a seismic signal. The top two plots of Figure 5.18 (A) 

and (B) only focus on the P-wave arrival section of the instantaneous frequency estimates for 

both IMF1 and IMF2. As the compressional wave front arrives, we initially observe a small 

fluctuation in the IF. The IF value then gradually increases to a maximum frequency value. The 

compressional wave onset is calculated by averaging the arrival time of the first trough and peak 

in the initial fluctuation. This value is estimated at 29.96 sec from IMF 1 curve and 31.2 sec form 

IMF 2. In comparison, the expert analysts P-wave onset time pick is 30 sec, where the time pick 

value is rounded up to the nearest integer value.  

Shear wave onset detection is a notoriously difficult problem to solve [29]. The main 

difficulty in shear wave detection arises from the multiple wave echo arrivals after the initial 

compressional wave arrival (also know as coda waves). They are due to the multiple phase 

reflection and back scattering as the wave travels through the different layers of the ground. The 

coda waves arrive after the compressional wave and start with high amplitude and frequency, 

which then gradually decrease as a function of time. In some cases, the coda waves obscure the 

shear wave arrival making the shear wave detection difficult. This is especially true when the 

shear wave and compressional wave arrive very close to each other.  

The proposed shear wave onset detection method utilizes the instantaneous frequency 

estimation to overcome some of theses detection problems. The shear wave IF plots for IMF1 
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and IMF2 are illustrated in Figure 5.18 (C) and (D) respectively. As demonstrated within, we 

identified all the local maxima points and connect them with a straight-line function. Similarly, 

we identified all the local minima points and connect them with a straight-line function as well. 

As the shear wave arrives at the detector station two things occur to the IF curve. Firstly, the 

local maxima IF value gradually increases until it reaches a local peak frequency value. This is 

highlighted in Figure 5.18 (C) and (D) with a positive line slope. Secondly, the local minima IF 

value decreases until it reaches a local minimum IF value. This is also highlighted in Figure 5.18 

(C) and (D) with a negative line slope. The shear wave onset is calculated by averaging the 

arrival time of the first trough and peak, which is located at the start of the positive and negative 

line slope section. The estimated shear wave arrival time from the IMF1 is 47.1 sec and for IMF2 

is 47 sec. In comparison, the expert analysts shear wave onset time pick is 46 sec, where the time 

pick value is rounded up to the nearest integer value. 

The seven main waveform characteristics for the P- and S-wave detection are summarized 

in Table 5-1. 

 

 P-wave detection S-wave detection  

1. Sequence of arrival  First wave to arrive  Second wave to arrive 

2. Signal energy High energy wave  Medium energy wave  

3. Frequency band Highest frequency band Medium frequency band  

4. Signal shape Sharp wave arrival shape  Emerging wave arrival shape 

5. Detection problems  High noise environment  Coda wave interference  

6. Detection method Detection using signal peak frequency  Detection using signal envelope slope  

7. Wave onset pick Average of first trough and peak arrival Average of first trough and peak arrival 

Table 5-1 Comparison summary of compressional and shear wave characteristics.
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Figure 5.18 Instantaneous frequency plots (A) IMF1 compression wave onset pick of 29.96 sec. (B) IMF2 compression wave onset 
pick of 31.2 sec. (C) IMF1 shear wave onset pick of 47.1 sec. (D) IMF2 shear wave onset pick of 47 sec.
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The P-wave onset detection is an easier problem principally because of the sharp wave 

arrival shape characteristic. In contrast, the S-wave has an emerging shape characteristic that 

makes onset detection difficult. In addition, due to the similar characteristics that S-waves and 

coda waves share in energy and frequency, mislabeling coda waves as S-waves is also a common 

detection issue. 

5.4 Summary and comparative analysis of results 

In this chapter we covered the implementation of the proposed instantaneous frequency 

estimation algorithm on quarry blast seismic data. We first explained the multiple parameter 

settings used for this specific data set. Then we walked through a step-by-step implementation of 

the algorithm.  We presented the results obtained at each stage, and gave insight into the analysis 

method as well as practical aspects of the algorithm implementation. For the final feature 

detection stage, we used the IF results obtained for our seismic signal and attempt to apply an 

alternative method for compressional and shear wave onset detection.  

Studying earthquakes or explosions and modeling the source location process of any event 

is based on three main steps, which define the process of picking seismic phases: identification 

or detection, classification or naming, and finally measurement or timing. Specifically, arrivals 

from seismograms can be associated with a particular event and then used to solve for the origin 

time, location, and the magnitude [29]. Extensive research has been conducted in seismic phase 

picking and its associated products. However, some studies [29] argue that the field lacks 

common datasets, and little recent published work has been performed on estimating errors from 

picking and misidentifying seismic phase. The results of Zeiler and Velasco[29] compared how 

various institutions pick seismograms, and obtained data from various networks for five regions 
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throughout the world. Their findings estimate that the average RMS P-wave time picking error is 

0.43 seconds, while the RMS, S-wave time picking error is around 5.53 seconds.  

Alternatively, the method in [34] proposes a continuous wavelet decomposition algorithm 

for automatic detection of compressional and shear wave arrival times. The authors apply the 

automatic picking algorithm to data recorded by the High Sensitivity Seismograph Network of 

Japan. This network consisted of more than 750 stations distributed throughout the Japanese 

islands. Their findings estimate that the average RMS P-wave time picking error is 0.53 seconds, 

while the RMS, S-wave time picking error is around 1.71 seconds.  

Following the same criteria for error measurement as in [34], we measure the error 

between our proposed algorithm for compressional and shear wave picking and manual expert 

picking. To assess the performance of our proposed algorithms, we calculate the time-picking 

difference (Error) between, our proposed algorithm time-picks, and the export’s time-picks. Of 

the 338 available quarry blast traces, we exclude the very noisy traces, and traces that have an 

arrival times greater than 60 sec. This reduces the examined the dataset size to 246 and 50 for 

training and test sets, respectively. Figure 5.19 presents the Normalized cumulative number of 

arrivals as a function of the absolute difference between our proposed algorithm and expert 

picks, we observe that eighty percent of P-wave (Test set) picks, are within 2 sec of the expert 

picks, and are within 3.4 sec for S-wave (Test set).  
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Figure 5.19 Normalized cumulative number of arrival as a function of the absolute difference 
between our proposed algorithm and expert picks. 

 

 

The picking error-measurement for our proposed algorithm for both compressional and 

shear arrival times and, for both training and test data sets are presented in Figure 5.20. The Error 

is defined as the difference between our proposed algorithm’s picks and the expert’s picks. We 

observe from Figure 5.20, that the P-wave (Test set) mean-error is 1.4 sec with a standard 

deviation of 0.7 sec, and the S-wave (Test set) mean-error is 1 sec with a standard deviation of 

3.1 sec.  
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Figure 5.20 Probability density histograms of the difference between our proposed algorithm 
and expert picks. 

 

 

In addition, the average RMS P-wave (Test set) time picking error is 1.58 sec, and 3.3 sec for the 

S-wave (Test set). Therefore, our results for shear wave time picking error are lower than, the 

shear wave RMS error reported between institutions in [29].  

We acknowledge that the approach used in [34] outperforms our proposed algorithm, and 

the automatic picks are in better agreement with manual picks. However, we would like to point 

out some factors that could explain this variation in performance. The seismic data source, 

presented in [29] and [34] are all regional earthquake (< 200 km) sources. They are typically 

much larger in magnitude and easier to detect and measure, given their higher SNR. In 

comparison, quarry blast data, present a much more challenging problem. They are considerably 
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lower in magnitude than earthquake events, with much lower SNR and therefore, are harder to 

detect and measure.  

In addition, the automatic phase picking algorithm proposed in [34] utilizes a network 

consisting of more than 750 stations (sampling frequency of 100 Hz, and 27 bit resolution), 

which are installed inside boreholes at depths greater than 100 m below ground. This setup 

facilitates the acquisition of high resolution, and high SNR data. In comparison, the quarry blast 

data was recorded on one station (sampling frequency of 40Hz, and 24 bit resolution), resulting 

in lower SNR data.  

Finally, the results from our proposed algorithm expose slightly large discrepancies 

between the algorithm S-wave picking, and the expert picking. This can be attributed to several 

factors: the simultaneous arrival of different phases, in particular, surface waves [34] and P- 

waves and their coda sometime overlap with S-wave arrivals, further complicating the S-wave 

arrival time detection. 
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Chapter 6 

 

 

6-  Conclusion 

6.1 Summary 

The algorithms presented in this thesis for automatic compressional and shear wave arrival 

picking perform at a level that is comparable to that of human analysts. Applying the EMD 

method allows for the abstraction of the IMF components of the signal. Then working in the time 

domain provides the means to distinguish the phase arrival from noise. We note that the shear 

wave arrival detection is especially difficult. This is due to the compressional wave coda arrivals 

overlapping with the shear wave arrivals. However, our proposed algorithm shows good 

performance even when the noise level is high.  

In this thesis we began with an introduction of the concept of instantaneous frequency, in 

which we first introduced the analytical signal and complex representation of a signal. We also 

introduced and discuss two categories of signals: Stationary and non-stationary signals, 

monocomponent and multicomponent signals. In Chapter 2 we presented some background 

history on classical instantaneous frequency definitions and its evolution, starting from Van Der 

Pol and the definition of AM and FM signals to Ville and his definition of the instantaneous 

frequency using the AS. At the end of Chapter 2 we described the conditions under which the 

Hilbert transform of a signal accurately represents the quadratic component of that signal. The 

key point we emphasize is that for the Hilbert transform to accurately representation the 

quadratic component of a signal the envelope and phase signals must have sufficient spectral 

separation. Equivalently, for the IF estimation of an AM-FM signal to accurately represent the 
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frequency of the carrier part of the signal (FM), the frequency spectrum for the AM and FM parts 

of the signal must not overlap. Chapter 2 is then concluded with the empirical mode 

decomposition method for multicomponent signal decomposition into its IMF’s, which allows 

for meaningful instantaneous frequency representation of a multicomponent signal. 

In the algorithm design chapters (Chapter 3 and 4) we proposed a numerical approach to 

estimating the instantaneous frequency for a multicomponent non-stationary signal. This is 

achieved by reformulating our problem into a weighted least squares Tychonov regularization 

problem with quadratic constraints, where we expanded on the advantages of each term in our 

minimization problem.  We also present the Empirical Mode Decomposition (EMD) method to 

decompose seismic wideband signals into its primary narrowband components, which function 

like quasi-carriers, and enabling the application of classical IF estimation. 

In Chapter 3 we applied an optimal penalty weight, α, to the IF slope (!!!" ) penalty, that is 

dependent on the noise variance. This penalty was effective in reducing the error in the IF 

estimation that was due to noise. We also compared the results obtained from this proposed 

(SSA+WLSTR) method, using the chirp signal model, with two parametric methods: The first 

method published in 2018, by X. Meng, A. Jakobsson, et al [45], proposes a parametric model 

amplitude and IF estimation for chirp signals, where they introduce the predefined dictionary Z!, 

to solve for the unknown parameters. The second method published in 2004, by L. Qi et al [50], 

presents a parameter estimation of multicomponent LFM signal based on the discrete fractional 

Fourier transform (DFRFT). We concluded that although the first method outperformed our 

proposed method, the method was much more complex and thus more computational expensive, 

especially with large datasets. We concluded by stating that although our proposed method can 
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provide an effective, and efficient way for IF estimates, there is still considerable work to be 

done to improve the accuracy to the level-matching and data-fitting state-of-art models. 

 In Chapter 5 we investigated the application of our algorithm on quarry blast seismic 

signal analysis. We focused on the implementation aspect of the algorithm for real quarry blast 

seismic data. For the final feature detection stage, we used the IF results obtained from our 

proposed method to estimate the compressional and shear wave arrival times. We concluded this 

chapter by comparing the performance of our proposed algorithm to the results obtained by 

Bogiatzis and Ishii in [34], and point to some factors that could explain the variation in 

performance. We finally concluded by showing that the performance of our proposed algorithm 

is comparable to that of human analysts that is presented by Zeiler and Velasco in [29]. 

 Although not implemented for this thesis, other applications such as sonar signal analysis, 

and ultrasonic imaging in biomedical engineering, can utilize our proposed method for IF 

estimation. 

6.2 Future work 

Future research work to develop and improve our proposed method can be identified into two 

areas. 

1. IF Data processing: More accurate parameter selection techniques can be utilized in 

optimizing the solution. More accurate assumptions regarding the noise model employed 

for Tychonov regularization parameter could be researched, which would increase the 

stability of the solution and produce more accurate results. 

2. Feature Detection: Developing on the feature detection algorithm proposed, as part of the 

case study would greatly improve the detection accuracy for onset phase picking. In 

addition, for larger seismic data sets there is greater potential for machine learning 
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implementation, where we can utilized the IF estimation for the multiple IMF 

components to learn a detection scheme. 

3. Expand the algorithm: Potential for expanding the feature detection algorithm by using 

the seismic data logged on the horizontal plane; East axis (E-component) and North axis 

(N-component), in addition to the vertical axis or Z-component axis that was used in our 

case study. This in turn would increase the data size by factor of three allowing for better 

accuracy in IF estimation in this application 
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