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Abstract

In this thesis, we present a new procedure for mesh adaptation for wakes. The approach

starts by tracking the wake centerline with an initial isotropic unstructured mesh. A vertex-

centered finite volume method is used, and the velocity field is obtained from solution re-

construction. The velocity data is integrated numerically using an adaptive fourth-order

Runge-Kutta method. We insert the wake centerline into the existing unstructured mesh

as an internal boundary and use a metric-based anisotropic mesh adaptation to generate

anisotropic cells in regions with large second derivatives of flow variables. In the second

step, the problem is solved on adapted mesh and a new wake centerline is tracked. We

then move the previous wake centerline (which is now a part of adapted mesh) to match

the centerline obtained from the adapted mesh. To move the wake centerline, a solid me-

chanics analogy is used and the linear elasticity equation is solved on the adapted mesh.

As a result, the displacement is propagated throughout the mesh and the already adapted

regions along the wake centerline are preserved. The process is then followed for subsequent

cycles of anisotropic mesh adaptation to obtain a more accurate approximation of the wake

centerline.

As an alternate strategy for obtaining an anisotropic mesh in the wake, we take the first

geometry, together with the captured wake centerline from an unstructured triangular mesh,

as an initial geometry to produce a quad dominant mesh, using an advancing layer method.

The correctness of the streamline tracking algorithm is verified using an analytical veloc-

ity field. The mesh morphing approach is tested using the method of manufactured solutions,

demonstrating that the linear finite element solution is second-order accurate. The results

of laminar flow test cases for the attached and separated flow are presented and compared
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Abstract

with some well-established numerical results in the literature. Our results show that the ad-

vancing layer mesh is more efficient in resolving the wake. In the end, one case for turbulent

subsonic flow is considered. For turbulent flow, a cell-centered finite volume method is used

and we only track the wake centerline at different angles of attack.
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Lay Summary

With the advancements in computing resources, it has become important to develop CFD

methods in such a way that they are efficient in terms of computational cost while main-

taining and improving the solution accuracy at the same time. The errors in numerical

simulations can influence the flow physics and solution accuracy on different scales and are

highly dependent on mesh spacing. Mesh refinement can help to reduce these errors but uni-

form mesh refinement is not computationally efficient. Many researchers focus on selectively

refining the mesh in areas where the impact of errors on the solution is greater and such a

process is known as solution adaptive refinement. This research introduces a new approach

to anisotropic mesh adaptation for wakes. The results from different meshes are compared

to identify the more efficient mesh in tracking the wake.
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Chapter 1

Introduction

Computational fluid dynamics (CFD) has become an increasingly valuable tool in the last

few decades with many industrial and non-industrial applications. These applications include

aerodynamics of motor vehicles and aircraft, oil recovery, turbo-machinery, hydrodynamics

of ships and astrophysics [9, 11, 57]. Therefore, it is immensely important to further develop

CFD methods in such a way that they are efficient in terms of computational cost while

maintaining and improving the solution accuracy at the same time. One of the main objec-

tives of CFD analysis is to study the physical processes that occur around different objects.

These processes can be the result of phenomena such as shock waves, boundary layers, flow

separation and turbulence. The processes are governed by different equations depending on

the type of problem under investigation. It is possible to obtain an analytical solution to

many conservation equations but only under certain simple conditions. Analytical solutions

are usually possible when the equation is linear and the geometry and boundary conditions

are not very complicated. In reality, most of the problems in fluid dynamics are governed

by the Navier-Stokes equations as the effect of viscosity cannot be ignored very close to the

boundary when drag or heat transfer is important. The Navier-Stokes equations are non-

linear and very complicated to solve, thus making analytical solutions impossible especially

for complex geometries and this is where numerical methods become very useful. Different

numerical methods exist that can be used to obtain numerical solutions to the ordinary and

partial differential equations related to the problem [10, 28].

When numerical methods are applied to differential equations, the original equations are

discretized and the resulting algebraic equations are then solved through numerical methods.

As a result of this discretization, the numerical solution obtained is an approximate solution
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1.1. Motivation and Objectives

rather than the exact solution. The difference between the exact and numerical solution is

the numerical error. These errors can effects flow physics and solution on different scales

and are highly dependent on the mesh spacing. One way to reduce these errors is to reduce

the mesh spacing uniformly and ideally refine the mesh until the solution is grid converged.

However, uniform mesh refinement is not computationally efficient and usually, the focus is

to identify those areas where the impact of errors on the solution is greater and then reduce

the error in those areas by refining the mesh locally. Refining the mesh in such a way is

known as solution adaptive refinement [17, 43].

This thesis deals with anisotropic mesh adaptation which is one step in the relentless

effort to make more efficient use of computing resources.

1.1 Motivation and Objectives

CFD analysis to obtain a numerical solution involves three essential steps: (1) modeling,

(2) mesh generation and (3) solution. Modeling refers to specifying the problem geometry,

governing equations and the boundary conditions. In the second step, to solve the governing

equations numerically on the specified geometry, the continuous domain is divided into a

set of discrete regions known as the mesh. The third step involves discretization of the

equations on the mesh and solution of the resulting system of algebraic equations to obtain

the numerical solution [54]. For real aerodynamics applications and industry level problems,

the mesh generation process is considered to be the most time consuming out of all processes

in terms of human time and can be up to 45 times longer compared to the solver time [2, 33].

Therefore, it is very important to explore ways to reduce the mesh generation time for a

given level of solution accuracy.

A mesh is a discrete representation of the geometry of a CFD problem and has significant

effects on convergence, computational cost and accuracy of the numerical solution [13, 54].

Therefore, it is immensely important to obtain a good quality mesh and take into consid-

eration the geometric properties of the mesh such as aspect ratio, smoothness, maximum

2



1.1. Motivation and Objectives

and minimum angle, local mesh size and orientation. Any poor quality cells can adversely

affect the numerical approximation and thus lead to unreliable results and instability in the

solution. There is generally a trade-off between the accuracy and computational cost in com-

putational fluid dynamics. In many aerodynamics applications, accuracy can be improved

for a given computational cost by using high aspect ratio cells to resolve the flow properties.

A typical example is a boundary layer, where there are high velocity gradients perpendic-

ular to the wall and small gradients parallel to the wall. Obtaining a reasonable accuracy

in the boundary layer using fine isotropic cells leads to additional memory usage and un-

necessary computational effort. Therefore, it is more efficient to use anisotropic cells with

anisotropy aligned along the desired direction as the anisotropic cells help to improve the

inverse relationship between solution accuracy and computational cost. Many researchers

such as Bottaso [6], Huang [18], Apel [4] and Loseille [29] have provided a detailed view on

the advantages of using anisotropic elements and metric-based anisotropic mesh adaptation

schemes. Moreover, Rippa [45] showed that for linear reconstruction, the cells should have

longer edge length in the direction where the second derivatives of solution variables are

small compared to the direction with large second derivatives [49].

Why do we care about resolving the wake?

A wake is the region of decelerated flow behind a body immersed in a fluid [59]. It can be

thought of as the boundary layer separated from the rear of the body. Quite often in aero-

dynamics, we study the flow over individual components such as wing, fuselage or tailplane

of the aircraft but when the flow over the entire aircraft is studied, all these components are

in the vicinity of each other and the flow from one component will interfere with flow past

another component and cause interference effects. There are several applications where we

need to take into account the aerodynamics of wake due to these interference effects. The

prime examples to resolve the wake downstream of an airfoil or a wing is an interaction

with the fuselage and the tailplane. Another important application is the wake and flap

interaction noise which is one of the main sources of noise during landing as mentioned in

3



1.1. Motivation and Objectives

the experimental study by V. Hutcheson, J. Stead and E. Plassman [19]. Moreover, if the

engines are installed on the rear of the aircraft as shown in Figure 1.1, the unsteady wake

behavior of the flow from the wing can potentially effect the engine performance to some

degree. Therefore, it is important to resolve the wake so that an optimal configuration can

be obtained which will reduce drag and noise due to interference effects.

Figure 1.1: Boeing 717 (engines installed at the rear) [47]

The main objectives of this research are:

• To resolve the wake in an efficient way and keep a track of where the wake is moving

as the mesh is refined. It is possible to track the wake position by tracking the wake

centerline based on the velocity data (see Section 3.1).

• Compare the results of mesh adaptation with and without the wake centerline for

unstructured triangular meshes using an existing metric-based anisotropic mesh adap-

tation scheme developed by Zuniga Vazquez [55].

• Solve the linear elasticity problem to morph the adapted mesh to match the new wake

centerline in subsequent cycles of mesh adaptation.

• Use the advancing layer mesh generator in our in-housing meshing code to generate

an anisotropic quad dominant advancing layer mesh and compare the results with

unstructured triangular meshes with and without the wake centerline.
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1.2 Thesis Outline

The overall structure of this thesis is as follows:

Chapter 2 provides background on different topics needed throughout this research. Section

2.1 briefly summarizes the finite volume solver. In Section 2.2, different mesh properties

are discussed. Section 2.3 discusses the solution reconstruction as the velocity data needed

to track the streamline (wake centerline) is obtained from solution reconstruction. Section

2.4 talks about the metric-based anisotropic mesh adaptation scheme. In Section 2.5, the

principal operations used for mesh quality improvement by the mesh adaptation scheme are

discussed. The last two sections of Chapter 2 provide an overview of streamlines and the

adaptive fourth-order Runge-Kutta method used to numerically integrate the velocity data.

In Chapter 3, the overall methodology of anisotropic mesh adaptation for wakes is dis-

cussed. First, it includes wake centerline tracking using an adaptive fourth-order Runge-

Kutta method from an initial isotropic unstructured mesh. The second step is to insert the

wake centerline as an internal boundary into the initial unstructured mesh. Next, it talks

about anisotropic mesh adaptation and re-computing the solution on the adapted mesh to

obtain the new wake centerline. Then, the mesh morphing technique used to morph the old

mesh to match the new wake centerline in subsequent adaptation cycles is discussed. Finally,

this chapter concludes by discussing the advancing layer mesh generation scheme used to

generate quad dominant meshes.

Chapter 4 of this thesis illustrates the results. The verification cases for the streamline

tracking algorithm and the mesh morphing approach are included in Section 4.1. Section

4.2 contains three laminar flow test cases to demonstrate the mesh adaptation algorithm.

Finally, Section 4.3 includes the streamline tracking results for the turbulent subsonic flow.

Chapter 5 ends the thesis with concluding remarks. It contains a summary of the research

work, conclusions drawn based on the results and the recommendations for the future work.
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Chapter 2

Background

This chapter provides details of the background material needed to do this research. In the

beginning, a brief overview of finite volume solver is given. In Section 2.2, different mesh

properties are discussed. Section 2.3 discusses the solution reconstruction as the velocity data

needed to track the streamlines is obtained from solution reconstruction. Sections 2.4 and

2.5 include details about the metric-based anisotropic mesh adaptation and the principal

operations used for mesh quality improvement respectively. The last two sections of the

chapter include discussion on streamlines and the adaptive fourth-order accurate Runge-

Kutta method used to numerically integrate the velocity data.

2.1 Finite Volume Solver

The equations governing the behavior of fluid flow are a set of partial differential equations

(PDE’s) that describe the physical conservation laws. The CFD discretization of these PDE’s

needs to be stable, convergent, accurate and conservative. In the finite volume method,

when the flow equations are solved, a conservative discretization is satisfied automatically

through the use of integral conservative laws. This means the finite volume discretization

is conservative by nature and a natural choice for solving fluid related problems [8, 25, 35].

The finite volume solver begins with governing equations in conservation form, represented

as:
∂U

∂t
+ ∂F

∂x
+ ∂G

∂y
+ ∂H

∂z
= S

∂U

∂t
+∇.−→F = S,

(2.1)
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2.2. Mesh Properties

with U being the solution vector, −→F the flux dyad and S is the source term.

Equation 2.1 is integrated over each sub-domain (known as a control volume); applying

Gauss’s theorem, we get

ˆ
CVi

∂U

∂t
dV +

˛
∂(CV )i

−→
F .−→n dA =

ˆ
CVi

SdV.

Assuming that the mesh is not moving, the above expression can be simplified to give

dU i
dt

= − 1
V

˛
∂(CV )i

−→
F .−→n dA+ Si, (2.2)

where U i ≡ 1
V

´
CVi

UdV is the average value of the solution in the control volume i and

Si ≡ 1
V

´
CVi

SdV is the average source term contribution.

Equation 2.2 implies that the finite volume solution for any time varying problem can be

advanced from one time level to the next with following steps:

• Compute the flux −→F at the surface of the control volume.

• Integrate the normal flux −→F .−→n around the control volume boundary.

• Compute and integrate the source term S in the control volume.

• Advance the average solution value U in time.

2.2 Mesh Properties

The partial differential equations governing the behavior of fluid flow are defined over a con-

tinuum domain. In CFD, before we solve these PDE’s numerically, we divide the continuous

domain into a discrete domain, called the mesh. Depending on the connectivity of cells and

vertices in the mesh, the mesh is classified as structured or unstructured. The type of mesh

to use for CFD analysis of a certain problem depends on the discretization technique, flow

physics and problem geometry. For example, the finite element and finite volume method
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2.2. Mesh Properties

can be used with both structured and unstructured meshes while the finite difference method

can be used only with structured meshes. Apart from distinguishing the mesh based on the

connectivity, another way of categorizing the mesh is by means of shape, orientation and

size of cells throughout the computational domain. This classifies the mesh into categories

of isotropic and anisotropic. In an isotropic mesh, the edge lengths of cells are roughly equal

in all directions whereas, in an anisotropic mesh, the cells have longer edge lengths in one

direction compared to the other. Each of these mesh types are discussed briefly.

2.2.1 Structured and Unstructured Meshes

In a structured mesh, there is regular connectivity between the mesh cells and vertices.

All the interior cells and vertices in the mesh have a fixed number of neighbors. Figure 2.1

represents the topology for a structured mesh in which the interior cell represented by indices

(i, j) has four neighbors represented by indices (i − 1, j), (i + 1, j), (i, j + 1) and (i, j − 1).

These meshes usually consist of quadrilaterals in 2D and hexahedral elements in 3D.

Figure 2.1: Structured mesh around leading edge of a NACA 0012 airfoil

Contrariwise, in an unstructured mesh, the mesh cells and vertices are not connected in any

regular pattern. The interior cells and vertices in the mesh do not have a fixed number

of neighbors. Figure 2.2 shows the topology for an unstructured mesh. Mesh resolution

and grading are important factors for unstructured meshes. The mesh typically needs to

finer in regions close to the solid boundary and coarser in the far-field. This is because the
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2.2. Mesh Properties

gradients of flow variables are high close to the solid boundary as in the boundary layer

and wake region and so finer mesh resolution is required in those regions of the domain for

better solution accuracy. The coarser mesh in the far-field where changes are small helps to

reduce the overall computational cost. Unstructured meshes usually consist of triangles or

quadrilaterals in 2D and tetrahedra, prisms or pyramids in 3D [23, 54].

Figure 2.2: Unstructured mesh around leading edge of NACA 0012 airfoil

For structured meshes, there is no need to store the data for each mesh vertex explicitly since

the neighboring vertices in the physical space are also neighboring elements in the connectiv-

ity matrix. This reduces the memory usage which is an advantage from the computational

point of view. For unstructured meshes, there is more memory usage due to the irregular

topology of unstructured mesh: the connectivity of each vertex in a mesh to other vertices

needs to be stored explicitly [27, 52].

In structured meshes, due to the fixed topology, less CPU time is required by the finite

volume solver for evaluation of numerical fluxes, because the solution needed for flux evalua-

tion can be computed by one-dimensional interpolation. For unstructured meshes, accurate

flux evaluation requires polynomial reconstruction of solution (See Section 2.3) over each

control volume which increases the CPU time.

However, many industrial level problems involve complex geometries and generation of

structured meshes around complex geometries is a major challenge. Although less CPU time

is required to compute the numerical flux, the drawback of fully structured meshes is that

we don’t have the ability to put all the resolution where it is needed and we can end up
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2.2. Mesh Properties

with excess resolution in some places. More specifically, we can’t independently control cell

spacing in different parts of the domain and excess resolution increases CPU time. Also,

generating a structured mesh around complex shapes can require time-consuming human

interventions such as splitting the domain into multiple blocks depending on the complexity

of the geometry. Such factors can offset the CPU time advantage gained in the evaluation

of numerical fluxes by the solver. Unstructured meshes are much easier to generate around

complex geometries and usually a preferred choice for complex configurations. Although

the polynomial reconstruction of the solution over each control volume increases CPU time,

unstructured meshes have the ability to capture the flow features around complex geometries

with fewer cells. This leads to a considerable reduction in overall CPU time. Also, it is easier

to do adaptive mesh refinement since cell regularity is not an issue [32, 33].

2.2.2 Isotropic and Anisotropic Meshes

The accuracy of numerical solutions is greatly influenced by the characteristics such as the

shape, orientation and size of mesh elements. Figure 2.3a shows an isotropic mesh fragment

with triangular elements in which the edge lengths of cells are approximately equal. In other

words, triangular elements are roughly equilateral triangles. Contrariwise, an anisotropic

mesh has cells with higher aspect ratio as depicted in Figure 2.3b.

(a) Isotropic mesh (b) Anisotropic mesh

Figure 2.3: Isotropic and anisotropic mesh fragments

The choice of using an isotropic or an anisotropic mesh depends on the nature of the phys-
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2.3. Solution Reconstruction

ical processes occurring in the problem. If the physical changes are isotropic, it is desir-

able to use an isotropic mesh with a cell size that equidistributes the error. However, the

flow field in aerodynamics applications is usually accompanied by phenomena such as tur-

bulence, boundary layers, wakes and shocks that have anisotropic physical behavior. As

mentioned earlier, resolving these flow features using isotropic elements is computationally

inefficient [14]. Moreover, isotropic meshes can provide only the proper mesh resolution while

anisotropic mesh adaptation gives both mesh resolution and proper cell alignment with the

solution to capture anisotropic flow features. Therefore, such complex flow features can be

resolved more efficiently using anisotropic cells.

2.3 Solution Reconstruction

The accuracy of the finite volume solution is highly dependent on the accuracy of flux

integrals which in turn requires accurate approximation of the unknown variables in the

control volume. In order to approximate the unknown variables, represented by φ, in the

flow field, the flow solver aims to replace the control volume average φi for each interior

control volume in the mesh with a Taylor series about a control volume reference point

(xi, yi) [39]:

φi = φRi (x, y) = φ
∣∣
i
+ ∂φ

∂x

∣∣∣∣
i

(x− xi) + ∂φ

∂y

∣∣∣∣
i

(y − yi)

+ ∂2φ

∂x2

∣∣∣∣
i

(x− xi)2

2 + ∂2φ

∂x∂y

∣∣∣∣
i

(x− xi)(y − yi)

+ ∂2φ

∂y2

∣∣∣∣
i

(y − yi)2

2 + ..., (2.3)

where
φi is the average value of the solution in control volume i

φRi (x, y) is the value of reconstructed solution at a point (x, y) for control volume i
∂k+1φi

∂xk∂yi are the derivatives of the reconstructed solution for control volume i

The values φi and ∂k+1φi

∂xk∂yi correspond to coefficients of Taylor polynomials. The accuracy of
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2.3. Solution Reconstruction

the solution is one order higher than the polynomial degree. These coefficients are chosen

so that we conserve the mean value of the solution in the control volume i, that is, we must

satisfy the following criterion:

1
Ai

ˆ
Vi

φRi dA = φi (2.4)

Combining Equations 2.3 and 2.4 leads to:

φi = 1
Ai

ˆ
Vi

φRi dA = φ
∣∣
i
+ ∂φ

∂x

∣∣∣∣
i

xi + ∂φ

∂y

∣∣∣∣
i

yi + ∂2φ

∂x2

∣∣∣∣
i

x2
i

2

+ ∂2φ

∂x∂y

∣∣∣∣
i

xyi + ∂2φ

∂y2

∣∣∣∣
i

y2
i

2 + ..., (2.5)

with xnymi being the moments of area such that:

xnymi = 1
Ai

ˆ
Vi

(x− xi)n(y − yi)mdA. (2.6)

The accuracy of a least-squares reconstruction scheme for smooth functions can be said,

equivalently, to be k-exact or (k+ 1) order accurate and requires us to expand the modified

Taylor series, represented by Equation 2.5, up to the k − th derivatives. While evaluating

the derivatives, we try to minimize errors in the average value of φRi (reconstructed solution)

for a nearby set of control volumes called the stencil {Vj}i.

(a) Vertex-centered control volume (b) Cell-centered control volume

Figure 2.4: Reconstruction stencils [39]
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2.3. Solution Reconstruction

In the reconstruction stencil, we require at least as many control volumes as derivative

terms that we need to compute. However, practically we exceed this minimum number of

control volumes for each order of accuracy, thus increasing the robustness of the least-squares

reconstruction scheme. For example, for second-order accuracy, we have three neighboring

control volumes and for third-order accuracy, we have nine neighboring control volumes. The

approach to adding control volumes for both vertex-centered and cell-centered simulations is

to add all the control volumes at the same topological distance to the reconstruction stencil

at once. Figure 2.4 above shows the control volumes for the vertex-centered and cell-centered

cases with control volume labeled R representing the control volume to be reconstructed and

the numbers represent the order of accuracy at which each neighboring control volume is

added.

The average value of φRi (reconstructed function) for each control volume in the stencil

will be:

1
Aj

ˆ
Vj

φRi (−→x −−→x i)dA = φ
∣∣
i
+ ∂φ

∂x

∣∣∣∣
i

1
Aj

ˆ
Vj

(x− xi)dA

+∂φ

∂y

∣∣∣∣
i

1
Aj

ˆ
Vj

(y − yi)dA

+∂2φ

∂x2

∣∣∣∣
i

1
2Aj

ˆ
Vj

(x− xi)2dA

+ ∂2φ

∂x∂y

∣∣∣∣
i

1
Aj

ˆ
Vj

(x− xi)(y − yi)dA

+ ∂2φ

∂y2

∣∣∣∣
i

1
2Aj

ˆ
Vj

(y − yi)2dA+ ... (2.7)

In Equation 2.7, x−xi and y−yi are replaced with (x− xj)+(xj − xi) and (y − yj)+(yj − yi)

to avoid computing moments for each control volume of {Vj}i about the reference point of

control volume i. Equation 2.7 then becomes
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2.3. Solution Reconstruction

1
Aj

ˆ
Vj

φRi (−→x −−→x i)dA = φi + ∂φ

∂x

∣∣∣∣
i
(xj + (xj − xi)) + ∂φ

∂y

∣∣∣∣
i

(
yj + (yj − yi)

)
+ ∂2φ

∂x2

∣∣∣∣∣
i

x2
j + 2xj (xj − xi) + (xj − xi)2

2

+ ∂2φ

∂x∂y

∣∣∣∣∣
i

(
xyj + xj (yj − yi) + (xj − xi) yj + (xj − xi) (yj − yi)

)

+ ∂2φ

∂y2

∣∣∣∣∣
i

y2
j + 2yj (yj − yi) + (yj − yi)2

2 + ... (2.8)

The geometric terms in above equation are mesh dependent and have the following form

x̂nymij ≡
1
Aj

ˆ
Vj

((x− xj) + (xj − xi))n · ((y − yj) + (yj − yi))m dA

=
n∑
l=0

m∑
k=0

n!
l! (n− l)!

m!
k! (m− k)! (xj − xi)k · (yj − yi)l · xn−kym−lj

Equation 2.8 then becomes

1
Aj

ˆ
Vj

φRi (−→x −−→x i)dA = φ|i + ∂φ

∂x

∣∣∣∣
i
x̂ij + ∂φ

∂y

∣∣∣∣
i

ŷij (2.9)

+ ∂2φ

∂x2

∣∣∣∣∣
i

x̂2
ij

2 + ∂2φ

∂x ∂y

∣∣∣∣∣
i

x̂yij + ∂2φ

∂y2

∣∣∣∣∣
i

ŷ2
ij

2 + · · ·

Equation 2.9 gives the average value of the reconstructed solution φRi (−→x − −→x i) for control

volume j. The difference between the actual control volume average and the average value

of the reconstructed solution can be easily accessed. The derivatives at −→x i are chosen to

minimize the magnitude of error in predicting the control volume average values in a least-

squares sense [39].
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2.4. Metric-Based Anisotropic Mesh Adaptation

The resulting least-squares system to compute the derivatives is



1 xi yi x2
i xyi y2

i · · ·

wi1 wi1x̂i1 wi1ŷi1 wi1x̂2
i1 wi1x̂yi1 wi1ŷ2

i1 · · ·

wi2 wi2x̂i2 wi2ŷi2 wi2x̂2
i2 wi2x̂yi2 wi2ŷ2

i2 · · ·

wi3 wi3x̂i3 wi3ŷi3 wi3x̂2
i3 wi3x̂yi3 wi3ŷ2

i3 · · ·
...

...
...

...
...

... . . .

wiN wiN x̂iN wiN ŷiN wiN x̂2
iN wiN x̂yiN wiN ŷ2

iN · · ·





φ

∂φ
∂x

∂φ
∂y

1
2
∂2φ
∂x2

∂2φ
∂x ∂y

1
2
∂2φ
∂y2

...


i

=



φ̄i

wi1φ̄1

wi2φ̄2

wi3φ̄3
...

wiN φ̄N



In the least-squares system, wij represents the geometric weights that are based on the dis-

tance between control volume reference points. These geometric weights can be used to

specify the relative importance of neighboring control volumes. N is the number of nearby

control volumes in the reconstruction stencil. This constrained least-squares system is con-

verted into an unconstrained least-squares system by eliminating the first row representing

the mean constraints by using Gauss elimination. The remaining unconstrained least-squares

problem is then solved for each control volume using the singular value decomposition (SVD)

method [15]. This is then followed by flux evaluation and flux integration, the details of which

can be found in reference [3, 39].

2.4 Metric-Based Anisotropic Mesh Adaptation

As stated in Chapter 1, the purpose of generating anisotropic meshes is to reduce the com-

putational cost for a given level of solution accuracy. Anisotropic mesh cells help to achieve

this goal by capturing the solution features with fewer cells. Moreover, unlike isotropic mesh

adaptation, anisotropic adaptation also provides good cell alignment in addition to the mesh

resolution in areas of interest.

A robust anisotropic mesh adaptation scheme demands good error estimation and high

quality anisotropic cells. Many researchers [4, 6, 12, 30] have illustrated that selectively refin-
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2.4. Metric-Based Anisotropic Mesh Adaptation

ing/coarsening the mesh cells and producing highly anisotropic meshes is effective. Different

methods exist for error estimation. This thesis uses the anisotropic mesh error estimate im-

plemented by Pagnutti [41]. This scheme makes use of local reconstruction error and gives

an error measure based on the overall solution vector rather than any specific functional as

in adjoint error estimation. Zuniga Vazquez’s [55] anisotropic mesh adaptation scheme was

used in this research. The robustness of the mesh adaptation scheme is further demonstrated

with different test cases in this thesis.

The concept behind metric-based adaptation is to produce a unit mesh in Riemannian

metric space. The error estimate gives the desired anisotropy which is stored in a metric

tensor at each vertex in the computational domain. The desired anisotropy is then commu-

nicated to the mesh adaptation code to produce an anisotropic mesh. For 2D problems, the

metric is a 2×2 symmetric positive definite tensor. Geometrically, the metric at a point tells

how distance and angles are measured as seen from that point. If we have a metric tensor

Mp, then the deformation tensor Lp can be defined as:

Mp = LTp Lp and det (Lp) > 0 (2.10)

with Lp being an invertible matrix that maps physical space into metric space as depicted

in Figure 2.5 and the distances and angles are measured in the Euclidean way as seen by

point p′.

Lp

'

Physical space Metric space

Figure 2.5: Deformation of tensor Lp
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2.4. Metric-Based Anisotropic Mesh Adaptation

The ellipses around point p′ in Figure 2.5 are equidistant from each other in metric space

and define the anisotropy using three components: radius r1, radius r2 and angle θ as shown

in Figure 2.6. Then, the metric is represented by these three components as:

M = RΛRT =


cos θ − sin θ

sin θ cos θ




1/r2

1 0

0 1/r2
2




cos θ sin θ

− sin θ cos θ

 (2.11)

 θ
 r r

2
1

Figure 2.6: Anisotropy components for a certain point

A metric is a distance function d : X × X → R that defines the positive distance measure

between any two distinct points in a vector space X and fulfills the following conditions:

d(x, y) > 0 ⇐⇒ x 6= y non-negativity

d(x, y) = d(y, x) symmetry

d(x, z) ≤ d(x, y) + d(y, z) triangle inequality (2.12)

In the case of a uniform isotropic mesh, the metric is the standard Cartesian distance

dstd(x, y) =
√

(x− y)T (x− y). The metric for anisotropic adaptation dani(x, y) can be

obtained by the invertible linear transformation L of dstd(x, y).
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2.4. Metric-Based Anisotropic Mesh Adaptation

dstd(x, y) =
√

(x− y)T (x− y)

dani(x, y) =
√

(L(x− y))T (L(x− y))

dani(x, y) =
√

(x− y)T (LTL) (x− y)

dani(x, y) =
√

(x− y)TM(x− y) (2.13)

This illustrates that the metric dani(x, y) can be represented by a positive definite matrix

M = LTL. Further details on the complete metric computation and its suitability to generate

meshes can be found in references [41, 49].

2.4.1 Aspect ratio and orientation from metric

The metric is given by:

M =

 Mxx Mxy

Mxy Myy


From Mohr’s circle, we have:

Mmax =
Mxx +Myy +

√
(Mxx −Myy)2 + 4M2

xy

2

Mmin =
Mxx +Myy −

√
(Mxx −Myy)2 + 4M2

xy

2

The orientation is given by:

θ = 1
2arctan

(
2Mxy

Mxx −Myy

)
(2.14)

The aspect ratio is given by:

AR =
√
Mmax

Mmin
(2.15)
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2.5 Operations for Mesh Quality Improvement

The anisotropic mesh adaptation scheme used in this research uses four principal operations

for mesh quality improvement. These include face swapping in metric space, vertex insertion

based on quality and maximum metric length, vertex removal (coarsening) based on the

minimum metric length and vertex movement (smoothing) based on quality. The first three

operations are implemented by GRUMMP1 [38], our in-house meshing code, while vertex

movement is done using Mesquite [24].

2.5.1 Face Swapping

Face swapping changes the connectivity of vertices in the mesh but the number of mesh

vertices and cells remain unchanged. The new connectivity is decided such that the maximum

angle in the metric space is minimized and new triangles with better quality are obtained.

Figure 2.7 shows the triangles before and after face swapping. The necessary condition for

face swapping is:

Quality (V1V2V3) +Quality (V1V3V4) < Quality (V1V2V4) +Quality (V2V3V4)

V3

V4

V2

 V1

(a) Initial configuration
  V3

V4

V2

 V1

(b) Modified configuration

Figure 2.7: Face swapping in metric space
1Generation and Refinement of Unstructured Mixed-Element Meshes in Parallel
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2.5.2 Vertex Insertion

The vertex insertion or edge splitting is done based on two criteria and an insertion queue is

used for this operation. The first criterion is based on quality and so the vertex is inserted

onto the edge if it will improve the quality and higher priority in the insertion queue is given

to the cells with the worst quality. The second criterion is related to maximum metric length

and so edges longer than a certain length (based on the metric) are split and higher priority

is given to the edge with longest metric length. However, to prevent the creation of extra

edges, an edge is not placed in the insertion queue if it will result in an edge smaller than

the desired minimum length in the metric space. This means that the desired length is such

that:

lminM ≤ lM ≤ lmaxM

The vertex insertion for an interior and boundary edge is shown in Figures 2.8 and 2.9

respectively. This operation increases mesh vertices by one and cells by two for interior

edges while vertices and cells both by one for boundary edges. The same criterion is used

for both the boundary and interior edges. After vertex insertion, face swapping is done as

required to improve the mesh quality.

V3

 V2

V1
 

V4

(a) Initial configuration

V3

 V2

 V1
 

V4

V
new

(b) Modified configuration

Figure 2.8: Vertex insertion for an interior edge
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V3

V2

 V1

 

(a) Initial configuration

 

 

V3

 V2

 V1

Vnew

(b) Modified configuration

Figure 2.9: Vertex insertion for a boundary edge

2.5.3 Vertex Removal

The third mesh modification technique is vertex removal which coarsens the mesh and

thereby helps to reduce the computational cost. We get rid of edges that have a small

metric length. Again a priority queue is used and higher priority is given to the edge with

the shortest metric length. This means that the desired length is such that:

lM ≥ lminM

This operation is again followed by face swapping as required to improve mesh quality.

Figures 2.10 and 2.11 shows the process of vertex removal for an interior and boundary edge

respectively.

V3

 V2

V1
 

V4

V5

V6

(a) Initial configuration

V3

 V2

V1

 

V4

V5

Removed

(b) Modified configuration

Figure 2.10: Vertex removal for an interior edge
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V3V2

 V1

 
V4

(a) Initial configuration
V3V2

 V1

 
Removed

(b) Modified configuration

Figure 2.11: Vertex removal for a boundary edge

2.5.4 Vertex Movement

The vertex movement operation is based on the Target-Matrix Optimization Paradigm

(TMOP) as used in Mesquite [7, 24]. The mesh vertices are moved or repositioned in such a

way that an optimal mesh of superior quality is obtained based on the target matrix. The

target matrix depends on the shape of the target element. In the case of anisotropic meshes,

the target element should be a right triangle to produce quasi-structured meshes [49]. The

shape (aspect ratio and orientation) of each cell in an anisotropic mesh is determined from

the metric and so the metric can also be used to calculate the target matrix. Since the

metric information is stored at each vertex of the mesh element, an average metric is used

to calculate the target matrix for each cell. More details on TMOP and average metric

calculation can be found in Sharbatdar’s thesis [49].

Further details on above mesh quality operations can be found in [41, 49, 55].

2.6 Streamlines

A streamline can be defined as a path traced out by a massless particle propagating with the

fluid velocity. The streamline is tangent everywhere to the local velocity field or instanta-

neous velocity. Therefore, we need to consider one instant in time; for unsteady flow, these

streamlines can look very different at each instant in time as they represent the direction of

the flow (there is no flow across streamlines) [1]. This is what makes streamlines immensely

useful for investigating different types of flow. The velocity fields evaluated numerically can
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be called CFD velocity fields and these discrete CFD velocity fields, defined on a discrete

computational domain, are actually an approximation to the exact mass conservative veloc-

ity fields [26]. Figure 2.12 shows streamlines around the NACA 0012 airfoil at Re = 5000,

Ma = 0.5 and α = 0°.

Figure 2.12: Streamlines around NACA 0012 airfoil at Re = 5000, Ma = 0.5 and α = 0◦

It is possible to obtain a streamline equation from the velocity field by using velocity vectors

in each direction in the flow. For a two-dimensional velocity field, this can be expressed in

differential form as:
dx

dt
= u (x, y) (2.16)

dy

dt
= v (x, y) (2.17)

Equations 2.16 and 2.17 then need to be solved simultaneously. We can integrate them

numerically to obtain x (t) and y (t) along the streamline.

2.7 Runge-Kutta Method and Adaptive Stepsize Control

The velocity data obtained from solution reconstruction is integrated numerically to obtain

the streamline. The Runge-Kutta method is one of the classical methods used to numeri-

cally integrate ordinary differential equations (ODE’s). Several versions of the Runge-Kutta

method are available but in this thesis, we use the fourth-order accurate Runge-Kutta method
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2.7. Runge-Kutta Method and Adaptive Stepsize Control

(RK4) to numerically integrate the ODE representing the velocity field. For an initial value

problem such as:

ẋ = f (x, t) x (t0) = x0 (2.18)

RK4 can be expressed as:

xi+1 = xi + h

6 (k1 + 2k2 + 2k3 + k4) +O
(
h5
)

(2.19)

ti+1 = ti + h

where:

k1 = f (xi, ti)

k2 = f

(
xi + k1h

2 , ti + h

2

)
k3 = f

(
xi + k2h

2 , ti + h

2 ,
)

k4 = f (xi + k3h, ti + h)

and xi+1 is the numerical approximation of x (ti+1) [50].

For each step, Equation 2.19 requires four computations of the right-hand side. These

computations are the values of the derivative at a point: k1 is the value at the starting point

of the interval, k2 and k3 are the values at the first and second trial midpoints respectively

and k4 at the trial endpoint. The final function in Equation 2.19 is then obtained by taking

the average of the four derivatives with higher weight given to the derivatives at the trial

midpoints.

An efficient differential equation integrator should have some stepsize control based on an

error estimate. Adaptive stepsize control can be implemented for the RK4 scheme based on

an estimate of the local truncation error. In this case, each step is taken twice, once as a full
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2.7. Runge-Kutta Method and Adaptive Stepsize Control

step and then as two half steps and the difference between the two numerical estimates is the

truncation error. Figure 2.13 illustrates the adaptive stepsize control for RK4, with filled

squares representing the points at which the derivatives are evaluated. The big step and

two small steps procedure share the starting point represented by the empty square for the

small step so no extra elevation is required at that point and the total number of evaluations

for two small steps will be 11. Since reducing the step to half also drops the error, the 11

evaluations per two small steps should be compared with 8 and not 4 evaluations of the big

step. Therefore, the factor for the additional cost is 1.375.

If we denote the exact solution by x (t+ 2h) while advancing from t to t + 2h and the

numerical estimates by x1 and x2, then [44]:

x (t+ 2h) = x1 + (2h)5 φ +O
(
h6
)

x (t+ 2h) = x2 + 2 (h)5 φ +O
(
h6
)

Truncation error ≡ x2 − x1

If the estimated error is above the user-specified tolerance for the truncation error, then the

step is repeated and stepsize is cut in half until the tolerance criteria is satisfied. Similarly, if

the error is too small compared to the tolerance, then the step is repeated and the stepsize is

doubled to save the computational cost. This process provides optimal stepsize automatically

and the user does not need to spend time on finding the optimal stepsize each time.

big step

two small steps

Figure 2.13: Adaptive stepsize control for RK4 [44]
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Chapter 3

Methodology

The approach for anisotropic mesh adaptation is divided into several steps. This chapter

gives an overview of each step and summarizes how our mesh adaptation loop works. In the

end, it discusses the advancing layer mesh generation which is used as an alternate technique

to generate an anisotropic quad dominant mesh.

3.1 Wake Centerline Tracking

The algorithm to track the streamlines is implemented in our in-house solver code, ANSLib

[40]. For 2D airfoil flows, we can find the wake centerline by tracking a streamline from the

trailing edge. A massless particle propagating with the fluid velocity is released in the flow

field and its location tracked in time to see where the streamline goes, as the streamline is

tangent to the velocity vector. Note that we do not integrate the flow in time but rather the

motion of particle within the steady flow. The velocity data is obtained from the solution

reconstruction using the vertex-centered finite volume solver. For linear reconstruction, the

ODE for the streamline location is:

d

dt

 x

y

 =

 u

v

 =

 u0 + a1 (x− xi) + a2 (y − yi)

v0 + b1 (x− xi) + b2 (y − yi)

 (3.1)

In the above equation, u0 and v0 are the x and y components of velocity respectively at the

initial point (x0, y0) where the streamline enters the control volume. Moreover, a1, a2, b1,

and b2 are the derivatives of the reconstructed solution at any point (xi, yi) in the control

volume i.
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3.1. Wake Centerline Tracking

We integrate this system of ODE’s in time using an adaptive fourth-order Runge-Kutta

method. A geometric search tree is used to identify which control volume the particle is

in based on its position at a given time. The adaptive time step scheme for numerical

integration ensures that the local truncation error remains within a user-specified tolerance

(see Section 2.7).

Furthermore, we get a steady separation in the wake at different flow conditions. Figure

3.1 shows the streamlines for a separated flow. In case of flow separation, numerically

integrating Equation 3.1 forward in time is not sufficient. To track the wake centerline,

we need to march downstream from the trailing edge and so x (t+ ∆t) should be always

higher than the previous value x (t). Simply doing forward integration in time from the

trailing edge can sometimes take us inside in the airfoil (for example at Reynolds number

Re = 5000, Mach number Ma = 0.5 and angle of attack α = 0°) rather than downstream

from the trailing edge. In such a case, we need to start with backward integration in time to

march in the right direction. Therefore, in the streamline tracking algorithm, we always start

with backward integration in time and if it takes us upstream (the next value of x (t) will

be less than 1), we exit the backward integration cycle immediately at the trailing edge and

do only forward integration in time to move downstream. However, if backward integration

takes us downstream from the trailing edge, then there is a saddle point along the wake

centerline and the backward integration cycle is terminated once we hit the saddle point.

An offset is added to escape the separation bubble, followed by forward integration in time

to move downstream from the separated region. The offset that needs to be added is usually

between 1% and 3% of the chord length but can be slightly higher — 5% to 6% of chord

length — when separation is large at higher angles of attack. Moreover, one exception is that

there can be a saddle point in the flow-field along the wake centerline even when forward

integration in time initially takes us downstream from the trailing edge. In that case (for

example at Re = 5000, Ma = 0.5 and α = 10°) two cycles of forward integration in time

are required. We exit the first cycle of forward integration in time as soon as we hit the

saddle point and the value of x (t) starts to decreases after that point. An offset is added
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3.2. Wake Centerline Insertion into Unstructured Mesh

to escape the separation bubble and we then do second forward integration in time to move

downstream again.

Because streamline integration does not exactly hit the saddle point, we identify the

saddle point as the first point where |v| > |u| and the value of x (t) obtained from numerical

integration is higher than the previous value of x (t). While inexact, this is a very close

approximation to the saddle point location. As illustrated by Figure 3.1, for separated flows,

the wake centerline can be tracked in several steps: (1) backward or forward integration in

time from the trailing edge, (2) find the saddle point along the wake centerline, and (3) add

an offset from the saddle point to escape the separation bubble and do forward integration

in time to continue downstream.

1 2 3
trailing edge

saddle point

Figure 3.1: Separated flow

3.2 Wake Centerline Insertion into Unstructured Mesh

The obtained streamline is inserted as an internal boundary into the existing isotropic un-

structured mesh, using the surface insertion algorithm implemented in GRUMMP by Zaide

and Ollivier-Gooch [60]. Inserting the streamline as an internal boundary helps to deal with

physical behavior in the wake and enables the pre-existing mesh to adapt to that behavior.

The surface insertion approach starts with two initial inputs: an initial unstructured mesh

and information about the geometry to be inserted. This approach has no requirement on

the initial mesh and rather than moving the existing vertices onto the surface, new vertex

locations on the boundary curve are computed and points are inserted to match the surface.

The algorithm samples the boundary curve on the mesh, using the length scale of the mesh

to determine edge lengths. Vertices in the original mesh near the curve are removed, the
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3.3. Anisotropic Mesh Adaptation

new vertices on the sampled curve are inserted into the mesh and surface recovery is done.

The surface insertion technique gives freedom to work with an arbitrary initial mesh but

the main point of this approach is to recover the surface rather than moving points while

not changing the mesh at all more than a cell size or two from the wake surface. Once the

surface is recovered after insertion, the mesh quality is improved with swapping, smoothing

and refinement. Further details on the surface insertion technique can be found in the paper

by Zaide and Ollivier-Gooch [60].

3.3 Anisotropic Mesh Adaptation

After inserting the wake centerline into the existing unstructured mesh, the next step is to

do metric-based anisotropic mesh adaptation. As explained earlier, our metric is based on

solution approximation error, and the error estimation is done by interpolation of the solution

between known values. For a second-order accurate solution, the solution approximation

error

1
2fxx (x, y)x2 + fxy (x, y)xy + 1

2fyy (x, y) y2,

can be related to the Hessian of the solution

H =


∂2f

∂x2
∂2f

∂x∂y
∂2f

∂y∂x

∂2f

∂y2



A metric function is chosen such that it gives a good approximation of the solution error. It

is approximated by doing a Fourier transform around a unit circle of the maximum error in

any solution component and the Fourier coefficients are obtained with the help of numerical

integration. The combinations of Fourier coefficients are then used as metric terms [42, 41].
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As explained in Section 2.5, the anisotropic mesh adaptation scheme uses four operations

for mesh quality improvement in the metric space but it preserves the wake centerline. The

adapted mesh is used to compute the flow solution again, using the second-order accurate

vertex-centered finite volume scheme and the velocity field is integrated to obtain the new

wake centerline.

3.4 Mesh Morphing

In the past, researchers [21, 58] have used the linear elasticity method to deform the mesh

in order to take into account the effect of curvature especially for higher-order solvers to

accurately represent the boundary faces. Jalali and Ollivier-Gooch [21] implemented this

approach in our in-house code for curving the boundary faces and solved the linear elasticity

problem using the finite element discretization. In this thesis, we extend their approach

further and take into account linear elements and change the boundary condition to displace

the wake centerline.

In the second and subsequent mesh adaptation cycles, we begin by morphing the mesh

to match the new wake centerline. We project the mesh points along the old wake centerline

onto the new wake centerline and solve a linear elasticity problem with displacements between

the two wake centerlines as constraints to morph the rest of the mesh. After this, we apply

metric-based adaptation to the morphed mesh. Because the morphing process preserves

existing adaptation in the wake region, the metric adaptation is more efficient. The linear

elasticity equation is given by:

∂

∂x

(
d11

∂δx
∂x

+ d12
∂δy
∂y

)
+ ∂

∂y

(
d33

(
∂δx
∂y

+ ∂δy
∂x

))
= 0

∂

∂x

(
d33

(
∂δx
∂x

+ ∂δy
∂y

))
+ ∂

∂y

(
d21

∂δx
∂y

+ d22
∂δy
∂x

)
= 0 (3.2)

where δ = (δx, δy) are the nodal displacement vectors. The coefficients d are based on
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Young’s modulus E and Poisson’s ratio ν as follow:

d11 = d22 = E (1− ν)
(1 + ν) (1− 2ν)

d12 = d21 = Eν

(1 + ν) (1− 2ν) (3.3)

d33 = E

2 (1 + ν)

We used Poisson’s ratio equal to 0.25. Young’s modulus was assumed to be constant through-

out the computational domain and therefore cancels in Equation 3.2. The complete details

on the finite element discretization of Equation 3.2 can be found in reference [20].

3.5 Algorithm Overview

The metric-based anisotropic mesh adaptation algorithm is summarized here and the mesh

adaptation loop is depicted in Figure 3.2.

1. We start by generating an initial isotropic unstructured mesh using the isotropic mesh

generator in GRUMMP.

2. The second step is to compute the flow solution on the initial unstructured mesh. The

velocity field is obtained from solution reconstruction and integrated numerically using

the adaptive fourth-order Runge-Kutta method to obtain the wake centerline.

3. The wake centerline is then inserted as an internal boundary into the initial unstruc-

tured mesh using the surface insertion algorithm as explained in Section 3.2.

4. The metric is then computed at each mesh vertex.

5. The mesh and metric are passed to the anisotropic mesh adaptation algorithm in the

mesh generator to produce an anisotropic mesh. The mesh adaptation scheme uses

face swapping, vertex insertion, vertex removal and smoothing operations to improve

the mesh quality but preserves the wake centerline without moving it at all.
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6. The adapted mesh is used to re-compute the flow solution and a new wake centerline

is obtained.

7. We then morph the adapted mesh to match the new wake centerline by solving the

linear elasticity equation as discussed in Section 3.4. The process from step 4 to 6

in Figure 3.2 is then repeated. If the aerodynamic coefficients (CL, CD) are not grid

converged, we move to step 7 and repeat steps 4, 5 and 6 until the aerodynamic

coefficients are converged.

                 Step 2:

       Solve the problem to  

      obtain wake centerline

          Step 3:

        Insert wake  

      centerline into

         the mesh

                     Step 5:

         Metric-based anisotropic 

              mesh adaptation 

                   Step 6:

               Re-compute 

               solution 

 

                         

           

 

     Yes

     Final mesh

                          

Repeat from step 4 

    for next cycle

 

     No

       Step 1:

      Create an 

     initial mesh

 Is solution 

 converged?

          Step 4:

     Compute metric   

      at each vertex

         

                     Step 7:

        Morph old mesh to match

            new wake centerline 

          

Figure 3.2: Algorithm overview (mesh adaptation loop)

32



3.6. Advancing Layer Mesh Generation

3.6 Advancing Layer Mesh Generation

Finally, another scheme is used to compare with the results obtained on the final adapted

mesh using the aforementioned method. In this scheme, we use the advancing layer mesh

generator of Numerow and Ollivier-Gooch [37]. We define our initial surface to include the

airfoil and the discretized wake centerline as shown in Figure 3.3, and then march off the

surface into the domain interior layer by layer. The wake centerline used is obtained by

numerically integrating the velocity data from the initial solution on isotropic unstructured

mesh. The advancing layer mesh generator produces mixed element meshes that are quad

dominant and have a few triangular cells. This leads to several advantages such as: (1) lower

cell count, (2) better alignment and orthogonality, (3) more geometrically similar cells, and

(4) excellent resolution of the boundary layer and wake.

Figure 3.3: Initial geometry to generate advancing layer mesh

The advancing layer mesh is generated taking into account the flow physics. We consider the

Blasius boundary layer solution for a flat plate and the two-dimensional asymptotic solution

in the wake.

(x)

 c

Developed 
wake

Wake

Developing 
wake

U0

U0

U
0

U
0

U
0

u
u1<<U0

Figure 3.4: Development of wake behind an airfoil [59]
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For laminar flow over a flat plate, the Blasius boundary layer solution is given by:

δBL (x) ≈ 5x√
Rex

(3.4)

The self-similar solution for a laminar wake is given in monograph by Berger [5] and is of

the form:

u1 = A√
πδw

exp

(
− y

2

δ2
w

)
(3.5)

where A is a constant and δw (x) = 2
(
νx

U0

)

Then, δw in the laminar wake can be related to Reynolds number as:

δw (x) = 2x√
Rex

(3.6)

Nevertheless, using Equations 3.4 and 3.6, it is not possible to match the boundary layer

thickness δBL (x) and the wake thickness δw (x) at the trailing edge of the airfoil. This is

because δBL (x) from the laminar boundary layer solution will be greater than δw (x) from the

laminar wake solution at the trailing edge. Figure 3.4 suggests δ (x) should keep increasing

as we move downstream from the trailing edge. This means that Equation 3.6 is not valid

at the trailing edge and in the near wake region, and in fact Tollmien [53] claims that the

asymptotic solution given by Equation 3.5 is good only for far-wake (x > 3c). As a result,

Equation 3.6 is also good only for the far-wake. Therefore, to generate the quad dominant

advancing layer mesh, we take the average value of Equations 3.4 and 3.6 and consider a

Reynolds number based on x, giving us Equation 3.7. Using Equation 3.7 ensures that δ (x)

increases as we move from the leading edge of the airfoil to the trailing edge and then in the

wake region downstream.
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δ (x) = 3.5x√
Rex

(3.7)

Equation 3.7 gives an approximate thickness δ (x) for the shear layer both on the airfoil

and in the wake. In order to properly resolve the boundary layer and wake, many layers

(between 20 and 30 layers) of mesh cells are required across the thickness δ (x) and so

the off-wall spacing in the mesh should be much smaller than δ (x). Figure 3.5 shows the

number of layers across the thickness δ (x) with variable spacing. Increasing the number of

layers increases the resolution within that region and so we can derive a formula to relate

the thickness δ (x), number of layers and the stretching factor for variable spacing between

layers. The thickness δ is given by:

δ =
N∑
n=1

hn

= dymin
(
1 + s+ s2 + ...+ sN−1

)
= dymin

N∑
n=1

sn−1

= dymin

(
1 + s+ s2 + ...+ sN−1

)
(1− s)

(1− s)

δ = dymin
(sN − 1)
(s− 1) (3.8)

Then from Equations 3.7 and 3.8, we have

dymin = 3.5x√
Rex

(s− 1)
(sN − 1) (3.9)

where dymin is the off-wall spacing, s is the stretching factor (s > 1) and N is the number

of layers across the thickness δ. As per Equation 3.9, off-wall spacing is based on x and the

Reynolds number Rex.
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Figure 3.5: Number of layers across thickness δ (x)
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Chapter 4

Results

In this chapter, we first present results to verify the correctness of the streamline tracking and

mesh morphing algorithms. Later, different laminar flow cases are included to demonstrate

our approach for mesh adaptation. For each of these test cases, the actual velocity data from

the flow solver was used and integrated numerically. The solution was computed based on the

second-order accurate vertex-centered finite volume solver as discussed by Ollivier-Gooch in

his paper [40]. This flow solver makes use of least squares reconstruction [39], Roe’s scheme

[46] and the Newton-GMRES method [34, 36] for fast steady-state convergence. Moreover,

the results of test cases from adapted triangular meshes with and without the wake centerline

and advancing layer meshes are compared.

The laminar flow results include both attached and separated flow cases. The flow

conditions for the first two cases are: (1) Re = 2100, Ma = 0.5, α = 0◦ and (2) Re = 2100,

Ma = 0.5, α = 2◦ and for these cases, we choose Re = 2100 as the flow is attached at these

conditions. Moreover, the third test is chosen to show that our algorithm works for separated

flows as well and also there are numerical results available by well-established CFD codes

for Re = 5000, Ma = 0.5 and α = 0◦ .

In the end, we also present a test case for turbulent subsonic flow. For turbulent flow,

the solution was computed using the second-order accurate cell-centered finite volume solver

and the velocity field was integrated to track just the wake centerline at different angles of

attack, without doing any mesh adaptation.
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4.1 Verification Cases

4.1.1 Streamline Tracking Algorithm

The streamline tracking algorithm was tested using an analytical velocity field given by:

d

dt

(
x

y

)
=
(
−2y
x

)
(4.1)

Integrating the above velocity field analytically gives streamlines that are ellipses. The

problem was solved numerically on an isotropic unstructured mesh around the NACA 0012

airfoil. Figure 4.1 shows the mesh, which was generated using the isotropic mesh generator in

GRUMMP [38]. The far-field boundary was a circle with radius 500c centered at the leading

edge of the airfoil. The trailing edge of the airfoil, (1, 0), was chosen as the starting point

to track the streamline. The velocity data was control volume averaged onto the mesh, then

reconstructed. Because the velocity is linear, this reconstruction was exact. Nevertheless,

this test verifies our ability to track streamlines through a mesh using reconstructed velocity

data.

(a) Far-field view (b) Closeup view

Figure 4.1: Isotropic unstructured mesh around a NACA 0012 airfoil with 7310 cells and
3871 vertices

The streamline was integrated halfway around the ellipse. Finally, to validate the result, the

case was compared to the Paraview streamtracer result as shown in Figure 4.2.
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Figure 4.2: Streamline tracking for an analytical velocity field

Next, the order of accuracy of the numerical method was tested based on the streamline

data obtained from numerical integration. The velocity field was integrated numerically

using three different time-steps to obtain three sets of data for streamline location. Then,

the error between the actual and numerically predicted location on the streamline at an

instant in time was calculated as:

error =
√

(x− xn)2 + (y − yn)2

where x and y are the analytical values while xn and yn are numerical values.

Time-Step error ratio
( (error)4t=h

(error)4t=h/2

)
0.05 4.601× 10−7 −
0.025 2.870× 10−8 16.031
0.0125 1.800× 10−9 15.944

Table 4.1: Error in solution (values at t = 2.20)

Table 4.1 illustrates that the error drops by 16 times when the time-step is reduced by half so

the Runge-Kutta method is fourth-order accurate as expected. Moreover, Figure 4.3 shows

the error in solution at each point along the curve for three different time-steps mentioned

above. The ratio of error between the green and red curves and between the red and blue

curves at each point was found to be almost exactly 16.
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Figure 4.3: Error in solution at each point along the curve

4.1.2 Mesh Morphing Algorithm

To verify the correctness of the mesh morphing approach, we used the method of manufac-

tured solutions. The nodal displacement vectors were selected as:

δx = sin
(
πx+ π

2

)
sin
(
πy + π

2

)
(4.2)

δy = sin
(
πx+ π

2

)
sinh

(
πy + π

2

)

The manufactured solution is substituted into the linear elasticity equations (Equation 3.2)

and a source term vector was identified (Equation 4.3).

S =

 Sx

Sy

 (4.3)

where

Sx = d11sin
(
πx+ π

2

)
π2sin

(
πy + π

2

)
− d12cos

(
πx+ π

2

)
π2cosh

(
πy + π

2

)
−d33

(
−sin

(
πx+ π

2

)
π2sin

(
πy + π

2

)
+ cos

(
πx+ π

2

)
π2cosh

(
πy + π

2

))
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and

Sy = −d33

(
cos

(
πx+ π

2

)
π2cos

(
πy + π

2

)
− sin

(
πx+ π

2

)
π2sinh

(
πy + π

2

))
−d21cos

(
πx+ π

2

)
π2cos

(
πy + π

2

)
− d22sin

(
πx+ π

2

)
π2sinh

(
πy + π

2

)

The discrete problem was solved with this source term. The source term vector was inte-

grated using the Gauss quadrature rule. The L2 norm of error was then computed as the

difference between the manufactured solution of Equation 4.2 and the linear finite element

numerical solution. Figure 4.4 shows the variation of L2 norm of error in solution with

the mesh size and confirms that the numerical solution is second-order accurate for linear

elements, as expected.

x

x

y
+ yorder = 1.97order = 1.94order = 2.00

Figure 4.4: L2 norm of error for linear elasticity

The correct implementation of boundary condition to displace the wake centerline was also

tested by inserting an imaginary horizontal line at the trailing edge of the airfoil in an

unstructured mesh and then displacing it from 0° to 3° as shown in Figure 4.5. This test

confirms that the mesh morphing algorithm displaces the inserted line as required and morphs
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the mesh accordingly.

(a) Line at 0° (black) and 3° (red)

(b) Mesh before (black) and after (red) mesh morphing

Figure 4.5: Mesh morphing to displace horizontal line from 0◦ to 3◦

4.2 Laminar Flow Test Cases

4.2.1 Viscous flow at Re = 2100, Ma = 0.5 and α = 0◦

Our first adaptation test is subsonic viscous flow at Reynolds number Re = 2100, Mach

number Ma = 0.5 and angle of attack α = 0°. The viscous terms are discretized as discussed

by Ollivier-Gooch and Van Altena [39]. Using the mesh in Figure 4.1, we computed the initial

flow solution and integrated the velocity field to track the streamline from the trailing edge

of NACA 0012 airfoil. The streamline was then inserted as an internal boundary into the

same unstructured mesh using the surface insertion algorithm. It can be seen from Figures

4.6a2 and 4.6b below that the result of Paraview streamtracer matches with the streamline

tracking algorithm result. The wake centerline is not exactly straight but the oscillations are

of the order 10−3 to 10−5 chords from the symmetry axis; these oscillations become smaller

on more refined meshes and as we go further downstream from the trailing edge.
2In Figure 4.6a, red line is the position of streamline obtained from Paraview streamtracer and so it is not

a part of the mesh.
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(a) Paraview streamtracer result (Mesh before streamline insertion with 7310 cells) - Viscous flow - Red line is
the streamline

(b) Streamline tracking algorithm result (Mesh after streamline insertion with 7468 cells) - Viscous flow

Figure 4.6: Streamline tracking at Re = 2100, Ma = 0.5 and α = 0◦

A metric was computed for the mesh in Figure 4.6b and passed to the anisotropic mesh

generation algorithm in GRUMMP to do mesh adaptation. The adapted mesh was used to

compute the flow solution again and obtain the new wake centerline. We then morphed the

adapted mesh to match the new wake centerline by solving the linear elasticity problem as

discussed in mesh morphing section in Chapter 3. Figure 4.7 shows the mesh before and

after mesh morphing. This process was repeated for subsequent cycles of anisotropic mesh

adaptation and helped to improve the solution accuracy. The flow solution in Figure 4.8a

on the initial mesh shows that the mesh is not well-suited to compute the viscous flow and

resolve the boundary layer and wake. However, after each adaptation, better resolution and

mesh alignment is obtained in the boundary layer and wake as shown in Figure 4.8.

The position of the wake centerline on the initial and final adapted mesh is depicted in

Figure 4.9. The wake centerline from the final adapted mesh is closer to the symmetry axis,

illustrating that the final mesh can track the position of wake better for this symmetric flow.

The small variations are still present since the mesh is not completely symmetric.

Figure 4.7: First adapted mesh (black) and morphed mesh (red) before second adaptation
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(a) Solution on initial mesh (3871 vertices)

(b) Solution after first adaptation (6048 vertices)

(c) Solution after second adaptation (8268 vertices)

(d) Solution on final mesh (12121 vertices)

Figure 4.8: Adapted meshes and flow solutions with wake centerline at Re = 2100, Ma = 0.5
and α = 0◦
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Figure 4.9: Wake centerline position - initial (black) and final (red) at Re = 2100, Ma = 0.5
and α = 0◦- Closeup view at the trailing edge

After obtaining the solutions on triangular meshes, an anisotropic quad dominant mesh was

generated using the advancing the layer mesh generator in GRUMMP. The initial geometry

used to generate the advancing layer mesh included the NACA 0012 airfoil and the discretized

wake centerline obtained from an initial solution in Figure 4.8a.

Figure 4.10: Initial geometry for advancing layer mesh at Re = 2100, Ma = 0.5 and α = 0◦

(a) Solution on final adapted triangular mesh (12121 vertices)

(b) Solution on advancing layer quad dominant mesh (5558 vertices)

Figure 4.11: Flow solutions on final adapted triangular mesh and advancing layer mesh at
Re = 2100, Ma = 0.5 and α = 0◦ , showing better solution behavior in the wake for the
advancing layer mesh
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Figure 4.11 shows the solution on the final adapted triangular mesh and the quad dominant

advancing layer mesh, illustrating that the advancing layer mesh with many fewer degrees

of freedom can track the wake for a longer distance compared to adapted triangular meshes.

The convergence history of aerodynamic coefficients with respect to degrees of freedom

for triangular meshes with and without the wake centerline and for the advancing layer quad

dominant meshes is displayed in Figure 4.12. For triangular meshes, it can be observed that

the lift coefficient for meshes with the wake centerline included converges slightly faster,

while the convergence of drag coefficients is effectively identical. Moreover, the solution is

converging to a single value on meshes with and without the wake centerline. By compari-

son, for the advancing layer meshes, the aerodynamic coefficients converge faster compared

to both triangular meshes. Especially, the lift coefficient on the advancing layer meshes

converges much faster and has a smaller error as we expect to get CL = 0 for this symmetric

flow. The difference in drag coefficient from the refined advancing layer quad dominant mesh

and the grid converged value using triangular meshes is just 0.26%.

In Figure 4.13, we present the convergence history against total CPU time for meshing

and solver. The total CPU time for triangular meshes with a wake centerline is somewhat

less compared to meshes without the wake centerline. There is clearly a CPU time advantage

for the advancing layer quad dominant meshes compared to both triangular meshes. The

main reason is that it is much cheaper to generate advancing layer mesh compared to doing

mesh adaptation and this reduces CPU time required for meshing. Also, the advancing layer

mesh can track the wake much better with fewer degrees of freedom which reduces the CPU

time needed by the solver.
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(a) Lift coefficient

(b) Drag coefficient

Figure 4.12: Convergence of lift and drag coefficients against degrees of freedom (vertices)
at Re = 2100, Ma = 0.5 and α = 0◦
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(a) Lift coefficient

(b) Drag coefficient

Figure 4.13: Convergence of lift and drag coefficients against total CPU time for meshing
and solver at Re = 2100, Ma = 0.5 and α = 0◦
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(a) Two chords downstream of the trailing edge (b) Five chords downstream of the trailing edge

(c) Eight chords downstream of the trailing edge

Figure 4.14: Velocity profiles in the wake for triangular and advancing layer quad dominant
meshes

In Figure 4.14, we present the comparison of velocity profiles in the wake for triangular

meshes with wake centerline and the advancing layer quad dominant meshes at different

locations downstream from the trailing edge. Figures 4.14a to 4.14c illustrate that there is a

velocity deficit in the wake as expected. Furthermore, we expect to get symmetric velocity

profiles in the wake for this case. At each location (2, 5 and 8 chords downstream the trailing
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edge), the velocity profiles from the advancing layer meshes are almost symmetric. The

velocity profile from the initial triangular mesh is not physical due to poor mesh resolution

but as we do mesh adaptation, the velocity profile improves with each mesh refinement and

approaches the velocity profiles from the advancing layer meshes. At two chords downstream

of the trailing edge, the final adapted mesh solution is nearly as smooth and symmetric as the

solution on the advancing layer meshes. Note that compared to the advancing layer meshes,

the final adapted triangular mesh has much more the degrees of freedom. Also, the velocity

profile from the adapted meshes gets worse in comparison as we move further downstream

from the trailing edge from two chords to eight chords. Therefore, this comparison shows

that the advancing layer meshes can resolve the wake more efficiently. The velocity profiles

from the advancing layer quad dominant meshes with 5558 and 7806 vertices are identical,

illustrating that increasing the mesh resolution does not change the velocity profiles further.

4.2.2 Viscous flow at Re = 2100, Ma = 0.5 and α = 2◦

The second test case is viscous flow around the NACA 0012 airfoil at a non-zero angle

of attack. All other flow conditions and initial mesh used were similar to first test case.

Figure 4.15 shows the streamline tracking algorithm result for this case. The steps used for

anisotropic mesh adaptation were same but here four cycles of adaptation were required for

grid convergence of aerodynamic coefficients. Figure 4.16 shows the mesh morphing results.

Figure 4.15: Streamline tracking algorithm result at Re = 2100, Ma = 0.5 and α = 2◦

Figure 4.16: First adapted mesh (black) and morphed mesh (red) before second adaptation
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(a) Solution on initial mesh (3871 vertices)

(b) Solution after first adaptation (6038 vertices)

(c) Solution after second adaptation (8584 vertices)

(d) Solution after third adaptation (10667 vertices)

(e) Solution on final mesh (13849 vertices)

Figure 4.17: Adapted meshes and flow solutions with wake centerline at Re = 2100, Ma = 0.5
and α = 2◦ 51
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The meshes and flow solutions are depicted in Figure 4.17 and show improvement in the

resolution of the boundary layer and wake after each adaptation. Figure 4.18 displays the

wake centerline position on the initial and final adapted mesh.

Figure 4.18: Wake centerline position - initial (black) and final (red) at Re = 2100, Ma = 0.5
and α = 2◦- Closeup view at the trailing edge

Next, an anisotropic quad dominant mesh was generated using the advancing layer mesh

generator. The initial geometry is depicted in Figure 4.19 and consists of the NACA 0012

airfoil and the discretized wake centerline obtained from an initial solution.

Figure 4.19: Initial geometry for quad dominant mesh at Re = 2100, Ma = 0.5 and α = 2◦

(a) Solution on final adapted triangular mesh (13849 vertices)

(b) Solution on advancing layer quad dominant mesh (5024 vertices)

Figure 4.20: Flow solutions on final adapted triangular mesh and advancing layer mesh at
Re = 2100, Ma = 0.5 and α = 2◦ , showing better solution behavior in the wake for the
advancing layer mesh
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The flow solutions on the final adapted triangular and advancing layer quad dominant meshes

are depicted in Figure 4.20, indicating that the advancing layer mesh can track the wake for

longer distance with many fewer degrees of freedom.

The variation in aerodynamic coefficients for each mesh type is displayed in Figure 4.21.

For triangular meshes, the convergence of lift and drag coefficients is effectively identical

and the coefficients converge to a single value with and without the wake centerline. Using

the advancing layer meshes, the aerodynamic coefficients converge faster. For example,

the converged lift coefficient obtained from the advancing layer meshes is the same as the

grid converged value of lift coefficient from triangular meshes, although the advancing layer

meshes have many fewer degrees of freedom. For the drag coefficient, the difference between

the grid converged value from triangular meshes and the advancing layer quad dominant

meshes is just 0.52%.

Figure 4.22 shows the convergence of aerodynamic coefficients with respect to total CPU

time for meshing and flow solution. In the case of triangular meshes, there is a CPU time

advantage for the mesh with wake centerline compared to the mesh without wake centerline

but just for the last cycle of mesh adaptation. However, there is clearly a CPU time advantage

in using the advancing layer mesh. This is because we increased the mesh density in the

desired regions and so with much fewer degrees of freedom overall, we can obtain almost

the same values for aerodynamic coefficients as the grid converged values from triangular

meshes.
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(a) Lift coefficient

(b) Drag coefficient

Figure 4.21: Convergence of lift and drag coefficients against degrees of freedom (vertices)
at Re = 2100, Ma = 0.5 and α = 2◦
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(a) Lift coefficient

(b) Drag coefficient

Figure 4.22: Convergence of lift and drag coefficients against total CPU time for meshing
and solver at Re = 2100, Ma = 0.5 and α = 2◦
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(a) Two chords downstream of the trailing edge (b) Five chords downstream of the trailing edge

(c) Eight chords downstream of the trailing edge

Figure 4.23: Velocity profiles in the wake for triangular and advancing layer quad dominant
meshes

In Figure 4.23, we compare the velocity profiles in the wake from triangular meshes with

wake centerline and the advancing layer meshes at different positions downstream from the

trailing edge. As expected, there is a velocity deficit in the wake. With many fewer degrees

of freedom, the velocity profiles from the advancing layer meshes are better for all three po-
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sitions downstream the trailing edge. Also, the velocity profiles from advancing layer meshes

with 5024 vertices and 7096 vertices are identical. However, with each mesh adaptation,

the velocity profiles from the triangular meshes get closer to matching the advancing layer

quad dominant meshes. The advancing layer meshes have much fewer degrees of freedom

compared to the fourth adapted mesh. Once again the velocity profiles from the triangular

meshes get worse in comparison as we move further downstream from the trailing edge. This

test case further confirms that the quad dominant advancing layer meshes can track the

wake more efficiently.

4.2.3 Viscous flow at Re = 5000, Ma = 0.5 and α = 0◦

The third adaptation case is Re = 5000, Mach number Ma = 0.5 and angle of attack α = 0°.

The initial mesh used was an isotropic unstructured mesh around NACA 0012 airfoil with

6654 cells. At these flow conditions, we get a steady separation in the wake but due to

poor resolution of the initial mesh, the flow separation was not observed until the first

adaptation. The wake centerline for the separated flow was tracked using three steps: (1)

backward integration in time from the trailing edge, (2) find the saddle point, and (3) add a

horizontal offset from saddle point to escape separation bubble and do forward integration

in time. The flow separation observed is depicted in Figure 4.24a and Figure 4.24b shows

the streamline obtained from streamline tracking algorithm. The streamline, in this case, is

split into two curves and these curves were joined together to give the single curve depicted

in Figure 4.24c so that the adapted mesh (which already has the wake centerline inserted

into it) can be morphed to match the new wake centerline. The process was repeated for

each cycle of mesh adaptation.

The position of the wake centerline on the initial and final mesh is depicted in Figure

4.25. The comparison shows that the wake centerline position from the final adapted mesh is

more accurate since it coincides with the symmetry axis for this symmetric flow. The mesh

morphing result for this case is shown in Figure 4.26.
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(a) Paraview streamtracer result showing flow separation

(b) Streamline tracking algorithm result

(c) Streamline after joining two curves in Figure 4.24b

Figure 4.24: Wake centerline for separated flow

Figure 4.25: Wake centerline position - initial (black) and final (red) at Re = 5000, Ma = 0.5
and α = 0◦- Closeup view at the trailing edge

Figure 4.26: First adapted mesh (black) and morphed mesh (red) before second adaptation

Figure 4.27 shows the solution on each mesh for this case and shows improvement in the

resolution of the boundary layer and wake with each mesh refinement.
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(a) Solution on initial mesh (3543 vertices)

(b) Solution after first adaptation (5515 vertices)

(c) Solution after second adaptation (8851 vertices)

(d) Solution on final mesh (12903 vertices)

Figure 4.27: Adapted meshes and flow solutions with wake centerline at Re = 5000, Ma = 0.5
and α = 0◦
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Mesh nDOF CL CD

Present results

Initial 3543 0.003618 0.064222
1st adapted 5515 0.000360 0.056852
2nd adapted 8851 0.000173 0.055826
3rd adapted 12903 0.000155 0.055724

Advancing layer 5006 0.000050 0.056000
Advancing layer 6766 0.000040 0.056000

Zuniga Vazquez [55]

Initial 2543 0.014490 0.061180
1st adapted 4235 0.016440 0.034844
2nd adapted 6688 0.001424 0.054950
3rd adapted 10335 0.004885 0.054430

Sharbatdar [49]

Initial 2543 0.015074 0.903403
1st adapted 3899 0.009244 0.76383
2nd adapted 9140 0.000203 0.056555
3rd adapted 19964 0.000108 0.055230

4thorder Spectral Volume [22] 34560 - 0.054672
ARC2D (320 × 128) [16] 40960 - 0.054200

R. C. Swanson and S. Langer (4096 × 2048) [51] 8388608 - 0.055649

Table 4.2: Comparison of lift and drag coefficients for NACA 0012 airfoil at Re = 5000,
Ma = 0.5 and α = 0◦

Table 4.2 summarizes some of the published results for this test case. The lift coefficient in our

scheme converges faster. For example, the second adapted mesh with wake centerline gives a

smaller error in lift coefficient compared to the second adapted mesh of Sharbatdar [49] and

third adapted mesh results from Zuniga Vazquez [55], both of which have more vertices. The

drag coefficient on the final meshes is similar to these published results. However, our result

of drag coefficient on the third adapted mesh is closer to results obtained on an extremely

fine mesh by R. C. Swanson and S. Langer of NASA Langley Research Center [51].

Once again the advancing layer mesh was generated for this case based on the initial

geometry shown in Figure 4.28. The flow solutions on final adapted triangular and advancing

layer quad dominant meshes are depicted in Figure 4.29, showing that the advancing layer

mesh can track the wake for longer distance with many fewer degrees of freedom.

Figure 4.28: Initial geometry for quad dominant mesh at Re = 5000, Ma = 0.5 and α = 0◦
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(a) Solution on final adapted triangular mesh (12903 vertices)

(b) Solution on advancing layer quad dominant mesh (5006 vertices)

Figure 4.29: Flow solutions on final adapted triangular mesh and advancing layer mesh at
Re = 5000, Ma = 0.5 and α = 0◦ , showing better solution behavior in the wake for the
advancing layer mesh

The plots for the convergence history of aerodynamic coefficients against degrees of freedom

are presented in Figure 4.30. The lift coefficient converges faster on advancing layer meshes

and has smaller error compared to both triangular meshes since we expect to get CL = 0 for

this symmetric flow. However, comparing the triangular meshes only, the lift coefficient on

mesh with wake centerline converges faster as it better symmetry compared to mesh without

wake centerline. The convergence of the drag coefficient is roughly similar for triangular

meshes but faster on the quad dominant advancing layer meshes.

Figure 4.31 shows the convergence history with respect to total CPU time for meshing

and solver. For triangular meshes, the total CPU time for meshes with wake centerline

is less compared to the meshes without the wake centerline. Nevertheless, the total CPU

time for the advancing layer quad dominant meshes is much less compared to both the

triangular meshes with advancing layer meshes giving a better result for lift coefficient and

roughly same drag coefficient as grid converged value on final adapted triangular mesh.

The difference between the grid converged value of drag coefficient from adapted triangular
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meshes and the advancing layer quad dominant meshes is only 0.49%.

(a) Lift coefficient

(b) Drag coefficient

Figure 4.30: Convergence of lift and drag coefficients against degrees of freedom (vertices)
at Re = 5000, Ma = 0.5 and α = 0◦
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(a) Lift coefficient

(b) Drag coefficient

Figure 4.31: Convergence of lift and drag coefficients against total CPU time for meshing
and solver at Re = 5000, Ma = 0.5 and α = 0◦
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(a) Two chords downstream of the trailing edge (b) Five chords downstream of the trailing edge

(c) Eight chords downstream of the trailing edge

Figure 4.32: Velocity profiles in the wake for triangular and advancing layer quad dominant
meshes

The comparison of velocity profiles in the wake between the advancing layer meshes and the

adapted triangular meshes for this case is given in Figure 4.32. Once again, the advancing

layer quad dominant meshes give the expected symmetrical velocity profile in the wake at

different positions. The velocity profiles from advancing layer meshes with 5006 and 6766
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vertices are identical at two and five chords downstream but slightly smoother for the more

refined advancing layer mesh at eight chords downstream from the trailing edge. The velocity

profile from the triangular meshes improves with each cycle of mesh adaptation but in this

separated flow case, the adapted triangular meshes represent the wake velocity profile more

poorly compared to previous test cases especially for five and eight chords downstream from

the trailing edge where the wake velocity profile is poorly resolved even after the third

adaptation. This comparison indicates that the advancing layer mesh tracks the wake better

for separated flow as well.

4.3 Turbulent Subsonic Flow

Finally, we considered a case for turbulent subsonic flow. The free stream Mach number used

was Ma∞ = 0.15 while the Reynolds number based on the airfoil chord was Rec = 6× 106.

This test case is among of the validation case on NASA Turbulence Modeling Resource

(TMR) website [48], which documents results from well known CFD codes. An unstructured

hybrid mesh shown in Figure 4.34 was used. No-slip adiabatic boundary conditions were

applied on the airfoil surface while the far-field boundary conditions (outflow/inflow based

on the direction of velocity vector) were used at the outer boundary located 500c away from

the airfoil. We also took into account the effect of curvature and used higher-order cubic

cells for a more accurate representation of the boundary faces. However, streamline tracking

in curved cells requires using the finite element mapping from straight cells to curved cells.

We used the finite element mapping function implemented by Jalali [20] in ANSLib [40] and

solved the non-linear system of equations using Newton’s method to find the curved control

volume containing the massless particle based on its position at a given time.

The system of equations solved using Newton’s method to find the particle in curved cell

was:

x = ∑
xiφi (ξ, η)

y = ∑
yiφi (ξ, η)

(4.4)
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where φi is the basis function at node i. We then solved for ξ and η such that:

x (ξ, η) = x∗

y (ξ, η) = y∗

The procedure is as follow:

• First, find the straight cell in the straight mesh that contains the particle. This gives

us a good initial guess.

• Then grab the neighbors around that cell and search them one by one. For each cell,

solve for ξ and η in the reference element and ensure that ξ and η values are such

that the point falls inside the triangle. Using the values of ξ and η, re-calculate the

values of x and y. If x and y are the same as what we started with, then we are in the

correct cell. Otherwise, we go to other neighbors and repeat the process until we find

the desired cell.

(0,0) (1,0)

(0,1)

Figure 4.33: Mapping from reference triangle to cubic triangular cell

We computed the flow solution at different angles of attack, that is α = 0°, 4° and 10°,

using the second-order accurate cell-centered finite volume solver and the velocity field was

integrated to track the wake centerline in each case. Figure 4.35 shows the streamline tracking

results. These results demonstrate the robustness of the streamline tracking algorithm and

the ability to track the streamlines through mixed element meshes and high-order cubic
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curved cells. The flow, in this case, is attached and no flow separation was observed from

α = 0° to 10°.

Figure 4.34: Unstructured hybrid mesh (n.DoF = 25, 088)

Figure 4.35: Wake centerlines at Re = 6 × 106, Ma∞ = 0.15 and α = 0°, 4°, 10° using the
streamline-tracking algorithm
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Chapter 5

Concluding Remarks

5.1 Summary

A new approach for mesh adaptation for wakes has been presented in this research in an

effort to improve the solution accuracy and resolve the wake efficiently. The first step of

this approach involved the development of streamline tracking algorithm in order to track

the wake centerline. The velocity data was obtained from solution reconstruction using the

second-order accurate vertex-centered finite volume solver and integrated numerically using

the adaptive fourth-order Runge-Kutta method to obtain the wake centerline. The obtained

streamline was then successfully inserted into the existing isotropic unstructured mesh using

the surface insertion algorithm in GRUMMP. The surface insertion algorithm takes an initial

unstructured mesh and geometry of wake centerline as two initial inputs and its main point

is to recover the wake surface while not changing the mesh size at all more than a cell size

or two from the wake surface.

In the next step, an existing anisotropic mesh adaptation scheme developed by Pagnutti

[42] and further extended by Sharbatdar [49] and Zuniga Vazquez [56] was used. The metric

based on solution approximation error was computed at each mesh vertex. The metric

represents the desired anisotropy for each vertex and is a 2 × 2 symmetric positive definite

matrix. The desired anisotropy was then communicated through the metric to the mesh

adaptation code in GRUMMP to generate an anisotropic mesh. The mesh adaptation scheme

produced highly anisotropic and quasi-structured cells where needed based on derivatives of

flow solution variables. Unlike isotropic mesh adaptation which only provides mesh resolution

in desired areas, anisotropic mesh adaptation also provides proper cell alignment with the
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solution in addition to mesh resolution to capture anisotropic flow features. The high aspect

ratio of anisotropic cells and regular structure of quasi-structured cells allows to capture the

flow information much more efficiently compared to isotropic cells. Refining the mesh in

such a way based on solution features helps to produce an optimal mesh for computing the

solution. The mesh adaptation scheme produces high quality meshes using the four principal

operations for mesh quality improvement as discussed in Section 2.5. The mesh modification

operations preserve the wake centerline and do not move the vertices on it at all. After

obtaining the adapted mesh, the solution was re-computed and a new wake centerline was

obtained.

In the second and subsequent mesh adaptation cycles, the mesh was morphed and mesh

points from old wake centerline were projected to match the new wake centerline by solving

the linear elasticity problem, using displacement between two wake centerlines as constraints.

This helped to move the wake centerline to a more accurate position and preserved the

already adapted regions, thus making the adaptation process more efficient.

An advancing layer mesh generator was used as an alternative technique to produce an

anisotropic quad dominant mesh and the results are compared with triangular meshes with

and without the wake centerline. We also presented the comparison of velocity profiles in

the wake at different locations downstream from the trailing edge for the advancing layer

quad dominant and adapted triangular meshes.

5.2 Conclusions

To verify the correctness of streamline tracking, results are presented for an analytical veloc-

ity field which confirmed the order of accuracy of the numerical method and the ability to

track streamline through a mesh using the reconstructed velocity data. The accuracy of the

mesh morphing approach is verified by using the method of manufactured solutions which

proved that the linear elasticity solver is second-order accurate.

Test cases for viscous flow at different flow conditions have been considered and the

69



5.2. Conclusions

robustness of the mesh adaptation scheme is demonstrated by improvement in solution ac-

curacy and resolution of the boundary layer and wake as the adaptation process is repeated.

The flow separation not observed on the initial triangular mesh in the third test case high-

lights the fact that it is immensely important to have an appropriate resolution of flow

solution in the boundary layer and wake. The wake centerline for the first and third test

cases should coincide with the symmetry axis; comparison on initial and final adapted tri-

angular meshes show that wake centerline on the final mesh is closer to the symmetry line.

Comparing just the triangular meshes, the convergence of aerodynamic coefficients demon-

strated that there is a small CPU time advantage in case of meshes with wake centerline

and solution converges slightly faster especially for the third test case. We expect to get lift

coefficient equal to zero at zero angle of attack but this is not the case due to asymmetry in

the mesh. The triangular meshes with wake centerline have better symmetry compared to

meshes without wake centerline which plays an important role in faster convergence of the

solution.

Nevertheless, the comparison of results between the triangular meshes and the advancing

layer quad dominant meshes showed that the aerodynamic coefficients converge much faster

on the advancing layer meshes in all the test cases. There is a smaller error in lift coeffi-

cient on the advancing layer meshes for symmetric flow cases compared to both triangular

meshes since the advancing layer quad dominant meshes have better symmetry compared

to triangular meshes. Also, there is a clearly noticeable CPU time advantage in using the

advancing layer meshes. This is because it is much cheaper to generate the advancing layer

mesh rather than doing mesh adaptation which saves CPU time required for meshing. The

advancing layer mesh can also track the wake better with many fewer degrees of freedom

which helps in reducing the CPU time for the solver.

The velocity profiles from the advancing layer meshes provide evidence that it can capture

the wake more efficiently even up to several chords downstream from the trailing edge. The

velocity profile on the initial triangular meshes is not physical in all the cases due to poor

mesh resolution in the wake. The velocity profiles from triangular meshes improve with mesh

70



5.3. Recommended Future Work

adaptation and approach the velocity profiles represented by the quad dominant advancing

layer meshes. The final adapted triangular meshes already have almost twice the degrees

of freedom compared to the quad dominant advancing layer meshes. However, the velocity

profiles from triangular meshes get worse in comparison as we move further downstream

from the trailing edge such as at five and eight chords especially for the third test case with

flow separation. This comparison study illustrates that the advancing layer mesh is more

efficient in resolving the wake.

Moreover, the robustness of the streamline tracking algorithm is further demonstrated

by tracking the wake centerline at different angles of attack for a fully turbulent flow. The

turbulent flow case demonstrates our ability to track streamlines through mixed element

meshes and high-order cubic curved cells.

5.3 Recommended Future Work

This thesis demonstrated a new approach for anisotropic mesh adaptation for wakes. There

are several areas to which the overall methodology can be extended and improved further.

• The streamline tracking algorithm tracks the streamlines for 2-D flows. One possible

addition in the long run can be to extend the algorithm to 3-D flows and trace a stream

surface.

• In the future, it will be good to do the anisotropic mesh adaptation for turbulent flow

case as well and follow the mesh adaptation loop discussed in Section 3.5. It will also

be good to solve the drag polar for turbulent flow.

• For quad dominant advancing layer mesh, we produced the mesh by using an average of

the laminar boundary layer and laminar far-wake profiles. One potential improvement

for this can be to explore ways to get a better estimate of the overall profile that can

resolve the wake even better especially in the near-wake region.

• In addition to resolving the boundary layer and wake, we also need to resolve the shock
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5.3. Recommended Future Work

if the flow is transonic. Considering this additional feature of transonic flow, it will

be good to identify the shock surface and insert it into the mesh along with the wake

centerline and do anisotropic mesh adaptation. Also, then the initial geometry for the

advancing layer approach can be modified to include both the wake centerline and the

shock and march off both the surfaces to generate the advancing layer mesh. This

might help to resolve the shock more efficiently in addition to the wake.
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Appendix A

Command-line Options

The command line options used to obtain the results in Chapter 4 are included below.

A.1 Wake Centerline Tracking

The executable file for wake centerline tracking in ANSLib is streamline-tracking. It can

be executed through the Linux shell with the following command line options:

./streamline-tracking

Options

-f <mesh file> Address of .mesh file without extension

-physics () RoeVisc2D for laminar and RoeTurbSA2D for turbulent flow

-mesh_type v Vertex-centered mesh

-reynolds () Reynolds number

-mach () Mach number

-angle () Angle of attack

-initial_step Initial step size (for forward and backward integration)

-CASE 2 CASE 2 is for actual velocity data from flow solver

Alternative Options

-initial_step_backward Initial step size for backward integration only (optional)

-CASE () Use CASE 1 for analytical velocity field

-mesh_type c Cell-centered mesh
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A.2. Wake Centerline Insertion into the Mesh

A.2 Wake Centerline Insertion into the Mesh

The executable file in GRUMMP for two-dimensional curve insertion is surfins2d. The

following command line options should be used:

./surfins2d

Options

-i <mesh file> Address of .mesh file with extension

-z <boundary file> Address of .bdry file without extension

-I Melts internal boundary faces and gives .mesh.mesh file

A.3 Obtaining the metric file

The metric file can be obtained from ANSLib using the Driver executable. The command

line options are:

./Driver

Options

-f <mesh file> Address of .mesh file without extension

-physics RoeVisc2D Physics

-mesh_type v Vertex-centered mesh

-reynolds () Reynolds number

-mach () Mach number

-angle () Angle of attack

-AA Anisotropic adaptation

-r 2 Adaptation order

A.4 Anisotropic Mesh Adaptation (Metric-Based)

The executable file used for metric-based anisotropic mesh adaptation is tmop_adapt2d

and can be found in GRUMMP. The following command line options should be used:
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A.5. Mesh Morphing

./tmop_adapt2d

Options

-i <mesh file> Address of .mesh file or .grmesh file with extension

-B <boundary file> Address of .bdry file without extension

-I Melts internal boundary faces if .grmesh file is used
Additional file that must be provided

A metric file must be provided for the corresponding mesh file and should have same extension as

mesh file with additional .metric at the end. For example, if the mesh file is 0012.mesh, then the

metric file should be 0012.mesh.metric.

Note

For .grmesh, the boundary file should have coordinates of the curve (e.g wake centerline) inserted

into the mesh.

A.5 Mesh Morphing

The executable file used for mesh morphing is LinearElements and can be found in ANSLib.

The following command line options should be used:

./LinearElements

Options for general cases

-i <mesh file> Address of .mesh file without extension

-B <boundary file> Address of .bdry file without extension (Initial wake centerline)

-C <boundary file> Address of .bdry file without extension (New wake centerline)

Options to test mesh morphing code

-i <mesh file> Address of .mesh file without extension

-MMS Method of manufactured solutions

A.6 Advancing Layer Mesh Generation

The executable file used for advancing layer mesh generation is edam2d and can be found

in GRUMMP. The following command line options should be used:
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./edam2d

Options

-i <boundary file> Address of .bdry file without extension

-o <output file name> Name for output mesh file

-g () Off-wall growth ratio per layer

-R () Mesh resolution

-G () Mesh grading

-n () Total number of layer to extrude

-N () Number of layer across boundary layer/wake thickness

-S () Stretching factor across boundary layer/wake thickness

-q () Reynolds number based on chord
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