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Abstract

Inverse problems in the imaging sciences encompass a variety of applica-

tions. The primary problem of interest is the identification of physical

parameters from observed data that come from experiments governed by

partial-differential-equations. The secondary type of imaging problems at-

tempts to reconstruct images and video that are corrupted by, for example,

noise, subsampling, blur, or saturation.

The quality of the solution of an inverse problem is sensitive to issues

such as noise and missing entries in the data. The non-convex seismic full-

waveform inversion problem suffers from parasitic local minima that lead

to wrong solutions that may look realistic even for noiseless data. To meet

some of these challenges, I propose solution strategies that constrain the

model parameters at every iteration to help guide the inversion.

To arrive at this goal, I present new practical workflows, algorithms, and

software, that avoid manual tuning-parameters and that allow us to incor-

porate multiple pieces of prior knowledge. Opposed to penalty methods, I

avoid balancing the influence of multiple pieces of prior knowledge by work-

ing with intersections of constraint sets. I explore and present advantages

of constraints for imaging. Because the resulting problems are often non-

trivial to solve, especially on large 3D grids, I introduce faster algorithms,

dedicated to computing projections onto intersections of multiple sets.

To connect prior knowledge more directly to problem formulations, I also

combine ideas from additive models, such as cartoon-texture decomposition

and robust principal component analysis, with intersections of multiple con-

straint sets for the regularization of inverse problems. The result is an
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extension of the concept of a Minkowski set.

Examples from non-unique physical parameter estimation problems show

that constraints in combination with projection methods provide control

over the model properties at every iteration. This can lead to improved

results when the constraints are carefully relaxed.
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Lay Summary

When we send electromagnetic or seismic signals through an unknown medium

(the Earth, humans) and measure the output using multiple sensors, we

know input and output but not what the medium looks like inside. The

goal of inverse problems is to use the input and output to compute the

materials the signals passed through. While we can numerically solve such

problems, there are often many answers that satisfy the measurements—i.e.,

non-uniqueness. The quality of the computed solutions also decreases when

there is noise in the observations, or when data is missing. I propose meth-

ods to mitigate these issues by merging measured data with prior knowledge

about the material. I construct new formulations that better translate ex-

pert intuition, as well as inferences from other types of observations, into a

mathematical problem. The new and faster computational methods that I

derive can include more pieces of prior information than existing techniques.
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wavefields u and ū at the receiver locations. The scalar λ

balances the data-misfit versus the wavefield residual. . . . 28

Table 3.1 Notation used in this chapter. . . . . . . . . . . . . . . . . 37

Table 4.1 Overview of constraint sets that the software currently sup-

ports. A new constraint requires the projector onto the set

(without linear operator) and a linear operator or equiva-

lent matrix-vector product together with its adjoint. Vec-

tor entries are indexed as m[i]. . . . . . . . . . . . . . . . . 101

xi



List of Figures

Figure 1.1 Two parameter representation of bound constraints, smooth-

ness constraints via bounds on the gradient, monotonicity

via positivity/negativity of the gradient, and an annulus

constraint on the data fit. . . . . . . . . . . . . . . . . . . 10

Figure 1.2 (left) The yellow highlighted patch is the intersection of

the other sets that describe prior knowledge. (right) The

yellow highlighted patch shows the intersection of the data

constraint and all other sets. Red dots are projections of

random points onto the intersection. . . . . . . . . . . . . 11

Figure 2.1 Result of projecting the true Marmousi model onto the set

of bounds and limited TV-norms. Shown as a function of

a fraction of the TV-norm of the true model, TV(m∗). . . 20

Figure 2.2 FWI results using the smoothed total-variation (TVε) as

a penalty. Shows the results for various combinations of

ε and α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

xii



Figure 2.3 Constrained optimization workflow. At every FWI it-

eration, the user code provides data-misfit and gradient

w.r.t. data-misfit only. The projected gradient algorithm

uses this to propose an updated model (mk −∇mf(mk))

and sends this to Dykstra’s algorithm. This algorithm

projects it onto the intersection of all constraints. To

do this, it needs to project vectors onto each set sepa-

rately once per Dykstra iteration. These individual pro-

jections are either closed-form solutions or computed by

the ADMM algorithm. . . . . . . . . . . . . . . . . . . . . 25

Figure 2.4 Results for constrained FWI for various total-variation

budgets (τ). . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 2.5 True and initial models for FWI and WRI, based on the

BP 2004 model. . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 2.6 Estimated models for FWI and WRI for 25% data noise,

based on the BP 2004 model. Estimated models are

shown for box constraints only (a and c) and for box con-

straints combined with total-variation constraints (b and

d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 2.7 Estimated models for FWI and WRI for 50% data noise,

based on the BP 2004 model. Estimated models are

shown for box constraints only and for box constraints

combined with total-variation constraints. . . . . . . . . . 32

Figure 2.8 Frequency panels of the lowest frequency data for the ex-

ample based on the BP 2004 model with 25% noise. All

examples use noisy data, but the figure also displays data

without noise for reference. . . . . . . . . . . . . . . . . . 33

xiii



Figure 3.1 The trajectory of Dykstra’s algorithm for a toy exam-

ple with two constraints: a maximum 2-norm constraint

(disk) and bound constraints. The feasible set is the in-

tersection of a halfspace and a disk. The circle and hori-

zontal lines are the boundaries of the sets. The difference

between the two figures is the ordering of the two sets.

The algorithms in (a) start with the projection onto the

disk, in (b) they start with the projection onto the halfs-

pace. The projection onto convex sets (POCS) algorithm

converges to different points, depending onto which set we

project first. In both cases, the points found by POCS

are not the projection onto the intersection. Dykstra’s

algorithm converges to the projection of the initial point

onto the intersection in both cases, as expected. . . . . . 50

Figure 3.2 The Marmousi model (a), the projection onto an intersec-

tion of bound constraints and total-variation constraints

found with Dykstra’s algorithm (b) and two feasible mod-

els found by the POCS algorithm (c) and (d). We observe

that one of the POCS results (c) is very similar to the

projection (b), but the other result (d) is very different.

The different model (d) has a total-variation much smaller

than requested. This situation is analogous to Figure 3.1. 51

Figure 3.3 FWI with an incorrect source function with projections

(with Dykstra’s algorithm) and FWI with two feasible

points (with POCS) for various TV-balls (as a percent-

age of the TV of the true model) and bound constraints.

Also shows differences (rightmost two columns) between

results. The results show that using POCS inside a pro-

jected gradient algorithm instead of the projection leads

to different results that also depend on the order in which

we provide the sets to POCS. This example illustrates the

differences between the methods and it is not the inten-

tion to obtain excellent FWI results. . . . . . . . . . . . . 52

xiv



Figure 3.4 Example of the iteration trajectory when (a) using gra-

dient descent to minimize a non-convex function and (b)

projected gradient descent to minimize a non-convex func-

tion subject to a constraint. The constraint requires the

model estimate to inside the elliptical area in (b). The

semi-transparent area outside the ellipse is not accessible

by projected gradient descent. There are two important

observations: 1) The constrained minimization converges

to a different (local) minimizer. 2) The intermediate pro-

jected gradient parameter estimates can be in the interior

of the set or on the boundary. Black represents low values

of the function. . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 3.5 The 3-level nested constrained optimization workflow. . . 60

Figure 3.6 True (a) and initial (b) velocity models for the example. . 63

Figure 3.7 Model estimate obtained by FWI with bound constraints

only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 3.8 (a) Model estimate obtained by FWI from 3− 4 Hz data

with bound constraints, a vertical slope constraint and

a constraint on the velocity variation per meter in the

horizontal direction. (b) Model estimate by FWI from

3−15 Hz data with bound constraints and using the result

from (a) as the starting model. . . . . . . . . . . . . . . . 66

Figure 3.9 (a) Model estimate obtained by FWI from 3− 4 Hz data

with bound constraints and total-variation constraints.

(b) Model estimate by FWI from 3 − 15 Hz data with

bound constraints and using the result from (a) as the

starting model. . . . . . . . . . . . . . . . . . . . . . . . . 67

xv



Figure 3.10 Comparison of reverse time migration (RTM) results based

on the FWI velocity models (right halves) and the true

reflectivity (left halves). Figures (a) and (d) show RTM

based on the velocity model from FWI with bounds only

(Figure 3.7). Figures (b) and (e) show RTM results based

on the velocity model from FWI with bounds, horizontal

and vertical slope constraints (Figure 3.8b). Figures (c)

and (f) show RTM results based on the velocity model

from FWI with bounds and total-variation constraints

(Figure 3.9b). RTM results based on FWI with bound

constraints, (a) and (d), miss a number of reflectors that

are clearly present in the other RTM results. . . . . . . . 69

Figure 3.11 Results from FWI with regularization by a quadratic penalty

method to promote horizontal and vertical smoothness.

As for the constrained FWI example, the first FWI cycle

uses 3−4 Hz data and is with regularization (left column),

the second cycle uses 3−15 Hz data and does not use reg-

ularization (right column). Figure (a) uses regularization

parameter α1 = α2 = 1e5, (c) uses α1 = α2 = 1e6, and

(e) uses α1 = α2 = 1e7. . . . . . . . . . . . . . . . . . . . 71

Figure 3.12 Results from FWI with regularization by a quadratic penalty

method to promote horizontal and vertical smoothness.

As for the constrained FWI example, the first FWI cycle

uses 3 − 4 Hz data and is with regularization (left col-

umn), the second cycle uses 3− 15 Hz data and does not

use regularization (right column). Figure (a) uses regular-

ization parameter α1 = 1e6, α2 = 1e5, (c) uses α1 = 1e5,

α2 = 1e6, (e) uses α1 = 1e7, α2 = 1e6, and (g) uses

α1 = 1e6, α2 = 1e7. . . . . . . . . . . . . . . . . . . . . . 72

xvi



Figure 4.1 Relative transform-domain set feasibility (equation 4.24)

as a function of the number of conjugate-gradient itera-

tions and projections onto the `1 ball. This figure also

shows relative change per iteration in the solution x. . . . 105

Figure 4.2 Relative transform-domain set feasibility (equation 4.24)

as a function of the number of conjugate-gradient itera-

tions and projections onto the set of matrices with limited

rank via the SVD. This figure also shows relative change

per iteration in the solution x. . . . . . . . . . . . . . . . 106

Figure 4.3 Timings for a 2D and 3D example where we project a

geological model onto the intersection of bounds, lateral

smoothness, and vertical monotonicity constraints. . . . . 107

Figure 4.4 Timings for a 3D example where we project a geologi-

cal model onto the intersection of bound constraints and

an `1-norm constraint on the vertical derivative of the

image. Parallel computation of all yi and vi does not

help in this case, because the `1-norm projection is much

more time consuming than the projection onto the bound

constraints. The time savings for other computations in

parallel are then canceled out by the additional commu-

nication time. . . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 4.5 True, initial, and estimated models with various constraint

combinations for the full-waveform inversion example. Crosses

and circles represent sources and receivers, respectively.

All projections inside the spectral projected gradient al-

gorithm are computed using single-level PARSDMM. . . . 113

Figure 4.6 Estimated models with various constraint combinations

for the full-waveform inversion example. Crosses and cir-

cles represent sources and receivers, respectively. All pro-

jections inside the spectral projected gradient algorithm

are computed using coarse-to-fine multilevel PARSDMM

with three levels and a coarsening of a factor two per level.114

Figure 4.7 A sample of 8 out of 35 training images. . . . . . . . . . . 117

xvii



Figure 4.8 Reconstruction results from 80% missing pixels of an im-

age with motion blur (25 pixels) and zero-mean random

noise in the interval [−10, 10]. Results that are the pro-

jection onto an intersection of 12 learned constraints sets

with PARSDMM are visually better than BPDN-wavelet

results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Figure 4.9 A sample of 8 out of 16 training images. . . . . . . . . . . 120

Figure 4.10 Reconstruction results from recovery from saturated im-

ages as the projection onto the intersection of 12 con-

straint sets. . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Figure 5.1 The true model for the data generation for the full-waveform

inversion 1 example, the initial guess for parameter esti-

mation, and the model estimates with various constraints.

Crosses and circles indicate receivers and sources, respec-

tively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Figure 5.2 The true and initial models corresponding to the full-

waveform inversion 2 example. Figure shows parame-

ter estimation results with various intersections of sets,

as well as the result using a generalized Minkowski con-

straint set. Only the result obtained with the generalized

Minkowski set does not show an incorrect low-velocity

anomaly. . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Figure 5.3 Results of the generalized Minkowski decomposition ap-

plied to the escalator video. The figure shows four frames.

The most pronounced artifacts are in the time stamp.

This example illustrates that the constrained approach is

suitable to observe and apply constraint properties ob-

tained from a few frames of background only video. . . . 147

Figure 6.1 The true image (left), and the observed data (right) that

consists of vertical bands of the true image, increasingly

sparsely sampled from left to right. . . . . . . . . . . . . . 153

xviii



Figure 6.2 Three samples from the prior information set, which is the

intersection of bounds, lateral smoothness, and parameter

values that are limited to decrease slowly in the downward

direction. Samples are the result of projecting random

images onto the intersection. . . . . . . . . . . . . . . . . 154

Figure 6.3 Samples from the intersection of sets that describe prior

knowledge and data observations. The bottom row shows

the difference between the sample from the top row and

the true model from Figure (6.1). . . . . . . . . . . . . . . 155

Figure 6.4 Pointwise maximum and minimum values, as well as the

difference of the three samples from Figure (6.3). . . . . . 155

Figure B.1 The figure shows the effect of different slope constraints

when we project a velocity model (a). Figure (b) shows

the effect of allowing arbitrary velocity increase with depth,

but only slow velocity decrease with depth. Lateral smooth-

ness (c) is obtained by bounding the upper and lower limit

on the velocity change per distance interval in the lateral

direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

xix



Acknowledgments

I would like to use this opportunity to thank my supervisor Professor Felix J.

Herrmann for giving me the opportunity to study and take classes in various

topics, always encouraging me to be critical of my own papers, presentations,

and software. I am also grateful for the support for me to work on multiple

topics and the freedom to explore and develop a research path. All this

enabled me to acquire a broad set of skills.

I was also lucky to have many nice and helpful colleagues: students, post-

docs, and other support at the Seismic Laboratory of Imaging and Modeling

at the University of British Columbia. Special thanks to Henryk for always

having ready some good advice for any software, hardware, or programming

related questions.

Also very grateful for much love and support at home from my wife
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Chapter 1

Introduction

Every day we witness all sorts of physical phenomena around us: heat dis-

sipation, fluid flow and sound wave propagation to name a few. We know

how to simulate physics numerically, given the source activation function,

initial states, boundary conditions, and physical model parameters such as

density, acoustic velocity, and electrical conductivity. This process is called

forward modeling in the context of an inverse problem. The inverse prob-

lem for physical parameter estimation is using the data acquired in the real

world, called the observed data, and use computational methods to infer the

model parameters that resulted in the observed data. A prominent exam-

ple in this thesis is the estimation of acoustic velocity in the subsurface of

the Earth from seismic pressure signals measured near the surface. This

problem is known as full-waveform inversion (FWI [Tarantola, 1986, Pratt

et al., 1998, Virieux and Operto, 2009]) in the geophysical literature. More

challenging parameter estimation inverse problems also estimate the source

terms [Pratt, 1999, Aravkin and van Leeuwen, 2012].

Other inverse problems that feature prominently in this thesis are im-

age and video processing tasks such as deblurring, inpainting missing pixels,

noise removal, and segmentation/classification. These problems appear dif-

ferent from physical parameter estimation, but there are many similarities

in terms of mathematical structure, algorithms, and software.

If we define the forward modeling operator on a grid with N grid points,
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acting on the vectorized grid, as G(·) : RN → RM , the observed data as

d ∈ RM , and the model parameters as m ∈ RN , the most basic inverse

problem is straightforward data-fitting, where the misfit between simulated

and observed data is minimized. Mathematically, this corresponds to the

goal of finding model parameters that result in the observed data when used

for forward modeling, i.e.,

min
m

f(G(m)− d). (1.1)

Unlike forward modeling, most inverse problems do not have a solution, or

have a solution that is not unique and does not depend on the data continu-

ously. These are the Hadamard conditions that define an ill-posed problem,

stated informally. The data-misfit function f(·) : RN → R quantifies the

difference between the predicted data, G(m), and the observed data d. A

canonical example is the (non-) linear least-squares misfit 1/2‖ · ‖22. The

choice of f depends on the statistical distribution of the data-fit errors that

we expect, but computational arguments such as differentiability or separa-

bility are also important. Separability means that data misfit objective can

be written as a sum.

When we discuss solving an inverse problem, we define this as the result

of the procedure that we use to obtain model parameters that minimize (1.1)

with respect to the model parameters. Results can be a local or global mini-

mum of (1.1), or any other point that prevents the optimization algorithm to

further decrease f significantly. In another scenario, f decreases, but there

is no significant change in m. For problems where computing G(m) requires

time-consuming numerical simulations, a limited number of evaluations of

G(m) is typically the stopping criterion and the ‘solution’ of the inverse

problem is the m we obtained when there is no more computational time

left. The model parameters that provide us with the solution, as defined in

this paragraph, are also named the model estimate.

So far, we discussed inverse problems in the context of data fitting. How-

ever, even if an inverse problem is easy to solve numerically, it is often chal-

lenging to obtain a model estimate that is close to the true parameters. Data
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fitting alone is usually not enough because it leaves the solution sensitive to

• forward operators that do not contain information that helps the re-

construction. For problems like image inpainting, audio declipping and

image desaturation, the observed and corrupted data satisfiesG(d) = d

for operators that map from image to image.

• data problems such as noise, a lack of well-sampled data, aliasing, and

data gaps.

• widely varying model estimates based on small changes in the initial

guess. Inverse problems such as inversion of seismic data to estimate

rock properties have many possible solutions that may look geologi-

cally realistic, but most of them are far from the truth.

• subsampling artifacts in the model parameters that are the result of

using a (randomly changing) subset of the data in iterative reconstruc-

tion algorithms to reduce the computational demand [Krebs et al.,

2009, Dai et al., 2011, Herrmann and Li, van Leeuwen et al., 2011, Li

et al., 2012a, Peters et al., 2016, Xue et al., 2016].

When the data and forward modeling operator do not contain sufficient

information, or are corrupted, we need more input to obtain good model

parameters. Additional information may come in the form of prior knowl-

edge: things we know about the model parameters before we even look

at the data or start solving the inverse problem. Prior information comes

from many different sources. For geophysical imaging these include expert

(geologist) knowledge, physical measurements in wells [Asnaashari et al.,

2013], models obtained using other types of geophysical data [Lines et al.,

1988, Gallardo and Meju, 2007, Hu et al., 2009, Haber and Holtzman Gazit,

2013], and models derived using the same type of data at an earlier time

(time-lapse) [Asnaashari et al., Karaoulis et al., 2011, Oghenekohwo et al.,

2015]. Examples of prior knowledge include minimum and maximum val-

ues of the parameters, or if the model is simple in some sense (smooth,
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blocky, sparse in a transform-domain, composed of a few linearly indepen-

dent rows/columns). Merging data and prior knowledge ‘fixes’ the problems

listed so far, and improves the model estimates, provided a) sufficient prior

information is available and b) formulating the inverse problem such that

all prior knowledge is actually included in the solution. Developing methods

and algorithms to include as much prior information as possible is the main

topic of this thesis.

Adding prior information to the inverse problem formulation in the form

of penalty functions or constraints regularizes the problem. The regulariza-

tion described so far applies to the model parameters. Some of the issues

listed above, data noise and missing data, can also be tackled using data

processing. For instance, noise filtering, data completion, and bandwidth

extension [Li and Demanet, 2016] techniques all act on the data. However,

issues related to the non-uniqueness of inverse problem solutions also occur

in case of ‘perfect’ data. In this thesis, I focus on model-based regulariza-

tion exclusively. Before motivating this choice, it is important to note that

we can apply both model and data-based regularizations to solve an inverse

problem, which may be necessary in order to obtain the best results possible.

My choice is motivated by

• the intuition that inverse problem practitioners have about the model

parameters. A geologist knows what the earth looks like in the sub-

surface, but not what characteristics gravitational, electromagnetic, or

seismic data supposed to possess.

• the invariance of a model to the data. A physical model or image is

independent of the type of data, sensors, and source/receiver acquisi-

tion arrays. These factors typically change for every experiment, which

makes it challenging to develop general regularization techniques that

work for multiple types of data and varying experimental settings.

• the invariance of various physical properties of the same model. Con-

sider different geophysical models of the same target. For example pa-

rameters computed from gravitational data in terms of density, and a
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model based on seismic data in terms of acoustic velocity. While these

models describe different physical parameters with varying scales, their

structure is often similar. This means that these models share some

properties, such as matrix rank or cardinality (number of non-zeros

in a vector) of the number of discontinuities, because these properties

are scale-invariant.

• the possibly much higher dimensionality of the data compared to the

model. An image or video is always 2D or 3D. The observed data to ob-

tain such a model may be higher dimensional and contain many more

data points than grid points. In exploration seismology, we can work

with source x-y-z locations, receiver x-y-z locations and a time/fre-

quency coordinate. The seismic data is therefore a 7D tensor (or 5D

with fixed z-coordinates) [Trad, 2008, Kreimer et al., 2013, Silva and

Herrmann, 2015, Kumar et al., 2015], which makes it more difficult to

work with in a computational sense than with a 3D model.

Sometimes, model and data based regularization go hand in hand. We

can apply the techniques I develop in this thesis to data as well. This is

not the primary application, but if we have data organized in a matrix or

3D tensor, we may use all developed algorithms directly. If data is higher

dimensional, we can flatten the tensor [Kreimer et al., 2013, Kumar et al.,

2015], i.e., reshaping to lower dimensional tensors (3D array or matrix).

1.1 From prior knowledge to problem
formulation

So far, we discussed what prior knowledge is and why it is important for

imaging. One of the most challenging parts of solving an inverse problem,

is translating prior information into a mathematical formulation. There are

several ways to do this. What methods are preferable depends on the prior

knowledge, applications, and available algorithms. In each of the chapters, I

motivate in detail why I prefer a specific formulation over the others. I will

limit the following informal discussion to the basic concepts and philosophy
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behind the different regularization techniques.

Perhaps the most classical concept is to penalize properties that we do

not want to see in the model estimate. This is known as Tikhonov/quadratic

regularization. In a more general form we add p regularization terms Ri(m) :

RN → R that each assign large values to models that have unwanted prop-

erties. The corresponding minimization problem is

min
m

f(m) +

p∑
i=1

αiR(m). (1.2)

The regularization functionsRi(m) may be non-convex and non-differentiable.

The scalars αi balance the influence of each regularizer with respect to each

other and the data misfit. Penalty methods are the most widely used reg-

ularization technique, see, e.g. [Farquharson and Oldenburg, 1998, Becker

et al., 2015, Lin and Huang, 2015, Xue and Zhu, 2015, Qiu et al., 2016] for

examples in geophysics.

Another formulation casts the penalty term into the objective that is

minimized given a constraint on the data misfit—i.e.,

min
m

p∑
i=1

αiR(m) s.t. f(m) ≤ σ. (1.3)

This formulation has the advantage that if we know something about the

data noise level we can determine a good choice of σ > 0. If we use only

a single Ri(m), there are no other scalar tuning parameters, which makes

it a more practical formulation. However, when multiple pieces of prior

knowledge are available, this advantage no longer holds. The multiple reg-

ularization terms require multiple αi for balancing the influence of each ob-

jective, so there is still one trade-off parameter per model property. There

are examples of this approach in the geophysical literature [Constable et al.,

1987, Greenhalgh et al., 2006], but it is rare for authors to work with more

than one regularization function because choosing the trade-off parameters

is challenging [Ellis and Oldenburg, 1994]

To avoid choosing these trade-off parameters, this thesis revolves around
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the following constrained formulation:

min
m

f(m) s.t. m ∈
p⋂
i=1

Vi, (1.4)

where the data misfit appears as the objective and the prior information

as constraints. The above formulation requires the model parameters m to

be an element of p sets Vi. The model estimate m is an element of the

intersection
⋂p
i=1 Vi. In each chapter, I explain which properties make prob-

lem (1.4) the cornerstone of this thesis. The absence of penalty parameters

is an advantage of the constrained formulation for situations where we have

multiple pieces of prior knowledge. The definition of each constraint is in-

dependent of all other constraint sets and requires no balancing. Moreover,

any solution of problem (1.4) will satisfy all constraints.

For geophysical problems we often want to, or need to, work with many

constraints or penalties. Consider seismic imaging in sedimentary geological

settings. In this situation, we quickly reach the number of four pieces of

prior information. Usually there is knowledge on upper and lower limits

on parameter values (bound constraints), some information about variation

with depth (often in the form of promoting blockiness across the sedimen-

tary layers), as well as two different smoothness related regularization terms

for the two lateral directions (along the sedimentary layers). Yet, many

inversion results are ‘obviously’ not good in the eyes of the geologist/geo-

physicist. This implies there is more prior knowledge available that it not

yet used. Several geophysical works successfully use formulation (1.4), [Zeev

et al., 2006, Bello and Raydan, 2007, Lelivre and Oldenburg, 2009, Baum-

stein, 2013, Smithyman et al., 2015, Esser et al., 2015a, 2016b, Esser et al.,

2016]. These reference are limited to a single or two constraint sets, and

some of them present algorithms for specific constraints. In this thesis, I

extend workflows and algorithms to more than two constraint sets, present

algorithms to compute projections onto intersections that are not tied to

specific sets, introduce practical software implementations with a reduced

number of tuning parameters, and I work with constraints not previously
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used in the geophysical literature. In chapter 5, I also introduce a new

problem formulation that is more general than an intersection of sets.

1.2 Visual introduction

While all inverse problems that appear in this thesis are defined on small

2D or large 3D grids, looking at some sets and intersections in R2 provides

some visual intuition about the techniques that underpin this work. To

make visualization simple by avoiding a mixture of function level-sets and

constraint sets, let me first make a small modification to problem (1.4) by

changing the minimization of a data-misfit to a constraint on the data-fit.

The new problem formulation reads

find m ∈
p⋂
i=1

Vi
⋂
Vdata. (1.5)

This means we find a vector m ∈ RN that is in the intersection of p con-

straints on the model properties,
⋂p
i=1 Vi, and also in a data-constraint set

Vdata. An example of a constraint on the data fit is Vdata = {m | σ1 ≤
‖G(m)−d‖ ≤ σ2} with σ1 ≤ σ2. Although many authors state optimization

problems of the form minm ‖G(m) − d‖, they sometimes intend to use the

constraint {m | σ1 ≤ ‖G(m) − d‖ ≤ σ2}. This happens when researchers

stop their iterative algorithm when the data-misfit drops below the noise

level: ‖G(m)−d‖ < σ1. The upper bound is also effectively present because

there is often a rough idea about how close we should be able to match the

observed data.

We consider sets that are inspired by a geophysical inverse problem in

a sedimentary geological setting. Prior knowledge, in this case, is often

available about the upper and lower bounds on parameter values, some

smoothness in the lateral direction, and the acoustic velocity or density

are generally increasing monotonically with depth in the Earth. For each

element in the model vector, prior information is given by the intersection

of
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1. {m | l ≤ m ≤ u} : bounds on parameter values

2. {m | − ε ≤ (Iz ⊗ Dx)m ≤ +ε} : parameter values change slowly in

lateral direction

3. {m | 0 ≤ (Dz ⊗ Ix)m ≤ +∞}, : parameter values are increasing with

depth

where ⊗ is the Kronecker product and Dx, Dz are finite-difference matrices,

and Ix and Iz are identity matrices of size that corresponds to the grid extent

in x or z-direction. In Figure 1.1, we show two-parameter representations of

these sets, as well as an annulus constraint on the data fit: Vdata = {m |σ1 ≤
‖G(m)− d‖ ≤ σ2}.

Figure 1.2 displays the intersection of all sets that describe prior knowl-

edge. That figure also shows the intersection of the data-fit constraint set

with the sets of prior knowledge. The projection of a few random points

that are outside the intersection of all sets, are examples of feasible points

that satisfy all constraints. Any feasible point satisfies all pieces of prior

information, and also has the desired level of data fit; these points are ex-

amples of solutions of the inverse problem 1.5. The ‘full’ solution of problem

1.5 is set-valued, i.e., any point in the set. This type of projection appears

extensively in the following chapters.

1.3 Motives and objectives

Motivated by physical parameter estimation problems using seismic data

(seismic full-waveform inversion), I highlight fundamental challenges.

• The estimation of the model parameters of a wave-equation from

recorded wavefield data at a small part of the boundary of the compu-

tational domain is a notoriously non-convex problem. PDE-constrained

optimization attempts to match observed oscillatory data to simulated

data that is also oscillatory. Small changes in the initial guess typically

lead to large changes in the final model estimate obtained using an it-

erative optimization algorithm. While many of the recovered models

are ‘obviously’ incorrect, we also fine many models that are realistic,
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Figure 1.1: Two parameter representation of bound constraints,
smoothness constraints via bounds on the gradient, monotonic-
ity via positivity/negativity of the gradient, and an annulus
constraint on the data fit.

but far from the true model parameters. These problems typically

occur when there are no low-frequencies recorded (about ≤ 3 Hertz

in ocean-based data acquisition), and the initial guess is far from the

true model.

• Generating and recording low-frequency data is challenging for physi-

cal reasons, so assuming those low-frequency data are/will be available

is not an option.

• Creating an accurate initial model from seismic data is extremely time-

consuming, difficult, and requires much manual work by, e.g., first-
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Figure 1.2: (left) The yellow highlighted patch is the intersection of
the other sets that describe prior knowledge. (right) The yellow
highlighted patch shows the intersection of the data constraint
and all other sets. Red dots are projections of random points
onto the intersection.

arrival analysis. Methods and algorithms with relatively low sensitivity

to the initial model are preferable to invert seismic data.

By merging data-fitting with prior knowledge on the model parameters,

we can partially mitigate the above list of challenges. Well chosen and ac-

curate prior information has a similar effect as augmenting the missing data

and can also help ‘guide’ iterative inversion algorithms from an inaccurate

initial model to a good estimation.

The two primary objectives of this thesis are tightly linked. I want

to include more prior knowledge than most research on inverse problems

that only use one or two pieces of prior information, usually in the form of

penalties. At the same time, I also want to make several aspects of solving

inverse problems easier. More specifically, the objectives of this thesis are

• developing problem formulations, workflows, and algorithms that can

include multiple pieces of prior information about model parameters

and solve resulting problems on large 3D grids.
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• reducing the number of parameters that need hand-tuning or algorith-

mic tuning at a high computational cost. These include step-length

limits that need function/linear operator properties which are not

readily available, stopping criteria, augmented-Lagrangian penalty,

and over/under-relaxation parameters.

• applying the developed algorithms for the constrained problem for-

mulation to non-convex seismic full-waveform inversion in various ge-

ological settings where standard formulations with quadratic penalty

methods do not succeed.

1.4 Thesis outline

There are four main chapters in this thesis that follow a natural progression

from relatively simple to more advanced and faster algorithms.

The intended audience for chapter 2 is a broad range of exploration

geoscientists and it uses a minimal amount of mathematics to explain the

concepts. I discuss some advantages of constrained formulations of inverse

problems compared to penalty forms, for seismic full-waveform inversion

(FWI). I show that FWI, a nonlinear and non-convex problem, with multi-

ple penalty parameters behaves unpredictably as a function of the penalty

parameter scaling. As a solution to be able to work with multiple regu-

larizers, I present a workflow that combines three simple algorithms. This

workflow is a first step that includes an arbitrary number of constraints,

including ones for which we do not know the projection in closed form.

The constraints in this chapter apply to geological settings that contain salt

structures, i.e., large contrasts in parameter values. To verify that the reg-

ularization strategy was not just one ‘lucky’ success for a specific problem,

I also apply the same constraints to a different non-convex formulation of

FWI.

In chapter 3, I present an extended version of the basic framework pre-

sented in chapter 2, aimed at a general geophysical audience. Contrary

to chapter 2, there are more mathematical details and faster algorithms

that are only slightly more involved than the ones in chapter 2. This time,
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I consider a sedimentary geological setting, which means the models are

mostly layered, but include challenging high-low-high acoustic velocity vari-

ation with depth, which refracts the waves such that there is little energy

recorded that corresponds to waves that probed the deeper parts. To deal

with this challenge, I introduce slope-constraints to geophysical problems.

These constraints occur in applications like computational design and road

planning in mountainous terrain. The examples show that slope-constraints

can enforce smoothness or monotonicity of the parameter values. The con-

straints lead to better model estimates compared to penalty methods while

they allow for straightforward inclusion of physical units.

While the algorithms in the framework presented in chapter 3 are faster

than the ones in chapter 2, there are still opportunities to reduce computa-

tion times, which is important for 3D problems. Chapters 2 and 3 outline

nested algorithms, i.e., one algorithm solves sub-problems of another algo-

rithm, specifically the alternating direction method of multipliers (ADMM)

solves sub-problems of (parallel) Dyksta’s algorithm. While it may be pos-

sible to obtain limited speedups by enhancing both methods, there are two

reasons why I dedicate chapter 4 to developing a single and new algorithm

to compute projections onto the intersection of multiple sets. The first ar-

gument is the nuisance of having to deal with stopping criteria for both

ADMM and Dykstra’s algorithm. Besides additional parameters, nesting

is usually inefficient. Not solving the sub-problems with sufficient accuracy

will cause the framework to fail to converge, while solving sub-problems

more accurate than required amounts to wasted computational time. The

second reason to develop a new algorithm is the specific target problem of

multiple sets. More sets mean that there is likely some similarity between

the constraint. This is an opportunity that I exploit using a few simple, yet

effective problem reformulation steps. The algorithmic development focusses

speed and practicality. To reduce the computation times I include multilevel

continuation from coarse to fine grids, hybrid coarse and fine-grained par-

allelism, multi-threaded matrix-vector products for banded matrices, and

recently introduced automatic selection of acceleration parameters. Practi-

cal relevance of this chapter is ensured by making all algorithms available
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as open-source and written in Julia, stopping conditions that are more intu-

itive and tailored to projections, formulating the problems such that there

are no manual tuning-parameters required to ensure convergence, and us-

ing various heuristics to enhance performance in case of non-convex sets.

I demonstrate the capabilities on seismic full-waveform inversion and two

image processing tasks where I use a simple learning method to obtain 12

pieces of prior knowledge from a few training examples.

Chapters 2, 3, and 4 all use the same problem formulation: estimated

model parameters need to be an element of the intersection of multiple con-

straint sets. This approach captures a wide range of models and images,

but there are still situations where it is difficult to describe prior knowledge

using an intersection of multiple sets. A simple example is an image that is

partially smooth and partially blocky, or, a smooth image with a small scale

blocky pattern superimposed. In the field of image processing, such models

are more conveniently described by an additive structure. Methods that add

different type of image components include cartoon-texture decomposition,

morphological component analysis, multi-scale analysis, and robust/sparse

principal component analysis. All of these concepts use, almost exclusively,

penalty methods to regularize each component. In chapter 5 I present a

problem formulation, as well as algorithms, to use additive model descrip-

tions in a constrained framework. The constrained additive formulation

leads to a Minkowski set. I show that these sets are not suitable for phys-

ical parameter estimation and therefore I introduce a generalization of the

Minkowski set that allows each component to be an intersection of sets,

while the full model can still be an element of another intersection of sets.

This concept merges and extends the problem formulation of chapters 2, 3,

and 4. Using examples of seismic waveform inversion and video background-

foreground segmentation, I show why a constrained version of sums of model

components enables the inclusion of more pieces of prior information.
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1.5 Contributions

My primary contributions to the topics introduced so far are summarized

as follows:

• I provide a comprehensive investigation of how, why, and when con-

strained formulations for non-convex seismic parameter estimation

problems are easier to use and lead to better results than penalty for-

mulations. The presented projection-based workflow to include mul-

tiple constraints guarantees that all constraints are satisfied at each

iteration, which prevents the model estimates from becoming physi-

cally unrealistic. I designed the combination of constrained problem

formulation and optimization framework to avoid manual tuning pa-

rameters as much as possible, and include heuristics for defining some

of the constraint sets.

• To be able to compute projections of large 3D models onto intersec-

tions of multiple convex and non-convex sets, I developed specialized

algorithms and software. Different from excisting algorithms, I exploit

computational similarity between the sets, specialize stopping condi-

tions and sub-problem computations, include multilevel acceleration,

while keeping the number of tuning parameters to a minimum. All

presented material is available as a software package written in Julia,

and this is the first package that combines all the ingredients listed

above.

• I formulated a generalization of the Minkowski set. Minkowski sets

combines the strenghts of constraint sets and additive model descrip-

tions (e.g., cartoon-texture decomposition, morphological component

analysis, multiscal analysis, variants of robust principal component

analysis). The proposed generalization can describe more pieces of

detailed prior knowledge, because each of the Minkowski set compo-

nents is an intersection of sets, while the sum is also required to be an

element of another intersection of sets. I also develop computational
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methods for computing projections onto the generalized Minkowski

sets and show applications to regularizing inverse problems.
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Chapter 2

Constraints versus penalties

for edge-preserving

full-waveform inversion

2.1 Introduction

While full-waveform inversion (FWI) is becoming increasingly part of the

seismic toolchain, prior information on the subsurface model is rarely in-

cluded. In that sense, FWI differs significantly from other inversion modu-

larities such as electromagnetic and gravity inversion, which without prior

information generate untenable results. Especially in situations where the

inverse problem is severely ill posed, including certain regularization terms—

which for instance limit the values of the inverted medium parameter to pre-

defined ranges or that impose a certain degree of smoothness or blockiness—

are known to improve inversion results significantly.

With relatively few exceptions, people have shied away from including

regularization in FWI especially when this concerns edge-preserving regu-

larization. Because of its size and sensitivity to the medium parameters,

FWI differs in many respects from the above mentioned inversions, which

A version of this chapter has been published in The Leading Edge (Society of Explo-
ration Geophysicists), 2017.
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partly explains the somewhat limited success of incorporating prior infor-

mation via quadratic penalty terms (Tikhonov regularization) or gradient

filtering. This lack of success is further exemplified by challenges tuning

these regularizations and by the fact that they do not lend themselves natu-

rally to handle more than one type of prior information. Also, adding prior

information in the form of penalties may add undesired contributions to the

gradients (and Hessians).

To prevail over these challenges, we replace regularized (via additive

penalty terms) inversions by inversions with ‘hard’ constraints. In words,

instead of using regularization with penalty terms to

find amongst all possible velocity models models that jointly fit

observed data and minimize model dependent penalty terms,

we employ constrained inversions, which aim to

find amongst all possible velocity models models that fit observed

data subject to models that meet one or more constraints on the

model.

While superficially these two “inversion mission statements” look rather

similar, they are syntactically very different and lead to fundamentally dif-

ferent (mathematical) formulations, which in turn can yield significantly dif-

ferent inversion results and tuning-parameter sensitivities. Without going

into mathematical technicalities, we define penalty approaches as methods,

which add terms to a data-misfit function. Contrary to penalty formulations,

constraints do not rely on local derivative information of the modified objec-

tive. Instead, constraints ‘carve out’ an accessible area from the data-misfit

function and rely on gradient information of the data-misfit function only in

combination with projections of updated models to make sure these satisfy

the constraints. As a result, constrained inversions do not require differen-

tiability of the constraints; are practically parameter free; allow for mixing

and matching of multiple constraints; and most importantly, by virtue of

the projections, the intermediate inversion results are guaranteed to remain
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within the constraint set, an extremely important feature that is more dif-

ficult if not impossible to achieve with regularizations via penalty terms.

To illustrate the difference between penalties and constraints, we con-

sider FWI where the values and spatial variations of the inverted velocities

are jointly controlled via bounds and the total-variation (TV) norm. The

latter TV-norm is widely used in edge-preserved image processing [Rudin

et al., 1992] and corresponds to the sum of the lengths of the gradient vectors

at each spatial coordinate position.

After briefly demonstrating the effect of combining bound and TV-norm

constraints on the Marmousi model, we explain in some detail the challenges

of incorporating this type of prior information into FWI. We demonstrate

that it is nearly impossible to properly tune the total-variation norm when

included as a modified penalty term, an observation that is may very well

be responsible for the unpopularity of TV-norm minimization in FWI. By

imposing the TV-norm as a constraint instead, we demonstrate that these

difficulties can mostly be overcome, which allows FWI to significantly im-

prove the delineation of high-velocity high-contrast salt bodies.

2.2 Velocity blocking with total-variation norm
constraints

Edge-preserving prior information derives from the premise that the Earth

contains sharp edge-like unconformable strata, faults, salt or basalt inclu-

sions. Several researchers have worked on ways to promote these edge-like

features by including prior information in the form of TV-norms. If perform-

ing according to their specification, minimizing the TV-norm of the velocity

model m on a regular grid with gridpoint spacing h,

TV(m) =
1

h

∑
ij

√
(mi+1,j −mi,j)2 + (mi,j+1 −mi,j)2, (2.1)

acts as applying a multidimensional “velocity blocker”. To make sure that

the resulting models remain physically feasible, TV-norm minimization is

combined with so-called Box constraints that make sure that each gridpoint
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Figure 2.1: Result of projecting the true Marmousi model onto the
set of bounds and limited TV-norms. Shown as a function of a
fraction of the TV-norm of the true model, TV(m∗).

of the resulting velocity model remains within a user-specified interval—i.e.,

m ∈ Box means that l ≤ mi,j ≤ u with l and u the lower and upper bound

respectively. It can be shown, that for a given τ

min
m
‖m−m∗‖2 subject to m ∈ Box and TV(m) ≤ τ, (2.2)

finds a unique blocked velocity model that is close to the original veloc-

ity model (m∗) and whose blockiness depends on the size of the TV-norm

ball τ . As the size of this ball increases, the resulting blocked velocity

model is less constrained, less blocky, and closer to the original model—

juxtapose the TV-norm constrained velocity models in Figure 2.1 for τ =

(0.15, 0.25, 0.5, 0.75, 1)× τtrue with τtrue = TV(m∗). The solution of Equa-

tion 2.2 is the projection of the original model onto the intersection of the

box- and TV-norm constraint sets. In other words, the solution is the clos-

est model to the input model, but which is within the bounds and has

sufficiently small total-variation.

2.3 FWI with total-variation like penalties

Edge-preserved regularizations have been attempted by several researchers

in crustal-scale FWI. Typically, these attempts derive from minimizing the

least-squares misfit between observed (dobs) and simulated data (dsim(m)),

computed from the current model iterate. Without regularization, the least-
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squares objective for this problem reads

f(m) = ‖dobs − dsim(m)‖2. (2.3)

Now, if we follow the textbooks on geophysical inversion the most straight

forward way to regularize the above nonlinear least-squares problem would

be to add the following penalty term: α‖Lm‖22, where L represents the

identity or a sharpening operator. The parameter α controls the trade-off

between data fit and prior information, residing in the additional penalty

term.

Unfortunately, this type of regularization does not fit our purpose be-

cause it smoothes the model and does not preserve edges. TV-norms (as

defined in Equation 2.1), on the other hand, do preserve edges but are non-

differentiable and lack curvature. Both wreak havoc because FWI relies

on first- (gradient descent) and second-order (either implicitly or explicitly)

derivative information.

As other researchers, including Vogel [2002b], Epanomeritakis et al.

[2008], Anagaw and Sacchi [2011] and Xiang and Zhang [2016] have done

before us, we can seemingly circumvent the issue of non-smoothness alto-

gether by adding a small parameter ε2 to the definition of the TV-norm in

Equation 2.1. The expression for this TV-like norm now becomes

TVε(m) =
1

h

∑
ij

√
(mi+1,j −mi,j)2 + (mi,j+1 −mi,j)2 + ε2 (2.4)

and corresponds to “sand papering” the original functional form of the TV-

norm at the origin so it becomes differentiable. By virtue of this mathemat-

ical property, this modified term can be added to the objective defined in

Equation 2.3 — i.e., we have

min
m

f(m) + αTVε(m). (2.5)

For relatively simple linear inverse problems this approach has been applied

with success (see e.g. Vogel [2002b]). However, as we demonstrate in the
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example below, this behavior unfortunately does not carry over to FWI

where the inclusion of this extra tuning parameter ε becomes problematic.

To illustrate this problem, we revisit the subset of the Marmousi model

in Figure 2.1 and invert noisy data generated from this model with a 10 Hz

Ricker wavelet and with zero mean Gaussian noise added such that

‖noise‖2/‖signal‖2 = 0.25. Sources and receivers are equally spaced at 50 m

and we start from an accurate smoothed model. Results of multiple warm-

started inversions from 3 to 10 Hz are shown in Figure 2.2. Warm-started

means we invert the data in 1 Hz batches and use the final result of a fre-

quency batch as the initial model for the next batch. In an attempt to

mimic relaxation of the constraint as in Figure 2.1, we decrease the trade-

off parameter α ∈ (107, 106, 105) (rows of Figure 2.2) and and increase

ε ∈ (10−4, 10−3, 10−2) (plotted in the columns of Figure 2.2). The latter

experiments are designed to illustrate the effects of approximating the ideal

TV-norm (TVε(m) for ε→ 0).

Even though the inversion results reflect to some degree the expected

behavior, namely more blocky for larger α and smaller ε, the reader would

agree that there is no distinctive progression from “blocked” to less blocky

as was clearly observed in Figure 2.1. For instance, the regularized inver-

sion results are no longer edge preserving when the “sandpaper” parameter ε

becomes too large. Unfortunately, this type of unpredictable behavior of reg-

ularization is common and exacerbate by more complex nonlinear inversion

problems. It is difficult, if not impossible, to predict the inversion’s behavior

as a function of the multiple tuning parameters. While underreported, this

lack of predictability of penalty-based regularization has frustrated prac-

titioners of this type of total-variation like regularization and explains its

limited use so far.

2.4 FWI with total-variation norm constraints

Following developments in modern-day optimization [Esser et al., 2016a,

Esser et al., 2016], we replace the smoothed penalty term in Equation 2.5 by

the intersection of box and TV-norm constraints (cf. Equation 2.1), yielding
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Figure 2.2: FWI results using the smoothed total-variation (TVε) as
a penalty. Shows the results for various combinations of ε and
α.

min
m

f(m) subject to m ∈ Box and TV(m) ≤ τ, (2.6)

which corresponds to a generalized version of Equation 2.2. Contrary to

regularization with smooth penalty terms, minimization problems of the

above type do not require smoothness on the constraints. Depending on

the objective (data misfit function in our case), these formulations permit

different solution strategies. Since the objective of FWI is highly nonlinear

and computationally expensive to evaluate, we call for an algorithm design

that meets the following design criteria:
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• each model update depends only the current model and gradient and

does not require additional expensive gradient and objective calcula-

tions;

• the updated models satisfy all constraints after each iteration;

• arbitrary number of constraints can be handled as long as their inter-

section is non-empty;

• manual tuning of parameters is limited to a bare minimum.

While there are several candidate algorithms that meet these criteria, we

consider a projected-gradient method where at the kth iteration the model

is first updated by the gradient, to bring the data residual down, followed

by a projection onto the constraint set C. The projection onto the set C is

denoted by PC . The main iteration of the projected gradient algorithm is

therefore given by

mk+1 = PC(mk −∇mf(mk)). (2.7)

After this projection, each model is guaranteed to lie within the intersection

of the Box and TV-norm constraints—i.e., C = {m : m ∈ Box and TV(m) ≤
τ}. During the projections defined in Equation 2.2, the resulting model

(mk+1) is unique while it also stays as close as possible to the model after

it has been updated by the gradient.

While conceptually easily stated, uniquely projecting models onto multi-

ple constraints can be challenging especially if the individual projections do

not permit closed-form solutions as is the case with the TV-norm. For our

specific problem, we use Dykstra’s algorithm [Boyle and Dykstra, 1986] by

alternating between projections onto the Box constraint and onto the TV-

norm constraint. Projecting onto an intersection of constraint sets is equiva-

lent to running Dykstra’s algorithm: PC(mk−∇mf(mk))⇔ DYKSTRA(mk−
∇mf(mk)).

The projection onto the box constraint is provided in closed-form, by

taking the elementwise median. The projection onto the set of models with

sufficiently small TV is computed via the Alternating Direction Method of
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Figure 2.3: Constrained optimization workflow. At every FWI iter-
ation, the user code provides data-misfit and gradient w.r.t.
data-misfit only. The projected gradient algorithm uses this to
propose an updated model (mk −∇mf(mk)) and sends this to
Dykstra’s algorithm. This algorithm projects it onto the inter-
section of all constraints. To do this, it needs to project vectors
onto each set separately once per Dykstra iteration. These indi-
vidual projections are either closed-form solutions or computed
by the ADMM algorithm.

Multipliers (ADMM, Boyd et al. [2011]). Dykstra’s algorithm and ADMM

are both free of tuning parameters in practice. The three steps above can

be put in one nested-optimization workflow, displayed in Figure 2.3.

Dykstra’s algorithm for the projection onto the intersection of constraints

was first proposed by Smithyman et al. [2015] in the context of FWI and

can be seen as an alternative approach to the method proposed by the late

Ernie Esser and that has resulted in major breakthroughs in automatic salt

flooding with TV-norm and hinge-loss constraints [Esser et al., 2016a, Esser

et al., 2016].

2.5 Why constraints?

Before presenting a more elaborate example of constrained FWI on salt

plays, let us first discuss why constrained optimization approaches with

projections onto intersections of constraint sets are arguably simpler to use
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Figure 2.4: Results for constrained FWI for various total-variation
budgets (τ).

than some other well known regularization techniques.

• Constraints translate prior information and assumptions about

the geology more directly than penalties. Although the con-

strained formulation does not require the selection of a penalty pa-

rameter, the user still needs to specify parameters for each constraint.

For Equation 2.6, this is the size of the TV ball τ . However, compared

to trade-off parameter α, the τ is directly measurable from a starting

or any other model that serves as a proxy.

• Absence of user-specified weights. Where regularization via penalty

terms relies on the user to provide weights for each penalty term,

unique projections onto multiple constraints can be computed with

Dykstra’s algorithm as long as these intersections are not empty. More-

over, the inclusion of the constraints does not alter the objective (data

misfit) but rather it controls the region of f(m) that our non-linear

data fitting procedure is allowed to explore. This is especially impor-

tant when there are many (≥ 2) constraints. For standard regulariza-

tion, it would be difficult to select the weights because the different

added penalties are all competing to bring down the total objective.

• Constraints are only activated when necessary. Before starting

the inversion, it is typically unknown how ‘much’ regularization is

required, as this depends on the noise level, type of noise, number

of sources and receivers as well as the medium itself. The advantage

of projection methods for constrained optimization is that they only
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activate the constraints when required. If a proposed model, mk −
∇mf(mk), satisfies all constraints, the projection step does not do

anything. The data-fitting and constraint handling are uncoupled in

that sense. Penalty methods, on the other hand, modify the objective

function and will for this reason always have an effect on the inversion.

• Constraints are satisfied at each iteration. We obtained this im-

portant property by construction of our projected-gradient algorithm.

Penalty methods, on the other hand, do not necessarily satisfy the

constraints at each iteration and this can make them prone to local

minima.

2.6 Objective and gradients for two waveform
inversion methods

To illustrate the fact that the constrained approach to waveform inver-

sion does not depend on the specifics of a particular waveform inversion

method (we only need a differentiable f(m) and the corresponding gradient

∇mf(m)), we briefly describe the objective and gradient for full-waveform

inversion (FWI) and Wavefield Reconstruction Inversion (WRI, van Leeuwen

and Herrmann [2013]). These two methods will be used in the results sec-

tion. We would like to emphasize that we do not need gradients of the

constraints or anything related to the constraints. Only the projection onto

the constraint set is necessary. For derivations of these gradients, see e.g.,

Plessix [2006] for FWI and van Leeuwen and Herrmann [2013] for WRI.

2.7 Results

To evaluate the performance of our constrained waveform-inversion method-

ology, we present the West part of the BP 2004 velocity model [Billette and

Brandsberg-Dahl, 2005], Figure 2.5. The inversion strategy uses simultane-

ous sources and noisy data. We present results for two different waveform

inversion methods and two different noise levels. As we can clearly see

from Figures 2.6 and 2.7, FWI with bound constraints (l = 1475 m/s and
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Expression

Objective FWI: f(m) = 1
2‖Pu− d

obs‖22
Objective WRI: f(m) = 1

2‖Pū− d
obs‖22 + λ2

2 ‖A(m)ū− q‖22
Field FWI: u = A−1q
Field WRI: ū = (λ2A(m)∗A(m) + P ∗P )−1(λ2A(m)∗q + P ∗dobs)
Adjoint FWI: v = −A−∗P ∗(Pu− dobs)
Adjoint WRI: none
Gradient FWI: ∇mf(m) = G(m,u)∗v
Gradient FWI: ∇mf(m) = λ2G(m, ū)∗

(
A(m)ū− q

)
Partial derivative FWI: G(m,u) = ∂A(m)u/∂m
Partial derivative WRI: G(m,u) = ∂A(m)ū/∂m

Table 2.1: Objectives and gradients for full-waveform inversion (FWI)
and wavefield reconstruction inversion (WRI). Source term: q,
discrete Helmholtz system: A(m), complex-conjugate transpose
(∗), matrix P selects the values of the predicted wavefields u and
ū at the receiver locations. The scalar λ balances the data-misfit
versus the wavefield residual.

u = 5000 m/s) only is insufficient to steer FWI in the correct direction de-

spite the fact we used a reasonably accurate starting model (Figure 2.5b)

by smoothing the true velocity model (Figure 2.5a). WRI with bound con-

straint only does better, but the results are still unsatisfactory. The results

obtained by including TV-norm constraints, on the other hand, lead to a

significant improvement and sharpening of the salt.

We arrived at this result via a practical workflow where we select the τ =

TV(m0), such that the initial model (m0) satisfies the constraints. We run

our inversions with the well-established multiscale frequency continuation

strategy keeping the value of τ fixed. Next, we rerun the inversion with

the same multiscale technique, but this time with a slightly larger τ , such

that more details can enter into the solution. We select τ = 1.25×TV(m1),

where m1 is the inversion result from the first inversion. This is repeated one

more time, so we run the inversions three times, each run uses a different

constraint. For comparison (juxtapose Figures 2.6a and 2.6b), we do the

same for the inversions with the box constraints except in that case we do
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not impose the TV-norm constraint and keep the box constraints fixed.

As before, our inversions are carried out over multiple frequency batches

with a time-harmonic solver for the Helmholtz equation and for data gener-

ated with a 15Hz Ricker wavelet. The inversions start at 3 Hz and run up

to 9 Hz. The data contains noise, so that measured over all frequencies, the

noise to signal ratio is ‖noise‖2/‖signal‖2 = 0.25 for the first example and

‖noise‖2/‖signal‖2 = 0.50 for the second example. This means that the 3

Hz data is noisier than frequencies closer to the peak frequency. Frequency

domain amplitude data is shown in Figure 2.8 for the starting frequency.

The starting model is kinematically correct because it is a smoothed version

of the true model (cf. Figure 2.5a and 2.5b). The model size is about 3

km by 12 km, discretized on a regular grid with a gridpoint spacing of 20

meters.

The main goal of this experiment is to delineate the top and bottom

of the salt body, while working with noisy data and only 8 (out of 132

sequential sources) simultaneous sources redrawn independently after each

gradient calculation. The simultaneous sources activate every source at once,

with a Gaussian weight. The distance between sources is 80 meters while

the receivers are spaced 40 meters apart.

As we can see, limiting the total-variation norm serves two purposes. (i)

We keep the model physically realistic by projecting out highly oscillatory

and patchy components appearing in the inversion result where the TV-norm

is not constrained. These artifacts are caused by noise, source crosstalk and

by missing low frequencies and long offsets that lead to a non-trivial null

space easily inhabited by incoherent velocity structures that hit the bounds.

(ii) We prevent otherwise ringing artifacts just below and just above the

transition into the salt. These are typical artifacts caused by the inability

of regular FWI to handle large velocity contrasts. Because the artifacts

increase the total-variation by a large amount, limiting the total-variation

norm mitigates this well-known problem to a reasonable degree.

The noisy data, together with the use of 8 simultaneous sources effec-

tively creates “noisy” gradients because of the source crosstalk. Therefore,

our projected gradient algorithm can be interpreted as “denoising” where
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Figure 2.5: True and initial models for FWI and WRI, based on the
BP 2004 model.

we map at each iteration incoherent energy onto coherent velocity struc-

ture. For this reason, the results with TV-norm constraints are drastically

improved compared to the inversions carried out with bound constraints

only. The inability of bounds constrained FWI to produce reasonable re-

sults for FWI with source encoding was also observed by Esser et al. [2015b]

(see his Figure 19). While removing the bounds could possibly avoid some

of these artifacts from building up, it would lead to physically unfeasible low

and high velocities, which is something we would need to avoid at all times.

Again when the TV-norm and box constraints are applied in tandem, the

results are very different. Artifacts related to velocity clipping no longer oc-

cur because they are removed by the TV-norm constraint while the inclusion

of this constraint also allows us to improve the delineation of top/bottom

salt and the salt flanks. The results also show that WRI, by virtue of includ-

ing the wavefields as unknowns, is more resilient to noise and local minima

compared to FWI and that WRI obtains a better delineation of the top and

bottom of the salt structure.
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25% noise, FWI, bounds only, 3rd cycle
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25% noise, FWI, TV, 3rd cycle
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25% noise, WRI, bounds only, 3rd cycle
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25% noise, WRI, TV, 3rd cycle
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Figure 2.6: Estimated models for FWI and WRI for 25% data noise,
based on the BP 2004 model. Estimated models are shown for
box constraints only (a and c) and for box constraints combined
with total-variation constraints (b and d).

2.8 Discussion and summary

Our purpose was to demonstrate the advantages of including (non-smooth)

constraints over adding penalties in full-waveform inversion (FWI). While

this text is certainly not intended to extensively discuss subtle technical

details on how to incorporate non-smooth edge-preserving constraints in full-

waveform inversion, we explained the somewhat limited success of including

total-variation (TV) norms into FWI. By means of stylized examples, we
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50% noise, FWI, TV, 3rd cycle
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50% noise, WRI, bounds only, 3rd cycle
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50% noise, WRI, TV, 3rd cycle
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Figure 2.7: Estimated models for FWI and WRI for 50% data noise,
based on the BP 2004 model. Estimated models are shown
for box constraints only and for box constraints combined with
total-variation constraints.

revealed an undesired lack of predictability of the inversion results as a

function of the trade-off and smoothing parameters when we include TV-

norm regularization as an added penalty term. We also made the point that

many of the issues of including multiple pieces of prior information can be

overcome when included as intersections of constraints rather than as the

sum of several weighted penalties. In this way, we were able to incorporate

the edge-preserving TV-norm and box constraints controlling the spatial
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Figure 2.8: Frequency panels of the lowest frequency data for the ex-
ample based on the BP 2004 model with 25% noise. All exam-
ples use noisy data, but the figure also displays data without
noise for reference.

variations as well as the permissible range of inverted velocities with one

parameter aside from the lower and upper bounds for the seismic velocity.

As the stylized examples illustrate, this TV-norm parameter predictably

controls the degree blockiness of the inverted velocity models making it

suitable for FWI on complex models with sharp boundaries.

Even though the salt body example we presented is synthetic and in-

verted acoustically with the “inversion crime”, it clearly illustrates the im-

portant role properly chosen constraints can play when combined with search

extensions such as Wavefield Reconstruction Inversion (WRI). Without TV-

norm constraints, artifacts stemming from source crosstalk, noise and from

undesired fluctuations when moving in and out of the salt overcome FWI

because the inverted velocities hit the upper and lower bounds too often.

If we include the TV-norm, this effect is removed and we end up with a

significantly improved inversion result with clearly delineated salt. This ex-

ample also illustrates that the constrained optimization approach applies to

any waveform inversion method. Results are presented for FWI and WRI,

where WRI results delineate the salt structure better and exhibit more ro-

bustness to noise.

The proposed workflow and algorithms are explained in more details,

and replaced with faster variants, in the following chapter.
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Chapter 3

Projection methods and

applications for seismic

nonlinear inverse problems

with multiple constraints

3.1 Introduction

We propose an optimization framework to include prior knowledge in the

form of constraints into nonlinear inverse problems that are typically ham-

pered by the presence of parasitic local minima. We favor this approach over

more commonly known regularization via (quadratic) penalties because in-

cluding constraints does not alter the objective, and therefore first- and

second-order derivative information. Moreover, constraints do not need to

be differentiable, and most importantly, they offer guarantees that the up-

dated models meet the constraints at each iteration of the inversion. While

we focus on seismic full-waveform inversion (FWI), our approach is more

general and applies in principle to any linear or nonlinear geophysical in-

A version of this chapter has been published in Geophysics, Society of Exploration
Geophysicists, 2018.
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verse problem as long as its objective is differentiable so it can be minimized

with local derivative information to calculate descent directions that reduce

the objective.

In addition to the above important features, working with constraints

offers several additional advantages. For instance, because models always

remain within the constraint set, inversion with constraints mitigates the

adverse effects of local minima which we encounter in situations where the

starting model is not accurate enough or where low-frequency and long-

offset data are missing or too noisy. In these situations, derivative-based

methods are likely to end up in a local minimum mainly because of the

oscillatory nature of the data and the non-convexity of the objective. More-

over, the costs of data acquisition and limitations on available computational

resources also often force us to work with only small subsets of data. As a

result, the inversions may suffer from artifacts. Finally, noise in the data

and modeling errors can also give rise to artifacts. We will demonstrate that

by adding constraints, which prevent these artifacts from occurring in the

estimated models, our inversion results can be greatly improved and make

more geophysical and geological sense.

To deal with each of the challenging situations described above, geo-

physicists traditionally often rely on Tikhonov regularization, which corre-

sponds to adding differentiable quadratic penalties that are connected to

Gaussian Bayesian statistics on the prior. While these penalty methods are

responsible for substantial progress in working with geophysical ill-posed

and ill-conditioned problems, quadratic penalties face some significant short-

comings. Chiefly amongst these is the need to select a penalty parameter,

which weights the trade-off between data misfit and prior information on the

model. While there exists an extensive body of literature on how to choose

this parameter in the case of a single penalty term [e.g., Vogel, 2002a, Zh-

danov, 2002, Sen and Roy, 2003, Farquharson and Oldenburg, 2004, Mueller

and Siltanen, 2012], these approaches do not easily translate to situations

where we want to add more than one type of prior information. There is

also no simple prior distribution to bound pointwise values on the model

without making assumptions on the underlying and often unknown statis-
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tical distribution [see Backus, 1988, Scales and Snieder, 1997, Stark, 2015].

By working with constraints, we avoid making these types of assumptions.

3.1.1 Outline

Our primary goal is to develop a comprehensive optimization framework

that allows us to directly incorporate multiple pieces of prior information in

the form of multiple constraints. The main task of the optimization is to

ensure that the inverted models meet all constraints during each iteration.

To avoid certain ambiguities, we will do this with projections so that the

updated models are unique, lie in the intersection of all constraints and

remain as close as possible to the model updates provided by FWI without

constraints.

There is an emerging literature on working with constrained optimiza-

tion, see Lelivre and Oldenburg [2009]; Zeev et al. [2006]; Bello and Raydan

[2007]; Baumstein [2013]; Smithyman et al. [2015]; Esser et al. [2015a]; Esser

et al. [2016b]; Esser et al. [2018], and Chapter 2 of this thesis. Because this is

relatively new to the geophysical community, we first start with a discussion

on related work and what the limitations are of unconstrained regularization

methods. Next, we discuss how to include (multiple pieces of) prior informa-

tion with constraints. This discussion includes projections onto convex sets

and how to project onto intersections of convex sets. After describing these

important concepts, we combine them with nonlinear optimization and de-

scribe concrete algorithmic instances based on spectral projected gradients

and Dykstra’s algorithm. We conclude by demonstrating our approach on

an FWI problem.

3.1.2 Notation

Before we discuss the advantages of constrained optimization for FWI, let

us first establish some mathematical notation. Our discretized unknown

models live on regular grids with N grid points represented by the model

vector m ∈ RN , which is the result of vectorizing the 2D or 3D models. In

Table 3.1 we list a few other definitions we will use.
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description symbol

data-misfit f(m)
gradient w.r.t. medium parameters ∇mf(m)
set (convex or non-convex) C
intersection of sets

⋂p
i=1 Ci

any transform-domain operator A ∈ CM×N
discrete derivative matrix in 1D Dz or Dx

cardinality (# of nonzeros)
or `0 ‘norm’

card(·)⇔ ‖ · ‖0

`1 norm (one-norm) ‖ · ‖1

Table 3.1: Notation used in this chapter.

3.1.3 Related work

A number of authors use constraints to include prior knowledge in nonlin-

ear geophysical inverse problems. Most of these works focus on only one

or maximally two constraints. For instance; Zeev et al. [2006]; Bello and

Raydan [2007] and Métivier and Brossier [2016] consider nonlinear geophys-

ical problems with only bound constraints, which they solve with projection

methods. Because projections implement these bounds exactly, these meth-

ods avoid complications that may arise if we attempt to approximate bound

constraints by differentiable penalty functions. While standard differentiable

optimization can minimize the resulting objective with quadratic penalties,

there is no guarantee the inverted parameters remain within the specified

range at every grid point during each iteration of the inversion. Moreover,

there is also no consistent and easy way to add multiple constraints reflecting

complementary aspects (e.g., bounds and smoothness) of the underlying ge-

ology. Bound constraints in a transformed domain are discussed by Lelivre

and Oldenburg [2009].

Close in spirit to the approach we propose is recent work by Becker

et al. [2015], who introduces a quasi-Newton method with projections and

proximal operators [see, e.g., Parikh and Boyd, 2014] to add a single `1 norm

constraint or penalty on the model in FWI. These authors include this non-

differentiable norm to induce sparsity on the model by constraining the `1
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norm in some transformed domain or on the gradient as in total-variation

minimization. While their method uses the fact that it is relatively easy

to project on the `1-ball, they have to work on the coefficients rather than

on the physical model parameters themselves, and this makes it difficult

to combine this transform-domain sparsity with say bound constraints that

live in another transform-domain. As we will demonstrate, we overcome this

problem by allowing for multiple constraints in multiple transform-domains

simultaneously.

Several authors present algorithms that can incorporate multiple con-

straints simultaneously. The implementation of multiple constraints for in-

verse problems entails some subtle, but important algorithmic details. We

will discuss these in this chapter. For instance, the work by Baumstein

[2013] employs the well-known projection-onto-convex-sets (POCS) algo-

rithm, which can be shown to converge to the projection of a point only in

special cases, see, e.g., work by Escalante and Raydan [2011] and Bauschke

and Combettes [2011]. Projecting the updated model parameters onto the

intersection of multiple constraints solves this problem and offers guarantees

that each model iterate (model after each iteration) remains after projec-

tion the closest in Euclidean distance to the unconstrained model and at the

same time satisfies all the constraints. Different methods exist to ensure that

the model estimate at every iteration remains within the non-empty inter-

section of multiple constraint sets. Most notably, we would like to mention

the work by the late Ernie Esser [Esser et al., 2018], who developed a scaled

gradient projection method for this purpose involving box constraints, total-

variation, and hinge-loss constraints. Esser et al. [2018] arrived at this result

by using a primal-dual hybrid gradient (PDHG) method, which derives from

Lagrangians associated with total-variation and hinge-loss minimization. To

allow for more flexibility in the number and type of constraints, we propose

the use of Dykstra’s algorithm [Dykstra, 1983, Boyle and Dykstra, 1986]

instead. We refer to Smithyman et al. [2015] and Chapter 2 for examples

of successful geophysical applications of multiple constraints to FWI and its

distinct advantages over adding constraints as weighted penalties.
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3.2 Limitations of unconstrained regularization
methods

In the introduction, we stated our requirements on a regularization frame-

work for nonlinear inverse problems. While there is a large number of suc-

cessful regularization approaches such as Tikhonov regularization, change of

variables, gradient filtering and modified Gauss-Newton, these methods miss

one or more of our desired properties listed in the introduction. Below we

will show why the above methods do not generalize to multiple constraints

or do so at the cost of introducing additional manual tuning parameters.

3.2.1 Tikhonov and quadratic regularization

Perhaps the most well known and widely used regularization technique in

geophysics is the addition of quadratic penalties to a data-misfit function.

Let us denote the model vector with medium parameters by m ∈ RN (for

example velocity) where the number of grid points is N . The total objective

with quadratic regularization φ(m) : RN → R is given by

φ(m) = f(m) +
α1

2
‖R1m‖22 + · · ·+ αp

2
‖Rpm‖22. (3.1)

In this expression, the data misfit function f(m) : RN → R measures the

difference between predicted and observed data. A common choice for the

data-misfit is

f(m) =
1

2
‖dpred(m)− dobs‖22, (3.2)

where dobs and dpred(m) are observed and predicted (from the current model

m) data, respectively. The predicted data may depend on the model param-

eters in a nonlinear way.

There are p regularization terms in equation 3.1, all of which describe

different pieces of prior information in the form of differentiable quadratic

penalties weighted by scalar penalty parameters α1, α2, . . . , αp. The oper-

ators Ri ∈ CMi×N are selected to penalize unwanted properties in m—i.e.,

we select each Ri such that the penalty terms become large if the model

estimate does not lie in the desired class of models. For example, we will
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promote smoothness of the model estimate m if we add horizontal or vertical

discrete derivatives as R1 and R2.

Aside from promoting certain properties on the model, adding penalty

terms also changes the gradient and Hessian—i.e., we have

∇mφ(m) = ∇mf(m) + α1R
∗
1R1m+ α2R

∗
2R2m (3.3)

and

∇2
mφ(m) = ∇2

mf(m) + α1R
∗
1R1 + α2R

∗
2R2. (3.4)

Both expressions, where the symbol ∗ refers to the complex conjugate trans-

pose, contain contributions from the penalty terms designed to add certain

features to the gradient and to improve the spectral properties of the Hessian

by applying a shift to the eigenvalues of ∇2
mφ(m).

While regularization of the above type has been applied successfully, it

has two important disadvantages. First, it is not straightforward to en-

code one’s confidence in a starting model other than including a reference

model (mref) in the quadratic penalty term—i.e., α/2‖mref−m‖22 (see, e.g.,

Farquharson and Oldenburg [2004] and Asnaashari et al. [2013]). Unfor-

tunately, this type of penalty tends to spread deviations with respect to

this reference model evenly so we do not have easy control over its local

values (cf. box constraints) unless we provide detailed prior information on

the covariance. Secondly, quadratic penalties are antagonistic to models

that exhibit sparse structure—i.e., models that can be well approximated

by models with a small total-variation or by transform-domain coefficient

(e.g., Fourier, wavelet, or curvelet) vectors with a small `1-norm or car-

dinality (‖ · ‖0 “norm”). Regrettably, these sparsifying norms are non-

differentiable, which often leads to problems when they are added to the

objective by smoothing or reweighting the norms. In either case, this can

lead to slower convergence, to unpredictable behavior in nonlinear inverse

problems [Anagaw, 2014, page 110; Lin and Huang, 2015, and Chapter 2]

or to a worsening of the conditioning of the Hessian [Akcelik et al., 2002].

Even without smoothing non-differential penalties, there are still penalty

parameters to select [Farquharson and Oldenburg, 1998, Becker et al., 2015,
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Lin and Huang, 2015, Xue and Zhu, 2015, Qiu et al., 2016]. Finally, these is-

sues with quadratic penalties are not purely theoretical. For instance, when

working with a land dataset, Smithyman et al. [2015] found that the above

limitations of penalty terms hold in practice and found that constraint opti-

mization overcomes these limitations, an observation motivating this work.

3.2.2 Gradient filtering

Aside from adding penalties to the data-misfit, we can also remove unde-

sired model artifacts by filtering the gradients of f(m). When we minimize

the data objective (cf. equation 3.1) with standard gradient descent, this

amounts to applying a filter to the gradient when we update the model—

i.e., we have

mk+1 = mk − γs(∇mf(m)), (3.5)

where γ is the step-length and s(·) a nonlinear or linear filter. For in-

stance; Brenders and Pratt [2007] apply a 2D spatial low-pass filter to pre-

vent unwanted high-wavenumber updates to the model when inverting low-

frequency seismic data. The idea behind this approach is that noise-free

low-frequency data should give rise to smooth model updates. While these

filters can remove unwanted high-frequency components of the gradient, this

method has some serious drawbacks.

First, the gradient is no longer necessarily a gradient of the objective

function (equation 3.1) after applying the filter. Although the filtered gra-

dient may under certain technical conditions remain a descent direction,

optimization algorithms, such as spectral projected gradient (SPG) [Birgin

et al., 1999] or quasi-Newton methods [Nocedal and Wright, 2000], expect

true gradients when minimizing (constrained) objectives. Therefore gradient

filtering can generally not be used in combination with these optimization

algorithms, without giving up their expected behavior. Second, it is not

straightforward to enforce more than one property on the model in this way.

Consider, for instance, a two-filter case where s1(·) is a smoother and s2(·)
enforces upper and lower bounds on the model. In this case, we face the

unfortunate ambiguity s2(s1(∇mf(m))) 6= s1(s2(∇mf(m))). Moreover, this
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gradient will have non-smooth clipping artifacts if we smooth first and then

apply the bounds. Anagaw and Sacchi [2017] present a method that filters

the updated model instead of a gradient, but it is also not clear how to

extend this filtering technique to more than one model property.

3.2.3 Change of variables / subspaces

Another commonly employed method to regularize nonlinear inverse prob-

lems involves certain (possibly orthogonal) transformations of the original

model vector. While somewhat reminiscent of gradient filtering, this ap-

proach entails a change of variables, see, e.g., Jervis et al. [1996]; Shen

et al. [2005]; Shen and Symes [2008] for examples in migration velocity

analysis and Kleinman and den Berg [1992]; Guitton et al. [2012]; Guitton

and Daz [2012]; Li et al. [2013] for examples in the context of waveform

inversion. This approach is also known as a subspace method [Kennett

and Williamson, 1988, Oldenburg et al., 1993]. We can invoke this change

of variables by transforming the model into p = Tm, where T is a (not

necessarily invertible) linear operator. This changes the unconstrained opti-

mization problem minm f(m) into another unconstrained problem minp f(p).

To see why this might be helpful, we observe that the gradient becomes

∇pf(p) = T ∗∇mf(m), which shows how T can be designed to ‘filter’ the

gradient. The matrix T can also represent a subspace (limited number of

basis vectors such as splines, wavelets). Just as with gradient filtering, a

change of variables does not easily lend itself to multiple transforms aimed

at incorporating complementary pieces of prior information. However, sub-

space information fits directly into the constrained optimization approach if

we constrain our models to be elements of the subspace. The constrained

approach has the advantage that we can straightforwardly combine it with

other constraints in multiple transform-domains; all constraints in the pro-

posed framework act on the variables m in the physical space since we do

not minimize subspace/transform-domain coefficients p.
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3.2.4 Modified Gauss-Newton

A more recent successful attempt to improve model estimation for cer-

tain nonlinear inverse problems concerns imposing curvelet domain `1-norm

based sparsity constraints on the model updates [Herrmann et al., 2011, Li

et al., 2012b, 2016]. This approach converges to local minimizers of f(m)

(and hopefully a global one) because sparsity constrained updates provably

remain descent directions (Burke [1990], chapter 2; Herrmann et al. [2011]).

However, there are no guarantees that the curvelet coefficients of the model

itself will remain sparse unless the support (= locations of the non-zero co-

efficients) is more or less the same for each Gauss-Newton update [Li et al.,

2016]. Zhu et al. [2017] use a similar approach, but they update the trans-

form (also known as a dictionary when learning or updating the transform)

at every FWI iteration.

In summary, while regularizing the gradients or model updates leads to

encouraging results for some applications, the constrained optimization ap-

proach proposed in this work enforces constraints on the model estimate it-

self, without modifying the gradient. More importantly, while imposing con-

straints via projections may superficially look similar to the above methods,

our proposed approach differs fundamentally in two main respects. Firstly,

it projects uniquely on the intersection of arbitrarily many constraint sets —

effectively removing the ambiguity of order in which constraints are applied.

Secondly, it does not alter the gradients because it imposes the projections

on the proposed model updates, i.e., we will project mk+1 = mk −∇mf(m)

onto the constraint set.

3.3 Including prior information via constraints

Before we introduce constrained formulations of nonlinear inverse problems

with multiple convex and non-convex constraint sets, we first discuss some

important core properties of convex sets, of projections onto convex sets,

and of projections onto intersections of convex sets. These properties provide

guarantees that our approach generalizes to arbitrarily many constraint sets,

i.e., one constraint set is mathematically the same as many constraint sets.
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The presented convex set properties also show that there is no need to

worry about the order in which we use the sets to avoid ambiguity, as was

the case for gradient filtering and for naive implementations of constrained

optimization. The constrained formulation also stays away from penalty

parameters, yet still offers guarantees all constraints are satisfied at every

iteration of the inversion.

3.3.1 Constrained formulation

To circumvent problems related to incorporating multiple sources of possibly

non-differentiable prior information, we propose techniques from constrained

optimization [Boyd and Vandenberghe, 2004, Boyd et al., 2011, Parikh and

Boyd, 2014, Beck, 2015, Bertsekas, 2015]. The key idea of this approach is

to minimize the data-misfit objective while at the same time making sure

that the estimated model parameters satisfy constraints. These constraints

are mathematical descriptors of prior information on certain physical (e.g.,

maximal and minimal values for the wavespeed) and geological properties

(e.g., velocity models with unconformities that lead to discontinuities in the

wavespeed) on the model. We build our formulation on earlier work on

constrained optimization with up to three constraint sets as presented by

Lelivre and Oldenburg [2009]; Smithyman et al. [2015]; Esser et al. [2015a];

Esser et al. [2016b]; Esser et al. [2018], and Chapter 2.

Given an arbitrary but finite number of constraint sets (p), we formulate

our constrained optimization problem as follows:

min
m

f(m) subject to m ∈
p⋂
i=1

Ci. (3.6)

As before, f(m) : RN → R is the data-misfit objective, which we minimize

over the discretized medium parameters represented by the vector m ∈ RN .

Prior knowledge on this model vector resides in the indexed constraint sets

Ci, for i = 1 · · · p, each of which captures a known aspect of the Earth’s

subsurface. These constraints may include bounds on permissible parameter

values, desired smoothness or complexity, or limits on the number of layers
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in sedimentary environments and many others.

In cases where more than one piece of prior information is available, we

want the model vector to satisfy these constraints simultaneously, such that

we keep control over the model properties as is required for strategies that

relax constraints gradually, see Esser et al. [2016b] and Chapter 2. Because it

is difficult to think of a nontrivial example where the intersection of these sets

is empty, it is safe to assume that there is at least one model that satisfies all

constraints simultaneously. For instance, a homogeneous medium will satisfy

many constraints, because its total-variation is zero, it has a rank of 1 and

has parameter values between minimum and maximum values. We denote

the mathematical requirement that the estimated model vector satisfies p

constraints simultaneously by m ∈
⋂p
i=1 Ci. The symbol

⋂p
i=1 indicates the

intersection of p items. Before we discuss how to solve constrained nonlinear

geophysical inverse problems, let us first discuss projections and examples

of projections onto convex and non-convex sets.

3.3.2 Convex sets

A projection of m onto a set C corresponds to solving

PC(m) = arg min
x

1

2
‖x−m‖22 subject to x ∈ C. (3.7)

Amongst all possible model vectors x, the above optimization problem finds

the vector x that is closest in Euclidean distance to the input vector m while

it lies in the constraint set. For a given model vector x, the solution of this

optimization problem depends on the constraint set C and its properties.

For instance, the above projection is unique for a convex C.
To better understand how to incorporate prior information in the form

of one or more constraint sets, let us first list some important properties

of constraint sets and their intersection. These properties allow us to use

relatively simple algorithms to solve Problem 3.6 by using projections of the

above type. First of all, most optimization algorithms require the constraint

sets to be convex. Intuitively, a set is convex if any point on the line segment

connecting any couple of points in a set is also in the set—i.e., for all x ∈ C
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and y ∈ C. In that case, the following relation holds:

cx+ (1− c)y ∈ C for 0 ≤ c ≤ 1. (3.8)

There are a number of advantages when working with convex sets, namely

i. The intersection of convex sets is also a convex set. This property im-

plies that the properties of a convex set also hold for the intersection of

arbitrarily many convex sets. Practically, if an optimization algorithm

is defined for a single convex set, the algorithm also works in case of

arbitrarily many convex sets, as the intersection is still a single convex

set.

ii. The Euclidean projection onto a convex set (equation 3.7) is unique

(Boyd and Vandenberghe [2004], section 8.1). When combined with

property (i), this implies that the projection onto the intersection of

multiple convex sets is also unique. In this context, a unique projection

means that given any point outside a convex set, there exists one point

in the set which is closest (in a Euclidean sense) to the given point

than any other point in the set.

iii. Projections onto convex sets are non-expansive (Bauschke and Com-

bettes [2011], section 4.1-4.2, or Dattorro [2010], E.9.3). If we define

the projection operator as PC(x) and take any couple of points x and

y, the non-expansive property is stated as: ‖PC(x)−PC(y)‖ ≤ ‖x−y‖.
This property guarantees that projections of estimated models onto a

convex set are ‘stable’. In this context, stability implies that any pair

of models moves closer or remain equally distant to each other after

projection. This prevents increased separation after projection of pairs

of models.

While these properties make convex sets favorites amongst practitioners

of (convex) optimization, restricting ourselves to convexity is sometimes too

limiting for our application. In the following sections, we may use non-

convex sets in the same way as a convex set, but in that case, the above
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properties generally do not hold. Performance of the algorithms then needs

empirical verification.

Actual projections onto a single set themselves are either available in

closed-form (e.g., for bounds and certain norms) or are computed itera-

tively (with the alternating direction method of multipliers, ADMM, see

e.g., Boyd et al. [2011] and Appendix A) when closed form-expressions for

the projections are not available.

3.4 Computing projections onto intersections of
convex sets

Our problem formulation, equation 3.6, concerns multiple constraints, so we

need to be able to work with multiple constraint sets simultaneously to make

sure the model iterates satisfy all prior knowledge. To avoid intermediate

model iterates to become physically and geologically unfeasible, we want our

model iterates to satisfy a predetermined set of constraints at every iteration

of the inversion process. Because of property (i) (listed above), we can treat

the projection onto the intersection of multiple constraints as the projection

onto a single set. This implies that we can use relatively standard (convex)

optimization algorithm to solve Problem 3.6 as long as the intersection of

the different convex sets is not empty. We define the projection on the

intersection of multiple sets as

PC(m) = arg min
x

‖x−m‖22 s.t. x ∈
p⋂
i=1

Ci. (3.9)

The projection of m onto the intersection of the sets,
⋂p
i=1 Ci, means that

we find the unique vector x, in the intersection of all sets, that is closest to

m in the Euclidean sense. To find this vector, we compute the projection

onto this intersection via Dykstra’s alternating projection algorithm [Dyk-

stra, 1983, Boyle and Dykstra, 1986, Bauschke and Koch, 2015]. We made

this choice because this algorithm is relatively simple to implement (we only

need projections on each set individually) and contains no manual tuning

parameters. By virtue of property (ii), projecting onto each set separately
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and cyclically, Dykstra’s algorithm finds the unique projection on the inter-

section as long as all sets are convex [Boyle and Dykstra, 1986, Theorem

2].

To illustrate how Dykstra’s algorithm works, let us consider the follow-

ing toy example where we project the point (2.5, 3.0) onto the intersection

of two constraint sets, namely a halfspace (y ≤ 2, this corresponds to bound

constraints in two dimensions) and a disk (x2 +y2 ≤ 3, this corresponds to a

‖·‖2-norm ball), see Figure 3.1. If we are just interested in finding a feasible

point in the set that is not necessarily the closest, we can use the projection

onto convex sets (POCS) algorithm (also known as von Neumann’s alternat-

ing projection algorithm) whose steps are depicted by the solid black line

in Figure 3.1. The POCS algorithm iterates PC2(. . . (PC1(PC2(PC1(m))))),

so depending on whether we first project onto the rectangle or disk, POCS

finds two different feasible points. Like POCS, Dykstra’s algorithm projects

onto each set in an alternating fashion, but unlike POCS, the solution path

that is denoted by the red dashed line provably ends up at a single unique

feasible point that is closest to the starting point. The solution found by

Dykstra’s algorithm is independent of the order in which the constraints are

imposed. POCS does not project onto the intersection of the two convex

sets; it just solves the convex feasibility problem

find x ∈
p⋂
i=1

Ci (3.10)

instead. POCS finds a model that satisfies all constraints but which is non-

unique (solution is either (1.92, 2.0) or (2.34, 1.87) situated at Euclidean

distances 1.16 and 1.14) and not the projection at (2.0,
√

22 + 32 ≈ 2.24)

at a minimum distance of 1.03. This lack of uniqueness and vicinity to the

true solution of the projection problem leads to solutions that satisfy the

constraints, but that may be too far away from the initial point and this

may adversely affect the inversion. See also [Escalante and Raydan, 2011,

Example 5.1; Dattorro, 2010, Figure 177 & Figure 182, and Bauschke and

Combettes [2011], Figure 29.1] for further details on this important point.
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The geophysical implication of this difference between Dykstra’s algo-

rithm and POCS is that the latter may end up solving a problem with

unnecessarily tight constraints, moving the model too far away from the

descent direction informed by the data misfit objective. We observe this

phenomenon of being too constrained in Figure 3.1 where the two solutions

from POCS are not on the boundary of both sets, but instead relatively

‘deep’ inside one of them. Aside from potential “over constraining”, the

results from POCS may also differ depending which of the individual con-

straints is activated first leading to undesirable side effects. The issue of

“over constraining” does not just occur in geometrical two-dimensional ex-

amples and it is not specific to the constraints from the previous example.

Figure 3.2 shows what happens if we project a velocity model (with Dyk-

stra’s algorithm) or find two feasible models with POCS, just as we show in

Figure 3.1. The constraint is the intersection of bounds ({m | li ≤ mi ≤ ui})
and total-variation ({m | ‖Am‖1 ≤ σ} with scalar σ > 0 and A = (DT

x D
T
z )T

). While one of the POCS results is similar to the projection, the other

POCS result has much smaller total-variation than the constraint enforces,

i.e., the result of POCS is not the projection but a feasible point in the

interior of the intersection. To avoid these issues, Dykstra’s algorithm is our

method of choice to include two or more constraints into nonlinear inverse

problems. Algorithm 1 summarizes the main steps of Dykstra’s approach,

which aside from stopping conditions, is parameter free. In Figure 3.3 we

show what happens if we replace the projection (with Dykstra’s algorithm)

in projected gradient descent with POCS. Projected gradient descent solves

an FWI problem with bounds and total-variation constraints while using a

small number of sources and receivers and an incorrectly estimated source

function. The results of Dykstra’s algorithm and POCS are different, while

the results using POCS depend on the ordering of the sets. Dykstra’s algo-

rithm always finds the Euclidean projection onto the intersection of convex

sets, which is a unique point. Therefore, it does not matter in what order

we project onto each set as part of Dykstra’s algorithm.
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Figure 3.1: The trajectory of Dykstra’s algorithm for a toy example
with two constraints: a maximum 2-norm constraint (disk) and
bound constraints. The feasible set is the intersection of a half-
space and a disk. The circle and horizontal lines are the bound-
aries of the sets. The difference between the two figures is the
ordering of the two sets. The algorithms in (a) start with the
projection onto the disk, in (b) they start with the projection
onto the halfspace. The projection onto convex sets (POCS)
algorithm converges to different points, depending onto which
set we project first. In both cases, the points found by POCS
are not the projection onto the intersection. Dykstra’s algo-
rithm converges to the projection of the initial point onto the
intersection in both cases, as expected.
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Figure 3.2: The Marmousi model (a), the projection onto an intersec-
tion of bound constraints and total-variation constraints found
with Dykstra’s algorithm (b) and two feasible models found by
the POCS algorithm (c) and (d). We observe that one of the
POCS results (c) is very similar to the projection (b), but the
other result (d) is very different. The different model (d) has a
total-variation much smaller than requested. This situation is
analogous to Figure 3.1.

51



(a) Dykstra, TV=15%

1500

2000

2500

3000

3500

4000

4500

V
e

lo
c
it
y
 (

m
/s

)

(e)  POCS 1, TV=15%

1500

2000

2500

3000

3500

4000

4500

V
e

lo
c
it
y
 (

m
/s

)

(i)  POCS 2, TV=15%

1500

2000

2500

3000

3500

4000

4500

V
e

lo
c
it
y
 (

m
/s

)

(m)  Dykstra - POCS 1, TV=15%

-100

-50

0

50

100

V
e

lo
c
it
y
 (

m
/s

)

(q) Dykstra - POCS 2, TV=15%

-100

-50

0

50

100

V
e
lo

c
it
y
 (

m
/s

)

(b) Dykstra, TV=25%

1500

2000

2500

3000

3500

4000

4500

V
e

lo
c
it
y
 (

m
/s

)

(f)  POCS 1, TV=25%

1500

2000

2500

3000

3500

4000

4500

V
e

lo
c
it
y
 (

m
/s

)

(j)  POCS 2, TV=25%

1500

2000

2500

3000

3500

4000

4500

V
e

lo
c
it
y
 (

m
/s

)

(n)  Dykstra - POCS 1, TV=25%

-100

-50

0

50

100

V
e

lo
c
it
y
 (

m
/s

)

(r) Dykstra - POCS 2, TV=25%

-100

-50

0

50

100

V
e

lo
c
it
y
 (

m
/s

)

(c) Dykstra, TV=50%

1500

2000

2500

3000

3500

4000

4500

V
e

lo
c
it
y
 (

m
/s

)

(g)  POCS 1, TV=50%

1500

2000

2500

3000

3500

4000

4500

V
e

lo
c
it
y
 (

m
/s

)

(k)  POCS 2, TV=50%

1500

2000

2500

3000

3500

4000

4500
V

e
lo

c
it
y
 (

m
/s

)
(o)  Dykstra - POCS 1, TV=50%

-100

-50

0

50

100

V
e

lo
c
it
y
 (

m
/s

)

(s)  Dykstra - POCS 2, TV=50%

-100

-50

0

50

100

V
e

lo
c
it
y
 (

m
/s

)

(d) Dykstra, TV=75%

1500

2000

2500

3000

3500

4000

4500

V
e

lo
c
it
y
 (

m
/s

)

(h) POCS 1, TV=75%

1500

2000

2500

3000

3500

4000

4500

V
e

lo
c
it
y
 (

m
/s

)

(l) POCS 2, TV=75%

1500

2000

2500

3000

3500

4000

4500

V
e

lo
c
it
y
 (

m
/s

)

(p) Dykstra - POCS 1, TV=75%

-100

-50

0

50

100

V
e
lo

c
it
y
 (

m
/s

)

(t) Dykstra - POCS 2, TV=75%

-100

-50

0

50

100

V
e
lo

c
it
y
 (

m
/s

)

Figure 3.3: FWI with an incorrect source function with projections
(with Dykstra’s algorithm) and FWI with two feasible points
(with POCS) for various TV-balls (as a percentage of the TV of
the true model) and bound constraints. Also shows differences
(rightmost two columns) between results. The results show that
using POCS inside a projected gradient algorithm instead of
the projection leads to different results that also depend on
the order in which we provide the sets to POCS. This example
illustrates the differences between the methods and it is not the
intention to obtain excellent FWI results.
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Algorithm 1 Dykstra’s algorithm, following the notation of Birgin and
Raydan [2005], to compute the projection of m onto the intersection of p
convex sets: PC(m) = arg minx ‖x −m‖22 s.t. x ∈

⋂p
i=1 Ci. yi are auxiliary

vectors.
Algorithm DYKSTRA(m,PC1 ,PC2 , . . . ,PCp)
0a. x0

p = m, k = 1 //initialize

0b. y0
i = 0 for i = 1, 2, . . . , p //initialize

WHILE stopping conditions not satisfied DO
1. xk0 = xk−1

p

FOR i = 1, 2, . . . , p
2. xki = PCi(xki−1 − y

k−1
i )

END
FOR i = 1, 2, . . . , p

3. yki = xki − (xki−1 − y
k−1
i )

END
4. k = k + 1
END

output: xkp

3.5 Nonlinear optimization with projections

So far, we discussed a method to project models onto the intersection of

multiple constraint sets. Now we propose and discuss a method to combine

projections onto an intersection with nonlinear data-fitting. Aside from our

design criteria (multiple constraints instead of competing penalties; guar-

antees that model iterations remain in constraint set), we need to include

a clean separation of misfit/gradient calculations and projections so that

we avoid additional computationally costly PDE solves at all times. This

separation also allows us to use different codes bases for each task (objec-

tive/gradient calculations versus projections). We first describe the basic

projected gradient descent method, which serves as an introduction to our

method of choice: the spectral projected gradient method.

3.5.1 Projected gradient descent

The simplest first-order algorithm that minimizes a differentiable objective

function subject to constraints is the projected gradient method (e.g., Beck
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[2014], section 9.4). This algorithm is a straightforward extension of the well-

known gradient-descent method [e.g., Bertsekas, 2015, section 2.1] involving

the following updates on the model:

mk+1 = PC
(
mk − γ∇mf(mk)

)
. (3.11)

A line search determines the scalar step length γ > 0. This algorithm

first takes a gradient-descent step, involving a gradient calculation, followed

by the projection of the updated model back onto the intersection of the

constraint sets. By construction, the computationally expensive gradient

computations (and data-misfit for the line search) are separate from the

often much cheaper projections onto constraints. The projection step itself

guarantees that the model estimate mk satisfies all constraints at every kth

iteration.

Figure 3.4 illustrates the difference between gradient descent to minimize

a two variable non-convex objective minm f(m), and projected gradient de-

scent to minimize minm f(m) s.t. m ∈ C. If we compare the solution paths

for gradient and projected gradient descent, we see that the latter explores

the boundary as well as the interior of the constraint set C = {m | ‖m‖2 ≤ σ}
to find a minimizer. This toy example highlights how constraints pose up-

per limits (the set boundary) on certain model properties but do not force

solutions to stay on the constraint set boundary. Because one of the local

minima lies outside the constraint set, this example also shows that adding

constraints may guide the solution to a different (correct) local minimizer.

This is exactly what we want to accomplish with constraints for FWI: pre-

vent the model estimate mk to converge to local minimizers that represent

unrealistic models.

3.5.2 Spectral projected gradient

Standard projected gradient has two important drawbacks. First, we need

to project onto the constraint set after each line search step. To be more

specific, we need to calculate the step-length parameter γ ∈ (0, 1] if the

objective of the projected model iterate is larger than the current model
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a)

start

end

b)

start

end

Figure 3.4: Example of the iteration trajectory when (a) using gradi-
ent descent to minimize a non-convex function and (b) projected
gradient descent to minimize a non-convex function subject to a
constraint. The constraint requires the model estimate to inside
the elliptical area in (b). The semi-transparent area outside the
ellipse is not accessible by projected gradient descent. There are
two important observations: 1) The constrained minimization
converges to a different (local) minimizer. 2) The intermediate
projected gradient parameter estimates can be in the interior of
the set or on the boundary. Black represents low values of the
function.

iterate—i.e., f
(
PC(mk − γ∇mf(mk))

)
> f(mk). In that case, we need to

reduce γ and test again whether the data-misfit is reduced. For every reduc-

tion of γ, we need to recompute the projection and evaluate the objective,

which is too expensive. Second, first-order methods do not use curvature

information, which involves the Hessian of f(m) or access to previous gra-

dient and model iterates. Projected gradient algorithms are therefore often

slower than Newton, Gauss-Newton, or quasi-Newton algorithms for FWI

without constraints.

To avoid these two drawbacks and possible complications arising from

the interplay of imposing constraints and correcting for Hessians, we use

the spectral projected gradient method (SPG; Birgin et al. [1999]; Birgin
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et al. [2003]); an extension of the standard projected gradient algorithm

(equation 3.11), which corresponds to a simple scalar scaling (related to the

eigenvalues of the Hessian, see Birgin et al. [1999] and Dai and Liao [2002]).

At model iterate k, the SPG iterations involve the step

mk+1 = mk + γpk, (3.12)

with update direction

pk = PC
(
mk − α∇mf(mk)

)
−mk. (3.13)

These two equations define the core of SPG, which differs from standard

projected gradient descent in three different ways:

i. The spectral stepsize α [Barzilai and Borwein, 1988, Raydan, 1993, Dai

and Liao, 2002] is calculated from the secant equation [Nocedal and

Wright, 2000, section 6.1] to approximate the Hessian, leading to an

accelerated convergence. An interpretation of the secant equation is to

mimic the action of the Hessian by the scalar α and use finite-difference

approximations for the second derivative of f(m). This approach is

closely related to the idea behind quasi-Newton methods. We compute

α as the solution of

Dk = arg min
D=αI

‖Dsk − yk‖2, (3.14)

where yk = ∇mf(mk+1) − ∇mf(mk) and sk = mk+1 − mk, and I

the identity matrix. This results in scaling by α = s∗ksk/s
∗
kyk derived

from gradient and model iterates from the current and previous SPG

iterations. Clearly, this is computationally cheap because α is not com-

puted by a separate line search. We may also need a safeguard against

excessively large values of α, defined as α = minimum(α, αmax). Be-

cause we work with geophysical inverse problems, we can require a

value of α, such that α times the gradient has a ‘reasonable’ physical

scaling, i.e., we do not want αmax times the gradient to have a norm
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larger than the current model parameters. Very large values of α could

lead to unphysical models (before projection) and to an unnecessar-

ily large number of line-search steps to determine γ. We thus require

αmax‖∇mf(mk)‖2 ≤ ‖m‖2.

ii. Spectral projected gradient employs non-monotone [Grippo and Scian-

drone, 2002] inexact line searches to calculate the γ in equation 3.12.

In Algorithm 2, step 4c enforces a non-monotone Armijo line-search

condition. As for all FWI problems, f(m) is not convex so we can-

not use an exact line-search. Non-monotone means that the objective

function value is allowed to increase temporarily, which often results

in faster convergence and fewer line search steps, see, e.g., Birgin et al.

[1999] for numerical experiments. Our intuition behind this is as fol-

lows: gradient descent iterations often exhibit a ‘zig-zag’ pattern when

the objective function behaves like a ‘long valley’ in a certain direc-

tion. When the line searches are non-monotone, the objective does not

always have to go down so we can take relatively larger steps along

the valley in the direction of the minimizer that are slightly ‘uphill’,

increasing the objective temporarily.

iii. Each SPG iteration requires only one projection onto the intersection

of constraint sets to compute the update direction (equation 3.13) and

does not need additional projections for line search steps. This is a

significant computational advantage over standard projected gradient

descent, which computes one projection per line search step, see equa-

tion 3.11. From equations 3.12 and 3.13, we observe that pk lies on the

line between the previous model estimate (mk) and the proposed up-

date, projected back onto the feasible set—i.e., PC(mk −α∇mf(mk)).

Therefore, mk+1 is on the line segment between these two points in

a convex set and the new model will satisfy all constraints simultane-

ously at every iteration (see equation 3.8). For this reason, any line

search step that reduces γ will also be an element of the convex set.

Works by Zeev et al. [2006] and Bello and Raydan [2007] confirm that

SPG with non-monotone line searches can lead to significant accelera-
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tion on FWI and seismic reflection tomography problems with bound

constraints compared to projected gradient descent.

In summary, each SPG iteration in Algorithm 2 requires at the kth iter-

ation a single evaluation of the objective f(mk) and gradient ∇mf(mk). In

fact, SPG combines data-misfit minimization (our objective) with imposing

constraints, while keeping the data-misfit/gradient and projection computa-

tions separate. When we impose the constraints, the objective and gradient

do not change. Aside from computational advantages, this separation al-

lows us to use different code bases for the objective f(m) and its gradient

∇mf(m) and the imposition of the constraints. The above separation of

responsibilities also leads to a modular software design, which applies to

different inverse problems that require (costly) objective and gradient cal-

culations.

3.5.3 Spectral projected gradient with multiple constraints

We now arrive at our main contribution where we combine projections onto

multiple constraints with nonlinear optimization with costly objective and

gradient calculations using a spectral projected gradient (SPG) method.

Recall from the previous section that the projection onto the intersection

of convex sets in SPG is equivalent to running Dykstra’s algorithm (Algo-

rithm 1) —i.e., we have

PC(mk − α∇mf(mk))

= PC1 ⋂ C2 ⋂···⋂ Cp(mk − α∇mf(mk))

⇔ DYKSTRA(mk − α∇mf(mk),PC1 , . . . ,PCp).

(3.15)

With this equivalence established, we arrive at our version of SPG presented

in Algorithm 2, which has appeared in some form in the non-geophysical

literature in Birgin et al. [2003] and Schmidt and Murphy [2010].

The proposed optimization algorithm for nonlinear inverse problems with

multiple constraints (equation 3.6) has the following three-level nested struc-

ture:
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Algorithm 2 minm f(m) s.t.m ∈
⋂p
i=1 Ci with spectral projected gradient,

non-monotone line searches and combined with Dykstra’s algorithm.

input:
// one projector per constraint set

PC1 , PC2 , . . .
m0 //starting model

Initialization
0. M = integer //history length for f(mk)
0. select η ∈ (0, 1), select initial α
0. k = 1, select sufficient descent parameter ε

WHILE stopping conditions not satisfied DO
1. f(mk), ∇mf(mk) //objective & gradient

// project onto intersection of sets:

2. rk = DYKSTRA
(
mk − α∇mf(mk),PC1 ,PC2 , . . .

)
3. pk = rk −mk // update direction

//save previous M objective:

4a. fref = {fk, fk−1, . . . , fk−M}
4b. γ = 1
4c. IF f(mk + γpk) < max(fref) + εγ∇mf(mk)∗pk

mk+1 = mk + γp // update model iterate

yk = ∇mf(mk+1)−∇mf(mk)
sk = mk+1 −mk

α =
s∗ksk
s∗kyk

// spectral steplength

k = k + 1
ELSE

γ = ηγ //step size reduction,

go back to 4c
END

output: mk

1. At the top level, we have a possibly non-convex optimization problem

with a differentiable objective and multiple constraints:

min
m

f(m) subject to m ∈
p⋂
i=1

Ci,

which we solve with the spectral projected gradient method;

2. At the next level, we project onto the intersection of multiple (convex)
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Figure 3.5: The 3-level nested constrained optimization workflow.

sets:

PC(m) = arg min
x

‖x−m‖2 subject to x ∈
p⋂
i=1

Ci

implemented via Algorithm 1 (Dykstra’s algorithm);

3. At the lowest level, we project onto individual sets:

PCi(m) = arg min
x

‖x−m‖2 subject to x ∈ Ci

for which we use ADMM (see Appendix B) if there is no closed-form

solution available.

While there are many choices for the algorithms at each level, we base

our selection of any particular algorithm on their ability to solve each level

without relying on additional manual tuning parameters. We summarized

our choices in Figure 3.5, which illustrates the three-level nested optimiza-

tion structure.
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3.6 Numerical example

As we mentioned earlier, full-waveform inversion (FWI) faces problems with

parasitic local minima when the starting model is not sufficiently accurate,

and the data are cycle skipped. FWI also suffers when no reliable data are

available at the low end of the spectrum (typically less than 3 Hz) or at

offsets larger than about two times the depth of the model. Amongst the

myriad of recent, sometimes somewhat ad hoc proposals to reduce the ad-

verse effects of these local minima, we show how the proposed constrained

optimization framework allows us to include prior knowledge on the un-

known model parameters with guarantees that our inverted models indeed

meet these constraints for each updated model.

Let us consider the situation where we may not have precise prior knowl-

edge on the actual model parameters itself, but where we may still be in a

position to mathematically describe some characteristics of a good starting

model. With a good starting model, we mean a model that leads to signif-

icant progress towards the true model during nonlinear inversion. So our

strategy is to first improve our starting model — by constraining the inver-

sion such that the model satisfies our expectation of what a starting model

looks like — followed by a second cycle of regular FWI. We relax constraints

for the second cycle to allow for model updates that further improve the data

fit. We present two different inversion strategies with up to three different

types of constraints. Figure 3.6 shows the actual and initial starting models

for this 2D FWI experiment. For this purpose, we take a 2D slice from the

BG Compass velocity and density model. We choose this model because it

contains realistic velocity “kick back”, which is known to challenge FWI.

The original model is sampled at 6 m, and we generate “observed data” by

running a time-domain [Louboutin et al., 2017] simulation code with the

velocity and density models given in Figure 3.6. The sources and receivers

(56 each) are located near the surface, with 100 m spacing. A coarse source

and receiver spacing of a 100 m amounts to about one spatial wavelength at

the highest frequency in the water; well below the spatial Nyquist sampling

rate.
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To mimic realistic situations where the forward modeling for the inver-

sion misses important aspects of the wave physics, we invert for velocity

only while fixing the density to be equal to one everywhere. While there are

better approximations to the density model than the one we use, we inten-

tionally use a rough approximation of the physics to show that constraints

are also beneficial in that situation. To add another layer of complexity, we

solve the inverse problem in the frequency domain [Da Silva and Herrmann,

2017] following the well-known multiscale frequency continuation strategy of

Bunks [1995]. To deal with the situation where ocean bottom marine data

are often severely contaminated with noise at the low-end of the spectrum,

we start the inversion on the frequency interval 3− 4 Hz. We define this in-

terval as a frequency batch. We subsequently use the result of the inversion

with this first frequency batch as the starting model for the next frequency

batch, inverting data from the 4− 5 Hz interval. We repeat this process up

to frequencies on the interval 14−15 Hz. As stopping conditions for SPG, we

use a maximum of 30 data-misfit evaluations for the first frequency batch

and ten for every subsequent frequency batch. SPG also terminates, and

we proceed to the next frequency batch if the data-misfit change, gradi-

ent or update direction are numerically insignificant. We also estimate the

unknown frequency spectrum of the source on the fly during each itera-

tion, using the variable projection method by Pratt [1999]; Aravkin and van

Leeuwen [2012]. To avoid additional complications, we assume the sources

and receivers to be omnidirectional with a flat spatial frequency spectrum.

While frequency continuation and on-the-fly source estimation are both

well-established techniques by now, the combination of velocity-only inver-

sion and a poor starting model remains challenging because we (i) ignore

density variations in the inversion, which means we can never hope to fit the

observed data fully; (ii) we miss the velocity kick back at roughly 300−500 m

in the starting model; and (iii) we invert on an up to roughly 10× coarser

grid compared to the fine 6m grid on which the “observed” time-domain

data were generated. Because of these challenges, battle-tested multiscale

workflows for FWI, where we start at the low frequencies and gradually work

our way up to higher frequencies, fail even if we impose bound constraints
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Figure 3.6: True (a) and initial (b) velocity models for the example.

(minimum of 1425 (m/s) and maximum 5000 (m/s)) values for the estimated

velocities) on the model. See Figure 3.7. Only the top 700 m of the velocity

model is inverted reasonably well. The bottom part, on the other hand, is

far from the true model almost everywhere. The main discontinuity into the

≥ 4000 (m/s) rock is not at the correct depth and does not have the right

shape.

To illustrate the potential of adding more constraints on the velocity

model, we follow a heuristic that combines multiple warm-started multi-

scale FWI cycles with a relaxation of the constraints. This approach was

successfully employed in earlier work by Esser et al. [2016b]; Esser et al.

[2018], and Chapter 2. We present two different strategies with different

constraints that both lead to improved results, which shows that there is
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Figure 3.7: Model estimate obtained by FWI with bound constraints
only.

more than one way to use multiple constraints to arrive at the desired re-

sults. Since we are dealing with a relatively undistorted sedimentary basin

(see Figure 3.6), we impose constraints that limit lateral variations and force

the inverted velocities to increase monotonically with depth during the first

inversion cycle. In the second cycle, we relax this condition. We accomplish

this by combining box constraints with slope constraints in the vertical direc-

tion (described in detail in Appendix B). To enforce continuity in the lateral

direction, we work with tighter slope constraints in that direction. Specifi-

cally, we limit the variation of the velocity per meter in the depth direction

(z-coordinate) of the discretized model m[i, j] = m(i∆z, j∆x). Mathemat-

ically, we enforce 0 ≤ (m[i + 1, j] −m[i, j])/∆z ≤ +∞ for i = 1 · · ·nz and

j = 1 · · ·nx, where nz, nx are the number of grid points in the vertical and

lateral direction, and ∆z the grid size in depth. With this slope constraint,

the inverted velocities are only allowed to increase monotonically with depth,

but there is no limit on how fast the velocity can increase in that direction.

We impose lateral continuity by selecting the lateral slope constraint as

−ε ≤ (m[i, j + 1]−m[i, j])/∆x ≤ +ε for all i = 1 · · ·nz, j = 1 · · ·nx. The

scalar ε is a small number set in the physical units of velocity (meter/sec-

ond) change per meter and ∆x is the grid size in the lateral direction. We

select ε = 1.0 for this example.

Compared to other methods that enforce continuity, e.g., via a sharp-

ening operator in a quadratic penalty term, these slope constraints have
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several advantages. First, they have a natural interpretable physical pa-

rameter ε with the units of velocity (meter/second) change per meter. Sec-

ond, they are met at each point in the model—i.e., they are applied and

enforced pointwise; and most importantly these slope constraints do not im-

pose more structure than needed. For instance, the vertical slope constraint

only enforces monotonic increases and nothing else. We do not claim that

other methods, such as Tikhonov regularization, cannot accomplish these

features. We claim that we do this without nebulous parameter tuning and

with guarantees that our constraints are satisfied at each iteration of FWI.

The FWI results with slope constraints for 3 − 4 Hz data are shown in

Figure 3.8a. This result from the first FWI cycle improves the starting model

significantly without introducing geologically unrealistic artifacts. This par-

tially inverted model can now serve as input for the second FWI cycle where

we invert data over a broader frequency range between 3 − 15 Hz (cf. Fig-

ure 3.8b) using box constraints only. Apparently, adding slope constraints

during the first cycle is enough to prevent the velocity model from mov-

ing in the wrong direction while allowing for enough freedom to get closer

to the true model underlying the success of the second cycle without slope

constraints. This example demonstrates that keeping the recovered velocity

model after the first FWI cycle in check — via not too constrained con-

straints — can be a successful strategy even though final velocity model

does not lie in the constraint set imposed during the first FWI cycle where

velocity kick back was not allowed. We kept the computational overhead of

this multi-cycle FWI method to a minimum by working with low-frequency

data only during the first cycle, which reduces the size of the computational

grid by a factor of about fourteen.

The second strategy is similar to the total-variation constraint contin-

uation strategies proposed by Esser et al. [2016b], Esser et al. [2018], and

in Chapter 2 to deal with salt structures. We will show that this strategy

can also be beneficial for sedimentary geology. The experimental setting

is the same as before. This time we use two different constraints instead

of three: bounds and TV constraints as in Chapter 2. The (anisotropic)

TV constraint is defined as {m | ‖Am‖1 ≤ σ}, where the matrix A con-
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Figure 3.8: (a) Model estimate obtained by FWI from 3− 4 Hz data
with bound constraints, a vertical slope constraint and a con-
straint on the velocity variation per meter in the horizontal
direction. (b) Model estimate by FWI from 3−15 Hz data with
bound constraints and using the result from (a) as the starting
model.

tains the discretized horizontal and vertical derivative matrices. We select

σ = 1.0‖Am0‖1 for the first cycle that uses 3 − 4 Hz data only, i.e., the

TV-constraint is set to the TV of the initial model, m0, see Figure 3.6b.

The second cycle works with 3 − 15 Hz data, as before. This time we use

bound constraint only. The results in Figure 3.9 show that the first cy-

cle with a tight TV constraint improves on the laterally invariant starting

model (Figure 3.6b), but also displays an incorrect low-velocity zone in the
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Figure 3.9: (a) Model estimate obtained by FWI from 3− 4 Hz data
with bound constraints and total-variation constraints. (b)
Model estimate by FWI from 3 − 15 Hz data with bound con-
straints and using the result from (a) as the starting model.

high-velocity rock near the bottom of the model. The result of the second

constrained FWI cycle, Figure 3.9b shows that the first cycle improved the

starting model sufficiently, such that the second cycle using all frequency

data can estimate a model similar to the true model.

Both FWI results with multiple constraints appear to be much closer to

the true model than the FWI result that uses bound constraints only. We

gain more insight into the quality of the models by looking at reverse-time

migrations (RTM) for each of the three FWI results. We show the RTM

results and true reflectivity of the velocity model in Figure 3.10. The results
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based on FWI with bound constraints show the least similarity with the true

reflectivity (Figures 3.10a and 3.10d) because a number of strong reflectors

are missing. The RTM results based on FWI with bound constraints only

also do not show coherent layers below a depth of 1500m depth. The other

RTM images based on FWI with multiple constraints (Figures 3.10b, 3.10c,

3.10e, and 3.10f) are similar to each other and closer to the true reflectivity.

This example was designed to illustrate how our framework for con-

strained FWI can be of great practical use for FWI problems where good

starting models are missing or where low-frequencies and long offsets are

absent. Our proposed method is not tied to a specific constraint. For dif-

ferent geological settings, we can use the same approach, but with different

constraints. We presented two different strategies. The preferable strategy

depends on the available prior knowledge. Computationally, both strate-

gies work with constraints for which we can compute the projections as in

Appendix A.

3.6.1 Comparison with a quadratic penalty method

We repeat the FWI experiment from the previous section, but this time we

regularize using one of the most widely used regularization techniques in

the geophysical literature: the quadratic penalty method. This comparison

illustrates the benefits of the constrained formulation as we described in

earlier sections.

To apply a quadratic penalty method as in equation 3.1, we need to

come up with penalty functions that represent our prior information, and

we also need to find one scalar penalty parameter per penalty function, such

that the final model satisfies all prior information. The first piece of prior

information is that a starting model is smooth in the lateral direction. The

penalty function R1(m) = α1/2‖Dxm||22 promotes smoothness in the lateral

direction, using the lateral finite-difference matrix Dx. The second piece

of prior information is that a starting model has an almost monotonically

increasing velocity with depth. We use R2(m) = α2/2‖Dzm||22 to promote

vertical smoothness. We see two disadvantages of quadratic penalties com-
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Figure 3.10: Comparison of reverse time migration (RTM) results
based on the FWI velocity models (right halves) and the true
reflectivity (left halves). Figures (a) and (d) show RTM based
on the velocity model from FWI with bounds only (Figure 3.7).
Figures (b) and (e) show RTM results based on the velocity
model from FWI with bounds, horizontal and vertical slope
constraints (Figure 3.8b). Figures (c) and (f) show RTM re-
sults based on the velocity model from FWI with bounds and
total-variation constraints (Figure 3.9b). RTM results based
on FWI with bound constraints, (a) and (d), miss a number
of reflectors that are clearly present in the other RTM results.
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pared to the constrained formulation. First, the quadratic penalty function

R2 does not generally lead to monotonicity. In order to promote monotonic-

ity with a penalty function, we would need to work with non-differentiable

functions. Alternatively, we could smooth the function, but this introduces

another smoothing parameter and leads to unpredictable behavior of FWI

as a function of parameter choices, as discussed in Lin and Huang [2015] and

Chapter 2. The second disadvantage of the penalty approach is the selec-

tion of penalty parameters α1 and α2. Whereas the constrained formulation

allows us to select the maximum variation of the velocity per meter, the

penalty approach requires two parameters without clear physical meaning.

These two parameters have no direct relation to the prior information. The

effect of a penalty parameter depends on the data-misfit, as well on all other

penalty parameters. We simplify the regularization task for the quadratic

penalty method by ignoring a penalty function to enforce bounds on the

velocities. We use projection onto the bounds so we can focus on the effect

to two penalties.

We show FWI results in Figures 3.11 and 3.12, based on various combi-

nations of penalty parameters to illustrate the well-known effect that it is

easy to over/under estimate a parameter, leading to a result that does not

have the desired properties. We selected the penalty parameters by manual

fine-tuning. Some of the results in Figures 3.11 and 3.12 look similar to

the true model, but contain some critical artifacts. Most noticeable is the

peak of the high-velocity (+4000m/s) rock at the bottom part of the model,

which should be located close to x = 4000m. The results from quadratic

penalty regularization put the peak at the wrong location and often show

a flat top rather than a peak. The estimated velocities of the high-velocity

rock at the bottom of the model are also lower than in the model obtained

with slope constraints, Figure 3.8.

Another observation about the penalty method FWI results in Fig-

ures 3.11 and 3.12, is that larger penalty parameters lead to more smooth-

ness, but it is not clear and intuitive how much the penalty parameters

should be increased to obtain the desired level of smoothness. In contrast,

constraints provide a way to set the limits on smoothness that will be sat-
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Figure 3.11: Results from FWI with regularization by a quadratic
penalty method to promote horizontal and vertical smooth-
ness. As for the constrained FWI example, the first FWI cycle
uses 3 − 4 Hz data and is with regularization (left column),
the second cycle uses 3 − 15 Hz data and does not use regu-
larization (right column). Figure (a) uses regularization pa-
rameter α1 = α2 = 1e5, (c) uses α1 = α2 = 1e6, and (e) uses
α1 = α2 = 1e7.

isfied at every FWI iteration by construction of the projection method. For

example, if we want to increase the smoothness by a factor of two, we need

to constrain the velocity variation per meter to half the previous limit, see

Chapter 2 for FWI examples that illustrate this point.

3.7 Discussion

Our main contribution in solving optimization problems with multiple con-

straints is that we employ a hierarchical divide and conquer approach to han-

dle problems where objectives and gradient evaluations require PDE solves.

We arrive at this result by splitting each problem into simpler and therefore

computationally more manageable subproblems. We start from the top with
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Figure 3.12: Results from FWI with regularization by a quadratic
penalty method to promote horizontal and vertical smooth-
ness. As for the constrained FWI example, the first FWI cycle
uses 3−4 Hz data and is with regularization (left column), the
second cycle uses 3− 15 Hz data and does not use regulariza-
tion (right column). Figure (a) uses regularization parameter
α1 = 1e6, α2 = 1e5, (c) uses α1 = 1e5, α2 = 1e6, (e) uses
α1 = 1e7, α2 = 1e6, and (g) uses α1 = 1e6, α2 = 1e7.

spectral projected gradient (SPG), which splits the constrained optimization

problem into an optimality (decreasing the objective) and feasibility (sat-

isfying all constraints) problem, and continue downwards by satisfying the

individual constraints using Dykstra’s algorithm. Even at the lowest level,

we employ this strategy when there is no closed form projection available

for the constraints. We use the alternating direction method of multipliers

(ADMM) for the examples. As a result, we end up with an algorithm that

remains computationally feasible for large-scale problems where evaluation
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of objectives and gradients is computationally costly.

So far, the minimization of our optimality problem relied on first-order

derivative information only and what is essentially a scalar approximation

of Hessian via SPG. Theoretically, we can also incorporate Dykstra’s algo-

rithm into projected quasi-Newton [Schmidt et al., 2009] or (Gauss-) Newton

methods [Schmidt et al., 2012, Lee et al., 2014]. However, unlike SPG, these

approaches usually require more than one projection computation per FWI

iteration to solve quadratic sub-problems with constraints. We would re-

quire a more careful evaluation to see if second-order methods in this case

indeed provide advantages compared to projected first-order methods such

as SPG.

We also would like to note that there exist parallel versions of Dykstra’s

algorithm and similar algorithms [Censor, 2006, Combettes and Pesquet,

2011, Bauschke and Koch, 2015]. These algorithms compute all projections

in parallel, so each Dykstra iteration takes as much time as the slowest

projection computation. As a result, the time per Dykstra iteration does

not necessarily increase if there are more constraint sets.

While the primary application and motivation for our work is full-waveform

inversion, the developed framework also applies to other geophysical inverse

problems; specifically, problems where the data-misfit and gradient evalua-

tion require the solution of many partial-differential equations.

3.8 Conclusions

Because of its computational complexity and notorious local minima, full-

waveform inversion easily ranks amongst one of the most challenging non-

linear inverse problems. To meet this challenge, we introduced a versatile

optimization framework for (non)linear inverse problems with the following

key features: (i) it invokes prior information via projections onto the in-

tersection of multiple (convex) constraint sets and thereby avoids reliance

on cumbersome trade-off parameters; (ii) it allows for imposing arbitrarily

many constraints simultaneously as long as their intersection is non-empty;

(iii) it projects the updated models uniquely on the intersection at every
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iteration and as such stays away from ambiguities related to the order in

which the constraints are invoked; (iv) it guarantees that model updates

satisfy all constraints simultaneously at each iteration and (v) it is built on

top of existing code bases that only need to compute data-misfit objective

values and gradients. These features in combination with our ability to relax

and add other constraints that have appeared in the geophysical literature

offer a powerful optimization framework to mitigate some of the adverse

effects of local minima.

Aside from promoting certain to-be-expected model properties, our ex-

amples also confirmed that invoking multiple constraints as part of a multi-

cycle inversion heuristic can lead to better results. We observe improvements

during the first full-waveform inversion cycle(s) if the constraint sets are tight

enough to prevent unrealistic geological features to enter into the model es-

timate. Provided the inversions make some progress to the solution, later

inversion cycles will benefit if the tight constraints are subsequently relaxed

either by dropping them or by increasing the size of the constraint set. This

strategy follows the heuristic of first estimating a better starting model, or

otherwise simple model, followed by introducing more details. Constraints

provide us with precise control of the maximum model complexity at each

FWI iteration. Our examples confirm this important aspect and clearly

demonstrate the advantages of working with constraints that are satisfied

at each iteration of the inversion.

Compared to many other regularization methods, our approach is easily

extendable to other convex or non-convex constraints. However, for non-

convex constraints, we can no longer offer certain guarantees, except that

all sub-problems in the alternating direction method of multipliers remain

solvable without the need to tune trade-off parameters manually. We can do

this because we work with projections onto the intersection of multiple sets

and we split the computations into multiple pieces that have closed-form

solutions.

74



Chapter 4

Algorithms and software for

projections onto intersections

of convex and non-convex

sets with applications to

inverse problems.

4.1 Introduction

We consider problems of the form

PV(m) ∈ arg min
x

1

2
‖x−m‖22 subject to x ∈

p⋂
i=1

Vi, (4.1)

which is the projection of a vector m ∈ RN onto the intersection of p convex

and possibly non-convex sets Vi. The projection in equation (4.1) is unique

if all sets are closed and convex. The projection operation is a common tool
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used for solving constrained optimization problems of the form

min
m

f(m) subject to m ∈
p⋂
i=1

Vi. (4.2)

Examples of algorithms that use projections include spectral projected gra-

dient descent [SPG, Birgin et al., 1999], projected quasi-Newton [Schmidt

et al., 2009], and projected Newton-type methods [Bertsekas, 1982, Schmidt

et al., 2012]. In the above optimization problem, the function f(m) : RN →
R is at least twice differentiable and may also be non-convex. Alternatively,

proximal algorithms solve

min
m

f(m) + ιV(m), (4.3)

which is equivalent to (4.2) and where ιV(m) is the indicator function of

the set V ≡
⋂p
i=1 Vi, which returns zero when we are in the set and infinity

otherwise. Because applications may benefit from using non-convex sets

Vi, we also consider those sets in the numerical examples. While we do

not provide convergence guarantees for this case, we will work with some

useful/practical heuristics.

The main applications of interest in this work are inverse problems for

the estimation of physical (model) parameters (m ∈ Rn) from observed data

(dobs ∈ Cs). Notable examples are geophysical imaging problems with seis-

mic waves [full-waveform inversion, see, e.g., Tarantola, 1986, Pratt et al.,

1998, Virieux and Operto, 2009] for acoustic velocity estimation and direct-

current resistivity problems [DC-resistivity, see, e.g., Haber, 2014] to obtain

electrical conductivity information. These problems all have ‘expensive’ for-

ward operators, i.e., evaluating the objective f(m) requires solutions of many

partial-differential-equations (PDEs) if the PDE constraints are implicit in

f(m), which corresponds to a reduced data-misfit [Haber et al., 2000]. In

our context, each set Vi describes a different type of prior information on

the model m. Examples of prior knowledge as convex sets are bounds on

parameter values, smoothness, matrix properties such as the nuclear norm,

and whether or not the model is blocky with sharp edges (total-variation like
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constraints via the `1 norm). Non-convex sets that we use in the numerical

examples include the annulus (minimum and maximum `2 norm), limited

matrix rank, and vector cardinality.

Aside from the constrained minimization as in problem (4.2), we con-

sider feasibility (also known as set-theoretic estimation) problem formula-

tions [e.g., Youla and Webb, 1982, Trussell and Civanlar, 1984, Combettes,

1993, 1996]. Feasibility only formulations accept any point in the inter-

section of sets Vi that describe constraints on model parameter properties,

and a data-fit constraint Vdata
p that ties the unknown model vector x to

the observed data dobs ∈ RM via a forward operator F ∈ RM×N . Exam-

ples of data-constraint sets are Vdata = {x | l ≤ (Fx − dobs) ≤ u} and

Vdata = {x | ‖Fx− dobs‖2 ≤ σ}. The upper and lower bounds are vectors l

and u and σ > 0 is a scalar that depends on the noise level. The forward

operators are linear and often computationally ‘cheap’ to apply. Examples

include masks and blurring kernels. In case there is a good initial guess avail-

able, we can choose to solve a projection rather than feasibility problem by

adding the squared `2 distance term as follows:

min
x

1

2
‖x−m‖22 s.t.

x ∈ Vdata
p

x ∈
⋂p−1
i=1 Vi

. (4.4)

To demonstrate the benefits of this constrained formulation, we recast joint

denoising-deblurring-inpainting and image desaturation problems as projec-

tions onto the intersection of sets. Especially when we have a few training

examples from which we can learn constraint set parameters, the feasibility

and projection approaches conveniently add many pieces of prior knowledge

in the form of multiple constraint sets, but without any penalty or trade-off

parameters. For instance, [Combettes and Pesquet, 2004] show that we can

observe ‘good’ choices of parameters that define the constraint sets, such as

the average of the total variation of a few training images. We address in-

creasing computational demand that comes with additional constraint sets

with a reformulation of problem (4.4), such that we take into account similar-

ity between sets, and split the problem up into simple parallel computations
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where possible.

Projected gradient and similar algorithms naturally split problem (4.2)

into a projection and data-fitting part. In this setting, software for com-

puting projections onto the intersection of sets can then work together with

codes for physical simulations that compute f(m) and ∇mf(m), as we show

in one of the numerical examples. See dolfin-adjoint [Farrell et al., 2013],

Devito [Kukreja et al., 2016, Louboutin et al., 2018] in Python and WAVEFORM

[Da Silva and Herrmann, 2017], jInv [Ruthotto et al., 2017], and JUDI [Witte

et al., 2018] in Julia for examples of recent packages for physical simulations

that also compute ∇mf(m).

Compared to regularization via penalty functions (that are not an indi-

cator function), constrained problem formulations (4.2 and 4.4) have several

advantages when solving physical parameter estimation problems. Penalty

methods

min
m

f(m) +

p∑
i

αiR(m) (4.5)

add prior knowledge through p ≥ 1 penalty functions Ri(m) : RN → R with

scalar weights αi > 0 to the data-misfit term f(m). Alternatively, we can

add penalties to the objective and work with a data constraint instead—i.e.,

we have

min
m

p∑
i=1

αiRi(m) s.t. f(m) ≤ σ, (4.6)

generally referred to as Basis Pursuit Denoise [Mallat and Zhang, 1992,

Chen et al., 2001, van den Berg and Friedlander, 2009, Aravkin et al., 2014],

Morozov/residual regularization [Ivanov et al., 2013], or Occam’s inversion

[Constable et al., 1987]. The scalar σ relates to the noise level in the data.

For convex constraints/objectives/penalties, constrained, penalty and data-

constrained problems are equivalent under certain conditions and for specific

α - σ pairs [Vasin, 1970, Gander, 1980, Golub and von Matt, 1991, van den

Berg and Friedlander, 2009, Aravkin et al., 2016, Tibshirani, 2017], but dif-

fer in algorithmic implementation and in their ability to handle multiple

pieces of prior information (p > 1). In that case, the simplicity of adding
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penalties is negated by the challenge of selecting multiple trade-off param-

eters (αi). For this, and for reasons we list below, we prefer constrained

formulations that involve projections onto the intersection of constraint sets

(problem 4.1). Constrained formulations

• satisfy prior information at every iteration PDE-based inverse

problems require the solutions of PDEs to evaluate the objective func-

tion f(m) and its gradient. The model parameters need to be in an

interval for which the mesh (PDE discretization) is suitable, i.e., we

have to use bound constraints. Optimization algorithms that satisfy

all constraints at every iteration also give the user precise control of the

model properties when solving problem (4.2) using a projection-based

algorithm. This allows us to start solving a non-convex inverse prob-

lem with certain constraints, followed by a solution stage with ‘looser’

constraints. [Smithyman et al., 2015, Esser et al., 2016b, Esser et al.,

2016], as well as examples in Chapter 2 apply this strategy to seismic

full-waveform inversion to avoid local minimizers that correspond to

geologically unrealistic models.

• require a minimum number of manual tuning parameters for

multiple constraints We want to avoid the time-consuming and pos-

sibly computationally costly procedure of manually tuning numerous

nuisance parameters. While we need to define the constraint sets, we

avoid the scalar weights that penalty functions use. Constraint sets

have the advantage that their definitions are independent of all other

constraint definitions. For penalty functions, the effect of the weights

αi associated with each Ri on the solutions of an inverse problem de-

pends on all other αi and Ri. For this reason, selecting multiple scalar

weights to balance multiple penalty functions becomes increasingly

difficult as we increase the number of penalties.

• make direct use of prior knowledge We can observe model prop-

erties from training examples and use this information directly as con-

straints [Combettes and Pesquet, 2004, see also numerical examples
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in this work]. Penalty and basis-pursuit type methods first need to

translate this information into penalty functions and scalar weights.

Most classical and recently proposed methods to project onto an inter-

section of multiple (convex) sets, such as Dykstra’s algorithm and variants

[Dykstra, 1983, Boyle and Dykstra, 1986, Censor, 2006, Bauschke and Koch,

2015, López and Raydan, 2016, Aragón Artacho and Campoy, 2018], (see

also Appendix C), use projections onto each set separately, PVi(·), as the

main computational component. The projection is a black box, and this

may create difficulties if the projection onto one or more sets has no known

closed-form solution. We then need another iterative algorithm to solve the

sub-problems. This nesting of algorithms may lead to problems with the

selection of appropriate stopping criteria for the algorithm that solves the

sub-problems. In that case, we need two sets of stopping criteria: one for

Dykstra’s algorithm itself and one for the iterative algorithm that computes

the individual projections. For this reason, it may become challenging to

select stopping criteria for the algorithm that computes a single projection.

For example, projections need to be sufficiently accurate such that Dyk-

stra’s algorithm converges. At the same time, we do not want to waste

computational resources by solving sub-problems more accurately than nec-

essary. A second characteristic of the black-box projection algorithms is

that they treat every set individually and do not attempt to exploit similar-

ities between the sets. If we work with multiple constraint sets, some of the

set definitions may include the same or similar linear operators in terms of

sparsity (non zero) patterns.

Besides algorithms that are designed to solve a specific projection prob-

lem onto the intersection of multiple sets, there exist software packages ca-

pable of solving a range of generic optimization problems. However, many of

the current software packages are not designed to compute projections onto

intersections of multiple constraint sets where we usually do not know the

projection onto each set in closed form. This happens, for instance, when the

set definitions include linear operators A that satisfy the relation AA> 6= αI

for α > 0. A package such as Convex for Julia [Udell et al., 2014], an exam-
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ple of disciplined convex programming (DCP), does not handle non-convex

sets and requires lots of memory even for 2D problems. The high memory

demands are a result of the packages that Convex can call as the back-end,

for example, SCS [O’Donoghue et al., 2016] or ECOS [Domahidi et al., 2013].

These solvers work with matrices that possess a structure similar to(
? A>

A ?

)
, (4.7)

where the matrix A vertically stacks all linear operators that are part of

equality constraints. Both the block-structured system (4.7) and A become

prohibitively large in case we work with multiple constraint sets that in-

clude a linear operator in their definitions. The software that comes closer

to our implementation is Epsilon [Wytock et al., 2015], which is written in

Python. Like our proposed algorithms, Epsilon also employs the alternat-

ing direction method of multipliers (ADMM), but reformulates optimiza-

tion problems by emphasizing generalized proximal mappings as in equa-

tion (4.12, see below). Linear equality constraints then appear as indicator

functions, which leads to different linear operators ending up in different

sub-problems. In contrast, we work with a single ADMM sub-problem that

includes all linear operators. The ProxImaL software [Heide et al., 2016]

for Python is designed for linear inverse problems in imaging using ADMM

with a similar problem reformulation. However, ProxImaL differs fundamen-

tally since it applies regularization with a relatively small number of penalty

functions. While in principle it should be possible to adapt that package to

constrained problem formulations by replacing penalties with indicator func-

tions, ProxImaL is in its current form not set up for that purpose. Finally

there is StructuredOptimization [Antonello et al., 2018] in Julia. This

package also targets inverse problems by smooth+non-smooth function for-

mulations. Different from the goal of this work, StructuredOptimization

focusses on problems with easy to compute generalized proximal mappings (4.12),

i.e., penalty functions or constraints that are composed with linear operators

that satisfy AA> = αI. In contrast, we focus on the situation where we have
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many constraints with operators (AA> 6= αI) that make generalized proxi-

mal mappings (4.12) difficult to compute. Below, we list additional benefits

of our approach compared to existing packages that can solve intersection

projection problems.

4.1.1 Contributions

Our aim is to design and implement parallel computational optimization al-

gorithms for solving projection problems onto intersections of multiple con-

straint sets in the context of inverse problems. To arrive at this optimization

framework, SetIntersectionProjection , we propose

• an implementation that avoids nesting of algorithms and exploits sim-

ilarities between constraint sets, unlike black-box alternating projec-

tion methods such as Dykstra’s algorithm. Taking similarities between

sets into account allows us to work with many sets at a relatively small

increase in computational cost.

• algorithms that are based on a relaxed variant of the simultaneous

direction method of multipliers [SDMM, Afonso et al., 2011, Com-

bettes and Pesquet, 2011, Kitic et al., 2016]. By merging SDMM with

recently developed schemes for automatically adapting the augmented-

Lagrangian penalty and relaxation parameters [Xu et al., 2017b,a], we

achieve speedups when solving problem (4.1) compared to the straight-

forward application of operator splitting such as the alternating direc-

tion method of multipliers (ADMM) that use fixed parameters or older

updating schemes.

• a software design specifically for set intersection projection problems.

Our specializations enhance computational performance and include

(i) a relatively simple multilevel strategy for ADMM-based algorithms

that does part of the computations on significantly coarser grids; (ii)

solutions of banded linear systems in compressed diagonal format (CDS)

with multi-threaded matrix-vector products (MVP). These MVPs are

faster than general purpose storage formats like compressed sparse
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column storage (CSC). Unlike linear system solves by Fourier diago-

nalization they support linear operators with spatially varying (blur-

ring) kernels and various boundary conditions. See discussion by, e.g.,

[Almeida and Figueiredo, 2013, O’Connor and Vandenberghe, 2017]

(iii) more intuitive stopping criteria based on set feasibility.

• to make our work available as a software package in Julia [Bezan-

son et al., 2017]. Besides the algorithms, we also provide scripts for

setting up the constraints, projectors and linear operators, as well as

various examples. All presented timings, comparisons, and examples

are reproducible.

• an implementation that is suitable for small matrices (2D) up to larger

tensors (3D models, at least m ∈ R300×300×300). Because we solve

simple-to-compute sub-problems in closed form and independently in

parallel, the proposed algorithms work with large models and many

constraints. We achieve this because there is only a single inexact

linear-system solve that does not become much more computationally

expensive as we add more constraint sets. To improve the performance

even further, we also provide a multilevel accelerated version.

To demonstrate the capabilities of our optimization framework and im-

plementation, we provide examples of how projections onto an intersection

of multiple constraint sets can be used to solve linear image processing tasks

such as denoising and deconvolution and more complicated inverse problems

including nonlinear parameters estimation problems with PDEs.

4.2 Notation, assumptions, and definitions

Our goal is to estimate the model vector (e.g., discretized medium param-

eters such as the acoustic wave speed) m ∈ RN , which in 2D corresponds

to a vectorized (lexicographically ordered) matrix of size nz ×nx with z the

vertical coordinate and x the horizontal direction. There are N = nx × nz
elements in a 2D model. Our work applies to 2D and 3D models but to

keep the derivations simpler we limit ourselves to 2D models discretized on
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a regular grid. We use the following discretization for the vertical derivative

in our constraints

Dz =
1

hz


−1 1

−1 1
. . .

. . .

−1 1

 , (4.8)

where hz is the vertical grid size. We define the discretized vertical derivative

for the 2D model as the Kronecker product of Dz and the identity matrix

corresponding to the x-dimension: Dz ⊗ Ix.

The indicator function of a convex or non-convex set C is defined as

ιC(m) =

0 if m ∈ C,

+∞ if m /∈ C.
(4.9)

We define the Euclidean projection onto a convex or non-convex set C as

PC(m) = arg min
x

‖x−m‖22 s.t. m ∈ C. (4.10)

This projection is unique if C is a closed and convex set. If C is a non-convex

set, the projection may not be unique so the result is any vector in the set

of minimizers of the projection problem. The proximal map of a function

g(m) : RN → R ∪ {+∞} is defined as

proxγ,g(m) = arg min
x

g(x) +
γ

2
‖x−m‖22, (4.11)

so proxγ,g(m) : RN → RN , where γ > 0 is a scalar. The case when g(x)

includes a linear operator A ∈ RM×N is of particular interest to us and we

make it explicit with the definition

proxγ,g◦A(m) = arg min
x

g(Ax) +
γ

2
‖x−m‖22. (4.12)

Even though proxγ,g(m) is often available in closed-form solution, or cheap
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to compute [Combettes and Pesquet, 2011, Parikh and Boyd, 2014, Beck,

2017, Chapter 6 & 7], proxγ,g◦A(m) is usually not available in closed form if

AA> 6= αI, α > 0 and more expensive to compute. Here, the symbol > refers

to (Hermitian) transpose. The proximal map for the indicator function is

the projection:

proxγ,ιC(m) = PιC(m)

with PιC(m) defined as in (4.10). The intersection of an arbitrary number

of convex sets, m ∈
⋂p
i=1 Ci, is also convex. We assume that all constraints

are chosen consistently, such that the intersection of all selected constraint

sets is nonempty:
p⋂
i=1

Ci 6= ∅. (4.13)

This means we define constraints such that there is at least one element in

the intersection. This assumption is not restrictive in practice because ap-

parently contradicting constraint sets often have a non-empty intersection.

For example, `1-norm based total-variation constraints and smoothness pro-

moting constraints have at least one model in their intersection: a homoge-

neous model has a total-variation equal to 0 and maximal smoothness.

We use m[i] to indicate entries of the vector m. Subscripts like yi refer

to one of the sub-vectors that are part of ỹ = (y>1 y>2 , . . . , y
>
p )>.

The Euclidean inner product of two vectors is denoted as a>b, and ‖a‖22 =

a>a.

4.3 PARSDMM: Exploiting similarity between
constraint sets

As we briefly mentioned in the introduction, currently available algorithms

for computing projections onto the intersection of closed and convex sets do

not take similarity between sets into account. They also treat projections

onto each set as a black box, which means they require another iterative

algorithm (and stopping conditions) to compute projections that have no

closed-form solution. In our Projection Adaptive Relaxed Simultaneous Di-
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rection Method of Multipliers (PARSDMM), we avoid nesting multiple al-

gorithms and explicitly exploit similarities between the i = 1, 2, . . . , p linear

operators Ai ∈ RMi×N . We accomplish this by writing each constraint set

Vi in problem (4.1)) as the indicator function of a ‘simple’ set (ιCi) and a

possibly non-orthogonal linear operator: x ∈ Vi ⇔ Aix ∈ Ci. We formulate

projection of m ∈ RN onto the intersection of p sets as

min
x

1

2
‖x−m‖22 +

p∑
i=1

ιCi(Aix). (4.14)

PARSDMM is designed to solve inverse problems that call for multiple pieces

of prior knowledge in the form of constraints. Each piece of prior knowledge

corresponds to a single set, and we focus on intersections of two up to about

16 sets, which we found adequate to regularize inverse problems. To avoid

technical issues with non-convexity, we, for now, assume all sets to be closed

and convex.

We use ADMM as a starting point. ADMM is known to solve intersec-

tion projection (and feasibility) problems [Boyd et al., 2011, Pakazad et al.,

2015, Bauschke and Koch, 2015, Jia et al., 2017, Tibshirani, 2017, Kundu

et al., 2017]. However, it remains a black-box algorithm and struggles with

projections that do not have closed-form solutions. For completeness and to

highlight the differences with the algorithm we propose below, we present in

Appendix C a black box algorithm for the projection onto the intersection

of sets based on ADMM.

The augmented Lagrangian

To start the derivation of PARSDMM, we introduce separate vectors yi ∈
RMi for each of the i = 1, . . . , p constraint sets of problem (4.14) and we

add linear equality constraints as follows:

min
x,{yi}

1

2
‖x−m‖22 +

p∑
i=1

ιCi(yi) s.t. Aix = yi. (4.15)
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The augmented Lagrangian [e.g., Nocedal and Wright, 2000, Chapter 17]

of problem (4.15) is a basis for ADMM (see (4.19) below). To ensure that

the x-minimization remains quadratic (see derivation below), we make this

minimization problem independent of the distance term 1
2‖x − m‖

2
2. This

choice has the additional benefit of allowing for other functions that measure

distance from m. We remove the direct coupling of the distance term by

introducing additional variables and constraints yp+1 = Ap+1x = INx. For

this purpose, we define 1
2‖x−m‖

2
2 = f(yp+1) and create the function

f̃(ỹ) = f(yp+1) +

p∑
i=1

ιCi(yi), (4.16)

where we use the ·̃ symbol to indicate concatenated matrices and vectors, as

well as functions that are the sum of multiple functions to simplify notation.

The concatenated matrices and vectors read

Ã =


A1

...

Ap+1 = IN

 , ỹ =


y1

...

yp+1

 , ṽ =


v1

...

vp+1

 . (4.17)

The vectors vi ∈ RMi are the Lagrangian multipliers that occur in the aug-

mented Lagrangian for the projection problem, after one more reformulation

step. We always have Ap+1x = INx = yp+1 for the Euclidean projection

that uses the squared `2-distance 1
2‖x −m‖

2
2. With these new definitions,

problem (4.15) becomes

min
x,ỹ

f̃(ỹ) s.t. Ãx = ỹ. (4.18)

This formulation has the same form as problems that regular ADMM solves—

i.e., minx,y f(x) + g(y) s.t. Ax + By = c. It follows that we can guar-

antee convergence under the same conditions as for ADMM. According

to [Boyd et al., 2011, Eckstein and Yao, 2015], ADMM converges when

f(x) : RN1 → R ∪ {+∞} and g(y) : RN2 → R ∪ {+∞} are proper and

convex. The linear equality constraints involve matrices A ∈ RM×N1 and
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B ∈ RM×N2 and vectors x ∈ RN1 , y ∈ RN2 and c ∈ RM .

To arrive at the main iterations of PARSDMM, we now derive an algo-

rithm for the projection problem stated in (4.18), based on the augmented

Lagrangian

Lρ1,...,ρp+1(x, y1, . . . , yp+1, v1, . . . , vp+1) =

p+1∑
i=1

[
fi(yi) + v>i (yi −Aix) +

ρi
2
‖yi −Aix‖22

]
.

(4.19)

As we can see, this expression has a separable structure with respect to

the Lagrangian multipliers vi, and the auxiliary vectors yi. Following the

ADMM variants for multiple functions, as formulated by [Song et al., 2016,

Kitic et al., 2016, Xu et al., 2017c], we use a different penalty parameter

ρi > 0 for each index i. In this way, we make sure all linear equality

constraints Aix = yi are satisfied sufficiently by running a limited number

of iterations. Because the different matrices Ai may have widely varying

scalings and sizes, a fixed penalty for all i could cause slow convergence

of x towards one of the constraint sets. Additionally, to further accelerate

the algorithm we also introduce a different relaxation parameter (γi) for

each index i. After we derive the main steps of our proposed algorithm, we

describe the automatic selection of the scalar parameters.

The iterations

With the above definitions, iteration counter k, and inclusion of relaxation

parameters, which we assume to be limited to the interval γi ∈ [1, 2) [see

Xu et al., 2017b], the iterations can be written as

xk+1 = arg min
x

p+1∑
i=1

(ρki
2
‖yki −Aix+

vki
ρki
‖22
)

x̄k+1
i = γki Aix

k+1
i + (1− γki )yki

yk+1
i = arg min

yi

[
fi(yi) +

ρki
2
‖yki − x̄k+1

i +
vki
ρki
‖22
]

vk+1
i = vki + ρki (y

k+1
i − x̄k+1

i ).
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To arrive at our final algorithm, we rewrite these iterations in a more explicit

form as

xk+1 =
[ p∑
i=1

(ρkiA
>
i Ai) + ρkp+1IN

]−1
p+1∑
i=1

[
A>i (ρki y

k
i + vki )

]
x̄k+1
i = γki Aix

k+1
i + (1− γki )yki

yk+1
i = proxfi,ρki

(x̄k+1
i − vki

ρki
)

vk+1
i = vki + ρki (y

k+1
i − x̄k+1

i ).

In this expression, we used the fact that Ap+1 is always the identity matrix

of size N for projection problems. Without over/under relaxation [x̄k+1
i

computation, Eckstein and Bertsekas, 1992, Iutzeler and Hendrickx, 2017,

Xu et al., 2017b], these iterations are known as SALSA [Afonso et al., 2011]

or the simultaneous direction method of multipliers [SDMM, Combettes and

Pesquet, 2011, Kitic et al., 2016]. The derivation in this section shows that

ADMM/SDMM solve the projection onto an intersection of multiple closed

and convex sets. However, the basic iterations from (4.20) are not yet a

practical and fast algorithm, because there are scalar parameters that need

to be selected, no stopping conditions, and no specializations to constraints

typically found in the imaging sciences. Therefore, we add automatic scalar

parameter selection to the iterations (4.20), as well as linear system solves,

stopping conditions, and multilevel acceleration specialized to computing

projections onto intersections of many sets.

Computing the proximal maps

The proximal maps in the iterations (4.20) become projections onto sim-

ple sets (e.g., bounds/`1 and `2 norm-ball/cardinality/rank), which per-

mit closed-form solutions that do not depend on the ρi. When fp+1(w) =

1/2‖w−m‖22, (squared `2 distance of w to the reference vector m) the prox-
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imal map is also available in closed form:

proxfp+1,ρp+1
(w) = arg min

z
1/2‖z −m‖22 + ρp+1/2‖z − w‖22

= (m+ ρp+1w)/(1 + ρp+1).
(4.20)

We thus avoided sub-problems for projections that require other convex

optimization algorithms for their solutions.

Solving the linear system and automatic parameter selection

We can also see from (4.20) that the computation of xk+1 involves the so-

lution of a single problem where all linear operators are summed into one

system of normal equations. The system matrix equals

C ≡
p+1∑
i=1

(ρiA
>
i Ai) =

p∑
i=1

(ρiA
>
i Ai) + ρp+1IN (4.21)

and is by construction always positive-definite because ρi > 0 for all i. The

minimization over x is therefore uniquely defined. As suggested by Xu et al.

[2017a], we adapt the ρi’s every two iterations using the scheme we discuss

below.

While we could use direct matrix factorizations of C, we would need to

refactorize every time we update any of the ρi’s. This would make computing

xk+1 too costly. Instead, we rely on warm-started iterative solvers with xk

used as the initial guess for xk+1. There exist several alternatives including

LSQR [Paige and Saunders, 1982] to solve the above linear system (xk+1

computation in 4.20) iteratively. We choose the conjugate-gradient (CG)

method on the normal equations for the following reasons:

1. Contrary to LSQR, transforms that satisfy A>i Ai = αIN are free for

CG because we explicitly form the sparse system matrix C, which

already includes the identity matrix.

2. By limiting the relative difference between the ρi and ρp+1, where

the latter corresponds to the identity matrix in (4.21), we ensure C

90



is sufficiently well conditioned so squaring the condition number does

not become a problem.

3. For many transforms, the matrices A>i Ai are sparse and have at least

partially overlapping sparsity patterns (discrete derivative matrices for

one or more directions, orthogonal transforms). Multiplication with∑p+1
i=1 (ρiA

>
i Ai) is therefore not much more expensive than multipli-

cation with a single A>i Ai. However, LSQR requires matrix-vector

products with all Ai and A>i at every iteration.

4. Full reassembly of C at iteration k is not required. Every time we

update any of the ρi’s, we update C by subtracting and adding the

block corresponding to the updated ρi. If the index that changed is

indicated by i = u, the system matrix for the next xk+1 computation

becomes

Ck+1 =

p+1∑
i=1

(ρk+1
i A>i Ai) =

p+1∑
i=1

(ρkiA
>
i Ai)− (ρkuA

>
uAu) + (ρk+1

u A>uAu)

= Ck +A>uAu(ρk+1
u − ρku).

(4.22)

For each ρi update, forming the new system matrix involves a single ad-

dition of two sparse matrices (assuming all A>i Ai’s are pre-computed).

To further save computation time, we solve the minimization with re-

spect to x inexactly. We select the stopping criterion for CG adaptively in

terms of the relative residual of the normal equations—i.e., we stop CG if

the relative residual drops below

0.1‖
[ p∑
i=1

(ρkiA
>
i Ai)+ρ

k
p+1IN

]
x−

p+1∑
i=1

[
A>i (ρki y

k
i +vki )

]
‖2/‖

p+1∑
i=1

[
A>i (ρki y

k
i +vki )

]
‖2.

(4.23)

Empirically, we found that a reduction of the relative residual by a factor of

ten represents a robust choice that also results in time savings for solving

problem (4.18) compared to a fixed and accurate stopping criterion for the x-

minimization step. The stopping criterion for CG is relatively inexact during
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the first few iterations from (4.20) and requests more accurate solutions later

on, such that the conditions on inexact sub-problem solutions from [Eckstein

and Bertsekas, 1992] will be satisfied eventually.

Just like standard ADMM, we may also require a large number of itera-

tions (4.20) for a fixed penalty parameter ρi for all i [e.g., Nishihara et al.,

2015, Xu et al., 2017a]. It is better to update ρki and γki every couple of

iterations to ensure we reach a good solution in a relatively small number

of iterations. For this purpose, we use Xu et al. [2017a]’s automatic selec-

tion of ρki and γki for ADMM. Numerical experiments by Xu et al. [2016]

show that these updates also perform well on various non-convex problems.

The updates themselves are based on a Barzilai-Borwein spectral step size

[Barzilai and Borwein, 1988] for Douglas-Rachford (DR) splitting applied to

the dual of minx,y f(x) + g(y) s.t. Ax+By = c and derive from equivalence

between ADMM and DR on the dual [Eckstein and Bertsekas, 1992, Esser,

2009].

Exploiting parallelism

Given the grid size of 3D PDE-based parameter estimation problems, perfor-

mance is essential. For this reason, we seek a parallel implementation that

exploits multi-threading offered by modern programming languages such

as Julia [Bezanson et al., 2017]. Since the computational time for the x-

minimization using the conjugate-gradient algorithm is dominated by the

matrix-vector products (MVP) with C, we concentrate our efforts there by

using compressed diagonal storage (CDS), see, e.g., [Saad, 1989, Sern et al.,

1990, Kotakemori et al., 2008]. This format stores the non-zero bands of the

matrix as a dense matrix, and we compute MVPs directly in this storage

sytem. These MVPs are faster than the more general Compressed Sparse

Column (CSC) format. CDS has the additional benifit that it can efficiently

handle matrices generated by spatially varying (blurring, derivative) kernels.

We can use CDS if all matrices A>i Ai have a banded sparsity-pattern. Using

Julia’s multi-threading, we compute the MVPs with C in parallel. In cases

where the A>i Ai’s do not have a banded structure we revert to computations
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in the standard Compressed Sparse Column (CSC) format.

Aside from matrix-vector products during the inner iterations, most cal-

culation time in (4.20) is used for x̄k+1
i , yk+1

i , vk+1
i , ρk+1

i , and γk+1
i . To

reduce these costs, we compute these quantities in parallel. This is relatively

straightforward to do because each problem is independent so that the op-

erations for the p constraints can be carried out by different Julia workers

where each worker either uses Julia threads, multi-threaded BLAS [Open-

BLAS, Wang et al., 2013], or multi-threaded Fourier-transforms [FFTW

library, Frigo and Johnson, 2005].

Stopping conditions

So far, we focussed on reducing the time for each iteration of (4.20). How-

ever, the total computational time depends on the total number of iterations

and therefore on the stopping conditions. For our problems, a good stopping

criterion guarantees solutions that are close to all constraint sets, and at a

minimal distance from the point we want to project. When working with a

single constraint set, stopping criteria based on a combination of the primal

rpri = ‖ỹ − Ãxk‖ and dual residual rdual = ‖ρ̃Ã>(ỹk − ỹk−1)‖ are adequate

as long as both become sufficiently small [e.g., Boyd et al., 2011, Kitic et al.,

2016, Xu et al., 2017a]. However, the situation is more complicated in sit-

uations where we work with multiple constraint sets. In that case, the ỹ

and Ã contain a variety of vectors and linear operators that correspond to

the different constraint sets. Since these operators are scaled differently and

have different dimensions, it becomes more difficult to determine the rela-

tionship between the size of the residuals and the accuracy of the solution.

In other words, it becomes challenging to decide at what primal and dual

residual to stop such that we are close to all constraint sets.

Instead of considering residuals, it may be more intuitive to look at

feasibilities by dropping the quadratic part of the projection problem (4.15).

This means that we only insist that the final solution needs to be an element

of every set Vi when considering our stopping criterion. This holds if x is in

the intersection of the constraint sets but requires projections onto each Vi
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to verify, a situation we want to avoid in PARSDMM. Instead, we rely on

the transform-domain set feasibility error

rfeas
i =

‖Aix− PCi(Aix)‖
‖Aix‖

, i = 1 · · · p, (4.24)

to which we have access at a relatively low cost since we already computed

Aix in the iterations from (4.20). Our first stopping criterion thus corre-

sponds to a normalized version of the objective when solving convex multiple

set split-feasibility problems [Censor et al., 2005]. We added this normaliza-

tion in (4.24) to account for different scalings and sizes of the linear operators

Ai.

The projections onto the constraint sets PCi(·) themselves, are relatively

cheap to compute since they only include projections onto sets such as norm-

balls, bounds, cardinality sets. By testing for transform-domain feasibility

every few iterations only (5 or 10 typically), we further reduce the compu-

tational costs for our stopping condition.

Satisfying constraints alone for i = 1 · · · p does not indicate whether

or not xk is close to the projection onto the intersection of the p different

constraint sets or whether it is just a feasible point, possibly ‘deep’ inside

the intersection. If xk is indeed the result of the projection of m, then

‖xk − xk−1‖ approaches a stationary point, assuming that xk converges to

the projection. We make this property explicit by considering the maximum

relative change xk over the s previous iterations: j ∈ S ≡ {1, 2, . . . , s}. The

relative evolution of x at the kth iteration thus becomes

revol =
maxj∈S{‖xk − xk−j‖}

‖xk‖
. (4.25)

By considering the history (we use s = 5 in our numerical examples), our

stopping criterion becomes more robust to oscillations in ‖xk − xk−1‖ as a

function of k. So we propose to stop PARSDMM if

revol < εevol and rfeas
i < εfeas

i ∀ i. (4.26)
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During our numerical experiments, we select εevol = 10−2 and εfeas
i = 10−3,

which balance sufficiently accurate solutions and short solution times. These

are still two constants to be chosen by the user, but we argue that rfeas
i may

relate better to our intuition on feasibility because it behaves like a distance

to each set separately. The evolution term ‖xk − xk−1‖ is found in many

optimization algorithms and is especially informative for physical parameter

estimation problems where practitioners often have a good intuition to which

‖xk − xk−1‖ the physical forward model f(x) is sensitive.

The PARSDMM algorithm

We summarize our discussions from the previous sections in the following

Algorithms.

4.3.1 Multilevel PARSDMM

Inverse problems with data-misfit objectives that include PDE forward mod-

els typically need a fine grid for stable physical simulations. At the same

time, we often use constraints to estimate ‘simple’ models—i.e. models that

are smooth, have a low-rank, are sparse in some transform-domain, and

that may not need many grid points for accurate representations of the im-

age/model. This suggests we can reduce the total computational time of

PARSDMM (Algorithm 3) by using a multilevel continuation strategy. The

multilevel idea presented in this section applies to the projection onto the

intersection of constraint sets only and not to the grids for solving PDEs.

Our approach proceeds as follows: we start at a coarse grid and continue

towards finer grids. While inspired by multigrid methods for solving linear

systems, the proposed multilevel algorithm does not cycle between coarse

and fine grids. By using the solution at the coarse grid as the initial guess

for the solution on the finer grid, the convergence guarantees are the same as

for the single level version of our algorithm. As long as the computationally

cheap coarse grid solutions are ‘good’ initial guesses for the finer grids, this

multilevel approach, which is similar to multilevel ADMM by Macdonald

and Ruthotto [2018], can lead to substantial reductions in computational
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Algorithm 3 Projection Adaptive Relaxed Simultaneous Direction Method
of Multipliers (PARSDMM) to compute the projection onto an intersection,
including automatic selection of the penalty parameters and relaxation.

Algorithm PARSDMM
inputs:
m //point to project

A1, A2, . . . , Ap, Ap+1 = IN //linear operators

//norm/bound/cardinality/... projectors:

proxfi,ρi(w) = PCi(w) for i = 1, 2, . . . , p
//prox for the squared distance from m :

proxfi,ρp+1
(w) = (m+ ρp+1w)/(1 + ρi)

select ρ0
i , γ

0
i , update-freqency

optional: initial guess for x, yi and vi
initialize:
Bi = A>i Ai //pre-compute for all i
C =

∑p+1
i=1 (ρiBi) //pre-compute

k = 1
WHILE not converged

xk+1 = C−1
∑p+1

i=1

[
A>i (ρki y

k
i + vki )

]
//CG, stop when (4.23) holds

FOR i = 1, 2, . . . , p+ 1 //compute in parallel

sk+1
i = Aix

k+1

x̄k+1
i = γki s

k+1
i + (1− γki )yki

yk+1
i = proxfi,ρi(x̄

k+1
i − vki

ρki
)

vk+1
i = vki + ρki (y

k+1
i − x̄k+1

i )
stop if conditions (4.26) hold
If mod(k, update-freqency) = 1
{ρk+1

i , γk+1
i } = adapt-rho-gamma(vki , v

k+1
i , yk+1

i , sk+1
i , ρki )

End if
END
FOR i = 1, 2, . . . , p+ 1 //update C if necessary

If ρk+1
i 6= ρki
C ← C +Bi(ρ

k+1
i − ρki )

End if
END
k ← k + 1

END
output: x
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Algorithm 4 Adapt ρ and γ according to [Xu et al., 2017b] with some
modifications to save computational work. The constant εcorr is in the range
[0.1− 0.4] as suggested by [Xu et al., 2017b]. Quantities from the previous
call to adapt-rho-gamma have the indication k0. Actual implementation
computes and re-uses some of the inner products and norms.

Algorithm adapt-rho-gamma

input: vki , v
k+1
i , yk+1

i , sk+1
i , ρki

εcorr = 0.3
v̂k+1 = vki + ρki (y

k
i − s

k+1
i )

∆v̂ = v̂k+1
i − v̂k0

∆v = vk+1
i − vk0

∆ĥ = sk+1
i − sk0)

∆ĝ = −(yk+1
i − yk0)

αcorr = ∆ĥ>∆v̂
‖∆ĥ‖‖∆v̂‖

βcorr = ∆ĝ>∆v
‖∆ĝ‖‖∆v‖

If αcorr > εcorr

α̂MG = ∆ĥ>∆v̂
∆ĥ>∆ĥ

, α̂SD = ∆v̂>∆v̂
∆ĥ>∆v̂

, α̂ =

{
α̂MG if 2α̂MG > α̂SD

α̂SD − 0.5α̂MG if else
End
If βcorr > εcorr

β̂MG = ∆ĝ>∆v
∆ĝ>∆ĝ

, β̂SD = ∆v>∆v
∆ĝ>∆v

, β̂ =

{
β̂MG if 2β̂MG > β̂SD

β̂SD − 0.5β̂MG if else
End

{ρk+1, γk+1} =


{
√
α̂β̂, 1 + 2

√
α̂β̂

α̂+β̂
} if αcorr > εcorr & βcorr > εcorr

{α̂, 1.9} if αcorr > εcorr & βcorr ≤ εcorr

{β̂, 1.1} if αcorr ≤ εcorr & βcorr > εcorr

{ρk, 1.5} if αcorr ≤ εcorr & βcorr ≤ εcorr

set and save for next call to adapt-rho-gamma:
v̂k0 ← v̂k+1

i , vk0 ← vk+1
i ,

sk0 ← sk+1
i , yk0 ← yk+1

i

save vk+1
i , yk+1

i for next call to adapt-rho-gamma

output: ρk+1
i , γk+1

i
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cost as we will demonstrate in the numerical example of the next section.

To arrive at a workable multilevel implementation for Algorithm 3, we

need to concern ourselves with the initialization of ADMM-type iterations

and initial guesses for x and yi, vi for all i ∈ {1, . . . , p, p + 1}. After ini-

tialization of the coarsest grid with all zero vectors, we move to a finer grid

by interpolating x and all yi, vi. Since the solution estimate x ∈ RN always

refers to an image or a tensor, we are free to reshape and interpolate it to a

finer grid. The situation for vectors vi and yi is a bit more complicated, as

their dimensions depend on the corresponding Ai. To handle these, we do

a relatively simple interpolation.

Example. When Ai is a discrete derivative matrix, then the vectors vi

and yi live on a grid that we know at every level of the multilevel scheme. If

we have Ai = Dz ⊗ Ix, where Dz is the first-order finite-difference matrix as

in (4.8), we know that Ai ∈ R((nz−1)nx)×(nz×nx) and therefore vi ∈ R(nz−1)nx

and yi ∈ R(nz−1)nx . We can thus reshape the associated vectors vi and yi

as an image (in 2D) of size (nz − 1 × nx) and interpolate it to the finer

grid for the next level, working from coarse to fine. In 3D, we follow the

same approach. We also need a coarse version of m at each level: ml for

l = nlevels, nlevels − 1, . . . , 1. We simply obtain the coarse models by ap-

plying an anti-alias filter and subsampling the original m. In principle,

any subsampling and interpolation technique may be used in this multilevel

framework. Our numerical experiments interpolate to finer grids using the

simple nearest-neighbor method. Numerical experiments with other types

of interpolations did not show a reduction of the number of PARSDMM

iterations at the finest grid.

We decide the number of levels (nlevels) and the coarsening factor ahead

of time. Together with the original grid, these determine the grid at all

levels so we can set up the linear operators and proximal mappings at each

level. This set-up phase is a one time cost since its result is reused every

time we project a model m onto the intersection of constraint sets. The

additional computational costs of the multilevel scheme are the interpolation

of x and all yi, vi to a finer grid, but this happens only once per level and

not every ML-PARSDMM (Algorithm 5) iteration. So the computational
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overhead we incur from the interpolations is small compared to the speedup

of Algorithm 5.

Algorithm 5 Multilevel PARSDMM to compute the projection onto an
intersection using a multilevel strategy.

inputs:
nlevels //number of levels

l = {nlevels, nlevels − 1, 1}
gridl //grid info at each level l
ml //model to project at every level l
A1,l, A2,l, . . . , Ap+1,l //linear operators at every level

// norm/bound/cardinality/... projectors at each level:

proxfi,l,ρi(w) = PCi(w) for i = 1, 2, . . . , p
// proximal map for the squared distance fromm at each level:

proxfp+1,l,ρp+1
(w) = (ml + ρp+1w)/(1 + ρp+1)

//start at coarsest grid

FOR l = nlevels, nlevels − 1, . . . , 1
//solve on current grid:

(xl, {yi,l}, {vi,l}) = PARSDMM(ml, {Ai,l}, {proxfi,l,ρi}, xl, {yi,l}, {vi,l})
xl → xl−1 //interpolate to finer grid

FOR i = 1, 2, . . . , p+ 1
yi,l → yi,l−1 //interpolate to finer grid

vi,l → vi,l−1 //interpolate to finer grid

END
END
output: x at original grid (level 1)

4.4 Software and numerical examples

The software corresponding to this paper is available at https://github.com/

slimgroup. The main design principles of our code implementing the PARS-

DMM algorithm include (i) performance, it needs to scale to imposing mul-

tiple constraints on 3D models up to at least 3003 grid points; (ii) specializa-

tion to the specific and fixed problem structure (4.14); and (iii) flexibility to

work with multiple linear operators and projectors. Because of these design

choices, the user only needs to provide the model to project, m, and pairs

of linear operators and projectors onto simple sets:
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{(A1,PC1), (A2,PC2), . . . , (Ap,PCp)}. The software adds the identity matrix

and the proximal map for the distance squared from m. These are all com-

putational components required to solve intersection projection problems as

formulated in (4.16).

To reap benefits from modern programming language design, includ-

ing just-in-time compilation, multiple dispatch, and mixing distributed and

multi-threaded computations, we wrote our software package in Julia 0.6.

Our code uses parametric typing, which means that the same scripts can

run in Float32 (single) and Float64 (double) precision. As expected, most

components of our software run faster with Float32 with reduced memory

consumption. The timings in the following examples use Float32.

We provide scripts that the set up the linear operators and projectors

for regular grids in 2D and 3D. It is not necessary to use these scripts as

the solver is agnostic to the specific construction of the projectors or linear

operators. Table (4.1) displays the constraints we currently support. For ex-

ample, when the user requests the script to set up minimum and maximum

bounds on the discrete gradient in the z-direction of the model, the script

returns the discrete derivative matrix A = Ix⊗Dz and a function Pbounds(·)
that projects the input onto the bounds. The software currently supports the

identity matrix, matrices representing the discrete gradient and the opera-

tors that we apply matrix-free: the discrete cosine/Fourier/wavelet/curvelet

[Ying et al., 2005] transforms.

For the special case of orthogonal linear operators, we leave the linear

operator inside the set definition because we know the projection onto V
in closed form. For example, if V = {x | ‖Ax‖1 ≤ σ} with discrete Fourier

transform (DFT) matrix A ∈ CN×N , the projection is known in closed form

as PV(x) = A∗P‖·‖≤σ(Ax), where ∗ denotes the complex-conjugate transpose

and P‖·‖≤σ is the projection onto the `1-ball. We do this to keep all other

computations in PARSDMM (Algorithm 3) real, because complex-valued

vectors require more storage and will slow down most computations.

As an example of our code, we show how to project a 2D model m

onto the intersection of bound constraints and the set of models that have

monotonically increasing parameter values in the z-direction.
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descriptions set

bounds {m | l[i] ≤ m[i] ≤ u[i]}
transform-domain bounds {m | l[i] ≤ (Am)[i] ≤ b[i]}
transform-domain `1 {m | ‖Am‖1 ≤ σ}
transform-domain `2 {m | ‖Am‖2 ≤ σ}
transform-domain annulus {m | σl ≤ ‖Am‖2 ≤ σu}
transform-domain nuclear norm {m |

∑k
j=1 λ[j] ≤ σ},

Am = vec(
∑k

j=1 λ[j]ujv
>
j ) is the SVD.

transform-domain cardinality {m | card(Am) ≤ k}, k is a positive integer
transform-domain rank {m |Am = vec(

∑r
j=1 λ[j]ujv

>
j )}, r < min(nz, nx)

subspace constraints {m |m = Ac, c ∈ CM}

Table 4.1: Overview of constraint sets that the software currently sup-
ports. A new constraint requires the projector onto the set (with-
out linear operator) and a linear operator or equivalent matrix-
vector product together with its adjoint. Vector entries are in-
dexed as m[i].

using SetIntersectionProjection

#the following optional lines of

#code set up linear operators and projectors

#grid information ( (dz,dx),(nz,nx) )

comp_grid = compgrid( (25.0, 6.0), (341, 400) )

#initialize constraint information

constraint = Vector{SetIntersectionProjection.set_definitions}()

#set up bound constraints

m_min = 1500.0 #minimum velocity

m_max = 4500.0 #maximum velocity

set_type = "bounds" #bound constraint set

TD_OP = "identity" #identity in the set definition
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app_mode = ("matrix","") #bounds applied to the model as a matrix

custom_TD_OP = ([],false) #no custom linear operators

push!(constraint, set_definitions(set_type,TD_OP,m_min,m_max,app_mode,custom_TD_OP))

# #bounds on parameters in a transform-domain (vertical slope constraint)

m_min = 0.0

m_max = 1e6

set_type = "bounds"

TD_OP = "D_z" #discrete derivative in z-direction

app_mode = ("matrix","")

custom_TD_OP = ([],false)

push!(constraint, set_definitions(set_type,TD_OP,m_min,m_max,app_mode,custom_TD_OP))

options = PARSDMM_options() #get default options

#get projectors onto simple sets, linear operators, set information

(P_sub,TD_OP,set_Prop) = setup_constraints(constraint,comp_grid,Float32)

#precompute and distribute quantities once, reuse later

(TD_OP,B) = PARSDMM_precompute_distribute(TD_OP,set_Prop,comp_grid,options)

#project onto intersection

(x,log_PARSDMM) = PARSDMM(m,B,TD_OP,set_Prop,P_sub,comp_grid,options)

Our software also allows for simultaneous use of constraints that apply

to the 2D/3D model and constraints that apply to each column or row sepa-

rately, except for sets based on the singular value decomposition. The linear

operator remains the same if we define constraints for all rows, columns, or

both. The difference is that the projection onto a simple set is now applied

to each row/column independently in parallel via a multi-threaded loop.
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4.4.1 Parallel Dykstra versus PARSDMM

One of our main goals was to create an algorithm that computes projections

onto an intersection of sets that contains fewer manual tuning parameters,

stopping conditions, and that is also faster than black-box type projection

algorithms, such as parallel Dykstra’s algorithm (see Appendix C). To see

how the proposed PARSDMM algorithm compares to parallel Dykstra’s al-

gorithm, we need to set up a fair experimental setting that includes the sub-

problem solver in parallel Dykstra’s algorithm. Fortunately, if we use Adap-

tive Relaxed ADMM (ARADMM) [Xu et al., 2017b] for the projection sub-

problems of parallel Dykstra’s algorithm, both PARSDMM (Algorithm 3)

and Parallel Dykstra-ARADMM have the same computational components.

ARADMM also uses the same update scheme for the augmented Lagrangian

penalty and relaxation parameters as we use in PARSDMM. This similarity

allows for a comparison of the convergence as a function of the basic compu-

tational components. We manually tuned ARADMM stopping conditions

to achieve the best performance for parallel Dykstra’s algorithm overall.

The numerical experiment is the projection of a 2D geological model

(341 × 400 pixels) onto the intersection of three constraint sets that are of

interest to the seismic imaging examples by [Esser et al., 2016, Yong et al.,

2018], and in Chapter 3:

1. {m | σ1 ≤ m[i] ≤ σ2} : bound constraints

2. {m | ‖Am‖1 ≤ σ} with A = [(Ix ⊗ Dz)
> (Dx ⊗ Iz)>]> : anisotropic

total-variation constraints

3. {m | 0 ≤ ((Ix ⊗Dz)m)[i] ≤ ∞} : vertical monotonicity constraints

For these sets, the primary computational components are (i) matrix-

vector products in the conjugate-gradient algorithm. The system matrix

has the same sparsity pattern as A>A, because the sparsity patterns of

the linear operators in set number one and three overlap with the pattern

of A>A. Parallel Dykstra uses matrix-vector products with A>A, (Dx ⊗
Iz)
>(Dx⊗ Iz), and I in parallel. (ii) projections onto the box constraint set

and the `1-ball. Both parallel Dykstra’s algorithm and PARSDMM compute

103



these in parallel. (iii) parallel communication that sends a vector from

one to all parallel processes (xk+1 in Algorithm 3), and one map-reduce

parallel sum that gathers the sum of vectors on all workers (the right-hand

side for the xk+1 computation in Algorithm 3). The communication is the

same for PARSDMM and parallel Dykstra’s algorithm so we ignore it in the

experiments below.

Before we discuss the numerical results, we discuss some details on how

we count the computational operations mentioned above:

• Matrix-vector products in CG: At each PARSDMM iteration, we solve

a single linear system with the conjugate-gradient method. Paral-

lel Dykstra’s algorithm simultaneously computes three projections by

running three instances of ARADMM in parallel. The projections onto

sets two and three solve a linear system at every ARADMM iteration.

For each parallel Dykstra iteration, we count the total number of se-

quential CG iterations, which is determined by the maximum number

of CG iterations for either set number two or three.

• `1-ball projections: PARSDMM projects onto the `1 ball once per

iteration. Parallel Dykstra projects (number of parallel Dykstra iter-

ations) × (number of ARADMM iterations for set number two) times

onto the `1 ball. Because `1-ball projections are computationally more

intensive (we use the algorithm from Duchi et al. [2008]) compared

to projections onto the box (element-wise comparison) and also less

suitable for multi-threaded parallelization, we focus on the `1-ball pro-

jections.

The results in Figure 4.1 show that PARSDMM requires much fewer CG

iterations and `1-ball projections to achieve the same relative set feasibility

error in the transform-domain as defined in equation (4.24). In contrast

to the curves corresponding to parallel Dykstra’s algorithm, we see that

PARSDMM converges in an oscillatory fashion, which is caused by changing

the relaxation and augmented-Lagrangian penalty parameters.

Because non-convex sets are an important application for us, we compare

the performance for a non-convex intersection as well:
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Figure 4.1: Relative transform-domain set feasibility (equation 4.24)
as a function of the number of conjugate-gradient iterations and
projections onto the `1 ball. This figure also shows relative
change per iteration in the solution x.

1. {m | σ1 ≤ m[i] ≤ σ2}: bound constraints

2. {m|(Ix⊗Dz)m = vec(
∑r

j=1 λ[j]ujv
∗
j )}, where r < min(nz, nx), λ[j] are

the singular values, and uj , vj are singular vectors: rank constraints

on the vertical gradient of the image

We count the computational operations in the same way as in the pre-

vious example, but this time the computationally most costly projection is

the projection onto the set of matrices with limited rank via the singular

value decomposition. The results in Figure 4.2 show that the convergence of

parallel Dykstra’s algorithm almost stalls: the solution estimate gets closer

to satisfying the bound constraints, but there is hardly any progress to-

wards the rank constraint set. PARSDMM does not seem to suffer from

non-convexity in this particular example.

We used the single-level version of PARSDMM such that we can compare

the computational cost with Parallel Dykstra. The PARSDMM results in

this section are therefore pessimistic in general, as the multilevel version can

offer additional speedups, which we show next.
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Figure 4.2: Relative transform-domain set feasibility (equation 4.24)
as a function of the number of conjugate-gradient iterations and
projections onto the set of matrices with limited rank via the
SVD. This figure also shows relative change per iteration in the
solution x.

4.4.2 Timings for 2D and 3D projections

The proposed PARSDMM algorithm (algorithm 3) is suitable for small 2D

models (≈ 502 pixels) all the way up to large 3D models (at least 3003). To

get an idea about solution times versus model size, as well as how beneficial

the parallelism and multilevel continuation are, we show timings for projec-

tions of geological models onto two different intersections for the four modes

of operation: PARSDMM, parallel PARSDMM, multilevel PARSDMM, and

multilevel parallel PARSDMM. As we mentioned, the multilevel version has

a small additional overhead compared to single-level PARSDMM because of

one interpolation procedure per level. Parallel PARSDMM has communica-

tion overhead compared to serial PARSDMM. However, serial PARSDMM

still uses multi-threading for projections, the matrix-vector product in the

conjugate-gradient method, and BLAS operations, but the yi and vi com-

putations in Algorithm 3 remain sequential for every i = 1, 2, · · · , p, p + 1,

contrary to parallel PARSDMM. We carry our computations out on a dedi-

cated cluster node with 2 CPUs per node with 10 cores per CPU (Intel Ivy

Bridge 2.8 GHz E5-2680v2) and 128 GB of memory per node.

The following sets are used in Chapter 3 to regularize a geophysical

inverse problem and form the intersection for our first test case:
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Figure 4.3: Timings for a 2D and 3D example where we project a ge-
ological model onto the intersection of bounds, lateral smooth-
ness, and vertical monotonicity constraints.

1. {m | σ1 ≤ m[i] ≤ σ2} : bound constraints

2. {m | − σ3 ≤ ((Dx ⊗ Iz)m)[i] ≤ σ3}: lateral smoothness constraints.

There are two of these constraints in the 3D case: for the x and y

direction separately.

3. {m | 0 ≤ ((Ix ⊗Dz)m)[i] ≤ ∞} : vertical monotonicity constraints

The results in Figure 4.3 show that the multilevel strategy is much faster

than the single-level version of PARSDMM. The multilevel overhead costs

are thus small compared to the speedup. It also shows that, as expected,

the parallel versions require some communication time, so the problems need

to be large enough for the parallel version of PARSDMM to offer speedups

compared to its serial counterpart.

The previous example uses four constraint sets that each use a different

linear operator, but all of them are a type of bound constraint. The yi

computation (projection onto a simple set in closed form) in PARSDMM

(Algorithm 3) is therefore fast for all sets. As a result, parallel PARSDMM

should lead to a speedup compared to serial computations of all yi, as we

verify in Figure 4.3. We now show an example where one of the sets uses

a much more time-consuming yi computation than the other set, which
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Figure 4.4: Timings for a 3D example where we project a geological
model onto the intersection of bound constraints and an `1-
norm constraint on the vertical derivative of the image. Parallel
computation of all yi and vi does not help in this case, because
the `1-norm projection is much more time consuming than the
projection onto the bound constraints. The time savings for
other computations in parallel are then canceled out by the
additional communication time.

leads to the expectation that parallel PARSDMM only offers minor speedups

compared to serial PARSDMM. The second constraint set onto which we

project is the intersection of:

1. {m | σ1 ≤ m[i] ≤ σ2} : bound constraints

2. {m | ‖(Ix ⊗ Iy ⊗Dz)m‖1 ≤ σ3}, with a constraint that is 50% of the

true model: σ3 = 0.5‖(Ix ⊗ Iy ⊗ Dz)m∗‖1 : directional anisotropic

total-variation

Figures 4.3 and 4.4 show that parallel computations of the yi and vi

vectors in PARSDMM is not always beneficial, depending on the number of

constraint sets, model size, and time it takes to project onto each set.

4.4.3 Geophysical parameter estimation with constraints

Seismic full-waveform inversion (FWI) estimates rock properties (acoustic

velocity in this example) from seismic signals (pressure) measured by hy-
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drophones. FWI is a partial-differential-equation (PDE) constrained opti-

mization problem where after eliminating the PDE constraint, the simulated

data, dpredicted(m) ∈ CM , are connected nonlinearly to the unknown model

parameters, m ∈ RN . We assume that we know the source and receiver lo-

cations, as well as the source function. A classic example of an objective for

FWI is the nonlinear least-squares misfit f(m) = 1/2‖dobs−dpredicted(m)‖22,

which we use for this numerical experiment.

FWI is a problem hampered by local minima. Empirical evidence in

[Esser et al., 2016, Yong et al., 2018] and Chapters 2 and 3 suggests that we

can mitigate issues with parasitic local minima by insisting that all model

iterates be elements of the intersection of multiple constraint sets. This

means that we add regularization to the objective f(m) : RN → R in the

form of multiple constraints—i.e., we have

min
m

f(m) s.t. m ∈ V =

p⋂
i=1

Vi. (4.27)

While many choices exist to solve this constrained optimization problem, we

use the spectral projected gradient (SPG) algorithm with a non-monotone

line search [Birgin et al., 1999] to solve the above problem. SPG uses infor-

mation from the current and previous gradient of f(m) to approximate the

action of the Hessian of f(mk) with the scalar α: the Barzilai-Borwein step

length. At iteration k, SPG updates the model iterate as follows:

mk+1 = (1− γ)mk − γPV(mk − α∇mf(mk)), (4.28)

where the non-monotone line search determines γ ∈ (0, 1]. This line-search

requires a lower function value than the maximum function value of the pre-

vious five iterations for our numerical experiment. We see that the model

iterate mk is, because of the projection onto V, feasible at every iteration.

Moreover, mk remains feasible for line-search steps to estimate γ if we as-

sume the initial point to be feasible and use convex sets only. In this case,

the model iterates mk and trial points form a line segment. Because both

endpoints are in a convex set, the mk+1 remain feasible. As a result, we only

109



need a single projection onto the intersection of the different constraints (PV)

for each SPG iteration. We use PARSDMM (Algorithm 3) and multilevel

PARSDMM (Algorithm 5) to compute this projection. The total number

of SPG iterations plus line-search steps is limited to the relatively small

number of ten, because these require the solution of multiple PDEs, which

is computationally intensive, especially in 3D.

The experimental setting is as follows: The Helmholtz equation models

the wave propagation in an acoustic model. The data acquisition system is

a vertical-seismic-profiling experiment with sources at the surface and re-

ceivers in a well, see Figure 4.5. All boundaries are perfectly-matched-layers

(PML) that absorb outgoing waves as if the model is spatially unbounded.

The challenges that we address by constraining the model parameters are:

one-sided ‘source illumination’ that often leads to spurious artifacts in the

source-receiver direction, a limited frequency range (3− 10 Hertz), and the

non-convexity of the data-misfit f(m). We use the software by Da Silva and

Herrmann [2017] to simulate seismic data and compute f(m) and ∇mf(m).

This example illustrates that (a) adding multiple constraints results in

better parameter estimation compared to one or two constraint sets for this

example; (b) non-convex constraints connect more directly to certain types

of prior knowledge about the model than convex sets do; (c) we can solve

problems with non-convex sets reliably enough such that the results almost

satisfy all constraints; (d) multilevel PARSDMM for computing projections

onto non-convex intersections performs better empirically than the single-

level scheme.

The prior knowledge consists of: (a) minimum and maximum velocities

(2350 − 2650 m/s); (b) The anomaly is rectangular , but we do not know

the size, aspect ratio, or location.

Before we add multiple non-convex constraints, let us look at what

happens with simple bound and total-variation constraints. Figure 4.5

shows the true model, initial guess, and the estimated models using var-

ious combinations of constraints. The data acquisition geometry causes the

model estimate with bound constraints to be an elongated diagonal anomaly

that is incorrect in terms of size, shape, orientation, and parameter values.
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Anisotropic total-variation (TV) seems like a good candidate to promote

‘blocky’ model structures, but it may be difficult to select a total-variation

constraint, i.e., the size of the TV-ball. The result in Figure 4.5(d) shows

that even in the unusual case that we know and use a TV constraint equal

to the TV of the true model, we obtain a model estimate that shows minor

improvements compared to the estimation with bounds only. While many

of the oscillations outside of the rectangular anomaly are damped, the shape

of the anomaly itself is still far from the truth.

As we will demonstrate, the inclusion of multiple non-convex cardinality

and rank constraints help the parameter estimation in this example. From

the prior information that the anomaly is rectangular and aligned with the

domain boundaries, we deduce that the rank of the model is equal to two. We

also know that the cardinality of the discrete gradient of each row and each

column is less than or equal to two as well. If we assume that the anomaly is

not larger than half the total domain extent in each direction, we know that

the cardinality of the discrete derivative of the model (in matrix format) is

not larger than the number of grid points in each direction. To summarize,

the following constraint sets follow from the prior information:

1. {x | card((Dz ⊗ Ix)x) ≤ nx}
2. {x | card((Iz ⊗Dx)x) ≤ nz}
3. {x | rank(x) ≤ 3}
4. {x | 2350 ≤ x[i] ≤ 2650 ∀i}
5. {x | card(DxX[i, :]) ≤ 2 for i ∈ {1, 2, . . . , nz}}, X[i, :] is a row of the

2D model

6. {x | card(DzX[:, j]) ≤ 2 for j ∈ {1, 2, . . . , nx}}, X[:, j] is a column of

the 2D model

We use slightly overestimated rank and matrix cardinality constraints

compared to the true model to mimic the more realistic situation that not

all prior knowledge was correct. The results in Figure 4.5 use single-level

PARSDMM to compute projections onto the intersection of constraints, and

show that an intersection of non-convex constraints and bounds can lead to
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improved model estimates. Figure 4.5(e) is the result of working with con-

straints [1, 2, 4], Figure 4.5(f) uses constraints [1, 2, 4, 5, 6], and Figure 4.5(g)

uses all constraints [1, 2, 3, 4, 5, 6]. The result with rank constraints and both

matrix and row/column-based cardinality constraints on the discrete gradi-

ent of the model is the most accurate in terms of the recovered anomaly

shape. All results in Figure 4.5 that work with non-convex sets are at least

as accurate as the result obtained with the true TV in terms of anomaly

shape. Another important observation is that all non-convex results esti-

mate a lower-than-background velocity anomaly, although not as low as the

true anomaly. Contrary, the models obtained using convex sets show in-

correct higher-than-background velocity artifacts in the vicinity of the true

anomaly location.

Figure 4.6 is the same as Figure 4.5, except that we use multilevel PARS-

DMM (Algorithm 5) with three levels and a coarsening of a factor two per

level. Comparing single level with multilevel computations of the projection,

we see that the multilevel version of PARSDMM performs better in general.

In Figures 4.5(e) and 4.5(f), we see that the result of single-level PARS-

DMM inside SPG does not exactly satisfy constraint set numbers 5 and 6,

because the cardinality of the derivative of the model in x and z directions

is not always less than or equal to two for each row and column. The results

from multilevel PARSDMM inside SPG, Figure 4.6(a) and 4.6(b), satisfy

the constraints on the cardinality of the derivative of the image per row and

column. As a result, the models are closer to the rectangular shape of the

true model. This is only one example with a few different constraint com-

binations so we cannot draw general conclusions about the performance of

single versus multilevel schemes, but the empirical findings are encouraging

and in line with observations by Macdonald and Ruthotto [2018].

4.4.4 Learning a parametrized intersection from a few
training examples

In the introduction, we discussed how to formulate inverse problems as a

projection or feasibility problem (4.4). With the following two examples we

show that our algorithm (4.15) is a good candidate to solve inverse problems
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Figure 4.5: True, initial, and estimated models with various con-
straint combinations for the full-waveform inversion example.
Crosses and circles represent sources and receivers, respectively.
All projections inside the spectral projected gradient algorithm
are computed using single-level PARSDMM.
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Figure 4.6: Estimated models with various constraint combinations
for the full-waveform inversion example. Crosses and circles
represent sources and receivers, respectively. All projections
inside the spectral projected gradient algorithm are computed
using coarse-to-fine multilevel PARSDMM with three levels and
a coarsening of a factor two per level.

as a projection or feasibility problem, because we mitigate rapidly increasing

computation times for problems with many sets, by taking the similarity be-

tween linear operators in set definitions into account. Of course, we can only

use multiple constraint sets if we have multiple pieces of prior information.

Combettes and Pesquet [2004] present a simple solution and note that for

15 out of 20 investigated data-sets, 99% of the images have a total-variation

within 20% of the average total variation of the data-set. The average total-

variation serves as a robust constraint that typically leads to good results.

Here we follow the same reasoning, but we will work with many constraint

sets that we learn from a few example images. To summarize, our learning

and solution strategy is as follows:

1. Observe the constraint parameters of various constraints in various

transform-domains for all training examples (independently in parallel

for each example and each constraint).

2. Add a data-fit constraint to the intersection.

3. The solution of the inverse problem is the projection of an initial guess
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m onto the learned intersection of sets

min
x,{yi}

1

2
‖x−m‖22 +

p−1∑
i=1

ιCi(yi)+ιCdatap
(yp) s.t.

Aix = yi

Fx = yp
, (4.29)

where F is a linear forward modeling operator and we solve this prob-

lem with Algorithm 3.

Before we proceed to the examples, it is worth mentioning the main

advantages and limitations of this strategy. Because all set definitions are

independent of all other sets, there are no penalty/weight parameters, and

we avoid hand-tuning the constraint definitions. Unlike neural networks

for imaging inverse problems that often need large numbers of training ex-

amples, we can observe ‘good’ constraints from just one or a few example

images. Methods that do not require training, such as basis-pursuit type

formulations [e.g., Lustig et al., 2007, Candès and Recht, 2009, van den Berg

and Friedlander, 2009, Becker et al., 2011, Aravkin et al., 2014], often min-

imize the `1 norm or nuclear norm of transform-domain coefficients (total-

variation, wavelet) of an image subject to a data-fit constraint. However,

without learning, these methods require hand picking a suitable transform

for each class of images. We will work with many transform-domain opera-

tors simultaneously, so that at least some of the constraint/linear operator

combinations will describe uncorrupted images with small norms/bounds/-

cardinality, but not noisy/blurred/masked images. Note that we are not

learning any dictionaries, but work with pre-defined transforms such as the

Fourier basis, wavelets, and linear operators based on discrete gradients. A

limitation of the constraint learning strategy that we use here is that it does

not generalize very well to other classes of images and dataset.

For both of the examples we observe the following constraint parameters

from exemplar images:

1. {m | σ1 ≤ m[i] ≤ σ2} (upper and lower bounds)

2. {m |
∑k

j=1 λ[j] ≤ σ3} with m = vec(
∑k

j=1 λ[j]ujv
∗
j ) is the SVD of the

image (nuclear norm)
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3. {m |
∑k

j=1 λ[j] ≤ σ4}, with (Ix ⊗ Dz)m = vec(
∑k

j=1 λ[j]ujv
∗
j ) is the

SVD of the vertical derivative of the image (nuclear norm of discrete

gradients of the image, total-nuclear-variation). Use the same for the

x-direction.

4. {m | ‖Am‖1 ≤ σ5} with A = ((Ix ⊗ Dz)
> (Dx ⊗ Iz)>)> (anisotropic

total-variation)

5. {m | σ6 ≤ ‖m‖2 ≤ σ7} (annulus)

6. {m | σ8 ≤ ‖Am‖2 ≤ σ9} with A = ((Ix ⊗Dz)
> (Dx ⊗ Iz)>)> (annulus

of the discrete gradients of the training images)

7. {m | ‖Am‖1 ≤ σ10} with A = discrete Fourier transform (`1-norm of

DFT coefficients)

8. {m | − σ11 ≤ ((Dx ⊗ Iz)m)[i] ≤ σ12} (slope-constraints in x and z

direction, bounds on the discrete gradients of the image)

9. {m | l[i] ≤ (Am)[i] ≤ u[i]}, with A = discrete cosine transform (point-

wise bound-constraints on DCT coefficients)

These are nine types of convex and non-convex constraints on the model

properties (11 sets passed to PARSDMM because sets three and eight are

applied to the two dimensions separately). For data-fitting, we add a point-

wise constraint, {x | l ≤ (Fx − dobs) ≤ u} with a linear forward model

F ∈ RM×N .

Joint deblurring-denoising-inpainting

The goal of the first example is to recover a [0− 255] grayscale image from

20% observed pixels of a blurred image (25 pixels known motion blur), where

each observed data point also contains zero-mean random noise in the in-

terval [−10 − 10]. The forward operator F is thus a subsampled banded

matrix (restriction of an averaging matrix). As an additional challenge, we

do not assume exact knowledge of the noise level and work with the over-

estimation [−15−15]. The data set contains a series of images from ‘Planet

Labs PlanetScope Ecuador’ with a resolution of three meters, available at

openaerialmap.org. There are 35 patches of 1100× 1100 pixels for training,

some of which are displayed in Figure 4.7.
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Figure 4.7: A sample of 8 out of 35 training images.

We compare the results of the proposed PARSDMM algorithm with the

11 learned constraints, with a basis pursuit denoise (BPDN) formulation.

Basis-pursuit denoise recovers a vector of wavelet coefficients, c, by solving

minc ‖c‖1 s.t. ‖FW ∗c− dobs‖2 ≤ σ (BPDN-wavelet) with the SPGL1 tool-

box [van den Berg and Friedlander, 2009]. The matrix W represents the

wavelet transform: Daubechies Wavelets as implemented by the SPOT lin-

ear operator toolbox (http://www.cs.ubc.ca/labs/scl/spot/index.html) and

computed with the Rice Wavelet Toolbox (RWT, github.com/ricedsp/rwt).

In Figure 4.8 we see that an overestimation of σ in the BPDN formulation

results in oversimplified images, because the `2-ball constraint is too large

which leads to a coefficient vector c that has an `1-norm that is smaller

than the `1-norm of the true image. The values for l and u in the data-

fit constraint {x | l ≤ (Fx − dobs) ≤ u}, are also too large. However, the

results from the projection onto the intersection of multiple constraints suffer

much less from overestimated noise levels, because there are many other

constraints that control the model properties. The results in Figure 4.8

show that the learned set-intersection approach achieves a higher PSNR for

all evaluation images compared to the BPDN formulation.
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Figure 4.8: Reconstruction results from 80% missing pixels of an im-
age with motion blur (25 pixels) and zero-mean random noise
in the interval [−10, 10]. Results that are the projection onto
an intersection of 12 learned constraints sets with PARSDMM
are visually better than BPDN-wavelet results.
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Image desaturation

To illustrate the versatility of the strategy, algorithm and constraint sets

from the previous example, we now solve an image desaturation problem for

a different data set. The only two things we need to change are the constraint

set parameters, which we observe from new training images (Figure 4.9),

as well as a different linear forward operator F . The data set contains

image patches (1500 × 1250 pixels) from the ‘Desa Sangaji Kota Ternate’

image with a resolution of 11 centimeters, available at openaerialmap.org.

The corrupted observed images are saturated grayscale and generated by

clipping the pixel values from 0 − 60 to 60 and from 125 − 255 to 125, so

there is saturation on both the dark and bright pixels. If we have no other

information about the pixels at the clipped value, the desaturation problem

implies the point-wise bound constraints [e.g., Mansour et al., 2010]
0 ≤ x[i] ≤ 60 if dobs[i] = 60

x[i] = dobs[i] if 60 ≤ dobs[i] ≤ 125

125 ≤ x[i] ≤ 255 if dobs[i] = 125

. (4.30)

The forward operator is thus the identity matrix. We solve problem (4.29)

with these point-wise data-fit constraints and the model property constraints

listed in the previous example.

Figure 4.10 shows the results, true and observed data for four evaluation

images. Large saturated patches are not desaturated accurately everywhere,

because they contain no non-saturated observed pixels that serve as ‘anchor’

points.

Both the desaturation and the joint deblurring-denoising-inpainting ex-

ample show that PARSDMM with multiple convex and non-convex sets

converges to good results, while only a few training examples were sufficient

to estimate the constraint set parameters. Because of the problem formula-

tion, algorithms, and simple learning strategy, there were no parameters to

hand-pick.
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Figure 4.9: A sample of 8 out of 16 training images.

4.5 Discussion and future research directions

We developed algorithms to compute projections onto intersections of mul-

tiple sets that help us setting up and solving constrained inverse problems.

Our design choices, together with the constrained formulation, minimize the

number of parameters that we need to hand-pick for the problem formula-

tion, algorithms, and regularization. Our software package

SetIntersectionProjection should help inverse problem practitioners to

test various combinations of constraints for faster evaluation of their strate-

gies to solve inverse problems. Besides practicality, we want our work to

apply to not just toy problems, but also to models on larger 3D grids. We

achieved this via automatic adjustment of scalar algorithm parameters, par-

allel implementation, and multilevel acceleration. There are some limita-

tions, but also opportunities to increase computational performance that we

will now discuss.

Regarding the scope of the SetIntersectionProjection software pack-

age, it is important to emphasize that satisfying a constraint for our appli-

cations in imaging inverse problems is different from solving general (non-

convex) optimization problems. When we refer to ‘reliably’ solving a non-
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Figure 4.10: Reconstruction results from recovery from saturated im-
ages as the projection onto the intersection of 12 constraint
sets.

convex problem, we are satisfied with an algorithm that usually approxi-

mates the solution well. For example, if we seek to image a model m that

has k discontinuities, we add the constraint {m | card(Dm) ≤ k} where D is

a derivative operator. A satisfying solution for our applications has k large

vector entries, whereas all others are small. We do not need to find a vector

that has a cardinality of exactly k, because the estimated model is the same

for practical purposes if the results are assessed qualitatively/visually, or

where the expected resolution is much lower than the fine details we could

potentially improve. Moreover, the forward operator for the inverse problem
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often is not sensitive to small changes in the model, and we do not benefit

from spending much more computational time trying to find a more accu-

rate solution to the non-convex problem. Besides the multilevel projection

and automatic adjustment of augmented-Lagrangian parameters that we al-

ready use, [Diamond et al., 2018] present several other heuristics that can

improve the solution of non-convex problems in the context of ADMM-based

algorithms. Future work could test if these heuristics are computationally

feasible for our often large-scale problems and if they cooperate with our

other heuristics.

The proposed algorithms are currently set up for general sparse, sparse

and banded, and orthogonal matrices such as the discrete Fourier transform.

A general and non-orthogonal dense matrix, Ai, will slow down the solution

of the linear system with
∑p+1

i=1 A
>
i Ai, and is therefore not supported. How-

ever, if the dense matrix is flat, Ai ∈ RM×N with M � N , such as a

learned transform (dictionary), we can use this as a subspace constraint.

This means that the model parameters m ∈ RN are an element of the set

{m |m = Aic, c ∈ RN} with coefficient vector c. The projection onto this set

is known in closed form, and we do not move the dense linear operator out

of the set and into the normal equations in the x-minimization step of (4.20)

because A>i Ai would become a large and dense matrix.

Besides the limitations and scope of this work, we highlight two ways how

we can reduce computation times for Algorithm 3 and its multilevel version.

First, we recognize that our algorithms use ADMM as its foundation, which

is a synchronous algorithm. This means that the computations of the pro-

jections (y-update) in parallel are as slow as the most time-consuming pro-

jection. Without fundamentally changing the algorithms to asynchronous

or randomized projection methods, we can take a purely software-based ap-

proach. Because we compute projections in parallel, where each projection

uses several threads, we are free to reallocate threads from the fastest pro-

jection to the slowest and reduce the total computational time.

A second computational component that may be improved is the inexact

linear systems solve with the conjugate-gradient (CG) method. We do not

use a preconditioner at the moment. Preliminary tests with a simple diag-
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onal (Jacobi) preconditioner or multigrid V-cycle did reduce the number of

CG iterations, but not the running time for CG in general. There are a few

challenges we face when we design a preconditioner: (i) users may select

a variety of linear operators (ii) the system matrix is the weighted sum of

multiple linear systems in normal equation form, where the weights may

change every two PARSDMM iterations (iii) the number of CG iterations

varies per PARSDMM iteration and is often less than ten, which makes

it hard for preconditioners to reduce the time consumption if they require

some computational overhead or setup cost.

Finally we mention how our software package can work cooperatively

with recent developments in plug-and-play regularizers [Venkatakrishnan

et al., 2013]. The general idea is to use image processing techniques such as

non-local means and BM3D, or pre-trained neural networks [Zhang et al.,

2017, Bigdeli and Zwicker, 2017, Fan et al., 2017, Chang et al., 2017, Ag-

garwal et al., 2018, Buzzard et al., 2018], as a map g(x) : RN → RN that

behaves like a proximal operator or projector. Despite the fact that these

plug-and-play algorithms do not generally share non-expansiveness proper-

ties with projectors [Chan et al., 2017], they are successfully employed in

optimization algorithms based on operator-splitting. In our case, we use a

neural network as the projection operator with the identity matrix as as-

sociated linear operator. In this way we can combine data-constraints and

other prior information with a network. A potential challenge with the plug-

and-play concept for constrained optimization is the difficulty to verify that

the intersection of constraints is effectively non-empty, i.e., can g(x) map

to points in the intersection of the other constraint sets? Some preliminary

tests showed encouraging results and we will explore this line of research

further.

4.6 Conclusions

We developed novel algorithms and the corresponding ‘SetIntersectionPro-

jection’ software for the computation of projections onto the intersection of

multiple constraint sets. These intersection projections are an important
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tool for the regularization of inverse problems. They may be used as the

projection part of projected gradient/(quasi-)Newton algorithms. Projec-

tions onto an intersection also solve set-based formulations for linear image

processing problems, possibly combined with simple learning techniques to

extract set definitions from example images. Currently available algorithms

for the projection onto intersections of sets are efficient if we know the pro-

jections onto each set in closed form. However, many sets of interest include

linear operators that require other algorithms to solve sub-problems. The

presented methods and software are designed to work with multiple con-

straint sets based on small 2D, as well as larger 3D models. We enhance

computational performance by specializing the software for projection prob-

lems, exploiting different levels of parallelism on multi-core computing plat-

forms, automatic selection of scalar (acceleration) parameters, and a coarse-

to-fine grid multilevel implementation. The software is practical, also for

non-expert users, because we do not need manual step-size selection or re-

lated operator norm computations and the algorithm inputs are pairs of

linear operators and projectors which the software also generates. Another

practical feature is the support for simultaneous set definitions based on

the entire image/tensor and each slice/row/column. Because we focus on

multiple constraints, there is less of a need to choose the ‘best’ constraint

with the ‘best’ linear operator/transform for a given inverse problem. More

constraints are not much more difficult to deal with than a one or two con-

straints, also in terms of computational cost per iteration. We demonstrated

the versatility of the presented algorithms and software using examples from

partial-differential-equation based parameter estimation and image process-

ing. These examples also show that the algorithms perform well on problems

that include non-convex sets.
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Chapter 5

Minkowski sets for the

regularization of inverse

problems.

5.1 Introduction

The inspiration for this work is twofold. First, we want to build on the

success of regularization with intersections of constraint sets and projection

methods, see [Gragnaniello et al., 2012, Pham et al., 2014a,b, Smithyman

et al., 2015, Esser et al., 2016, Yong et al., 2018], and the examples pre-

sented in Chapters 2, 3, and 4. These works regularize a parameter esti-

mation problem minm f(m) for f : RN → R, by constraining the model m

to an intersection of p convex and possibly non-convex sets,
⋂p
i=1 Ci. The

corresponding optimization problem reads minm f(m) s.t. m ∈
⋂p
i=1 Ci with

m ∈ RN the vector of model parameters. In the references mentioned above,

this type of problem is successfully solved with projection-based algorithms.

However, prior knowledge represented as a single set or as an intersection of

different sets may not capture all we know. For instance, if the model con-

tain oscillatory as well as blocky features. Because these are fundamentally

different properties, working with one or multiple constraint sets alone may
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not able to express the simplicity of the entire model.

Motivated by ideas from morphological component analysis (MCA, Os-

her et al. [2003]; Schaeffer and Osher [2013]; Starck et al. [2005]; Ono et al.

[2014]) and robust or sparse principal component analysis (RPCA, Candès

et al. [2011]; Gao et al. [2011a]; Gao et al. [2011b]), we consider an addi-

tive model structure. CTD/MCA exploit this structure by decomposing m

into two or more components—e.g., into a blocky cartoon-like component

u ∈ RN and an oscillatory component v ∈ RN . For this purpose, a penalty

method is often used stating the decomposition problem as

min
u,v
‖m− u− v‖+

α

2
‖Au‖+

β

2
‖Bv‖. (5.1)

While this method has been successful, it requires careful choices for the

penalty parameters α > 0 and β > 0. These parameters determine how

‘much’ of m ends up in each component, but also depend on the noise level.

In addition, the value of these parameters relates to the choices for the

linear operators A ∈ CM1×N and B ∈ CM2×N . When working with multiple

constraints, we have seen that avoiding penalty parameters is more practical.

Decomposition problems suggest the same, as the number of regularizers

involved is likely to be even larger.

To handle situations where the model contains two or more morphologi-

cal components, we explore the use of Minkowski sets for regularizing inverse

problems. For this purpose, we require that the vector of model parameters,

m, is an element of the Minkowski set V, or vector sum of two sets C1 and

C1, which is defined as

V ≡ C1 + C1 = {m = u+ v | u ∈ C1, v ∈ C2}. (5.2)

A vector m is an element of V if it is the sum of vectors u ∈ C1 and v ∈ C2.

Each set describes particular model properties for each component. These

include total-variation, sparsity in a transform domain (Fourier, wavelets,

curvelets, shearlets) or matrix rank. For practical reasons, we assume that

all sets, sums of sets, and intersections of sets are non-empty, which implies
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that our optimization problems have at least one solution. Moreover, we

will use the property that the sum of p sets Ci is convex if all Ci are convex

[Hiriart-Urruty and Lemaréchal, 2012, Page 24]. We apply our set-based

regularization with the Euclidean projection operator:

PV(m) ∈ arg min
x

1

2
‖x−m‖22 s.t x ∈ V. (5.3)

This projection allows us to use Minkowski constraint sets in algorithms

such as (spectral) projected gradient (SPG, Birgin et al. [1999]), projected

quasi-Newton [PQN, Schmidt et al., 2009], projected Newton algorithms

[Bertsekas, 1982, Schmidt et al., 2012], and proximal-map based algorithms

if we include the Minkowski constraint as an indicator function. We define

this indicator function for a set V as

ιV(m) =

0 if m ∈ V,

+∞ if m /∈ V,
(5.4)

and the proximal map for a function g(m) : RN → R∪{+∞} as proxγ,g(m) =

arg minx g(x) + γ
2‖x−m‖

2
2, with γ > 0. The proximal map for the indicator

function of a set is the projection: proxγ,ιV (m) = PιV (m).

While the above framework is powerful, it lacks certain critical features

needed for solving problems that involve physical parameters. For instance,

there is, in general, no guarantee that the sum of two or more components

lies within lower and upper bounds or satisfies other crucial constraints. It

is also not straightforward to include multiple pieces of prior information for

each component.

5.1.1 Related work

The above introduced decomposition strategies of morphological component

analysis or cartoon-texture (MCA, Osher et al. [2003]; Schaeffer and Osher

[2013]; Starck et al. [2005]; Ono et al. [2014]) and robust or sparse principal

component analysis (RPCA, Candès et al. [2011]; Gao et al. [2011a]; Gao

et al. [2011b]) share the additive model construction with multiscale decom-
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positions in image processing [e.g., Meyer, 2001, Tadmor et al., 2004]. While

each of the sets that appear in a Minkowski sum can describe a particular

scale, this is not our primary aim or motivation. We use the summation

structure to build more complex models out of simpler ones, more aligned

with cartoon-texture decomposition and robust principal component analy-

sis.

Projections onto Minkowski sets also appear in computational geome-

try, collision detection, and computer-aided design [e.g., Dobkin et al., 1993,

Varadhan and Manocha, 2006, Lee et al., 2016], but the problems and appli-

cations are different. In our case, sets describe model properties and prior

knowledge in RN . In computational geometry, sets are often the vertices

of polyhedral objects in R2 or R3 and do not come with closed-form ex-

pressions for projectors or the Minkowski sum. We do not need to form

the Minkowski set explicitly, and we show that projections onto the set are

sufficient to regularize inverse problems.

5.1.2 Contributions and outline

We propose a constrained regularization approach suitable for inverse prob-

lems with an emphasis on physical parameter estimation. For our appli-

cations, this implies that we need to work with multiple constraints for

each component while offering assurances that the sum of the components

also adheres to certain constraints. For this purpose, we introduce gener-

alized Minkowski sets and a formulation void of penalty parameters. As

[Gragnaniello et al., 2012, Pham et al., 2014b,a, Smithyman et al., 2015,

Esser et al., 2016, Yong et al., 2018] and earlier chapters in this thesis use

projection-based optimization methods, we introduce projections on these

generalized sets, followed by a discussion on important algorithmic details

and the formulation of inverse problems based on these sets.

Because we are working with constraints, we do not have to worry about

selecting trade-off parameters. With the projections, we can also ensure

that the model parameters for each iteration of the inversion are within

a generalized Minkowski set. As before, we are in a position to relax the
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constraints gradually. This idea proved to be a successful tactic to solve non-

convex geophysical inverse problems. (See [Smithyman et al., 2015, Esser

et al., 2016, Yong et al., 2018] and previous chapters.)

For the software implementation, we extend the open-source Julia soft-

ware package ‘SetIntersectionProjection’ presented in Chapter 4. The soft-

ware is suitable for small 2D models, as well as for larger 3D geological

models or videos, as we will show in the numerical examples section using

seismic parameter estimation and video processing examples. These ex-

amples also demonstrate that the proposed problem formulation, algorithm,

and software allow us to define constraints based on the entire 2D/3D model,

but also simultaneously on slices/rows/columns/fibers of that model. This

feature enables us to include certain prior knowledge more directly into the

inverse problem.

5.2 Generalized Minkowski set

It is challenging to select a single constraint set or intersection of multi-

ple sets to describe models and images that contain distinct morphological

components u and v. While the Minkowski set allows us to define different

sets for the different components, problems may arise when working with

physical parameter estimation applications.

For instance, there is usually prior knowledge about the physically re-

alistic values in m ∈ RN . Moreover, in the previous chapters, we showed

successful applications of multiple constraints on the model parameters, and

we want to combine that concept with constraints on the components.

The second extension of the basic concept of a Minkowski set is that we

allow the constraint set on each component to be an intersection of multiple

sets. In this way, we can include multiple pieces of prior information about

each component.

We denote the proposed generalized Minkowski constraint set for the
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regularization of inverse problems as

M≡ {m = u+ v | u ∈
p⋂
i=1

Di, v ∈
q⋂
j=1

Ej , m ∈
r⋂

k=1

Fk}, (5.5)

where the model estimate m ∈ RN is an element of the intersection of r

sets Fk and also the sum of two components u ∈ RN and v ∈ RN . The

vector u is an element of the intersection of p sets Di, v is an element of

the intersection of q sets Ej . It is conceptually straightforward to extend set

definition 5.5 to a sum of three or more components, but we work with two

components for the remainder of this paper for notational convenience. In

the discussion section, we highlight some potential computational challenges

that come with a generalized Minkowski sets of more than two components.

The convexity of M follows from the properties of the sets Di, Ej and

Fk. From the definition 5.5, we see that
⋂p
i=1Di,

⋂q
j=1 Ej , and

⋂r
k=1Fk

are closed and convex if Di, Ej and Fk are closed and convex for all i, j

and k. It follows that M is a convex set, because it is the intersection of

a convex intersection with the Minkowski sum
⋂p
i=1Di +

⋂q
j=1 Ej , which is

also convex. To summarize in words, m is an element of the intersection

of two convex sets, one is the convex Minkowski sum, the other is a convex

intersection. The set M is therefore also convex. Note that convexity and

closedness of
⋂p
i=1Di and

⋂q
j=1 Ej does not imply their sum is closed.

In the following section, we propose an algorithm to compute projection

onto the generalized Minkowski set.

5.3 Projection onto the generalized Minkowski
set

In the following section, we show how to use the generalized Minkowski set

(Equation (5.5)) to regularize inverse problems with computationally cheap

or expensive forward operators. First, we need to develop an algorithm to

compute the projection ontoM, which we denote by PM(m). Using PM(m),

we can formulate inverse problems as a projection, or use the projection op-

erator inside projected gradient/Newton-type algorithms. Each constraint
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set definition may include a linear operator (the transform-domain operator)

in its definition. We make the linear operators explicit, because the projec-

tion operator corresponding to, for example, {x | ‖x‖2 ≤ σ}, is available in

closed form and easy to compute, but the projection onto {x | ‖Ax‖2 ≤ σ}
is not when AAT 6= αI for α > 0 [Combettes and Pesquet, 2011; Parikh and

Boyd, 2014; Beck, 2017, Chapter 6 & 7; Diamond et al., 2018]. Let us in-

troduce the linear operators Ai ∈ RMi×N , Bj ∈ RMj×N , and Ck ∈ RMk×N .

With indicator functions and exposed linear operators, we formulate the

projection of m ∈ RN onto set (5.5) as

PM(m) = arg min
u,v,w

1

2
‖w −m‖22 +

p∑
i=1

ιDi(Aiu)

+

q∑
j=1

ιEj (Bjv) +

r∑
k=1

ιFk
(Ckw) + ιw=u+v(w, u, v),

(5.6)

where ιw=u+v(w, u, v) is the indicator function for the equality constraint

w = u+v that occurs in the definition ofM. The sets Di, Ej and Fk have the

same role as in the previous section. The above problem is the minimization

of a sum of functions acting on different as well as shared variables. We

recast it in a standard form such that we can solve it using algorithms based

on the alternating direction method of multipliers (ADMM, e.g., Boyd et al.

[2011]; Eckstein and Yao [2015]). Rewriting in a standard form allows us to

benefit from recently proposed schemes for selecting algorithm parameters

that decrease the number of iterations and lead to more robust algorithms

in case we use non-convex sets [Xu et al., 2017b, ; Xu et al., 2016]. As a

first step, we introduce the vector x ∈ R2N that stacks two out of the three

optimization variables in 5.6 as

x ≡

(
u

v

)
. (5.7)
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We substitute this new definition in Problem (5.6) and eliminate the equality

constraints w = u+ v to arrive at

PM(m) = arg min
x

1

2
‖
(
IN IN

)
x−m‖22 +

p∑
i=1

ιDi(
(
Ai 0

)
x)

+

q∑
j=1

ιEj (
(

0 Bj

)
x) +

r∑
k=1

ιFk
(
(
Ck Ck

)
x),

(5.8)

where 0Mi×N ∈ RMi×N indicate all zeros matrices of appropriate dimensions.

Next, we take the linear operators out of the indicator function such that we

end up with sub-problems that are projections with closed-form solutions.

Thereby we avoid the need for nesting iterative algorithms to solve sub-

problems related to the indicator functions of constraint sets.

To separate indicator functions and linear operators, we introduce addi-

tional vectors yi for i ∈ {1, 2, . . . , p+ q + r + 1} of appropriate dimensions.

From now on we use s = p + q + r + 1 to shorten notation. With the

new variables, we rewrite problem formulation (5.8) and add linear equality

constraints to obtain

PM(m) = arg min
{yi},x

1

2
‖ys −m‖22 +

p∑
i=1

ιDi(yi) +

q∑
j=1

ιEj (yj)

+
r∑

k=1

ιFk
(yk) s.t. Ãx = ỹ,

(5.9)
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where

Ãx = ỹ ⇔



A1 0
... 0

Ap 0

0 B1

0
...

0 Bq

C1 C1

...
...

Cr Cr

IN IN



(
u

v

)
=



y1

...

yp

yp+1

...

yp+q

yp+q+1

...

yp+q+r

yp+q+r+1



.

Now define the new function

f̃(ỹ,m) ≡
s∑
i=1

fi(yi,m) ≡ 1

2
‖ys−m‖22 +

p∑
i=1

ιDi(yi)+

q∑
j=1

ιEj (yj)+

r∑
k=1

ιFk
(yk),

(5.10)

such that we obtain the projection problem in the standard form

PM (m) = arg min
x,ỹ

f̃(ỹ,m) s.t. Ãx = ỹ. (5.11)

If x and ỹ are a solution to this problem, the equality constraints enforce

u + v = yp+q+r+1 and we recover the projection of m as yp+q+r+1 or as(
IN IN

)
x. Now that Problem (5.11) is in a form that we can solve with the

ADMM algorithm, we proceed by writing down the augmented Lagrangian

for Problem (5.11) [Nocedal and Wright, 2000, Chapter 17] as

Lρ1,...,ρs(x, y1, . . . , ys, v1, . . . , vs) =
s∑
i=1

[
fi(yi)+v

T
i (yi−Ãix)+

ρi
2
‖yi−Ãix‖22

]
,

where ρi > 0 are the augmented Lagrangian penalty parameters and vi ∈
RMi are the vectors of Lagrangian multipliers. We denote a block-row of the

matrix Ã as Ãi. The relaxed ADMM iterations with relaxation parameters
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γi ∈ (0, 2] and iteration counter l are given by

xl+1 = arg min
x

s∑
i=1

ρli
2
‖yli − Ãix+

vli
ρli
‖22 =

[ s∑
i=1

(ρliÃ
T
i Ãi)

]−1
s∑
i=1

(
ÃTi (ρliy

l
i + vli)

)
x̄l+1
i = γliÃix

l+1
i + (1− γli)yli

yl+1
i = arg min

yi

[
fi(yi) +

ρli
2
‖yli − x̄l+1

i +
vli
ρli
‖22
]

= proxfi,ρi(x̄
l+1
i − vli

ρli
)

vl+1
i = vli + ρli(y

l+1
i − x̄l+1

i ).

These iterations are equivalent to the Simultaneous Direction Method of

Multipliers (SDMM, Combettes and Pesquet [2011]; Kitic et al. [2016]) and

the SALSA algorithm [Afonso et al., 2011], except that we have an addi-

tional relaxation step. In fact, the iterations are identical to the algorithm

presented in the previous chapter to compute the projection onto an intersec-

tion of sets, but here we solve a different problem and have different matrix

structures. We briefly mention the main properties of each sub-problem.

xl+1 computation. This step is the solution of a large, sparse, square,

symmetric, and positive-definite linear system. The system matrix has the

following block structure:

Q ≡
s∑
i=1

(ρiÃ
T
i Ãi) =(∑p

i=1 ρiA
T
i Ai +

∑r
k=1 ρkC

T
k Ck + ρsIN

∑r
k=1 ρkC

T
k Ck + ρsIN∑r

k=1 ρkC
T
k Ck + ρsIN

∑q
j=1 ρjB

T
j Bj +

∑r
k=1 ρkC

T
k Ck + ρsIN

)
.

(5.12)

This matrix is symmetric and positive-definite if Ã has full column rank. We

assume this is true in the remainder because many Ãi have full column rank,

such as discrete-derivative based matrices and transform matrices including

the DFT and various wavelets. We compute xl+1 with the conjugate gradi-

ent (CG) method, warm started by xl as initial guess. We choose CG instead

of an iterative method for least-squares problems such as LSQR [Paige and

Saunders, 1982], because solvers for least-squares work with Ã and ÃT sep-

arately and need to compute a matrix-vector product (MVP) with each Ãi
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and ÃTi at every iteration. This becomes computationally expensive if there

are many linear operators, as is the case for our problem. CG uses a single

MVP with Q per iteration. The cost of this MVP does not increase if we add

orthogonal matrices to Ã. If the matrices in Ã have (partially) overlapping

sparsity patterns, the cost also does not increase (much). We pre-compute

all ÃTi Ãi for fast updating of Q when one or more of the ρi change (see

below).

yl+1
i computation. For every index i, we can compute proxfi,ρi(x̄

l+1
i −

vli
ρli

) independently in parallel. For indices i ∈ {1, 2, . . . , s− 1}, the proximal

maps are projections onto sets D, E or F . These projections do not include

linear operators and we know the solutions in closed from (e.g., `1-norm,

`2-norm, rank, cardinality, bounds).

ρl+1
i , γl+1

i updates. We use the updating scheme for ρ and γ from

adaptive-relaxed ADMM, introduced by Xu et al. [2017b]. Numerical results

show that this updating scheme accelerates the convergence of ADMM [Xu

et al., 2017a,b,c], and is also robust when solving some non-convex problems

[Xu et al., 2016]. We use a different relaxation and penalty parameter for

each function fi(yi), as do Song et al. [2016]; Xu et al. [2017c], which allows

ρi and γi to adapt to the various linear operators of different dimensions

that correspond to each constraint set.

Parallelism and communication. The only serial part of the algo-

rithm defined in (5.12) is the xl+1 computation. We use multi-threaded

MVPs in the compressed diagonal format if Q has a banded structure. The

other parts of the iterations 5.12, yl+1
i , vl+1

i , ‘ρl+1
i , γl+1

i , are all indepen-

dent so we can compute them in parallel for each index i. There are two

operations in 5.12 that require communication between workers that carry

out computations in parallel. We need to send xl+1 to every worker that

computes a yl+1
i , vl+1

i , ρl+1
i , and γl+1

i . The second and last piece of commu-

nication is the map-reduce parallel sum to form the right-hand side for the

next iteration when we compute xl+1 =
∑s

i=1

(
ÃTi (ρliy

l
i + vli)

)
.

In practice, we will use the proposed algorithm to solve problems that

often involve non-convex sets. Therefore, we do not provide guarantees that

algorithms like ADMM behave as expected, because their convergence proofs
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typically require closed, convex and proper functions, see, e.g., Boyd et al.

[2011]; Eckstein and Yao [2015]. This is not a point of great concern to

us, because the main motivation to base our algorithms on ADMM is rapid

empirical convergence, ability to deal with many constraint sets efficiently,

and strong empirical performance in case of non-convex sets that violate the

standard assumptions for the convergence of ADMM.

5.4 Formulation of inverse problems with
generalized Minkowski constraints

So far, we proposed a generalization of the Minkowski set (M, equation 5.5),

and developed an algorithm to compute projections onto this set. The next

step to solve inverse problems where the generalized Minkowski set describes

the prior knowledge is to combine the set M with a data-fitting procedure.

We discuss two formulations of such an inverse problem. One is primarily

suitable when the data-misfit function is computationally expensive to eval-

uate, which means we assume that evaluation of f(m) and ∇mf(m) is more

time-consuming than projections onto the generalized Minkowski set M.

The second formulation is for inverse problems where the forward operator

is both linear and computationally inexpensive to evaluate. We discuss the

two approaches in more detail below.

5.4.1 Inverse problems with computationally expensive
data-misfit evaluations

We consider a non-linear and possibly non-convex data-misfit function f(m) :

RN → R that depends on model parameters m ∈ RN . Our assumptions for

this inverse problem formulation is that the computational budget allows for

much fewer data-misfit evaluations than the required number of iterations

to project onto the generalized Minkowski set, as defined in 5.12. We can

deal with this imbalance by attempting to make as much progress towards

minimizing f(m), while always satisfying the constraints. The minimization

of the data-misfit, subject to satisfying the generalized Minkowski constraint
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is then formulated as

min
m

f(m) s.t. m ∈M. (5.13)

If we solve this problem with algorithms that use a projection onto M at

every iteration, the model parameters m satisfy the constraints at every

iteration; a property desired by several works in non-convex geophysical pa-

rameter estimation, see [Smithyman et al., 2015, Esser et al., 2016, Yong

et al., 2018], and the geophysical examples presented in the previous chap-

ters. These works obtain better model reconstructions from non-convex

problems by carefully changing the constraints during the data-fitting pro-

cedure. The first two numerical experiments in this work use the spectral

projected gradient algorithm (SPG, Birgin et al. [1999]; Birgin et al. [2003]).

SPG iterates

ml+1 = (1− γ)ml − γPM(ml − α∇mf(ml)), (5.14)

where PM is the Euclidean projection ontoM. The Barzilai-Borwein [Barzi-

lai and Borwein, 1988] step-length α > 0 is a scalar approximation of the

Hessian that is informed by previous model estimates and gradients of f(m).

A non-monotone line-search estimates the scalar γ ∈ (0, 1] and prevents

f(m) from increasing too many iterations in sequence. The line-search back-

tracks between two points in a convex set ifM is convex and the initial m0

is feasible, so every line-search iterate is feasible by construction. SPG thus

requires a single projection onto M if all constraint sets are convex.

5.4.2 Linear inverse problems with computationally cheap
forward operators

Contrary to the previous section, we now assume a linear relation between

the model parameters m ∈ RN and the observed data, dobs ∈ RM . The

second assumption, for the problem formulation in this section, is that the

evaluation of the linear forward operator is not much more time consum-

ing than other computational components in the iterations from 5.12. Ex-

amples of such operators G ∈ RM×N are masks, identity matrices, and
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blurring kernels. We may then put data-fitting and regularization on the

same footing and formulate an inverse problem with constraints as a fea-

sibility or projection problem. Both these formulations add a data-fit con-

straint to the constraints that describe model properties [Youla and Webb,

1982, Trussell and Civanlar, 1984, Combettes, 1993, 1996]. The numeri-

cal examples in this work use the point-wise data-fit constraint: Gdata ≡
{m | l[i] ≤ (Gm − dobs)[i] ≤ u[i]} with lower and upper bounds on the

misfit. We use the notation l[i] for entry i of the lower-bound vector

l. The data-fit constraint can be any set onto which we know how to

project. An example of a global data-misfit constraint is the norm-based

set Gdata ≡ {m | σl ≤ ‖Gm− dobs‖ ≤ σu} with scalar bounds σl < σu. This

set is non-convex if σl > 0, e.g., the annulus constraint in case of the `2

norm. This set has a ‘hole’ in the interior of the set that explicitly avoids

fitting the data noise in `2 norm sense.

We denote our formulation of a linear inverse problem with a data-fit

constraint, and a generalized Minkowski set constraint (Equation 5.5) on

the model estimate as

min
x,u,v

1

2
‖x−m‖22 s.t.


x = u+ v

u ∈
⋂p
i=1Di, v ∈

⋂q
i=1 Ej , x ∈

⋂r
i=1Fk

x ∈ Gdata

. (5.15)

The solution is the projection of an initial guess, m, onto the intersection of

a data-fit constraint and a generalized Minkowski constraint on the model

parameters. As before, there are constraints on the model x, as well as the

components u and v. Problem 5.15 is the same as before in Equation (5.5)

and we can solve it with the algorithm from the previous section. In the

current case, we have one additional constraint on the sum of the compo-

nents.
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5.5 Numerical examples

5.5.1 Seismic full-waveform inversion 1

We start with a numerical example originally presented in Chapter 4. We

repeat the experiment and show how a Minkowski set describes the provided

prior knowledge naturally and results in a better model estimate compared

to a single constraint set or intersection of multiple sets. The problem is

to estimate the acoustic velocity m ∈ RN of the model in Figure 5.1, from

observed seismic data modeled by the Helmholtz equation. This problem,

known as full-waveform inversion (FWI, Tarantola [1986]; Pratt et al. [1998];

Virieux and Operto [2009]), is often formulated as the minimization of a

differentiable, but non-convex data-fit

f(m) =
1

2
‖dpredicted(m)− dobserved‖22, (5.16)

where the partial-differential-equation constraints are already eliminated

and are part of dpredicted(m), see, e.g., Haber et al. [2000]. The observed

data, dobserved are discrete frequencies of {3.0, 6.0, 9.0} Hertz.

Figure 5.1 shows the true model, initial guess for m, and the source and

receiver geometry. We assume prior information about the bounds on the

parameter values, and that the anomaly has a rectangular shape with a

lower velocity than the background.

The results in figure 5.1 using bounds or bounds and the true anisotropic

total-variation (TV) as a constraint, do not lead to a satisfying model es-

timate. The result with TV is marginally better compared to bound con-

straints only. The diagonally shaped model estimates are mostly due to the

source and receiver positioning, known as vertical seismic profiling (VSP)

in geophysics. To obtain a better model, we used a variety of intersections

including non-convex sets in Chapter 4.

Here we will show that the generalized Minkowski setM (Equation 5.5)

can also provide an improved model estimate, but using convex sets only. If

we have the prior knowledge that the anomaly we need to find has a lower
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velocity than the background medium, we can easily and naturally include

this information as a Minkowski set. The following four sets summarize our

prior knowledge:

1. F1 = {x | 2350 ≤ x[i] ≤ 2550} : bounds on sum

2. F2 = {x | ‖((Dz ⊗ Ix)T (Iz ⊗ Dx)T )Tx‖1 ≤ σ} : anisotropic total-

variation on sum

3. D1 = {u | − 150 ≤ u[i] ≤ 0} : bounds on anomaly

4. E1 = {v | v[i] = 2500} : bounds on background

The generalized Minkowski set combines the four above sets as (F1
⋂
F2)

⋂
(D1+

E1). In words, we fix the background velocity, require any anomaly to be

negative, and the total model estimate has to satisfy bound constraints and

have a low anisotropic total-variation. To minimize the data-misfit subject

to the generalized Minkowski constraint,

min
m

1

2
‖dpredicted(m)− dobserved‖22 s.t. m ∈ (F1

⋂
F2)

⋂
(D1 + E1), (5.17)

we use the same algorithm as the original example in Chapter 4, which is

the spectral projected gradient (SPG, Birgin et al. [1999]) algorithm with 15

iterations and a non-monotone line search with a memory of five function val-

ues. The result that uses the generalized Minkowski constraint (Figure 5.1)

is much better compared to bounds and the correct total-variation because

the constraints on the sign of the anomaly prevent incorrect high-velocity

artifacts.

While there are other ways to fix a background model and invert for an

anomaly, this example illustrates that our proposed regularization approach

incorporates information on the sign of an anomaly conveniently and the

constraints remain convex. It is straightforward to change and add con-

straints on each component, also in the more realistic situation that the

background is not known and should not be fixed, as we show in the follow-

ing example.
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Figure 5.1: The true model for the data generation for the full-
waveform inversion 1 example, the initial guess for parameter
estimation, and the model estimates with various constraints.
Crosses and circles indicate receivers and sources, respectively.

5.5.2 Seismic full-waveform inversion 2

This time, the challenge is to estimate a model (Figure 5.2 a) that has both

a background and an anomaly component that are very different from the

initial guess (Figure 5.2 b). This means we can no longer fix one of the two

components of the generalized Minkowski sum.

The experimental setting is a bit different from the previous example.

The sources are in one borehole, the receivers in another borehole at the

other side of the model (cross-well full-waveform inversion). Except for a

single high-contrast anomaly, the velocity is increasing monotonically, both
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gradually and discontinuously. The prior knowledge we assume consists of

i) upper and lower bounds on the velocity and also on the anomaly ii) the

model is relatively simple in the sense that we assume it has a rank of at

most five iii) the background parameters are increasing monotonically with

depth iv) the background is varying smoothly in the lateral direction v) the

size of the anomaly is not larger than one fifth of the height of the model

and not larger than one third of the width of the model. We do not assume

prior information on the total-variation of the model, but for comparison,

we show the result when we use the true total-variation as a constraint. The

following sets formalize the aforementioned prior knowledge:

1. F1 = {x | 2350 ≤ x[i] ≤ 2850}
2. F2 = {x | ‖((Ix ⊗Dz)

T (Dx ⊗ Iz)T )Tx‖1 ≤ σ}
3. F3 = {x | rank(x) ≤ 5}
4. D1 = {x | 2350 ≤ x[i] ≤ 2850}
5. D2 = {u | 0 ≤ (Dz ⊗ Ix)u ≤ ∞}
6. D3 = {u | − 0.1[m/s]/m ≤ (Iz ⊗Dx)u ≤ 0.1[m/s]/m}
7. E1 = {v | 300 ≤ v[i] ≤ 350}
8. E2 = {v | card(v) ≤ (nz/5× nx/3)}

As before, the sets Fk act on the sum of components, Di describe com-

ponent one (background), and Ej constrain the other component (anomaly).

Figure 5.2 c show the model m found by SPG applied to the problem

minm f(m) s.t. m ∈ F1. We see oscillatory features in the result with bound

constraints only, but the main issue is the appearance of a low-velocity ar-

tifact, located just below the true anomaly. Figure 5.2 d shows that even if

we know the correct total-variation, the result is less oscillatory than using

just bound constraints, but still shows an erroneous low-velocity anomaly.

When we also include the rank constraint, i.e., we use the set F1
⋂
F2
⋂
F3,

the result does not improve (Figure 5.2 e). The generalized Minkowski set(⋂3
k=1Fk

)⋂ (⋂3
i=1Di+

⋂2
j=1 Ej

)
does not yield a result with the large incor-

rect low-velocity artifact just below the correct high-velocity anomaly (5.2

g), even though we did not include information on the sign of the anomaly
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Figure 5.2: The true and initial models corresponding to the full-
waveform inversion 2 example. Figure shows parameter esti-
mation results with various intersections of sets, as well as the
result using a generalized Minkowski constraint set. Only the
result obtained with the generalized Minkowski set does not
show an incorrect low-velocity anomaly.

as we did in the previous example. There are still two smaller horizontal

and vertical artifacts. Overall, the Minkowski set based constraint results

in the best background and anomaly estimation.

This example shows that the generalized Minkowski set allows for inclu-

sion of prior knowledge on the two (or more) different components, as well

as their sum. The results show that this leads to improved model estimates

if prior knowledge is available on both the components and the sum. Infor-
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mation that we may have about a background or anomaly is often difficult

or impossible to include in an inverse problem as a single constraint set or

intersection of multiple sets, but easy to include in the summation structure

of the generalized Minkowski set. In many practical problems, we do have

some information about an anomaly. When looking for air or water filled

voids and tunnels in engineering or archeological geophysics, we know that

the acoustic wave propagation velocity is usually lower than the background

and we also have at least a rough idea about the size of the anomaly. In

seismic hydrocarbon exploration, there are high-contrast salt structures in

the subsurface, almost always with higher acoustic velocity than the sur-

rounding geology.

5.5.3 Video processing

Background-anomaly separation is a common problem in video processing.

A particular example is security camera video, T ∈ Rnx×ny×nt , where x and

y are the two spatial coordinates and t is the time. The separation problem

is often used to illustrate robust principal component analysis (RPCA), and

related convex and non-convex formulations of sparse + low-rank decom-

position algorithms [e.g., Candès et al., 2011, Netrapalli et al., 2014, Kang

et al., 2015, Driggs et al., 2017].

In this example, we show that the generalized Minkowski set for an in-

verse problem, proposed in Equation (5.15), is also suitable for background-

anomaly separation in image and video processing, and illustrate the ad-

vantages of working with a constrained formulation, as opposed to the more

common penalty formulation. To include multiple pieces of prior knowledge,

we choose to work with the video in tensor format and use the flexibility of

our regularization framework to impose constraints on the tensor, as well as

on individual slices and fibers. This is different from RPCA approaches that

matricize or flatten the video tensor to a matrix of size nxny×nt, such that

each column of the matrix is a vectorized time-slice [Candès et al., 2011,

Netrapalli et al., 2014, Kang et al., 2015], and also differs from tensor-based

RPCA methods that work with a tensor only [Zhang et al., 2014, Wang and
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Navasca, 2015]. Contrary to many sparse + low-rank decomposition algo-

rithms, our set-based framework is not tied to any specific constraint, and

we can mix various constraints for the two components and obtain multiple

background-anomaly separation algorithms.

Beyond the basic decomposition problem, the escalator video comes with

some additional challenges. There is a dynamic background component (the

escalators steps) and there are reflections of people in the glass that are

weak anomalies and duplicates of persons. The video contains noise and

part of the background pixel intensity changes significantly (55 on a 0− 255

grayscale) over time. We subtract the mean of each frame as a pre-processing

step to mitigate the change in intensity. Below we describe simple methods

to derive prior knowledge for the video, as well as for the background and

anomaly component.

constraint sets for background We use the last 20 time frames to

derive constraints for the background because these frames do not contain

people. From these frames, we use the minimum and maximum value for

each pixel over time as the bounds for the background component, denoted

as set D1. The second constraint is the subspace spanned by the last 20

frames. We require that each time frame of the background be a linear com-

bination of the training frames organized as a matrix S ∈ Rnxny×20, where

each column is a vectorized video frame of T . We denote this constraint

as D2 = {u | u = Sc, c ∈ R20}, with coefficient vector c, which we obtain

during the projection operation: PD2(u) = S(STS)−1STu. After computing

the singular value decomposition S = UΣV T , the projection simplifies to

PD2(u) = UUTu

constraint sets for sum of components We constraint the sum of

the background and anomaly components to the interval of grayscale values

[0− 255] minus the mean of each time-frame, denoted as set F1.

constraint sets for anomaly We also have bound constraints, set E1,

on the anomaly component that we define as the bounds on the sum minus

the bounds on the background. To enhance the quality of the anomaly

component, we add various types of sparsity constraints. If we would have

some example video available like we have for the background component, we
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could observe properties of the anomaly, i.e., how many pixels are typically

anomalies (people). As the escalator video is only 200 time-frames long, we

instead use some rough estimates of the anomaly properties to define three

non-convex constraint sets. We choose to apply constraints to each time-

slice separately because this makes it easier to convert basic observations

or intuition into a set. The first type of sparsity constraint is the set E2 =

{T | card(TΩi) ≤ (nx/4 × ny/4) ∀i ∈ {1, 2, . . . , nt}} where TΩi is a time

slice of the video tensor. This constraint limits the number of anomaly

pixels in each frame to 1/16 of the total number of pixels in each time

slice. The second and third constraint sets are limits on the vertical and

horizontal derivative of each time-frame image separately. If we assume

the prior knowledge that there are no more than ten persons in the video

at each time, we can use E3 = {T | card((Ix ⊗ Dy) vec(TΩi)) ≤ 480, i ∈
{1, 2, . . . , nt}}, based on the rough estimate of 10 persons× 12 pixels wide×
4 boundaries (the four vertical boundaries are background - head - upper

body - legs - background). Similarly for the horizontal direction, we define

E4 = {T | card((Dx ⊗ Iy) vec(TΩi)) ≤ 440, i ∈ {1, 2, . . . , nt}}, based on

the estimate of 10 persons × 22 pixels tall × 2 boundaries (the horizontal

boundaries are background - person - background).

Putting it all together, we project the video onto the generalized Minkowski

set defined in (5.6), i.e., we solve

min
x

1

2
‖x− vec(T )‖22 s.t. x ∈ F1

⋂( 2⋂
i=1

Di +
4⋂
j=1

Ej
)

(5.18)

using the iterations derived in Equation 5.12. Our formulation implies that

the projection of a vector is always the sum of the two components, but

this does not mean that x is equal to T at the solution, because we did not

include a constraint on x that says we need to fit the data accurately. We

did not use a data-fit constraint because it is not evident how tight we want

to fit the data or how much noise there is. By computing the projection of

the original video, we still include a sense of proximity to the observed data.

The result of the generalized Minkowski decomposition of the video
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Figure 5.3: Results of the generalized Minkowski decomposition ap-
plied to the escalator video. The figure shows four frames. The
most pronounced artifacts are in the time stamp. This example
illustrates that the constrained approach is suitable to observe
and apply constraint properties obtained from a few frames of
background only video.

147



shown in Figure (5.3), is visually better than the six methods compared

by Driggs et al. [2017]. The compared results often show blurring of the

escalator steps in the estimated background, especially when a person is on

the escalator. Several results also show visible escalator structure in the

anomaly estimation. Our simple approach does not suffer from these two

problems. We do not need to estimate any penalty or trade-off parame-

ters, but rely on constraint sets whose parameters we can observe directly

or estimate from a few training frames. We were able to conveniently mix

constraints on slices and fibers of the tensor by working with the constrained

formulation.

5.6 Discussion

So far, we described the concepts and algorithms for the case of a Minkowski

sum with only two components. Our approach can handle more than two

components, but the linear systems in Equation (5.12) will become larger. A

better solver than plain conjugate-gradients can mitigate increased solutions

times due to larger linear systems, possibly by taking the block structure

into account.

A Minkowski sum of more than two components can also make it less

intuitive what type of solutions are in the Minkowski sum of sets. We can

regain some intuition about the generalized Minkowski set by looking at

sampled elements from the set. Samples are simply obtained by projecting

vectors (possible solutions, reference models, random vectors, . . . ) onto the

target set.

All numerical examples were set up to illustrate how we use the general-

ized Minkowski set for the regularization of inverse problems, given multiple

pieces of prior knowledge on the two components of a model, as well as prior

information on the sum of the components. Application evaluation of the

proposed regularization approach to more realistic examples, as in chapter

2 and 3, is left for future work.
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5.7 Conclusions

Inverse problems for physical parameter estimation and image and video

processing often encounter model parameters with complex structure, so

that it is difficult to describe the expected model parameters with a single

set or intersection of multiple sets. In these situations, it may be easier

to work with an additive model description where the model is the sum of

morphologically distinct components.

We presented a regularization framework for inverse problems with the

Minkowski set at its core. The additive structure of the Minkowski set

allows us to enforce prior knowledge in the form of separate constraints on

each of the model components. In that sense, our work differs from current

approaches that rely on additive penalties for each component. As a result,

we no longer need to introduce problematic trade-off parameters.

Unfortunately, the Minkowski set by itself is not versatile enough for

physical parameter estimation because we also need to enforce bound con-

straints and other prior knowledge on the sum of the two components to

ensure physical feasibility. Moreover, we would like to use more than one

constraint per component to incorporate all prior knowledge that we may

have available.

To deal with this situation, we proposed a generalization of the Minkowski

set by defining it as the intersection of a Minkowski set with another con-

straint set on the sum of the components. With this construction, we can

enforce multiple constraints on the model parameters, as well as multiple

constraints on each component.

To solve inverse problems with these constraints, we discuss how to

project onto generalized Minkowski sets based on the alternating direction

method of multipliers. The projection enables projected-gradient based

method to minimize nonlinear functions subject to constraints. We also

showed that for linear inverse problems, the linear forward operator fits in

the projection computation directly as a data-fitting constraint. This makes

the inversion faster if the application of the forward operator does not take

much time.
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Numerical examples show how the generalized Minkowski set helps to

solve non-convex seismic parameter estimation problems and a background-

anomaly separation task in video processing, given prior knowledge on the

model parameters, as well as on the components.
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Chapter 6

Discussion

In each of the chapters, I discussed and developed formulations and compu-

tational methods for inverse problems from a constrained optimization point

of view. So far, I did not discuss the statistical and Bayesian [e.g, Tarantola,

2005] interpretation much.

The aim of this thesis is not to take a side in the frequentist versus

Bayesian debate [Scales and Snieder, 1997, Stark, 2015]. Nor did I study

the relation and connections between the two approaches to inverse prob-

lems. Constraints became the core of this work because we found them easy

to use beneficial when working with seismic field data [Smithyman et al.,

2015]. Rather than focus on the differences between constraints and prior

distributions [see Backus, 1988, Scales and Snieder, 1997, Stark, 2015], I

would like to relate this thesis to the Bayesian approach by discussing and

developing similarities that may help bridge the conceptual gap between the

two approaches.

First, constraints can also incorporate statistical prior knowledge. For

instance, we can constrain the model parameters to have the same histogram

or correlations as an example image, possibly in a transform-domain [e.g.,

Portilla and Simoncelli, 2000, Peyré, 2009, Fadili and Peyre, 2011, Mei et al.,

2015]. This is common in the field of texture synthesis, and I used similar

ideas in chapter 4 to obtain and include prior information from examples to

image processing inverse problems.
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The second conceptual similarity between Bayesian and constrained ap-

proaches is the notion of prior and posterior distributions where both the

prior and data observations influence the latter. The constrained formula-

tion gives rise to a similar structure. Based on a problem formulation where

we have a data-fit constraint and multiple constraints that describe prior

knowledge (Vi), we may consider the prior information set,
⋂p
i=1 Vi, some-

what analogous to a prior probability distribution. Samples from
⋂p
i=1 Vi

are easy to obtain by solving feasibility or projection problems, starting at

random points or examples of solutions of similar inverse problems. Each

sample, sprior
j is an element of the intersection of constraint sets that de-

scribe model properties: sprior
j ∈

⋂p
i=1 Vi. If the intersection is convex, we

can construct more samples as convex combinations: γ1s
prior
1 +γ2s

prior
2 + · · ·

with γ1 + γ2 + · · · = 1 and γ1 ≥ 0, γ2 ≥ 0, · · · .
Analogous to the posterior distribution, we can look at the intersection

of the constraint sets that describe model properties with the data-fit con-

straint set,

p⋂
i=1

Vi
⋂
Vdata. (6.1)

The resulting set contains all models that satisfy the prior knowledge as

well as the observed data. This collection of models can provide us with a

sense of uncertainty/spread in the model estimate.

To provide some intuition about the statements in this section, we visual-

ize using classical image inpainting. This is essentially a higher dimensional

version of the geometrical example in the introduction. Note that the solu-

tions of the image and video processing examples in chapters 4 and 5 were

also points in a set defined as 6.1.

The true image and observed data are shown in Figure (6.1). The true

image is a simple texture, the observed data are vertical bands, which spread

out more and more from left to right, so the number of missing pixels in-

creases from left to right.

We will use the three constraint sets to describe prior knowledge that

were already used in chapter 3 to describe typical acoustic velocity models
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Figure 6.1: The true image (left), and the observed data (right) that
consists of vertical bands of the true image, increasingly sparsely
sampled from left to right.

in sedimentary geological settings. This means we enforce 1) bound con-

straints; 2) lateral smoothness; 3) with depth (going from top to bottom)

parameter values can increase arbitrarily fast, but can only decrease slowly.

To generate samples from the intersection of prior knowledge, we project

models filled with random numbers onto the intersection. Figure (6.2) shows

three samples.

Figure (6.3) displays three samples from the intersection of sets that

contain data information and prior knowledge. The data constraints are

bounds to match the observed data. The samples from this intersection are

the projections of the samples from the prior information sets as shown in

Figure (6.1). Also in Figure(6.2), we show the difference between the true

image and the samples from the intersection of prior and data information.

Because of the bound constraints at the observations, there is almost no

error at the data locations, which leads to the striped pattern in both the
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Figure 6.2: Three samples from the prior information set, which is
the intersection of bounds, lateral smoothness, and parameter
values that are limited to decrease slowly in the downward di-
rection. Samples are the result of projecting random images
onto the intersection.

samples and the error.

As all three models satisfy all our prior knowledge and data information,

there is no way to tell which one is the ‘best’ result. A simple way to ana-

lyze the results, not free of caveats, is to look at the point-wise maximum,

minimum, and difference of the three model estimates. In Figure (6.4) we

display these derived quantities. Comparing Figures (6.3) and (6.4) shows

that the areas in the model with large variation between maximum and min-

imum also correspond to areas with large error. Furthermore, we observe,

as expected, that the error and spread generally increase with decreasing

observation density. The multiple models provide some quantitative insight.

This example provides some intuition about sets that describe prior

knowledge and data constraints. Even if it is not obvious what happens

if we take the intersection of multiple sets, random samples visualize what

type of models are in the intersection. Besides random samples, we can also

manually construct prior samples, project models expected to be similar to

the true model, and take convex combinations of prior samples to generate

additional insight quickly.
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Figure 6.3: Samples from the intersection of sets that describe prior
knowledge and data observations. The bottom row shows the
difference between the sample from the top row and the true
model from Figure (6.1).
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Figure 6.4: Pointwise maximum and minimum values, as well as the
difference of the three samples from Figure (6.3).
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Chapter 7

Conclusions

Inverse problems in the imaging sciences range from linear inverse problems

such as cleaning and reconstructing images, to partial-differential-equation

based geophysical parameter estimation where the data relates nonlinearly

to the model parameters. Solving a problem in either of these two cate-

gories requires prior information (regularization) on the model parameters

to achieve state-of-art results. Regularization combats issues introduced by

data deficiencies and inherent nonuniqueness of the solutions of an inverse

problem. While we apply regularization based on what we expect from the

final estimate, in challenging non-convex inverse problems like full-waveform

inversion we also greatly benefit from applying (possibly different) regular-

ization to the intermediate results at every iteration. Such a procedure can

prevent the model estimates from becoming physically/geologically unreal-

istic, which halts progress towards the correct model parameters in later

iterations.

In this thesis, I proposed contributions to various aspects of solving in-

verse problems. This includes problem formulations, how to work with mul-

tiple pieces of prior knowledge, algorithms, software design, practical high-

performance implementation, applications in image and video processing,

and specific solutions strategies for seismic full-waveform inversion.

In the following, I summarize the conclusions per topic:

Inverse problem formulations. In chapter 2 and 3, I motivate why
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I prefer to work with multiple constraints instead of multiple penalty func-

tions for the regularization of non-convex seismic full-waveform inversion.

In the first four chapters, I regularize using an intersection of convex and

non-convex sets. I present and discuss a few main arguments in favor of

constraints: i) no need to select multiple scalar penalty parameters because

each constraint is imposed independently of the others; ii) some constraints

are set directly in terms of physical quantities; iii) I show that the solu-

tion of seismic full-waveform inversion behaves predictably as a function of

constraint ‘size’, but less predictable when we vary trade-off parameters in

penalty formulations; (iv) constraints in combination with projections offer

guarantees that the model parameters remain in the constraint set at ev-

ery iteration. For non-convex problems, this can help avoid local minima

when the constraints are relaxed gradually. I demonstrate various successful

applications with different combinations of constraints using this strategy.

My primary contribution to advocating intersections of sets is the specific

application to full-waveform inversion in combination with controlling the

properties of intermediate model estimates. In chapter 4, I also show that

simple machine learning can provide us with many (≥ 10) pieces of prior

information, that serve as constraints using an intersection of sets, something

that would be more complicated if not impossible in case of multiple penalty

functions where we need to balance the influence of ten or more penalties.

In chapter 5, I introduced a new problem formulation that merges and

extends previous work on intersections of constraints sets and additive model

structures such as cartoon-texture decomposition, morphological compo-

nent analysis, robust principal component analysis, and multi-scale image

descriptions. Additive descriptions of model parameters add two or more

components to generate an image. This separation makes it easier to include

prior information when it is difficult to describe all model parameters us-

ing a single property, i.e., when the model contains morphologically distinct

components. The constrained version of an additive model that I propose

is based on the Minkowski set, or vector sum of sets.

I showed that this set by itself is of limited use for the regularization

of inverse problems, because we want, and need, constraints on the sum of
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the components as well. Moreover, motivated by the examples in chapter

2 and 3, I also want to include multiple pieces of prior knowledge on each

component. I proposed to generalize the Minkowski set by allowing each of

the two components to be an intersection themselves, and also enforce an

intersection of constraints on the sum of the components.

In summary, the model is an element of an intersection of a sum of inter-

sections and another intersection. The extensions to a Minkowski set that

I introduced, make it easier to include more pieces of prior knowledge. Nu-

merical examples in video segmentation and seismic full-waveform inversion

illustrate this benefit.

Algorithms. My contributions to the algorithmic side of regularization

via intersections of sets split up between chapters 2 & 3 on the one hand

and chapters 4 & 5 on the other hand. In chapter 2 and 3, I combine three

existing algorithms to create an easy to use and versatile workflow that

adds multiple constraint sets to an inverse problem. The target problems

for the algorithms in chapters 2 and 3 are partial-differential-equation based

parameter estimation, particularly seismic waveform inversion. The philos-

ophy of this framework is to split the complicated problem, minimization of

a non-convex data-fit function subject to multiple constraints, into simpler

and simpler computational pieces until we can solve each part easily and in

closed form. Starting from the top, I use the spectral projected gradient al-

gorithm (SPG) to create separate data-fitting and feasibility problems. We

ensure feasibility at every SPG iteration by projecting onto the intersection

of constraint sets using Dykstra’s algorithm. Whenever one of Dykstra’s

sub-problems, a projection onto a single set is not known in closed form, I

use the alternating direction method of multipliers (ADMM) to compute it.

This framework is the first effort to add an arbitrary intersection constraint

to seismic full-waveform inversion.

In chapter 4, I merge the functionality of Dykstra’s algorithm and ADMM

to compute projections onto an intersection of sets. Nesting ADMM inside

Dykstra’s algorithm does not exploit possible similarity between sets and

requires stopping conditions such that both algorithms operate together ef-

ficiently. Therefore, I developed a new algorithm for computing projections
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onto the intersection of multiple constraint sets specifically. Whereas Dyk-

stra’s algorithm treats every projection onto a single set as a black box, I

focus on efficient treatment of sets that include non-orthogonal linear op-

erators in their definitions. Numerical examples show that this approach

is much faster because I formulated the problem such that it takes simi-

larity between the linear operators into account. The proposed algorithm

achieves good empirical performance on problems with non-convex sets by

using a multilevel coarse-to-fine grid continuation and an automatic selec-

tion scheme for the augmented-Lagrangian penalty parameters that occur in

ADMM-based solvers. The algorithms apply to problems defined on small

2D and large 3D grids (≈ 4003), by virtue of solving all sub-problems in par-

allel, automatic selection methods for augmented-Lagrangian and relaxation

parameters, multilevel acceleration, solving sparse and banded linear sys-

tems using multi-threaded matrix-vector products in the compressed diago-

nal storage format, and careful implementation of the proposed algorithms

in Julia. Examples show that the proposed algorithm enabled developing

regularization strategies using many different constraint sets for both small

and large-scale inverse problems.

In chapter 5 there are no new algorithms, but I show that the algorithms

from chapter 4 apply to more than just intersections of sets. I reformulate

the projection onto the extended Minkowski set such that it can use the

algorithms in chapter 4. The primary computational difference between

projections onto intersections of sets and the extended Minkowski set is that

certain linear operators become larger block-structured linear operators in

the sums of sets scenario.

Software and implementation. All algorithms presented in chapter

4 for the computation of projections onto intersections of sets are part of

a software package that I developed: SetIntersectionProjection. This

functionality of the package serves as the projection step inside a projected

gradient-based algorithm, or it can directly solve an inverse problem stated

as a projection or feasibility problem. There are a few reasons why I imple-

mented everything in Julia. First, all code uses parametric typing such that

everything works in single and double precision, without any code modifi-
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cations or copying parts of the code with minor modifications. A second

argument in favor of Julia is the convenient implementation of coarse and

fine-grained parallelism. I used coarse-scale parallelism to compute sub-

problems of the algorithms from chapter 4 in parallel. Each of these sub-

problems is then also solved in parallel, using either Julia threads or standard

multithreaded libraries for linear algebra and Fourier-transform based oper-

ations. Another simple trick that speeds up the computations, at the cost of

some increased peak memory usage, is keeping all vector-valued quantities

in memory and overwrite them in-place, thereby avoiding time-consuming

memory re-allocation. The numerical examples showed that the combination

of problem formulation, algorithms, and implementation make the software

package suitable to quickly test various combinations of constraints for a

range of small and large-scale inverse problems.

Besides the algorithms, I also included scripts that set up linear operators

and projectors onto simple sets. These two building blocks are the input for

the software to compute the projection onto the intersection of sets. The

modular software design still allows users to work with their custom linear

operators and projectors, as the algorithms themselves do not depend on a

specific projector or operator construction.

Applications. The most prominently featured application in this the-

sis is seismic full-waveform inversion (FWI), where we estimate acoustic

velocity from observed seismic waves. Most exploration experiments have

sources and receivers on only one side of the computational domain. While

data noise and missing observations have a moderate impact on the recov-

ered velocity models, the main challenge for FWI is the combination of an

inaccurate initial guess and unavailable low-frequency data. These factors

often cause the estimated model parameters to be geologically unrealistic.

In chapter 2 and 3, I developed strategies to mitigate this problem by us-

ing constraints on the model parameters. The core of the approach is to

start solving the inverse problem using low-frequency data and ‘tight’ con-

straints, continuing to higher frequency data and ‘looser’ constraints. While

some incarnations of this concept have been around for a long time, such

as working from smooth to less-smooth models by reducing the penalty pa-
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rameters for Tikhonov regularization, I extended these ideas in the following

ways: i) I use a constrained formulation with three different types of con-

straints. ii) Constraint sets do not depend on penalty parameters and after

projection onto the intersection, the model parameters satisfy all constraints

exactly. This approach provides accurate control of the model properties.

iii) I show that tight to loose constraints for FWI works with total-variation

constraints, as well as with slope constraints that induce monotonicity or

smoothness. iv) Using a number of numerical examples, I show that the

described strategy is a useful tool for FWI in general. Specifically, I demon-

strate that a relaxation of multiple constraints works for two different formu-

lations of FWI, for both sedimentary geology and model with high-contrast

salt structures, and also when we do not know the source function and the

observed synthetic data is modeled using more complex physics on finer

grids.

Limitations, ongoing developments, and future research direc-

tions. Chapters 2, 3, 4, and 5 generally follow the proposed future research

directions from the previous chapter. Chapter 3 introduces new algorithms

that are faster than the ones in chapter 2, and illustrates the presented

workflows on a more realistic example. In chapter 4, the main limitations

of chapter 3 were tackled: avoiding nested algorithms and computing pro-

jections onto intersections of sets on large 3D grids, which requires a much

faster implementation compared to the one in Chapter 3. In Chapter 4,

I also extend the applications to the image processing tasks of denoising,

deblurring, inpainting, and desaturation. The discussion and conclusions

sections in chapter 4 describe ways to increase computational performance.

In chapter 5, I do not continue the research on computational performance

but address the more important limitation of the intersections of sets con-

cept that underpins chapters 2, 3, and 4. This limitation arises when the

geophysical models or images have a complex structure that is not easily

described by standard sets (e.g., total-variation, low-rank, smooth) or in-

tersections. Therefore, the Minkowksi set and the proposed generalization

offer additional freedom to describe complex models and use more detailed

prior knowledge.
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There is a main limitation remaining that has not been discussed so

far: what to do when there is no good prior information available to define

constraint sets? In chapters 2 and 3, I introduced heuristics to select the

maximum total-variation and smoothness, but they are still heuristics. The

image and video processing examples in chapters 4 and 5 rely on examples

to derive useful constraints. However, these training examples need to be

relatively similar to the evaluation images. The challenge is to construct

more quantitative ways to select constraint parameters for full-waveform

inversion and relax the similarity requirements for training data in image

and video processing. In what follows, I outline a proposal to combine the

strengths of the methods and algorithms in this thesis, with recent devel-

opments in neural network research. The goal is to find additional ways to

obtain information about ‘good’ constraints for PDE-based inverse problems

and image/video processing.

In the past few years, many regularization techniques based on neural

networks have been proposed. These include networks that a) map a cor-

rupted image to a large scalar and a good image to a small scalar, thereby

acting as a non-linear penalty function; b) directly map a corrupted image

to the reconstruction, or map observed data to the model parameters. This

type of end-to-end training is less flexible, in the sense that the network

effectively includes the forward map and regularization. New forward maps

or different regularization requires additional training of the network; c) act

as the proximal map or projection operator as part of algorithms like proxi-

mal gradient. This approach combines neural networks with custom forward

modeling operators, and is also known as plug-and-play regularization; d)

map low-accuracy solutions of inverse problems into higher quality ones by

removing artifacts in the image or estimated model parameters.

The different ways of using neural networks to solve inverse problems

show state-of-art results. Each of the approaches comes with some limi-

tations. First and foremost, networks typically require a large number of

training data and labels to train. Below, I propose an alternative way to

incorporate a neural network, which hopefully requires a relatively small

amount of data, and that is easy and fast to train. At the same time, there
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is still the flexibility to change the (nonlinear) forward modeling operator.

I propose to use a neural network that maps a corrupted image into a

scalar that describes a property of the clean image. These properties include

`1, `2 or nuclear norms of the image, possibly in a transform domain. I can

then use the scalar properties to define constraint sets for the regularization

of an inverse problem. The two-step approach requires networks that map

an image to a scalar rather than to an image, so perhaps the network can be

shallower and narrower network and need fewer training examples compared

to the four types of neural network regularization mentioned above.

Learning image properties and the constrained formulation for an inverse

problem is a good combination because each constraint set is defined inde-

pendently of all other constraint sets. Therefore, we can train one network

per image property, independent of all other networks. Another advantage

is that the constraints do not depend on the inverse problem or data-misfit

function. Trained networks can, therefore, define constraints for most in-

verse problems.

Besides image processing, I also aim for the more ambitious goal of esti-

mating model parameter properties from data obtained by physical experi-

ments. For example, learning a direct map from observed seismic data to a

scalar property of the velocity model in which the waves propagated. This

type of problem has a nonlinear forward modeling operator that maps the

model parameters to data. Our goal of training networks on a relatively

small number of examples is especially important for geophysical inverse

problems, where examples are scarce and selecting regularization is difficult.

The two-step approach may alleviate some of the difficulties.

Initial training and testing of networks that predict image and data prop-

erties from corrupted inputs or data showed promising results. However, the

added value of this idea still needs to be proven. The next questions are: 1)

what is the number of training examples versus reconstruction error trade-

off compared to other approaches to using networks for inverse problems? 2)

what type of network designs are suitable for learning to predict model prop-

erties? 3) are the currently available synthetic geophysical models realistic

and diverse enough?
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Appendix A

Alternating Direction

Method of Multipliers

(ADMM) for the projection

problem.

We show how to use Alternating Direction Method of Multipliers (ADMM)

to solve projection problems. Iterative optimization algorithms are necessary

in case there is no closed-form solution available. The basic idea is to split a

‘complicated’ problem into several ‘simple’ pieces. Consider a function that

is the sum of two terms and where one of the terms contains a transform-

domain operator: minx h(x) + g(Ax). We proceed by renaming one of the

variables, Ax→ z and we also add the constraint Ax = z. This new problem

is minx,z h(x)+g(z) s.t. Ax = z. The solution of both problems is the same,

but algorithms to solve the new formulation are typically simpler. This

formulation leads to an algorithm that can solve all projection problems

discussed in this thesis. Different projections only need different inputs but

require no algorithmic changes.

As an example, consider the projection problem for `1 constraints in

a transform-domain (e.g., total-variation, sparsity in the curvelet domain).
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The corresponding set is C ≡ {m|‖Am‖1 ≤ σ} and the associated projection

problem is

PC(m) = arg min
x

1

2
‖x−m‖22 s.t ‖Ax‖1 ≤ σ. (A.1)

ADMM solves problems with the structure: minm,z h(m)+g(z)s.t.Ax+Bz =

c. The projection problem is of the same form as the ADMM problem. To

see this, we use the indicator function on a set C as

ιC(m) =

0 if m ∈ C,

+∞ if m /∈ C.
(A.2)

The indicator function ι`1(Am) corresponds to the set C that we introduced

above. We use the indicator function and variable splitting to rewrite the

projection problem as

PC(m) = arg min
x

1

2
‖x−m‖22 s.t ‖Ax‖1 ≤ σ

= arg min
x

1

2
‖x−m‖22 + ι`1(Am)

= arg min
x,z

1

2
‖x−m‖22 + ι`1(z) s.t Ax = z.

(A.3)

We have c = 0 and B = −I for all projection problems in this thesis.

The problem stated in the last line is the sum of two functions acting on

different variables with additional equality constraints. This is exactly what

ADMM solves. The following derivation is mainly based on Boyd et al.

[2011]. Identify h(x) = 1
2‖x − m‖22 and g(z) = ιC(z). ADMM uses the

augmented-Lagrangian [Nocedal and Wright, 2000, chapter 17] to include

the equality constraints Ax− z = 0 as

Lρ(x, z, v) = h(x) + g(z) + v∗(Ax− z) +
ρ

2
‖Ax− z‖22. (A.4)

The scalar ρ is a positive penalty parameter and v is the vector of Lagrangian

multipliers. The derivation of the ADMM algorithm is non-trivial, see e.g.,

192



Ryu and Boyd [2016] for a derivation. Each ADMM iteration (k ) has three

main steps:

xk+1 = arg min
x
Lρ(x, z

k, vk)

zk+1 = arg min
z
Lρ(x

k+1, z, vk)

vk+1 = vk + ρ(Axk+1 − zk+1).

ADMM will converge to the solution as long as ρ is positive and reaches

a stable value eventually. The choice of ρ does influence the number of

iterations that are required [Nishihara et al., 2015, Xu et al., 2017a, 2016]

and the performance on non-convex problems [Xu et al., 2016]. We use an

adaptive strategy to adjust ρ at every iteration, see He et al. [2000]. The

derivation proceeds in the scaled form with u = v/ρ. Reorganizing the

equations leads to

xk+1 = arg min
x

(
h(x) +

ρ

2
‖Ax− zk + uk‖22

)
zk+1 = arg min

z

(
g(z) +

ρ

2
‖Axk+1 − z + uk‖22

)
uk+1 = uk +Axk+1 − zk+1.

Now insert the expressions for h(x) and g(z) to obtain the more explicitly

defined iterations

xk+1 = arg min
x

(
1

2
‖x−m‖22 +

ρ

2
‖Ax− zk + uk‖22

)
zk+1 = arg min

z

(
ιC(z) +

ρ

2
‖Axk+1 − z + uk‖22

)
uk+1 = uk +Axk+1 − zk+1.

If we replace the minimization steps with their respective closed-form solu-

tions, we have the following pseudo-algorithm:

xk+1 = (ρA∗A+ I)−1
(
ρA∗(zk − uk) +m

)
zk+1 = PC(Axk+1 + uk)

uk+1 = uk +Axk+1 − zk+1.
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This shows that the second minimization step in the ADMM algorithm

to compute a projection is a different projection. The projection part of

ADMM for the transform-domain `1 constraint (zk+1 = PC(Axk+1 + uk) =

arg minz 1/2‖z − v‖22 s.t ‖z‖1 ≤ σ, with v = Axk+1 + uk) is a much simpler

problem than the original projection problem (equation A.1) because we do

not have the transform-domain operator multiplied with the optimization

variable. The x-minimization step is equivalent to the least-squares problem

xk+1 = arg min
x

∥∥∥∥
(√

ρA

I

)
x−

(√
ρ(zk − uk)

m

)∥∥∥∥
2

(A.5)

We can solve the x-minimization problem using direct (QR-factorization) or

iterative methods (LSQR [Paige and Saunders, 1982] on the least-squares

problem or conjugate-gradient on the normal equations). We adjust the

penalty parameter ρ every ADMM cycle. We recommend iterative algo-

rithms for this situation, to avoid recomputing the QR factorization every

ADMM iteration. Iterative methods allow for the current estimate of x as

the initial guess. Moreover, z and u change less as the ADMM iterations

progress, meaning that the previous x is a better and better initial guess.

Therefore, the number of LSQR iterations typically decreases as the number

of ADMM iterations increases. Algorithm 6 shows the ADMM algorithm to

compute projections, including automatic adaptive penalty parameter ad-

justment. For numerical experiments in this thesis, we use µ = 10, Au = 2

as suggested by Boyd et al. [2011].

If we have a different constraint set, but same transform-domain opera-

tor, we only change the projector that we pass to ADMM. If the constraint

set is the same, but the transform-domain operator is different, we provide a

different A to ADMM. Therefore, the various types of transform-domain `1,

cardinality or bound constraints all use ADMM to compute the projection,

but with (partially) different inputs.
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Algorithm 6 ADMM to compute the projection, including automatic
(heuristic) penalty parameter adjustment.

input: m, transform-domain operatorA,
norm/bound/cardinality projector PC
x0 = m, z0 = 0, u0 = 0, k = 1,
select Au > 1, µ > 1, ρ > 0

WHILE not converged
xk+1 = (ρA∗A+ I)−1

(
ρA∗(zk − uk) +m

)
zk+1 = PC(Axk+1 + uk)
uk+1 = uk +Axk+1 − zk+1

r = Axk+1 − zk+1

s = ρA∗(zk+1 − zk)
IF ‖r‖ > µ‖s‖ //increase penalty

ρ = ρAu
u = u/Au

IF ‖s‖ > µ‖r‖ //decrease penalty

ρ = ρ/Au
u = uAu

ELSE
ρ //do nothing

END
END

output: x
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Appendix B

Transform-domain bounds /

slope constraints

Our main interest in transform-domain bound constraints originates from

the special case of slope constraints, see, e.g., Petersson and Sigmund [1998]

and Bauschke and Koch [2015] for examples from computational design. Le-

livre and Oldenburg [2009] propose a transform-domain bound constraint in

a geophysical context, but use interior point algorithms for implementation.

In our context, slope means the model parameter variation per distance unit,

over a predefined path in the model. For example, the slope of the 2D model

parameters in the vertical direction (z-direction) form the constraint set

C ≡ {m | blj ≤ ((Dz ⊗ Ix)m)j ≤ buj }, (B.1)

with Kronecker product ⊗, identity matrix with dimension equal to the x-

direction Ix, and Dz is a 1D finite-difference matrix corresponding to the

z-direction. blj is element j of the lower bound vector. An appealing prop-

erty of this constraint is the physical meaning in a pointwise sense. If the

model parameters are acoustic velocity in meters per second and the grid

is also in units of meters, the constraint then defines the maximum velocity

increment/decrement per meter in a direction. This type of direct physical

meaning of a constraint is not available for `1, rank or Nuclear norm con-
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straints; those constraints assign a single scalar value to a property of the

entire model.

There are different modes of operation of the slope constraint:

Approximate monotonicity. The acoustic velocity generally increases

with depth inside the Earth. This means the parameter values increase

(approximately) monotonically with dept (positivity of the vertical discrete

gradient). The set C ≡ {m | − ε ≤ ((Dz ⊗ Ix)m)j ≤ +∞} describes this

situation, where ε > 0 is a small number. Exact monotonicity corresponds

to ε = 0, which means we allow the model parameter values to increase arbi-

trarily fast with increasing depth, but enforce a slow decrease of parameter

values when looking into the depth direction.

Smoothness. We obtain a type of smoothness by setting both bounds

to small numbers: C ≡ {m | − ε1 ≤ ((Dz ⊗ Ix)m)j ≤ +ε2}, where ε1 > 0,

ε2 > 0 are small numbers. This type of smoothness results in a different

projection problem than if smoothness is obtained using constraints based

on norms or subspaces. Another difference is that the slope constraint is

inherently locally defined.

The slope constraint may be defined along any path using any discrete

derivative matrix. Higher order derivatives lead to bounds on different prop-

erties. Approximate monotonicity of parameter values can also be obtained

using other constraints. Esser et al. [2016b] use the norm based hinge-loss

constraint. However, we prefer to work with linear inequalities because norm

based constraints are not defined pointwise and do not have the direct physi-

cal interpretation as described above. Figure B.1 shows what happens when

we project a velocity model onto the different slope constraint sets.
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Figure B.1: The figure shows the effect of different slope constraints
when we project a velocity model (a). Figure (b) shows the
effect of allowing arbitrary velocity increase with depth, but
only slow velocity decrease with depth. Lateral smoothness
(c) is obtained by bounding the upper and lower limit on the
velocity change per distance interval in the lateral direction.
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Appendix C

Black-box alternating

projection methods

We briefly show that the proposed PARSDMM algorithm (Algorithm 3) is

different, but closely related to black-box alternating projection algorithms

for the projection onto an intersection of sets. We base this Appendix on the

alternating direction method of multipliers (ADMM). The ADMM algorithm

is closely related to Dykstra’s algorithm [Dykstra, 1983, Boyle and Dykstra,

1986] for projection problems, as described by [Bauschke and Koch, 2015,

Tibshirani, 2017], including the conditions that lead to equivalency.

The parallel Dykstra algorithm (Algorithm 7) projects the vector m ∈
RN onto an intersection of p sets using projections onto each set separately

with projectors PV1 ,PV2 , . . . ,PVp . If the definitions of the sets Vi include

non-orthogonal linear operators, these projections are often non-trivial and

their computation requires another iterative algorithm.

To show the similarity and difference with PARSDMM and parallel Dyk-

stra, we proceed with a derivation similar to Algorithm 3, but different in

such a way that the final algorithm is black-box, i.e., it uses projections onto

the sets Vi and the linear operators are ‘hidden’.

First we rewrite the projection problem of m onto the intersection of sets
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Algorithm 7 Parallel Dykstra’s algorithm to compute arg minx
1
2‖x −

m‖22 s.t. x ∈
⋂p
i=1 Vi.

Algorithm Parallel-DYKSTRA(m,PV1 ,PV2 , . . . ,PVp)
input:

model to project: m
projectors onto sets PV1 ,PV2 , . . . ,PVp

//initialize

0a. x0 = m, k = 1
0b. v0

i = x0 for i = 1, 2, . . . , p
0c. select weights ρi such that

∑p
i=1 ρi = 1

while stopping conditions not satisfied do
FOR i = 1, 2, . . . , p

1. yk+1
i = PVi(vki )

END
2. xk+1 =

∑p
i=1 ρiy

k+1
i

FOR i = 1, 2, . . . , p
3. vk+1

i = xk+1 + vki − y
k+1
i

END
4. k ← k + 1

END
output: x

Vi,

min
x

1

2
‖x−m‖22 +

p−1∑
i=1

ιVi(x) (C.1)

as

min
x

1

2
‖x−m‖22 +

p−1∑
i=1

ιCi(Aix). (C.2)

Where we exposed linear operators Ai by rewriting the indicator functions

ιVi(x)→ ιCi(Aix). Now we introduce additional variables and equality con-

straints to set up a parallel algorithm as

min
x,{yi}

1

2
‖yp −m‖22 +

p−1∑
i=1

ιCi(Aiyi) s.t. x = yi ∀i. (C.3)
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This problem is suitable for solving with ADMM if we recast it as

min
x,ỹ

f̃(Ãỹ) s.t. D̃x = ỹ, (C.4)

with

f̃(ỹ) ≡ 1

2
‖yp −m‖22 +

p−1∑
i=1

ιCi(Aiyi) (C.5)

and

D̃ ≡


I1

...

Ip

 , ỹ ≡


y1

...

yp

 , Ã ≡


A1

...

Ap

 . (C.6)

The linear equality constraints enforce that all yi are copies of x at the so-

lution of problem (C.3). The difference with PARSDMM is that we leave

the Ai inside the indicator functions instead of moving them to the lin-

ear equality constraints. The corresponding augmented Lagrangian with

penalty parameters ρi > 0 is

Lρ1,...,ρp(x, y1, . . . , yp, v1, . . . , vp) =

p∑
i=1

[
f̃i(Aiyi) +v>i (yi−x) +

ρi
2
‖yi−x‖22

]
.

(C.7)
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The ADMM iterations with a relaxation parameters γi are then given by

xk+1 = arg min
x

p∑
i=1

[ρki
2
‖yki − x+

vki
ρki
‖22
]

=

∑p
i=1

[
ρki y

k
i + vki

]
∑p

i=1 ρ
k
i

x̄k+1
i = γki x

k+1
i + (1− γki )yki

yk+1
i = arg min

yi

[
fi(Aiyi) +

ρi
2
‖yi − x̄k+1

i +
vki
ρki
‖22
]

= proxfi◦Ai,ρki
(x̄k+1
i − vki

ρki
)

vk+1
i = vki + ρki (y

k+1
i − x̄k+1

i ).

The difference with Algorithm 3 is that the linear operators Ai move from

the xk+1 computation to the yk+1
i computation. This means the xk+1 com-

putation is now a simple averaging step instead of a linear system solu-

tion. The yk+1
i changed from evaluating proximal maps (almost always in

closed-form), into evaluations of proximal maps involving linear operators

(usually not known in closed-form). The proximal maps proxfi◦Ai,ρki
for

i = 1, . . . , p− 1 are projections onto Vi, except for i = p, which is the prox-

imal map for 1
2‖yp −m‖

2
2. We need another iterative algorithm to compute

the yk+1
i at relatively high computation cost. The algorithm as a whole

becomes more complicated, because we need additional stopping criteria for

the algorithm that computes the yi updates.

This iterations from (C.8) are similar to parallel Dykstra (Algorithm 7)

and are, in essence, ADMM applied to a standard consensus form optimiza-

tion problem [Boyd et al., 2011, problem 7.1].
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