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Abstract 

Stroke is a common cause of permanent disability accompanied by devastating 

impairments. Motor, sensory and cognitive deficits are common following stroke, yet treatment 

is limited. Along with histological measures, functional outcome in animal models has provided 

valuable insight to the biological basis and potential rehabilitation efforts of experimental stroke. 

Developing and using tests that identify behavioral deficits is essential to expanding the 

development of translational therapies.  Forelimb Asymmetry Task experiments – often called 

Cylinder Tests – are used to study the impact of ischemic stroke and its subsequent rehabilitation 

to contralateral limb movements of studying rodents.  Through assessments on qualitative and 

quantitative aspects of vertical exploration to the Cylinder Wall, extent of locomotor asymmetry 

is evaluated [25-27].    

Traditionally wall rearing assessments are evaluated through manual, stop-watch based 

measurements that require laborious observations.  Methods that automate the process were 

attempted such as the use of hardware-based sensor detections that passively probes of touches 

on the sensor grid.  In its various implementations, the sensor-based methods fail to specify the 

limb that rears the wall nor depict the ways forelimbs are coordinated during the rearing.  

Advent of artificial intelligence (AI) algorithms, notably Deep Neural Networks (DNN), 

helps to extract posture and coordinates of forelimbs [21].  PalmGrid is the first attempt to 

exploit AI posture extraction algorithms – based on 50 layers depth in ResNet Deep Neural 

Networks [29] together with posture extraction algorithm DeepLabCut [24] – to automate the 

assessment process with 70% detection accuracy using robust, open-source software.  Further 

improvements in deep neural networks precisions, such as increasing its depth or incorporating 

advanced posture extraction algorithms, will further enhance detection precisions.  In this way, 
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we will have viable alternatives to conduct cylinder test experiments without suffering from 

extra cost burdens and complex calibrations.   
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Lay Summary 

We have implemented an Artificial Intelligence (AI) software-driven, automated cylinder 

test method using basic laboratory apparatus and a Raspberry Pi video recorder.  Upon one-time 

training that made the AI Engine1 to profess forelimbs recognition competence, subject videos 

can then be analyzed to localize of their forelimb locations.  These forelimb locations are then 

analyzed if vertical exploration (wall-rearing) occurred.  Assessments based on cylinder tests of 

subjects demonstrate detection accuracy around 70%.   

Utilizing software method bypasses several limitations of conventional approach.  Firstly, 

laborious tasks of manual monitoring are no longer required.  Secondly, calibrations of sensory 

networks to aid detections are spared, thus lowering equipment investments.  Most importantly, 

any specific features of interests can be flexibly studied.  

  

                                                 
1 AI Engine is made of an off-the-shelf Intel-based computer server with Windows 8.1 Enterprise software 

preinstalled with appropriate artificial intelligence and image processing software.  For details, please refer to 

Section 2.3.  



 

vi 

Preface 

This dissertation is an original intellectual product of the author, David Sze-Ming Cheng. 

The fieldwork reported in the thesis was covered by UBC Animal Protocol Number A18-0321 

and A18-0036. 

The PalmGrid method is an Artificial Intelligent software-driven process to automate 

Cylinder Task experiments that are used to assess rodent behavior in stroke or rehabilitation. It is 

built on cutting edge Artificial Intelligence Deep Neural Network Algorithms (DNN) together 

with Posture Extraction and signal processing methods.  The specific DNN algorithm used is 

ResNet-50, which refers to 50-layers of convolution neural networks made publicly available by 

Google in Tensorflow 1.1 software.  ResNet-50 is the core foundation of posture extraction 

system called DeepLabCut developed by Adaptive Motor Control Laboratory from Rowland 

Institute of Harvard University Department of Neuroscience, which extracts cartesian 

coordinates of interested postures.    

The PalmGrid process further capitalizes on DeepLabCut.  It consists of an experimental 

setup of basic laboratory apparatus to record mouse behavioral videos and a server that tracked 

specific postures/features highlighted in the recorded videos.  These extracted cartesian 

coordinates are then analyzed to discern of wall-rearing activities.   In this way, data gathered in 

Cylinder Task experiments can be automated with minimal resources and investments. 

Professor Tim Murphy of the University of British Columbia supervised the project, who 

initiated the requirements with Dr. Matilde Balbi to write the published manuscripts. I am 

responsible for design, implementation, experimentation setup, and testing using basic laboratory 

apparatus and single Raspberry Pi camera.  I was much indebted to the help of Luis Bolanos and 
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Dr. Jamie Boyd for their assistance in building the transparent stools, and likewise for Dr. 

Balbi’s contributions in practical implications of cylinder tasks experimentations.  Last, not least, 

the help of Dr. Jamie Boyd who helped fast-tracking Raspberry Pi implementation required for 

the experimentation setup.  
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Glossary 

Major Terms of 

References 

Description 

  

Cylinder Test Also called the spontaneous forelimb use asymmetry test, is frequently 

used to assess post-stroke limb use asymmetries in mice 

DNN Deep Neural Networks, a specific construct of Convolutional Neural 

Networks that become the prevalent industry standard for machine-based 

recognition of images and videos 

DeepLabCut An open-source, General Public Use licensed toolbox written by Adaptive 

Motor Control Laboratory of Rowland Institute, Harvard University; that 

built on Tensorflow and prevalent posture extraction algorithms to extract 

posture coordinates of identified features of interests in the video stream.   

Posture coordinates are given in cartesian coordinates relative to Field of 

View of the camera. 

ILSVRC ImageNet Large Scale Visual Recognition Challenges, an annual contest 

for competing Deep Neural Networks algorithms who were given a set of 

images and videos to discern into given (say 1,000) categories of objects.  

Competence of benchmark is assessed by Top-1 and Top-5 recognition 

accuracies. 

Principal 

Component 

Analysis 

Data Science techniques that extract maximum variances from a set of 

presented data 

ResNet Residual Neural Network, an open source software bundled in Google 

Tensorflow that is the winner of the 2015 ImageNet Challenge of computer 

object recognition.  In 152 layers of the construct, implemented in 

September 2016 possesses a recognition rate under an optimal condition 

that achieves human “Top-5 recognition rate” capability of less than 5% 

error. 

Tensorflow An open-source, machine learning General Public Use toolbox provided by 

Google to facilitate low entry barriers adaption in deep neural networks 

algorithms 
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ways acknowledge him, and he shall direct thy paths." 
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Chapter 1 Introduction 

1.1 Cylinder Test 

Stroke is a common cause of permanent disability associated with sensory and motor 

deficits. Developing and using tests for experimental stroke that helps to identify behavioral 

deficits is essential for the development of therapeutic interventions. The cylinder test, also 

called the spontaneous forelimb use asymmetry test, is frequently used to assess post-stroke limb 

use asymmetries in mice [25-27].  

In a typical cylinder test, the mouse is put in an acrylic cylinder.  The cylinder is mounted 

on a transparent stool where video equipment(s) is mounted underneath to record its activities 

(Figure 1).  Current protocol mandates each recording to around ten minutes that can be 

separated by short time intervals for equipment calibration purposes to count respective left-

forelimb, right-forelimb, or both-forelimbs wall rearing activities [25~27, also Appendix D.1].  

Manual inspection is then required to identify the wall rearing episodes of respective forelimb on 

the cylinder wall, to assess the behavioral impact (Figure 2 and Appendix D.1). These wall 

rearing episodes refer to the time fragments where forelimbs rear the wall vertically. They are 

then expressed in different test scores and plotted to compare trends of locomotor asymmetry 

(lower plot, Figure 2). 

Despite the test being relatively easy to perform, manual frame by frame counting in the 

number of touches within recorded video frames is laborious.  Various methods had been 

attempted to automate the laborious and subjective collection of wall-rearing statistics in 

Cylinder Test.  In a typical 4 minutes video recorded in 25 frames per second, the frame-by-

frame review requires browsing of 4 (min) x 60 (seconds) x 25 (frames) = 6,000 frames.  Various 
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methods to conduct cylinder test assessments have been suggested to relieve the laborious 

exercise by employing slow play functions of image processing software such as VLC Player.  

An example of such is paw-dragging test [30], where at least three iterations to play the recorded 

mice videos in slow motions are required: first by skimming through the video of fragments in 

vertical exploration, followed by verifications, and subsequently to review particular wall-rearing 

fragment frame by frame to assess its quality of rearing.   The need for second raters, prolonged 

monitoring (say 24 hours), and batch processing of different subjects’ recordings further 

compound the time burden in analyzing Cylinder Test results. 

  

Figure 1: Cylinder Test Configuration: Mice or Rats 

being put in laboratory cylinder to assess vertical 

exploration  

Figure 2: Typical Cylinder Test Assessment. Image obtained 

from Li & McCullough [26] Chronic behavioral testing after 

focal ischemia in the mouse. Experimental Neurology 

Volume 187, Issue 1, May 2004, Pages 94-104 
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1.2 Different Variants of Cylinder Tests 

Different investigators employed varying score metrics to evaluate vertical exploration.  As 

one of the first investigator proposing the method, Schallert [25] was interested to test the 

preference of rats in using non-impaired forelimb for weight shifting movements during 

spontaneous vertical exploration.  This is why the test was devised to observe independent 

forelimb rearing as well as their respective landing during impaired and non-impaired conditions.  

Simultaneous forelimb rearing and landing were likewise recorded.  There were no timing 

windows imposed for the test. The metrics are simple to understand and easy to be carried out. 

Li & McCullough [26] slightly modified Schallert’s method by focusing on forelimb use 

and rotational symmetry of mice.  They are not interested in the landing counts but instead focus 

on forelimbs’ vertical explorations.  In this way, both independent and simultaneous rearing are 

recorded just as [25], plus they further define a metrics called "Right Forelimb Independent" that 

refers specifically to right forelimb staying on the wall during both impaired and non-impaired 

conditions.  The mice are given 10-minute test period where 20 of these movement episodes are 

recorded. In the end, the independent forelimb movement and simultaneous counts during 

impaired and non-impaired conditions within the 10-minutes test period are given a metric score 

in the evaluation. Please refer to Appendix D.1 for detailed description of methods. 

Shanina and Redecker [27] focused on recovery after photothrombotic infarcts in rats.  In 

addition to the conventional independent and simultaneous forelimb rearing, they are also 

interested in wall sliding.  The Forelimb Activity Index and sliding score percentage are 

computed, based on the formula given in Appendix D.2. 
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Recently, Roome and Vanderluit [30] noticed that the conventional methods of Cylinder 

Test were not sensitive enough for mice as compared to rats, judging by their lack of reliance on 

unaffected forelimb paw for postural support as compared to rats.  Instead, they observed 

behavior termed "paw-dragging" where its impaired forelimbs drag along the cylinder wall rather 

than directly push off from the wall when dismounting from a rear to a four-legged stance. They 

are therefore interested to quantify the number of paw-drags and expressed as a percentage of 

total paw touches during an experimental session.  Details of the method are depicted in 

Appendix D.4. 

A summary of these four methods is given in Figure 3. 

 

Figure 3: Summary of various Cylinder Test Metrics in various cylinder test methods as Schallert [25], Li & McCullog 

[26], Shanina [27], and Roome & Vanderluit [30] 
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It is noted that while score metrics and features-of-interests (such as right forelimb 

independence, dragging etc. – see Figure 3) differ between various methods, the core principles 

remain unchanged.  In order to automate these methods with maximum flexibility, wall-rearing 

detection that depicts the time and synchrony of these independent forelimb episodes is needed 

to gauge of the left, the right, and both forelimbs rearing.  If particular method requires further 

data mining into particular rearing episode, it would be nice to have raw episodic data available 

to aid further analysis. 

We have integrated these requirements into our prototype model to build a markerless 

cylinder test automation system called PalmGrid.   In sum, PalmGrid is the novel approach that 

combines interdisciplinary excellence of Behavioral Neuroscience, Artificial Intelligence, Signal 

Processing, and Engineering.  Its behavioral neuroscience requirements have been well adopted 

to assess locomotor asymmetry of rodents, especially in behavioral recovery studies of stroke as 

a result of plasticity in Central Nervous System [25-27, 30].  It will equally enhance efficiencies 

in conducting left-right forelimbs trait preference (biodiversity) experiments as prolonged 

observations are required to capture mice preference to grab food [33-34]. By leveraging 

advances in cutting edge artificial intelligence to locate the forelimbs and signal processing to 

make sense of them, Cylinder Test experiments can be automated with improved efficiencies that 

is easy to setup, easy to adapt, and easy to use by resources limited laboratories.  
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1.3 Organization of this thesis 

This thesis is organized as follows.  Chapter 1 refers to brief purposes of cylinder test and 

the corresponding history of automatic touch sensing development.  Section 1.5 – 1.7 refers to a 

brief history of Deep Neural Networks that provides basic terms of reference; and Section 1.8 

refers to research aim of PalmGrid that explains what we intend to utilize in Artificial 

Intelligence to assist us in automation of touch sensing in Cylinder Test. Given the 

interdisciplinary nature of current research, it is believed that a lengthier introduction in Section 

1.5 depicting brief history of Artificial Intelligence will help readers to understand basic 

terminology and terms of references in the neuroscience research herein described. 

Chapter 2 describes the features and design of PalmGrid.  Section 2.1 briefly describes its 

design philosophy, and what is required to employ the system.  Section 2.2 elaborates on 

experimental settings to conduct PalmGrid-based Cylinder Test experiment.  Section 2.3 

provides high-level implementation block diagram for the PalmGrid process, with section 2.4 

detailing the steps underlying the process described in 2.3.   Section 2.5 provides brief highlights 

into the less known stories of Deep Neural Networks despite its hype, leading to the necessity of 

signal processing and decision gauging algorithms of PalmGrid in Section 2.6.  Remaining 

sections of the chapter discusses its algorithmic and process performance. 

Chapter 3 opines on PalmGrid’s strengths and weaknesses.  Section 3.1 discusses its 

strength; while Section 3.2 outlines circumstances where the processes may not be applicable.  

There are many areas that the algorithm can be enhanced, and these are outlined in Section 3.3, 

including discussions of why certain technical options have opted while others not taken into 

consideration. 



 

7 

 

1.4 Wall-Rearing Detection using Touch-based sensing techniques 

Previous attempts to automate Cylinder Test include the use of hardware touch sensing 

techniques. Touch sensing technologies are used in many applications such as smartphones, 

tablets, laptops, information kiosks, etc. Touch screens are very intuitive and easy to use; they 

also save space because their screen and interface are spatially integrated. Many touch sensing 

technologies have been developed for commercial purposes. Examples include technologies 

based on infra-red sensing elements [1–4], resistive [5,6] and capacitive sensors [7–9], cameras 

[10], the acoustic-based sensors [11–13], and others [14–16].  

The mutual capacitive method is a popular touch-sensing approach that is extensively 

adopted in smartphones and tablets [17]. In this method, the touch interface is constructed of 

rows and columns of transparent tracks made of conductive paint. The row and column tracks are 

separated by a thin glass layer. Each row/column is electronically charged by an individual 

driver circuit. When the mouse touches the cylinder at a specific position where conduction 

tracks were laid, the capacitance at the intersection between the row and the column at this 

position changes; the point of pressure on the panel can thus be localized by scanning all the 

other non-energized rows and columns and computing the capacitance at all intersections, and 

recorded by a miniature Raspberry-Pi in further processing [18]. Most of the aforementioned 

touch sensors can be classified as active sensing techniques because touch detection depends on 

transmitting and receiving a signal that is perturbed by a touch.     

In 2017, Kinsmen laboratories of University of British Columbia has setup the capacitive 

sensor infrastructure in an attempt to automate touch sensing.  Capacitive paints were laid in a 
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tapered beam geometry that forms a grid network to detect rodents touches as its limbs touch the 

grid.  These touches are then stored and analyzed using custom software written in Python.  The 

settings achieved high sensitivity of 96.2% in some form of touch detection, be it of bodies, 

limbs, or head. Its advantage is high sensitivity in locating the touch. 

 

 

 

Figure 4: Touch Sensing Detection System, left panel displays the tapered beam geometry where capacitive paints were 

laid, while the right shows its DC electric connection to capacitance sensor chips.  Images obtained from Fig 1 and Fig 2B in 

[19]  Ardesch & Murphy. Journal of Neuroscience Methods 291 (2017) 221–226 

Despite its hardwired accuracies, the method suffers from two major drawbacks.  Other than 

the usual false positives due to latent touches of nearby sensors, it was impossible to discern 

whether the forelimbs or hindlimbs triggered the touch. Such deficiency poses challenges in the 

study of contralateral ischemic stroke that requires comparative study of left versus right 

forelimb mobilities impacted by stroke and corresponding rehabilitation studies.  The method 

cannot fulfill wall rearing episodic extractions as required in various cylinder test protocols. It is 

also challenging to discern special features-of-interests such as “paw dragging” and “paw 

sliding” without explicit observations of forelimb synchronies in their rearing.  Last but not least, 

the experimentation setup also requires costly investment and calibrations into touch sensing 

apparatus that are only affordable by laboratories with extensive engineering expertise in-house.  
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1.5 Brief History of Deep Neural Network and its measurement metrics  

It is a broad consensus that one of the founding father of theoretical artificial intelligence 

was Alan Turing of Queen’s College, Cambridge2.  With his works the Allied Forces had sped 

up to “brute force” the encryption code and deciphered the communications of German Navy to 

pave the victory of WWII.  These algorithms soon evolved to become the cornerstone of modern 

machine learning methods.  In his lecture in London Mathematical Society 1947, he opined that 

"Let us suppose we have set up a machine with certain initial instruction tables, so constructed that these tables 

might on occasion, if good reason arose, modify those tables.  One can imagine that after the machine had been 

operating for some time, the instructions would have altered out of all recognition, but nevertheless still be such that 

one would have to admit that the machine was still doing very worthwhile calculations. Possibly it might still be 

getting results of the type desired when the machine was first set up but in a much more efficient manner.  In such a 

case one would have to admit that the progress of the machine had not been foreseen when its original instructions 

were put in. It would be like a pupil who had learned much from his master but had added much more by his own 

work.  When this happens I feel that one is obliged to regard the machine as showing intelligence.” 

Turing, 1947 

Since then machine learning has powered ahead with hallmark innovations in perceptron 

algorithms (Minsky & Papert et al 1969), Prolog programming language (Colmerauer et al 1972) 

and a host of others that spearheaded much of the artificial intelligence developments in the 20th 

Century.   Their euphoria gave rise to a time of unrealistic expectations that subsequently 

dissipated as promises trailed behind hypes (The Economist 1992 September op ed quoting 

“Artificial Stupidity”).   Thereafter development in the commercial arena, notably research 

funding, substantially shrank in the 1990s that left caring of this lonely child technology to be 

confined within universities’ computer science laboratories. 

In 2006, Professor Geoffrey Hinton of University of Toronto invented Deep Belief Net that 

became the first neural networks to learn decoded information state3 based on his understanding 

                                                 
2 https://en.wikipedia.org/wiki/Alan_Turing 
3 In computer science terminology, decoded information state is termed internal representations 
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of synaptic neurons architecture.  Its breakthrough in object recognition rate – though modest in 

present day standards – revived commercial interests in machine learning that reopened 

enterprises’ R&D interests (such as Google and Microsoft) to substantially invest their research 

efforts into artificial intelligence sector.  Microsoft Research and Amazon soon actively followed 

around 2010.  

In brief, Deep (Convolution) Neural Network is a layered autocorrelator4 where each layer 

is responsible to discern specific feature sets of the data presented at its input, followed by an 

optional ReLU layer5 that makes decisions whether specific criteria are met.  The stacking of 

these layers of autocorrelators effects adaptation of features-of-interests to specific patterns, such 

that any future presented data in similar pattern can be recognized [20].  For example, if an AI-

Engine was trained to recognized of rodents forelimbs, then after iterations of training, it 

professes the knowledge to recognized such forelimbs of similar sizes and shapes.  

 

                                                 
4 Autocorrelator is an algorithmic process that correlates an input signal with a delayed copy of itself as a 

function of delay. The analysis of autocorrelation is a mathematical tool for finding repeating patterns that detects if 

the incoming signal resembles to features it looks for.  An example of its application is facial recognition, where the 

shapes of particular person’s face is compared to a database of facial edges. 
5 In the context of artificial neural networks, ReLU (or rectifier) is an activation function defined as the positive 

part of its argument:  

𝑓(𝑥) = 𝑥+= 𝑚𝑎𝑥(0 , 𝑥) 

where x is the input to a neuron. This is also known as a ramp function and is analogous to half-wave 

rectification in electrical engineering. 
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Figure 5: Convolution Neural Network Schematics. Image obtained from https://res.mdpi.com/entropy/entropy-19-

00242/article_deploy/html/images/entropy-19-00242-g001.png 

 

To benchmark the effectiveness of different DNNs, the ImageNet challenge was instituted 

as an industry effort to certify its performance since 2010. Soon the exercise became the platform 

of intellectual competition among big companies and research institutions alike such as NEC, 

MIT, Stanford, Microsoft, and Google.  ImageNet presents portfolios of test images in different 

categories of stationary and moving objects to test out the accuracies of machine learning to 

recognize these objects.   

The metrics to appraise effectiveness of Deep Learning algorithm is based on its recognition 

and localization capabilities.  In terms of recognition capability,  “Top-5 successful recognition 

rate” measures how accurate particular neural network is capable of discerning a particular 

image into respective categories irrespective of where it is in the presented picture6.  “Top-1 

recognition rate” was used to measure corresponding accuracies of the algorithms to "spot on" 

specific objects into specific categories, for example, "Chihuahua" in the category of "Dogs".  If 

the picture is recognized as "Wolf" or "Jackal", their “Top-1 accuracy” will not score while its 

                                                 
6 For details of ImageNet competition, refers to 

https://en.wikipedia.org/wiki/ImageNet#History_of_the_database 
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“Top-5 accuracy” score will get one mark, and so forth.  Figure 6 and Figure 8 shows different 

“Top-1” and “Top-5” recognition rates in respective winners of ImageNet challenges over the 

years 2010 - 2016.  ResNet in different layers (34, 50, 101, 152) Top-1 recognition rate is also 

displayed although its 50-layers configuration was the winner in 2015. 

 

Figure 6: Top-1 Localization Error Rates of different Deep Neural Network Algorithms.  Image obtained from Canziani & 

Paszke [21]. An analysis of Deep Neural Networks for practical applications. Computer Vision and Pattern Recognition April 

2017 

 

1.6 ResNet Algorithms 

ResNet Algorithm was one form of Deep Neural Network invented by four scholars during 

their time in Microsoft Research in late 2015 [29].  It was known by then that constructs evolved 

from Deep Belief Network variants (and other planar networks such as VGG-19) suffer from 

major drawbacks in vanishing gradients, a symptom where learning errors saturated as stacking 

increase. Such metaphor renders learning of successive layers of artificial neurons to saturate, 

setting limits to depth of Deep Neural Networks [29], and hinders corresponding Top-1 and Top-

5 error from further reductions. 
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The ResNet algorithm advances from plain networks’ learning barrier by restricting the 

learning optimization within a few layers of neural networks.  Its design ideas closely resemble 

the way animal cortex are organized into brain regions, with each one specialized and optimized 

in its own right while chained together to do big tasks (Figure 7).  In ResNet, building blocks are 

cascaded together resulting in deeper architecture – hence higher recognition rate [29].  

 

Figure 7: The ResNet Algorithm Architecture. Note that in contrast to other planar DNN algorithms like VGG-19, ResNet 

organized itself into smaller groups of artificial neuron layers for its self-contained optimization.  This achieves faster and closer 

convergence. Image obtained from He &Sun [29]. Deep Residual Learning for Image Recognition. Computer Vision and Pattern 

Recognition. Dec. 2015,  

 

1.7 Deep Neural Networks Posture Extraction Algorithms 

Over the years since 2010, annual ImageNet Large Scale Visual Recognition Challenges 

(ILSVRC) demonstrated significant advances in image recognition capabilities of various DNNs; 

from 25% in “Top-5 recognition error”7 in 2010 to less than five percent in by 20158 (Figure 8).  

                                                 
7 The Top-5 error rate is the percentage of test examples for which the correct class was not in the top 5 

predicted classes.  So, for example, if a test image is a picture of a Persian cat, and the top 5 predicted classes in 

order are [Pomeranian (0.4), mongoose (0.25), dingo (0.15), Persian cat (0.1), tabby cat (0.02)], then it is still treated 

as being 'correct' because the actual class is in the top 5 predicted classes for this test image. 

 

ImageNet is an image base consisting of millions of images categorized into 1000 classes, top-5 error rate 

became benchmarks of efficacies of DNN algorithms. 
8 For details on ImageNet Large Scale Visual Recognition Challenges, please refer to http://www.image-

net.org/challenges/LSVRC/. 
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For the purpose of our discussion, ResNet-50 achieved 5.25% in recognition errors that approach 

human recognition capabilities.  Further advances in ResNet to 152 layers by Microsoft Research 

in September 2016 claim less than 4.49% in Top-5 recognition error, exceeding human 

capabilities. 

 

Figure 8: Top 5 Recognition Accuracy of ImageNet Challenge Winners. From 2012 onwards, Top-5 (Recognition) 

accuracies are approaching closer to human capabilities.  ResNet was the first time human recognition capability was being 

challenged in 2015.  Image obtained from Russakovsky & Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. IJCV, 

2015 

To facilitate widespread adoption of Deep Neural Networks, Google bundled the host of 

advanced DNN algorithms for general public use since late 2015. In 2017, Harvard University 

Adaptive Motor Control Laboratory leveraged ResNet-50 bundled in Google Tensorflow to 

integrate posture extraction algorithms into markerless pose estimation software toolbox called 

DeepLabCut [23]. Upon one-time training of DeepLabCut with a brief training video of what 

forelimbs look like, the software will extract forelimbs locations of experimentation videos9. 

These extracted locations are then analyzed to identify of wall-rearing episodes using custom-

built signal processing algorithms.  

                                                 
9 For details of one time training of DeepLabCut, please refer to Section 2.4.1 Training PalmGrid recognition 

capabilities 
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1.8 Research Aims 

We set out our research journey to investigate technical feasibility to automate Cylinder 

Test using frontier engineering methods, in particular, artificial intelligence and signal 

processing algorithms.  We called this prototype project "PalmGrid” to symbolize its economics 

and simplicity: the two critical success factors for widespread adoption in laboratories with 

limited resources.    

In particular, we are interested to answer the five research questions: 

1) Can one automate Cylinder Test with only one simple Pi-camera under minimal 

calibrations?  

The reason behind any automation was enhancing efficiency whilst lowering the costs of 

processing.  PalmGrid objective was no different.  We explore what can be done using the most 

basic Raspberry Pi Version 2 camera (Appendix A.2) and stretch its resolution to 1200 x 1200 

pixels per frame10.     

2) Can one achieve forelimb recognition in free-movement mice?  

Given the fact that we are stretching resolution capabilities of DeepLabCut, forelimb 

recognition of free and fast-moving mice is also of interests.  It would be easier to set camera 

focus to aid forelimb detection if we had head-fixed mice in similar experiments where bodily 

obstructions are not evident.  In free-movement mice, maneuvering of subjects became a serious 

challenge to camera’s shutter and focus capabilities that give rise to blurred images affecting 

                                                 
10 According to documentations of DeepLabCut [24], recommended maximum resolution of the software is 640 

x 480 pixels resolution.  Since forelimbs of mice was small, a finer resolution of 1200 x 1200 pixels would be 

required for adequate resolution of its features.  
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forelimb recognition.  We are therefore interested to what extent can PalmGrid accepts free-

movement mice to resolve and recognize forelimbs. 

 

3) Can left and right forelimbs of subject mice be independently assessed?  

Most importantly we are interested if left and right forelimbs can be independently assessed.  

From various methods depicted in Cylinder Test literature (Appendix D), independent 

assessment becomes the core principles to compute respective wall-rearing scores.   Previous 

attempts to automate Cylinder Test process using mutual capacitive sensors failed to answer this 

question.  Our fundamental assumption is that the ambiance provides sufficient light that allows 

images to be resolved by the artificial intelligence algorithms to recognize forelimbs.  Given the 

vague minimal lighting, is independent assessment feasible in artificial intelligence methods?  In 

the context we are stretching our audacious goal: can we further design PalmGrid to capture 

activities such as wall-dragging or wall-sliding in prevalent protocols? 
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4) Can accurate locations of digits/forelimbs be tracked? 

Even with independent assessment feasibilities, we need to be concerned with accuracies of 

these extracted coordinates as we need them, in various contexts, to compute metrics scores and 

gauges for wall-rearing episodes.  Typical papers in artificial intelligence applications focus on 

“recognitions” to categorize different images, but in this context we need “spot on” precision 

accuracies to report where that features-of-interest is located.  We want to understand to what 

extent of accuracies are analyzed out of these wall-rearing metrics, to translate these accuracies 

into the automation. 

 

5) If 4) is feasible, can wall-rearing activities be discerned? 

Last not least, and given all these constraints and coarse experimental settings, can we 

discern wall-rearing activities? We know that all images are coupled with noises that blur the 

accuracies of extracted postures.  Thus if a machine is tasked to look into the extract postures as 

Cartesian coordinates, these distorted signals will misguide the algorithm from gauging actual 

wall-rearing activities.  In our design of appropriate signal processing filters that extract these 

wall-rearing episodes, therefore, an estimate of its discernment accuracy is warranted. 

The aim of this research is to capitalize on proven classification capabilities of cutting-edge 

artificial intelligence algorithms in extracting coordinates of the features of interests, to discern 

wall rearing touches in Cylinder Tests.   We aim to test out the extent that prevalent machine 

learning and posture extraction approach can automate cylinder test touch sensing with modest 

laboratory setup. 
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1.8 Our Design Prototype: PalmGrid 

With all the design criteria and constraints as set out above, we built our markerless 

Cylinder Test prototype called PalmGrid to test out various research questions raised in 1.7. 

PalmGrid consists of a transparent base with a basic Raspberry Pi video camera mounted 

underneath.   Free-movement mice are placed in a laboratory cylinder above the transparent base, 

so as to record mice activities above (Figure 9).  Positioning the camera underneath minimizes 

the chance of forelimbs being obstructed from video recording due to body movements.  The 

recorded videos are then analyzed by DeepLabCut AI Engine, followed by custom-built signal 

processing algorithms to identify wall-rearing.  As left and right forelimbs are separately labeled, 

detection using PalmGrid approach allows left and right forelimbs to be independently tracked.  

Approaching automatic touch sensing using software approach by leveraging visible lights 

bypasses complexities in hardware setup, hence lowering the capital investments and skillset 

barriers that were otherwise prohibitive to resource-constrained laboratories.   

The output is a wall-rearing report that details the timings in all wall-rearing episodes when 

respective left and right forelimbs reared the wall.  Different investigators can then use this wall-

rearing report to tailor their scoring as needed.  If specific protocols require further data analysis 

into particular episodes to extract specific metrics, detailed episodic coordinates are also 

provided for their ongoing analysis.  To facilitate investigators to review individual vertical 

explorations in its quality of rearing, each episode is compiled into smaller video fragments for 

their inspections. 
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Figure 9 Basic Laboratory Settings of PalmGrid. The laboratory cylinder where mice are placed is mounted on a 

transparent stool.  Underneath a Raspberry-Pi camera is placed to record videos of mouse activities.  Recorded Videos are then 

analyzed by PalmGrid Station – a Windows 8.1 Enterprise server whose configuration is described in Section 2.2.2. 
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Chapter 2 PalmGrid 

2.1  Introduction 

PalmGrid is a process that capitalizes on DeepLabCut and Tensorflow’s ResNet-50 to 

discern wall rearing episodes from predicted forelimbs locations11.  Video images of mice 

activities in the Cylinder Test are recorded in normal lights and analyzed using Tensorflow’s 

ResNet-50 and posture extraction algorithms offered by DeepLabCut.  In its hardware setting, 

the mouse is being housed in a laboratory cylinder supported by a transparent stool, underneath 

which a Raspberry Pi video camera is mounted to record mice activities bottom-up (Figure 11).   

The system was deliberately designed for a single camera.  Though multiple cameras 

system can utilize epipolar geometry methods to advance estimation of depth to higher 

precisions, we deliberately constrained our exercise to highlight the extent of achievements with 

prevalent DNN algorithms using simple Pi-camera with minimal ambience calibrations.  For the 

same reason multiple camera systems that offer added dimensionality were not chosen, as adding 

further camera(s) will pose time synchronization problems between video clips besides 

increasing capital investments12.  In a similar rationale, sophisticated depth camera was not 

employed to gauge the depth of forelimb to calculate the location of wall rearing, in lowering of 

costs and calibration challenges as much as possible. 

The PalmGrid System will be first trained to recognize what mice left and right forelimbs 

looked like and where they are located with respect to the referential coordinate system of video 

camera’s Field of View in a one-time training process (see Section 2.4.1).  Upon training in 

                                                 
11 By episode it means a time fragment within which multiple cylinder wall touches had occurred. 
12 As at the date of writing, Raspberry Pi can only drive a single video camera in its basic settings.  Having 

additional camera means adding another set of Raspberry Pi system that elevated the cost of equipment and 

challenges in synchronizing video times.   As the experiment was set out to identify the lowest and simplest 

hardware setting for cylinder test, single camera approach has opted.   
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excess of 200,000 iterations13, the PalmGrid station professes posture extraction14 competence in 

video camera’s referential coordinate system.   One can then feed appraisal videos – of different 

studying subjects – into the PalmGrid station to predict forelimbs locations with respect to the 

cartesian coordinates in camera’s Field of View.  These predicted forelimbs locations are then 

processed by PalmGrid signal processing module to gauge wall rearing episodes (Figure 10).  

 

Figure 10: PalmGrid Process Overview, as detailed in Section 2.4 

 

Observations are made to deduce criteria of forelimb locations as wall-rearing.  It is noted 

that forelimb digits will first slowdown as its paw approaches the wall, followed by extending 

their distances furthest from the center of the cylinder in forward limb stretching until some of 

them are obstructed by the cylinder wall. The forelimb(s) will either find support on the cylinder 

                                                 
13 Training in excess of 200,000 iterations was a subjective call, to lower prediction errors to a plateau below 

10-5.  Lower iterations will achieve higher order magnitude of error, further increasing prediction errors. In 

DeepLabCut, decent recognition competence is professed after a minimum of 64,000 iterations 
14 Posture extraction is a buzzword in artificial intelligence discipline that refers to recognition and localization 

of specific features of interests such as limbs and the way subject stands in a given video.  In our context, it refers to 

recognition and localization of digits in left and right forelimbs. 
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wall, and subsequently retrace from the wall. Because their forelimbs are obstructed, alteration in 

movement trajectory. 

 

2.2 Experimentation Setting 

Minimal hardware and calibrations remain core consideration in PalmGrid design 

philosophy, as it was devised with ease of adoption in mind.  The hardware setting of PalmGrid 

System thus consists of a recording apparatus where wall rearing activities of mice are recorded 

and a PalmGrid station where recorded videos are analyzed.  We did not assume laboratories are 

well resourced to profess lighting and raspberry Pi calibration expertise to engage in PalmGrid. 

2.2.1The Recording Apparatus 

 

Figure 11: PalmGrid's Recording Apparatus 

The PalmGrid’s recording apparatus consists of basic laboratory equipment of a cylinder 

where the mouse is being housed and studied.  The cylinder is being mounted on a transparent 

stool, underneath which a Raspberry Pi video camera is being mounted (Figure 9 & Figure 11).   
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To facilitate video recording of discernable quality, white cardboard with black top enclosure 

encase the cylinder, gathering as much room lighting as possible (Figure 12).   Basic Raspberry 

Pi camera is configured to its maximum resolution mode, namely 1200 x 1200 pixels, to allow 

for its finest features (such as forelimbs) tracking possible with the basic camera.  Lowering such 

resolution implies coarser pixel resolutions, impacting accuracies of feature identifications and 

hence the subsequent detection finesse. 

 

Figure 12 Cylinder enclosed in white cardboard with black tops maximizing light contrasts 

As mentioned, more sophisticated configurations such as depth camera and multiple camera 

systems were not opted, so as to assess what can be achieved with artificial intelligence under 

basic hardware configurations.   
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2.2.2 The PalmGrid Station 

The PalmGrid station is a Windows 10 Server installed with at least 32GB of Memory and a 

prevalent Graphics Processing Unit from Nvidia that performs analysis of captured video images 

in Cylinder Test.  These graphics processors determine how fast the intended features – such as 

left forelimb of the mouse – can be learned and analyzed by ResNet-50.   The PalmGrid station 

is installed with the following application software, mostly General Public Use licensed software 

in artificial intelligence and image processing. 

• Python 3.6 where DeepLabCut software runs on; and 

• ImageJ that labels training video of the particular features to be recognized; and 

• A video format converter that converts recorded video from de-facto Raspberry Pi’s 

H264 to avi video formats to integrate with DeepLabCut; and 

• Matlab where extracted forelimbs’ coordinates are further analyzed into wall rearing 

episodes; and 

• Microsoft Excel helps to tabulate final detection results for presentation15;  

• Last but not least, a video to photo converter called “FFmpeg” that converts videos 

into photos and vice versa 

Installation of these software followed respective configuration guides as recommended by 

respective vendors.  Please refer to Appendix E for details. 

 

                                                 
15 Excel was chosen because of its easy to use without requirements to understand database administration and 

operations.  Again, we intend to lower adoption barrier.  More resourceful laboratories can consider other forms of 

organized storages, such as Oracle database management system. 
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2.2.3 Choosing appropriate Artificial Intelligence Algorithmic configuration 

DeepLabCut offers two optional Artificial Intelligent algorithms that one can opt for: 

ResNet in 50 layers and 101 layers configurations.  Choosing which ResNet configuration 

require our understanding how to balance recognition and localization accuracies of artificial 

intelligence algorithms. 

Artificial Intelligence algorithm can be best understood with an analogy of visual cortex 

information streams.   In our visual cortex, ventral (“What”) stream is responsible for recognition 

while the dorsal (“Where”) stream is accountable for localization.  Likewise, artificial intelligent 

algorithmic performance is measured in terms of its recognition (i.e. “What”) and localization 

(i.e. “Where”) capabilities.   Recognition capabilities metrics is depicted in “Top-5 accuracies”, 

while localization capabilities is appraised in “Top-1 accuracies”.  Top-5 accuracy was widely 

reported to educate the public that artificial intelligence algorithm has already exceeded human 

recognition capabilities ever since the arrival of ResNet in 2015.  

For PalmGrid that capitalizes on features of DeepLabCut toolbox that uses ResNet to 

provide recognition (Top-5) accuracies of over 95% as shown in Figure 8, further decisions are 

to be made in the choice of 50- or 101-layers configurations.   Since Cylinder Test protocols 

require localization of forelimbs, this implies that we have to understand how accurate its 

localization capability is and balance such requirements against computational demand of 

Graphics Processing Unit in the captioned automation to achieve acceptable time to analyze each 

experimentation video.   In doing so, realistic decisions can be made in what type of computing 

hardware is required to provide adequate localization accuracies within reasonable computational 

time.  
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The localization performance (Top-1 accuracy) chart as shown in Figure 13 is rarely 

reported beyond artificial intelligence discipline.  For the two ResNet configurations, ResNet-50 

offers 76% localization (Top-1) accuracy with 8 giga-computations in one forward computation 

parse; while in ResNet-101 a 78% localization accuracy shall require 25 giga-computations in 

one forward parse.   This means that if we were to choose ResNet in 101 layers of depth 

configurations, we have to purchase a Graphics Processing Unit that possesses at least three 

times as much processing power as the corresponding ResNet in 50 layers depth for the same 

processing time in a given experimental video recording.   In our laboratory for example, we 

have a Nvidia Quadro Graphics Processing Unit for the project, which was not very fast as 

compared to other models such as Nvidia Titan XP16.  As a result, we have made a compromise 

to choose ResNet with 50 layers of depth that provides acceptable analytical time performance 

against a 76% localization accuracy17.   

 

Figure 13: Comparison of DNN Algorithmic Performance. Image obtained from Canziani & Paszke [21] An analysis of 

Deep Neural Networks for practical applications. Computer Vision and Pattern Recognition April 2017 

                                                 
16 For specifications of Nvidia Quadro and Titan models, please refer to their specification sheets on Nvidia 

web sites: https://www.nvidia.com/en-us/design-visualization/quadro-desktop-gpus/ and 

https://www.nvidia.com/en-us/titan/titan-xp/ respectively 
17 In other words, the algorithm has an inherent localization error of 24%. 

https://www.nvidia.com/en-us/design-visualization/quadro-desktop-gpus/
https://www.nvidia.com/en-us/titan/titan-xp/
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2.3 Implementation 

The recorded subjects’ videos are first converted to PalmGrid acceptable video format to 

extract mice forelimbs’ locations in cartesian coordinates. These forelimbs locations are then 

made sense by PalmGrid signal processing module that filters confounding noises introduced by 

Artificial Intelligence algorithm (see Section 2.5 and 2.6) to discern of wall-rearing hits.   These 

wall-rearing hits are reported in the Wall-Rearing Episode Report in numeric tabular format, and 

as video reports. 

 

Figure 14: PalmGrid Posture Extraction & Wall-rearing Detection Process 

After posture extraction, PalmGrid mines into the extracted posture database to identify 

wall-rearing episodes.   Once we have got rid of the confounding noise (see Section 2.5 and 



 

28 

2.6.1) introduced by DeepLabCut, a series of signal processing filters are utilized to identify 

wall-rearing events. 

The Wall-rearing episode report depicts respective time fragments within which wall-

rearing most likely occurred.   An example is shown in Figure 15.  In here, the red underline 

refers to one of such episode in Fragment 2, where video frames 498 to 528 contains at least 1 

wall-rearing touch(es).  As the video was recorded in 25 frames per second, it means that the 

particular episode happened between 20 seconds (being 498 / 25) and 25 seconds (being 528 / 

25). 

 

Figure 15: Example Wall-Rearing Hits Report.  Here Fragment 2 refers to a time period when a forelimb has one of its 

digits moving below 5 pixels per frame.  Within this fragment, two plausible wall-rearing episodes are identified, the one 

underlined in blue refers to a wall-rearing episode between frame 498 to 528. 

Investigators can then use these wall-rearing episodes to mine their cylinder test scores 

according to their intended protocols.  To offer investigators with more flexibilities, the raw data 

of wall-rearing episodes are also stored in the Wall-rearing episodes report that facilitates them 

to perform specific data mining to derive intended metrics, such as “paw-dragging” in [30]. 

Videos of these discerned wall-rearing episodes are also compiled to help investigators assessing 

qualitative aspects of Cylinder Test requirements. 
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2.4 Detailed Methods 

As mentioned in Figure 10, the PalmGrid station was trained of left and right forelimbs 

followed by analysis of subjects’ videos.   The end results of the analysis would be predicted 

forelimb locations that depicts coordinates of the forelimbs’ digits and palms with respect to 

referential cartesian coordinates of video camera’s Field of View.  Forelimbs locations were then 

analyzed by PalmGrid signal processing filters to discern of wall rearing activities. 

The detailed process of setup, training, analysis of forelimbs locations together with 

identifying the wall-rearing episodes are detailed below. Other than the training process that 

requires video recording to train the recognition capabilities of the artificial intelligence engine, 

the entire process was coded in Matlab to enhance code readership by neuroscientists.    

User will first prepare a file that tells PalmGrid the respective locations of videos, extracted 

posture coordinates, and their intended locations of wall-rearing episode report.   PalmGrid reads 

the batch file to generate the wall-rearing episode reports of all the videos in one go.   For a batch 

of 10 videos of 4 minutes each, the serial batch processing took less than 20 minutes. 

 

2.4.1 Training PalmGrid recognition capabilities 

A training video was first recorded to train ResNet-50’s recognition capabilities of 

forelimbs in the Cylinder Test settings.  To facilitate learning of ResNet-50 in what mice left and 

right forelimb looks like, their locations in respective pictures in training video will be labeled 

using prevalent off-the-shelf image analysis tools – such as ImageJ18.  

                                                 
18 ImageJ is a public freeware of image processing, downloadable at https://imagej.nih.gov/ij/ 
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To test whether PalmGrid could generalize forelimb recognition capability, we chose a 

different mice strain to train ResNet-50.  In this arrangement a male AI-9419 mouse was placed 

in the cylinder to record its video activities. All animal procedures were approved by the 

University of British Columbia Animal Care Committee and conformed to the Canadian Council 

on Animal Care and Use guidelines. 

Around 150~ 200 photos of mice forelimbs were labeled to train ResNet-50 that possessed 

varieties of postures.   A few training photos are shown in Figure 16.  DeepLabCut was supposed 

to accept a maximum of 800 x 600 pixels pictures [24].  But since forelimbs were so small as 

shown, we needed a higher pixel resolution that exposed finer features of forelimbs for 

recognition and localization.   We had therefore stretched camera resolution to its maximum 

1200 x 1200 resolution20.   

 

Figure 16: DeepLabCut Sample Training Photos that show the labeled forelimbs 

 

                                                 
19 Jackson Laboratory Stock No: 024115 | Ai94(TITL-GCaMP6s)-D;CaMK2a-tTA 
20 In a separate experiment, I have tried to conduct the training in 800 x 600 resolutions.  The trained ResNet-

50 exhibited poor recognition and localization capabilities, suggesting a higher resolution was needed. 
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Time taken to train ResNet-50 recognition capability was contingent on the configurations 

of machine learning platform and computation power of Graphical Processing Unit.  Artificial 

intelligence engineers usually referenced best practices to determine the number of iterations 

required in specific applications.  In here forelimbs postures accuracies were important, we 

followed recommendations from DeeperCut [31] in human posture recognition.  DeepLabCut did 

not provide corresponding recommendations in similar applications [24].  

Steps Description 

  

Phase I Preparation and Training of PalmGrid Recognition Capabilities 

1 Setup Cylinder Test configuration as in Figure 9.  Focus Pi-camera to the upper-

midline of the Cylinder for better image resolution in free movement activities 

2 Record training video of a mouse to train AI-Engine of what forelimbs of mice look 

like.  For my experiment, I have let the training mice to settle in the cylinder for 10 

minutes before recording its activities in the cylinder for 4 minutes.  

Select a video frame of 1-minute duration with as many wall rearing activities as 

possible.  Try to avoid video frames containing mouse grooming at this point. 

3 Feed the training video into ImageJ System to generate around 200 training images 

for Labeling that exhibit clear digits and palm features. 

4 For each training images, label both Left and Right Front Paws in all its fingertips 

and palm (i.e. six points per forelimb, total 12 points).  As an illustration in forelimbs 

labeling, please refer to Appendix F.   The process of forelimb labeling will depend 

on users proficiency in ImageJ.  In my configuration, it took me 45 minutes to label 

the 200 images. 

5 Train DeepLabCut with the labeled training images. A good iteration cycle of 

200,000+ iterations is recommended21.  Then evaluate the trained video as per 

instruction given in DeepLabCut user manual.  This will typically take a few hours 

contingent on the GPU used. 

Upon completion of training, the PalmGrid Station professes left and right forelimbs 

recognition and localization capabilities.   The system is now ready to appraise 

experimental videos. 

Table 1: PalmGrid Setup and Training Process 

                                                 
21 Training 200,000 iterations is recommended by DeeperCut [31] – the predecessor of DeepLabCut [24].  The 

number of training iterations have always been a subjective call.  DeeperCut calls for 82% localization accuracies in 

human posture extraction, and in their experience with ResNet-50 they recommend 200,000 iterations to allow AI-

Engine to profess such localization accuracy. 
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2.4.2 Localizing Forelimbs of Test Subjects 

All test subject videos were then prepared and saved in designated DeepLabCut folder for 

posture extraction [24].   These batches of video images were analyzed of forelimb locations in 

scripted command.   Once the posture coordinates were extracted, they were then fed into 

PalmGrid signal processing module that identified wall-rearing episodes among presented 

locations. 

A typical run to localize forelimbs in a 4-minutes video under Nvidia Quadro GPU was less 

than 20 minutes in our PalmGrid Station.   For a typical batch of 10 videos, we left the PalmGrid 

script execution overnight in posture extraction.   The process of test subjects’ video recording, 

video image analysis, and corresponding signal processing to make sense of these coordinates 

are detailed below in Table 2.  The entire process was pipelined in single command for large 

volume of video analysis. 
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Phase II PalmGrid Processing 

  

1 Record subjects’ videos into PalmGrid station to localize forelimbs locations, 

with respect to video camera’s Field of View. 

2 Feed forelimb locations into signal processing modules of PalmGrid Station22.  

3 Run PalmGrid signal processing module to analyze wall rearing episodes.  

The script, composed of 8 signal processing filters, run in one parse in the 

following steps 

 a) Perform signal smoothing, to smooth out-of-range predictions of 

DeepLabCut23; followed by 

b) Convert Extracted Posture Coordinates into polar coordinates based 

on the measured location of cylinder center24; followed by 

c) Extract Slow Moving Fragments, based on Extracted Posture 

Coordinates that moves less than 5 pixels between successive 

frames25; followed by 

d) Extract Coherent Fragments, based on tracking of minimal two slow 

moving digits that moves towards cylinder wall and subsequently 

retrace from it26; followed by 

e) Identify Congruence Points, based on tracking of minimal distance 

between individual fingertips and palm of each forelimb27; followed 

by 

f) Match Coherent Fragments with Congruence Points, into Refined 

SubFragments that refers to slow movements of changing trajectory28; 

followed by 

g) Compute statistics for each Refined SubFragment and remove outliers 

that does not correspond to wall-rearing29; and finally 

h) Consolidate this smaller subset of Refined SubFragments into 

episodes of wall rearing30 

Table 2: PalmGrid Analysis and Signal Processing Process 

 

                                                 
22 For each experimentation video, there are slight variations in the location of cylinder center with respect to 

the video camera's cartesian coordinates system.  Simple photos tools such as Microsoft Photos can be used to depict 

the approximate location of the center of the cylinder.  Approximate location of cylinder center is important to 

convert the cartesian coordinates into polar coordinates system aiding wall-rearing detections. 
23 Refer to Section 2.6.1 for details 
24 Refer to Section 2.6.2 for details 
25 Refer to Section 2.6.3 for details 
26 Refer to Section 2.6.4 for details 
27 Refer to Section 2.6.5 for details 
28 Refer to Section 2.6.6 for details 
29 Refer to Section 2.6.7 for details 
30 Refer to Section 2.6.8 for details 
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2.5 Errors introduced by AI and its relevance 

While ResNet-50 is capable of matching human recognition capabilities expressed in Top-5 

classification, PalmGrid also requires forelimb localization31 as benchmarked in [21].  In general, 

DNN algorithms that utilized ResNet-50 machine learning methods suffer from three major 

sources of non-linear errors.  These errors are broadly termed as Max-Pooling32, ReLU33, and  

Picasso34 (Pooling) errors. 

1. In Max-Pooling, the most likely cubic that resembles specific feature set pertaining to 

particular artificial neuron is chosen while others are ignored. Therefore in pictures where 

left thumb appears in several nearby locations (e.g. virtual image of forelimb due to 

acrylic reflection of cylinder), the sharper one is taken; 

2. In ReLU, which is essentially a decision function for each feature set where non-linear 

error sources are introduced.  In engineering, feeding successive images (i.e. signals) into 

the non-linear activation function results in uneven amplifications, resulting in harmonics 

noises35; 

3. In Picasso (Pooling) errors, much like the famous painter Picasso, the machine learning 

algorithm focuses on the specific feature set they look for without rationing its 

reasonableness.  In our context, the thumb of left paw may be identified to attach to right 

forelimb; or an internal reflection of the cylinder can be mistaken as the actual thumb. 

                                                 
31 In DNN, precision refers to Top-1 recognition capabilities, instead of Top-5 recognition capabilities in 

ImageNet Challenges.  For details, refer to [21]. 
32 For definition and illustrated examples of max-pooling, refers to 

https://computersciencewiki.org/index.php/Max-pooling_/_Pooling 
33 ReLU is the abbreviation of rectified linear unit, which applies the non-saturating activation function. It 

effectively removes negative values from an activation map by setting them to zero. It increases the nonlinear 

properties of the decision function and of the overall network without affecting the receptive fields of the 

convolution layer.  For details and illustrations, refer to https://en.wikipedia.org/wiki/Activation_function 
34 For definition and illustrated examples of pooling, refers to https://computersciencewiki.org/index.php/Max-

pooling_/_Pooling 
35 For discussions of activation functions and its relationship with harmonics noise, refer to 

https://arxiv.org/abs/1603.00391 

https://computersciencewiki.org/index.php/Max-pooling_/_Pooling
https://en.wikipedia.org/wiki/Activation_function
https://arxiv.org/abs/1603.00391
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The noise sources introduced in ResNet-50 will then predict forelimb digits and palms 

locations in the wrong place.  For example, if the acrylic reflection of right palm is sharper than 

the actual one, DeepLabCut will misconstrue the virtual image as shown in Figure 17.  Therefore 

signal processing filters are needed to correct these errors as far as possible.  Likewise, ReLU 

errors are also observed with jittery digits between frames despite the forelimbs are resting on 

cylinder floor. 

 

Figure 17: An illustration of DeepLabCut misconstruing virtual image of right forelimb palm as the actual one 

Details of sources of errors introduced by ResNet-50 is tabulated in Table 3.  
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Sources of Errors Causes of such error Impact on Digits and 

Palms localizations 

Max-Pooling Deep Neural Networks segregate images into smaller 

rubrics and auto-correlate each rubric to discern the 

closest resemblance to learned postures.  This is very 

similar to the way visual cortex recognizes objects 

where rubric is analogous to receptive fields. 

As neighboring rubric autocorrelates in striding 

displacements, DNN will discern to select the most 

likely resemblance and pass on to the next stack for 

further recognition. 

The net effect would be gross negligence of features to 

finest details.   It does not really matter when it comes to 

recognition of the object as long as gross features 

distinctively recognizable e.g. the face of a tiger from 

monkey are distinct despite the loss of finely detailed 

features.  However, for posture extraction, such gross 

negligence will introduce precision errors, such as 

labeling the left forelimb’s ring finger from its internal 

reflection of the cylinder. 

Misconstruing 

features of interests, 

thereby introducing 

precision errors in 

whereabouts of the 

features of interest, 

especially in light of 

internal reflections in 

cylinder test. 

 

 

ReLu (Activation 

Function) Errors 

Nearly every layer of Resnet-50 employs a rectifier unit 

that attenuates negative outcomes on that layer.  While 

this helps discerning specific features, higher order 

harmonics – manifested in non-linear noise – are 

introduced in posture extraction 

Higher order 

harmonic noises in 

predicted posture 

coordinates due to 

uneven amplification 

of images 

Picasso (Pooling) 

Errors 

DeepLabCut algorithm specifically searches for 

highlighted features of interest.  It does not, however, 

associate whether these features make sense in where 

they are located.  An example is the left paw must be 

attached to the left limb.   These are often termed 

Picasso or pooling errors in DNN36. 

In the present context, for example, an internal reflection 

of cylinder glass will project mouse forelimbs to a 

virtual image behind the physical cylinder (example as 

shown in Figure 17).  DeepLabCut will recognize that 

virtual image as the forelimb if the actual forelimb was 

obstructed by the mouse body, for example.  

Misconstruing 

location of features of 

interest 

Table 3: Sources of Error for ResNet-50, hence DeepLabCut 

                                                 
36 A simplified discussion on DNN errors can be found in https://towardsdatascience.com/what-is-wrong-with-

convolutional-neural-networks-75c2ba8fbd6f. 
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2.6 PalmGrid Signal Processing Module 

Feeding successive images (signal) into ResNet-50 results in varying magnifications of 

signal samples depending on its signal amplitudes, producing harmonics noises to distort 

forelimbs localizations37.  Multiple signal processing filters are therefore required to sanitize the 

posture coordinates of these errors, prior to identification of wall rearing (Figure 18). 

 

Figure 18: PalmGrid Signal Processing & Gauging Filters 

2.6.1 Harmonics filtering 

We have attempted several harmonics filters prior to identification of wall-rearing episodes.  

In prevalent image processing methods, OneEuro filter38 with 1 Hz cutoff is often used to discern 

images from noises based on their differential (uncorrelated) statistical properties while 

maintaining sharp picture transitions on another.  Moving average filter was also attempted that 

                                                 
37 For discussions of activation functions and its relationship with harmonics noise, refer to 

https://arxiv.org/abs/1603.00391 
38 Introductory description of OneEuro filter is documented in https://hal.inria.fr/hal-00670496/document 

https://arxiv.org/abs/1603.00391
https://hal.inria.fr/hal-00670496/document
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track the prior and latter 0.5 seconds of predicted posture coordinates to predict the current 

coordinates.  We would first like to test which filter provides effective performance to minimize 

harmonic noise sources introduced by rectifiers (ReLu) activators.  

I have inspected what happened when predicted forelimb locations of DeepLabCut parses 

through both filters to compare their respective merits in our forelimb localization applications.  

This was done by overlaying the predicted forelimb locations to the mouse videos and visually 

observed their respective differences.  An appropriate filtering algorithm should offer good 

proximities of predicted forelimb locations from the actual forelimb in the video image, with the 

predicted ones less jittery around the actual images.    

It was observed that moving average filter was better than OneEuro filter, in line with what 

was believed.  This is because errors introduced by ResNet-50 ReLU functions were not 

uncorrelated from what is to be predicted39.  Likewise, forelimb locations between nearby frames 

are strongly correlated as they move in a given trajectory.  Therefore taking the average ±0.5 

seconds of particular frame in time offers less jittery predictions even if one frame was 

incorrectly localized. 

On the other hand, the moving average filter does not eliminate Picasso and Max-pooling 

errors.  If circumstances in the video causes a virtual image of a thumb to be sharper quality than 

the actual thumb, for example, ResNet-50 would still pinpoint the virtual image as the thumb – 

regardless whether that thumb is attached to the arm or detached somewhere else40! 

  

                                                 
39 For discussion of DNN algorithms and its relationship with associated noises, please refer to 35. 
40 For the very reason of Picasso and Max-pooling errors of ResNet-50, DeeperCut [31] performed extra 

recovery process of localization known as clustering and linear optimization.  DeepLabCut [24] did not implement 

these processes.  
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2.6.2 Conversion to Polar Coordinates 

Contingent on this sequence of wall-rearing events depicted in 2.1, conversion to polar 

coordinates helps making sense of predicted forelimb locations in cylinder geometry to inspect 

the synchrony of digits and palms as the forelimbs rear cylinder wall.   Polar coordinate system is 

therefore utilized in gauging and discerning touches, by inspecting changes in radial 

displacements of successive fingertips.  Identify coherent digits furthest away from the center of 

cylinder in polar coordinates with respect to cylinder center would be much easier in polar 

coordinate system than in cartesian coordinates with respect to camera field of view, as shown in 

Figure 19. 

 

Figure 19: Conversion of DeepLabCut forelimb coordinates to PalmGrid language in polar coordinates help discerning 

synchronies in digits and palms 
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2.6.3 Extract Slow-Moving Frames 

Wall rearing activities of the mouse are obstructed by the cylinder wall, resulting in changes 

in movement trajectory and/or momentary leaning towards the wall (an example illustrated in 

Figure 12).   Because the mouse learned of such obstructions as it experienced, its paws will 

slow down somewhat when they approach the cylinder wall. 

Leveraging the observation, gauging wall rearing activities shall start by inspecting 

individual fingertips coordinates that exhibits slowdown in digits displacements41 as the 

forelimbs approach cylinder wall, followed by its subsequent retracements.  Slow-moving frames 

are thus extracted.  

 

2.6.4 Extract Coherent Fragments 

It is observed that the degree of freedom of mice digits is not as flexible as human or 

primates, in that their fingertips move in tandem with each other for specific movements.  For 

example, its digits extend together as it moves forward to rear the wall. Likewise, their 

retracements are also in tandem with each other.    

Leveraging the observation, we extract coherent fragments where a minimum of two 

successive fingertips slow down below 5 radial pixels per second (i.e. 0.1% of cylinder radius) in 

the same direction at the same time, until the point when the digits accelerated and retraced from 

cylinder wall.  We also examine the direction of the digits’ movements within 0.5 seconds: a 

wall-rearing touch is likely happening if the digits radial distance is moving towards the wall 

prior to its slowdown, while subsequently retracing back after the rearing.   

                                                 
41 In our default template slow moving frames are defined to be those whose fingertips’ radial distances that 

move less than 5 pixels in adjacent image frames for a given fingertip.  This is 0.1% of the cylinder’s diameter. 
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The time fragments that correspond to simultaneous digits following the sequence of events 

as approach, slowdown, rearing and finally retracement of fingertips is termed Coherent 

Fragments. 

 

2.6.5 Identify Congruence Points 

It was also observed that when the palm hits the wall, there is an alteration of paws’ 

movement trajectory.  Since the digits are hit and obstructed by the wall first whilst the 

momentum of the palm continues, we observe digits-to-palm distance hitting minima followed 

by a change in trajectory: 

The instances in which these minima occurred are termed Congruence Points.  It is also 

observed that successive digits-palm minima of a forelimb do not necessarily happen at the same 

time, but very close to each other – usually within one second. 

 

2.6.6 Remove Outliers of Refined SubFragments 

If predicted forelimb coordinates met the two congruence filters criteria with nearby 

congruence point(s).  Its forelimb(s) is 1) slow moving, 2) moving towards the cylinder wall and 

then retrace, and 3) altering its movement trajectory.  I named fragments that met these criteria as 

Refined SubFragments.  Questions remain whether such refined subfragments are wall rearing, 

paws idling in free space or slow crawling on floor (see these postures in Figure 20).  Outlier 

removal filters are used to eliminate identified wall-rearing that did not make sense. 
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Wall Rearing Slow Crawling 

 
Mouse slowly hoovering and encircling 

cyliinder floor.  With ResNet-50 jittery 

predictions of forelimb digits, some of 

these episodes will meet both coherences 

and at the same time changes in trajectory  

Paw hanging 

 
Mouse lifted the forelimb and stay 

there with “stand up fists” while its 

body leaning forward and backwards.  

With ResNet-50 jittery predictions of 

forelimb locations, digits will be in 

slow movement, forward and retrace, 

as well as congruence 

Figure 20: Some postures that fulfill two coherences and congruence criteria 

 

Statistics of these Refined Subfragments are calculated to identify wall-rearing activities 

from other floor maneuvering activities.  For each episode, we observe averages and standard 

deviations in radial displacements of digits and palms.  I found that forelimbs cannot be rearing 

if they are resting on the floor or crawling very slowly, implying the standard deviation of radial 

displacements within these identified episodes are very small (within 5 pixels, or 1% of cylinder 

diameter).   Likewise, the forelimbs cannot be rearing the wall with localized digits lying within 

parallax of inner radius as shown in Figure 21. 
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Figure 21: Removal of detected wall-rearing episodes where majority of digits lie within parallax of inner diameter 

 

These outlier removal steps are detailed as follows: 

1. For each Refined SubFragments, the mean and standard deviations of the five digits, as 

well as the palm location, are computed;  

2. To segregate floor resting or crawling episodes from its wall-rearing counterparts, it was 

noted that variations (standard deviation) of its fingertips within the refined subfragment 

is lower than 5 pixels (or 1% of cylinder diameter).   If a number of digits coincidentally 

exhibit such slow movement traits, the episode is treated as floor resting episode and 

removed.   

3. If all fingertips and palm are all detected to lie within the inner diameter of cylinder 

observed through the parallax effects from the bottom (Figure 21), it is unlikely that 

being a wall-rearing activity.  Outliers whose majority of digits lie within inner diameter 
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are also removed.  These inner diameter measurements are measured during 

experimental setup stage, using Microsoft Photos or ImageJ to measure the number of 

pixels it spans in camera field of view. 

 

2.6.8 Gauge Refined SubFragments into wall rearing episodes 

At the end of all these filtering, refinement, signal processing and outlier removals, final 

sets of wall-rearing sub-fragments are established.   These subsets of refined subfragments are 

then consolidated into a wall-rearing episodes that facilitate qualitative assessment of wall-

rearing in later stage.   The wall-rearing episodes are tabulated in Wall Rearing episodic report.    

 

2.6.9 Export of wall-rearing episode 

The final wall-rearing episodic report is thus compiled.  A sample report format is presented 

in Figure 22.   In the report, each episode is given its midpoint, start and end frame reference that 

facilitates traceability of wall-rearing episodes in numeric report.   An example is given as 

underlined in Figure 22, where the algorithm notes that between frames 364 to 760 there is at 

least one digit of the forelimb moving slowly.  Within this slow-moving fragment, two wall-

rearing episodes between frames 498 to 528 and frames 611 to 663 are respectively identified.  

Each of these wall-rearing episodes represents at least two digits of slow movements, while 

changes in movement trajectory occurred.  The forelimb was also noted of approaching and 

retracing from wall. 
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Figure 22: Constituents of Wall-Rearing Episode (Numeric) Report, which tabulates all evaluated wall-rearing episode in 

terms of Slow Moving Fragments; and episodes that met 2 conherence and congruent criteria with outliers removed. 

 

2.6.10 Compile wall-rearing episodes into video fragments 

As noted in Chapter 1.2, qualitative assessment of wall-rearing enhances the outcomes of 

cylinder test protocol, by having investigators reviewing respective synchronies of forelimbs as 

mice rear the wall.   This is especially relevant in stroke and recovery assessment applications, 

where mice subtly avoid explicit wall sliding activities by having the other normal limb pushing 

against the wall for dismounting in a scenario termed “paw-dragging”. 

The following figures extracted from [30] readily demonstrates the paw-dragging scenario 

where one side of its motor cortex was given focal ischemic stroke. As the mouse stands on its 

rear legs to explore the cylinder wall then drags, its affected (contra-lesional) paw drags along 

the cylinder wall towards its midline or down the wall; while its unaffected forepaw provides 

postural support against the wall (Figure 23).  Prior to the contra-lesional forelimb detaching 
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from cylinder wall, unaffected forelimb will assist the dismount to land on cylinder floor.  This 

explains why if one simply “listens” to timing of touches of forelimbs on cylinder wall, it is very 

difficult to discern progress of stroke and recovery.  

Paw-drags rarely occur in uninjured mice. Therefore appearance of a paw-drag is a positive 

indicator of injury to the forelimb sensorimotor cortex.   

 

 
Figure 23: Synchronies of forelimbs in wall-rearing when focal ischemic stroke was given to one side of sensorimotor cortex 

ET-1.  Images obtained from [30] Roome & Vanderluit. Paw-dragging: a novel, sensitive analysis of the mouse cylinder test. J. 

Vis. Exp. (98) (2015) 

Since we evaluated respective frames of wall-rearing episodes, we make use of these 

identified episodes to segment activity videos recorded into smaller videos focused in wall-
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rearing using off-the-shelf multimedia conversion software FFmpeg.   In doing so, investigators 

can focus to evaluate individual quality of rearing, as well as quickly discern if there are false 

rearing that could be missed. 

 

2.7 Experimental Testing 

Testing of PalmGrid algorithm was conducted with a random sample of six healthy male 

mice (n=6) from different cohorts randomly chosen of age between 2 to 6 months.   We used 

EMX-1 mice42 strain as the subjects to conduct experimental testing.  All animal procedures 

were approved by the University of British Columbia Animal Care Committee and conformed to 

the Canadian Council on Animal Care and Use guidelines.  As movements of healthy mice shall 

not differ in gender, the randomly chosen experimental cohorts were male. 

For each mouse, three separate videos (each lasting around 3~4 minutes in compliance to 

cylinder test existing protocols) are recorded in random times and then analyzed in PalmGrid 

station.   As reported in Section 2.4.1, a different mouse strain AI-94 was used to train the 

PalmGrid station, so as to test our hypothesis that features knowledge can be learned 

independently of the phenotype.  Focal settings of the camera were not altered from one 

videotaping to another.   

The training of PalmGrid station using AI-94 recording took 7 hours in excess of 200,000 

iterations using Nvidia Quadro 5GB Graphics Processing Unit described in Section 2.2.2, as 

recommended in DeeperCut [31].   Analysis of each subject video took about 20 minutes, 

together with another 15 minutes to convert the posture extracted images back into a video clip 

                                                 
42 Jackson Laboratory Emx1-IRES-Cre mice; Stock No: 005628 | Emx1IRES cre 



 

48 

in labeled fingertips and palm (Figure 24).  Both training and conversions are done by batch and 

unattended, relieving the laborious manual monitoring that the exercise was set out to save in the 

start. 

 

Figure 24: Sampled Labeled Images 

More samples and details of training video labeling are found in Section 2.4.1 and 

Appendix F respectively. 

  

2.8 Results 

To evaluate robustness of PalmGrid process, the Wall Rearing Episode (Numeric) Report 

was compared with the results of the Ground Truth report.   Methods and results to compile 

ground truth reports are documented in Appendix G.   The results from ground truth raters 

agreed with each other. 
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Five mice were chosen out of the six sample subjects, with two video clips of each are being 

randomly chosen and analyzed.   Each wall-rearing episode was then compared with 

corresponding ground truth rearing to assess the accuracies of algorithms.  An example of the 

Wall-Rearing report, being the output of the PalmGrid process, was depicted below (Figure 25) 

that refers to the totality of left and right paws detection. 

  

2.8.1 Overall Results 

Figure 25 tabulates the overall results.  Appendix C.2 tabulates the corresponding overall 

results in percentage terms for each video frame.  In the report, detected wall-rearings by 

PalmGrid either positively reflected actual wall rearing (termed “Correctly” in Figure 25), or 

falsely misconstrued the activities as rearing (correspondingly termed “False Positive”).   Either 

a detected touch by the PalmGrid process reflected correctly the actual wall-rearing touches, or it 

reported false alarms where wall-rearing was detected by PalmGrid algorithm but not found in 

Ground Truth Report.  The percentage of “Correctly” and “False Positive” touches added up to 

100% of total touches in each video frame. 

There were also False Negative (missing) episodes that reflected actual touches on the 

cylinder wall that are not detected by the PalmGrid Process.  This was expressed as a percentage 

of the total touches detected by the Palmgrid algorithm.  

Percentage of correct detection was calculated by actual wall-rearing hits divided by the 

number of detected hits; while false positives refer to those detected episodes with no actual hits.  

Finally, false negatives refer to actual wall rearing that PalmGrid omitted.  All of these are 

expressed both in actual numbers and in percentage as depicted in Appendix C.  
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Correct recognition rate on 10 video streams – with 1 left and right forelimbs videos for 

each cohort – came to 70%.  In terms of numbers, a total of 406 wall-rearing touches were 

recognized from the manual observations of 474 wall-rearing touches, implying 406 ÷ 474 =

0.856 𝑜𝑟 85.6% of wall-rearing episodes were detected in aggregate when all false positives 

were taken away. 

Of all the 580 detected wall-rearing episodes of PalmGrid , false positives (alarms) 

percentages came to 174 ÷ (406 + 174) = 0.3 𝑜𝑟 30%  Meanwhile, false negatives came to 

68 ÷ (406 + 68) = 0.1172 𝑜𝑟 11.72%. 
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Figure 25: Test Results of PalmGrid for a cohort of n=5 
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2.8.2 Independent Assessment of Left and Right Forelimbs 

As PalmGrid allows independent assessment of left and right forelimbs, the corresponding 

touches and its percentage were separately analyzed.  Results of such analysis are depicted in 

Appendix C.3 to C.6.   

For the right forelimb (Appendix C.4), mean correct recognition rate comes to 68.1% 

inclusive of the outliers.  False Positives came to 31.9% whereas false negatives came to 18%.  

For the left forelimb (Appendix C.6), two video recordings of EMX-02 cohort exhibit outliers, 

and the correct recognition rates come in between 67% to 81% beside the outliers.  Mean correct 

recognition rate comes to 73.9% inclusive of the outliers. False positives came to 26.1% whereas 

false negatives came to 5%. 
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2.9 Discussion 

2.9.1 Correctly Recognized Touches 

To the knowledge of the author, this is the first attempt by which artificial intelligence 

algorithm is used in precision applications to extract posture in the context of the cylinder test.  

ResNet-50 used in this process achieved 5.25% Top-5 recognition error in ImageNet competition 

of 2015.  We learned that Top-5 Classification error – being the prevalent benchmark of DNN 

algorithms – is not equivalent to Precision (or Top-1 localization) error.  A similar study of 

precision error of ResNet with 50 and 101 layers of depth was given in [21] that depicted 

respective 76% and 78% localization (Top-1) accuracies.  The PalmGrid algorithm anticipates 

inherent inaccuracies of ResNet-50 to identify wall-rearing episodes. 

With roughly 1 in every 4 errors in forelimbs’ location predictions in errors, identifying 

70% correct recognition for PalmGrid Process is a good initial attempt using basic laboratory 

equipment.  The process may improve from this rate simply by reducing acrylic reflections 

through anti-acrylic paints; or by organic improvements in future artificial intelligence 

algorithms.  As DeepLabCut came in as open-source, future adoption in more advanced DNN/ 

posture extraction algorithms should enhance localization accuracies of PalmGrid43. 

 

2.9.2 False Alarms (Positives) and Error Propagation Modeling 

False Positives in the algorithm refers to the fact that the algorithm believes some wall-

rearing touches had occurred in the highlighted episode but in fact there was none.   The high 

                                                 
43 DeepLabCut algorithm is derived from the corresponding human posture extraction algorithm DeeperCut, 

that has three components: AI recognition, Clustering, and Linear Transformation using around 2,000 photos in 

training.  The software cut the clustering and linear transformation part to reduce overheads in computations and 

learning.  If DeeperCut is used, it is tested that recognition rate will rise from 76% to 82% [31]. 
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false positive rates (30%) were largely attributed to ceiling precisions of prevalent Artificial 

Intelligence Algorithms.  For the ResNet-50 chosen, precision – defined as Top-1 Classification 

– has its mean ceiling accuracies of 76% (Figure 13).  

As a rough estimate to account for the false positives rate, since ResNet-50 gives 76% (Top-

1) localization accuracy, this implies probability of error in extracted postures of each digit is 

(100 – 76) % = 24%.  These errors are then propagated into the signal processing filters in Figure 

18, reproduced below in Figure 26 with the error propagation model. 

 

Figure 26: PalmGrid Error Propagation Model 

In this rough estimation model, we assume digits and forelimbs are independently predicted 

by ResNet-50.  This assumption is justified as we inspected DeepLabCut [24] open source code 

and see little evidence of the algorithm using posture recovery methods such as clustering and 

linear optimization as its predecessor DeeperCut [31]. 
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The first stage of PalmGrid signal processing filter averages 24 signal samples: 12 from 

priors and 12 from corresponding latter time samples.  These imply an input error rate of (0.242/ / 

24)1/2 = 0.0489 or 4.89%, equivalent to an accuracy probability of (1- 0.0489) = 0.951 or 95.1%. 

The Coherent Fragment extraction introduces two stages of errors.  First (Stage 1) it 

requires a minimum of 2 digits to be slow moving, implying probability of accurate Coherent 

detection to be 0.951x 0.951 = 0.9044 or 90.44%.  Next (Stage 2) the slow movement fragments 

will propagate to discern of forward to and retracements from the cylinder wall.  Similar to the 

above modeling, the filter cascades another factor of 0.9044 (90.44%) to the propagated errors.   

The congruent point detection will then assess palm posture closest to the fingertips some 

point within a coherent subfragment.  This will introduce another 0.951 (95.1%) factor in the 

probability of success.  Statistical filters will not introduce significant errors, as they are 

concerned only with specific criteria, rather than mathematical calculations. 

As we assume the coherences and congruence to be independent activities, these three core 

filters result in a maximum accuracy of detection of 0.9044 x 0.9044 x 0.951 = 0.7778 or 

77.8%44. Therefore 70% actual recognition by PalmGrid is in line with the basic setup that 

provides rough wall-rearing estimates in cylinder test.   

We also note that because the mice under experimentation are freely moving, the chance of 

obstructing the camera by body is higher.  This explains differential mean recognition rates of 

left and right paws at 73.2% and 68.1% respectively.  After all, Neural Networks is a statistical-

based algorithm that will discern slightly varying wall-rearing decisions.   And because of these 

obstructions and internal reflections of glass cylinders, as opposed to head-fixed mice in 

                                                 
44 If coherence and congruence are not independent, the maximum accuracy will simply decrease as we have to 

account for joint probabilities between activities.   
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otherwise experimentations, we noted that outliers in detection rates readily exist.  In our case, 

cohort EMX02 in her first recording exhibit significant outliers.  In her second recording, the left 

forelimb demonstrates significant outlier.  These bodily obstructions of digits significantly 

hindered recognitions, hence reduce correct recognition rates.  The other major reason behind 

these false alarms was the lack of depth cue.  With a single camera, it is difficult to discern 

between the forelimbs rearing the wall or crawling on the floor plane that corresponds to the 

wall-rearing projections (Figure 27).  Resolving the issue requires installation of depth camera or 

relying on future enhancement of Pi-camera with depth resolution features.  At the time of 

writing, these measures imply extra costs of procuring specialty types camera. 

 

Figure 27: Lack of depth cue made resolution of wall-rearing challenging from corresponding floor rearing around the 

same projected diameter 
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 2.9.3 False Negatives or Missing detections 

Meanwhile, there were omissions (false negatives) that PalmGrid did not recognize of 

plausible wall-rearing that has factually occurred. A 12% overall false negatives rate is in line 

with error propagation model, demonstrating the encompassing nature of the algorithm in 

discerning potential touches. Any refinements in anti-acrylic paints or enhanced algorithms will 

reduce posture extraction errors, improving the false negative rates. 

The major reason behind the omission was DeepLabCut located the wrong palm coordinates 

as its features blurred.  While features of digits of forelimbs are easily discernable, features of the 

palm poses challenges to ResNet-50.  This is especially true when the images are compounded 

with confounds such as slow shutter speed, internal acrylic cylinder reflection, refraction due to 

mouse urinations or when forelimbs were raised above certain heights that basic Pi-camera fails 

to discern palm features.  Since DeepLabCut simplified DeeperCut [31] features that recovers 

localization conflicts (such as use of clustering and linear-optimization algorithms), its recovery 

capability of less discernable features (such as palm under fast movements) will be weak 

especially in moving subjects.  In an analogy, human cortex will possess difficulties to resolve 

images if the eyes are suffering from diseases.  Given the limitations of basic Pi-camera, the 12% 

omission rate shall be anticipated. 

To further improve false negatives, a faster shutter speed Pi-camera with wider focal range 

is recommended, that allows freely moving mouse to be captured in higher precisions and 

resolutions of its forelimbs.  Anti-acrylic reflection paints will somewhat help to avoid ResNet 

mistakenly recognize the virtual image of forelimbs as the real one.  DeepLabCut shall also be 

enhanced with clustering and linear optimization, that despite poor resolutions the palm locations 

can be somewhat recovered.  On hindsight, a combination of the above will help. 
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All above improvement measures require procurement of advanced camera or substantial 

enhancement of DeepLabCut.  Both were not intended as we set out our research objectives in 

terms of costs and sophistications.  To procure advanced camera certainly imply higher costs of 

adaptation, while enhancing DeepLabCut with clustering and linear optimization will require 

2,000 posture photos to be prepared in training phase [31] together with an advanced GPU to 

process the sophisticated posture extraction algorithms.   It is worthwhile to proceed further 

research in these directions. 

 

2.9.4 Different correct recognition and omission rates for left and right paws 

It was also noted that significant differences exist between left and right forelimbs’ correct 

recognition and omission rates.  A summary of recognition rates based on results depicted in 

Appendix C for the experimental testing is given in Table 4. 

 Correct False Alarms 

(false positives) 

Omissions 

(False Negative) 

All left forelimb 221 (73.9%) 78 (26%) 14 (5%) 

All right forelimb 185 (68.1%) 96 (32%) 54 (18%) 
Table 4: Computed Wall-Rearing Results of Left and Right forelimbs 

From prima facie evidence shown above, it seems trivial to conclude that biodiversity 

differences of left and right forelimbs were evident from these results.  However, such 

conclusion may be premature given the shutter speed, focal range, and lack of depth cues 

limitations of existing camera capabilities.   I would therefore leave the preferential inference to 

later stage. 

 



 

59 

2.9.5 Making use of Wall-Rearing Episode Report to enhance efficiency 

Current protocol of Cylinder Test favors investigators to review the wall-rearing fragments 

to assign their own scores according to their specific concerns.  To address the requirements, 

PalmGrid compiles identified wall-rearing episodes into a video as an example to demonstrate 

efficiency enhancements.   

In a typical 4 minutes recording, 6,000 frames45  have to be reviewed in manual labor 

approach.  Even if the investigator reviewed each image with 1 second per image, such review 

will take around 6,000 seconds (~1.67 hours).  As a motivating example to make use of the wall-

rearing episode report, a sample video recording of EMX03-02 is used. PalmGrid extracts 26 

wall-rearing episodes from the extracted postures, followed by compiling the wall-rearing 

fragments into respective smaller video recordings using FFmpeg. It is noted that in this 

particular case, the smaller video fragments shortened review time to 275 seconds (4.58 minutes) 

after removal of non-rearing time fragments, implying significant reduction in review efforts at 

marginal costs.   Actual time saving varies, depending on how many vertical explorations the 

mouse use in a given recording and the fluencies of investigators to use different tools in 

conducting wall-rearing reviews. 

On that note since wall-rearing episodes are now automatically extracted and detected, there 

is no reason why the Cylinder Test observation period cannot extend beyond 10 minutes.  Time 

savings achieved using PalmGrid demonstrates further advantages compared to conventional 

frame-by-frame review approach. 

 

                                                 
45 4 minutes x 60 seconds x 25 frames per second in a given video recording = 6,000 frames 
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2.9.6 Comparison of labor time required to use PalmGrid 

Are there time savings to utilize PalmGrid algorithm?  To evaluate if there are efficiency 

gained, I compared time taken to use PalmGrid versus the method described in [30] to identify 

wall-rearing, the video fragment EMX03-02 is fed into PalmGrid to estimate incremental labor 

hours required versus corresponding manual labor hours to review in paw-dragging method. 

In PalmGrid the video is fed into an automated pipeline to localize forelimbs and identify 

wall-rearing episodes; whereas two iterations to slow play the video is required in method 

described in [30] to skim through and verify all rearing.  Because wall-rearings in PalmGrid are 

compiled into smaller video fragments, reviewers can focus on each smaller fragment to conduct 

qualitative analysis that reduces possibility of errors in qualitative assessments.   Frame by frame 

qualitative review can be avoided as reviewers can conduct the qualitative review in different 

times due to smaller video fragments, that poses smaller chances of laborious fatigues and errors. 

As a benchmark comparison, my take of time comparisons using EMX03-02 is tabulated 

below in Figure 28 using off-the-shelf video player VLC Media Player46.  In this sample 

comparison, smaller video fragments help reviewers to review shorter video fragments in 0.6x 

actual video speed, rather than slowing down the reviews to more careful 0.25x to avoid 

omissions.  There were no timing overheads in noting down the wall-rearing episodes as analysis 

and identification of vertical explorations are machine driven, leaving qualitative assessment 

phase to investigators in higher quality.   My illustrative comparison came to around 92% time 

                                                 
46 VLC Media Player is a general public use, off-the-shelf video player downloaded from 

https://www.videolan.org/vlc/index.html 

https://www.videolan.org/vlc/index.html
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saving.  Actual savings shall vary for different investigators employing other protocols. 

 

Figure 28: Illustrative comparison of PalmGrid assessment time versus methods described in Roome & Vanderluit [30] 

 

2.9.6 Benefits of the software approach  

There are many benefits of such achievements, in which 1) it relieves significant laborious 

tasks that were only achievable through prone-to-error human observations, and cumbersome 

post-experimentation data processing; 2) it allows independent assessment of left and right 

forelimb movements in ischemic strokes and its corresponding rehabilitation; 3) it does not 

require complex calibration before experimentation such as multiple camera synchronizations.  

Last, not least, it requires minimal setup costs with a basic Raspberry Pi video camera system 

and simple laboratory equipment.   These lowered entry cost and skillset challenges are set to 

benefit laboratories in their use of precious resources.   
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Chapter 3 Design Choices and Discussions 

3.1 Strength of PalmGrid 

The obvious strength of PalmGrid stems from its software-driven simplicity even without 

meticulous hardware calibrations.  In the conventional approach conducting cylinder test, 

precious manual labor has to be exploited to count wall-rearing activities which are laborious.  It 

is also burdensome as reviewers are required to skim through many videos, and in worst case 

frame-by-frame.  To maintain acceptable level of accuracies, methods adopted in [25-27, 30] 

often requires three parses for each video review per investigator.   As an illustration extracted 

from methods depicted in [30], first parse requires raters to skim through video in 0.25x speed to 

write down respective wall-rearing of forelimbs, followed by a second parse to verify.  To 

review quality of individual rearing requires, in worst case, frame by frame review to note of 

paw-dragging.   Overheads readily exist in each of these parses, and video pauses, rewinds, and 

fast forwards are often required that staggered up overheads in the review.   

The use of capacitive touch sensors somewhat helps by detecting touches, but it fails to 

differentiate which limb touched the grid as well as the quality of rearings, despite extra costs 

involved in setting up electronic grid system.   Study of contralateral stroke impacts to 

movements using capacitive touch sensors approach proved challenging to assess quantity and 

quality of wall-rearing. 

PalmGrid uses minimally visible lights to discern wall-rearing touches.  As long as light 

intensity enables artificial intelligence algorithms to recognize forelimbs, its setup cost is 

otherwise minimal.  Complex setup procedures and sophisticated calibrations are not required in 

PalmGrid, as opposed to touch sensors where careful planning of sensor grid will be required.  In 
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our experiment that assumes little technical competence in basic laboratory equipment, our 

testing shows that 70% of wall-rearing are identified.   It is therefore a competent tool for pre-

selection of wall-rearing, leaving investigators’ precious time to assess quality of these rearings, 

and their specific features-of-interests such as wall-sliding and wall-dragging. 

We have deliberately avoided more sophisticated equipment (such as depth camera, 

multiple cameras, and anti-reflective paints) and meticulous fine-tuning to enhance detection 

outcomes.   Based on inspection of false alarms and omissions, use of depth camera or multi-

camera approaches to resolve depth and focus should enhance accuracies, at the expense of 

increasing costs and complexities.   High-resolution Pi camera was not adopted, as we set out to 

evaluate what basic equipment could do.  Indeed, 70% accuracy is not bad given all these 

constraints without any fine tuning47, demonstrating the extent of artificial intelligence can assist 

in neuroscientific investigations.   Any measures to fine tune the configurations will bridge 

prevalent accuracy gap from 70% to theoretical maximum of 77.78%48. 

The outcome of PalmGrid extracts wall-rearing episodes in report as well as wall-rearing 

videos.   This will dramatically save time to conduct the experiment without laborious analysis to 

focus precious time resources on higher quality tasks to assess details of wall-rearing episodes.  

In our testing of a four-minutes video with 26 wall-rearing, conventional protocol to review 

6,000 video frames is now “shrink-wrapped” into 275 seconds (4.58 minutes) of 26 videos that 

achieves 92% time saving.  If we leverage the feature to round-the-clock monitoring of stroke 

mouse where wall-rearing occurrences are less frequent, significant analytical time savings can 

be achieved by eliminating reviews of non-wall-rearing postures.  In a similar manner, we can 

                                                 
47 A typical high-resolution camera of Nikon, such as M12 lens, will add up another few hundred dollars in 

costs 
48 For discussions of error propagation model, please refer to Section 2.9.2. 
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increase the sample size of test subjects to analysis of bigger rodent samples; since artificial 

intelligent machines are now tasked to perform most of the laborious pre-selections.  The final 

wall-rearing videos offer flexibility for investigation of specific posture-of-interests in their own 

protocol such as wall-dragging or wall-sliding.   

Given the automatic posture extraction and wall-rearing detection capabilities, use of 

PalmGrid algorithm can help to pre-select mouse of specific forelimb preferences in different 

circumstances.  Similar to the cylinder test arrangement, one can readily engage bigger sample 

size to analyze their activities round-the-clock, extending its applications beyond cylinder test.     

 

3.2 Limitations of PalmGrid 

The obvious limitation of the PalmGrid experimentation setting is its requirements49 of 

minimal lights to discern of movement and features.  If specific protocol requires very dim lights 

ambiance, use of PalmGrid may not be suitable.  In those cases, use of specific infrared camera 

might be an option worth trying. 

Analysis of PalmGrid data requires powerful computers with efficient Graphics Processing 

Units (GPUs) that used to be a challenging end means for most laboratories.  This barrier is 

gradually overcome with many universities offering GPU shared services and free Matlab / 

Python licenses that processes resources hungry artificial intelligence algorithms. 

 

                                                 
49 For example if mice behavior study under dim infrared lights is required.  
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3.3 Future Improvement Areas 

3.3.1 Use of more advanced artificial intelligence algorithms  

There are many rooms for future enhancements, and 70% recognition rate can at best taken 

as an encouraging milestone.   As DeepLabCut enhances through porting to more advanced 

artificial intelligence algorithms such as Inception version 4.050 (Figure 13), it is expected that 

continuous precision enhancement beyond 76% will, in turn, advance DeepLabCut posture 

extraction accuracy.  For the sake of arguments using the rough estimate of error probability in 

the Discussion section, expected PalmGrid accuracy can advance to 0.92 x 0.92 x 0.96 = 0.81 or 

81% if we change the core algorithm from ResNet-50 (76% Top-1 accuracy) to Inception v4 

(80% Top-1 accuracy).  As graphics processing unit prices come down further, choosing more 

resources hungry graphics processing unit will help to advance PalmGrid performances. 

 

3.3.2 Use of more advanced posture extraction algorithms  

DeepLabCut is derived from more sophisticated human posture extraction algorithm called 

DeeperCut [31] that further recovers errors of ResNet algorithms with clustering and linear 

optimizations.  These steps require higher power Graphical Processing Units while advances 

posture extraction accuracies from 76 to 82% tested on ResNet-50 algorithm.  The 6% 

enhancement comes with extra costs in preparing 2,000 images training the artificial intelligent 

machine.  Using the same formula given in Section 2.9.2, ceiling accuracy will increase by 6%.  

It is therefore expected corresponding increase in wall-rearing episodic extractions accuracies. 

 

                                                 
50 As reported in [21], Inception version 4 has 80% accuracy with 12G operations in one forward pass. 
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3.3.2 Dual-camera, epipolar geometry approach 

Further experimentations based on two cameras approach using epipolar geometry51 shall be 

another worthwhile attempt, in that the depth of posture can be derived from simultaneous 

observations of two cameras.  Changing the approach from statistical gauging to a deterministic 

examination in the final outlier removal stage will further narrow the margin of detection 

accuracies from prevalent 70%.   But it should be noted that there are added complexities in 

equipment calibration and increased costs in equipment provisioning. 

New methods are now emerging that allows Raspberry Pi to record with two video 

cameras52 in synchrony. This bypasses the synchronization constraints between camera 

recordings, hence enabling the use of epipolar geometry that changes latter part of PalmGrid 

gauging algorithms from statistical estimation approach (in steps laid out in Sections 2.5.7 and 

2.5.8) to deterministic approach where actual coordinates of fingertips are computed.     

While we are on the topics of multiple cameras, one can hypothetically increase the number 

of cameras beyond two in the hope that more perspectives of video recordings might overcome 

obstructions of features of interests to increase tracking accuracies.   This may be a worthwhile 

option to consider when Raspberry Pi can load more than two cameras in synchrony.  But as at 

our knowledge of Raspberry Pi to date, synchronizing Raspberry Pi video recording beyond 2 

cameras is exceedingly cumbersome53.   In fact, if the multiple camera synchronization issues 

can be resolved in Raspberry Pi in its future versions, it is possible to generalize PalmGrid usage 

                                                 
51 For modeling of deterministic approach such as epipolar geometry, refers to textbooks that describe its 

methods.  An example of such text includes Xu & Xiang (2013) Epipolar Geometry in Stereo, Motion and Object 

Recognition; Springer Science and Business Media ISBN: 9789401586689. 
52 An example is Raspberry Pi 3 Model B with multiple camera adapter modules 
53 Refer to https://www.raspberrypi.org/forums/viewtopic.php?t=212013 for prevalent discussions of multiple 

camera synchronization in Raspberry Pi 

https://www.raspberrypi.org/forums/viewtopic.php?t=212013
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beyond cylinder test to generalized cartesian coordinates where exact paw locations can be 

tracked using multiple cameras.   

 

3.3.3 Changing PalmGrid signal processing approach to machine learning 

At first sight, the current market hype of superiority in Artificial Intelligence might induce 

ideas that post-extraction wall-rearing detections shall advance by cascading another machine 

learning system.   Personally, I have some doubts.   This is because according to Figure 13, the 

best machine learning algorithms achieve around 82% precisions at best.   If we cascade another 

machine learning context to predict wall-rearing detections, the precisions will hit accuracy 

ceilings of 76% x 82 % = 62.32%, which is substandard to present achievements!   One shall not 

rule out if future machine learning precisions increase beyond 90% Top-1 accuracy, this may 

well be a worthwhile attempt. 

 

Figure 29: Hypothetical PalmGrid design based on full-scale machine learning. Part of image obtained from He & Sun 

[29] Deep Residual Learning for Image Recognition. Computer Vision and Pattern Recognition (2015)  
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3.4 Concluding Remarks 

Use of artificial intelligence algorithms revolutionizes the way neuroscientific behavior 

experiments to be conducted.    In current design – despite all deliberately instituted hardware 

and skillset constraints – PalmGrid is built as an excellent pre-selection method of wall-rearing 

activities in cylinder test.  Its outcomes offer investigators with shrink-wrapped wall-rearing 

videos to assist their focused assessments of specifics within individual instances.  In sum, 

PalmGrid machine does not replace human investigation.  Rather it minimizes investigators 

expending their precious time resources from reviewing irrelevant video frames, to steer their 

focus inspecting shrink-wrapped wall-rearing fragments. 

In response to the research questions we set out in Section 1.7, we learned that artificial 

intelligence algorithm anticipates less-than-ideal experimental ambiance and resources 

constraints, in that a single Pi-camera can fit the purpose in Cylinder Test experiment.  This is a 

big plus for resource hungry laboratories whose purse strings are tightened and skillsets are 

scarce. 

We also learned of the recognition competence in prevalent artificial intelligent algorithms 

in spite of these hardware and skillset constraints to discern of mice forelimbs.  For freely 

moving mice that maneuver around in the cylinder, recognition in dynamic environment proves 

the robustness of ResNet algorithms to be used in similar experimental settings.  

Independent forelimb recognition has been made possible thanks to the capabilities of 

DeepLabCut.  Even without elaborated hardware calibrations, the software herein designed 

discerned forelimbs activities independently to extract the respective wall-rearing episodes.  

Compiling wall-rearing episodic report of respective forelimbs into smaller episodic video 
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fragments enables focused review of wall-rearing activities.  Investigators can now save time to 

focus on higher quality assessments of these rearing. 

Yet the accuracy in posture estimation has rooms for future improvements.  Being 

recognized of forelimb independently is a big leap forward, but higher accuracies of tracking 

pose another level of challenge.  In ResNet-50, we learned that it has 76% accuracy to spot on 

tracking of digits/palms.  Given the non-linear nature of errors introduced into the system in 

recognition and localization, together with the various constraints that demand the PalmGrid 

setting to be shrink-wrapped and simple-to-deploy, posture estimation in modest accuracies are 

expected.  To gauge for more accurate wall-rearing episodes, basic engineering principles was 

used instead of relying on another cascade of artificial intelligence algorithms to yield better 

outcome accuracies.   Using moving averaging techniques, digits coherence, and digits-palm 

congruence together with statistical outlier removal filters effectively lifted up the accuracies to 

more acceptable 70%. 

Our simplified error propagation model shows that cascading artificial intelligence with the 

signal processing filters herein designed translates outcome accuracies to roughly 77.78% in 

gauging wall-rearing episodes.  Use of more advanced artificial intelligence and posture 

extraction algorithms, contingent on lowering graphics processing unit costs, will facilitate 

higher accuracies in future PalmGrid versions.  Likewise, improvements in hardware calibration 

using anti-reflection acrylic paints or enhancing light ambience will also help to bridge the gap 

towards 77.78% detection ideals in current configuration. 

With wall-rearing episodes compiled into smaller video fragments, different investigators 

can then leverage the information in wall-rearing episodic reports to compute their respective 

metric scores in Cylinder Test variants in much reduced processing time.  Best of all, 
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investigators can also perform data mining into specific episodes for further analysis, such that 

their activities of interests – such as paw-dragging – can be further extracted from these episodes 

in a fraction of time.   Prolonged round-the-clock observations for a large number of subjects are 

made possible as laborious frame reviews are now machine-enabled, saving precious labor time 

to more important analytical tasks. 

We are certainly embarking on a promising journey, where artificial intelligence and signal 

processing relieves laborious and time-consuming reviews in Cylinder Test methods.  

Leveraging our experience learnt in this thesis, we can readily apply the skillsets to benefit other 

neuroscientific experimentations in likewise manner. 
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Appendices 

Appendix A – PalmGrid Hardware and Settings 

A.1 Hardware Components 

Components Pictures 

Raspberry Pi 

 

Pi with Video Cam 

 

Cylinder for 

Cylinder Test 
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Components Pictures 

Transparent Stool 
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A.2 PalmGrid Experimentation Setup 
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A.2 Raspberry Pi Video Camera version 2 Specification 

  Camera Module v2 

Weight 3g 

Still resolution 8 Megapixels 

Video modes 
1080p30, 720p60 and 640 × 

480p60/90 

Linux integration V4L2 driver available 

C programming API OpenMAX IL and others available 

Sensor Sony IMX219 

Sensor resolution 3280 × 2464 pixels 

Sensor image area 3.68 x 2.76 mm (4.6 mm diagonal) 

Pixel size 1.12 µm x 1.12 µm 

Optical size 1/4" 

Focal length 3.04 mm 

Horizontal field of view 62.2 degrees 

Vertical field of view 48.8 degrees 

Focal ratio (F-Stop) 2 

 

A.3 Raspberry Pi Video Recording Scripts  

raspivid -t 210000 -md 6 -fps 25 -o <pivideo>.h264 

The command above requests raspberry pi to record video for 3.5 minutes in 1200 x 1200 

pixels in 16:9 aspect ratio; with pixels at 25 frames per second and output the file to 

<pivideo.h264>.  

  

http://www.sony-semicon.co.jp/products_en/new_pro/april_2014/imx219_e.html
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Appendix B – PalmGrid Signal Processing and Gauging Module Pseudocodes 

B.1 Coherent Fragment Extraction 

Procedure Coherent 

For i :=1 to Number of Slow Moving Fragments 

 Identify at least two slowest moving fingertips of the given forelimb; 

 For those fragments identified 

  Gauge for Sub-fragments that movements are accounted for as slow-moving;  

  If two sub-fragments separate among themselves by 1 frame, merge the two; 

  For each sub-fragment 

Compute Statistics for each, in changes of radial displacements +/- 0.5s before 

and after each sanitized sub-fragment; 

 Retain those sub-fragment(s) that approach the cylinder wall before the sub-

fragment, and retracing/retained from wall thereafter;   

  End 

 End 

End 

 

B.2 Congruence Points Identification 

Procedure Congruence 

For i :=1 to Number of Slow Moving Fragments 

 Identify three slowest moving fingertips of the given forelimb; 

 For the three identified, slow-moving fingertips  

  Gauge for Sub-fragments whose fingertips to palm distance came to minima; 

 End 

End 
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B.3 Refined Sub-Fragment Gauging 

Procedure Decision 

Merge coherent sub-fragments with congruence points; 

For each sub-fragment of both coherence and congruence  

 Compute statistics for each; 

 Filter out non-wall-rearing based on meeting one of the following criteria:  

1. If the wall-rearing durations is less than 0.1 seconds, they are regarded as transient 

touches and not counted as a separate wall-rearing episode;  

2. Adjacent fingertips are not distant from each other for more than 100 pixels in any 

one time; 

3. Any plausible wall-rearing episode whose standard deviation of the entire 

fragment is less than 10 pixels (2% about mean) is taken as stationary. 

End 

Consolidate retained sub-fragments snapshots that are nearby each other within 2 seconds into 

Sub-fragment episodes; 
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Appendix C – Test Results 

C.1 Overall Left and Right Forelimbs taken together 
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C.2 Overall Left and Right Forelimbs taken together in Percentage 
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C.3 Right Forelimb Only in Number of Touch 
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C.4 Right Forelimb Only in % of Touch  
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C.5 Left Forelimb Only in Number of Touch 
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C.6 Left Forelimb Only in % of Touch  
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Appendix D: Methods for Forelimb Tests 

D.1 Cylinder Test (Li & McCullough (2004)) 

The cylinder test was adapted for use in mouse to assess forelimb use and rotation 

asymmetry. The mouse was placed in a transparent cylinder 9-cm diameter and 15 cm in height 

and videotaped during the test. A mirror was placed behind the cylinder with an angle to enable 

the rater to record forelimb movements when the mouse was turned away from the camera. After 

the mouse was put into the cylinder, forelimb use of the first contact against the wall after rearing 

and during lateral exploration was recorded by the following criteria:  

(1)  The first forelimb to contact the wall during a full rear was recorded as an independent 

wall placement for that limb.  

(2)  Simultaneous use of both the left and right forelimb by contacting the wall of the 

ylinder during a full rear and forlateral movements along the wall was recorded as 

‘‘both’’ movement.  

(3)  After the first forelimb (for example right forelimb) contacted the wall and then the 

other forelimb was placed on the wall, but the right forelimb was not removed from 

the wall, a ‘‘right forelimb independent’’ movement and a ‘‘both’’ movement were 

recorded. However, if the other (left forelimb) made several contacting movements on 

the wall, a ‘‘right forelimb independent’’ movement and only one “both” movement 

was recorded.  

(4)  When the mouse explored the wall laterally, alternating both forelimbs, it was 

recorded as a ‘‘both’’ movement. A total of 20 movements were recorded during the 

10-min test to compute a final score by the following formula: 
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Figure 30: Cylinder Test Score Calculation 

This test evaluates forelimb use asymmetry for weight shifting during vertical exploration 

and provides high interrater reliability even with inexperienced raters. Occasionally mice with 

large deficits did not move frequently enough to obtain an adequate number of vertical 

movements, these animals recovered later in testing and to avoid bias these animals were 

unscored until they could perform the test.  
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D.2 Forelimb preference and sliding test (Shanina & Redecca 2006) 

As a variant of cylinder test, forelimb use during spontaneous vertical exploration was 

analyzed based on the method described by Schallert et al. (2000).  

The rats were videotaped in a transparent glass cylinder for 5–7 min depending on the 

degree of activity during the trial (Fig. 1B). Two mirrors combined at an angle of 90° were 

placed behind the glass cylinder allowing the recording of forelimb movements even when the 

animal turned away from the camera. Several behavioral elements were scored to determine the 

extent of forelimb impairment during spontaneous exploration of the glass cylinder. The 

independent or simultaneous use of the left or right forelimb was analyzed  

a) at first contact with the wall; and  

b) during vertical and horizontal movements along the wall; and  

c) sliding movements of each forelimb at the wall of the cylinder were scored   

Forelimb activity (FLA) was evaluated for each forelimb using the following formula: 

 

Figure 31: Forelimb Activity Score Formula 

In addition, the frequency of sliding movements (%) which occurred during vertical activity 

at the wall of the glass cylinder was assessed for each forelimb using the following score: 
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In order to illustrate the time course of alterations in these behavioral tests data are in part 

given as percentage difference between preoperative baseline and different time points after the 

infarcts. 
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D.3 Cylinder Test (Schallert (2000)) 

Forelimb use during explorative activity was analyzed by videotaping rats in a transparent 

cylinder (20 cm diameter and 30 cm height) for 3–10 min depending on the degree of movement 

maintained during the trial. A mirror was placed behind the cylinder at an angle to enable the 

rater to record forelimb movements when the animal was turned away from the camera. The 

cylindrical shape encourages vertical exploration of the walls with the forelimbs as well as 

landing activity. The cylinder was high enough that the animal could not reach the top edge by 

rearing and wide enough to permit a 2 cm space between the tip of the snout and the base of the 

tail when the animal was not rearing. However, other chambers such as the home cage may be 

used as long as the behavior of the animal can be viewed unobstructed from all directions. All 

scoring was done by an experimenter blind to the condition of the animal using a VCR with slow 

motion and frame by frame capabilities. An advantage of the limb use asymmetry (cylinder) test 

is that inter-rater reliability is very high (r > 0.95) even with relatively inexperienced raters. 

Following some types of injury the animals may not move frequently enough to obtain an 

adequate number of vertical movements. In this case videotaping in the home cage at the 

beginning of the dark cycle may be necessary. 

Several behaviors were scored to determine the extent of forelimb-use asymmetry displayed 

by the animal. These behaviors were recorded during vertical movements along the wall and for 

landings after a rear:  

(a) independent use of the left or right forelimb for contacting the wall during a full rear, to 

initiate a weightshifting movement or to regain center of gravity while moving laterally in a 

vertical posture;  
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(b) independent use of the left or right forelimb to land after a rear:  

(c) simultaneous use of both the left and right forelimb for contacting the wall of the 

cylinder during a full rear and for lateral movements along the wall;  

(d) simultaneous use of both the left and right forelimb for landing following a rear. If a 

rater could not determine whether one limb was being used independently or simultaneously, that 

movement was not scored. Each behavior was expressed in terms of  

(a) percent use of the non-impaired forelimb relative to the total number of limb use 

observations (impaired, unimpaired and both limb use observations) for wall movements;  

(b) percent use of the impaired forelimb relative to the total umber of limb use observations 

for wall movements; 

(c) percent use of the limbs simultaneously relative to the total number of limb use 

observations for wall movements; 

(d) percent use of the non-impaired forelimb relative to the total number of limb use 

observations for landings:  

(e) percent use of the impaired forelimb relative to the total number of limb use 

observations for landings; and  

(f) percent simultaneous limb use observations relative to the total number of limb use 

observations for landings. 

Wall-associated ratios and landing ratios can be averaged together for scores that reflect 

equal contributions from asymmetries in wall movements and landings.  

 



 

91 

D.4 Paw-Dragging Method 

Paw dragging method is essentially the same as the above cylinder tests, except it focuses 

on quantifying the number of paw-drags from the recorded videos of mice. Paw-dragging 

behaviour is distinct from normal paw touches as follows: 

1. If the paw contacts the cylinder wall with a full open palm, it will slowly fall away from 

the wall, often with a slight tremor. The movement begins with the digits dragging 

against the cylinder wall either in a medial or downward direction, before falling away 

completely. The mouse will then dismount with its unaffected paw before landing on all 

fours. This is considered a paw-drag and should be counted in a tally. 

2. If the paw does not contact the cylinder wall with a fully open palm, it will graze the 

cylinder wall with its digits before falling away from the cylinder wall. Similarly, a 

mouse may drag its paw against the cylinder wall but not release it entirely before 

dismounting. These are both considered paw-drags as well as touches and should be 

counted as both in a tally. 

3. The paw may also drag along the cylinder wall while a mouse explores the cylinder. In 

this case, the paw will follow the twisting of the mouse’s torso as it explores left or right 

of its original position before dismounting. This is not considered a paw-drag, as it 

depends on the mouse randomly choosing a direction to explore and does not depend on 

which cortical hemisphere was damaged. 

Paw-drags are expressed as a percentage of paw-drags per total number of paw touches 

during a session. Express the number of paw-drags as a percentage of total paw contacts for each 

forelimb separately.  
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Appendix E: PalmGrid Station Installation Manual 

E.1 Python 3.6  

1. Download python 3.6  

Under the main entry for both versions you’ll see an “x86-64” installer, as seen 
below. 

 

 

2. Extract the software package, and hit setup 

3. Enable the “Add Python 3.6 to PATH” option and then click “Install Now.” 
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4. Check for correct installation using python -v that we used above to check that it 
is installed correctly and the path variable is set.  
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E.2 DeepLabCut 

There are several modes of installation, and the user should decide to either use 

a system-wide, Anaconda environment based installation (recommended). One can of 

course also use other Python distributions than Anaconda, but this is the easiest route. 

All the following commands will be run in the cmd in Windows. Please first open 

the terminal (search cmd). 

• Anaconda: 

Anaconda is perhaps the easiest way to install Python and additional packages across 

various operating systems. First create an Anaconda environment. With Anaconda you 

create all the dependencies in an environment on your machine in the following way. 

More details can be found in the conda environment readme. 

Windows: 

DeepLabCut provides environment files for Windows. They can be installed by typing 

(from the terminal, within in this conda-environments folder): conda env create -f dlc-

windowsCPU.yaml or conda env create -f dlc-windowsGPU.yaml for the GPU version. 

See further details in this issue. 

Then, 

Windows: pip install -U wxPython 

Install TensorFlow with GPU support: 

1. Install TensorFlow. In the Nature Neuroscience paper TensorFlow 1.0 with CUDA 

(Cuda 8.0) was used. Some other versions of TensorFlow have been tested, but they 

are not tested! (i.e. these versions have been tested 1.2, 1.4, 1.8 or 1.10-1.13, but 

might require different CUDA versions)! Please check your 

driver/cuDNN/CUDA/TensorFlow versions on this Stackoverflow post. 

 

2. Install the NVIDIA CUDA package and an appropriate driver for your specific 

GPU. Please follow the instructions found 

here: https://www.tensorflow.org/install/gpu, and more tips below. The order of 

operations matters. 

 

https://www.tensorflow.org/
https://stackoverflow.com/questions/30820513/what-is-version-of-cuda-for-nvidia-304-125/30820690#30820690
https://www.tensorflow.org/install/gpu
https://github.com/AlexEMG/DeepLabCut/blob/master/docs
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3. Some tips for installing TensorFlow 1.8 will follow here: 

FIRST, install a driver for your GPU (we recommend the 384.xx) Find DRIVER 

HERE: https://www.nvidia.com/download/index.aspx 

• check which driver is installed by typing this into the terminal: nvidia-smi 

SECOND, install CUDA (9.0 here): https://developer.nvidia.com/cuda-90-download-

archive 

THIRD, install TensorFlow: 

Package for pip install: 

pip install tensorflow-gpu==1.8 —with GPU support (Ubuntu and Windows) 

Note, the version is specified by using: ==1.8 

 

FOURTH, Please check your CUDA and TensorFlow installation with the lines below: 

Start a python session: ipython 
import tensorflow as tf 
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) 

You can test that your GPU is being properly engaged with these additional tips. 

Troubleshooting: 

TensorFlow: Here are some additional resources users have found helpful (posted 

without endorsement): 

• https://stackoverflow.com/questions/30820513/what-is-the-correct-version-of-

cuda-for-my-nvidia-driver/30820690 

• https://stackoverflow.com/questions/50622525/which-tensorflow-and-cuda-

version-combinations-are-compatible 

• http://blog.nitishmutha.com/tensorflow/2017/01/22/TensorFlow-with-gpu-for-

windows.html 

• https://developer.nvidia.com/cuda-toolkit-archive 

https://www.nvidia.com/download/index.aspx
https://developer.nvidia.com/cuda-90-download-archive
https://developer.nvidia.com/cuda-90-download-archive
https://www.tensorflow.org/install/
https://www.tensorflow.org/programmers_guide/using_gpu
https://stackoverflow.com/questions/30820513/what-is-the-correct-version-of-cuda-for-my-nvidia-driver/30820690
https://stackoverflow.com/questions/30820513/what-is-the-correct-version-of-cuda-for-my-nvidia-driver/30820690
https://stackoverflow.com/questions/50622525/which-tensorflow-and-cuda-version-combinations-are-compatible
https://stackoverflow.com/questions/50622525/which-tensorflow-and-cuda-version-combinations-are-compatible
http://blog.nitishmutha.com/tensorflow/2017/01/22/TensorFlow-with-gpu-for-windows.html
http://blog.nitishmutha.com/tensorflow/2017/01/22/TensorFlow-with-gpu-for-windows.html
https://developer.nvidia.com/cuda-toolkit-archive
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• http://www.python36.com/install-tensorflow-gpu-windows/ 

• System-wide considerations: 

If you perform the system wide installation, and the computer has other Python 

packages or TensorFlow versions installed that conflict, this will overwrite them. If you 

have a dedicated machine for DeepLabCut, this is fine. If there are other applications 

that require different versions of libraries, then one would potentially break those 

applications. The solution to this problem is to create a virtual environment, a self-

contained directory that contains a Python installation for a particular version of Python, 

plus additional packages. One way to manage virtual environments is to use conda 

environments (for which you need Anaconda installed). 

  

http://www.python36.com/install-tensorflow-gpu-windows/
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E.3 ImageJ  

1) – Download and Install ImageJ Software 

ImageJ is in the public domain. It can be freely downloaded and installed on any computer 

including those at schools, homes, and businesses. 

 
ImageJ download page. 

Go to the ImageJ Download page , and download and install the application for your 

operating system. 

Note to Windows Users: It is recommended that you install ImageJ in the Documents 

directory, rather than in the Program Files directory. For security reasons, Windows 7 

and Windows Vista do not allow programs to alter themselves by writing files to the 

Program Files directory. If ImageJ is installed in the Program Files directory, then the 

update function in Step 2 below will not work properly. In addition, if you are a 

Windows Vista user, be sure to choose the correct version of ImageJ (either 32-bit or 

64-bit) for your computer. 

  

http://rsb.info.nih.gov/ij/download.html
https://d32ogoqmya1dw8.cloudfront.net/images/eet/albedo/imagej_download_page.v2.jpg
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E.4 ffmpeg 

1. Download a static build from here. 

 

2. Use 7-Zip to unpack it in the folder of your choice. 

3. Open a command prompt with administrator's rights. 

NOTE: Use CMD.exe, do not use Powershell! The syntax for accessing 

environment variables is different from the command shown in Step 4 - running it 

in Powershell will overwrite your System PATH with a bad value. 

 

4. Run the command (see note below; in Win7 and Win10, you might want to use the 

Environmental Variables area of the Windows Control Panel to update PATH): 
setx /M PATH "path\to\ffmpeg\bin;%PATH%" 

 

NB: Do not run setx if you have more than 1024 characters in your system 

PATH variable. See this post on SuperUser that discusses alternatives. Be sure 

to alter the command so that path\to reflects the folder path from your root 

to ffmpeg\bin. 

  

http://ffmpeg.zeranoe.com/builds/
http://7-zip.org/
https://github.com/adaptlearning/adapt_authoring/wiki/Just-Enough-Command-Line-for-Installing
https://superuser.com/questions/387619/overcoming-the-1024-character-limit-with-setx
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Appendix F: Labeling Forelimbs of Mouse Images that trains 

DeepLabCut 

To train DeepLabCut for PalmGrid, we recommend labeling maximally diverse images (i.e., 

different poses) in a consistent, anticlockwise manner and curating the labeled data well.  In our 

experience, we expanded the initial training dataset in an iterative fashion.  

1. First, set up the Cylinder Test experiment.  Expose the setting with white cardboard 

encasing the cylinder with black cardboard covering the top of cylinder.  These offer 

maximum light contrasts to the mouse subjects. 

 

2. Second, record the video of 1200 x 1200 pixel resolutions using Raspberry Pi 

 

3. Third, Convert the recorded video using ffmpeg to .wmv format, where DeepLabCut 

requires to generate a training set. 

 

4. Fourth, select frames where reliably captured behaviors and avoided those corrupted with 

noise (e.g. blurred images when displayed in ImageJ),  

 

5. Fifth, in our application we label BOTH forelimbs and rear limbs using ImageJ. Label 6 

points (namely the five digits and the palm) for each limb and curate each selected frames 

in anticlockwise manner. An example of post-labeled frame is illustrated below. 
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NB. In our motivation example as we do not know whether rear limb coordinates will be utilized.  On 

hindsight, labeling forelimbs will be good enough.  We learnt that labeling has to be done in a 

consistent, anticlockwise manner as recommended by DeepLabCut 

 

6. Sixth, run ImageJ’s Analyze / Measure Tools to extract coordinates of these labeled limbs.  

Save the results of these measurements as directed by DeepLabCut user manual to train 

DeepLabCut server.  

 

7. Try a few samples of video analysis.  If the labeling was bad or inconsistent, the video 

analyzed will poorly recognize the forelimbs.  Repeat the exercise for a few times to fine 

tune the training set in the Cylinder Test configuration being set up. 
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Appendix G: Ground Truth Reports 

G.1 Report compilation procedures 

1.  Review all video fragments, of 4 minutes (~6,000 frames) each on a frame-by-frame basis; 

2.  When a wall-rearing activity is observed, note down its start and end frames; 

3.  Group the wall-rearing activities that are close to each other within 3 seconds into wall-

rearing episodes; 

4.  Record the wall-rearing episodes into ground truth report 

5.  Sign at the end of the report 

  



 

102 

G.2 Ground Truth Reports 
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Appendix H: Matlab scripts 
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