PalmGrid, an artificial intelligence approach to automate cylinder task detection

by

David Sze-Ming Cheng
CEng MHKIE PMP
MEng, University of Birmingham, UK (2001)
MBA, University of Warwick, UK (1990)

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF

Master of Science

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES
(Neuroscience)

The University of British Columbia

(Vancouver)

April 2019

©David Sze-Ming Cheng, 2019

The following individuals certify that they have read, and recommend to the Faculty of Graduate and

Postdoctoral Studies for acceptance, the thesis entitled:

PalmGrid, an artificial intelligence approach to automate cylinder task detection

submitted by Cheng, Sze-Ming David
the degree of Masterof Science
in Neuroscience

Examining Committee:

Tim Murphy, Department of Neuroscience

in partial fulfillment of the requirements for

Supervisor

Nicholas Swindale, Department of Neurosceince

Supervisory Committee Member

Lawrence Ward, Department of Neuroscience

Supervisory Committee Member

Tim O’Connor, Department of Neuroscience

External Examiner

Abstract

Stroke is a common cause of permanent disability accompanied by devastating

impairments. Motor, sensory and cognitive deficits are common following stroke, yet treatment

is limited. Along with histological measures, functional outcome in animal models has provided

valuable insight to the biological basis and potential rehabilitation efforts of experimental stroke.

Developing and using tests that identify behavioral deficits is essential to expanding the

development of translational therapies. Forelimb Asymmetry Task experiments — often called

Cylinder Tests — are used to study the impact of ischemic stroke and its subsequent rehabilitation

to contralateral limb movements of studying rodents. Through assessments on qualitative and

quantitative aspects of vertical exploration to the Cylinder Wall, extent of locomotor asymmetry

is evaluated [25-27].

Traditionally wall rearing assessments are evaluated through manual, stop-watch based
measurements that require laborious observations. Methods that automate the process were
attempted such as the use of hardware-based sensor detections that passively probes of touches
on the sensor grid. In its various implementations, the sensor-based methods fail to specify the

limb that rears the wall nor depict the ways forelimbs are coordinated during the rearing.

Advent of artificial intelligence (Al) algorithms, notably Deep Neural Networks (DNN),
helps to extract posture and coordinates of forelimbs [21]. PalmGrid is the first attempt to
exploit Al posture extraction algorithms — based on 50 layers depth in ResNet Deep Neural
Networks [29] together with posture extraction algorithm DeepLabCut [24] — to automate the
assessment process with 70% detection accuracy using robust, open-source software. Further
improvements in deep neural networks precisions, such as increasing its depth or incorporating

advanced posture extraction algorithms, will further enhance detection precisions. In this way,

we will have viable alternatives to conduct cylinder test experiments without suffering from

extra cost burdens and complex calibrations.

Lay Summary

We have implemented an Artificial Intelligence (Al) software-driven, automated cylinder
test method using basic laboratory apparatus and a Raspberry Pi video recorder. Upon one-time
training that made the Al Engine’ to profess forelimbs recognition competence, subject videos
can then be analyzed to localize of their forelimb locations. These forelimb locations are then
analyzed if vertical exploration (wall-rearing) occurred. Assessments based on cylinder tests of

subjects demonstrate detection accuracy around 70%.

Utilizing software method bypasses several limitations of conventional approach. Firstly,
laborious tasks of manual monitoring are no longer required. Secondly, calibrations of sensory
networks to aid detections are spared, thus lowering equipment investments. Most importantly,

any specific features of interests can be flexibly studied.

L Al Engine is made of an off-the-shelf Intel-based computer server with Windows 8.1 Enterprise software
preinstalled with appropriate artificial intelligence and image processing software. For details, please refer to
Section 2.3.

Preface

This dissertation is an original intellectual product of the author, David Sze-Ming Cheng.
The fieldwork reported in the thesis was covered by UBC Animal Protocol Number A18-0321

and A18-0036.

The PalmGrid method is an Avrtificial Intelligent software-driven process to automate
Cylinder Task experiments that are used to assess rodent behavior in stroke or rehabilitation. It is
built on cutting edge Artificial Intelligence Deep Neural Network Algorithms (DNN) together
with Posture Extraction and signal processing methods. The specific DNN algorithm used is
ResNet-50, which refers to 50-layers of convolution neural networks made publicly available by
Google in Tensorflow 1.1 software. ResNet-50 is the core foundation of posture extraction
system called DeepLabCut developed by Adaptive Motor Control Laboratory from Rowland
Institute of Harvard University Department of Neuroscience, which extracts cartesian

coordinates of interested postures.

The PalmGrid process further capitalizes on DeepLabCut. It consists of an experimental
setup of basic laboratory apparatus to record mouse behavioral videos and a server that tracked
specific postures/features highlighted in the recorded videos. These extracted cartesian
coordinates are then analyzed to discern of wall-rearing activities. In this way, data gathered in

Cylinder Task experiments can be automated with minimal resources and investments.

Professor Tim Murphy of the University of British Columbia supervised the project, who
initiated the requirements with Dr. Matilde Balbi to write the published manuscripts. | am
responsible for design, implementation, experimentation setup, and testing using basic laboratory

apparatus and single Raspberry Pi camera. | was much indebted to the help of Luis Bolanos and

Vi

Dr. Jamie Boyd for their assistance in building the transparent stools, and likewise for Dr.
Balbi’s contributions in practical implications of cylinder tasks experimentations. Last, not least,
the help of Dr. Jamie Boyd who helped fast-tracking Raspberry Pi implementation required for

the experimentation setup.

vii

Table of Contents

AADSITACT ...t bt iii
LAY SUMIMAIY ..ottt ettt r e E e e Rt e s e Rt e R e e e e R e e e e nr e e R e e r e nreennennenneenreanes \
PIETACE ...t E bR n e Vi
Table OFf CONENLSttt et e et et e e e aaeeas viil
LISE OF TADIES. ...t Xiii
LIST OF FIQUIES ...ttt bbb ettt b et nen e e e ne b Xiv
GHOSSANY ...ttt bbb R Rt b bR Rt R Rt bttt XVi
ACKNOWIBAGEIMENTSc.viiiieiie ettt e te st e e e e s be e b e e s b e s te et e sbeeteesbesaeebesteeneesrenres Xvii
(@8 =T o) (=T g T (oo [1Tox (o o ISP 1
O 1o [T I S TSSO T PSS U PSP PR P PTPPPRO 1
1.2 Different Variants of CYlINAEr TESES.....cciiiiiiiiiie e s 3
1.3 Organization Of thiS thESISccvciiiiccc e e e e 6
1.4 Wall-Rearing Detection using Touch-based sensing teChNIQUESccoerveriiininininesiee 7
1.5 Brief History of Deep Neural Network and its measurement Metricsccccevveevveieieernennnnn, 9
1.6 RESNETL AlGOTTTNIMS. ... 12
1.7 Deep Neural Networks Posture Extraction AIQOrithmsccoooveiiiineieicinis e 13
1.8 RESEAICH ATIMS ...t e ettt 15
1.8 Our Design Prototype: PalMGIid ..o s 18
(08 F=T o (= A o 1[4 g o TSR 20

viii

2% A [011 (oo [o3 £ o o TR 20

2.2 EXperimentation SEHING........cccoiiiiie it st ne e 22
2.2.1The RECOIdiNG APPAIALUS......c.cevirerierteriisteseesresi ettt sneane e neneas 22
2.2.2 The PalMGIid STALIONcveveieiiciiiisieseie et 24
2.2.3 Choosing appropriate Artificial Intelligence Algorithmic configuration 25

P22 T 1101 o] (=] 0 11T] L o) o USSR 27

2.4 Detailed MENOMScoeiiici ettt nae e nae e e 29
2.4.1 Training PalmGrid recognition Capabilities.ccocviiiiiiiiiieecee e 29
2.4.2 Localizing Forelimbs of TeSt SUDJECESccviveiiiiiiiiiie e 32

2.5 Errors introduced by Al and itS releVanCe...........cccooeiiiiiiiiinicicceee e 34

2.6 PalmGrid Signal Processing ModUIEcccoveiiiiiie i 37
2.6.1 HarmoniCs TIEIINGooveieiiieic s 37
2.6.2 Conversion to Polar COOMINGLEScoceierieieieieesese et 39
2.6.3 EXtract SIOW-MOVING FIamES........c.cociiiiiiiiiiccie ettt ne e 40
2.6.4 Extract CONErent FragMENTScccveiiiiiiiie et ste et sttt sre e sre b e s resba et sreeneere e 40
2.6.5 Identify CoNgruenCe POINEScc.ciiiiiiiiie ettt st s re e 41
2.6.6 Remove Outliers of Refined SUDFragments..........ccocooiiiiiiiineieeee e 41
2.6.8 Gauge Refined SubFragments into wall rearing epiSOes............cceveererinineneneniesieas 44
2.6.9 Export of wall-rearing epiSOUEcooiiiiiiieieieieie s 44
2.6.10 Compile wall-rearing episodes into Video fragments..........cccovereivininiininene e 45

2.7 EXPerimental TESTINGooiririeieieieiee sttt 47

S T (- 11] | SR 48
2.8.1 OVEIAIl RESUILS ...ttt ettt et esee et e naesreeneesne e 49
2.8.2 Independent Assessment of Left and Right Forelimbs............ccooeiiiiiiiiiii e 52

22 S B B 1[0 0 1S3] (o] o TR 53

2.9.1 Correctly Recognized TOUCNES.ceciiiiiecieite ettt s sre e sne e 53
2.9.2 False Alarms (Positives) and Error Propagation Modeling..........cccocovvvvveieiicicinciennnn, 53
2.9.3 False Negatives or MiSSING AELECLIONSccerveieiiiririite st 57
2.9.4 Different correct recognition and omission rates for left and right paws.............ccccccven.e. 58
2.9.5 Making use of Wall-Rearing Episode Report to enhance efficiency..........cccoevvvicienne 59
2.9.6 Comparison of labor time required to use PalmGrid............ccooieiiiiiiiiiin s 60
2.9.6 Benefits of the software approach ..o 61
Chapter 3 Design Choices and DISCUSSIONSccueiviirieieiieeeeieseeieeseseestestee e sresaesreseesresraseesresns 62
3.1 Strength Of PAIMGIITcc.oiiiiieie e 62
3.2 Limitations Of PalMGIITccooiiiiiiiiiicir s 64
3.3 FULUIe IMPIOVEMENT ATBAS ...eeivviiiiiee ittt it e st et e e stae e st e e sabe e sste e et e e st e e saa e e snbe e s baeeanbeeenaneennes 65
3.3.1 Use of more advanced artificial intelligence algorithms ... 65
3.3.2 Use of more advanced posture extraction algorithms............c.ccoceeeveniiiininine s 65
3.3.2 Dual-camera, epipolar geometry approach..........ccocooeieiiininiieneseeees e 66
3.3.3 Changing PalmGrid signal processing approach to machine learning..........c.ccccocvevvenene. 67

3.4 CONCIUAING REMAIKS........cviiiiiiieii ittt e be s b e s be et esbeebeesbesaeeneesre e 68
BIDIIOGIAPNY ... 71
AAPPENTICES ...ttt bbb bbb R R R bttt b bbb b n s 73
Appendix A — PalmGrid Hardware and SEttiNGScccoooveriiiiie e 73
A.1 Hardware COMPONENTSccuiiuiieieiieiieiiste sttt sttt bbbttt b ettt enes 73

A.2 PalmGrid EXperimentation SELUPccooiieeiiiiieeeseeee ettt 75

A.2 Raspberry Pi Video Camera version 2 SPecifiCation.............ccooovivevinieiieneniene e 76

A.3 Raspberry Pi Video RECOIrdiNG SCIPLScveiiiiiierinieiie ettt 76

Appendix B — PalmGrid Signal Processing and Gauging Module Pseudocodes...............cccceevnee. 77

B.1 Coherent Fragment EXIFACTIONcvviiiiiieiiiee e 77

B.2 Congruence Points 1dentifiCation..........c.cccviveiiiiiiic e e 77

B.3 Refined Sub-Fragment Gaugingcccevviiiieie ettt ees 78
APPENTIX C — TESE RESUILS ...t 79
C.1 Overall Left and Right Forelimbs taken tOgether ... 79

C.2 Overall Left and Right Forelimbs taken together in Percentage..........ccoovvovrvrineieniennennns 80

C.3 Right Forelimb Only in NUmber of TOUCKcccouoiiiiiiiiiiceeeee e 81

C.4 Right Forelimb Only in % Of TOUCKcccoiiiiiiiiicis e 82

C.5 Left Forelimb Only in Number of TOUCKccoiiiiiiiii e 83

C.6 Left Forelimb Only in 9% of TOUCKccoooiiiiic e 84
Appendix D: Methods for FOrelimb TeSEScvivciiiiie e 85
D.1 Cylinder Test (Li & McCullough (2004))........coiiiieiiieeieesee s 85
D.2 Forelimb preference and sliding test (Shanina & Redecca 2006)............cccevveveveevieieeviesnenne 87
D.3 Cylinder Test (Schallert (2000))oreieiriiiiesese e ens 89
D.4 Paw-Dragging MEtNOU...........coiiiiiiieieieii e 91
Appendix E: PalmGrid Station Installation Manual..............ccccoceeviiiiiiiiiiiic e 92
I Y 0] T T OSSP 92
E.2 DEEPLADCUL.....c.eiiieeie ettt bbbttt 94
G 10110 (= PR U T PU R UTRRPRTPP 97
O 1] 0 =T TSSOSO PR PP 98
Appendix F: Labeling Forelimbs of Mouse Images that trains DeepLabCut............ccccocvvirinvnenne. 99
Appendix G: Ground TrUth REPOITS.......ooiiiiiiiie ettt ees 101

Xi

G.1 Report cOmpPilation PrOCEAUIEScoviiiiriirerieirei et 101

AppendiX H: Matlah SCHPLSovviiiie e ta e sre e sreene s 156

Xii

List of Tables

Table 1: PalmGrid Setup and Training Process

.. 31
Table 2: PalmGrid Analysis and Signal Processing PrOCESS.........c.ccveieeieieiieniesesieseseesiesie e 33
Table 3: Sources of Error for ResNet-50, hence DeepLabCut..........ccocovviiiineieiciciiseeeene 36
Table 4: Computed Wall-Rearing Results of Left and Right forelimbs...........ccccooevevviviiinciennn, 58

Xiii

List of Figures

Figure 1: Cylinder Test CONFIQUIALION..........c.ciuiiiiiic it s ees 2
Figure 2: Typical Cylinder Test ASSESSIMENT.cc.ciieiiiiiieeieeie e se e e sre e sreea e re e sresreeeesreeres 2
Figure 3: Summary of various Cylinder Test MethOdSccceviiiiriniieeeee s 4
Figure 4: Touch Sensing DeteCtion SYSEMcccciiiiiiiiiii et sre e 8
Figure 5: Convolution Neural Network SChEMALICSccoveiveiriiiiiiiieeee e 11
Figure 6: Top-1 Error Error Rates of different Deep Neural Network Algorithmscccceenene. 12
Figure 7: The RESNEt AIGOTTtNM.........ooiiiiiiiiice e 13
Figure 8: Top 5 Recognition Accuracy of ImageNet Challenge WINNersccocvoveviicienenennns 14
Figure 9 Basic Laboratory Settings 0f PalmMGrid..........c.cccoviiiiiiiii i 19
Figure 10: PalMGIid ProCeSS OVEIVIEWc.ceuiiiiiiiiiiiiesieieeieieise sttt 21
Figure 11: PalmGrid's RECOrding APPAratUS.........ccceiveeiierreiieiieseeiiesresteesiesreesesseseessesseessessessesssessens 22
Figure 12 Cylinder Test configuration to maximize light CONtrasts.............ccoceovvvinininininenenens 23
Figure 13: Comparison of DNN Algorithmic Performance.............ccoovrireneneinisisenesc e 26
Figure 14: PalmGrid Posture Extraction & Wall-rearing Detection Process.........ccccccevvevevecieeniennnnn 27
Figure 15: Example Wall-Rearing HitS REPOIT..........ccooiiiiiiiiiiiise e 28
Figure 16: DeepLabCut Sample Training Photos that show the labeled forelimbsccccccue.... 30
Figure 17: An illustration of DeepLabCut misconstruing virtual image..........cccoovvvviinininenenenenns 35
Figure 18: PalmGrid Signal Processing & Gauging Filtersccccooviviiiiiiciicieic e 37
Figure 19: Conversion of DeepLabCut forelimb coordinates to PalmGrid languagecccccccu..... 39
Figure 20: Some postures that fulfill two coherences and congruence Criteria...........c.ccocvvverereriennns 42
Figure 21: Removal of detected wall-rearing epiSOUEScoviieirieeiene e 43
Figure 22: Sample Refined SUDFragment REPOITcccovviieiiiniiiie e 45
Figure 23: Synchronies of forelimbs in wall-rearingccoocooeii i 46
Figure 24: Sampled Labeled IMAageScovo ittt s 48

Xiv

Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30

Figure 31

: Test Results of PalmGrid for @ CONOIt Of NS5

: PalmGrid Error Propagation MOdEl...........cccceiiiiiii i

: Lack of depth cue made resolution of wall-rearing challenging............ccccoovovniiencnenns

- lustrative comparison of PalmGrid asseSSment time...........cccooeveieiiieniieiinese s

: Hypothetical PalmGrid design based on full-scale machine learningcccccoeevenenee.

: Cylinder Test Score Calculation..

: Forelimb Activity Score Formula

XV

Glossary

Major Terms of
References

Description

Cylinder Test

Also called the spontaneous forelimb use asymmetry test, is frequently
used to assess post-stroke limb use asymmetries in mice

DNN

Deep Neural Networks, a specific construct of Convolutional Neural
Networks that become the prevalent industry standard for machine-based
recognition of images and videos

DeepLabCut

An open-source, General Public Use licensed toolbox written by Adaptive
Motor Control Laboratory of Rowland Institute, Harvard University; that
built on Tensorflow and prevalent posture extraction algorithms to extract
posture coordinates of identified features of interests in the video stream.
Posture coordinates are given in cartesian coordinates relative to Field of
View of the camera.

ILSVRC

ImageNet Large Scale Visual Recognition Challenges, an annual contest
for competing Deep Neural Networks algorithms who were given a set of
images and videos to discern into given (say 1,000) categories of objects.
Competence of benchmark is assessed by Top-1 and Top-5 recognition
accuracies.

Principal
Component
Analysis

Data Science techniques that extract maximum variances from a set of
presented data

ResNet

Residual Neural Network, an open source software bundled in Google
Tensorflow that is the winner of the 2015 ImageNet Challenge of computer
object recognition. In 152 layers of the construct, implemented in
September 2016 possesses a recognition rate under an optimal condition
that achieves human “Top-5 recognition rate” capability of less than 5%
error.

Tensorflow

An open-source, machine learning General Public Use toolbox provided by
Google to facilitate low entry barriers adaption in deep neural networks
algorithms

XVi

Acknowledgements

I would like to express my deepest gratitude to the teachings and mentorship of Professor
Tim Murphy who led me to the field of Neuroscience and inspired me of an interesting
experimental discipline that | have not known throughout my professional life as an engineer.
By far, our Central Nervous System remains the least understood metaphor; and at times it
remains mysterious. Because of our lack of understanding, options available to rescue brain

injuries and neurodegenerations are limited, and much remains to be explored.

What intrigued my interests most is how advanced engineering techniques can be applied to
aid neuroscientific explorations. In this thesis, optics and artificial intelligence are employed to
track posture of the mouse in studying animal behaviors under ischemic stroke, to overcome
resources and skill barriers of neuroscience laboratories who are less conversant with prevalent
artificial intelligence methods. 1 used to perceive the experimental medicine discipline as
another sphere of knowledge from mathematics and applied physics. Admittedly, this is an eye-

opening experience.

Not least, | would like to thank Dr. Matilda Balbi who provided expertized contributions in
cylinder tests; Dr. Jamie Boyd who contributed his phenomenal expertise in Raspberry Pi; and

Mr. Luis Bolanos who assisted the experimentation setup throughout the project.

XVil

"Trust in the Lord with all thine heart, and lean not unto thine own understanding. In all thy

ways acknowledge him, and he shall direct thy paths."”

Proverbs 3:5~6

XViii

Chapter 1 Introduction

1.1 Cylinder Test

Stroke is a common cause of permanent disability associated with sensory and motor
deficits. Developing and using tests for experimental stroke that helps to identify behavioral
deficits is essential for the development of therapeutic interventions. The cylinder test, also
called the spontaneous forelimb use asymmetry test, is frequently used to assess post-stroke limb

use asymmetries in mice [25-27].

In a typical cylinder test, the mouse is put in an acrylic cylinder. The cylinder is mounted
on a transparent stool where video equipment(s) is mounted underneath to record its activities
(Figure 1). Current protocol mandates each recording to around ten minutes that can be
separated by short time intervals for equipment calibration purposes to count respective left-
forelimb, right-forelimb, or both-forelimbs wall rearing activities [25~27, also Appendix D.1].
Manual inspection is then required to identify the wall rearing episodes of respective forelimb on
the cylinder wall, to assess the behavioral impact (Figure 2 and Appendix D.1). These wall
rearing episodes refer to the time fragments where forelimbs rear the wall vertically. They are
then expressed in different test scores and plotted to compare trends of locomotor asymmetry

(lower plot, Figure 2).

Despite the test being relatively easy to perform, manual frame by frame counting in the
number of touches within recorded video frames is laborious. Various methods had been
attempted to automate the laborious and subjective collection of wall-rearing statistics in
Cylinder Test. In atypical 4 minutes video recorded in 25 frames per second, the frame-by-

frame review requires browsing of 4 (min) x 60 (seconds) x 25 (frames) = 6,000 frames. Various

methods to conduct cylinder test assessments have been suggested to relieve the laborious
exercise by employing slow play functions of image processing software such as VLC Player.
An example of such is paw-dragging test [30], where at least three iterations to play the recorded
mice videos in slow motions are required: first by skimming through the video of fragments in
vertical exploration, followed by verifications, and subsequently to review particular wall-rearing
fragment frame by frame to assess its quality of rearing. The need for second raters, prolonged
monitoring (say 24 hours), and batch processing of different subjects’ recordings further

compound the time burden in analyzing Cylinder Test results.

Cylinder Test

-= Sham
—= Ischemic mjury

L

n ‘,f‘

3 2 4 18 N B 42 &8 70
Days Post-Op

Utse of Imgpaired forelmb (%5)

=

Figure 1: Cylinder Test Configuration: Mice or Rats Figure 2: Typical Cylinder Test Assessment. Image obtained
being put in laboratory cylinder to assess vertical from Li & McCullough [26] Chronic behavioral testing after
exploration focal ischemia in the mouse. Experimental Neurology
Volume 187, Issue 1, May 2004, Pages 94-104

1.2 Different Variants of Cylinder Tests

Different investigators employed varying score metrics to evaluate vertical exploration. As
one of the first investigator proposing the method, Schallert [25] was interested to test the
preference of rats in using non-impaired forelimb for weight shifting movements during
spontaneous vertical exploration. This is why the test was devised to observe independent
forelimb rearing as well as their respective landing during impaired and non-impaired conditions.
Simultaneous forelimb rearing and landing were likewise recorded. There were no timing

windows imposed for the test. The metrics are simple to understand and easy to be carried out.

Li & McCullough [26] slightly modified Schallert’s method by focusing on forelimb use
and rotational symmetry of mice. They are not interested in the landing counts but instead focus
on forelimbs’ vertical explorations. In this way, both independent and simultaneous rearing are
recorded just as [25], plus they further define a metrics called "Right Forelimb Independent” that
refers specifically to right forelimb staying on the wall during both impaired and non-impaired
conditions. The mice are given 10-minute test period where 20 of these movement episodes are
recorded. In the end, the independent forelimb movement and simultaneous counts during
impaired and non-impaired conditions within the 10-minutes test period are given a metric score

in the evaluation. Please refer to Appendix D.1 for detailed description of methods.

Shanina and Redecker [27] focused on recovery after photothrombotic infarcts in rats. In
addition to the conventional independent and simultaneous forelimb rearing, they are also
interested in wall sliding. The Forelimb Activity Index and sliding score percentage are

computed, based on the formula given in Appendix D.2.

Recently, Roome and Vanderluit [30] noticed that the conventional methods of Cylinder
Test were not sensitive enough for mice as compared to rats, judging by their lack of reliance on
unaffected forelimb paw for postural support as compared to rats. Instead, they observed
behavior termed "paw-dragging” where its impaired forelimbs drag along the cylinder wall rather
than directly push off from the wall when dismounting from a rear to a four-legged stance. They
are therefore interested to quantify the number of paw-drags and expressed as a percentage of
total paw touches during an experimental session. Details of the method are depicted in

Appendix D.4.

A summary of these four methods is given in Figure 3.

Schallert et al 2000 |J & McCullough Shanlna & Redecker | Roome &
Vanderluit 2015

Independent Left /
Right Limb rearing

Independent Left / v v
Right Limb landing

Simultaneous left/right v v v v
limb for contacting /

lateral movements

Simultaneous landing v v
Right Forelimb v

Independent

Sliding Movements v

Lateral & Vertical Mvt v

Independent Dismount v
Dragging v
Compute Wall-assoc ratio Cylinder Test Score Forelimb Activity Score Paw-Dragging Score

Landing ratio

Figure 3: Summary of various Cylinder Test Metrics in various cylinder test methods as Schallert [25], Li & McCullog
[26], Shanina [27], and Roome & Vanderluit [30]

It is noted that while score metrics and features-of-interests (such as right forelimb
independence, dragging etc. — see Figure 3) differ between various methods, the core principles
remain unchanged. In order to automate these methods with maximum flexibility, wall-rearing
detection that depicts the time and synchrony of these independent forelimb episodes is needed
to gauge of the left, the right, and both forelimbs rearing. If particular method requires further
data mining into particular rearing episode, it would be nice to have raw episodic data available

to aid further analysis.

We have integrated these requirements into our prototype model to build a markerless
cylinder test automation system called PalmGrid. In sum, PalmGrid is the novel approach that
combines interdisciplinary excellence of Behavioral Neuroscience, Artificial Intelligence, Signal
Processing, and Engineering. Its behavioral neuroscience requirements have been well adopted
to assess locomotor asymmetry of rodents, especially in behavioral recovery studies of stroke as
a result of plasticity in Central Nervous System [25-27, 30]. It will equally enhance efficiencies
in conducting left-right forelimbs trait preference (biodiversity) experiments as prolonged
observations are required to capture mice preference to grab food [33-34]. By leveraging
advances in cutting edge artificial intelligence to locate the forelimbs and signal processing to
make sense of them, Cylinder Test experiments can be automated with improved efficiencies that

is easy to setup, easy to adapt, and easy to use by resources limited laboratories.

1.3 Organization of this thesis

This thesis is organized as follows. Chapter 1 refers to brief purposes of cylinder test and
the corresponding history of automatic touch sensing development. Section 1.5 - 1.7 refersto a
brief history of Deep Neural Networks that provides basic terms of reference; and Section 1.8
refers to research aim of PalmGrid that explains what we intend to utilize in Artificial
Intelligence to assist us in automation of touch sensing in Cylinder Test. Given the
interdisciplinary nature of current research, it is believed that a lengthier introduction in Section
1.5 depicting brief history of Artificial Intelligence will help readers to understand basic

terminology and terms of references in the neuroscience research herein described.

Chapter 2 describes the features and design of PalmGrid. Section 2.1 briefly describes its
design philosophy, and what is required to employ the system. Section 2.2 elaborates on
experimental settings to conduct PalmGrid-based Cylinder Test experiment. Section 2.3
provides high-level implementation block diagram for the PalmGrid process, with section 2.4
detailing the steps underlying the process described in 2.3. Section 2.5 provides brief highlights
into the less known stories of Deep Neural Networks despite its hype, leading to the necessity of
signal processing and decision gauging algorithms of PalmGrid in Section 2.6. Remaining

sections of the chapter discusses its algorithmic and process performance.

Chapter 3 opines on PalmGrid’s strengths and weaknesses. Section 3.1 discusses its
strength; while Section 3.2 outlines circumstances where the processes may not be applicable.
There are many areas that the algorithm can be enhanced, and these are outlined in Section 3.3,
including discussions of why certain technical options have opted while others not taken into

consideration.

1.4 Wall-Rearing Detection using Touch-based sensing techniques

Previous attempts to automate Cylinder Test include the use of hardware touch sensing
techniques. Touch sensing technologies are used in many applications such as smartphones,
tablets, laptops, information kiosks, etc. Touch screens are very intuitive and easy to use; they
also save space because their screen and interface are spatially integrated. Many touch sensing
technologies have been developed for commercial purposes. Examples include technologies
based on infra-red sensing elements [1-4], resistive [5,6] and capacitive sensors [7-9], cameras

[10], the acoustic-based sensors [11-13], and others [14-16].

The mutual capacitive method is a popular touch-sensing approach that is extensively
adopted in smartphones and tablets [17]. In this method, the touch interface is constructed of
rows and columns of transparent tracks made of conductive paint. The row and column tracks are
separated by a thin glass layer. Each row/column is electronically charged by an individual
driver circuit. When the mouse touches the cylinder at a specific position where conduction
tracks were laid, the capacitance at the intersection between the row and the column at this
position changes; the point of pressure on the panel can thus be localized by scanning all the
other non-energized rows and columns and computing the capacitance at all intersections, and
recorded by a miniature Raspberry-Pi in further processing [18]. Most of the aforementioned
touch sensors can be classified as active sensing techniques because touch detection depends on

transmitting and receiving a signal that is perturbed by a touch.

In 2017, Kinsmen laboratories of University of British Columbia has setup the capacitive

sensor infrastructure in an attempt to automate touch sensing. Capacitive paints were laid in a

tapered beam geometry that forms a grid network to detect rodents touches as its limbs touch the
grid. These touches are then stored and analyzed using custom software written in Python. The
settings achieved high sensitivity of 96.2% in some form of touch detection, be it of bodies,

limbs, or head. Its advantage is high sensitivity in locating the touch.

Figure 4: Touch Sensing Detection System, left panel displays the tapered beam geometry where capacitive paints were
laid, while the right shows its DC electric connection to capacitance sensor chips. Images obtained from Fig 1 and Fig 2B in
[19] Ardesch & Murphy. Journal of Neuroscience Methods 291 (2017) 221-226

Despite its hardwired accuracies, the method suffers from two major drawbacks. Other than
the usual false positives due to latent touches of nearby sensors, it was impossible to discern
whether the forelimbs or hindlimbs triggered the touch. Such deficiency poses challenges in the
study of contralateral ischemic stroke that requires comparative study of left versus right
forelimb mobilities impacted by stroke and corresponding rehabilitation studies. The method
cannot fulfill wall rearing episodic extractions as required in various cylinder test protocols. It is
also challenging to discern special features-of-interests such as “paw dragging” and “paw
sliding” without explicit observations of forelimb synchronies in their rearing. Last but not least,
the experimentation setup also requires costly investment and calibrations into touch sensing

apparatus that are only affordable by laboratories with extensive engineering expertise in-house.

1.5 Brief History of Deep Neural Network and its measurement metrics

It is a broad consensus that one of the founding father of theoretical artificial intelligence
was Alan Turing of Queen’s College, Cambridge®. With his works the Allied Forces had sped
up to “brute force” the encryption code and deciphered the communications of German Navy to
pave the victory of WWII. These algorithms soon evolved to become the cornerstone of modern

machine learning methods. In his lecture in London Mathematical Society 1947, he opined that

"Let us suppose we have set up a machine with certain initial instruction tables, so constructed that these tables
might on occasion, if good reason arose, modify those tables. One can imagine that after the machine had been
operating for some time, the instructions would have altered out of all recognition, but nevertheless still be such that
one would have to admit that the machine was still doing very worthwhile calculations. Possibly it might still be
getting results of the type desired when the machine was first set up but in a much more efficient manner. In such a
case one would have to admit that the progress of the machine had not been foreseen when its original instructions
were put in. It would be like a pupil who had learned much from his master but had added much more by his own
work. When this happens I feel that one is obliged to regard the machine as showing intelligence.”

Turing, 1947

Since then machine learning has powered ahead with hallmark innovations in perceptron
algorithms (Minsky & Papert et al 1969), Prolog programming language (Colmerauer et al 1972)
and a host of others that spearheaded much of the artificial intelligence developments in the 20"
Century. Their euphoria gave rise to a time of unrealistic expectations that subsequently
dissipated as promises trailed behind hypes (The Economist 1992 September op ed quoting
“Artificial Stupidity”). Thereafter development in the commercial arena, notably research
funding, substantially shrank in the 1990s that left caring of this lonely child technology to be

confined within universities’ computer science laboratories.

In 2006, Professor Geoffrey Hinton of University of Toronto invented Deep Belief Net that

became the first neural networks to learn decoded information state® based on his understanding

2 https://en.wikipedia.org/wiki/Alan_Turing
% In computer science terminology, decoded information state is termed internal representations

of synaptic neurons architecture. Its breakthrough in object recognition rate — though modest in
present day standards — revived commercial interests in machine learning that reopened
enterprises’ R&D interests (such as Google and Microsoft) to substantially invest their research
efforts into artificial intelligence sector. Microsoft Research and Amazon soon actively followed

around 2010.

In brief, Deep (Convolution) Neural Network is a layered autocorrelator* where each layer
is responsible to discern specific feature sets of the data presented at its input, followed by an
optional ReLU layer® that makes decisions whether specific criteria are met. The stacking of
these layers of autocorrelators effects adaptation of features-of-interests to specific patterns, such
that any future presented data in similar pattern can be recognized [20]. For example, if an Al-
Engine was trained to recognized of rodents forelimbs, then after iterations of training, it

professes the knowledge to recognized such forelimbs of similar sizes and shapes.

4 Autocorrelator is an algorithmic process that correlates an input signal with a delayed copy of itself as a
function of delay. The analysis of autocorrelation is a mathematical tool for finding repeating patterns that detects if
the incoming signal resembles to features it looks for. An example of its application is facial recognition, where the
shapes of particular person’s face is compared to a database of facial edges.

® In the context of artificial neural networks, ReLLU (or rectifier) is an activation function defined as the positive
part of its argument:

f(x) = x+=max(0,x)

where x is the input to a neuron. This is also known as a ramp function and is analogous to half-wave

rectification in electrical engineering.

10

pocied Fullg-pomnected 1

feature maps pelind TEAWE M fegume maps
frture mapi —

="
Ny

Conmvalsizornal Fooling 1 Carrssutional
lager 1 layir 2

.\'-
' ol]

.\-\'-
-

Chstguls

- 000000000
ITTTY

Ingut
Posglng 2

Figure 5: Convolution Neural Network Schematics. Image obtained from https://res.mdpi.com/entropy/entropy-19-
00242/article_deploy/html/images/entropy-19-00242-g001.png

To benchmark the effectiveness of different DNNs, the ImageNet challenge was instituted
as an industry effort to certify its performance since 2010. Soon the exercise became the platform
of intellectual competition among big companies and research institutions alike such as NEC,
MIT, Stanford, Microsoft, and Google. ImageNet presents portfolios of test images in different
categories of stationary and moving objects to test out the accuracies of machine learning to

recognize these objects.

The metrics to appraise effectiveness of Deep Learning algorithm is based on its recognition
and localization capabilities. In terms of recognition capability, “Top-5 successful recognition
rate” measures how accurate particular neural network is capable of discerning a particular
image into respective categories irrespective of where it is in the presented picture®. “Top-1
recognition rate” was used to measure corresponding accuracies of the algorithms to "spot on™
specific objects into specific categories, for example, "Chihuahua” in the category of "Dogs". If

the picture is recognized as "Wolf" or "Jackal", their “Top-1 accuracy” will not score while its

® For details of ImageNet competition, refers to
https://en.wikipedia.org/wiki/ImageNet#History of the database

11

“Top-5 accuracy” score will get one mark, and so forth. Figure 6 and Figure 8 shows different
“Top-1” and “Top-5" recognition rates in respective winners of ImageNet challenges over the
years 2010 - 2016. ResNet in different layers (34, 50, 101, 152) Top-1 recognition rate is also

displayed although its 50-layers configuration was the winner in 2015.

80 1

Top-1 accuracy [%]

w X AB 46 A9
W e\"@' éﬁ"‘a AR ::z N o o™
v~"v~

B
P\a\jk" "&0\' Sk e

e qet LE,Q Le.?

Figure 6: Top-1 Localization Error Rates of different Deep Neural Network Algorithms. Image obtained from Canziani &
Paszke [21]. An analysis of Deep Neural Networks for practical applications. Computer Vision and Pattern Recognition April
2017

1.6 ResNet Algorithms

ResNet Algorithm was one form of Deep Neural Network invented by four scholars during
their time in Microsoft Research in late 2015 [29]. It was known by then that constructs evolved
from Deep Belief Network variants (and other planar networks such as VGG-19) suffer from
major drawbacks in vanishing gradients, a symptom where learning errors saturated as stacking
increase. Such metaphor renders learning of successive layers of artificial neurons to saturate,
setting limits to depth of Deep Neural Networks [29], and hinders corresponding Top-1 and Top-

5 error from further reductions.

12

The ResNet algorithm advances from plain networks’ learning barrier by restricting the
learning optimization within a few layers of neural networks. Its design ideas closely resemble
the way animal cortex are organized into brain regions, with each one specialized and optimized
in its own right while chained together to do big tasks (Figure 7). In ResNet, building blocks are

cascaded together resulting in deeper architecture — hence higher recognition rate [29].

el el e, a e i m., .E e . = S
) L i i i L 0 i " 5 L i N i i L i

s ol il it el e o =gl el e il el

Figure 7: The ResNet Algorithm Architecture. Note that in contrast to other planar DNN algorithms like VGG-19, ResNet
organized itself into smaller groups of artificial neuron layers for its self-contained optimization. This achieves faster and closer
convergence. Image obtained from He &Sun [29]. Deep Residual Learning for Image Recognition. Computer Vision and Pattern

Recognition. Dec. 2015,

1.7 Deep Neural Networks Posture Extraction Algorithms
Over the years since 2010, annual ImageNet Large Scale Visual Recognition Challenges
(ILSVRC) demonstrated significant advances in image recognition capabilities of various DNNs;

from 25% in “Top-5 recognition error”” in 2010 to less than five percent in by 20152 (Figure 8).

" The Top-5 error rate is the percentage of test examples for which the correct class was not in the top 5
predicted classes. So, for example, if a test image is a picture of a Persian cat, and the top 5 predicted classes in
order are [Pomeranian (0.4), mongoose (0.25), dingo (0.15), Persian cat (0.1), tabby cat (0.02)], then it is still treated
as being 'correct' because the actual class is in the top 5 predicted classes for this test image.

ImageNet is an image base consisting of millions of images categorized into 1000 classes, top-5 error rate
became benchmarks of efficacies of DNN algorithms.

8 For details on ImageNet Large Scale Visual Recognition Challenges, please refer to http://www.image-
net.org/challenges/LSVRC/.

13

For the purpose of our discussion, ResNet-50 achieved 5.25% in recognition errors that approach
human recognition capabilities. Further advances in ResNet to 152 layers by Microsoft Research
in September 2016 claim less than 4.49% in Top-5 recognition error, exceeding human

capabilities.

30 T NECuUC

o5 XRCE
arge error rate reduction due to Deep CNN
20 -
AIexNet
15 OverFeat
10 ' VGG
GoogLeNet
5 RESNet .

2010 2011 2012 2013 2014 2015 Human

Accuracy (Top-5 error)

Figure 8: Top 5 Recognition Accuracy of ImageNet Challenge Winners. From 2012 onwards, Top-5 (Recognition)
accuracies are approaching closer to human capabilities. ResNet was the first time human recognition capability was being
challenged in 2015. Image obtained from Russakovsky & Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. 1JCV,
2015

To facilitate widespread adoption of Deep Neural Networks, Google bundled the host of
advanced DNN algorithms for general public use since late 2015. In 2017, Harvard University
Adaptive Motor Control Laboratory leveraged ResNet-50 bundled in Google Tensorflow to
integrate posture extraction algorithms into markerless pose estimation software toolbox called
DeepLabCut [23]. Upon one-time training of DeepLabCut with a brief training video of what
forelimbs look like, the software will extract forelimbs locations of experimentation videos®.
These extracted locations are then analyzed to identify of wall-rearing episodes using custom-

built signal processing algorithms.

® For details of one time training of DeepLabCut, please refer to Section 2.4.1 Training PalmGrid recognition
capabilities

14

1.8 Research Aims

We set out our research journey to investigate technical feasibility to automate Cylinder
Test using frontier engineering methods, in particular, artificial intelligence and signal
processing algorithms. We called this prototype project "PalmGrid” to symbolize its economics
and simplicity: the two critical success factors for widespread adoption in laboratories with

limited resources.
In particular, we are interested to answer the five research questions:

1) Can one automate Cylinder Test with only one simple Pi-camera under minimal

calibrations?

The reason behind any automation was enhancing efficiency whilst lowering the costs of
processing. PalmGrid objective was no different. We explore what can be done using the most
basic Raspberry Pi Version 2 camera (Appendix A.2) and stretch its resolution to 1200 x 1200

pixels per frame™®.
2) Can one achieve forelimb recognition in free-movement mice?

Given the fact that we are stretching resolution capabilities of DeepLabCut, forelimb
recognition of free and fast-moving mice is also of interests. It would be easier to set camera
focus to aid forelimb detection if we had head-fixed mice in similar experiments where bodily
obstructions are not evident. In free-movement mice, maneuvering of subjects became a serious

challenge to camera’s shutter and focus capabilities that give rise to blurred images affecting

10 According to documentations of DeepLabCut [24], recommended maximum resolution of the software is 640
x 480 pixels resolution. Since forelimbs of mice was small, a finer resolution of 1200 x 1200 pixels would be
required for adequate resolution of its features.

15

forelimb recognition. We are therefore interested to what extent can PalmGrid accepts free-

movement mice to resolve and recognize forelimbs.

3) Can left and right forelimbs of subject mice be independently assessed?

Most importantly we are interested if left and right forelimbs can be independently assessed.
From various methods depicted in Cylinder Test literature (Appendix D), independent
assessment becomes the core principles to compute respective wall-rearing scores. Previous
attempts to automate Cylinder Test process using mutual capacitive sensors failed to answer this
question. Our fundamental assumption is that the ambiance provides sufficient light that allows
images to be resolved by the artificial intelligence algorithms to recognize forelimbs. Given the
vague minimal lighting, is independent assessment feasible in artificial intelligence methods? In
the context we are stretching our audacious goal: can we further design PalmGrid to capture

activities such as wall-dragging or wall-sliding in prevalent protocols?

16

4) Can accurate locations of digits/forelimbs be tracked?

Even with independent assessment feasibilities, we need to be concerned with accuracies of
these extracted coordinates as we need them, in various contexts, to compute metrics scores and
gauges for wall-rearing episodes. Typical papers in artificial intelligence applications focus on
“recognitions” to categorize different images, but in this context we need ““spot on” precision
accuracies to report where that features-of-interest is located. We want to understand to what
extent of accuracies are analyzed out of these wall-rearing metrics, to translate these accuracies

into the automation.

5) If 4) is feasible, can wall-rearing activities be discerned?

Last not least, and given all these constraints and coarse experimental settings, can we
discern wall-rearing activities? We know that all images are coupled with noises that blur the
accuracies of extracted postures. Thus if a machine is tasked to look into the extract postures as
Cartesian coordinates, these distorted signals will misguide the algorithm from gauging actual
wall-rearing activities. In our design of appropriate signal processing filters that extract these

wall-rearing episodes, therefore, an estimate of its discernment accuracy is warranted.

The aim of this research is to capitalize on proven classification capabilities of cutting-edge
artificial intelligence algorithms in extracting coordinates of the features of interests, to discern
wall rearing touches in Cylinder Tests. We aim to test out the extent that prevalent machine
learning and posture extraction approach can automate cylinder test touch sensing with modest

laboratory setup.

17

1.8 Our Design Prototype: PalmGrid

With all the design criteria and constraints as set out above, we built our markerless

Cylinder Test prototype called PalmGrid to test out various research questions raised in 1.7.

PalmGrid consists of a transparent base with a basic Raspberry Pi video camera mounted
underneath. Free-movement mice are placed in a laboratory cylinder above the transparent base,
so as to record mice activities above (Figure 9). Positioning the camera underneath minimizes
the chance of forelimbs being obstructed from video recording due to body movements. The
recorded videos are then analyzed by DeepLabCut Al Engine, followed by custom-built signal
processing algorithms to identify wall-rearing. As left and right forelimbs are separately labeled,
detection using PalmGrid approach allows left and right forelimbs to be independently tracked.
Approaching automatic touch sensing using software approach by leveraging visible lights
bypasses complexities in hardware setup, hence lowering the capital investments and skillset

barriers that were otherwise prohibitive to resource-constrained laboratories.

The output is a wall-rearing report that details the timings in all wall-rearing episodes when
respective left and right forelimbs reared the wall. Different investigators can then use this wall-
rearing report to tailor their scoring as needed. If specific protocols require further data analysis
into particular episodes to extract specific metrics, detailed episodic coordinates are also
provided for their ongoing analysis. To facilitate investigators to review individual vertical
explorations in its quality of rearing, each episode is compiled into smaller video fragments for

their inspections.

18

Cylinder

(housing test rodents)

Elevated
Transparent Base

Raspberry Pi + Rack

Mounted Camera Pi Camera

Figure 9 Basic Laboratory Settings of PalmGrid. The laboratory cylinder where mice are placed is mounted on a
transparent stool. Underneath a Raspberry-Pi camera is placed to record videos of mouse activities. Recorded Videos are then
analyzed by PalmGrid Station — a Windows 8.1 Enterprise server whose configuration is described in Section 2.2.2.

19

Chapter 2 PalmGrid

2.1 Introduction

PalmGrid is a process that capitalizes on DeepLabCut and Tensorflow’s ResNet-50 to
discern wall rearing episodes from predicted forelimbs locations®. Video images of mice
activities in the Cylinder Test are recorded in normal lights and analyzed using Tensorflow’s
ResNet-50 and posture extraction algorithms offered by DeepLabCut. In its hardware setting,
the mouse is being housed in a laboratory cylinder supported by a transparent stool, underneath

which a Raspberry Pi video camera is mounted to record mice activities bottom-up (Figure 11).

The system was deliberately designed for a single camera. Though multiple cameras
system can utilize epipolar geometry methods to advance estimation of depth to higher
precisions, we deliberately constrained our exercise to highlight the extent of achievements with
prevalent DNN algorithms using simple Pi-camera with minimal ambience calibrations. For the
same reason multiple camera systems that offer added dimensionality were not chosen, as adding
further camera(s) will pose time synchronization problems between video clips besides
increasing capital investments?!?. In a similar rationale, sophisticated depth camera was not
employed to gauge the depth of forelimb to calculate the location of wall rearing, in lowering of

costs and calibration challenges as much as possible.

The PalmGrid System will be first trained to recognize what mice left and right forelimbs
looked like and where they are located with respect to the referential coordinate system of video

camera’s Field of View in a one-time training process (see Section 2.4.1). Upon training in

11 By episode it means a time fragment within which multiple cylinder wall touches had occurred.

12 As at the date of writing, Raspberry Pi can only drive a single video camera in its basic settings. Having
additional camera means adding another set of Raspberry Pi system that elevated the cost of equipment and
challenges in synchronizing video times. As the experiment was set out to identify the lowest and simplest
hardware setting for cylinder test, single camera approach has opted.

20

excess of 200,000 iterations®®, the PalmGrid station professes posture extraction** competence in
video camera’s referential coordinate system. One can then feed appraisal videos — of different
studying subjects — into the PalmGrid station to predict forelimbs locations with respect to the
cartesian coordinates in camera’s Field of View. These predicted forelimbs locations are then

processed by PalmGrid signal processing module to gauge wall rearing episodes (Figure 10).

Elple el PalmGrid Station Processing
Training for

=

?00:0_00+ 1) Training in excess of 200,000 iterations
iterations 2) Appraising experimentation video clips
Training Video 3) Signal Processing and gauging, to discern

and detect wall rearing activities

PalmGrid —_— Cor;gruence
» Blation Prolcger;iing G Of?eS &
Predictions guping

Experimentation
Videos

Analysis

Figure 10: PalmGrid Process Overview, as detailed in Section 2.4

Observations are made to deduce criteria of forelimb locations as wall-rearing. It is noted
that forelimb digits will first slowdown as its paw approaches the wall, followed by extending
their distances furthest from the center of the cylinder in forward limb stretching until some of

them are obstructed by the cylinder wall. The forelimb(s) will either find support on the cylinder

13 Training in excess of 200,000 iterations was a subjective call, to lower prediction errors to a plateau below
10°. Lower iterations will achieve higher order magnitude of error, further increasing prediction errors. In
DeepLabCut, decent recognition competence is professed after a minimum of 64,000 iterations

14 Posture extraction is a buzzword in artificial intelligence discipline that refers to recognition and localization
of specific features of interests such as limbs and the way subject stands in a given video. In our context, it refers to
recognition and localization of digits in left and right forelimbs.

21

wall, and subsequently retrace from the wall. Because their forelimbs are obstructed, alteration in

movement trajectory.

2.2 Experimentation Setting

Minimal hardware and calibrations remain core consideration in PalmGrid design
philosophy, as it was devised with ease of adoption in mind. The hardware setting of PalmGrid
System thus consists of a recording apparatus where wall rearing activities of mice are recorded
and a PalmGrid station where recorded videos are analyzed. We did not assume laboratories are

well resourced to profess lighting and raspberry Pi calibration expertise to engage in PalmGrid.

2.2.1The Recording Apparatus

Mouse under study

Figure 11: PalmGrid's Recording Apparatus

The PalmGrid’s recording apparatus consists of basic laboratory equipment of a cylinder
where the mouse is being housed and studied. The cylinder is being mounted on a transparent

stool, underneath which a Raspberry Pi video camera is being mounted (Figure 9 & Figure 11).

22

To facilitate video recording of discernable quality, white cardboard with black top enclosure
encase the cylinder, gathering as much room lighting as possible (Figure 12). Basic Raspberry
Pi camera is configured to its maximum resolution mode, namely 1200 x 1200 pixels, to allow
for its finest features (such as forelimbs) tracking possible with the basic camera. Lowering such
resolution implies coarser pixel resolutions, impacting accuracies of feature identifications and

hence the subsequent detection finesse.

Figure 12 Cylinder enclosed in white cardboard with black tops maximizing light contrasts

As mentioned, more sophisticated configurations such as depth camera and multiple camera
systems were not opted, so as to assess what can be achieved with artificial intelligence under

basic hardware configurations.

23

2.2.2 The PalmGrid Station

The PalmGrid station is a Windows 10 Server installed with at least 32GB of Memory and a
prevalent Graphics Processing Unit from Nvidia that performs analysis of captured video images
in Cylinder Test. These graphics processors determine how fast the intended features — such as
left forelimb of the mouse — can be learned and analyzed by ResNet-50. The PalmGrid station
is installed with the following application software, mostly General Public Use licensed software

in artificial intelligence and image processing.

e Python 3.6 where DeepLabCut software runs on; and

e Imagel that labels training video of the particular features to be recognized; and

e A video format converter that converts recorded video from de-facto Raspberry Pi’s
H264 to avi video formats to integrate with DeepLabCut; and

e Matlab where extracted forelimbs’ coordinates are further analyzed into wall rearing
episodes; and

e Microsoft Excel helps to tabulate final detection results for presentation®®;

e Last but not least, a video to photo converter called “FFmpeg” that converts videos

into photos and vice versa

Installation of these software followed respective configuration guides as recommended by

respective vendors. Please refer to Appendix E for details.

15 Excel was chosen because of its easy to use without requirements to understand database administration and
operations. Again, we intend to lower adoption barrier. More resourceful laboratories can consider other forms of
organized storages, such as Oracle database management system.

24

2.2.3 Choosing appropriate Artificial Intelligence Algorithmic configuration

DeepLabCut offers two optional Artificial Intelligent algorithms that one can opt for:
ResNet in 50 layers and 101 layers configurations. Choosing which ResNet configuration
require our understanding how to balance recognition and localization accuracies of artificial

intelligence algorithms.

Artificial Intelligence algorithm can be best understood with an analogy of visual cortex
information streams. In our visual cortex, ventral (“What”) stream is responsible for recognition
while the dorsal (“Where”) stream is accountable for localization. Likewise, artificial intelligent
algorithmic performance is measured in terms of its recognition (i.e. “What”) and localization
(i.e. “Where”) capabilities. Recognition capabilities metrics is depicted in “Top-5 accuracies”,
while localization capabilities is appraised in “Top-1 accuracies”. Top-5 accuracy was widely
reported to educate the public that artificial intelligence algorithm has already exceeded human

recognition capabilities ever since the arrival of ResNet in 2015.

For PalmGrid that capitalizes on features of DeepLabCut toolbox that uses ResNet to
provide recognition (Top-5) accuracies of over 95% as shown in Figure 8, further decisions are
to be made in the choice of 50- or 101-layers configurations. Since Cylinder Test protocols
require localization of forelimbs, this implies that we have to understand how accurate its
localization capability is and balance such requirements against computational demand of
Graphics Processing Unit in the captioned automation to achieve acceptable time to analyze each
experimentation video. In doing so, realistic decisions can be made in what type of computing
hardware is required to provide adequate localization accuracies within reasonable computational

time.

25

The localization performance (Top-1 accuracy) chart as shown in Figure 13 is rarely
reported beyond artificial intelligence discipline. For the two ResNet configurations, ResNet-50
offers 76% localization (Top-1) accuracy with 8 giga-computations in one forward computation
parse; while in ResNet-101 a 78% localization accuracy shall require 25 giga-computations in
one forward parse. This means that if we were to choose ResNet in 101 layers of depth
configurations, we have to purchase a Graphics Processing Unit that possesses at least three
times as much processing power as the corresponding ResNet in 50 layers depth for the same
processing time in a given experimental video recording. In our laboratory for example, we
have a Nvidia Quadro Graphics Processing Unit for the project, which was not very fast as
compared to other models such as Nvidia Titan XP. As a result, we have made a compromise
to choose ResNet with 50 layers of depth that provides acceptable analytical time performance

against a 76% localization accuracy?’.

Inception-v4 ResNet-101 uses ~ 15G operations in a
801 ; single forward pass, yielding accuracy of
Inception-v3 ResNet-152 78%
ResNet-50 VGG-16 VGG-19

ResNet-
. ResNet-34
704 q ResNet-18
GoogleNet

ResNet-50 uses ~ 8G operations in single
forward pass with accuracy of 76%

ENet

Top-1 accuracy (%]
o
wv

© Bn-NIN
60 5M 35M 65M 95M 125M----155M
BN-AlexNet

551 AlexNet
Top-1 one-crop accuracy versus amount of
operations required for a single forward pass.

50 T T T T T T T T : : :

o 5 10 15 20 25 30 35 40 The size of the blobs is proportional to the

Operations [G-Ops) number of network parameters;

Figure 13: Comparison of DNN Algorithmic Performance. Image obtained from Canziani & Paszke [21] An analysis of
Deep Neural Networks for practical applications. Computer Vision and Pattern Recognition April 2017

16 For specifications of Nvidia Quadro and Titan models, please refer to their specification sheets on Nvidia
web sites: https://www.nvidia.com/en-us/design-visualization/quadro-desktop-gpus/ and
https://www.nvidia.com/en-us/titan/titan-xp/ respectively

7 In other words, the algorithm has an inherent localization error of 24%.

26

https://www.nvidia.com/en-us/design-visualization/quadro-desktop-gpus/
https://www.nvidia.com/en-us/titan/titan-xp/

2.3 Implementation

The recorded subjects’ videos are first converted to PalmGrid acceptable video format to
extract mice forelimbs’ locations in cartesian coordinates. These forelimbs locations are then
made sense by PalmGrid signal processing module that filters confounding noises introduced by
Artificial Intelligence algorithm (see Section 2.5 and 2.6) to discern of wall-rearing hits. These
wall-rearing hits are reported in the Wall-Rearing Episode Report in numeric tabular format, and

as video reports.

e Record

* Raspberry Pi, Single Camera Recording
¢ 1200 x 1200 resolution

e Extract

* 150~200 Training Photos to train Al
DLC (Al * Use Trained Al to track Forelimbs
Engine) + Forelimbs locations in DLC Report

e Vake Sense

¢ Polar Coordinates Conversion
* Harmonics (Noise) Filtering
Signal * Coherence Filtering

Processing _ Congruence Filtering

* Qutliers removal => Wall-Rearing Episode Report

Figure 14: PalmGrid Posture Extraction & Wall-rearing Detection Process

After posture extraction, PalmGrid mines into the extracted posture database to identify

wall-rearing episodes. Once we have got rid of the confounding noise (see Section 2.5 and

27

2.6.1) introduced by DeepLabCut, a series of signal processing filters are utilized to identify

wall-rearing events.

The Wall-rearing episode report depicts respective time fragments within which wall-
rearing most likely occurred. An example is shown in Figure 15. In here, the red underline
refers to one of such episode in Fragment 2, where video frames 498 to 528 contains at least 1
wall-rearing touch(es). As the video was recorded in 25 frames per second, it means that the

particular episode happened between 20 seconds (being 498 / 25) and 25 seconds (being 528 /

25).
Fragment Number Start Fragment End Fragment
SubFragment Midpoir Start SubFragment End_SubFragment Decision
1 8 362 - -
- 26 1_37 335 1
Fragment] 2 364 760 - -
- 13 498 528 1
2 5 637 611 663 1
3 762 1,180 - -
_ 803 792 814 \1\
. 1,039 937 1,140 1 Episode
4 1,187 1,203 - -
5 1,210 1,218
6 1,221 1,349 = -
1,287 1,239 1,334 1

Figure 15: Example Wall-Rearing Hits Report. Here Fragment 2 refers to a time period when a forelimb has one of its
digits moving below 5 pixels per frame. Within this fragment, two plausible wall-rearing episodes are identified, the one
underlined in blue refers to a wall-rearing episode between frame 498 to 528.

Investigators can then use these wall-rearing episodes to mine their cylinder test scores
according to their intended protocols. To offer investigators with more flexibilities, the raw data
of wall-rearing episodes are also stored in the Wall-rearing episodes report that facilitates them
to perform specific data mining to derive intended metrics, such as “paw-dragging” in [30].
Videos of these discerned wall-rearing episodes are also compiled to help investigators assessing

qualitative aspects of Cylinder Test requirements.

28

2.4 Detailed Methods

As mentioned in Figure 10, the PalmGrid station was trained of left and right forelimbs
followed by analysis of subjects’ videos. The end results of the analysis would be predicted
forelimb locations that depicts coordinates of the forelimbs’ digits and palms with respect to
referential cartesian coordinates of video camera’s Field of View. Forelimbs locations were then

analyzed by PalmGrid signal processing filters to discern of wall rearing activities.

The detailed process of setup, training, analysis of forelimbs locations together with
identifying the wall-rearing episodes are detailed below. Other than the training process that
requires video recording to train the recognition capabilities of the artificial intelligence engine,

the entire process was coded in Matlab to enhance code readership by neuroscientists.

User will first prepare a file that tells PalImGrid the respective locations of videos, extracted
posture coordinates, and their intended locations of wall-rearing episode report. PalmGrid reads
the batch file to generate the wall-rearing episode reports of all the videos in one go. For a batch

of 10 videos of 4 minutes each, the serial batch processing took less than 20 minutes.

2.4.1 Training PalmGrid recognition capabilities

A training video was first recorded to train ResNet-50’s recognition capabilities of
forelimbs in the Cylinder Test settings. To facilitate learning of ResNet-50 in what mice left and
right forelimb looks like, their locations in respective pictures in training video will be labeled

using prevalent off-the-shelf image analysis tools — such as ImageJ®.

18 Imagel is a public freeware of image processing, downloadable at https://imagej.nih.gov/ij/

29

To test whether PalmGrid could generalize forelimb recognition capability, we chose a
different mice strain to train ResNet-50. In this arrangement a male Al-94%° mouse was placed
in the cylinder to record its video activities. All animal procedures were approved by the
University of British Columbia Animal Care Committee and conformed to the Canadian Council

on Animal Care and Use guidelines.

Around 150~ 200 photos of mice forelimbs were labeled to train ResNet-50 that possessed
varieties of postures. A few training photos are shown in Figure 16. DeepLabCut was supposed
to accept a maximum of 800 x 600 pixels pictures [24]. But since forelimbs were so small as
shown, we needed a higher pixel resolution that exposed finer features of forelimbs for
recognition and localization. We had therefore stretched camera resolution to its maximum

1200 x 1200 resolution®.

Figure 16: DeepLabCut Sample Training Photos that show the labeled forelimbs

19 Jackson Laboratory Stock No: 024115 | Ai94(TITL-GCaMP6s)-D;CaMK2a-tTA
20 |n a separate experiment, | have tried to conduct the training in 800 x 600 resolutions. The trained ResNet-
50 exhibited poor recognition and localization capabilities, suggesting a higher resolution was needed.

30

Time taken to train ResNet-50 recognition capability was contingent on the configurations
of machine learning platform and computation power of Graphical Processing Unit. Artificial
intelligence engineers usually referenced best practices to determine the number of iterations
required in specific applications. In here forelimbs postures accuracies were important, we
followed recommendations from DeeperCut [31] in human posture recognition. DeepLabCut did

not provide corresponding recommendations in similar applications [24].

Steps Description
Phase | Preparation and Training of PalmGrid Recognition Capabilities
1 Setup Cylinder Test configuration as in Figure 9. Focus Pi-camera to the upper-

midline of the Cylinder for better image resolution in free movement activities

2 Record training video of a mouse to train Al-Engine of what forelimbs of mice look
like. For my experiment, | have let the training mice to settle in the cylinder for 10
minutes before recording its activities in the cylinder for 4 minutes.

Select a video frame of 1-minute duration with as many wall rearing activities as
possible. Try to avoid video frames containing mouse grooming at this point.

3 Feed the training video into ImageJ System to generate around 200 training images
for Labeling that exhibit clear digits and palm features.

4 For each training images, label both Left and Right Front Paws in all its fingertips
and palm (i.e. six points per forelimb, total 12 points). As an illustration in forelimbs
labeling, please refer to Appendix F. The process of forelimb labeling will depend
on users proficiency in ImageJ. In my configuration, it took me 45 minutes to label
the 200 images.

5 Train DeepLabCut with the labeled training images. A good iteration cycle of
200,000+ iterations is recommended®. Then evaluate the trained video as per
instruction given in DeepLabCut user manual. This will typically take a few hours
contingent on the GPU used.

Upon completion of training, the PalmGrid Station professes left and right forelimbs
recognition and localization capabilities. The system is now ready to appraise
experimental videos.

Table 1: PalmGrid Setup and Training Process

21 Training 200,000 iterations is recommended by DeeperCut [31] — the predecessor of DeepLabCut [24]. The
number of training iterations have always been a subjective call. DeeperCut calls for 82% localization accuracies in
human posture extraction, and in their experience with ResNet-50 they recommend 200,000 iterations to allow Al-
Engine to profess such localization accuracy.

31

2.4.2 Localizing Forelimbs of Test Subjects

All test subject videos were then prepared and saved in designated DeepLabCut folder for
posture extraction [24]. These batches of video images were analyzed of forelimb locations in
scripted command. Once the posture coordinates were extracted, they were then fed into
PalmGrid signal processing module that identified wall-rearing episodes among presented

locations.

A typical run to localize forelimbs in a 4-minutes video under Nvidia Quadro GPU was less
than 20 minutes in our PalmGrid Station. For a typical batch of 10 videos, we left the PalImGrid
script execution overnight in posture extraction. The process of test subjects’ video recording,
video image analysis, and corresponding signal processing to make sense of these coordinates
are detailed below in Table 2. The entire process was pipelined in single command for large

volume of video analysis.

32

Phase Il PalmGrid Processing

1 Record subjects’ videos into PalmGrid station to localize forelimbs locations,
with respect to video camera’s Field of View.

2 Feed forelimb locations into signal processing modules of PalmGrid Station?,

3 Run PalmGrid signal processing module to analyze wall rearing episodes.

The script, composed of 8 signal processing filters, run in one parse in the
following steps

a) Perform signal smoothing, to smooth out-of-range predictions of
DeepLabCut??; followed by

b) Convert Extracted Posture Coordinates into polar coordinates based
on the measured location of cylinder center?*; followed by

c) Extract Slow Moving Fragments, based on Extracted Posture
Coordinates that moves less than 5 pixels between successive
frames?®; followed by

d) Extract Coherent Fragments, based on tracking of minimal two slow
moving digits that moves towards cylinder wall and subsequently
retrace from it?%; followed by

e) Identify Congruence Points, based on tracking of minimal distance
between individual fingertips and palm of each forelimb?’; followed
by

f) Match Coherent Fragments with Congruence Points, into Refined
SubFragments that refers to slow movements of changing trajectory?®;
followed by

g) Compute statistics for each Refined SubFragment and remove outliers
that does not correspond to wall-rearing?®; and finally

h) Consolidate this smaller subset of Refined SubFragments into
episodes of wall rearing

Table 2: PalmGrid Analysis and Signal Processing Process

22 For each experimentation video, there are slight variations in the location of cylinder center with respect to

the video camera's cartesian coordinates system. Simple photos tools such as Microsoft Photos can be used to depict
the approximate location of the center of the cylinder. Approximate location of cylinder center is important to
convert the cartesian coordinates into polar coordinates system aiding wall-rearing detections.

23 Refer to Section 2.6.1 for details

24 Refer to Section 2.6.2 for details

5 Refer to Section 2.6.3 for details

%6 Refer to Section 2.6.4 for details

27 Refer to Section 2.6.5 for details

28 Refer to Section 2.6.6 for details

2 Refer to Section 2.6.7 for details

%0 Refer to Section 2.6.8 for details

33

2.5 Errors introduced by Al and its relevance

While ResNet-50 is capable of matching human recognition capabilities expressed in Top-5
classification, PalmGrid also requires forelimb localization® as benchmarked in [21]. In general,
DNN algorithms that utilized ResNet-50 machine learning methods suffer from three major
sources of non-linear errors. These errors are broadly termed as Max-Pooling®?, ReLU%*, and

Picasso® (Pooling) errors.

1. In Max-Pooling, the most likely cubic that resembles specific feature set pertaining to
particular artificial neuron is chosen while others are ignored. Therefore in pictures where
left thumb appears in several nearby locations (e.g. virtual image of forelimb due to
acrylic reflection of cylinder), the sharper one is taken;

2. In ReLU, which is essentially a decision function for each feature set where non-linear
error sources are introduced. In engineering, feeding successive images (i.e. signals) into
the non-linear activation function results in uneven amplifications, resulting in harmonics
noises®;

3. InPicasso (Pooling) errors, much like the famous painter Picasso, the machine learning
algorithm focuses on the specific feature set they look for without rationing its
reasonableness. In our context, the thumb of left paw may be identified to attach to right

forelimb; or an internal reflection of the cylinder can be mistaken as the actual thumb.

31 In DNN, precision refers to Top-1 recognition capabilities, instead of Top-5 recognition capabilities in
ImageNet Challenges. For details, refer to [21].

32 For definition and illustrated examples of max-pooling, refers to
https://computersciencewiki.org/index.php/Max-pooling_/_Pooling

3 ReLU is the abbreviation of rectified linear unit, which applies the non-saturating activation function. It
effectively removes negative values from an activation map by setting them to zero. It increases the nonlinear
properties of the decision function and of the overall network without affecting the receptive fields of the
convolution layer. For details and illustrations, refer to https://en.wikipedia.org/wiki/Activation_function

3 For definition and illustrated examples of pooling, refers to https://computersciencewiki.org/index.php/Max-
pooling_/_Pooling

3 For discussions of activation functions and its relationship with harmonics noise, refer to
https://arxiv.org/abs/1603.00391

34

https://computersciencewiki.org/index.php/Max-pooling_/_Pooling
https://en.wikipedia.org/wiki/Activation_function
https://arxiv.org/abs/1603.00391

The noise sources introduced in ResNet-50 will then predict forelimb digits and palms
locations in the wrong place. For example, if the acrylic reflection of right palm is sharper than
the actual one, DeepLabCut will misconstrue the virtual image as shown in Figure 17. Therefore
signal processing filters are needed to correct these errors as far as possible. Likewise, ReLU
errors are also observed with jittery digits between frames despite the forelimbs are resting on

cylinder floor.

Poor Prediction
Of Palm by DLC

Figure 17: An illustration of DeepLabCut misconstruing virtual image of right forelimb palm as the actual one

Details of sources of errors introduced by ResNet-50 is tabulated in Table 3.

35

Sources of Errors

Causes of such error

Impact on Digits and
Palms localizations

Max-Pooling

Deep Neural Networks segregate images into smaller
rubrics and auto-correlate each rubric to discern the
closest resemblance to learned postures. This is very
similar to the way visual cortex recognizes objects
where rubric is analogous to receptive fields.

As neighboring rubric autocorrelates in striding
displacements, DNN will discern to select the most
likely resemblance and pass on to the next stack for
further recognition.

The net effect would be gross negligence of features to
finest details. It does not really matter when it comes to
recognition of the object as long as gross features
distinctively recognizable e.g. the face of a tiger from
monkey are distinct despite the loss of finely detailed
features. However, for posture extraction, such gross
negligence will introduce precision errors, such as
labeling the left forelimb’s ring finger from its internal
reflection of the cylinder.

Misconstruing
features of interests,
thereby introducing
precision errors in
whereabouts of the
features of interest,
especially in light of
internal reflections in
cylinder test.

ReLu (Activation
Function) Errors

Nearly every layer of Resnet-50 employs a rectifier unit
that attenuates negative outcomes on that layer. While
this helps discerning specific features, higher order
harmonics — manifested in non-linear noise — are
introduced in posture extraction

Higher order
harmonic noises in
predicted posture
coordinates due to
uneven amplification
of images

Picasso (Pooling)
Errors

DeepLabCut algorithm specifically searches for
highlighted features of interest. It does not, however,
associate whether these features make sense in where
they are located. An example is the left paw must be
attached to the left limb. These are often termed
Picasso or pooling errors in DNN?®®.

In the present context, for example, an internal reflection
of cylinder glass will project mouse forelimbs to a
virtual image behind the physical cylinder (example as
shown in Figure 17). DeepLabCut will recognize that
virtual image as the forelimb if the actual forelimb was
obstructed by the mouse body, for example.

Misconstruing
location of features of
interest

Table 3: Sources of Error for ResNet-50, hence DeepLabCut

36 A simplified discussion on DNN errors can be found in https://towardsdatascience.com/what-is-wrong-with-
convolutional-neural-networks-75c2ba8fbd6f.

36

2.6 PalmGrid Signal Processing Module

Feeding successive images (signal) into ResNet-50 results in varying magnifications of
signal samples depending on its signal amplitudes, producing harmonics noises to distort
forelimbs localizations®’. Multiple signal processing filters are therefore required to sanitize the

posture coordinates of these errors, prior to identification of wall rearing (Figure 18).

Stage 4: Statistical Discernment

Congruence Filter "
(Detect for multiple Stage 3: Congruence Filter
FingerTips / Palm
distance minima)

Coherent Filters
(Detect simultaneous fingertips Stage 2: Coherent Filter
/ palm that moves less than 5
pixels per frame)

LowPass Filtering) "
(Clean off high frequency Stage 1: Harmonics Filter

distortion of DLC)

Figure 18: PalmGrid Signal Processing & Gauging Filters
2.6.1 Harmonics filtering
We have attempted several harmonics filters prior to identification of wall-rearing episodes.
In prevalent image processing methods, OneEuro filter®® with 1 Hz cutoff is often used to discern
images from noises based on their differential (uncorrelated) statistical properties while

maintaining sharp picture transitions on another. Moving average filter was also attempted that

37 For discussions of activation functions and its relationship with harmonics noise, refer to
https://arxiv.org/abs/1603.00391

3% Introductory description of OneEuro filter is documented in https://hal.inria.fr/hal-00670496/document

37

https://arxiv.org/abs/1603.00391
https://hal.inria.fr/hal-00670496/document

track the prior and latter 0.5 seconds of predicted posture coordinates to predict the current
coordinates. We would first like to test which filter provides effective performance to minimize

harmonic noise sources introduced by rectifiers (ReLu) activators.

| have inspected what happened when predicted forelimb locations of DeepLabCut parses
through both filters to compare their respective merits in our forelimb localization applications.
This was done by overlaying the predicted forelimb locations to the mouse videos and visually
observed their respective differences. An appropriate filtering algorithm should offer good
proximities of predicted forelimb locations from the actual forelimb in the video image, with the

predicted ones less jittery around the actual images.

It was observed that moving average filter was better than OneEuro filter, in line with what
was believed. This is because errors introduced by ResNet-50 ReL U functions were not
uncorrelated from what is to be predicted®. Likewise, forelimb locations between nearby frames
are strongly correlated as they move in a given trajectory. Therefore taking the average +0.5
seconds of particular frame in time offers less jittery predictions even if one frame was

incorrectly localized.

On the other hand, the moving average filter does not eliminate Picasso and Max-pooling
errors. If circumstances in the video causes a virtual image of a thumb to be sharper quality than
the actual thumb, for example, ResNet-50 would still pinpoint the virtual image as the thumb —

regardless whether that thumb is attached to the arm or detached somewnhere else*°!

%9 For discussion of DNN algorithms and its relationship with associated noises, please refer to 35.

40 For the very reason of Picasso and Max-pooling errors of ResNet-50, DeeperCut [31] performed extra
recovery process of localization known as clustering and linear optimization. DeepLabCut [24] did not implement
these processes.

38

2.6.2 Conversion to Polar Coordinates

Contingent on this sequence of wall-rearing events depicted in 2.1, conversion to polar
coordinates helps making sense of predicted forelimb locations in cylinder geometry to inspect
the synchrony of digits and palms as the forelimbs rear cylinder wall. Polar coordinate system is
therefore utilized in gauging and discerning touches, by inspecting changes in radial
displacements of successive fingertips. Identify coherent digits furthest away from the center of
cylinder in polar coordinates with respect to cylinder center would be much easier in polar
coordinate system than in cartesian coordinates with respect to camera field of view, as shown in

Figure 19.

PalmGrid| Langt age

330

Al Language

Camera Origin : b /0y "Rl
X-axis

|\ F " o RadialDistanc .
. %'x /Relocate Origin to! < / ' '
" Center of Cylinder 4

Y-axis -

150° /
10

|
|
-

Figure 19: Conversion of DeepLabCut forelimb coordinates to PalmGrid language in polar coordinates help discerning
synchronies in digits and palms

39

270

2.6.3 Extract Slow-Moving Frames

Wall rearing activities of the mouse are obstructed by the cylinder wall, resulting in changes
in movement trajectory and/or momentary leaning towards the wall (an example illustrated in
Figure 12). Because the mouse learned of such obstructions as it experienced, its paws will

slow down somewhat when they approach the cylinder wall.

Leveraging the observation, gauging wall rearing activities shall start by inspecting
individual fingertips coordinates that exhibits slowdown in digits displacements* as the
forelimbs approach cylinder wall, followed by its subsequent retracements. Slow-moving frames

are thus extracted.

2.6.4 Extract Coherent Fragments

It is observed that the degree of freedom of mice digits is not as flexible as human or
primates, in that their fingertips move in tandem with each other for specific movements. For
example, its digits extend together as it moves forward to rear the wall. Likewise, their

retracements are also in tandem with each other.

Leveraging the observation, we extract coherent fragments where a minimum of two
successive fingertips slow down below 5 radial pixels per second (i.e. 0.1% of cylinder radius) in
the same direction at the same time, until the point when the digits accelerated and retraced from
cylinder wall. We also examine the direction of the digits’ movements within 0.5 seconds: a
wall-rearing touch is likely happening if the digits radial distance is moving towards the wall

prior to its slowdown, while subsequently retracing back after the rearing.

41 In our default template slow moving frames are defined to be those whose fingertips’ radial distances that
move less than 5 pixels in adjacent image frames for a given fingertip. This is 0.1% of the cylinder’s diameter.

40

The time fragments that correspond to simultaneous digits following the sequence of events
as approach, slowdown, rearing and finally retracement of fingertips is termed Coherent

Fragments.

2.6.5 ldentify Congruence Points

It was also observed that when the palm hits the wall, there is an alteration of paws’
movement trajectory. Since the digits are hit and obstructed by the wall first whilst the
momentum of the palm continues, we observe digits-to-palm distance hitting minima followed

by a change in trajectory:

The instances in which these minima occurred are termed Congruence Points. It is also
observed that successive digits-palm minima of a forelimb do not necessarily happen at the same

time, but very close to each other — usually within one second.

2.6.6 Remove Outliers of Refined SubFragments

If predicted forelimb coordinates met the two congruence filters criteria with nearby
congruence point(s). Its forelimb(s) is 1) slow moving, 2) moving towards the cylinder wall and
then retrace, and 3) altering its movement trajectory. | named fragments that met these criteria as
Refined SubFragments. Questions remain whether such refined subfragments are wall rearing,
paws idling in free space or slow crawling on floor (see these postures in Figure 20). Outlier

removal filters are used to eliminate identified wall-rearing that did not make sense.

41

e

A\

-

ol

Wall Re

ring

Slow Crawling

Mouse slowly hoovering and encircling
cyliinder floor. With ResNet-50 jittery
predictions of forelimb digits, some of
these episodes will meet both coherences
and at the same time changes in trajectory

Paw hanging

Mouse lifted the forelimb and stay
there with “stand up fists” while its
body leaning forward and backwards.
With ResNet-50 jittery predictions of
forelimb locations, digits will be in

slow movement, forward and retrace,
as well as congruence

Figure 20: Some postures that fulfill two coherences and congruence criteria

Statistics of these Refined Subfragments are calculated to identify wall-rearing activities
from other floor maneuvering activities. For each episode, we observe averages and standard
deviations in radial displacements of digits and palms. 1 found that forelimbs cannot be rearing
if they are resting on the floor or crawling very slowly, implying the standard deviation of radial
displacements within these identified episodes are very small (within 5 pixels, or 1% of cylinder
diameter). Likewise, the forelimbs cannot be rearing the wall with localized digits lying within

parallax of inner radius as shown in Figure 21.

42

Top of the
Cylinder
Parallax

Outliers
removed

in this
area

Wall-Rearing
cannot occur
when digits lie
within this area

Figure 21: Removal of detected wall-rearing episodes where majority of digits lie within parallax of inner diameter

These outlier removal steps are detailed as follows:

1. For each Refined SubFragments, the mean and standard deviations of the five digits, as
well as the palm location, are computed;

2. To segregate floor resting or crawling episodes from its wall-rearing counterparts, it was
noted that variations (standard deviation) of its fingertips within the refined subfragment
is lower than 5 pixels (or 1% of cylinder diameter). If a number of digits coincidentally
exhibit such slow movement traits, the episode is treated as floor resting episode and
removed.

3. If all fingertips and palm are all detected to lie within the inner diameter of cylinder
observed through the parallax effects from the bottom (Figure 21), it is unlikely that

being a wall-rearing activity. Outliers whose majority of digits lie within inner diameter

43

are also removed. These inner diameter measurements are measured during
experimental setup stage, using Microsoft Photos or ImageJ to measure the number of

pixels it spans in camera field of view.

2.6.8 Gauge Refined SubFragments into wall rearing episodes

At the end of all these filtering, refinement, signal processing and outlier removals, final
sets of wall-rearing sub-fragments are established. These subsets of refined subfragments are

then consolidated into a wall-rearing episodes that facilitate qualitative assessment of wall-

rearing in later stage. The wall-rearing episodes are tabulated in Wall Rearing episodic report.

2.6.9 Export of wall-rearing episode

The final wall-rearing episodic report is thus compiled. A sample report format is presented

in Figure 22. In the report, each episode is given its midpoint, start and end frame reference that

facilitates traceability of wall-rearing episodes in numeric report. An example is given as
underlined in Figure 22, where the algorithm notes that between frames 364 to 760 there is at
least one digit of the forelimb moving slowly. Within this slow-moving fragment, two wall-
rearing episodes between frames 498 to 528 and frames 611 to 663 are respectively identified.
Each of these wall-rearing episodes represents at least two digits of slow movements, while
changes in movement trajectory occurred. The forelimb was also noted of approaching and

retracing from wall.

44

Start of Slow-moving frames End of Slow-moving frames

1364 760}
513 498
637 611,

Mid-points to

help locating Slow
wall-rearing Moving
episodes

Fragment

Figure 22: Constituents of Wall-Rearing Episode (Numeric) Report, which tabulates all evaluated wall-rearing episode in
terms of Slow Moving Fragments; and episodes that met 2 conherence and congruent criteria with outliers removed.

2.6.10 Compile wall-rearing episodes into video fragments

As noted in Chapter 1.2, qualitative assessment of wall-rearing enhances the outcomes of
cylinder test protocol, by having investigators reviewing respective synchronies of forelimbs as
mice rear the wall. This is especially relevant in stroke and recovery assessment applications,
where mice subtly avoid explicit wall sliding activities by having the other normal limb pushing

against the wall for dismounting in a scenario termed “paw-dragging”.

The following figures extracted from [30] readily demonstrates the paw-dragging scenario
where one side of its motor cortex was given focal ischemic stroke. As the mouse stands on its
rear legs to explore the cylinder wall then drags, its affected (contra-lesional) paw drags along
the cylinder wall towards its midline or down the wall; while its unaffected forepaw provides

postural support against the wall (Figure 23). Prior to the contra-lesional forelimb detaching

45

from cylinder wall, unaffected forelimb will assist the dismount to land on cylinder floor. This
explains why if one simply “listens” to timing of touches of forelimbs on cylinder wall, it is very

difficult to discern progress of stroke and recovery.

Paw-drags rarely occur in uninjured mice. Therefore appearance of a paw-drag is a positive

indicator of injury to the forelimb sensorimotor cortex.

A B

mouse prior to a rear. The mouse touch the cylinder then slowly let the digits on the
wall with both paws affected paw drag vertically
down the cylinder wall

F

before letting the paw fall away The mouse will then land on all four paws.
from the wall dismount with their
unaffected paw and

Figure 23: Synchronies of forelimbs in wall-rearing when focal ischemic stroke was given to one side of sensorimotor cortex
ET-1. Images obtained from [30] Roome & Vanderluit. Paw-dragging: a novel, sensitive analysis of the mouse cylinder test. J.
Vis. Exp. (98) (2015)

Since we evaluated respective frames of wall-rearing episodes, we make use of these

identified episodes to segment activity videos recorded into smaller videos focused in wall-

46

rearing using off-the-shelf multimedia conversion software FFmpeg. In doing so, investigators
can focus to evaluate individual quality of rearing, as well as quickly discern if there are false

rearing that could be missed.

2.7 Experimental Testing

Testing of PalmGrid algorithm was conducted with a random sample of six healthy male
mice (n=6) from different cohorts randomly chosen of age between 2 to 6 months. We used
EMX-1 mice* strain as the subjects to conduct experimental testing. All animal procedures
were approved by the University of British Columbia Animal Care Committee and conformed to
the Canadian Council on Animal Care and Use guidelines. As movements of healthy mice shall

not differ in gender, the randomly chosen experimental cohorts were male.

For each mouse, three separate videos (each lasting around 3~4 minutes in compliance to
cylinder test existing protocols) are recorded in random times and then analyzed in PalmGrid
station. As reported in Section 2.4.1, a different mouse strain Al-94 was used to train the
PalmGrid station, so as to test our hypothesis that features knowledge can be learned
independently of the phenotype. Focal settings of the camera were not altered from one

videotaping to another.

The training of PalmGrid station using Al-94 recording took 7 hours in excess of 200,000
iterations using Nvidia Quadro 5GB Graphics Processing Unit described in Section 2.2.2, as
recommended in DeeperCut [31]. Analysis of each subject video took about 20 minutes,

together with another 15 minutes to convert the posture extracted images back into a video clip

42 Jackson Laboratory Emx1-IRES-Cre mice; Stock No: 005628 | Emx1IRES cre

47

in labeled fingertips and palm (Figure 24). Both training and conversions are done by batch and
unattended, relieving the laborious manual monitoring that the exercise was set out to save in the

start.

Note that
each fingertip
and palm
points of
interests are
highlighted

Labeled Right
Labeled Left Forelimb
Forelimb

Figure 24: Sampled Labeled Images

More samples and details of training video labeling are found in Section 2.4.1 and

Appendix F respectively.

2.8 Results

To evaluate robustness of PalmGrid process, the Wall Rearing Episode (Numeric) Report
was compared with the results of the Ground Truth report. Methods and results to compile
ground truth reports are documented in Appendix G. The results from ground truth raters

agreed with each other.

48

Five mice were chosen out of the six sample subjects, with two video clips of each are being
randomly chosen and analyzed. Each wall-rearing episode was then compared with
corresponding ground truth rearing to assess the accuracies of algorithms. An example of the
Wall-Rearing report, being the output of the PalmGrid process, was depicted below (Figure 25)

that refers to the totality of left and right paws detection.

2.8.1 Overall Results

Figure 25 tabulates the overall results. Appendix C.2 tabulates the corresponding overall
results in percentage terms for each video frame. In the report, detected wall-rearings by
PalmGrid either positively reflected actual wall rearing (termed “Correctly” in Figure 25), or
falsely misconstrued the activities as rearing (correspondingly termed “False Positive”). Either
a detected touch by the PalmGrid process reflected correctly the actual wall-rearing touches, or it
reported false alarms where wall-rearing was detected by PalmGrid algorithm but not found in
Ground Truth Report. The percentage of “Correctly” and “False Positive” touches added up to

100% of total touches in each video frame.

There were also False Negative (missing) episodes that reflected actual touches on the
cylinder wall that are not detected by the PalmGrid Process. This was expressed as a percentage

of the total touches detected by the Palmgrid algorithm.

Percentage of correct detection was calculated by actual wall-rearing hits divided by the
number of detected hits; while false positives refer to those detected episodes with no actual hits.
Finally, false negatives refer to actual wall rearing that PalmGrid omitted. All of these are

expressed both in actual numbers and in percentage as depicted in Appendix C.

49

Correct recognition rate on 10 video streams — with 1 left and right forelimbs videos for

each cohort — came to 70%. In terms of numbers, a total of 406 wall-rearing touches were

recognized from the manual observations of 474 wall-rearing touches, implying 406 + 474 =

0.856 or 85.6% of wall-rearing episodes were detected in aggregate when all false positives

were taken away.

Of all the 580 detected wall-rearing episodes of PalmGrid , false positives (alarms)
percentages came to 174 + (406 + 174) = 0.3 or 30% Meanwhile, false negatives came to

68 -+~ (406 + 68) = 0.1172 or 11.72%.

50

Congreence Filler Performance
Actued nside 2 Outside O
Touches Correcty Fabe vve Fabe -ve
i’fmm Laft b2 18 9 4
gt 23 14 9 4
fEMXOLO2 Left 15 11 4 1
Faht u 5 3 [
JEMX201 Left 16 13 3 1
Foant 12 [0 [3
Excz e Leh 16 § s 2
Fwnt 11 7 S
EMXO3Q02 Left 2 a1 11 1
Fuast 3 &0 13 3
JEMX0303 Left as 35 9 1
ot &3 35 a s
JEMX0802 Left 2 23 9
Fight P2 19 0 5
[EMxDa&d et al 3 10 X
Fegiet 51 34 17 1
EMXOELL (Left &5 33
Fownt % 20 - 14
EMX0B02 Left s 3 2
Fownt 16 B 0 4
[Toted A6 174 5] 0
Satres Rale 70.0%
Falne Postives) 0%
Undetecied %) %
Algerithimic rules detectod there should be of least ore Touch within the
ot show movieg fragment; and actusly there are
Algorthmic rubes detectod thet thess should be af least one Touch within
False svm show moving fragment; ut actually Ne Touch
Algotithin did not detect arytiing within the dow moving fragment; bt
False -ve actuelly hete wed ot least one Towch
lQM Actual Touch thet fes beyond Congruence Zone DetecOons; usualy due 1o
a obntruction, sar of video frame ot
Ticress Rate % Toul Number of Actual Wall eartng / Nambet of detected ML
Faise Poaltve % Tota Nuteber of False Pustves / Namber of detected His
Undetecied % Toml

Figure

25: Test Results of PalmGrid for a cohort of n=5

51

2.8.2 Independent Assessment of Left and Right Forelimbs

As PalmGrid allows independent assessment of left and right forelimbs, the corresponding
touches and its percentage were separately analyzed. Results of such analysis are depicted in

Appendix C.3 to C.6.

For the right forelimb (Appendix C.4), mean correct recognition rate comes to 68.1%
inclusive of the outliers. False Positives came to 31.9% whereas false negatives came to 18%.
For the left forelimb (Appendix C.6), two video recordings of EMX-02 cohort exhibit outliers,
and the correct recognition rates come in between 67% to 81% beside the outliers. Mean correct
recognition rate comes to 73.9% inclusive of the outliers. False positives came to 26.1% whereas

false negatives came to 5%.

52

2.9 Discussion

2.9.1 Correctly Recognized Touches

To the knowledge of the author, this is the first attempt by which artificial intelligence
algorithm is used in precision applications to extract posture in the context of the cylinder test.
ResNet-50 used in this process achieved 5.25% Top-5 recognition error in ImageNet competition
of 2015. We learned that Top-5 Classification error — being the prevalent benchmark of DNN
algorithms — is not equivalent to Precision (or Top-1 localization) error. A similar study of
precision error of ResNet with 50 and 101 layers of depth was given in [21] that depicted
respective 76% and 78% localization (Top-1) accuracies. The PalmGrid algorithm anticipates

inherent inaccuracies of ResNet-50 to identify wall-rearing episodes.

With roughly 1 in every 4 errors in forelimbs’ location predictions in errors, identifying
70% correct recognition for PalmGrid Process is a good initial attempt using basic laboratory
equipment. The process may improve from this rate simply by reducing acrylic reflections
through anti-acrylic paints; or by organic improvements in future artificial intelligence
algorithms. As DeepLabCut came in as open-source, future adoption in more advanced DNN/

posture extraction algorithms should enhance localization accuracies of PalmGrid*.

2.9.2 False Alarms (Positives) and Error Propagation Modeling

False Positives in the algorithm refers to the fact that the algorithm believes some wall-

rearing touches had occurred in the highlighted episode but in fact there was none. The high

43 DeepLabCut algorithm is derived from the corresponding human posture extraction algorithm DeeperCut,
that has three components: Al recognition, Clustering, and Linear Transformation using around 2,000 photos in
training. The software cut the clustering and linear transformation part to reduce overheads in computations and
learning. If DeeperCut is used, it is tested that recognition rate will rise from 76% to 82% [31].

53

false positive rates (30%) were largely attributed to ceiling precisions of prevalent Artificial
Intelligence Algorithms. For the ResNet-50 chosen, precision — defined as Top-1 Classification

— has its mean ceiling accuracies of 76% (Figure 13).

As a rough estimate to account for the false positives rate, since ResNet-50 gives 76% (Top-
1) localization accuracy, this implies probability of error in extracted postures of each digit is
(100 — 76) % = 24%. These errors are then propagated into the signal processing filters in Figure

18, reproduced below in Figure 26 with the error propagation model.

Error Introduced

Stage 4: Outlier Removal

Stage 3: Congruence Filter
Congruence Filter

(Detect for multiple
FingerTips / Palm
distance minima)

&R contributed by palm

ChrcrentFiltare Stage 2: Coherent Filter

(Detect simultaneous fingertips Stage 1: S8R x SR
/ palm t'hat moves less than 5 Stage 2: 6R x R
pixels per frame)

LowPass Filteririg Stage 1: Harmonics Filter

(Clean off high frequency S8R =[2(&r)?)/24 |»
distortion of DLC)

Figure 26: PalmGrid Error Propagation Model

In this rough estimation model, we assume digits and forelimbs are independently predicted
by ResNet-50. This assumption is justified as we inspected DeepLabCut [24] open source code
and see little evidence of the algorithm using posture recovery methods such as clustering and

linear optimization as its predecessor DeeperCut [31].

54

The first stage of PalmGrid signal processing filter averages 24 signal samples: 12 from
priors and 12 from corresponding latter time samples. These imply an input error rate of (0.24% /

24)Y2=0.0489 or 4.89%, equivalent to an accuracy probability of (1- 0.0489) = 0.951 or 95.1%.

The Coherent Fragment extraction introduces two stages of errors. First (Stage 1) it
requires a minimum of 2 digits to be slow moving, implying probability of accurate Coherent
detection to be 0.951x 0.951 = 0.9044 or 90.44%. Next (Stage 2) the slow movement fragments
will propagate to discern of forward to and retracements from the cylinder wall. Similar to the

above modeling, the filter cascades another factor of 0.9044 (90.44%) to the propagated errors.

The congruent point detection will then assess palm posture closest to the fingertips some
point within a coherent subfragment. This will introduce another 0.951 (95.1%) factor in the
probability of success. Statistical filters will not introduce significant errors, as they are

concerned only with specific criteria, rather than mathematical calculations.

As we assume the coherences and congruence to be independent activities, these three core
filters result in a maximum accuracy of detection of 0.9044 x 0.9044 x 0.951 = 0.7778 or
77.8%*. Therefore 70% actual recognition by PalmGrid is in line with the basic setup that

provides rough wall-rearing estimates in cylinder test.

We also note that because the mice under experimentation are freely moving, the chance of
obstructing the camera by body is higher. This explains differential mean recognition rates of
left and right paws at 73.2% and 68.1% respectively. After all, Neural Networks is a statistical-
based algorithm that will discern slightly varying wall-rearing decisions. And because of these

obstructions and internal reflections of glass cylinders, as opposed to head-fixed mice in

4 If coherence and congruence are not independent, the maximum accuracy will simply decrease as we have to
account for joint probabilities between activities.

55

otherwise experimentations, we noted that outliers in detection rates readily exist. In our case,
cohort EMXO02 in her first recording exhibit significant outliers. In her second recording, the left
forelimb demonstrates significant outlier. These bodily obstructions of digits significantly
hindered recognitions, hence reduce correct recognition rates. The other major reason behind
these false alarms was the lack of depth cue. With a single camera, it is difficult to discern
between the forelimbs rearing the wall or crawling on the floor plane that corresponds to the
wall-rearing projections (Figure 27). Resolving the issue requires installation of depth camera or
relying on future enhancement of Pi-camera with depth resolution features. At the time of

writing, these measures imply extra costs of procuring specialty types camera.

Did mouse rear the wall or forelimb on floor?

Figure 27: Lack of depth cue made resolution of wall-rearing challenging from corresponding floor rearing around the
same projected diameter

56

2.9.3 False Negatives or Missing detections

Meanwhile, there were omissions (false negatives) that PalmGrid did not recognize of
plausible wall-rearing that has factually occurred. A 12% overall false negatives rate is in line
with error propagation model, demonstrating the encompassing nature of the algorithm in
discerning potential touches. Any refinements in anti-acrylic paints or enhanced algorithms will

reduce posture extraction errors, improving the false negative rates.

The major reason behind the omission was DeepLabCut located the wrong palm coordinates
as its features blurred. While features of digits of forelimbs are easily discernable, features of the
palm poses challenges to ResNet-50. This is especially true when the images are compounded
with confounds such as slow shutter speed, internal acrylic cylinder reflection, refraction due to
mouse urinations or when forelimbs were raised above certain heights that basic Pi-camera fails
to discern palm features. Since DeepLabCut simplified DeeperCut [31] features that recovers
localization conflicts (such as use of clustering and linear-optimization algorithms), its recovery
capability of less discernable features (such as palm under fast movements) will be weak
especially in moving subjects. In an analogy, human cortex will possess difficulties to resolve
images if the eyes are suffering from diseases. Given the limitations of basic Pi-camera, the 12%

omission rate shall be anticipated.

To further improve false negatives, a faster shutter speed Pi-camera with wider focal range
is recommended, that allows freely moving mouse to be captured in higher precisions and
resolutions of its forelimbs. Anti-acrylic reflection paints will somewhat help to avoid ResNet
mistakenly recognize the virtual image of forelimbs as the real one. DeepLabCut shall also be
enhanced with clustering and linear optimization, that despite poor resolutions the palm locations

can be somewhat recovered. On hindsight, a combination of the above will help.

57

All above improvement measures require procurement of advanced camera or substantial
enhancement of DeepLabCut. Both were not intended as we set out our research objectives in
terms of costs and sophistications. To procure advanced camera certainly imply higher costs of
adaptation, while enhancing DeepLabCut with clustering and linear optimization will require
2,000 posture photos to be prepared in training phase [31] together with an advanced GPU to
process the sophisticated posture extraction algorithms. It is worthwhile to proceed further

research in these directions.

2.9.4 Different correct recognition and omission rates for left and right paws

It was also noted that significant differences exist between left and right forelimbs’ correct

recognition and omission rates. A summary of recognition rates based on results depicted in

Appendix C for the experimental testing is given in Table 4.

Correct False Alarms Omissions
(false positives) (False Negative)
All left forelimb 221 (73.9%) 78 (26%) 14 (5%)
All right forelimb 185 (68.1%) 96 (32%) 54 (18%)

Table 4: Computed Wall-Rearing Results of Left and Right forelimbs

From prima facie evidence shown above, it seems trivial to conclude that biodiversity

differences of left and right forelimbs were evident from these results. However, such

conclusion may be premature given the shutter speed, focal range, and lack of depth cues

limitations of existing camera capabilities.

later stage.

| would therefore leave the preferential inference to

58

2.9.5 Making use of Wall-Rearing Episode Report to enhance efficiency

Current protocol of Cylinder Test favors investigators to review the wall-rearing fragments
to assign their own scores according to their specific concerns. To address the requirements,
PalmGrid compiles identified wall-rearing episodes into a video as an example to demonstrate

efficiency enhancements.

In a typical 4 minutes recording, 6,000 frames* have to be reviewed in manual labor
approach. Even if the investigator reviewed each image with 1 second per image, such review
will take around 6,000 seconds (~1.67 hours). As a motivating example to make use of the wall-
rearing episode report, a sample video recording of EMX03-02 is used. PalmGrid extracts 26
wall-rearing episodes from the extracted postures, followed by compiling the wall-rearing
fragments into respective smaller video recordings using FFmpeg. It is noted that in this
particular case, the smaller video fragments shortened review time to 275 seconds (4.58 minutes)
after removal of non-rearing time fragments, implying significant reduction in review efforts at
marginal costs. Actual time saving varies, depending on how many vertical explorations the
mouse use in a given recording and the fluencies of investigators to use different tools in

conducting wall-rearing reviews.

On that note since wall-rearing episodes are now automatically extracted and detected, there
is no reason why the Cylinder Test observation period cannot extend beyond 10 minutes. Time
savings achieved using PalmGrid demonstrates further advantages compared to conventional

frame-by-frame review approach.

4 4 minutes x 60 seconds x 25 frames per second in a given video recording = 6,000 frames

59

2.9.6 Comparison of labor time required to use PalmGrid

Are there time savings to utilize PalmGrid algorithm? To evaluate if there are efficiency
gained, I compared time taken to use PalmGrid versus the method described in [30] to identify
wall-rearing, the video fragment EMX03-02 is fed into PalmGrid to estimate incremental labor

hours required versus corresponding manual labor hours to review in paw-dragging method.

In PalmGrid the video is fed into an automated pipeline to localize forelimbs and identify
wall-rearing episodes; whereas two iterations to slow play the video is required in method
described in [30] to skim through and verify all rearing. Because wall-rearings in PalmGrid are
compiled into smaller video fragments, reviewers can focus on each smaller fragment to conduct
qualitative analysis that reduces possibility of errors in qualitative assessments. Frame by frame
qualitative review can be avoided as reviewers can conduct the qualitative review in different

times due to smaller video fragments, that poses smaller chances of laborious fatigues and errors.

As a benchmark comparison, my take of time comparisons using EMX03-02 is tabulated
below in Figure 28 using off-the-shelf video player VLC Media Player®®. In this sample
comparison, smaller video fragments help reviewers to review shorter video fragments in 0.6x
actual video speed, rather than slowing down the reviews to more careful 0.25x to avoid
omissions. There were no timing overheads in noting down the wall-rearing episodes as analysis
and identification of vertical explorations are machine driven, leaving qualitative assessment

phase to investigators in higher quality. My illustrative comparison came to around 92% time

46 VL.C Media Player is a general public use, off-the-shelf video player downloaded from
https://www.videolan.org/vilc/index.html

60

https://www.videolan.org/vlc/index.html

saving. Actual savings shall vary for different investigators employing other protocols.

Tasks to analyze stack of 4 min Manual Based on
videos Roome & Vanderluit (2015)

Benchmark on a 4-minutes Video (EMX03-02) using VLC Player

Assessment Method * Machine extracted wall-rearing episodic * Play videoin 0.25x speed
videos * Human rater mark down all rearing;
* For each episodicvideo, slow play in Repeat once to verify
0.6x speed and label whether it was * For each rearing, review frame-by-
rearing / paw dragging frame to label rearing / paw dragging
Benchmark Time for review 26 videos extracted total 2.75 minutes 1. Slow Play Phase = 4 minutes / 0.25
under 0.6x slow play =16 minutes plus 35% overhead
=2.75/ 0.6 = 4.58 minutes 2. Reconfirmation = 16 minutes plus
15% overhead

3. Frame by frame review of all
marked down rearing frames =
1,104 frames

Total Time 4.58 min x 60 seconds = 275 seconds 16 min x 60 sec x 1.35 + 16 min x 60 sec
x 1.15+ 1,104 frames x 1 sec = 3,504 sec

Efficiency Achieved ~[1-275/3504 =92.1%]

Figure 28: Illustrative comparison of PalmGrid assessment time versus methods described in Roome & Vanderluit [30]

2.9.6 Benefits of the software approach

There are many benefits of such achievements, in which 1) it relieves significant laborious
tasks that were only achievable through prone-to-error human observations, and cumbersome
post-experimentation data processing; 2) it allows independent assessment of left and right
forelimb movements in ischemic strokes and its corresponding rehabilitation; 3) it does not
require complex calibration before experimentation such as multiple camera synchronizations.
Last, not least, it requires minimal setup costs with a basic Raspberry Pi video camera system
and simple laboratory equipment. These lowered entry cost and skillset challenges are set to

benefit laboratories in their use of precious resources.

61

Chapter 3 Design Choices and Discussions

3.1 Strength of PalmGrid

The obvious strength of PalmGrid stems from its software-driven simplicity even without
meticulous hardware calibrations. In the conventional approach conducting cylinder test,
precious manual labor has to be exploited to count wall-rearing activities which are laborious. It
is also burdensome as reviewers are required to skim through many videos, and in worst case
frame-by-frame. To maintain acceptable level of accuracies, methods adopted in [25-27, 30]
often requires three parses for each video review per investigator. As an illustration extracted
from methods depicted in [30], first parse requires raters to skim through video in 0.25x speed to
write down respective wall-rearing of forelimbs, followed by a second parse to verify. To
review quality of individual rearing requires, in worst case, frame by frame review to note of
paw-dragging. Overheads readily exist in each of these parses, and video pauses, rewinds, and

fast forwards are often required that staggered up overheads in the review.

The use of capacitive touch sensors somewhat helps by detecting touches, but it fails to
differentiate which limb touched the grid as well as the quality of rearings, despite extra costs
involved in setting up electronic grid system. Study of contralateral stroke impacts to
movements using capacitive touch sensors approach proved challenging to assess quantity and

quality of wall-rearing.

PalmGrid uses minimally visible lights to discern wall-rearing touches. As long as light
intensity enables artificial intelligence algorithms to recognize forelimbs, its setup cost is
otherwise minimal. Complex setup procedures and sophisticated calibrations are not required in

PalmGrid, as opposed to touch sensors where careful planning of sensor grid will be required. In

62

our experiment that assumes little technical competence in basic laboratory equipment, our
testing shows that 70% of wall-rearing are identified. It is therefore a competent tool for pre-
selection of wall-rearing, leaving investigators’ precious time to assess quality of these rearings,

and their specific features-of-interests such as wall-sliding and wall-dragging.

We have deliberately avoided more sophisticated equipment (such as depth camera,
multiple cameras, and anti-reflective paints) and meticulous fine-tuning to enhance detection
outcomes. Based on inspection of false alarms and omissions, use of depth camera or multi-
camera approaches to resolve depth and focus should enhance accuracies, at the expense of
increasing costs and complexities. High-resolution Pi camera was not adopted, as we set out to
evaluate what basic equipment could do. Indeed, 70% accuracy is not bad given all these
constraints without any fine tuning*’, demonstrating the extent of artificial intelligence can assist
in neuroscientific investigations. Any measures to fine tune the configurations will bridge

prevalent accuracy gap from 70% to theoretical maximum of 77.78%%*.

The outcome of PalmGrid extracts wall-rearing episodes in report as well as wall-rearing
videos. This will dramatically save time to conduct the experiment without laborious analysis to
focus precious time resources on higher quality tasks to assess details of wall-rearing episodes.

In our testing of a four-minutes video with 26 wall-rearing, conventional protocol to review
6,000 video frames is now “shrink-wrapped” into 275 seconds (4.58 minutes) of 26 videos that
achieves 92% time saving. If we leverage the feature to round-the-clock monitoring of stroke
mouse where wall-rearing occurrences are less frequent, significant analytical time savings can

be achieved by eliminating reviews of non-wall-rearing postures. In a similar manner, we can

47 A typical high-resolution camera of Nikon, such as M12 lens, will add up another few hundred dollars in
costs
8 For discussions of error propagation model, please refer to Section 2.9.2.

63

increase the sample size of test subjects to analysis of bigger rodent samples; since artificial
intelligent machines are now tasked to perform most of the laborious pre-selections. The final
wall-rearing videos offer flexibility for investigation of specific posture-of-interests in their own

protocol such as wall-dragging or wall-sliding.

Given the automatic posture extraction and wall-rearing detection capabilities, use of
PalmGrid algorithm can help to pre-select mouse of specific forelimb preferences in different
circumstances. Similar to the cylinder test arrangement, one can readily engage bigger sample

size to analyze their activities round-the-clock, extending its applications beyond cylinder test.

3.2 Limitations of PalmGrid

The obvious limitation of the PalmGrid experimentation setting is its requirements* of
minimal lights to discern of movement and features. If specific protocol requires very dim lights
ambiance, use of PalmGrid may not be suitable. In those cases, use of specific infrared camera

might be an option worth trying.

Analysis of PalmGrid data requires powerful computers with efficient Graphics Processing
Units (GPUs) that used to be a challenging end means for most laboratories. This barrier is
gradually overcome with many universities offering GPU shared services and free Matlab /

Python licenses that processes resources hungry artificial intelligence algorithms.

49 For example if mice behavior study under dim infrared lights is required.

64

3.3 Future Improvement Areas

3.3.1 Use of more advanced artificial intelligence algorithms

There are many rooms for future enhancements, and 70% recognition rate can at best taken
as an encouraging milestone. As DeepLabCut enhances through porting to more advanced
artificial intelligence algorithms such as Inception version 4.0% (Figure 13), it is expected that
continuous precision enhancement beyond 76% will, in turn, advance DeepLabCut posture
extraction accuracy. For the sake of arguments using the rough estimate of error probability in
the Discussion section, expected PalmGrid accuracy can advance to 0.92 x 0.92 x 0.96 = 0.81 or
81% if we change the core algorithm from ResNet-50 (76% Top-1 accuracy) to Inception v4
(80% Top-1 accuracy). As graphics processing unit prices come down further, choosing more

resources hungry graphics processing unit will help to advance PalmGrid performances.

3.3.2 Use of more advanced posture extraction algorithms

DeepLabCut is derived from more sophisticated human posture extraction algorithm called
DeeperCut [31] that further recovers errors of ResNet algorithms with clustering and linear
optimizations. These steps require higher power Graphical Processing Units while advances
posture extraction accuracies from 76 to 82% tested on ResNet-50 algorithm. The 6%
enhancement comes with extra costs in preparing 2,000 images training the artificial intelligent
machine. Using the same formula given in Section 2.9.2, ceiling accuracy will increase by 6%.

It is therefore expected corresponding increase in wall-rearing episodic extractions accuracies.

%0 As reported in [21], Inception version 4 has 80% accuracy with 12G operations in one forward pass.

65

3.3.2 Dual-camera, epipolar geometry approach

Further experimentations based on two cameras approach using epipolar geometry®! shall be
another worthwhile attempt, in that the depth of posture can be derived from simultaneous
observations of two cameras. Changing the approach from statistical gauging to a deterministic
examination in the final outlier removal stage will further narrow the margin of detection
accuracies from prevalent 70%. But it should be noted that there are added complexities in

equipment calibration and increased costs in equipment provisioning.

New methods are now emerging that allows Raspberry Pi to record with two video
cameras® in synchrony. This bypasses the synchronization constraints between camera
recordings, hence enabling the use of epipolar geometry that changes latter part of PalmGrid
gauging algorithms from statistical estimation approach (in steps laid out in Sections 2.5.7 and

2.5.8) to deterministic approach where actual coordinates of fingertips are computed.

While we are on the topics of multiple cameras, one can hypothetically increase the number
of cameras beyond two in the hope that more perspectives of video recordings might overcome
obstructions of features of interests to increase tracking accuracies. This may be a worthwhile
option to consider when Raspberry Pi can load more than two cameras in synchrony. But as at
our knowledge of Raspberry Pi to date, synchronizing Raspberry Pi video recording beyond 2
cameras is exceedingly cumbersome®3. In fact, if the multiple camera synchronization issues

can be resolved in Raspberry Pi in its future versions, it is possible to generalize PalmGrid usage

51 For modeling of deterministic approach such as epipolar geometry, refers to textbooks that describe its
methods. An example of such text includes Xu & Xiang (2013) Epipolar Geometry in Stereo, Motion and Object
Recognition; Springer Science and Business Media ISBN: 9789401586689.

52 An example is Raspberry Pi 3 Model B with multiple camera adapter modules

53 Refer to https://www.raspberrypi.org/forums/viewtopic.php?t=212013 for prevalent discussions of multiple
camera synchronization in Raspberry Pi

66

https://www.raspberrypi.org/forums/viewtopic.php?t=212013

beyond cylinder test to generalized cartesian coordinates where exact paw locations can be

tracked using multiple cameras.

3.3.3 Changing PalmGrid signal processing approach to machine learning

At first sight, the current market hype of superiority in Artificial Intelligence might induce
ideas that post-extraction wall-rearing detections shall advance by cascading another machine
learning system. Personally, | have some doubts. This is because according to Figure 13, the
best machine learning algorithms achieve around 82% precisions at best. If we cascade another
machine learning context to predict wall-rearing detections, the precisions will hit accuracy
ceilings of 76% x 82 % = 62.32%, which is substandard to present achievements! One shall not
rule out if future machine learning precisions increase beyond 90% Top-1 accuracy, this may

well be a worthwhile attempt.

Detection
) Results
55 ‘\t b R \ \’
convolution subsamy pnnqu“u
feature extraction classnflcauon
DeepLabCut: ResNet-50 Machine Learning algorithm for wall-

76% Ceiling accuracies rearing detections:
82% Ceiling accuracies

Figure 29: Hypothetical PalmGrid design based on full-scale machine learning. Part of image obtained from He & Sun
[29] Deep Residual Learning for Image Recognition. Computer Vision and Pattern Recognition (2015)

67

3.4 Concluding Remarks

Use of artificial intelligence algorithms revolutionizes the way neuroscientific behavior
experiments to be conducted. In current design — despite all deliberately instituted hardware
and skillset constraints — PalmGrid is built as an excellent pre-selection method of wall-rearing
activities in cylinder test. Its outcomes offer investigators with shrink-wrapped wall-rearing
videos to assist their focused assessments of specifics within individual instances. In sum,
PalmGrid machine does not replace human investigation. Rather it minimizes investigators
expending their precious time resources from reviewing irrelevant video frames, to steer their

focus inspecting shrink-wrapped wall-rearing fragments.

In response to the research questions we set out in Section 1.7, we learned that artificial
intelligence algorithm anticipates less-than-ideal experimental ambiance and resources
constraints, in that a single Pi-camera can fit the purpose in Cylinder Test experiment. This is a
big plus for resource hungry laboratories whose purse strings are tightened and skillsets are

scarce.

We also learned of the recognition competence in prevalent artificial intelligent algorithms
in spite of these hardware and skillset constraints to discern of mice forelimbs. For freely
moving mice that maneuver around in the cylinder, recognition in dynamic environment proves

the robustness of ResNet algorithms to be used in similar experimental settings.

Independent forelimb recognition has been made possible thanks to the capabilities of
DeepLabCut. Even without elaborated hardware calibrations, the software herein designed
discerned forelimbs activities independently to extract the respective wall-rearing episodes.

Compiling wall-rearing episodic report of respective forelimbs into smaller episodic video

68

fragments enables focused review of wall-rearing activities. Investigators can now save time to

focus on higher quality assessments of these rearing.

Yet the accuracy in posture estimation has rooms for future improvements. Being
recognized of forelimb independently is a big leap forward, but higher accuracies of tracking
pose another level of challenge. In ResNet-50, we learned that it has 76% accuracy to spot on
tracking of digits/palms. Given the non-linear nature of errors introduced into the system in
recognition and localization, together with the various constraints that demand the PalmGrid
setting to be shrink-wrapped and simple-to-deploy, posture estimation in modest accuracies are
expected. To gauge for more accurate wall-rearing episodes, basic engineering principles was
used instead of relying on another cascade of artificial intelligence algorithms to yield better
outcome accuracies. Using moving averaging techniques, digits coherence, and digits-palm
congruence together with statistical outlier removal filters effectively lifted up the accuracies to

more acceptable 70%.

Our simplified error propagation model shows that cascading artificial intelligence with the
signal processing filters herein designed translates outcome accuracies to roughly 77.78% in
gauging wall-rearing episodes. Use of more advanced artificial intelligence and posture
extraction algorithms, contingent on lowering graphics processing unit costs, will facilitate
higher accuracies in future PalmGrid versions. Likewise, improvements in hardware calibration
using anti-reflection acrylic paints or enhancing light ambience will also help to bridge the gap

towards 77.78% detection ideals in current configuration.

With wall-rearing episodes compiled into smaller video fragments, different investigators
can then leverage the information in wall-rearing episodic reports to compute their respective

metric scores in Cylinder Test variants in much reduced processing time. Best of all,

69

investigators can also perform data mining into specific episodes for further analysis, such that
their activities of interests — such as paw-dragging — can be further extracted from these episodes
in a fraction of time. Prolonged round-the-clock observations for a large number of subjects are
made possible as laborious frame reviews are now machine-enabled, saving precious labor time

to more important analytical tasks.

We are certainly embarking on a promising journey, where artificial intelligence and signal
processing relieves laborious and time-consuming reviews in Cylinder Test methods.
Leveraging our experience learnt in this thesis, we can readily apply the skillsets to benefit other

neuroscientific experimentations in likewise manner.

70

Bibliography

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Lee, B.; Hong, I.; Uhm, Y.; Park, S. The multi-touch system with high applicability using tri-axial coordinate
infrared LEDs. IEEE Trans. Consum. Electron. 2009, 55, 2416-2424;

Lim, S.-C.; Shin, J.; Kim, S.-C.; Park, J. Expansion of smart watch touch interface from touchscreen to around
device interface using infrared line image sensors. Sensors 2015, 15, 16642—-16653; [PubMed]

Han, J.H.; Lee, K.-H.; Han,W.H. A Conclusive Role of Ordinary Transmission for an effective FTIR Touch
Screen. In Proceedings of the IEEE International Conference on Industrial Technology, Busan, Korea, 26
February—1 March 2014; pp. 583-588;

Kim, Y.; Park, S.; Park, S.K.; Yun, S.; Kyung, K.-U.; Sun, K. Transparent and flexible force sensor array based
on optical waveguide. Opt. Express 2012, 20, 14486-14493; [PubMed]

Shikida, M.; Asano, K. A flexible transparent touch panel based on ionic liquid channel. IEEE Sens. J. 2013,
13, 3490-3495;

Kamali, B. Touch-screen Displays. In Instrument Engineers’ Handbook—Process Control and Optimization,
4th ed.; Lipték, B.G., Ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 845-853;

Nakamura, T.; Yamamoto, A. Interaction force estimation on a built-in position sensor for an electrostatic
visual-haptic display. ROBOMECH J. 2016, 3, 1-11;

Kim, W.; Oh, H.; Kwak, Y.; Park, K.; Ju, B.-K.; Kim, K. Development of a carbon nanotube-based touchscreen
capable of multi-touch and multi-force sensing. Sensors 2015, 15, 28732-28741; [PubMed]

Wang, B.; Long, J.; Teo, K.H. Multi-channel capacitive sensor arrays. Sensors 2016, 16, 150; [PubMed]
Chen, Y.-L.; Liang, W.-Y.; Chiang, C.-Y.; Hsieh, T.-J.; Lee, D.-C.; Yuan, S.-M.; Chang, Y.-L. Vision-based
finger detection, tracking, and event identification techniques for multi-touch sensing and display systems.
Sensors 2011, 11, 6868-6892; [PubMed]

Reis, S.; Correia, V.; Martins, M.; Barbosa, G.; Sousa, R.M.; Minas, G.; Lanceros-Mendez, S.; Rocha, J.G.
Touchscreen Based on Acoustic Pulse Recognition with Piezoelectric Polymer Sensors. In Proceedings of the
IEEE International Symposium on Industrial Electronics, Bari, Italy, 4-7 July 2010;

Katsuki, T.; Nakazawa, F.; Sano, S.; Takahashi, Y.; Satoh, Y. A compact and High Optical Transmission SAW
Touch Screen with ZnO Thin-Film Piezoelectric Transducers. In Proceedings of the 2003 IEEE Symposium on
Ultrasonics, Honolulu, HI, USA, 5-8 October 2003; pp. 821-824;

Liu, Y.; Nikolovski, J.P.; Mechbal, N.; Hafez, M.; Vergé, M. An acoustic multi-touch sensing method using
amplitude disturbed ultrasonic wave diffraction patterns. Sens. Actuators A Phys. 2010, 162, 394-399;

Kurita, K.; Fujii, Y.; Shimada, K. A new technique for touch sensing based on measurement of current
generated by electrostatic induction. Sens. Actuators A Phys. 2011, 170, 66—71;

Shinoda, H.; Chigusa, H.; Makino, Y. Flexible tactile sensor skin using wireless sensor elements coupled with
2D microwaves. J. Robot. Mechatron. 2010, 22, 784-789;

Dahiya, R.S.; Adami, A.; Collini, C.; Lorenzelli, L. POSFET tactile sensing arrays using CMQOS technology.
Sens. Actuators A Phys. 2012, 47, 894-897;

Walker, G. A review of technologies for sensing contact location on the surface of a display. J. Soc. Inf. Disp.
2012, 20, 413-440;

Tsuji, S.; Kohama, T. A layered 3D touch screen using capacitance measurement. IEEE Sens. J. 2014, 14,
3040-3045;

Dirk J. Ardesch; Matilde Balbi; Timothy H. Murphy. Automated touch sensing in the mouse tapered beam test
using Raspberry Pi. Journal of Neuroscience Methods 291 (2017) 221-226;

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A Fast Learning Algorithm for Deep Belief Nets.
Neural Computation 2006 Vol. 18, 1527-1554;

Canziani A., Culurciello E., Paszke A. An analysis of Deep Neural Networks for practical applications.
Computer Vision and Pattern Recognition April 2017. arXiv:1605.07678;

Sabour S, Frosst N., Hinton G. Dynamic Routing Between Capsules. 31st Conference on Neural Information
Processing Systems (NIPS 2017), Long Beach, CA, USA. arXiv:1710.09829v2 [cs.CV] 7 Nov 2017,
Pishchulin L., Insafutdinov E., Tang S., Andres B., Andriluka M., Gehler P., and Schiele B. DeepCut: Joint
Subset Partition and Labeling for Multi-Person Pose Estimation. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR 2016). arXiv:1511.06645 [cs.CV] Apr 2016.

Mathis A., Mamidanna P., Cury KM, Abe T., Murthy VN, Mathis MW, Matthias Bethgea. DeepLabCut:
markerless pose estimation of user-defined body parts with deep learning. Nature Neurosciencevolume 21,
pages1281-1289 (2018). https://www.nature.com/articles/s41593-018-0209-y;

71

https://www.nature.com/articles/s41593-018-0209-y

25

26

27

28

29

30

31

32

33

34

Schallert T., Fleming S., Leasure JL, Tillerson JL, Sondra T., Bland. CNS plasticity and assessment of forelimb
sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism, and spinal cord injury.
Neuropharmacology Volume 39, Issue 5, April 2000, Pages 777-787. https://doi.org/10.1016/S0028-
3908(00)00005-8;

Xiaoling Li, Kathleen K. Blizzard, Zhiyuan Zeng, A. Courtney DeVries, Patricia D. Hurn, Louise D.
McCullough. Chronic behavioral testing after focal ischemia in the mouse: functional recovery and the effects
of gender. Experimental Neurology Volume 187, Issue 1, May 2004, Pages 94-104.
https://doi.org/10.1016/j.expneurol.2004.01.004;

Shanina EV, Schallert T, Witte OW, Redecker C. Behavioral recovery from unilateral photothrombotic infarcts
of the forelimb sensorimotor cortex in rats: Role of the contralateral cortex. Neuroscience Volume 139, Issue 4,
2006, Pages 1495-1506. https://doi.org/10.1016/j.neuroscience.2006.01.016;

Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei. (* = equal contribution)
ImageNet Large Scale Visual Recognition Challenge. 1JCV, 2015

He, Zhang, Ren, Sun. Deep Residual Learning for Image Recognition. Computer Vision and Pattern
Recognition. Dec. 2015, arXiv:1512.03385

Roome R., Vanderluit J. Paw-dragging: a novel, sensitive analysis of the mouse cylinder test. J. Vis. Exp. (98),
€52701. D0i:10.3791/52701 (2015)

Insafutdinov, Pishchulin, Andres, Andriluka, and Schiele. DeeperCut: A Deeper, Stronger, and Faster Multi-
person Pose Estimation Model (2016) ECCV 2016, Part VI, LNCS 9910, pp. 34-50, 2016. DOI: 10.1007/978-
3-319-46466-4 3

Bulman-Fleming, Bryden, Rogers. Mouse paw preference: effects of variations in testing protocol. Oct 1996,
Behavioural Brain Research 86 (1997) 79-87.

Cunha, Esteves, das Neves, Borges, Guimardes, Sousa, Almeida and Leite-Almeida. Pawedness Trait Test
(PaTRaT)—A New Paradigm to Evaluate Paw Preference and Dexterity in Rats. Frontiers in Behavioral
Neuroscience. doi: 10.3389/fnbeh.2017.00192.

Collins, R. L. (1968). On the inheritance of handedness. I. Laterality in inbred mice. J. Hered. 59, 9-12. doi:
10.1093/oxfordjournals.jhered.al107656

72

https://doi.org/10.1016/S0028-3908(00)00005-8
https://doi.org/10.1016/S0028-3908(00)00005-8
https://doi.org/10.1016/j.expneurol.2004.01.004
https://doi.org/10.1016/j.neuroscience.2006.01.016

Appendices

Appendix A — PalmGrid Hardware and Settings

A.1 Hardware Components

Components

Raspberry Pi

Pi with Video Cam

Cylinder for
Cylinder Test

Pictures

73

Components

Transparent Stool

Pictures

74

A.2 PalmGrid Experimentation Setup

Cylinder

Transparent Stool

[~ Raspberry Pi & basic
camera system

75

A.2 Raspberry Pi Video Camera version 2 Specification

Camera Module v2

Weight

39

Still resolution

8 Megapixels

Video modes

1080p30, 720p60 and 640 x
480p60/90

Linux integration

VA4L2 driver available

C programming API

OpenMAX IL and others available

Sensor

Sony IMX219

Sensor resolution

3280 x 2464 pixels

Sensor image area

3.68 x 2.76 mm (4.6 mm diagonal)

Pixel size 1.12 pm x 1.12 pm
Optical size 1/4"
Focal length 3.04 mm

Horizontal field of view

62.2 degrees

Vertical field of view

48.8 degrees

Focal ratio (F-Stop)

2

A.3 Raspberry Pi Video Recording Scripts
raspivid -t 210000 -md 6 -fps 25 -0 <pivideo>.h264
The command above requests raspberry pi to record video for 3.5 minutes in 1200 x 1200

pixels in 16:9 aspect ratio; with pixels at 25 frames per second and output the file to

<pivideo.h264>.

http://www.sony-semicon.co.jp/products_en/new_pro/april_2014/imx219_e.html

Appendix B — PalmGrid Signal Processing and Gauging Module Pseudocodes

B.1 Coherent Fragment Extraction

Procedure Coherent
For i :=1 to Number of Slow Moving Fragments
Identify at least two slowest moving fingertips of the given forelimb;
For those fragments identified
Gauge for Sub-fragments that movements are accounted for as slow-moving;
If two sub-fragments separate among themselves by 1 frame, merge the two;
For each sub-fragment

Compute Statistics for each, in changes of radial displacements +/- 0.5s before
and after each sanitized sub-fragment;

Retain those sub-fragment(s) that approach the cylinder wall before the sub-
fragment, and retracing/retained from wall thereafter;

End
End
End

B.2 Congruence Points Identification

Procedure Congruence
For i :=1 to Number of Slow Moving Fragments
Identify three slowest moving fingertips of the given forelimb;
For the three identified, slow-moving fingertips
Gauge for Sub-fragments whose fingertips to palm distance came to minima;
End
End

77

B.3 Refined Sub-Fragment Gauging

Procedure Decision
Merge coherent sub-fragments with congruence points;
For each sub-fragment of both coherence and congruence
Compute statistics for each;
Filter out non-wall-rearing based on meeting one of the following criteria:

1. If the wall-rearing durations is less than 0.1 seconds, they are regarded as transient

touches and not counted as a separate wall-rearing episode;
2. Adjacent fingertips are not distant from each other for more than 100 pixels in any

one time;
3. Any plausible wall-rearing episode whose standard deviation of the entire

fragment is less than 10 pixels (2% about mean) is taken as stationary.

End

Consolidate retained sub-fragments snapshots that are nearby each other within 2 seconds into
Sub-fragment episodes;

78

Appendix C — Test Results

C.1 Overall Left and Right Forelimbs taken together

Mmmfuw
Acticd nsde 2 Outside 2
Touches Correcty Fabe v Fabe -
i’s‘wmm Toft p2] 18 3 4
it 23 14 E] 4
[Evxoi a2 lelt 15 11 4 1
Rt 11 5 e []
EMXCQO1 (Left 16 13 3 1
Font 12 0 s
Evxaz a3 Left 15 [& 2
Fownt 11 4 7 S
EMXO3QO2 (Left 2 &1 11 1
) %) &0 13 3
[EMx0303 Let as 36 9 1
Fiaht &3 35 a s
EMx0s02 Left 2 23 9
Feght 19 10 5
[Enixtias e al 10 X
et 51 34 17 1
EMX0S 02 Left & 33 12
Fwnt % 20 € 14
EMX0602 Left s 3 2
Fenpt 16 & 0 4
(Toted S8) 174 (53 0
St Fates 70.0%
Falne Posbivess) 30N
Undetected %) %
Algetithinic rules detectod there should be of lewst one Touch within the
et show movieg fragment; and actusly there are
Algorithmic rubes detectod thet thess should be of et one Touch within
False svm show moving fregment; But actualy Ne Touch
Algetithin did not detect arytiing within the sow moving fregment; but
Fase -ve |actuelly hete wik ot lnast one Towch
lo‘“- Actual Touch thet fes beyond Congruence Zone DetecSons; ususly due 1o
(¥4 obntruction, et of video frame st
Thcess Rate % Toul Number of Actual Wall iearing / Narmbet of detected Mt
False Positive % Total Nutsber of False Posithves / Namber of detected Hits
I Undeieced %

C.2 Overall Left and Right Forelimbs taken together in Percentage

w-ufliilnm
Actusl aide C2 Outside C2
Touhes Correctly Fabie we Felse -ve
JEnX05-01 [l 27 67% s 1%
Raghe 23 61% 3 1%
EMX03-02 |Left 15 I 27% 7%
Righ 11 a5 So% 3%
FEMX02-01 [Let 16 81% 1% &%
Mgt 18 a4 Ses 288
EMX02-03 |Leh 16 SO SO 13%
gt 11 E) 64N 5%
EMX03-02 |Lef 52 Lt 21% P
gt 53 7% 255 %
EMX03-03 |Leht 45 8% 20% e
Fogte a3 81% 1% 1%
MO0 |Leh 32 TI% 28%
| Rt 29 () EL 1%
|
JEMX0403 Lot az TE% 24% %
Mgt 51 67% EE P
JEMXDE-01 |Leht 4 7% 2%
Raghe 26 7% 23% S4%
EMXDS02 |Left L) 7% I 22%
Righ 16 38 63% 255
ol 406 174 £ o
Scoms Rates 008
False Pesitivess 30
Undetectand % 12%
Algorithimic rules detectied there should be of leaat one Toudh within the
't shorw movieg fragment; and ectualy here ore
Algorithiic rules detected thal there shoud Be of least one Touch withis
slve sve %-MMMMM'&WM
Algorithin did net detect srrything within the show moving fragment; but
sl -ve actually there was ot lowt one Touch
I Actued Touch that lies beyend Congruence Zone Detections; wiuslly due
a2 %0 obstrection, start of video feame et
Tuccess Hate = Total Number of Actual Wal earing | Number of Setected AIts |
Felse Positive % Toted Number of Felse Positives |/ Number of detected Rits
Undetecind % Total Number of Undelected Hits / Toted Number of detected Hits

80

C.3 Right Forelimb Only in Number of Touch

Consruence Fiker Performance
Actusl Inside 2 | Ouwsde 2
Touches Correcty Falze +ye False -ve
EMXOI0L |Remt | 23] 14 s A—.
EMXD102 (Rt | a1 gyt & v 8
|ENDO2-01 Rkt i8 8 0 3 |
|
[ev00203 [Rigne 11 2 7 i 3
|
|
Iewooa-oz Right 33 20 3 3 |
|
| B e 43 35 g S |
I
JEMDIDS-0L Rept 22 3 |
ENDDSO3 [Right 31 32 o 1 | :
_ |
ENDIDS01 Rizht 25 20 & 12
[evoos02 [Risne 15 H 0 4 :
|
[Total 251 123 56 b | 0
Success Rate) 6335% :
Falze Pozitves) B |
%) 15%
Algorithmic rules detected there should D2 st least one Touch within the
Corract ciow moving frazment; and actually there are
L Algorithmic nuies detected that there shouid be st least one Touch within
Faize +ve siow moving frasment; bt actualy No Touch
Alzorithm did not Getect anything within the siow moving fragment; but
Falze -ve actusily there was at least one Touch
Actual Touch that lies b2yond Congruence Zone Detections; ususily due to
Outside C2 cbztruction, start of viceo frame etc.
Success Rate % Totml NUmDer of ACTUS! Wil ReSAnE | NUMGDer of Oetectes ARz
Faize Postive % Total Number of False Posibves / Number of datactad Hits
m‘ TMWUUWW?TMMW“MM

81

C.4 Right Forelimb Only in % of Touch

Congruence Filtar Performance
Actual Inside CZ Outside C2
Touches Correctly Falze +ve Faize -ve
Jemxoi0: |Rent 23 £1% 3% 17%
lemx0102 |Risnt 11 as% 35% 73%
|JEMX02-0L Riznht 15 30% 3% 31%
leMx0203 [Riznt 11 35% €23 a3%
JEMX03-02 Riznt 33 75% 23% &%
EMX03-03 Rsht 43 1% 19% 12%
|EMxos0t |Risnt 23 £6% 34% 17%
[emx0s-03 [Rient 31 £7% 33% 2%
|emxoso0: [Rint 26 77% 23% 34%
JeMx0s-02 [Rient 15 33% €3% 23%
Total 279 190 s 30
Success Rated E51%
Falze Pozitives® 32%
Uncetectec % 18%
Algorithmic rules detected there should De at least one Touch within the
Corract slow moving frasment; and actually there are
Agorimnu‘(rules detectad that there should De at least one Touch within
[Fake +ve slow moving fragment; but actusily No Touch
Ajzorithm did not detect anything within the siow moving fragment; but
Fale we sctuslly there was at lemst one Touch
Actuai Touch that lies beyond Congruence Zone Detactions; usually cue
Outside C2 to obstruction, start of video frame etc
Success Rate % Total Number of Actual Wall Rearing / Numbder of detected Hits
False Positve % Total Numbder of False Positives / Numbder of detected Hits
Uncetectec % Total Number of Undetectag Hits / Total Numbder of detected Hits

C.5 Left Forelimb Only in Number of Touch

Congruence Filter Performance
Actual Inzide C2 Qutside &2
Touches Correctly Faize $ve Falze -ye
JEMX01-0L Left 27 i8 S 4
|exo102 Lem 135 11 3 1
EMX02-0L Left 16 i3 3 p
lemx0203 fLem 15 s g 2
|EMX03-02 Left 32 41 11 i
EMX03-03 Left 43 35 e i
EMX04-0L Left 32 23 S o
EMX04-03 Left 42 32 10 2
EMXD6-0L Left 43 33 12 (]
EMX0E-D2 Left -]) 3 2
Total 253 221 78 14 0
Success Rate® 73.5%
Falze Pozitives® 25%
Uncetectec % »
A\sorhnmic rules detected there should De st least one Touch within the
Cormrect slow moving frasment; and actually there are
Ajgorithmic rules detected that there shoulc De at least one Touch within
|Fatse +ve slow moving frazment; but actuslly No Touch
I Algorthm did ot detect anything within the siow moving fragment; but
False we actually there was st iaast one Touch
Actual Touch that liez bayond Congruence Zone Detections: ususlly cue
Outside C2 to obstruction, start of video frame etc

Succes: Rate %

Total Number of Actusl Wall Rearing / Numbder of detectec Hits

Falze Positive %

Total Numder of False Positives / Numbder of detected Hits

Uncetected %

Total Number of Undetected Hits / Total Numbder of detectec Hits

83

C.6 Left Forelimb Only in % of Touch

Congruence Filter Performance
Actusl Inzide C2 Outside 2
Touches Corractly Faize $ve Falze -ye
JEMX01-0L Left 27 E7% 33% 13%
|eraxoi02 fLem 13 73% 27% 7%
|emxoz0r fLem 15 21% 19% 25
EMX02-03 Left 6 30% 30% 13%
EMX03-02 Left 32 79% 21% 2%
EMX03-03 Left 43 £0% 20% 2%
EMX04-0L Left 32 72% 23% 0%
EMX04-03 Left 4z 75% 24% 3%
EMX0E-0L Left 43 73% 27% 0%
EMX0E-02 Left) &7 33% 22%
Total 259 221 78 14 0
Success Rate® 73.5%
Falze Pozitives® 25%
Uncetected % %
Ajgorthmic rules detected there should de st least one Touch within the
Comract slow moving frasment; and actually there are
Ajgorithmic rules detected that there should e st least one Touch within
|False +ve siow moving frazment; but actusily No Touch
I Algorithm did not detect anything within the siow moving fragment; but
False we actusily there was st least one Touch
Actual Touch that liez beyond Congruence Zone Detections; ususlly cue
Outside C2 to obstruction, start of video frame etc.

Success Rate %

Tots! Number of Actual Wall Rearing / Number of detected Hits

Falze Positive %

Total Numoer of Faise Positives / Numoer of detectec Hts

Uncetectec %

Total Number of Undetectec Hits / Total Numder of detectec =itz

84

Appendix D: Methods for Forelimb Tests

D.1 Cylinder Test (Li & McCullough (2004))

The cylinder test was adapted for use in mouse to assess forelimb use and rotation

asymmetry. The mouse was placed in a transparent cylinder 9-cm diameter and 15 cm in height

and videotaped during the test. A mirror was placed behind the cylinder with an angle to enable

the rater to record forelimb movements when the mouse was turned away from the camera. After

the mouse was put into the cylinder, forelimb use of the first contact against the wall after rearing

and during lateral exploration was recorded by the following criteria:

1)

(2)

(3)

(4)

The first forelimb to contact the wall during a full rear was recorded as an independent

wall placement for that limb.

Simultaneous use of both the left and right forelimb by contacting the wall of the
ylinder during a full rear and forlateral movements along the wall was recorded as

“‘both’> movement.

After the first forelimb (for example right forelimb) contacted the wall and then the
other forelimb was placed on the wall, but the right forelimb was not removed from
the wall, a “‘right forelimb independent’” movement and a ‘‘both’” movement were
recorded. However, if the other (left forelimb) made several contacting movements on
the wall, a ‘‘right forelimb independent’” movement and only one “both” movement

was recorded.

When the mouse explored the wall laterally, alternating both forelimbs, it was
recorded as a ‘‘both’” movement. A total of 20 movements were recorded during the

10-min test to compute a final score by the following formula:

85

__ (nonimpaired forelimb movement -

Final Score impaired forelimb movement)

(nonimpaired forelimb movement +
impaired forelimb movement + both
forelimb movements)

Non-impaired _ Independent left / right
forelimb movement =~ forelimb wall-rearing

_ S before stroke
Impaired forelimb _ Independent left/
movement right wall-rearing

count post-stroke
1) Simultaneous
left/right wall rearing

Both movements

2) left/right alternate
exploration

Figure 30: Cylinder Test Score Calculation

This test evaluates forelimb use asymmetry for weight shifting during vertical exploration
and provides high interrater reliability even with inexperienced raters. Occasionally mice with
large deficits did not move frequently enough to obtain an adequate number of vertical
movements, these animals recovered later in testing and to avoid bias these animals were

unscored until they could perform the test.

D.2 Forelimb preference and sliding test (Shanina & Redecca 2006)

As a variant of cylinder test, forelimb use during spontaneous vertical exploration was

analyzed based on the method described by Schallert et al. (2000).

The rats were videotaped in a transparent glass cylinder for 5-7 min depending on the
degree of activity during the trial (Fig. 1B). Two mirrors combined at an angle of 90° were
placed behind the glass cylinder allowing the recording of forelimb movements even when the
animal turned away from the camera. Several behavioral elements were scored to determine the
extent of forelimb impairment during spontaneous exploration of the glass cylinder. The

independent or simultaneous use of the left or right forelimb was analyzed

a) at first contact with the wall; and
b) during vertical and horizontal movements along the wall; and

¢) sliding movements of each forelimb at the wall of the cylinder were scored

Forelimb activity (FLA) was evaluated for each forelimb using the following formula:

_ first contact + horizontal + vertical
a number of rearings

Figure 31: Forelimb Activity Score Formula

In addition, the frequency of sliding movements (%) which occurred during vertical activity

at the wall of the glass cylinder was assessed for each forelimb using the following score:

sliding

~ Tirst contact + horizontal + vertical %100

sliding score (%)

87

In order to illustrate the time course of alterations in these behavioral tests data are in part
given as percentage difference between preoperative baseline and different time points after the

infarcts.

88

D.3 Cylinder Test (Schallert (2000))

Forelimb use during explorative activity was analyzed by videotaping rats in a transparent
cylinder (20 cm diameter and 30 cm height) for 3—10 min depending on the degree of movement
maintained during the trial. A mirror was placed behind the cylinder at an angle to enable the
rater to record forelimb movements when the animal was turned away from the camera. The
cylindrical shape encourages vertical exploration of the walls with the forelimbs as well as
landing activity. The cylinder was high enough that the animal could not reach the top edge by
rearing and wide enough to permit a 2 cm space between the tip of the snout and the base of the
tail when the animal was not rearing. However, other chambers such as the home cage may be
used as long as the behavior of the animal can be viewed unobstructed from all directions. All
scoring was done by an experimenter blind to the condition of the animal using a VCR with slow
motion and frame by frame capabilities. An advantage of the limb use asymmetry (cylinder) test
is that inter-rater reliability is very high (r > 0.95) even with relatively inexperienced raters.
Following some types of injury the animals may not move frequently enough to obtain an
adequate number of vertical movements. In this case videotaping in the home cage at the

beginning of the dark cycle may be necessary.

Several behaviors were scored to determine the extent of forelimb-use asymmetry displayed
by the animal. These behaviors were recorded during vertical movements along the wall and for

landings after a rear:

(a) independent use of the left or right forelimb for contacting the wall during a full rear, to
initiate a weightshifting movement or to regain center of gravity while moving laterally in a

vertical posture;

89

(b) independent use of the left or right forelimb to land after a rear:

(c) simultaneous use of both the left and right forelimb for contacting the wall of the

cylinder during a full rear and for lateral movements along the wall;

(d) simultaneous use of both the left and right forelimb for landing following a rear. If a
rater could not determine whether one limb was being used independently or simultaneously, that

movement was not scored. Each behavior was expressed in terms of

(a) percent use of the non-impaired forelimb relative to the total number of limb use

observations (impaired, unimpaired and both limb use observations) for wall movements;

(b) percent use of the impaired forelimb relative to the total umber of limb use observations

for wall movements;

(c) percent use of the limbs simultaneously relative to the total number of limb use

observations for wall movements;

(d) percent use of the non-impaired forelimb relative to the total number of limb use

observations for landings:

(e) percent use of the impaired forelimb relative to the total number of limb use

observations for landings; and

(F) percent simultaneous limb use observations relative to the total number of limb use

observations for landings.

Wall-associated ratios and landing ratios can be averaged together for scores that reflect

equal contributions from asymmetries in wall movements and landings.

90

D.4 Paw-Dragging Method

Paw dragging method is essentially the same as the above cylinder tests, except it focuses
on quantifying the number of paw-drags from the recorded videos of mice. Paw-dragging

behaviour is distinct from normal paw touches as follows:

1. If the paw contacts the cylinder wall with a full open palm, it will slowly fall away from
the wall, often with a slight tremor. The movement begins with the digits dragging
against the cylinder wall either in a medial or downward direction, before falling away
completely. The mouse will then dismount with its unaffected paw before landing on all
fours. This is considered a paw-drag and should be counted in a tally.

2. If the paw does not contact the cylinder wall with a fully open palm, it will graze the
cylinder wall with its digits before falling away from the cylinder wall. Similarly, a
mouse may drag its paw against the cylinder wall but not release it entirely before
dismounting. These are both considered paw-drags as well as touches and should be
counted as both in a tally.

3. The paw may also drag along the cylinder wall while a mouse explores the cylinder. In
this case, the paw will follow the twisting of the mouse’s torso as it explores left or right
of its original position before dismounting. This is not considered a paw-drag, as it
depends on the mouse randomly choosing a direction to explore and does not depend on

which cortical hemisphere was damaged.

Paw-drags are expressed as a percentage of paw-drags per total number of paw touches
during a session. Express the number of paw-drags as a percentage of total paw contacts for each

forelimb separately.

91

Appendix E: PalmGrid Station Installation Manual

E.1 Python 3.6

1. Download python 3.6

Under the main entry for both versions you’ll see an “x86-64" installer, as seen
below.

« Python36.1-2017-03-21
= Download Windows x86 web-based installer
» Download Windows x86 executable installer
= Download Windows x86 embeddable zip file
» Download Windows x86-64 web-based installer

Download Windows x86-64 executable installer

» Download Windows x86-64 embeddabile zip file

= Download Windows help file

2. Extract the software package, and hit setup

3. Enable the “Add Python 3.6 to PATH” option and then click “Install Now.”

92

3 Python 3.6.1 (64-bit) Setup

pgth?n
windows

Install Python 3.6.1 (64-bit)

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

@ Install Now
C:\Users\Jason\AppData\Local\Programs\Python\Python36

Includes IDLE, pip and documentation
Creates shortcuts and file associations

—> Customize installation
Choose location and features

M Install launcher for all users (recommended)

Add Python 3.6 to PATH . Cancel

3 Python 3.6.1 (64-bit) Setup

pgth?n
windows

Setup was successful

Special thanks to Mark Hammond, without whose years of
freely shared Windows expertise, Python for Windows would
still be Python for DOS.

New to Python? Start with the online tutorial and
documentation.

See what's new in this release.

@ Disable path length limit
Changes your machine configuration to allow proegrams, including Python, to
bypass the 260 character "MAX_PATH" limitation.

Close

4. Check for correct installation using python -v that we used above to check that it
is installed correctly and the path variable is set.

93

E.2 DeepLabCut

There are several modes of installation, and the user should decide to either use
a system-wide, Anaconda environment based installation (recommended). One can of
course also use other Python distributions than Anaconda, but this is the easiest route.

All the following commands will be run in the cmd in Windows. Please first open
the terminal (search cmd).

. Anaconda:

Anaconda is perhaps the easiest way to install Python and additional packages across
various operating systems. First create an Anaconda environment. With Anaconda you
create all the dependencies in an environment on your machine in the following way.

More details can be found in the conda environment readme.

Windows:

DeepLabCut provides environment files for Windows. They can be installed by typing

(from the terminal, within in this conda-environments folder): conda env create -f dlc-
windowsCPU.yaml or conda env create -f dlc-windowsGPU.yaml for the GPU version.

See further details in this issue.

Then,

Windows: pip install -U wxPython

Install TensorFlow with GPU support:

1. Install TensorFlow. In the Nature Neuroscience paper TensorFlow 1.0 with CUDA
(Cuda 8.0) was used. Some other versions of TensorFlow have been tested, but they
are not tested! (i.e. these versions have been tested 1.2, 1.4, 1.8 or 1.10-1.13, but
might require different CUDA versions)! Please check your
driver/cuDNN/CUDA/TensorFlow versions on this Stackoverflow post.

2. Install the NVIDIA CUDA package and an appropriate driver for your specific
GPU. Please follow the instructions found
here: https://www.tensorflow.org/install/gpu, and more tips below. The order of
operations matters.

https://www.tensorflow.org/
https://stackoverflow.com/questions/30820513/what-is-version-of-cuda-for-nvidia-304-125/30820690#30820690
https://www.tensorflow.org/install/gpu
https://github.com/AlexEMG/DeepLabCut/blob/master/docs

3. Some tips for installing TensorFlow 1.8 will follow here:

FIRST, install a driver for your GPU (we recommend the 384.xx) Find DRIVER
HERE: https://www.nvidia.com/download/index.aspx

e check which driver is installed by typing this into the terminal: nvidia-smi

SECOND, install CUDA (9.0 here): https://developer.nvidia.com/cuda-90-download-
archive

THIRD, install TensorFlow:
Package for pip install:
pip install tensorflow-gpu==1.8 —with GPU support (Ubuntu and Windows)

Note, the version is specified by using: ==1.8

FOURTH, Please check your CUDA and TensorFlow installation with the lines below:

Start a python session: ipython
import tensorflow as tf
sess = tf.Session(config=tf.ConfigProto(log device_placement=True))

You can test that your GPU is being properly engaged with these additional tips.

Troubleshooting:

TensorFlow: Here are some additional resources users have found helpful (posted
without endorsement):

o https://stackoverflow.com/questions/30820513/what-is-the-correct-version-of-
cuda-for-my-nvidia-driver/30820690

e https://stackoverflow.com/questions/50622525/which-tensorflow-and-cuda-
version-combinations-are-compatible

e http://blog.nitishmutha.com/tensorflow/2017/01/22/TensorFlow-with-gpu-for-
windows.html

e https://developer.nvidia.com/cuda-toolkit-archive

95

https://www.nvidia.com/download/index.aspx
https://developer.nvidia.com/cuda-90-download-archive
https://developer.nvidia.com/cuda-90-download-archive
https://www.tensorflow.org/install/
https://www.tensorflow.org/programmers_guide/using_gpu
https://stackoverflow.com/questions/30820513/what-is-the-correct-version-of-cuda-for-my-nvidia-driver/30820690
https://stackoverflow.com/questions/30820513/what-is-the-correct-version-of-cuda-for-my-nvidia-driver/30820690
https://stackoverflow.com/questions/50622525/which-tensorflow-and-cuda-version-combinations-are-compatible
https://stackoverflow.com/questions/50622525/which-tensorflow-and-cuda-version-combinations-are-compatible
http://blog.nitishmutha.com/tensorflow/2017/01/22/TensorFlow-with-gpu-for-windows.html
http://blog.nitishmutha.com/tensorflow/2017/01/22/TensorFlow-with-gpu-for-windows.html
https://developer.nvidia.com/cuda-toolkit-archive

e http://www.python36.com/install-tensorflow-gpu-windows/

. System-wide considerations:

If you perform the system wide installation, and the computer has other Python
packages or TensorFlow versions installed that conflict, this will overwrite them. If you
have a dedicated machine for DeeplLabCut, this is fine. If there are other applications
that require different versions of libraries, then one would potentially break those
applications. The solution to this problem is to create a virtual environment, a self-
contained directory that contains a Python installation for a particular version of Python,
plus additional packages. One way to manage virtual environments is to use conda
environments (for which you need Anaconda installed).

96

http://www.python36.com/install-tensorflow-gpu-windows/

E.3 ImageJ

1) — Download and Install Image) Software

Image] is in the public domain. It can be freely downloaded and installed on any computer
including those at schools, homes, and businesses.

home | news | docs | download | pluging | macrosidey | hst ! links

Download

Platform Independent

To ieatall Image) 142 on & computer with Java pre-istalied, of 10 upgrade 0 &¢ latest
full dissrbution (inchuding macros, plugins and LUT)), download 3142 zip (AMB) and
extract the kmage) dreciory. Use the Nelp» Updare fmage) command w upgrade 1o the
latest pro-selease version

Mac OS X
Download kmaged 1 A2 (5.3MB) s 2 doubleclickablo Mac OS5 X spplication, Inckdes
Imagelés, which usos Java 1.6 i 64-bit mode on leacd Macs renning OS X 10.5 or kaer.

(fastrucoons)

Linux
Download Emaged § A2 basdiod wigh 32-5it Java (43MB) or with 64-bit Java (36MB)
Bodh versions includo Java 1.6.0_10 from Sen and the Imago) source code

(Eastroctons)
Windows
Dowskad kemaged § 42 busdlod with 32-8it Java | 50_10 Q6MB), with 64-5it Java
160_12 (Q2MB: roquices XP 264 or Vista 64-bit) or wizhout Java (OMB). On Visea,

Image) muest be instalied in a directory that $he user can wrine 0 (0 8., "Documents”)

(tastroctons)

Documentation

Download the Imape) documentasion (25MB), in HTML format, as a compressed 2ip
archive. The JavaDoc API docomentation (S67K) is also available

Source Code
The Emage) Java source consius of 52 000 Enes of code = 265 files. it is avadable
caline, & & 2ip archives and as cokorined and beowsable HTMI
Example Images
31 downioadabie sampie images and stacks are available in Imagel's File» Open
Samples sebmesy, These images, aad more, are alio avadadle a3 4 E2ME 2ip archive.
Image) download page.
Go to the Image] Download page , and download and install the application for your

operating system.

Note to Windows Users: It is recommended that you install Image) in the Documents
directory, rather than in the Program Files directory. For security reasons, Windows 7
and Windows Vista do not allow programs to alter themselves by writing files to the
Program Files directory. If Image] is installed in the Program Files directory, then the
update function in Step 2 below will not work properly. In addition, if you are a
Windows Vista user, be sure to choose the correct version of ImageJ (either 32-bit or
64-bit) for your computer.

97

http://rsb.info.nih.gov/ij/download.html
https://d32ogoqmya1dw8.cloudfront.net/images/eet/albedo/imagej_download_page.v2.jpg

E.4 ffmpeg

1. Download a static build from here.

2. Use 7-Zip to unpack it in the folder of your choice.

3. Open a command prompt with administrator's rights.
NOTE: Use CMD.exe, do not use Powershell! The syntax for accessing
environment variables is different from the command shown in Step 4 - running it
in Powershell will overwrite your System PATH with a bad value.

4. Run the command (see note below; in Win7 and Win10, you might want to use the

Environmental Variables area of the Windows Control Panel to update PATH):
setx /M PATH "path\to\ffmpeg\bin;%PATH%"

NB: Do not run setx if you have more than 1024 characters in your system
PATH variable. See this post on SuperUser that discusses alternatives. Be sure
to alter the command so that path\to reflects the folder path from your root

to ffmpeg\bin.

98

http://ffmpeg.zeranoe.com/builds/
http://7-zip.org/
https://github.com/adaptlearning/adapt_authoring/wiki/Just-Enough-Command-Line-for-Installing
https://superuser.com/questions/387619/overcoming-the-1024-character-limit-with-setx

Appendix F: Labeling Forelimbs of Mouse Images that trains

DeepLabCut

To train DeepLabCut for PalmGrid, we recommend labeling maximally diverse images (i.e.,

different poses) in a consistent, anticlockwise manner and curating the labeled data well. In our

experience, we expanded the initial training dataset in an iterative fashion.

1.

First, set up the Cylinder Test experiment. Expose the setting with white cardboard
encasing the cylinder with black cardboard covering the top of cylinder. These offer

maximum light contrasts to the mouse subjects.

Second, record the video of 1200 x 1200 pixel resolutions using Raspberry Pi

Third, Convert the recorded video using ffmpeg to .wmv format, where DeepLabCut

requires to generate a training set.

Fourth, select frames where reliably captured behaviors and avoided those corrupted with

noise (e.g. blurred images when displayed in ImageJ),

Fifth, in our application we label BOTH forelimbs and rear limbs using ImageJ. Label 6
points (namely the five digits and the palm) for each limb and curate each selected frames

in anticlockwise manner. An example of post-labeled frame is illustrated below.

99

NB. In our motivation example as we do not know whether rear limb coordinates will be utilized. On
hindsight, labeling forelimbs will be good enough. We learnt that labeling has to be done in a
consistent, anticlockwise manner as recommended by DeepLabCut

6. Sixth, run Imagel’s Analyze / Measure Tools to extract coordinates of these labeled limbs.
Save the results of these measurements as directed by DeepLabCut user manual to train

DeepLabCut server.

7. Try afew samples of video analysis. If the labeling was bad or inconsistent, the video
analyzed will poorly recognize the forelimbs. Repeat the exercise for a few times to fine

tune the training set in the Cylinder Test configuration being set up.

100

Appendix G: Ground Truth Reports

G.1 Report compilation procedures

1.

Review all video fragments, of 4 minutes (~6,000 frames) each on a frame-by-frame basis;

When a wall-rearing activity is observed, note down its start and end frames;

Group the wall-rearing activities that are close to each other within 3 seconds into wall-

rearing episodes;
Record the wall-rearing episodes into ground truth report

Sign at the end of the report

101

G.2 Ground Truth Reports

102

103

Ist Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch ['otal Touches in Episod
Test Subjc Session Episode Left Right Left Right Lefi Right Left Right Left Right Left Right Left Right

1 Start 638 627 665 1 2
End 661 679 674

2 Start 897 901 1 1
End 916 914

3 Start 897 901 2
End 916 914

4 Start 1.309 1.306 1.326 1,326 3 2
End 1,321 1,321 1,363 1,353

3 Start L.577 1,593 1,605 1.601 1,621 5 2
End 1,602 1.598 1.616 1.618 1,632

6 Start 1,971 1.982 1.984 1,995 3 2
End 1,980 2,007 1,992 2.010

7 Start 2.471 2,480 2,481 2.486 2 3
End 2.476 2,484 2523 2512

EMXO] 01 8 S_lart 3,765 3,765 3,779 2 I

End 3,776 3,790 3,790

9 Start 4,247 4,251 4,254 2 1
End 4.251 4,264 4,261

10 Start 4.396 |
End 4,420

11 Start 4.550
End 4,556

12 |Start 5,741 1
End 5,781 _

13 Start
End

14 Start
End

15 Start

End

104

1st Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch lotal Touches in Episod
Test Subje Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right
1 Start 228 228 1
End 240 237
2 Start 1.505 1,505 1.528 1.541 3 3
End 1.523 1.533 1.554 1.551
3 Start 2171 2,176 2,180 2
End 2.176 2.193 2,193
4 Start 2,611 2.614 2,620 2
End 2,614 2.632 2,632
5 Start 2,838 2,832 2,852 2.845 2.858 2.866 3 3
End 2,847 2.838 2,890 2.855 2.864 2.887
6 Start 3,134 3.134 |
End 3.143 3.145
i Start 4.208 4.208 | 1
End 4,222 4223
EMXO01 02 8 Start 4.7-_&9 4,749 1 1
End 4.759 4.758
9 Start 5.228 5.228 5.249 2 I
End 5,246 5.253 5.253
10 Start 5,650 |
End 5,651
11 Start
End
12 Start
End L
13 Start
JEnd
14 |start
|i~.nd
15 |Start
| [

105

1st Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch l'otal Touches in Episod
Test Subjc Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right
1 Start 71 71 93
End 90 111 107
2 Start 1.213 1,184 1,222
End 1,232 1,218 1.236
3 Start 1,359 1.352 1.361
End 1,365 1.359 1,382
4 Start 1,740 1.740
JEnd 1.768 1,769
5 |Start 2,515
[End 2.524
6 |Start 2696 | 2.696
End 2,731 2.731
7 Start 3,975 3.975 3,985 3.991
End 3.982 3.988 4.002 4,002
EMX0l 03 5 e 340) A%
End 5.507 5,507
9 Start 5.831 5,831 5,845 5.864
End 5.841 5,865 5.862 5.869
10 Start 6.100 6.094
End 6.107 6.107
11 Start
End
12 Start
End L
13 Start
End
14 [Start
End
15 Start
FEnd

106

Ist Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch l'otal Touches in Episody
Test Subje Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right
| Start 1,271 1.271 1.301 1.301 1 1
End 1.288 1.285 1,322 1.319
2 Start 1.796 1.796 1 1
End 1.805 1.803
3 Start 2,110 2.110 2,160 2.162 2246 | 2.260 4 3
End 2.140 2.140 2,180 2.178 2,279) 2.269
4 Start 2,338 2,338 | I
End 2,347 2,341
5 Start 2,578 2,578 2,621 1 1
End 2.588 2,588 2.626
6 Start 2731 2,731 2377 2,783 | 1
End 2,774 2.761 2,779 2,847
7 Start 3,185 3.185 1 I
End 3,193 3.193
EMX02 01 8 S_lurl 4,719 4.719 1 |
‘ End 4,728 4.728
9 Start 5.036 5,036 1 1
End 5.070 5.068
10 Start 5.462 5.462 5.473 5.470 5,497 5.495 | 1
End 5.471 5.464 5.494 5.492 5,499 5.497
11 |Start 6.285 6.285 1 1
End 6.290 6.290
12 |Start
End L
13 Start
End
14 |Start
End
15 |Start
End

107

1st Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch ['otal Touches in Episod
Test Subjc Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right
1 Start 408 408
End 416 416
2 Start 520 520 546 546
End 527 527 561 561
3 Start 3.612
End 3.641
4 Start 3.801 3,801 3,822 3.822
End 3.817 3.817 3.873 3.884
5 Start 4,269 4.265 4,281 4.281
End 4,274 4,274 4.307 4,307
6 Start 4.661 4,673 4.674
End 4,672 4.704 4,704
7 Start 5,259 5.259
End 5275 3277
EMX02 02 8 Jiag il
End : 5.996
9 Start
End
10 Start
JEnd
11 ISmrl
lind
12 Start
End -
13 Start
End
14 Start
End
15 Start
End

108

st Touch

2nd Touch

3rd Touch

4th Touch

5th Touch

6th Touch

['otal Touches in Episod

Test Subjc Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right

| Start 1.343 1.343 1 1
End 1.391 1.35]

2 Start 1.629 1
End 1.638

3 Start 1,822 1.822 1 |
End 1,829 1.831

4 Start 2,358 2,358 2,400 2.366 2.400 2 3
End 2,380 2.360 2.409 2.375 2,415

5 Start 3.328 1
End 3.342

6 Start 3.444 3.444 3,465 1 I
End 3.461 3.486 3,483

7 Start 3,706 3.682 3.706 3 2
End 3,734 3.697 3.734

EMX02 03 I

Eud

9 Start
End

10 Start
End

11 Start
End

12 Start
End

13 Start
End

14 Start
End

15 Start

End

109

I1st Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch ['otal Touches in Episod
Test Subje Session Episode Left Right Left Right Left Right | Left Right |J Left Right | Left Right | Left Right
1 |Start 779
Jtnd 786
2 Start 831 831
End 840 865
3 Start 926 926
End 932 935
4 Start 1,054 1.061
End 1.080 1,080
5 Start 2.864
End 2,877
6 Start 2,932
End 2.
7 Start 3.038
End 3,058
EMX03 0l T A%
End 3.569
9 Start 4,975 4,980
End 4.988 1,988
10 Start 6.074
End 6.084
11 Start 6.206 6.191
End 6,232 6,232
12 Start
End .
13 Start
End
14 Start
End
15 Start
End

110

Ist Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch ['otal Touches in Episod
Test Subjc Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right
1 Jstart 94 94 100 2 1
End 96 108 108
2 Start 859
End 869
3 [Start 1569 | 1569 1382 1582 2 2
End 1,580 1 1580] 1el1 1.611
4 Start 1.684 1.684 2
End 1.706 1.706
5 [Start 1.873 | 1.873 [[
End 1.882 | 1.882
6 [Start 1,965 | 1.965 1
Jind 1,979 1 1.979
7 [Start 2.084
lend 2.147
8 Start 2.484 2.484 | 1
JEnd 2.506 2.506
9 [Start 26301 2630] 2.635] 2.635 2 2
End 26320 2632] 2649] 2649
10 |Start 2,753 !
JEnd 2.766
11 |Start 2,850 | 2.850 I [
o Il_znd 2.865 | 2.865
12 [Start 157 3157 2 I
JEnd 3172 172
13 Jstart 3.339] 3339 3374 3370] 3.376 I 1
JEnd 3350] 33500 33911 3373] 339
14 |Start 3489) 3489] 3552 3552] 3563 3563 4 5
Jind 3504 1 3s504) 3.555] 3555 3.620] 3.620
15 |Start 3.706 | 3.706 1 I
find 37221 3.7
16 |Start 3.814] 3814] 3881] 3.881 3 3
JEnd 38341 3834 3898] 3.898
17 [Start 4595 4595] 4607] 4604] 4.629] 4626 4654 4654 4 5
End 4604 | 4601) 4622] 4622] 4.643] 40643 4.675] 4.675
18 [Start 4804 | 4.804 2 |
End 4839] 4839
19 |Start 492 4918] 4949 4924] 5007 4949] s.012 4 3
End 4943) 4922] 4961] 4943] 5.030] 4961 5.027
20 [Start 50961 5210 5.218 2 2

B,

I1st Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch l'otal Touches in Episod
Test Subjc Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right

JEnd 5210 5218 5221

21 [Start 5500] 5498) 5523 5523 5554 5.554 5.609 7
JEnd s518] s5s18] s5542] 5542] 5568 5.568 5,620

22 JStart 6,136 6.138 2
End 6.150 6.150

’

111

112

Ist Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch l'otal Touches in Episod
[Test Subjc Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right
1 Start 192 184 2 2
End 202 205
2 Start 468 468 480 485 491 3 3
End 473 482 489 520 518
3 Start 700 700 | |
End 740 743
4 Start 1.648 |
End 1.672
5 Start 1,739 1.758 1 1
End 1.768 1.766
6 Start 1.954 1
End 1.982
7 |Start 2.505] 2.505 2,523 2
End 2.544 2,511 2.540
8 [Start 3.0290 3.013 l !
Epd 3.072 3.072
9 |Start 3.296) 3201) 3.397] 3.392) 3455) 3455 4 5
End 3.326 3.324 3.409 3.411 3.523 3,523
10 [Start 3.567 | 3.563 £ :
End 3.584 3.584
EMX03 03 11 Start “w.(a-l,f 3.640 3.665 I 2
End 3.685 3.659 3.688
12 Start 4.244 4,226 1.311 1 2
End 4.265 4.267 4.328
13 JStart 4.404 4,382 4.416 1 2
End 4,425 4.409 1,425
14 Start 4.483 4.487 1 1
End 4.495 4.493
15 Start 4.661 1.598 4.719 4.661 4,781 4719 4.839 4,783 4.901 4.839 1.901 5 6
End 4.677 1.609 4,753 4.677 4,803 4,753 4.860 4.803 4917 4.860 4919
16 Start 5.068 5.065 5.199 5,199 5,257 5.257 3 B
JEnd 5,147 5.147 5,219 5,219 5,276 5.276
17 [Start 5441] 5445 2
JEnd 5487 5.484
18 |Start 57131 5713 5.736 1 l
JEnd 5722] 5.722 5.748
19 |Start 5815] 5.815 I !
lEnd 582 5820
20 [Start 5965 5.965 2 2

113

1st Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch ['otal Touches in Episod
Test Subjc Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right
JEnd 6018 | 6.018
21 Start 6,179 6,179]
End 6,205 6.201

114

1st Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch ['otal Touches in Episod:
Test Subjc Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right
| Start 73 81 107 102 2 2
End 103 95 124 127
2 Start 1.040 1.040 1.087 1.087 2 2
End 1,048 1.050 1,112 1.111
3 Start 1,445 1.445 | 1
End 1.460 1.462
4 Start 1.689 1.689 1.75 1.765 3 2
End 1,717 1.711 1.833 1.831
5 Start 2.199 2,157 2.206 2 2
End 2.260 2.198 2.260
6 Start 2.743 2737 2.744 2 2z
End 2.800 2.742 2.800
7 Start 3.885 3.922 3.924 2 2
End 3.921 3.966 3.966
EMX04 01 8 S_lan 4.046 4.041 4.050 1 2
Epd 4,059 1.048 4.061
9 Start 4.591 4.594 4.636 1 1
End 4.646 4.620 4.646
10 Start 4.998 1.998 5.022 2 2
End 5.018 5.038 5.035
11 Start
End
12 Start
End
13 Start
End
14 Start
End
15 Start

End

115

Ist Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch ['otal Touches in Episod
Test Subjc Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right
1 Start 1.933 1,933 1 I
End 1.950 1.950
2 Start 2,142 2.149 2,170 2.185 1 4
JEnd 2205 2.160 2.179 2.202
3 |Start 2615 2619 2.624 2
lEnd 26018 2638 2640
4 |Start 2903 2910 1 [
JEnd 2933] 2,924
5 Start 3,233 3,233 3,239 3,298 1 3
End 3.272 3,223 3,272 3,332
6 Start 3.398 3.398 3.415 3415 3.447 3.476 3.476 4 3
End 3.407 3.404 3.432 3.428 3454 1 3.492 3.492
7 Start 4472 4.472 4.509 4.509 b 2
End 4.498 4,498 4,529 4,529
EMX04 0 8 Start -I.Sj';' 1.817 4.8_‘22 48“2 2 2
End 4.828 4.828 4.853 4,853
9 Start 5.447 5.447 4 2
End 5.489 5.492
10 Start 5.826 5.826 2,855 5.870 5.882 5.882 5911 5911 5.960 5.960 5 >
End 5.851 5.849 5.870 5.879 5.898 5.898 5.946 3,946 5.982 5.982
11 Start
End
12 Start
End 4
13 Start
End
14 Start
End
15 Start
End

116

1st Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Jlotal Touches in Episod
Test Subjc Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right
1 Start 2,183 2.179 2 2
End 2,213 2.203
2 Start 2,405 2.421 2.419 2,449 2.446 3 2
End 2,415 2.446 2.441 2.453 2.449
3 Start 2,592 2.589 2.639 2.639 2,751 2.748 5 §
End 2,631 2,633 2.681 2.681 2,789 1 2.789
4 Start 2.859 2.856 2,882 2.882 29558 29551 2985 2985 6 6
End 2.876 2.876 2,890 2.890 29801 29801 3.032] 3.032
5 Start 3,114 3.114 1 1
End 3,129 3.129
6 Start 3,362 3,362 3.402 3 3
End 3,423 3.398 3.423
7 Start 3,620 3,620 3,701 3.701 5 3
End 3.665 3.6635 3,775 3.77
EMXO04 03 8 Slan 3.974 3.974 4,053 3.994 4.053 1 2
End 4.005 3.991 4,059 4.032 4.059
9 Start 4,599 4,597 1 z
End 4,643 4.643
10 [Start 4.977 4.977 2 2
End 5.010 5.015
11 Start 5,281 5,289 5,293 2 6
End 5.289 5.320 5.318
12 JStart 5.605 5.605 2
End 3.643 5.643
13 |Start
End
14 Start
End
15 Start

Jind

117

Ist Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch ['otal Touches in Episod
Test Subjc Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right

1 Start 159 166 173 180 4
End 163 171 178 183

2 Start 618 604 1
End 620 625

3 Start 1,273 1,279 1,285 3 3
End 1.277 1.309 1.309

4 Start 1.530 1.530 1 1
End 1.546 1,546

5 Start 1.706 1,706 2 3
End 1,759 1,759

6 Start 2,209 2.209]
End 2,223 2,223

7 Start 2.447 2.452 2 2
jEnd 2.465 2.465

8§ |Start 2.895 | 2.887 [2
JEnd 2926 | 2.926

9 Start 3.158 3.147 |
End 3172 3175

10 Start 3.607 3.628 I
End 3.622 3.637

11 Start 3.767 1

EMX06 01 .] — —

12 Start 3.981 3975 4,015 3.991] 4.015 3 3
End 4.011 3.981 4.023 4.011 4.023 »

13 Start 4.110 4.110 2 1
End 4.129 4.129

14 Start 4,229 1 4
End 4,264

14 Start 4,342 4,342 1
End 4,352 4,352

15 Start 4.617 4.617 2 1
End 4.639 1,639

16 Start 4,788 4,788 4,812 3 4
End 4.886 4,798 4.886

17 Start 5,010 5.016 3 1
End 5.047 5,045

18 Start 5.208 5,203 5,213 1 1
End 5233 5,207 3,231

19 [Start 5592 5.640 5.648 > >

118

1st Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch l'otal Touches in Episod
Test Subjc Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right
JEnd 5.672) 5.642 5.672
20 Start 5.730 5,723 |
End 5.769 5.770

119

Ist Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch l'otal Touches in Episod
Test Subje Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right
21 Start 6,162 6.162 1 2
End 6,194 6.194
1 Start 89 89 1
JEnd 141 141
2 Start 991 974 991 1.007 1 3
End 1.019 984 1,004 1,019
3 Start 2,789 1
|End 2.799
4 [start 3063 | 3.163 1
Jind 3.177] 3.177
3 Start 3,379 3,379 3,391 3.39]] 1
End 3,387 3 3.423 3.420
6 Start 3.537 3.542 1 1
End 3.553 3,553
7 Start 4.061 4,056 2 2
End 4140) 4.111
EMX06 0 8 S‘lz]rt %.608 %A(,‘(,”]]
End 5.644 5.650
9 Start 5.766 :
End 5.775
10 Start
End
11 Start
End P
12 Start
End
13 Start
End
14 Start
End
15 Start
JEnd

120

Ist Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch 'otal Touches in Episod
Test Subjc Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right
1 Start 2.661 2.708 2,703 2,710 3 3
End 2.697 2.746 2.707 2.746
2 Start 3,231 3,231 3.284 3.278 3.288 3 3
End 3,282 3.276 3.303 3.285 3.303
3 Start 4.807 4.827 4,831 1 1
End 4.826 4.847 4,851
4 Start 4,955 4.945 1 1
End 4,962 4.968
5 Start 5,152 5,152 1 1
End 5.185 5.180
6 Start 5,579 5,323 5.593 5.547 5.584 2 4
End 5,591 5.545 5.609 5.559 5.609
7 Start
End
EMX06 03 § g
End
9 Start
End
10 Start
End
11 Start
End
12 Start
End
13 Start
FEnd
14 Start
End
15 [Start
End

Report Prepared by

Dt

DAn)
CHWG#I/ZG!‘?'

121

1st Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Test Subj Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right
1 Start 635 627 664 1 2
End 661 679 674
2 Start 896 901 1 1
End 916 914
3 Start 897 901 2
End 916 914
4 Start 1,309 1,306 1.325 1,326 3 2
End 1,321 1,321 1,363 1,353
5 Start 1,577 1,593 1,605 1,601 1,621 5 2
End 1,602 1,598 1,615 1,618 1,632
6 Start 1,971 1,982 1,984 1,995 3 2
End 1,980 2,007 1,991 2,010
7 Start 2,471 2,480 2,481 2,486 2 3
End 2,475 2,484 25923 2,312
—— 8§ |start 3,765 | 3765 | 3,779 2 |
End 3,776 3,790 3,791
9 Start 4,247 4,251 4,253 2 1
End 4,250 4,264 4,261
10 Start 4,395 1
End 4,420
11 |Start 4,550
End 4,555
12 |Start 5,740 »
End 5,781
13 JStart
End
14 |Start
End
15 [Start
End

122

EMXO01

02

Test Subj Session Episode
1 IS{art

1st Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Left Right Left Right Left Right Left Right Left Right Left Right Left Right
Fiies me rEmaor =
228 228 1
|End 240 236
2 Start 1,504 1,505 1,528 1,541 3 3
{End 1,523 1,533 1.554 1.551
3 Start 2,171 2,176 2,180 2 1
End 2,176 2,192 2,193
4 Start 2,611 2,614 2,620 2 1
{End 2.614 2,632 2,631
5 Start 2,838 2,832 2,852 2.845 2,858 2,866 3 3
End 2.847 2.838 2,891 855 2.864 2.887
6 Start 3,134 3.134 1 |
End 3,142 3.145
fi Start 4,208 4,208 1 1
End 4,221 4.223
8 Start 4,748 4,749 1 1
End 4,759 4,758
9 Start 5,230 5,228 5.249 2 1
End 5,246 :"_-253 5,253
10 Start 5,650 1
End 5,650
11 Start
End
12 Start #
End
13 Start
End
14 Start
End
15 Start
End

123

1st Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Test Subj Session_EPisode Left Right Left _R_iuhl Left Right Left iilitht Left Right Left Right Left Right
1 Start 71 71 93
End 90 111 107
2 Start 1.212 1,184 1.222
End 1,232 1,218 1,236
3 Start 1,359 1,351 1.361
End 1,365 1,359 1,382
4 Start 1,740 1,740
End 1,768 1,770
5 Start 2913
End 2,524
6 Start 2,696 2,696
End 2,730 2,431
7 Start 3.975 3,975 3,985 3.99]
End 3,982 3,988 4,002 4,002
EMXO01 03 8 Start 5,497 f.-l%
End 5,507 5,507
9 Start 5.832 5,831 5,845 5,864
End 5,841 5,865 5,862 5,869
10 |Start 6,100 6.094
End 6,106 6,107
11 Start
End
12 |Start ’
End
13 Start
End
14 Start
End
15 Start
End

17

124

EMX02

01

Test Sub'l Session Episode

1st Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Left Right Left Right Left Right Left Right Left Right Left Right Left Right
A e T

1 Start 1.270 1,271 1,301 1,301 1 1
End 1,288 1,285 1,322 1.319

2 Start 1,796 1.796 1 1
End 1,804 1.805

3 Start 2,110 2,111 2,160 2,162 3 2
End 2,140 2.140 2,180 2.178

4 Start 2,246 2.260 2,33 2.338 2 2
JEnd 2,279 2.269 2,347 2,341

5 Start 2577 2,578 2,621 | |
JEnd 2,588 2.588 2,625

6 Start 2,730 2,731 2,777 2,782 1 1
End 2,774 2,761 2,778 2.847

7 Start 3,185 3.185 1
End 3,192 3.193

8 Start 4,719 4,719 1 i
End 4,728 4,728

9 Start 5,035 5,035 1 I
End 5.070 5.068

10 Start 5.461 5,462 5.473 5,470 5,496 5,495 1
End 5.471 5.464 5,494 5.492 5,499 5.497

1 Start 6,285 6,285 1 1
End 6,290 6.290

12 |Start ’
End

13 Start
End

14 Start
End

15 Start
End

YT

125

Ist Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
_Tlest Subj Session Episode Left Right Ltk Right Left _I{ight Left == Right Left Right Left Right ﬁft Right
1 Start 408 408
End 416 416
2 Start 521 520 546 546
End 527 527 561 561
3 Start 3.611
End 3,641
4 Start 3,801 3,801 3,822 3,822
End 3,816 3,817 3,873 3,884
5 Start 4,268 4,265 4,281 4,281
End 4,274 4.274 4,307 4.307
6 Start 4,661 4,673 4,674
JEnd 4,671 4,704 4,704
7 Start 5,259 5,258
End 5,278 3,277
EMX02 02 5ot S
End 5,996
9 Start
End
10 JStart
End
11 Start
End
12 Start »
End
13 Start
End
14 Start
End
15 Start
End

126

1st Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Test Subj Session Episode Left Right Left Ri=i1l Left Right Left Right Left Right Left Right Left Right
1 Start 1,342 1,343 1 1
End 1,391 1,350
2 Start 1,629 1
End 1,638
3 Start 1,822 1,822 1
End 1,828 1.831
4 Start 2,358 2,358 2,400 2,366 2,400 2 3
End 2,380 2.361 2.409 2.375 2.415
5 Start 3,327 1
End 3.342
6 Start 3.445 3,445 3,465 | 1
End 3,461 3.486 3,483
7 Start 3,705 3,682 3,705 3 2
End 3,734 3.697 3.734
EMX02 03 Pt
End
9 Start
End
10 Start
End
11 Start
{End
12 Start ’
JEnd
13 Start
JEnd
14 |Start
JEnd
15 Start
JEnd

127

1st Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Test Subj Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right
— - = e
1 Start 779
End 786
2 Start 830 830
End 840 865
3 Start 925 925
End 932 935
4 Start 1,055 1,062
End 1,080 1,080
5 Start 2.865
End 2.877
6 Start 2,931
End 2,941
7 Start 3,037
End 3,058
EMX03 01 8 Start 3.482
End 3,561
9 Start 4,975 4,980
End 4,988 4,988
10 Start 6.074
End 6,084
11 Start 6,206 6.191
End 6,231 6,232
12 |Start ’
End
13 Start
End
14 JStart
End
15 Start
End

T

128

Ist Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Test Subj Session Episode Left Riﬁhl Left R i;“'ld -Leﬂ Right Left Right Left Right Left Right Left Right
! Start 04 94 100 2 l
{End 96 108 108
2 Start 859 1
{End 869
3 Start 1,568 1.569 1.582 1.582 2 2
End 1,580 1,580 1.611 1.611
4 Start 1,685 1,684 2 1
End 1,706 1,705
5 Start 1,874 1.873 1
End 1,882 1.881
6 Start 1,965 1,965 1 1
End 1,979 1.980
7 Start 2,085
End 2,147
8 Start 2,484 2,484 |
End 2,506 2.506
9 Start 2,630 2,630 2,635 2,635 2 2
End 2,632 2,632 2,649 2.649
10 Start 2.753
End 2,765
11 Start 2,850 2.850 1 1
EMX03 02 End 2.865 2.863
12 |Start 3,157 3137 ’ 2
End 3,172 3,172
13 Start 3,339 3.339 3,374 3.370 3,376 1 |
End 3,350 3.350 3,391 3.373 3,392
14 Start 3,490 3,490 3.552 3,992 3.564 3,564 4 5
End 3,504 3.504 3,555 3.553 3,620 3.620
15 Start 3,706 3,706 |
End 3,723 3723
16 |Start 3,814 3.814 3,881 3.881 3 3
JEnd 3,834 3.834 3,898 3.898
17 |Start 4,595 4,595 4,607 4,604 4,629 4626 4,654 4,654 4 5
JEnd 4,604 4.601 4,622 4,622 4,643 4.643 4,675 4.675
18 |Start 4,804 4,804 2 1
JEnd 4,839 4,839
19 ISTaI‘t 4,921 4918 4,949 4923 5,007 4,949 5,012 4 3

129

Ist Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Test Subj Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right
End 4,943 4,922 4,961 4,943 5,030 | 4,960 5,027
20 Start 5,195 5,210 5,218 2 2
End 5,210 D21y 3,221
21 |Start 5,500 5,498 5,524 5,524 5,554 | 5,554 5,608 5 7
End 5,518 5,518 5,542 5,542 5.568 5,568 5.620
22 [Start 6,136 6,138 2 2
End 6,150 6,150
’

Y7

130

1st Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Test Subj Session Episode Left Right Left Right Left Risln Left Rish[Left Ri'izhl Left Résiu Left Right
| Start 192 184 2 2
End 202 205
2 Start 468 468 480 485 490 3 3
End 473 482 489 520 518
] Start 700 700 1
End 740 743
4 Start 1,647 |
End 1.672
5 Start 1.738 1.758 1 1
End 1,768 1.766
6 Start 1.954 |
End 1,982
7 Start 2,505 2,505 2,523 2
End 2.544 2.511 2.540
8 Start 3,028 3013 1 1
End 3.072 3,072
9 Start 3,296 3.291 3.396 3,392 3,455 3,455 4 5
End 3.326 3.324 3.408 3.411 3,523 3.523
10 [Start 3,566 3.563 2 1
End 3,584 3.584
EMX03 03 11 $tart 3.645 3.640 3,665 1 .
End 3,685 3,659 3.688
12 [Start 4,244 4,225 4311 # I 2
End 4,265 4,267 4,328
13 Start 4,404 4,382 4.416 | 2
End 4,425 4.409 4.425
14 [Start 4,483 4,487 I 1
End 4,495 4.495
15 Start 4,661 4,598 4,719 4,661 4,781 4,719 4,839 4,783 4,901 4,839 4,901 5 6
End 4,677 4.609 4,753 4,677 4,803 4,753 4,860 4.803 4,917 4.860 4919
16 |Start 5,068 5,065 5,199 5,199 5,257 5,257 3 4
End 5,147 5.147 5,219 5,219 5,276 5.276
17 JStart 5,440 5,445 2 1
JEnd 5,487 5.484
18 |Start 5,713 5,713 5,736 1 1
JEnd 3722 5,722 5,748
19 |Start 5815 5.815 1 I

T

131

1st Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Test Subj Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right
End 5822 3,822
20 Start 5,965 5,965 2 2
End 6,018 6.018
21 Start 6,179 6.179 1 1
End 6,205 6,201
’

YT

132

Ist Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Test Subj Session Episyde Left Rish% Left Right Right Left Right -Leﬂ Right Left Right Right
1 Start 75 81 107 102 2 2
End 103 95 124 127
2 Start 1,040 1,040 1,087 1,087 2 2
End 1.048 1.050 1,112 1,111
3 Start 1,445 1.445 1 1
End 1,460 1,462
4 Start 1.689 1,689 1,758 1,765 3 2
End 1,717 i 1,833 1.831
5 Start 2,198 2157 2,206 2 2
End 2,260 2.197 2.260
6 Start 2,743 2.737 2,744 2 2
End 2,800 2.742 2.800
7 Start 3.885 3,921 3,924 2 2
End 3.921 3.965 3,966
ENESOE 1 8 |Start 4,046 4,041 4,050 I 2
End 4,059 4.047 4.061
9 Start 4,590 4,594 4,636 1 4
End 4,646 4.620 4,646
10 |Start 4,998 4,998 5,021 2 2
End 5.018 5,038 5,035
11 Start
End
12 Start
End
13 Start
End
14 Start
End
15 Start
End

YT

133

Ist Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Test Subj Session Ep'is_ode Left Right Left Right Left Right Left Right Left Right Left Right Left Right
1 Start 1,932 1,932 1 |
End 1,950 1,950
2 Start 2,142 2,149 2,170 2,185 1 4
End 2,205 2,160 2,180 2,200
3 Start 2,615 2,618 2,624 2 1
JEnd 2,618 2.638 2,640
4 Start 2,903 2,910 1
JEnd 2,933 2,924
5 Start 3,233 3,233 3,238 3.298 1 3
End 3,272 3.234 2,270 3,332
6 Start 3.398 3.398 3,415 3,415 3,447 3,476 3,476 4 3
JEnd 3,407 3.405 3.432 3,427 3.454 3,492 3,492
7 Start 4,472 4,472 4,509 4,530 2 2
JEnd 4,498 4,498 4,529 4,529
EMX04 02 8 Start 4,817 4,817 4,832 4.1 2 3 2
End 4,828 4,828 4,853 4,853
9 Start 5,447 5.447 4 i
End 5,489 5,491
10 |Start 5,826 5,826 5.855 5,870 5,882 5,882 5911 5,911 5,960 5.960 5 5
End 5,851 5.849 5,870 5,880 5.898 5,900 5,946 5,946 5,982 5,982
11 Start
End
12 Start ’
End
13 Start
End
14 Start
End
15 Start
End

\

134

1st Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Test Subj Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right
AR P
| Start 2,183 2,179 2 2
JEnd 2,213 2.200
2 Start 2,405 2.421 2,419 2.449 2,446 3 2
End 2,415 2.446 2,441 2,452 2,449
3 Start 2,592 2,589 2,639 2.639 2,751 2,748 5 5
JEnd 2,631 2,633 2,681 2.681 2,789 2.790
- Start 2,859 2,856 2,882 2,882 2,955 2,955 2,985 2,985 6 6
End 2,876 2.875 2,890 2.890 2,980 2980 3,032 3.032
5 Start 3,114 3,114 1 1
JEnd 3,129 3.129
6 Start 3,362 3.362 3.402 3 3
{End 3,423 3.400 3.423
7 Start 3.620 3,620 3,701 3.701 5 3
End 3,665 3.665 3,775 3.774
EMX04 03 8 Start 3,974 3,974 4,053 3,994 4,053 1 2
End 4,005 3.991 4,059 4,032 4,059
9 Start 4,599 4,597 1 2
End 4.643 4.643
10 fStart 4,977 4,977 2 2
End 5.010 5.015
11 Start 5,281 5,289 5,293 2 6
End 5,289 5,320 5318
12 fStart 5,605 5.604 ’ 2
End 5.643 5.643
13 [Start
End
14 Start
End
15 Start
End

135

Ist Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Test Subj. Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right
JEnd 5,232 5207 5237
19 |Start 5,592 5.640 5.648 2 2
End 5,672 5.642 5.672
20 fStart 5,730 5. 723 1 1
JEnd 5,768 5,770
21 Start 6,162 6,162 1 2
JEnd 6,194 6,194
,

YT

136

1st Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Test Subj. Session Episode Left Right Left Right Left Right Left Riu& Left Right Left Right Left Right

l Start 159 166 173 180 4
End 163 171 178 183

2 Start 618 604 1
End 620 625

3 Start 1,273 1,279 1,285 3 3
End 1,277 1,309 1,309

4 |start 1,530 1,530 1 [
End 1,546 1,546

5 Start 1,706 1,706 2 3
End 1,759 1,758

6 Start 2,209 2,209 1 1
End 2,223 2,229

7 Start 2,447 2.452 5] 2
End 2,465 2,465

8 Start 2,895 2,887 1 2
End 2,927 2,926

9 Start 3,158 3,147 1
End 3,172 317D

10 [Start 3,607 3,628 1
End 3.622 3,637

11 Start 3,767 1

EMX06 01 s L — : e

12 [Start 3,981 3,975 4,015 3,991 4,015 ’ 3 3
End 4.010 3.981 4,022 4,011 4,023

13 |Start 4,110 4,110 2
End 4,129 4,129

14 [Start 4,229 1 4
End 4,263

14 Start 4,342 4.342 1 1
End 4,352 4,352

15 Start 4,617 4.617 2 1
End 4,639 4,639

16 |Start 4,788 4,788 4,812 3 4
End 4.886 4,800 4,886

17 |Start 5,010 5,016 3 |
End 5,047 5,045

18 |Start 5,208 5,203 5213] |

137

1st Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Test Subj Session Episode Left Right Left Right Left Right Left Ri‘ifln Left Right ._Left Right Left Right

1 Start 89 89 1 1
End 141 141

2 Start 991 974 991 1,007 1 3
End 1,019 983 1,002 1,019

3 Start 2,789 1
End 2,799

4 Start 3,163 3,163 1 I
End 3,177 3,177

5 Start 3,379 3,379 3,390 3,391 1
End 3,387 3,387 3,423 3,420

6 Start 3:537 3,542 1 1
End 3.553 3.553

7 Start 4,061 4,056 3 2
End 4,110 4,111

EMX06 02 8 Stan 5,608 f.m_]l] 1

End 5.645 5,650

9 Start 5,766 1
End 3015

10 Start
End

11 Start
End

12 Start -
End

13 [Start
End

14 Start
End

15 Start
End

138

Ist Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Test Subj Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right

e = R TTrAT dETA S et e o o

1 Start 2,661 708 2,703 2,710

LS
wd

End 2,697 746 2,707 2.746

2 Start 3,231 231 3,284 3,278 3,288

wa
-

W |2 B9 |19

End 3.282 277 3.303 3,286 3.303

Start 4,807 827 4,831 | 1

(%]

{End 4.826 846 4.851

4 Start 4,955 945 | 1

o | b |

JEnd 4.962 968

w

Start 55152 152 | 1

h

End 5,185 180

wh

wh
~J
o

N

6 Start 3, 5.522 5,593 5,546 5.584 2 4
End 5 5.545 5.609 5,560 5,609

wn
O
N

7 Start

End

8 Start

EMX06 03 -
End

9 Start

End

10 Start

End

11 Start

End

12 Start ’

End

13 Start

End

14 [Start

End

15 [Start

End

Report Prepared by

Yus/ T/AN
@WC@ SDM(W(’,
Jmnnf, /l/(aaubaFﬂ’S /Qé) A’PH{QMO{JQ/OH

Name

139

1st Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Test Subj Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right
1 Start 635 627 664 1 2
End 661 679 674
2 Start 896 901] I
End 916 914
3 Start 897 901 2
End 916 914
4 Start 1,309 1.306 1,325 1,326 3 2
End 1,320 1,320 1,363 1,353
5 Start 1,577 1,593 1,605 1,601 1,621 5 2
End 1,602 1,599 1,615 1,619 1,632
6 Start 1,971 1,982 1,984 1,995 3 2
End 1,980 2,007 1,991 2,010
7 Start 2,471 2,480 2,481 2,486 2
End 2,475 2,484 2.523 2512
EMXO01 01 8 Start 3,765 3,765 3,780 2 1
JEnd 3,775 3,790 3.791
9 Start 4,247 4,251 4,253 2
End 4,250 4,264 4,261
10 Start 4,395
End 4,420
11 Start 4,550 1
End 4,555
12 JStart 5,740 ’
End 5,781
13 Start
End
14 [Start
End
15 Start
End

WO

140

Ist Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Test Sub'l Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right
1 Start 228 228 1
End 240 239
2 Start 1,504 1,505 1,529 1,541 3 3
End 1,523 1.533 1:555 1,551
3 Start 2,171 2.176 2,180 2
End 2,176 2,192 2,193
4 Start 2,611 2,614 2,620 2 1
End 2,614 2.632 2,631
5 Start 2,838 2,832 2,850 2.845 2,858 2.866 3 3
End 2.845 2.838 2,891 2.855 2.864 2.887
6 Start 3,134 3,134 1
End 3,142 3.145
7 Start 4,208 4,208 I |
JEnd 4,221 4,223
EMX01 02 8 Start 4,748 4,749 1 1
End 4,759 4,758
9 Start 5,230 5,228 5,249 2
JEnd 5,246 5,254 5253
10 fStart 5,650 |
JEnd 5,650
11 Start
End
12 fStart ’
End
13 fStart
End
14 Start
End
15 [Start
End

141

EMXO01 03

Test Subi Session Episode

Ist Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Left Right Left Right Left Right Left Right Left Right Left Right Left Right
S 2 e = S Sam ==
1 Start 71 71 93
End 90 111 107
2 Start 1,212 1,184 1,222
End 1,232 1217 236
3 Start 1,359 1,351 361
End 1,365 1,358 1,382
4 Start 1,740 1,740
End 1,768 1,770
5 Start 2513
End 2,524
6 Start 2,696 2,696
End 2,730 2,731
7 Start 3,975 3,975 3,985 3,991
End 3,982 3,989 4,002 4,002
8 Start 5.497 5,496
End 5.507 5,507
9 Start 5.832 5.831 5,845 5.864
End 5,841 5,865 5.861 5,869
10 Start 6,100 6,094
End 6,106 6,107
11 Start
End
12 Start ’
End
13 Start
End
14 Start
End
15 Start
End

NN

142

Ist Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Test Subj Session Episode Left Right Left Right Left Riﬂ._ﬂht Left R iah_! Left Right Left Right Left Right

1 Start 1,270 g 1,301 1,301 1 I
End 1,288 1,285 1,322 1,319

2 Start 1,796 1.796 1 |
End 1,804 1,805

3 Start 2,110 2,111 2,160 2,162 3 2
End 2,140 2.140 2,180 2.178

4 Start 2,246 2,260 2,33 2,338 2 2
End 2,279 2,270 2,347 2,341

5 Start 2,577 2,578 2,621 1 I
End 2,587 2.588 2,625

6 Start 2,730 2,731 2,777 2,782 1 1
End 2,774 2,761 2,778 2.847

7 Start 3,185 3,185 1 I
End 3,192 3:193

EMX02 01 8 Start ;o 4,719 4,719 1 1

End 4,728 4,728

9 |Start 5,035 5,035 | 1
End 5,070 5,068

10 fStart 5,461 5,462 5,473 5,470 5,497 5,495 1
End 5.470 5,464 5,494 5.492 5.499 5.497

11 [Start 6,285 6,285 ! I
End 6.290 6.290

12 Start ’,
End

13 Start
End

14 [Start
End

15 |Start
End

143

1st Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Test Subj Sessio_n Episode Left Right Left Right Iﬁt Right -L;ﬂ Right Left Iwn Left Right Left Right
1 Start 408 408
End 416 416
2 Start 521 520 546 546
End 526 327 561 561
3 Start 3.611
End 3.641
4 Start 3,801 3.801 3,822 3,822
End 3:815 3.817 3.873 3.884
5 Start 4,268 4,265 4,281 4,281
End 4,275 4,275 4,307 4,307
6 Start 4,661 4,673 4.674
End 4,671 4,704 4.704
7 Start 5,259 5,258
End 5,278 5,277
EMX02 02 8 Start 5,950
End 5,996
9 Start
End
10 Start
End
11 Start
End
12 [Start ’
End
13 Start
End
14 Start
End
15 Start
End

N V)N

144

EMXO02

1st Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Test Subf Session Episode Left RI=|]T Left i{xilu Left Right Left Right Left Right Left Right Left Right
1 Start 1,342 1,343 1]
End 1,391 1.350
2 Start 1,629 1
End 1,638
3 Start 1,822 1,822 1 1
End 1,828 1.831
4 Start 2,358 2.358 2,400 2,366 2.400 2 3
End 2,380 2.360 2.409 2.375 2.415
5 Start 3,327 1
End 3.342
6 Start 3.445 3.445 3.465 I
End 3.460 3.486 3,483
7 Start 3,705 3.682 3.705 3 2
End 3,734 3.696 3,734
03 8 Start
End
9 Start
End
10 Start
End
11 Start
End
12 Start ’
End
13 Start
JEnd
14 Start
JEnd
15 Start
JEnd

145

Ist Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Test Subj Session Episode Left Right ._[reft Right Left Right Left Right Left Right Left Right Left Right
1 Start 779
End 785
2 Start 830 830
End 840 865
3 Start 925 925
End 932 935
B Start 1,055 1,062
End 1.080 1,080
5 Start 2.865
End 2,877
6 Start 2,931
End 2,940
7 Start 3,037
End 3,058
EMX03 01 8 Start 3.482
End 3,560
9 Start 4,975 4,980
End 4,988 4,088
10 Start 6.074
End 6,084
11 Start 6,206 6,191
End 6,231 h,232
12 Start ’
End
13 Start
End
14 Start
End
15 Start
End

WOR

146

1st Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Test Subj. Session Episode Left Right Left Right Left Right Left Right Left Rislzz Left Right Left Right
| Start 94 94 100 2
End 96 108 108
2 Start 859
End 869
3 Start 1,568 1,569 1,583 1.583 2 2
End 1,580 1.580 1,611 1.611
4 Start 1,685 1,684 2 1
End 1,706 1,705
5 Start 1.874 1,873 1 |
JEnd 1,882 1.88 1
6 Start 1,965 1,963 1 1
JEnd 1,980 1.980
7 Start 2,085
JEnd 2,147
8 Start 2.484 2,484 1 1
End 2.506 2.506
9 Start 2,630 2,630 2,635 2,635 2 2
End 2.632 2.632 2,649 2.649
10 fStart 2,753
End 2.765
11 Start 2,850 2.850 | 1
EMX03 02 End 2,865 2.865
12 [Start 3,157 3157 ’ 2
End 3,172 3192
13 [Start 3,339 3.339 3,374 3.370 3,376 1 1
End 3,350 3.350 3.391 3.373 3.392
14 Start 3,490 3,490 3,952 3.552 3.564 3,565 4 5
End 3,504 3.505 3.555 3555 3,620 3,620
15 [Start 3,706 3,706 1
End 3,723 1. 723
16 [Start 3,814 3,814 3.881 3,881 3 3
End 3,834 3.834 3,898 3.898
17 [Start 4,595 4,595 4,607 4,604 4,629 4626 4,654 4,654 4 5
End 4,604 4,601 4.622 4.622 4.643 4.643 4,675 4.675
18 JStart 4,804 4.804 2 I
End 4,839 4.839
19 |Start 4,921 4918 4,949 4.923 5,007 4,949 5,012 4 3

147

1st Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Test Subj Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right
End 4,943 4,922 4,961 4,943 5,030 § 4.960 5,027
20 Start 5,195 5,210 5,218 2 2
End 5,210 5217 5,221
21 Start 5,500 5.498 5,524 5,524 5,554 5,554 5,608 5 7
End 3,518 5518 5,542 5,542 5,568 5.568 5,620
22 Start 6,136 6,138 2 2
End 6,150 6,150
,

WO

148

Ist Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Test Subj Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right
S = i s
1 Start 192 184 2 2
End 202 205
2 Start 468 468 480 485 490 3 3
End 473 482 489 520 518
3 Start 700 700 1 |
End 740 743
4 Start 1,647 1
End 1,672
5 Start 1,738 1,758 1 1
End 1,766 1.766
6 Start 1,954 1
End 1,982
7 Start 2,505 2,505 2.523 2 1
End 2,542 2511 2.540
8 Start 3,028 3,013 1 1
End 3,072 3,072
9 Start 3,296 3,291 3,396 3.392 3,455 3,455 4 3
End 3.326 3,324 3,410 3411 3,523 3,523
10 [Start 3,566 3.563 2
End 3.584 3.584
EMX03 03 11 Start 3,645 3.640 3.665 1 2
JEnd 3,685 3.659 3.688
12 Start 4,244 4,225 4,311 ’ 1 2
JEnd 4,265 4.267 4.328
13 [Start 4,404 4,382 4.416 | 2
End 4,425 4.409 4.425
14 |Start 4,483 4,487 1
JEnd 4.495 4.495
15 [Start 4,661 4,598 4,719 4,661 4,781 4,719 4,839 4,783 4,901 4,839 4,901 5 6
End 4,677 4.609 4,753 4.677 4,803 4.753 4,860 4.803 4917 4,860 4,919
16 IStart 5,068 5,065 5.199 5,199 S5.257 5257 3 4
JEnd 5,147 5,147 5,219 5.219 5,276 5.276
17 |Start 5,440 5,445 2 1
End 5,487 5.484
18 [Start 5,713 3,713 5,736 1 1
End 5,722 5,724 5.748
19 |Start 5,815 5,815 1 I

149

Ist Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Test Subj Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right
End 5,822 5,822
20 |Start 5,963 5,965 2 2
End 6,018 6,018
21 Start 6,179 6,179 1 1
End 6,205 6,205
>

W

150

Ist Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Test Subj Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right
" s s e e et sy
1 Start 75 81 107 102 2 2
JEnd 103 95 124 127
2 Start 1,040 1,040 1,087 1.087 2
End 1,048 1.050 112 1,111
3 Start 1.445 1,445 1
End 1,460 1.462
- Start 1,689 1,689 1,758 1,765 3 2
End 1,717 1,711 1,833 1.831
5 Start 2,198 2157 2,206 2 2
End 2.260 2.196 2.260
6 Start 2,743 2,737 2.744 2 2
End 2,800 2,742 2.800
7 Start 3,885 3,921 3,924 2 2
End 3,921 3.963 3,966
EMX04 01 8 Start - 4,046 4,041 4,050 1 2
End 4,059 4.047 4.061
9 |Start 4,590 4,594 4,636 1 4
End 4,646 4.620 4.646
10 |Start 4,998 4,998 5,021 2 2
End 5,018 5.038 5,035
11 Start
End
12 Start ’
JEnd
13 JStart
End
14 Start
End
15 fStart
End

151

EMX04

Ist Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
m Subj ‘Session Episode Left Riuhl_ Left Right Left Riui_u Left Right Left Right Left Right Left Right

1 Start 1,932 1,932 1 1
End 1,950 1.950

2 Start 2,142 2,149 2,170 2,185 1 4
End 2,205 2,160 2,180 2,200

3 Start 2,615 2,618 2,624 2
End 2,618 2,638 2,640

4 Start 2,903 2,910 1 1
End 2,933 2,924

5 Start 3,233 3,233 3,238 3,298 1 3
End 3,272 3.233 3.270 3.332

6 Start 3.398 3.398 3,415 3.415 3,447 3,476 3.476 4 3
End 3.407 3,405 3,432 3,427 3.454 3,492 3,492

7 Start 4,472 4.472 4,509 4,530 2 2
End 4,498 4,500 4,529 4,529

02 8 Start 4,817 4,817 4,832 4,832 2 2

End 4,828 4,828 4,853 4,853

9 Start 5,447 5.447 4 2
End 5,489 5,491

10 Start 5,826 5,826 5,855 5.870 5,882 5,882 5,911 5911 5.960 5.960 5 5
End 5.851 5.850 5,870 5.880 5,898 5,900 5,946 5,946 5,982 5,982

11 Start
End

12 |Start ’
End

13 Start
End

14 Start
End

15 Start
End

\,N\\

152

1st Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Test Sub]' Session Episode Left — Right , Left Right Left Ml Left Right Left Right -Leﬁ Right Lezt_ Right
| Start 159 166 173 180 4
JEnd 163 171 178 183
2 Start 618 604 1 1
End 620 625
3 Start 1,273 1.279 1,285 3 3
End 1,277 1,309 1,309
4 Start 1,530 1,530 1 1
End 1,546 1,546
5 Start 1,706 1,706 2 3
End 1,759 1,758
6 Start 2,209 2,209 1
End 2223 2,223
7 Start 2,447 2,452 2 2
End 2,465 2,465
8 Start 2,895 2,887 1 2
End 2,927 2,926
9 Start 3,158 3,147 1 1
End 3,173 3,175
10 JStart 3,607 3,628 1
End 3,622 3.637
11 Start 3,767 1
EMX06 01 End 3.773
12 Start 3,981 3,975 4,015 3,991 4.015 ’ 3 3
End 4,010 3,980 4,022 4,011 4,023
13 Start 4,110 4,110 2 1
JEnd 4,129 4,129
14 Start 4,229 1 -+
End 4,263
14 Start 4.342 4,342 1 1
End 4,352 4,352
15 |Start 4,617 4,617 2
End 4,63 4,639
16 |Start 4,788 4,788 4,812 3 4
End 4,886 4.800 4,886
17 JStart 5,010 5.016 3 1
End 5,047 5,045
18 Start 5,208 5203 5213 1

153

1st Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Test Subj Session Episode Left Right Left Right Left Right Left Right Left Right Left Right Left Right
End 5,232 5.207 3.237
19 |Start 5,592 5.640 5,648 2
End 5,672 5.642 5,672
20 |Start 5,730 5,723 I
End 5,768 5.770
21 Start 6,162 6,162 I
End 6,194 6.194

154

EMX06

1st Touch 2nd Touch 3rd Touch 4th Touch 5th Touch 6th Touch Total Touches in Episode
Test Subi Session Epis.ode Left Right Left Ri:iihl__-Left Right Left Liuht Left Right Left Right Left Right
| Start 8?)1 89 1 1
End 141 141
2 Start 991 974 991 1,007 1 3
End 1,019 983 1.002 1,019
3 Start 2,789 1
End 2,799
4 Start 3,163 3,163 1 1
End 3,177 3,177
5 Start 3,379 3,379 3,390 3,391 1 1
End 3,387 3.387 3,423 3,420
6 Start 3:337 3.542 1
End 3,553 3,553
7 Start 4,061 4,056 2 2
IEnd 4,110 4,111
02 8 Start 5,608 5,600] 1
End 5,645 5,650
9 Start 5,765
End 5,715
10 Start
End
11 Start
End
12 Start ’
End
13 Start
End
14 Start
End
15 Start
End

155

Test Subj Session Episode

Left

1st Touch

Right

Left

2nd Touch
Right

EMX06 03

1

Start

.708

2

,703

Left

2,710

3rd Touch
Right

4th Touch
Left Right

Left

5th Touch
Right

6th Touch
Left Right

Total Touches in Episode

Left

Right

t

(¥}

End

.746

2

707

2,746

(§9]

Start

Lol |2

231

~
b

,284

L

End

LI | 2

3977

i

3,303

o | ld

(&S]

Start

o
~]

4

827

4,

831

End

1

845

4.

851

Start

wh o
N (e}

4

945

End

Rl ol Rl

(=)

4

968

wn

Start

th

5

;152

End

wn

| I

oo | L

g

5.180

Start

n

nl=|=Fo|‘of [ccfiz |t

~l
L]

572

=

h
o
(V5]

5.546

(¥}

584

2

End

n

wn
o

543

n

(=2
Q
O

5.560

5.609

Start

End

Start

End

Start

End

Start

End

Start

End

Start

End

Start

End

Start

End

Start

End

Report Prepared by

Name

WONG p W

Appendix H: Matlab scripts

156

157

%Prepare Input Batch file
inputfile = "G:\Tim's Lab\EMXMas\PalmGridBatchl . xlsx";

delimiter="";
PalmGridBatch_struct =importdatalinputfile,delimiter,1);

Cylinder = PalmGridBatch struct.data.Sheetl;
No_of entries = size(Cylinder,1);
outputfile = "G:\Tim's Lab\EMXMas\PalmGridParam.xlsx" ;

for i=1:No_of entries
xlswrite(outputfile . PalmGridBatch struct.textdata.Sheet1(i,2), "PalmGridSheet”, "C2");:
xlswrite(outputfile ,PalmGridBatch struct.textdata.Sheet1(i,3), "PalmGridSheet”, "C3");
xlswrite(outputfile . PalmGridBatch struct.textdata.Sheet1(i,4), "PalmGridSheet”, "C4");:
xlswrite(outputfile,PalmGridBatch_struct.data.Sheetl(i,1), "PalmGridSheet”, "C5");
xlswrite(outputfile ,PalmGridBatch struct.data.Sheet1(i,2), "PalmGridSheet”, "C6");
xlswrite(outputfile,PalmGridBatch_struct.data.Sheet1(i,3), "PalmGridSheet”, "C7");

string = ["Start Processing File: ", PalmGridBatch struct.textdata.Sheetl(i,1)];
disp(string);

FunctionPalm LeftRefine();

FunctionPalm RightRefine();

string = ["Complete execution of file: ", PalmGridBatch_struct.textdata.Sheetl(i,1)];
disp(string);

string = (" g
disp(string):

end
clear

158

%Parameter Script
function FunctionPalm LeftRefine()

GprAdsdrkrgrktrrt Pead PalmGrid Parameter Files #¥d®xsstq
inputfile = "G:\Tim's Lab\EMXMas\PalmGridParam.x1sx";

delimiter="";
PalmGridParam struct =importdatalinputfile,delimiter,1);

%**************** Step]: IHDUT Files Specificatioﬂs ook sk ok ok ook ok sk oRok ok sk ok Rk Rk R ok

pc_cutoff = 0.1; % cutoff probability of predicted coordinates

Frame_Rate = 25; %Video recorded in 25 frames per second

Center X = PalmGridParam struct.data.PalmGridSheet(1,1); %Cartesian Coordinates of Center (X,Y) of &
Cylinder

Center Y = PalmGridParam_struct.data.PalmGridSheet(2,1);

Inner_Diameter = PalmGridParam_struct.data.PalmGridSheet(3,1); %Inner diameter of cylinder in pixels

filename = char(PalmGridParam struct.textdata.PalmGridSheet(1,1));
video = char(PalmGridParam_struct.textdata.PalmGridSheet(2,1));

Opk sk gk sk sk Step b Smoothing Specifications EEEEEER R R R RS L E S

LabeledPointsPerPaw = 6; %Number of labeled points per paw
Smooth window = 24; %Size of time window for initial signal smoothing

O Rk s ofefe sk g e g Step 3 Left § Right Paw POlar Conversion S%®s s sk dokfomsgkokffor

Peak Threshold = 3: %A1l data within 2 pixels of local peaks are excluded

R RERRE R R e E. Shep oy Extrack Congruent Zones Specificat long FEsEmesssesie:

TimeWindow = 6; %Specify time window of smoothing

Threshold = 5; %Specify threshold of screening within 5 pixels

No_of_labeled_points = 6; %Specify number of labeled points per paw

Min_Slow Movement Frames = 3; %Minimal Number of consecutive slow movement frames that paw shall be
held before considering a contact

Min Flag To_Stay = 0; %Minimal Number of stable points detected in any particular frame to be ¥
considered in Congruence Zone

area_statistics_columns = 13;

R RERera el Stan 51 Extract Colerent :Subfragment Specifications Heesiodies

Max_Palm_Threshold = 8; %Palm that moves beyond 8 pixels per frame shall be considered fast movement
Min Palm Threshold = 5; %Palm that moves below 5 pixels per Irame shall be considered slow movement
Stationary Mvt_Threshold = 1; %Average Movement of less than 1 pixels per frame is considered
stationary movements

safety margin = 0.85; %Safety margin of Inner Diameter, within which paw most likely not wall rearing

Min_Congruence = 2; %MC=2; Minimum number of congruence points reguired to count as congruent intervals
Max_SubFragment Gap = 2: %Maximum number of frames that two subfragments can be separated in order to ¥
be considered merging two subfragments as one

Congruence_window = 8; %CW = 6; Number of frames (hence time windows) within which minima of FingerTips ¢
- Palm are coherently reached

Inspection_window = 12; %IW = 12; Time Window within which congruence shall be inspected

Columns_of_SubFragments = 11;

GprAEEk kR RERER*EE Step 6; Extract Congruent Points Specificationg ¥#ks¥sfksxids

AR EXRERERRERERE Step T Decisions Braluatien Specifications FHEERFREERiterirs

Fragment_ ref = 0;

Crawling_low_threshold = 10;

Crawling_high threshold = 100;

Minimum_touch duration = Frame Rate * 0.1: % At least 0.1 seconds of slow movements to classify as v
stable touch

Min stat_computation = 3; %Minimum time frames below which repartitioned subfragment will not be 4
computed of statistics

Yariation TH = 13;

Yariation High TH = 100;
Max_radii_differentials = 120;
Inner_radius_outlier_removal_factor = 1.0;

Transition TH = 100; %change in number of pixels between frame exceed 100 as transition threshold

GErkRREEERrRRs Otan 8+ Consolidate subfragnents ifito €pisodeg ¥eEkFriirerry
%Time difference within which subfragments consolidate

Consolidate SubFrag time = 3;

IMinimum Episode Time Parameter refers to the least possible episode
%considered for reporting

Min_Episode_Time = 0.25;

O e s oo ook oo ok Step 9: Output Files Specifications Hokk kR Rk R R Rk Rk kR Rk R Rk R

outputfile = char(PalmGridParam struct.textdata.PalmGridSheet(3,1));

G gk dote sk dok Rk k HkE Qraprt Main Pfogfam e ofeofe s S e ofe sfe s s ok ok ofe sk o ofe ofe sk sk s sfeofe Sfe o sk ook sk sfeokesfeok sk ok

Gpk kg ok fk gk ko Input Files SpeCifiCﬁtiOHS EEEEE SRS EEE SRS ST

FProcess Left Paw
Process_left_paw = 1;

RawTable=csvread(filename,3,1);
[no_of_rows, columns]=size(RawTable);

%Initialize Left Front Paw and Right Front Paw Arrays
Lip = zeros(no of rows, 12);

Lip P = zeros(no_of_rows, 7);

Rfp = zeros(no_of rows, 12);

Rfp P = zeros(no_of_rows, 7);

for i=l:no_of rows %Assign Rawlable to Tables Head/Lfp/Rfp/Lbp/Rbp, and evaluate Likelihood
%Lfpl = Left Front Paw's Thumb

159

%Lfp2 = Left Front
%Lfp3 = Left Front
%Lfp4 = Left Front
%Lfp5S = Left Front
%Lip6 = Left Front

Paw's Index finger
Paw's Long finger
Paw's Ring [inger
Paw's Small finger
Paw's Radius

Lfp(i,1)=RawTable(i,l); %Lipl x
Lip(i,2)=RawTable(i,2); %Lipl v
Lfp(i,3)=RawTable(i,4); %Lip2 x
Lip(i,4)=RawTable(i,5); %Lip2 v
Lfp(i,5)=RawTable(i,7): %Lip3 x
Lip(i,6)=RawTable(i,8); %Lip3 v
Lip(i,7)=RawTable(i,10); %Lipd x
Lip(1,8)=RawTable(1,11); %Lip4 v
Lip(i,9)=RawTable(i,13); %Lip5 x
Lip(i,l10)=RawTable(i,14): %Lip5 v
Lip(i,11)=RawTable(i,16); %Lipt _x
Lip(i,12)=RawTable(i,17); %Lip6 v

Lip P(i,1)=RawTable(i,3);
Lip P(1,2)=RawTable(1,6);
Lip P(i,3)=RawTable(i,9);
Lip P(i.4)=RawTable(i,12); %Likelihood Lip4
Lip P(1,5)=RawTable(1,15); %Likelihood Lip5
Lip P(i,6)=RawTable(i,18); %Likelihood Lip6

Reliability = 6; %Compute Reliability of Coordinates in Head

for j=1:6
if Lip P(1,
Reliabi
end
end
Lip P(i,7)=Reli

%Rfpl = Right Front
%Rfp2 = Right Front
%Rfp3 = Right Front
%Rfp4 = Right Front
%Rip5 = Right Front
%Rfp6 = Right Front

7)) < pc_cutoff
lity=Reliability-1;

ability;

Paw's Thumb
Paw's Index finger
Paw's Long finger
Paw's Ring finger
Paw's Small finger
Paw's Radius

Rip(i,1)=RawTable(i,19); %Ripl x
Rip(i,2)=RawTable(1,20); %Ripl_ vy

%L1ikelihood Lipl
%likelihood Lip2
%Likelihood Lfp3

Rifp(i,3)=RawTable(i
Rip(i,4)=RawTable(i
Rifp(i,5)=RawTable(i
Rip(i,6)=RawTable(i
Rfp(i,7)=RawTable(i
Rfp(i,8)=RawTable(i
Rfp(i,9)=RawTable(i

22);5
,23);5
,25);
,26);
,28)5
,29);
31);

TRip2 x
YRIp2. v
BRIp3 x
YRIp3_y
HRipd x
%WRipd vy
WRip3 x

Rfp(i,10)=RawTable(1,32); %Rip3 vy
Rip(i,11)=RawTable(1,34); %RIip4 x

160

161

Rfp(i,12)=RawTable(1,35); %Ripd v

Rfp P(1,1)=RawTable(1,21); %Likelihood Rip 1
Rip P(i,2)=RawTable(i,24); %Likelihood Rip 2
Rip P(1,3)=RawTable(i,27); %Likelihood Rip 3
Rip P(i,4)=RawTable(i,30); %Likelihood Rip_4
Rfp P(i,5)=Rawlable(i,33); %Likelihood Rfp 3
Rip P(i,6)=RawTable(i,36); %Likelihood Rip 4

Reliability = 6; %Compute Reliability of Coordinates in Left Front Paw
for j=1:6
if Rfp P(1,i) < pc_cutoff
Reliability=Reliability-1;
end
end
Rfp P(i,7)=Reliability;

end

O el s el safesfe g e e e e Smoothing Specifications e s sfe ok of e o odeofe s ofe e ook sfesfe e sfesfe sl sfesfe e sk o

%Smooth the predicted coordinates by averaging +/- 12 extracted coordinates
half Smooth window = Smooth window / 2;

buffer = zeros(no of_rows, 2*LabeledPointsPerPaw);
for 1 = 1:half Smooth window %Smooth Left Front Paw for first few no ol rows
for j= 1:2*LabeledPoint sPerPaw
buffer (1,j) = Lip (i.j);
end
end
for i = half_Smooth window: (no_of_rows-half_Smooth_window) %Bevond the first few no_of_rows, Lip¥
coordinates are smoothed based on past Smoothed window records
for j= 1:2*LabeledPointsPerPaw
Avg_coor = 0.00;
for ¥ = 0:half Smooth window
Avg_coor = Avg_coor + (Lfp (1-k+1,]) + Lip(i+k, 1))/ ((k+1)/2);
end
buffer (i,j) = Avg_coor / Smooth_window;
end
end
for 1 = (no_of_rows-half_Smooth_window):no_of_rows %Smooth Left Front Paw for last few no_of_rows
for j= 1:2*LabeledPointsPerPaw
bulfer (1,j) = Lip (1.1);
end
end
filteredLip = buffer;

for 1 = 1:half Smooth_window %Smooth Right Front Paw for first few no of rows
for j= l:2*LabeledPointsPerPaw
buffer (i.j) = Rfp (i,i);
end
end

162

for i = half_Smooth window: (no_of_rows-half_Smooth_window) %Bevond the first few no_of_rows, Rip¥
coordinates are smoothed based on past Smoothed window records
for j= 1:2*LabeledPointsPerPaw
Avg_coor = 0.00;
for k = 0:half Smooth window
Avg_coor = Avg_coor + (Rfp (1-k+1,]) + Rip{i+k, 1))/ ((k+1)/2);
end
buffer (i,j) = Avg coor / Smooth window;
end
end
for 1 = (no_of rows-half Smooth window):no of rows %Smooth Right Front Paw for last few nc_of rows
for j= 1:2*LabeledPointsPerPaw
buffer (i.j) = Rfp (i.,i);
end
end
filteredRfp = buffer;

O fe e s el s afe e e o e e ke Lefl % nght Paw Polaf Convers jon sk oo dol ook ko ook

Lfp Polar Radius = zercs(no_of_rows,8);
Lfp Polar_Angles = zeros(no_of_rows,6);

Inspect_Range = floor(Frame Rate/4);
Minimum_Inspection Window = 6;

for i=1:no of rows

%Translate five Left Front Paw fingertips' cartesian to polar coordinates

[Lfp Polar Angles(i,1),Lfp Polar Radius(i,1)]= cart2pol(filteredLfp(i,1)-Center X,filteredLfp(i,2)- ¥
Center_Y);

[Lfp Polar_Angles(i,2),Lfp Polar Radius(i,2)]= cart2pol(filteredLfp(i,3)-Center X, filteredlLip(i,4)- v
Center_Y):

[Lfp Polar_Angles(i,3),Lfp Polar Radius(i,3)]= cart2pol(filteredLfp(i,5)-Center X,filteredLip(i,6)- v
Center_Y):

[Lfp_Polar_Angles(i,4),Lfp Polar Radius(i,4)]= cart2pol¢TilteredLfp(i,7)-Center X,filteredLip(i,&)-
Center_Y);

[Lfp_Polar_Angles(i,5),Lfp Polar_Radius(i,5)]= cart2pol¢filteredLfp(i,9)-Center X,filteredLip(i,10)- ¢
Center_Y);

[Lfp Polar Angles(i,6),Lfp Pelar Radius(i,6)]= cart2pol(filteredLfp(i,11)-Center X,{ilteredLip(i,12) ¢
-Center_Y);

end
Polar Radius = Lfp_Polar Radius;
Lfp Polar_Radius = zercs(no_of_rows,6);

Lfp Polar Angles = zeros(no of rows,6);

for i=l:no_of rows

%Translate five Left Front Paw fingertips' cartesian to polar coordinates

[Lfp Polar_Angles(i,1),Lfp Polar Radius(i,1)]= cart2pol(Lip(i,1)-Center X,Lip(i,2)-Center_Y);
= cart2pol({Lip(i,3)-Center X,Lip{i,4)-Center Y);
= cart2pol(Lip(i,5)-Center_X,Lip{i,6)-Center_Y);
= cart2pol(Lip(i,7)-Center X,Lip{i,8)-Center Y);
[Lip Polar_Angles(i,5),Lfp_Polar_Radius(i,5)]= cart2pol(Lfp(i,9)-Center_X,Lip(i,10)-Center_Y);
[Lfp Polar_Angles(i,6),Lip Polar Radius(i,6)]= cart2pol(Lip(i,11)-Center X,Lip(i,12)-Center_Y);

[Lfp Polar_Angles(i,2),Lfp Polar_Radius(1,2)]
[Lfp_Polar_Angles(i,3),Lfp Polar_Radius(i,3)]
[Lfp_Polar_Angles(i,4),Lfp Polar_Radius(i,4)]
]
]

end

Raw Polar Radius = Lfp Polar Radius:

GpRrEERRRRE RIS Brfiratt (ColBret Zones StECiTigations S rsmatrris
%Initialize working arrays

Average_Polar_Radius = zeros(no_of_rows, No_of labeled_points*2);
Congruence_row = zeros(no_of_rows,1);

%Average Radial Displacements of each labeled points to extract principal
%axes
Average_Factor = 2 * TimeWindow + 1;
for 1= (TimeWindow + 1): (no_of_rows - TimeWindow)
for j=1:6
Average Pr = 0;
for k = (i-TimeWindow): {i+TimeWindow)
Average Pr = Average Pr + Polar_Radius(k.ji);
end
Average_Pr = Average_Pr / Average_Factor;
Average Polar Radius(i.]) = Average Pr;
Average_Polar_Radius(i,j+No_of_labeled_points) = Average_Polar_Radius(i,j)
Average Polar Radius(i-1,i);
end
end

%Filter no_of_rows whose average radial displacement of either labeled points are
%beyond Threshold
Average_Polar_Radius_templ = Average_Polar_Radius;
for i= (TimeWindow + 1): (no_of_rows - TimeWindow)
Flag_to_stay = 0; % Inspect all ?radius within threshold
for j=No_of_labeled_points+l:No_of_labeled_points*2

4

163

if (abs(Average Polar Radius templ{i,j)) < Threshold &% abs(Average Polar Radius templ(i,i)) > ¥

)
%If any labeled points difference from last labeled points <
%Threshold, flag the row to stay
Flag to stay = 1;
end
end
%1f all labeled points radial displacement > Threshold, paw is likely
%moving => unlikely to touch wall / very slow locomotion / resting on
%floor
if Flag_to_stay = 0

164

for j=1:No_of_labeled_points * 2
Average Polar_Radius_templ(i,j)=0;
end
else
Congruence_row (1) = 1;
end
end

%Filter Congruence no_of rows for at least 2 out of 5 finger tips demonstrate
%slow movements
Average Polar Radius temp2=Average Polar Radius_templ:
for i=1l:no_of rows
if Congruence_row(i) > 0
Flag to_stay = 0;
for j= (No_of_labeled_points + 1):(No_of_labeled_points*2 - 1)
if abs(Average Polar Radius_temp2(i,j)) < Threshold && abs(Average Polar Radius_temp2(i,j)) 4
>0
%Count number of finger tips that demonstrate slow movements
%between frames
Flag_to_stay = Flag_to_stay + 1;
end
end
if Flag to_stay < Min Flag To_Stay
%if 1 out of 5 fingertips demonstrate movement < (Threshold; currently = 5)
%pixels between successive frames; the frame can stay
for j=1:No_of labeled points * 2
Average Polar Radius temp2(i,j) = 0:
Congruence_row(i) =
end
end
end
end

%Eliminate discrete no of rows where consecutive congruence frames <
%(Min Slow Movement Frames = 4)
Average_Polar_Radius_temp3 = zeros{no_of_rows, No_of_labeled_points*2);
for i=1:no_of_ rows-1
if(Congruence_row(i,1) < 1 && Congruence_row{i+l,1) >= 1)
%transition to start of inspection fragment
Start_fragment = 1+1;
elseif (Congruence_row(i,l) >= 1 && Congruence_row(i+l,1) < 1)
%transition to end of inspection Iragment
End_fragment = 1,
if (End fragment - Start_fragment + 1) >= Min Slow Movement Frames
for k=Start_fragment:End fragment
for j=1:No of labeled points*2
Average_Polar_Radius_temp3(k,j) = Average Polar_Radius_temp2(k.j);
end
end
else
for k=Start_fragment:End fragment
Congruence_row(k,1)=0;

165

end
end
end
end
Average Polar_Radius_temp2 = Average Polar_Radius_temp3:

%Eliminate fragments where all Palms are moving in one direction
k=1;
palm positive = (;
palm_negative = 0
Area statistics = zeros(100,area_statistics columng):
for i=1:no_of_ rows-1
if(Congruence_row(i,1) < 1 &% Congruence_row(i+l,1) >= 1)
%transition to start of inspection fragment
Start_fragment = i+1;
elseif (Congruence_row(i,l) »>= 1 && Congruence row(i+1,1) < 1)
%transition to end of inspection I[ragment
End fragment = i;

Area_statistics(k,1) = Start_fragment;
Area_statistics(k,2) = End fragment;

if Average Polar Radius_temp2(i, No_of labeled points * 2) >= 0
palm positive = palm positive + 1;

else
palm negative = palm negative + 1;

end

Area_statistics(k,3) = palm_positive;
Area statistics(k,4) = palm negative;
k = k+1;
else
if Average Polar Radius_temp2(i, No of labeled points * 2) >= 0
palm positive = palm positive + 1;
else
palm_negative = palm negative + 1;
end
end
end
Area_statistics(~any(Area_statistics,2), :) =[];

No_of fragments = size(Area statistics,l);
Average_Polar_Radius_temp3 = Average_Polar_Radius_temp2;
m=1;
for k=1:No_of frapments
%if fragment either all moving forward or moving backward
%eliminate fragment from wall rearing evaluation
if(Area statistics(k,3) == 0 Il Area statisticstk,4) = 0)
Start_fragment = Area_statistics(k,1):
End fragment = Area statistics(k,2);
for i=Start_fragment:End fragment
for j=1:No_of_labeled_points * 2

Average_Polar_Radius_temp3(i.j) = O;
end
Congruence row(1,1)=0;
end
else
Area_statistics_temp(m,:) = Area_statistics(k.:);
m=m+ 1;
end
end
Area_statistics = Area_statistics_femp;
Average Polar Radius temp2 = Average Polar Radius_temp3:
No_of fragments = size(Area_statistics.l);

Average Polar Radius temp3 = Average Polar Radius_tempZ;

Fragment_Polar_Radius = zeros(no_of_rows,No_of_labeled_points * 3);

for k=1:No_of fragments

%Acquire start and end of fragment, and compute its duration

Start_fragment = Area_statistics(k,1);
End fragment = Area_statistics(k,2);

Duration_of fragment = End_fragment - Start_fragment +1;

for i=Start_fragment:End fraement
for j=1:No_of labeled points

%Compute differential radial distance beween (FingerTips to

%Palm) to Fragment Array

Fragment Polar Radius(i,j+No of labeled points) = Average Polar Radius temp3(i, ¥

j+No_of labeled points):

166

Fragment Polar _Radius(i,j) = Average Polar Radius_temp3(i,j)-Average Polar Radius_temp3(i, v

No_of_labeled_points);
end
end
for m=Start_fragment :End fraegment

%Flag all fingertips where differential radial distance are less

%than threshold

Fragment Polar Radius(m,3*No_of labeled points) = 0;

for j = 1:No_of_labeled_points-1

if abs(Fragment Polar Radius(m, j+No of labeled points))< Threshold &k abs ¥

(Fragment_Polar_Radius(m, j+No_of_labeled_points)) > O

Fragment Polar Radius(m,j+2*No_of labeled points) = 1;
Fragment Polar Radius(m,3*No of labeled points) = Fragment Polar Radius(m, ¥

3*No_of_labeled_points) + 1;
else

Fragment_Polar_Radius(m,j+2*No_of_labeled_points) = 0;

end
end
end
end

fprddsk kbt kxid Fyxiract Coherent Subfragment Specifications ¥¥¥¥sskx*
%Initialize wall rearing fragment table

Fragment_data_warehouse = zeros(l,Columns_of_SubFragments);
Fragment_data_aux = zeros(1,17);

for k=1:No_of_fragments

%1) For each fragment, further decompose into SubFragments based on three

%most stable fingertips moving less than Min palm threshold;

%

%2) Followed by consolidation of SubFragments where consecutive
%subfragments are only separated by 1 frame, to avoid unnecessary
%subfragmentations due to minor obstructions;

%

%3) Compute statistics +/- 0.5 seconds around the consolidated
%subfragments, to determine what the particular paw did prior to its
%slow movements. Hence discern of wall rearing / floor rearing
%activities

Start_fragment = Area_statistics(k,1);
End fragment = Area_statistics(k,2);
Duration of fragment = HEnd fragment - Start_fragment +1;

sk e g s sfeofe s e o s stk sfeof e of fe e ofe sk e Step] AR RN RACR R R AR R e R

%1) Identify the top three fingertips that demonstrate stability, and
% record its start and end sub_fragment timings;

%2) Identify the stable Palm positicn within the sub_fragment timing

% where consecutive radial distance are less than Max Palm Threshold:

%

%3) Compute the average radial distance of the finger tips and the palm

%

%Step la): Identify Stable Fingertips
paw = zeros(No_of_labeled_points-1,2);
paw(1,2) = 1; % 1 = Thumb finger
paw(2,2) = 2; % 2 = index finger
paw(3,2) = 3; % 3 = Middle finger
paw(4,2) = 4; % 4 = Ring Iinger
paw(5,2)

5; % 5= small finger

I
[

Sum_of minFingerPalm
Sum_of maxFingerPalm

1
)

Average_stable_lst = 0
Average_stable 2nd = 0;
Average stable 3rd = 0
Average palm = 0;

for 1=Start_fragment :End fragment

167

168

%Compute for individual finger how many frames demonstrate slow
fmovements ie ?(radial distance) < Max Palm Threshold
for j = 2*No_of labeled points+l:2*No_of labeled points+5
if Fragment_Polar_Radius(i,j) > @
switch j
case 2*No_of labeled_points+l
paw(1,1) = paw(1.1) + 1;
case 2*No_of labeled_points+2
paw(2,1) = paw(2,1) + 1;
case 2*No_of labeled_points+3
paw(3,1) = paw(3.1) + 1:
case 2*No_of_ labeled points+4
paw(4,1) = paw(4.1) + 1;
otherwise
paw(5,1) = paw(5,1) + 1;
end
end
end
%Identify the top 3 fingertips that are most stable within the
%iragment
sort_paw = sortrows({paw, 'descend’);
stable_lst = int&(sort_paw(1,2));
stable_2nd = int&(sort_paw(2,2));
stable 3rd = int&(sort_paw(3,2));

Average stable lst = Average stable lst + Average Polar Radius_temp3(i,stable_lst);
Average stable 2nd = Average stable 2nd + Average Polar Radius_temp3(i,stable 2nd):
Average stable 3rd = Average stable 3rd + Average Polar Radius_temp3(i.stable 3rd);
Palm_radii(i-Start_fragment+l)=Average_Polar_Radius_temp3(i,6);
Average palm = Average palm + Average Polar Radius_temp3(1,6);

end

Area_statistics(k,4+stable_1st) = Average stable_1st / Duration_of fragment;
Area_statistics(k.4+stable 2nd) = Average stable 2nd / Duration_of fragment;
Area_statistics(k,4+stable 3rd) = Average_stable 3rd / Duration_of fragment;
Area_statistics(k,10) = Average_palm / Duration_of_ fragment;

%Step 1b) Parse Stable FingerTips information to working array
Fragment Polar Radius_tmp = zeros(Duration_of fragment, 6*No_of labeled points);
for i=Start_fragment:End_fragment
for j = 1:No_of labeled points
switch j
case stable lst
Fragment Polar Radius_tmp(i-Start frapment+l, j)=Average Polar Radius_ temp3(i,j);
Fragment Polar Radius_tmp(i-Start fragment+l,No_of labeled points+j) = ¢
Fragment_Polar_Radius{i,j);
Fragment Polar Radius_tmp(i-Start fragment+l,2*No of labeled points+j) = ¥
Fragment Polar Radius(i,No_of labeled points+j);
Fragment Polar Radius tmp(i-Start fragment+l,3*No of labeled points+j) = ¥
Fragment Polar Radius(i,2*No_of labeled points+j);
Fragment_Polar Radius_tmp(i-Start_fragment+l,4*No_of_labeled points+j) = &

Fragment_Polar_Radius(i,j)-Fragment_Polar_Radius(i-1,1);

169

if abs(Fragment Polar Radius_ tmp(i-Start_fragment+l,4*No_of labeled points+j)) < v

Threshold
%(FingerTip - Palm distance moves less than 5
%pixels per frame
Fragment_Polar_Radius_tmp(i-Start_Iragment+1,5*No_ol_ labeled_points+j)
else
Fragment Polar Radius_tmp(i-Start_Iragment+1,5*No of labeled points+j)
end
case stable_2nd

Fragment Polar Radius_tmp(i-Start frapment+]l, j)=Average Polar Radius_temp3(i,j):

Fragment Polar Radius tmp(i-Start fragment+1,No of labeled points+j) =«
Fragment Polar Radius(i.j);

Fragment Polar Radius tmp(i-Start fragment+l,2*No of labeled points+j) = ¥
Fragment_Polar_Radius(i,No_of_labeled points+j):

Fragment Polar Radius_tmp(i-Start fragment+l,3*No_of labeled points+j) = v
Fragment_Polar_Radius{i,2*No_of_labeled_points+j);

Fragment_Polar Radius_tmp(i-Start fragment+l.4*No_of labeled points+j) = ¥
Fragment Polar Radius(i,j)-Fragment Polar Radius{i-1,j);

if abs(Fragment_Polar_Radius_tmp(i-Start_frasment+1,4*No_of_labeled_points+j)) < "4

Threshold
%(FingerTip - Palm distance moves less than 5
%pixels per frame
Fragment Polar Radius_tmp(i-Start_Iragment+1,5*No of labeled points+j)
else
Fragment Polar Radius_tmp(i-Start_Iragment+1,5*No of labeled points+j)
end
case stable 3rd

Fragment_Polar_Radius_tmp(i-Start_fragment+l, j)=Average Polar_Radius_temp3(i,j);

Fragment Polar Radius tmp(i-Start frasment+l.No of labeled points+j) = ¥
Fragment_Polar_Radius{i,j);

Fragment Polar Radius tmp(i-Start fraement+1,2*No of labeled points+j) = 4
Fragment Polar Radius{i,No of labeled points+j);

Fragment Polar Radius tmp(i-Start fraement+1,3*No of labeled points+j) = '
Fraement Polar Radius(i,2*No of labeled points+i):

Fregment_Polar Radius_tmp(i-Start frasment+1,4*No_of_labeled points+j) = ¥
Fragment Polar Radius(i,j)-Fragment Polar Radius(i-1.j);

if abs(Fragment_Polar_Radius_tmp(i-Start_fraement+l.4*No_of_labeled_points+j)) < ¥

Threshold
%(FingerTip - Palm distance moves less than 5
%pixels per frame
Fragment_Polar_Radius_tmp(i-Start_fragment+1,5*No_of labeled points+j)
else
Fragment Polar Radius_tmp(i-Start_fragment+],5*No_of labeled points+j)
end
case No_of labeled points

Fragment_Polar_Radius_tmp(1-Start_fragment+l, j)=Average Polar_Radius_temp3(i,j);

Fragment Polar Radius_tmp(i-Start fragment+l,No of labeled points+j) = ¢
Fragment Polar Radius(i,j);
Fragment Polar Radius_tmp(i-Start fragment+l,2*No_of labeled points+j) = ¥
Fragment Polar Radius(i,No_of labeled points+j):
end

£2);

end

170

%Tag frames that exhibit coherent slow movement in FingetrTips -

%Palm distances
Total_slow_mvt_pt = 0;
f6F" j=1%5

Total_slow mvt_pt = Total_slow mvt_pt + Fragment Polar Radius_tmp(i-Start_Iragment+l, ¥
5*No_of labeled points+i);

end
if Total_slow mvt_pt >= Min_Congruence

Fragment_Polar_Radius_tmp(i-Start_fragment+1,5%No_of_labeled_points)

elge

Fragment_Polar_Radius_tmp(i-Start_fragment+1,5*No of labeled points)

end
end

%

1
—

1
D

%During wall-rearing, fingertips will demonstrate temporal stability,
%that FingerTips - Palm shall exhibit short period of small changes

%between frames < Minimum Movement Threshold
%

%2a)Gauge sub-fragments within the fragment where palm exhibit

% small changes in (FingerTips - Palm distance);
%

%2b)Consclidate the two sub-fragments into one sub-fragment array before

% proceeding to Step 3)

e m e Step 28 --cccm o %
%Step 2a) Gauge subfragments that show coherent minimal changes in

% (FingerTips - Palm) distance

No_of_SubFragments = 100;
SubFrag_counter = 1;

SubFragment_stat_prior = zeros{No_of SubFragments, 3*No_of labeled points+4);

Start_SubFragment = 1;
End_SubFragment = 1;

SubFragment_stat = zeros(No_of SubFragments,Columns_of SubFragments);

for m=l:Duration of fragment
if m <= Duration of fragment-1
%Within fragment treatment

if Fragment Polar Radius tmp(m,5*No of labeled points) < | & Fragment Polar Radius tmp ¥
(mt+1,5*No_of_labeled_points) == 1

Start_SubFragment = m+]:

elseif Fragment Polar Radius tmp(m,5*No of labeled points) = 1 &«
Fragment Polar Radius_tmp(mt+l,5*No_of labeled points) < 1

End_SubFragment = m;
SubFragment_stat_prior(SubFrag counter,1)

SubFragment_stat_prior(SubFrag counter,2)
SubFragment_stat_prior(SubFrag counter,3)

round((Start_SubFragment + End SubFragment) v

Start_SubFragment ;
End_SubFragment;

12

SubFrag_counter = SubFrag_counter + 1;
Start_SubFragment = 1;
End_SubFragment = 1;
end
else

171

%End of fragment treatment where the last frame has coherence
if Fragment Polar Radius_tmp(m,5*No_of labeled points) == 1

End SubFragment = Duration of fragment;
SubFragment_stat_prior(SubFrag counter,1)

SubFragment stat_prior(SubFrag counter,2)
SubFragment_stat_prior(SubFrag counter,3)
end

SubFrag_counter = 1;

Start_SubFragment =

End_SubFragment = 1;
end

13

end
%Compact SubFragment Array

SubFragment_stat_prior(~any(SubFragment stat prior,2), :

round((Start SubFragment + Bnd SubFragment) ¥

Start_SubFragment ;
End SubFragment;

)y =11;

SubFragment_stat_prior_tmp = zeros(l,3*No_of_labeled_points+4);

n=1;
for m=1:size(SubFragment_stat_prior,1)

%remove subfragment that has Start and End Subfragment on same row

if SubFragment stat prior(m,2) < SubFragment stat_pricr(m,3)
SubFragment stat_prior tmp(n,:) = SubFragment stat prior{m,:):

n=n+1;
end
end
SubFragment_stat_prior = SubFragment_stat_prior_tmp;

%Consolidate SubFragments, such that subfragments separated less than
%the Max_SubFraement Gap are considered as one subfragment

SubFragment gap = zeros(100,1);
for 1=1:99
if (m< size(SubFragment_stat_prior,1))

SubFragment_gap(m) = SubFragment_stat_prior(mt+l,2) - SubFragment_stat_prior(m,3);

1f SubFragment_gap(m) < Max_SubFragment Gap

SubFragment_stat prior(m,3) = SubFragment stat prior(m+l,3);

SubFragment_stat_prior(m+l, :) =[]
end
end
end

SubFragment_stat_latter = SubFragment_stat prior;
for m=l:size(SubFragment_stat_prior,1)
SubFragment_stat{m,1)

SubFragment_stat_prior{m,1)+Start_fragment;

SubFragment_stat(m,2) = SubFragment_stat_prior{m,2)+Start_fragment:
SubFragment_stat(m,3) = SubFragment stat_prior(m,3)+Start_fragment:

end
SubFragment_stat{~any(SubFragment_stat,2), :) = [1];

No_of_SubFragments = size(SubFragment_stat,1);
SubFragment_aux = zeros(No_of SubFragments,17);

%Step 3)For each sub-fragment, average change in fingertips shall be

% smaller than average change in palm coordinates during

% wall-rearing; as fingertips movement are constrained while palm are
% free

%

for p=1:No_of_SubFragments

Start_SubFragment = SubFragment_stat_prior(p,2)+Start_fragment;
End_SubFragment = SubFragment_stat _prior{p,3)+Start_fragment;

Start_prior = Start_SubFragment - Inspection_window;
End latter = End SubFragment + Inspection window;
Duration_inspection_window = End_latter - Start_prior + 1;
if Start_prior < 1
Start_prior = 1;
end
if End latter > no_of rows
End_latter = no_of_rows;
end

FCompute Statistics prior to congruence point
Sum_stable lst radius = 0;
Sum_stable 2nd radius = 0:
0;

Sum_stable 3rd radius
Sum_stable_palm = 0;

Sum_stable_lst_radius_delta = 0;
Sum_stable 2nd_radius_delta = 0;
Sum_stable 3rd radius_delta = 0;
Sum_stable palm delta = 0;

for q = Start_prior:Start_SubFragment
%Compute average radial distance prior to Mid-subfragment

Sum_stable_lst_radius = Sum stable_lst_radius + Average_Polar_Radius(q,stable_lst);
Sum stable 2nd_radius = Sum stable 2nd radius + Average Polar Radius(g.stable 2nd);
Sum stable 3rd radius = Sum stable 3rd radius + Average Polar Radius(qg,stable 3rd);

Sum_stable_palm = Sum_stable_palm + Average_Polar_Radius(qg,No_of_labeled_points);

%Compute total radial distance change prior to Start-SubFragment

Sum stable Ist_radius_delta = Sum_stable 1st radius_delta + Average Polar Radius(q,

stable_lst+No_of labeled points);

Sum stable 2nd radius_delta = Sum_stable 2nd radius_delta + Average Polar Radius(qg,

stable_2nd+No_of_labeled _points);

Sum stable 3rd_radius_delta = Sum_stable 3rd radius_delta + Average Polar Radius(q,

stable 3rd+No_of labeled points):
Sum stable palm delta = Sum stable palm delta + Average Polar Radius(q, I'e
2*No_of labeled points);

172

173

end

Duration of SubFragment = Start SubFragment - Start_prior;
if (Duration_of_SubFragment > 0)
%Average Radial distances of FingerTips & Palm
SubFragment_stat_prior(p, 3+stable_lst) = Sum_stable_lst_radius / double
(Duration of SubFragment);
SubFragment stat prior(p, H+stable 2nd) = Sum stable 2nd radius / double ¥
(Duration_of SubFragment);
SubFragment_stat_prior(p, Hstable_3rd) = Sum_stable_3rd_radius / double ¥
(Duration_of SubFragment);
SubFragment_stat prior(p, 3+No_of labeled points) = Sum stable palm / double ¥’
(Duration_of SubFragment);
%Average change in FingerTips & Palm per frame
SubFragment_stat_prior(p, 3+2*No_of_labeled_points + stable lst) =¢
Sum stable lst_radius delta / double(Duration_of SubFragment);
SubFragment_stat_prior(p, 3+2*No_of_labeled_points + stable_2nd) =¥
Sum_stable 2nd radius_delta / double(Duration_of SubFragment);
SubFragment stat prior(p, 3+2*No of labeled points + stable 3rd) =¥
Sum_stable_3rd_radius_delta / double(Duration_of_ SubFragment);
SubFragment_stat_prior(p, 3+3*No_of labeled points) = Sum_stable palm delta / double ¥
(Duration_of_ SubFragment);
else
SubFragment_stat_prior(p,:) = 0;
end

%Compute Statistics after congruence point
Sum_stable_lst_radius = 0;
0;
0;

Sum_stable_2nd_radius
Sum_stable 3rd radius

Sum_stable_palm = 0;

Sum_stable_lst_radius_delta = 0;
Sum_stable 2nd_radius_delta = 0;
Sum_stable_3rd radius delta = 0O
Sum_stable_palm delta = 0;

for q = End_SubFragment :End_latter
%Compute average radial distance prior to Mid-subfragment
Sum stable_lst_radius = Sum stable Ist_radius + Average Polar Radius{g,stable_lst);
Sum_stable_2nd_radius = Sum_stable_2nd_radius + Average Polar_Radius(g,stable_2nd);
Sum stable_3rd_radius = Sum stable 3rd_radius + Average Polar Radius({g,stable 3rd);
Sum_stable_palm = Sum_stable_palm + Average_Polar_Radius(g,No_of_labeled_points);

%Compute total radial distance change prior to Mid-SubFragment

Sum_stable 1st_radius_delta = Sum_stable Ist radius delta + Average Polar Radius(q, ¥
stable_lst+No_of_labeled_points);

Sum_stable 2nd radius_delta = Sum stable 2nd radius delta + Average Polar Radius(qg, ¥
stable_Znd+No_of labeled points);

Sum_stable 3rd radius_delta = Sum stable 3rd radius delta + Average Polar Radius(g, ¥
stable_3rd+No_of labeled points);

Sum_stable_palm delta = Sum stable_palm delta + Average Polar Radius(q, ¢

174

2*No_of_labeled_points);
end

Duration of SubFragment = End_latter - End SubFragment:
if (Duration_of_SubFragment > 0)
%Average Radial distances of FingerTips & Palm
SubFragment stat latter(p, 3+stable 1st) = Sum stable 1st radius / double ¥
(Duration_of SubFragment);
SubFragment_stat_latter(p, 3+stable_2nd) = Sum_stable_2nd_radius / double ¥
(Duration_of SubFragment);
SubFragment stat_latter(p. 3+stable_3rd)
(Duration_of SubFragment);
SubFragment stat latter(p, 3+No of labeled points) = Sum stable palm / double ¥
(Duration_of_SubFragment):
%Average change in FingerTips & Palm per frame
SubFragment_stat_latter(p, 3+2*No_of_labeled_points + stable_lst) =¥
Sum_stable lst_radius delta / double(Duration_of SubFragment);
SubFragment stat latter(p, 3+2*No of labeled points + stable 2nd) = ¢
Sum_stable_2nd_radius_delta / double(Duration_of_ SubFragment);
SubFragment_stat_latter(p, 3+2*No_of labeled points + stable 3rd) = ¢
Sum_stable_3rd_radius_delta / double(Duration_of SubFragment);
SubFragment stat latter(p, 3+3*No of labeled points) = Sum stable palm delta / double ¥
(Duration_of SubFragment):
else

Sum_stable_3rd radius / double v

SubFragment stat_latter(p,:) = O;
end

GFEEE Compute statistics for entire SubFragment **¥%%%g
Radii_1 = zeros(End latter - Start_prior + 1,1);
Radii_2 = zeros(End_latter - Start_prior + 1,1);
Radii_3 = zeros(End latter - Start_prior + 1,1);
Palm 1 = zeros(kEnd latter - Start_prior + 1,1);

for g = Start_prior:End_latter
%Compute average radial distance prior to Mid-subfragment
Radii_1(g - Start_prior + 1) = Average Polar Radius(qg,stable 1st);
Radii_2(g - Start_prior + 1) = Average Polar_Radius(q,stable_2nd);
Radii_3(g - Start_prior + 1) = Average Polar Radius(qg,stable 3rd);
Palm 1(g - Start_prior + 1) = Average Polar Radius(qg,No_of labeled points);
end

Start_SubFragment;

End SubFragment;
SubFragment_aux(p,2+stable 1st) = mean{Radii_1);
SubFragment aux(p,2+stable 2nd) = mean(Radii_2);
SubFragment_aux(p,2+stable 3rd) = mean{Radii_3);
SubFragment_aux(p,2+No_of labeled points) = mean(Palm 1);
SubFragment_aux(p,l0+stable_lst) = std(Radii_1);
SubFragment_aux(p,l0+stable_2nd) = std(Radii_2);
SubFragment aux(p,lO+stable_3rd) = std(Radii_3);
SubFragment_aux(p,10+tNo_of_labeled_points) = std(Palm_1);

SubFragment_aux(p,l)
SubFragment_aux(p,2)

175

outward = 0;

if SubFragment aux(p,2+stable 1st) > SubFragment aux(p,2+No_of labeled points)
outward = outward + 1;

end

if SubFragment_aux(p,2+stable_2nd) > SubFragment_aux(p,2+No_of_labeled_points)
outward = outward + 1;

end

if SubFragment aux(p,2+stable_3rd) > SubFragment aux(p,2+No_of labeled points)
outward = outward + 1;

end

%Compute Fingertips in outward orientation

SubFragment_aux(p,3+No_of labeled points)=outward;

below_inner = 0O;

if SubFragment aux(p,2+stable_lst) <= Inner Diameter * safety margin / 2
below_inner = below_inner + 1;

end

if SubFragment aux{p,2+stable 2nd) <= Inner Diameter * safety margin / 2
below_inner = below_inner + 1;

end

if SubFragment_aux(p,2+stable_3rd) <= Inner_Diameter * safety _margin / 2
below inner = below_inner + 1;

end

%Compute Fingertips within inner diameter

SubFragment_aux(p,4+No_of labeled points)=below inner;

SubFragment_aux(p,17) = (SubFragment_aux{p,2+No_of labeled points)+SubFragment aux(p, 4
Z2+stable_lst)+SubFragment_aux(p,2+stable_2nd)+SubFragment_aux{p,2+stable_3rd))/4;

%Discern fingertips and palm movement dynamics within
%congruent subfragment ie +/- 0.5 seconds from coherent minima

stable lst mvt = mvtSymbol(SubFragment stat prior(p, 3+2*No of labeled points + stable 1st), ¥
SubFragment_stat_latter(p, 3+2*No_of labeled points + stable 1st));

stable 2nd mvt = myvtSymbol(SubFragment stat prior(p, 3+2*No of labeled points + stable 2nd), ¥
SubFragment_stat_latter(p, 3+2*No_of_labeled_points + stable_2nd)):

stable 3rd_mvt = mvtSymbol(SubFragment_stat _prior(p, 3+2*No_of labeled points + stable 3rd), ¢
SubFragment_stat_latter(p, 3+2*No_of_labeled_points + stable_3rd));

stable_palm mvt = mvtSymbol (SubFragment stat prior(p. 3+3*No of labeled points), ¥’
SubFragment_stat latter(p, 3+3*No_of labeled points));

SubFragment_stat(p,2)=Start_SubFragment
SubFragment_stat(p,3+stable_lst) = stable_lst_mvt;
SubFragment_stat(p,3+stable_2nd) =stable 2nd mvt;
SubFragment_stat(p,3+stable 3rd) =stable 3rd mvt;
SubFragment_stat(p,9) =stable _palm mvt;

SubFragment_stat(p,10) = touchDetect(Start_SubFragment, End SubFragment, stable lst_mvt, v
stable 2nd mvt, stable 3rd mvt, stable_palm mvt);

end

176

Fragment_header = zeros(1,Columns_of_SubFragments);

Fragment_header(1,1) = Start_fragment;

Fragment_header(1,2) = End fragment;

Fragment_data_warchouse = cat(l,Fragment_data_warchouse,Fragment_header);
Fragment_data warehouse = cat{l,Fragment data warehouse,SubFragment_stat);

Fragment_aux_header = zeros(1,17);

Fragment_aux_header(l,1) = Start_fragment;
Fragment_aux_header(1l,2) = End fragment;

Fragment_data_aux = cat(l,Fragment_data_aux,Fragment_aux_header);
Fragment_data aux = cat{l,Fragment data_aux,SubFragment aux):

end
Fragment data warehouse(l,:) = [] ;
Fragment_data_aux(l,:) =[] ;

Gprddkdkk bk kxs® HExtract Congruent Points Specificationsg ##ksssksskss
%Initialize wall rearing fragment table
Fragment_congruence = zeros(1,10);

for k=1:No_of fragments

%bor each fragment, inspect existence of the following evidence to
%confirm of wall rearing

%

%Three possible situations will happen as paw hits the wall, be obstructed
%and bounced back

%

%la)Distance between finger tips and palm

% shall demonstrate congruent minima for some fingers while decreasing
% distance for others; it will not be surprising, due to acrylic

% reflection, that some of these distances are negative, as DLC

% recognize mirror reflection of palm based on its virtual image.

%

%1b)Change in radial distances of Iingertips and palm from the center

% shall be peaked (and possibly reversed)

%

%lc)Fingertips may linger on the wall (ie change of fingertips radial

% distance will be hoovering < 1 pics per frame

%Acquire start and end of fragment, and compute its duration

Start_fragment = Area_statistics(k,l);
End fragment = Area_statistics(k,2);
Duration of fragment = End fragment - Start fragment +1;

%
%1) Identify the top three fingertips that demonstrate stability, and
% record its start and end sub fragment timings;

%2) Identify the stable Palm position within the sub fragment timing
% where consecutive radial distance are less than Max Palm_Threshold;

177

%

%3) Compute the average radial distance of the finger tips and the palm;
%

%4) Check if Palm radial distance is less than finger tips; if ves, paw
% 1is oriented outwards, else it is oriented inwards

paw = zeros(No_of labeled points,2):
paw(1,2) = 1; % 1 = Thumb finger

paw(2,2) = 2; % 2 = index finger
paw(3,2) = 3; % 3 = Middle finger
paw(4,2) = 4: % 4 = Ring finger
paw(5,2) = 5; % 5 = small finger
paw(6,2) = 6; % 6 = palm

for i=Start_fragment:End fragment
%Compute for individual finger how many frames demonstrate slow
Ymovements ie ?(radial distance) < Max Palm Threshold
for j = 2*No_of_labeled_points+l:2*No_of_labeled_points+5
if Fragment Polar Radius(i,j) > O
switch j
case 2*No_of_labeled_points+l
paw(1,1) = paw(1.,1) + 1;
case 2*No_of_labeled_points+2
paw(2,1) = paw(2.1) + 1;
case 2*No of labeled points+3
paw(3,1) = paw(3.,1) + 1;
case 2*No_of labeled_points+4
paw(4,1) = paw(4,1) + 1:
otherwise
paw(5,1) = paw(5,1) + 1;
end
end
end
%ldentify the top 3 fingertips that are most stable within the
%fragment
sort_paw = sortrows(paw, 'descend');
stable_lst = int&(sort_paw(1,2));
stable_2nd = int&(sort_paw(2,2));
stable_3rd = int&(sort_paw(3,2));
end

Fragment_Polar_Radius_tmp = zeros(Duration_of_ fragment, No_of_labeled_points * 4);
for i=Start_Iragment :End fragment
for j = 1:No_of_labeled_points
switch]
case stable Ist
Fragment Polar Radius_tmp(i-Start_fragment+1, j)=Average Polar Radius_temp3(i,j);
Fragment_Polar_Radius_tmp(i-Start_fragment+l,No_of_labeled_points+i) =¥
Fragment Polar Radius(i.j);
Fragment Polar Radius_tmp(i-Start fragment+l,2*No of labeled points+j) = ¥
Fragment Polar Radius(i,No_of labeled points+j);
Fragment Polar Radius_tmp(i-Start fragment+l,3*No of labeled points+j) = ¥
Fragment_Polar_Radius{i,2*No_of_labeled_points+j);

178

case stable_2nd
Fragment Polar Radius_tmp(i-Start_fragment+1, j)=Average Polar Radius_temp3(i.j);
Fragment Polar Radius_tmp(i-Start fragment+l,No of labeled points+i) =¥
Fragment_Polar_Radius{i,j);
Fragment Polar Radius tmp(i-Start fragment+l,2*No of labeled points+j) = ¥
Fragment_Polar_Radius(i,No_of_labeled points+j);
Fragment Polar Radius_tmp(i-Start fragment+1,3*No_of labeled points+j) = v
Fragment Polar Radius{i,2*No_of labeled points+j);
case stable 3rd
Fragment_Polar_Radius_tmp(i-Start_fragment+l, j)=Average Polar_Radius_temp3(i,j);
Fragment_Polar_Radius_tmp(i-Start_fragment+l,No_of labeled points+i) = v
Fragment Polar Radius(i.j);
Fragment Polar Radius_tmp(i-Start fragment+l,2*No_of labeled points+j) = 4
Fragment Polar Radius(i,No_of labeled points+j);
Fragment_Polar Radius_tmp(i-Start_fragment+l,3*No_of_labeled_points+j) = ¥
Fragment Polar Radius(i,2*No_of labeled points+j);
case No_of_labeled_points
Fragment Polar Radius_tmp(i-Start_fragment+l, j)=Average Polar Radius_temp3(i,j);
Fragment Polar Radius_tmp(i-Start fragment+l,No of labeled points+i) = ¢
Fragment_Polar_Radius{i,j);
Fragment Polar Radius_tmp(i-Start fragment+l,2*No of labeled points+j) = &
Fragment_Polar_Radius(i,No_of_labeled points+j);
%Fragment Polar Radius_tmp(i-Start fragment+1,3*No of labeled points+i) =¥
Fragment Polar Radius(1i,2*No_of labeled points+j);
end
end
end

%1) Identify sub-fragments within the Iragment where palm is shortest
% distance (ie Congruent Minima) from the stable fingertips; in these
% settings the paw is either grabbing something
% or pushing against the wall
%
%2) Back-trace the minima to the last moving palm to establish
% sub-fragment
%
%3) For each sub-fragment, average change in fingertips shall be
% smaller than average change in palm coordinates during
% wall-rearing; as fingertips movement are constrained while palm are
% free
%
for m=1:Duration_of fragment
%Flag stable palm sub-fragment
if abs(Fragment Polar Radius_tmp(m,No_of labeled points*3)) <= Max Palm Threshold
% ?(Palm) < Max Palm Threshold => Flag Stable Palm
Fragment Polar Radius_tmp(m,No_of labeled points*4) =

|
—

else
Fragment_Polar_Radius_tmp(m,No_of_labeled points*4) =

|
[}

end
end
%bExtract minima fingertips - Palm distances
Stable_lst_finger = zeros(Duration_of_fragment, 1);

179

Stable_2nd_finger = zeros(Duration_of fragment, 1);

Stable 3rd_finger = zeros(Duration_of fragment, 1);

for m=1:Duration_of fragment
Stable_lst_finger(m,1) = -Fragment_Polar_Radius_tmp(m,No_of_labeled_points+stable_lst);
Stable 2nd_finger(m,1) = -Fragment Polar Radius_tmp(m,No_of labeled points+stable 2nd):
Stable_3rd_finger(m,1) = -Fragment_Polar_Radius_tmp(m,No_of_labeled_points+stable_3rd);

[Min 1st, Min lst_idx] = findpeaks(Stable lst finger);

[Min 2nd, Min_ 2nd_idx] = findpeaks(Stable 2nd finger);

[Min_3rd, Min 3rd_idx] = findpeaks(Stable 3rd_finger);
end

%Group the trough points into clusters into sub _fragments
Congruent Minima_index = zeros(1000,3);
Congruent_Mode_index = zeros(1000,1);
for 1=1:size(Min 1st_idx)
Congruent_Minima_index(intl16(Min_lst_idx(1)),1)=1;
end
for 1=1:size(Min 2nd idx)
Coneruent_Minima_index(intl16(Min 2nd_i1dx(1)).2)=1;
end
for l=1:size(Min_3rd_idx)
Congruent Minima_index(intl6(Min 3rd idx(1)).3)=1;
end
for p=1:1000-Congruence_window
%where minima is observed, inspect next neighbor frames where
Yminima will also be observed
if Congruent Minima_index(p,1) > O Il Congruent Minima_index(p,2) > O Il Congruent Minima index v
(p,3) > 0
for g=0:Congruence window
Congruent_Mode_index (p) = Congruent_Mode_index (p) + Congruent Minima_index(pt+q,1)+ ¥
Congruent_Minima_index (p+q,2) + Congruent Minima_ index(p+g,3);
end
end
end
%Find congruence points where minima of fingertips - palm distances
%occur within 1 second among each other
[Congr_peaks_tmp, Congr_peaks_loc_tmp] = findpeaks(Congruent_Mode_index, 'MinPeakDistance' ¥
Congruence_window) ;

r =
Congr_peaks_loc = zeros(100,1);
Congr_peaks_loc_tmpl = Congr_peaks_loc_tmp;
for p=1:size(Congr_peaks_loc_tmp)
if Congr peaks tmp(p) >= Min Congruence
%Fine tune location of Congruence Peaks
%By extracting median within the Congruence_window
Start_Congruence = intl16(Congr_peaks loc_tmp(p));
Congr_median_array = zeros(3*(Congruence_window).1);
for u=0:Congruence window - 1
for v=1:3
if Congruent_Minima_index(Start_Congruence + u, v) > 0

Congr_median_array(3*u+v) = Start_Congruence + u;
end
end
end

Congr_median_array = Congr_median_array(Congr median_array ~= 0);

Congr_peaks_loc_tmpl{p) = median(Congr_median_array);

Congr_peaks_loc(r) = Congr_peaks_loc_tmpl(p);
r=r+1;
end
end
Congr_peaks_loc = Congr_peaks_loc(Congr_peaks_loc ~= ()

No_of SubFragments = size(Congr_peaks_loc,1);

SubFragment_stat_prior = zeros{No_of_SubFragments, 3*No_of_labeled points+l);
SubFragment_stat_latter = zeros(No_of SubFragments, 3*No_of labeled points+l1);

Start_SubFragment = 1;

Mid SubFragment = 1;

End SubFragment = 1;

SubFragment_stat = zeros(No_of_SubFragments,10);

for p=1:No_of SubFragments
% Locate mid-points of maximum congruence between 3 stable
% fingertips
Mid_SubFragment = int16(Congr peaks loc(p))+Start fragment;

if Mid_SubFragment - Inspection_window > 1
Start_SubFragment = Mid SubFragment - Inspection window:
else
Start_SubFragment = 1;
end
if Mid_SubFragment + Inspection_window < no_of_rows
End_SubFragment = Mid_SubFragment + 12;
else
End_SubFragment = no_of_rows;
end

pErexritsSave Congrucnce Poinfg e

SubFragment_stat(p,1) = Mid_SubFragment ;
SubFragment_stat(p,2) = Start_SubFragment;
End_SubFragment;

SubFragment_stat(p.,3)

end

Fragment_congruence = cat(l,Fragment congruence,SubFragment stat);

end
Fragment_congruence(l,:) =[] ;

kR f R ERELEREE Decigione Evaluation Specifications o ofe s e sfe ofe sfe sk ofe s ofe ek ek ke ok

%**+*]t Phase: Correlate Coherent Subfragments with Congruence Points

180

%*¥%% jnitial sauge of wall rearing

No_coherent_Subfragments = size(Fragment data warehouse,1);
No_congruent_points = size(Fragment_congruence,l);

%Fragment_data_warchouse should only flag subfragments that are BOTH
%Coherent (i.e. three fingers moving below 5 pixels per frame) AND
%Congruence within 1 second of Coherence (i.e. FingerTips - Palm distance
%of slow moving fingers exhibi minima)

Fragment data warehouse_tmp = zeros(No_coherent_Subfragments, Columns of SubFragments):
for i1=1:No_coherent_Subfragments
if Fragment_data warchouse(i,3) » 0 && Fragment data warchouse(i,10) > 0
%Process Coherent SubFragment records which was tagged as plausible
%wall-rearing
%
%For each subfragment
%if Coherent Subfragment +/- 1 second possess congruence points
%decision(s) = 1;
%else decision = 0
%

Fragment data warehouse tmp(i,:)=Fragment data warchouse(i,:);
Start_SubFragment = Fragment data warehouse(1,2)-Frame Rate:
End SubFragment = Fragment data warchouse(i,3)+Frame Rate;
No_of congruence = 0;
for j=1:No_congruent points
%Find Number of Congruence points within each coherent
%subfragment

if Fragment_congruence(j,1)>=Start_SubFragment &% Fragment_congruence(j,1) v

<=End_SubFragment
No_of _congruence = No_of_congruence + 1;
end
end
if No_of_congruence > 0

13
N070 ffcong ruence .,

Fragment_data_warchouse_tmp(i,1d)
Fragment_data_warehouse_tmp(i,11)
else

0;
5

Fragment_data_warehouse_tmp(i,10)

Fragment_data_warehouse_tmp(i,11)
end
else
%save header records
Fragment_data warchouse_tmp{i,:) = Fragment_data warehouse(i,:);
end
end

Fragment_data warchouse = Fragment_data warehouse_tmp;
GeE® Ind Phase: Eliminate Stationary Movements

Eekkrkkagkirtiiix By lter Subfragments that are unlikely to be wall rearing
%1) If Subfragment's palm demonstrate standard deviations <

181

182

%Crawling_low_threshold
%
%2) If Subfragment duration is less than Minimum touch duration
%
Fragment data warehouse tmp = zeros(No_coherent Subfragments, Columns of SubFragments);
for 1=1:No_coherent_Subfragments
if Fragment data warchouse(i,3) > 0
if Fragment data_warehouse(i,10) > 0
%transfer details records where wall-rearing is suspected
Fragment_data_warehouse_tmp(i,:) = Fragment_data_warehouse(i,:);

stationary_count = 0;
for j=1:6
if Fragment data_aux(i,10+j) > O
if Fragment_data_aux(i,10+j) <= Crawling_low_threshold
stationary_count = stationary_count + 1;
end
end
end
if stationary_count > 1
Fragment_data_warehouse tmp{i,10)=0;
Fragment_data_warchouse_tmp{i,11)=0;
end

if (Fragment data warchouse(i,3) - Fragment data warchouse(i,2)) < Minimum touch duration
Fragment data warehouse tmp(i,10)=0;
Fragment data warehouse tmp(i,11)=0:

end

else
%save details record with no wall-rearing detected
Fragment data warchouse tmp(i,:) = Fragment data warchouse(i,:);
end
else
Fragment ref = Fragment_ref + 1
%save header records
Fragment data warehouse_tmp(i,:) = Fragment data warehouse(i,:);
end
end

%*** 3rd Phase: Evaluate Subfragment Statistics

%**** Program SEATES S s s s SR R o ol SR o SR R SR SRR R SR SRR S o SR SR SR R o SR SR S SR S S SR S SRR SRR SR R R R R R R
Average_Polar_Radius_temp4 = zeros(no_of_rows, 12);
Average Polar Radius_temp5 = zeros(no_ of_rows, 12):
Fragment data warehouse tmp2 = zeros(1000,4);
Fragment data warehouse tmp3 = zeros(1000,4);

Fragment data_warchouse_tmpl = Fragment_data warchouse_tmp;
for i1=1:No_ccherent_Subfragments
if Fragment data warchouse tmpl(i,3) > O
if Fragment data warehouse tmpl(i,l10) > 0
%Enlarge surveillance to +/- Inspection Windows of SubFragment

183

Start_SubFragment = int16(Fragment_data_warchouse_tmpl(i,2) - Inspection_window);
End_SubFragment = int16(Fragment_data warehouse_tmpl(i,3) + Inspection_window);
if Start_SubFragment < 1

Start_SubFragment = 1;
end
if End_SubFragment >= no_of_ rows

End SubFragment = no_of rows - 1;
end

%Investigate on enlarged sublragment
for k=Start SubFragment:End SubFragment
for j =1:6
Average Polar Radius_temp4(k,j) = Raw Polar_Radius(k,j);
Average Polar Radius tempd(k,j+No_of labeled points) = Raw Polar Radius(k+l1,i)- ¥
Raw_Polar_Radius(k.j);
end
end
end
end
end

Average_Polar_Radius_temp5 = Average_Polar_Radius_tempd;
for i=l:no_of rows
Transition_counter = 0;
for j=No_of labeled points+1:2*No_of labeled points
if abs(Average Polar Radius_temp4(i,j)) »= Transition TH
Transition counter = Transition counter + 1:
end
end
if Transition _counter > 1
FNumber of fingertips that exceed Transition TH >= 2
for j=1:2*No_of labeled points
Average Polar_Radius_temp5(i.j) = 0;
end
end
end

%Repartition SubFragment
k=1;
Start_Subfragment = 1;
SubFragment_statistics_aux = zeros(1000,3+2*No_of_labeled _points);
for i=l:no_of rows-1
if(Average Polar_Radius_temp5(i,1) < 1 &% Average_Polar_Radius_temp5(i+1,1)>= 1)
%transition to start of repartitioned Subfragment
Start_Subfragment = i+1;
elseif (Average Polar Radius_temp5(i,1) >= 1 &% Average Polar Radius_temp5(i+1,1)< 1)
%transition to end of repartitioned Subfragment
End Subfragment = i;

SubFragment_statistics_aux(k,1) = Start_Subfragment;
SubFragment_statistics_aux(k,2) = HEnd_Subfragment;

184

k=k+1;

elseif (Average Polar Radius_temp5(no_of rows,1) >= 1 && 1 == no_of_rows-1)
%End of array treatment
End_Subfragment = no_of_rows;

SubFragment_statistics_aux(k,1) = Start_Subfragment;
SubFragment_statistics_aux(k,2) = End_Subfragment;
end
end
SubFragment_statistics_aux(~any(SubFragment_statistics_aux,2), :) =1[1;

%Eliminate any repartitioned SubFragment that has less than 2 frames
No_repart_subfrag = size(SubFragment statistics_aux,1);
for k=1:No_repart_subfrag
if (SubFragment_statistics_aux(k,2) - SubFragment_statistics_aux(k,1) < Min_stat_computation)
%If duration of frame transitions less than 3 time frames,
%eliminate subfragments from statistics computation
Start_SubFragment = int16(SubFragment statistics_aux(k,1));
End SubFragment = intl16(SubFragment statistics aux(k,2));
for i=Start_SubFragment :End_SubFragment
for j=1:2*No_of labeled points
Average_Polar_Radius_temp5(i,j) = O;
end
end

SubFragment_statistics_aux(k,1) = O;
SubFragment statistics_aux(k,2) = O

end
end
SubFragment_statistics_aux(~any(SubFragment_statistics_aux,2), :) = [1;

%Compute statistics for each repartitioned SubFragment

No_repart_subfrag = size(SubFragment statistics_aux,1);

for k=1:No_repart_subfrag
Start_SubFragment = int16(SubFragment_statistics_aux(k,1));
End SubFragment = int16(SubFragment_statistics_aux(k,2)):
SubFragment_duration = End_SubFragment - Start_SubFragment + 1;

finger l=zeros(SubFragment duration,l1);
finger_2=zeros(SubFragment_duration,l1);
finger 3=zeros(SubFragment duration,l1);
finger_4=zeros(SubFragment_duration,l1);
finger S=zeros(SubFragment duration,1);
palm=zeros(SubFragment duration,l);

=1;

for i=Start_SubFragment :End_SubFragment
finger_1(m) = Average Polar_Radius_temp5(i,1);
finger 2(m) = Average Polar_Radius_temp5(i.2);
finger_3(m) = Average Polar_Radius_temp5(i,3);
Tineer_4(m) = Average_Polar_Radius_tempS5(i.4):

end

finger_5(m) = Average_Polar_Radius_temp5(i,5);
palm{m) = Average Polar Radius_temp5(i,0);

m=n+1 ;
end

SubFragment_statistics_aux
SubFragment_statistics_aux
SubFragment_statistics aux
SubFragment_statistics_aux
SubFragment_statistics_aux
SubFragment statistics aux

SubFragment_statistics_aux
SubFragment statistics_aux
SubFragment_statistics_aux
SubFragment_statistics_aux
SubFragment_statistics_aux
SubFragment_statistics_aux

(k,3) = mean(finger_1);
(k,4) = mean{finger_2);
(k,5) = mean(finger 3);
(k,6) = mean{finger 4);
(k,7) = mean(finger_5);
(k,8) = mean{palm);

(k,3+No_of_labeled points)
(k,4+No_of_labeled points)
(k,5+No_of_labeled_points)
(k,6+No_of_labeled points)
(k,7+No_of_labeled_points)
(k,8+No_of labeled points)

DigitPeaks = zeros(No_repart_subfrag,16);
DigitPeaksFlag = zeros(No_repart_subfrag,1);

for

end

for k=3:7 %Find maxima of mean digit radii for each digits

end

k=1:8

DigitPeaks(:.k) = SubFragment_statistics_aux (:,k);

1 DigitPeaks(1.k) > DigitPeaks(2.k)

DigitPeaks(1,k+6)
else
DigitPeaks(1,k+6)

1;

1
(]

end

if DigitPeaks(No_repart_subfrag,k) > DigitPeaks(No_repart_subfrag-1.k)

DigitPeaks(No_repart_subfrag k+6) = 1;

else

DigitPeaks(No_repart_subfrag,k+6)

end

for 1=2:(No_repart_subfrag-
if DigitPeaks(l,k) » DigitPeaks(1-

I}
<

I

DigitPeaks(1,k+6) = 1;

else

DigitPeaks(1,k+6) = 0;

end
end

std2(finger_1);
std2(finger 2);
stdZ2(finger_3);
std2(finger_4);
stdZ(finger_5);

std2(palm);

1,k) & DigitPeaks(1l.k) » DigitPeaks(1+1.k)

185

DigitPeaks(:,14) = DigitPeaks(:,9)+DigitPeaks(:,10)+DigitPeaks(:,11)+DigitPeaks(:,12)+DigitPeaks(:,13);

for

m=1:No_repart_subfrag

%Compute Convolution Column of DigitPeaks

ifm>1 & m < No_repart_subfrag

DigitPeaks(m,15) = DigitPeaks(m,14) + DigitPeaks(m+1,14) + DigitPeaks(m-1,14);

elseif m = No_repart_subfrag

DigitPeaks(m,15) = DigitPeaks(m,14) + DigitPeaks(m-1,14);

elseif m =1

DigitPeaks(m,15) = DigitPeaks(m,14) + DigitPeaks(m+1,14);

end
end
for m=1:No_repart_subfrag

iIm>1 & m < No_repart_subfrag

if DigitPeaks(m,15) > 4
DigitPeaks(m,16) = 1;

DigitPeaks(m+1, 16) = 1:
DigitPeaks(m-1, 16) = 1;

end
elseif m =1
1f DigitPeaks(m,15) > 4
DigitPeaks(m,16) = 1;
DigitPeaks(m+1,16) = 1;
end
elseif m = No_repart_subfrag
1f DieitPeaks(m,15) > 4
DigitPeaks(m,16) = 1;:
end
end
end
DigitPeaksFlag = DigitPeaks(:,16);

SubFragment_statistics_aux_backup = zeros(No_repart_subfrag, 15);

for m=1:No_repart_subfrag
if DigitPeaksFlag(m,1) > O

SubFragment_statistics_aux_backup(m,:) = SubFragment_statistics_aux{m,:);

end
end

SubFragment_statistics_aux_backup(~any(SubFragment statistics aux_backup,2), :
SubFragment_statistics_aux = SubFragment_statistics_aux_backup;

%For plausible wall rearing, scme fingertips shall demonstrate slow
%variations as 1t rest on wall, while others shall demonstrate mobility
No_repart_subfrag = size(SubFragment statistics_aux.1):

for k=1:No_repart_subfrag
count = (;
for j=1:No_of_labeled points-1

1f SubFragment_statistics_aux(k,2+No_of_labeled_points+j) <= Variation TH

count = count + 1;
end
end

SubFragment statistics_aux(k,15) = count;

end

%Eliminate SubFragments of false positives for the following conditions
%1) Number of slow moving fingertips between 2 to 4

%2) Eliminate slow moving and fast moving palm

% Slow moving implies entire paw is resting

% Fast moving does not make posture sense

186

%3) Each fingertip cannot distant from each other more than 100 pixels
SubFragment_statistics_aux_tmp = SubFragment_statistics_aux:
for k=1:No_repart_subfrag

/2

clear_subfrag = 0;

if (SubFragment statistics_aux(k,15) < 2 |l SubFragment statistics_aux(k,15) > 4)
%For wall rearing, the five fingertips has either 2,3, or 4
%slow moving
clear_subfrag = 1;

end

if intl6(SubFragment statistics_aux(k,15)) = 4
%if four fingertips are slow moving, inspect whether the palm is
%slow moving or ultra fast moving
if SubFragment statistics_aux(k,14) <= Variation TH
clear_subfrag = 1;
elseif SubFragment statistics_aux(k,14) >= Variation High TH
clear_subfrag = 1;
end
end

%Compute maxima and minima of slow moving fingertips
slow_radii_matrix = zeros(int16(SubFragment_statistics_aux(k,15)),1);
=1
for j=1:(No_of labeled points-1)
if SubFragment statistics_aux(k,2+No of labeled points + j) <= Variation TH
slow radii matrix(m) = SubFragment_ statistics_aux(k,2+j);
m=n+1;
end
end
if max(slow radii_matrix) - min(slow radii_matrix) >»= Max radii_differentials
clear_subfrag = 1;
end

%ldentify the three slowest moving fingertips and remove those that lie
%within Inner Radius
Variations = zeros(5,1);
for j=9:13

Variations(j-8,1) = SubFragment_statistics_aux(k,j):
end
Low var = mink(Variations,3):
for j=3:7

form=1:3

if SubFragment_statistics_aux(k,j+No_of_labeled_points) = Low_var{m)

187

if SubFragment_statistics_aux(k,i) < Inner_radius outlier_removal factor*Inner Diameter v

clear_subfrag = 1;
end
end
end
end

1 clear_subfrag == 1

188

for j=1:(3+2*No_of_labeled_points)
SubFragment_statistics_aux_tmp(k,i) = O;
end
end
end
%Remove all zeros rows data(~any(data,2), :) =1[1: %rows
SubFragment_statistics_aux_tmp(~any(SubFragment statistics_aux_tmp ,2),:) = [];

%Reconstruct SubFragment report
n=1;
No_repart_subfrag = size(SubFragment statistics_aux tmp,1):
for m=1:No_of fragments
Start_fragment = intl6(Area_statistics(m,1));
End fragment = intl6(Area statistics(m,2));

Start_fragment;

Fragment_data warchouse_tmp2(n,1)
Fragment_data_warchouse_tmp2(n,2) = End_fragment;
n=n+l;

for k=1:No_repart_subfrag
Start_SubFragment = SubFragment statistics aux tmp(k,1);
End_SubFragment = SubFragment_statistics_aux_tmp(k,2);

if (Start SubFragment »= Start fragment & Start SubFragment < End fragment) & End SubFragment ¥
<= (End fragment + Frame Rate)
Fragment data warehouse tmp2(n,1) = intl6({Start_SubFragment + End SubFragment)/2);
Start_SubFragment:
End SubFragment ;

Fragment data warehouse tmp2(n,2)

Fragment_data_warehouse_tmp2(n,3)

Fragment_data_warehouse_tmp2(n,4) = 1;
n=n+l;
end
end
end
%Remove all zeros rows data(~any(data,2), :) =[]; %rows

Fragment data warehcuse tmp2(~anv(Fragment data_warehouse tmp2 ,2),:) = [1;

%For fast moving SubFragments, Eliminate SubFragments of false positives for the following conditions
%1) Number of slow moving fingertips less than 2
%2) Identify three fingertips of slowest variations
%3) All fingertips has to lie beyond Inner Diameter
SubFragment_statistics_aux_tmpl = SubFragment statistics_aux;
No_repart_subfrag = size(SubFragment_statistics_aux,1);
for k=1:No_repart_subfrag
clear subfrag = 0;
if SubFragment statistics_aux(k,15) > 1
%Eliminate all SubFragments that has more than 1 stable fingertips
clear_subfrag = 1;
end

if clear_subfrag == 1
for j=1:(3+2*No_of_labeled_points)

189

SubFragment_statistics_aux_tmpl(k,j) = 0
end
end
end
%Remove all zeros rows data(~any(data,2), :) =1[1: %rows
SubFragment_statistics_aux_tmpl(~any(SubFragment_statistics_aux_tmpl ,2),:) = [1;

No_repart_subfrag = size(SubFragment statistics_aux tmpl,1);
SubFragment statistics_aux_tmp5 = SubFragment statistics_aux_tmpl;
for k=1:No_repart_subfrag

clear_subfrag = 0

%Remove SubFragments where more than 3 digits radii distance lie
%within Inner Radius

No_of_inner digits = 0;
for j=3:8
if SubFragment statistics aux_ tmpS(k,j) < Inner radius_outlier removal factor*Inner Diameter /2
No of inner digits = No_of inner digits + 1:
SubFragment_statistics_aux_flag(k,1) = No_of_inner_digits;
end
end
if No_of inner digits > 3
clear subfrag = 1;
end

%ompute maxima and minima of slow moving fingertips
slow radii_matrix = zeros(intl6(SubFragment_statistics_aux(k,15)),1);
=1;
for j=1:(No_of labeled points-1)
if SubFragment_statistics_aux(k,2+No of_labeled_points + j) <= VYariation_TH
slow_radii matrix(m) = SubFragment_statistics_aux(k,2+j);
m=nt1;
end
end
if max(slow_radii_matrix) - min{slow radii_matrix) »= Max_radii_differentials
clear_subfrag = 1;
end

if clear_subfrag == 1
for j=1:(3+2*No_of_labeled_points)
SubFragment statistics_aux_tmpS¢k,j) = 0;
end
end
end
%Remove all zeros rows data(~any(data,2), :) =[]; %rows
SubFragment_statistics_aux_tmp5(~any(SubFragment_statistics_aux_tmp5 ,2),:) = []:
SubFragment statistics_ aux_tmpl = SubFragment statistics_aux_tmp5;

%Reconstruct SubFragment report
n=1;

190

No_repart_subfrag = size(SubFragment_statistics_aux_tmpl,1);
for m=1:No_of fragments
Start_fragment = intl6(Area_statistics(m,1));
End_fragment = intl6(Area_statistics(m,2));

Fragment_data_warchouse_tmp3(n,1) = Start_fragment;
Fragment_data warchouse_tmp3(n,2) = End fragment;
n=n+l;

for k=1:No_repart_subfrag
Start_SubFragment = SubFragment statistics aux_tmpl(k,1):
End_SubFragment = SubFragment_statistics_aux_tmpl(k,2);

if (Start_SubFragment >= Start_fragment &% Start_SubFragment < End fragment) && End SubFragment '
<= (BEnd_fragment + Frame_Rate)

Fragment_data_warehouse_tmp3(n,1) intl6({Start_SubFragment + End SubFragment)/2);
Fragment_data_warehouse_tmp3(n,2) = Start_SubFragment ;
Fragment_data_warechouse_tmp3(n,3) = End SubFragment;

Fragment data warehouse tmp3(n.4) = 1;
n = n+l;
end
end
end
%Remove all zeros rows data(~any(data,2), :) =1[1: %rows

Fragment_data warchouse tmp3(~any(Fragment_data warchouse tmp3 ,2),:) = []:

xRtk i i® Uoneo] Tdate subfragments into episodes HFFsFkkeitrrs

Fragment_data_warehouse_tmpd = zeros(1000,4);

%Eliminate zero rows of SubFragment statistics aux, and concatenate the two
%SubFragment statistics into one array

SubFragment statistics_aux_tmp2 = SubFragment statistics_aux_tmp:
SubFragment statistics_ aux_tmp3 = SubFragment statistics_aux_tmpl;

I}
—
L

SubFragment_statistics_aux_tmp2(~any(SubFragment_statistics_aux_tmp2 ,2),:)
SubFragment statistics_aux_tmp3(~any(SubFragment statistics_aux_tmp3 ,2),:)
SubPragment_statistics_aux_tmp4 = cat(l,SubFragment_statistics_aux_tmp2, ¥
SubFragment _statistics_aux_tmp3);

I}
—_
L

SubFragment_statistics_aux_tmp4 = sort(SubFragment statistics_aux_tmp4);

n=1;
No_repart_subfrag = size(SubFragment_statistics_aux_tmpd,1);
for m=1:No_of fragments

Start_fragment = intl16(Area_statistics(m,1));

End fragment = intl6(Area statistics(m,2));

Fragment_data warchouse tmp4(n,1) = Start_fragment;
Fragment_data warehouse_tmp4(n,2) = End fragment;

n=n+l;

for k=1:No_repart_subfrag

191

Start_SubFragment = SubFragment_statistics_aux_tmpd(k,1);
End_SubFragment = SubFragment_statistics_aux_tmpd(k.2);

if Start_SubFragment »>= Start_fragment & End_SubFragment <= End_fragment
intl6({Start_SubFragment + End SubFragment)/2);
Start_SubFragment ;

End SubFragment ;

Frapment data warehouse_tmp4(n.4) = 1;

Fragment_data_warehouse_tmp4(n,1)

Fragment_data_warchouse_tmp4(n,2)
Fragment_data_warehouse_tmp4(n,3)

n = n+l;
end
end
end
Fragment_data warchouse_tmp4(~any(Fragment_data warchouse_tmpd ,2),:) = [];

gpErEERRRREREekeRes Wall Rearing SubFragment Conigalidation ##sssmsnmes
%Time difference within which subfragments consolidate
Consolidate_SubFrag_time = 3;

FMinimum Episode Time Parameter refers to the least possible episode
%considered for reporting

Min_Episode_Time = 0.25;

Fragment_data_warehouse_tmp4 = zeros(1000,4);

%Eliminate zero rows of SubFragment statistics aux, and concatenate the two
%SubFragment statistics into one array

SubFragment_statistics_aux_tmp2 = SubFragment statistics_aux_tmp;
SubFragment statistics aux_tmp3 = SubFragment statistics aux_tmpl:

I}
—
i

SubFragment_statistics_aux_tmp2(~any(SubFragment_statistics_aux_tmp2 ,2),:)

I}
—_
_.

SubbFragment_statistics_aux_tmp3(~any(SubFragment statistics_aux_tmp3 ,2),:)
SubFragment_statistics_aux_tmp4 = cat(l,SubFragment_statistics_aux_tmp2, v
SubFragment_statistics_ aux_tmp3);

SubFragment statistics_aux_tmp4 = sort(SubFragment statistics_aux_tmpd):

n=1;
No_repart_subfrag = size(SubFragment_statistics_aux_tmpd,1);
for m=1:No_of fragments

Start_fragment = intl6(Area_statistics(m,1));

End fragment = intl6(Area statistics(m,2));

Start_fragment;
Fragment_data warehouse tmp4(n,2) = End fragment;

Fragment_data_warchouse_tmp4(n,1)

n=n+l;

for k=1:No_repart_subfrag
Start_SubFragment = SubFragment_statistics_aux tmp4(k,1);
End_SubFragment = SubFragment_statistics_aux_tmp4(k,2);

if Start_SubFragment >= Start_fragment &% End SubFragment <= End_fragment
Fragment _data warchouse_tmpd(n,1) = intl6((Start_SubFragment + End_SubFragment)/2):
Fragment data_warehouse_ tmp4(n,2) = Start_SubFragment;
Fragment_data_warchouse_tmp4(n,3) = End_SubFragment;

192

Fragment_data_warehouse_tmp4{n,4) = 1;
n = n+l;
end
end
end
Fragment_data_warchouse_tmpd({ ~any(Fragment_data_warchouse_tmp4 ,2),:) = [];

fpressrErsererer iR §all Rearing SubBrasment Consolidation HFFsEEEstrees
%Consolidate SubFragments to Episodes, where successive subfragment are
%less than 2 seconds from each other
No_ccherent SubPFragments = gsize(Fragment data warehouse tmp4,1):
Fragment data warehouse final = zeros(1,4);
SubFragment _data warehouse = zeros(1.4);
SubFragment _data warehouse tmp = zeros(1,4);
Consol_SubFragments = zeros(No_coherent_SubFragments, 1);
Start_consolidation = G;
for 1=1:No_cocherent_SubFragments

if Fragment data warchouse tmp4(i,3) > O

Start_consolidation = 1;

Fragment_data_warchouse_tmp4(i,:);
L
SubFragment_data_warehouse = cat(l, SubFragment_data_warchouse, Fragment_data_line);

Fragment_data_line(l,:)
Fragment_data_line(l,4)

else
if Start consolidation > ¢
SubFragment data warehouse(~any(SubFragment data warehouse,2), :) = [];
Size_SubFragment data warehouse = size(SubFragment data warehouse, 1):
for m=1:Size SubFragment data_warchouse
if m==
Start_Subfragment = SubFragment_data_warehouse(m,2);
end
if m < Size_SubFragment_data_warehouse
if SubFragment data warchouse(m+1,2) - SubFragment data warchouse(m,3) <= 2 * '4
Frame Rate
End Subfragment = SubFragment_data_warchouse(m+1,3);
else
End_Subfragment = SubFragment_data_warchouse(m,3);
Fragment data_line(1,1) = int16((Start_Subfragment + End Subfragment)/2);
Fragment_data_line(1,2) = Start_Subfragment;
Fragment data line(1,3) = End Subfragment;
Fragment data line(1,4) = 1;

%Save 1f Subfragment duration > Minimum Episode
%duration
if (End Subfragment - Start_Subfraement) > Min Episode Time * Frame Rate
SubFragment data warehouse tmp = cat(l, SubFragment data warehouse tmp, ¢
Fragment data_line);
end

Start_Subfragment = SubFragment data warehouse(m+l,2);
Start_consolidation = 0;
end
elseif m == Size_SubFragment_data_warchouse

193

End_Subfragment = SubFragment_data_warchouse(m,3);

Fragment data_line(1,1) = intl6((Start_Subfragment + End Subfragment)/2);
Fragment data line(1,2) = Start_Subfragment;

Fragment_data_line(1,3) = End_Subfragment;

Fragment data line(1,4) = 1;

%Save 1f Subfragment duration > Minimum Episode
%duration
if (End Subfragment - Start Subfragment) > Min Episode Time * Frame Rate
SubFragment_data_warehouse_tmp = cat(l, SubFragment_data_warehouse_tmp, ¥
Fragment data_line);
end
SubFragment data warchouse_ tmp(~any(SubFragment data warchouse_tmp,2), :) =[]

Fragment_data warchouse_final = cat(l, Fragment data warchouse_final, v
SubFragment_data_warehouse_tmp);

SubFragment_data warehouse tmp = zeros(1,4);
SubFragment_data_warchouse = zeros(1,4);

Start_consolidation =
end
end
else
SubFragment_data_warehouse = zeros(1.4);
end
end

if i = No_coherent_SubFragments %End of Fragment data warehouse tmpd
if Start_consolidation > G
SubFragment_data warehouse(~any(SubFragment data warehouse,2), :) = []:
Size_SubFragment data warehouse = size(SubFragment data warehouse, 1);
for m=1:Size_SubFragment data warehouse
if m==
Start_Subfragment = SubFragment_data_warchouse(m,2);
end
if m < Size_SubFragment_data_warchouse
if SubFragment data warchouse(m+1,2) - SubFragment data warchouse(m,3) <= 2 * ¢
Frame Rate
End_Subfragment = SubFragment_data_warchouse(m+l,3);
else
End_Subfragment = SubFragment_data_warchouse(m,3);
Fragment data_line(1,1) = int16((Start_Subfragment + End Subfragment)/2);
Fragment data_line(1,2) = Start_Subfragment;
Fragment data_line(1,3) = End Subfragment;
Fragment_data_line(1,4) = 1;

%Save if Subfragment duration > Minimum Episode

%duration

if (End Subfragment - Start_Subfragment) > Min Episode Time * Frame Rate
SubFragment_data_warchouse_tmp = cat(l, SubFragment_data_warchouse_tmp, ¥

194

Fragment_data_line);
end

Start_Subfragment = SubFragment_data_warchouse(m+l,2);
Start_consolidation = 0;

end

elseif m == Size_SubFragment data warehouse

End Subfragment = SubFragment_data warehouse(m,3);

Fragment data line(1,1) = intl6((Start_Subfragment + End Subfragment)/2);

Fragment_data_line(1,2) = Start_Subfragment;

Fragment data line(1,3) = End Subfragment:

Fragment data_line(l,4) = 1;

%Save 11 Subfragment duration > Minimum Episode
%duration
if (End Subfragment - Start Subfragment) > Min Episode Time * Frame Rate
SubFragment_data_warehouse_tmp = cat(l, SubFragment_data_warehouse_tmp, ¥
Fragment_data_line);
end
SubFragment_data_warehouse_tmp(~any(SubFragment_data_warechouse_tmp,2), :) = [];

Fragment_data warchouse_final = cat(l, Fragment data warchouse final, v
SubFragment_data warehouse tmp);

SubFragment data warehouse tmp = zeros(1,4);
SubFragment data warehouse = zeros(1,4):

Start_consolidation = 0;
end
end
end
end
end

Fragment data warehouse final(~anv(Fragment data warehouse final,2), :) =[];:

FrEssd Dimp Raw Data of final detected fragment ##dfsdszssissrstfitissiion
No_repart_subfrag = size(Fragment_data_warchouse final,1);
RawTable_final = zeros(no_of_rows, columnsg);
for m=1:No_repart_subfrag
Start_Subfragment = int16(Fragment_data_warehouse_final(m,2)-Frame_Rate*Consolidate_SubFrag_time);
End Subfragment = intl6(Fragment data_warehouse final(m,3)+Frame Rate*Consolidate SubFrag time);
if Start_Subfragment < 1
Start_Subfragment = 1;
end

1T End Subfragment > no_of_rows
End_Subfragment = no_of rows;
end

for i=Start_Subfragment:End Subfragment
RawTable_final(i,:) = RawTable(i, :);

end

end
S e s ofe o sfe sfe ofe e e e e o R o ofe ofe o ofe e sesk : S ofe-sfe sfe o s sfe o e e ofe o ofe ofe o R R o R
% END of Fragment Raw Data

%**** Prepare episode summary repoft 3 e e e sfe ofe s sfe ofeofe ofe s sfe sfeofe ofe sfe o ofe e e e oo s e ofe s s esfe sfe ofesfe ok
n=1;
Fragment_data warchouse_final_tmp = zeros(1,4);
No_repart_subfrag = size(Fragment_data warehouse_final,1);
for m=1:No_of fragments
Start_fragment = intl6{Area_statistics(m,1));
End fragment = intl6(Area_statistics(m,2)):

Fragment_data warchouse _final tmp(n,1) = Start_fragment;
Fragment_data warehouse _final tmp(n,2) = End fragment;
n=n+l;

for k=1:No_repart_subfrag
Start_SubFragment = Fragment data warechouse final(k,2);

End SubFragment = Fragment_data warehouse_final(k,3):

if Start_SubFragment >= Start_fragment &% End SubFragment <= End_fragment

Fragment_data_warchouse_final_tmp(n,1)
Fragment data warchouse final tmp(n,2)
Fragment data warehouse final tmp(n,3) = End SubFragment;
Fragment_data warchouse final tmp(n.4) = 1;

Start_SubFragment ;

n=ntl;
end
end
end

Fragment_data_warehcuse_final_tmp(~any(Frasment_data_warehouse_final_tmp ,2),:) = [];
Fragment_data warchouse final = Fragment_data warchouse final tmp;

Opk kg ke gk ok Ou‘[put Files SDGCifiC&tiOHS EEEE RS LR EEEEEE RS ST 2]

warning('off', 'MATLAB:x1swrite:AddSheet')

Fragment_data warchouse_final tmp = zeros(1000,5);
Fragment data warehouse size = size(Fragment_data warehouse final,l);

Fragment serial number = 1;
for i=1:Fragment_data_warehouse_size
if Fragment data warchouse final(i,3) <1
Fragment data warehouse final tmp{i,1) = Fragment serial_ number;

Fragment_data_warehouse_final tmp{i,2) = Fragment_data_warehouse_final(i,1);
Fraement_data warchouse_final tmp(i,3) = Fragment data warchouse final(i,2);

Fragment_serial number = Fragment_serial_number + 1;
else
Fragment_data_warehouse_final_tmp(i,1) = O;

intl6((Start_SubFragment + End_SubFragment)/2);

195

196

Fragment data warchouse final tmp(i.2) = Fragment data warehouse final(i,1);
Fragment data warehouse final tmp{i,3) = Fragment data warehouse final(i,2);
Fragment_data_warchouse_final_tmp{i,4) = Fragment_data_warchouse_Iinal(i,3);
Fragment data warehouse final tmp{i,5) = Fragment data warehouse final(i,4);
end
end
Fragment data warehouse final tmp(~any(Fragment data warehouse final tmp,2), :) = [];

report_header_1 = ["Fragment Number","Start Fragment","End Frasment"];
report_header 2

["","SubFragment Midpoint", "Start SubFrasment”, "End_SubFragment","Decision"]:

if Process_left_paw ==
xlswrite(outputfile,report_header 1, "Left Paw Summary", "B1");
xlswrite(outputfile,report_header_2, "Left Paw Summary”, "B2"):
xlswrite(outputfile Fragment data warehouse final tmp, "Left Paw Summarv", "B3"):

xlswrite(outputfile RawTable final, "Left Paw Details", "Al"):

else
xlswrite(outputfile,report_header_1, "Right Paw Summary”, "B1"):
xlswrite(outputfile,report_header 2, "Right Paw Summary”, "B2"):
xlswrite{outputfile,Fragment_data_warchouse_final_tmp, "Right Paw Summary”, "B3");

xlswrite(outputfile RawTable final, "Right Paw Details", "Al");
end

clear:

end

Gk ook ROk R R AR Ry o f popyg B RTROR SRR SRR R R SRR SO RN SRR e R R R R R ok

function mvt_svmbol = mvtSymbol(prior,latter)

if prior > 1

if latter > 1
mvt_symbol = 15;

elseif 0 < latter && latter <=1
mvt_symbol = 14;

elseif -1 <= latter && latter <=0
myt_symbol = 12;

else

myt_symbol = 13;
end
elseif O < prior &% prior <=1
if latter > 1
myt_symbol = 11;
elseif 0 < latter && latter <=1
mvt_symbol = 10;
elseif -1 <= latter && latter <=0
mvt_symbol = 8&;
else

end

function decision = touchDetect(start, finish,

mvt_symbol = 9;
end

elseif -1 <= prior & prior <=0

if latter > 1
mvt_symbol = 3;

elseif 0 < latter && latter <=1

mvt_symbol = 2;

elseif -1 <= latter && latter <=0

mvt_symbol = -1;
else
mvt symbol

I
end
else
if latter > 1
mvt_symbol = 7;

elseif 0 < latter & latter <=1

mvt_symbol = 6;

elseif -1 <= latter && latter <=0

mvt_symbol = 4;
else
mvt_symbol = 5;
end
end

0;
0;
palm fast_slow forward = O;

palm forward

palm_rearing

palm_slow_slow_forward = O;
palm_fast_slow_retrace = 0;
palm_slow_slow_retrace = 0;
palm_slow_fast_forward = O;

0;
0,
Tirst_fast_slow_forward = 0;

Tirst_forward

first_rearing

first_slow slow forward = 0;
first _fast_slow retrace = 0;
first_slow_slow_retrace = 0;
first_slow fast forward = O;

0;
0;
second _fast_slow forward = 0;

second forward

second_rearing

second_slow_slow_forward

second fast_slow retrace
second_slow slow retrace

1l
oD D O D

second_slow fast forward

third forward = 0;

first, second, third, palm)

197

third_rearing = 0;

third fast_slow forward = 0;
third slow slow forward = O;
third_fast_slow_retrace = 0;
third slow slow retrace = 0;

third_slow_fast_forward = 0;

switch palm

%Detect Palm rearing pattern before and after coherent subfragments

case 15
palm forward =
case 14

palm_fast_slow forward

case 13
palm_rearing =
case 12

palm_rearing

palm_fast_slow retrace

case 9

palm_rearing
case &

palm_rearing

palm_slow slow retrace

otherwise
palm_forward =

palm rearing

palm fast _slow forward
palm _fast_slow retrace
palm_slow_slow_retrace

end

switch first
case 15

first forward =

case 14

first _fast_slow forward

case 13
first_rearing

case 12
first_rearing

first_fast slow retrace

case 11

first slow fast forward

case 10

first slow slow forward

case 9

1

1;

1%

T

1

0;
@8

1;

1;

1;

first rearing = 1;

first_slow fast_retrace

case 8

first_rearing = 1;

first_slow_slow_retrace

198

199

otherwise

first_forward = 0;
0;
first_fast_slow forward = 0;
first_slow slow forward = O;

first rearing

first_fast_slow retrace = 0

first_slow slow retrace = 0;

first_slow fast forward = 0O
end

switch second
case 15
second_forward = 1;
case 14

second_fast_slow_forward = 1;

case 13
second_rearing = 1;
case 12
second_rearing = 1;
second_fast_slow_retrace = 1
case 11
second_slow_fast_forward = 1;
case 10
second_slow_slow_forward = 1:

case 9
second_rearing = 1;
second_slow fast retrace = 1:
case &
second_rearing = 1;

second_slow_slow retrace = 1;
otherwise
second_forward = 0;
second_rearing = 0;
second_fast_slow forward = 0;
second_slow slow forward = 0;
second_fast_slow retrace = 0;
second_slow_slow retrace = 0;
second_slow_fast_forward = 0;
end
switch third
case 15
third forward = 1;
case 14
third fast_slow forward = 1;

case 13

third rearing = 1;
case 12
third rearing = 1;

third fast_slow retrace = 1;

case 11

200

third_slow_fast_forward = 1;
case 10

third slow slow forward = 1;
case 9
third rearing = 1;

third_slow fast_retrace = 1;
case 8

third rearing = 1;

third slow slow retrace = 1;
otherwise

third forward = 0

third_rearing = 0;

third_fast_slow forward = 0;

third slow slow forward = 0;

third_fast_slow retrace = 0

third_slow slow retrace = 0;

third_slow fast_forward = 0
end

if (palm_rearing + first_rearing + second_rearing + third rearing) >= 2
%2 or more finger / palm demonstrate rearing pattern
decision = 1;
elseif (palm rearing + first_rearing + second rearing + third rearing) > 0 & (palm rearing + ¥
first_rearing + second rearing + third rearing) < 2
decision = 0.5;
else
decision = 0;
end

end

201

%Parameter Script
function FunctionPalm RightRefine()
Gprddskrkikertkxk Paad PalmGrid Parameter Files *x¥¥ksstg

inputfile = "G:\Tim's Lab\EMXMas\PalmGridParam.x1sx";

delimiter="";
PalmGridParam struct =importdatalinputfile,delimiter,1);

%**************** Step]: Input FiIES Specifications EEEEEEEEEEEEEEEEEETEEEEEE TS

pc_cutoff = 0.1; % cutoff probability of predicted coordinates

Frame_Rate = 25; %Video recorded in 25 frames per second

Center_X = PalmGridParam struct.data.PalmGridSheet(1,1): %Cartesian Coordinates of Center (X,Y) of ¥
Cylinder

Center_Y = PalmGridParam_struct.data.PalmGridSheet(2,1);

Tnner_Diameter = PalmGridParam_struct.data.PalmGridSheet(3,1); %Inner diameter of cylinder in pixels

filename = char(PalmGridParam struct.textdata.PalmGridSheet(1,1));
video = char(PalmGridParam struct.textdata.PalmGridSheet(2,1));

O el s el safesfe g e e e e Step S Smoothing SDCCificatioﬂS e ofe sfe s s s s ofe sfe e s sl ofe e ool ofe ol ook e ek ook

LabeledPointsPerPaw = 6; %Number of labeled points per paw
Smooth window = 24; %Size of time window for initial signal smoothing

O Feode s e ofe e el e e e e Step 3+ Left / Right Paw POlaf Conversgion dsdfdosofodofof oot ok defe

Peak Threshold = 3; %All data within 2 pixels of local peaks are excluded

GRS RRRARRERERE Step 4y Hetract: Congruent: Zones: Speciflicat ipns FFFREERERERLEL

TimeWindow = 6; %Specify time window of smoothing

Threshold = 5; %Specify threshold of screening within 5 pixels

No_of_labeled_points = 6; %Specify number of labeled points per paw

Min_Slow Movement Frames = 3; %Minimal Number of consecutive slow movement frames that paw shall be '4
held before considering a contact

Min_Flag To_Stay = 0; %Minimal Number of stable points detected in any particular frame to be 4
considered in Congruence Zone

area_statistics_columns = 13;

FrrEtsdpeRtRa kRt Step 51 Extract Coherent Subfragment Speeifications #Ekkersss

Max_Palm Threshold = 8; %Palm that moves beyond 8 pixels per frame shall be considered fast movement
Min_Palm Threshold = 5; %Palm that moves below 5 pixels per Iframe shall be considered slow movement
Stationary Mvt_Threshold = 1; %Average Movement of less than 1 pixels per frame is considered ¥
stationary movements

safety_margin = (.85; %Safety margin of Inner Diameter, within which paw most likely not wall rearing

Min_Congruence = 2; %MC=2; Minimum number of congruence points reguired to count as congruent intervals
Max_SubFragment_Gap = 2: %Maximum number of fremes that two subfragments can be separated in order to ¥
be considered merging two subfragments as one

Congruence window = 8; %W = 6: Number of frames (hence time windows) within which minima of FingerTips ¢
- Palm are coherently reached

Inspection window = 12; %IW = 12; Time Window within which congruence shall be inspected
Columns_of_SubFragments = 11;

202

Gprddk kbRt k ki ® Ciep @ Hxtract Congruent Points Specifications ¥¥k¥¥kkersxsss

JERRERRERERRRRREL Steh 70 Decisions Evaluation Specificatiohs »Eeskxdrsmssxirsy

Fragment ref = 0;

Crawling_low threshold = 10;

Crawling_high threshold = 100;

Minimum_touch_duration = Frame Rate * 0.1; % At least 0.1 seconds of slow movements to classify as ¥
stable touch

Min stat_computation = 3; %inimum time frames below which repartitioned subfragment will not be 4
computed of statistics

Yariation_TH = 13;

Yariation High TH = 100;
Max_radii_differentials = 120;
Inner_radius_outlier removal factor = 1.0;

Transition TH = 100; %change in number of pixels between frame exceed 100 as transition threshold

Gtk R mettrttet Step 87 Uongolidate: sublragments 1010 cpisodes Frrrrtsserss
%Time difference within which subfragments consolidate
Consolidate_SubFrag time = 3;

%Minimum Episode Time Parameter refers to the least possible episode
%eonsidered for reporting

Min_Episode Time = 0.25;

O A6 A A A e e e e A Step 9 Output Files SDGCifiCatiOnS o ofe e sfesfe o ofe o ol ofe ofe sfeofe sfesfe e ofeofe sfeshe e sfe ke ke sk

outputfile = char(PalmGridParam_struct.textdata.PalmGridSheet(3,1));

O e sfe s sfefe s sfefe s of e ofe e ke Input Files Specifications sfesfe o ok ode sfe s ofe sfeok o o e ofe sfe o e ofe e ol ek sfe e sk e

%Process Left Paw
Process_left_paw = 0;

Rawlable=csvread(filename,3,1);
[no_of rows, columns]=size(RawTable);

%Initialize Left Front Paw and Right Front Paw Arrays
Lfp = zeros(no_of_rows, 12);

Lip P = zeros(no_of rows, 7):

Rip = zeros(no of rows, 12);

Rifp P = zeros(no_of rows, 7):

for i=1:no_of_rows %Assign RawTable to Tables Head/Lip/Rip/Lbp/Rbp, and evaluate Likelihood
%Lfpl = Left Front Paw's Thumb

%L1fp2 = Left Front Paw's Index finger

%Lfp3 = Left Front Paw's Long finger

%Lip4 = Left Front Paw's Ring finger

203

%L{p5 = Left Front Paw's Small finger
FLip6 = Left Front Paw's Radius

Lip(i,1)=RawTable(i,1); %Lipl x
Lip(i,2)=RawTable(i,2); %Lipl v
Lip(i,3)=RawTable(i,4); %LIp2 x
Lfp(i,4)=RawTable(i,5); %Lip2 v
Lip(i,5)=RawTable(i,7); %LIp3 x
Lfp(i.6)=RawTable(i,8); %Lip3 v
Lip(i,7)=RawTable(i,10); %Lipd x
Lfp(i,8)=RawTable(i,11); %Lipd v
Lip(i,9)=RawTable(i,13); %Lip5 x
Lip(i,l10)=RawTable(i,14); %Lip5 v
Lip(i,11)=RawTable(i,16); %Lipb x
Lip(i,12)=RawTable(i,17); %Lipb v

Lip P(i,1)=RawTable(1,3); %Likelihood Lipl
Lip P(i,2)=RawTable(i,6); %Likelihood Lfp2
Lip P(i,3)=RawTable(i,9); %Likelihood LIp3
Lip P(i,4)=RawTable(i,12); %Likelihood Lip4
Lip P(1,5)=RawTable(1,15); %Likelihood Lip5
Lip P(i,6)=RawTable(1,18); %Likelihood Lip6

Reliability = 6; %Compute Reliability of Coordinates in Head
for j=1:6
if Lip P(i,j) < pc_cutoff
Reliability=Reliability-1:
end
end
Lip P(i,7)=Reliability;

%Rfpl = Right Front Paw's Thumb
%Rfp2 = Right Front Paw's Index finger
%Rfp3 = Right Front Paw's Long finger
%Rfp4 = Right Front Paw's Ring finger
%RfpS = Right Front Paw's Small finger
%Rip6 = Right Front Paw's Radius

Rfp(i,1)=RawTable(i,19); %Ripl x
Rip(i,2)=RawTable(i,20); %Ripl v
Rip(i,3)=RawTable(i,22); %Rip2 x
Rip(i,4)=RawTable(i,23); %Rip2 v
Rip(i,5)=RawTable(i,25); %Rip3 x
Rfp(i,6)=RawTable(i,26); %Rip3 v
Rip(i,7)=RawTable(i,28); %Ripd x
Rfp(1,8)=RawTable(1,29); %Ripd v
Rip(i,9)=RawTable(i,31); %Rip3 x
Rfp(i,l10)=RawTable(i,32); %Rip3 v
Rfp(i,l11)=RawTable(1,34); %Rip4d x
Rfp(i,12)=RawTable(i,35); %Ripd v

Rfp P(i,1)=RawTable(1,21); %Likelihood Rip_1

Rip P(i,2)=RawTable(i,24); %Likelihood Rip_ 2
Rfp P(i,3)=RawTable(i,27); %Likelihood Rfp 3
Rip P(1,4)=RawTable(i,30); %Likelihood Rip 4
Rip P(i,5)=RawTable(i,33); %Likelihood Rip_3
Rip P(i,6)=RawTable(i,36); %Likelihood Rip 4

Reliability = 6; %Compute Reliability of Coordinates in Left Front Paw
for j=1:6
if Rfp P(1,i) < pc_cutoff
Reliability=Reliability-1;
end
end
Rfp P(i,7)=Reliability;

end

e A R AR O A A K A e SmOOthng SpeCifiCﬁtiOHS e 3 ofe ok sfe 3k sk ofeofe ofe o sk ofeoke ok sfe ofe ofe o s sk ok sfeske e sk sk o

%Smooth the predicted coordinates by averaging +/- 12 extracted coordinates
half_Smooth_window = Smooth_window / 2;

buffer = zeros(no_of_rows, 2*¥LabeledPointsPerPaw);
for 1 = 1:half Smooth_window %Smooth Left Front Paw for first few no of rows

for j= 1:2*LabeledPointsPerPaw

buffer (i,j) = Lip (i.,1);

end
end
for 1 = half Smooth window: (no_of rows-half Smooth window) %Bevond the first few no of rows. Lip U4
coordinates are smoothed based on past Smoothed window records

for j= 1:2*LabeledPointsPerPaw

Avg_coor = 0.00;
for k = 0:half_Smooth_window
Avg coor = Avg coor + (Lip (i-k+1,i) + LipCi+k,i))/((k+1)/2);
end
buffer (i1,j) = Avg coor / Smooth window;

end
end
for 1 = (no_of_rows-half_Smooth_window) :no_of_rows %Smooth Left Front Paw for last Iew no_of_rows

for j= 1:2*LabeledPointsPerPaw

buffer ¢i,7) = Lip (i.1);

end
end
filteredLfp = buffer;

for 1 = 1:half Smooth_window %Smooth Right Front Paw for first few no of rows

for j= 1:2*LabeledPointsPerPaw

buffer {i,j) = Rip (i.1);

end
end
for i = half Smooth window:(no_of rows-half Smooth window) %Bevond the first few no of rows, Rip¥
coordinates are smoothed based on past Smoothed window records

for j= 1:2*LabeledPointsPerPaw

204

205

Avg_coor = 0.00;
for k = 0:half_Smooth_window
Avg coor = Avg coor + (Rfp (1-k+1,7) + Rip(i+k, 1))/ ((k+1)/2);
end
buffer (i,j) = Avg coor / Smooth window;
end
end
for 1 = (no_of rows-half Smooth window):no of rows %Smooth Right Front Paw for last few no of rows
for j= 1:2*LabeledPointsPerPaw
buffer (i,j) = Rip (i.i);
end

end
filteredRfp = buffer;

O e sfeses desfe o ook ek e e e e Left / nght Paw POlaf Conversion ¥k foldk feokesk ke ¥

Rfp Polar Radius = zeros(no_of_rows,6);
Rfp Polar Angles = zeros{no_ol rows,6):
Inspect_Range = floor{Frame_Rate/4);
Minimum Inspection_Window = 6;

for i=l:no_of rows

%Translate five Right Front Paw fingertips' cartesian to polar coordinates

[Rip Polar Angles(i,1),Rfp Polar Radius(i,1)]= cart2pol¢filteredRip(i,1)-Center X,filteredRipn(i,2)- ¢
Center Y);

[Rfp Polar_Angles(i,2),Rfp Polar Radius(i,2)]= cart2pol(filteredRfp(i,3)-Center X,filteredRip(i,4)- v
Center_Y);

[Rfp Polar Angles(i,3).Rfp Polar Radius(i,3)]= cart2pol(filteredRfp(i,5)-Center X,filteredRfp(i,6)- ¥
Center_Y);

[Rfp Polar_Angles(i,.4),Rfp Polar Radius(i,4)]= cart2pol(filteredRfp(i,7)-Center X, filteredRip(i,8)- v
Center_Y):

[Rfp Polar_Angles(i,5),Rfp Polar Radius(i,5)]= cart2pol(filteredRfp(i,9)-Center X, filteredRip(i,10)- v
Center_Y):

[Rfp_Polar_Angles(i,6),Rfp Polar Radius(i,6)]= cart2pol¢TilteredRfp(i,11)-Center X, filteredRip(i,12) ¥
-Center_Y);

end
Polar_Radius = Rfp_Polar_Radius;

Rfp Polar_Radius = zeros(no_of_rows,6);
Rfp Polar Angles = zeros(no of rows,0);

for i=l:no_of rows

%Translate five Left Front Paw fingertips' cartesian to polar coordinates

[Rfp Polar_Angles(i,1),Rfp Polar Radius{i,1)]= cart2pol(Rfp(i,1)-Center_X,Rip{i,2)-Center_Y);

[Rfp Polar_Angles(i,2),Rfp Polar_Radius(i,2)]= cart2pol(Rfp(i,3)-Center_X,Rfp(i,4)-Center_Y);

[Rfp Polar_Angles(i,3),Rfp Polar_Radius{i,3)]= cart2pol(R{p(i,5)-Center_X,Rip{i,6)-Center_Y);
]

=%
[Rfp_Polar_Angles(i,4),Rfp Polar_Radius(i,4)]= cart2pol(Rip(1,7)-Center_X,Rip(i,8)-Center_Y);

[Rfp_Polar_Angles(i,5),Rfp Polar_Radius(i,5)]= cart2pol(Rip(1,9)-Center_X,Rfp(i,10)-Center_Y);
[Rfp Polar Angles(i,6),Rfp Polar Radius(i,6)]= cart2pol(Rip(i,11)-Center X ,Rip(i,12)-Center_Y);

end

Raw_Polar_Radius = Rfp Polar_Radius;

bRt Eeteaet Congruent Zones Specificationy FFEskereertiry
%Initialize working arrays

Average_Polar_Radius = zeros(no_of_rows, No_of_ labeled_points*2);
Congruence_row = zeros(no_of tows,1):

%Average Radial Displacements of each labeled points to extract principal
Baxes
Average_Factor = 2 * TimeWindow + 1;
for i= (TimeWindow + 1): (no_of_rows - TimeWindow)
for j=1:6
Average Pr = 0;
for k = (i-TimeWindow):{i+TimeWindow)
Average_Pr = Average Pr + Polar_Radius(k.]):
end
Average_Pr = Average_Pr / Average Factor;
Average Polar Radius(i.j) = Average Pr;
Average Polar Radius(i,j+No_of labeled points) = Average Polar Radius(i,j)
Average Polar Radius(i-1,7);
end
end

%Filter no_of_rows whose average radial displacement of either labeled points are
%beyond Threshold
Average_Polar_Radius_templ = Average_Polar_Radius;
for i= (TimeWindow + 1): (no_of_rows - TimeWindow)
Flag_to_stay = 0; % Inspect all 7radius within threshold
for j=No_of labeled points+l:No_of labeled points*2

-

206

if (abs(Average Polar Radius_templ(i,j)) < Threshold && abs(Average Polar Radius_templ(i,j)) > g

)
%If any labeled points difference from last labeled points <
%Threshold, flag the row to stay
Flag to_stay = 1;
end
end
%If all labeled points radial displacement > Threshold, paw is likely
%moving => unlikely to touch wall / very slow locomotion / resting on
%floor
if Flag_to_stay = ¢
for j=1:No_of labeled_points * 2
Average_Polar_Radius_templ(1,j)=0;
end
else
Congruence_row (1) = 1;
end
end

207

%Filter Congruence no_of rows for at least 2 out of 5 finger tips demonstrate
%slow movements
Average_Polar_Radius_tempZ=Average_Polar_Radius_templ;
for 1=1:n0 of rows
if Congruence_row(i) > 0
Flag to stay = 0;
for j= (No_of labeled points + 1):(No_of labeled points*2 - 1)
if abs(Average Polar Radius temp2(i,j)) < Threshold &% abs(Average Polar Radius_temp2(i.j)) «
> 0
%Count number of finger tips that demonstrate slow movements
%between frames
Flag to_stay = Flag_to_stay + 1;
end
end
if Flag to_stay < Min Flag To_Stay
%if 1 out of 5 fingertips demonstrate movement < (Threshold; currently = 5)
%pixels between successive frames; the frame can stay
for j=1:No_of labeled points * 2
Average_Polar_Radius_temp2(i,j) = 0;
Congruence_row(1) =
end
end
end
end

%Eliminate discrete no_of rows where consecutive congtuence frames <
%(Min_Slow Movement Frames = 4)
Average_Polar_Radius_temp3 = zeros{no_of_rows, No_of_labeled_points*2);
for i=l:no_of rows-1
if(Congruence_row(i,1) < 1 && Congruence_row{i+1,1) >= 1)
%transition to start of inspection fragment
Start_fragment = i+l;
elseif (Congruence_row(i,l) »>= 1 && Congruence _row(i+1,1) < 1)
%transition to end of inspection I[ragment
End_fragment = 1;
if (End_fragment - Start_fragment + 1) >= Min Slow Movement Frames
for k=Start_fragment:End_fragment
for j=1:No_of labeled points*2
Average Polar Radius_temp3(k,j) = Average Polar Radius_temp2(k,j);
end
end
else
for k=Start_fragment:End fragment
Congruence_row(k,1)=0;
end
end
end
end
Average Polar_Radius_temp2 = Average Polar_Radius_temp3;

%Eliminate frasments where all Palms are moving in one direction

208

k=1;
palm positive = 0;
palm negative = 0;
Area_statistics = zeros(100,arca_statistics_columns);
for 1=1:no of rows-1
if(Congruence_row(i,1) < 1 && Congruence_row{i+l,1) >= 1)
%transition to start of inspection fragment
Start_fragment = i1+1;
elseif (Congruence row(i,l) >= 1 & Congruence row(i+1,1) < 1)
%transition to end of inspection Iragment
End fragment = i:

Area statisties(k,1) = Start_fragment;
Area statistics(k,2) = End _fragment;

if Average Polar Radius_temp2(i, No_of labeled_points * 2) >= 0
palm_positive = palm_positive + 1;
else
palm negative = palm negative + 1;
end
Area_statistics(k,3) = palm_positive;
Area_statistics(k,4) = palm_negative;
k = k+l;
else
if Average Polar Radius_temp2(i, No_of labeled points * 2) >= 0
palm positive = palm positive + 1:

else
palm_negative = palm_negative + 1;
end
end
end
Area_statistics(~any(Area_statistics,2), :) =[]

No_of fragments = size(Area_statistics.l);
Average_Polar_Radius_temp3 = Average_Polar_Radius_temp2;
m=1;
for k=1:No_of fragments
%if fragment either all moving forward or moving backward
%eliminate fragment from wall rearing evaluation
if(Area_statistics(k,3) = 0 Il Area_statistics(k,4) = Q)
Start_fragment = Area_statistics(k,1);
End_fragment = Area_statistics(k.2);
for i=Start_fragment:End fragment
for j=1:No_of labeled points * 2
Average Polar Radius_temp3{i.j) = 0;
end
Congruence_row(i,1)=0;
end
else
Area statistics_temp(m,:) = Area_statistics(k,:);

m=m+ 1;

209

end
end
Area_statistics = Area_statistics_temp;
Average_Polar_Radius_temp2 = Average_Polar_Radius_temp3;
No_of fragments = size(Area_statistics.l);

Average Polar Radius_temp3 = Average Polar_Radius_temp2;
Fragment Polar Radius = zeros(no_of_rows ,No of labeled points * 3);
for k=1:No_of fragments

%Acquire start and end of fragment, and compute its duration

Start fragment = Area statistics(k,l):

End fragment = Area_statistics(k,2);

Duration_of fragment = End fragment - Start fragment +1;

for i=Start_fragment :End_fragment
for j=1:No_of_labeled points
%Compute differential radial distance beween (FingerTips to
%Palm) to Fragment Array
Fragment Polar Radius(i,j+No of labeled points) = Average Polar Radius temp3(i, ¥
j+No_of_labeled_points);
Fragment Polar Radius(i,j) = Average Polar Radius_temp3(i,j)-Average Polar Radius_temp3(i, ¢
No_of_labeled_points);
end
end
for m=Start_fragment:HEnd fragment
%Flag all fingertips where differential radial distance are less
%than threshold
Fragment Polar Radius(m,3*No_of labeled points) = 0;
for j = 1:No_of_labeled_points-1
if abs(Fragment Polar Radius(m, j+No_of labeled points))< Threshold &k abs ¥
(Fragment_Polar_Radius(m, j+No_of_labeled_points)) > 0
Fragment Polar Radius(m,j+2*No_of labeled points) = 1;
Fragment Polar Radius(m,3*No of labeled points) = Fragment Polar Radius(m, ¥
3*No_of labeled points) + 1;
else
Fragment_Polar_Radius(m,j+2*No_of_labeled_points) = 0;
end
end
end
end

gk kR ke ki % Byt ract Coherent Subfragment Specifications ¥®#¥sskss
%Initialize wall rearing frasment table

Fragment_data warchouse = zeros(1,Columns_of SubFragments);
Fragment_data_aux = zeros(1,17);

for k=1:No_of_fragments

%1) For each fragment, further decompose into SubFragments based on three
%most stable fingertips moving less than Min palm threshold;

%

%2) Followed by consolidation of SubFragments where consecutive
%subfragments are only separated by 1 frame, to avoid unnecessary
%subfragmentations due to minor obstructions;

%

%3) Compute statistics +/- 0.5 seconds around the consolidated
%subfragments, to determine what the particular paw did prior to its
%slow movements. Hence discern of wall rearing / floor rearing
%activities

Start_fragment = Area_statistics(k,1);
End fragment = Area statistics(k,2);
Duration_of fragment = End_fragment - Start_fragment +1;

Ok g Rk R R Rk R R R Rk Step | EEERRERRREER R IRRERR R R R RERRE R R R RR

%1) Identify the top three fingertips that demonstrate stability, and
% record its start and end sub fragment timings;

%2) Identify the stable Palm position within the sub fragment timing

% where consecutive radial distance are less than Max Palm Threshold;
%

%3) Compute the average radial distance of the finger tips and the palm;
%

%Step la): Identify Stable Fingertips
paw = zeros(No_of labeled points-1,2);
paw(1,2) = 1; % 1 = Thumb finger
paw(2,2) = 2; % 2 = index finger
paw(3,2) = 3; % 3 = Middle finger
paw(4,2) = 4; % 4 = Ring finger
paw(5,2) = 5; % 5 = small finger

Sum_of minFingerPalm = 0;
0;

Sum_of_maxFingerPalm
Average stable_lst = 0;
Average_stable_2nd = 0;
Average_stable_3rd = 0;
Average_palm = 0;

for i=Start_Iragment :End fragment
%Compute for individual finger how many frames demonstrate slow
Fmovements ie ?(radial distance) < Max Palm Threshold
for j = 2*No_of labeled points+l:2*No_of labeled points+5
if Fragment Polar Radius(i,j) > O
switch j
case 2*No_of labeled points+l
paw(1,1) = paw(1,1) + 1;
case 2*No_of_labeled points+2
paw(2,1) = paw(2,1) + 1;
case 2*No_of_labeled_points+3

210

211

paw(3,1) = paw(3,1) + 1;
case 2*No_of_labeled points+4
paw(4,1) = paw(4,1) + 1;
otherwise
paw(5,1) = paw(5,1) + 1;
end
end
end
%ldentify the top 3 fingertips that are most stable within the
%iragment
sort_paw = sortrows{paw, 'degscend');
stable_lst = int&(sort_paw(1,2));
stable_2nd = int&8(sort_paw(2,2));
stable 3rd = int&(sort_paw(3,2));

Average stable l1st = Average stable lst + Average Polar Radius_temp3(i,stable Ist);
Average_stable 2nd = Average_stable_2nd + Average Polar_Radius_temp3(i,stable_2nd);
Average stable 3rd = Average stable 3rd + Average Polar Radius_temp3(i,stable 3rd);
Palm radii(i-Start_fragment+l)=Average Polar Radius_temp3(i,6);
Average_palm = Average_palm + Average_Polar_Radius_temp3(i,6);

end

Area_statistics(k.4+stable_1st) = Average stable 1st / Duration of fragment;
Area_statistics(k,4+stable 2nd) = Average_stable 2nd / Duration_of fragment;
Area_statistics(k,4+stable_3rd) = Average stable 3rd / Duration of fragment;
Area_statistics(k,10) = Average palm / Duration of fragment;

%Step 1b) Parse Stable FingerTips information to working array
Fragment Polar Radius_tmp = zeros(Duration of fragment, é*No_of labeled points);
for i=Start_Iragment:End_fragment
for j = 1:No_of labeled points
switch]
case stable lst
Fragment Polar Radius_tmp(i-Start fragment+1, j)=Average Polar Radius temp3(i,j):
Fragment_Polar Radius_tmp(i-Start_fragment+1,No_of_labeled_points+i) =¥
Fragment Polar Radius(i.j);
Fragment_Polar Radius_tmp(i-Start_fragment+l,2*No_of_labeled_points+j) = ¢
Fragment Polar Radius(i,No_of labeled points+i);
Fragment Polar Radius_tmp(i-Start fragment+l,3*No_of labeled points+j) = &
Fragment_Polar_Radius(i,2*No_of_labeled_points+j);
Fragment Polar Radius_tmp(i-Start fragment+l,4*No of labeled points+j) = ¥
Fragment_Polar_Radius(i,j)-Fragment_Polar_Radius{i-1,]7);
if abs(Fragment Polar Radius_tmp(i-Start fragment+1,4*No_of labeled points+j)) < v
Threshold
%(FingerTip - Palm distance moves less than 5
%pixels per frame

Fragment Polar Radius_tmp(i-Start_fragment+1,5*No_of labeled points+j) = 1;
else
Fragment Polar Radius_tmp(i-Start_fragment+1,5*No_of labeled points+j) = 0;

end
case stable_2nd

212

Fragment_Polar_Radius_tmp(i-Start_fragment+l, j)=Average Polar_Radius_temp3(i,j);
Fragment Polar Radius tmp(i-Start fragment+1.No of labeled points+i) =«
Fragment Polar Radius{i,j);
Fragment_Polar_Radius_tmp(i-Start_fragment+l,2*No_of_labeled_points+i) = ¥
Fragment Polar Radius(i,No_of labeled points+j):
Fragment_Polar Radius_tmp(i-Start_fragment+l,3*No_of_labeled_points+j) = ¥
Fragment Polar Radius(i,2*No_of labeled points+j);
Fragment Polar Radius tmp(i-Start fragment+l,4*No of labeled points+i) = ¥
Fragment Polar Radius(i,j)-Fragment Polar Radius(i-1.i);
if abs(Fragment_Polar_Radius_tmp(i-Start_fragment+l,4*No_of_labeled_points+j)) < ¢
Threshold
%(FingerTip - Palm distance moves less than 5
%pixels per frame

Fragment Polar Radius_tmp(i-Start_fragment+1,5*No of labeled points+j) = 1;
else
Fragment Polar Radius_tmp(i-Start_fragment+1,5*No_of labeled points+j) = O;

end
case stable 3rd
Fragment Polar Radius_tmp(i-Start fragment+l, j)=Average Polar Radius_ temp3(i,j):
Fragment_Polar_Radius_tmp(i-Start_fragment+l,No_of_labeled_points+i) =¥
Fragment Polar Radius{i,j);
Fragment_Polar_Radius_tmp(i-Start_fragment+l,2*No_of_labeled_points+i) = ¥
Fragment Polar Radius(i,No_of labeled points+i);
Fragment Polar Radius tmp(i-Start fragment+l,3*No of labeled points+j) = ¥
Fragment Polar Radius(i,2*No_of labeled points+j);
Fragment Polar Radius tmp(i-Start fragment+l,4*No of labeled points+j) = ¥
Fragment Polar Radius(i,j)-Fragment Polar Radius¢i-1,j):
if abs(Fragment Polar Radius_tmp(i-Start fragment+l,4*No_of labeled points+j)) < v
Threshold
%(FingerTip - Palm distance moves less than 5
%pixels per frame

Fragment Polar Radius_tmp(i-Start_fragment+1,5No_of labeled points+j) = 1;
else
Fragment Polar Radius_tmp(i-Start_fragment+1,5*No_of labeled points+j) = 0;

end
case No_of_labeled_points
Fragment Polar Radius_tmp(i-Start_fragment+l, j)=Average Polar Radius_temp3(i,j);
Fragment_Polar Radius_tmp(i-Start_fragment+l,No_of_labeled_points+j) =¥
Fragment Polar Radius(i,j);
Fragment Polar Radius_tmp(i-Start fragment+l,2*No_of labeled points+j) = &
Fragment_Polar_Radius(i,No_of_labeled points+j);
end
end
%lag frames that exhibit coherent slow movement in FingerTips -
%Palm distances
Total_slow mvt_pt = 0;
for j=1:5
Total slow mvt pt = Total slow mvt pt + Fragment Polar Radius tmp(i-Start fragment+l, ¥’
5*No_of labeled points+]j);
end
if Total_slow mvt_pt >= Min Congruence
Fragment_Polar_Radius_tmp(i-Start_fragment+l,5*No_of_labeled_points) = 1;

else

Fragment_Polar Radius_tmp(i-Start_fragment+1,5*No_of labeled points) = O;

end
end

%

%During wall-rearing, fingertips will demonstrate temporal stability,
%that FingerTips - Palm shall exhibit short period of small changes
%between frames < Minimum Movement Threshold

%

%2a)Gauge sub-fragments within the fraement where palm exhibit

% small changes in (FingerTips - Palm distance):

%

%2b)Consclidate the two sub-fragments into one sub-fragment array before
% proceeding to Step 3)

e Step 28 ---ccmmmii e %
%Step 2a) Gauge subfragments that show coherent minimal changes in
% (FingerTips - Palm) distance

No_of_ SubFragments = 100;
SubFrag_counter = 1;

SubFragment_stat_prior = zeros(No_of SubFragments, 3*No_of labeled points+4):

Start_SubFragment = 1;
End SubFragment = 1;
SubFragment stat = zeros(No_of SubFragments,Columns of SubFrapgments):

for m=1:Duration_of_ frasment
if m <= Duration_of fragment-1
%Within fragment treatment

if Fragment Polar Radius_ tmp(m,5*No_of labeled points) < 1 && Fragment Polar Radius_tmp v

(m+1,5*No_of labeled points) ==

Start_SubFragment = m+1:
elseif Fragment Polar Radius_tmp(m,5*No_of labeled points) = 1 4

Fragment_Polar_Radius_tmp{mt+1,5*No_of_labeled_points) < 1

£2);

12

End_SubFragment = m;
SubFragment_stat_prior(SubFrag_counter,l)

SubFragment_stat_prior(SubFrag counter,2) = Start_SubFragment;
End_SubFragment ;

SubFragment_stat_prior(SubFrag_counter,3)

SubFrag_counter = SubFrag_counter + 1;
Start_SubFragment = 1;
End_SubFragment = 1;
end
else
%End of fragment treatment where the last frame has coherence
if Fragment Polar Radius_tmp(m,5*No_of labeled points) ==
End_SubFragment = Duration_of fragment;

213

round((Start_SubFragment + End_SubFragment) ¥

SubFragment_stat_prior(SubFrag counter,1) = round((Start_SubFragment + End SubFragment) '

SubFragment_stat_prior(SubFrag_counter,2) = Start_SubFragment;
SubFragment_stat_prior(SubFrag counter,3) = End SubFragment:
end

SubFrag_counter = 1;
Start_SubFragment = 1;
End_SubFragment = 1;
end
end
%Compact SubFragment Array
SubFragment stat_prior(~any(SubFragment stat prior,2), :) =1[]:
SubFragment_stat_prior_tmp = zeros(l,3*No_of labeled points+4);
n=1;
for m=l:size(SubFragment_stat_prior,1)
%remove subfragment that has Start and End Subfragment on same row
if SubFragment stat prior(m,2) < SubFragment stat_prior(m,3)
SubFragment_stat_prior_tmp(n,:) = SubFragment_stat_prior(m,:);
n=n+1;
end
end
SubFragment_stat_prior = SubFragment stat_prior_tmp;

%Consolidate SubFragments, such that subfragments separated less than
%the Max SubFragment Gap are considered as one subfragment
SubFragment gap = zeros(100,1);
for m=1:99

if (m< gize(SubFragment stat _prior,1))

SubFragment_gap(m) = SubFragment stat_prior{m+l,2) - SubFragment_stat_prior(m,3);

if SubFragment_gap(m) < Max_SubFragment_Gap
SubFragment_stat_prior(m,3) = SubFragment stat prior(m+l,3);
SubFragment_stat_prior(m+l, :) =[]
end
end
end

SubFragment_stat_latter = SubFragment_stat_prior;

for m=1:size(SubFragment_stat_prior,1)
SubFragment_stat(m,l) = SubFragment_stat_prior{m,1)+Start_fragment;
SubFragment_stat(m,2) = SubFragment stat_prior(m,2)+Start_fragment;
SubFragment stat{m,3) = SubFragment_stat_prior{m,3)+Start fragment;

end

SubFragment_stat{~any(SubFragment stat,2), :) = [];

No_of_SubFragments = size(SubFragment_stat,1);

SubFragment_aux = zeros(No_of SubFragments,17):

%Step 3)For each sub-fragment, average change in fingertips shall be

% smaller than average change in palm coordinates during

% wall-rearing; as fingertips movement are constrained while palm are
% free

%

for p=1:No_of_SubFragments

214

Start_Subbragment = SubFragment stat_prior(p,2)+Start_fragment;

End SubFragment = SubFragment stat_prior(p,3)+Start_Iragment;

Start_prior = Start_SubFragment - Inspection window;
End_latter = End_SubFragment + Inspection_window;
Duration_inspection window = End latter - Start_prior + 1;
if Start _prior < 1

Start_prior = 1;
end
if End latter > no_of rows

End latter = no of rows;
end

%Compute Statistics prior to congruence point
Sum_stable lst_radius = 0;
0;
0;

Sum_stable_2nd_radius
Sum_stable 3rd radius

Sum_stable_palm = 0;

Sum_stable_lst_radius delta = O
Sum_stable_2nd_radius_delta = 0;
Sum_stable 3rd radius_delta = 0;
Sum_stable_palm delta = 0;

for g = Start_prior:Start_SubFragment
%Compute average radial distance prior to Mid-subfragment

Sum stable 1st_radius = Sum stable 1st radius + Average Polar Radius(g,stable_lst);
Sum_stable_2nd_radius = Sum_stable_2nd_radius + Average Polar_Radius(q,stable_2nd);
Sum stable 3rd radius = Sum stable 3rd radius + Average Polar Radius(g,stable_3rd);
Sum_stable_palm = Sum_stable_palm + Average_Polar_Radius(g,No_of_labeled_points);

%Compute total radial distance change prior to Start-SubFragment

Sum stable 1st_radius_delta = Sum_stable_lst_radius_delta + Average Polar Radius(q,
stable_lst+No of labeled_points);
Sum_stable_2nd_radius_delta = Sum_stable_2nd_radius_delta + Average_Polar_Radius(q,
stable_2nd+No_of labeled points);
Sum_stable_3rd_radius_delta = Sum_stable_3rd_radius_delta + Average_Polar_Radius(q,
stable_3rd+No_of labeled points);
Sum_stable palm delta = Sum stable palm delta + Average Polar Radius(q, ¢
2*No_of_labeled_points);

end

Duration of SubFragment = Start SubFragment - Start_prior;
if (Duration_of SubFragment > ()
%Average Radial distances of FingerTips & Palm

SubFragment stat prior(p, 3+stable 1st) = Sum stable lst radius / double ¥’
(Duration of SubFragment);
SubFragment stat prior(p, 3+stable 2nd) = Sum stable 2nd radius / double ¥
(Duration of SubFragment);
SubFragment_stat_prior(p, 3+stable_31d) = Sum_stable_3rd radius / double

215

(Duration_of_SubFragment):
SubFragment_stat prior(p, 3+No_of labeled points) = Sum stable palm / double ¥’
(Duration_of SubFragment):
%Average change in FingerTips & Palm per frame
SubFragment stat prior(p, 3+2*No of labeled points + stable 1st) =«
Sum_stable_lst_radius_delta / double(Duration_of SubFragment);
SubFragment _stat_prior(p, 3+2*No_of_ labeled points + stable 2nd) = '
Sum_stable 2nd radius_delta / double(Duration_of SubFragment);
SubFragment_stat prior(p, 3+2*No_of labeled points + stable 3rd) =«
Sum_stable_3rd_radius_delta / double(Duration_of_ SubFragment);
SubFragment stat _prior(p, 3+3*No_of labeled points) = Sum_stable palm delta / double v
(Duration_of SubFragment);
else
SubFragment_stat_prior{p,:) = 0;
end

%Compute Statistics after congruence point
Sum_stable_1st_radius = 0;
Sum_stable 2nd radius = 0;
0;

Sum_stable_3rd_radius
Sum_stable_palm = 0;

Sum_stable lst_radius_delta = 0;
Sum_stable_2nd radius delta = 0
Sum_stable 3rd radius_delta = 0;
Sum_stable_palm delta = 0;

for g = End SubFragment:End latter
%Compute average radial distance prior to Mid-subfragment
Sum stable 1st_radius = Sum stable 1st radius + Average Polar Radius(g,stable_lst);
Sum_stable_2nd_radius = Sum_stable_2nd_radius + Average Polar_Radius{qg,stable_2nd);
Sum stable 3rd_radius = Sum stable 3rd radius + Average Polar Radius(q,stable 3rd);
Sum stable palm = Sum_stable palm + Average Polar Radius(g.No_of labeled points);

%Compute total radial distance change prior to Mid-SubFragment

Sum_stable_lst_radius_delta = Sum_stable_lst_radius_delta + Average Polar Radius(q, ¥
stable_lst+No_of labeled points);

Sum_stable_2nd_radius_delta = Sum_stable_2nd_radius_delta + Average Polar Radius(q, ¥
stable_2nd+No_of_labeled points);

Sum_stable 3rd_radius_delta = Sum_stable 3rd radius_delta + Average Polar Radius(g, ¥
stable_3rd+No_of_labeled_points);

Sum stable palm delta = Sum stable palm delta + Average Polar Radius(q, ¥
2*No_of_labeled_points);

end

Duration_of_SubFragment = End_latter - End_SubFragment;
if (Duration_of SubFragment > 0)
%Average Radial distances of FingerTips & Palm
SubFragment stat latter(p, 3+stable 1st) = Sum stable Ist radius / double ¥
(Duration of SubFragment);
SubFragment_stat_latter(p, 3+stable_2nd) = Sum_stable_2nd_radius / double ¢’

216

217

(Duration_of_SubFragment):
SubFragment stat latter(p, 3+stable 3rd) = Sum stable 3rd radius / double ¥
(Duration_of SubFragment):
SubFragment_stat_latter(p, 3+No_of_labeled_points) = Sum stable_palm / double ¥
(Duration_of SubFragment):
%Average change in FingerTips & Palm per frame
SubFragment stat_latter(p, 3+2*No_of labeled points + stable_lst) = '
Sum_stable_1st_radius_delta / double(Duration_of SubFragment);
SubFragment_stat_latter(p, 3+2*No_of labeled points + stable 2nd) =«
Sum_stable_2nd_radius_delta / double(Duration_of_ SubFragment);
SubFragment stat _latter{p, 3+2*No_of labeled points + stable 3rd) = v
Sum_stable 3rd radius_delta / double(Duration_of SubFragment);
SubFragment_stat_latter(p, 3+3*No_of labeled points) = Sum stable palm delta / double '4
(Duration_of SubFragment):
else
SubFragment_stat_latter(p,:) = O;
end

GFEEE Compute statistics for entire SubFragment **¥¥%%g
Radii_l = zeros(End_latter - Start_prior + 1,1);
Radii 2 = zeros(End latter - Start_prior + 1,1);
Radii_3 = zeros(End_latter - Start_prior + 1,1);
Palm 1 = zeros(End_latter - Start_prior + 1,1);

for g = Start_prior:End latter
%Compute average radial distance prior to Mid-subfragment
Radii 1(g - Start_prior + 1) = Average Polar Radius(qg,stable 1st):
Radii_2(g - Start_prior + 1) = Average Polar Radius(qg,stable 2nd);
Radii_3(g - Start_prior + 1) = Average Polar_Radius(q,stable_3rd);
Palm_1(q - Start_prior + 1) = Average Polar Radius{g,No_of_labeled_points);
end

Start_SubFragment ;
End_SubFragment:
SubFragment_aux(p,2+stable 1st) = mean(Radii_1);

SubFragment_aux(p,1)
SubFragment_aux(p,2)

SubFragment_aux(p,2+stable 2nd) = mean{Radii_2);
SubFragment_aux(p,2+stable 3rd) = mean(Radii_3);
SubFragment_aux(p,2+No_of_labeled_points) = mean(Palm 1);
SubFragment_aux(p,l0+stable_lst) = std(Radii_1);
SubFragment_aux(p,l10+stable 2nd) = std{Radii_2);
SubFragment_aux(p,10+stable_3rd) = std{Radii_3);
SubFragment_aux(p,10+No_of labeled points) = std(Palm 1);

outward = 0;

if SubFragment aux(p,2+stable 1st) > SubFragment aux(p,2+No_of labeled points)
outward = outward + 1;

end

if SubFragment aux(p,2+stable 2nd) > SubFragment aux(p,2+No_of labeled points)
outward = outward + 1;

end

if SubFragment aux(p,2+stable 3rd) > SubFragment aux(p,2+No_of labeled points)
outward = outward + 1;

218

end
FCompute Fingertips in outward orientation
SubFragment_aux(p,3+No_of labeled points)=outward;

below_inner = O;

if SubFragment_aux(p,2+stable_lst) <= Inner_Diameter * safety_margin / 2
below inner = below inner + 1;

end

if SubFragment aux(p,2+stable 2nd) <= Inner Diameter * safety margin / 2
below_inner = below_inner + 1;

end

if SubFragment aux(p,2+stable 3rd) <= Inner Diameter * safety margin / 2
below inner = below_inner + 1;

end

%Compute Fingertips within inner diameter

SubFragment_aux(p,4+No_of labeled points)=below_inner;

SubFragment aux(p,17) = (SubFragment aux(p,2+No of labeled points)+SubFragment aux(p, ¥
2+stable_lst)+SubFragment aux(p,2+stable 2nd)+SubFragment aux(p,2+stable 3rd))/4;

%Discern fingertips and palm movement dynamics within
%congruent subfragment ie +/- 0.5 seconds from coherent minima

stable lst mvt = mvtSymbol(SubFragment stat prior(p, 3+2*No of labeled points + stable lst), ¥
SubFragment_stat latter(p, 3+2*No_of labeled points + stable lst)):

stable 2nd mvt = mvtSymbol(SubFragment _stat _prior(p, 3+2*No_of labeled points + stable_2nd), v
SubFragment_stat latter(p, 3+2*No_of labeled points + stable 2nd)):

stable 3rd mvt = mvtSymbol(SubFragment stat _prior(p, 3+2*Nec of labeled points + stable 3rd), 'd
SubFragment stat latter(p, 3+2*No_of labeled points + stable 3rd));

stable_palmmvt = mvtSymbol(SubFragment_stat_prior(p, 3+3*No_of_labeled points), ¥
SubFragment_stat_latter(p, 3+3*No_of labeled points));

SubFragment_stat(p,2)=Start_SubFragment
SubFragment_stat(p,3+stable_lst) = stable_lst _mvt;
SubFragment_stat(p,3+stable_2nd) =stable_2nd mvt;
SubFragment_stat(p,3+stable 3rd) =stable 3rd mvt;
SubFragment_stat(p.9) =stable_palm_mvt;

SubFragment_stat(p,10) = touchDetect(Start_SubFragment, End_SubFragment. stable_lst_mvt, ¥
stable 2nd mvt, stable 3rd mvt, stable_palm mvt);

end

Fragment_header = zeros(1,Columns_of_SubFragments);

Fragment_header(1,1) = Start_fragment;

Fragment_header(1,2) = End fragment;

Fragment_data warehouse = cat(l,Fragment_data warehouse.Fragment header);
Fragment_data_warehouse = cat{l,Fragment_data_warehouse,SubFragment_stat);

Fragment_aux_header = zeros(1,17);

Fragment_aux_header(1,1) = Start_fragment;
Fragment_aux_header(1l,2) = End fragment;

Fragment_data_aux = cat(l,Fragment_data_aux,Fragment_aux_header);

219

Fragment_data_aux = cat(1l,Fragment_data_aux,SubFragment_aux);

end
Fragment_data_warehouse(l,:) =[] ;
Fragment data aux(l,:) =[] ;

AR Brdract Congruent Points ‘Specifications FBteirces
%Initialize wall rearing fragment table
Fragment_congruence = zeros(1,10);

for k=1:No of frapgments

%For each fragment, inspect existence of the following evidence to
%confirm of wall rearing

%

%Three possible situations will happen as paw hits the wall, be obstructed
%and bounced back

%

%la)Distance between finger tips and palm

% shall demonstrate congruent minima for some fingers while decreasing
% distance for others; it will not be surprising, due to acrylic

% reflection, that some of these distances are negative, as DLC

% recognize mirror reflection of palm based on its virtual image.

%

%1b)Change in radial distances of fingertips and palm from the center

% shall be peaked (and possibly reversed)

%

%lc)Fingertips may linger on the wall (ie change of fingertips radial

% distance will be hoovering < 1 pics per frame

%hAcquire start and end of fragment, and compute its duration

Start_fragment = Area_statistics(k,1);
End fragment = Area_statistics(k.2);
Duration of fragment = End fragment - Start fragment +1;

%
%1) Identify the top three fingertips that demonstrate stability, and
% record its start and end sub _fragment timings;

%2) Identify the stable Palm position within the sub_fragment timing

% where consecutive radial distance are less than Max Palm Threshold;

%

%3) Compute the average radial distance of the finger tips and the palm;
%

%4) Check if Palm radial distance is less than finger tips; if ves, paw
% 1is oriented outwards, else it is oriented inwards

paw = zeros(No_of labeled points,2);
paw(1,2) = 1; % 1 = Thumb finger

paw(2,2)
paw(3,2)

2; % 2 = index finger
3; % 3 = Middle finger

220

paw(4,2) = 4; % 4 = Ring [inger
paw(5,2) = 5; % 5 = small finger
paw(6,2) = 6; % 6 = palm
for i=Start_fragment:End_fragment
%Compute for individual finger how many frames demonstrate slow

Ymovements ie ?{radial distance) < Max_Palm_Threshold
for j = 2*No_of_labeled points+l:2*No_of labeled points+5
if Fragment Polar Radius(i,j) > C
switch j
case 2*No_of_labeled_points+l
paw(1l,1) = paw(1.,1) + 1:
case 2*No_of_ labeled points+2
paw(2,1) = paw(2.,1) + 1;
case 2*No_of labeled points+3
paw(3,1) = paw(3.1) + 1;
case 2*No_of_labeled points+4
paw(4,1) = paw(4,1) + 1;
otherwise
paw(5,1) = paw(5,1) + 1;
end
end
end
%ldentify the top 3 fingertips that are most stable within the
%Iragment
sort_paw = sortrows{paw, 'descend');
stable_lst = int&(sort_paw(1,2));
stable 2nd = int8(sort_paw(2,2)):
stable_3rd = int&(sort_paw(3,2));
end

Fragment_Polar_Radius_tmp = zeros(Duration_of_fragment, No_of_labeled_points * 4);
for i=Start_fragment:End fraement
for j = 1:No_of labeled points
switch j
case stable Ist
Fragment_Polar_Radius_tmp(i-Start_fragment+l, j)=Average Polar_Radius_temp3(i,j);
Fragment_Polar Radius_tmp(i-Start fragment+],No_of labeled points+j) =«
Fragment_Polar_Radius{i,j);
Fragment Polar Radius tmp(i-Start fragment+l,2*No of labeled points+j) = ¥
Fragment Polar Radius(i,No_of labeled points+j):
Fragment_Polar_Radius_tmp(i-Start_fragment+l,3*No_of_labeled_points+i) = ¥
Fragment Polar Radius{i,2*No_of labeled points+j);
case stable_2nd
Fragment Polar Radius_tmp(i-Start_fragment+l, j)=Average Polar Radius_temp3(i.j);
Fragment Polar Radius tmp(i-Start fragment+l,No of labeled points+i) =«
Fragment Polar Radius(i.j);
Fragment_Polar_Radius_tmp(i-Start_fragment+],2*No_of_labeled_points+j) = ¥
Fragment Polar Radius(i.No_of labeled points+i);
Fragment Polar Radius_tmp(i-Start fragment+l,3*No_of labeled points+j) = ¥
Fragment Polar Radius(i,2*No_of labeled points+j);
case stable 3rd
Fragment_Polar_Radius_tmp(i-Start_fragment+l, j)=Average Polar_Radius_temp3(i,j);

221

Fragment_Polar_Radius_tmp(i-Start_fragment+l,No_of_labeled_points+i) =¥
Fragment Polar Radius(i,j);

Fragment Polar Radius_tmp(i-Start fragment+l,2*No of labeled points+j) = ¥
Fragment_Polar_Radius(i,No_of_labeled points+j);

Fragment Polar Radius tmp(i-Start fragment+l,3*No of labeled points+)) = ¥
Fragment_Polar_Radius(i,2*No_of_labeled_points+j);

case No_of labeled points

Fragment Polar Radius_tmp(i-Start fragment+l, j)=Average Polar Radius_temp3(i,j):

Fragment Polar Radius_tmp(i-Start fragment+l,No_of labeled points+j) = ¢
Fragment_Polar_Radius{i,j);

Fragment Polar Radius_tmp(i-Start fragment+],2*No of labeled points+j) = v
Fragment Polar Radius(i,No_of labeled points+j);

%Fragment Polar Radius_tmp(i-Start fragment+1,3*No of labeled points+i) = 4
Fragment Polar Radius(i,2*No_of labeled points+j);

end
end
end

%1) Identify sub-fragments within the fragment where palm is shortest
% distance (ie Congruent Minima) from the stable fingertips; in these
% settings the paw is either grabbing something
% or pushing against the wall
%
%2) Back-trace the minima to the last moving palm to establish
% sub-fragment
%
%3) For each sub-fragment, average change in fingertips shall be
% smaller than average change in palm coordinates during
% wall-rearing; as fingertips movement are constrained while palm are
% free
%
for m=l:Duration_of fragment
%Flag stable palm sub-fragment
if abs(Fragment Polar Radius_tmp(m,No_of labeled points*3)) <= Max Palm Threshold
% ?(Palm) < Max Palm Threshold => Flag Stable Palm
Fragment_Polar_Radius_tmp(m,No_of_labeled_points*4) =

|
—

else
Fragment_Polar_Radius_tmp(m,No_of_labeled_points*4) =

|
(]

end

end

%Extract minima fingertips - Palm distances

Stable Ist_finger = zeros(Duration_of fragment, 1);

Stable_2nd_finger = zeros(Duration_of fragment, 1);

Stable 3rd_finger = zeros(Duration_of fragment, 1);

for m=1:Duration_of fragment
Stable 1st_finger(m,1) = -Fragment Polar Radius_tmp(m,No_of labeled points+stable_lst);
Stable_2nd_finger(m,1) = -Fragment_Polar_Radius_tmp(m,No_of_labeled_points+stable_2nd);
Stable 3rd_finger(m,1) = -Fragment Polar Radius_tmp(m,No_of labeled points+stable 3rd);

[Min 1st, Min_ 1st_idx] = findpeaks(Stable 1st finger);
[Min 2nd, Min 2nd_idx] = findpeaks(Stable 2nd finger);
[Min_3rd, Min 3rd_idx] = findpeaks(Stable 3rd_finger);

222

end

%Group the trough points into clusters into sub fragments
Congruent_Minima_index = zeros{1000,3);
Congruent_Mode_index = zeros(1000,1);
for l=1:size(Min_lst_idx)
Congruent Minima_index(intl6(Min_Ist idx(1)),1)=1;
end
for I=l:size(Min 2nd_idx)
Congruent_Minima_index(int16(Min_2nd_idx(1)).2)=1:
end
for I=l:size(Min 3rd_idx)
Congruent Minima_index(int16(Min 3rd idx(1)).3)=1;
end
for p=1:1000-Congruence_window
Ywhere minima is observed, inspect next neighbor frames where
Yminima will also be observed
if Congruent Minima_index(p.1) > 0 |1 Congruent Minima_index(p,2) > 0 Il Congruent Minima_ index &
(p,3) > 0
for g=0:Congruence_window
Congruent_Mode_index (p) = Congruent Mode_index (p) + Congruent Minima_index(p+g,1)+ ¢
Congruent_Minima_index (p+q,2) + Congruent_Minima_index{p+q,3);
end
end
end
%Find congruence points where minima of fingertips - palm distances
%occur within 1 second among each other
[Congr peaks tmp, Congr peaks loc tmp] = findpeaks(Congruent Mode_index, 'MinPeakDistanoe',“’

Congruence_window) ;

=
Congr_peaks_loc = zeros(100,1);
Congr_peaks_loc_tmpl = Congr_peaks_loc_tmp;
for p=1:size(Congr_peaks_loc_tmp)
if Congr peaks tmp(p) >= Min Congruence
%Fine tune location of Congruence Peaks
%By extracting median within the Congruence_window
Start_Congruence = intl16(Congr_peaks_loc_tmp(p));
Congr_median_array = zeros(3*(Congruence_window).,1);
for u=0:Congruence window - 1
for v =1:3
if Congruent_Minima_index(Start Congruence + u, v) > 0
Congr_median_array{3*u+v) = Start_Congruence + u;
end
end
end
Congr_median_array = Congr_median_array(Congr_median_array ~= Q);
Congr_peaks_loc_tmpl¢p) = median(Congr_median_array);

Congr_peaks_loc(r) = Congr_peaks_loc_tmpl(p);
r=r+1;
end

223

end
Congr_peaks_loc = Congr_peaks_loc(Congr_peaks_loc ~= 0);

No_of_SubFragments = size(Congr_peaks_loc,1);

SubFragment_stat_prior = zeros(No of SubFragments, 3*No_of labeled points+l):
SubFragment_stat_latter = zeros(No_of SubFragments, 3*No_of_labeled points+l);
Start_SubFragment = 1;

Mid SubFragment =
End SubFragment =
SubFragment_stat = zeros(No_of_SubFragments,10);
for p=1:No_of SubFragments

L
14

% Locate mid-points of maximum congruence between 3 stable
% fingertips
Mid _SubFragment = intlé6(Congr peaks loc{p))+Start_fragment;

if Mid SubFragment - Inspection_window > 1
Start_SubFragment = Mid_SubFragment - Inspection_window;
else
Start_SubFragment = 1;
end
if Mid SubFragment + Inspection window < no of rows
End_SubFragment = Mid_SubFragment + 12;
else
End SubFragment = no of rows;
end

gREFRRRRESave Congruence Pointg ¥¥*%#

Mid_SubFragment;
Start_SubFragment;

SubFragment_stat(p,1)
SubFragment_stat{p,2)
SubFragment_stat(p,3) = End_SubFragment;

end

Fragment_congruence = cat(1,Fragment congruence,SubFragment stat);

end
Fragment_congruence(l,:) = [] ;

frwrkakprtiEsi® Decisions: Evaluation -Specifications MHessssiadiiniix

%**%% 15t Phase: Correlate Coherent Subfrasments with Congruence Points

%*F%% jnitial sauge of wall rearing

No_coherent_Subfragments = size(Fragment data warehouse,l);
No_congruent_points = size(Fragment congruence,l);

%Fragment_data_warehouse should only flag subfragments that are BOTH
%Coherent (i.e. three fingers moving below 5 pixels per frame) AND
%Congruence within 1 second of Coherence (i.e. FingerTips - Palm distance
%of slow moving fingers exhibi minima)

Fragment_data_warehouse_tmp = zeros(No_coherent_Subfragments, Columns_of_SubFragments);

for i=1:No_coherent Subfragments
1T Fragment_data warehouse(1,3) > 0 &% Fragment_data warehouse(1,10) > 0

%Process Coherent SubFragment records which was tagged as plausible
%wall-rearing

%

%For each subfragment

%if Coherent Subfragment +/- 1 second possess congruence points
%decision(s) = 1;

%else decision = 0

%

Fragment data_warchouse_tmp(i,:)=Fragment data warchouse(i,:);
Start_SubFragment = Fragment data warehouse(i,2)-Frame Rate;
End_SubFragment = Fragment_data_warechouse(i,3)+Frame_Rate;
No_of congruence = 0;
for j=1:No_congruent_points
%Find Number of Congruence points within each coherent
%subfragment

1 Fragment_congruence(],1)>=Start_SubFragment &% Fragment_congruence(j,1) '4

<=End SubFragment

end

No_of_congruence = No_of_congruence + 1;
end
end
if No_of congruence > 0

Fragment _data_warehouse tmp(1,10) = 1;
Fragment data warehouse _tmp(i,11) = No_of congruence:
else

s
&

Fragment_data_warehcuse_tmp(i,1Q)

Fragment_data_warehouse_tmp(i,11)
end

else

end

%save header records
Fragment_data warchouse_tmp(i,:) = Fragment_data warchouse(i,:);

Fragment_data_warehouse = Fragment_data_warchouse_tmp;

Gr*e% Ind Phase: Eliminate Stationary Movements

GpFrxEkxk ks k® Hilter Subfragments that are unlikely to be wall rearing
%1) If Subfragment's palm demonstrate standard deviations <
%Crawling_low_threshold

%

%2) If Subfragment duration is less than Minimum touch duration

%

Fragment_data_warehcuse_tmp = zeros(No_coherent_Subfragments, Columns_of_SubFragments);

for i=1:No_coherent_Subfragments

if Fragment _data warehouse(1,3) > O

if Fragment data warchouse(i,10) > 0
%transfer details records where wall-rearing is suspected
Fragment_data_warehouse_tmp(1,:) = Fragment_data_warchouse(i,:);

224

225

stationary_count = 0;
for j=1:6
if Fragment_data_aux(i,10+j) > O
if Fragment data aux(i,10+j) <= Crawling low threshold
stationary_count = stationary_count + 1;
end
end
end
if stationary_count > 1
Fragment data warehouse tmp(i,10)=0:
Fragment data warehouse tmp(i,11)=0;
end

1T (Fragment_data_warchouse(i,3) - Frasment_data_warchouse(i,2)) < Minimum touch_duration
Fragment_data warchouse_tmp(i,10)=0;
Frasgment_data_warehouse_tmp(1,11)=0;

end

else
%save details record with no wall-rearing detected
Fragment_data_warehouse_tmp(i,:) = Fragment_data_warchouse(i,:);
end
else
Fragment_ref = Fragment_ref + 1
%save header records
Fragment data warehouse_tmp(i,:) = Fragment data warehouse(i,:):
end
end

%*** 3rd Phase: Evaluate Subfragment Statistics

%**** Pngfam starts e s e of 5k s ofe e ofe o sk ok ofe s s o sfe ok s s e ofesfe st s ok sfe ok s o ofe sfesf sk ofeofe sfeofe sk ook sk ok sk ke ek ok
Average Polar_Radius_temp4 = zeros(no_of rows, 12);

Average Polar_Radius_temp5 = zeros(no_of rows, 12);
Fragment_data_warehouse tmp2 = Zeros(1000,4):
Fragment_data_warehouse_tmp3 = zeros(1000,4);

Fragment_data_warchouse_tmpl = Fragment_data_warchouse_tmp;
for i1=1:No_coherent_Subfragments
if Fragment_data warehouse tmpl(i,3) > C
if Fragment_data_warchouse_tmpl(i,10) > 0
%Enlarge surveillance to +/- Inspection Windows of SubFragment
Start_SubFragment = intl16(Fragment_data_warchouse_tmpl(i,2) - Inspection_window);
End SubFragment = int16(Fragment_data warechouse tmpl(i,3) + Inspection window);
if Start_SubFragment < 1
Start_SubFragment = 1;
end
if End SubFragment >= no_of rows
End SubFragment = no_of rows - 1;
end

%Investigate on enlarged subfragment

226

for k=Start_SubFragment:End_SubFragment
for j = 1:6
Average Polar Radius_temp4{k,j) = Raw Polar Radius(k,j);
Average_Polar_Radius_tempd(k,j+No_of_labeled_points) = Raw Polar Radius(k+l,j)- ¥
Raw Polar Radius(k,j);
end
end
end
end
end

Average Polar_Radius_temp5 = Average Polar_Radius_tempd;
for i=1:no_of rows
Transition_counter = 0;
for j=No_of_labeled _points+l:2*No_of_labeled_points
if abs(Average Polar Radius_temp4(i,j)) »>= Transition TH
Transition_counter = Transition_counter + 1;
end
end
if Transition_counter > 1
FNumber of fingertips that exceed Transition TH >= 2
for j=1:2*No_of_labeled_points
Average Polar_Radius_temp5(i.j) = 0;
end
end
end

%Repartition SubFragment
k=1;
Start_Subfragment = 1;
SubFragment_statistics_aux = zeros(1000,3+2*No_of_labeled_points);
for i=1:no_of_rows-1
if(Average Polar Radius_temp5(i,1) < 1 & Average Polar_Radius_temp5(i+1.,1)>= 1)
%transition to start of repartitioned Subfragment
Start_Subfragment = i+1;
elseif (Average_Polar_Radius_temp5(i,1) >= 1 && Average_Polar_Radius_temp5(i+1,1)< 1)
%transition to end of repartitioned Subfragment
End_Subfragment = i;

SubFragment_statistics_aux(k,1) = Start_Subfragment;
SubFragment_statistics_aux(k,2) = End_Subfragment;

k=k+1;

elseif (Average Polar Radius_temp5(no_of rows,1) >= 1 & 1 == no_of_rows-1)
%End of array treatment
End Subfragment = no_of rows;

SubFragment_statistics_aux(k,1) = Start_Subfragment;
SubFragment_statistics_aux(k,2) = End_Subfragment;
end
end
SubFragment_statistics_aux(~any(SubFragment_statistics_aux,2), :) =1[1;

227

%Eliminate any repartitioned SubFragment that has less than 2 frames
No_repart_subfrag = size(SubFrapgment statistics_aux,1):
for k=1:No_repart_subfrag
if (SubFragment_ statistics_aux(k,2) - SubFragment statistics_aux(k,1) < Min_stat computation)
%I duration of frame transitions less than 3 time frames,
%eliminate subfragments from statistics computation
Start_SubFragment = int16(SubFragment statistics_aux(k,1));
End SubFragment = intl16(SubFragment statistics_aux(k,2)):
for i=Start_SubFragment :End_SubFragment
for j=1:2¥No_of labeled points
Average Polar Radius_temp5(i.j) = 0;
end
end

SubFragment_statistics_aux(k,1) = 0;
SubFragment_statistics_aux(k,2) = 0;

end
end
SubFragment_statistics_aux(~any(SubFragment statistics_aux,2), :) = [];

HCompute statistics for each repartitioned SubFragment

No_repart_subfrag = size(SubFrapgment statistics_aux,1):

for k=1:No_repart_subfrag
Start_SubFrapgment = int16(SubFragment statistics_aux(k,1)):
End SubFragment = int16(SubFragment statistics aux<k,2)):
SubFragment_duration = End_SubFragment - Start SubFragment + 1;

finger l=zeros(SubFragment duration,l1);
finger_2=zeros(SubFragment_duration,1);
finger 3=zeros(SubFragment duration,1);
finger 4=zeros(SubFragment duration,1);
finger S=zeros(SubFragment duration,1);
palm=zeros(SubFragment duration,1);

=1

for i=Start_SubFragment :End_SubFragment
finger_1(m) = Average Polar_Radius_temp5(i,1);
finger 2(m) = Average Polar Radius_temp5(i,2):
finger_3(m) = Average_Polar_Radius_temp5(i,3);
finger 4(m) = Average Polar Radius_temp5(i,4):
finger_5(m) = Average_Polar_Radius_temp5(i,5);
palm{m) = Average Polar Radius_temp5(i.6H);
me=m+] ;

end

SubFragment_statistics_aux (k,3) = mean(finger_1);
SubFragment_statistics_aux (k.4) = mean(finger_2);

SubFragment_statistics_aux (k,5) = mean(finger_3);

SubFragment_statistics_aux (k.6) = mean(finger_4);

SubFragment_statistics_aux (k,7) = mean{finger_5);

SubFragment_statistics_aux (k,8) = mean(palm);

SubFragment statistics aux (k,3+No_of labeled points) = std2(finger 1);

SubFragment_statistics_aux (k,4+No_of labeled_points)
SubFragment_statistics aux (k,5+No_of labeled_points)
SubFragment_statistics_aux (k,6+No_of labeled_points)
SubFragment_statistics_aux (k,7+No_of_ labeled points)

stdZ2(finger_2);
std2(finger_3);
stdZ(finger_4);
std2(finger_5);

SubFragment_statistics_aux (k,8+No_of_labeled points) = std2(palm);

end

DigitPeaks = zeros(No_repart_subfrag,16);

DigitPeaksFlag = zeros(No_repart_subfrag,1);

for k=1:8

DigitPeaks(: ,k) = SubFrasment_statistics_aux (:.k);

end

for k=3:7 %Find maxima of mean digit radil for each digits

if DigitPeaks(1,k) > DigitPeaks(2.k)
DigitPeaks(1,k+6) = 1;

else
DigitPeaks(1,k+6) = 0;

end

1T DigitPeaks(No_repart_subfrag,k) > DigitPeaks(No_repart_subfrag-1.k)

DigitPeaks(No repart_subfrag,k+0)
else

DigitPeaks(No_trepart_subfrag k+6)
end

for 1=2:(No_repart_subfrag-1)
if DigitPeaks(l,k) > DigitPeaks(1-
DigitPeaks(1,k+6) = 1;
else
DigitPeaks(1,k+6) = 0;
end
end
end

DigitPeaks(:,14) = DigitPeaks(:,9)+DigitPeaks(:,10)+DigitPeaks(:,11)+DigitPeaks(:,12)+DigitPeaks(:

for m=1:No_repart_subfrag

1

1;

0

k) & DigitPeaks¢1l.k) > DigitPeaks(1+1.k)

%Compute Convolution Column of DigitPeaks

ifm>»1 & m < No_repart_subfrag

DigitPeaks(m,15) = DigitPeaks(m,14) + DigitPeaks(m+1,14) + DigitPeaks(m-1,14);

elseif m = No_repart_subfrag

DigitPeaks(m,15) = DigitPeaks(m,14) + DigitPeaks(m-1,14);

elseif m =1

DigitPeaks{m,15) = DigitPeaks(m,14) + DigitPeaks(m+1,14);

end
end
for m=1:No_repart_subfrag
ifm>1 & m< No_repart_subfrag
if DigitPeaks(m,15) > 4
DigitPeaks(m,16) = 1;

228

J13);

229

DigitPeaks(mtl, 16)
DigitPeaks(m-1, 16)
end

I
—

elseif m=1
if DigitPeaks(m,15) > 4
DigitPeaks(m,16) = 1;
DigitPeaks(m+1,16) = 1;
end
elseif m = No_repart_subfrag
1f DigitPeaks(m,15) > 4
DigitPeaks(m,16) = 1;
end
end
end
DigitPeaksFlag = DigitPeaks(:,16);
SubFragment_statistics_aux_backup = zeros(No_repart_subfrag, 15);
for m=1:No_repart_subfrag
if DigitPeaksFlag(m,1) > 0
SubFragment statistics_aux _backup(m,:) = SubFragment_ statistics aux{m,:):
end
end
SubFragment_statistics_aux_backup(~any(SubFragment_statistics_aux_backup,2), :) = [];
SubFragment _statistics_aux = SubFragment_statistics_aux_backup;

%For plausible wall rearing, some fingertips shall demonstrate slow
%yariations as it rest on wall, while others shall demonstrate mobility
No_repart_subfrag = size(SubFragment statistics_aux,1):
for k=1:No_repart_subfrag
count = 0;
for j=1:No_of_ labeled points-1
if SubFragment_statistics_aux(k,2+No_of_labeled_points+j) <= Variation TH
count = count + 1;
end
end
SubFragment_statistics aux(k,15) = count;
end

%Eliminate SubFragments of false positives for the following conditions
%1) Number of slow moving fingertips between 2 to 4
%2) Eliminate slow moving and fast moving palm
% Slow moving implies entire paw is resting
% Fast moving does not make posture sense
%3) Each fingertip cannot distant from each other more than 100 pixels
SubFragment_statistics_aux_tmp = SubFragment statistics aux;
for k=1:No_repart_subfrag
clear_subfrag = 0;
if (SubFragment_statistics_aux(k,15) < 2 |l SubFragment_statistics_aux(k,15) > 4)
¥For wall rearing, the five fingertips has either 2,3, or 4
%slow moving
clear_subfrag = 1;
end

if intl6{SubFragment_statistics_aux(k,15)) = 4
%if four fingertips are slow moving, inspect whether the palm is
%slow moving or ultra fast moving
if SubFragment_statistics_aux(k,14) <= Variation_TH
clear_subfrag = 1;
elseif SubFragment_statistics_aux(k,14) >= Variation_High TH
clear_subfrag = 1;
end
end

%Compute maxima and minima of slow moving fingertips
slow_radii_matrix = zeros(intl6(SubFragment_statistics_aux(k,15)),1);
=1

for j=1:(No_of labeled points-1)

if SubFragment_statistics_aux(k,2+No of_labeled_points + j) <= Variation_TH

slow_radii matrix(m) = SubFragment_statistics_aux(k,2+i);
m=nt1;
end
end
if max(slow_radii_matrix) - min{slow radii_matrix) »= Max_radii_differentials
clear_subfrag = 1;
end

%ldentify the three slowest moving fingertips and remove those that lie
%within Inner Radius
Variations = zeros(5,1);

for j=9:13
Variations(j-8,1) = SubFragment_statistics_aux(k,j):
end
Low var = mink(Variations,3);
for j=3:7
form=1:3

if SubFragment_statistics_aux(k,j+No_of labeled points) = Low_var(m)

230

if SubFragment_statistics_aux(k,i) < Inner_radius_outlier_removal factor*Inner Diameter '

/2
clear_subfrag = 1;
end
end
end
end
if clear_subfrag ==
for j=1:(3+2*No_of_labeled_points)
SubFragment_statistics_aux_tmp(k,i) = O;
end
end
end
YRemove all zeros rows data(~any(data,2), :) =1[]: %rows

SubFragment_statistics_aux_tmp(~any(SubFragment_statistics_aux tmp ,2),:) = [];

%Reconstruct SubFragment report
n=1;

231

No_repart_subfrag = size(SubFragment_statistics_aux_tmp,1);
for m=1:No_of fragments
Start_fragment = intl6(Area_statistics(m,1));
End_fragment = intl6(Area_statistics(m,2));

Fragment_data_warchouse_tmp2(n,1) = Start_fragment;
Fragment_data warchouse_tmp2(n,2) = End fragment;
n=n+l;

for k=1:No_repart_subfrag
Start_SubFragment = SubFragment statistics aux_tmp(k,1):
End_SubFragment = SubFragment_statistics_aux_tmp(k,2);

if (Start SubFragment »>= Start fragment & Start SubFragment < End fragment) & Bnd SubFragment ¥
<= (End_fragment + Frame_Rate)
Fragment _data warchouse tmp2(n,1) = intl6((Start_SubFragment + End_SubFragment)/2):
Fragment_data_warchouse_tmp2(n,2) = Start_SubFragment;
Fragment _data warchouse_tmp2(n,3) = End SubFragment;

Fragment data warehouse tmp2(n.4) = 1:
n = n+l;
end
end
end
%Remove all zeros rows data(~any(data,2), :) =1[1: %rows

Fragment_data warchouse tmp2{ ~any(Fragment_data warchouse tmp2 ,2),:) = []:

%For fast moving SubFragments, Eliminate SubFragments of false positives for the following conditions
%1) Number of slow moving fingertips less than 2
%2) Identify three fingertips of slowest variations
%3) All fingertips has to lie bevond Inner Diameter
SubFragment_statistics aux_tmpl = SubFragment statistics_aux;
No_repart_subfrag = size(SubFragment statistics_aux,l1);
for k=1:No_repart_subfrag
clear subfrag = 0;
if SubFragment_statistics_aux(k,15) > 1
%Eliminate all SubFragments that has more than 1 stable fingertips
clear_subfrag = 1;
end

if clear_subfrag == 1
for j=1:(3+2*No_of labeled points)
SubFragment_statistics_aux_tmpl(k,j) = 0;
end
end
end
%Remove all zeros rows datal ~any(data,2), :) =[]: %rows
SubFragment statistics_aux_tmpl(~any(SubFragment statistics_aux_tmpl ,2),:) = [1;

No_repart_subfrag = size(SubFragment statistics_aux_tmpl,1);
SubFragment_statistics_aux_tmp5 = SubFragment_statistics_aux_tmpl;
for k=1:No_repart_subfrag

232

clear_subfrag = 0;

%Remove SubFragments where more than 3 digits radii distance lie
%within Inner_Radius

No_of_inner_digits = 0;
for j=3:8
if SubFragment statistics_ aux tmpS(k,j) < Inner radius_outlier removal factor*Inner Diameter /2
No of inner_digits = No_of inner digits + 1;
SubFragment_statistics_aux_flag(k,1) = No_of_inner_digits;
end
end
if No of inner digits > 3
clear_subfrag = 1;
end

%Compute maxima and minima of slow moving fingertips
slow_radii_matrix = zeros(int16(SubFragment_statistics_aux(k,15)),1);
n=l;
for j=1:(No_of_labeled_points-1)
if SubFragment statistics aux(k,2+No of labeled points + j) <= Variation TH
slow_radii_matrix(m) = SubFragment_statistics_aux(k,2+j);
m=m+1;
end
end
if max(slow radii matrix) - min{slow radii_matrix) »= Max radii differentials
clear subfrag = 1;

end
if clear_subfrag == 1
for j=1:(3+2*No_of_labeled_points)
SubFragment_statistics_aux_tmpS¢k,j) = 0;
end
end
end
%Remove all zeros rows data(~any(data,2), :) =1[1; %rows

SubFragment_statistics_aux_tmp5(~any(SubFragment statistics_aux_tmps ,2),:) = []:
SubFragment_statistics_aux_tmpl = SubFragment_statistics_aux_tmp5;

%Reconstruct SubFragment report
n=l1;
No_repart_subfrag = size(SubFragment statistics_aux tmpl,1);
for m=1:No_of fragments
Start_fragment = intl6(Area_statistics(m,1));
End fragment = intl6(Area statistics(m,2));

Fragment_data_warehouse_tmp3(n,1) = Start_fragment;
Fragment_data warchouse_tmp3(n,2) = End fragment;
n=n+l;

for k=1:No_repart_subfrag
Start_SubFragment = SubFragment_statistics_aux_tmpl(k,1);

233

End_SubFragment = SubFragment_statistics_aux_tmpl(k,2);

if (Start SubFragment »= Start f{ragment &% Start SubFragment < End {ragment) &% End SubFragment ¥
<= (BEnd_fragment + Frame_Rate)
Fragment_data_warehouse_tmp3(n,1)

intl6({Start_SubFragment + End SubFragment)/2);
Start_SubFragment ;

End SubFragment ;

Frapment data warehouse_tmp3(n.4) = 1;

n=n+l;

Fragment_data_warchouse_tmp3(n,2)
Fragment_data_warehouse_tmp3(n,3)

end
end
end
YRemove all zeros rows data(~any(data,2), :) =1[]: %rows
Fragment data warehouse_tmp3(~any(Fragment data warehouse_tmp3 ,2),:) = []:

Gprddsdkk Rk krrE Congolidate subfragments into episodes F#HEkrsEfktts

Fragment_data warchouse_tmpd = zeros(1000,4);

%Eliminate zero rows of SubFragment statistics aux, and concatenate the two
%SubFragment statistics into one array

SubFragment_statistics_aux_tmp2 = SubFragment_statistics_aux_tmp;
SubFragment statistics_aux_tmp3 = SubFragment statistics_aux_tmpl;

SubFragment_statistics_aux_tmp2(~any(SubFragment_statistics_aux_ tmp2 ,2),:)

I}
—_
s

SubFragment_statistics aux_tmp3(~any(SubFragment statistics_aux_tmp3 ,2),:)
SubFragment statistics aux tmp4 = cat(l,SubFragment statistics_aux_tmp2, "4

1l
—_
L

SubFragment_statistics_aux_tmp3):
SubFragment_statistics_aux_tmp4 = sort(SubFragment_statistics_aux_tmpd);

n=1;
No_repart_subfrag = size(SubFragment statistics_aux_tmp4,1);
for m=1:No_of fragments

Start_fragment = intl6(Area_statistics(m,1));

End fragment = intl6(Area statistics(m,2));

Fragment_data warchouse_tmp4(n,1) = Start_fragment;
Fragment_data_warchouse_tmp4(n,2) = End_fragment;
n=n+l;

for k=1:No_repart_subfrag
Start_SubFragment = SubFragment statistics aux tmpd(k,1);
End_SubFragment = SubFragment_statistics_aux_tmp4(k,2);

if Start_SubFragment >= Start_fragment & End_SubFragment <= End fragment
Fragment data warehouse tmp4(n,1) = intlé((Start_SubFragment + End_SubFragment)/2):
Fragment_data_warehouse_tmp4(n,2) = Start_SubFragment;
Fragment data warchouse_ tmp4(n,3) = End SubFragment;

il

Fragment data_warehouse_tmp4(n,4)
n=n+l;
end
end

end
Fragment_data warchouse tmpd({ ~any(Fragment_data warchouse tmp4 ,2),:) = [];

gFrEEREkReRrekrees Wall Rearing SubFraement Congelidation Jddssssiis
%Time difference within which subfragments consolidate
Consolidate_SubFrag_time = 3;

FMinimum Episode Time Parameter refers to the least possible episode
%considered for reporting

Min_Episode Time = 0.25;

Fragment data warehouse _tmp4 = zeros(1000,4):

%Eliminate zero rows of SubFragment statistics aux, and concatenate the two
%SubFragment statistics into one array

SubFragment_statistics_aux_tmp2 = SubFragment_statistics_aux_tmp;
SubFragment statistics_aux_tmp3 = SubFragment statistics_aux_tmpl;

I}
—_
i

SubFragment_statistics_aux_tmp2(~any(SubFragment_statistics_aux_ tmp2 ,2),:)

1
—_
i,

SubFragment_statistics_aux_tmp3(~any(SubFragment statistics_aux_ tmp3 ,2),:)
SubFragment_statistics_aux_tmp4 = cat(l,SubFragment_statistics_aux_tmp2, U4
SubFragment_statistics_aux_tmp3):

SubFragment_statistics_aux_tmp4 = sort(SubFragment_statistics_aux_tmp4);

n=1;
No_repart_subfrag = size(SubFragment statistics_aux_tmp4,1);
for m=1:No_of fragments

Start fragment = intl6(Area statistics(m,1)):

End fragment = intl6(Area statistics(m,2));

Fragment_data warchouse tmp4(n,1) = Start_fragment;

Fragment_data_warehouse_tmp4(n,2) = End_fragment;
n=n+l;

for k=1:No_repart_subfrag
Start_SubFragment = SubFrasment statistics aux tmpd(k,1);
End_SubFragment = SubFragment_statistics_aux_tmp4(k,2);

1f Start_SubFragment >= Start_fragment &% End_SubFragment <= End_fragment
Fragment_data_warehouse_tmp4(n,1)

Fragment_data_warehouse_tmp4(n,2) = Start_SubFragment;
End_SubFragment ;
Iy

Fragment_data_warchouse_tmp4(n,3)
Fragment_data_warehcuse_tmp4(n,4)

n = n+l;
end
end
end
Fragment_data_warchouse_tmp4(~any(Fragment_data_warehouse_tmp4 ,2),:) = [1]:

GrrrakrepstakRstieRt Wall Rearing Subfragment Conselidatign #¥*ssssssssss
%Consolidate SubFragments to Episodes, where successive subfragment are
%less than 2 seconds from each other

No_coherent_SubFragments = size(Fragment_data_warchouse_tmp4,1);

intle({Start_SubFragment + End SubFragment)/2);

234

235

Fragment_data_warchouse_final = zeros(1,4);
SubFragment _data warehouse = zeros(1.,4);
SubFragment_data warehouse tmp = zeros(1,4);
Consol_SubFragments = zeros(No_coherent_SubFragments, 1);
Start_consolidation = 0;
for 1=1:No_coherent_SubFragments
if Fragment data warchouse tmp4(i,3) > O
Start_consolidation = 1;
Fragment data_line(l,:) = Fragment_data warechouse_tmp4(i,:);
Fragment_data_line(l,4) = 1;
SubFragment data warehouse = cat(l, SubFragment data_warchouse, Fragment data line):
else
if Start_consolidation > 0

SubFragment data warehouse(~any(SubFragment data warehouse,2), :) = [];
Size_SubFragment_data_warchouse = size(SubFragment_data_warchouse, 1)
for m=1:Size_SubFragment data warehouse
if m==
Start_Subfragment = SubFragment data warchouse(m,2);
end
if m < Size_SubFragment_data_warchouse
if SubFragment data warehouse(m+1,2) - SubFragment data warehouse(m,3) <= 2 *
Frame Rate
End Subfragment = SubFragment data_warchouse(m+1,3);
else
End Subfragment = SubFragment data _warehouse(m,3);
Fragment data_line(1,1) = int16{(Start_Subfragment + End Subfrapment)/2);
Fragment data_line(1,2) = Start_Subfragment:
End Subfragment;
L

Fragment_ data line(1,3)

Fragment_data_line(1,4)

%Save if Subfragment duration > Minimum Episode
%duration
if (End Subfragment - Start_Subfragment) > Min Episode Time * Frame Rate
SubFragment_data_warchouse_tmp = cat(1, SubFragment data_warchouse_tmp, '4
Fragment data line):
end

Start_Subfragment = SubFragment_data_warchouse(m+l,2);
Start_consolidation = 0;
end
elseif m == Size_SubFragment_data_warchouse
End Subfragment = SubFragment data warehouse(m,3);
Fragment_data_line(l,1) = intl6{(Start_Subfragment + End_Sublragment)/2);
Fragment data line(1,2) = Start_Subfragment;

End_Subfragment;
13

Fragment data_line(1,3)
Fragment data line(l.4)

%Save 1f Subfragment duration > Minimum Episode
%duration
if (End Subfragment - Start Subfragment) > Min Episode Time * Frame Rate
SubFragment data warehouse tmp = cat(1, SubFragment data warehouse tmp, ¥
Fragment_data_line);

236

end
SubFragment_data warchouse tmp(~anv(SubFragment_data warchouse tmp.2), :) = [];

Fragment data warehouse final = cat(1, Fragment data warehouse final, ¥
SubFragment_data_warehouse_tmp);

SubFragment data_warehouse tmp = zeros(1,4);
SubFragment_data warehouse = zeros(1,4);

Start_consolidation = O
end
end
else
SubFragment_data_warehouse = zeros(1.4);
end
end

if i == No_coherent_SubFragments %End of Fragment data warehouse tmp4
if Start_consolidation > G
SubFragment data_warehouse(~any(SubFragment data warehouse,2), :) = [];
Size_SubFragment_data_warchouse = size(SubFragment_data_warchouse, 1);
for m=1:Size_SubFragment data warehouse
ifm==1
Start_Subfragment = SubFragment data warchouse(m,2);
end
if m < Size SubFragment data_warehouse
if SubFragment data warehouse(m+1,2) - SubFragment data warehouse(m,3) <= 2 * 'Y
Frame Rate
End Subfragment = SubFragment data_warchouse(m+1,3);
else
End Subfragment = SubFragment data _warehouse(m,3);
Fragment data_line(1,1) = intl16((Start_Subfragment + End Subfragment)/2);
Fragment data_line(1,2) = Start_Subfragment;
Fragment data_ line(1,3) = End Subfragment:
I;

Fragment_data_line(¢1,4)

%Save if Subfragment duration > Minimum Episode
%duration
if (End Subfragment - Start_Subfragment) > Min Episode Time * Frame Rate
SubFragment_data_warchouse_tmp = cat(l, SubPragment_data_warchouse_tmp, ¥
Fragment data line);
end

Start_Subfragment = SubFragment data warehouse(m+1,2);
Start_consolidation = 0;
end
elseif m == Size_SubFragment data warehouse
End Subfragment = SubFragment data warehouse(m,3);
Fragment data line(1,1) = intl6((Start_Subfragment + End Subfragment)/2);
Fragment data line(1,2) = Start_Subfragment;

Fragment_data_line(1,3) = End_Subfragment;

Fragment_data_line(l,4) = 1;

%Save 11 Subfragment duration > Minimum Episode
%duration
if (End_Subfragment - Start Subfragment) > Min_Episode Time * Frame Rate
SubFragment_data_warchouse_tmp = cat(l, SubFragment_data_warehouse_tmp, ¥
Fragment_data_line);
end
SubFragment data_warehouse tmp(~any(SubFragment data warehouse_tmp,2), :) = []:

Fragment_data warchouse_final = cat(l, Fragment data warehouse final, 4
SubFragment_data warchouse tmp);

SubFragment_data_warchouse_tmp = zeros(1,4);
SubFragment_data warchouse = zeros(1,4);

Start_consolidation = 0;
end
end
end
end
end
Fragment_data_warehouse final(~any(Fragment_ data warehouse_final,2), :) = []:

gErxs Diump- Raw Dats of findl idetected fragmient *Esfsfiadiitirtaatxrinmes
No_repart_subfrag = size(Frasment data warechouse final,1):
RawTable_final = zeros(no_of_ rows, columns);
for m=1:No_repart_subfrag
Start_Subfragment = intl6(Fragment data warehouse final(m,2)-Frame Rate*Consolidate SubFrag time);
End_Subfragment = int16(Fragment_data_warehouse_final(m,3)+Frame Rate*Consolidate_SubFrag_time);
if Start_Subfragment < 1
Start_Subfragment = 1;
end

1T End Subfragment > no_of_rows
End_Subfragment = no_of rows;
end

for 1=Start_Subfragment :End Subfragment
RawTable_final(1,:) = RawTable(i, :);
end

end
2 oo e ofe e ofe ofe ofe e s e o o ofe e ofe ofe ofe s ofe o ook ok F ofe ofe ofe ofe ofe 2 ofe o o e ofe e ofe ofe ofe e s e e e ofe ek
% END of Fragment Raw Data

%**** Prepare episode summary repoft EEEEEEEEEEEEETEEETEEE EEEEETEEE T EEEEES
n=1;
Fragment_data warchouse_final_tmp = zeros(1,4);
No_repart_subfrag = size(Fragment data warehouse final,1);
for m=1:No_of fragments
Start_fragment = intl6(Area_statistics(m,1));
End_fragment = intl6(Area_statistics(m,2));

237

Fragment_data warchouse_final tmp(n,l) = Start_fragment;
Fragment_data warehouse final tmp(n,2) = End fragment;
n=n+l;

for k=1:No_repart_subfrag
Start_SubFragment = Fragment data warehouse final(k,2);
End SubFragment = Fragment_data warehouse_final(k,3);

1f Start_SubFragment >= Start_fragment &% End_SubFragment <= End_fragment
Fragment data warchouse_final tmp(n,1) = intl6((Start SubFragment + End SubFragment)/2):

Fragment_data_warchouse final tmp(n,2) = Start_SubFragment;
End_SubFragment;
1;

Fragment_data_warchouse final tmp(n,3)

Fragment_data _warehouse final tmp(n,4)
n=n+l;
end
end
end

Fragment_data_warehouse_final_tmp(~any(Frasment_data_warchouse_final_tmp ,2),:) = [];

Fragment_data warehcuse final = Fragment_data_warehouse_final tmp;

O Feode s e ofe e el e e e e Output Files SDCCifiCEltiOHS o o ok ofe o o ofe sfeofe s s ofeofe sfe ofe e ofeofe o feofe sfeofe e ke

warning('off', 'MATLAB:xlswrite:AddSheet');

Fragment_data warehouse_final tmp = zeros(1000,5);
Fragment_data_warehouse_size = size(Fragment_data_warehouse_final,l);

Fragment_serial_number = 1;
for i=1:Fragment data_warehouse_size
if Fragment data warehouse final(i,3) <1
Fragment data warchouse final tmp(i,1) = Fragment serial number;

Fragment_data_warehouse_final tmp(i,2) = Fragment_data_warehouse_final(i,1);
Fragment_data warchouse_final tmp(i,3) = Fragment data warchouse final(i,2);

Fragment_serial number = Fragment_serial_number + 1;
else
Fragment_data_warehouse_final_ tmp(i,1) = O;

Fragment_data_warchouse_final_tmp{i,2) = Fragment_data_warchouse_Iinal(i,l);
Fragment data warchouse final tmp{i.3) = Fragment data warehouse final(i,2);
Fragment data warehouse_final tmp{i,4) = Fragment data warehouse final(i,3);
Fragment data warehouse final tmp{i,5) = Fragment data warehouse final(i,4);

end
end

Fragment_data warehouse final tmp(~any(Fragment data warehouse final tmp,2),

report_header 1 = ["Fragment Number","Start Fragment", "End Fragment”];

report_header_2

["","SubFragment Midpoint", "Start SubFragment", "End SubFragment","Decision"];

238

239

if Process_left_paw ==
xlswrite(outputfile,report_header 1, "Left Paw Summary”, "B1"):
xlswrite(outputfile,report_header_2, "Left Paw Summary”, "B2");
xlswrite(outputfile,Fragment data warehouse final tmp, "Left Paw Summary”, "B3"):

xlswriteloutputfile Rawlable final, "Left Paw Details", "Al"):

else
xlswrite(outputfile,report_header 1, "Right Paw Summarv", "B1");
xlswrite(outputfile,report_header_2, "Right Paw Summary”, "B2"):
xlswrite(outputfile Fragment data warchouse final tmp, "Right Paw Summarv", "B3"):

xlswrite(outputfile, RawTable final, "Right Paw Details", "Al");
end
clear;

end

Gt sfe s ol ol ko A Ok R Ry op qoopy g M KRR ke s slesle sk et of e fe ofe of s of sk s ofe s sfe e sfeofe fe ofef e fe seofe e e

function mvt_symbol = mvtSymbol(prior,latter)

if prior > 1
if latter > 1
mvt_symbol = 15;
elseif 0 < latter && latter <=1
mvt_symbol = 14;
elseif -1 <= latter && latter <=0
myt_symbol = 12;
else
myt_symbol = 13;
end
elseif O < prior & prior <= 1
if latter > 1
mvt_symbol = 11;
elseif 0 < latter && latter <=1
mvt_symbol = 10;
elseif -1 <= latter && latter <=0
mvt_symbol = §;
else
myt_symbol = 9;
end
elseif -1 <= prior &% prior <=0
if latter > 1
myt_symbol = 3;
elseif 0 < latter & latter <=1
myt_symbol = 2;
elseif -1 <= latter && latter <=0
mvt_symbol = -1;
else
mvt_symbol = 1;
end

end

function decision = touchDetect(start, finish, first, second, third, palm)

else
if latter > 1
mvt_symbol = 7;

elseif 0 < latter && latter <=1

mvt_symbol = 6;

elseif -1 <= latter && latter <=0

mvt_symbol = 4;
else
mvt_symbol = 5;:
end
end

palm forward = O
palm_rearing = O;
palm fast_slow forward = O;

palm slow slow forward = O;
palm_fast_slow_retrace = 0;
palm slow slow_retrace = O;
palm_slow_fast_forward = O;

first_forward = 0;

first_rearing = 0;

first_fast_slow forward = O;
first slow slow forward = O
first_fast_slow retrace = 0;
first_slow_slow_retrace = 0;
first_slow fast_forward = O;

second_forward = 0;
second_rearing = 0;
second fast_slow forward = 0;

second_slow slow forward =

second_fast_slow_retrace
second_slow slow retrace
second_slow_fast_forward

third forward = 0;

third_rearing = 0;

third fast_slow forward = O;
third_slow_slow_forward = 0;
third fast_slow retrace = 0;
third _slow slow retrace = O;
third slow fast_forward = O;

switch palm

%Detect Palm rearing pattern before and after coherent subfragments

case 15
palm_forward = 1;
case 14

240

palm_fast_slow_forward

case 13

palm rearing

case 12

palm_rearing
palm_fast_slow_retrace

case 9

palm rearing

case &

palm_rearing

=1
1;
1

=1
1;
1;

palm slow slow retrace = 1;

otherwise

palm_forward
palm_rearing

0;
0;

palm_fast_slow_forward = 0;
palm_fast_slow_retrace = 0;
palm_slow_slow_retrace = 0;

end

switch first
case 15

first forward = 1;

case 14

first fast_slow forward

case 13

first rearing

case 12

first_rearing
first fast_slow retrace

case 11

first slow fast forward

case 10

first_slow slow forward

case 9

first_rearing = 1;

first_slow fast_retrace

case 8

=1:

= 1;

= 1;
=1:
= 1:
=1:
= 1:

first_rearing = 1;

first_slow slow retrace = 1;

otherwise

first forward
first_rearing

&
0;

first fast_slow forward = O;

first_slow slow forward = 0O;
first fast_slow retrace = O;

first_slow slow_retrace = O
first slow fast_forward = 0;

end

switch second
case 15

241

second_forward =
case 14

second_fast_slow forward

case 13
second_rearing

case 12

second_rearing

second_fast_slow retrace

case 11

second_slow_fast_forward

case 10

second_slow slow forward

case 9
second_rearing =

second_slow_fast_retrace

case 8
second_rearing =

second_slow slow retrace

otherwise
second_forward =
second_rearing =

second_fast_slow_forward
second_slow_slow forward
second_fast slow retrace
second_slow_slow retrace
second_slow fast forward

end

switch third
case 15
third forward =
case 14

third fast_slow forward

case 13

third_rearing
case 12

third_rearing

third fast_slow retrace

case 11

third_slow fast_forward

case 10

third_slow_slow_forward

case 9
third rearing =

third slow fast_retrace

case &
third rearing =

third slow slow retrace

otherwise
third forward =
third_rearing

I;

I;

1;

1;

1%

0;
0;

1;

1;

1;

1;

i

&
04

[I i s B e S

242

third _fast_slow _forward = 0

third_slow slow forward = 0;

third fast slow retrace = 0

third_slow slow retrace = 0

third slow fast forward = 0;
end

if (palm_rearing + first_rearing + second rearing + third rearing) >= 2
%2 or more finger / palm demonstrate rearing pattern
decision = 1;
elseif (palm rearing + first_rearing + second rearing + third rearing) > 0 & (palm rearing + ¥
first_rearing + second rearing + third rearing) < 2
decision = 0.5;
else
decision = 0;
end

end

243

