

PalmGrid, an artificial intelligence approach to automate cylinder task detection

by

David Sze-Ming Cheng

CEng MHKIE PMP

MEng, University of Birmingham, UK (2001)

MBA, University of Warwick, UK (1990)

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES

(Neuroscience)

The University of British Columbia

(Vancouver)

April 2019

©David Sze-Ming Cheng, 2019

ii

The following individuals certify that they have read, and recommend to the Faculty of Graduate and

Postdoctoral Studies for acceptance, the thesis entitled:

 PalmGrid, an artificial intelligence approach to automate cylinder task detection

submitted by Cheng, Sze-Ming David in partial fulfillment of the requirements for

the degree of

 Master of Science

in

 Neuroscience

Examining Committee:

Tim Murphy, Department of Neuroscience

Supervisor

Nicholas Swindale, Department of Neurosceince

Supervisory Committee Member

Lawrence Ward, Department of Neuroscience

Supervisory Committee Member

Tim O’Connor, Department of Neuroscience

External Examiner

iii

Abstract

Stroke is a common cause of permanent disability accompanied by devastating

impairments. Motor, sensory and cognitive deficits are common following stroke, yet treatment

is limited. Along with histological measures, functional outcome in animal models has provided

valuable insight to the biological basis and potential rehabilitation efforts of experimental stroke.

Developing and using tests that identify behavioral deficits is essential to expanding the

development of translational therapies. Forelimb Asymmetry Task experiments – often called

Cylinder Tests – are used to study the impact of ischemic stroke and its subsequent rehabilitation

to contralateral limb movements of studying rodents. Through assessments on qualitative and

quantitative aspects of vertical exploration to the Cylinder Wall, extent of locomotor asymmetry

is evaluated [25-27].

Traditionally wall rearing assessments are evaluated through manual, stop-watch based

measurements that require laborious observations. Methods that automate the process were

attempted such as the use of hardware-based sensor detections that passively probes of touches

on the sensor grid. In its various implementations, the sensor-based methods fail to specify the

limb that rears the wall nor depict the ways forelimbs are coordinated during the rearing.

Advent of artificial intelligence (AI) algorithms, notably Deep Neural Networks (DNN),

helps to extract posture and coordinates of forelimbs [21]. PalmGrid is the first attempt to

exploit AI posture extraction algorithms – based on 50 layers depth in ResNet Deep Neural

Networks [29] together with posture extraction algorithm DeepLabCut [24] – to automate the

assessment process with 70% detection accuracy using robust, open-source software. Further

improvements in deep neural networks precisions, such as increasing its depth or incorporating

advanced posture extraction algorithms, will further enhance detection precisions. In this way,

iv

we will have viable alternatives to conduct cylinder test experiments without suffering from

extra cost burdens and complex calibrations.

v

Lay Summary

We have implemented an Artificial Intelligence (AI) software-driven, automated cylinder

test method using basic laboratory apparatus and a Raspberry Pi video recorder. Upon one-time

training that made the AI Engine1 to profess forelimbs recognition competence, subject videos

can then be analyzed to localize of their forelimb locations. These forelimb locations are then

analyzed if vertical exploration (wall-rearing) occurred. Assessments based on cylinder tests of

subjects demonstrate detection accuracy around 70%.

Utilizing software method bypasses several limitations of conventional approach. Firstly,

laborious tasks of manual monitoring are no longer required. Secondly, calibrations of sensory

networks to aid detections are spared, thus lowering equipment investments. Most importantly,

any specific features of interests can be flexibly studied.

1 AI Engine is made of an off-the-shelf Intel-based computer server with Windows 8.1 Enterprise software

preinstalled with appropriate artificial intelligence and image processing software. For details, please refer to

Section 2.3.

vi

Preface

This dissertation is an original intellectual product of the author, David Sze-Ming Cheng.

The fieldwork reported in the thesis was covered by UBC Animal Protocol Number A18-0321

and A18-0036.

The PalmGrid method is an Artificial Intelligent software-driven process to automate

Cylinder Task experiments that are used to assess rodent behavior in stroke or rehabilitation. It is

built on cutting edge Artificial Intelligence Deep Neural Network Algorithms (DNN) together

with Posture Extraction and signal processing methods. The specific DNN algorithm used is

ResNet-50, which refers to 50-layers of convolution neural networks made publicly available by

Google in Tensorflow 1.1 software. ResNet-50 is the core foundation of posture extraction

system called DeepLabCut developed by Adaptive Motor Control Laboratory from Rowland

Institute of Harvard University Department of Neuroscience, which extracts cartesian

coordinates of interested postures.

The PalmGrid process further capitalizes on DeepLabCut. It consists of an experimental

setup of basic laboratory apparatus to record mouse behavioral videos and a server that tracked

specific postures/features highlighted in the recorded videos. These extracted cartesian

coordinates are then analyzed to discern of wall-rearing activities. In this way, data gathered in

Cylinder Task experiments can be automated with minimal resources and investments.

Professor Tim Murphy of the University of British Columbia supervised the project, who

initiated the requirements with Dr. Matilde Balbi to write the published manuscripts. I am

responsible for design, implementation, experimentation setup, and testing using basic laboratory

apparatus and single Raspberry Pi camera. I was much indebted to the help of Luis Bolanos and

vii

Dr. Jamie Boyd for their assistance in building the transparent stools, and likewise for Dr.

Balbi’s contributions in practical implications of cylinder tasks experimentations. Last, not least,

the help of Dr. Jamie Boyd who helped fast-tracking Raspberry Pi implementation required for

the experimentation setup.

viii

Table of Contents

Abstract ... iii

Lay Summary ... v

Preface ... vi

Table of Contents ………………………………………………………………………….viii

List of Tables ... xiii

List of Figures ... xiv

Glossary ... xvi

Acknowledgements .. xvii

Chapter 1 Introduction ... 1

1.1 Cylinder Test .. 1

1.2 Different Variants of Cylinder Tests .. 3

1.3 Organization of this thesis ... 6

1.4 Wall-Rearing Detection using Touch-based sensing techniques ... 7

1.5 Brief History of Deep Neural Network and its measurement metrics 9

1.6 ResNet Algorithms ... 12

1.7 Deep Neural Networks Posture Extraction Algorithms ... 13

1.8 Research Aims ... 15

1.8 Our Design Prototype: PalmGrid ... 18

Chapter 2 PalmGrid .. 20

ix

2.1 Introduction ... 20

2.2 Experimentation Setting .. 22

2.2.1The Recording Apparatus .. 22

2.2.2 The PalmGrid Station ... 24

2.2.3 Choosing appropriate Artificial Intelligence Algorithmic configuration 25

2.3 Implementation ... 27

2.4 Detailed Methods .. 29

2.4.1 Training PalmGrid recognition capabilities.. 29

2.4.2 Localizing Forelimbs of Test Subjects ... 32

2.5 Errors introduced by AI and its relevance ... 34

2.6 PalmGrid Signal Processing Module .. 37

2.6.1 Harmonics filtering ... 37

2.6.2 Conversion to Polar Coordinates .. 39

2.6.3 Extract Slow-Moving Frames ... 40

2.6.4 Extract Coherent Fragments ... 40

2.6.5 Identify Congruence Points .. 41

2.6.6 Remove Outliers of Refined SubFragments ... 41

2.6.8 Gauge Refined SubFragments into wall rearing episodes .. 44

2.6.9 Export of wall-rearing episode ... 44

2.6.10 Compile wall-rearing episodes into video fragments ... 45

2.7 Experimental Testing .. 47

2.8 Results ... 48

2.8.1 Overall Results ... 49

2.8.2 Independent Assessment of Left and Right Forelimbs ... 52

x

2.9 Discussion ... 53

2.9.1 Correctly Recognized Touches ... 53

2.9.2 False Alarms (Positives) and Error Propagation Modeling .. 53

2.9.3 False Negatives or Missing detections ... 57

2.9.4 Different correct recognition and omission rates for left and right paws 58

2.9.5 Making use of Wall-Rearing Episode Report to enhance efficiency 59

2.9.6 Comparison of labor time required to use PalmGrid .. 60

2.9.6 Benefits of the software approach .. 61

Chapter 3 Design Choices and Discussions ... 62

3.1 Strength of PalmGrid ... 62

3.2 Limitations of PalmGrid .. 64

3.3 Future Improvement Areas .. 65

3.3.1 Use of more advanced artificial intelligence algorithms .. 65

3.3.2 Use of more advanced posture extraction algorithms ... 65

3.3.2 Dual-camera, epipolar geometry approach ... 66

3.3.3 Changing PalmGrid signal processing approach to machine learning 67

3.4 Concluding Remarks .. 68

Bibliography ... 71

Appendices ... 73

Appendix A – PalmGrid Hardware and Settings ... 73

A.1 Hardware Components ... 73

A.2 PalmGrid Experimentation Setup ... 75

A.2 Raspberry Pi Video Camera version 2 Specification.. 76

A.3 Raspberry Pi Video Recording Scripts ... 76

xi

Appendix B – PalmGrid Signal Processing and Gauging Module Pseudocodes 77

B.1 Coherent Fragment Extraction .. 77

B.2 Congruence Points Identification .. 77

B.3 Refined Sub-Fragment Gauging ... 78

Appendix C – Test Results ... 79

C.1 Overall Left and Right Forelimbs taken together ... 79

C.2 Overall Left and Right Forelimbs taken together in Percentage ... 80

C.3 Right Forelimb Only in Number of Touch ... 81

C.4 Right Forelimb Only in % of Touch ... 82

C.5 Left Forelimb Only in Number of Touch ... 83

C.6 Left Forelimb Only in % of Touch ... 84

Appendix D: Methods for Forelimb Tests ... 85

D.1 Cylinder Test (Li & McCullough (2004)) ... 85

D.2 Forelimb preference and sliding test (Shanina & Redecca 2006) ... 87

D.3 Cylinder Test (Schallert (2000)) ... 89

D.4 Paw-Dragging Method .. 91

Appendix E: PalmGrid Station Installation Manual ... 92

E.1 Python 3.6 .. 92

E.2 DeepLabCut ... 94

E.3 ImageJ.. 97

E.4 ffmpeg.. 98

Appendix F: Labeling Forelimbs of Mouse Images that trains DeepLabCut..................................... 99

Appendix G: Ground Truth Reports ... 101

xii

G.1 Report compilation procedures ... 101

Appendix H: Matlab scripts ... 156

xiii

List of Tables

Table 1: PalmGrid Setup and Training Process .. 31

Table 2: PalmGrid Analysis and Signal Processing Process .. 33

Table 3: Sources of Error for ResNet-50, hence DeepLabCut ... 36

Table 4: Computed Wall-Rearing Results of Left and Right forelimbs ... 58

xiv

List of Figures

Figure 1: Cylinder Test Configuration .. 2

Figure 2: Typical Cylinder Test Assessment. .. 2

Figure 3: Summary of various Cylinder Test methods .. 4

Figure 4: Touch Sensing Detection System ... 8

Figure 5: Convolution Neural Network Schematics .. 11

Figure 6: Top-1 Error Error Rates of different Deep Neural Network Algorithms 12

Figure 7: The ResNet Algorithm .. 13

Figure 8: Top 5 Recognition Accuracy of ImageNet Challenge Winners ... 14

Figure 9 Basic Laboratory Settings of PalmGrid ... 19

Figure 10: PalmGrid Process Overview ... 21

Figure 11: PalmGrid's Recording Apparatus.. 22

Figure 12 Cylinder Test configuration to maximize light contrasts ... 23

Figure 13: Comparison of DNN Algorithmic Performance ... 26

Figure 14: PalmGrid Posture Extraction & Wall-rearing Detection Process 27

Figure 15: Example Wall-Rearing Hits Report .. 28

Figure 16: DeepLabCut Sample Training Photos that show the labeled forelimbs 30

Figure 17: An illustration of DeepLabCut misconstruing virtual image .. 35

Figure 18: PalmGrid Signal Processing & Gauging Filters ... 37

Figure 19: Conversion of DeepLabCut forelimb coordinates to PalmGrid language 39

Figure 20: Some postures that fulfill two coherences and congruence criteria 42

Figure 21: Removal of detected wall-rearing episodes .. 43

Figure 22: Sample Refined SubFragment Report .. 45

Figure 23: Synchronies of forelimbs in wall-rearing ... 46

Figure 24: Sampled Labeled Images .. 48

xv

Figure 25: Test Results of PalmGrid for a cohort of n=5 ... 51

Figure 26: PalmGrid Error Propagation Model .. 54

Figure 27: Lack of depth cue made resolution of wall-rearing challenging 56

Figure 28: Illustrative comparison of PalmGrid assessment time .. 61

Figure 29: Hypothetical PalmGrid design based on full-scale machine learning 67

Figure 30: Cylinder Test Score Calculation ... 86

Figure 31: Forelimb Activity Score Formula ... 87

xvi

Glossary

Major Terms of

References

Description

Cylinder Test Also called the spontaneous forelimb use asymmetry test, is frequently

used to assess post-stroke limb use asymmetries in mice

DNN Deep Neural Networks, a specific construct of Convolutional Neural

Networks that become the prevalent industry standard for machine-based

recognition of images and videos

DeepLabCut An open-source, General Public Use licensed toolbox written by Adaptive

Motor Control Laboratory of Rowland Institute, Harvard University; that

built on Tensorflow and prevalent posture extraction algorithms to extract

posture coordinates of identified features of interests in the video stream.

Posture coordinates are given in cartesian coordinates relative to Field of

View of the camera.

ILSVRC ImageNet Large Scale Visual Recognition Challenges, an annual contest

for competing Deep Neural Networks algorithms who were given a set of

images and videos to discern into given (say 1,000) categories of objects.

Competence of benchmark is assessed by Top-1 and Top-5 recognition

accuracies.

Principal

Component

Analysis

Data Science techniques that extract maximum variances from a set of

presented data

ResNet Residual Neural Network, an open source software bundled in Google

Tensorflow that is the winner of the 2015 ImageNet Challenge of computer

object recognition. In 152 layers of the construct, implemented in

September 2016 possesses a recognition rate under an optimal condition

that achieves human “Top-5 recognition rate” capability of less than 5%

error.

Tensorflow An open-source, machine learning General Public Use toolbox provided by

Google to facilitate low entry barriers adaption in deep neural networks

algorithms

xvii

Acknowledgements

I would like to express my deepest gratitude to the teachings and mentorship of Professor

Tim Murphy who led me to the field of Neuroscience and inspired me of an interesting

experimental discipline that I have not known throughout my professional life as an engineer.

By far, our Central Nervous System remains the least understood metaphor; and at times it

remains mysterious. Because of our lack of understanding, options available to rescue brain

injuries and neurodegenerations are limited, and much remains to be explored.

What intrigued my interests most is how advanced engineering techniques can be applied to

aid neuroscientific explorations. In this thesis, optics and artificial intelligence are employed to

track posture of the mouse in studying animal behaviors under ischemic stroke, to overcome

resources and skill barriers of neuroscience laboratories who are less conversant with prevalent

artificial intelligence methods. I used to perceive the experimental medicine discipline as

another sphere of knowledge from mathematics and applied physics. Admittedly, this is an eye-

opening experience.

Not least, I would like to thank Dr. Matilda Balbi who provided expertized contributions in

cylinder tests; Dr. Jamie Boyd who contributed his phenomenal expertise in Raspberry Pi; and

Mr. Luis Bolanos who assisted the experimentation setup throughout the project.

xviii

"Trust in the Lord with all thine heart, and lean not unto thine own understanding. In all thy

ways acknowledge him, and he shall direct thy paths."

Proverbs 3:5~6

1

Chapter 1 Introduction

1.1 Cylinder Test

Stroke is a common cause of permanent disability associated with sensory and motor

deficits. Developing and using tests for experimental stroke that helps to identify behavioral

deficits is essential for the development of therapeutic interventions. The cylinder test, also

called the spontaneous forelimb use asymmetry test, is frequently used to assess post-stroke limb

use asymmetries in mice [25-27].

In a typical cylinder test, the mouse is put in an acrylic cylinder. The cylinder is mounted

on a transparent stool where video equipment(s) is mounted underneath to record its activities

(Figure 1). Current protocol mandates each recording to around ten minutes that can be

separated by short time intervals for equipment calibration purposes to count respective left-

forelimb, right-forelimb, or both-forelimbs wall rearing activities [25~27, also Appendix D.1].

Manual inspection is then required to identify the wall rearing episodes of respective forelimb on

the cylinder wall, to assess the behavioral impact (Figure 2 and Appendix D.1). These wall

rearing episodes refer to the time fragments where forelimbs rear the wall vertically. They are

then expressed in different test scores and plotted to compare trends of locomotor asymmetry

(lower plot, Figure 2).

Despite the test being relatively easy to perform, manual frame by frame counting in the

number of touches within recorded video frames is laborious. Various methods had been

attempted to automate the laborious and subjective collection of wall-rearing statistics in

Cylinder Test. In a typical 4 minutes video recorded in 25 frames per second, the frame-by-

frame review requires browsing of 4 (min) x 60 (seconds) x 25 (frames) = 6,000 frames. Various

2

methods to conduct cylinder test assessments have been suggested to relieve the laborious

exercise by employing slow play functions of image processing software such as VLC Player.

An example of such is paw-dragging test [30], where at least three iterations to play the recorded

mice videos in slow motions are required: first by skimming through the video of fragments in

vertical exploration, followed by verifications, and subsequently to review particular wall-rearing

fragment frame by frame to assess its quality of rearing. The need for second raters, prolonged

monitoring (say 24 hours), and batch processing of different subjects’ recordings further

compound the time burden in analyzing Cylinder Test results.

Figure 1: Cylinder Test Configuration: Mice or Rats

being put in laboratory cylinder to assess vertical

exploration

Figure 2: Typical Cylinder Test Assessment. Image obtained

from Li & McCullough [26] Chronic behavioral testing after

focal ischemia in the mouse. Experimental Neurology

Volume 187, Issue 1, May 2004, Pages 94-104

3

1.2 Different Variants of Cylinder Tests

Different investigators employed varying score metrics to evaluate vertical exploration. As

one of the first investigator proposing the method, Schallert [25] was interested to test the

preference of rats in using non-impaired forelimb for weight shifting movements during

spontaneous vertical exploration. This is why the test was devised to observe independent

forelimb rearing as well as their respective landing during impaired and non-impaired conditions.

Simultaneous forelimb rearing and landing were likewise recorded. There were no timing

windows imposed for the test. The metrics are simple to understand and easy to be carried out.

Li & McCullough [26] slightly modified Schallert’s method by focusing on forelimb use

and rotational symmetry of mice. They are not interested in the landing counts but instead focus

on forelimbs’ vertical explorations. In this way, both independent and simultaneous rearing are

recorded just as [25], plus they further define a metrics called "Right Forelimb Independent" that

refers specifically to right forelimb staying on the wall during both impaired and non-impaired

conditions. The mice are given 10-minute test period where 20 of these movement episodes are

recorded. In the end, the independent forelimb movement and simultaneous counts during

impaired and non-impaired conditions within the 10-minutes test period are given a metric score

in the evaluation. Please refer to Appendix D.1 for detailed description of methods.

Shanina and Redecker [27] focused on recovery after photothrombotic infarcts in rats. In

addition to the conventional independent and simultaneous forelimb rearing, they are also

interested in wall sliding. The Forelimb Activity Index and sliding score percentage are

computed, based on the formula given in Appendix D.2.

4

Recently, Roome and Vanderluit [30] noticed that the conventional methods of Cylinder

Test were not sensitive enough for mice as compared to rats, judging by their lack of reliance on

unaffected forelimb paw for postural support as compared to rats. Instead, they observed

behavior termed "paw-dragging" where its impaired forelimbs drag along the cylinder wall rather

than directly push off from the wall when dismounting from a rear to a four-legged stance. They

are therefore interested to quantify the number of paw-drags and expressed as a percentage of

total paw touches during an experimental session. Details of the method are depicted in

Appendix D.4.

A summary of these four methods is given in Figure 3.

Figure 3: Summary of various Cylinder Test Metrics in various cylinder test methods as Schallert [25], Li & McCullog

[26], Shanina [27], and Roome & Vanderluit [30]

5

It is noted that while score metrics and features-of-interests (such as right forelimb

independence, dragging etc. – see Figure 3) differ between various methods, the core principles

remain unchanged. In order to automate these methods with maximum flexibility, wall-rearing

detection that depicts the time and synchrony of these independent forelimb episodes is needed

to gauge of the left, the right, and both forelimbs rearing. If particular method requires further

data mining into particular rearing episode, it would be nice to have raw episodic data available

to aid further analysis.

We have integrated these requirements into our prototype model to build a markerless

cylinder test automation system called PalmGrid. In sum, PalmGrid is the novel approach that

combines interdisciplinary excellence of Behavioral Neuroscience, Artificial Intelligence, Signal

Processing, and Engineering. Its behavioral neuroscience requirements have been well adopted

to assess locomotor asymmetry of rodents, especially in behavioral recovery studies of stroke as

a result of plasticity in Central Nervous System [25-27, 30]. It will equally enhance efficiencies

in conducting left-right forelimbs trait preference (biodiversity) experiments as prolonged

observations are required to capture mice preference to grab food [33-34]. By leveraging

advances in cutting edge artificial intelligence to locate the forelimbs and signal processing to

make sense of them, Cylinder Test experiments can be automated with improved efficiencies that

is easy to setup, easy to adapt, and easy to use by resources limited laboratories.

6

1.3 Organization of this thesis

This thesis is organized as follows. Chapter 1 refers to brief purposes of cylinder test and

the corresponding history of automatic touch sensing development. Section 1.5 – 1.7 refers to a

brief history of Deep Neural Networks that provides basic terms of reference; and Section 1.8

refers to research aim of PalmGrid that explains what we intend to utilize in Artificial

Intelligence to assist us in automation of touch sensing in Cylinder Test. Given the

interdisciplinary nature of current research, it is believed that a lengthier introduction in Section

1.5 depicting brief history of Artificial Intelligence will help readers to understand basic

terminology and terms of references in the neuroscience research herein described.

Chapter 2 describes the features and design of PalmGrid. Section 2.1 briefly describes its

design philosophy, and what is required to employ the system. Section 2.2 elaborates on

experimental settings to conduct PalmGrid-based Cylinder Test experiment. Section 2.3

provides high-level implementation block diagram for the PalmGrid process, with section 2.4

detailing the steps underlying the process described in 2.3. Section 2.5 provides brief highlights

into the less known stories of Deep Neural Networks despite its hype, leading to the necessity of

signal processing and decision gauging algorithms of PalmGrid in Section 2.6. Remaining

sections of the chapter discusses its algorithmic and process performance.

Chapter 3 opines on PalmGrid’s strengths and weaknesses. Section 3.1 discusses its

strength; while Section 3.2 outlines circumstances where the processes may not be applicable.

There are many areas that the algorithm can be enhanced, and these are outlined in Section 3.3,

including discussions of why certain technical options have opted while others not taken into

consideration.

7

1.4 Wall-Rearing Detection using Touch-based sensing techniques

Previous attempts to automate Cylinder Test include the use of hardware touch sensing

techniques. Touch sensing technologies are used in many applications such as smartphones,

tablets, laptops, information kiosks, etc. Touch screens are very intuitive and easy to use; they

also save space because their screen and interface are spatially integrated. Many touch sensing

technologies have been developed for commercial purposes. Examples include technologies

based on infra-red sensing elements [1–4], resistive [5,6] and capacitive sensors [7–9], cameras

[10], the acoustic-based sensors [11–13], and others [14–16].

The mutual capacitive method is a popular touch-sensing approach that is extensively

adopted in smartphones and tablets [17]. In this method, the touch interface is constructed of

rows and columns of transparent tracks made of conductive paint. The row and column tracks are

separated by a thin glass layer. Each row/column is electronically charged by an individual

driver circuit. When the mouse touches the cylinder at a specific position where conduction

tracks were laid, the capacitance at the intersection between the row and the column at this

position changes; the point of pressure on the panel can thus be localized by scanning all the

other non-energized rows and columns and computing the capacitance at all intersections, and

recorded by a miniature Raspberry-Pi in further processing [18]. Most of the aforementioned

touch sensors can be classified as active sensing techniques because touch detection depends on

transmitting and receiving a signal that is perturbed by a touch.

In 2017, Kinsmen laboratories of University of British Columbia has setup the capacitive

sensor infrastructure in an attempt to automate touch sensing. Capacitive paints were laid in a

8

tapered beam geometry that forms a grid network to detect rodents touches as its limbs touch the

grid. These touches are then stored and analyzed using custom software written in Python. The

settings achieved high sensitivity of 96.2% in some form of touch detection, be it of bodies,

limbs, or head. Its advantage is high sensitivity in locating the touch.

Figure 4: Touch Sensing Detection System, left panel displays the tapered beam geometry where capacitive paints were

laid, while the right shows its DC electric connection to capacitance sensor chips. Images obtained from Fig 1 and Fig 2B in

[19] Ardesch & Murphy. Journal of Neuroscience Methods 291 (2017) 221–226

Despite its hardwired accuracies, the method suffers from two major drawbacks. Other than

the usual false positives due to latent touches of nearby sensors, it was impossible to discern

whether the forelimbs or hindlimbs triggered the touch. Such deficiency poses challenges in the

study of contralateral ischemic stroke that requires comparative study of left versus right

forelimb mobilities impacted by stroke and corresponding rehabilitation studies. The method

cannot fulfill wall rearing episodic extractions as required in various cylinder test protocols. It is

also challenging to discern special features-of-interests such as “paw dragging” and “paw

sliding” without explicit observations of forelimb synchronies in their rearing. Last but not least,

the experimentation setup also requires costly investment and calibrations into touch sensing

apparatus that are only affordable by laboratories with extensive engineering expertise in-house.

9

1.5 Brief History of Deep Neural Network and its measurement metrics

It is a broad consensus that one of the founding father of theoretical artificial intelligence

was Alan Turing of Queen’s College, Cambridge2. With his works the Allied Forces had sped

up to “brute force” the encryption code and deciphered the communications of German Navy to

pave the victory of WWII. These algorithms soon evolved to become the cornerstone of modern

machine learning methods. In his lecture in London Mathematical Society 1947, he opined that

"Let us suppose we have set up a machine with certain initial instruction tables, so constructed that these tables

might on occasion, if good reason arose, modify those tables. One can imagine that after the machine had been

operating for some time, the instructions would have altered out of all recognition, but nevertheless still be such that

one would have to admit that the machine was still doing very worthwhile calculations. Possibly it might still be

getting results of the type desired when the machine was first set up but in a much more efficient manner. In such a

case one would have to admit that the progress of the machine had not been foreseen when its original instructions

were put in. It would be like a pupil who had learned much from his master but had added much more by his own

work. When this happens I feel that one is obliged to regard the machine as showing intelligence.”

Turing, 1947

Since then machine learning has powered ahead with hallmark innovations in perceptron

algorithms (Minsky & Papert et al 1969), Prolog programming language (Colmerauer et al 1972)

and a host of others that spearheaded much of the artificial intelligence developments in the 20th

Century. Their euphoria gave rise to a time of unrealistic expectations that subsequently

dissipated as promises trailed behind hypes (The Economist 1992 September op ed quoting

“Artificial Stupidity”). Thereafter development in the commercial arena, notably research

funding, substantially shrank in the 1990s that left caring of this lonely child technology to be

confined within universities’ computer science laboratories.

In 2006, Professor Geoffrey Hinton of University of Toronto invented Deep Belief Net that

became the first neural networks to learn decoded information state3 based on his understanding

2 https://en.wikipedia.org/wiki/Alan_Turing
3 In computer science terminology, decoded information state is termed internal representations

10

of synaptic neurons architecture. Its breakthrough in object recognition rate – though modest in

present day standards – revived commercial interests in machine learning that reopened

enterprises’ R&D interests (such as Google and Microsoft) to substantially invest their research

efforts into artificial intelligence sector. Microsoft Research and Amazon soon actively followed

around 2010.

In brief, Deep (Convolution) Neural Network is a layered autocorrelator4 where each layer

is responsible to discern specific feature sets of the data presented at its input, followed by an

optional ReLU layer5 that makes decisions whether specific criteria are met. The stacking of

these layers of autocorrelators effects adaptation of features-of-interests to specific patterns, such

that any future presented data in similar pattern can be recognized [20]. For example, if an AI-

Engine was trained to recognized of rodents forelimbs, then after iterations of training, it

professes the knowledge to recognized such forelimbs of similar sizes and shapes.

4 Autocorrelator is an algorithmic process that correlates an input signal with a delayed copy of itself as a

function of delay. The analysis of autocorrelation is a mathematical tool for finding repeating patterns that detects if

the incoming signal resembles to features it looks for. An example of its application is facial recognition, where the

shapes of particular person’s face is compared to a database of facial edges.
5 In the context of artificial neural networks, ReLU (or rectifier) is an activation function defined as the positive

part of its argument:

𝑓(𝑥) = 𝑥+= 𝑚𝑎𝑥(0 , 𝑥)

where x is the input to a neuron. This is also known as a ramp function and is analogous to half-wave

rectification in electrical engineering.

11

Figure 5: Convolution Neural Network Schematics. Image obtained from https://res.mdpi.com/entropy/entropy-19-

00242/article_deploy/html/images/entropy-19-00242-g001.png

To benchmark the effectiveness of different DNNs, the ImageNet challenge was instituted

as an industry effort to certify its performance since 2010. Soon the exercise became the platform

of intellectual competition among big companies and research institutions alike such as NEC,

MIT, Stanford, Microsoft, and Google. ImageNet presents portfolios of test images in different

categories of stationary and moving objects to test out the accuracies of machine learning to

recognize these objects.

The metrics to appraise effectiveness of Deep Learning algorithm is based on its recognition

and localization capabilities. In terms of recognition capability, “Top-5 successful recognition

rate” measures how accurate particular neural network is capable of discerning a particular

image into respective categories irrespective of where it is in the presented picture6. “Top-1

recognition rate” was used to measure corresponding accuracies of the algorithms to "spot on"

specific objects into specific categories, for example, "Chihuahua" in the category of "Dogs". If

the picture is recognized as "Wolf" or "Jackal", their “Top-1 accuracy” will not score while its

6 For details of ImageNet competition, refers to

https://en.wikipedia.org/wiki/ImageNet#History_of_the_database

12

“Top-5 accuracy” score will get one mark, and so forth. Figure 6 and Figure 8 shows different

“Top-1” and “Top-5” recognition rates in respective winners of ImageNet challenges over the

years 2010 - 2016. ResNet in different layers (34, 50, 101, 152) Top-1 recognition rate is also

displayed although its 50-layers configuration was the winner in 2015.

Figure 6: Top-1 Localization Error Rates of different Deep Neural Network Algorithms. Image obtained from Canziani &

Paszke [21]. An analysis of Deep Neural Networks for practical applications. Computer Vision and Pattern Recognition April

2017

1.6 ResNet Algorithms

ResNet Algorithm was one form of Deep Neural Network invented by four scholars during

their time in Microsoft Research in late 2015 [29]. It was known by then that constructs evolved

from Deep Belief Network variants (and other planar networks such as VGG-19) suffer from

major drawbacks in vanishing gradients, a symptom where learning errors saturated as stacking

increase. Such metaphor renders learning of successive layers of artificial neurons to saturate,

setting limits to depth of Deep Neural Networks [29], and hinders corresponding Top-1 and Top-

5 error from further reductions.

13

The ResNet algorithm advances from plain networks’ learning barrier by restricting the

learning optimization within a few layers of neural networks. Its design ideas closely resemble

the way animal cortex are organized into brain regions, with each one specialized and optimized

in its own right while chained together to do big tasks (Figure 7). In ResNet, building blocks are

cascaded together resulting in deeper architecture – hence higher recognition rate [29].

Figure 7: The ResNet Algorithm Architecture. Note that in contrast to other planar DNN algorithms like VGG-19, ResNet

organized itself into smaller groups of artificial neuron layers for its self-contained optimization. This achieves faster and closer

convergence. Image obtained from He &Sun [29]. Deep Residual Learning for Image Recognition. Computer Vision and Pattern

Recognition. Dec. 2015,

1.7 Deep Neural Networks Posture Extraction Algorithms

Over the years since 2010, annual ImageNet Large Scale Visual Recognition Challenges

(ILSVRC) demonstrated significant advances in image recognition capabilities of various DNNs;

from 25% in “Top-5 recognition error”7 in 2010 to less than five percent in by 20158 (Figure 8).

7 The Top-5 error rate is the percentage of test examples for which the correct class was not in the top 5

predicted classes. So, for example, if a test image is a picture of a Persian cat, and the top 5 predicted classes in

order are [Pomeranian (0.4), mongoose (0.25), dingo (0.15), Persian cat (0.1), tabby cat (0.02)], then it is still treated

as being 'correct' because the actual class is in the top 5 predicted classes for this test image.

ImageNet is an image base consisting of millions of images categorized into 1000 classes, top-5 error rate

became benchmarks of efficacies of DNN algorithms.
8 For details on ImageNet Large Scale Visual Recognition Challenges, please refer to http://www.image-

net.org/challenges/LSVRC/.

14

For the purpose of our discussion, ResNet-50 achieved 5.25% in recognition errors that approach

human recognition capabilities. Further advances in ResNet to 152 layers by Microsoft Research

in September 2016 claim less than 4.49% in Top-5 recognition error, exceeding human

capabilities.

Figure 8: Top 5 Recognition Accuracy of ImageNet Challenge Winners. From 2012 onwards, Top-5 (Recognition)

accuracies are approaching closer to human capabilities. ResNet was the first time human recognition capability was being

challenged in 2015. Image obtained from Russakovsky & Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. IJCV,

2015

To facilitate widespread adoption of Deep Neural Networks, Google bundled the host of

advanced DNN algorithms for general public use since late 2015. In 2017, Harvard University

Adaptive Motor Control Laboratory leveraged ResNet-50 bundled in Google Tensorflow to

integrate posture extraction algorithms into markerless pose estimation software toolbox called

DeepLabCut [23]. Upon one-time training of DeepLabCut with a brief training video of what

forelimbs look like, the software will extract forelimbs locations of experimentation videos9.

These extracted locations are then analyzed to identify of wall-rearing episodes using custom-

built signal processing algorithms.

9 For details of one time training of DeepLabCut, please refer to Section 2.4.1 Training PalmGrid recognition

capabilities

15

1.8 Research Aims

We set out our research journey to investigate technical feasibility to automate Cylinder

Test using frontier engineering methods, in particular, artificial intelligence and signal

processing algorithms. We called this prototype project "PalmGrid” to symbolize its economics

and simplicity: the two critical success factors for widespread adoption in laboratories with

limited resources.

In particular, we are interested to answer the five research questions:

1) Can one automate Cylinder Test with only one simple Pi-camera under minimal

calibrations?

The reason behind any automation was enhancing efficiency whilst lowering the costs of

processing. PalmGrid objective was no different. We explore what can be done using the most

basic Raspberry Pi Version 2 camera (Appendix A.2) and stretch its resolution to 1200 x 1200

pixels per frame10.

2) Can one achieve forelimb recognition in free-movement mice?

Given the fact that we are stretching resolution capabilities of DeepLabCut, forelimb

recognition of free and fast-moving mice is also of interests. It would be easier to set camera

focus to aid forelimb detection if we had head-fixed mice in similar experiments where bodily

obstructions are not evident. In free-movement mice, maneuvering of subjects became a serious

challenge to camera’s shutter and focus capabilities that give rise to blurred images affecting

10 According to documentations of DeepLabCut [24], recommended maximum resolution of the software is 640

x 480 pixels resolution. Since forelimbs of mice was small, a finer resolution of 1200 x 1200 pixels would be

required for adequate resolution of its features.

16

forelimb recognition. We are therefore interested to what extent can PalmGrid accepts free-

movement mice to resolve and recognize forelimbs.

3) Can left and right forelimbs of subject mice be independently assessed?

Most importantly we are interested if left and right forelimbs can be independently assessed.

From various methods depicted in Cylinder Test literature (Appendix D), independent

assessment becomes the core principles to compute respective wall-rearing scores. Previous

attempts to automate Cylinder Test process using mutual capacitive sensors failed to answer this

question. Our fundamental assumption is that the ambiance provides sufficient light that allows

images to be resolved by the artificial intelligence algorithms to recognize forelimbs. Given the

vague minimal lighting, is independent assessment feasible in artificial intelligence methods? In

the context we are stretching our audacious goal: can we further design PalmGrid to capture

activities such as wall-dragging or wall-sliding in prevalent protocols?

17

4) Can accurate locations of digits/forelimbs be tracked?

Even with independent assessment feasibilities, we need to be concerned with accuracies of

these extracted coordinates as we need them, in various contexts, to compute metrics scores and

gauges for wall-rearing episodes. Typical papers in artificial intelligence applications focus on

“recognitions” to categorize different images, but in this context we need “spot on” precision

accuracies to report where that features-of-interest is located. We want to understand to what

extent of accuracies are analyzed out of these wall-rearing metrics, to translate these accuracies

into the automation.

5) If 4) is feasible, can wall-rearing activities be discerned?

Last not least, and given all these constraints and coarse experimental settings, can we

discern wall-rearing activities? We know that all images are coupled with noises that blur the

accuracies of extracted postures. Thus if a machine is tasked to look into the extract postures as

Cartesian coordinates, these distorted signals will misguide the algorithm from gauging actual

wall-rearing activities. In our design of appropriate signal processing filters that extract these

wall-rearing episodes, therefore, an estimate of its discernment accuracy is warranted.

The aim of this research is to capitalize on proven classification capabilities of cutting-edge

artificial intelligence algorithms in extracting coordinates of the features of interests, to discern

wall rearing touches in Cylinder Tests. We aim to test out the extent that prevalent machine

learning and posture extraction approach can automate cylinder test touch sensing with modest

laboratory setup.

18

1.8 Our Design Prototype: PalmGrid

With all the design criteria and constraints as set out above, we built our markerless

Cylinder Test prototype called PalmGrid to test out various research questions raised in 1.7.

PalmGrid consists of a transparent base with a basic Raspberry Pi video camera mounted

underneath. Free-movement mice are placed in a laboratory cylinder above the transparent base,

so as to record mice activities above (Figure 9). Positioning the camera underneath minimizes

the chance of forelimbs being obstructed from video recording due to body movements. The

recorded videos are then analyzed by DeepLabCut AI Engine, followed by custom-built signal

processing algorithms to identify wall-rearing. As left and right forelimbs are separately labeled,

detection using PalmGrid approach allows left and right forelimbs to be independently tracked.

Approaching automatic touch sensing using software approach by leveraging visible lights

bypasses complexities in hardware setup, hence lowering the capital investments and skillset

barriers that were otherwise prohibitive to resource-constrained laboratories.

The output is a wall-rearing report that details the timings in all wall-rearing episodes when

respective left and right forelimbs reared the wall. Different investigators can then use this wall-

rearing report to tailor their scoring as needed. If specific protocols require further data analysis

into particular episodes to extract specific metrics, detailed episodic coordinates are also

provided for their ongoing analysis. To facilitate investigators to review individual vertical

explorations in its quality of rearing, each episode is compiled into smaller video fragments for

their inspections.

19

Figure 9 Basic Laboratory Settings of PalmGrid. The laboratory cylinder where mice are placed is mounted on a

transparent stool. Underneath a Raspberry-Pi camera is placed to record videos of mouse activities. Recorded Videos are then

analyzed by PalmGrid Station – a Windows 8.1 Enterprise server whose configuration is described in Section 2.2.2.

20

Chapter 2 PalmGrid

2.1 Introduction

PalmGrid is a process that capitalizes on DeepLabCut and Tensorflow’s ResNet-50 to

discern wall rearing episodes from predicted forelimbs locations11. Video images of mice

activities in the Cylinder Test are recorded in normal lights and analyzed using Tensorflow’s

ResNet-50 and posture extraction algorithms offered by DeepLabCut. In its hardware setting,

the mouse is being housed in a laboratory cylinder supported by a transparent stool, underneath

which a Raspberry Pi video camera is mounted to record mice activities bottom-up (Figure 11).

The system was deliberately designed for a single camera. Though multiple cameras

system can utilize epipolar geometry methods to advance estimation of depth to higher

precisions, we deliberately constrained our exercise to highlight the extent of achievements with

prevalent DNN algorithms using simple Pi-camera with minimal ambience calibrations. For the

same reason multiple camera systems that offer added dimensionality were not chosen, as adding

further camera(s) will pose time synchronization problems between video clips besides

increasing capital investments12. In a similar rationale, sophisticated depth camera was not

employed to gauge the depth of forelimb to calculate the location of wall rearing, in lowering of

costs and calibration challenges as much as possible.

The PalmGrid System will be first trained to recognize what mice left and right forelimbs

looked like and where they are located with respect to the referential coordinate system of video

camera’s Field of View in a one-time training process (see Section 2.4.1). Upon training in

11 By episode it means a time fragment within which multiple cylinder wall touches had occurred.
12 As at the date of writing, Raspberry Pi can only drive a single video camera in its basic settings. Having

additional camera means adding another set of Raspberry Pi system that elevated the cost of equipment and

challenges in synchronizing video times. As the experiment was set out to identify the lowest and simplest

hardware setting for cylinder test, single camera approach has opted.

21

excess of 200,000 iterations13, the PalmGrid station professes posture extraction14 competence in

video camera’s referential coordinate system. One can then feed appraisal videos – of different

studying subjects – into the PalmGrid station to predict forelimbs locations with respect to the

cartesian coordinates in camera’s Field of View. These predicted forelimbs locations are then

processed by PalmGrid signal processing module to gauge wall rearing episodes (Figure 10).

Figure 10: PalmGrid Process Overview, as detailed in Section 2.4

Observations are made to deduce criteria of forelimb locations as wall-rearing. It is noted

that forelimb digits will first slowdown as its paw approaches the wall, followed by extending

their distances furthest from the center of the cylinder in forward limb stretching until some of

them are obstructed by the cylinder wall. The forelimb(s) will either find support on the cylinder

13 Training in excess of 200,000 iterations was a subjective call, to lower prediction errors to a plateau below

10-5. Lower iterations will achieve higher order magnitude of error, further increasing prediction errors. In

DeepLabCut, decent recognition competence is professed after a minimum of 64,000 iterations
14 Posture extraction is a buzzword in artificial intelligence discipline that refers to recognition and localization

of specific features of interests such as limbs and the way subject stands in a given video. In our context, it refers to

recognition and localization of digits in left and right forelimbs.

22

wall, and subsequently retrace from the wall. Because their forelimbs are obstructed, alteration in

movement trajectory.

2.2 Experimentation Setting

Minimal hardware and calibrations remain core consideration in PalmGrid design

philosophy, as it was devised with ease of adoption in mind. The hardware setting of PalmGrid

System thus consists of a recording apparatus where wall rearing activities of mice are recorded

and a PalmGrid station where recorded videos are analyzed. We did not assume laboratories are

well resourced to profess lighting and raspberry Pi calibration expertise to engage in PalmGrid.

2.2.1The Recording Apparatus

Figure 11: PalmGrid's Recording Apparatus

The PalmGrid’s recording apparatus consists of basic laboratory equipment of a cylinder

where the mouse is being housed and studied. The cylinder is being mounted on a transparent

stool, underneath which a Raspberry Pi video camera is being mounted (Figure 9 & Figure 11).

23

To facilitate video recording of discernable quality, white cardboard with black top enclosure

encase the cylinder, gathering as much room lighting as possible (Figure 12). Basic Raspberry

Pi camera is configured to its maximum resolution mode, namely 1200 x 1200 pixels, to allow

for its finest features (such as forelimbs) tracking possible with the basic camera. Lowering such

resolution implies coarser pixel resolutions, impacting accuracies of feature identifications and

hence the subsequent detection finesse.

Figure 12 Cylinder enclosed in white cardboard with black tops maximizing light contrasts

As mentioned, more sophisticated configurations such as depth camera and multiple camera

systems were not opted, so as to assess what can be achieved with artificial intelligence under

basic hardware configurations.

24

2.2.2 The PalmGrid Station

The PalmGrid station is a Windows 10 Server installed with at least 32GB of Memory and a

prevalent Graphics Processing Unit from Nvidia that performs analysis of captured video images

in Cylinder Test. These graphics processors determine how fast the intended features – such as

left forelimb of the mouse – can be learned and analyzed by ResNet-50. The PalmGrid station

is installed with the following application software, mostly General Public Use licensed software

in artificial intelligence and image processing.

• Python 3.6 where DeepLabCut software runs on; and

• ImageJ that labels training video of the particular features to be recognized; and

• A video format converter that converts recorded video from de-facto Raspberry Pi’s

H264 to avi video formats to integrate with DeepLabCut; and

• Matlab where extracted forelimbs’ coordinates are further analyzed into wall rearing

episodes; and

• Microsoft Excel helps to tabulate final detection results for presentation15;

• Last but not least, a video to photo converter called “FFmpeg” that converts videos

into photos and vice versa

Installation of these software followed respective configuration guides as recommended by

respective vendors. Please refer to Appendix E for details.

15 Excel was chosen because of its easy to use without requirements to understand database administration and

operations. Again, we intend to lower adoption barrier. More resourceful laboratories can consider other forms of

organized storages, such as Oracle database management system.

25

2.2.3 Choosing appropriate Artificial Intelligence Algorithmic configuration

DeepLabCut offers two optional Artificial Intelligent algorithms that one can opt for:

ResNet in 50 layers and 101 layers configurations. Choosing which ResNet configuration

require our understanding how to balance recognition and localization accuracies of artificial

intelligence algorithms.

Artificial Intelligence algorithm can be best understood with an analogy of visual cortex

information streams. In our visual cortex, ventral (“What”) stream is responsible for recognition

while the dorsal (“Where”) stream is accountable for localization. Likewise, artificial intelligent

algorithmic performance is measured in terms of its recognition (i.e. “What”) and localization

(i.e. “Where”) capabilities. Recognition capabilities metrics is depicted in “Top-5 accuracies”,

while localization capabilities is appraised in “Top-1 accuracies”. Top-5 accuracy was widely

reported to educate the public that artificial intelligence algorithm has already exceeded human

recognition capabilities ever since the arrival of ResNet in 2015.

For PalmGrid that capitalizes on features of DeepLabCut toolbox that uses ResNet to

provide recognition (Top-5) accuracies of over 95% as shown in Figure 8, further decisions are

to be made in the choice of 50- or 101-layers configurations. Since Cylinder Test protocols

require localization of forelimbs, this implies that we have to understand how accurate its

localization capability is and balance such requirements against computational demand of

Graphics Processing Unit in the captioned automation to achieve acceptable time to analyze each

experimentation video. In doing so, realistic decisions can be made in what type of computing

hardware is required to provide adequate localization accuracies within reasonable computational

time.

26

The localization performance (Top-1 accuracy) chart as shown in Figure 13 is rarely

reported beyond artificial intelligence discipline. For the two ResNet configurations, ResNet-50

offers 76% localization (Top-1) accuracy with 8 giga-computations in one forward computation

parse; while in ResNet-101 a 78% localization accuracy shall require 25 giga-computations in

one forward parse. This means that if we were to choose ResNet in 101 layers of depth

configurations, we have to purchase a Graphics Processing Unit that possesses at least three

times as much processing power as the corresponding ResNet in 50 layers depth for the same

processing time in a given experimental video recording. In our laboratory for example, we

have a Nvidia Quadro Graphics Processing Unit for the project, which was not very fast as

compared to other models such as Nvidia Titan XP16. As a result, we have made a compromise

to choose ResNet with 50 layers of depth that provides acceptable analytical time performance

against a 76% localization accuracy17.

Figure 13: Comparison of DNN Algorithmic Performance. Image obtained from Canziani & Paszke [21] An analysis of

Deep Neural Networks for practical applications. Computer Vision and Pattern Recognition April 2017

16 For specifications of Nvidia Quadro and Titan models, please refer to their specification sheets on Nvidia

web sites: https://www.nvidia.com/en-us/design-visualization/quadro-desktop-gpus/ and

https://www.nvidia.com/en-us/titan/titan-xp/ respectively
17 In other words, the algorithm has an inherent localization error of 24%.

https://www.nvidia.com/en-us/design-visualization/quadro-desktop-gpus/
https://www.nvidia.com/en-us/titan/titan-xp/

27

2.3 Implementation

The recorded subjects’ videos are first converted to PalmGrid acceptable video format to

extract mice forelimbs’ locations in cartesian coordinates. These forelimbs locations are then

made sense by PalmGrid signal processing module that filters confounding noises introduced by

Artificial Intelligence algorithm (see Section 2.5 and 2.6) to discern of wall-rearing hits. These

wall-rearing hits are reported in the Wall-Rearing Episode Report in numeric tabular format, and

as video reports.

Figure 14: PalmGrid Posture Extraction & Wall-rearing Detection Process

After posture extraction, PalmGrid mines into the extracted posture database to identify

wall-rearing episodes. Once we have got rid of the confounding noise (see Section 2.5 and

28

2.6.1) introduced by DeepLabCut, a series of signal processing filters are utilized to identify

wall-rearing events.

The Wall-rearing episode report depicts respective time fragments within which wall-

rearing most likely occurred. An example is shown in Figure 15. In here, the red underline

refers to one of such episode in Fragment 2, where video frames 498 to 528 contains at least 1

wall-rearing touch(es). As the video was recorded in 25 frames per second, it means that the

particular episode happened between 20 seconds (being 498 / 25) and 25 seconds (being 528 /

25).

Figure 15: Example Wall-Rearing Hits Report. Here Fragment 2 refers to a time period when a forelimb has one of its

digits moving below 5 pixels per frame. Within this fragment, two plausible wall-rearing episodes are identified, the one

underlined in blue refers to a wall-rearing episode between frame 498 to 528.

Investigators can then use these wall-rearing episodes to mine their cylinder test scores

according to their intended protocols. To offer investigators with more flexibilities, the raw data

of wall-rearing episodes are also stored in the Wall-rearing episodes report that facilitates them

to perform specific data mining to derive intended metrics, such as “paw-dragging” in [30].

Videos of these discerned wall-rearing episodes are also compiled to help investigators assessing

qualitative aspects of Cylinder Test requirements.

29

2.4 Detailed Methods

As mentioned in Figure 10, the PalmGrid station was trained of left and right forelimbs

followed by analysis of subjects’ videos. The end results of the analysis would be predicted

forelimb locations that depicts coordinates of the forelimbs’ digits and palms with respect to

referential cartesian coordinates of video camera’s Field of View. Forelimbs locations were then

analyzed by PalmGrid signal processing filters to discern of wall rearing activities.

The detailed process of setup, training, analysis of forelimbs locations together with

identifying the wall-rearing episodes are detailed below. Other than the training process that

requires video recording to train the recognition capabilities of the artificial intelligence engine,

the entire process was coded in Matlab to enhance code readership by neuroscientists.

User will first prepare a file that tells PalmGrid the respective locations of videos, extracted

posture coordinates, and their intended locations of wall-rearing episode report. PalmGrid reads

the batch file to generate the wall-rearing episode reports of all the videos in one go. For a batch

of 10 videos of 4 minutes each, the serial batch processing took less than 20 minutes.

2.4.1 Training PalmGrid recognition capabilities

A training video was first recorded to train ResNet-50’s recognition capabilities of

forelimbs in the Cylinder Test settings. To facilitate learning of ResNet-50 in what mice left and

right forelimb looks like, their locations in respective pictures in training video will be labeled

using prevalent off-the-shelf image analysis tools – such as ImageJ18.

18 ImageJ is a public freeware of image processing, downloadable at https://imagej.nih.gov/ij/

30

To test whether PalmGrid could generalize forelimb recognition capability, we chose a

different mice strain to train ResNet-50. In this arrangement a male AI-9419 mouse was placed

in the cylinder to record its video activities. All animal procedures were approved by the

University of British Columbia Animal Care Committee and conformed to the Canadian Council

on Animal Care and Use guidelines.

Around 150~ 200 photos of mice forelimbs were labeled to train ResNet-50 that possessed

varieties of postures. A few training photos are shown in Figure 16. DeepLabCut was supposed

to accept a maximum of 800 x 600 pixels pictures [24]. But since forelimbs were so small as

shown, we needed a higher pixel resolution that exposed finer features of forelimbs for

recognition and localization. We had therefore stretched camera resolution to its maximum

1200 x 1200 resolution20.

Figure 16: DeepLabCut Sample Training Photos that show the labeled forelimbs

19 Jackson Laboratory Stock No: 024115 | Ai94(TITL-GCaMP6s)-D;CaMK2a-tTA
20 In a separate experiment, I have tried to conduct the training in 800 x 600 resolutions. The trained ResNet-

50 exhibited poor recognition and localization capabilities, suggesting a higher resolution was needed.

31

Time taken to train ResNet-50 recognition capability was contingent on the configurations

of machine learning platform and computation power of Graphical Processing Unit. Artificial

intelligence engineers usually referenced best practices to determine the number of iterations

required in specific applications. In here forelimbs postures accuracies were important, we

followed recommendations from DeeperCut [31] in human posture recognition. DeepLabCut did

not provide corresponding recommendations in similar applications [24].

Steps Description

Phase I Preparation and Training of PalmGrid Recognition Capabilities

1 Setup Cylinder Test configuration as in Figure 9. Focus Pi-camera to the upper-

midline of the Cylinder for better image resolution in free movement activities

2 Record training video of a mouse to train AI-Engine of what forelimbs of mice look

like. For my experiment, I have let the training mice to settle in the cylinder for 10

minutes before recording its activities in the cylinder for 4 minutes.

Select a video frame of 1-minute duration with as many wall rearing activities as

possible. Try to avoid video frames containing mouse grooming at this point.

3 Feed the training video into ImageJ System to generate around 200 training images

for Labeling that exhibit clear digits and palm features.

4 For each training images, label both Left and Right Front Paws in all its fingertips

and palm (i.e. six points per forelimb, total 12 points). As an illustration in forelimbs

labeling, please refer to Appendix F. The process of forelimb labeling will depend

on users proficiency in ImageJ. In my configuration, it took me 45 minutes to label

the 200 images.

5 Train DeepLabCut with the labeled training images. A good iteration cycle of

200,000+ iterations is recommended21. Then evaluate the trained video as per

instruction given in DeepLabCut user manual. This will typically take a few hours

contingent on the GPU used.

Upon completion of training, the PalmGrid Station professes left and right forelimbs

recognition and localization capabilities. The system is now ready to appraise

experimental videos.

Table 1: PalmGrid Setup and Training Process

21 Training 200,000 iterations is recommended by DeeperCut [31] – the predecessor of DeepLabCut [24]. The

number of training iterations have always been a subjective call. DeeperCut calls for 82% localization accuracies in

human posture extraction, and in their experience with ResNet-50 they recommend 200,000 iterations to allow AI-

Engine to profess such localization accuracy.

32

2.4.2 Localizing Forelimbs of Test Subjects

All test subject videos were then prepared and saved in designated DeepLabCut folder for

posture extraction [24]. These batches of video images were analyzed of forelimb locations in

scripted command. Once the posture coordinates were extracted, they were then fed into

PalmGrid signal processing module that identified wall-rearing episodes among presented

locations.

A typical run to localize forelimbs in a 4-minutes video under Nvidia Quadro GPU was less

than 20 minutes in our PalmGrid Station. For a typical batch of 10 videos, we left the PalmGrid

script execution overnight in posture extraction. The process of test subjects’ video recording,

video image analysis, and corresponding signal processing to make sense of these coordinates

are detailed below in Table 2. The entire process was pipelined in single command for large

volume of video analysis.

33

Phase II PalmGrid Processing

1 Record subjects’ videos into PalmGrid station to localize forelimbs locations,

with respect to video camera’s Field of View.

2 Feed forelimb locations into signal processing modules of PalmGrid Station22.

3 Run PalmGrid signal processing module to analyze wall rearing episodes.

The script, composed of 8 signal processing filters, run in one parse in the

following steps

 a) Perform signal smoothing, to smooth out-of-range predictions of

DeepLabCut23; followed by

b) Convert Extracted Posture Coordinates into polar coordinates based

on the measured location of cylinder center24; followed by

c) Extract Slow Moving Fragments, based on Extracted Posture

Coordinates that moves less than 5 pixels between successive

frames25; followed by

d) Extract Coherent Fragments, based on tracking of minimal two slow

moving digits that moves towards cylinder wall and subsequently

retrace from it26; followed by

e) Identify Congruence Points, based on tracking of minimal distance

between individual fingertips and palm of each forelimb27; followed

by

f) Match Coherent Fragments with Congruence Points, into Refined

SubFragments that refers to slow movements of changing trajectory28;

followed by

g) Compute statistics for each Refined SubFragment and remove outliers

that does not correspond to wall-rearing29; and finally

h) Consolidate this smaller subset of Refined SubFragments into

episodes of wall rearing30

Table 2: PalmGrid Analysis and Signal Processing Process

22 For each experimentation video, there are slight variations in the location of cylinder center with respect to

the video camera's cartesian coordinates system. Simple photos tools such as Microsoft Photos can be used to depict

the approximate location of the center of the cylinder. Approximate location of cylinder center is important to

convert the cartesian coordinates into polar coordinates system aiding wall-rearing detections.
23 Refer to Section 2.6.1 for details
24 Refer to Section 2.6.2 for details
25 Refer to Section 2.6.3 for details
26 Refer to Section 2.6.4 for details
27 Refer to Section 2.6.5 for details
28 Refer to Section 2.6.6 for details
29 Refer to Section 2.6.7 for details
30 Refer to Section 2.6.8 for details

34

2.5 Errors introduced by AI and its relevance

While ResNet-50 is capable of matching human recognition capabilities expressed in Top-5

classification, PalmGrid also requires forelimb localization31 as benchmarked in [21]. In general,

DNN algorithms that utilized ResNet-50 machine learning methods suffer from three major

sources of non-linear errors. These errors are broadly termed as Max-Pooling32, ReLU33, and

Picasso34 (Pooling) errors.

1. In Max-Pooling, the most likely cubic that resembles specific feature set pertaining to

particular artificial neuron is chosen while others are ignored. Therefore in pictures where

left thumb appears in several nearby locations (e.g. virtual image of forelimb due to

acrylic reflection of cylinder), the sharper one is taken;

2. In ReLU, which is essentially a decision function for each feature set where non-linear

error sources are introduced. In engineering, feeding successive images (i.e. signals) into

the non-linear activation function results in uneven amplifications, resulting in harmonics

noises35;

3. In Picasso (Pooling) errors, much like the famous painter Picasso, the machine learning

algorithm focuses on the specific feature set they look for without rationing its

reasonableness. In our context, the thumb of left paw may be identified to attach to right

forelimb; or an internal reflection of the cylinder can be mistaken as the actual thumb.

31 In DNN, precision refers to Top-1 recognition capabilities, instead of Top-5 recognition capabilities in

ImageNet Challenges. For details, refer to [21].
32 For definition and illustrated examples of max-pooling, refers to

https://computersciencewiki.org/index.php/Max-pooling_/_Pooling
33 ReLU is the abbreviation of rectified linear unit, which applies the non-saturating activation function. It

effectively removes negative values from an activation map by setting them to zero. It increases the nonlinear

properties of the decision function and of the overall network without affecting the receptive fields of the

convolution layer. For details and illustrations, refer to https://en.wikipedia.org/wiki/Activation_function
34 For definition and illustrated examples of pooling, refers to https://computersciencewiki.org/index.php/Max-

pooling_/_Pooling
35 For discussions of activation functions and its relationship with harmonics noise, refer to

https://arxiv.org/abs/1603.00391

https://computersciencewiki.org/index.php/Max-pooling_/_Pooling
https://en.wikipedia.org/wiki/Activation_function
https://arxiv.org/abs/1603.00391

35

The noise sources introduced in ResNet-50 will then predict forelimb digits and palms

locations in the wrong place. For example, if the acrylic reflection of right palm is sharper than

the actual one, DeepLabCut will misconstrue the virtual image as shown in Figure 17. Therefore

signal processing filters are needed to correct these errors as far as possible. Likewise, ReLU

errors are also observed with jittery digits between frames despite the forelimbs are resting on

cylinder floor.

Figure 17: An illustration of DeepLabCut misconstruing virtual image of right forelimb palm as the actual one

Details of sources of errors introduced by ResNet-50 is tabulated in Table 3.

36

Sources of Errors Causes of such error Impact on Digits and

Palms localizations

Max-Pooling Deep Neural Networks segregate images into smaller

rubrics and auto-correlate each rubric to discern the

closest resemblance to learned postures. This is very

similar to the way visual cortex recognizes objects

where rubric is analogous to receptive fields.

As neighboring rubric autocorrelates in striding

displacements, DNN will discern to select the most

likely resemblance and pass on to the next stack for

further recognition.

The net effect would be gross negligence of features to

finest details. It does not really matter when it comes to

recognition of the object as long as gross features

distinctively recognizable e.g. the face of a tiger from

monkey are distinct despite the loss of finely detailed

features. However, for posture extraction, such gross

negligence will introduce precision errors, such as

labeling the left forelimb’s ring finger from its internal

reflection of the cylinder.

Misconstruing

features of interests,

thereby introducing

precision errors in

whereabouts of the

features of interest,

especially in light of

internal reflections in

cylinder test.

ReLu (Activation

Function) Errors

Nearly every layer of Resnet-50 employs a rectifier unit

that attenuates negative outcomes on that layer. While

this helps discerning specific features, higher order

harmonics – manifested in non-linear noise – are

introduced in posture extraction

Higher order

harmonic noises in

predicted posture

coordinates due to

uneven amplification

of images

Picasso (Pooling)

Errors

DeepLabCut algorithm specifically searches for

highlighted features of interest. It does not, however,

associate whether these features make sense in where

they are located. An example is the left paw must be

attached to the left limb. These are often termed

Picasso or pooling errors in DNN36.

In the present context, for example, an internal reflection

of cylinder glass will project mouse forelimbs to a

virtual image behind the physical cylinder (example as

shown in Figure 17). DeepLabCut will recognize that

virtual image as the forelimb if the actual forelimb was

obstructed by the mouse body, for example.

Misconstruing

location of features of

interest

Table 3: Sources of Error for ResNet-50, hence DeepLabCut

36 A simplified discussion on DNN errors can be found in https://towardsdatascience.com/what-is-wrong-with-

convolutional-neural-networks-75c2ba8fbd6f.

37

2.6 PalmGrid Signal Processing Module

Feeding successive images (signal) into ResNet-50 results in varying magnifications of

signal samples depending on its signal amplitudes, producing harmonics noises to distort

forelimbs localizations37. Multiple signal processing filters are therefore required to sanitize the

posture coordinates of these errors, prior to identification of wall rearing (Figure 18).

Figure 18: PalmGrid Signal Processing & Gauging Filters

2.6.1 Harmonics filtering

We have attempted several harmonics filters prior to identification of wall-rearing episodes.

In prevalent image processing methods, OneEuro filter38 with 1 Hz cutoff is often used to discern

images from noises based on their differential (uncorrelated) statistical properties while

maintaining sharp picture transitions on another. Moving average filter was also attempted that

37 For discussions of activation functions and its relationship with harmonics noise, refer to

https://arxiv.org/abs/1603.00391
38 Introductory description of OneEuro filter is documented in https://hal.inria.fr/hal-00670496/document

https://arxiv.org/abs/1603.00391
https://hal.inria.fr/hal-00670496/document

38

track the prior and latter 0.5 seconds of predicted posture coordinates to predict the current

coordinates. We would first like to test which filter provides effective performance to minimize

harmonic noise sources introduced by rectifiers (ReLu) activators.

I have inspected what happened when predicted forelimb locations of DeepLabCut parses

through both filters to compare their respective merits in our forelimb localization applications.

This was done by overlaying the predicted forelimb locations to the mouse videos and visually

observed their respective differences. An appropriate filtering algorithm should offer good

proximities of predicted forelimb locations from the actual forelimb in the video image, with the

predicted ones less jittery around the actual images.

It was observed that moving average filter was better than OneEuro filter, in line with what

was believed. This is because errors introduced by ResNet-50 ReLU functions were not

uncorrelated from what is to be predicted39. Likewise, forelimb locations between nearby frames

are strongly correlated as they move in a given trajectory. Therefore taking the average ±0.5

seconds of particular frame in time offers less jittery predictions even if one frame was

incorrectly localized.

On the other hand, the moving average filter does not eliminate Picasso and Max-pooling

errors. If circumstances in the video causes a virtual image of a thumb to be sharper quality than

the actual thumb, for example, ResNet-50 would still pinpoint the virtual image as the thumb –

regardless whether that thumb is attached to the arm or detached somewhere else40!

39 For discussion of DNN algorithms and its relationship with associated noises, please refer to 35.
40 For the very reason of Picasso and Max-pooling errors of ResNet-50, DeeperCut [31] performed extra

recovery process of localization known as clustering and linear optimization. DeepLabCut [24] did not implement

these processes.

39

2.6.2 Conversion to Polar Coordinates

Contingent on this sequence of wall-rearing events depicted in 2.1, conversion to polar

coordinates helps making sense of predicted forelimb locations in cylinder geometry to inspect

the synchrony of digits and palms as the forelimbs rear cylinder wall. Polar coordinate system is

therefore utilized in gauging and discerning touches, by inspecting changes in radial

displacements of successive fingertips. Identify coherent digits furthest away from the center of

cylinder in polar coordinates with respect to cylinder center would be much easier in polar

coordinate system than in cartesian coordinates with respect to camera field of view, as shown in

Figure 19.

Figure 19: Conversion of DeepLabCut forelimb coordinates to PalmGrid language in polar coordinates help discerning

synchronies in digits and palms

40

2.6.3 Extract Slow-Moving Frames

Wall rearing activities of the mouse are obstructed by the cylinder wall, resulting in changes

in movement trajectory and/or momentary leaning towards the wall (an example illustrated in

Figure 12). Because the mouse learned of such obstructions as it experienced, its paws will

slow down somewhat when they approach the cylinder wall.

Leveraging the observation, gauging wall rearing activities shall start by inspecting

individual fingertips coordinates that exhibits slowdown in digits displacements41 as the

forelimbs approach cylinder wall, followed by its subsequent retracements. Slow-moving frames

are thus extracted.

2.6.4 Extract Coherent Fragments

It is observed that the degree of freedom of mice digits is not as flexible as human or

primates, in that their fingertips move in tandem with each other for specific movements. For

example, its digits extend together as it moves forward to rear the wall. Likewise, their

retracements are also in tandem with each other.

Leveraging the observation, we extract coherent fragments where a minimum of two

successive fingertips slow down below 5 radial pixels per second (i.e. 0.1% of cylinder radius) in

the same direction at the same time, until the point when the digits accelerated and retraced from

cylinder wall. We also examine the direction of the digits’ movements within 0.5 seconds: a

wall-rearing touch is likely happening if the digits radial distance is moving towards the wall

prior to its slowdown, while subsequently retracing back after the rearing.

41 In our default template slow moving frames are defined to be those whose fingertips’ radial distances that

move less than 5 pixels in adjacent image frames for a given fingertip. This is 0.1% of the cylinder’s diameter.

41

The time fragments that correspond to simultaneous digits following the sequence of events

as approach, slowdown, rearing and finally retracement of fingertips is termed Coherent

Fragments.

2.6.5 Identify Congruence Points

It was also observed that when the palm hits the wall, there is an alteration of paws’

movement trajectory. Since the digits are hit and obstructed by the wall first whilst the

momentum of the palm continues, we observe digits-to-palm distance hitting minima followed

by a change in trajectory:

The instances in which these minima occurred are termed Congruence Points. It is also

observed that successive digits-palm minima of a forelimb do not necessarily happen at the same

time, but very close to each other – usually within one second.

2.6.6 Remove Outliers of Refined SubFragments

If predicted forelimb coordinates met the two congruence filters criteria with nearby

congruence point(s). Its forelimb(s) is 1) slow moving, 2) moving towards the cylinder wall and

then retrace, and 3) altering its movement trajectory. I named fragments that met these criteria as

Refined SubFragments. Questions remain whether such refined subfragments are wall rearing,

paws idling in free space or slow crawling on floor (see these postures in Figure 20). Outlier

removal filters are used to eliminate identified wall-rearing that did not make sense.

42

Wall Rearing Slow Crawling

Mouse slowly hoovering and encircling

cyliinder floor. With ResNet-50 jittery

predictions of forelimb digits, some of

these episodes will meet both coherences

and at the same time changes in trajectory

Paw hanging

Mouse lifted the forelimb and stay

there with “stand up fists” while its

body leaning forward and backwards.

With ResNet-50 jittery predictions of

forelimb locations, digits will be in

slow movement, forward and retrace,

as well as congruence

Figure 20: Some postures that fulfill two coherences and congruence criteria

Statistics of these Refined Subfragments are calculated to identify wall-rearing activities

from other floor maneuvering activities. For each episode, we observe averages and standard

deviations in radial displacements of digits and palms. I found that forelimbs cannot be rearing

if they are resting on the floor or crawling very slowly, implying the standard deviation of radial

displacements within these identified episodes are very small (within 5 pixels, or 1% of cylinder

diameter). Likewise, the forelimbs cannot be rearing the wall with localized digits lying within

parallax of inner radius as shown in Figure 21.

43

Figure 21: Removal of detected wall-rearing episodes where majority of digits lie within parallax of inner diameter

These outlier removal steps are detailed as follows:

1. For each Refined SubFragments, the mean and standard deviations of the five digits, as

well as the palm location, are computed;

2. To segregate floor resting or crawling episodes from its wall-rearing counterparts, it was

noted that variations (standard deviation) of its fingertips within the refined subfragment

is lower than 5 pixels (or 1% of cylinder diameter). If a number of digits coincidentally

exhibit such slow movement traits, the episode is treated as floor resting episode and

removed.

3. If all fingertips and palm are all detected to lie within the inner diameter of cylinder

observed through the parallax effects from the bottom (Figure 21), it is unlikely that

being a wall-rearing activity. Outliers whose majority of digits lie within inner diameter

44

are also removed. These inner diameter measurements are measured during

experimental setup stage, using Microsoft Photos or ImageJ to measure the number of

pixels it spans in camera field of view.

2.6.8 Gauge Refined SubFragments into wall rearing episodes

At the end of all these filtering, refinement, signal processing and outlier removals, final

sets of wall-rearing sub-fragments are established. These subsets of refined subfragments are

then consolidated into a wall-rearing episodes that facilitate qualitative assessment of wall-

rearing in later stage. The wall-rearing episodes are tabulated in Wall Rearing episodic report.

2.6.9 Export of wall-rearing episode

The final wall-rearing episodic report is thus compiled. A sample report format is presented

in Figure 22. In the report, each episode is given its midpoint, start and end frame reference that

facilitates traceability of wall-rearing episodes in numeric report. An example is given as

underlined in Figure 22, where the algorithm notes that between frames 364 to 760 there is at

least one digit of the forelimb moving slowly. Within this slow-moving fragment, two wall-

rearing episodes between frames 498 to 528 and frames 611 to 663 are respectively identified.

Each of these wall-rearing episodes represents at least two digits of slow movements, while

changes in movement trajectory occurred. The forelimb was also noted of approaching and

retracing from wall.

45

Figure 22: Constituents of Wall-Rearing Episode (Numeric) Report, which tabulates all evaluated wall-rearing episode in

terms of Slow Moving Fragments; and episodes that met 2 conherence and congruent criteria with outliers removed.

2.6.10 Compile wall-rearing episodes into video fragments

As noted in Chapter 1.2, qualitative assessment of wall-rearing enhances the outcomes of

cylinder test protocol, by having investigators reviewing respective synchronies of forelimbs as

mice rear the wall. This is especially relevant in stroke and recovery assessment applications,

where mice subtly avoid explicit wall sliding activities by having the other normal limb pushing

against the wall for dismounting in a scenario termed “paw-dragging”.

The following figures extracted from [30] readily demonstrates the paw-dragging scenario

where one side of its motor cortex was given focal ischemic stroke. As the mouse stands on its

rear legs to explore the cylinder wall then drags, its affected (contra-lesional) paw drags along

the cylinder wall towards its midline or down the wall; while its unaffected forepaw provides

postural support against the wall (Figure 23). Prior to the contra-lesional forelimb detaching

46

from cylinder wall, unaffected forelimb will assist the dismount to land on cylinder floor. This

explains why if one simply “listens” to timing of touches of forelimbs on cylinder wall, it is very

difficult to discern progress of stroke and recovery.

Paw-drags rarely occur in uninjured mice. Therefore appearance of a paw-drag is a positive

indicator of injury to the forelimb sensorimotor cortex.

Figure 23: Synchronies of forelimbs in wall-rearing when focal ischemic stroke was given to one side of sensorimotor cortex

ET-1. Images obtained from [30] Roome & Vanderluit. Paw-dragging: a novel, sensitive analysis of the mouse cylinder test. J.

Vis. Exp. (98) (2015)

Since we evaluated respective frames of wall-rearing episodes, we make use of these

identified episodes to segment activity videos recorded into smaller videos focused in wall-

47

rearing using off-the-shelf multimedia conversion software FFmpeg. In doing so, investigators

can focus to evaluate individual quality of rearing, as well as quickly discern if there are false

rearing that could be missed.

2.7 Experimental Testing

Testing of PalmGrid algorithm was conducted with a random sample of six healthy male

mice (n=6) from different cohorts randomly chosen of age between 2 to 6 months. We used

EMX-1 mice42 strain as the subjects to conduct experimental testing. All animal procedures

were approved by the University of British Columbia Animal Care Committee and conformed to

the Canadian Council on Animal Care and Use guidelines. As movements of healthy mice shall

not differ in gender, the randomly chosen experimental cohorts were male.

For each mouse, three separate videos (each lasting around 3~4 minutes in compliance to

cylinder test existing protocols) are recorded in random times and then analyzed in PalmGrid

station. As reported in Section 2.4.1, a different mouse strain AI-94 was used to train the

PalmGrid station, so as to test our hypothesis that features knowledge can be learned

independently of the phenotype. Focal settings of the camera were not altered from one

videotaping to another.

The training of PalmGrid station using AI-94 recording took 7 hours in excess of 200,000

iterations using Nvidia Quadro 5GB Graphics Processing Unit described in Section 2.2.2, as

recommended in DeeperCut [31]. Analysis of each subject video took about 20 minutes,

together with another 15 minutes to convert the posture extracted images back into a video clip

42 Jackson Laboratory Emx1-IRES-Cre mice; Stock No: 005628 | Emx1IRES cre

48

in labeled fingertips and palm (Figure 24). Both training and conversions are done by batch and

unattended, relieving the laborious manual monitoring that the exercise was set out to save in the

start.

Figure 24: Sampled Labeled Images

More samples and details of training video labeling are found in Section 2.4.1 and

Appendix F respectively.

2.8 Results

To evaluate robustness of PalmGrid process, the Wall Rearing Episode (Numeric) Report

was compared with the results of the Ground Truth report. Methods and results to compile

ground truth reports are documented in Appendix G. The results from ground truth raters

agreed with each other.

49

Five mice were chosen out of the six sample subjects, with two video clips of each are being

randomly chosen and analyzed. Each wall-rearing episode was then compared with

corresponding ground truth rearing to assess the accuracies of algorithms. An example of the

Wall-Rearing report, being the output of the PalmGrid process, was depicted below (Figure 25)

that refers to the totality of left and right paws detection.

2.8.1 Overall Results

Figure 25 tabulates the overall results. Appendix C.2 tabulates the corresponding overall

results in percentage terms for each video frame. In the report, detected wall-rearings by

PalmGrid either positively reflected actual wall rearing (termed “Correctly” in Figure 25), or

falsely misconstrued the activities as rearing (correspondingly termed “False Positive”). Either

a detected touch by the PalmGrid process reflected correctly the actual wall-rearing touches, or it

reported false alarms where wall-rearing was detected by PalmGrid algorithm but not found in

Ground Truth Report. The percentage of “Correctly” and “False Positive” touches added up to

100% of total touches in each video frame.

There were also False Negative (missing) episodes that reflected actual touches on the

cylinder wall that are not detected by the PalmGrid Process. This was expressed as a percentage

of the total touches detected by the Palmgrid algorithm.

Percentage of correct detection was calculated by actual wall-rearing hits divided by the

number of detected hits; while false positives refer to those detected episodes with no actual hits.

Finally, false negatives refer to actual wall rearing that PalmGrid omitted. All of these are

expressed both in actual numbers and in percentage as depicted in Appendix C.

50

Correct recognition rate on 10 video streams – with 1 left and right forelimbs videos for

each cohort – came to 70%. In terms of numbers, a total of 406 wall-rearing touches were

recognized from the manual observations of 474 wall-rearing touches, implying 406 ÷ 474 =

0.856 𝑜𝑟 85.6% of wall-rearing episodes were detected in aggregate when all false positives

were taken away.

Of all the 580 detected wall-rearing episodes of PalmGrid , false positives (alarms)

percentages came to 174 ÷ (406 + 174) = 0.3 𝑜𝑟 30% Meanwhile, false negatives came to

68 ÷ (406 + 68) = 0.1172 𝑜𝑟 11.72%.

51

Figure 25: Test Results of PalmGrid for a cohort of n=5

52

2.8.2 Independent Assessment of Left and Right Forelimbs

As PalmGrid allows independent assessment of left and right forelimbs, the corresponding

touches and its percentage were separately analyzed. Results of such analysis are depicted in

Appendix C.3 to C.6.

For the right forelimb (Appendix C.4), mean correct recognition rate comes to 68.1%

inclusive of the outliers. False Positives came to 31.9% whereas false negatives came to 18%.

For the left forelimb (Appendix C.6), two video recordings of EMX-02 cohort exhibit outliers,

and the correct recognition rates come in between 67% to 81% beside the outliers. Mean correct

recognition rate comes to 73.9% inclusive of the outliers. False positives came to 26.1% whereas

false negatives came to 5%.

53

2.9 Discussion

2.9.1 Correctly Recognized Touches

To the knowledge of the author, this is the first attempt by which artificial intelligence

algorithm is used in precision applications to extract posture in the context of the cylinder test.

ResNet-50 used in this process achieved 5.25% Top-5 recognition error in ImageNet competition

of 2015. We learned that Top-5 Classification error – being the prevalent benchmark of DNN

algorithms – is not equivalent to Precision (or Top-1 localization) error. A similar study of

precision error of ResNet with 50 and 101 layers of depth was given in [21] that depicted

respective 76% and 78% localization (Top-1) accuracies. The PalmGrid algorithm anticipates

inherent inaccuracies of ResNet-50 to identify wall-rearing episodes.

With roughly 1 in every 4 errors in forelimbs’ location predictions in errors, identifying

70% correct recognition for PalmGrid Process is a good initial attempt using basic laboratory

equipment. The process may improve from this rate simply by reducing acrylic reflections

through anti-acrylic paints; or by organic improvements in future artificial intelligence

algorithms. As DeepLabCut came in as open-source, future adoption in more advanced DNN/

posture extraction algorithms should enhance localization accuracies of PalmGrid43.

2.9.2 False Alarms (Positives) and Error Propagation Modeling

False Positives in the algorithm refers to the fact that the algorithm believes some wall-

rearing touches had occurred in the highlighted episode but in fact there was none. The high

43 DeepLabCut algorithm is derived from the corresponding human posture extraction algorithm DeeperCut,

that has three components: AI recognition, Clustering, and Linear Transformation using around 2,000 photos in

training. The software cut the clustering and linear transformation part to reduce overheads in computations and

learning. If DeeperCut is used, it is tested that recognition rate will rise from 76% to 82% [31].

54

false positive rates (30%) were largely attributed to ceiling precisions of prevalent Artificial

Intelligence Algorithms. For the ResNet-50 chosen, precision – defined as Top-1 Classification

– has its mean ceiling accuracies of 76% (Figure 13).

As a rough estimate to account for the false positives rate, since ResNet-50 gives 76% (Top-

1) localization accuracy, this implies probability of error in extracted postures of each digit is

(100 – 76) % = 24%. These errors are then propagated into the signal processing filters in Figure

18, reproduced below in Figure 26 with the error propagation model.

Figure 26: PalmGrid Error Propagation Model

In this rough estimation model, we assume digits and forelimbs are independently predicted

by ResNet-50. This assumption is justified as we inspected DeepLabCut [24] open source code

and see little evidence of the algorithm using posture recovery methods such as clustering and

linear optimization as its predecessor DeeperCut [31].

55

The first stage of PalmGrid signal processing filter averages 24 signal samples: 12 from

priors and 12 from corresponding latter time samples. These imply an input error rate of (0.242/ /

24)1/2 = 0.0489 or 4.89%, equivalent to an accuracy probability of (1- 0.0489) = 0.951 or 95.1%.

The Coherent Fragment extraction introduces two stages of errors. First (Stage 1) it

requires a minimum of 2 digits to be slow moving, implying probability of accurate Coherent

detection to be 0.951x 0.951 = 0.9044 or 90.44%. Next (Stage 2) the slow movement fragments

will propagate to discern of forward to and retracements from the cylinder wall. Similar to the

above modeling, the filter cascades another factor of 0.9044 (90.44%) to the propagated errors.

The congruent point detection will then assess palm posture closest to the fingertips some

point within a coherent subfragment. This will introduce another 0.951 (95.1%) factor in the

probability of success. Statistical filters will not introduce significant errors, as they are

concerned only with specific criteria, rather than mathematical calculations.

As we assume the coherences and congruence to be independent activities, these three core

filters result in a maximum accuracy of detection of 0.9044 x 0.9044 x 0.951 = 0.7778 or

77.8%44. Therefore 70% actual recognition by PalmGrid is in line with the basic setup that

provides rough wall-rearing estimates in cylinder test.

We also note that because the mice under experimentation are freely moving, the chance of

obstructing the camera by body is higher. This explains differential mean recognition rates of

left and right paws at 73.2% and 68.1% respectively. After all, Neural Networks is a statistical-

based algorithm that will discern slightly varying wall-rearing decisions. And because of these

obstructions and internal reflections of glass cylinders, as opposed to head-fixed mice in

44 If coherence and congruence are not independent, the maximum accuracy will simply decrease as we have to

account for joint probabilities between activities.

56

otherwise experimentations, we noted that outliers in detection rates readily exist. In our case,

cohort EMX02 in her first recording exhibit significant outliers. In her second recording, the left

forelimb demonstrates significant outlier. These bodily obstructions of digits significantly

hindered recognitions, hence reduce correct recognition rates. The other major reason behind

these false alarms was the lack of depth cue. With a single camera, it is difficult to discern

between the forelimbs rearing the wall or crawling on the floor plane that corresponds to the

wall-rearing projections (Figure 27). Resolving the issue requires installation of depth camera or

relying on future enhancement of Pi-camera with depth resolution features. At the time of

writing, these measures imply extra costs of procuring specialty types camera.

Figure 27: Lack of depth cue made resolution of wall-rearing challenging from corresponding floor rearing around the

same projected diameter

57

 2.9.3 False Negatives or Missing detections

Meanwhile, there were omissions (false negatives) that PalmGrid did not recognize of

plausible wall-rearing that has factually occurred. A 12% overall false negatives rate is in line

with error propagation model, demonstrating the encompassing nature of the algorithm in

discerning potential touches. Any refinements in anti-acrylic paints or enhanced algorithms will

reduce posture extraction errors, improving the false negative rates.

The major reason behind the omission was DeepLabCut located the wrong palm coordinates

as its features blurred. While features of digits of forelimbs are easily discernable, features of the

palm poses challenges to ResNet-50. This is especially true when the images are compounded

with confounds such as slow shutter speed, internal acrylic cylinder reflection, refraction due to

mouse urinations or when forelimbs were raised above certain heights that basic Pi-camera fails

to discern palm features. Since DeepLabCut simplified DeeperCut [31] features that recovers

localization conflicts (such as use of clustering and linear-optimization algorithms), its recovery

capability of less discernable features (such as palm under fast movements) will be weak

especially in moving subjects. In an analogy, human cortex will possess difficulties to resolve

images if the eyes are suffering from diseases. Given the limitations of basic Pi-camera, the 12%

omission rate shall be anticipated.

To further improve false negatives, a faster shutter speed Pi-camera with wider focal range

is recommended, that allows freely moving mouse to be captured in higher precisions and

resolutions of its forelimbs. Anti-acrylic reflection paints will somewhat help to avoid ResNet

mistakenly recognize the virtual image of forelimbs as the real one. DeepLabCut shall also be

enhanced with clustering and linear optimization, that despite poor resolutions the palm locations

can be somewhat recovered. On hindsight, a combination of the above will help.

58

All above improvement measures require procurement of advanced camera or substantial

enhancement of DeepLabCut. Both were not intended as we set out our research objectives in

terms of costs and sophistications. To procure advanced camera certainly imply higher costs of

adaptation, while enhancing DeepLabCut with clustering and linear optimization will require

2,000 posture photos to be prepared in training phase [31] together with an advanced GPU to

process the sophisticated posture extraction algorithms. It is worthwhile to proceed further

research in these directions.

2.9.4 Different correct recognition and omission rates for left and right paws

It was also noted that significant differences exist between left and right forelimbs’ correct

recognition and omission rates. A summary of recognition rates based on results depicted in

Appendix C for the experimental testing is given in Table 4.

 Correct False Alarms

(false positives)

Omissions

(False Negative)

All left forelimb 221 (73.9%) 78 (26%) 14 (5%)

All right forelimb 185 (68.1%) 96 (32%) 54 (18%)
Table 4: Computed Wall-Rearing Results of Left and Right forelimbs

From prima facie evidence shown above, it seems trivial to conclude that biodiversity

differences of left and right forelimbs were evident from these results. However, such

conclusion may be premature given the shutter speed, focal range, and lack of depth cues

limitations of existing camera capabilities. I would therefore leave the preferential inference to

later stage.

59

2.9.5 Making use of Wall-Rearing Episode Report to enhance efficiency

Current protocol of Cylinder Test favors investigators to review the wall-rearing fragments

to assign their own scores according to their specific concerns. To address the requirements,

PalmGrid compiles identified wall-rearing episodes into a video as an example to demonstrate

efficiency enhancements.

In a typical 4 minutes recording, 6,000 frames45 have to be reviewed in manual labor

approach. Even if the investigator reviewed each image with 1 second per image, such review

will take around 6,000 seconds (~1.67 hours). As a motivating example to make use of the wall-

rearing episode report, a sample video recording of EMX03-02 is used. PalmGrid extracts 26

wall-rearing episodes from the extracted postures, followed by compiling the wall-rearing

fragments into respective smaller video recordings using FFmpeg. It is noted that in this

particular case, the smaller video fragments shortened review time to 275 seconds (4.58 minutes)

after removal of non-rearing time fragments, implying significant reduction in review efforts at

marginal costs. Actual time saving varies, depending on how many vertical explorations the

mouse use in a given recording and the fluencies of investigators to use different tools in

conducting wall-rearing reviews.

On that note since wall-rearing episodes are now automatically extracted and detected, there

is no reason why the Cylinder Test observation period cannot extend beyond 10 minutes. Time

savings achieved using PalmGrid demonstrates further advantages compared to conventional

frame-by-frame review approach.

45 4 minutes x 60 seconds x 25 frames per second in a given video recording = 6,000 frames

60

2.9.6 Comparison of labor time required to use PalmGrid

Are there time savings to utilize PalmGrid algorithm? To evaluate if there are efficiency

gained, I compared time taken to use PalmGrid versus the method described in [30] to identify

wall-rearing, the video fragment EMX03-02 is fed into PalmGrid to estimate incremental labor

hours required versus corresponding manual labor hours to review in paw-dragging method.

In PalmGrid the video is fed into an automated pipeline to localize forelimbs and identify

wall-rearing episodes; whereas two iterations to slow play the video is required in method

described in [30] to skim through and verify all rearing. Because wall-rearings in PalmGrid are

compiled into smaller video fragments, reviewers can focus on each smaller fragment to conduct

qualitative analysis that reduces possibility of errors in qualitative assessments. Frame by frame

qualitative review can be avoided as reviewers can conduct the qualitative review in different

times due to smaller video fragments, that poses smaller chances of laborious fatigues and errors.

As a benchmark comparison, my take of time comparisons using EMX03-02 is tabulated

below in Figure 28 using off-the-shelf video player VLC Media Player46. In this sample

comparison, smaller video fragments help reviewers to review shorter video fragments in 0.6x

actual video speed, rather than slowing down the reviews to more careful 0.25x to avoid

omissions. There were no timing overheads in noting down the wall-rearing episodes as analysis

and identification of vertical explorations are machine driven, leaving qualitative assessment

phase to investigators in higher quality. My illustrative comparison came to around 92% time

46 VLC Media Player is a general public use, off-the-shelf video player downloaded from

https://www.videolan.org/vlc/index.html

https://www.videolan.org/vlc/index.html

61

saving. Actual savings shall vary for different investigators employing other protocols.

Figure 28: Illustrative comparison of PalmGrid assessment time versus methods described in Roome & Vanderluit [30]

2.9.6 Benefits of the software approach

There are many benefits of such achievements, in which 1) it relieves significant laborious

tasks that were only achievable through prone-to-error human observations, and cumbersome

post-experimentation data processing; 2) it allows independent assessment of left and right

forelimb movements in ischemic strokes and its corresponding rehabilitation; 3) it does not

require complex calibration before experimentation such as multiple camera synchronizations.

Last, not least, it requires minimal setup costs with a basic Raspberry Pi video camera system

and simple laboratory equipment. These lowered entry cost and skillset challenges are set to

benefit laboratories in their use of precious resources.

62

Chapter 3 Design Choices and Discussions

3.1 Strength of PalmGrid

The obvious strength of PalmGrid stems from its software-driven simplicity even without

meticulous hardware calibrations. In the conventional approach conducting cylinder test,

precious manual labor has to be exploited to count wall-rearing activities which are laborious. It

is also burdensome as reviewers are required to skim through many videos, and in worst case

frame-by-frame. To maintain acceptable level of accuracies, methods adopted in [25-27, 30]

often requires three parses for each video review per investigator. As an illustration extracted

from methods depicted in [30], first parse requires raters to skim through video in 0.25x speed to

write down respective wall-rearing of forelimbs, followed by a second parse to verify. To

review quality of individual rearing requires, in worst case, frame by frame review to note of

paw-dragging. Overheads readily exist in each of these parses, and video pauses, rewinds, and

fast forwards are often required that staggered up overheads in the review.

The use of capacitive touch sensors somewhat helps by detecting touches, but it fails to

differentiate which limb touched the grid as well as the quality of rearings, despite extra costs

involved in setting up electronic grid system. Study of contralateral stroke impacts to

movements using capacitive touch sensors approach proved challenging to assess quantity and

quality of wall-rearing.

PalmGrid uses minimally visible lights to discern wall-rearing touches. As long as light

intensity enables artificial intelligence algorithms to recognize forelimbs, its setup cost is

otherwise minimal. Complex setup procedures and sophisticated calibrations are not required in

PalmGrid, as opposed to touch sensors where careful planning of sensor grid will be required. In

63

our experiment that assumes little technical competence in basic laboratory equipment, our

testing shows that 70% of wall-rearing are identified. It is therefore a competent tool for pre-

selection of wall-rearing, leaving investigators’ precious time to assess quality of these rearings,

and their specific features-of-interests such as wall-sliding and wall-dragging.

We have deliberately avoided more sophisticated equipment (such as depth camera,

multiple cameras, and anti-reflective paints) and meticulous fine-tuning to enhance detection

outcomes. Based on inspection of false alarms and omissions, use of depth camera or multi-

camera approaches to resolve depth and focus should enhance accuracies, at the expense of

increasing costs and complexities. High-resolution Pi camera was not adopted, as we set out to

evaluate what basic equipment could do. Indeed, 70% accuracy is not bad given all these

constraints without any fine tuning47, demonstrating the extent of artificial intelligence can assist

in neuroscientific investigations. Any measures to fine tune the configurations will bridge

prevalent accuracy gap from 70% to theoretical maximum of 77.78%48.

The outcome of PalmGrid extracts wall-rearing episodes in report as well as wall-rearing

videos. This will dramatically save time to conduct the experiment without laborious analysis to

focus precious time resources on higher quality tasks to assess details of wall-rearing episodes.

In our testing of a four-minutes video with 26 wall-rearing, conventional protocol to review

6,000 video frames is now “shrink-wrapped” into 275 seconds (4.58 minutes) of 26 videos that

achieves 92% time saving. If we leverage the feature to round-the-clock monitoring of stroke

mouse where wall-rearing occurrences are less frequent, significant analytical time savings can

be achieved by eliminating reviews of non-wall-rearing postures. In a similar manner, we can

47 A typical high-resolution camera of Nikon, such as M12 lens, will add up another few hundred dollars in

costs
48 For discussions of error propagation model, please refer to Section 2.9.2.

64

increase the sample size of test subjects to analysis of bigger rodent samples; since artificial

intelligent machines are now tasked to perform most of the laborious pre-selections. The final

wall-rearing videos offer flexibility for investigation of specific posture-of-interests in their own

protocol such as wall-dragging or wall-sliding.

Given the automatic posture extraction and wall-rearing detection capabilities, use of

PalmGrid algorithm can help to pre-select mouse of specific forelimb preferences in different

circumstances. Similar to the cylinder test arrangement, one can readily engage bigger sample

size to analyze their activities round-the-clock, extending its applications beyond cylinder test.

3.2 Limitations of PalmGrid

The obvious limitation of the PalmGrid experimentation setting is its requirements49 of

minimal lights to discern of movement and features. If specific protocol requires very dim lights

ambiance, use of PalmGrid may not be suitable. In those cases, use of specific infrared camera

might be an option worth trying.

Analysis of PalmGrid data requires powerful computers with efficient Graphics Processing

Units (GPUs) that used to be a challenging end means for most laboratories. This barrier is

gradually overcome with many universities offering GPU shared services and free Matlab /

Python licenses that processes resources hungry artificial intelligence algorithms.

49 For example if mice behavior study under dim infrared lights is required.

65

3.3 Future Improvement Areas

3.3.1 Use of more advanced artificial intelligence algorithms

There are many rooms for future enhancements, and 70% recognition rate can at best taken

as an encouraging milestone. As DeepLabCut enhances through porting to more advanced

artificial intelligence algorithms such as Inception version 4.050 (Figure 13), it is expected that

continuous precision enhancement beyond 76% will, in turn, advance DeepLabCut posture

extraction accuracy. For the sake of arguments using the rough estimate of error probability in

the Discussion section, expected PalmGrid accuracy can advance to 0.92 x 0.92 x 0.96 = 0.81 or

81% if we change the core algorithm from ResNet-50 (76% Top-1 accuracy) to Inception v4

(80% Top-1 accuracy). As graphics processing unit prices come down further, choosing more

resources hungry graphics processing unit will help to advance PalmGrid performances.

3.3.2 Use of more advanced posture extraction algorithms

DeepLabCut is derived from more sophisticated human posture extraction algorithm called

DeeperCut [31] that further recovers errors of ResNet algorithms with clustering and linear

optimizations. These steps require higher power Graphical Processing Units while advances

posture extraction accuracies from 76 to 82% tested on ResNet-50 algorithm. The 6%

enhancement comes with extra costs in preparing 2,000 images training the artificial intelligent

machine. Using the same formula given in Section 2.9.2, ceiling accuracy will increase by 6%.

It is therefore expected corresponding increase in wall-rearing episodic extractions accuracies.

50 As reported in [21], Inception version 4 has 80% accuracy with 12G operations in one forward pass.

66

3.3.2 Dual-camera, epipolar geometry approach

Further experimentations based on two cameras approach using epipolar geometry51 shall be

another worthwhile attempt, in that the depth of posture can be derived from simultaneous

observations of two cameras. Changing the approach from statistical gauging to a deterministic

examination in the final outlier removal stage will further narrow the margin of detection

accuracies from prevalent 70%. But it should be noted that there are added complexities in

equipment calibration and increased costs in equipment provisioning.

New methods are now emerging that allows Raspberry Pi to record with two video

cameras52 in synchrony. This bypasses the synchronization constraints between camera

recordings, hence enabling the use of epipolar geometry that changes latter part of PalmGrid

gauging algorithms from statistical estimation approach (in steps laid out in Sections 2.5.7 and

2.5.8) to deterministic approach where actual coordinates of fingertips are computed.

While we are on the topics of multiple cameras, one can hypothetically increase the number

of cameras beyond two in the hope that more perspectives of video recordings might overcome

obstructions of features of interests to increase tracking accuracies. This may be a worthwhile

option to consider when Raspberry Pi can load more than two cameras in synchrony. But as at

our knowledge of Raspberry Pi to date, synchronizing Raspberry Pi video recording beyond 2

cameras is exceedingly cumbersome53. In fact, if the multiple camera synchronization issues

can be resolved in Raspberry Pi in its future versions, it is possible to generalize PalmGrid usage

51 For modeling of deterministic approach such as epipolar geometry, refers to textbooks that describe its

methods. An example of such text includes Xu & Xiang (2013) Epipolar Geometry in Stereo, Motion and Object

Recognition; Springer Science and Business Media ISBN: 9789401586689.
52 An example is Raspberry Pi 3 Model B with multiple camera adapter modules
53 Refer to https://www.raspberrypi.org/forums/viewtopic.php?t=212013 for prevalent discussions of multiple

camera synchronization in Raspberry Pi

https://www.raspberrypi.org/forums/viewtopic.php?t=212013

67

beyond cylinder test to generalized cartesian coordinates where exact paw locations can be

tracked using multiple cameras.

3.3.3 Changing PalmGrid signal processing approach to machine learning

At first sight, the current market hype of superiority in Artificial Intelligence might induce

ideas that post-extraction wall-rearing detections shall advance by cascading another machine

learning system. Personally, I have some doubts. This is because according to Figure 13, the

best machine learning algorithms achieve around 82% precisions at best. If we cascade another

machine learning context to predict wall-rearing detections, the precisions will hit accuracy

ceilings of 76% x 82 % = 62.32%, which is substandard to present achievements! One shall not

rule out if future machine learning precisions increase beyond 90% Top-1 accuracy, this may

well be a worthwhile attempt.

Figure 29: Hypothetical PalmGrid design based on full-scale machine learning. Part of image obtained from He & Sun

[29] Deep Residual Learning for Image Recognition. Computer Vision and Pattern Recognition (2015)

68

3.4 Concluding Remarks

Use of artificial intelligence algorithms revolutionizes the way neuroscientific behavior

experiments to be conducted. In current design – despite all deliberately instituted hardware

and skillset constraints – PalmGrid is built as an excellent pre-selection method of wall-rearing

activities in cylinder test. Its outcomes offer investigators with shrink-wrapped wall-rearing

videos to assist their focused assessments of specifics within individual instances. In sum,

PalmGrid machine does not replace human investigation. Rather it minimizes investigators

expending their precious time resources from reviewing irrelevant video frames, to steer their

focus inspecting shrink-wrapped wall-rearing fragments.

In response to the research questions we set out in Section 1.7, we learned that artificial

intelligence algorithm anticipates less-than-ideal experimental ambiance and resources

constraints, in that a single Pi-camera can fit the purpose in Cylinder Test experiment. This is a

big plus for resource hungry laboratories whose purse strings are tightened and skillsets are

scarce.

We also learned of the recognition competence in prevalent artificial intelligent algorithms

in spite of these hardware and skillset constraints to discern of mice forelimbs. For freely

moving mice that maneuver around in the cylinder, recognition in dynamic environment proves

the robustness of ResNet algorithms to be used in similar experimental settings.

Independent forelimb recognition has been made possible thanks to the capabilities of

DeepLabCut. Even without elaborated hardware calibrations, the software herein designed

discerned forelimbs activities independently to extract the respective wall-rearing episodes.

Compiling wall-rearing episodic report of respective forelimbs into smaller episodic video

69

fragments enables focused review of wall-rearing activities. Investigators can now save time to

focus on higher quality assessments of these rearing.

Yet the accuracy in posture estimation has rooms for future improvements. Being

recognized of forelimb independently is a big leap forward, but higher accuracies of tracking

pose another level of challenge. In ResNet-50, we learned that it has 76% accuracy to spot on

tracking of digits/palms. Given the non-linear nature of errors introduced into the system in

recognition and localization, together with the various constraints that demand the PalmGrid

setting to be shrink-wrapped and simple-to-deploy, posture estimation in modest accuracies are

expected. To gauge for more accurate wall-rearing episodes, basic engineering principles was

used instead of relying on another cascade of artificial intelligence algorithms to yield better

outcome accuracies. Using moving averaging techniques, digits coherence, and digits-palm

congruence together with statistical outlier removal filters effectively lifted up the accuracies to

more acceptable 70%.

Our simplified error propagation model shows that cascading artificial intelligence with the

signal processing filters herein designed translates outcome accuracies to roughly 77.78% in

gauging wall-rearing episodes. Use of more advanced artificial intelligence and posture

extraction algorithms, contingent on lowering graphics processing unit costs, will facilitate

higher accuracies in future PalmGrid versions. Likewise, improvements in hardware calibration

using anti-reflection acrylic paints or enhancing light ambience will also help to bridge the gap

towards 77.78% detection ideals in current configuration.

With wall-rearing episodes compiled into smaller video fragments, different investigators

can then leverage the information in wall-rearing episodic reports to compute their respective

metric scores in Cylinder Test variants in much reduced processing time. Best of all,

70

investigators can also perform data mining into specific episodes for further analysis, such that

their activities of interests – such as paw-dragging – can be further extracted from these episodes

in a fraction of time. Prolonged round-the-clock observations for a large number of subjects are

made possible as laborious frame reviews are now machine-enabled, saving precious labor time

to more important analytical tasks.

We are certainly embarking on a promising journey, where artificial intelligence and signal

processing relieves laborious and time-consuming reviews in Cylinder Test methods.

Leveraging our experience learnt in this thesis, we can readily apply the skillsets to benefit other

neuroscientific experimentations in likewise manner.

71

Bibliography

1 Lee, B.; Hong, I.; Uhm, Y.; Park, S. The multi-touch system with high applicability using tri-axial coordinate

infrared LEDs. IEEE Trans. Consum. Electron. 2009, 55, 2416–2424;

2 Lim, S.-C.; Shin, J.; Kim, S.-C.; Park, J. Expansion of smart watch touch interface from touchscreen to around

device interface using infrared line image sensors. Sensors 2015, 15, 16642–16653; [PubMed]

3 Han, J.H.; Lee, K.-H.; Han,W.H. A Conclusive Role of Ordinary Transmission for an effective FTIR Touch

Screen. In Proceedings of the IEEE International Conference on Industrial Technology, Busan, Korea, 26

February–1 March 2014; pp. 583–588;

4 Kim, Y.; Park, S.; Park, S.K.; Yun, S.; Kyung, K.-U.; Sun, K. Transparent and flexible force sensor array based

on optical waveguide. Opt. Express 2012, 20, 14486–14493; [PubMed]

5 Shikida, M.; Asano, K. A flexible transparent touch panel based on ionic liquid channel. IEEE Sens. J. 2013,

13, 3490–3495;

6 Kamali, B. Touch-screen Displays. In Instrument Engineers’ Handbook—Process Control and Optimization,

4th ed.; Lipták, B.G., Ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 845–853;

7 Nakamura, T.; Yamamoto, A. Interaction force estimation on a built-in position sensor for an electrostatic

visual-haptic display. ROBOMECH J. 2016, 3, 1–11;

8 Kim, W.; Oh, H.; Kwak, Y.; Park, K.; Ju, B.-K.; Kim, K. Development of a carbon nanotube-based touchscreen

capable of multi-touch and multi-force sensing. Sensors 2015, 15, 28732–28741; [PubMed]

9 Wang, B.; Long, J.; Teo, K.H. Multi-channel capacitive sensor arrays. Sensors 2016, 16, 150; [PubMed]

10 Chen, Y.-L.; Liang, W.-Y.; Chiang, C.-Y.; Hsieh, T.-J.; Lee, D.-C.; Yuan, S.-M.; Chang, Y.-L. Vision-based

finger detection, tracking, and event identification techniques for multi-touch sensing and display systems.

Sensors 2011, 11, 6868–6892; [PubMed]

11 Reis, S.; Correia, V.; Martins, M.; Barbosa, G.; Sousa, R.M.; Minas, G.; Lanceros-Mendez, S.; Rocha, J.G.

Touchscreen Based on Acoustic Pulse Recognition with Piezoelectric Polymer Sensors. In Proceedings of the

IEEE International Symposium on Industrial Electronics, Bari, Italy, 4–7 July 2010;

12 Katsuki, T.; Nakazawa, F.; Sano, S.; Takahashi, Y.; Satoh, Y. A compact and High Optical Transmission SAW

Touch Screen with ZnO Thin-Film Piezoelectric Transducers. In Proceedings of the 2003 IEEE Symposium on

Ultrasonics, Honolulu, HI, USA, 5–8 October 2003; pp. 821–824;

13 Liu, Y.; Nikolovski, J.P.; Mechbal, N.; Hafez, M.; Vergé, M. An acoustic multi-touch sensing method using

amplitude disturbed ultrasonic wave diffraction patterns. Sens. Actuators A Phys. 2010, 162, 394–399;

14 Kurita, K.; Fujii, Y.; Shimada, K. A new technique for touch sensing based on measurement of current

generated by electrostatic induction. Sens. Actuators A Phys. 2011, 170, 66–71;

15 Shinoda, H.; Chigusa, H.; Makino, Y. Flexible tactile sensor skin using wireless sensor elements coupled with

2D microwaves. J. Robot. Mechatron. 2010, 22, 784–789;

16 Dahiya, R.S.; Adami, A.; Collini, C.; Lorenzelli, L. POSFET tactile sensing arrays using CMOS technology.

Sens. Actuators A Phys. 2012, 47, 894–897;

17 Walker, G. A review of technologies for sensing contact location on the surface of a display. J. Soc. Inf. Disp.

2012, 20, 413–440;

18 Tsuji, S.; Kohama, T. A layered 3D touch screen using capacitance measurement. IEEE Sens. J. 2014, 14,

3040–3045;

19 Dirk J. Ardesch; Matilde Balbi; Timothy H. Murphy. Automated touch sensing in the mouse tapered beam test

using Raspberry Pi. Journal of Neuroscience Methods 291 (2017) 221–226;

20 Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A Fast Learning Algorithm for Deep Belief Nets.

Neural Computation 2006 Vol. 18, 1527-1554;

21 Canziani A., Culurciello E., Paszke A. An analysis of Deep Neural Networks for practical applications.

Computer Vision and Pattern Recognition April 2017. arXiv:1605.07678;

22 Sabour S, Frosst N., Hinton G. Dynamic Routing Between Capsules. 31st Conference on Neural Information

Processing Systems (NIPS 2017), Long Beach, CA, USA. arXiv:1710.09829v2 [cs.CV] 7 Nov 2017;

23 Pishchulin L., Insafutdinov E., Tang S., Andres B., Andriluka M., Gehler P., and Schiele B. DeepCut: Joint

Subset Partition and Labeling for Multi-Person Pose Estimation. IEEE Conference on Computer Vision and

Pattern Recognition (CVPR 2016). arXiv:1511.06645 [cs.CV] Apr 2016.

24 Mathis A., Mamidanna P., Cury KM, Abe T., Murthy VN, Mathis MW, Matthias Bethgea. DeepLabCut:

markerless pose estimation of user-defined body parts with deep learning. Nature Neurosciencevolume 21,

pages1281–1289 (2018). https://www.nature.com/articles/s41593-018-0209-y;

https://www.nature.com/articles/s41593-018-0209-y

72

25 Schallert T., Fleming S., Leasure JL, Tillerson JL, Sondra T., Bland. CNS plasticity and assessment of forelimb

sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism, and spinal cord injury.

Neuropharmacology Volume 39, Issue 5, April 2000, Pages 777-787. https://doi.org/10.1016/S0028-

3908(00)00005-8;

26 Xiaoling Li, Kathleen K. Blizzard, Zhiyuan Zeng, A. Courtney DeVries, Patricia D. Hurn, Louise D.

McCullough. Chronic behavioral testing after focal ischemia in the mouse: functional recovery and the effects

of gender. Experimental Neurology Volume 187, Issue 1, May 2004, Pages 94-104.

https://doi.org/10.1016/j.expneurol.2004.01.004;

27 Shanina EV, Schallert T, Witte OW, Redecker C. Behavioral recovery from unilateral photothrombotic infarcts

of the forelimb sensorimotor cortex in rats: Role of the contralateral cortex. Neuroscience Volume 139, Issue 4,

2006, Pages 1495-1506. https://doi.org/10.1016/j.neuroscience.2006.01.016;

28 Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej

Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei. (* = equal contribution)

ImageNet Large Scale Visual Recognition Challenge. IJCV, 2015

29 He, Zhang, Ren, Sun. Deep Residual Learning for Image Recognition. Computer Vision and Pattern

Recognition. Dec. 2015, arXiv:1512.03385

30 Roome R., Vanderluit J. Paw-dragging: a novel, sensitive analysis of the mouse cylinder test. J. Vis. Exp. (98),

e52701. Doi:10.3791/52701 (2015)

31 Insafutdinov, Pishchulin, Andres, Andriluka, and Schiele. DeeperCut: A Deeper, Stronger, and Faster Multi-

person Pose Estimation Model (2016) ECCV 2016, Part VI, LNCS 9910, pp. 34–50, 2016. DOI: 10.1007/978-

3-319-46466-4 3

32 Bulman-Fleming, Bryden, Rogers. Mouse paw preference: effects of variations in testing protocol. Oct 1996,

Behavioural Brain Research 86 (1997) 79–87.

33 Cunha, Esteves, das Neves, Borges, Guimarães, Sousa, Almeida and Leite-Almeida. Pawedness Trait Test

(PaTRaT)—A New Paradigm to Evaluate Paw Preference and Dexterity in Rats. Frontiers in Behavioral

Neuroscience. doi: 10.3389/fnbeh.2017.00192.

34 Collins, R. L. (1968). On the inheritance of handedness. I. Laterality in inbred mice. J. Hered. 59, 9–12. doi:

10.1093/oxfordjournals.jhered.a107656

https://doi.org/10.1016/S0028-3908(00)00005-8
https://doi.org/10.1016/S0028-3908(00)00005-8
https://doi.org/10.1016/j.expneurol.2004.01.004
https://doi.org/10.1016/j.neuroscience.2006.01.016

73

Appendices

Appendix A – PalmGrid Hardware and Settings

A.1 Hardware Components

Components Pictures

Raspberry Pi

Pi with Video Cam

Cylinder for

Cylinder Test

74

Components Pictures

Transparent Stool

75

A.2 PalmGrid Experimentation Setup

76

A.2 Raspberry Pi Video Camera version 2 Specification

 Camera Module v2

Weight 3g

Still resolution 8 Megapixels

Video modes
1080p30, 720p60 and 640 ×

480p60/90

Linux integration V4L2 driver available

C programming API OpenMAX IL and others available

Sensor Sony IMX219

Sensor resolution 3280 × 2464 pixels

Sensor image area 3.68 x 2.76 mm (4.6 mm diagonal)

Pixel size 1.12 µm x 1.12 µm

Optical size 1/4"

Focal length 3.04 mm

Horizontal field of view 62.2 degrees

Vertical field of view 48.8 degrees

Focal ratio (F-Stop) 2

A.3 Raspberry Pi Video Recording Scripts

raspivid -t 210000 -md 6 -fps 25 -o <pivideo>.h264

The command above requests raspberry pi to record video for 3.5 minutes in 1200 x 1200

pixels in 16:9 aspect ratio; with pixels at 25 frames per second and output the file to

<pivideo.h264>.

http://www.sony-semicon.co.jp/products_en/new_pro/april_2014/imx219_e.html

77

Appendix B – PalmGrid Signal Processing and Gauging Module Pseudocodes

B.1 Coherent Fragment Extraction

Procedure Coherent

For i :=1 to Number of Slow Moving Fragments

 Identify at least two slowest moving fingertips of the given forelimb;

 For those fragments identified

 Gauge for Sub-fragments that movements are accounted for as slow-moving;

 If two sub-fragments separate among themselves by 1 frame, merge the two;

 For each sub-fragment

Compute Statistics for each, in changes of radial displacements +/- 0.5s before

and after each sanitized sub-fragment;

 Retain those sub-fragment(s) that approach the cylinder wall before the sub-

fragment, and retracing/retained from wall thereafter;

 End

 End

End

B.2 Congruence Points Identification

Procedure Congruence

For i :=1 to Number of Slow Moving Fragments

 Identify three slowest moving fingertips of the given forelimb;

 For the three identified, slow-moving fingertips

 Gauge for Sub-fragments whose fingertips to palm distance came to minima;

 End

End

78

B.3 Refined Sub-Fragment Gauging

Procedure Decision

Merge coherent sub-fragments with congruence points;

For each sub-fragment of both coherence and congruence

 Compute statistics for each;

 Filter out non-wall-rearing based on meeting one of the following criteria:

1. If the wall-rearing durations is less than 0.1 seconds, they are regarded as transient

touches and not counted as a separate wall-rearing episode;

2. Adjacent fingertips are not distant from each other for more than 100 pixels in any

one time;

3. Any plausible wall-rearing episode whose standard deviation of the entire

fragment is less than 10 pixels (2% about mean) is taken as stationary.

End

Consolidate retained sub-fragments snapshots that are nearby each other within 2 seconds into

Sub-fragment episodes;

79

Appendix C – Test Results

C.1 Overall Left and Right Forelimbs taken together

80

C.2 Overall Left and Right Forelimbs taken together in Percentage

81

C.3 Right Forelimb Only in Number of Touch

82

C.4 Right Forelimb Only in % of Touch

83

C.5 Left Forelimb Only in Number of Touch

84

C.6 Left Forelimb Only in % of Touch

85

Appendix D: Methods for Forelimb Tests

D.1 Cylinder Test (Li & McCullough (2004))

The cylinder test was adapted for use in mouse to assess forelimb use and rotation

asymmetry. The mouse was placed in a transparent cylinder 9-cm diameter and 15 cm in height

and videotaped during the test. A mirror was placed behind the cylinder with an angle to enable

the rater to record forelimb movements when the mouse was turned away from the camera. After

the mouse was put into the cylinder, forelimb use of the first contact against the wall after rearing

and during lateral exploration was recorded by the following criteria:

(1) The first forelimb to contact the wall during a full rear was recorded as an independent

wall placement for that limb.

(2) Simultaneous use of both the left and right forelimb by contacting the wall of the

ylinder during a full rear and forlateral movements along the wall was recorded as

‘‘both’’ movement.

(3) After the first forelimb (for example right forelimb) contacted the wall and then the

other forelimb was placed on the wall, but the right forelimb was not removed from

the wall, a ‘‘right forelimb independent’’ movement and a ‘‘both’’ movement were

recorded. However, if the other (left forelimb) made several contacting movements on

the wall, a ‘‘right forelimb independent’’ movement and only one “both” movement

was recorded.

(4) When the mouse explored the wall laterally, alternating both forelimbs, it was

recorded as a ‘‘both’’ movement. A total of 20 movements were recorded during the

10-min test to compute a final score by the following formula:

86

Figure 30: Cylinder Test Score Calculation

This test evaluates forelimb use asymmetry for weight shifting during vertical exploration

and provides high interrater reliability even with inexperienced raters. Occasionally mice with

large deficits did not move frequently enough to obtain an adequate number of vertical

movements, these animals recovered later in testing and to avoid bias these animals were

unscored until they could perform the test.

87

D.2 Forelimb preference and sliding test (Shanina & Redecca 2006)

As a variant of cylinder test, forelimb use during spontaneous vertical exploration was

analyzed based on the method described by Schallert et al. (2000).

The rats were videotaped in a transparent glass cylinder for 5–7 min depending on the

degree of activity during the trial (Fig. 1B). Two mirrors combined at an angle of 90° were

placed behind the glass cylinder allowing the recording of forelimb movements even when the

animal turned away from the camera. Several behavioral elements were scored to determine the

extent of forelimb impairment during spontaneous exploration of the glass cylinder. The

independent or simultaneous use of the left or right forelimb was analyzed

a) at first contact with the wall; and

b) during vertical and horizontal movements along the wall; and

c) sliding movements of each forelimb at the wall of the cylinder were scored

Forelimb activity (FLA) was evaluated for each forelimb using the following formula:

Figure 31: Forelimb Activity Score Formula

In addition, the frequency of sliding movements (%) which occurred during vertical activity

at the wall of the glass cylinder was assessed for each forelimb using the following score:

88

In order to illustrate the time course of alterations in these behavioral tests data are in part

given as percentage difference between preoperative baseline and different time points after the

infarcts.

89

D.3 Cylinder Test (Schallert (2000))

Forelimb use during explorative activity was analyzed by videotaping rats in a transparent

cylinder (20 cm diameter and 30 cm height) for 3–10 min depending on the degree of movement

maintained during the trial. A mirror was placed behind the cylinder at an angle to enable the

rater to record forelimb movements when the animal was turned away from the camera. The

cylindrical shape encourages vertical exploration of the walls with the forelimbs as well as

landing activity. The cylinder was high enough that the animal could not reach the top edge by

rearing and wide enough to permit a 2 cm space between the tip of the snout and the base of the

tail when the animal was not rearing. However, other chambers such as the home cage may be

used as long as the behavior of the animal can be viewed unobstructed from all directions. All

scoring was done by an experimenter blind to the condition of the animal using a VCR with slow

motion and frame by frame capabilities. An advantage of the limb use asymmetry (cylinder) test

is that inter-rater reliability is very high (r > 0.95) even with relatively inexperienced raters.

Following some types of injury the animals may not move frequently enough to obtain an

adequate number of vertical movements. In this case videotaping in the home cage at the

beginning of the dark cycle may be necessary.

Several behaviors were scored to determine the extent of forelimb-use asymmetry displayed

by the animal. These behaviors were recorded during vertical movements along the wall and for

landings after a rear:

(a) independent use of the left or right forelimb for contacting the wall during a full rear, to

initiate a weightshifting movement or to regain center of gravity while moving laterally in a

vertical posture;

90

(b) independent use of the left or right forelimb to land after a rear:

(c) simultaneous use of both the left and right forelimb for contacting the wall of the

cylinder during a full rear and for lateral movements along the wall;

(d) simultaneous use of both the left and right forelimb for landing following a rear. If a

rater could not determine whether one limb was being used independently or simultaneously, that

movement was not scored. Each behavior was expressed in terms of

(a) percent use of the non-impaired forelimb relative to the total number of limb use

observations (impaired, unimpaired and both limb use observations) for wall movements;

(b) percent use of the impaired forelimb relative to the total umber of limb use observations

for wall movements;

(c) percent use of the limbs simultaneously relative to the total number of limb use

observations for wall movements;

(d) percent use of the non-impaired forelimb relative to the total number of limb use

observations for landings:

(e) percent use of the impaired forelimb relative to the total number of limb use

observations for landings; and

(f) percent simultaneous limb use observations relative to the total number of limb use

observations for landings.

Wall-associated ratios and landing ratios can be averaged together for scores that reflect

equal contributions from asymmetries in wall movements and landings.

91

D.4 Paw-Dragging Method

Paw dragging method is essentially the same as the above cylinder tests, except it focuses

on quantifying the number of paw-drags from the recorded videos of mice. Paw-dragging

behaviour is distinct from normal paw touches as follows:

1. If the paw contacts the cylinder wall with a full open palm, it will slowly fall away from

the wall, often with a slight tremor. The movement begins with the digits dragging

against the cylinder wall either in a medial or downward direction, before falling away

completely. The mouse will then dismount with its unaffected paw before landing on all

fours. This is considered a paw-drag and should be counted in a tally.

2. If the paw does not contact the cylinder wall with a fully open palm, it will graze the

cylinder wall with its digits before falling away from the cylinder wall. Similarly, a

mouse may drag its paw against the cylinder wall but not release it entirely before

dismounting. These are both considered paw-drags as well as touches and should be

counted as both in a tally.

3. The paw may also drag along the cylinder wall while a mouse explores the cylinder. In

this case, the paw will follow the twisting of the mouse’s torso as it explores left or right

of its original position before dismounting. This is not considered a paw-drag, as it

depends on the mouse randomly choosing a direction to explore and does not depend on

which cortical hemisphere was damaged.

Paw-drags are expressed as a percentage of paw-drags per total number of paw touches

during a session. Express the number of paw-drags as a percentage of total paw contacts for each

forelimb separately.

92

Appendix E: PalmGrid Station Installation Manual

E.1 Python 3.6

1. Download python 3.6

Under the main entry for both versions you’ll see an “x86-64” installer, as seen
below.

2. Extract the software package, and hit setup

3. Enable the “Add Python 3.6 to PATH” option and then click “Install Now.”

93

4. Check for correct installation using python -v that we used above to check that it
is installed correctly and the path variable is set.

94

E.2 DeepLabCut

There are several modes of installation, and the user should decide to either use

a system-wide, Anaconda environment based installation (recommended). One can of

course also use other Python distributions than Anaconda, but this is the easiest route.

All the following commands will be run in the cmd in Windows. Please first open

the terminal (search cmd).

• Anaconda:

Anaconda is perhaps the easiest way to install Python and additional packages across

various operating systems. First create an Anaconda environment. With Anaconda you

create all the dependencies in an environment on your machine in the following way.

More details can be found in the conda environment readme.

Windows:

DeepLabCut provides environment files for Windows. They can be installed by typing

(from the terminal, within in this conda-environments folder): conda env create -f dlc-

windowsCPU.yaml or conda env create -f dlc-windowsGPU.yaml for the GPU version.

See further details in this issue.

Then,

Windows: pip install -U wxPython

Install TensorFlow with GPU support:

1. Install TensorFlow. In the Nature Neuroscience paper TensorFlow 1.0 with CUDA

(Cuda 8.0) was used. Some other versions of TensorFlow have been tested, but they

are not tested! (i.e. these versions have been tested 1.2, 1.4, 1.8 or 1.10-1.13, but

might require different CUDA versions)! Please check your

driver/cuDNN/CUDA/TensorFlow versions on this Stackoverflow post.

2. Install the NVIDIA CUDA package and an appropriate driver for your specific

GPU. Please follow the instructions found

here: https://www.tensorflow.org/install/gpu, and more tips below. The order of

operations matters.

https://www.tensorflow.org/
https://stackoverflow.com/questions/30820513/what-is-version-of-cuda-for-nvidia-304-125/30820690#30820690
https://www.tensorflow.org/install/gpu
https://github.com/AlexEMG/DeepLabCut/blob/master/docs

95

3. Some tips for installing TensorFlow 1.8 will follow here:

FIRST, install a driver for your GPU (we recommend the 384.xx) Find DRIVER

HERE: https://www.nvidia.com/download/index.aspx

• check which driver is installed by typing this into the terminal: nvidia-smi

SECOND, install CUDA (9.0 here): https://developer.nvidia.com/cuda-90-download-

archive

THIRD, install TensorFlow:

Package for pip install:

pip install tensorflow-gpu==1.8 —with GPU support (Ubuntu and Windows)

Note, the version is specified by using: ==1.8

FOURTH, Please check your CUDA and TensorFlow installation with the lines below:

Start a python session: ipython
import tensorflow as tf
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

You can test that your GPU is being properly engaged with these additional tips.

Troubleshooting:

TensorFlow: Here are some additional resources users have found helpful (posted

without endorsement):

• https://stackoverflow.com/questions/30820513/what-is-the-correct-version-of-

cuda-for-my-nvidia-driver/30820690

• https://stackoverflow.com/questions/50622525/which-tensorflow-and-cuda-

version-combinations-are-compatible

• http://blog.nitishmutha.com/tensorflow/2017/01/22/TensorFlow-with-gpu-for-

windows.html

• https://developer.nvidia.com/cuda-toolkit-archive

https://www.nvidia.com/download/index.aspx
https://developer.nvidia.com/cuda-90-download-archive
https://developer.nvidia.com/cuda-90-download-archive
https://www.tensorflow.org/install/
https://www.tensorflow.org/programmers_guide/using_gpu
https://stackoverflow.com/questions/30820513/what-is-the-correct-version-of-cuda-for-my-nvidia-driver/30820690
https://stackoverflow.com/questions/30820513/what-is-the-correct-version-of-cuda-for-my-nvidia-driver/30820690
https://stackoverflow.com/questions/50622525/which-tensorflow-and-cuda-version-combinations-are-compatible
https://stackoverflow.com/questions/50622525/which-tensorflow-and-cuda-version-combinations-are-compatible
http://blog.nitishmutha.com/tensorflow/2017/01/22/TensorFlow-with-gpu-for-windows.html
http://blog.nitishmutha.com/tensorflow/2017/01/22/TensorFlow-with-gpu-for-windows.html
https://developer.nvidia.com/cuda-toolkit-archive

96

• http://www.python36.com/install-tensorflow-gpu-windows/

• System-wide considerations:

If you perform the system wide installation, and the computer has other Python

packages or TensorFlow versions installed that conflict, this will overwrite them. If you

have a dedicated machine for DeepLabCut, this is fine. If there are other applications

that require different versions of libraries, then one would potentially break those

applications. The solution to this problem is to create a virtual environment, a self-

contained directory that contains a Python installation for a particular version of Python,

plus additional packages. One way to manage virtual environments is to use conda

environments (for which you need Anaconda installed).

http://www.python36.com/install-tensorflow-gpu-windows/

97

E.3 ImageJ

1) – Download and Install ImageJ Software

ImageJ is in the public domain. It can be freely downloaded and installed on any computer

including those at schools, homes, and businesses.

ImageJ download page.

Go to the ImageJ Download page , and download and install the application for your

operating system.

Note to Windows Users: It is recommended that you install ImageJ in the Documents

directory, rather than in the Program Files directory. For security reasons, Windows 7

and Windows Vista do not allow programs to alter themselves by writing files to the

Program Files directory. If ImageJ is installed in the Program Files directory, then the

update function in Step 2 below will not work properly. In addition, if you are a

Windows Vista user, be sure to choose the correct version of ImageJ (either 32-bit or

64-bit) for your computer.

http://rsb.info.nih.gov/ij/download.html
https://d32ogoqmya1dw8.cloudfront.net/images/eet/albedo/imagej_download_page.v2.jpg

98

E.4 ffmpeg

1. Download a static build from here.

2. Use 7-Zip to unpack it in the folder of your choice.

3. Open a command prompt with administrator's rights.

NOTE: Use CMD.exe, do not use Powershell! The syntax for accessing

environment variables is different from the command shown in Step 4 - running it

in Powershell will overwrite your System PATH with a bad value.

4. Run the command (see note below; in Win7 and Win10, you might want to use the

Environmental Variables area of the Windows Control Panel to update PATH):
setx /M PATH "path\to\ffmpeg\bin;%PATH%"

NB: Do not run setx if you have more than 1024 characters in your system

PATH variable. See this post on SuperUser that discusses alternatives. Be sure

to alter the command so that path\to reflects the folder path from your root

to ffmpeg\bin.

http://ffmpeg.zeranoe.com/builds/
http://7-zip.org/
https://github.com/adaptlearning/adapt_authoring/wiki/Just-Enough-Command-Line-for-Installing
https://superuser.com/questions/387619/overcoming-the-1024-character-limit-with-setx

99

Appendix F: Labeling Forelimbs of Mouse Images that trains

DeepLabCut

To train DeepLabCut for PalmGrid, we recommend labeling maximally diverse images (i.e.,

different poses) in a consistent, anticlockwise manner and curating the labeled data well. In our

experience, we expanded the initial training dataset in an iterative fashion.

1. First, set up the Cylinder Test experiment. Expose the setting with white cardboard

encasing the cylinder with black cardboard covering the top of cylinder. These offer

maximum light contrasts to the mouse subjects.

2. Second, record the video of 1200 x 1200 pixel resolutions using Raspberry Pi

3. Third, Convert the recorded video using ffmpeg to .wmv format, where DeepLabCut

requires to generate a training set.

4. Fourth, select frames where reliably captured behaviors and avoided those corrupted with

noise (e.g. blurred images when displayed in ImageJ),

5. Fifth, in our application we label BOTH forelimbs and rear limbs using ImageJ. Label 6

points (namely the five digits and the palm) for each limb and curate each selected frames

in anticlockwise manner. An example of post-labeled frame is illustrated below.

100

NB. In our motivation example as we do not know whether rear limb coordinates will be utilized. On

hindsight, labeling forelimbs will be good enough. We learnt that labeling has to be done in a

consistent, anticlockwise manner as recommended by DeepLabCut

6. Sixth, run ImageJ’s Analyze / Measure Tools to extract coordinates of these labeled limbs.

Save the results of these measurements as directed by DeepLabCut user manual to train

DeepLabCut server.

7. Try a few samples of video analysis. If the labeling was bad or inconsistent, the video

analyzed will poorly recognize the forelimbs. Repeat the exercise for a few times to fine

tune the training set in the Cylinder Test configuration being set up.

101

Appendix G: Ground Truth Reports

G.1 Report compilation procedures

1. Review all video fragments, of 4 minutes (~6,000 frames) each on a frame-by-frame basis;

2. When a wall-rearing activity is observed, note down its start and end frames;

3. Group the wall-rearing activities that are close to each other within 3 seconds into wall-

rearing episodes;

4. Record the wall-rearing episodes into ground truth report

5. Sign at the end of the report

102

G.2 Ground Truth Reports

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Appendix H: Matlab scripts

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

