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Abstract

The focus of this thesis is on small non-Brownian particles in fluids that
show deviations from standard Newtonian fluids. We study the motion of
swimmers and sedimenting particles in Newtonian fluids with viscosity gra-
dients, in shear-thinning fluids, and in fluids with viscoelasticity. The work
is theoretical; its aim is to study the first effects of non-Newtonian rheology
on particle motion and towards this end uses the reciprocal theorem of low
Reynolds number hydrodynamics and methods of perturbation expansion.
We find that the dynamics of the particles is often qualitatively changed due
to the rheological properties of the fluid, and such changes are difficult to
predict a priori.
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Lay Summary

This thesis focusses on understanding the motion of swimmers that are only
a few micrometers in size in fluids that are complex. Water is an example
of a simple (Newtonian) fluid. But many fluids where microswimmers swim
show both fluid-like and solid-like properties. Sperm cells in human cervical
mucus and H. pyroli in gastric mucus are examples of microswimmers in
complex fluids.

We study such swimmers theoretically, and demonstrate how their dy-
namics in complex fluids is different from that in Newtonian fluids. In
fact, we find that often the swimming behaviour in complex fluids is totally
unexpected beforehand. Noting that designing artificial microswimmers in
Newtonian fluids can be challenging, we also show how complexity of the
fluid medium may be used to design simpler swimmers. Our work has poten-
tial applications in aspects of biomedical engineering focussed at developing
microrobots for targeted drug delivery and minimally invasive surgery.
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Preface

Parts of this thesis, with minor changes, have been previously published as
research articles. These parts are listed below. I have underlined my name
among the names of authors to guide the eye.

e Chapter H has been previously published as ‘C. Datt & G.J. Elfring,
Dynamics and rheology of particles in shear-thinning fluids, Journal of
non-Newtonian Fluid Mechanics 262 (2018) 107-144".

C.D. and G.J.E. designed the research. C.D. performed the calcu-
lations. C.D. and G.J.E. analyzed the results and wrote the paper.

C.D. is the principal contributor to this work. C.D. was supervised by
G.J.E.

e Chapter H has been previously published as ‘C. Datt, L. Zhu, G.J.
Elfring, & O.S. Pak, Squirming through shear-thinning fluids, Journal
of Fluid Mechanics Rapids, 784 (2015) R1".

All authors designed the research. C.D. performed the theoretical
calculations. L.Z. performed the numerical simulations. All authors
analyzed the results. C.D., G.J.E.; and O.S.P. wrote the paper with
inputs from L.Z. C.D. is the principal contributor to this work. C.D.
was supervised by G.J.E.

e Chapter H has been previously published as ‘C. Datt, G. Natale, S.G.
Hatzikiriakos, & G.J. Elfring, An active particle in a complex fluid,
Journal of Fluid Mechanics, 823 (2017), 675-688".

This work is one part of a simultaneously running two-part project.
The second part, mentioned later in the preface, is not included in the
thesis. All authors contributed to discussion of the project.

C.D. performed the calculations in this work. C.D. and G.J.E. ana-
lyzed the results and wrote the paper. C.D. is the principal contributor
to this work. C.D. was supervised by G.J.E.



Preface

e Chapter B has been previously published as ‘C. Datt, B. Nasouri, &
G.J. Elfring, Two-sphere swimmers in viscoelastic fluids, Physical Re-
view Fluids 3, 123301 (2018)".

C.D. designed the research. C.D. performed all calculations in this
work except for the section on swimmers with elastic spheres. B.N.
performed the calculations for the section on swimmers with elastic
spheres. All authors analyzed the results and wrote the paper. C.D. is
the principal contributor to this work. C.D. was supervised by G.J.E.

Chapter H has been submitted for publication as ‘C. Datt & G.J. Elfring,
A note on higher-order perturbative corrections to squirming speed in weakly
viscoelastic fluids’. C.D. designed the research and performed the calcula-
tions. C.D. and G.J.E. analyzed the results and wrote the paper. C.D. is
the principal contributor to this work. C.D. was supervised by G.J.E.

Chapter H may soon be submitted for publication as ‘C. Datt & G.J.
Elfring, Swimming in viscosity gradients. C.D. and G.J.E. have designed
the research. C.D. has performed the calculations. C.D. and G.J.E. have
analyzed the results and written the article. C.D. is the principal contributor
to this work. C.D. was supervised by G.J.E.

Related or directly stemming from the thesis, but not included in it, are
two articles that are listed below.

e ‘G. Natale, C. Datt, S. Hatzikiriakos, & G.J. Elfring, Autophoretic
locomotion in weakly viscoelastic fluids at finite Péclet number, Physics
of Fluids 29, 123102 (2017).

This is the second part of the two-part project mentioned above.

G.N. wrote the numerical code for this work. C.D. provided help with
the code, contributed to the analyses of results and writing of the
paper. C.D. was supervised by G.J.E.

e ‘K. Pietrzyk, H. Nganguia, C. Datt, L. Zhu, G.J. Elfring, & O.S. Pak,
Flow around a squirmer in a shear-thinning fluid, submitted.

C.D. contributed to the design of the research, in calculations and in
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Chapter 1

Introduction

This thesis is about the dynamics of small particles in non-Newtonian fluids.
A non-Newtonian fluid does not obey Newton’s law of viscosity, i.e., shear
stresses in the fluid are not linearly proportional to the rates of strain, and
often demonstrates properties like viscoelasticity and shear-thinning viscos-
ity [5, 16]. With viscoelasticity, the fluid retains memory of its flow history
and exhibits stress anisotropy, whereas a shear-thinning rheology means that
the fluid viscosity decreases with increasing shear rates. We focus on the two
properties in incompressible fluids here. We study only small particles, so
their motion is dominated by viscous forces, and inertia may be neglected—
the motion obeys equations of low Reynolds number hydrodynamics [93].
These particles can be passive or active. Active particles can convert stored
or ambient free energy into systematic motion [139, 180]; passive particles
are the ones that are not active.

The following is a brief overview of the literature, and an outline of the
thesis. The chapters in the thesis that describe our research are written in
the format of research articles and have their own literary introduction.

Plastic microbeads in toothpastes, microvesicles in biofluids, and during
tertiary oil recovery, oil drops in polymer solution are examples of particles
in complex fluids. Such systems range from natural to industrial settings
[33], and therefore, it becomes interesting, from both fundamental and engi-
neering point of view, to understand them. The interest in motion of small
particles in complex fluids is not new; in fact, one finds review articles by
Leal [132, 133] and Brunn [29] in the late 70’s. Even so, sedimentation
of a spherical particle in viscoelastic shear flow [64], effects of viscoelastic-
ity on sedimenting anisotropic particles [40], Einstein viscosity for a dilute
suspension in viscoelastic fluids [65]—some seemingly canonical problems—
were worked out (by others) during the period of this doctorate study. Lest
this suggest that progress has not been made in complex fluids, we refer
the reader to the recent review articles by Zenit & Feng [216] and D’Avino
& Malffettone [49], which also suggest directions for the future of the field.
Importantly, it must be pointed out that dealing with complex fluids (in
particular, viscoelastic fluids) also meant, and means, tackling some fun-
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damental issues [55], like slip or no slip? or the high Weissenberg number
problem, which are not present in Newtonian fluids. A sustained, and in fact
growing interest in understanding complex fluids, in context of this thesis, is
also due to the fast emerging field of microfluidics, where ‘microchannels de-
signed to focus, concentrate, or separate particles suspended in viscoelastic
liquids are becoming common’ [47].

The relevant works in the foregoing discussion were centred on passive
particles. The focus in this thesis is on “active particles”, a term often inter-
changeably used with self-propelled particles and microswimmers. Bacteria,
which represent the bulk of world’s biomass, are often found in environments,
such as gastric mucus (H. pyroli) and biofilms, which display non-Newtonian
rheological properties [127]. Bacteria are examples of active particles. Mam-
malian sperm cells swimming through cervical mucus [72] are also examples
of active particles in complex fluids. Our understanding of active particles
has developed enough that we can describe self-sustained turbulent struc-
tures in living fluids [60], and also use bacteria in fluids as work horses
for turning microscopic gears [185]. This is hardly surprising considering
such giants of yesteryears as G. I. Taylor, M. J. Lighthill and E. M. Purcell
contributed to the field of microswimming [137, 170, 200]. However, much
of this understanding is in Newtonian fluids [129], and understanding in
complex fluids is still nascent [164].

Research in swimming in complex fluids has burgeoned after the the-
oretical work of Lauga [121] where he considered a simple swimmer and
compared its swimming speed and its power consumption to those in an
equivalent Newtonian fluid: questions regarding the swimming speed and
the power consumption of microswimmers in non-Newtonian fluids are now
being asked and answered for various model and real swimmers [70, 195]. An
important motivation for these studies, other than the fundamental curios-
ity, remains of creating autonomous devices for targeted drug delivery [79]
and other biomedical applications [208] which will swim in non-Newtonian
fluids—what most biological fluids are [120, 142]. The work in this thesis
was driven by such questions as: how does a small change in rheological
property of the fluid affect the swimming motion? can intuitions devel-
oped in Newtonian fluids lead to a wrong footing in complex fluids? can
the complexity of the fluid be used to our advantage in modelling artificial
swimmers?

The work in the thesis is done in the spirit of Leal’s work on passive par-
ticles [133] where ‘the particle-motion problem can be treated theoretically
if the deviations from the “standard conditions” are small’ Chapter g talks
about a swimmer in a Newtonian fluid with small gradients in viscosity.
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Chapter H is about the dynamics and rheology of passive particles in weakly
shear-thinning fluids. In Chapter 5, we look at a swimmer in a weakly shear-
thinning fluid, and in Chapter p and [7, in weakly viscoelastic fluids. Chapter

is about creating an artificial swimmer using the rheological property of
the fluid. We end with talking about what we learnt, and the things that
interest us for the future in Chapter 9.

Although chapters in this thesis are written in the format of articles, and
therefore aimed to be self-contained, we present, in Chapter E, additional
details of the overarching theoretical models and methods that we use for
studying swimmers and fluids; the reader not familiar with the field may
find these details useful.



Chapter 2

The swimmer, the fluids, and
the reciprocal theorem

2.1 The swimmer

Our theoretical microswimmer is a squirmer. As a spherical squirmer, a mi-
croswimmer is represented as a sphere with prescribed velocities on its sur-
face [17, 137]. It is only the surface velocities that propel the squirmer. The
squirmer was proposed by Lighthill [137] as a finite-body model swimmer
that could swim in Newtonian fluids at zero Reynolds number. Recently,
the works of Chisholm et al. [36], Khair & Chisholm [110], Wang & Ardekani
[209] have explored the effect of inertia on the squirmer’s motion.

The description below is of an axisymmetric spherical squirmer of radius
a, as described in the works of Lighthill [137] and Blake [17] (Blake [17]
corrected Lighthill’s solution [137]). The surface velocities on such squirmers
are represented as

(w),_, = Z Ay (t) Py (cosl), (v),_,= Z By, (t) Vy, (cos®),  (2.1)
n=0 n=1

where u and v are the radial and azimuthal components of the velocity
field, respectively. 6 is the polar angle (in the spherical coordinate system)
measured from the axis of symmetry, and P,, represents the ordinary Leg-
endre polynomial, whereas V;, = —2/(n(n+ 1)) P! (cosf), P} being the
associated Legendre function of the first kind. In incompressible Newtonian
fluids, the surface velocities lead to a propulsion speed (along e, the axis
of symmetry) of [17, 137]

U=_(2B — A4, (2.2)

1
3

with the flow field around the squirmer in the lab frame (fluid at infinity is
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at rest) given by [17]

2 a3
u=A 2P0+3(A1+Bl) =P

2.3)
an+2 an+2 an (
|:<2 o ) T"+2> AP, + ( = Tn) BnPn:| ’
(Al + Bl) V
nan+2 n a™ n/n a™ an+2
I3 (5]
(2.4)

where r is measured from the centre of the squirmer. When the squirmer
does not deform, and its surface impermeable, the radial surface velocities
are zero i.e., for all n, A, = 0. With only tangential surface velocities, B,
may be unambiguously referred to as the n' squirming mode. In this work,
we restrict our attention to steady squirmers with just tangential surface
velocities, and, in the remaining section, will consider only such squirmers.

From equation (@), it is clear that, of all the squirming modes, only the
first mode Bj contributes to the swimming speed. From equations (2.3), and
(@), one also observes that the strongest contribution to the flow field far
from the squirmer is due to the second mode B», the flow field due to which
decays the slowest, as 1/72. As a consequence, often in Newtonian fluids,
the surface velocities are truncated after only the first two modes [165], i.e
B, = 0 ¥n > 2. The ratio & = By/Bj decides the type of squirmer [165].
When a < 0, the squirmer’s centre of thrust is behind its centre of drag,
and the squirmer is a pusher-type swimmer. When a > 0, the squirmer’s
centre of thrust is in front of its centre of drag, and the squirmer is a puller-
type swimmer. When a = 0, the thrust and drag centres coincide, and the
squirmer is a neutral-type swimmer. In the absence of any external force,
such as weight due to gravity, or torque, the total hydrodynamic force and
torque on a squirmer is zero.

Note that both Lighthill [137] and Blake [17] did not consider axisym-
metric surface velocities in the azimuthal direction ey in the squirmer model.
These were considered only recently by Pak & Lauga [159], who also provide
results for non-axisymmetric squirming motion.
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2.2 The fluids

The motion of squirmers, and in general microswimmers, in Newtonian flu-
ids is understood reasonably well [129, 165]. The motivation of this thesis
is to understand their dynamics in fluids that are not Newtonian in a ‘stan-
dard’ sense; the definition includes not just non-Newtonian fluids, but also
Newtonian fluids where the viscosity depends on spatial coordinates due to,
for e.g., temperature or concentration gradients. In non-Newtonian fluids,
we focus on two common properties, shear-thinning viscosity, and viscoelas-
ticity. Shear-thinning fluids are fluids in which the shear viscosity decreases
as applied shear-rates increase. These fluids come under the wider class of
generalized Newtonian fluids, for which the deviatoric stress T

=107, (2.5)
where 7(§) is the viscosity, and < is the strain-rate tensor, and
1

yo= §ZZ > Vij¥ji is the magnitude of the strain-rate tensor [16].

We model shear-thinning viscosity using the Carreau model [16], where

}("*1)/2 . (2.6)

0 (3) = Moo + (10 = 710) |1+ AF52

Here ng is the zero shear-rate viscosity, and 7., is the infinite shear-rate
viscosity. The parameter A\; has units of time and gives the strain rate 1/\;
at which non-Newtonian effects start becoming important. n is the power
law index and is less than 1 for shear-thinning fluids. Note that we do not use
the power-law model 7 = m4™ !, primarily because of the model’s inability
to describe viscosities at small strain-rates [16]. The inability can give rise
to large errors, even altogether incorrect results, in problems relevant to this
thesis (for example, see the discussion of creeping flow around a sphere in
shear-thinning fluids by Chhabra [33]).

Viscoelastic fluids show both viscous and elastic properties. Loosely
speaking, the response to stress of such fluids is like solids at short times,
but as liquids at long times; ‘short’ and ‘long’ are relative to some charac-
teristic timescale of the fluid [150]. Viscoelasticity may be studied under
the theory of simple fluids, a lucid description of which can be found in the
book by Astarita & Marrucci [5]. The principles that govern simple fluids
are determinism of stress, local action, non-existence of a natural state, and
fading memory [5]. Determinism of stress means that ‘the stress at a given
time is independent of future deformations, and only depends on past de-
formations’ [5]. Local action means ‘the stress at a given point is uniquely

6



2.2. The fluids

determined by the history of deformation of an arbitrarily small neighbor-
hood of that material point’ [5]. Non-existence of a natural state implies that
‘every simple fluid is isotropic’ [5]. Fading memory means ‘the influence of
past deformations on the present stress is weaker for the distant past than
for the recent past’ [5]. The principle of fading memory gives rise to the idea
of a ‘natural time’ of the fluid; natural time quantifies the memory span of
the material [5]. Natural time is often referred to as the relaxation time.

In this thesis, we study incompressible fluids under two different types of
motion, slow flows, and small deformations. In these two types of motions,
the general constitutive equation for constant density simple fluids can be
expressed as N'! order approximations [5]. For slow flows, a general constant
density simple fluid at zeroth order is represented by

o= —pl, (2.7)

where o is the stress and p is the pressure [5]. Equation (@) is the con-
stitutive equation for an incompressible ideal fluid [5]. The first-order ap-
proximation gives the constitutive equation for incompressible Newtonian
fluids

o= —pl+n7y. (2.8)

The popular second-order fluid is the second-order approximation with
o = —pl + oy + a1 Az + ap A2, (2.9)
where 19, a; and ag are constants, and

Al=L+1LT,
_ DAnfl

2.10
A= (2.10)
Dt

+LTA, 1+ A, L,

with LT = Vu, and D/Dt representing the material derivative [5, 198]. The
term «q Ag includes the first effects of memory to an otherwise purely viscous
approximation [5]. One can proceed in a similar manner to obtain higher-
order approximations (and fluids). In this thesis, we restrict our attention
to slow flows of only second-order and third-order fluids.

Under small deformations, say, realized with oscillations of small am-
plitude of some fluid boundary, simple fluids of constant density at the
first-order approximation are represented as

o=—pl+ /oo f(s)G'ds, (2.11)
0
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where G' is the Cauchy strain tensor, and s is the time lag; distant past
corresponds to large values of s, recent past to small values of s [5]. Equa-
tion () is the constitutive equation for a linearly viscoelastic fluid. The
second-order approximation gives

o= —pl+/0 f(s)G'ds+

oo o
/0 /0 {a (51,59) G' (51) - G' (s2) + B (51, 82) tr [Gt (51)} G' (82)} dsp dsa,
(2.12)
where functions f (), () and () depend on the fluid [5]. Details of using
equation () for problems involving oscillating boundaries can be found
in the pedagogical description by Bohme [18].

It is to be noted that many viscoelastic models that adequately represent
experimental results, and are obtained using kinetic theory of polymers do
not come under the umbrella of simple fluids (‘equations ...[that] do not allow
strain impulses are not included in the general theory of simple fluids with
fading memory’ [5]). One example is an Oldroyd-B fluid [150]

v v
T+)\T:7]<"y+/\r "y) (2.13)

where the total viscosity 1 = 15+, is the sum of viscosity of the Newtonian
solvent and that due to the polymer contribution. A is the Maxwell relax-
ation time, and the retardation time A\, = A (ns/n). Other common useful
models like FENE-P and Giesekus are not simple fluids either. However, we
note that, for flows that are slow or due to small deformations, such models
give qualitatively the same constitutive relations as one would obtain using
equations (2.9) and (), respectively, up to at least the first effects of
non-linear rheology.

2.3 The reciprocal theorem

In this thesis, we extensively use the Lorentz reciprocal theorem [93] to
obtain results for motion of particles in complex fluids. The form of the
theorem for complex fluids has been discussed by Leal [133] for passive
particles, and by Lauga [125] for active particles. The formulation below is
that of Elfring & Lauga [70], and Elfring [68].

We consider the motion of a particle B, with surface 0B,

u(@edB)=U+ 2 xx+u’, (2.14)
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in a complex fluid, which is expressed in the form
T=10Y+TNN, (2.15)

where the deviatoric stress 7 is written as a sum of ‘Newtonian’ and ‘non-
Newtonian’ terms. Non-linearities of the constitutive equation are embedded
in Tyny. 1 represents ‘some’ viscosity of the fluid, < is the strain-rate. U
and 2 are the unknown translational and angular velocities of the particle,
respectively, and u® represents the prescribed (known) surface velocities on
the particle. If the particle is passive, u® = 0. For the purpose of the deriva-
tion here, we consider the particle to be in an otherwise quiescent fluid. The
calculation of velocities U and 2, if not for the reciprocal theorem, requires
solving the Stokes equation (for velocity and pressure fields, u and p, re-
spectively) with the constitution equation (@l;, and the relevant boundary
conditions. Solving for the flow fields in complex fluids analytically is, in
general, difficult. The reciprocal theorem provides a shortcut to obtaining
U and {2, if the solution for the same geometry is known in a Newtonian
fluid (or precisely, the resistance or mobility matrices for the geometry are
known in a Newtonian fluid [70]). Consider a passive particle, of the same
shape as the particle in complex fluid, in an otherwise quiescent Newtonian
fluid with viscosity 7, i.e.,

w(xecdB)=U+ 2 xx. (2.16)

The hat quantities represent quantities in Newtonian fluids, and are known.
We know that at zero Reynolds number

Vo=V 6=0, (2.17)

where o and & represent the stress in the two fluids. Equation () is
used, rather straightforwardly, to write the reciprocal relation

4 (V.o)=u-(V-6)=0. (2.18)

Equation (2.18) can be rewritten, making use of the fact that the stress
tensor is symmetric, as

Vi(o-a)—o: V=V -(6-u)—6:Vu=0. (2.19)
Incompressibility of the fluids demands

—pl: Va=—pV -u =0, (2.20)
—pl : Vu = —pV -u =0, (2.21)
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so that equation () simplies to
V-(e-a)—ny:Vai—1yy:Va=V-(6-u)—7y: Vu=0, (2.22)

on replacing o = —pl + 7 and 7 = 9y + TN () From the property of
a symmetric tensor in a doubly contracted product, we have

¥:Vu=%5:Via. (2.23)

Using equation () in the right half of (), and then substituting for
the doubly contracted product in the left half gives

V-(a-ﬁ)—%V-(&-u)—rNN:Vﬁ:O. (2.24)

Taking integral of equation () over the entire fluid volume, and using
the divergence theorem, we get

/n.a-adS—Q n-&-udS+/TNN:VﬁdV:O, (2.25)
S nJs %

where n points inside the fluid volume, the surface S includes the surface
of the particle and the bounding surface at infinity, and V is the fluid vol-
ume. For sufficiently fast spatial decay of the integrands above, the surface
integrals at infinity do not contribute—this is indeed the case for problems
that we consider in the thesis. Neglecting the surface integral at infinity and
substituting for surface velocities from equations () and (), we get

FU+L 2-1 (F-U+i-n+/ n-&-uSdS> —|—/TNN:V’&dV:0,
n oB v

(2.26)
where F' and F', and L and L represent the total hydrodynamic forces and
torques, respectively, on the particles. Using the linearity of the Stokes
equations in Newtonian fluids, we write, for compactness, @ = Gy - U, 6 =
A . R N N NECh) . NREE
Ty-U, and F = —Rpy - U, where U = [U n} ,and F = [F U] , and
consequently, C;'U, and 'i'u are linear operators that map the particle velocity
U to the velocity and the stress fields, respectively, whereas the resistance
tensor

(2.27)

10
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links U to the hydrodynamic force and torque on the particle. Rewriting
equation (), we get

F-U—7<ﬁ~u+/ n~us-('f'u-0) ds)+/TNN:V(c?;U-U) dv =0,
n B %
(2.28)

which on rearranging terms, cancellation of the arbitrary U on both sides,
and using the symmetry of the resistance tensor [93], gives

U= %I‘?;}J-[—F—i‘FT‘FFNN]a (2:29)
where
Fr="/ u’. (n-Ty)ds, (2.30)
nJon

is a Newtonian ‘thrust’ due to the surface velocity v, and Fyp is the non-
Newtonian contribution (or contribution due to any deviation from Newto-
nian fluids of uniform viscosity) given by

FNN = —/ TNN - VGAudV,

4 ) (2.31)

= —/ TvN : EydV,
v

where Ey is defined as 4/2 = Ey - U. The equivalence in (2.31) comes from
using the property of the doubly contracted product when one of tensors is
symmetric (here, 7n) and noting that Ey is the symmetric part (for inner
indices) of VGy.

One may easily extend the above derivation to include cases with parti-
cles in a background flow [44, 68, 133]. Equation () is then formulated
in terms of disturbance quantities [68], and will be seen in Chapter @ Note
that in the formulation of equation (@) as a mobility problem, Fyn as of
yet is unknown, since 7y has not been calculated in the fluid. Avoiding
its calculation was the very reason to use the reciprocal theorem. How-
ever, as will become clear in the following chapters, asymptotic analysis in
some small parameter, allows one to evaluate Ty from the solution in a
‘standard’ Newtonian fluid.

11



Chapter 3

Swimming in viscosity
gradients

Microswimmers swimming in mucus layers and biofilms experience spatial
gradients of viscosity. We model the swimmers using the squirmer model,
and show how the effects of viscosity gradients on the swimmer motion,
leading to the phenomenon of viscotaxis, depend on the swimming gait of
the swimmers. We also show how such gradients in viscosity may be used to
sort swimmers based on their swimming style.

3.1 Introduction

Cells often swim in environments, such as biofilms and mucus layers, that
have spatial gradients of viscosity [194, 211]. Much like the effect of other
gradients, such as light (leading to phototaxis [14]), chemical stimuli (chemo-
taxis [15]), magnetic fields (magnetotaxis [206]), temperature (thermotaxis
[7]), or gravitational potential (gravitaxis [176]), gradients of viscosity can
lead to viscotaxis in microswimmers. Bacteria like Leptospira and Spiro-
plasma are known to move up the viscosity gradients (positive viscotaxis)
[41, 196], where as Escherichia coli demonstrates negative viscotaxis [182].
It is suggested that viscotaxis plays an adaptive role in microorganisms; it
prevents them from being stuck in regions where they are poor swimmers
[41, 182, 196]. This migration across regions of different viscosity affects
organisms’ population distribution, and possibly their virulence [167]. The
aggregation of microswimmers in specific regions of viscosity may also be
used for sorting of cells [214].

In a recent work, Liebchen et al. [136] studied the physical mechanism of
viscotaxis. Using assemblies of one, two and three spheres as model swim-
mers, they showed how viscotaxis can emerge from a mismatch of viscous
forces on different parts of the swimmer, thereby demonstrating the possi-
bility of both positive and negative viscotaxis. In this work, we study visco-
taxis using a general model to study microswimmers—the squirmer model

12
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[17, 137, 165]. Squirmers can be used to model different types of swimmers
within the same theoretical framework, and have been used in understanding
swimming at small scales in both Newtonian (e.g., see [165] and references
within) and non-Newtonian fluids (e.g., [44, 45, 51, 122, 135, 217]). The
squirmer model allows us to study the response of different classes of mi-
crowswimmers, namely, pushers, pullers and neutral swimmers, to spatial
gradients in viscosity. We find that the three types of swimmers behave dif-
ferently in viscosity gradients, and their different swimming dynamics can
be used to sort them based on their swimming style.

We present the theoretical formulation of the problem in the next section,
followed by a section on results and discussion, where we briefly discuss how
viscotaxis may be used as an effective mechanism for sorting cells.

3.2 Theoretical formulation

We model the microswimmers as spherical squirmers [137]. As a squirmer,
a microswimmer is represented as a sphere with some prescribed surface ve-
locity; the surface velocity approximates the detailed propulsion mechanism
of the swimmer [137]. We consider axisymmetric squirmers with steady
tangential surface velocities (u¥ = uey),

u® = ZX BV (6), (3.1)

where V; (0) = —2P! (cos ) / (1 (1 + 1)) with P! being the associated Legen-
dre function of the first kind and 6 the polar angle measured with the axis
of symmetry [17, 137]. The coefficients B; are called the squirming modes.
In Newtonian fluids, the propulsion velocity of the squirmer is due to just
the first mode Bji, whereas By gives the strongest contribution to the flow
far from the swimmer [17, 101]. For swimmers that generate thrust from
the front, the puller type (like Chlamydomonas), the ratio o = Bo/Bj is
greater than zero, and for those that generate thrust from the rear (like
Escherichia coli), a < 0. Swimmers in which the thrust and drag centres
coincide are modelled with o« = 0 and are called neutral squirmers. Pak
& Lauga [159] provide a detailed description of general, non-axisymmetric,
squirming modes.

We consider fluids which have spatial gradients of viscosity. These gra-
dients may arise due to temperature or due to gradients in the concentration
of solute in real systems. In order to study swimming in such fluids theoret-
ically, we consider only small variations in viscosity, representing the viscos-
ity field as n (x) = no + £dn (x). Here ¢ is a small dimensionless parameter.

13



3.2. Theoretical formulation

In physical terms, with this form of viscosity field, we have assumed that the
deviations in viscosity on the scale of the particle are small i.e., O (), where
e = a/L, a being the length scale of the particle, and L is some length over
which the viscosity changes are considerable (O (1)). Our considerations
of only small variations in viscosity are in the spirit of the recent work by
Oppenheimer et al. [157], who also consider small viscosity variations due
to the temperature difference between the swimmer and its surroundings.
The novelty of the present work lies in the fact that the viscosity variations
are externally imposed and are independent of the swimmer or its position.
The small viscosity variations, of O (¢), allow us to obtain the first effects
of viscosity gradients on the swimmer motion with the relative ease of using
the reciprocal theorem of low Reynolds number flows [93]. We primarily
consider two types of gradients, V (dn (x) /n0) ~ e, (or a similar form), and
V (6n(x) /no) ~ e,. We term the former as a linear gradient, and the latter
as radial.

Note that we neglect any fluid and solid body inertia, and study the
microswimmers at zero Reynolds number. Next, we give details of the re-
ciprocal theorem formulation.

3.2.1 Reciprocal theorem

The velocity of a particle in complex fluids (or in fluids that show any
deviation from Newtonian fluids with uniform viscosity) is given by

U=

I D

Rel - [-F + Fr + Fyn], (3.2)

where U = [U .Q]T is a six-dimensional vector comprising of rigid-body
translational and rotational velocities. The expression (B.2) is obtained using
the reciprocal theorem of low Reynolds number flows [93] and its formulation
as described in [43, 68].

Fr="1 uS (n Ty)ds (3.3)

A

nJos

represents the Newtonian ‘thrust’ due to any surface deformation or activity
u’ of the particle. Here OB represents the surface of the particle. The non-
Newtonian contribution or, pertinent to present work, the contribution due
to any deviation from uniform viscosity in Newtonian fluids,

Fnyn = —/ v : EydV, (3.4)
v
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represents the extra force/torque on the particle due to the non-Newtonian
deviatoric stress 7y in the fluid volume V in which the particle is immersed;
the total deviatoric stress in the fluid is 7 = noy + 7vn. F = [F L]T
represents the total hydrodynamic force and torque on the particle; in the
absence of any external force, F = 0 for a squirmer. The hat quantities are
operators from the resistance/mobility problem in a Newtonian fluid (with
viscosity 1)

6=Ty-U, (3.6)
ﬁ = _éFU . Ua

obtained for the present case of spherical squirmers from the motion of a
single sphere in an unbounded and otherwise quiescent Newtonian fluid.

3.2.2 Asymptotic analysis

The viscosity field in the present work is represented as n (x) = ng+¢&dn (x).
To study the effect of small viscosity variations, quantified by e, we expand
flow quantities in a regular perturbation expansion of ¢, e.g.,

{u,p, 7} = {wo,p0, 70} + € {u1,p1, 71} + &> {uz,p2, 2} + ..., (3.8)

where {ug,po, 70} are velocity, pressures and deviatoric stress solutions to
the Stokes equations with uniform viscosity ng. At the leading order,

70 = 1070, (3.9)

and at O (¢),
T1 = noY1 + 61 (x) Yo, (3.10)

and therefore, Tnn1 = 6n(x)~. We consider corrections up to O(e) in
this work. Note that the expansion is regular only for on(x) ~ O(1);
for linear gradients of the form 07 (x) ~ x, the expansion is regular only
for x ~ 0(1/e). The evaluation of the volume integral in equation (3.4),
for effects of non-standard Newtonian rheology on the particle, then, in
principle, requires singular perturbation methods. In the next section, we
see how the far field contribution from the viscosity gradients that we choose
does not affect the answers obtained from the regular expansion of the form
in equation (@)
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3.2.3 Remarks on the asymptotic analysis

The extra force and torque on a particle due viscosity gradients, up to O (¢),
are given by

Fna= [ on(@)o: Evav.

4 A (3.11)

Lywa = [ 0n(@)0: EnaV.

For a squirmer in linear or radial viscosity variations, 07 (x) ~ r, the far
field contribution, from distances r ~ O (1/¢), to the extra force in ()
is O(r-r=3.-772.73) = O(e), to torque is O (r-r=3.773.73) = O (?),
and therefore, can be neglected as we consider corrections to Newtonian
(uniform viscosity) motion up to only O (¢).

As the velocity field due to motion of a passive sphere decays slower
compared to that of a squirmer, in principle, one needs to use a singular
perturbation approach to evaluate integrals in (B.11). However, for a passive
sphere in linear viscosity profiles, the far-field contribution to the integrals
at O (1) is identically zero (due to symmetry), and therefore, such systems
may be studied using the regular perturbation scheme. However, for radial
profiles, the O (1) contribution is non-zero and one then needs a singular
perturbation approach.

3.3 Results and discussion

Below, we show results for the motion of squirmers in such small viscosity
gradients as discussed; our focus is on gradients that are externally imposed
and do not depend on the squirmers’ positions. We begin by looking at a
passive sphere.

3.3.1 Passive sphere

The hydrodynamic force F' and torque L on a rigid sphere of radius a
moving with a velocity U and rotating with an angular velocity §2 in a
linear viscosity field, e.g., 0n (x) ~ x, is given by, up to O (¢),

F = —6manoU — 2mea® 2 x Von, (3.12)
L = —8mnpa’ 2 + 2rea®U x Von. (3.13)

Note that the gradient in viscosity couples the force with the sphere’s angu-
lar velocity, and the torque with the translational velocity; this is not the
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case for a sphere in a Newtonian fluid with uniform viscosity. As discussed
previously, we cannot study a passive sphere in radial gradients using a
regular perturbation of the form in (3.§8).

When the gradients in viscosity are due to the particle itself, as in the
study of Oppenheimer et al. [157] where the particle is hot compared to its
surroundings and the viscosity depends on temperature such that én (x) =
—ano/r, the origin being the centre of the particle, we can reproduce their
results using equations (g@) to get

F = —6mnha (1 - i’;) U, (3.14)
L = —8mnoa® (1 — %f) 0. (3.15)

It should be noted that in this case the translational and rotational motion
are not coupled—because of the symmetry of the gradient—and both the
drag and the torque are lower than those for the case of constant viscosity
7o-

These results for a passive sphere will be useful to contrast the results
obtained for spherical squirmers.

3.3.2 Squirmer

The exact expressions for translational and angular velocities of squirmers
can be obtained in linear viscosity profiles such as dn (x) ~ z. These are,
up to O (¢),

231 3CLBQ ( I)
U = ——_ ).V 1
5 ete 50 ee — 3 Vn, (3.16)
Vé
2 =eB 1 « e, (3.17)

where e is the orientation of the squirmer. Note that the gradient in viscosity
affects both the angular and translational velocities of the squirmer; even
an axisymmetric squirmer can now rotate due to its own motion. In a
Newtonian fluid with uniform viscosity, Uy = (2B;1/3)e and 2y = 0.
The rotation of the squirmer is in the opposite sense to that of a passive
sphere dragged along the same direction in the same gradient. This can be
understood by decomposing the swimming problem into a thrust problem
and a drag problem [45]. In the thrust problem, the squirmer is held fixed
and the thrust due to its surface velocity is calculated. In the drag problem,
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the drag on a passive sphere translating with the velocity of the swimmer
is calculated. Here, one finds that for a squirmer, the thrust contribution is
opposite and dominating to the drag contribution. Therefore, the squirmer
rotates in a direction opposite to that of a passive sphere. Also note that
of all squirming modes By, only the first two contribute to velocities in the
linear gradients considered here.

In the case where the viscosity field due to the squirmer is radially in-
creasing, (in the spirit of [157] where the viscosity field varies radially due
to the temperature of the particle), choosing dn(x) = —ang/r where r is
measured from the origin at the centre of the squirmer, the translational
velocity of the squirmer is given by

v (1 - 5) e, (3.18)

i.e., a squirmer swimming in thin shells of radially increasing viscosities
around it swims slower than in a Newtonian fluid with uniform viscosity.
The thrust and drag decomposition of the swimming problem shows that
the viscosity gradient leads to decrease in both the thrust and the drag, but
the decrease in the thrust is more pronounced than the drag leading to a
slower swimming [45]. The angular velocity of the squirmer is zero in this
case because of the symmetry of the problem.

The expressions in () and (@) allow studying the trajectories of
squirmers in viscosity gradients. To do so, we first non-dimensionalise the
equations; we scale lengths with the swimmer radius a, velocities with the
first squirming mode Bj, and stresses with nyBi/a. Equations () and
() then become

2 3 1
U= 3¢ + 6?(1 (ee - 3) - Vén, (3.19)
2 =eVin x e, (3.20)

and henceforth, all quantities are dimensionless unless stated otherwise.
From equations (3.19) and (B.20), we note that as the swimmer moves along
the gradient i.e. e = Vdn/|Vdn|, it does not rotate (£2 = 0), and therefore
maintains its original orientation. Depending on its type of propulsion, and
consequently, on the sign of «, it can swim faster, slower or at the same speed
as in a Newtonian fluid with uniform viscosity. Pusher swimmers (o < 0)
swim slower, as their thrust generation is from the rear which, when moving
along the gradient, is in a fluid less viscous than that in the front. Pullers
(v > 0), on the contrary, swim faster. Neutral swimmers (o = 0), which
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40

Figure 3.1: The initial orientation of the swimmers €;,;;;q is along the pos-
itive x-axis. The viscosity gradient is along the positive y-axis. After some-
time all swimmers swim antiparallel to the viscosity gradient. Note that in
this orientation, pushers are the fastest, while pullers are the slowest. The
trajectories are plotted for time ¢ = 0 to t = 100.

have the drag and thrust centres coinciding, swim with the Newtonian speed.
The dynamics for pullers and pushers reverses when e = —Vén/|Vdn|.

When the gradient in viscosity is not aligned with the swimmer direc-
tion, irrespective of the type of propulsion, squirmers show viscophobicity
(negative viscotaxis). They rotate in the direction of lower viscosity. We
demonstrate this in figure B.1l, where we consider motion of squirmers only
in the plane of viscosity gradients. We consider a = 0 for neutral squirmers,
a = 2 and a = —2 for pullers and pushers, respectively, and ¢ = 0.1. For
Von (x) parallel to e, and the initial orientation of swimmers in the positive
x-direction, as shown in figure Ell, the final equilibrium orientation for all
the swimmers is antiparallel to the viscosity gradient; however, the trajec-
tories chosen to attain the equilibrium orientation do depend on the type of
swimmer. In this equilibrium orientation, as discussed previously, pushers
swim the fastest and pullers the slowest. Note that the viscophobicity as
demonstrated here can be understood using the thrust and drag decompo-
sition [45]; on the decomposition one finds that the effect of the gradient on
the thrust is dominant to that on the drag.

For the same values of « and €, we also plot trajectories of squirmers mov-
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Figure 3.2: Planar trajectories of pushers (left), neutral swimmers (centre),
and pullers (right). The initial position of the swimmers, (z = 1,y = 1),
is marked by the red dot. The swimmers originally point in the positive
x-axis. The swimmers are in a radial viscosity gradient: viscosity increases
radially outward from the point (0,0), 6n = /22 + y2. Pushers find a stable
orbit. The trajectory of neutral swimmers is bounded at long times. Pullers
perform ‘unstable’ motion about the ‘origin’ of viscosity gradient. Note
the farthest the swimmers have travelled from this origin after equal times
(t = 4000).

ing in the plane of radially varying planar viscosity field, dn () = /2% + 32,
where the coordinates x and y are measured from an arbitrary point in space
which may be seen as a ‘viscosity sink’. It should be noted that we still use
expressions (M) and (M) to calculate the trajectories; we are in want of
exact expressions for radial gradients of such types. Although the expres-
sions have been derived only for linear gradients, they are expected to hold
for radial gradients as well, for at the scale of the particle, little difference
should exist between the two. The trajectories are plotted in figure
Note the qualitatively different behaviour of the three types of swimmers.
The dynamics is discussed in more detail below.

On trajectories of squirmers in radial gradients

The two-dimensional motion of squirmers in the radial gradient discussed

above is easier to study with the orientation vector e represented as

{cos ¢,sin ¢}, and the gradient viscosity vector for on(x) = /a2 + y?,

as Vin = ﬁs 0,sin6}, where ¢ and 6 are measured with the x-axis.
(8.1

Equations ) and (B.20) then become
&y 1 1/2 . 3
i gasmzp — (3 sin ) + TgEasin 21/1) ) (3.21)
2 2
% =3 cos ) + gea (3 — sin? 1/}) ) (3.22)

20



3.4. Conclusion

where ¢ = ¢ — 0 and r = /22 4+ y2. For steady state, ¢) = 0, 7 = 0, and
therefore, when « # 0, we have

1 9
Teg = 2 <2 + 01 CO8 weq) , (3.23)

5 27202
Weq = cos™! (_95a 1+y/14+ 252 ) (3.24)

25
e ™ 2 .
When o = 0, at equilibrium, we have ., = 5 and req = —. With € = 0.1,
€
for o« = £2 (values for pusher and pullers), we obtain r.; = 20.21 and
1eq = 1.5114. For neutral swimmers, a = 0, r¢q = 20 and ¢y = 7/2 .

We study linear stability of the equilibrium values by Taylor expanding
equations (E2I) and (EZi) and obtaining

! 2
% = (3 Sin teq — gsa sin 2¢eq> {4 (3.25)

dy' 1 (2. 3 .
dLi = §5 (¢ costbeq) + g <3 Sin eq + Esa sin 21/)&1)
q (3.26)

1 /2
- — (31// COS Yeq + %€a¢’2 cos 2¢eq) )

Teq

where dashed quantities represent small fluctuations from the equilibrium
values. We find that for pushers, the equilibrium is a stable spiral, while
for pullers, it is an unstable spiral. For neutral swimmers, the equilibrium
is a centre. These characteristics are also observed in figure 8.2. For such
a simple gradient, we observe very different dynamics of the three types of
squirmers.

3.4 Conclusion

We observe that squirmers are, in general, viscophobic (unless they move
perfectly aligned with the gradient); they turn towards the less viscous re-
gion. Using the squirmer model, we find that the dynamics of microswim-
mers depend on their propulsion type; even a simple viscosity profile leads
to different dynamics for different swimmers. The dynamics of the swim-
mers, owing to linearity of the problem, can be explained by decomposing
the swimming problem into a thrust problem and a drag problem; the effects
of the gradients on the thrust are seen to dictate the swimming response.
We also show that the differences in the dynamics can be used to sort these
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swimmers by smartly choosing the viscosity profile. As long as the swim-
mers are not perfectly aligned along (parallel) the gradient direction, and
any noise in the system will be helpful towards this end, we find that in lin-
ear gradients, pushers will be the farthest from the point of release. In radial
gradients, neutral and pusher swimmers will remain bounded / trapped near
the viscosity ‘sink’. The puller swimmers can therefore be sorted out at far-
ther distances.
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Chapter 4

Dynamics and rheology of
particles in shear-thinning

Auids’

Particle motion in non-Newtonian fluids can be markedly different than in
Newtonian fluids. Here we look at the change in dynamics for a few problems
tnwolving rigid spherical particles in shear-thinning fluids in the absence of
inertia. We give analytical formulas for sedimenting spheres, obtained by
means of the reciprocal theorem, and demonstrate quantitatively differences
in comparison to a Newtonian fluid. We also calculate the first correction
to the suspension viscosity, the Finstein viscosity, for a dilute suspension of
spheres in a weakly shear-thinning fluid.

4.1 Introduction

Particles in fluids are ubiquitous in both natural and industrial processes.
Blood, detergents, paints, aerated drinks, fibre-reinforced polymers, sewage
sludges, and drilling muds are some examples where particles—rigid or drops
or bubbles—are present in a suspending fluid [9, 33]. The flow behaviour
and rheological properties of such suspensions depend on parameters like the
particles’ shape, size and concentration, particle-particle interaction, particle
surface properties, fluid rheology and the type of flow. Even the simplest of
such suspensions — small, rigid non-Brownian particles in a Newtonian fluid
— exhibits rich rheological properties like shear-thinning, shear-thickening,
and normal stress differences which are characteristics of complex fluids
[56, 191]. In many common examples like paints, foods, fracking fluids and
biological suspensions, the suspending fluid itself is non-Newtonian. The

TThis chapter has been previously published under the same title in Journal of Non-
Newtonian Fluid Mechanics 262 (2018) 107-144 by Datt and Elfring. © 2018 Elsevier
B.V.
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4.1. Introduction

properties of these suspensions is therefore expected to be even more complex
[143, 155, 212].

In order to understand the properties of these suspensions, it becomes
imperative to first understand the interaction of a single particle with the
surrounding media and the mutual interaction between two such particles.
In fact, it is known that the motion and orientational dynamics of particles
can be strongly affected by the rheology of the surrounding fluid medium
[29, 49, 132, 133, 216]. For example, at zero Reynolds number, while the
center-to-center distance between two equal spherical particles which are
sedimenting along their line of centers through a quiescent fluid is fixed
indefinitely at its initial value in a Newtonian fluid [192], this distance is
found to change in the presence of viscoelasticity of the fluid medium [174].
The understanding of particle dynamics in complex fluids is also important
for applications in particle manipulation in microfluidic devices (see recent
reviews [47, 138]). Phenomena like cross-stream migration, in which rigid
spheres in a pressure-driven tube flow of viscoelastic liquid migrate either
towards or away from the wall in the absence of inertia, can be used for
cell-trapping in biomedical applications [108].

Towards a fundamental understanding of particle dynamics in non-
Newtonian fluids, in this work, we theoretically study the dynamics of
rigid non-Browinian spherical particles in shear-thinning fluids in the
absence of any fluid or particle inertia. Unlike for viscoelastic fluids,
where theoretical studies have been used to develop insights for many
experimental observations [49, 132], similar studies have been relatively few
in shear-thinning fluids and most of these studies have focussed on using the
power-law model [16] to model the shear-thinning rheology [33]. However,
as argued by Chhabra et al. [34], Chhabra & Uhlherr [35] and Chhabra
[33], a fluid model with a zero-shear viscosity should be preferred to the
power-law model for slow flows around spheres. Here we use the Carreau
model for shear-thinning fluids [16] (discussed in the subsequent section) to
study the following problems motivated by some recent experiments:

i) Two equal spherical particles sedimenting along their line of centres
through a quiescent fluid. In Newtonian fluids, Stimson & Jeffery [192]
showed that the initial distance of separation is maintained as the particles
sediment.

ii) Sedimentation of a spherical particle which is also rotating due to
some external field. In Newtonian fluids, the sedimenting velocity does not
depend on the rotation rate. The translational and rotational motion for a
sphere are decoupled in a Newtonian fluid [93].

iii) Sedimentation of a spherical particle in a linear background flow. In
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4.2. Reciprocal Theorem

Newtonian fluids, the sedimenting velocity of a sphere depends only on the
(local) velocity of the background flow but is independent of the velocity
gradient.

iv) The influence of particles on the viscosity of a shear-thinning fluid.
For a dilute suspension of neutrally buoyant particles in a Newtonian fluid,
it was shown by Einstein [66] that the bulk shear viscosity of the suspension
increases due to the presence of particles.

In the following sections, we analyse these problems in shear-thinning
fluids in detail, but before that we briefly discuss our theoretical approach
and the rheology of shear-thinning fluids.

4.2 Reciprocal Theorem

We are interested here in the motion of, or equivalently forces on, particles
in complex fluids. These integrated quantities can be evaluated without
resolution of the associated flow field of the complex fluid by employing the
reciprocal theorem. This approach was comprehensively reviewed by Leal
[133], and we use here a generalized formalism developed in a number of
recent papers for active particles [44, 67, 68, 69]. Following Elfring [68], the
motion U or forces F of N particles in a complex flow may be given by

Rzl - [—=F + Fr + Fywl, (4.1)

where U = [U §2|, F = [F L] are 6 N-dimensional vectors comprising trans-
lation /rotation and hydrodynamic force/torque respectively on N particles.
If the inertia of the particles is negligible (small Stokes numbers), as we
will assume here, then the hydrodynamic force must balance any external

or applied force (such as weight due to gravity) F = —F,. The force
Fr— Q/ (w¥ —u) - (n-Ty)ds, (4.2)
n.JoB

is a Newtonian ‘thrust’ due to any surface deformation or activity of the
particles u® (although in all cases here we consider rigid passive particles,
u® = 0) and ‘drag’ from any background flow u>. Here OB represents the
surfaces of all the particles. The non-Newtonian contribution

Fny = —/ Ty EydV, (4.3)
v
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4.3. Shear-thinning fluid

represents the extra force/torque on each particle due to a non-Newtonian
deviatoric disturbance stress T],VN = TnN — Txy in the fluid volume V in
which the particles are immersed.

The formulas rely on operators from an N-body resistance/mobility
problem in a Newtonian fluid (with viscosity 7)

Y/2=Ey-U, (4.4)
& =Ty-U, (4.5)
F' = —Rpy - U'. (4.6)

where primes indicate disturbance quantities. The tensors E and T are
functions of position in space that map the (arbitrary) motion of all N
particles U to the fluid strain-rate and stress fields respectively, while the
N-body rigid-body resistance tensor

5 Rpy Rro
Rey = | - A . 4.7
e [RLU RLQ] (47)

We note that no specific U needs to be chosen in the rigid-body dual problem
as only the linear operators EU, 'i'u and Ii’,:u enter the picture. In many cases
there may be symmetries in the problem which simplify these operators
substantially, likewise we may know that the forces/torques are in some
way simplified (collinear with gravity for instance) and hence need not even
determine all components of the operators.

Components of EU, 'f'U and R u for a single sphere that we use in this
study are provided in Appendix g

4.3 Shear-thinning fluid

As we outlined in the previous sections, the presence of a non-Newtonian
stress Ty can significantly alter the motion of particles in flows. In this
work, we consider the effects of shear-thinning fluids, which experience a
loss in apparent viscosity n with increasing strain-rates ; specifically, the
deviatoric stress

T =17, (4.8)

where the viscosity is modelled using the Carreau model for generalised
Newtonian fluids [16]

anl)/z .

0 (4) = oo + (0 = m0) [1+ 252 (4.9)
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4.3. Shear-thinning fluid

Here, 1 is the zero-shear-rate viscosity, 7). is the infinite-shear rate viscos-
ity, n is the power law index (n < 1 for shear-thinning fluids; smaller the
value of n, more shear-thinning the fluid is) and \; is a time constant. The
magnitude of the strain-rate is given by |¥| = (11 )1/ 2 where IT = Jij¥ij is the
second invariant of the strain-rate tensor. Note that lims_,o7 (%) = no and
limy 00 7 (¥) = 7oo, showing that at low and high strain rates the fluid be-
haves like a Newtonian fluid with viscosity 79 and 7., respectively. A; sets
the cross-over strain-rates at which non-Newtonian effects start to become
important.

In this work, we investigate strain-rates such that \; < 1/7., where .
is the characteristic strain-rate of the flow. In this case it is useful to write
the constitutive equation in the form

T =¥ + (1(F) —1m0) V- (4.10)

Although, we note that this rearrangement is not in any way restricted to low
strain rates. Writing the equation as such, it is clear that the non-Newtonian
contribution Ty x = (n(%) — 10)7-

In dimensionless form, one may decouple the Newtonian and non-
Newtonian contribution for a Carreau fluid as

=4 {B — 1+ (1= B) [1+ Cu? || ("_1)/2} A, (4.11)

where stars (*) represent dimensionless flow quantities. The Carreau number
Cu = 7cA¢ is the ratio of the characteristic strain rate in the flow v, to the
crossover strain rate 1/)\;. The viscosity ratio is given by 8 = 1. /10 € [0, 1].
The characteristic length of the particle is chosen as the length scale in the
problems and as we consider only spherical particles, the length scale is
a, the radius of the particles. g7, is the scale for stresses; the appropriate
characteristic strain-rate, ., varies depending on the problem and therefore,
is defined separately in each of the problems below.

In this work, we consider the fluid behaviour to be weakly shear-thinning,
in the sense that Cu < 1 [45], and therefore the viscosity is assumed to not
deviate substantially from the zero-shear viscosity 7. We then explore the
leading-order weakly shear-thinning effects of the fluid rheology on particle
motion. To this end, we assume a regular perturbation expansion of all
fields, e.g. u = ug + Cu?uy + ..., and find the non-Newtonian stress to be

. 1 2
TNN = —50102 (1—=n) (1 - B) 3% + O(Cu), (4.12)
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4.4. Sedimenting spheres

where for shear-thinning fluids 8 < 1 and n < 1. We consider only the
leading-order effects of shear-thinning viscosity and by using (), we may
obtain the non-Newtonian force on particles at the expense of an integration
(@) which then only requires the Newtonian flow field wug.

4.4 Sedimenting spheres

Due to their symmetry, a number of classic results involving motion of
spheres in Newtonian fluids can be predicted directly by employing the
kinematic reversibility of the field equations and it is insightful to consider
examples where dynamics are altered (or not) by shear-thinning rheology.
In this section, we explore one such case of two spheres sedimenting along
their line of centres but before that, it is instructive to first examine the
simple case of a single sphere moving through a shear-thinning fluid and to
see how the force-motion relationship is affected by the medium rheology.

4.4.1 Single sphere

The drag force on a sphere of radius a, moving with a velocity U is given
by F = —6mwanU (dimensional), where 7 is the viscosity of the fluid. In a
shear-thinning fluid with zero-shear rate viscosity 19 = n, the drag force is
expected to be less than the Newtonian value. This is because one expects
the apparent viscosity around the sphere to decrease below 7 due to the
strain-rates ensuing from the motion of the sphere. Quantitatively, the drag
force in shear-thinning fluid can be evaluated using the reciprocal theorem.
For a single sphere, we expect this force to be colinear with the velocity by
symmetry. Simplifying (@) we may write

F = —6mnoalU — / vy : EpdV, (4.13)
%

where Ey (such that 4/2 = Ey - U) is well known for a sphere translating
in Stokes flow [89]. The integral above may be easily evaluated to leading
order as then the non-Newtonian stress depends only on the solution of
a translating sphere in a Newtonian fluid i.e. 7ny[uo] (from()). In
dimensionless form we find the drag in a shear-thinning fluid to be

* * _ 1 _ _ 2 942 * 2>
F* = —67U (1 3 (1= B) (1= n) Ca U ?) (4.14)

If we (sensibly) take as the characteristic strain-rate 4, = |U|/a then U* = e
is simply the unit vector in the direction of the motion (a convention we use
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4.4. Sedimenting spheres

below). The term in the brackets is then an analytical calculation of the
drag correction factor (often given the symbol X in the literature [30, 35])
valid to O(Cu?).

We see that, as expected, the drag force on a sphere decreases in a shear-
thinning fluid as compared to a Newtonian fluid. It should be noted that
the reduction in drag below the Newtonian value is at odds with the con-
clusions reached using the power-law fluid model which predict an increase
in the drag force [33] because (as argued in that work) the power-law fluid
model does not incorporate a zero shear-rate viscosity which is important in
modelling slow flows involving stagnation points and vanishingly small shear
rates. In contrast, () predicts the reduction in drag observed in exper-
imental results [35], and qualitatively agrees with a variational estimate by
Chhabra & Uhlherr [35], and numerical results from Bush & Phan-Thien
[30], which both used the Carreau fluid model to characterise the fluid rhe-
ology.

It is straightforward to invert the drag force to obtain the velocity given
a prescribed external force (for example weight due to gravity in sedimen-
tation)

F; 1 942 |Fx, |
U =" {14+ -(1-8)1—n)Cu?— 2|, 4.15
6 <+2( ) (1 =n) O (67r)2> (4.15)

In this case an appropriate strain-rate scale is 4. = |Fezt|/ (n0a?) in which

case F},, would be a unit vector.

4.4.2 Two spheres

We now consider sedimentation of two spheres of equal radii along the line
joining their centres. In a Newtonian fluid, one can use arguments of kine-
matic reversibility and symmetry to find that the two spheres will sediment
with equal velocities and will maintain their initial distance of separation
[89]. Stimson & Jeffery [192] solved the hydrodynamically equivalent prob-
lem of two spheres moving with a constant velocity along their line of centres
and calculated the flow field and the forces on the spheres. When their radii
are equal, it was found that the forces on each of the two spheres are indeed
equal but each less than on single sphere moving in a quiescent fluid with
the same velocity. Quantitatively, the force on either sphere can be written
as F' = —6mnaU\ (dimensional), where A is a coefficient which depends on
the separation between the two spheres [192]. A — 1 as the distance be-
tween the two spheres approaches infinity, i.e. when the two spheres do not
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4.4. Sedimenting spheres

interact hydrodynamically with each other. It was also found that value of
A decreases as the distance between the two spheres decreases. However, the
method of Stimson & Jeffery [192] could not be applied to the case of two
spheres in contact with each other. This case was later solved by Cooley &
O’Neill [38] who found A = 0.645 (for the two sphere touching case). These
results and values of A have also been observed experimentally [93].

Non-Newtonian rheology can break kinematic reversibility and indeed
viscoelasticity is known to change these results qualitatively. Where in New-
tonian fluids two equal sedimenting spheres maintain their initial distance
of separation, it was found in the experiments of Riddle et al. [174] and
analyses of Brunn [28] and Ardekani et al. [4] that the two particles showed
a tendency to aggregate in viscoelastic fluids. This effect of normal stresses
on particle dynamics has been commented upon by Joseph & Feng [104].

In shear-thinning fluids, it was observed in the experiments of Daugan
et al. [46] that the two spheres would aggregate provided the initial distance
of their separation was smaller than some critical distance. Yu et al. [215], in
their experimental study, argued that in fact this tendency towards aggre-
gation was due to thixotropy (memory of shear-thinning) and the corridors
of reduced viscosity in the wake of sedimenting particles lead to aggrega-
tion [46, 105]. In the absence of memory, the two spheres would maintain
their initial distance of separation [215]. Here, we theoretically study the
equivalent problem of two equal spheres moving with a constant velocity
along their line of centres, as considered by Stimson & Jeffery [192], but in
a shear-thinning fluid.

We use the reciprocal theorem to calculate the forces on the two spheres.
By (EII) the force on the particles can be written generally as

FZ—%I‘Q\’FU‘U-}-FNN. (4.16)

For two equal spheres moving along their line of centres, by symmetry, we
expect all vectors in the problem to be collinear, which significantly simplifies
the more general problem of the motion of two spheres. When the motion of
two bodies is collinear (only translational motion is considered), it is useful to
decompose the motion into a mean velocity U and relative velocity AU such
that the velocity of each sphere may be written as U; = U + AU and Uy =
U — AU. In this basis, the relevant resistance/mobility problems for the
reciprocal theorem are i) two (equal) spheres translating with equal velocity
along the line joining their centres in a Newtonian fluid (corresponding to
U as in this case AU = 0) with solution by Stimson & Jeffery [192] and ii)
two (equal) spheres approaching each other with equal speed along the line
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4.4. Sedimenting spheres

joining their centres in a Newtonian fluid with solution due to Maude [141]
and Brenner [23] (corresponding to AU as in this case U = 0). Note that
one requires two resistance/mobility problems for evaluating the force on
each of the two spheres. The resistance tensor for this problem is diagonal
in the sense that in a Newtonian fluid mean translation leads only to a
mean force and likewise for relative force. The reciprocal theorem given
above leads to expression for mean and relative force in a non-Newtowian
fluid given by

—_ 770 A J— 1/ A
F=——R+w -U— - : EdV, 4.17
PR 9 VTNN Tavs (4.17)
1 .
AF = —5 TNN - EAU d‘/, (418)
v

where ]%ﬁ is the (mean) translational resistance of the two spheres in a
Newtonian fluid and E'ﬁ and E Ay correspond to the strain-rate due to mean
and relative motion respectively. Note that 7yn is evaluated using the
solution of the problem in Newtonian fluids by Stimson & Jeffery [192] (from
(£.12)).

Upon evaluation of (), for weakly non-linear shear-thinning fluids
one finds that there is no relative force

AF =0, (4.19)

meaning the forces on two equal spheres are equal in a shear-thinning fluid
as in a Newtonian fluid. Although we obtain this result only for a weakly
shear-thinning fluid, we expect this to be the case for all generalized New-
tonian fluids, regardless of the parameter regime. The reason is that the
stress Ty maintains the symmetry of the Newtonian problem while the
Maude-Brenner problem (and thus the operator E Av) displays a mirror-
image symmetry and therefore the integral over the entire fluid volume must
be zero. In fact, Brunn [29] briefly comments on this property of generalized
Newtonian fluids where results may come out to be similar to Newtonian
fluids.

As the force on the two spheres in a weakly shear-thinning fluid are
equal, two sedimenting spheres do not show any tendency to aggregate in
a shear-thinning fluid without memory, as was also found in the numerical
work of Yu et al. [215] discussed previously. We can further calculate the
force on each of the spheres, and compare it to the force on a single sphere
in a shear-thinning fluid from section . Since there is no difference in
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Figure 4.1: a) Variation of non-Newtonian drag F! as a function of the
distance of separation between the two spheres. b) Normalized drag as a
function of this distance. Note that the variation is non-monotonic and that
drag reduction is minimized at h/d ~ 2.35.

drag force, the mean in () represents the hydrodynamic drag on each
sphere. The form of the force (dimensionless) is

F =F,+ %cqf (1-8)(1—n)Fle4+ O(Cu), (4.20)

where F is the force on each sphere in a Newtonian fluid [192]. Here
we have non-dimensionalised lengths with sphere radius a and stresses with
noU/a where U is the magnitude of velocity of the spheres such that U* = e.
Both FS and the coefficient F'! obtained by evaluating the integral in ()
numerically, depend on the ratio of the centre distance between the spheres
to their diameter, h/d, as shown in Figure [lla). Note that F! is positive,
meaning the correction to drag force is in the direction of the motion e and
so the drag in a shear-thinning fluid is less than in a Newtonian fluid. To
contrast the results with the Newtonian fluids case, we also plot the ratio
of the magnitude of the force in a weakly shear-thinning fluid (correct to
O(Cu?)) to the drag in an equivalent Newtonian fluid for same configuration
in Figure @b) This is plotted in Figure Ellb) for Cu? = 0.1, § = 0.001
and n = 0.25.

We note that the ratio F'/Fp is always less than 1 which shows that the
drag in a shear-thinning fluid is less than that in Newtonian fluid for the
same configuration. This is expected as the viscosity in a shear-thinning
fluid decreases with strain-rate leading to less drag on each sphere when
compared to in Newtonian fluid. But what is perhaps surprising is the vari-
ation of force with distance between the two spheres. We first note that as
this distance becomes large, the drag reduction on each sphere asymptotes
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4.5. Sedimentation of a rotating sphere

to that on a single sphere in shear-thinning fluid. The drag reduction when
the two spheres essentially do not interact hydrodynamically with each other
is greater than for any other distance of separation. Shear-thinning effects
are maximum in this configuration. When the spheres interact hydrody-
namically the effective strain rates are reduced (due to screening) and thus
the drag reduction on each is always lower than for a single sphere. On the
other end of the distances, we have the configuration when the two spheres
are in contact with each other. This, interestingly, is not the configuration
to observe minimum shear-thinning effects. In fact, the minimum shear-
thinning effects or equivalently the maximum of the ratio F'/Fj is observed
when the clearance between the two spheres is of the order of their diameter
i.e. when h/d =~ 2.35. We believe that this nontrivial result may be due to
the complex flow field around the spheres, which also includes ring vortices,
and its effect on the dissipation rates [50].

4.5 Sedimentation of a rotating sphere

We now consider the case of a sphere which translates as well as rotates in a
shear-thinning fluid. The calculations are inspired by the recent experimen-
tal work of Godinez et al. [82] who study the hydrodynamically equivalent
problem of sedimentation of a rotating sphere in a power-law fluid. By im-
posing a controlled rotation on a sedimenting sphere, Godinez et al. [82]
measured the increase in the sedimentation velocity, which could then be
used to predict the values of power law indices of the fluids. They considered
rotation of the sphere only about the sedimenting axis. Here we consider
the problem more generally.

Translation and rotation of a sphere in a Newtonian fluid are decoupled
and owing to the linearity of the Stokes flow, one may superimpose the
solution of translation alone and rotation alone to get the solution of a
translating-rotating sphere in a Newtonian fluid. In other words a sphere
that rotates in a Newtonian fluid will sediment at the same rate as when it
does not rotate. This decoupling of translation and rotation is not expected
to hold in a non-linear fluid. We explore this for a weakly shear-thinning
fluid, again using the reciprocal theorem.

According to the reciprocal theorem, as before, we have

%

We non-dimensionalise length with the sphere radius, a, stresses by noU/a
where U is the magnitude of velocity of the sphere and hence U* = e. We
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4.5. Sedimentation of a rotating sphere

consider a general angular velocity which in dimensionless form, 2%, is not
necessarily a unit vector. Then from () we get

* __ A _1 2 _ 942 @ *12 _ * )k
F* = —6re {I SCu? (1=n) (1 ﬂ)(2275 + o [2|n| I-0 n])}
(4.22)

In the absence of any rotation £2* = 0, the force corresponds with () as
expected. With nonzero rotation, the drag force is further reduced due to the
additional strain-rate caused by rotation. When the rotation is aligned with
the translation, 2 « U, for example when the axis of rotation is aligned with
gravity for a sedimenting sphere as in the experiments of Godinez et al. [82],
the drag force remains collinear with U. When the rotation is not aligned
with translation, a lateral force may arise due to the term in the direction
of the axis of rotation o (e - §2*)£2*. When the rotation is orthogonal to
translation there is no lateral drift and the change in the drag force due to
rotation is twice that of when the rotation is aligned with translation and so
would maximize sedimentation velocity for a given rotation rate. Conversely,
in the mobility problem for a given external force F},,, a rotating sphere
will sediment with a translational velocity given by

. Fi 1, 5 942 | mP 552
U_67T.{I+20u (1—71)(1—5)<2275 6n)? +%[2|9\1 nn])}
(4.23)

where FJ, is a unit vector if the strain rate scale 4. is chosen as
|Feut|/ (moa®). On comparison with the experimental results, it is noted
that Godinez et al. [82] find a power law dependence of the sedimenting
velocity on the rotation rate, |U| o [£2|1=™) across a range of rotation
rates such that strain-rate around the sphere is predominantly due to
rotation and not due to translation, our analytical result in equation
(), valid for small Carreau numbers, draws a similar picture, namely,
increasing the rotation rate and decreasing the power-law index, n, increase
the sedimentation velocity of the sphere.
We also calculate the hydrodynamic torque on the particle

L*:—87r!2*-{I—;C’uQ(l—n)(l—ﬂ)<254| *|? I+% 2I—ee>}.
4.24)

The first term in the shear-thinning correction is due to the particle rotation
alone as there is a reduction in the torque due to the shear-thinning caused
by the rotation. The second term in the correction is due to both the
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translation and rotation of the sphere and may generate a torque which is
not aligned with the direction of rotation. Clearly, in a shear-thinning fluid
translational and rotational dynamics are coupled.

4.6 Sphere under an external force in a linear
flow of shear-thinning fluid

We now consider the dynamics of a spherical particle driven by an external
force in an unbounded linear-flow. In a Newtonian fluid, we know that the
sedimenting velocity of a sphere is not altered by the velocity gradient in
simple shear flow. However, this may not be the case in non-linear fluids. In
fact, in viscoelastic fluids, it is found that the terminal velocity of a sphere
decreases when the applied shear-flow is perpendicular to gravity in what
is called a cross-shear-flow [27, 49, 96]. Gheissary & van den Brule [80]
used sedimentation of a sphere in cross-shear flow to predict the rheological
properties of different shear-thinning fluids. The cross-shear flow is a model
system used for transport of particles in hydraulically-induced fractures [8].
Einarsson & Mehlig [64] recently extended the analyses in viscoelastic fluids
to the case when gravity (or another external force) and the vorticity direc-
tion of the applied flow are not aligned. Here, we perform a similar analysis
for a shear-thinning fluid.

Using the reciprocal theorem we calculate the velocities (both rotational
and angular) of the particle as

U:nﬁﬁ-%m—7/1ﬁ*@MﬁM5—/ﬁW:&d4, (4.25)
n n.JoB %
where Feyt = [Fegt O]T. Here, Fi.,; is an arbitrary external force acting

on the particle. The particle is immersed in a 2D linear flow given by
u™* = A°* . * (dimensionless), in a Cartesian basis we may write

1+A 1-Xx 0
A = [—(1-)) —(1+)) 0 (4.26)
0 0 0

where we have scaled length with the radius of the sphere and stresses with
No7Ye, Where 7. is characteristic of the applied strain-rate such that we have
A°* in the form above. It is useful to also decompose ©u>* = %"yoo* sxt 4
£2°°% x x* into symmetric and antisymmetric parts associated with strain-
rate and rotation-rate respectively. Note that A = —1 corresponds to purely
rotational flow, A = 0 is shear flow and A = 1 extensional flow [119].
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On evaluating () we get the translational velocity of the particle

1 942 |F* ,|? 695 10037 F*
U*=<71 702 1— 1— ext I 7~oo*21- 1, 00% 1 00% ) ezt.
{ +30w A=A -n) {2275 Gm2 T 530l TF Zoor 6
(4.27)

The first two terms on the right hand side correspond to the velocity due to
an external force in an otherwise quiescent shear-thinning fluid as in ()
The remaining terms demonstrates the coupling between the background
flow field and external force. When the force is perpendicular to the plane
of applied flow, we see that the velocity of the particle is further increased
above its quiescent fluid value due to the thinning of the fluid by the external
flow field. However, interestingly, for any general direction of the external
force, the velocity of the particle may not be in the direction of the forcing.
This is due to the lack of symmetry of the background flow field in one
direction. It is also worth noting that for a purely rotational flow, one does
not see a shear-thinning effect arising from the background flow.

Using () we also evaluate the angular velocity of the sphere, which
is given by

1 3189 [F* -
2F =00 4 —Cu? (1 —p) (1 —n) == | =eal  yoox . Zext| (498
T30 =0 =1 501 (B %7 or (428)

Note that in the absence of any forcing the sphere rotates with just the
background angular velocity just like in a Newtonian fluid where the angular
velocity of the sphere in a background flow is independent of viscosity. This
was also found in the numerical simulations of D’Avino et al. [48]. Also, if
the external force is along any of the principal directions of strain, or the
background flow is purely rotational, the angular velocity of the sphere will
be just due to the rotational component of the background flow. However,
for an arbitrary direction of the external force, the angular velocity may be
different than that imposed by background flow field.

4.7 Suspension of spheres in a shear-thinning
fluid

Suspensions of particles in shear-thinning fluids are encountered in a wide
range of chemical, biochemical and material processing industries, and as
such there has been considerable interest in studying the flow properties of
such suspensions [32, 90, 114, 130, 161, 199]. Most of these studies consider
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4.7. Suspension of spheres in a shear-thinning fluid

particles in power-law fluids, in other words, it is assumed that the strain-
rates are large enough so that the fluid rheology is captured by a power law
model. Here, we complement these studies by quantifying the first effects
of the non-Newtonian rheology of the suspending fluid in the realm of small
strain-rates.

We calculate the average stress in a dilute suspension of neutrally buoy-
ant rigid spheres in a weakly shear-thinning fluid, subject to a linear back-
ground flow

u™t = A g (4.29)

as discussed in the previous section. The average stress in a suspension of
rigid spheres in a weakly shear-thinning fluid, correct to O (Cu?), is evalu-
ated as

(@) = () — 50 (1= B) (L= m) (5 PA) + o), (4.30)

where o), is the additional stress within the suspended particles, and the
average quantities (denoted with angular brackets) are obtained by taking
an ensemble average over all possible configurations of the particles [10,
116, 173]. We use the wide hat symbol " to refer to the symmetric and
deviatoric component of a second-order tensor and note that the isotropic
terms in the average stress do not contribute to suspension rheology [65, 173].
In a homogeneous and dilute suspension of particles, we know

(%) = nS* (4.31)

where n is the particle number density equal to ¢/V,, where ¢ < 1 is the
particle volume fraction, V,, is the volume of a single particle, and S is the
particle stresslet [10, 116] defined as

S = 1 [n-or+rn-o]dS. (4.32)
oB 2

In order to calculate the average stress in the suspension, we start by
evaluating the particle stresslet using the reciprocal theorem [65, 68, 128].
Elfring [68] derives an expression for the stresslet in a weakly non-Newtonian
fluid which is (in dimensional form)

S:SOO—Q/ u* - (n-Tp) dS—/T;VN;E'EdV. (4.33)
0 Jos Y
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Clearly, evaluation of the stresslet S up to O (C’u2) using equation (4.32)
would require calculating the first correction to the flow field in the shear-
thinning fluid; however, equation (), obtained using the reciprocal the-
orem, bypasses this calculation and the first correction to the stresslet is
obtained by using the Newtonian flow field.

We first evaluate the stresslet §°° due to the stress o> from the back-
ground flow. In the absence of particles, the background stress o is simply

0> = = SOw (1= n) (1= B + O (cut),  (439)

where 4% = A%* 4 A°*T is the applied strain rate. Using the definition
of the stresslet (4.32), we therefore have, up to O (Cu?),

* 477-00* 1 4 < 00% |2 2 0O*
S = A — SOu? (1 B) (1 —n) — |57 4>, (4.35)
3 2 3
Evaluating the integral terms in (4.33), we obtain
1 68469
* L QOO* _ 9 A 00k 21_ 1— 2 00% |2 1, 00% 4.
and therefore altogether have
10m 1 273475
S*:i‘oo*—* 21_ 1_ sl .00*2.00*' 4
A 30w (1= 8) (1= m) (ZHET) P @)

The first term on the right hand side is the stresslet in a Newtonian fluid.
From the equation above, it can be seen that the total stresslet in a shear-
thinning fluid is less than that in Newtonian fluid.

We now proceed to calculate the average stress in equation () We
note that the mean Newtonian viscous stress, (¥*), is equal to the bulk
applied strain-rate 4°°* [89, 116]. The second term on the right hand side
in equation () can be evaluated by first performing a formal ensemble
average based on the ergodic hypothesis [173] on (|5*|>4*). Writing the
strain-rate in terms of the mean and fluctuating components Vi = (’yl*j>+’y;; ,
we obtain

(312 = i) = G i) + i) (4.38)

where dashed quantities are fluctuating values. Here, we have used the fact
<"yl-j<"yij)> = 0 and as such, obtain |§*|? = 275(72)—}—713“%3“—(75%;) Using
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these, the ensemble average:
) = (3P () + (317°4™) (4.39)
= (G5 G5+ (i) () + 200 G + (i 954 ).
(4.40)

Performing this ensemble averaging step has been shown [173] to remove
terms that in a volume average give rise to divergent integrals for dilute
suspensions in second-order fluids [87, 95]. We now replace ensemble average
by volume average in (), and evaluate the quantities both inside the
solid spheres and in the fluid volume, noting that inside the solid particles
4'* = —4°%*since the total strain-rate inside the particle is zero [116].

Following Koch & Subramanian [116], evaluation of () gives

k2 k 1250\ | cox 2. cox
(36746) = (1+ g ) 1= P4 (4.41)
Summing all the contributions to the average stress in equation (),

we have, finally,
Iy 1
(0%) = |1+ 2.5¢ — iczﬂ (1—-8)(1—n)(1+be) 1700*\2] A (4.42)

where b = 288675/34034. The term inside the square bracket gives the effec-
tive viscosity of the suspension. The presence of particles thickens the fluid
at the leading order (Einstein viscosity) where as at O (Cu?) it decreases
the effective viscosity due to enhanced thinning of the fluid. We also note
that decreasing n linearly reduces the total correction to fluid viscosity from
the Einstein correction as discussed by Tanner et al. [199] for dilute sus-
pensions in power law fluids. The presence of particles in a shear-thinning
fluid could lead to interesting rheological behaviour when the thickening
and thinning effects of particles compete at the same order. Also, the form
of above expression suggests that a dilute suspension of rigid spheres in a
Carreau fluid will behave as a Carreau fluid. In fact, our results agree with
recent results by Domurath et al. [58] who use a numerical homogenization
technique to obtain the effective viscosity of a dilute suspension in a Bird-
Carreau model and find that the effective viscosity too can be modelled
using a Bird-Carreau model with modified values of the parameters.

4.8 Conclusion

In this work, we considered a few problems involving spheres in shear-
thinning fluids at zero Reynolds number. Using the reciprocal theorem, we
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analytically demonstrated how shear-thinning rheology may lead to qualita-
tive changes in the particle dynamics compared to Newtonian fluids. Specif-
ically, we showed that the translational and rotational dynamics of a sphere
are coupled in shear-thinning fluids which can lead to interesting dynamics
in problems involving sedimentation of rotating spheres (a setup which may
be used as a rheometer) and sedimentation in a background flow field. We
also showed that for two equal spheres sedimenting along the line joining
their centres, the symmetry arguments used in Newtonian fluids will pre-
dict the observed result in a generalised Newtonian fluid. Although these
two spheres will sediment maintaining their initial distance of separation,
the variation of the shear-thinning effects with initial separation distance
is non-monotonic. Finally, we considered a dilute suspension of spheres
in a weakly shear-thinning fluid and showed that the resulting suspension
will also be a weakly shear-thinning fluid with a viscosity that varies due to
competing effects arising from the presence of particles: the particles thicken
the fluid (the Einstein viscosity correction) but also increase effective strain-
rates thereby enhancing shear-thinning. At higher strain-rates, outside the
scope of our weakly non-linear assumption, it would be interesting to in-
vestigate strain rates at which the thinning effect supersedes the thickening
one.
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Chapter 5

Squirming through
shear-thinning fluids

Many microorganisms find themselves immersed in fluids displaying non-
Newtonian rheological properties such as viscoelasticity and shear-thinning
viscosity. The effects of viscoelasticity on swimming at low Reynolds num-
bers have already received considerable attention, but much less is known
about swimming in shear-thinning fluids. A general understanding of the
fundamental question of how shear-thinning rheology influences swimming
still remains elusive. To probe this question further, we study a spherical
squirmer in a shear-thinning fluid using a combination of asymptotic anal-
ysis and numerical simulations. Shear-thinning rheology is found to affect
a squirming swimmer in nontrivial and surprising ways; we predict and
show instances of both faster and slower swimming depending on the surface
actuation of the squirmer. We also illustrate that while a drag and thrust
decomposition can provide insights into swimming in Newtonian fluids, ex-
tending this intuition to problems in complex media can prove problematic.

5.1 Introduction

Self-propulsion at small length scales is widely observed in biology; com-
mon examples include spermatozoa reaching the ovum during reproduction,
microorganisms escaping predators and microbes foraging for food [21, 72].
While swimming at low Reynolds numbers is well studied for Newtonian flu-
ids [129], an understanding of the effects of complex (non-Newtonian) fluids
on locomotion is still developing. Many biological fluids, such as blood or
respiratory and cervical mucus, display complex rheological properties in-
cluding viscoelasticity and shear-thinning viscosity [120, 142]. A viscoelas-
tic fluid retains a memory of its flow history, whereas the viscosity of a

#This chapter has been previously published under the same title in Journal of Fluid
Mechanics Rapids, 784 (2015) R1 by Datt et al. © 2015 Cambridge University Press.
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shear-thinning fluid decreases with the shear rate. While it is important
to elucidate how non-Newtonian fluid rheology influences propulsion at low
Reynolds numbers because microorganisms swim through biological fluids
possessing these properties, an improved understanding may also guide the
design of artificial microswimmers [172] and novel microsystems [140] ex-
ploiting these nonlinear fluid properties.

Recent research has begun to shed light on the effects of viscoelasticity
(see the reviews by Sznitman & Arratia [195] and Elfring & Lauga [70]),
but much less is known about swimming in shear-thinning fluids at low
Reynolds numbers. Dasgupta et al. [42] measured a decreased swimming
speed of a waving sheet in a shear-thinning viscoelastic fluid relative to a
Newtonian fluid. In contrast, an asymptotic study of a sheet driven by
small-amplitude waves showed that the swimming speed of a waving sheet
remains unchanged in an inelastic shear-thinning fluid compared to that in
a Newtonian fluid [205]. A recent experiment by Gagnon et al. [77] on the
locomotion of the nematode Caenorhabditis elegans has also suggested that
shear-thinning viscosity does not modify the nematode’s beating kinematics
or swimming speed. In addition, numerical studies [148, 149] examined a
variety of two-dimensional swimmers and showed that faster or slower swim-
ming in shear-thinning fluids can occur depending on the class of swimmer
and its swimming gait. The results were understood in terms of the fluid
viscosity distribution surrounding the thrust and drag elements of the swim-
mer. By estimating separately the propulsive thrust and drag force on the
swimmer, Qiu et al. [172] obtained a scaling relation predicting the swim-
ming velocity of a single-hinge swimmer (a microscallop), which is enabled
to move at low Reynolds numbers by shear-thinning rheology.

The question that emerges from recent literature is when (and why) a
swimmer goes faster or slower in a shear-thinning fluid [126]. To address
this question we study a canonical idealized model swimmer, the squirmer,
in a shear-thinning fluid described by the Carreau-Yasuda model using a
combination of asymptotic analysis and numerical simulations.We predict
and show instances of both faster and slower swimming depending on the
surface actuation of the squirmer. We also explore separately the effects of
shear-thinning on the propulsive thrust generated by the squirmer and the
drag force it experiences, and demonstrate that extension of these findings
to swimming in non-Newtonian fluids can prove problematic.
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5.2. Theoretical framework

5.2 Theoretical framework

The hydrodynamics of spherical bodies propelling themselves with surface
distortions, otherwise known as squirmers, was first studied by Lighthill
[137] and Blake [17]. We follow this approach and model a squirmer with
prescribed time-independent tangential surface distortions. The resulting
slip velocity around the squirmer is decomposed into a series of Legen-
dre polynomials of the form wg(r = a,6) = >;72, B{V; (6), where V;(0) =
—(2/1(1 + 1)) P} (cos §) with P being the associated Legendre function of
the first kind and 6 the polar angle measured with the axis of symmetry.
The coefficients B; are related to Stokes flow singularity solutions. In a
Newtonian fluid, the B; mode (a source dipole) is the only mode contributing
to the swimming velocity, and the By mode (the stresslet) is the slowest
decaying spatial mode and thus dominates the far field velocity generated
by squirmers. Therefore, often only the first two modes, B; and Bs, of
the expansion are considered [59, 101, 213]. The ratio of the two modes,
a = By/Bj, characterises the type of swimmer in a Newtonian fluid: a > 0
describes a puller, which generates impetus from its front end (e.g. the
alga Chlamydomonas), whereas o < 0 represents a pusher, which generates
propulsion from its rear part (e.g. the bacterium Escherichia coli), and the
a = 0 case corresponds to a neutral squirmer which induces a potential
velocity field. In a Newtonian fluid, the swimming speed of a squirmer
Uy = 2B;1/3 [17, 137], which is independent of the fluid viscosity because
drag and thrust change equally with viscosity. Any modes other than B
only modify the surrounding flow structure but do not contribute to the
swimming speed of a squirmer. This simple picture, however, does not
apply to squirming in a shear-thinning fluid, as we discuss later, where all
modes can potentially contribute to the swimming velocity, and adding any
other modes to By will nontrivially affect the locomotion of the squirmer.

5.2.1 Shear-thinning rheology: the Carreau-Yasuda model

Shear-thinning fluids experience a loss in apparent viscosity with applied
strain rates, a property that results from changes in the fluid microstructure.
As the rate of strain exceeds the rate of structural relaxation, one observes
microstructural ordering in the fluid [26]. Here, we capture the change in
apparent viscosity due to this ordering using the Carreau-Yasuda model for
generalised Newtonian fluids [16]. The variation of viscosity with applied
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strain rate is given by

n—1
0= 1o+ (0 — 120) [T+ A3 7 (5.1)

where 7y and 7 are the zero- and infinite-shear rate viscosities respectively.
The power law index n characterises the degree of shear-thinning (n < 1) and
the relaxation time )\; sets the crossover strain rate at which non-Newtonian
behaviour starts to become significant. The magnitude of the strain rate
tensor is given by |¥| = (I1/2)"/?, where IT = 4ij¥i; is the second-invariant
of the tensor. As an example, measured values for human cervical mucus
can be fitted by the Carreau-Yasuda model with values 79 = 145.7 Pas,
Moo = 0 Pas, Ay = 631.04 s and n = 0.27 [99, 205].

We non-dimensionalise the flow quantities taking the first mode, B,
of the surface actuation as the scale for velocity and the radius, a, of the
squirmer as the characteristic length scale. The strain rates are scaled with
w = Bj/a and the stresses by now, such that the constitutive equation takes
the dimensionless form

= {p =g [+ ] T 5.2

where T is the deviatoric stress tensor, and dimensionless quantities are
denoted by stars (*). The Carreau number Cu = w); is the ratio of the
characteristic strain rate, defined by the surface actuation w, to the crossover
strain rate, defined by the fluid relaxation 1/A;. The viscosity ratio is given
by = 7700/770 € [0’ 1]'

It is evident from (@) that when the actuation rate w is much smaller
or much larger than the fluid relaxation rate 1/, i.e. when Cu — 0 or
Cu — 00, the shear-thinning fluid reduces to a Newtonian fluid of constant
viscosity 1y (dimensionless viscosity 1) or 7. (dimensionless viscosity () re-
spectively. Recalling that for a given surface actuation the swimming speed
of a squirmer in the Newtonian regime is independent of the fluid viscosity,
we therefore expect the swimming speed of a squirmer in a shear-thinning
fluid to converge to its Newtonian value in the limits Cu — 0 or Cu — oo.
Non-monotonic variation of the swimming speed with C'u is expected for any
swimmer with prescribed kinematics and has been observed by Montenegro-
Johnson et al. [148] for some two-dimensional model swimmers. In this study
we employ both asymptotic analysis and numerical simulations to investi-
gate these effects of shear-thinning rheology on swimming at low Reynolds
numbers.
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5.2.2 Asymptotic analysis

The deviatoric stress tensor 7* in (@) is a non-linear function of the strain
rate tensor 4*. Assuming only a weak nonlinearity, we may uncouple the
Newtonian and non-Newtonian contributions, writing

TF =A% + A", (5.3)

with € < 1 as a dimensionless measure of the deviation from the Newtonian
case (¢ = 0).

We observe that in the limits Cu = 0 or g = 1, (@) reduces to a
Newtonian constitutive equation. Thus, one may expect weakly nonlinear
behaviour when the fluid relaxation rate is much faster than the surface
actuation rate (¢ = Cu? < 1), or when the zero-shear-rate viscosity is very
close to the infinite-shear-rate viscosity (¢ =1 — f < 1).

Henceforth we shall work in dimensionless quantities and therefore drop
the stars (*) for convenience.

Expansion in Carreau number

Expanding all fields in regular perturbation series in ¢ = Cu?, we obtain,
order by order, the constitutive equations

T0 = ;707
(n—1)
2

hence A = @ (1 — B) [Y0|?*40 to leading order in (@) It should be noted
that the first correction to the Newtonian behaviour is linear in n, which
points to a linear dependence of the swimming speed on n upon using (@),
elucidating the trend suggested by the two-dimensional numerical findings
in Montenegro-Johnson et al. [149]. We also remark that this expansion is
valid only when Cu?|¥|? is o(1) and is therefore not uniformly valid across
all values of strain rates.

(1= 8) [ol*40, (5.4)

="+

Expansion in viscosity ratio

Expanding in perturbation series with ¢ = 1 — 8 gives us, order by order,
the constitutive equations

T0 = ’3/07 (55)

n—1
n=dn+ {1 (14 0oP) 7 o (5.6)
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n—1
where in this limit A = {—1 + (1+ Cu2\"70|2)2}")/0 to leading order in

(@) It should be noted that this asymptotic expansion is uniformly valid
for all strain rates or Carreau numbers, which permits a full-range study of
the non-monotonic swimming behaviour.

5.2.3 The reciprocal theorem

Stone & Samuel [193] demonstrated the use of the Lorentz reciprocal the-
orem in low-Reynolds-number hydrodynamics [93] to obtain the swimming
velocity of a squirmer for a given prescribed surface actuation u® with-
out calculation of the unknown flow field, provided one can solve the re-
sistance/mobility problem for the swimmer shape (with surface S). Lauga
[122, 125] then developed integral theorems extending this method for use
with complex fluids. We use these methods in the subsequent calculations
to obtain the swimming velocity of a squirmer in a shear-thinning fluid;
the methodology adopted below closely follows the formulation in Elfring &
Lauga [70].

We represent the velocity field and the associated total stress tensor for
a force- and torque-free swimmer with w and o respectively. We consider
the corresponding resistance problem in a Newtonian fluid to simplify the
calculation of the swimming velocity. The resistance problem (denoted with
a hat) involves the rigid-body motion with translational velocity U and
rotational velocity fl and the corresponding velocity field and associated
stress tensor are represented by @4 and & respectlvely Due to the hnearlty
of the Stokes equation, we may write & = L. U 6=T -Uand F=—-R-U.
Here, for compactness, both the translational and the rotational components
of velocity are contained in U and, similarly, the corresponding matrices
contain both the translational and rotational terms. In weakly nonlinear
complex fluids, the swimming velocities U = [U §2]T are given by

U:R—l-USus.(nT)dse/VA:VidV]. (5.7)

The integral over the volume of fluid V' external to S in the equation mea-
sures the change in swimming dynamics due to the non-Newtonian behaviour
of the fluid. For a spherical squirmer with axisymmetrical tangential surface
distortions, there is no rotational motion and the translational velocity is
given simply by

_ L[ sqg & : 12)
U-— 47T/Su ds 87T/VA.<1+6V VG av, (5.8)

46



5.3. Results and discussion

where G = 1 (I + %) is the Oseen tensor (or Stokeslet). The first term

on the right-hand side is the result of swimming in a Newtonian fluid [193],
and the last term in the equation contains the weakly nonlinear effect, which
can be evaluated analytically in some special cases and can be computed in
general by numerical quadrature readily.

5.2.4 Numerical solution

The numerical simulations of the momentum equations at zero Reynolds
number with the Carreau-Yasuda constitutive relation (p.l)) are imple-
mented in the finite element method software COMSOL. We use a square
computational domain of size 500a x 500a, discretized by approximately
30000-50000 Taylor-Hood (P2 — P1) triangular elements. The mesh is
refined near the squirmer in order to properly capture the spatial variation
of the viscosity. Since slowly decaying flow fields are expected at low
Reynolds numbers, a large domain size is important to guarantee accuracy.
The simulations are performed in a reference frame moving with the
swimmer and the far-field (inlet) velocity is varied to obtain a computed
zero force on the squirmer. In addition to comparing with the asymptotic
analysis in this work, we have validated our implementation against the
analytical results for a three-dimensional squirmer in a Newtonian fluid
[17, 137] and a two-dimensional counterpart in a shear-thinning fluid [149].

5.3 Results and discussion

As a first step we investigate the effect of shear-thinning rheology upon
swimming speed by considering the small-C'u regime and use (b.8) to derive
an analytical formula for the leading-order swimming speed U of a two-mode
squirmer (with By and B modes)

U 2
1 1—
Un + Cu” ( B)

(n—1)

C1 [1+ Coa?], (5.9)

where C7 = 0.49 and Cy = 2.25 are numerical constants, and Uy is the
Newtonian swimming speed. In a shear-thinning fluid we have n < 1 and
8 < 1, and hence we find that this two-mode squirmer can only swim
slower than in a Newtonian fluid (U/Uy < 1) in the small-Cu regime. The
two-dimensional numerical simulations in Montenegro-Johnson et al. [149]
reported that a neutral squirmer (o = 0) swims slower in a shear-thinning
fluid, which is consistent with our analytical results for a three-dimensional
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Figure 5.1: In (a) we show results from numerical simulations for a neu-
tral squirmer (o = 0, ®), puller (o« = 5, #) and pusher (o« = —5, V)
for ¢ = 0.99 and n = 0.25. (b) The non-monotonic variation in velocity
is well captured by asymptotics for a neutral squirmer (solid line), and a
pusher/puller (dashed line) at ¢ = 0.1 and n = 0.25.

squirmer (@) in the small-C'u regime, but we also find that the same con-
clusion of a decreased swimming speed holds for pushers (a < 0) and pullers
(o > 0) as well. In contrast to the case of swimming in a viscoelastic fluid,
where the pusher and puller attain different velocities given the same mag-
nitude of « [217], (@) reveals that in a shear-thinning fluid a pusher and
puller have the same swimming velocity because the function for swimming
speed is even in ¢; this asymptotic result is verified by numerical simulations
to hold for different ranges of Cu and § (as shown by the overlapping of the
upper and lower triangles in figure Elﬁ

To further characterise the variation of swimming speed, over the full
range of Cu, we consider the asymptotic limit ¢ = 1 — 8 <« 1, aided by
numerical simulations for larger values of e. Biological fluids often have
a small viscosity ratio § and hence ¢ = 1 — (§ is typically close to 1. In
figure la, we present the numerical results for a neutral squirmer, pusher,
and puller in the biological limit using the values € = 0.99 and n = 0.25 to
emulate human cervical mucus [99, 205]. We demonstrate in the upper inset
(neutral squirmer) and lower inset (pusher and puller) in figure la that the
numerical solutions for the swimming speed ratio converge to the asymptotic
solutions (solid line in the upper inset; dashed line in the lower inset) when
€ — 0. In figure 1b, the results are presented at € = 0.1 and we note that all
qualitative features of the impact of a shear-thinning fluid in the biological
limit (e ~ 1, figure la) on the swimming speed are well captured by the
asymptotic analysis (when € < 1, figure 1b) and as expected, the numerical
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simulations (symbols) agree very well with the asymptotic theory (lines)
when ¢ is small (figure 1b).

The non-monontonic variation of the swimming speed with C'u may be
expected based on the asymptotic behaviour of the constitutive relation dis-
cussed at the end of section . To understand the variation more quan-
titatively, recall the form of A in (5.6) and observe from the integral expres-
sion for swimming velocity (5.8) that at low strain rates, the non-Newtonian
contribution A ~ £Cu?(n — 1)|§0|*4 vanishes as Cu — 0. At high strain
rates, A ~ —% + (C’uho\)"_l “o; the first term, —4p, vanishes under the
integration in (@) [70], and the remaining term gives a non-Newtonian con-
tribution that vanishes as Cu — 0o because for a shear-thinning fluid n < 1.
The swimming speed therefore displays a non-monotonic variation with Cu,
and since the speed decreases when Cu is small as shown by (@), a mini-
mum swimming speed may be expected to occur at intermediate values of
Cu (the ‘power-law’ regime of the model), where the non-Newtonian effect
is most significant. However, for a given swimming gait, if the actuation
rate of the swimmer is small enough or large enough, the shear thinning
fluid may appear to have no effect at all on the swimming speed.

To understand the reduction in swimming speed, inspired by the qual-
itative descriptions given in Montenegro-Johnson et al. [149], we look into
the thrust and the drag of the swimming problem separately.

5.3.1 Drag and thrust

We separate the swimming problem into a drag problem (a sphere under-
going rigid body translation U inducing hydrodynamic drag) and a thrust
problem (a sphere held fixed undergoing only tangential surface distortions
thereby generating thrust). The superposition of these two sub-problems
gives the entire swimming problem in a Newtonian fluid in the Stokes regime;
this is obviously not the case in a shear-thinning fluid due to its nonlinear
constitutive equation. However, by looking at the thrust and the drag prob-
lems, one may gain insight into the more complex non-Newtonian swimming
problem [149, 172].

We derive the expressions for drag and thrust in a shear-thinning fluid
again via the reciprocal theorem approach (section ) by utilizing the
solution to the resistance problem in a Newtonian fluid. The drag force on
a sphere moving with a velocity U in weakly shear-thinning fluid is given by
Fp = —67U~3¢ [, Ap : (1+ £V?) VG dV, where Ap is formed by the so-
lution to the Newtonian drag problem. Similarly, the thrust force generated
by a sphere held stationary with surface actuation w® in a weakly shear-
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Figure 5.2: In (a), the symbol A denotes the difference between drag, or
thrust, in a shear-thinning fluid and a Newtonian fluid: the dash-dot curve
represents the drag reduction in a shear-thinning fluid compared with a
Newtonian fluid, while the solid and dashed curves represent loss in thrust
for squirmers with @ = 0 and a = +5 respectively (n = 0.25, ¢ = 0.1). In
(b) we show that the difference between drag and thrust is positive both for
a neutral squirmer (solid) and a pusher/puller (dashed) in a shear-thinning
fluid. All quantities are dimensionless.

thinning fluid is given by Fr = —3 [qu®dS—2¢ [}, Ap (1 + %V2> VGdv,
where Ar is formed by the solution to the Newtonian thrust problem.

One could expect a drag reduction when a rigid sphere is pulled with a
constant velocity through a shear-thinning fluid since the fluid viscosity is
reduced by the fluid straining motion. However, it is interesting to see in
figure @a that the thrust reduction caused by the shear-thinning rheology
is larger than the drag reduction for a large range of Cu. This more severe
reduction in thrust than drag then suggests slower swimming speeds com-
pared with the Newtonian case, which correctly predicts the trend found by
detailed calculations (figure lill) In addition, for very small or large values
of Cu, the difference between the magnitudes of drag and thrust (Fp — Fr)
vanishes as shown in figure 5.2b, respecting the limits where the swimming
speed should recover the Newtonian value (figure p.1).

Although conceptually intuitive, the drag and thrust decomposition is
not complete as it neglects the contribution of non-linear products in the
non-Newtonian stress to the full swimming problem, namely A # Ar + Ap,
due to the non-linearity in the constitutive equation. We will give a counter-
example in section below to illustrate a scenario when these intuitive
arguments fail.
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5.3. Results and discussion

5.3.2 Addition of other squirming modes

The results from the detailed asymptotic and numerical analysis as well as
the intuitive model for a two-mode squirmer seem to suggest that the shear-
thinning rheology acts to hinder the locomotion. This raises the simple
question of whether this conclusion still holds if other modes of surface
actuation are present. The picture is clear for a Newtonian fluid: only the
B; mode contributes to swimming and the addition of other modes does not
alter the swimming speed. However, can the shear-thinning rheology render
other modes, typically not considered in the Newtonian analysis, effective for
propulsion? We address these questions using the asymptotic and numerical
tools developed in the previous sections.

We first note that the B3 mode alone leads to locomotion in a shear-
thinning fluid in stark contrast to a Newtonian fluid as only the By mode
has a non-zero surface average (see (@)) Indeed any odd mode alone may
lead to locomotion in a shear-thinning fluid (even modes alone do not swim
by symmetry). We also find quite distinctive behaviour when the Bs mode
is combined with other modes. In the Cu < 1 regime, we can derive an
analytical expression allowing us to predict the values of o and ( = B3/B;
for faster or slower swimming. To quadratic order in Cu, we find

£:1+Cu2(1—6) (n;:l)cl [1+CQ(1+C3C)CV2+C4(C5<2+06<—1)C],

Un
(5.10)

where the additional numerical constants are given by C3 = 0.51, Cy = 0.70,
Cs = 0.18, and Cg = 1.66. Again the swimming speed is even in a and we
recover (@) when ¢ = 0 as expected. From (@) we can predict that faster
swimming (U/Uy > 1) will occur if
0?U

7(04’ C)

902 > 0, (5.11)

Cu=0

in other words when the term in the square brackets in () is negative. In
figure @a we plot the level set curve below which faster swimming occurs in
the small C'u regime; we find that this can only occur when ( is negative for
any «. For example, when a = 0 we must have ( < —10.11, while o = &5,
¢ < —2.22 leads to faster swimming.

In figure 5.3b we show the variation of swimming speed for two swimmers
with o and ¢ chosen below the level set curve (the upper solid and dashed
lines) and two swimmers with a and ¢ chosen above the level set curve
(the lower solid and dashed lines). We note that the swimming speeds of
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Figure 5.3: In (a) we show the level set curve below which faster swimming
occurs for specific values of o and ( = Bs/Bj when Cu < 1. In (b) we show
the swimming speed of a neutral squirmer (solid line) and a pusher/puller
(dashed line) at values of ¢ chosen below the curve in (a) so that the swim-
ming speed is larger than the Newtonian value at small C'u (the upper solid
line: &« =0, ( = —15 ; the upper dashed line: o = £5, { = —4 ); conversely,
with values of ¢ above the curve in (a) the swimmers always swim slower
than in a Newtonian fluid as shown (lower solid line: a = 0, { = 15; lower
dashed lines: a = £5, ( =4). Here ¢ = 0.1, n = 0.25.

the faster swimmers in the small-Cu regime experience a subsequent fall
below the Newtonian value and then a rise above it as C'u increases, before
asymptoting to the Newtonian swimming speed at high Cu. This indicates
that microorganisms (with a given swimming gait) can swim both faster and
slower than in a Newtonian fluid depending on the actuation rate of that
gait. In contrast, the two swimmers that swim slower in a Newtonian fluid
in the small-Cu regime remain slower for larger C'u with a non-monotonic
variation similar to that observed previously (see figure 5.1). These results
also hold qualitatively for large values of e.

We emphasize that the thrust and drag reduction model is unable to
explain the faster swimming speed with the addition of a Bs mode because
in these cases the thrust still decreases more than the drag over a wide
range of Carreau numbers, if they are considered separately. This serves as
a counter-example demonstrating how analyzing drag and thrust separately
may not adequately describe swimming in complex media. This fact points
specifically to the interaction between thrust and drag fields, due to the non-
linearity in the constitutive equation, as the cause of faster than Newtonian
swimming.
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5.4 Conclusion

We show in this work that shear-thinning rheology affects a squirmer with a
prescribed swimming gait in nontrivial and surprising ways; we predict, ana-
lytically, instances of both faster and slower swimming than in a Newtonian
fluid depending on the details of the prescribed boundary conditions. Indeed
we demonstrate that even with the same squirming modes a squirmer can
swim faster or slower depending on its rate of actuation. In general, these
results point to the importance of both the spatial and the temporal details
of the swimming gait of a microorganism and ultimately the difficulty in
predicting the resulting effect of the non-Newtonian fluid a priori. In light
of this, an important next step would be to incorporate models of internal
force generation for biological swimmers and determine how the fluid rhe-
ology affects the resultant gait itself in concert with propulsion. Finally,
we remark that the drag and thrust decomposition of the swimming prob-
lem is indeed effective in Newtonian fluids and may also be insightful in
complex fluids in some instances, but one should use caution when extend-
ing the results to non-Newtonian swimming as the inherent non-linearity of
the problem can be significant enough for a Newtonian-like decomposition
to yield qualitatively flawed predictions as illustrated by the example we
provide.
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Chapter 6

An active particle in a
complex fluid

In this work, we study active particles with prescribed surface wvelocities
in non-Newtonian fluids. We employ the reciprocal theorem to obtain the
velocity of an active spherical particle with an arbitrary axisymmetric slip
velocity in an otherwise quiescent second-order fluid. We then determine
how the motion of a diffusiophoretic Janus particle is affected by complex
fluid rheology, namely viscoelasticity and shear-thinning viscosity, compared
to a Newtonian fluid, assuming a fixed slip velocity. We find that a Janus
particle may go faster or slower in a viscoelastic fluid, but is always slower
in a shear-thinning fluid as compared to a Newtonian fluid.

6.1 Introduction

Active particles are self-driven units which can convert stored or ambient free
energy into systematic motion [139, 180]. These particles are found on length
scales from subcellular to oceanic, and range from aquatic, terrestrial and
aerial flocks to colloidal particles propelled through fluid by catalytic activity
at their surfaces. The interactions of active particles with the medium they
are found in, and amongst themselves, give rise to fascinating collective
behaviour and beautiful pattern formation [139]. Active particles in fluid
media can be either living, like swimming microorganisms [129], or synthetic,
like crystals of light-activated colloidal surfers [162], swimming droplets [202]
and chemically self-propelled nano-motors [107]. For sufficiently small sizes
of active particles, inertial forces are negligible compared to viscous forces,
and one may assume the fluid to be under an instantaneous equilibrium of
forces [170].

Several microorganisms propel themselves using small surface distortions
as in the coordinated beating of cilia on Opalina and Paramecium [184]. As

$This chapter has been previously published under the same title in Journal of Fluid
Mechanics, 823, (2017) 675-688 by Datt et al. © 2017 Cambridge University Press.
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6.1. Introduction

such, these swimmers are often modelled as spheres with a prescribed surface
slip velocity [165]; the slip velocity serves as a coarse-grained description of
any deformation or dynamics on the particle body that leads to its motion
[17, 137]. Likewise, a chemically active colloidal particle with asymmetric
catalytic properties generates a non-uniform distribution of reaction prod-
ucts and hence, also a flow within a thin ‘inner’ region near the particle’s
surface [2|. The surface flow and the resultant diffusiophoretic motion may
also be modelled by prescribing an apparent slip velocity on the particle
surface [106]. The motion of these particles, arising due to a surface slip
velocity is, by now, well-understood for particles that move in Newtonian
fluids at low Reynolds numbers [22, 71]. In general, the propulsive force
generated by the surface slip velocity balances the hydrodynamic drag force
due to the rigid body motion of the particle. For simple bodies, the swim-
ming velocity is given directly by the surface average of the prescribed slip
velocity [67] and because of this simplification, detailed models of the surface
slip velocity for living and synthetic active particles are often unnecessary.

In contrast, an understanding of dynamics of active particles in non-
Newtonian fluids is still developing [164]. Unlike in Newtonian fluids, the
constitutive equation for stress is nonlinear in non-Newtonian fluids and as
a result a straightforward linear decomposition of the flow field into drag
and thrust components fails [45]. Consequently, a surface average of the
slip velocity does not yield the velocity of the particle, and so a detailed
description of the surface slip velocity may be significant in complex fluids.
Despite this, many recent studies consider, as a point of comparison with
Newtonian fluids, the two-mode swimmer model [52, 135, 149, 217], although
recently it was shown that neglected details of the surface slip velocity can
have a qualitative effect on the motion of the particle in a shear-thinning
fluid [45].

In this work, we analyse the motion of an active particle in a weakly
nonlinear complex fluid with a general axisymmetric slip velocity by means
of the reciprocal theorem [125, 193]. This allows us to consider a complete
range of prescribed motions on the particle surface and to determine what
details matter and why. We note that the swimming gait (apparent sur-
face slip velocity) of the swimmer may itself be affected in complex fluids
as compared to Newtonian fluids, due to, for example, constraints on power
for biological swimmers or changes in solute diffusivity for diffusiophoretic
particles. Here, however, we consider swimmers with the same swimming
gait as in Newtonian fluids. As an example, we consider the slip velocity
of self-diffusiophoretic Janus particles and discuss the effects of viscoelastic-
ity and shear-thinning rheology on the particles’ propulsion velocity. These
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active colloidal particles, at times, may swim through polymer suspensions
[31], and an understanding of their dynamics in complex fluids may lead to
interesting applications in biological and chemical engineering [169]. Recent
studies on the effects of rheology on the motion of Janus particles [86, 157]
have shown that the particle translational and rotational dynamics are cou-
pled in media with viscoelasticity or local viscosity variations. Further, mo-
tivated by recent works on the dynamics of active particles in background
flow of non-Newtonian fluids [3, 51, 140], we generalise the reciprocal theo-
rem formulation [70, 125, 128] to include a background flow in the spirit of
previous classical work on passive particles in weakly nonlinear flows [133].

6.2 Modelling active particles

Biological microswimmers possess variety of different geometries and swim-
ming modes; many, like ciliates (Opalina) and multicellular colonies of flag-
ellates ( Volvox), are approximately spherical in shape and propel due to the
beating of closely packed cilia on their surface [184]. These swimmers, in
an idealised model, are mathematically represented as spheres with small
amplitude radial and tangential motions of elements of the surface. The
original model (now known as the squirmer model), by Lighthill [137] and
Blake [17], considered only axisymmetric surface distortions so the swim-
mers could swim only along their axis of symmetry. Recently, Pak & Lauga
[159] extended the model to arbitrary surface deformations allowing three-
dimensional translational and rotational swimming kinematics of the swim-
mer.

Synthetic active particles too can be conceived in many shapes with a
variety of propulsion mechanisms [207]. Self-phoretic particles, in particular,
are colloids which are able to generate local gradients through the catalytic
physiochemical properties on their surface [84, 85, 145]. The short-range
interaction between the surface of the swimmer and the self-generated outer
field gradient (solute concentration, temperature or electric field) locally
creates fluid motion in the vicinity of particle boundary that leads to particle
propulsion due to phoresis [2]. When the interaction layer is thin compared
to the particle size, phoretic effects can be represented by the generation of
slip velocities on the particle surface [106, 145].

In this work, we focus on spherical phoretic particles [85, 145], with an
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axisymmetric slip velocity expressed here as

u® (0,t) = i ap (1) Ky (cosB) ég (6.1)
p=1
with
_ M " (cos 0) sin
K, (cost) = Py 1)Pp( 0)sind, (6.2)

where éy is a unit vector in the direction of increasing polar angle 6 in spher-
ical coordinates and P, is the p*® Legendre polynomial [144]. The flow field
due to the swimmer in Newtonian fluids is completely characterised and de-
termined by the intensities of the ‘squirming’ modes, o, [17]. Of particular
significance are the first two modes: «1, which fixes the swimming veloc-
ity [137], and a9, which defines the strength of the force dipole generated
by the swimmer Y = 10may [145]. Consequently, for analyses of collective
behaviour [54, 218], or transport of nutrients [100, 144], in Newtonian flu-
ids, active particles are very often modelled with a truncated slip velocity
expansion which retains only the first two terms. We consider here only
steady slip velocities on the particle surface, which is often appropriate for
phoretic particles; however, in general, especially for models of biological
organisms where the surface motion arises from a cyclical deformation, the
slip velocities may depend on time ¢ [166]. This time dependence of the sur-
face actuation is then particularly important for fluids which possess history
dependence, like polymer solutions, especially when the time scale of surface
actuation is of the same order as the fluid relaxation time [69].
Self-diffusiophoretic particles propel due to asymmetric surface chemical
reactions [2, 20, 84] which cause an induced imbalance of osmotic effects
in a thin interaction layer on the particle surface. The resulting flow in
this thin layer, the apparent slip velocity, is proportional to the local so-
lute concentration gradient and the specifics of solute—surface interactions
(phoretic mobility). Under the assumption that diffusion is fast enough so
that the chemical reaction at the surface is controlled by the far-field so-
lute concentration (fixed-flux formulation, Ddmkohler number = 0) and on
neglecting the distortion of solute distribution due to flow resulting from
phoretic effects (Péclet number = 0), one obtains the squirming modes in

(6.1)

= (6.3)
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Figure 6.1: Self-phoretic particle with two compartments of different activ-
ity, Ay and A;. We consider particles with a constant uniform mobility over
the surface. When 6,; = 7/2, the particle has compartments of equal cover,
which we call a symmetric Janus particle.

where the surface activity A (6) = > A, P, (cos @) (and positive values denote
absorption of solute), the phoretic mobility M is assumed to be constant over
the surface and D is the solute diffusivity (see Michelin & Lauga [145] for
details).

We consider Janus-type particles with a discontinuous change in activity
between two distinct compartments of the surface activity, A(6) = Ay for
0 < 6,4 while A(0) = A, for 0 > 04 as illustrated in figure 6.1. Here, we take
the rear compartment to be inert, A, = 0, in which case the coefficients are
given by [145]

A A
Ag=2L (1 —cosby), A,= ?f [Pr—1(cosby) — Pyyi(cosby)] (n>1),

2
(6.4)
which then set the squirming modes and the entire flow field for Janus

particles in Newtonian fluids.

6.3 Swimming in a background flow of a weakly
non-Newtonian fluid

Consider a general active particle (or swimmer) B with surface 0B immersed
in a background flow u® of an incompressible and weakly nonlinear complex
fluid. The velocity on the swimmer surface 9B is

u(@edB)=U+ N2 xz+u°, (6.5)
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6.3. Swimming in a background flow of a weakly non-Newtonian fluid

where U is the translational velocity of the particle, £2 is the rotational
velocity and w® is the prescribed deformation velocity on its surface (the
swimming gait).

The rheology of the non-Newtonian fluid is assumed to be only weakly
nonlinear [70, 125], and thus, a constitutive equation of the form

T =10y + Alu], (6.6)

where 7 is the deviatoric stress, 7 is the viscosity and 4 the strain-rate tensor
such that % gives the Newtonian contribution. A[u] is a symmetric tensor
and a nonlinear functional of w and ¢ is a small dimensionless parameter
characterising the deviation from Newtonian behaviour, for example, small
Deborah number in case of viscoelastic fluids or small Carreau number for
shear-thinning fluids.

We consider the flow field to be inertialess and in mechanical equilibrium
with V - ¢ = 0, where o is the stress tensor corresponding to the velocity
field u. We define disturbance fields v’ = v — u* and ¢/ = 0 — 0™ where
u® and o™ correspond to the velocity and stress fields of the background
flow in the absence of the particle. Due to the nonlinearity of constitutive
equation (6.6), ' and o', in general, do not represent velocity and stress
fields of the same problem (except when £ = 0).

Stone & Samuel [193] demonstrated a shortcut to obtain the swimming
velocity of an arbitrary swimmer in a Newtonian fluid with a given pre-
scribed surface actuation u® without calculation of its unknown flow field
using the Lorentz reciprocal theorem in low Reynolds number hydrodynam-
ics [93], provided one can solve the rigid-body resistance/mobility problem
for a body of the same shape. Using this approach Lauga [122, 125] then
developed integral theorems to determine the swimming velocity in complex
fluids. We use these methods below, following the formulation in [69, 70],
to obtain the swimming velocity of a swimmer in a weakly non-Newtonian
fluid but include the possibility of a non-zero background flow for generality.

For the resistance problem (denoted with a hat), we consider rigid-body
motion with translational velocity U and rotational velocity 0, through a
Newtonian fluid with corresponding velocity field @ and associated stress
tensor & = 4. As both flows (due to the swimmer and due to rigid-body
motion) are in mechanical equilibrium, we have

4 (V-o')=u'-(V-6)=0. (6.7)

Integrating over the volume of fluid, V, exterior to B and applying the
divergence theorem while enforcing the incompressibility of the flows, we
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6.3. Swimming in a background flow of a weakly non-Newtonian fluid

get

/ n-o’-a d5+/ i vadvV = | néu ds+/+:vu' dV =0, (6.8)
%)% % %

)%
where we have defined 7/ =7y’ + A" and A" = A[u| — A[u*°]. The surface
dV that bounds the fluid volume V is composed of the body surface, 9B, and
an outer surface (fluid or solid, possibly at infinity). Here, n is the normal
to the surface, 9V, pointing into V.

Provided the fields, v’ and o', decay appropriately in the far field, we
may neglect the outer surface of 9V (we shall show this is the case for
weakly viscoelastic linear background flows in a subsequent work). For flows
bounded by no-slip walls these terms will be identically zero. Upon substi-
tution of the boundary conditions on 0B for each field and enforcing that the
net hydrodynamic force, F = [,z n-0 dS , and torque, L = [,z xx(n-0) dS,
are both zero on a free swimmer in the absence of inertia, the left-hand side
of (@) simplifies to

n/fy’:VﬁdV—l—s/A’:VﬂdV:(). (6.9)
% %
while the right-hand side of (6.8) simplifies to
F-U+L -2+ n-é’~<us—u°°) dS—sﬂ/A’:Vadvzo, (6.10)
oB nJy

where we have utilised the fact that 4 : Vu' =4’ : V. We will here use
six-dimensional vectors for compactness, U = [U £2]|" and F = [F L],
and from the linearity of the Stokes equation, write & = L- U, 6=T-0
and F = —R - U, where R is symmetric. Finally, upon combining (6.9) with

() we obtain

U=R". MB(uS—uOO)-(n-?) dS—z—:Z/VA’:Vl: dV}, (6.11)

which gives us a relation for the propulsion velocity of a swimmer in the
background flow of a weakly non-Newtonian fluid. The correction to the
Newtonian swimming speed, due to the tensor A, typically depends upon
the unknown field w but, upon expanding perturbatively in &, the correction
depends only on the Newtonian solution to leading order.

For a spherical particle of radius a, the translational velocity is given
simply by

1 1 a?
U—-— S _u®) ds — —/A’: 1+ 2v2 | ve av
47Ta2/5<u “ ) 587T77 v <+6

(6.12)
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6.4. Janus particle in non-Newtonian fluids

where G = (I + 77 /r?) /r is the Oseen tensor (or Stokeslet). As expected,
when € = 0, one obtains the result for a swimmer in a background flow of
Newtonian fluid [67].

6.4 Janus particle in non-Newtonian fluids

As examples of an active particle in a complex fluid, we study a Janus par-
ticle in a weakly viscoelastic fluid and in a weakly shear-thinning fluid but
assume the same surface slip velocity as in the Newtonian fluid (given by
(@) We note that we expect the non-Newtonian rheology will also affect
the slip velocity for phoretic particles but focus here only on kinematic differ-
ences for a fixed swimming gait. Viscoelasticity and shear-thinning rheology
are two important non-Newtonian properties [16] and also the characteristics
of many biological fluids [120, 142] wherein these artificial swimmers have
potential applications [158]. As discussed in §@, we assume the diffusion
of the solute to be fast enough so that the effects of Péclet and Damkohler
number can be neglected and we shall consider the particle in an unbounded
and otherwise quiescent background (u® = 0). We first analyse the Janus
particle in a weakly viscoelastic fluid.

6.4.1 Viscoelasticity: second-order fluid

Viscoelastic fluids exhibit both viscous and elastic responses to forces. Such
fluids possess a memory, and stresses in them depend on the flow history.
For flows which are both slow and slowly varying, viscoelasticity may be

modelled without any memory of the past stresses as a second-order fluid
[150],

. Y o

T=0y = 5y Ay (6.13)
Here, 7 is the total viscosity of the solution and ¥; and ¥, are the first and
second normal stress-difference coefficients, respectively. The first normal
stress difference is generally positive in viscoelastic flows i.e ¥; > 0. The

triangle denotes the upper-convected derivative

vV 04

7:£+U.V7_(VU)T-'7—1-VU. (6.14)
In order to study the effect of fluid rheology on the particle, we first non-
dimensionalise the equations by scaling lengths with the particle radius,
a; velocities with the first swimming mode «;, which without any loss of
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generality is assumed to be positive, and stresses with nw, where w = a;/a
is the scale of strain rate. The resulting dimensionless constitutive equation
is

\Y
" =4"—De (7* + by - '7*) , (6.15)

with De = w¥; /27, the Deborah number, which is the ratio of the relaxation
time scale of the fluid to the characteristic timescale of the flow and b =
—2Wy /Wy > 0. Henceforth, we work in dimensionless quantities and drop
the stars (*) for the sake of convenience. For small De (weakly viscoelastic
limit), we expand the flow quantities in a regular perturbation expansion in
De [52, 70, 121] to get, at the leading order,

70 = Yo, (6.16)
and at O (De)
T =1+ A, (6.17)

v
with A = — ("yo +b4g - ’3’0)- The angular velocity of a spherical swimmer is

zero due to axisymmetry while its translational velocity, correct to O (De),
is given by (@; where now € = De.

The flow field for a swimmer with prescribed surface velocity (Ell) in a
quiescent Newtonian fluid is given by [101, see]

1 +36-7’T+§:(1 1><+1>6P<e-r>r
ung = — ——e —_—— —_— —_ —_— —_
0 2r3 2r3 r 7 2 o )\PT g )T\ T )

p=2
> p P 1 1 e-r\/e-rr
—(z=1)—= — O W, | — - —

erzz:2<2“’+2 (2 >7“”><p+2) P p(r)(r r e)’
(6.18)

where e is the swimming direction and r is the position vector
with » = |r| from the centre of the sphere. ©, = «a,/a1 and
Wy(z) = 2/(n(n+1))P)(r). Using the Newtonian velocity field,

one can calculate the strain-rate field around the swimmer, g, and thus
obtain the expression for A. Substituting the expression for A in () and
using the orthogonal properties of Legendre polynomials, one obtains, after
some lengthy but straightforward calculations,

U/Unv=1+De(b—1)> C,0,0p11, (6.19)
p=1
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where

6p

C,= ESVE e (6.20)

Recall that Uy = oy is the (dimensional) swimming speed in Newtonian
fluids. Frequently, the slip velocity description is truncated at two modes
ie. ©,=0Vp>2, and depending on whether &y < 0, B2 = 0 or B2 > 0
the swimmer is identified as a pusher, neutral or puller swimmer, respec-
tively, in Newtonian fluids [71]. = However, swimmers like starfish larvae
[81] and Janus particles possess significant values of higher modes. When
considering such swimmers in non-Newtonian fluids, one should be careful
while truncating the series because unlike in Newtonian fluids, swimming
speeds may be qualitatively affected by higher modes [45]. Indeed, as can
be noted from (@), setting the modes a; = 1, ag = 1 and a3 = 2 (with ap-
propriate units) produces qualitatively different swimming behaviour than
a1 =1, ag = 1 and a3 = —2 when just the first three modes are considered.
Therefore, the expression (), while giving the contribution of all spec-
tral modes in the slip velocity expansion to the swimming velocity, helps to
predict when it may be reasonable to neglect higher modes and use a simple
‘two-mode’ description to obtain the swimming speed.

We consider the case of a symmetric Janus particle, where precisely
one half is chemically active and the other inert, §; = m/2. The spectral
coefficients for activity in this case are zero for even modes (from (6.4)),
and consequently @,, = 0. Hence, from (), one finds that a symmetric
Janus particle (with a constant uniform surface mobility) swims only at its
Newtonian speed — a result also true for a two-mode neutral swimmer [52]
but here obtained without any restriction on the number of modes being
considered. Interestingly, one could obtain this result by observing that the
non-Newtonian contribution in () is a volume integral of the contraction
of an even tensor A (under * — —x) and an odd kernel and therefore
vanishes. Similarly, looking at the power consumption of a squirmer, P,
correct to the first order [52]

QPZ/")’QZ".)’O dV+De/ A~ dV, (621)
1% v

one finds once again that for a symmetric Janus particle the non-Newtonian
contribution gives a null result. Thus, a symmetric Janus particle in a
second-order fluid swims and expends power as if in an equivalent Newto-
nian fluid (De = 0), correct to the first order in De, for the same surface
slip velocity as in the Newtonian fluid. We note that the non-Newtonian
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rheology will affect the solution of the ‘inner’ region for phoretic particles
[145]. Additional non-Newtonian stresses arise on the particle surface, and
even the solute diffusivity may change due to viscosity variations. For a
thin interaction layer, neglecting effects of Péclet and Damkoéhler number,
the slip velocity will change at O (De) similarly to the case of electrophoresis
considered by Khair et al. [111]. Here, however, our emphasis is on studying
the changes in the propulsion velocity from its Newtonian value for a given
(but arbitrary) slip velocity on the particle surface.

A similar result was obtained by Leal [131] for axisymmetric passive
particles with fore—aft symmetry in a second-order fluid, where such particles
translate, to the first approximation, at the same rate as in an equivalent
Newtonian fluid. On comparison with present results, one may expect even
non-spherical active particles with fore—aft symmetry in second-order fluids
to behave as if in equivalent Newtonian fluids.

When the two halves of the Janus particle are not exactly equal, i.e.
84 # m/2, then the even spectral modes of the activity, Agp,, are no longer
equal to zero and hence @y, # 0. Consequently, the non-Newtonian contri-
bution to the swimming velocity may now be non-zero, and can be easily
calculated for any level of active surface coverage, 8;. We find that when
04 > m/2, the particle swims faster than in a Newtonian fluid and while
for 6; < /2 it swims slower, provided b < 1 (see [37] and [53] for a recent
discussion on permissible values of b). Interestingly, one can qualitatively
predict this result by considering the two-mode description, by observing
that @3 = 2cosfy. The former particle behaves as a pusher, @2 < 0, and
thus swims faster, where as the latter is a puller, @3 > 0, and therefore swims
slower than in a Newtonian fluid (from (@)), as also reported for two-mode
swimmers by De Corato et al. [52]. Quantitatively, the viscoelastic contri-
bution decays for higher modes as C}, ~ 1 /p? and a two-mode description
gives the viscoelastic contribution with a relative error of less than 0.1 for
| cosBy| < 0.35; however, the approximation grows worse upon increasing
the fore—aft asymmetry of the particle and a three-mode description is bet-
ter for |cosfy| > 1/4/5. This is shown in figure @, where we plot the
scaled first-order velocity, Ul(M)/ Unv=(b-1) 2110\4:1 Cp0,6p41 from ()
for different coverage areas of activity with varying number of modes. Note
that as 6; approaches 0 or m, the Newtonian velocity Uy — 0 and UI(M)/UN
diverges.

The asymptotic results for a small De expansion are seen to be valid
for only very small values of De (& 0.02 for two-mode swimmers with O (1)
modes [52]). This may be understood by noting that squirming modes of
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Figure 6.2: Variation of the scaled first-order swimming velocity Ul(M)/ Un
with 64 obtained for the first M +1 modes (dashed lines), and b = 0.2. Ul(oo)
corresponds to the convergence value (M = 99) and is depicted by the solid

line. Inset plot shows the relative error.
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6.4. Janus particle in non-Newtonian fluids

magnitude O (1) result in strain rates of magnitude O(10) on the surface
of the particle in a Newtonian fluid and, therefore, O(10%) values of the
non-Newtonian contribution A, which thereby renders the Deborah number
expansion accurate for only very small values of De. Numerical results using
the Giesekus model, at higher values of De, find all swimmers — pusher,
puller and neutral — swimming slower and expending less power than in
an equivalent Newtonian fluid [217]; one may also expect results obtained
using the second-order fluid model to deviate from those obtained with the
Giesekus model, at moderate Deborah numbers, due to the saturation of
polymer elongation in the latter and the associated differences in extensional
rheology. In the experimental study of Janus particles in viscoelastic fluids
by [86], the Deborah (Weissenberg) numbers were quite small, and hence
in a regime where one may then expect the second-order model to, at least
qualitatively, predict the viscoelastic fluid behaviour [132].

6.4.2 Shear-thinning rheology: Carreau model

Shear-thinning fluids experience a loss of apparent viscosity with applied
strain rate. The Carreau model [16] and its perturbation to the form in
(@) has recently been covered by Datt et al. [45]. We consider the per-
turbation of the flow quantities in the viscosity ratio, ¢ = 1 — § where
B € [0,1] is the ratio of infinite shear-rate viscosity to zero shear-rate vis-
cosity, as this expansion is uniformly valid for all strain rates and obtain
A= {—1 +(1+ Cu2\"yg\2)(nfl)/2} 0. Here, Cu, the Carreau number is the
ratio of the characteristic strain rate in the flow, to the cross-over strain
rate in the fluid and n characterises the degree of shear thinning (n < 1).
With this form of A, it is difficult to obtain an analytical expression for the
propulsion velocity similar to that obtained for the viscoelastic case (6.19).
However, one can numerically calculate the propulsion velocity with higher
modes and then compare the results with just the first two modes. This is
done in figure @ for n = 0.25, where we plot Ul(M) /Un for two values of
1= cos .

We find that irrespective of the position of 6,;, the Janus particle
swims slower in a shear-thinning fluid than in a Newtonian fluid. The
non-monotonic variation of the first-order swimming speed with C'u in figure

is similar to as found by Datt et al. [45] for any two-mode squirmer.
Though the two-mode description qualitatively predicts the results: all —
neutral, pusher and puller — swimmers swim slower, with pusher and pullers
swimming at the same velocity [45], it is apparent from figure @ that
higher modes may significantly alter the results. Additionally, we note that
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the values of @3 and O3 for any Janus particle lie in the range where Datt
et al. [45] predict a smaller swimming velocity than in Newtonian fluids.

6.5 Conclusion and future work

In this work, we studied active particles with prescribed surface velocities in
non-Newtonian fluids. Using the reciprocal theorem, we derived a general
form of the propulsion velocity of an active particle in a weakly nonlinear
background flow. Using this formalism, we calculated the swimming speed
for an active particle with a general, axisymmetric slip velocity in an other-
wise quiescent second-order fluid extending results previously obtained for
a two-mode description. We then considered the motion of diffusiophoretic
Janus particles in weakly viscoelastic and shear-thinning fluids. We showed
that a Janus particle with two equal halves, in a weakly viscoelastic fluid,
will swim at the same speed as in a Newtonian fluid due to its fore—aft sym-
metry (provided the surface slip velocity remains unchanged). When this
symmetry is broken the particle may swim faster or slower than in a New-
tonian fluid and this may be predicted by considering the Janus particle as
a pusher or puller based on the two-mode squirmer description. Conversely,
in a weakly shear-thinning fluid, a Janus particle always swims slower than
in a Newtonian fluid.

While analysing Janus particles, we neglected any changes to the slip
velocity due to fluid rheology as well any dynamics due to the distortion of
the solute concentration field of phoretic particles because of the velocity
field. The latter may not be true for large proteins or molecules, when the
diffusion constant is small and the Péclet number becomes significant. This
coupling of the velocity and concentration field leads to interesting dynamics
in Newtonian fluids [145, 146] and is an avenue for further inquiry in non-
Newtonian fluids. We also expect the fluid rheology to affect the slip velocity
of the particle: the gait of a biological microswimmer may be modified by
non-Newtonian stresses, likewise the slip velocity of a diffusiophoretic Janus
particle. For a complete understanding of the dynamics of active particles
in complex fluids, one should also consider such changes to the gait itself.

Postscript

Consider a squirmer in a 2D linear shear flow, 4> = I' - @, of a second-

v
order fluid (A =4 +b%o - 40, where b is the ratio of the two normal stress
coefficients). We find that the rotational dynamics of the squirmer at first
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Postscript

order, O (De), is given, in dimensionless form (with the scales used in the
current chapter), by

wi = —%@26 « (E -e) (6.22)

where E = I' + FT, ©9 = as/a; and e is the orientation of the squirmer.
Note that at the leading order (in the Newtonian fluid), the squirmer will
rotate with just the rotational velocity of the background flow, as the ax-
isymmetric distribution of the slip velocity on its surface does not lead to
any self-rotation.

The result in () shows that of all the modes, only the second mode
contributes to the rotational velocity of the swimmer. The expression’s
resemblance to Jeffery’s equations [25, 103] suggests that the slip velocity
distribution may render the spherical swimmer appear spheroidal to the
fluid flow. We are currently working on the problem, dealing with how
to rigorously prove the expression (@) (presently, the absence of higher
modes in the expression has been tested numerically).

Note that De Corato & D’Avino [51] have already addressed the dynam-
ics of a three mode squirmer in a sheared viscoelastic fluid. The novelty we
add is through the form () with its similarity to Jeffery’s equations, and
the hypothesis that the result holds for a general n-mode squirmer.
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Chapter 7

A note on higher-order
perturbative corrections to
squirming speed in weakly
viscoelastic fluidsy

Many microorganisms swim in fluids with complex rheological properties.
Although much is now understood about motion of these swimmers in New-
tonian fluids, the understanding is still developing in non-Newtonian fluids—
this understanding is crucial for various biomimetic and biomedical appli-
cations. Here we study a common model for microswimmers, the squirmer
model, in two common viscoelastic fluid models, the Giesekus fluid model and
fluids of differential type (grade three), at zero Reynolds number. Through
this article we address a recent commentary that discussed suitable values of
parameters in these models and pointed at higher-order viscoelastic effects
on squirming motion.

7.1 Introduction

With ideas of minimally invasive surgery, targeted drug delivery, and other
biomimetic applications [79, 154, 208], an understanding of motion of mi-
croswimmers in complex fluids has become imperative. Subsequently, many
recent articles have focussed on motion of microswimmers in complex flu-
ids (see reviews [70, 195]). While biological fluids demonstrate many non-
Newtonian fluid properties [204], one common property is viscoelasticity
[120, 201]. We consider this property in this article.

Viscoelastic fluids show both viscous and elastic properties, and retain
memory of their flow history [16]. Recent experimental studies on biologi-

TThis chapter has been submitted for publication under the same title by Datt and
Elfring.
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cal swimmers [134, 171, 181] have addressed how an organism may change
its swimming stroke as it “senses” the viscoelasticity of the fluid medium.
Elastic stresses in the fluid can also directly contribute to changes in the
swimming speed given a swimming stroke (see, for e.g., [121]). The present
work is a theoretical study of swimmers in viscoelastic fluids. A model of
microswimmers conducive to theoretical treatment is the squirmer model
[137]. The model, developed by Lighthill [137] and Blake [17], consists of
a rigid body that generates thrust due to the presence of (apparent) slip
velocities on its surface. It has been used to understand various single and
collective behaviours of microswimmers in Newtonian fluids [165]. In vis-
coelastic fluids, Zhu et al. [217] studied the motion of squirmers using numer-
ical simulations and found that all squirmers—pushers, pullers and neutral
swimmers—swim slower than in a Newtonian fluid for a wide range of values
of the Weissenberg number (measure of viscoelasticity in the fluid). Later,
De Corato et al. [52] using a theoretical approach (and the squirmer model),
showed that in fact for very small values of the Deborah (Weissenberg) num-
ber not considered in the work of Zhu et al. [217] pusher swimmers swim
faster, puller swimmers slower and neutral swimmers at the same speed as
in a Newtonian fluid. We note that in these studies, as will be the case in
the present study, the swimming speeds in viscoelastic and Newtonian fluids
are compared for the same swimming stroke.

The work of De Corato et al. [52] used the second-order fluid model to
study weakly viscoelastic effects on squirming motion. The use of the second
order fluid model with parametric values as chosen by De Corato et al. [52]
was critiqued by Christov & Jordan [37] who argued that the parametric
values be chosen in accordance with thermodynamic constraints and rec-
ommended the use of other viscoelastic models which “better elucidate the
transient effects of fluid viscoelasticity on a squirmer”. De Corato et al. [53]
then showed that in fact using the Giesekus model to study weakly viscoelas-
tic effects, to O (De), gives results identical to those previously obtained by
them using the second-order fluid model. The motivation for this work in
large part is due to this discussion; here we study the squirming motion to
higher orders in Deborah number both in the Giesekus fluid and in fluids
of differential type. We find that unlike in a second-order fluid that obeys
thermodynamic constraints, weak viscoelastic contributions to the squirm-
ing speed are non-zero in a fluid of grade three (third-order fluid) obeying
thermodynamic constraints. These contributions are qualitatively different
to those obtained due to viscoelasticity as modelled by the Giesekus fluid.

In the following, we briefly discuss the squirmer model and the second-
order fluid model with the points of contention, and then present our results.
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7.2. Theoretical framework

7.2 Theoretical framework

7.2.1 The squirmer model

The spherical squirmer model consists of a sphere with prescribed axisymm-
teric surface velocities (surface velocities may be thought of as originating
from surface distortions in biological microswimmers like Opalina) which
generate thrust forces to propel the swimmer [17, 137]. We consider only
tangential surface velocities on the swimmer (the swimmer maintains its
shape) so that the surface velocity u® = u*g ey, where ug can be expressed

as

ug = X2 BV (), (7.1)

using V; (0) = — (2/(1(1 + 1))) P! (cos6); P! (cos ) are associated Legendre
polynomials of the first kind, and 6 is the polar angle measured from the axis
of symmetry [17]. The coefficients B; are generally referred to as squirming
modes. In Newtonian fluids, the swimming speed of the squirmer is due
to just the first mode, Uy = 2/3Bj, and the second mode By gives the
stresslet due to the squirmer [101]. As velocities due to higher modes decay
faster than the first two modes (in fact, By gives the slowest decaying spatial
contribution to the flow field), and since higher modes do not contribute to
the swimming speed, in Newtonian fluids, often only the first two modes
are considered, i.e., B, = 0 for n > 3. For the purpose of this study, in
accordance with the bulk of literature in the field [165], we too consider
only the first two modes. At this point we feel it is important to note
that in general considering only the first two modes in complex fluids may
be problematic as shown in the recent works of Datt et al. [44, 45]. The
interested reader may refer to the description of non-axisymmetric squirming
modes in Newtonian fluids by Pak & Lauga [159].

When the ratio § = Bg/B; is negative, the squirmer generates thrust
from its rear end, like the bacterium E. coli.; when 8 > 0 the thrust is gen-
erated from the front end, as in the “breaststroking” algae Chlamydomonas.
When 8 = 0, the thrust and drag centres coincide, and flow field around
the swimmer is due to a potential dipole. The three types of squirmers are
called pushers, pullers, and neutral swimmers, respectively [165].

7.2.2 The second-order fluid model

The deviatoric stress in an incompressible second-order fluid is given by

T=nA1 + 1A+ OéQA%, (7.2)

72



7.2. Theoretical framework

where
Al=L+LT,
DAn—l
A, =
Dt

with LT = Vu, and D/Dt denoting the material derivative [61, 198]. Here
n is the shear viscosity and a7 and as are material moduli. The second
order fluid model has been used to study the first effects of viscoelasticity
on the motion of both passive and active particles (see for e.g., [4, 29, 160]).
However, there has been much discussion on the permissible values of a;
and ap in the model. Dunn & Fosdick [62] have shown that considering
(7.2) as exact, the model is consistent with thermodynamics when

(7.3)

+LTA, 1+ A, L,

n >0, (7.4)
a1 > 0, (75)
ap +ag =0. (76)

However, often these constraints, citing experimental investigations (in-
correctly, according to Dunn & Rajagopal [61]), are not strictly adhered
to. In particular, oy, which corresponds to the first normal stress difference
coefficient, is generally taken to be negative [61].

7.2.3 The reciprocal theorem

The reciprocal theorem of low Reynolds number hydrodynamics [93] can

be used to calculate the first effects of the fluid rheology on the swimming

speed of microswimmers [125]. The details of the reciprocal theorem for the

specific case of squirmers in viscoelastic fluids may be found, among others,

in the works of Lauga [122], De Corato et al. [52] and Datt et al. [44].
Consider a weakly non-linear fluid of the form [125]

T =0y +eX[ul, (7.7)
where T is the deviatoric stress, n is the shear viscosity, and 4 is the strain
rate tensor so that the first term on the right hand side in @) gives the
Newtonian contribution. Here ¢ is the small parameter that quantifies the
deviation from the Newtonian behaviour and 3 gives the non-Newtonian
contribution. The translational velocity of a squirmer of radius a in such a
fluid is, obtained by using the reciprocal theorem,
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1 s 1 a’_,
U-=-— —e— | X [14+—=V?| VG4V, .
47m2/5u ds 587777/5 ( + G ) Gdv, (7.8)

where G = (1/r) (I + rr/r?) is the Oseen tensor, and S denotes the surface
of the swimmer, and V, the fluid volume [44].

7.3 Results and discussion

De Corato et al. [52] studied the motion of a squirmer in a second-order
fluid. Considering only small deviations from Newtonian behaviour, they
expanded all flow quantities in the small parameter ¢ = De, where Debo-
rah number De = —a1Bj/na is a measure of the relaxation time scale of
the fluid to the characteristic time scale of the flow (note that for steady
surface slip velocity squirmers, the Deborah and Weissenberg numbers are
equivalent [168]). De Corato et al. [52] assumed «; < 0, in contradiction
with the thermodynamic stability criterion as pointed out by Christov &
Jordan [37]. The thermodynamic constraint a; + ap = 0 was also relaxed.
De Corato et al. [52] found that the perturbation calculations predicted that
pushers swim faster, pullers slower and neutral swimmers at the same speed
as in Newtonian fluids, provided that the swimming gait remains unchanged
between the viscoelastic and Newtonian fluids. Their numerical simulations
in a Giesekus fluid found the analytical results to hold up to De =~ 0.02 [52].
It was commented that the deviation of the results due to theoretical calcu-
lations from those due to numerical simulations at larger De was because of
higher order viscoelastic effects that were neglected in the analytical results
for which only O (De) corrections were analysed [52].

The critique of the work of De Corato et al. [52] by Christov & Jordan
[37] was focussed on the former not respecting the thermodynamic con-
straints of the second-order fluid model. In particular, Christov & Jordan
[37] remarked that since o + ay should be equal to zero, most corrections to
flow quantities (but pressure) including the swimming speed of the squirmer
will be zero, since all these corrections are proportional to the sum aq + as.
Citing [62], Christov & Jordan [37] also pointed out that for oy < 0 a steady
solution to the problem should not be expected. Finally, Christov & Jor-
dan [37] suggested calculating corrections to the swimming motion with the
thermodynamic constraints (meaning going to higher powers in De for any
non-zero contributions) or using a different viscoelastic model, such as the
upper-convected Maxwell model.
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De Corato et al. [53] showed that even with using a more involved model
like the Giesekus fluid model (which reduces to the upper-convected Maxwell
model for a choice of a model parameter), one obtains equations identical
to the second-order fluid in the limit of small De at O (De). Further, for its
permissible values, the Giesekus fluid gives identical results to those from
the second order fluid as used by De Corato et al. [52]. In fact, they main-
tain that the second order fluid model should be seen as an approximation to
more complex viscoelastic models in slow and nearly steady flows (and there-
fore (@) not be seen as exact). Perhaps, in order to avoid any confusion,
one may restrict the use of the term “second-order fluid model” only when it
is treated as an exact model obeying the thermodynamic constraints; where
a slow and nearly steady flow approximation is used one can start with
a more involved model and reduce it to simpler constitutive equations at
each order in the perturbation series in De. Below we use this terminology
and study the squirmer in a Giesekus fluid and in fluids of grade n (the
second-order fluid is a fluid of grade two) and calculate the corrections to
the swimming speed in these fluids up to higher orders in De.

7.3.1 Giesekus fluid

The polymeric stress in an incompressible Giesekus fluid is given as [150]

Tp+ A 7?1) "'O‘m:Tp “Tp = MY, (7.9)
p
where the mobility factor o, must take values between 0 and 1/2 [150, 217].
The total deviatoric stress in the fluid is 7 = 75 + 7, where 75 = 1,7 is the
contribution from the Newtonian solvent. The total viscosity in the fluid
n = ns + np. Here we consider the case when ¢ = 7n,/n = 0; when ¢ =0 and
am =0, (@) reduces to the upper-convected Maxwell fluid model [150].

We non-dimensionalise equations by scaling lengths by the squirmer ra-
dius a, velocities with the first squirming mode By, and stresses with nBj /a,
and obtain the dimensionless constitutive equation

v
7"+ De 7 4y Det™ - 75 = 47, (7.10)

where the Deborah number De = ABj/a. Henceforth, we drop the stars
for convenience. We expand all flow quantities in a regular perturbation
expansion in De, and using standard methods to calculate the flow fields in
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Stokes flow [93] obtain the swimming speed of the squirmer, up to O (De3),

2 2
— 2 ZB8(-14am)D
U 3+15B( + ) De

. 3% (—20568 — 981360t + 6526602,) + 84 (—193 + 1760, (=3 + 2am,))
45045
B

182431950 \ © 4 1901 ~10014 481524
+%%mm(mmwm+%w%m”wﬂ 0014053 + 48152430,)))

De?

452(2247649874anL029812144243an1(16591328654875113652ang)))1)e?

(7.11)
At this point, examining equation () for specific values of 8 and ay,
becomes instructive; we choose 8 = —1 for pushers, 0 for neutral squirmers,

and 1 for puller type squirmers and «,, = 0.2. These values correspond to
the values used in the work of De Corato et al. [52]. From () we find,
for pushers,

U
—— =1+0.16De — 2.05D¢* — 2.62D¢3, (7.12)
Un
for pullers,
U
7o =1-0.16De - 2.05De? + 2.62De?, (7.13)
N

and for neutral squirmers,

Y 1 osope (7.14)
Un

The swimming speeds in (), (), and () are plotted in figure @
along with their respective Padé approximant Py (De) [13]. When correc-
tions up to only O (De) are considered, we note that pushers swim faster,
pullers slower and neutral swimmers at the same speed as in a Newtonian
fluid; this is shown in the work of De Corato et al. [52]. With terms up to
@ (De3), we note that all the squirmers swim slower than in a Newtonian
fluid (except for very small values of De) as found in the numerical work
of Zhu et al. [217]. Clearly, the inclusion of higher order terms changes the
theoretical predictions significantly.

One may calculate the higher order terms in the expansion to predict
results for larger values of De. This is done by Housiadas & Tanner [97],
up to O (Deg), for steady sedimentation of a passive sphere in a viscoelas-
tic fluid. Housiadas & Tanner [97] also quantify when the results from the
series should not be considered (using positive definiteness of the conforma-
tion tensor). Sauzade et al. [179] and Elfring & Lauga [70] also performed a
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Figure 7.1: Swimming speeds in the Giesekus fluid as a function of De.
The solid lines include corrections up to O (De3). The dashed lines are
Padé approximations to the series for the speeds in the text. The dotted
lines include only O (De) corrections. The addition of the higher order
modes decreases the speeds of the squirmers. As seen here, all squirmers at
large values of De swim slower than in a Newtonian fluid, as found in the
numerical work of Zhu et al. [217].
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higher-order perturbation analysis, using techniques to improve the conver-
gence properties of the series, for the swimming speed of a two-dimensional
swimming sheet where the small parameter was the amplitude of the waves
on the sheet. We have not pursued these endeavours here, for the motivation
for this study was to see the differences between the different viscoelastic
models considering only the first few terms.

The results in the foregoing were obtained using the Giesekus model for
viscoelasticity. They would remain qualitatively the same if one were to use
the upper-convected Maxwell model. But what happens to a squirmer in a
fluid of grade n, when the fluid is “regarded as a fluid in its own right, not
necessarily an approximation to any other one” [203] 7

7.3.2 A fluid of grade three

Consider an incompressible fluid of grade three [75]:
T =nA; +a1As + OZQA? + 51A3 + B2 [A1A2 + A2A1] + B3 (tl‘A%) Ay, (715)

where 7, a1, a9, 51, B2, and (3 are material moduli. The equation is dimen-
sional. Thermodynamics stipulates [75] that

n>0 a1 >0, |ap+ o] < /24003,
Br=0 B2=0 p3>0.

We _scale flow quantities as before, and consequently, equation ()
with (), in its dimensionless form, becomes

(7.16)

T=4%+ De [’Ay —&-Q’Y”y} + Dé? [tr (F - ¥) PY], (7.17)

where De = a1 By /na, Q = as/aj and P = f3n/a?. '4‘_ is the lower convected
derivative of 4 [150], denoted by Az in equation () We expand all
flow quantities in a regular perturbation expansion of De and calculate the
propulsion speed up to O (De2), which in dimensionless form comes to be

U= %—%ﬁ(l-f- Q) De
267 (1 + Q) (161 4-559Q) — 48 (616 + 13835°) P

45045

Note that when P = 0, we obtain a fluid of grade two, where 1+Q = 0 (@),
and consequently, no contribution to the swimming speeds of the squirmers

(7.18)
Dé?.
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Figure 7.2: Swimming speeds in fluids of grade three. Solid lines: P = 3/2,
Q = —7. Dashed lines: P = 3/2, Q@ = 5. Solid and dashed lines for § = 0
overlap. Depending on the values of Q for a given P, either of the puller or
pusher can swim faster or slower than in a Newtonian fluid at small De.

we consider. This is in contradiction to the results obtained through the
weak De expansion in a Giesekus fluid to O (De) where pushers and pullers
swim faster and slower, respectively, than in a Newtonian fluid. This was
discussed in the exchange between Christov & Jordan [37] and De Corato
et al. [53] described previously.

To observe the effects of a fluid of grade three, we choose P = 3/2 (an
arbitrary choice in as much as the physics of the problem is concerned).
From equation (), we know that —7 < @ < 5. We plot the swimming
speeds for two cases: P =3/2, Q= —7 and P = 3/2, Q =5 in figure .

From figure and equation (), we see that depending on the value
of Q, either of the puller or the pusher can swim faster than in a Newtonian
fluid at O (De). The higher order correction, O (DeZ), gives a positive
contribution to the swimming speed.

In contrast to the results from the Giesekus fluid, the parameters in a
fluid of grade three allow for a wider range of possibilities—either of pullers
or pushers can swim faster or slower at small values of the Deborah number.
Here, we demonstrate this using the parameter Q for a given P. About
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this range of possibilities, perhaps it is useful to recall the observation from
Truesdell [203] that “it is possible that two fluids of grade 3 could behave
just alike in every viscometric test yet react altogether differently to some
test of a different kind”. At higher De, all squirmers swim faster in fluids of
grade three than in a Newtonian fluid, when in Giesekus fluids they would
swim slower.

7.4 Conclusion

We calculated the higher order corrections to the swimming speeds in two
viscoelastic fluids: the Giesekus fluid and the fluid of grade three. The
higher order corrections significantly add to the results at O (De); even at
relatively small values of De, the corrections lead to qualitatively different
speeds. This again raises the question about the range of values of De at
which the expansion can predict results (also see [44]). Importantly, we
observe that the two fluids, the Giesekus fluid and the fluid of grade three,
predict qualitatively different swimming speeds for the squirmers. Clearly,
the answer to what viscoelastic model to use depends on what all we wish
to model—in this, we are guided by experiments.
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Chapter 8

Two-sphere swimmers in
viscoelastic fluids

We examine swimmers comprising of two rigid spheres which oscillate peri-
odically along their axis of symmetry, considering when the spheres oscillate
both in phase and in anti-phase, and study the effects of fluid viscoelasticity
on the swimmers’ motion. These swimmers display reciprocal motion in
Newtonian fluids and consequently, no net swimming is achieved over one
cycle in such fluids. Conversely, in viscoelastic fluids, we find that the effect
of viscoelasticity acts to propel the swimmers forward in the direction of the
smaller sphere when the two spheres are of different sizes. Finally, we com-
pare the motion of rigid spheres oscillating in viscoelastic fluids with elastic
spheres in Newtonian fluids where we find similar results.

8.1 Introduction

Recent review articles on swimming at small length scales [11, 71, 88, 129,
154, 177] point to the immense interest in recent years on understanding the
topic that has wide ranging applications from biomedical engineering [208]
to autonomous de-pollution of water and soil [78]. Several theoretical models
for understanding swimming at low Reynolds number in Newtonian fluids
have been developed, such as the swimming sheet [200], and the squirmer
[137]. The swimming techniques used in these two seminal models, which
were drawn from observing biological swimmers, demonstrate effective ways
to circumvent the scallop theorem, which stipulates that a reciprocal swim-
ming gait cannot lead to net motion at low Reynolds numbers in Newtonian
fluids [170]. Beyond the swimming sheet and the squirmer, other theoretical
models have been proposed; many aiming simplicity. Purcell in his famous
1976 talk “Life at low Reynolds number” proposed the “simplest animal”

““This chapter has been previously published under the same title in Physical Review
Fluids, 3, 123301 (2018) by Datt, Nasouri, and Elfring. © 2018 American Physical Society.
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that could swim: a planar three-linked swimmer, which could move by alter-
nately moving its front and rear segments [12, 170]. The Najafi-Golestanian
swimmer [151] propels forward using its collinear assembly of three equal
spheres, connected with thin rods which vary in lengths as the spheres oscil-
late in a non time-reversible way [1, 73, 83]. Avron et al. [6] proposed another
model, more efficient than the three-sphere model, where the swimmer con-
sists of just a pair of spherical bladders which exchange their volumes while
also varying their distance of separation. These models have been instru-
mental in understanding swimming at low Reynolds number and therefore
in designing optimal swimmers in Newtonian fluids [63, 144, 147, 197].

In many instances, microswimmers swim in fluids which are not New-
tonian and show complex rheological properties [164]. Among others, one
example is of a mammalian sperm in the female reproductive tract [72]
where cervical mucus displays viscoelasticity and shear-thinning viscosity
[120]. Consequently, several model swimmers studied in Newtonian fluids
have also been studied in non-Newtonian fluids for a comparison of their
swimming dynamics [39, 44, 45, 76, 94, 121, 149]. The change in the swim-
mer’s dynamics—whether a change in its propulsion velocity for a fixed
swimming gait or a change in the gait itself for either a fixed actuation force
or fixed energy consumption—is found to be swimmer dependent [70] and in
general, we see that it is fraught with peril to generalize results obtained for
one swimmer to others [45, 69]. Perhaps more interestingly, and closer to
the present work, are strategies that do not lead to swimming in Newtonian
fluids but can be useful in complex fluids. Lauga [122] first showed this for
a squirmer with a surface velocity distribution that does not lead to any net
motion over one cycle in a Newtonian fluid, but does so in a viscoelastic
fluid. Keim et al. [109] then demonstrated experimentally this elasticity en-
abled locomotion for a rigid assembly of two connected spheres undergoing
rotational oscillations about an axis perpendicular to their mutual axis of
symmetry. Bohme & Miiller [19] observed the same for axisymmetric swim-
mers performing reciprocal torsional oscillations. Pak et al. [160] modelled a
snowman swimmer, which has two unequal spheres that rotate about their
common axis, that can swim only in complex fluids. Indeed it is known
that the scallop theorem does not hold in complex fluids [124]; fluid inertia,
nearby surfaces, elasticity of the swimmer body, or interaction with other
swimmers are some other reasons why a reciprocal gait for a swimmer may
lead to net motion [124]. In truth, the motivation for this work came from
the interesting experimental and computational works of Klotsa et al. [115]
and Dombrowski et al. [57] who show that an assembly of two rigid collinear
spheres with a single degree of freedom can swim in the presence of inertia,
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and can in fact also reverse its direction at higher Reynolds number. Felder-
hof [74] then theoretically studied the effect of inertia on the motion of such
collinear swimmers.

In this work, we consider two different two-sphere ‘swimmers’. The first
is simply an assembly of two spheres connected as a rigid body that is
oscillated by some external force aligned along the axis of symmetry of the
two spheres. Strictly speaking, this is not a swimmer because the motion of
the body arises as a consequence of the external force; however, we will see
that by imposing a sinusoidally varying force (with zero mean value) we can
achieve a rectified ‘swimming’ motion in a complex fluid. This is similar to
the two-sphere system developed by Pak et al. [160] that achieved net motion
under an imposed torque exerted by an external (magnetic) field, although
imposing an oscillatory force is perhaps easier to accomplish experimentally.
The second swimmer is a two-sphere assembly where the swimming gait is
prescribed as the sinusoidal variation of the distance between the two spheres
with no imposed external force. This is similar to the Najafi-Golestanian
swimmer [151] except that here instead of three spheres we have only two
and therefore only a single degree of freedom.

We emphasize that neither of these swimmers can achieve any net mo-
tion over a complete cycle in a Newtonian fluid at zero Reynolds number,
irrespective of the radii of the spheres. This is due to the reciprocal forcing of
the first swimmer and the reciprocal prescribed swimming gait of the second
[170]. In contrast, we will show that in a viscoelastic fluid, both swimmers
move in the direction of the smaller sphere when the spheres are of unequal
radii and nowhere if the spheres are identical. This motion is a nonlinear
viscoelastic response elicited from the deformation of the microstructure of
the fluid and is therefore absent in Newtonian fluids. In light of this, a two-
sphere assembly in a viscoelastic fluid may also be used as a micro-rheometer
as previously demonstrated in the works of Khair & Squires [112] and Pak
et al. [160], but an assembly of two rigidly connected spheres oscillating in a
fluid is perhaps the simplest such example of a nonlinear micro-rheometer.
Here we use the method of perturbation expansion to study the two-sphere
swimmers in an Oldroyd-B fluid which for small extension rates is a rea-
sonable approximation of polymeric fluids [121]. To conclude this work, we
compare our results with another two-sphere swimmer wherein the spheres
themselves deform elastically in a Newtonian fluid—a comparison of two-
sphere swimmers in the presence of elasticity, either of the fluid or the solid.
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8.2. Swimmer in a viscoelastic fluid

Figure 8.1: Schematic of the two-sphere swimmer. The spheres, labeled B3
and Bg, have radii ac and a, respectively (o« > 1). The spheres are (on
average) a distance dy apart and e is the unit vector pointing from B; to
Ba.

8.2 Swimmer in a viscoelastic fluid

8.2.1 Two-sphere swimmers

In order to describe the motion of a swimming object, we decompose the
contributions of the velocity of the body,

v(xcdB)=U+ 2 xr+v°, (8.1)

where U and §2 are the rigid-body translation and rotation, and the swim-
ming gait is denoted by v°. Here the body B, with boundary 0B, is com-
posed of two spheres of radius ¢ and aa, labeled Bs and B; respectively
(B = By U Bsy). Without lack of generality, we assume o > 1. The distance
between the two spheres is d, which is along e (from large to small sphere)
as shown in figure 8.1.

When the two spheres are connected as a rigid body, the distance be-
tween the two sphere centres is a fixed constant d = dp; there is no swimming
gait v° = 0, but an oscillatory external force is applied on the body,

Feyr = Fcos(wt)ey. (8.2)

This may be imposed by applying an oscillating external magnetic field if
the spheres are magnetic, or if the spheres are not density matched with the
fluid, simply by oscillating the medium (although in that case there would
be a mean force on the spheres as well). We will refer to this as an in-phase
swimmer because the two spheres move in unison (see figure @a).

In contrast to the first swimmer, the distance d between the spheres of
the second swimmer varies sinusoidally according to

d = dp + 20 sin(wt), (8.3)
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8.2. Swimmer in a viscoelastic fluid

Figure 8.2: Schematic showing one complete cycle for the two swimmers:
(a) The in-phase swimmer maintains the distance between the spheres as it
moves forward. (b) In the anti-phase swimmer, the spheres converge and
diverge. The steps in grey show the transition from one half cycle to the
next. The red dot marks the position of the swimmer.

as equal and opposite velocities are imposed on the two spheres

v (x € 9By) = dw cos(wt)e, (8.4)
v3(x € 9By) = —dw cos(wt)ey. (8.5)

Here dj is the average distance, ¢ is the amplitude of oscillation and w is the
frequency. We refer to this swimmer as the anti-phase swimmer (see figure
b).
For the sake of comparison between the two swimmers, we set the mag-
nitude of the force F' in (8.2) such that to leading order, the magnitude of
the velocity of the induced oscillations would also be dw for the in-phase

swimmer (see Appendix B for further details).

8.2.2 Theory for swimming in complex fluids

The motion U of an arbitrary swimmer (or active particle) in a non-
Newtonian fluid, with deviatoric stress

T =n0%+ 7NN, (8.6)
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where T is the additional non-Newtonian stress, at zero Reynolds number
is given by

U= I%;Llj'[Fext“‘FT“‘FNN]v (87)
where U = [U 2] is six-dimensional vector comprising rigid-body transla-
tional and rotational velocities, respectively (we use bold sans serif fonts
for six-dimensional vectors and tensors and bold serif for three dimensional
ones) [43, 68]. The six-dimensional vector Feyt = [Fegt Legt] contains any
external force and torque acting on the swimmer. The term

Fr="1 (vS —v™®) - (n-Ty)ds, (8.8)

M JoB
is a Newtonian ‘thrust’ due to any surface deformation v° of the swimmer
in a background flow v*°. Here, we consider an otherwise quiescent fluid so
that v>° = 0. The non-Newtonian contribution

Fnn = —/ v : EydV, (8.9)
v

represents the extra force/torque on each particle due to a non-Newtonian
deviatoric stress Ty in the fluid volume V in which the particles are im-
mersed.

These formulae rely on operators from a resistance/mobility problem in
a Newtonian fluid (with viscosity 7))

4 =2Ey-U, (8.10)
6="Ty-U, (8.11)
F=—Rey-U. (8.12)

The tensors Ey and Ty are functions of position in space that map the
rigid-body motion U of the swimmer to the fluid strain-rate and stress fields,
respectively, while the rigid-body resistance tensor

(8.13)

Both problems considered here are axisymmetric, with the forcing and the
gait aligned with the axis of symmetry of the swimmer. In this case, the
resistance matrix Rey is diagonal and only translational motion occurs,
simplifying matters substantially.

86



8.2. Swimmer in a viscoelastic fluid

We consider here only the time-averaged or (post-transient) mean veloc-
ity of the swimmer,

U= "Rz} [Fext + Fr + Fynl, (8.14)

3 \3>

where the overline represents a time-averaged quantity. The in-phase swim-
mer does not change shape therefore the resistance is constant and Fr = 0
because v® = 0; furthermore, the prescribed force is periodic with zero
mean, F,,; = 0. In contrast, the anti-phase swimmer has no external forc-
ing F.;+ = 0, but undergoes a reciprocal shape change and so, while the
resistance is not constant, we know that ﬁ;llj - Fr = 0 by the scallop theo-
rem [102]. We see then that, for both swimmers, the net motion is only due
to the non-Newtonian contribution from the rheology of the fluid medium

U=

3 \3>

Rel - Fyn. (8.15)

By the symmetry of the problem, any net motion must be in the direction
of the axis of symmetry e i.e. U= UeH with

U = — An / TNN - EUII dV, (8.16)
nRruy,

where RFU” =e- RFU e is the scalar resistance to translational motion
of the two-sphere assembly in the direction of the axis of symmetry, whereas
EU” = Ey - e) is a second order tensor equal to the strain-rate field due to

rigid-body translation (with unit speed) in the direction e. EFUH and EUH
are obtained by way of the Stimson-Jeffery solution of two spheres moving
with equal velocities along their axis of symmetry in a Newtonian fluid [192].
Finally, we note that although the geometry of the anti-phase swimmer is not
constant, we solve the problem asymptotlcally for small deformations about
a mean geometry such that RFUH, EUH’ and the boundary of the volume
integral in (@3, are constant, which allows us to pass the time-average
operator onto the non-Newtonian stress alone [69, 125].

8.2.3 Constitutive equation

We are interested here in the effects of nonlinear viscoelasticity that enable
the net motion of the swimmers. Until this point, we have only assumed
that the stress in the fluid may be separated into a Newtonian and non-
Newtonian contribution. The deviatoric stress 7y in a viscoelastic fluid
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8.2. Swimmer in a viscoelastic fluid

typically follows a nonlinear evolution equation. For simplicity, we use the
Oldroyd-B constitutive equation [16] but other constitutive relationships can
be easily used within this formalism. Oldroyd-B is a single relaxation time
viscoelastic (Boger fluid) fluid that is governed by

v NNy . 1

where A is the relaxation time of the fluid and ny N is an additional viscosity
due to the (polymeric) microstructure. The upper convected derivative is

defined A— DA/Ot +v- VA — ((Vo)"- A+ A- Vo) where v is the fluid
velocity field.

The problems we consider here are periodic (with period 7 = 27 /w) and,
neglecting any transient evolution from an initial condition, we may simplify
matters by assuming that all functions may be written as Fourier series, for

example, the velocity field v = Zp'v(p)epm. Following this for the stress,
we have [69]

™ = (1" (p) — ) + N (8.18)

where the tensor IN(®) represents the contribution of the nonlinear terms to
each mode and the complex viscosity

1+ piDep

*(p) — , 8.19
n*(p) 15 piDe ™ (8.19)

The Deborah number, De = Aw, characterizes the relative rate of actuation
of the spheres to the relaxation of the fluid. The viscosity ratio 5 = n/ng
is the relative viscosity of the Newtonian part of the fluid (solvent) where
no = 1N+ Ny represents the (total) zero-shear-rate viscosity of the fluid. In
particular, by substituting (8.18) into (M) one may show that

7
nRru,

U=- / N : Ey, dv, (8.20)
v

where N = N©_ and we see that linear viscoelasticity does not lead to
net motion of these swimmers because by definition N®) = 0 for linearly
viscoelastic fluids (see Appendix B for further details).

8.2.4 Small amplitude expansion

We assume that the oscillation amplitudes are much smaller than all other
length scales, § < a,dp, and define dimensionless quantities ¢ = §/a < 1
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8.2. Swimmer in a viscoelastic fluid

and A = dp/a. In addition, we define a dimensionless clearance between the
spheres, A, = A — (1 + «). We solve for the flow by employing a regular
perturbation expansion in small deformations € to all flow quantities

{Uv LEY SRR } = E{UlaTl7p1a e } + 62 {U2>T27p27 e } o (821)
The swimming speed is then given by
7

U=—-—
noRru,

/ Ny 1 By, dV + O(e"). (8.22)
v

Because the tensor IN represents the nonlinear terms in the viscoelastic
constitutive equation, there are no terms linear in e. The quadratic term
depends only on the leading order flow field, Na[v1, 7], which is a solu-
tion to a linearly viscoelastic flow that has exactly the same flow field as a
Newtonian flow with equivalent prescribed velocity boundary conditions.

When the spheres move together as a rigid body (the in-phase swimmer),
the solution for vy is easily obtained using the solution for two spheres
moving with equal velocities along the line joining their centers by Stimson
& Jeffery [192]. Similarly when the spheres approach one another (anti-phase
swimmer), the solution for v; is available due to the work of Maude [141]
for two spheres approaching each other in a Newtonian fluid (see [188] for
some corrected errors). Thus knowing the O (¢) fields, we may evaluate the
tensor Na, which for an Oldroyd-B fluid is given by

- 1 De(1-05) [ (-1 (1) D\ () (=1)
Nz__ZRe{(lJriDe)[vl VA = (Vo)A A vel
(8.23)

Finally, we obtain the leading order motion for either swimmer by evaluating
(8.29) to find

— o 0 (De(l-p)
T = 6> <1+DQQ) u, (8.24)

where the dimensionless quantity U is evaluated using numerical integration
of an analytical expression.

Note that under this small-amplitude expansion |§| ~ ew and conse-
quently Weissenberg numbers, Wi = |¥| A ~ eDe, are asymptotically smaller
than Deborah numbers. Thus, provided e is made small enough, these re-
sults are valid for arbitrary values of Deborah number even for fluids such
as Oldroyd-B fluid that are unphysical for order one Weissenberg numbers
(see also [121, 125]).
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Figure 8.3: The swimming speed coefficient U is plotted with variation in the
clearance A. between the two spheres for different size ratios a. The square
symbols (connected by dashed lines) represent the anti-phase swimmer and
the circles (connected by solid lines) represent the in-phase swimmer. All
quantities are dimensionless.

8.2.5 Results and discussion

We find that the two-sphere assembly can swim in a viscoelastic fluid at
finite Deborah numbers, provided the two spheres are of different sizes. The
difference in the sphere sizes leads to the fore-aft asymmetry required for
swimming. We see from () that the swimming speed is maximized when
De = 1. In the limit when the actuation is much slower than the relaxation
of the fluid, De — 0, or much faster, De — oo, there is no swimming U = 0,
indeed the term in the brackets of (), which governs this behavior, is
simply the dimensionless elastic modulus of the fluid [69]. We report the
values of U for the two swimmers for a few configurations in figure 8.3. Both
swimmers swim with the smaller sphere as the head. At small separations,
the anti-phase swimmer is an order of magnitude faster; however, at large
separations this difference in magnitude fades away.

The direction of the motion of these swimmers can be largely predicted
by studying a single sphere oscillating in a viscoelastic fluid. The wviscoelastic
steady streaming flow that results from this motion draws fluid in towards
the center of the sphere along the axis of oscillation [18]. Larger spheres
generate stronger viscoelastic flows for a given velocity but the relation-
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ship is sublinear in radius and so one would expect that when two unequal
spheres interact, because of the relative resistances, the net effect of the in-
teracting viscoelastic streaming flows would be to push the assembly in the
direction of the smaller sphere. This is essentially a ‘far-field’ superposition
argument, where there is no difference between in-phase and anti-phase os-
cillations, and one should take great care when applying this logic to closely
interacting spheres in a nonlinear non-Newtonian fluid; however, this pre-
diction qualitatively agrees with our exact two-body problem solutions. We
also note that Keim et al. [109] find that a similar two-sphere assembly un-
dergoing rotational oscillations instead moves towards the larger sphere, but
in that case the spheres are moving perpendicular to their axis of symmetry
and so we expect the viscoelastic steady streaming flow to be reversed along
that axis.

Examining more closely first the in-phase swimmer, a rigid body of such
shape moving in a weakly viscoelastic fluid (e.g. a second-order fluid under
slow flows [16]) will experience a net viscoelastic force pointing towards the
smaller sphere and so the total drag on the body when the larger sphere leads
increases while it decreases when the smaller sphere is at the front. Leal [131]
has also shown that for sedimenting slender bodies, when the trailing end
is sharp and the leading edge is blunt the drag increases in a second-order
fluid. In light of this, when the two-sphere body oscillates periodically in a
viscoelastic fluid, one expects the net viscoelastic contribution to the force
on the body over one cycle to point towards the smaller sphere. The speed of
the swimming depends on the strength of this viscoelastic contribution and
the hydrodynamic resistance to the steady translation of the body. As can
be seen from figure 8.3, such a swimmer has an optimum in the swimming
velocity at a certain separation for a given ratio of the sphere sizes.

For the anti-phase swimmer, the viscoelastic force seems to depend on
the strength of squeeze flow between the two spheres which increases as the
separation between the spheres decreases. Combined with the low hydrody-
namic resistance of the assembly when the spheres are close, swimming is
monotonically faster with smaller separations (for a given size ratio). When
the spheres are far apart, the strength of the squeeze flow decreases and the
two types of swimmers swim with speeds of the same order.

Clearly, a size ratio of 1 will not lead to swimming. Omne also expects
a very large size ratio to be equally inefficient due to a decrease in the net
fore—aft asymmetry over a complete cycle. This non-monotonicity with size
ratio is also observed at small distances in figure , although at very large
distances, when the interaction between the spheres has much decreased,
higher size ratio leads to better swimming. However, this may not be the
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regime one would focus on for optimal swimming.

We also note that the effect of viscoelasticity on the swimmers is found
to be opposite to the effect of inertia as described in the analytical work
of Felderhof [74]. There, the two-sphere swimmer moves with the larger
sphere as the head, as might be expected given that weakly inertial steady-
streaming flow can push fluid out from an oscillating sphere along the axis
of oscillation [18, 175, 187]. However, recent numerical work by Dombrowski
et al. [57] reports that the smaller sphere leads at small Reynolds number
only to switch to larger sphere leading at higher Reynolds number. We do
not observe such switching of swimming direction with the Deborah number
in our analysis which is valid for small oscillation amplitudes. We also
note that although the results presented here are for an Oldroyd-B fluid,
one may perform a small-amplitude analysis with other viscoelastic fluid
models like the second-order fluid, Giesekus fluid, and FENE-P [16] and
find qualitatively similar results. Any quantitative differences that occur are
due to parameter values (concerning for example, the presence or absence of
second normal stress differences) particular to the model or slightly different
definitions of the Deborah number [121].

In the next section, we study a two-sphere swimmer with elastic spheres
in a Newtonian fluid and demonstrate that the direction of propulsion is the
same as this two-(rigid)-sphere swimmer in viscoelastic fluid.

8.3 Swimmer with elastic spheres

We now compare the two-sphere swimmers in a viscoelastic fluid with swim-
mers with elastic spheres in a Newtonian fluid. This calculation closely fol-
lows the work of Nasouri et al. [153] who studied a two-sphere swimmer with
one rigid and other elastic sphere in a Newtonian fluid. Here, similar to the
previous section, we consider model swimmers that consist of two spheres of
radii @ and aa, but this time we relax the rigidity constraint by assuming
that the spheres are isotropic, incompressible neo-Hookean solids.

To study the behavior of this system, one must first understand the
deformation of a single elastic sphere in Stokes flow. Neglecting intertia,
momentum balance for the elastic solid yields

V.o, + f(t) =0, (8.25)

where o is the stress due to elastic deformation and f is the applied body
force density on the sphere. For an isotropic, incompressible neo-Hookean
solid, this stress field can be expressed using the displacement vector u as
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91, 156]
os = —p I+ G (D .DT — I) , (8.26)

where G is the shear modulus and D = I + Vu is the deformation gradient
tensor. The Lagrange multiplier ps enforces the incompressibility of the solid
through

det (D) = 1, (8.27)

where ‘det’ is the determinant. The traction across the solid-fluid interface
must be continuous so that

os-n=0-n, (8.28)

where n is the normal vector to the deformed sphere and o is the stress field
in the fluid domain which can be determined by solving the Stokes equations
over the deformed boundary.

If we scale lengths with a, velocities with dw, forces with G/a, time with
a/dw, stress in the solid domain with G and stress in the fluid domain with
now/a, from equation () a dimensionless parameter ¢ = ndw/aG then
naturally arises as the ratio of viscous forces to elastic forces. Here we focus
on the case wherein the sphere is only weakly elastic; elastic forces are much
larger than viscous forces and so € < 1. Since the motion is axisymmetric,
one can show that the elastic sphere reaches equilibrium with a relaxation
time scale of Tyelax ~ O(ae/éw). Thus, under the assumption of ¢ < 1, we
can assume that elastic deformations are quasi-static: the sphere deforms
instantly and we then have rigid-body motion [98].

Similar to the viscoelastic case, for the in-phase swimmer, for the sake
of comparison, we set the magnitude of the applied external force to be
F= &uRFU” so that to leading order the speed of oscillation is dw. For the
anti-phase swimmer, we define the gait according to (@) and (@) but in
this case the velocity is prescribed on the deformed boundaries.

We now return to our two-sphere swimmer, with both spheres being
weakly elastic. In a Newtonian fluid, the dynamics of the motion of the
body is given by

U= R;“Ilj ’ [FT + Fezt] . (8.29)

The thrust force may be generically decomposed into the thrust generated
by each sphere Fr = Fr, 4+ Fr,. Because the spheres are deforming, we will
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assume that the spheres are well separated, and compute the hydrodynamic
thrust generated by each sphere with hydrodynamic interactions solved to
leading order using a far-field approximation, A > 1.

For individual spheres, () reduces to Faxén’s first law for each sphere

Fr, =Ry (v = 71 [vF]) (8.30)
FT2 = —R2 . (’025 — ]'—2 [’U?O]) y (8.31)

where R, and Ry are the resistance tensors for each sphere and, F; and
Fo are the respective Faxén operators. Here, v{® is the background flow
field induced by sphere B;, and vice versa for v5°. Recalling that spheres
are only weakly elastic (since € < 1), the spheres only slightly deviate from
their spherical shape so that the hydrodynamic resistance and Faxén’s laws
are unchanged from an undeformed sphere to leading order [24, 113]. The
net thrust generated by the swimmer at the leading order is thereby

Fr = 6mna (—owf +avyy — vs + vffg) , (8.32)

where v55 indicates the background flow from sphere 2 evaluated at the
center of sphere 1 (and vice versa). For the externally forced (in-phase)
swimmer, the gait is zero v{ = v = 0. For the anti-phase swimmer, the
imposed gait is periodic and given that we are interested in only the mean

motion, averaging over a period 7 = 27 /w, for both swimmers, leads to
Pr = 6mna (v +v53) (8.33)

We see clearly, in this far-field result, that the thrust is dictated purely by
the elastic steady streaming flow generated by each sphere acting on the
other.

By solving equations () to () asymptotically, one can determine
the flow field around an oscillating elastic sphere. This flow field, upon aver-
aging, will give the steady streaming flows v and v5° (see [153] for technical
details). By prescribing an external force of magnitude F' = dw Ry for the
in-phase swimmer, the magnitude of the deformation and thus the magni-
tude of the steady-streaming flows is equal for both swimmers. We note,
in particular, that the elastic steady-streaming flow of each sphere draws
fluid inward along the axis of symmetry in much the same way as the vis-
coelastic steady streaming flow. Here, we find that v53 - €| dwe3 /A? and
V7Y e —dwe3 JaA?. The net thrust is then

— 74979 e

1
T = 340487T77d05wa <1 - 042> el (8.34)
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Both oscillating elastic spheres generate steady-streaming flows but the mag-
nitude of each flow is inversely proportional to the radius while the resistance
of each sphere is linearly proportional to the radius and so the net thrust
force is in the direction of the smaller sphere (o > 1).

With a hydrodynamic resistance of RFUH = 6mna(l + «), and using the
fact that the average external force is zero,

Fopi =0, (8.35)

(in the case of the anti-phase swimmer the prescribed force itself is zero),
we obtain the time-averaged velocity

U= (8.36)

[0}

24993 ¢ 1\ €
68096 ( ) Azell
The swimming motion is always in the direction of the smaller sphere, similar
to the rigid swimmer in the viscoelastic fluid (the swimmer swims with the
smaller sphere as the head). Furthermore, since we solved this problem
assuming the spheres are well separated using far-field approximations of
the flow, the speed of the swimmer is ultimately independent of whether the
spheres oscillate in-phase or anti-phase.

8.4 Conclusion

We studied the effects of elasticity on the motion of two-sphere swimmers
where the two spheres oscillate in-line. When the two spheres are rigid and
the fluid viscoelastic, we find that the swimmers swim with the smaller-
sphere as the head. However, the swimming speed is dependent on the type
of swimmer: anti-phase swimmers, in general, swim faster than the in-phase
swimmers. We also find that when the spheres themselves are elastic and the
fluid Newtonian, the swimmer again moves in the direction of the smaller
sphere.

We note that the effects of elasticity on the swimmer are found to be
opposite of the effect of inertia described in the theoretical work of Felderhof
[74] who showed that the two-sphere swimmer moves with the larger sphere
as the head, but we do not observe a reversal of the swimming direction
as a function of the Deborah number, analogous to what is observed upon
increasing Reynolds number in the numerical work of Dombrowski et al.

57).
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Chapter 9

Conclusion and outlook

The motivation for the work in this thesis was to understand how some sim-
ple motions of particles are affected by the rheological properties of the fluid.
We focussed on small particles that can swim, and restricted our attention
to two rheological properties, shear-thinning viscosity and viscoelasticity,
chosen for their apparent ubiquity in non-Newtonian fluids. We followed a
theoretical approach, often drawing from recent experimental and numerical
works. In this section, we briefly recapitulate and discuss the findings, the
limitations, and the future of this work.

9.1 The findings

We started the thesis by looking at the dynamics of a squirmer in a Newto-
nian fluid with externally imposed gradients in the fluid viscosity in chapter

The work was motivated by the recent study of Liebchen et al. [136]
explaining the physical mechanism of viscotaxis. We showed that viscosity
gradients change the motion of a squirmer drastically in comparison to its
motion in a Newtonian fluid of uniform viscosity. Specifically, we find that
the squirmers are in general viscophobic, although the details of their dy-
namics are dependent on whether they swim as pushers, pullers, or neutral
swimmers. The differences in these details among the swimmers can be used
to sort them based on their swimming style.

Next we discuss the effects of shear-thinning viscosity on the motion
of passive particles in Chapter @ By analysing the motion of a sphere in a
background flow field due to an external force, or somewhat equivalently the
motion of a rotating and sedimenting sphere (a set-up proposed as a rheome-
ter [82]), we showed how translational and rotational motion can couple even
for particle shapes for which no such coupling is present in Newtonian flu-
ids. We also showed that for two equal spheres that sediment along the line
joining their centres, while the principle of kinematic reversibility holds and
spheres maintain their initial distance of separation, the reduction in their
drag is a non-monotonic function of their distance of separation. As for the
case of a dilute suspension of rigid spheres in shear-thinning fluids, we found
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9.1. The findings

the corresponding Einstein viscosity, reflecting how the presence of a par-
ticle both adds and subtracts from the shear-viscosity; which contribution
dominates depends on the applied shear-rate.

The effects of shear-thinning viscosity on the swimming speed of
a squirmer were studied in Chapter 5. Prior to our work, there were
relatively few studies analysing the motion of swimmers in shear-thinning
fluids. We showed that a squirmer can swim both slower and faster in
a shear-thinning fluid as compared to a Newtonian fluid for the same
swimming stroke. The faster or slower swimming, in general, cannot be
explained by a simple thrust and drag decomposition of the swimming
problem—an approach which previously had been used for developing
intuition in shear-thinning fluids. We also showed that squirming modes
that do not contribute to swimming in Newtonian fluids can contribute to
swimming in shear-thinning fluids, and that, in general, squirming through
shear-thinning fluids possesses some rich physics.

While in shear-thinning fluids we showed that higher-order squirming
modes, and not just the first mode as in Newtonian fluids, can contribute
to swimming, we showed exactly how these modes couple and contribute
to the swimming speed in a weakly viscoelastic fluid. In Chapter B, we
give the expression for the swimming speed of a general, n-mode, squirmer
in a second-order fluid. As an example of squirmers in which the higher
modes are known, we chose diffusiophoretic Janus particles and studied their
dynamics both in second-order and shear-thinning fluids. In the particular
case of Janus particles, we quantified the error in swimming speeds if one
were to use only the first two swimming modes to calculate the effects of the
two non-Newtonian properties: viscoelasticity, and shear-thinning viscosity.
Whereas in Chapter B we studied only the first effects of viscoelasticity
through a second-order fluid on the squirmer motion, we considered higher-
order effects using two different viscoelastic models—the Giesekus model
and a fluid of differential type (grade three)—in Chapter H Importantly, we
find that the swimming speeds as predicted by the expansion in Deborah
number for the two fluid models are qualitatively different. The work raises
questions regarding the adequacy of the Deborah number expansion, and
the choice of viscoelastic model.

In Chapter E, we studied an assembly of two spheres connected with a
massless, hydrodynamically non-existent, rod for effects of viscoelasticity.
We found that on oscillating the two spheres along the rod, the entire as-
sembly moves forward, provided that the two spheres are of unequal sizes.
We contrasted this analysis with a similar assembly of two elastic spheres
in a Newtonian fluid. We found that in both cases the assembly moves in
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the direction of the smaller sphere. Note that, constrained by the scallop
theorem, such an assembly of rigid spheres cannot swim in a Newtonian
fluid; that this simple design swims in a viscoelastic fluid is possible only
due to the complexity of the fluid.

The topics in this thesis, for most part, concerned the newly emerging
field of active matter, which has been attracting researches from the more
conventional fields in physics, chemistry and biology. We believe the work
in this thesis offers some fundamental contributions to this rapidly grow-
ing field, be it in sorting and designing active particles, or more generally
through understanding their motions in fluids where they commonly are, or
will be, found.

9.2 The limitations

Clearly, many particles are not spherical, and modelling swimmers as
squirmers may not be accurate on occasions. Moreover, many non-
Newtonian fluids have more complex rheological properties than just
shear-thinning viscosity and viscoelasticity. While these points are impor-
tant, suffice to say we believed disregarding them was essential for any
immediate theoretical progress. Hence, we do not delve into these points
here.

More importantly, we ask what when no parameter is small in our anal-
ysis? As an example, consider the two-sphere swimmer assembly discussed
in Chapter §. Will the direction of the swimmer motion be reversed when
the amplitude of oscillations of the spheres is not small? Asymptotic results
in this work by themselves cannot answer such questions. Even how small
is small enough for the analytical results to hold can be known, generally,
only through experiments and numerics.

Further, in the thesis, the quantities of interest were swimming speeds,
sedimenting velocities, and drag forces on particles—integral quantities that
could be calculated relatively easily using the generalized reciprocal theo-
rem. The shortcut of the reciprocal theorem meant not travelling the more
laborious path of calculating the flow field corrections first, and then cal-
culating such quantities as mentioned, but perhaps also a want of a deeper
physical intuition developed through analysing flow fields.

In our opinion, we still need more of all-—theoretical, numerical, and
experimental—research for a complete understanding of the problems we
have studied in this work; theoretical work, being more tractable of the
three, in part due to its self-declared assumptions, has often struck first in
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this battlefield.

9.3 The future

Many microorganisms swim in complex fluids. We know more about mi-
croswimmers in Newtonian fluids than in complex fluids. From a prob-
lem solving perspective, following Einstein’s suggestion ‘that since the basic
equations of physics are nonlinear, all of mathematical physics will have to
be done over again’ [183] one may just start solving swimming problems
that have been understood in Newtonian fluids in complex (non-linear) flu-
ids. In fact, not a bad advice when comes to understanding nature, owing
to the ubiquity of swimming phenomena in biology where many fluids show
complex rheological behaviour not restricted to just shear-thinning viscos-
ity and viscoelasticity, but also involving thixotropy and microstructural
anisotropy.

Immediate areas to venture into include understanding the interactions
between swimmers in complex fluids, for microswimmers, e.g., sperm cells,
swim together in large numbers, and understanding how viscoelasticity of the
fluid and inertia together affect the motion of a swimmer—microswimmers
do accelerate when escaping predators (for effects of inertia alone, see [110,
210] and references therein).

Dynamics of model microswimmers can also be analysed in fluids that
are active themselves; such is done in the latest work of Soni et al. [186],
who answer if an active fluid can do work on a Taylor sheet swimmer, and
therefore make it swim faster than in a passive fluid for the same stroke.
The same stroke assumption that we have also used in our works, should
be relaxed too in order to capture how the strokes themselves are affected
by the fluid’s rheological properties. This can be realised by prescribing
thrust forces on the swimmers rather than swimming strokes, as Curtis &
Gaffney [39] have done for the Najafi-Golestanian three-sphere swimmer in
an Oldroyd-B fluid, and thereby showing the qualitative different results
achieved through prescribing forces and prescribing kinematics.

One problem, we would like to see addressed in the near future is the
stochastic dynamics of active particles in complex fluids. While large macro-
scopic swimmers can sustain their swimming direction for long times, mi-
croswimmers experience orientation decorrelation because of their small
sizes [117, 178]. At the size of microswimmers, thermal fluctuations can
‘lead to a Brownian loss of the swimming direction, resulting in a transi-
tion from short-time ballistic dynamics to effective long-time diffusion’ [178].
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Many bacteria also experience what is called tumbling. In tumbling, ‘a bac-
terium typically runs in a directed sense for a certain time interval before
changing its orientation abruptly, and by a large amount. It then runs in
the new direction, possibly correlated to the old one’ [118].

The stochastic dynamics play an important role at the length scale of
microswimmers [11, 92]. Even reciprocal swimmers, which on average do not
swim, have ‘enhanced diffusivities, possibly by orders of magnitude, above
their normal Brownian diffusion’ [123]. As many microswimmers are found
in complex fluids, Patteson et al. [163] experimentally investigated the run
and tumble dynamics of E. Coli bacteria in polymeric solutions. The authors
found that ‘even small amounts of polymer in solution can drastically change
E. Coli dynamics: cells tumble less and their velocity increases, leading to an
enhancement in cell translational diffusion and a sharp decline in rotational
diffusion’ [163]. A theoretical investigation of such phenomena, drawing
from and building on recent works on active micro-rheology in non-linear
fluids [189, 190], will be interesting.
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Appendix A

Some expressions for motion
of spheres

Here we present some expressions which were used to evaluate the integrals

in Chapter 4. Additional details on related expressions for both passive and

active particles can be found in the recent work of Nasouri & Elfring [152].
For a single sphere of radius a in a Newtonian fluid with viscosity #

Rpy = 6mijal, (A.1)
R = 8mhd’l, (A.2)
Ry =0, (A.3)
Rpp = 0. (A.4)
Additionally, "
n-Ty= —i I 20, (A.5)

where ©;; = €, and n is the unit normal to the surface.
The entities corresponding to /2 = Ey-U

A 3ax 3x;x; 3a’ DT
[ —— (5@‘ -3 ]> +— [xk (-% t—3 J) — xi0j) — T;0;k

473 475
(A.6)
- 3a?
(Eqlijk = ~9,5 (zixi€jn + Tim€r) - (A7)
are detailed in [157]. Relevant to the stresslet calculation, we have
~ ﬁa5 577(13
|EE]kiij =55 (0ir0j1 + 0j1051) + 5 (Ouzjzy + Opizjxy + djxizy + Opjaiwy)
5ha’
— T?J (5kl$iwj + 5jlxixk + 5il$j1'k + (5jkxz-:vl + 5ik$j1'l)
(7a®  5a? 5fad
+ 51 <2r9 — 27"7> TixjTRT + %%lmﬂ:j,
(A.8)
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Appendix A. Some expressions for motion of spheres

~ ﬁaE’ 5ﬁa3
(TE) ki =5 (Oirdj1 + 0j10) + — = (Vaxjor + dpiwjay + Ojwizy, + Ogjwiz)
57a’

2r
T‘7 (5kla:,~a:j + 5jl.ilii1}k + (5il:L'jfL’k + 5jk$ixl + 5ikxj:1:l)

(7d®  5a3
+ 51 T TiT; TR,
(A.9)

which can be found in the supplementary information of [128§].

For the problem involving two spheres sedimenting along their common
axis, the stream functions for the two auxiliary cases in Newtonian fluids,
two spheres moving with the same velocity and two spheres approaching
each other with equal speed, were reported by Stimson & Jeffery [192] and
Brenner [23], respectively. The stream functions are expressed in the form
of infinite series solutions. To ensure convergence, we considered around
the first 30 to 40 terms of the series. The stream functions are used to
calculate the strain-rate tensors corresponding to Eﬁ (Stimson-Jeffery) and
EALr(Brenner,hdaude) The stress tensor Ty for the case considered in the
manuscript is evaluated using strain-rates from the Stimson-Jeffery solution.

For the limiting case of two spheres touching each other and sedimenting,
we use the solution of the problem in Newtonian fluids by Cooley & O’Neill
[38] to evaluate both 7yx and Ey. The stream function for this case is
expressed in form of a definite integral from zero to infinity (equation 3.4 in
the reference). A non-infinite value of the upper limit of the integral has to
be chosen for evaluation; we find that convergence of the solution is achieved
at a value of around 15.
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Appendix B

Linear viscoelasticity

Equation (@) delineates a relationship between forces and velocities and
with () gives, for each Fourier mode,

N Rpy-u® — F®) TP [ o0 nTy)as— [ NO - Eyav. B)
oB %

77* (p) ext 77

For a rigid-body motion under periodic external forcing, v = 0. Assum-
ing that the magnitude of the forcing is small so that nonlinear viscoelastic
terms are negligible to leading order, we obtain a (complex) linear viscoelas-
tic relationship between force and velocity for each mode,

ext)

(B.2)

*
where the complex resistance Rp, = 77TR,:U.
n

In our problem, there is only a single force mode 2F'") = F' (the other
modes are zero, see ()) Setting the magnitude of the velocity to be
[U| = 6w then leads to a force with magnitude I = éw|n*(1)|RFy, /7. Using
the complex viscosity of Oldroyd-B (see ()) we obtain that taking F' =
5w£7011+fD2622}?FU“ /7 leads to a velocity U = dwcos(wt + ¢)e| to leading
order.
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