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Abstract

The ability to forecast extreme temperature and precipitation events not
only helps satisfy the public’s desire to better prepare for such events, but
can also provide valuable information about the future risks of such events
to emergency managers, regional planners, and policy-makers at all levels
of government. Additionally, understanding extreme weather events in the
context of climate change can help provide confidence and insight into risk
assessment.

This dissertation advances extreme weather forecasting over the com-
plex topography of British Columbia (BC) while accounting for changes in
intensity and frequency of extreme events due to nonstationarity.

First the problem of finding a dataset to provide climatological distri-
butions is addressed. Weather station data coverage, quality, and temporal
completeness across BC degrade outside of population centres, and as one
goes back in time. This data paucity motivates the search for the best re-
analysis to serve as a climatological reference dataset. The 2-m temperature
and daily accumulated precipitation of the reanalyses are compared with ob-
servations from meteorological stations distributed over the complex terrain
of British Columbia. The observations are separated into climate regions
by Principal Component Analysis (PCA) and K-means clustering, and new
verification metrics are introduced to evaluate the best performing reanaly-
sis. Upon thorough evaluation, the Japanese 55-year Reanalysis (JRA-55)
was found to be best. Its biases are largely explained by the inability of the
coarse-resolution reanalysis to represent terrain characteristics.

The second component of this works combines, downscales and bias cor-
rects the best performing reanalysis using the high-spatial-resolution Parameter-
Elevation Regressions on Independent Slopes Model (PRISM) dataset and
using surface weather station observations. This results in a high-resolution,
long-term gridded dataset that is spatially and temporally complete, yielding
a very-high-resolution surface analysis (VHRSA). Biases and mean absolute
errors are substantially improved over the JRA-55. The VHRSA not only
renders a solution to the paucity of observational data across BC, it also
has the potential to be a valuable dataset for research and operational use
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Abstract

in meteorology, climate studies, and hydrology, to name a few.
Next, this dataset is used to create a high-resolution, bias-corrected

ensemble forecast using the North American Ensemble Forecast System
(NAEFS). The post-processed NAEFS is more skillful than the raw NAEFS
forecast out to a forecast lead time of 10 days for both 2-m temperature,
and daily accumulated precipitation, according to the verification metrics
evaluated.

Statistical temporal stationarity of extreme values of precipitation and
temperature are assessed for the 60-year VHRSA period. Statistical nonsta-
tionarity is tested to determine if important temporal changes are required
to characterize present-day extreme levels. It is determined that nonstation-
ary distributions should be used to represent annual minima values of daily
minimum 2-m temperature during summer months and late winter.

Finally, an extreme, or situational awareness index is presented: the
Parametric Extreme Index (PEI). It can be used to alert forecasters and
other end users of future extreme temperature and precipitation events. The
index is shown to be more skillful than the Standardized Anomaly (SA) as
the rarity of the event increases, with a higher number of hits and a lower
number of misses. The PEI also takes into account the nonstationarity signal
of minimum 2-m temperature.
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Preface

This dissertation is composed of five chapters which resulted in the publica-
tion of three journal articles. These articles provide the contents of Chapters
1, 2, and 3. The details of each article are described in more detail below.
Chapter 4 is an article being written as of the time of this writing. The
conclusion is unique to this dissertation.

Chapter 1

A portion of Chapter 1 has been published in the Canadian Meteorological
and Oceanographic Society (CMOS) Bulletin:

• Odon, P., West, G., and Stull, R. (2017). Vancouver Fall and Winter
2016/17: How Bad Was It? CMOS Bulletin SCMO, 45(4):9-12.

The objective of the paper is to motivate studying the extreme weather
that British Columbia (BC) faces throughout fall and winter, and the im-
pacts of such events, in particular in Southwest BC where most of the pop-
ulation resides. P. Odon carried out the research, analyzed the results, and
wrote the paper. Professor Stull provided the computational and financial
resources for the study. Professor Stull and Dr. West provided background
knowledge on meteorology and insights into the impacts on BC Hydro. They
also helped editing the paper.

Chapter 2

Chapter 2 has been published in Journal of Applied Meteorology and Cli-
matology:

• Odon, P., West, G., and Stull, R. (2018). Evaluation of reanalyses
over British Columbia. Part I: Daily and Extreme 2-m temperature.
Journal of Applied Meteorology and Climatology, 57(9):2091-2112.
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Chapter 3

The paper evaluates how different the reanalysis datasets represent daily
and extreme 2-m temperature across the complex terrain of BC. P. Odon
carried out the research, analyzed the results, and wrote the manuscript.
Professor Stull provided the computational and financial resources for the
study and together with Dr. West, edited the contents of the manuscript.
Additionally, Dr West provided input into the direction of the research.

Chapter 3

This is the second part of a two-part study. Chapter 2 is Part I. Chapter 3
has been published in Journal of Applied Meteorology and Climatology:

• Odon, P., West, G., and Stull, R. (2019). Performance of Reanalyses
across British Columbia. Part II: Evaluation of Daily and Extreme
Precipitation, (in press).

The objective of this paper is to evaluate how the different reanaly-
sis datasets represent daily and extreme precipitation across BC. P. Odon
carried out the research, analyzed the results, and wrote the manuscript.
Professor Stull provided the computational and financial resources for the
study and together with Dr West, edited the contents of the manuscript.
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Chapter 1

Introduction

The goal of this research is to provide accurate forecasts of extreme daily
maximum and minimum 2-m temperature (hereafter T2M) and 1-day ac-
cumulated precipitation (hereafter PCP) over the mountainous terrain of
British Columbia (BC), Canada. Forecasting extreme events as well as fu-
ture trends requires accurately identifying such patterns in space and time.
During the October-March storm season, southwest BC is affected by ex-
treme rainfall events in low-elevations, typically falling as snow at mid to
high elevations (Odon et al., 2017). One type of storm process, known as an
atmospheric river, makes landfall on the Coast Mountains of BC, producing
heavy to extreme precipitation due to orographic lifting (Ralph et al., 2004,
2005). During winter, arctic air outbreaks can result in record-breaking
low temperatures. These and other types of extreme cool season weather
events cause floods, property and infrastructure damage, power outages, and
business and public-transportation disruption (Odon et al., 2017). During
summer, long droughts (Odon et al.) in combination with record-breaking
summer temperatures across BC result in high electricity demand, livestock
suffering, wildfire fighting costs that exceeded half a billion dollars in 2017
alone, and insured property losses that reach hundreds of millions of dollars
(Phillips, 2018).

Complicating matters further, global climate models project an increase
in the frequency and intensity of extreme temperature and precipitation
events (Kharin and Zwiers, 2000; Zwiers and Kharin, 2005; Zwiers and
Wehner, 2013). This will make the impacts of such events, such as in-
creases in winter runoff leading to flooding, and overwhelmed drainage and
sewage-system capacity (White et al., 2016; Sun et al., 2018b), more difficult
to manage and mitigate.

This necessitates increasing our understanding and ability to forecast
extreme weather events. Such information can provide earlier and more
accurate detection of such events, which in turn can help community re-
sponders, government stakeholders and even the media to take appropriate
action to mitigate damage and reduce casualties (Herring et al., 2017).

Although numerical weather prediction has greatly improved over the
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1.1. Understanding Extreme Weather Events and its Impacts — A Case Study

past decades, forecasting extreme T2M and PCP events, especially extreme
PCP beyond two days, remains challenging (Lalaurette, 2003).

This dissertation has four goals: (1) Employ an appropriate statistical
model that specifically addresses extreme T2M and PCP events. Such a
model provides accurate estimation of future extreme levels only if suffi-
cient historical data is available. Extreme data modelling, however, leads to
a waste of information when implemented in practice, since only the maxi-
mum observed values over a specified period are used. This creates a scarcity
of data. Even without the scarcity problem, the simple availability of accu-
rate and complete historical data can be an impediment. This leads to the
next two goals: (2) evaluate which reanalysis best represents observations
to serve as a surrogate climatological dataset with respect to daily and ex-
treme minimum and maximum T2M, and daily and extreme PCP over BC;
and (3) based on that evaluation, improve the best reanalysis if possible to
create a more accurate gridded climatological dataset to better understand
T2M and PCP extreme levels. Finally, (4) combine this gridded dataset
with gridded forecasts to create bias-corrected forecasts that provide more
accurate information about extreme forecast events.

Motivation as to why this research is important and its potential benefits
are provided in the next section, via a case-study overview of the extreme
cool season of 2016/2017 in southwest BC. Each of the four goals are intro-
duced in the four following sections, with details presented in subsequent
chapters.

1.1 Understanding Extreme Weather Events and
its Impacts — A Case Study

The fall and winter seasons of 2016/17 were noteworthy for the cold, wet
weather they brought to regions of British Columbia (BC). Although all
of BC experienced some impacts, the South Coast region saw particularly
large impacts from an exceptionally wet fall that quickly transitioned into
a persistently cold, snowy winter.

1.1.1 Fall

October saw significant snow accumulations at mid to high elevations, and
record rainfall amounts in many low-elevation areas across the South Coast.
Temperatures warmed to record levels ahead of an atmospheric river event
on November 8th, 2016. Many daily records were set, with new monthly

2
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records of 19.4◦C in Vancouver and 22.4◦C in Abbotsford (see Fig. 1.1 for
all mentioned locations). The combination of record warmth and rain-on-
snow led to large snowmelt contributions to runoff, in addition to the heavy
rainfall itself.
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Figure 1.1: A fine-resolution computer model wind forecast for December 12th, 2017 at 1300 UTC. Vector orien-
tation shows direction, colour shows speed. Terrain is grey-shaded. Geographic locations mentioned in text shown
with red labels, highways labelled in red.
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Figure 1.2 illustrates the fifteen-day precipitation anomalies for the first
half of November. In several locations of the Coast it precipitated twice
more than normal.

For the province’s primary electric utility, BC Hydro, the situation made
for challenging reservoir operations, balancing dam safety requirements with
minimizing downstream flooding. Although most reservoirs across the South
Coast were full or near full, the most concerning was the Campbell River
system. The upper part of the watershed received the normal November
monthly precipitation amount compressed into the first eight days of the
month (BC Hydro, 2016). Furthermore, one-week and two-week reservoir
inflows set new records, and were estimated to exceed 1-in-100 year volumes.

In emergency coordination calls and meetings, BC Hydro worked with
nearby towns, regional districts, and the province, deciding to increase dis-
charges to a record-tying 600 m3 · s−1, enough to fill an olympic-sized swim-
ming pool every four seconds. This was done to mitigate the risk of over-
topping the dam in subsequent storms, which would’ve meant passing the
full reservoir inflows (1,100 m3 ·s−1), flooding communities downstream (BC
Hydro, 2016).

At Vancouver International Airport (hereafter, Vancouver) there were
only three days without rain in October and only two in November. In
fact, the fall and winter 2016/17 period had the second highest frequency
of rain since 1937/38, with 121 days of rain during the 182-day (6-month)
period (Fig. 1.3). Only the 1998/99 period was higher, with 131 days of
rain. Furthermore, this 2016/17 period featured 22 consecutive days of rain
(October 12th - November 2nd; Fig. 1.4). This was the longest stretch in
the past six years, and the ninth longest since 1937/38.
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Figure 1.2: Fifteen-day accumulated precipitation anomaly centered on
November 8th, 2017, relative to 1979-2017 period. Data from the the
ECMWF interim reanalysis (ERA-Interim) (Dee et al., 2011).
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Figure 1.3: Cumulative number of rainy days at Vancouver International Airport. Time series for all years between
1937/38 and 2016/17 in grey, 1998/99 in red and 2016/17 in black.
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Figure 1.4: Consecutive rainy days at Vancouver International Airport for the past 5 years in grey, with fall/winter
2016/17 in black.
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1.1.2 Winter

In December the pattern abruptly became much cold and drier. Five arctic
air outbreaks brought anomalous cold temperatures, and snow to British
Columbia in December through February.

Figure 1.5 shows the 15-day average minimum 2-m temperature anomaly
across British Columbia centered on second arctic outbreak on December
11th, 2016. It shows the difference between what British Columbians would
expect for that time of year and what actually happened. Temperatures
were much colder than average, with much of BC more than 10◦C below
normal.

In Vancouver, daily minimum temperatures were below freezing for most
of December, January and the first part of February. This period was colder
than winters in recent memory (5-year average, red line in Fig. 1.6) and
the long term average (80-year average, blue line in Fig. 1.6). There were
54 days of below freezing daily minimum temperature during the entire 6-
month period, more than any such period since 1992/93 (orange line in Fig.
1.6).

The five arctic outbreaks can be identified in the smoothed minimum
temperature time series by the large departures from the 80-year average,
occurring on approximately December 5th and 11th, 2016, January 1st and
10th, 2017 and February 2nd, 2017; most followed by snow days (green
dashed line in Fig. 1.6).

These weather events directly impacted the general population as well
as government and industry. Garbage was left uncollected for weeks in
neighbourhoods of Vancouver, Burnaby, Surrey and Delta (Correia, 2016;
McElroy, 2016) due to persistent snow and ice cover in alleys and lanes.

Across Metro Vancouver, many side streets and sidewalks were left un-
cleared and unsalted. Residents had difficulties simply getting around the
city and questioned the Vancouver Mayor’s commitment to the issues (Laanela,
2016). Nearby cities also experienced salt shortages, rationing their sup-
plies. Stores and wholesalers were also having trouble meeting the demand
(of Vancouver, 2017).

By the end of December, the city of Vancouver had spent $2.5 million on
snow and ice reduction, triple the amount used in the previous two winter
periods combined (of Vancouver, 2017). Even after the unusual cold winter,
Vancouver still needed to address the nearly 15,000 potholes (almost double
than normal) affecting drivers (Vancouver, 2017).
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Figure 1.5: Fifteen-day averaged minimum 2-m temperature anomaly cen-
tered on December 11th, 2016, relative to 1979-2017 period.
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Figure 1.6: Daily minimum 2-m temperature time series for Vancouver, smoothed using a 5-day rolling window
for readability. Time series for all years in grey, 1937/38-2016/17 average in blue, 2012/13-2016/17 average in red,
1992/92 in orange and 2016/17 in black. Days with snowfall in 2016/17 indicated with green dashed lines.
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Long waits, cancellations and delays also left commuters questioning
Vancouver’s public transportation system readiness for such cold winter
weather (McElroy, 2017a) (Fig. 1.7a). Additionally, strong arctic outflow
winds over the Salish Sea during the outbreaks led B.C. Ferries to cancel
sailings, impacting ferry commuters (Brend, 2016).

During the arctic outbreaks, approximately $5 million was spent to op-
erate an ice-clearing cable collar system on the Port Mann Bridge —the
province’s primary east-west corridor for both commercial and commuter
traffic. By contrast, just $300,000 was spent to operate it in 2015/16. Lane
closure due to crews clearing the bridge and Highway 1 led to major traffic
problems during the last arctic outbreak on February 3rd, 2017 (Saltman,
2017) (Fig. 1.7b).

During the third arctic outbreak on January 3rd, 2017, BC Hydro set
a new record for power consumption, breaking the old record set on Nov
29th, 2006 (Paetkau, 2017). Finally, in the last outbreak in early February,
a storm cycle brought record-breaking snow and freezing rain to the Fraser
Valley. Abbotsford observed 57.8 cm of snow and there were reports of up to
80 cm in Chilliwack (MacMahon, 2017). Freezing rain accumulated 2-4 cm
(Meuse, 2017). 361,000 BC Hydro customers lost power (Luymes, 2017) and
Vancouver was cut off from the rest of BC with highways 1, 3, 5 and 99 all
closed (McElroy, 2017b). The large-scale features providing the atmospheric
context of these intense arctic outbreaks will be described next.
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Figure 1.7: (a) Public transit buses paralyzed by road conditions during the December 11th, 2016 arctic outbreak
(Fritz, 2016). (b) A Google Maps screen capture, where orange and red colours indicate widespread very slow or
stopped traffic during the February 3rd, 2017 arctic outbreak.13
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1.1.3 Anatomy of an Arctic Outbreak

The five arctic outbreak events were each comprised of a cold continental
airmass associated with a strong arctic high pressure system in Alaska and
the Yukon, combined with a warmer, moist air mass associated with a Pacific
low pressure system. The lows played an important role in producing periods
of snow across the South Coast.

In far northern latitudes, during winter the sun angle is low or below the
horizon. This means incoming solar radiation is very limited, while outgoing
radiation from the earth’s surface continues unabated. This creates a nega-
tive surface energy budget and the air cools, building very cold airmasses at
the surface. Such airmasses are associated with strong high pressure such as
the ones seen over Alaska and the Yukon during the first outbreak between
December 4th, 2016 and December 6th, 2016 (blue shading in Fig. 1.8a,
and red sea level pressure contours in Fig. 1.8b).

The cold, dense, stable airmass flows through valleys, fjords, and straits
on its way to Vancouver, partially blocked by the higher mountainous terrain
of British Columbia (Figs. 1.8c and d). Where the valleys, fjords and
straits widen, the cold air spreads and thins, accelerating into arctic outflow
winds (Jackson, 1996). An example is shown in a fine-resolution computer
model forecast for the second arctic outbreak on December 12th (Fig. 1.1).
These outflow winds have impacts of their own, like the cancelled BC Ferries
sailings in the Strait of Georgia mentioned in the previous section.

Often an arctic outbreak event will draw to a close with the approach of
a Pacific low pressure system ushering in moist, mild air. In the December
5th outbreak, an upper-level low over the Gulf of Alaska moved southward
down the coast (Figs. 1.8a and c). With low-level arctic air in place, the
upper-level trough and associated surface low pressure brought 5-15 cm of
snow across the South Coast, with 5.4 cm measured in Vancouver (Figs.
1.8c and d). While this is relatively little snow compared to snowfalls in
other parts of Canada, it caused major disruptions.

1.1.4 Final Considerations

The fall season was abnormally wet for multiple months, especially in terms
of frequency of rain. This culminated in an early November storm cycle
that caused headaches for emergency management personnel, and featured
greater than 1-in-100-year cumulative flows for parts of Vancouver Island. A
series of five arctic outbreaks led to a well-below-normal winter, and an ab-
normally large number of days with below-freezing minimum temperatures.
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Figure 1.8: (a) 50.0-kPa geopotential height (km) and 2-m temperature (◦C),
(b) sea level pressure (kPa) and 6-hr precipitation (mm) for December 4th,
2016 at 1200 UTC. (c) and (d), as in (a) and (b), but for December 6th, 2016
at 1200 UTC. Data from the the ECMWF interim reanalysis (ERA-Interim)
(Dee et al., 2011).
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1.2. Extreme Data Analysis

The result was a 6-month period of weather that, by the metrics discussed
herein, was the worst in recent memory, and among the worst in history for
the South Coast of BC. Chapter 4 gives more details about how extreme
these seasons were, and how well they were forecast.

1.2 Extreme Data Analysis

Over the last few decades, techniques that can provide forecast users with
advanced warning of extreme weather events have been developed. To avoid
data waste, these techniques work by comparing model forecasts of vari-
ables to historical means and climate distributions (Lalaurette, 2003; Dutra
et al., 2013). For instance, the extreme forecast index (EFI) (Lalaurette,
2003; Zsoter, 2006) developed at the European Centre for Medium-Range
Weather Forecasts (ECMWF) indicates how far the forecast distribution for
an event deviates from the climate distribution. Another example is the sit-
uational awareness table developed by National Oceanic and Atmospheric
Administration and the National Weather Service (NOAA/NWS) (Grumm
and Hart, 2001; Graham et al., 2013). It provides standardized anomalies,
percentiles, and return periods of forecasts by comparing them to a reanal-
ysis or to a so-called “model climate”.

Such techniques provide forecasters and users with more information on
which to base their decisions by making extreme events easier to identify and
placing them in historical context. However, there is room for improvement
because they do not utilize extreme data analysis methods.

Extreme levels can be estimated by fitting an appropriate distribution
to a sample of observed extreme values recorded over a specified period.
According to the extremal types theorem, in the limit as the sample size of
observed extreme values increases, the distribution stabilizes and approaches
one of the three extreme value distributions (EVD), regardless of the distri-
bution from which the original extreme values were drawn from (Gnedenko,
1943; De Haan, 1976). The three EVD distributions can be simplified to one
Generalized Extreme Value (GEV) distribution function (Jenkinson, 1955).
This theorem is analogous to the central limit theorem, which states that in
the limit as the sample size of mean values becomes large, the shape of the
sampling distribution converges to a Gaussian distribution. Both theorems
suggest extreme and mean values behave differently and as such should be
analyzed separately.

The above explanation might seem unnecessary at first, but to make the
point clear, it implies an appropriate statistical method of extremes needs
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to be employed, rather than defining an extreme value as being a certain
distance away from mean values in order to avoid data waste. Second, the
convergence behaviour of the EVD is quite important. It implies that a long
historical record is needed for extreme data analysis to be correctly employed
and justify data waste. Therefore, to lay the ground work for an improved
statistical model of extreme weather events, first the best historical dataset
needs to be identified to accurately place extreme T2M and PCP into a
historical context. The challenge is a lack of long-term complete historical
surface weather station records at many locations across the province (Karl
et al., 1993; Odon et al., 2018).

A new methodology to address extreme weather events is introduced in
Chapter 2 and used thereafter throughout the entire dissertation.

1.3 A Historical Record

Weather station coverage across BC is limited outside of the southwest BC
population centres (Karl et al., 1993; Odon et al., 2018), and often the quality
and completeness of station records degrades as well. This data paucity
motivates the search for the best model climate from a gridded reanalysis
dataset. This would provide a long, continuous record with complete spatial
coverage over BC.

A reanalysis is a 3-D gridded dataset created by combining rerun model
forecasts with observed weather data via data assimilation. The result is a
long-term gridded dataset that is spatially complete and physically consis-
tent. They contain a large variety of atmospheric variables including many
that are not directly observed (Dee et al., 2011), potentially rendering a
feasible solution to the paucity of observational data over BC.

Some of the most well-known reanalysis datasets are the Climate Fore-
cast System Reanalysis (CFSR) from the National Centers for Environment
Prediction (NCEP), the ECMWF interim reanalysis (ERA-Interim), the
Japanese 55-year Reanalysis (JRA-55) from the Japanese Meteorological
Agency (JMA), and the Modern Era Retrospective-Analysis for Research
and Applications (MERRA-2) from the National Aeronautics and Space Ad-
ministration (NASA). They represent the current generation of reanalyses
with improvements over previous generation reanalyses R1 (NCEP/NCAR
Reanalysis I) and R2 (NCEP/DOE Reanalysis II), ERA-15 ( ECMWF 15-
year Re-Analysis) and ERA-40 ( ECMWF 40-year Re-Analysis), JRA-25
(Japanese 25-year Reanalysis), and MERRA (Modern Era Retrospective-
Analysis for Research and Applications) (Dee et al., 2011; Saha et al., 2010).
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Even though the observational data assimilated by the four reanalyses
are largely identical, their assimilation methods are not, resulting in signifi-
cant differences (Mooney et al., 2011; Saha et al., 2010; Koster et al., 2016).
Such differences can have an impact on how well extreme weather events are
represented.

New techniques to assess the performance of the new generation reanal-
yses — CFSR, ERA-Interim, JRA-55 and MERRA-2 — with respect to
daily and extreme maximum and minimum T2M, and daily and extreme
PCP over mountainous BC are described in Chapters 2 and 3 respectively.

1.4 A Gridded Climatological Dataset

Reanalyses are often downscaled to a higher resolution (Cosgrove, 2003;
Juang and Kanamitsu, 1994; Rasmussen et al., 2011; Stefanova et al., 2012;
Abatzoglou, 2013). High-resolution gridded temperature and precipitation
datasets are widely used because of the benefits of spatial completeness and
fine-scale features due to topography. Such details are important for mod-
elling applications in fields like hydrology, ecology, and agriculture (Thorn-
ton et al., 1997; Mote et al., 2005; Abatzoglou, 2013; Stoklosa et al., 2015).

Across BC there are two types of state-of-the-art datasets suited for
long-term analysis: the very high-resolution Parameter-Elevation Regres-
sions on Independent Slopes Model climatology (PRISM; Daly et al. (1994,
1997, 2002)), which provides access to a 30-arc-second (∼ 800 m) gridded
monthly-mean and annual-mean maximum and minimum temperature, and
precipitation values for the 1981-2010 period (PCIC et al., 2014); and the
Canadian homogenized stations dataset, which accounts for non-climatic
changes in the data such as changes in station siting, instrumentation, time
of observation and procedure (Vincent, 1998; Vincent and Gullett, 1999;
Vincent et al., 2002; Mekis, 2005; Mekis and Brown, 2010; Mekis and Vin-
cent, 2011). However, PRISM lacks temporal resolution and the stations
lack spatial completeness.

The temporal resolution of the reanalysis, the spatial resolution of PRISM,
and the homogeneity and ground truth of the stations are therefore combined
to create a new, very-high-resolution surface analyses (hereafter referred to
as the VHRSA). The methodology is described in Chapter 4.
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1.5 Forecasting Extreme Weather Events

Mountain ranges can dramatically impact precipitation distribution due to
orographic lifting and blocking, among other processes. Similarly, tempera-
ture exhibits large spatial variability in complex terrain. This is in part due
to typical changes in temperature with height (i.e., the lapse rate), but also
due to mountain-specific processes like cold air pooling, heating and cool-
ing of near-slope air, diabatic processes involved in cross-barrier airmass
transformation (Smith et al., 2003), and blocking of temperature advection,
among others. All these processes make the spatial distribution of precip-
itation and temperature quite complicated in the complex terrain of BC
(Deng et al., 2005; Astsatryan et al., 2015). Lack of model resolution to re-
solve terrain features and processes make accurate forecasts in mountainous
regions particularly challenging (Junker et al., 1992; Kunz and Kottmeier,
2006; Smith et al., 2010; Haren et al., 2015).

Although numerical weather prediction models are far less frequently
verified over mountainous regions, several studies investigated whether high-
resolution models performed better than their lower-resolution counterparts
across complex terrain. ?, ? and ? suggest that at higher resolutions
(< 4 km) there are still major problems associated with precipitation and
temperature forecasts. The model microphysis parameterizations lead to
overprediction along the steep windward slopes and underprediction in the
lee of major barriers. In contrast, Schirmer and Jamieson (2015), Weusthoff
et al. (2010), Garvert et al. (2005) and Ikeda et al. (2010) concluded that
higher-resolution models were equal or better at simulating orographic in-
fluences compared to the low-resolution models. However, all studies agree
that higher resolutions models better resolve terrain features.

The forecast methodology described in Chapter 4 both bias corrects and
downscales the North American Ensemble Forecast System (NAEFS) using
the VHRSA dataset.

1.6 Dissertation Organization

The outline of the dissertation is as follows. Chapters 2 and 3 evaluate
reanalyses to identify the one that yields the best long-term and complete
T2M and PCP historical dataset over BC, respectively. A new methodology
is also introduced in both chapters to address how extremes in T2M and
PCP vary across space and time (around the calendar year). Chapter 4
introduces a new statistical model that is used to forecast extreme T2M and
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PCP, that accounts for the issues of model resolution and non-stationarity
(changes due to climate change, urbanization, and other effects). The results
are summarized in the conclusion.
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Chapter 2

Performance of Reanalyses
across British Columbia.
Part I: Evaluation of Daily
and Extreme 2-m
Temperature

2.1 Introduction

Performance of the new generation reanalyses — CFSR, ERA-Interim, JRA-
55 and MERRA-2 — is assessed with respect to daily and extreme maximum
and minimum 2-m temperature (hereafter T2M) over mountainous BC. The
purpose of this Chapter is to identify which reanalysis best represents ob-
servations as a surrogate climatological dataset. The end goal is for this
reanalysis to serve as a tool for the creation of a new extreme forecast index
in Chapter 4.

Previous studies have shown differences in T2M between the ERA-Interim
and CFSR, and previous generation reanalyses ERA-40 and R1 over the Ti-
betan Plateau in central Asia (Bao and Zhang, 2013). Betts et al. (2009)
showed that the seasonal cycle of mean T2M is higher than observations
over the Mississippi River basin for both ERA-40 and ERA-Interim. Berg
et al. (2003) found that ERA-40 has substantial biases in T2M and dewpoint
temperatures over land in North America. Wang et al. (2011) evaluated the
mean T2M performance over the entire globe from a mix of new and pre-
vious generation reanalyses (ERA-40, R1, R2 and CFSR). More recently,
Lindsay et al. (2014) evaluated the performance of mean T2M over the Arc-
tic for CFSR, MERRA-1, ERA-Interim, and JRA-25. All studies agree that
newer reanalyses outperform previous generation reanalyses.

Both daily and extreme maximum and minimum T2M are analyzed,
(defined in the Data and Methodology section), and compared with weather
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stations in BC for the period 1980-2010. T2M is examined because of its
importance and impact on ecosystems (Parmesan et al., 2000), agriculture
(Rosenzweig et al., 2001), tourism (Patz et al., 2005; White et al., 2016),
urbanization and health (Curriero et al., 2001; White et al., 2016; Odon
et al., 2017), and due to observational data availability (Jones et al., 1985;
Peterson and Vose, 1997; Jones et al., 1999).

Second, trends in both daily and extreme T2M during the study pe-
riod are examined in order to determine if significant statistical changes
occurred over time. This is to assess whether or not a stationary climato-
logical distribution is appropriate to represent present-day daily and extreme
distributions.

The outline of the Chapter is as follows. In section 2.2, a brief de-
scription of the different reanalyses and of the weather-station observations
is given. In sections 2.3- 2.5 a methodology for dividing BC into climate
zones, the various metrics used for evaluating daily and extreme reanalysis
T2M, and a method for assessing statistical nonstationarity are described.
In section 2.6, the daily and extreme T2M from the reanalyses are evaluated.
In section 2.7, the trends of both daily and extreme T2M are examined, and
the corresponding changes in return levels and return periods of extremes
are discussed. The results are summarized in section 2.8.

2.2 Data and Methodology

Daily maximum/minimum T2M from 57 weather stations from 1 Jan 1980 to
31 Dec 2010 are used in this study for evaluation of the CFSR, ERA-Interim,
JRA-55 and MERRA-2 reanalyses. A description of the weather station
dataset is given below. The authors chose the 1980-2010 as the overlapping
period for comparison because the MERRA-2 began in 1980 (Gelaro, 2015);
and because in 2011 the CFSR was extended using NCEP’s Climate Forecast
System Version 2 (CFSv2) operational model, and differences between the
models used to produce CFSR and the operational CFSv2 may affect data
evaluation across the 2010/2011 boundary period (Saha et al., 2014).

A description of the different reanalyses and of the weather station
dataset is given below. A summary of the reanalyses atmospheric models
and configurations is presented in Table 2.1.

T2M from the weather stations used in this study are not assimilated by
the CFSR Wang et al. (2011), or the MERRA-2 (Bosilovich et al., 2015).
The SYNOP stations (surface synoptic observations) are directly assimi-
lated by the ERA-Interim (Dee et al., 2011) and the JRA-55 (Kobayashi
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et al., 2015) (see Appendix A for assimilated stations). Therefore evaluat-
ing against these observations provides a dependent measure of accuracy. A
discussion of how the reanalyses perform across non-assimilated stations is
given in section 2.6.
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Table 2.1: Overview of the four reanalysis datasets examined in this study.

Institution Reanalysis Model Assimilation
method

Period Download
grid
(lat× lon)

Time
interval

Reference

NCEP/NCAR CFSR CFS
T382/L64
(global
horizontal
resolution
∼ 38 km)

3D-Var GSI 1979-2011
(current as
CFSv2)

0.5◦ × 0.5◦

(∼ 50 km)
0000,
0600,
1200
and 1800
UTC

Saha et al.
(2010)

ECMWF ERA-
Interim

IFS
T255/L60
(global
horizontal
resolution
∼ 79 km)

4D-Var 1979-current 0.5◦ × 0.5◦

(∼ 50 km)
0000,
0600,
1200
and 1800
UTC

Dee et al.
(2011)

JMA JRA-55 JMA
T319/L60
(global
horizontal
resolution
∼ 55 km)

4D-Var 1958-2012
(current as
JCDAS)

0.5616◦ ×
0.5616◦

(∼ 55 km)

0000,
0600,
1200
and 1800
UTC

Ebita et al.
(2009)

NASA MERRA-
2

GEOS-
5.12.4
AGCM
(lat × lon)
0.5◦ ×
0.625◦

/L72

3D-Var GSI 1980-current 0.5◦ ×
0.625◦

0030,
0130,...
...2330
UTC

Gelaro
(2015);
Gelaro
et al.
(2017)
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2.2.1 Weather station data

The stations were initially selected because of their proximity to population
centres and so that they would be geographically dispersed around BC. They
represent conditions for a mixture of coastal, intermountain and continental
climates. Ideally, variations in climatological time series should be caused
only by changes in weather and climate. However, decades-long time series
can be affected by inhomogeneities such as missing data, changes in instru-
mentation, station relocation, changes in the local environment surrounding
the weather station such as urbanization or land use cover, and changes in
time of observation, to name a few (Peterson et al., 1998; Mekis and Hogg,
1999; Jones et al., 1985). Some changes cause sudden discontinuities while
other changes, such as changes in the local environment around the station,
cause gradual trends in the data.

Of the 74 stations initially selected for the study, 8 were eliminated due
to either station relocation or discontinuation during the 1980 to 2010 study
period. Additionally, eight stations with more than 4% missing data were
excluded, and one station was eliminated due to poor data quality. Of
the remaining 57 stations, 48 are from Environment and Climate Change
Canada (ECCC) and nine are from BC Hydro, the primary electric utility
company for BC.

Figure 2.1 shows the locations of all 57 stations overlaid with the popu-
lation distribution across BC, and with the province’s political boundaries.
Red and blue stations represent ECCC and BC Hydro stations, respectively,
and their corresponding three-letter abbreviations that are referenced in
the paper. Fifty-two of the stations are located in valleys (indicated by
upside-down triangles), and five are in non-valley locations (upright trian-
gles). Of the 4.8 million people living in BC, about half live in the Vancouver
metropolitan area in southwest BC.
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Figure 2.1: Location of ECCC (red) and BC Hydro (blue) weather stations and British Columbia population
distribution (orange). Upside-down triangles indicate valley stations; upright triangles indicate non-valley stations.
Dashed lines delineate the dominant climate zones: North, Central, Maritime West, Southwest and Southeast.

26



2.2. Data and Methodology

Temporal data homogeneity for ECCC stations was assessed by iden-
tifying non-climatic shifts in the annual and monthly means of the daily
maximum and minimum T2M using techniques based on regression models
(Vincent, 1998; Wang et al., 2007). The non-climatic shifts were mainly
due to station relocation, or changes in observing practices and automation
(Vincent and Gullett, 1999). Monthly and daily maximum and minimum
temperatures were then adjusted for the shifts identified in the temperature
annual series (Vincent et al., 2002).

BC Hydro station data were manually quality controlled based on range
limits, spatiotemporal consistency, present weather conditions, and are used
to verify reanalysis performance at non-valley stations. Initial stationar-
ity analysis indicated potentially spurious trends in the data, so they are
excluded from the analysis of nonstationarity in daily and extreme T2M.
Furthermore, ECCC stations with more than 1% missing data are also ex-
cluded, leaving 26 ECCC stations for the nonstationarity analysis.

2.2.2 CFSR

In 2010, NCEP introduced the CFSR. Previous NCEP reanalyses have been
among the most used NCEP products in history. Many known errors in
the assimilation of observational data and execution of previous reanalyses
were corrected in the CFSR, resulting in a superior product in most respects
(Saha et al., 2010).

CFSR uses NCEP’s global coupled atmosphere-ocean model. It consists
of a spectral triangular atmospheric grid (Saha et al., 2006) at a horizontal
resolution of T382 (∼ 38 km) and a hybrid sigma-pressure system with 64
vertical levels extending from the surface to approximately 0.26 hPa.

CFSR was the first NCEP global reanalysis to directly assimilate satellite
radiances, and to use three-dimensional variational data assimilation (3D-
Var) in a Gridpoint Statistical Interpolation (GSI) scheme rather than a
Spectral Statistical Interpolation (SSI) scheme.

The T2M variable in the CFSR is derived primarily from satellite radi-
ances and radiosonde information. Observations of T2M from land stations
are not assimilated (Saha et al., 2010).

2.2.3 ERA-Interim

The ECMWF introduced the ERA-Interim in 2011, in part to replace ERA-
40 (Dee et al., 2011). The ERA-Interim configuration uses a spectral T255
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horizontal resolution (∼ 79 km), and a hybrid sigma-pressure system with
60 vertical levels with the top of the atmosphere located at 0.1 hPa.

Some of the improvements over ERA-15 and ERA-40 include a new
humidity analysis; new model physics where the prognostic equations are
solved using a semi-Lagrangian scheme, a variational bias correction of satel-
lite radiances (Dee et al., 2011); and improvements on various technical as-
pects of reanalysis such as data selection, quality control, bias correction,
and performance monitoring; each of which can have a major impact on
the quality of the reanalysis. Additionally, the use of 4D-Var for the at-
mospheric analysis in ERA-Interim is a major step forward. The improved
4D-Var data assimilation scheme allows the cost function to be minimized
over a 12-h assimilation time interval rather than a single time, as is the
case for ERA-40 and CFSR.

The T2M variable is directly assimilated by the ERA-Interim from SYNOP
stations (Dee et al., 2011).

2.2.4 JRA-55

In 2011 the JMA produced the Japanese 55-year Reanalysis (JRA-55) (Ebita
et al., 2009). The JRA-55 extends 55 years from 1958 to 2012, and will
be continued in real time as the JMA Climate Data Assimilation System
(JCDAS). JRA-55 uses a spectral model integrated at a TL319 (∼ 55 km)
horizontal resolution with 60 vertical levels up to 0.1 hPa in hybrid sigma-
pressure coordinates.

It employs a 4D-Var scheme which seeks the initial condition that best
fits the forecast to the observations within a 6-h assimilation interval rather
than a single time. The reanalysis also contains a new radiation scheme,
variational bias correction for satellite radiances, an update on dynamical
and physical processes such as the prognostic equations being solved in a
semi-Lagrangian form rather than Eulerian (Ebita et al., 2011; Takeuchi
et al., 2013). These upgrades significantly reduce model biases versus the
JMA’s previous generation reanalysis, enhance the dynamical consistency
of analysis fields, and advance the handling of satellite radiances.

Similarly to ERA-Interim, T2M is directly assimilated from SYNOP
stations (Ebita et al., 2011).

2.2.5 MERRA-2

The new Modern Era Retrospective-Analysis for Research and Applications
(MERRA-2) was produced by NASA in 2015. The grid used for MERRA-2

28



2.3. Climate zones

is 0.5◦ latitude 0.625◦ longitude (∼ 55 km) with 72 vertical levels in hybrid
sigma-pressure coordinates, from the surface to 0.01 hPa.

It uses an upgraded 3D-Var assimilation scheme based on the GSI with
a 6-h update cycle. Some other improvements over NASA’s previous gen-
eration reanalysis include an updated physics model, aerosol assimilation,
corrections in precipitation for land surface and imbalances in water and
energy cycles, to name a few (Rienecker et al., 2011; Gelaro, 2015; Gelaro
et al., 2017).

Similarly to CFSR, the T2M is derived primarily from satellite radi-
ances, and radiosonde, aircraft and wind-profiler information. Observations
of T2M from land stations are not assimilated (Gelaro et al., 2017).

2.3 Climate zones

The location of BC immediately east of the Pacific Ocean, and its com-
plex topography, produce distinctive climate zones that vary with elevation,
location relative to ocean and mountains, and latitude (Peel et al., 2007).
Climate zones vary from the wettest in Canada to the hottest and driest,
with the formidable barrier of the Coast Mountains serving as the dividing-
line between the two.

Due to temperature ranges and variability that are unique to each cli-
mate zone (Moore et al., 2008), reanalysis performance is evaluated sepa-
rately for each zone.

To determine the different climate zones, Principal Component Analysis
(PCA) is conducted on the daily maximum and minimum T2M correlation
matrix for each station. The corresponding station correlation is calculated
from the daily temperature values for the entire study period. The high
correlation values (Fig. 2.2) are owed to annual seasonal effects, which in
section 2.5 becomes an important factor as the authors want to evaluate the
degree to which the reanalyses capture the annual cycle across the different
climate zones.

The Principal Components are ordered by the size of their respective
eigenvalues — their rank corresponds to their relative importance in de-
scribing temperature variations. 93% of the variability of both maximum
and minimum temperature can be explained by the first four components,
which are retained, leading to a significant reduction of data while retaining
most of the variance.

A K-means clustering analysis is then performed on the four components
to find a natural grouping of the data, where each component belongs to
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Figure 2.2: Correlation matrix and five dominant climate zone clusters in
BC.
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the cluster with the nearest centroid. One to 10 clusters were tested and a
five-cluster solution was chosen (Fig. 2.2). After five clusters, the additional
decrease in the within-cluster dissimilarity is not substantial, and the num-
ber of stations per cluster becomes too low. The five climate zones (encircled
by dashed lines in Fig. 2.1) are subsequently matched to those identified by
Chilton (1981) and Moore et al. (2008):

1. Islands and Coast Mountains (hereafter Maritime):

Heavily influenced by the Pacific Ocean, this zone includes island sta-
tions on the immediate coast, windward of the Coast Mountains. It
has mild winters and cool summers. Fall, winter, and spring feature
frequent landfalling low pressure systems, while summers are fairly
dry. High elevations accumulate very deep snowpacks in the winter
and are extensively glaciated.

2. Coast Mountains (hereafter Southwest):

The climate of the Coast Mountains is similar to the Maritime cli-
mate, with a slightly less pronounced maritime influence. This more
protected region has slightly more sunshine and greater temperature
variability relative to the Maritime climate zone.

3. Interior Plateau (hereafter Central):

On the lee side of the Coast Mountains, the Interior Plateau is a
broad, elevated region broken occasionally by narrow valleys. In this
drier and more continental climate, seasonal and diurnal differences in
temperature are much greater than at the coast. Summers tend to be
hot and dry; winters cooler and less moist. The Okanagan Valley is
the southernmost, hottest, and driest part of the province and in all
of Canada.

4. Columbia Mountains and Southern Rockies (hereafter Southeast):

Farther east, westerly winds again ascend the Columbia and Rocky
Mountains. These ranges also restrict easterly flow of cold, continen-
tal arctic air into the region. High elevations are wet and cool. Valley
bottoms are semi-arid with hot summers, and frequent, cold temper-
atures below temperature inversions in the cool season.

5. The Interior Plains, Northern and Central Plateaus and Mountains
(hereafter North):
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In the Northern and Central Plateaus and Mountains, winters are
colder and drier than in the South, due to frequent influxes of conti-
nental arctic air, and fewer Pacific storms. Summers are short, warm,
and wetter than southern BC due to the northward migration of the
storm track.

To the east of the northern Rocky Mountains lies an extension of the
Great Plains. It sees limited precipitation due to the many topographic
barriers between it and the Pacific Ocean, and very frequent influxes
of continental arctic air due to proximity and a lack of topographic
barriers to the north and east. This area experiences a continental
climate with long, cold, dry winters and short, warm summers.

2.4 Verification Metrics

The statistical behaviors of daily and extreme T2M are compared between
observed weather station data, and their corresponding location in the re-
analyses. In order to evaluate the agreement between observations at sta-
tion locations and reanalyses at grid points, the methods Nearest Neighbor,
Inverse Distance Weighting (IDW), Bilinear and Bicubic interpolation are
investigated for comparison with the observed values. No method is supe-
rior across all locations and IDW is adopted. A more detailed description of
each interpolation method can be found in Mooney et al. (2011) and Stahl
et al. (2006).

2.4.1 Daily T2M

To obtain a smooth climatology of daily maximum and minimum T2M av-
eraged over 31 years for each calendar day, a 31-day centered rolling window
was applied to both reanalysis and observed temperatures. The rolling av-
erage is the unweighted mean of the 961 sample values centered around a
calendar day. This window length was chosen because it smooths out noise
related to extreme weather events while still capturing monthly variations in
daily T2M. For the reanalyses, the daily maximum (minimum) T2M is de-
fined as the highest (lowest) value of the six-hourly T2M outputs for CFSR,
ERA-Interim and JRA-55; and as the highest (lowest) value of the hourly
T2M outputs for MERRA-2 in a calendar day. The Canadian meteorologi-
cal convention is followed, where it defines a calendar day to be from 0601
UTC of the current day to 0600 UTC of the following day (Meteorological
Service of Canada, 2015) .
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The bias (or systematic error), the random error, and the two-sample
Kolmogorov-Smirnov (KS) statistic are then computed to estimate how ac-
curately each reanalysis captures T2M.

Bias is the average difference between the reanalysis and the observa-
tion. The random error, measured by centered root mean squared error
(CRMSE), expresses how concentrated the errors are from the mean bias
on a given calendar day. The two-sample KS statistic is used to determine
the largest absolute difference between the reanalysis empirical cumulative
distribution function (ECDF) and the observation ECDF. It detects the
general difference between the two distributions.

2.4.2 Extreme T2M

In addition to societal impacts, extreme temperatures are a concern for
power utilities primarily because of their effect on load. That is, during
periods of extreme heat, electrical load (demand) is high due to air condi-
tioning. The same goes for extreme cold and heating. Other impacts include
transmission line thermal ratings — wherein power transmission can be lim-
ited during periods of hot weather, limiting a utility’s ability to supply power
for consumption or market trading. It is important for utilities to identify
and anticipate such events, so that they can plan optimal system operations
in light of abnormal load considerations.

A return level is a value of T2M that is expected to occur, on average
once every return period. For extreme T2M, the 2- and 30-yr return lev-
els are examined, which represent significant and extreme departures from
normal, respectively (2- and 30-year return levels are also known as 2- and
30-year recurrence intervals, or 0.5 and 0.03 Annual Exceedance Probabili-
ties (AEP)).

To do this, a 31-day centered rolling window is used over the 31-year
period to obtain 31 values of annual maximum (minimum) T2M for each
calendar day, one value for each of the 31 years. In other words, the 31 an-
nual maximum (minimum) T2M in a given 31-day centered rolling window
are the highest (lowest) values in each of the 31 years, which then com-
prise 31 values of extreme T2M for each calendar day. As with daily T2M,
the window length struck a balance between having a large enough sample
size while ensuring that each day within the window would have a similar
climatological distribution.

Return levels can be estimated by fitting an appropriate distribution to a
sample of extreme values. According to the theorem of extremal types, in the
limit as the sample size of extreme values becomes large, the distribution sta-
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bilizes and approaches one of the three extreme value distributions (EVD),
regardless of the distribution from which the original T2M was drawn (Gne-
denko, 1943; De Haan, 1976). This theorem for extreme values is analogous
to the central limit theorem for mean values, which states that in the limit
as the sample size of mean values becomes large, the sampling distribution
converges to a Gaussian distribution. Both theorems suggest extreme and
mean values behave differently and as such should be analyzed differently.
The three EVD distributions can be simplified to one Generalized Extreme
Value (GEV) distribution function (Jenkinson, 1955).

A GEV dresses these 31 sample values for each calendar day by the
method of L moments. The method of L moments is chosen because it
produces more efficient estimates of return levels for small sample sizes than
the method of maximum likelihood (Hosking et al., 1985; Hosking, 1990).
The small sample size of 31 extremes values is a concern because: 1) the three
EVD distributions converge at different rates (Davis, 1982), and 2) the daily
T2M from which the extreme values are sampled are normally distributed
and serially correlated, resulting in a slower convergence rate to either of the
three distributions (Leadbetter et al., 1983). Thus, a goodness-of-fit test is
conducted to evaluate the closeness of the fitted GEV distributions to the
data.

A Lilliefors test compares the largest absolute difference between the
fitted GEV cumulative distribution function (CDF) and the observation
ECDF. The null hypothesis is that the observed data is drawn from a GEV
distribution. A sufficiently large critical difference between the fitted GEV
CDF and the observation ECDF results in the null hypothesis being rejected.

A parametric bootstrap procedure determines this critical difference.
Namely, 100 samples of size 31 are generated from the fitted GEV distribu-
tion for each calendar day at each station. Then, 100 critical differences are
derived from the comparison of each generated sample ECDF and the fitted
GEV CDF. The 90th percentile of the resulting collections of critical differ-
ences is used as the critical difference for the rejection of the null hypothesis
that the sample originates from a GEV distribution, which corresponds to
accepting or rejecting the null hypothesis at the α0 = 0.10 significance level.

At this 10% significance level, 10% of the tests are expected to exceed
a critical difference, rejecting the null hypothesis. However, there are 57
weather stations and 365 calendar days totaling N0 = 20805 independent
Lilliefors tests. To reduce the probability of incorrectly rejecting one or
more of the N0 true null hypotheses, Walker’s criterion with αWalker =
1 − (1 − α0)

1/N0 = 5.06 × 10−6 is regarded as significant. Namely, the null
hypothesis is rejected when the critical difference between the fitted GEV
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2.5. Nonstationarity

CDF and the observations ECDF exceeds the (1 − αWalker)
th percentile of

the resulting collections of critical differences between the fitted GEV CDF
and the generated ECDF of the samples (Wilks, 2016).

Less than 4% (6%) of the locations and calendar days are rejected during
the 1980-2010 study period, suggesting maximum (minimum) extreme T2M
behaviour can be described by a GEV distribution.

The 2- and 30-year return levels are then estimated from the GEV dis-
tribution for each calendar day. The bias of the 2- and 30-year return levels
are calculated to estimate how well each reanalysis captures extreme T2M.

The 2- and 30-yr return levels of maximum and minimum extreme T2M
are chosen because less than 1% of their 90% respective confidence intervals
overlap, indicating the difference between the two return levels is statistically
significant. The sampling uncertainty of the estimates of the 2- and 30-
yr return levels are determined by a parametric bootstrap procedure. 100
samples of size 31 are generated from the fitted GEV distribution for each
calendar day at each station. Then, the 2- and 30-year return levels are
estimated from each generated sample. The 5th and 95th percentiles of the
resulting collection of 2- and 30-year return levels is used as lower and upper
bounds of the 90% confidence intervals for the true 2- and 30-year return
levels.

2.4.3 Analysis of Variance (ANOVA)

The mean systematic error of daily maximum and minimum T2M, and of 2-
and 30-year return levels are calculated for each location from all calendar
day systematic errors. Comparisons between mean systematic errors of the
reanalyses (CFSR, ERA-Interim, JRA-55 and MERRA-2) and of the ob-
served levels of T2M (daily maximum, daily minimum, extreme maximum
and extreme minimum) are made using a two-way ANOVA. Tukey’s honest
significant difference (HSD) is applied following statistical significance in the
ANOVA to identify differences in pairwise comparisons of reanalyses mean
systematic errors.

2.5 Nonstationarity

Statistical nonstationarity is tested to determine if there are important tem-
poral changes in daily and extreme T2M. Specifically, is nonstationarity sub-
stantial enough to require a more complex characterization of extreme levels
that takes into account temporal changes, or is a comparatively simpler sta-
tionary model accurate enough to represent daily and extreme T2M?
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2.5. Nonstationarity

2.5.1 Daily T2M

For daily T2M, a 91-day centered rolling window is used to obtain 2821 val-
ues of maximum and minimum T2M for each calendar day over the 31 years.
The rolling window is extended to 91 days to increase the sample size while
still accounting for seasonal variations. A Gaussian distribution dresses the
2821 sample values, where the parameters of the Gaussian distribution are
estimated by the method of maximum likelihood.

An advantage of maximum likelihood over L moments for parameter es-
timation is its adaptability to changes in model. The maximum likelihood
estimation (MLE) of nested models leads to a simple likelihood ratio test
(LRT) procedure of any one nonstationary model where the mean and stan-
dard deviation vary with time, against a stationary model where the mean
and standard deviation are constant. Because the method of L moments
are defined for only identically distributed random samples, the use of time-
dependent parameters in a Gaussian distribution prevent us from using the
method of L moments.

First, a Shapiro-Wilks test tests the null hypothesis that the observed
data is drawn from a Gaussian distribution at the αFDR = 0.05 level of sig-
nificance. The False Discovery Rate (FDR) procedure is similar to Walker’s
criteria, but less strict. The collection of p-values from the N0 = 20805
Shapiro-Wilks tests are arranged in ascending order. The null hypotheses
are rejected if their respective p-values are lower than a threshold level pFDR

that depends on the distribution of ordered p-values (Wilks, 2016).
For the locations and calendar days where the Shapiro-Wilks test is

tested during the 1980-2010 study period, more than 90% of the results
suggest both maximum and minimum daily T2M can be described by a
Gaussian distribution.

Second, the null hypothesis that all 31 years of daily maximum/minimum
T2M are drawn from the same Gaussian distribution are tested against the
alternate hypothesis that each of the 31 years of the daily temperature data is
drawn from a different Gaussian distribution due to time dependencies in the
parameters. This alternate hypothesis is tested against the null hypothesis
using a LRT.

To perform the LRT, it is necessary to fit 31 Gaussian distributions
separately to the each year of data, and compare these 31 distributions with
the single Gaussian distribution fit using the full data set for each calendar
day at each station. In principle, time dependence can be assumed on both
parameters. However, if the changes in either of the parameters is negligible,
it is advantageous to keep them constant.

36



2.6. Results and discussion

The Gaussian distribution parameters are assumed to vary with time as
µ(t) = µ0 + µ1(t− t0), and σ(t) = σ0 + σ1(t− t0). The slope coefficients µ1
and σ1 represent the annual rate of change in mean and standard deviation
of daily T2M respectively. The null hypotheses µ1 = 0 and σ1 = 0 are tested
against the alternate hypotheses that µ1 6= 0 and σ1 6= 0.

With models M0 = N(µ, σ) and M1 = N(µ(t), σ(t)), the LRT compares
the difference between the maximized log-likelihoods under models M0 and
M1 respectively. A sufficiently large difference indicates that the nonstation-
ary model explains substantially more of the variation in the data than the
stationary model. Small differences suggest that the increase in model size
does not bring worthwhile improvements in the capacity of the model to ex-
plain the data. This critical difference is determined by the χ2 distribution.
Model M0 is rejected at the αFDR = 0.05 level of significance.

2.5.2 Extreme T2M

For extreme maximum and minimum T2M, the rolling 31-day centered
rolling window is maintained for the 31 year period. A GEV dresses these
31 sample values by the method of maximum likelihood. A nonstationary
GEV distribution is compared, where only the location parameter is allowed
to exhibit trend, with a stationary GEV distribution with constant location,
scale and shape parameters.

The GEV distribution location parameter is assumed to vary with time
as µ(t) = µ0 +µ1(t− t0), where the slope coefficient µ1 represent the annual
rate of change in location values of extreme T2M.

With models M1 = GEV (µ(t), σ, κ) and M0 = GEV (µ, σ, κ), the alter-
nate hypothesis is tested against the null hypothesis that the extremes of
temperature are drawn from the same GEV distribution using a LRT at the
αFDR = 0.05 level of significance. Namely, the alternate hypothesis is that
a nonstationary model explains substantially more of the variation in the
data, and consequently changes in return levels should be accounted for.

2.6 Results and discussion

2.6.1 Daily T2M

The Central climate zone is representative of the overall performance of the
different reanalyses for daily maximum T2M across BC (Figure 2.3). The
seasonal cycle of temperature is well captured by all reanalyses (Fig. 2.3). All
four reanalyses show a negative (cold) systematic error (Fig. 2.3; Table 2.2)
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2.6. Results and discussion

throughout the entire calendar year. ERA-Interim and JRA-55 outperform
CFSR and, to a lesser degree, MERRA-2. Additionally, MERRA-2 has a
less consistency in performance, and usually has a higher systematic error
during spring. MERRA-2 and CFSR also tend to have a higher (worse)
random error during spring (Fig. 2.3). The Maritime climate zone has the
lowest systematic across all reanalyses all year long, and the lowest season-
to-season temperature variation (Figure not shown; Table 2.2). The North
climate zone has the highest random error across all reanalyses during winter
time, and the highest season-to-season temperature variation. This might be
expected to some extent since higher observed variability typically makes for
poorer model forecast random error, and the reanalyses are based on model
forecasts.
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Table 2.2: Seasonally averaged systematic error (SE in ◦C) and random error (RE in ◦C) of mean values, and
Kolmogorov-Smirnov statistic (KS) of daily maximum T2M by climate zone

Winter Spring Summer Fall

SE RE KS SE RE KS SE RE KS SE RE KS

North

CFSR -2.05 1.44 0.29 -5.59 1.12 0.53 -4.22 0.91 0.40 -3.86 0.86 0.43
ERA-Interim -1.88 1.33 0.23 -3.47 0.69 0.37 -3.71 0.54 0.38 -3.21 0.79 0.36

JRA-55 -1.67 1.56 0.28 -3.80 0.78 0.39 -3.20 0.53 0.34 -3.01 0.77 0.35
MERRA-2 -3.32 1.52 0.30 -6.11 1.12 0.57 -4.24 0.75 0.42 -3.76 0.85 0.40

Central

CFSR -2.15 1.11 0.30 -4.80 0.99 0.50 -4.36 0.81 0.40 -3.68 0.73 0.40
ERA-Interim -1.55 0.97 0.18 -2.67 0.56 0.30 -3.15 0.58 0.62 -2.67 0.64 0.30

JRA-55 -2.20 0.96 0.25 -2.75 0.52 0.30 -2.98 0.54 0.29 -2.88 0.64 0.31
MERRA-2 -3.61 1.12 0.37 -4.98 1.01 0.57 -2.84 0.64 0.42 -2.89 0.80 0.40

Maritime

CFSR -0.81 0.76 0.25 -1.40 0.79 0.39 -1.35 0.76 0.41 -1.02 0.65 0.35
ERA-Interim -0.05 0.72 0.25 -0.05 0.74 0.32 -0.29 0.81 0.30 -0.27 0.67 0.31

JRA-55 -0.37 0.80 0.29 -0.38 0.88 0.33 -1.03 0.98 0.36 -0.62 0.79 0.34
MERRA-2 -0.56 0.73 0.24 -0.66 0.77 0.32 -0.45 0.81 0.30 -0.40 0.66 0.28

Southwest

CFSR -2.84 0.75 0.39 -3.23 0.90 0.39 -2.57 0.97 0.28 -2.74 0.79 0.34
ERA-Interim -2.57 0.72 0.35 -2.28 0.67 0.31 -2.16 0.74 0.27 -2.54 0.68 0.32

JRA-55 -2.44 0.73 0.33 -2.13 0.76 0.29 -2.49 0.77 0.28 -2.53 0.77 0.32
MERRA-2 -3.15 0.78 0.44 -3.15 0.98 0.39 -1.94 0.75 0.24 -1.98 0.76 0.26

Southeast

CFSR -4.87 0.98 0.47 -7.83 1.19 0.67 -7.02 1.01 0.52 -5.91 0.86 0.51
ERA-Interim -4.19 1.03 0.39 5.99 0.72 0.53 -6.28 0.71 0.47 -5.25 0.83 0.46

JRA-55 -4.63 0.94 0.43 -5.52 0.73 0.51 -5.54 0.67 0.43 -4.95 0.84 0.44
MERRA-2 -5.61 1.06 0.14 -7.51 1.10 0.65 -5.64 0.76 0.46 -4.58 1.04 0.42
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Figure 2.3: Observed and reanalysis mean, systematic error, and random error magnitude for daily maximum
T2M, averaged over stations in the Central climate zone. The vertical dashed lines indicate the change in seasons
and the colored dots represent the seasonal average.
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2.6. Results and discussion

Daily minimum T2M and their errors are illustrated in Figure 2.4 for the
North climate zone, which is representative of other zones. Similar to daily
maximum T2M, all four reanalyses capture season-to-season temperature
variations regardless of the temperature differences between the different
climate zones, but generally exhibit a cold bias (Figure not shown; Table
2.3). In contrast, the systematic error is much smaller for daily minimum
than for daily maximum T2M across all zones. Again, ERA-Interim and
JRA-55 outperform CFSR and MERRA-2 for systematic and random errors,
both of which are higher during winter months. For the North, systematic
error is positive (warm) during winter months for the ERA-Interim and
JRA-55, and in the Maritime it is positive all year across all reanalyses
(Figure not shown; Table 2.3).
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Table 2.3: Seasonally averaged systematic error (SE in ◦C) and random error (RE in ◦C) of mean values, and
Kolmogorov-Smirnov statistic (KS) of daily minimum T2M by climate zone

Winter Spring Summer Fall

SE RE KS SE RE KS SE RE KS SE RE KS

North

CFSR 0.48 1.78 0.20 -1.42 1.17 0.24 -1.51 0.66 0.28 -0.62 1.01 0.25
ERA-Interim 1.13 1.37 0.19 -0.32 0.88 0.17 -0.48 0.53 0.17 -0.58 0.86 0.21

JRA-55 1.93 1.71 0.25 -0.51 0.82 0.17 -1.02 0.53 0.26 -0.67 0.86 0.26
MERRA-2 -3.03 1.56 0.23 -3.89 1.01 0.22 -2.24 0.66 0.37 -3.35 1.09 0.35

Central

CFSR 0.84 1.56 0.14 -0.77 0.99 0.17 -1.60 0.68 0.40 -0.18 0.90 0.15
ERA-Interim 0.98 1.24 0.14 -0.01 0.75 0.18 -0.17 0.61 0.62 -0.09 0.83 0.15

JRA-55 1.16 1.34 0.16 -0.24 0.74 0.16 -0.64 0.63 0.29 -0.37 0.83 0.15
MERRA-2 -3.54 1.49 0.24 -2.86 0.89 0.33 -1.59 0.71 0.29 -2.39 1.08 0.27

Maritime

CFSR 2.40 0.87 0.35 2.10 0.66 0.37 1.11 0.63 0.29 2.08 0.80 0.37
ERA-Interim 2.71 0.88 0.33 2.74 0.68 0.40 1.96 0.31 0.38 2.52 0.83 0.37

JRA-55 2.79 0.93 0.39 2.89 0.70 0.47 1.72 0.67 0.37 2.67 0.83 0.43
MERRA-2 1.57 0.86 0.29 1.58 0.63 0.31 0.90 0.63 0.26 1.58 0.80 0.32

Southwest

CFSR -0.65 0.79 0.19 -0.94 0.68 0.26 -1.79 0.69 0.27 -0.82 0.70 0.22
ERA-Interim -1.08 0.84 0.21 -0.40 0.59 0.22 -0.19 0.59 0.20 -0.66 0.65 0.21

JRA-55 -0.14 0.74 0.22 0.23 0.59 0.26 -0.23 0.62 0.19 -0.05 0.69 0.26
MERRA-2 -3.08 0.91 0.22 -1.94 0.69 0.34 -1.00 0.61 0.29 -1.58 0.75 0.28

Southeast

CFSR -3.43 1.41 0.24 -3.89 1.16 0.41 -4.22 0.80 0.54 -3.03 1.08 0.33
ERA-Interim -2.94 1.19 0.24 -2.62 0.83 0.32 -2.41 0.74 0.37 -2.57 1.05 0.29

JRA-55 -2.22 1.10 0.25 -2.52 0.81 0.33 -2.32 0.81 0.35 -2.18 0.97 0.28
MERRA-2 -7.83 1.30 0.55 -7.83 1.13 0.60 -3.84 0.79 0.51 -4.69 1.36 0.46
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Figure 2.4: Observed and reanalysis mean, systematic error, and random error magnitude for daily minimum
T2M, averaged over stations in the North climate zone. The vertical dashed lines indicate the change in seasons
and the colored dots represent the seasonal average.
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Finally, a KS statistic is used to determine how well the reanalyses cap-
tures the ECDF of observed daily maximum T2M across the Southeast
climate zone (Fig. 2.5). Values closer to zero are better, which would indi-
cate no difference between the observation ECDF and that of the reanaly-
sis. ERA-Interim and JRA-55 generally outperform CFSR and MERRA-2.
MERRA-2 once again exhibits high variability in performance throughout
the seasons, followed closely by CFSR (Table 2.2). MERRA-2 performs
best in the Maritime climate zone. For daily minimum T2M the dispar-
ity between reanalyses is more pronounced, with Era-Interim and JRA-55
consistently outperforming CFSR and MERRA-2 (Table 2.3). Furthermore,
daily minimum T2M is consistently better captured by the reanalyses than
maximum T2M.

A reality of the relatively sparse surface station network in the com-
plex terrain of BC is that most stations are located in valleys, and higher-
elevation stations are lacking (Fig. 2.6). This is especially true for stations
with quality, long records. With this caveat in mind, the effects of re-
analysis terrain error (reanalysis terrain elevation minus real-world station
elevation) are examined. Due to the relatively coarse resolution of the re-
analyses, they tend to reduce terrain amplitude, exhibiting negative terrain
error over mountain ridges, and positive errors over valleys. Reanalysis daily
T2M systematic error is strongly related to reanalysis terrain error, but not
climate zone (Fig. 2.7). Namely, larger positive terrain errors are associated
with larger negative temperature biases. That is, typically valleys exhibit a
cold bias in reanalyses, and a warm bias over mountain ridges.

The regression line is steeper for CFSR and MERRA-2, indicating that
ERA-Interim and JRA-55 suffer from terrain-related biases to a lesser ex-
tent. Additionally, minimum T2M have less terrain-related systematic error
than maximum T2M. The magnitudes of the random errors are smaller and
uncorrelated with terrain error across all reanalyses.
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2.6. Results and discussion

Figure 2.5: a) Kolmogorov-Smirnov (KS) statistic results for daily maximum
T2M, for all four reanalyses by time of year, averaged across all locations in
the Southeast climate zone. The vertical dashed lines indicate the change
in seasons and the colored dots represent the seasonal average. KS statistic
values closer to zero are better. b) As an example, KS-statistic results for
daily maximum T2M on March 1 at Cranbrook (YXC) are shown.
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Figure 2.6: Terrain elevation error in meters for ERA-Interim. Other reanalyses’ errors are similar.46
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Figure 2.7: Mean systematic and mean random error of daily maximum (TMAX) and minimum (TMIN) T2M
for each of the 57 stations as a function of terrain reanalysis error. The solid lines show the linear regression fits.
The nearly horizontal lines show the random error; the two lines are nearly on top of each other.
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2.6.2 Extreme T2M

The Southeast climate zone has the highest maximum T2M 30-year return
levels, and the performance of the reanalyses here is representative of the
overall performance across BC (Fig. 2.8; Table 2.4). All four reanalyses
show negative (cold) systematic error (Fig. 2.8) throughout the entire calen-
dar year. ERA-Interim and JRA-55 have a consistent systematic error and
outperform MERRA-2 and CFSR. MERRA-2 once again has a larger vari-
ation in performance. CFSR also generally performs worse but has a more
consistent bias. The Maritime climate zone has the lowest 30-year return
levels, with values below 30◦C during summer (Figure not shown).
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Table 2.4: Seasonally averaged systematic error of 2- and 30-year return levels of daily maximum T2M by climate
zone (SE2 and SE30 respectively in ◦C)

Winter Spring Summer Fall

SE2 SE30 SE2 SE30 SE2 SE30 SE2 SE30

North

CFSR -4.48 -7.66 -6.76 -6.28 -3.66 -3.30 -5.31 -5.51
ERA-Interim -2.89 -4.38 -3.94 -3.68 -3.65 -3.60 -3.99 -4.46

JRA-55 -3.43 -4.83 -4.10 -3.69 -3.03 -2.72 -3.60 -3.98
MERRA-2 -4.90 -8.35 -8.25 -8.66 -5.05 -4.68 -4.93 -5.72

Central

CFSR -5.21 -6.20 -5.82 -5.08 -4.01 -3.84 -4.49 -5.11
ERA-Interim -2.76 -3.64 -2.97 -2.61 -2.94 -3.22 -2.90 -3.66

JRA-55 -3.68 -4.65 -3.29 -3.27 -2.93 -3.23 -3.37 -4.00
MERRA-2 -6.16 -8.20 -6.60 -6.40 -3.29 -3.15 -3.58 -3.78

Maritime

CFSR -2.30 4.72 -2.21 -3.72 -1.85 -4.06 -2.27 -4.01
ERA-Interim -1.39 -3.83 -1.18 -1.95 -1.38 -2.66 -1.74 -3.16

JRA-55 -1.90 -4.42 -1.71 -2.53 -2.19 -4.00 -2.32 -4.02
MERRA-2 -1.95 -3.95 -1.69 -3.05 -1.28 -3.01 -1.52 -3.07

Southwest

CFSR -3.78 -4.69 -3.59 -3.79 -2.69 -3.52 -3.05 -3.71
ERA-Interim -3.31 -4.12 -2.62 -2.34 -2.12 -2.21 -2.75 -2.98

JRA-55 -3.24 -4.55 -2.55 -2.73 -2.92 -3.53 -3.35 -3.84
MERRA-2 -4.60 -4.84 -4.48 -4.09 -2.33 -2.17 -1.90 -1.79

Southeast

CFSR -6.61 -8.73 -8.35 -6.84 -6.81 -6.81 -6.09 -5.76
ERA-Interim -4.60 -5.36 -5.72 -5.05 -6.08 -5.98 -4.99 -4.74

JRA-55 -5.49 -6.40 -5.80 -5.48 -5.65 -5.81 -5.35 -5.38
MERRA-2 -7.18 -8.98 -8.57 -7.17 -6.22 -5.90 -4.43 -3.72
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Figure 2.8: 30-year return level and systematic error for maximum T2M, for all four reanalyses for Southeast
climate zone. The vertical dashed lines indicate the change in seasons and the colored dots represent the seasonal
average.
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2.6. Results and discussion

For minimum T2M 30-year return levels, results are mixed. The JRA-55
and ERA-Interim show generally positive systematic errors (larger during
the winter) in the North and Central zones, while MERRA-2 and CFSR
show mostly negative systematic errors (Fig. 2.9; Table 2.5). This indicates
a warm bias in extreme minimum T2M for the JRA-55 and ERA-Interim,
and a cold bias for the MERRA-2 and CFSR. In contrast, the Southeast
and Southwest climate zones generally show negative systematic error in
extreme minimum T2M in all four reanalyses, indicating they are typically
too cold (Figure not shown; Table 2.5). The Maritime climate zone has the
lowest season-to-season extreme T2M variations (Figure not shown).

51



2.6
.

R
esu

lts
an

d
d

iscu
ssion

Table 2.5: Seasonally averaged systematic error of 2- and 30-year return levels of daily minimum T2M by climate
zone (SE2 and SE30 respectively in ◦C)

Winter Spring Summer Fall

SE2 SE30 SE2 SE30 SE2 SE30 SE2 SE30

North

CFSR -1.02 -3.88 -1.75 -4.42 -1.14 -1.80 -0.16 -2.69
ERA-Interim 2.20 1.73 0.95 1.76 0.11 0.04 -0.04 0.11

JRA-55 3.93 4.95 1.05 1.49 -0.59 -0.63 0.11 0.35
MERRA-2 -3.72 -4.74 -3.25 -3.97 -1.11 -1.26 -3.41 -4.50

Central

CFSR 0.24 -3.04 -1.19 -2.76 -1.34 -1.66 0.57 -0.13
ERA-Interim 2.56 3.74 0.73 1.30 0.73 1.17 0.63 1.37

JRA-55 4.16 5.99 0.98 2.18 0.17 0.35 0.67 1.23
MERRA-2 -3.02 -2.83 -2.06 -2.54 0.02 0.31 -1.51 -1.24

Maritime

CFSR 3.09 1.90 3.44 3.12 2.38 3.07 3.55 3.41
ERA-Interim 3.14 2.31 3.83 3.94 3.33 3.90 3.60 3.83

JRA-55 3.83 2.74 4.51 4.51 3.43 3.99 4.46 4.17
MERRA-2 1.91 0.87 3.15 3.08 2.64 3.39 3.19 2.99

Southwest

CFSR -1.25 -2.86 -1.32 -2.71 -2.32 -2.58 -0.82 -1.89
ERA-Interim -2.55 -3.84 -0.98 -2.36 -0.08 0.12 -1.09 -2.42

JRA-55 0.15 -0.67 0.74 0.64 0.31 0.69 0.73 -0.03
MERRA-2 -5.32 -6.64 -2.10 -3.30 -0.38 0.01 -1.66 -3.12

Southeast

CFSR -6.91 -8.54 -5.11 -8.83 -4.37 -4.85 -3.41 -6.00
ERA-Interim -3.69 -2.83 -2.77 -3.28 -2.35 -2.16 -2.89 -3.53

JRA-55 -1.16 -0.27 -2.09 -2.32 -2.00 -1.82 -1.88 -2.40
MERRA-2 -8.91 -10.19 -5.78 -7.64 -3.18 -2.84 -4.49 -5.81
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Figure 2.9: 30-year return level and systematic error for minimum T2M, for all four reanalyses for Central climate
zone. The vertical dashed lines indicate the change in seasons and the colored dots represent the seasonal average.
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2.6. Results and discussion

ERA-Interim and JRA-55 extreme minimum T2M systematic errors are
smaller than CFSR and MERRA-2, which have larger errors during winter
months. MERRA-2 once again exhibits the largest variation in performance
throughout the calendar year and across different climate zones.

Similar to daily T2M, the systematic errors of 30- and 2-yr return level
T2M are related to reanalysis terrain elevation error (Fig. 2.10). Namely, the
larger the positive reanalysis terrain elevation error relative to the station’s
real world elevation, the larger the negative systematic error of the reanal-
ysis temperature. Furthermore, the regression lines are vertically shifted in
CFSR and MERRA-2, indicating larger errors across all elevations despite
similar horizontal grid spacing (which should give them similar abilities to
resolve terrain).

An ANOVA indicates differences in mean systematic error of daily and
extreme T2M between the reanalyses at the 1% significance level. After mul-
tiple comparisons by Tukey’s HSD, daily and extreme minimum T2M are
shown to be significantly better captured than daily and extreme maximum
T2M. ERA-Interim and JRA-55 consistently significantly outperform CFSR
and MERRA-2 for both daily and extreme T2M. If the four reanalyses are
separated into two groups — the more accurate JRA-55 and ERA-Interim,
and the less accurate CFSR and MERRA-2 — the difference in mean sys-
tematic error between groups is statistically significant. Within groups, the
JRA-55 (CFSR) mean systematic error is smaller than the ERA-Interim
(MERRA-2) mean systematic error, but this difference is not statistically
significant.

Finally, Figure 2.11 shows the mean absolute error (MAE) of the reanal-
yses daily and extreme (2- and 30-year return levels) T2M averaged over
the entire study period and all stations. The smaller the enclosed area for
a given reanalysis, the better its performance. Daily minimum and maxi-
mum T2M have smaller MAE than extreme minimum and maximum T2M.
Daily and extreme minimum T2M are better captured by the reanalyses
than daily and extreme maximum T2M. Additionally, the errors of 2-year
and 30-year return levels are of similar magnitude. Results are similar for
non-assimilated stations. ERA-Interim and JRA-55 outperform CFSR and
to a lesser degree MERRA-2 (not shown).

54



2.6
.

R
esu

lts
an

d
d

iscu
ssion

Figure 2.10: Mean systematic error of 2- and 30-year return levels (RL) of extreme maximum (TMAX) and
minimum (TMIN) T2M for each of the 57 stations as a function of terrain reanalysis error. The solid lines show
the linear regression fits.
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Figure 2.11: MAE (◦C) of daily maximum and minimum T2M, and of extreme (2- and 30-year return levels)
maximum and minimum T2M. MAE is averaged across all 57 stations. Smaller values (closer to the origin) are
better.
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2.7 Stationarity

In selecting a nonstationary model for the Gaussian distribution, a decision
must be made about whether both the mean and standard deviation, or
only one of the parameters should be treated as varying in time.

Variations through time of mean and standard deviation values for each
calendar day at each station are modelled as a linear trend for daily maxi-
mum and minimum T2M. The null hypothesis that there is no trend, which
indicates the parameters do not vary with time, is tested against the alter-
nate hypotheses that the parameters are time-dependent at the αFDR = 0.05
significance level.

Figure 2.12a indicates a warming trend of mean values of daily minimum
T2M across BC during summer, fall and winter, and a weak cooling trend
during spring across North and Central climate zones. Furthermore, Fig-
ure 2.12b suggests a weak decreasing trend in standard deviation of daily
minimum T2M for fall and winter season. However, none of trends are
statistically significant.

Under models M0 = N(µ, σ) and M1 = N(µ(t), σ), however, the critical
difference for comparing these two models is statistically significant at the
αFDR = 0.05 significance level, mostly near urban areas in the Southwest
during summer (Fig . 2.12c). This implies that a linear trend component
explains a substantial amount of the variation in the data, and is likely to be
a genuine effect in the warming trend process rather than a chance feature
in the observed data.

Figure 2.13a suggests a warming trend of mean values of daily maximum
T2M across the Southeast and Southwest climate zones during summer, fall
and winter. Figure 2.13b shows a decreasing trend in standard deviation of
daily maximum T2M during fall and winter across BC, and increasing trend
in the spring.

None of the trends in the daily maximum T2M parameters are statis-
tically significant at the αFDR = 0.05 significance level, and a stationary
Gaussian distribution with model M0 = N(µ, σ) is accurate enough to rep-
resent daily maximum T2M during the study period with few exceptions at
the Southeast climate zone (Fig. 2.13c).

Analogously, Fig. 2.14a shows strong warming of extreme maximum T2M
during summer, and strong warming of extreme minimum T2M during win-
ter (Fig. 2.14c). The LRT deviance statistic suggests the evidence sup-
porting such a trend is weak, implying no significant improvement over the
stationary model at the αFDR = 0.05 significance level (Fig. 2.14b,d). Dur-
ing the 31 years of the study period, changes in return levels of extreme
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2.7. Stationarity

Figure 2.12: (a) Mean linear trend of daily minimum T2M; (b) Standard
deviation linear trend of daily minimum T2M; (c) Days when N(µ(t), σ) is
statistically significant. The vertical dashed lines indicate the change in sea-
sons and the horizontal dashed lines delineate from top to bottom the North,
Central, Maritime, Southwest and Southeast climate zones respectively.
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Figure 2.13: (a) Mean linear trend of daily maximum T2M; (b) Standard
deviation linear trend of daily maximum T2M; (c) Days when N(µ(t), σ) is
statistically significant. The vertical dashed lines indicate the change in sea-
sons and the horizontal dashed lines delineate from top to bottom the North,
Central, Maritime, Southwest and Southeast climate zones respectively.
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T2M are generally too weak for nonstationarity to be required in order to
characterize extreme levels.
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Figure 2.14: (a) Location linear trend of extreme maximum T2M; (b) Days when GEV (µ(t), σ, κ) for extreme
maximum T2M is statistically significant; (c) Location linear trend of extreme minimum T2M; (d) Days when
GEV (µ(t), σ, κ) for extreme minimum T2M is statistically significant. The vertical dashed lines indicate the
change in seasons and the horizontal dashed lines delineate from top to bottom the North, Central, Maritime,
Southwest and Southeast climate zones respectively.
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2.8 Conclusion

The skill of reanalysis daily and extreme T2M were investigated across
British Columbia (BC) during the 1980-2010 study period. To identify the
best reanalyses among CFSR, ERA-Interim, JRA-55 and MERRA-2, the
systematic error, random error and KS statistic were used to compare daily
maximum and minimum T2M. To evaluate extreme maximum and minimum
T2M, systematic error of 2- and 30-year return levels were compared.

ERA-Interim and JRA-55 had the lowest systematic and random error,
and more consistent lower errors throughout the year and across all climate
zones in BC. One possible explanation besides T2M being assimilated by
these reanalyses is differences in the data assimilation methods. In regions
where data is sparse, a reanalysis solution is more dependent on the model
structure than on observations (Lindsay et al., 2014). ERA-Interim and
JRA-55 use 4D-Var while CFSR and MERRA-2 use 3D-Var. 4D-Var better
interprets physical information implicit in the meteorological model equa-
tions where observations are sparse, and extracts and transfers information
into data-void areas in a more consistent way (Thépaut, 2006; Whitaker
et al., 2009; Dee et al., 2011). Both issues are relevant for BC as weather
station coverage is sparse outside Southwestern BC, and the Pacific Ocean
to the west is a well-known data void (Hacker et al., 2003; Spagnol, 2005).
Furthermore, the previous generation JRA-25, which has a 3D-Var assimi-
lation method, shows a larger variation in performance in T2M throughout
the calendar year (Lindsay et al., 2014) when compared to the results of
JRA-55 shown here.

Minimum temperatures are consistently better captured by the reanaly-
ses than maximum temperatures, whether it is daily or extreme T2M. This
consistent difference in skill between maximum and minimum temperatures
suggest they should be treated separately, rather than assessing hot or cold
extreme weather events by looking at different tails of a common distribution
of mean T2M (Graham et al., 2013; Hart and Grumm, 2001).

Furthermore, reanalysis daily and extreme maximum T2M generally
have a cold bias, as do daily and extreme minimum T2M. Previous studies
show a cold bias in T2M in CFSR and ERA-Interim at different pressure
levels (Bao and Zhang, 2013), and in MERRA-1, JRA-55 and CFSR over
Antarctica (Jones et al., 2016).

ERA-Interim extends as far back as 1979, whereas JRA-55 extends back
to 1958, giving the latter a longer record and a larger sample size. A longer
historical record is desirable, as a natural difficulty of extreme weather statis-
tics is the limited amount of extreme data. Additionally, the standard errors
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2.8. Conclusion

of the estimated parameters and of the return levels are expected to decrease
as the sample size increases, whether they were obtained by MLE or method
of L moments (Hosking et al., 1985; Hosking, 1990; Cai and Hames, 2010).

There is a noticeable warming trend in the Southwest and Southeast
climate zones of BC during summer months for daily maximum T2M; and
during summer months for extreme maximum T2M; during summer, fall
and winter months for daily minimum T2M; and during winter for extreme
minimum T2M. Vincent and Mekis (2006) showed that the number of cold
events has significantly decreased while the number of warm events has
significantly increased over BC. This warming trend could in part be caused
by urbanization surrounding the weather stations (Gunn, 2010; Jones et al.,
1985). The population of BC has grown faster than the Canadian national
rate, with Southwest BC leading the growth rate (Demography Division,
2016). Despite some evidence of warming and cooling trends, most were
not statistically significant. Thus, for this 31-year study period, temporally
varying distributions are not needed to represent T2M over BC. It is possible
that, were a longer period of record used, more widespread significant trends
might be found.

While random error and KS statistic cannot be bias corrected or easily
improved otherwise, this study found that systematic errors in daily and
extreme T2M are largely explained by the reanalysis terrain elevation error,
and thus could be largely corrected/eliminated. Systematic T2M errors are a
larger component of the total error than random errors, thus a bias-corrected
reanalysis T2M would be a substantially improved dataset, particularly over
complex terrain. The methodology presented here should be able to be used
in other parts of the world.

Such a correction will be discussed in Chapter 4. First, Chapter 3 will
evaluate daily and extreme accumulated precipitation produced by these
reanalyses over BC.
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Chapter 3

Performance of Reanalyses
across British Columbia.
Part II: Evaluation of Daily
and Extreme Precipitation

3.1 Introduction

In Chapter 2 performance of latest-generation reanalyses with respect to
daily and extreme maximum and minimum 2-m temperature (T2M) over
mountainous BC is discussed. In this chapter performance with respect
to daily and extreme precipitation is assessed (hereafter daily and extreme
PCP; defined in section 3.2), and trends in both daily and extreme PCP
during the study period are examined to determine if significant statistical
changes occurred over the timespan of the dataset.

An added difficulty is that verification of precipitation extremes is more
challenging than that of extreme temperatures (Bhend and Whetton, 2013;
van Oldenborgh et al., 2013). Because of the small spatial and time scales
of precipitation, in general, numerical models do not simulate precipitation
as well as they do temperature (Kendon et al., 2014; Ravishankar et al.,
2016), and have limited ability to faithfully represent extreme precipitation
events (Zhu et al., 2014). For instance, differences in the reanalyses pa-
rameterizations of convection and other physical processes can impact how
well extreme precipitation events are represented (Dee et al., 2011; Lindsay
et al., 2014).

Previous studies have evaluated reanalysis performance with respect to
precipitation and moisture fields. Flux tower observations over the Northern
Hemisphere of temperature, wind speed, precipitation, downward shortwave
radiation, net surface radiation, and latent and sensible heat fluxes were used
to evaluate the performance of CFSR, ERA-Interim, ERA-40, and MERRA,
where ERA-40 was found to have the lowest precipitation bias and ERA-
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3.2. Data and Methodology

Interim best captured precipitation variability (Decker et al., 2012). Hodges
et al. (2011) explored how well JRA-25, ERA-Interim, MERRA, and CFSR
identify extratropical cyclones over the Northern and Southern Hemispheres,
and found that the latest-generation reanalyses better represent cyclones,
especially in the Southern Hemisphere. Berg et al. (2003) found that ERA-
40 has positive biases in precipitation over land in North America, and
Ruiz-Barradas and Nigam (2005) found that ERA-40 also has positive biases
in evapotranspiration during the warm season over the U.S. Great Plains.
Finally, Bosilovich et al. (2015) found that MERRA-2 has a more consistent
global precipitation average than MERRA, and a lower global precipitation
bias than JRA-55 and CFSR when compared to the Global Precipitation
Climatology Project (GPCP; Adler et al. (2003)).

Precipitation is examined here because of its various financial, societal,
and environmental impacts such as hydroelectric power generation (Odon
et al., 2017), flooding and water management (White et al., 2016; Odon
et al., 2017; Sun et al., 2018b), agriculture (Rosenzweig et al., 2001; Sun
et al., 2018b), tourism (Patz et al., 2005; White et al., 2016), health (Curriero
et al., 2001; Patz et al., 2005), and flora and fauna (Parmesan et al., 2000).

Furthermore, several studies have noted increases in the frequency and
intensity of extreme precipitation events in various parts of the world (Mann
and Emanuel, 2006; Krishnamurthy et al., 2009; Donat et al., 2013; Westra
et al., 2013; Ravishankar et al., 2016). An increase in extreme precipita-
tion may lead to other impacts such as increase in winter runoff, which in
turn may lead to flooding, and challenges in drainage and sewage systems
capacities (White et al., 2016; Sun et al., 2018b).

In section 3.2, a brief description of the different reanalyses and of the
weather station observations is given. In sections 3.3 and 3.4, we describe
the methodology for dividing BC into climate zones, and the various metrics
used for evaluating daily and extreme reanalysis PCP. In section 3.5, daily
and extreme PCP from the reanalyses are evaluated. In section 3.6, the
methods for assessing statistical nonstationarity are introduced, and trends
of both daily and extreme PCP are examined. Results are summarized in
the conclusion.

3.2 Data and Methodology

Daily accumulated precipitation from 66 weather stations from 1 Jan 1980
to 31 Dec 2010 are used in this study to evaluate the CFSR, ERA-Interim,
JRA-55 and MERRA-2 reanalyses. The 1980-2010 study period is chosen
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3.2. Data and Methodology

because it is the longest overlap between the four reanalyses. MERRA-2
began in 1980 (Gelaro, 2015; Gelaro et al., 2017) and CFSR ended in 31 Dec
2010. From January 1, 2011 forward, the CFSR was extended using NCEP
Climate Forecast System Version 2 (CFSv2) operational model. Differences
between the model used to produce the CFSR and the operational CFSv2
may affect data evaluation past the extension date (Saha et al., 2014).

A description of the different reanalyses and of the weather station
dataset is given below. A summary of the reanalyses atmospheric mod-
els and configurations are presented in Table 3.1. A broader description and
comparison of the latest and previous generation reanalyses can be found in
Chapter 2.
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Table 3.1: Overview of the four reanalysis datasets examined in this study.

Institution Reanalysis Model Assimilation
method

Period Download
grid
(lat× lon)

Time
interval

Reference

NCEP/NCAR CFSR CFS
T382/L64
(global
horizontal
resolution
∼ 38 km)

3D-Var GSI 1979-2011
(current as
CFSv2)

0.5◦ × 0.5◦

(∼ 50 km)
6-h
accumu-
lation
at 0000,
0600,
1200
and 1800
UTC

Saha et al.
(2010)

ECMWF ERA-
Interim

IFS
T255/L60
(global
horizontal
resolution
∼ 79 km)

4D-Var 1979-current 0.5◦ × 0.5◦

(∼ 50 km)
6-h and
12-h
accumu-
lation
at 0000
and 1200
UTC

Dee et al.
(2011)

JMA JRA-55 JMA
T319/L60
(global
horizontal
resolution
∼ 55 km)

4D-Var 1958-2012
(current as
JCDAS)

0.5616◦ ×
0.5616◦

(∼ 55 km)

3-h
accumu-
lation
at 0000,
0300, ...,
and 2100
UTC

Ebita et al.
(2009)

NASA MERRA-
2

GEOS-
5.12.4
AGCM
(lat × lon)
0.5◦ ×
0.625◦

/L72

3D-Var GSI 1980-current 0.5◦ ×
0.625◦

1-h
accumu-
lation
at 0030,
0130, ...,
and 2330
UTC

Gelaro
(2015);
Gelaro
et al.
(2017)
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3.2. Data and Methodology

Precipitation from the weather stations used in this study are not as-
similated by the ERA-Interim (Dee et al., 2011), the MERRA-2 (Bosilovich
et al., 2015) or the JRA-55 (Kobayashi et al., 2015); but are indirectly
assimilated by the CFSR (see subsection 2b; Wang et al. (2011)). There-
fore evaluating against these observations provides a reasonably independent
measure of accuracy.

3.2.1 Weather station data

Due to the higher spatial variability of precipitation compared to temper-
ature, more precipitation stations are included in this study. Of the 111
geographically-dispersed precipitation stations initially selected, 45 stations
with more than 4% missing data were excluded. Of the remaining 66 sta-
tions, 57 are from Environment and Climate Change Canada (ECCC) and
9 are from BC Hydro (Table A.1).

Figure 3.1 shows the locations of all 66 stations overlaid with population
distribution across BC. Fifty-seven stations are located in valleys (indicated
by upside-down triangles), and nine are in non-valley locations (upright
triangles).
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Figure 3.1: Location of ECCC (red) and BC Hydro (blue) weather stations used for precipitation analysis and
British Columbia population distribution (orange). Upside-down triangles indicate valley stations; upright trian-
gles indicate non-valley stations. Dashed lines delineate the dominant climate zones North, Northwest, Central,
South Central, Maritime West, Maritime East, Southwest and Southeast.
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3.2. Data and Methodology

Long-term time series often contain variations caused by changes in the
environment surrounding the gauges, instrumentation, observing procedures
including the time of observation, station location, or discontinuation of the
station. As a result, variations unrelated to changes in weather and climate
can be introduced into the time series. Different adjustment techniques
for precipitation have been developed to address impacts on climate data
homogenization [e.g., Jones et al. (1985); Peterson et al. (1998); Mekis and
Hogg (1999); Vincent et al. (2002)].

The methods to adjust daily rainfall and snowfall for ECCC stations are
described in Mekis and Vincent (2011). For each rain gauge type, correc-
tions were implemented to account for undercatch due to wind, evaporation,
and gauge-specific wetting losses. A complete description of gauges can be
found in Metcalfe et al. (1997) and Devine and Mekis (2008). For snow-
fall, density corrections based on coincident ruler and Nipher measurements
were applied to all snow ruler measurements (Mekis and Brown, 2010). A
detailed description of trace (non-measurable precipitation amount) related
issues and adjustments are given in Mekis (2005) and Mekis and Vincent
(2011).

Daily total precipitation was calculated by adding a station’s daily rain
and snow observations together. In case of station relocation, a new iden-
tification number is often given to the new location and observations from
the two stations are combined to create a longer time series. Adjustments
are applied to join the two datasets, based on standardized ratios between
the sites and neighbouring sites, or overlapping observation periods (Vincent
et al., 2009).

Data homogeneity for BC Hydro stations was assessed by BC Hydro
using Double-Mass Curves (DMC) (Searcy and Hardison, 1960). The the-
ory of the double-mass curve is based on the graph of the precipitation at
a station against precipitation of surrounding reference stations during the
same period. A break in the slope of the double-mass curve means that
a change in the constant of proportionality between the station and sur-
rounding reference stations has occurred. The data before the date that the
change occurred is modified to match the historic relationship between the
station and its reference stations.

Reliable data is required in order to detect trends in daily and extreme
PCP. When dealing with trends of daily data, it is important that the dataset
is nearly complete during the studied period. Furthermore, when analyzing
decade-long trends, it is important that years with many missing data, if
they occur, are relatively few and not clustered during a certain time inter-
val, as this period might have had an anomalous climate (Moberg and Jones,
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2005; Vicente-Serrano et al., 2010). Finally, the reliability of frequency of
extreme precipitation events is closely related to the sample size used during
the study period (Hosking et al., 1985; Hosking, 1990; Porth et al., 2001; Cai
and Hames, 2010). Stations with more than 1% missing data are excluded
from our nonstationarity analysis, leaving twenty-nine ECCC and six BC
Hydro stations.

3.2.2 CFSR

Precipitation is generated by the model during the direct assimilation of
temperature and humidity information from satellite radiances (Saha et al.,
2010). Then, the model-generated precipitation is corrected with the CPC
(the National Oceanic and Atmospheric Administration (NOAA) Climate
Prediction Center) Merged Analysis of Precipitation (CMAP) product (Xie
and Arkin, 1997) — which defines 5-day mean precipitation on a 2.5◦× 2.5◦

latitude-longitude grid over the globe by merging information derived from
gauge and satellite observations — and the CPC Unified Gauge-Based Anal-
ysis of Global Daily Precipitation (CPCU) product — which interpolates
quality-controlled rain gauge reports collected from the Global Telecommu-
nication System (GTS) and many other national and international archives
(Saha et al., 2010) on a 0.5◦ × 0.5◦ latitude-longitude grid over the globe.
Finally, an algorithm accounts for orographic enhancements in precipitation
(Xie et al., 2007).

3.2.3 ERA-Interim

Precipitation is generated by the model during the variational analysis of
upper-air atmospheric fields such as temperature, wind, humidity and ozone,
in combination with direct assimilation of 2-m temperature, 2-m relative
humidity and 10-m winds from land stations, and upper-air temperatures,
wind, and specific humidity from radiosonde data (Dee et al., 2011).

3.2.4 JRA-55

Precipitation is model-generated during direct assimilation of upper-air tem-
peratures and humidity information from satellite radiances, and direct as-
similation of surface pressure, 2-m temperature, 2-m relative humidity, 10-m
winds from land stations, and upper-air temperatures, winds, and specific
humidity from radiosonde data (Ebita et al., 2011).

71



3.2. Data and Methodology

3.2.5 MERRA-2

There are two kinds of precipitation fields in the MERRA-2 system. The pre-
cipitation generated by the model during the assimilation procedure (Bloom
et al., 1996; Reichle et al., 2017) (PRECTOT is the variable name in the data
product file), and the corrected precipitation that is seen by the MERRA-2
land surface and that modulates aerosol wet deposition over land and ocean
(PRECTOTCORR is the variable name in the data product file). As men-
tioned, for a consistent independent evaluation of all reanalyses performance,
the former is used in this study.

The precipitation is generated by the model during the direct assim-
ilation of temperature and humidity information from satellite radiances
(Bloom et al., 1996; Koster et al., 2016).

3.2.6 PRISM dataset

Precipitation is not evenly distributed over weather station areas in com-
plex terrain (Taesombat and Sriwongsitanon, 2009). In order to estimate
areal precipitation, it is preferable to have as many weather stations as pos-
sible. However, spatial and temporal coverage is a limiting factor (Karl
et al., 1993; Odon et al., 2018), as is accuracy and reliability of precipitation
records (Metcalfe et al., 1997; Serreze et al., 2005). Additionally, in order
to evaluate the agreement between observations and reanalyses, it is impor-
tant to realize that each grid point in a reanalysis represents an average
centered on the geographical coordinates of the grid point. By contrast, an
observation represents a point measurement within a reanalysis grid-box,
which may or may not be representative of the grid box average. Further-
more, grid resolution and location in each reanalysis dataset is different,
and the location of a station can vary from the centre to the edge of the
grid box. Interpolation techniques may produce inaccurate results because
of the effects of topographical variation and the limited number of avail-
able rainfall stations (Taesombat and Sriwongsitanon, 2009). In order to
identify regional and terrain biases and to improve the accuracy of areal
rainfall estimation, the reanalyses are billinearly interpolated to the same
high-resolution grid as the Parameter-Elevation Regressions on Independent
Slopes Model ( PRISM; Daly et al. (1994, 1997, 2002)) climatology for grid
comparison.

PRISM climatology, produced by the Pacific Climate Impact Consortium
(PCIC), the Pacific Institute for Climate Solutions (PICS) and the BC Gov-
ernment provides access to a 30-arc-second (∼ 800 m) gridded precipitation
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climatology for the 1981-2010 climate normal period, for land-surface areas
of BC (PCIC et al., 2014). PRISM has been tested and verified throughout
the United States and has been applied in numerous countries across the
globe including western Canada previously for the 1961-1990 period. In this
study, the 1981-2010 climate period is used.

3.3 Climate zones

Principal component analysis (PCA) is employed to separate stations into
groups with similar precipitation climates. Because precipitation has both
frequency and magnitude, contingency tables are employed. Daily PCP
(mm) is divided into seven non-overlapping bins for the entire study period:
[0, 0.25], (0.25, 1.0], (1.0, 2.5], (2.5, 5.0], (5.0, 10.0], (10.0, 20.0] and (20.0,∞).
The number of events falling into each bin is recorded in a contingency ta-
ble for the entire study period . A χ2-test compares the pairwise difference
between the distributions of the 66 stations. A sufficiently large difference
between the distribution of the daily PCP amounts over the seven bins in-
dicate the stations have different precipitation characteristics and therefore
belong to different climate zones. Small differences suggest that the sta-
tions have similar climates. This critical difference is determined by the
χ2-distribution. Due to the large number of stations pair comparisons (2141
pairs), the null hypothesis that the stations belong to the same climate zone
is rejected at the αWalker = 1−(1−α0)

1/N0 = 2.31×10−5 level of significance,
where α0 = 0.05 and N0 = 66 (Fig. 3.2).

Cramer’s correlation is computed for each pair χ2-statistic, and PCA is
conducted on the Cramer’s correlation matrix of daily PCP. The first 41
components explain 90% of the variability in the data, and are retained.
The number of components is larger here than in Chapter 2 of this study
because of the higher variability in precipitation. For temperature, where
the Pearson correlation between the stations is high (see section 2.3 for
more details), it is possible to capture most of their variance using a smaller
number of principal components. For precipitation, where the Cramer cor-
relation between the stations is lower (Fig. 3.2), more principal components
are needed to capture most of their variance.
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Figure 3.2: Cramer correlation matrix and eight dominant climate zone clusters in BC. Crosses indicate stations
where differences in precipitation distribution are statistically significant.
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A K-means clustering analysis is then performed on the components
to arrange the data into groups. One to 10 clusters were tested and an
eight-cluster solution was chosen (Fig. 3.2). This analysis yields 8 climate
zones (North, Central, Northwest, Maritime West, Maritime East, South-
west, South Central, and Southeast) that roughly matched to those identified
in Chapter 2.

The Maritime climate zone from Chapter 2 has been divided into Mar-
itime East and Maritime West, while the Southeast climate zone has been
divided into Southeast and South Central. These additional climate zones
highlight the differences between windward and leeward regions, which see
enhanced upslope precipitation and rain shadows, respectively.

3.4 Verification Metrics

The statistical behaviours of daily and extreme PCP are compared between
observed weather station data, and their corresponding location in the re-
analyses and PRISM. As in Chapter 2, four horizontal interpolation meth-
ods were trialed for reanalysis output. Also as in Chapter 2, the methods
Nearest Neighbour, Inverse Distance Weighting (IDW), Bilinear and Bicubic
interpolation perform very similarly; IDW is used. Furthermore, IDW from
land-only grid points (omitting sea grid points) was also tested for coastal
stations in the Maritime West, Maritime East, Southwest and Northwest cli-
mate zones ( a grid point is classified as a land point based on each reanalysis
land-sea mask). Some small variations between the two IDW methods were
found, but overall the land-only IDW is similar in result to the IDW.

3.4.1 Daily PCP

The Canadian meteorological convention in defining a calendar day to be
from 0601 UTC of that day to 0600 UTC of the following day is followed.
For CFSR, JRA-55 and MERRA-2, precipitation accumulation intervals are
summed over this window to get daily PCP (Table 3.1). For ERA-Interim,
precipitation is accumulated in the forecast sense, i.e., reset to zero at 0000
and 1200 UTC. Six-hour accumulated precipitation for the 6-h periods pre-
ceding 0000, 0600, 1200 and 1800 UTC are obtained in the following manner:
for 0600 UTC the 0000-UTC 6-h accumulated precipitation is used; for 1200
UTC the 0000-UTC 6-h accumulated precipitation is subtracted from the
0000-UTC 12-h accumulated precipitation; for 1800 UTC the 1200-UTC 6-h
accumulated precipitation is used; and for 0000 UTC the 1200-UTC 6-h pre-
cipitation is subtracted from the 1200-UTC 12-h accumulated precipitation.
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A 31-day centered rolling accumulation window is used to obtain smooth
monthly mean precipitation for each calendar day. These 31-day accumu-
lated values for each calendar day are then averaged over the 31-year evalu-
ation period (1980-2010). This is done for each station and reanalysis data.
The percentage bias (or systematic error) is then computed to estimate how
accurately each reanalysis captures monthly precipitation (31-day precipi-
tation totals).

For the same 31-day centered rolling window, days with daily PCP below
1.0 mm are classified (and hereafter referred to) as ”dry” days, and days
equal or above 1.0 mm are classified (and hereafter referred to) as ”wet” days.
In climate studies, this delineation is typically made at trace amounts or 1.0
mm (Vincent and Mekis, 2006; Werner and Cannon, 2016). In this study 1.0
mm was chosen because coarse resolution models tend to overforecast the
frequency and spatial extent of light precipitation events (e.g., Zhu and Luo
(2015), and shown later in this study). On every 31-day window, systematic
error is computed from the number of wet days at a station location in
the reanalysis with respect to the actual number of wet days observed at a
station.

Finally, wet days are divided into the five non-overlapping intervals:
[1.0 mm, 50th), [50th, 75th), [75th, 90th), [90th, 95th) and [95th, 100th]. The
percentiles are calculated from the entire wet-day climatological distribution,
centered on each calendar day, using each station’s observed data.

This allows for an evaluation of a reanalysis’ ability to correctly capture
the frequency and distribution of precipitation intensities. If the reanal-
ysis distribution is very close to that of the observation, the number of
expected occurrences in each bin will be very close. This difference between
the number of “light” ([1.0 mm, 50th)), “light” ([50th, 75th)), “moderate”
([75th, 90th)), “heavy” ([90th, 95th)) and “extreme” ([95th, 100th]) precipi-
tation events in each dataset is given by the two-sample χ2-statistic.

3.4.2 Extreme PCP

The definition of an extreme precipitation event varies widely. One possi-
bility is to define it as an event in which precipitation over some specified
period exceeds some threshold, either at a point measured by a single rain
gauge, or spatially averaged over some region. The choice of threshold also
varies. Some studies use fixed absolute thresholds while others use a fixed
percentile based on the distribution specific to a given location, so that it is
specific to the location climatology. In this study, the 2- and 30-yr return
levels for every station for each calendar day in the 1980-2010 study period
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are estimated.
Furthermore, end users of precipitation forecasts, such as hydrologists,

are concerned with both peak flows and total volume of flows, especially
when they deviate from climatology. Correspondingly, they require accu-
rate estimates of precipitation intensity and accumulation over a range of
time scales. For the flashy reservoirs of the BC South Coast, the timescales
of their total volume concerns typically range from 1 to 14 days. Hydropower
facilities and their associated operating procedures are designed assuming
estimated minimum and maximum volumes that could be possibly expected
at various timescales. Extreme precipitation accumulations, whether accu-
mulated over 1 or 14 days, will cause extreme total flow volumes over those
time scales, pushing or possibly exceeding the limits of a hydropower facil-
ity. The effects of heavy or extreme precipitation events can be compounded
if components of a hydropower facility (e.g., spill gates) are out of service
for planned or unplanned maintenance. Given that flow volumes are im-
portant at a range of time scales, 2- and 30-year return levels of 1-, 3-, 7-,
and 14-day accumulated precipitation are examined (2- and 30-year return
levels are also known as 2- and 30-year recurrence intervals, or 0.5 and 0.03
Annual Exceedance Probabilities (AEP)).

To do this, the maximum 1-, 3-, 7-, and 14-day accumulated precipi-
tation within a 31-day centered rolling window, for each calendar day are
calculated (Fig. 3.3a). This is done for each year from 1980-2010 inclusive,
yielding 31 annual maximum values of 1-, 3-, 7-, and 14-day accumulated
precipitation for each calendar day. A 31-day window was chosen so that all
values within the window are from the same time of year, and would have
similar climatological precipitation distributions.

A Generalized Extreme Value distribution (GEV) fitted by the method
of L moments dresses these 31 sample values of 1-, 3-, 7-, and 14-day accu-
mulated precipitation for each calendar day (Fig. 3.3b-d). A GEV is chosen
because of the interest in the statistical behaviour of the 31 annual maximum
values of 1-, 3-, 7-, and 14-day accumulated precipitation at each calendar
day. Estimates of the 2- and 30-year return levels of annual maximum are
then obtained from the fitted GEV.

The Lilliefors (Wilks, 2011) test compares the largest difference, in ab-
solute value, between the theoretical GEV cumulative distribution function
(CDF) and the observed empirical cumulative distribution function (ECDF).
The null hypothesis is that the observed data is drawn from the distribution
being tested (i.e., the observation ECDF and GEV CDF are indistinguish-
able), and a sufficiently large critical difference results in the null hypothesis
being rejected.
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Figure 3.3: (a) Diagram illustrating the 31-day centered rolling window for
July 9th, performed over the 31-year period; (b) GEV model fitted over the
31-day, 31-year centered window for 1-day precipitation total at Vancouver
International Airport (YVR); (c) Quantile plot for the GEV fitted model for
the same day, location, and variable; If the GEV is a reasonable model, the
points on the quantile plot should lie close to the unit diagonal; (d) Return
level, return period plot for the same day, location, and variable; showing
the precipitation that corresponds to a given return period.
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A parametric bootstrap procedure determines the critical value that re-
sults in the rejection of the null hypothesis. 100 samples of size 31 are gener-
ated from the fitted GEV distribution for each calendar day at each station,
and a critical value is derived from each of the 100 generated samples. That
is, the 90th percentile of the resulting collections of critical values is then
used as the critical value for the rejection of the null hypothesis — that the
sample originates from the GEV distribution at the 10% significance level
(α0 = 0.10). However, there are 66 weather stations and 365 calendar days
totaling N0 = 24090 independent Lilliefors tests. Due to very large number
of tests, the αWalker = 1− (1−α0)

1/N0 = 4.37× 10−6 is instead regarded as
significant, and the (1− αWalker)th percentile of the resulting collections of
critical values is then used as the critical difference (Wilks, 2016).

Less than 1% of the locations and calendar days where the null hypoth-
esis is tested for all different accumulations totals were rejected during the
1980-2010 study period, suggesting the annual extremes in fact can be de-
scribed by a GEV distribution.

The systematic error of the 2- and 30-year return levels were then calcu-
lated to estimate how each reanalysis captures annual extremes of 1-, 3-, 7-,
and 14-day accumulated precipitation. These two return levels are chosen
because less than 1% of their 90% confidence intervals overlap, indicating
the difference between the two return levels is statistically significant, and
because the 30-year return level is the most extreme verifiable value given
the length of the data.

To calculate their 90% confidence intervals, 100 samples of size 31 are
generated from the fitted GEV distribution for each calendar day at each
station, and the 2- and 30-year return levels are estimated from each gener-
ated sample. Then, the 5th and 95th percentiles of the resulting collection
of 2- and 30-year return levels are used as the lower and upper bounds of
the 90% confidence intervals for the true 2- and 30-year return levels.

3.4.3 Kruskal-Wallis Analysis

The mean systematic error of monthly precipitation total, two-sample χ2-
statistic, 31-day-window percentage of wet days, and of 2- and 30-year return
levels of 1-, 3-, 7-, and 14-day accumulated precipitation are calculated for
each station from all calendar days systematic errors. Comparisons between
these eleven mean systematic errors of each reanalyses (CFSR, ERA-Interim,
JRA-55 and MERRA-2) are performed using eleven independent Kruskal-
Wallis nonparametric tests. Eleven independent Kruskal-Wallis tests are
used because the mean systematic errors are skewed, and due to the differ-

79



3.5. Results and discussion

ent magnitude and variability of each type of mean systematic error. Finally,
Nemenyi’s test (Hollander et al., 2013) is applied following statistical signif-
icance at the αWalker = 9.53× 10−3 level (α0 = 0.10) in the Kruskal-Wallis
results to identify significant performance differences in pairwise compar-
isons between the reanalyses mean systematic errors.

3.5 Results and discussion

3.5.1 Daily PCP

First, performance of daily PCP across the climate zones in the reanalyses
are investigated. Reanalysis performance in the Northwest climate zone
(Fig. 3.4) is representative of performance across the wetter climate zones
(Northwest, Maritime West, Maritime East and Southwest; latter three not
shown). The seasonal cycle and magnitudes of 31-day precipitation totals
are fairly well captured. All four reanalyses exhibit similar seasonal cycles
and differ mostly in magnitude of annual bias (Table 3.2). They show
a positive (wet) bias all year long for the Northwest and Maritime East
climate zones. In the Maritime West (the wettest climate zone in BC and in
all of Canada) and Southwest zones, JRA-55, ERA-Interim and CFSR have
a negative (dry) bias throughout the year (not shown).
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Table 3.2: Averaged systematic error of: monthly precipitation total (M), two-sample χ2-statistic (χ2), 31-day-
window percentage of wet days (W), and 30-year return levels of 1- (1D30), 3- (3D30), 7- (7D30), and 14-day
(14D30) accumulated precipitation across wetter climate zones Northwest, Maritime West, Maritime East and
Southwest, drier climate zones North, South Central, Central and Southeast, and all climate zones in BC (all
systematic errors but two-sample χ2-statistic in %)

M χ2 W 1D30 3D30 7D30 14D30

Wet

CFSR 8.57 26.16 6.44 -31.35 -21.24 -13.74 -8.71
ERA-Interim 14.98 26.44 5.57 -11.83 -3.74 0.80 2.57

JRA-55 11.50 18.92 4.29 -15.79 -6.51 -2.32 -0.03
MERRA-2 23.22 18.10 9.04 11.30 -4.80 0.79 3.46

Dry

CFSR 98.56 15.90 20.41 -2.15 12.21 26.01 38.01
ERA-Interim 55.48 16.23 14.74 -11.99 -1.05 7.01 15.67

JRA-55 59.30 13.93 12.63 -6.53 5.59 13.06 19.98
MERRA-2 69.45 12.44 17.65 2.89 10.61 17.04 24.46

All

CFSR 48.11 21.65 12.58 -18.52 -6.54 3.73 11.82
ERA-Interim 32.77 21.96 9.60 -11.90 -2.56 3.53 8.33

JRA-55 32.50 16.73 7.95 -11.72 -1.19 4.43 8.76
MERRA-2 43.53 15.61 12.83 -5.05 1.98 7.93 12.69
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Figure 3.4: Observed and reanalysis running centered 31-day precipitation totals and systematic error averaged
over stations in the Northwest climate zone. The vertical dashed lines indicate the change in seasons and the
colored dots represent the seasonal average.
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Overall, JRA-55 and ERA-Interim outperform CFSR and MERRA-2.
The latter two exhibit higher bias and higher variability in bias throughout
the wetter climate zones and seasons.

In contrast, in the South Central zone, with the driest locations in all
Canada, all reanalyses have a large wet bias all year long (not shown). In
the remaining drier climate zones, North, Southeast and Central, reanalyses
have a large wet bias for most of the year and the largest wet bias during
spring (Fig. 3.5 for Central climate zone). Again, JRA-55 and ERA-Interim
outperform CFSR, and to a lesser extent MERRA-2 (Table 3.2). The general
wet bias in most zones could be a result of the low resolution of the reanalyses
that tends to spread out precipitation into drier portions of grid cells, failing
to capture the locally drier climates of lower (valley) elevations, where most
stations are located.
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Figure 3.5: Observed and reanalysis running centered 31-day precipitation totals and systematic error averaged
over stations in the Central climate zone. The vertical dashed lines indicate the change in seasons and the colored
dots represent the seasonal average.
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The percentages of “wet” and “dry” days, and the two-sample χ2-statistic
are illustrated in Figure 3.6 (a, b, and c) for the Maritime West climate
zone, which is representative of the wetter climate zones (Maritime West,
Southwest, Northwest and Maritime East; latter three not shown). The
reanalyses capture the annual cycle of precipitation frequency better than
they do the precipitation amounts (Fig. 3.6a, c; Table 3.2). The two-sample
χ2-statistic (Fig. 3.6b) is used to determine how well the reanalyses cap-
ture the histogram of observed precipitation events across all bins. Lower
values are better, and 0 would indicate no difference between the observa-
tion histogram and that of the reanalysis. The MERRA-2 is the best due
to its consistent low values of χ2-statistic across the wetter climate zones,
followed closely by JRA-55 (Table 3.2). Finally, looking at the precipita-
tion percentile bins, reanalyses overestimate the number of “very light” and
“light” precipitation events (Fig. 3.6d, e), and underestimate the number
of “moderate”, “heavy” and “extreme” precipitation events for the Mar-
itime West and Southwest zones (Fig. 3.6f-h). The opposite is true for the
Maritime East and Northwest (not shown).
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Figure 3.6: Percentage of (a) wet days; (b) two-sample χ2-statistic; percentage of (c) dry days, (d) very light, (e)
light (f) moderate, (g) heavy and (h) extreme precipitation events for Maritime West climate zone. The vertical
dashed lines indicate the change in seasons and the colored dots represent the seasonal average.
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Reanalysis performance in the North region (Fig. 3.7) is representative of
the drier climate zones (North, South Central, Central and Southeast; latter
three not shown). All reanalyses substantially overestimate the percentage
of “wet” days, and the opposite for “dry” days (Fig. 3.7a, c; Table 3.2).
MERRA-2 and JRA-55 outperform CFSR and ERA-Interim for two-sample
χ2-statistic (Fig. 3.7b; table 3.2). Reanalyses overestimate the occurrence of
“very light” precipitation events (Fig. 3.7d-h), somewhat captures “light”,
“moderate”, and “heavy” events (Fig. 3.7d-g), and underestimates “ex-
treme” precipitation events (Fig. 3.7h) for the North Southeast climate
zones. For the Central and South Central all precipitation type events are
well captured.

Overall, across all climate zones and reanalyses, “very light” and “light”
precipitation events are overestimated. This is expected as lower-resolution
models tend to overforecast such events; and extreme precipitation events
are underestimated. Lower-resolution models and reanalyses typically are
not able to resolve extreme precipitation maxima, especially in the wettest
zones Maritime West and Southwest.
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Figure 3.7: Percentage of (a) ”wet days”; (b) Two-sample χ2-statistic; Percentage of (c) ”dry days”, (d) “very
light”, (e) “light” (f) “moderate”, (g) “heavy” and (h) “extreme” precipitation events for North climate zone. The
vertical dashed lines indicate the change in seasons and the colored dots represent the seasonal average.
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Long-term, homogenized stations in mountainous BC are mostly located
in valleys (Fig. 3.1). To identify regional and upper-elevation biases, each
reanalysis grid is bilinearly interpolated to the PRISM grid for comparison
to PRISM’s 30-year mean seasonal values. Similar to station-to-station com-
parison, JRA-55 and ERA-Interim outperform CFSR and MERRA-2 (Fig.
3.8). All four reanalyses show a dry bias during winter along the windward
and upper elevations of the Islands, Coast Mountains and Rocky Mountains
where the Maritime West, Northwest and Southeast climate zones are lo-
cated; and a wet bias along the Interior Plateau and leeward, lower elevation
regions of Vancouver Island and Lower Mainland where the Maritime East,
Southwest and Central climate zones are located. The North climate zone
has the lowest systematic error across the better reanalyses. Fall results are
similar to Winter results (not shown). Summer has the lowest systematic
errors across the better reanalyses (JRA-55 and ERA-Interim). MERRA-2
and CFSR exhibit a wet bias across the entire province (not shown). Finally,
Spring has the largest systematic errors across all four reanalyses with wet
biases in the Maritime East, Southwest, Central and North climate zones,
and dry biases across the Maritime West, Northwest and Southeast climate
zones. CFSR followed by MERRA-2 shows a larger wet bias across most of
the province (not shown).
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Figure 3.8: a) Winter precipitation totals of (a) PRISM. Winter precipitation totals bilinearly interpolated to
PRISM grid of (b) CFSR, (c) ERA-Interim, (d) JRA-55 and (e) MERRA-2. Systematic error of (f) CFSR, (g)
ERA-Interim, (h) JRA-55 and (i) MERRA-2. The dots represent weather station location.

90



3.5. Results and discussion

An examination of the magnitudes of the biases of each metric at each
station shows that reanalysis precipitation systematic error relative to weather
station observations is highly correlated to reanalysis precipitation system-
atic error relative to PRISM (PRISM and all four reanalyses are bilinearly
interpolated to station locations for station-to-station comparison). PRISM
was developed to create a climatological precipitation on a regularly space
grid that addresses spatial scales and patterns of orographic precipitation
(Daly et al., 1994). This is an indication that the reanalysis biases in 31-
day precipitation totals (shown for JRA-55 in Fig. 3.9) can be largely
explained by topographic and synoptic parameters such as terrain steep-
ness, exposure, elevation, location of barriers, and wind speed and direction,
that are incorporated into PRISM. Strong correlations are also obtained for
CFSR (0.78 ≤ R ≤ 0.94), ERA-Interim (0.79 ≤ R ≤ 0.93) and MERRA-2
(0.77 ≤ R ≤ 0.91; not shown). Hence, the PRISM accurately represents
station observations, and can be used for bias correction and downscaling of
reanalyses.
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Figure 3.9: JRA-55 mean systematic error of 31-day precipitation totals for each of the 66 stations as a function
of PRISM mean systematic error. The solid lines show the linear regression fits.
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3.5.2 Extreme PCP

The Southwest climate zone has the highest population density, and reservoir
sizes in the region are small relative to the magnitude of heavy and extreme
precipitation events. These two factors make it among the most sensitive
to extreme precipitation events. It is also one of the wettest regions —
it has one of the highest 30-year return levels of 1-, 3-, 7-, and 14-day
accumulated precipitation, second only to the Maritime West zone. Similar
to the results of daily PCP for the wetter climate zones, the Southwest (Fig.
3.10) and Maritime West climate zones show that all reanalyses are typically
too dry for extreme precipitation events, and too wet for the Northwest and
Maritime East climate zones.
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Figure 3.10: 30-year return level and systematic error of 1-day precipitation total, for all four reanalyses for
Southwest climate zone. The vertical dashed lines indicate the change in seasons and the colored dots represent
the seasonal average.
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MERRA-2 performs best in this regard, followed by ERA-Interim and
JRA-55, and then the CFSR. The percent magnitude of the 1-day dry biases
in 30-year return levels are similar to those accumulated over 3, 7, and 14
days (not shown; Table 3.2).

For the wetter climates zones, the highest values of extreme precipitation
occur during storm season (October to February for southwest BC; Fig.3.10).
These tend to be associated with non-convective, synoptic systems.

For the drier climate zones the highest values of extreme precipitation
occur during summer. Biases are smaller and typically associated with thun-
derstorm convection. In these zones, all reanalyses generally exhibit a dry
bias (e.g., North, Fig. 3.11), with the exceptions that MERRA-2 has a wet
bias during the summer peak, and JRA-55 a near zero bias. Furthermore, all
reanalyses have smaller biases when compared to the wetter climate zones
(cf. Figs. 3.10, 3.11), indicating that 30-year return levels of of 1-, 3-,
7-, and 14-day precipitation totals are fairly well captured all year long for
all accumulation periods (not shown) in drier zones. This is notably differ-
ent from the inability of the reanalyses to capture the annual cycle of daily
precipitation in drier zones (Fig. 3.5). This is somewhat surprising since
one might expect relatively coarse-resolution reanalyses to capture monthly
accumulated precipitation more accurately than extreme convective events.
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Figure 3.11: 30-year return level and systematic error of 1-day precipitation total, for all four reanalyses for North
climate zone. The vertical dashed lines indicate the change in seasons and the colored dots represent the seasonal
average.
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A Kruskal-Wallis analysis indicates significant differences in mean sys-
tematic error of daily and extreme PCP between the four reanalysis datasets
at the αWalker = 9.53×10−3 level. After multiple comparisons by Nemenyi’s
test, for daily PCP the ERA-Interim, JRA-55 and MERRA-2 significantly
outperform CFSR. For extreme PCP, the MERRA-2 and JRA-55 reanalyses
significantly outperform ERA-Interim and CFSR.

All of these results are summarized in Fig. 3.12 where mean absolute
error (MAE) of the reanalyses daily and extreme PCP are averaged over
the entire study period and all stations. The closer the value is to 0 for
a given reanalysis, the better its performance. MERRA-2 and JRA-55 are
the better reanalyses, outperforming CFSR for all metrics, and to a lesser
extent, ERA-Interim for daily PCP. This averaging also hides the greater
variability in bias of the poorer performing reanalyses, which is harder to
correct for. For extreme PCP, the difference between MERRA-2 and JRA-
55, and ERA-Interim is more noticeable with the former two outperforming
the latter. Additionally, the errors of 30-year return levels are smaller than
those of 2-year return levels. Although MERRA-2 outperforms JRA-55 in
most metrics on average, the differences are not significant.
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Figure 3.12: MAE of 31-day precipitation totals, χ2−statistic, ”wet days”, and 2-year and 30-year return levels of
1-, 3-, 7-, and 14-day precipitation totals. MAE is averaged across all 66 stations. Values closer to 0 at the origin
of the plot are better.
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3.6 Stationarity

3.6.1 Daily PCP

Stationarity in daily and extreme PCP distributions is assessed to deter-
mine if temporal changes are significant. If there are significant temporal
changes, that would mean a traditional, stationary distribution (based on
the 1981-2010 period) would not be appropriate to represent the present
day expected precipitation distribution. First, variations through time —
for each calendar day at each station — for season precipitation totals, num-
ber of ”wet” days, “very light”, “light”, “moderate”, “heavy” and “extreme”
precipitation events are modeled using linear regression to identify patterns.

Due to large year-to-year background variability in precipitation, the
study period is divided into three decades (1981-1990, 1991-2000 and 2001-
2010). A 91-day centered rolling window is used to obtain seasonal precipi-
tation totals for each calendar day; one value per decade per calendar day,
yielding 3 values for each calendar day. The seasonal precipitation total for
a given calendar day is assumed to vary with time as µ(t) = µ0 +µ1(t− t0),
where the slope coefficient µ1 represents the average change from one decade
to the next (Fig. 3.13).

Over the same 91-day centered rolling window, the number of ”wet” days
is assumed to vary with time as µ(t) = µ0 + µ1(t− t0), where µ1 represents
the 10-year rate of change of the number of wet days in the 91-day centered
rolling window. Namely, the number of ”wet” days is recorded per decade
per calendar day, yielding 3 values for each calendar day. The delineation
of ”wet” days is lowered from 1.0 mm to trace because stationarity is being
assessed on weather station data only (excessive occurrences of very light
model precipitation are not an issue).

Finally, still over the same 91-day centered rolling window ”wet” days
are recorded into five non-overlapping intervals: [Trace, 50th), [50th, 75th),
[75th, 90th), [90th, 95th) and [95th, 100th]th for “very light”, “light”, “mod-
erate”, “heavy” and “extreme” precipitation events, respectively. The num-
ber of events in each bin is assumed to vary with time as µ(t) = µ0+µ1(t−t0),
where the slope coefficient µ1 represents the average change in the number
of events from one decade to the next.

Second, confidence intervals (CI) (Sun et al., 2018a) are implemented
to assess significant changes of 10-year means from one decade to the next
of season precipitation totals, number of ”wet” days, “very light”, “light”,
“moderate”, “heavy” and “extreme” precipitation events.

A sufficiently large change in means from one decade to the next indicates
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there is a trend, and therefore nonstationarity is required to characterize
daily PCP. Small changes suggest a simpler, stationary model is accurate
enough to represent precipitation. This critical difference is determined
by the (1 − αWalker) × 100% CI due to multiple testing, where αWalker =
4.37× 10−6 and α0 = 0.10. Namely, variations in the mean over successive
decades are large enough to be considered statistically significant if they fall
outside the lower and upper bounds of the (1−αWalker)% CI of the resulting
difference between the means of the 10-year periods and the 30-year period
(Fig. 3.13). The individual 90% CI is adopted instead of the 95% CI to
reduce the probability of making a type II error — that is, to reduce the
probability of failing to see that there is a trend.
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Figure 3.13: Seasonal precipitation total at Vancouver International Airport (YVR) for July 9th (grey), 10-year
left moving average (black), decadal averages of seasonal precipitation total (1981-1990, 1991-2000 and 2001-2010)
(blue) and 30-year season precipitation total averaged over the study period 1981-2010 (green). The red line shows
the linear regression fit to the three decadal mean values. Individual 90% confidence intervals (CI; green dotted
line) and multiple (1− αWalker)× 100% CI (red dotted line) are drawn; α0 = 0.10. This example indicates that a
stationary distribution is appropriate for Jul 9th because the three decadal average values all fall within both CI.
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Figure 3.14a indicates a noticeable drying trend of seasonal precipi-
tation totals across southern BC during spring and summer (late summer
in South Central zone), and a weaker wet trend during late summer, fall
and early winter across most of BC. The weather stations are organized by
climate zones with North on top, followed by Central, Northwest, and south-
ern regions Maritime West, Maritime East, Southwest, South Central and
Southeast at the bottom. Similarly, precipitation frequency (Fig . 3.14b)
suggests an increase in the number of dry days during spring and summer
across most of BC (particularly for the South Central zone in summer),
and a weaker increase in the frequency of ”wet” days during fall and win-
ter across southern BC. None of the trends are significant at the multiple
(1−αWalker)× 100% CI. At the individual 90% CI, the trends are generally
not statistically significant, with exceptions in the Northwest and Maritime
West climate zone during summer.

Furthermore, Figure 3.15a, b and c, indicates a weak increase in the
number of “very light”, “light” and “moderate” precipitation events across
Maritime West, East and Southwest BC during fall (and winter for “very
light” events), and a weak decrease in such events during spring and summer
(substantially stronger for “very light” events in the South Central zone).
Again they are not significant — none of the trends fall outside either the
multiple (1 − αWalker) × 100% CI or the individual 90% CI. “heavy” (Fig.
3.15d) and in particular “extreme” (not shown) precipitation events do not
show any clear pattern.
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Figure 3.14: (a) Mean linear trend of season accumulated precipitation;
(b) Mean linear trend of days with precipitation. The vertical dashed lines
indicate the change in seasons and the horizontal dashed lines delineate from
top to bottom the North, Central, Northwest, Maritime West, Maritime
East, Southwest, South Central and Southeast climate zones respectively.
Units are percent change over the 30-year period.

103



3.6.
S

tation
arity

Figure 3.15: Mean linear trend of (a) “very light” , (b) “light”, (c) “moderate” and (d) “extreme” precipitation
events. The vertical dashed lines indicate the change in seasons and the horizontal dashed lines delineate from
top to bottom the North, Central, Northwest, Maritime West, Maritime East, Southwest, South Central and
Southeast climate zones respectively. Units are percent change over the 30-year period.
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Despite some clear trends, none of the changes of 10-year means from one
decade to the next are statistically significant at the multiple (1−αWalker)×
100% CI, and only a few isolated cases are statistically significant at the
individual 90% CI. During the 1981-2010 study period, a stationary 30-year
mean is accurate enough to represent mean values of season precipitation
totals, number of ”wet” days, “very light”, “light”, “heavy”, “heavy” and
“extreme” precipitation events.

3.6.2 Extreme PCP

For extreme PCP, the rolling 91-day centered rolling window is maintained
for 1-, 3-, 7-, and 14-day precipitation totals. A GEV dresses the 31 an-
nual maximum values for each calendar day by the method of maximum
likelihood. A nonstationary GEV distribution is compared, where only the
location parameter is allowed to exhibit trend, with a stationary GEV dis-
tribution with constant location, scale and shape parameters.

The GEV distribution location parameter is assumed to vary with time
as µ(t) = µ0 + µ1(t − t0), where the slope coefficient µ1 represent the 10-
year rate of change in location values of extreme 1-, 3-, 7-, and 14-day
precipitation totals.

None of the variations in the average of annual maxima over successive
decades fall outside either the (1 − αWalker) × 100% CI, or the 90% CI.
Furthermore, no clear trend in extreme PCP is discernible (not shown).
During the 31 years of the study period, a stationary GEV distribution
with model M0 = GEV (µ, σ, κ) is accurate enough to represent 1-, 3-, 7-,
and 14-day precipitation totals.

3.7 Conclusion

Reanalysis performance for daily and extreme precipitation (PCP) is evalu-
ated across British Columbia (BC) during the 1980-2010 study period. To
compare daily PCP among CFSR, ERA-Interim, JRA-55 and MERRA-2,
the systematic error of 31-day precipitation total, wet days, and two-sample
χ2−statistic are calculated. To identify performance of extreme PCP, the
systematic error of 2- and 30-year return levels of 1-, 3-, 7- and 14- day
accumulated precipitation are compared.

In reanalyses, precipitation is generally better represented over areas
well-covered with accurate, complete, and coherent observations of all nu-
merical forecast variables, which are used to correct the reanalyses. In rel-
atively data-sparse areas such as BC (Hacker et al., 2003; Spagnol, 2005),
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reanalysis precipitation relies mostly on the underlying model output rather
than observations (Dee et al., 2011; Lindsay et al., 2014). Namely, despite
model estimation of precipitation being based on temperature and humid-
ity information derived from the assimilated observations, approximations
used in the models representation of moist processes over data-sparse areas
strongly affect the quality and consistency of the hydrological cycle (Dee
et al., 2011).

The model generated-precipitation in CFSR traditionally has a wet bias
(Saha et al., 2010). In this study, CFSR wasn’t the best reanalysis in any
of the metrics. Results suggest a wet bias across all climate zones in BC
matching previous results which indicate a wet bias over the western Pacific
and in mid-high latitudes (Saha et al., 2010; Wang et al., 2011).

JRA-55 has the most consistent, and among the smallest, systematic
error throughout the year and across the different climate zones in BC.
Previous studies concluded that the quality of the JRA-55 improved signifi-
cantly when compared with that of JRA-25 (Kobayashi et al., 2015; Harada
et al., 2016), especially in the Pacific Ocean north of 30◦ N (Harada, 2018).

ERA-Interim exhibits the largest variation in performance throughout
the calendar year and across the different climate zones, with lower system-
atic errors across the drier climates zones than the wetter climate zones; cap-
turing the wettest months in the dry climate zones, and missing the correct
amount of precipitation during storm season in the wet climate zones. How-
ever, ERA-Interim performed fairly well for daily PCP across BC. Uppala
et al. (2005) explains the various difficulties encountered in ERA-40 with the
assimilation of humidity information, which led to a generally poor repre-
sentation of the global transport of moisture in the atmosphere. According
to our results, those problems seem to have been corrected on ERA-Interim.
Additionally, Uppala et al. (2005) concludes that there was an improvement
over previous generation reanalysis ERA-40 to ERA-Interim in precipitation
over higher latitudes.

A previous MERRA study (Bosilovich et al., 2015) suggests that the
sparse coverage of precipitation gauges in high latitudes may lead to sig-
nificant biases. Studies have documented the difficulty of conserving at-
mospheric dry mass while guaranteeing that the net source of water from
precipitation and surface evaporation equals the change in the total atmo-
spheric water (Trenberth and Smith, 2005; Bosilovich et al., 2008; Berrisford
et al., 2011). Reconsideration of these issues were taken into account during
the development of MERRA-2. In this study, MERRA-2 performed well,
particularly for extreme PCP.

In summary, JRA-55 and MERRA-2 better capture precipitation distri-
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bution across BC all year, and have the lowest systematic errors across the
wet climate zones during storm season. This makes them the better choices
for a gridded climatological dataset of daily precipitation over BC. For daily
PCP, MERRA-2 and JRA-55 are the better reanalyses followed closely by
ERA-Interim. For extreme PCP, MERRA-2 and JRA-55 are the better re-
analyses, with the lowest systematic errors throughout the year and across
different climate zones.

According to Chapter 2 and this study, ERA-Interim performs better
for daily and extreme 2-m temperature than it does for daily and extreme
PCP, even though the two fields should influence one another. A possible
explanation is that many reanalyses do not directly assimilate 2-m air tem-
perature observations, whereas ERA-Interim does. In contrast, PCP is a
model-produced field, influenced indirectly by surface and upper-air tem-
perature and humidity observations (Dee et al., 2011; Lader et al., 2016).

There is a noticeable drying trend in precipitation total during spring
and summer months across southern BC, and a wet trend during early fall
for northern and southwestern BC. These patterns also manifest themselves
in dry- and wet-day frequencies. The strongest signal is drying in the South
Central zone in summer. These findings add more information to previous
studies. Vincent and Mekis (2006) showed that the the number of days
with precipitation per year also have significantly increased from 1950-2003
across BC, and Zhang et al. (2000) showed a distinct drying pattern in the
southern regions of BC during summer and spring during the second half of
the twentieth century. Finally, our analysis shows that spring and summer
have been getting drier for much of BC, which is in line with future climate
projections (Haughian et al., 2012).

The number of light and moderate precipitation events has generally in-
creased during fall and winter months, and decreased mostly during spring
and summer across BC. Despite the clear evidence of a dry trend for spring
and summer months, and a wet trend during fall and winter months, the
trends are not as discernible for precipitation intensity. Finally, there is no
discernible pattern in changes in return levels of extreme PCP, or frequency
of heavy and extreme precipitation events. A different study also showed
no consistent trends in the number of precipitation extremes during the last
century (Zhang et al., 2001). By contrast, Groisman et al. (2005) showed an
increase in heavy and very heavy precipitation events south of 55◦N from
1910-2001 across BC. The lack of consistency between periods and method-
ology for computing the trends have made it difficult to compare results
across different studies. One possibility is that changes in precipitation
were occurring too slowly to be discerned in the 31-year study period, given
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the the considerable year-to-year variability in precipitation. Therefore, it
is possible that with a longer record discernible trends may be found. For
this 31-year study period, apart from some isolated cases, no statistically
significant trends are found. Thus, a stationary distribution is sufficient to
represent daily and extreme PCP over BC.

Chapter 2 shows that, across mountainous BC, ERA-Interim and JRA-
55 are the most consistent and accurate reanalyses for daily and extreme
temperature. This chapter shows that JRA-55 and MERRA-2 are the most
consistent reanalyses for daily and extreme precipitation. More consistent
biases are favoured, as they are more easily removed by bias correction. It
is important to note that, as expected, the results for daily and extreme
temperatures are more conclusive than the results for daily and extreme
precipitation since models do not simulate precipitation as well as they do
temperature (Kendon et al., 2014; Ravishankar et al., 2016), and have diffi-
culties to represent extreme precipitation (Zhu et al., 2014). Due to higher
variability in precipitation across BC, there is a large variation in perfor-
mance —even for the better reanalyses JRA-55 and MERRA-2 – across the
different climate zones and seasons.

Furthermore, the longer JRA-55 record is advantageous in that the stan-
dard errors (of the estimated parameters used in extremes modelling and the
resulting return levels) are expected to decrease as the sample size increases
(Hosking et al., 1985; Hosking, 1990; Cai and Hames, 2010).

Based on these findings, and the temperature findings in Chapter 2,
the JRA-55 is recommended as the most accurate reanalysis over BC. This
chapter concludes that for daily PCP, the JRA-55 systematic error relative
to weather station observations is highly correlated to JRA-55 systematic
error relative to PRISM. It suggests that the biases can be explained by to-
pographic and synoptic parameters— parameters that were implemented in
the development of PRISM. In the next chapter the bias corrections based on
error dependencies found in Chapter 2 and this study will be implemented in
the JRA-55 to create an even more accurate gridded climatological dataset.
This will then be used, in conjunction with a probabilistic forecast dataset
to create an extreme temperature and precipitation forecast index.
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Chapter 4

Analysis and Forecast of
High-resolution Extreme
Weather

4.1 Introduction

This Chapter has four objectives. First, the high-resolution PRISM clima-
tology, the JRA-55 and the homogenized weather station dataset are com-
bined to downscale and bias correct the JRA-55 and create a 30-arc-second
(∼ 800 m) very-high-resolution surface analysis (VHRSA) of daily maximum
and minimum 2-m temperature, and 1-day accumulated precipitation.

VHRSA temperature and precipitation datasets have the potential ben-
efit of rendering a feasible solution to the paucity of observational data
across BC due to its inherent spatial and temporal completeness. Addition-
ally, such a dataset has the ability to resolve fine-scale topographic features
that are important for a wide variety meteorological, climatological, and
hydrological studies.

The accuracy of the VHRSA is compared to the JRA-55 — the best
performing reanalyses across BC. Performance is assessed with respect to
daily maximum and minimum 2-m temperature, and 1-day accumulated
precipitation over mountainous BC (hereafter daily and extreme T2M as
defined in section 2.3; daily and extreme PCP as defined in section 3.2).

Then, the VHRSA is used to statistically downscale and bias correct
North American Ensemble Forecast System (NAEFS) forecasts, creating a
very-high-resolution probabilistic forecast across BC.

Finally, trends in extreme T2M and PCP are examined to determine
whether or not a stationary climatological distribution is appropriate to rep-
resent present-day extreme distributions. The stationarity results are used
to inform the creation of a new extreme weather forecast index. The objec-
tive of the index to improve upon existing tools (that heighten operational
awareness of potentially extreme events) by more accurately calculating the

109



4.2. Data

extremity of the event, and producing fewer false alarms.
In section 4.2, a brief description of the different datasets and of the

weather station observations are given. In section 4.3, the methodology to
statistically downscale and bias correct the JRA-55 reanalysis, and the vari-
ous metrics used to evaluate daily and extreme T2M and PCP are presented.
In section 4.4, the methodology to statistically downscale and bias correct
the NAEFS forecast is presented. The metrics used to evaluate daily T2M
and PCP with respect to the raw NAEFS forecast are also presented. In
section 4.5, the methods for assessing statistical nonstationarity are intro-
duced, and trends of extreme T2M and PCP are examined. Section 4.6
introduces the Parametric Extreme Index (PEI) and compares it to Stan-
dardized Anomalies (SA). Results are summarized in the conclusion.

4.2 Data

Observational data were obtained from 62 surface weather stations for daily
maximum and minimum T2M, and from 69 stations for daily accumulated
PCP, for the period 1 Jan 1958 to 31 Dec 2017. These data are used in
conjunction with the PRISM dataset to bias-correct and downscale the JRA-
55, which in turn is used to bias-correct and downscale the North American
Ensemble Forecast System (NAEFS) forecast.

A detailed description of the T2M and PCP weather station datasets
are given in chapter 2 and 3, respectively. Information on the JRA-55 at-
mospheric models and configurations are presented in tables 2.1 and 3.1. A
more detailed description of the JRA-55 can be found in Chapter 2 or in
Ebita et al. (2009, 2011) and Takeuchi et al. (2013).

4.2.1 Weather station data

Of the 72 and 118 geographically-dispersed T2M and PCP stations initially
selected for this study respectively, 10 T2M and 49 PCP stations with more
than 10% missing data were excluded. The upper bound threshold was
raised to 10% in this Chapter to strike a balance between having enough
stations with a complete temporal record, while still having representative
data in each climate zone in the province. A broad description of climate
zones can be found in Chilton (1981) and Moore et al. (2008). A more de-
tailed description and formal statistical derivation of T2M and PCP climate
zones can be found in Chapters 2 and 3, respectively.

Figures 4.1 and 4.2 shows the locations of all Environment and Climate
Change Canada (ECCC) and BC Hydro stations and their corresponding
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Figure 4.1: Location of ECCC (blue) and BC Hydro (yellow) T2M weather
stations and British Columbia population distribution (red).

three-letter abbreviations, overlaid with the population distribution across
BC (these maps are shown again because they have a different selection of
stations from those shown in Chapters 2 and 3). Station elevation varies
from sea-level to alpine, with most stations located in valleys with different
orientations, slopes and elevations, and some stations located on mountain
slopes with different slope angles (see Appendix A for more details on sta-
tions).

For nonstationary analysis, stations with more than 1% missing data
are excluded, leaving eighteen ECCC T2M stations and eight ECCC PCP
stations. BC Hydro stations were excluded due to apparently spurious tem-
poral trends. A detailed discussion of station homogeneity can be found in
Chapter 2 for T2M and Chapter 3 for PCP.
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Figure 4.2: Location of ECCC (blue) and BC Hydro (yellow) PCP weather
stations and British Columbia population distribution (red).
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4.2.2 PRISM

In this study, gridded daily T2M and PCP climatology for the 1981-2010
climate normal period are used to downscale and improve the accuracy of
the JRA-55 by identifying high-resolution regional and terrain biases in the
JRA-55 daily T2M and PCP. A more detailed description of the PRISM can
be found in Chapter 3 or in Daly et al. (1994, 1997, 2002).

4.2.3 NAEFS

The North American Ensemble Forecast System (NAEFS) is the amalga-
mation of the Meteorological Service of Canada (MSC) Global Ensemble
Prediction System (GEPS) (Charron et al., 2010) and the United States
National Centers for Environmental Prediction (NCEP) Global Ensemble
Forecast System (GEFS) (Toth and Kalnay, 1997). The GEPS and GEFS
are each comprised of 20 perturbed and 1 control members. Both ensem-
ble systems employ ensemble Kalman filtering to generate perturbed initial
conditions, and perturbed physical parameterizations (Wang et al., 2013;
Hou et al., 2015; Wei et al., 2008; Zhou et al., 2017). When combined, the
NAEFS provides a 42-member forecasts out to 16 days that is of higher
quality than either ensemble alone (Zhu et al., 2014). The available archive
of NAEFS data was downloaded at a horizontal grid spacing of 1.0◦ × 1.0◦

every 6 hours (0000, 0600, 1200 and 1800 UTC) out to 14 days.

4.3 The VHRSA: Downscaling and
bias-correcting the JRA-55

The statistical behaviour of extreme T2M and PCP are compared between
observed weather station data, and the JRA-55 and PRISM interpolated
to the stations locations. As in Chapters 2 and 3, the Inverse Distance
Weighting (IDW) is used to interpolate reanalysis and PRISM output. A
more detailed description of each interpolation method can be found in
Mooney et al. (2011) and Stahl et al. (2006).

For JRA-55, precipitation accumulation intervals are summed over the
0601UTC-0600UTC window to get daily PCP (Table 3.1). The daily max-
imum (minimum) T2M is defined as the highest (lowest) value of the six-
hourly T2M outputs in the same window (Table 2.1).

The highest (lowest) value of daily maximum (minimum) T2M within
a 31-day centered rolling window is selected for each calendar day, for each
year in the 60-year dataset. Thus, each calendar day has 60 values of annual
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maximum (minimum) T2M and PCP. This is done for both the station data
and JRA-55 interpolated to the stations.

A Generalized Extreme Value distribution is fitted over the 60 sample
values for each calendar day by the method of L moments. As in previous
chapter, estimates of return levels derived by the method of L moments are
more reliable than the method of maximum likelihood (Hosking et al., 1985;
Hosking, 1990).

A Lilliefors test is conducted to evaluate the goodness-of-fit test of the
fitted GEV distribution to the observed data. The null hypothesis that the
observed data is drawn from a GEV distribution is rejected in favour of the
alternate hypothesis if a large difference between the fitted GEV cumula-
tive distribution function (CDF) and the observation empirical cumulative
distribution function (ECDF) is detected.

This large critical difference is determined by a parametric bootstrap
procedure. Namely, 100 samples of size 60 are generated from the fitted
GEV distribution for each calendar day at each station. Next, 100 criti-
cal differences are computed from the comparison of each generated sample
ECDF and the fitted GEV CDF. Accepting or rejecting the null hypothesis
at the 10% significance level is equivalent to comparing the 90th percentile
of the resulting collections of critical differences with the actual difference
between the fitted GEV CDF and the observation ECDF. At this 10% sig-
nificance level, 10% of the tests are expected to exceed a critical difference,
rejecting the null hypothesis. However, to reduce the probability of incor-
rectly rejecting one or more of the true null hypotheses due to multiple
testing, the global 10% significance level is regarded as significant. Namely,
the null hypothesis is rejected when the critical difference between the fitted
GEV CDF and the observations ECDF exceeds the global 90th percentile of
the resulting collections of critical differences between the fitted GEV CDF
and the generated ECDF of the samples (Wilks, 2016).

At the global 10% significance level, less than 8% of the stations and
calendar days are rejected during the 1958-2017 study period. It indicates
extreme T2M and PCP values can be described by a GEV distribution.
The 2-year return level is then estimated from the GEV distribution for
each calendar day and station.

Next, the monthly mean PRISM values are assumed to be valid on the
15th of each month. The twelve monthly values are linearly interpolated in
time to obtain 365 calendar day values of monthly means (example shown
for maximum T2M, Fig. 4.3a).

For the JRA-55, the same 31-day centered rolling window is used to
accumulate PCP values and obtain monthly precipitation for each calendar
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day. These 31-day accumulated values are then averaged over the 30-year
PRISM climate period (1981-2010). For T2M, the 31-day window is used
to obtain monthly mean values of daily maximum and minimum T2M for
each calendar day, which are also averaged over the 30-year PRISM climate
period.

Then, for each calendar day and variable, a linear regression summarizes
the relationship between the bias of the JRA-55 2-year return level value
relative to the station 2-year return level value, and the bias of the monthly
mean JRA-55 value relative to the monthly mean PRISM value (additive
bias for T2M, multiplicative bias for PCP). This yields 365 regression models
and 730 parameters — two parameters per calendar day (the slope and y-
intercept; Fig. 4.3b). The 2-year return level is chosen because it is the
median of a GEV distribution and therefore a robust representation of the
centre of the data. Two-thirds of the stations are randomly selected to train
the linear regression model and the remaining 1/3 of the stations are used
to test it (see Appendix B for a list of train and test stations). This cross
validation is needed to test how well the model will generalize to grid points
throughout BC.

Finally, for each calendar day, the JRA-55 is bilinearly interpolated (Fig.
4.3e) to the PRISM grid (Fig. 4.3a) and the monthly bias between the JRA-
55 and the PRISM is calculated (additive bias for T2M, multiplicative bias
for PCP; Fig. 4.3c).

The VHRSA is generated by starting with the JRA-55 field (Fig. 4.3d),
and bias correcting it applying the linear regression equation (Fig. ??b) to
the monthly mean bias (Fig. 4.3c). The final result is the VHRSA field
(Fig. 4.3f). That is, the VHRSA value is computed by subtracting (multi-
plying for PCP) the downscaling difference for T2M (ratio for PCP) from
the JRA-55 value.

The downscaling differences for T2M in Figure 4.3c are typically less
than 0◦C in valleys and greater than 0◦C in mountainous regions, leading
to a dataset with larger vertical temperature differences. Similarly, for PCP
the downscaling ratio is typically greater than 1 in valleys and less than 1 in
mountainous regions, leading to a dataset that is drier in valleys and wetter
in ridges and upper elevation regions (see Figure 3.9 and subsection 3.5.1
for more details).
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Figure 4.3: (a) 30-year monthly mean of daily maximum T2M PRISM climate on August 28th. (b) 2-year return
level systematic error between training stations and reanalysis interpolated to training stations as a function of
monthly mean daily maximum T2M bias between JRA-55 and PRISM interpolated to training stations. The solid
line shows the linear regression fit. (c) Downscaling difference derived by subtracting (a) from (e). (d) JRA-55
daily maximum T2M on 28 Aug 2017. (e) Monthly mean of daily maximum T2M JRA-55 climate billinearly
interpolated to PRISM grid. (f) VHRSA daily maximum T2M on 28 Aug 2017.
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To evaluate whether the VHRSA is statistically better as a gridded
climatological dataset than the JRA-55, the monthly mean bias (or sys-
tematic error) and mean absolute error (MAE; or random error) are com-
puted to estimate how accurately each dataset captures T2M and PCP. The
bias measures the average difference between the datasets and the observa-
tion. The MAE measures the mean of the absolute differences between the
datasets and observations. The two-sample Kolmogorov-Smirnov (KS) and
χ2-statistics are computed to estimate how accurately each dataset captures
the distribution of T2M and PCP respectively. The two-sample KS statis-
tic determines the largest absolute difference between the gridded dataset
values of the T2M ECDF, and the observed ECDF values. The χ2-statistic
measures the difference between the number of “very light” ([1.0 mm, 50th)),
“moderate” ([50th, 75th)), “moderate” ([75th, 90th)), “heavy” ([90th, 95th))
and “extreme” ([95th, 100th]) PCP events in each dataset.

Finally, the bias and MAE of the 2-year return levels are calculated to
estimate how well each gridded analysis captures extreme T2M and PCP.
For more details on these metrics, refer to sections 2.4 and 3.4.

Given that the test stations belong to different climate zones, the median
is used to average the monthly mean and 2-year return levels biases, MAE,
KS and χ2-statistics across all test stations on each calendar day (Figures
4.4, 4.5 and 4.6).

4.3.1 Verification of the VHRSA Daily and Extreme T2M

For daily and extreme maximum T2M, the seasonal cycle of temperature is
very well captured and maintained over the VHRSA (Fig. 4.4a,b). Addi-
tionally, the VHRSA clearly outperforms the JRA-55 throughout the entire
calendar year for both bias and MAE of daily and extreme T2M, and KS-
statistic (Fig. 4.4c-g). The cold bias in the JRA-55 has mostly been removed
for both daily and extreme T2M (Fig. 4.4c,d), and the VHRSA better cap-
tures the observations ECDF (Fig. 4.4g). The coloured points represent the
seasonal error of each metric. They indicate that the errors in the VHRSA
are consistently substantially smaller than those of the JRA-55 across all
metrics evaluated.

The results for daily and extreme minimum T2M are nearly as good as
those for daily maximum T2M. Both the JRA-55 and the VHRSA capture
the seasonal cycle of daily and extreme minimum T2M well (Fig. 4.5a,b).
The JRA-55 exhibits high variability in bias throughout the seasons for both
mean and 2-year return levels of daily minimum T2M (Fig. 4.5c,d). The
cold bias from mid-spring to mid-fall, and the warm bias during winter have
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Figure 4.4: (a) Observed, JRA-55 and VHRSA monthly mean daily max-
imum T2M averaged over test stations. (b) 2-year return levels of ob-
served, JRA-55 and VHRSA maximum T2M averaged over test stations.
(c) Monthly mean bias of JRA-55 and VHRSA daily maximum T2M aver-
aged over test stations. (d) As in (c) but for 2-year return levels. (e) As in
(c) but for MAE. (f) As in (e) but for 2-year return levels. (g) KS statistic
for daily maximum T2M. The vertical dashed lines indicate the change in
seasons and the coloured dots represent the errors seasonal averages. In
(a) and (b), values closer to observations (black line) are better. In (c)-(g),
values closer to zero are better. 118
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been reduced in the VHRSA. The VHRSA consistently outperforms the
JRA-55 for daily MAE, averaging about 2◦ C (Fig. 4.5e,f), similar to that
of the VHRSA maximum T2M. Since the VHRSA is corrected relative to
2-year return values, the MAE is even lower here, around 1◦ C annually —
again similar to that of the VHRSA maximum T2M. Finally, the VHRSA
better captures the observed ECDF throughout the entire calendar year
(Fig. 4.5g).

4.3.2 Verification of the VHRSA Daily and Extreme PCP

The results for PCP, while not quite as good as those for T2M, still generally
show substantial improvements after statistical downscaling and bias correc-
tion. The seasonal cycle is well captured and the wet bias is reduced over
the VHRSA (Fig. 4.6a,b). The VHRSA consistently outperforms the JRA-
55 throughout the seasons for monthly bias and MAE (Fig 4.6c,e). During
the most important part of the year, storm season, the VHRSA better cap-
tures the observations distribution of precipitation (Fig 4.6g). Although the
bias in extreme PCP is not improved (Fig. 4.6d), the VHRSA consistently
outperforms the JRA-55 for extreme PCP MAE (Fig. 4.6f). One possible
explanation is that the biases across BC are cancelling each other resulting
in a smaller bias but not a smaller MAE.

The monthly mean systematic errors and MAE of daily maximum and
minimum T2M and PCP, and the 2-year return level systematic errors and
MAE are calculated from all calendar day systematic errors (Table 4.1).
Similarly, the mean KS statistics and χ2-statistic are computed for daily
maximum and minimum T2M, and PCP respectively. Comparisons between
the fifteen mean systematic errors of the JRA-55 and the VHRSA are made
using fifteen independent Mann-Whitney nonparametric tests (Hollander
et al., 2013). Fifteen independent Mann-Whitney tests are used because
the MAE is inherently skewed as it is left-bounded at 0, and due to the
differences in magnitude and variability of each type of error.

A sufficiently large difference between the fifteen mean systematic errors
of the JRA-55 and the VHRSA indicate that daily and extreme T2M and
PCP are more accurate in the VHRSA than in the JRA-55. Small differ-
ences in the mean systematic errors suggest that the datasets have similar
accuracy. Due to the fact that there are fifteen error pair comparisons be-
tween the JRA-55 and the VHRSA, the null hypothesis that the datasets
have similar accuracy is rejected at the αWalker = 1− (1−α0)

1/N0 = 0.0034
level of significance, where α0 = 0.05 and N0 = 15.

The Mann-Whitney tests indicate that all errors of daily and extreme
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4.3. The VHRSA: Downscaling and bias-correcting the JRA-55

Figure 4.5: (a) Observed, JRA-55 and VHRSA monthly mean daily min-
imum T2M averaged over test stations. (b) 2-year return levels of ob-
served, JRA-55 and VHRSA minimum T2M averaged over test stations.
(c) Monthly mean bias of JRA-55 and VHRSA daily minimum T2M aver-
aged over test stations. (d) Same as in (c) but for 2-year return levels. (e)
Same as in (c) but for MAE. (f) Same as in (e) but for 2-year return levels.
(g) KS statistic for daily minimum T2M. The vertical dashed lines indicate
the change in seasons and the coloured dots represent the errors seasonal
averages. Values of bias, MAE, and KS Statistic closer to zero are better.
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Figure 4.6: (a) Observed, JRA-55 and VHRSA mean of monthly PCP totals
averaged over test stations. b) 2-year return levels of observed, JRA-55 and
VHRSA PCP averaged over test stations. (c) Monthly mean bias of bias-
corrected JRA-55 PCP averaged over test stations. (d) Same as in (c) but
for 2-year return levels. (e) Same as in (c) but for MAE. (f) Same as in
(e) but for 2-year return levels. g) χ2-statistic of PCP. The vertical dashed
lines indicate the change in seasons and the coloured dots represent the
errors seasonal averages. Values of bias, MAE, and χ2-statistic closer to
zero are better.
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Table 4.1: Averaged systematic error and MAE of monthly precipitation
total and monthly mean daily maximum and minimum T2M (MSE and
MMAE respectively), of 2-year return levels (SE2 and MAE2 respectively),
averaged systematic error of two-sample χ2-statistic (χ2) and KS statistics,
across all test stations (all T2M errors but KS statistic in ◦C; all PCP errors
but two-sample χ2 -statistic in % )

MSE MMAE SE2 MAE2 KS χ2

T2M MAX

VHRSA 0.32 1.87 0.12 0.76 0.11
JRA-55 -3.91 4.21 -4.17 4.17 0.39

T2M MIN

VHRSA -0.21 1.83 0.53 1.02 0.12
JRA-55 -0.57 2.59 0.18 2.62 0.28

PCP

VHRSA 12.26 15.84 -9.94 12.26 16.62
JRA-55 30.59 34.63 5.72 23.79 20.58

T2M and PCP of the VHRSA are smaller than those of the JRA-55 at
the global 5% significance level, with the exception of extreme PCP bias as
shown in Figure 4.6d).

In general, the results of maximum T2M are better than those of mini-
mum T2M, which in turn are better than the results of PCP. One possible
explanation is the coefficient of determination R2. The R2 is a standard
measure of the goodness-of-fit of a regression. It can be interpreted as the
proportion of the variation of the bias of the JRA-55 2-year return level value
relative to the station 2-year return level value that is described or accounted
for by the regression (Fig. 4.3b). Higher R2 values are obtained for maxi-
mum T2M (0.62 ≤ R2 ≤ 0.91) than for minimum T2M, (0.69 ≤ R2 ≤ 0.85)
which in turn are higher than the R2 values of PCP (0.58 ≤ R2 ≤ 0.81)
throughout the year.

Finally, looking at the different climate zones across all variables, results
are very similar, there is always a clear improvement in the VHRSA (not
shown). For instance, the large cold systematic errors of daily and extreme
maximum T2M across the Southeast climate zone found in Chapter 2 (Ta-
bles 2.2 and 2.3) have been removed, and the large wet biases in systematic
errors of daily PCP across the drier climate zones found in Chapter 3 (North,
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South Central, Central and Southeast; Table 3.2) have been reduced.

4.4 Bias-corrected NAEFS

A rolling window of the 30 most recent values (as would be used in real-time
forecasting) is used to bias correct and downscale each member’s daily maxi-
mum and minimum T2M, and 1-day accumulated PCP forecast towards the
VHRSA. Given that the daily maximum and minimum T2M were not avail-
able across in the NAEFS archive used, the daily maximum (minimum) T2M
is defined as the highest (lowest) value of the six-hourly T2M outputs (for
the calendar day 0601-0600 UTC). The 1-day accumulated PCP is summed
over the four six-hourly outputs for each day.

The NAEFS forecast Ft is bias corrected using an additive (multiplica-
tive) degree-of-mass-balance bias-correction factor DMBt for T2M (PCP)
(Grubǐsić et al., 2005; McCollor and Stull, 2008a; Bourdin et al., 2014).
First, the raw NAEFS forecast (∼ 100-km horizontal grid spacing) is bilin-
early interpolated to the VHRSA grid (∼ 800-m grid spacing). Then, the
bias-correction factor is calculated and updated daily, and applied to the
raw interpolated NAEFS forecast to generate a bias-corrected, downscaled
NAEFS forecast F̂t. The factor DMBt is a combination of the previous-day
DMBt−1 and the difference (ratio for PCP) of the previous day forecast-
observation pair (Ft−1−Ot−1 for T2M; Ft−1/Ot−1 for PCP), weighted by a
time parameter τ = 30:

DMBt =
τ − 1

τ
DMBt−1 +

1

τ
(Ft−1 −Ot−1). (4.1)

The factor functions as a 30-day exponentially decaying rolling window.
Namely, the influence of the forecast-observation pairs decreases with an
e-folding time of τ = 30 days from most recent to least recent. The value
of τ = 30 is chosen because McCollor and Stull (2008a) have shown it
has the optimal minimum bias between the bias-corrected forecast and the
observation for T2M and PCP forecasts over BC. The bias correction

F̂t = Ft −DMBt (4.2)

is done separately for each NAEFS member and then averaged to generate
the bias-corrected ensemble mean (F̂t = Ft/DMBt for PCP; Figures 4.7,
4.8 and 4.9).

The degree-of-mass-balance method is chosen for three reasons. (1) Due
to the 30-arc-second (∼ 800 m) grid resolution of the VHRSA, an algorithm
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4.4. Bias-corrected NAEFS

is needed to improve the forecast in an operational setting (with associated
time constraints) without exceeding computing resources. (2) This bias
correction has been well studied, used and proven to work well. (3) It
efficiently updates daily and retains a memory without creating an ever-
growing training dataset.

Typically, operational raw ensemble forecasts are found to exhibit a low
ensemble spread (Buizza, 1997; Hamill, 2001; Hamill et al., 2008; McCol-
lor and Stull, 2008b), which in turn leads to overconfidence in probability
assessment. Namely, ensemble forecasts are underdispersive and produce
uncalibrated probabilistic forecasts (that is, the empirically derived proba-
bilities are not accurate). A Nonhomogeneous Gaussian regression (NGR) is
used to calibrate the forecast F̂t at the stations for T2M and PCP (Gneiting
et al., 2005; Hagedorn et al., 2008). The NGR assumes the forecast errors
form of a Gaussian distribution dressed about the ensemble mean:

Nt(F̄t, s
2
ens). (4.3)

Here, F̄t is the bias-corrected ensemble mean calculated from 4.1 and
4.2, where each member is equally weighted. The variance of the residuals
— which are assumed to be Gaussian distributed— is computed as a linear
function of the ensemble variance s2ens. The regression parameters are chosen
to minimize the continuous ranked probability score (CRPS).

Previous studies have reported good results calibrating surface temper-
ature error distributions (which are approximately Gaussian) using NGR
(Hamill et al., 2008; Hagedorn et al., 2008). Thorarinsdottir and Gneiting
(2010) extend NGR to handle non-Gaussian distributed variables such as
wind speeds. Once again, this method has been chosen to strike a balance
between computing demands and well reported results.

The bias-corrected, calibrated NAEFS is evaluated for daily PCP and
minimum T2M during fall (defined here as October, November and De-
cember) and winter (defined here as December, January and February) of
2016/17, which were abnormally wet and cold seasons (e.g., Figs. 4.7 and
4.8); and daily maximum T2M during summer of 2017 (defined here as June,
July and August) , which was abnormally hot (e.g., Fig. 4.9). For more de-
tails on the severity and impacts refer to subsection 1.1. The month prior
to each season is used to spin up the bias correction and calibration of the
raw forecast. Again, a 30-day training period is chosen to strike a balance
between computing demands and reported results. According to McCollor
and Stull (2008a), the DMB requires a 40 day training period for precipi-
tation and a shorter 14 day training period for temperature to accomplish
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4.4. Bias-corrected NAEFS

bias reduction. Hagedorn et al. (2008) and Hamill et al. (2008) suggest NGR
can calibrate 2-m temperature and lighter precipitation events with a 30-
day training dataset. A total of 3588, 4140, 4416 observations are used to
evaluate forecast performance during fall, winter and summer respectively.

125



4.4
.

B
ias-corrected

N
A

E
F

S

Figure 4.7: (a) NAEFS raw Canadian control member forecast of daily minimum T2M on previous day 2 Jan,
2017; (b) Same as in (a) but for VHRSA; (c) Ensemble mean raw NAEFS forecast on current day 3 Jan, 2017; (d)
Ensemble mean bias-corrected NAEFS forecast on current day 3 Jan, 2017. DMB method done separately for each
NAEFS member and then averaged to generate the bias-corrected ensemble mean. (e) VHRSA daily minimum
T2M on 3 Jan, 2017 presented for comparison with (c) and (d). The dots represent weather station location.
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Figure 4.8: (a) NAEFS raw Canadian control member forecast of 1-day accumulated PCP on previous day 7 Nov,
2016; (b) Same as in (a) but for VHRSA; (c) Ensemble mean raw NAEFS forecast on current day 8 Nov, 2016;
(d) Ensemble mean bias-corrected NAEFS forecast on current day 8 Nov, 2016. DMB method done separately
for each NAEFS member and then averaged to generate the bias-corrected ensemble mean. (e) VHRSA 1-day
accumulated PCP on 8 Nov, 2016 presented for comparison with (c) and (d). The dots represent weather station
location.
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Figure 4.9: (a) NAEFS raw Canadian control member forecast of daily maximum T2M on previous day 27 Aug,
2017; (b) Same as in (a) but for VHRSA; (c) Ensemble mean raw NAEFS forecast on current day 28 Aug, 2017;
(d) Ensemble mean bias-corrected NAEFS forecast on current day 28 Aug, 2017. DMB method done separately
for each NAEFS member and then averaged to generate the bias-corrected ensemble mean. (e) VHRSA daily
maximum T2M on 28 Aug, 2017 presented for comparison with (c) and (d). The dots represent weather station
location.
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4.4.1 Verification of the Forecast

Most forecast verification metrics have weaknesses (Murphy and Winkler,
1987). In order to obtain an informed picture of the skill of the forecast,
different forecast attributes need to be analyzed using different metrics.

The bias (or systematic error) simply measures the difference between
the average forecast and average observation (additive for T2M, multiplica-
tive for PCP), and therefore expresses the bias of the forecasts. A positive
bias indicates that forecasted value was larger than the observed, which is
called overforecasting. Conversely, a negative bias indicates that the event
was underforecast, namely, the forecast value was less than the observed.

Metrics based on a 2 × 2 contingency table are also used for T2M and
PCP verification (Table 4.2). Stephenson (2000) suggests the hit (H) and
false alarm (F) rates should be used in combination with the threat score
(TS). This is helpful for extreme T2M and PCP values because the TS gives
a more reasonable comparison between H and F due to the large number of
correct rejections ignored.

Forecast Observed
Yes No

Yes Hit (a) False alarm (b)
No Miss (c) Correct rejection (d)

Table 4.2: Contingency table.

H is the ratio of correct forecasts to the number of times the event has
been observed:

H =
a

a+ b
. (4.4)

F is the ratio of false alarms to the total number of nonoccurrences of
the event:

F =
b

b+ d
. (4.5)

TS is the number of hits divided by the total number of occasions on
which that event was either forecast and/or observed:

TS =
a

a+ b+ c
. (4.6)
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The worst possible forecast has high systematic error, H=0, F=1 and
TS=0. Conversely, the best possible forecast has systematic error equals
to zero, H = 1, F = 0 and TS = 1. In order to evaluate higher impact
T2M and PCP events, the 90th percentile of daily maximum T2M and daily
PCP, and the 10th percentile of daily minimum T2M are calculated within a
31-day centered rolling window for each calendar day. A hit is issued when
both the observed and the forecast ensemble mean values are above/below
that calendar day 90th/10th percentile on any given day.

For probabilist forecast verification, the quantile Brier Score (QBS) is
used to measure the reliability of the ensemble 90th percentile of daily T2M
and daily PCP (Bentzien and Friederichs, 2014). The QBS is connected to
the reliability diagram. A reliable or well-calibrated forecast with QBS =
0 has points falling closer to the 1:1 perfect-reliability line. That is, if the
observations fall at or below the 90th percentile forecast 90% of the time,
then the probabilistic forecast is reliable for that percentile.

For overall reliability of any T2M and PCP quantile, Candille et al.
(2007) suggest the bias score (b) is combined with the dispersion score (d).
The scores b and d are connected to the rank or PIT histogram (Anderson,
1996; Talagrand et al., 1999). A perfectly reliable forecast with b = 0 and
dispersion equal to 1 (d = 1) has a flat rank histogram. A large negative
(positive) value of b indicates a negative (positive) bias, where a PIT his-
togram would slope down towards the right (left). A value of d greater
(smaller) than 1 characterizes an underdispersed (overdispersed) ensemble
with U-shaped (bell-shaped) PIT histogram.

Finally, the CRPS is analyzed to evaluate forecast sharpness. Forecasts
that are frequently much different from climatology are sharp forecasts. The
best possible forecast has CRPS=0.

A bootstrap procedure calculates the 95% confidence interval for each
metric. A metric is estimated from 100 generated samples of the ensemble
forecast-observation pairs (Candille et al., 2007). Then, the 2.5th and 97.5th

percentiles of the resulting collection of metrics are used as the lower and
upper bounds of the 95% confidence intervals for the true metric value.
The 95% confidence interval measures the uncertainty around the metric
and determines significant statistical differences between the raw and the
post-processed forecasts.

4.4.2 Verification of Daily PCP

For daily PCP, the post-processed NAEFS exhibits a statistically signifi-
cantly better (higher) TS and H than the raw NAEFS out to a forecast lead
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time of 7 days (Fig. 4.10a,b). However, the post-processed NAEFS also
produces more F than the raw NAEFS (Fig. 4.10c). This is likely due to
general inability of the coarse-resolution NAEFS to produce more extreme
values. As expected, as lead time increases, TS and H worsen (decrease)
and F improves (decreases). One possible explanation is that the number of
misses increase as the systematic error increases with increasing lead time
(Fig. 4.10d). Further, ensemble member forecast solutions become more
random in nature as lead time increases and the ensemble mean typically
trends towards climatology, decreasing the chances of forecasting (H or F)
a 90th event.

The systematic error of the post-processed NAEFS is also statistically
significantly smaller than those of the raw NAEFS as far out as day 9 (Fig
4.10d), indicating the efficacy of the bias correction. As expected, the 95%
confidence interval widens with lead time across all metrics. It suggests the
post-processed NAEFS has statistically significantly less bias than the raw
NAEFS as far out as day 7 across most metrics. Beyond this lead time,
although the post-processed NAEFS still outperforms the raw NAEFS, the
uncertainty around the metric is too high to determine whether statistically
significant differences exist.

The post-processed NAEFS exhibits a much lower QBS, b, d and CRPS
values (Fig. 4.10e-h) than the raw NAEFS. This indicates a statistically
significantly more reliable, calibrated and sharp forecast. The combined b
and d scores (Fig. 4.10e,f) match the results of the QBS (Fig. 4.10g). The
post-processed NAEFS is still underdispersed. Namely, too many observa-
tions fall in the low and high percentiles. Finally, the CRPS indicates the
CDF of the post-processed NAEFS is sharper than the raw NAEFS out to
day 4, suggesting forecast are frequently much different than climatology.

Although the downscaled NAEFS is statistically significantly more reli-
able, calibrated and sharp that the raw NAEFS, there is room for improve-
ment. QBS, b and d values remain high, suggesting a different calibration
method may lead to a more skillful forecast.

A Gamma-distributed calibration method was also attempted for PCP
(Scheuerer and Hamill, 2015; Baran and Lerch, 2016). Although the versa-
tility in shape of the gamma distribution makes it an attractive candidate
for representing precipitation error distributions, the results are unsatisfy-
ing in an operational setting due to erratic results. A gamma distribution
is more difficult to work with than a Gaussian distribution, and obtaining
parameter estimates from data is not as straightforward Wilks (2011). More
research is needed in this area.
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Figure 4.10: a) TS for events above the 95th percentile during Fall 2016; (b)
Same as in a) but for H; (c) Same as in a) but for F ; d) Systematic error
of daily PCP; (e) Same as in a) but for b; (f) Same as in a) but for d ; (g)
Same as in a) but for QBS; (h) Same as in a) but for CRPS. Values of TS
and H closer to one are better. Values of F and systematic error closer to
zero are better. Combined values of b = 0 and d = 1 are better. Values of
QBS and CRPS closer to zero are better.
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Figure 4.11: a) TS for events above the 90th percentile during Summer 2017;
(b) Same as in a) but for H; (c) Same as in a) but for F ; d) Systematic
error of daily maximum T2M. Values of TS and H closer to one are better.
Values of F and systematic error closer to zero are better.

4.4.3 Verification of Daily Maximum and Minimum T2M

For daily maximum T2M, the post-processed NAEFS exhibits a statistically
significantly better (higher) TS and H than the raw NAEFS out to a forecast
lead time of 7 days (Fig. 4.11a,b), at which point the uncertainty around
the metric is too high to determine significant differences in skill. Similar to
daily PCP, the post-processed NAEFS also produces more false alarms (F)
than the raw NAEFS (Fig. 4.11c).

The systematic error of the post-processed NAEFS is also statistically
significantly smaller than those of the raw NAEFS as far out as day 10 (Fig.
4.11d).

Finally, the post-processed NAEFS exhibits a much better QBS, b, d,
and CRPS than the raw NAEFS for daily maximum T2M (not shown),
suggesting a more reliable, calibrated and sharp forecast.

The results for daily minimum T2M are not nearly as good as those for
daily maximum T2M and PCP for TS, F and H. This is largely because the
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raw NAEFS daily minimum T2M have much less systematic error than the
raw NAEFS daily maximum T2M (higher H, TS and F values; not shown),
so it is not as easy for the bias correction to improve upon them. The
VHRSA post-processed NAEFS exhibits lower TS, H and F than the raw
NAEFS. However, the systematic error of daily minimum T2M is statisti-
cally significantly better (lower) than those of the raw NAEFS as far as day
10 (Fig 4.12a).

The values of QBS, b, d, and CRPS of daily minimum T2M are of similar
magnitude to those of daily maximum T2M (Fig. 4.11b-e). This indicates
a statistically significantly more reliable, calibrated and sharp forecast. The
combined b and d scores (Fig. 4.11c,d) match the results of the QBS (Fig.
4.11b). The post-processed NAEFS is slightly underdispersed. Namely, a
few observations fall in the low and high percentiles. Finally, the CRPS
indicates the CDF of the post-processed NAEFS is more accurate than the
raw NAEFS out to day 7. As expected, as the lead time increases, the QBS
and the CRPS increase as the ensemble mean and distribution becomes less
reliable and sharp respectively. b increases in concert with systematic bias,
indicating that the mean and distribution follow similar trends. The prob-
abilistic spread goes from being too narrow to well-calibrated, as indicated
by d — the raw and calibrated spreads increase quickly with lead time.

The downscaled NAEFS is statistically significantly more reliable, cali-
brated and sharp that the raw NAEFS for both T2M and PCP. However,
QBS, b and d values for T2M suggest the NGR calibration method provides
better results for T2M which is approximately Gaussian distributed.

4.5 Stationarity

Many studies using either homogenized station datasets or gridded General
Circulation Models (GCM) have shown that climate has undergone changes
on a multidecadal time-scale (Mekis and Vincent, 2011; Kharin and Zwiers,
2000; Zwiers and Kharin, 2005; Zhang et al., 2001; Groisman et al., 2005;
Odon et al., 2018).

Analysis of multidecadal trends of extremes are an important aspect of
climate research. Changes in the magnitude and frequency of extremes have
environmental and socioeconomical consequences. It is therefore of great
interest to evaluate changes in extreme T2M and PCP in the VHRSA since
climate trends at the regional scale are not easy to detect in a station-based
study, as it was done in Chapters 2 and 3, due to large natural variability
in regional climate (Dettinger et al., 1998; Odon et al.).
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Figure 4.12: a) Systematic error of daily minimum T2M during Winter
2016/17; (b) Same as in a) but for QBS; (c) Same as in a) but for b ; (d)
Same as in a) but for d ; (e) Same as in a) but for CRPS. Values of systematic
error, QBS and CRPS closer to zero are better. Combined values of b = 0
and d = 1 are better.
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Generally, T2M is Gaussian distributed while PCP is not. Accordingly,
parametric and nonparametric methods were presented in Chapters 2 and
3, respectively. In this Chapter, nonparametric methods are presented as
they are better suited to compare T2M and PCP on equal footing.

In order to detect spatial climate signals, a nonparametric robust regres-
sion is used in the VHRSA to determine the trends in extreme T2M and
PCP. This method has the following advantages when compared to the lin-
ear regression used in Chapter 2: 1) the regression is robust against outliers
and 2) the data doesn’t need to be Gaussian distributed.

The trend is assumed to vary with time as µ(t) = µ0+µ1(t−t0), where the
slope coefficient µ1 represents the annual rate of change in extreme T2M and
PCP. The magnitude of µ1 is calculated by Theil-Sen single median (Theil,
1950) method which computes the slopes of all possible combinations of pairs
of the 60 sample values. After calculating these 1475 slopes, the median is
taken as the magnitude of µ1.

Such an analysis is computationally expensive at every grid point in the
VHRSA. Hence, the trend is performed only on the 15th of each month
which is assumed to represent the trend of each month.

The trend statistical significance is determined using the nonparametric
Mann-Kendall test (Mann, 1945; Wilks, 2011) which has been applied in
hydroclimate trend studies (Kumar et al., 2013).The Mann-Kendall test is
robust against outliers, independent of the T2M or PCP distribution, and
provides a more powerful analysis for non-Gaussian distributed data such
as PCP (Yue et al., 2002; Onoz and Bayazit, 2003).

The null hypothesis µ1 = 0 (no trend) is tested against the alternate
hypothesis µ1 6= 0 that there is a trend at the αFDR = 0.10 level of signifi-
cance. Namely, a sufficiently large change in extremes throughout the study
period indicates there is a trend, and therefore nonstationarity is required
to characterize extreme T2M and PCP. Because the Mann-Kendall test re-
quires serially independent data, the effective sample size is used rather than
the actual sample size.

Finally, the rolling 31-day centered rolling window is maintained and
a GEV dresses these 60 annual values for the 15th of each month by the
method of maximum likelihood. A nonstationary GEV distribution is com-
pared, where only the location parameter is allowed to exhibit trend, with
a stationary GEV distribution with constant location, scale and shape pa-
rameters. The GEV distribution location parameter is assumed to vary with
time as µ(t) = µ0 + µ1(t− t0), where the slope coefficient µ1 represents the
annual rate of change in extreme T2M and PCP.

With models GEV (µ(t), σ, κ) and GEV (µ, σ, κ), the alternate hypothe-
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sis is tested against the null hypothesis that extreme values of T2M and PCP
are drawn from the same GEV distribution using a LRT at the αFDR = 0.10
level of significance. Namely, the alternate hypothesis suggests that a non-
stationary model explains more of the variation in the time series and that
consequently changes in return levels should be accounted for. For more
details on this methodology, refer to subsections 2.5.2 and 3.6.2.

4.5.1 Extreme T2M

Figures 4.13a,b indicate a statistically significant warming trend of extreme
values of minimum T2M across most of BC during July at the αFDR =
0.10 significance level, with exceptions in the Central climate zone. Similar
results are obtained during January, May, June and August (not shown).
A non-statistically-significant warming trend of extreme minimum T2M is
present throughout the rest of the months across all of BC (not shown).

Under models GEV (µ, σ, κ) and GEV (µ(t), σ, κ), the LRT suggests the
evidence supporting a trend in July is strong, implying a nonstationary
model brings significant improvements over a stationary model at the αFDR =
0.10 significance level (Fig. 4.13c). Namely, during the 60 years of the study
period, changes in return levels of extreme minimum T2M significant, and
nonstationarity is required to characterize extreme levels. Again, similar
results are obtained during January, May, June and August (not shown).
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Figure 4.13: (a) Trend of extreme minimum T2M in July; (b) Locations where trend is statistically significant;
(c) Locations where GEV (µ(t), σ, κ) for extreme minimum T2M is statistically significant.
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Analogously, figures 4.14a,b indicate a statistically significant warming
trend of extreme values of maximum T2M across the South Central climate
zone throughout the year (shown for August). None of the LRT are statis-
tically significant (not shown). A stationary GEV distribution with model
GEV (µ, σ, κ) is accurate enough to represent extreme maximum T2M.

4.5.2 Extreme PCP

None of the trends in extreme PCP are statistically significant. Furthermore,
no clear trend in extreme PCP is discernible across the months (not shown).
During the 60 years of the study period, a stationary GEV distribution with
model GEV (µ, σ, κ) is accurate enough to represent extreme PCP.

4.6 The Parametric Extreme Index

A new Parametric Extreme Index (PEI) is herein developed and presented,
with the goal of alerting forecasters of extreme events. It does this by pro-
viding a concise, single index value derived from comparing the downscaled
NAEFS forecast cumulative distribution function (hereafter NCDF) to the
GEV cumulative distribution function (derived from the VHRSA; hereafter
GCDF). Namely, on any given day, the NCDF is compared to the GCDF
for a given location and calendar day. The 31-day rolling window approach
is useful for operational forecasting because it allows for assessment of ex-
treme weather on days within a similar climate. For instance, comparing
the true annual maximum T2M (which likely occurs in July) to a winter-
time NCDF is of no use since it has no chance of occurring during the winter
months. Finally, the GCDF is a distribution of climatological extremes only,
which in turn means that the PEI will alert only if the NCDF forecasts an
extreme event, rather than just anomalous events, which occur frequently.
The PEI ranges from 0 (no forecasted chance of extreme weather) to 1 (high
forecasted probability of very extreme weather).

Figure 4.15 illustrates the NCDF and GCDF for the PEI calculation on
28 August 2017 at one grid point. The PEI value is low because there is a
low probability of exceeding low extreme values. For reference, the 2-year
return level, which represents the median of the GCDF, is far to the right.
The PEI is calculated according to the formula

PEI =
1

2

∫ Fc(F
−1
f

(1))

0

1− Ff (F−1c (pc))√
1− pc

dpc, (4.7)
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Figure 4.14: (a) Trend of extreme maximum T2M in August; (b) Locations
where trend is statistically significant.
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where pc is the probability that an extreme value (F−1c (pc)) will not be ex-
ceeded in the extreme climate record, the inverse CDF F−1f and F−1c are
simply the quantile functions of the forecast and of the extreme climate dis-
tributions respectively, and 1−Ff (F−1c (pc)) denotes the complement of the
NCDF. Namely, if Ff (F−1c (pc)) represents the NAEFS-derived probability
that the extreme value F−1c (pc) will not be exceeded, 1− Ff (F−1c (pc)) rep-
resents the probability that the value will be exceeded. pc = 0 is the lower
integral limit. It represents the lowest extreme value in the GCDF (F−1c (0)),
or the 0th percentile. pc = Fc(F

−1
f (1)) is the upper integral limit. It repre-

sents the probability that the highest forecast value issued F−1f (1) will not
be exceeded in the extreme climate distribution. In essence, the integral is
bounded by the lowest extreme value in the GCDF and the highest forecast
issued in the NCDF. The calculations are made so that more weight is given
to the right tail of the distributions (where rarer, more extreme values are);
that is, as pc −→ 1,

√
1− pc −→ 0 and 1√

1−pc −→∞.

If the NCDF lies below the lowest extreme value in the GCDF (F−1c (0)),
the PEI computes its lowest value: PEI = 0. As the magnitude of the
highest forecast value increases (F−1f (1) −→∞) and the less frequent, more

extreme that value is in the GCDF (Fc(F
−1
f (1)) −→ 1), the PEI approaches

its highest value: PEI = +1.
Figure 4.16 shows the PEI during an arctic outbreak on 3 January 2017

(VHRSA for this date shown in Fig. 4.7e). Since the event happened during
January, the GCDF is given by GEV (µ(t), σ, κ). Namely, a nonstationary
distribution is used to characterize extreme levels. According to the results
of section 4.5, current extreme levels are warmer than a stationary distribu-
tion based on the 60-year record would indicate. If a stationary distribution
had been used, the PEI would yield a lower index (alert) value, as the ex-
treme minimum T2M levels would have been colder and therefore harder
to reach (not shown). Figures 4.17 and 4.18 illustrate the PEI during an
atmospheric river event on 8 November 2016 (Fig. 4.8e), and a heat wave on
28 August 2017 (Fig. 4.9e). Both days had large socioeconomical impacts
(Odon et al., 2017) (see Chapter 1 for more details).

4.6.1 Verification of the PEI

Existing situational/extreme awareness tools, such as the Standardized Anomaly
(SA) and EFI, do not handle extreme values in a proper manner, something
that this dissertation has sought to improve upon. Previous methods detect
anomalous weather events by comparing them with historical means and/or
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Figure 4.15: (a) The NCDF (purple) and the GCDF (black) show the prob-
ability (y-axis) that the extreme value (F−1c (pc); x-axis) will not be ex-
ceeded. (b) The NAEFS-derived probability that F−1c (pc) will not be ex-
ceeded is given by Ff (F−1c (pc)). The complement of the NCDF, given by
1−Ff (F−1c (pc)), computes the NAEFS-derived probability that F−1c (pc) will
be exceeded. The PEI is related to the area above the NCDF bounded by
pc = 0 and pc = Fc(F

−1
f (1)) (pc = 0.12 in the figure). PEI=0.02 indicating

low extreme values have a low probability of exceedance. 142
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Figure 4.16: Day 1 PEI over BC on 3 Jan 2017.
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Figure 4.17: Day 1 PEI over BC on 8 Nov 2016.
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Figure 4.18: Day 1 PEI over BC on 28 Aug 2017.
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climate distributions (Lalaurette, 2003; Dutra et al., 2013) rather than ex-
treme value distributions as defined above. Little is found in the literature
on the skill of either of these existing indices. Generally, SAs are associated
with relatively high false alarm rates for medium- and long-range forecasts
(Alcott, 2014). In contrast, another study suggests short-range forecasts
SAs perform well (Qian et al., 2016). The EFI shows good skill for forecasts
between the 10th and 90th percentiles (?).

It is worth mentioning that the climatological mean and standard devia-
tion of the SA are neither robust nor resistant. If the variable distributions
are asymmetric or non-Gaussian distributed (like precipitation or integrated
precipitable water), the mean and the standard deviation will misrepresent
the centre and spread of the data respectively.

Caution is advised when verifying high-impact events. Studies have
shown that the skill of the verification metric of choice is proportional to
the frequency of extreme weather events (Schaefer, 1990). This creates the
misleading impression that rare events cannot be skillfully forecast (Ferro,
2007). For instance, the hit rate converges to zero with increasing rarity of
the event (Stephenson et al., 2008).

As most of the scores vanish with increasing rarity of the event (Ghelli
and Primo, 2009; Stephenson et al., 2008), the Extreme Dependency Score
(EDS) is proposed as a non-vanishing alternative to verify rare events and
compare the PEI with the SA during the summer of 2017. The bias-corrected
uncalibrated NAEFS is used so that both indices are compared on equal
footing since the SA only uses the ensemble mean and cannot fully benefit
from a calibrated forecast. The EDS is given by:

2
ln
(
a+c
n

)
ln
(
a
n

) − 1, (4.8)

where n = a + b + c + d (see Table 4.2 for contingency table). The EDS is
presented with the base rate (BR). BR represents the probability that an
event occurs:

BR =
a+ c

n
(4.9)

In Figure 4.19 the EDS is plotted as a function of 1 - BR. Thus, large
values of 1 - BR represent small BR which are interpreted as rare events. The
probability 1 - BR varies from 0.4 to 0.95 to capture very rare events. Each
point in the graph represents BR and EDS values calculated in a contingency
table generated with observations varying from above the 95th percentile to
below the 99th percentile. That is, as the rarity of the event increases and
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Figure 4.19: EDS as function of 1 - BR for Day 1 PEI and SA across all
stations during summer of 2017. Rarer events are to the right. Values of
EDS closer to 1 are better.

the observations fall above the 95th percentile to below the 99th percentile,
a hit is issued if the SA falls above +1 (or below -1 for minimum T2M);
for the PEI, a hit is issued if the PEI falls above 0. SA values above +1
(below -1) are considered anomalous because they are at least one standard
deviation away from the mean.

The best possible forecast has EDS=1. An EDS=1 happens if the fore-
cast is either perfect or if it tends to overforecast the extreme event by
avoiding any miss (c=0). In essence, as the number of hits (a) increase, and
the number of misses (c) decrease, the EDS approaches 1, the best possible
forecast. Conversely, the worst possible forecast has negative EDS values.
That is, as the number of hits decrease, and the number of misses increase,
the EDS computes negative values.

4.6.2 PEI Performance across T2M and PCP

In Figure 4.19, the PEI outperforms the SA for all BR values for Summer
2017. The shape of the curve determines the degree of dependency of the
EDS on the BR. It implies that the number of misses (c) decreases faster
than the number of hits (a) since the EDS approaches 1 as BR approaches
less frequent events (Ghelli and Primo, 2009).

Similar results are obtained during fall and winter (not shown). Based
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on these findings, the PEI clearly outperforms the SA for alerting users to
extreme weather events, because the higher EDS values indicate a higher
number of hits and a lower number of misses across a range of extreme
events (ranging in rarity, or, in other words, return intervals).

4.7 Conclusion

A new very-high-resolution surface analyses (VHRSA) of daily maximum
and minimum 2-m temperature (T2M), and 1-day accumulated precipita-
tion (PCP) dataset that spans the period 1958-2017 was created by down-
scaling and bias correcting the best performing reanalysis, the JRA-55. The
VHRSA was subsequently evaluated against the JRA-55 across the complex
terrain of British Columbia (BC). In the evaluation systematic error, MAE
and KS statistics were used to compare daily maximum and minimum T2M.
To evaluate extreme maximum and minimum T2M, systematic error of 2-
year return levels were compared. To compare daily PCP, the systematic
error of 31-day precipitation total, and two-sample χ2−statistic were calcu-
lated. For extreme PCP, the systematic error of 2-year return levels of 1-day
accumulated precipitation were compared.

The VHRSA consistently exhibited better scores across all metrics through-
out the year and across BC for both daily and extreme T2M. The cold bias
of daily maximum T2M in the JRA-55 was mostly removed in the VHRSA.
Although the difference in performance in daily and extreme minimum T2M
is not as apparent as it is in daily and extreme maximum T2M, the VHRSA
still outperforms the JRA-55 throughout the year and across all metrics eval-
uated. The cold (warm) bias during fall and winter (spring and summer) in
the JRA-55 has been reduced in VHRSA.

The results for PCP, while not quite as good as those for T2M, still
generally show substantial improvements in the VHRSA. For monthly and
extreme PCP, all metrics indicate the VHRSA consistently outperforms
the JRA-55 throughout the seasons. In general, the downscaling and bias-
correcting leads to a dataset with higher temperatures in valleys and lower
temperatures in mountainous regions. Similarly, for PCP the VHRSA is
drier in valleys and wetter in ridges and upper elevation regions. This is
an important improvement since different studies have shown that NARR
under-predicts precipitation and temperature in mountainous regions across
BC (Trubilowicz et al., 2016; Hunter et al., 2019).

Thus, the VHRSA will serve as a valuable new spatially and temporally
complete, high-resolution, 60-year climatological dataset for BC. Although
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in the present study the VHRSA was developed for BC, the same method-
ology could be used to improve upon reanalysis datasets wherever obser-
vations and PRISM or PRISM-like datasets are available — namely, the
United States. The VHRSA has a wide range of potential applications in
meteorology, climatology, and hydrology. This study developed the VHRSA
with the intention of using it for some such applications.

The VHRSA was first used to bias-correct and downscale the NAEFS
ensemble forecast. In order to conduct a thorough evaluation of the forecast,
the systematic error, hit rate, false alarm rate, threat score, quantile Brier
Score, bias and dispersion scores, and CRPS were used to compare the post-
processed NAEFS to the raw NAEFS forecast.

The post-processed NAEFS is generally statistically significantly more
skilful than the raw NAEFS forecast for forecast lead times out to 10 days
for both T2M and PCP according to the metrics evaluated. Some previous
studies have concluded that higher-resolution models were better or at least
equal in performance to lower-resolution models across mountainous regions
(Schirmer and Jamieson, 2015; Weusthoff et al., 2010; Garvert et al., 2005;
Ikeda et al., 2010). A skilful very-high-resolution forecast is useful across the
complex terrain of BC as many studies have shown that mountain ranges
play an important role in the regional and synoptic scale weather features
(Deng et al., 2005; Astsatryan et al., 2015), and influence the distribution
and intensity of precipitation and temperature (Junker et al., 1992; Kunz
and Kottmeier, 2006; Smith et al., 2010; Haren et al., 2015).

The Nonhomogeneous Gaussian regression (NGR) probabilistic calibra-
tion method resulted in better results for temperature than precipitation.
Previous studies have also shown that NGR results in better calibration
for temperature (Hagedorn et al., 2008) than precipitation (Hamill et al.,
2008). Baran and Lerch (2016) and Hamill et al. (2008) suggest different
calibration techniques for non-Gaussian distributed fields such as precipi-
tation and wind speeds. However, finding new robust methods to improve
the forecast calibration using such distributions in an operational setting
without exacerbating computing demands is an ongoing issue. Nipen and
Stull (2011), Baran and Lerch (2016) and Hamill et al. (2008) present dif-
ferent calibration techniques in datasets of the order of 103 as it was done
here calibrating point forecasts for station locations. Nipen and Stull (2011)
evaluated different calibration methods on 1225 grid points across North
America between 2001 and 2004 for 2-m temperature, mean sea level pres-
sure, wind speed, precipitable water and relative humidity. Baran and Lerch
(2016) verified wind speed forecast across Germany between 2010 and 2011
on 83220 grid points, and Hamill et al. (2008) verified precipitation skill at
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a 32-km horizontal resolution grid across North America from 1982 to 2001.
However, conducting such a calibration for the number of grid points in the
downscaled NAEFS, which are on the order of 106, is problematic. In Siuta
et al. (2017), which also used a dataset three orders of magnitude smaller,
a regression method was reported to be computationally cost effective, and
gave improved post-calibrated results for wind, which is a non-Gaussian dis-
tributed variable. They argue this likely worked because the wind-forecast
error distribution was quasi-Gaussian.

The VHRSA is then used to estimate the magnitude and the statistical
significance of trends extreme T2M and PCP. There is a noticeable and
statistically significant warming trend in the extreme maximum T2M across
the South Central climate zone throughout the year, and in extreme values
of minimum T2M across most of BC during Summer and late January. The
results for extreme T2M support the findings of Chapter 2, that there is a
noticeable and statistically significant warming trend in the Southwest and
Southeast climate zones of BC during summer months for extreme maximum
T2M; during winter months for extreme minimum T2M across BC. Vincent
et al. (2012) performed a trend study during a similar study period (1950-
2010) for annual maximum and minimum T2M and also reported the results
for minimum T2M were more significant than the results of maximum T2M.

Finally, the new Parametric Extreme Index (PEI) outperformed an exist-
ing situational/extremes awareness index, the Standardized Anomaly (SA).
Its substantially superior EDS value across events with a range of rareness
(extremity), indicated that the new index had more hits and less misses
when detecting such events. The SA tool is already widely used and liked
by operational forecasters. Since the PEI is substantially more useful, it has
great potential to see even more widespread use than the SA, for alerting
forecasters to the potential for extreme weather.

Although the PEI was developed using the VHRSA over BC, a similar
methodology could be employed to create such an index in other parts of
the world. The formulation of the PEI alone would likely lead to improved
extremes alerting. Having more accurate and reliable probabilistic forecasts,
however, will further improve PEI performance.

Future work should examine the performance of alternative calibra-
tion methods to further improve the PEI. One possibility is to upscale the
VHRSA and probabilistic forecast somewhat, to perhaps 3 km, to reduce
computational demands. ? suggests decreasing grid spacing below 4 km
provides more detail and structure but has only a limited impact on ac-
curacy. This may make calibration of the entire gridded forecast over BC
operationally feasible without losing accuracy. Trends in mean values of
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T2M and PCP using the VHRSA should be evaluated as well.
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Chapter 5

Conclusion

The behaviour of extreme and daily values are inherently different. Addi-
tionally, the distribution of daily and extreme maximum and minimum 2-m
temperature (T2M), and 1-day accumulated precipitation (PCP) are also
different. This difference in behaviour and distribution motivated the de-
velopment of new methodologies to statistically analyze and forecast them.
The end goal is to better alert end users to forecasted extremes.

First, in order to identify forecasted values as extreme (i.e., being on the
tails of the climatological distribution), the best possible source for climato-
logical data needed to be identified. The paucity of surface weather station
data outside of southwest BC population centres motivated the search for the
best gridded reanalysis dataset to replace observations as a surrogate clima-
tological dataset. Performance of the latest-generation reanalyses, the Cli-
mate Forecast System Reanalysis (CFSR), the ECMWF interim reanalysis
(ERA-Interim), the Japanese Meteorological Agency (JMA), and the Mod-
ern Era Retrospective-Analysis for Research and Applications (MERRA-2),
were rigorously evaluated with respect to daily and extreme maximum and
minimum T2M, and daily and extreme PCP over the complex terrain of BC.

New methodologies were developed for statistical evaluation of the re-
analyses. These included evaluations based on a daily rolling window, break-
ing results down by climate zone (which were also determined via a statis-
tically rigorous method), and applying metrics that have rarely if ever been
used in previous meteorological studies. In addition to bringing improved
methodologies into the field, an effort was made to account for the inherent
assumptions in these methods, assumptions which are sometimes ignored.
For example, statistical significance had to be determined accounting for
multiple testing on a rolling window. Additional efforts were made to find
methods and metrics that would be appropriate specifically for extreme val-
ues, such as the Generalized Extreme Value distribution (GEV).

The result of the reanalysis evaluation showed the JRA-55 best repre-
sents the climatological means, distributions, and distributions of extreme
T2M and PCP over BC. While the ERA-Interim showed similar consistent
and accurate results for daily and extreme T2M, and the MERRA-2 showed
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better results for daily and extreme PCP, the JRA-55 was clearly the supe-
rior overall reanalysis with consistent and accurate results across all metrics
evaluated.

In the reanalysis evaluation, it became clear that the coarse-resolution
JRA-55 had biases related to its inability to resolve the complex terrain
of BC. Thus, a methodology was developed to downscale and bias correct
T2M and PCP from the JRA-55. The temporal resolution of the JRA-55
(6-hourly), the very high spatial resolution of the PRISM dataset (∼ 800
m), and the homogeneity and ground truth from surface weather stations,
were combined to create a spatially and temporally complete very-high-
resolution surface analysis (VHRSA). Again, this new VHRSA was rigor-
ously evaluated, and was generally found to be significantly less biased, and
more accurate than the JRA-55. Thus, a new, significantly improved, very-
high-resolution 60-year daily surface analysis dataset was created for BC.
This should prove to be an immensely valuable dataset for research and
operational use by the meteorological, climatological, and hydrological com-
munities. For the purposes of this study, it also rendered a feasible solution
to the paucity of observational data across BC.

Probabilistic forecasts of extremes requires a probabilistic forecast dataset.
The North American Forecast System (NAEFS) is one such widely used en-
semble forecast dataset. However, it is relatively low resolution, like the
reanalysis datasets. Downscaling and bias correction were needed here as
well. The VHRSA was used to statistically downscale and bias correct the
NAEFS. Computational restraints prohibited use of the VHRSA to proba-
bilistically calibrate the forecasts, however, calibration was done for point
forecasts at weather station locations. Calibration is needed so that the
forecasted probabilities are more accurate (that is, an event with a fore-
casted 30% probability of occurrence is observed on average 30 out of 100
times). While the bias correction was largely effective at significantly reduc-
ing bias, the calibration delivered mixed results. It reported better results
calibrating surface temperature — which is approximately Gaussian — than
precipitation, a non-Gaussian distributed variable. Nonetheless, overall the
post-processed NAEFS showed significant improvement over the raw, in
most cases out to a forecast lead time of 10 days.

The VHRSA was also used to analyze trends in extreme T2M and PCP
during the 1958-2017 period. A significant warming trend in extreme val-
ues of minimum T2M across most of BC during Summer and January were
found — that is, extreme daily minimum temperatures are getting less cold
at some times of year. Additionally, there was a significant increasing trend
in extreme maximum T2M values across the South Central climate zone
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throughout the year — extremes of daily maximum temperatures are get-
ting hotter. While there were some indications of warming trends in other
months, they were not statistically significant. For extreme PCP, no in-
creasing or decreasing trends were apparent.

These post-processed probabilistic forecast distributions were then used
to create a new extreme forecast index (sometimes referred to as a situ-
ational awareness tool). This so-called Parametric Extreme Index (PEI)
differentiates itself and improves upon existing such indexes in that:

1. It accounts for nonstationarity when appropriate. This accounts for
time-changing climate distributions, which were herein shown to be
significant for some variables, regions and times of year. It yields a
more appropriate gauge of how extreme a value is based on the current
climate.

2. It is based on forecast distributions that are bias corrected and down-
scaled onto a very-high-resolution grid. Further, point forecast values
of the index are probabilistically calibrated. This improves the forecast
accuracy and bias of the index.

3. It uses a more appropriate extreme values climate distribution, rather
than a mean climate distribution. A mean climate distribution is inap-
propriate for non-Gaussian distributed variables such as precipitation.
The mean and the standard deviation will misrepresent the centre
and spread of the data respectively leading to meaningless Standard-
ized Anomalies values. Additionally, it leads to more false alarms as
forecasts far away from the climate mean occur frequently.

Indeed, the PEI was shown to substantially outperform the well known
Standardized Anomalies index across a range of extreme events ranging in
rarity, with a higher number of hits and a lower number of misses. Both are
desirable to alert forecast users of future extreme weather events.

Collectively, this dissertation developed appropriate statistical methods
to analyze and forecast extreme weather events. These new techniques lead
to the creation of a new dataset, and the ability to better forecast extreme
weather events. This methodology can be used to improve reanalyses wher-
ever observations and PRISM or PRISM-like datasets are available, and be
used for modelling in fields like hydrology, ecology, and agriculture besides
meteorology and climatology. A tool to better forecast extreme weather
events provides earlier and more accurate detection of such events, which in
turn can help community responders, emergency managers, regional plan-
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ners, government and the media to take appropriate action to mitigate dam-
age and reduce casualties.

Future work will examine the performance of alternative calibrating
methods to post-process the very-high-resolution NAEFS forecast in a true
operational setting without exacerbating computing demands. The PEI will
be evaluated across different seasons and forecast lead times. Finally, non-
linear trends will be tested for precipitation to evaluate whether a more
complex nonstationary model is more accurate to represent extreme precip-
itation than the ones studied here. Trends in mean values of temperature
and precipitation using the VHRSA will also be evaluated.
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R. Gelaro, W. McCarty, M. J. Suárez, R. Todling, A. Molod, L. Takacs,
C. a. Randles, A. Darmenov, M. G. Bosilovich, R. Reichle, K. Wargan,
L. Coy, R. Cullather, C. Draper, S. Akella, V. Buchard, A. Conaty, A. M.
da Silva, W. Gu, G. K. Kim, R. Koster, R. Lucchesi, D. Merkova, J. E.
Nielsen, G. Partyka, S. Pawson, W. Putman, M. Rienecker, S. D. Schu-
bert, M. Sienkiewicz, and B. Zhao. The modern-era retrospective analysis
for research and applications, version 2 (MERRA-2). Journal of Climate,
30(14):5419–5454, 2017. ISSN 08948755. doi: 10.1175/JCLI-D-16-0758.1.

A. Ghelli and C. Primo. On the use of the extreme dependency score to
investigate the performance of an NWP model for rare events. Meteoro-
logical Applications, 16:537–544, 2009.

B. Gnedenko. On the Limiting Distribution of a Supercritical Branching
Process in a Random Environment. Annals of Mathematics, 44:423–453,
1943.

161

http://journals.ametsoc.org/doi/abs/10.1175/JAS3549.1
http://journals.ametsoc.org/doi/abs/10.1175/JAS3549.1


Bibliography

T. Gneiting, A. E. Raftery, A. H. Westveld, and T. Goldman. Cali-
brated Probabilistic Forecasting Using Ensemble Model Output Statis-
tics and Minimum CRPS Estimation. Monthly Weather Review, 133(5):
1098–1118, 2005. ISSN 0027-0644. doi: 10.1175/MWR2904.1. URL
http://journals.ametsoc.org/doi/abs/10.1175/MWR2904.1.

R. Graham, T. Alcott, N. Hosenfeld, and R. Grumm. Anticipating a rare
event utilizing forecast anomalies and a situational awareness display: The
Western U.S. Storms of 18-23 January 2010. Bulletin of the American
Meteorological Society, 94(12):1827–1836, 2013. ISSN 00030007. doi: 10.
1175/BAMS-D-11-00181.1.

P. Groisman, R. Knight, D. Easterling, T. R. Karl, G. C. Hegerl, and V. N.
Razuvaev. Trends in precipitation intensity in the climate record. Journal
of Climate, 18:1326–1350, 2005. ISSN 08948755. doi: 10.1175/JCLI3339.1.
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son, and E. Guttman. Simulation of seasonal snowfall over Colorado.
Atmospheric Research, 97(4):462–477, sep 2010. ISSN 0169-8095. doi: 10.
1016/J.ATMOSRES.2010.04.010. URL https://www.sciencedirect.

com/science/article/pii/S0169809510001043.

P. L. Jackson. Surface winds during an intense outbreak of arctic air in
Southwestern British Columbia. Atmosphere-Ocean, 34(2):285–311, jun
1996. ISSN 0705-5900. doi: 10.1080/07055900.1996.9649566.

A. F. Jenkinson. The frequency distribution of the annual maximum (or
minimum) values of meteorological elements. Quarterly Journal of the

164

https://ams.confex.com/ams/27WAF23NWP/webprogram/Paper273406.html
https://ams.confex.com/ams/27WAF23NWP/webprogram/Paper273406.html
https://www.sciencedirect.com/science/article/pii/S0169809510001043
https://www.sciencedirect.com/science/article/pii/S0169809510001043


Bibliography

Royal Meteorological Society, 81(348):158–171, apr 1955. ISSN 00359009.
doi: 10.1002/qj.49708134804.

P. Jones, S. Raper, B. Santer, B. Cherry, C. Goodess, R. Bradley, H. Diaz,
P. Kelly, and T. Wigley. A grid point surface air temperature data set for
the Northern Hemisphere. Technical Report DOE/EV/10098-2, United
States Department of Energy, Washington, D.C., 1985.

P. D. Jones, M. New, D. Parker, S. Martin, and I. G. Rigor. Surface air tem-
perature and its changes over the past 150 years. Reviews of Geophysics,
37(2):173–199, 1999.

R. W. Jones, I. Renfrew, A. Orr, B. G. M. Webber, D. M. Holland, and
M. A. Lazzara. Evaluation of four global reanalysis products using in situ
observations in the Amundsen Sea Embayment, Antarctica. J. Geophys.
Res. Atmos., 121, 2016. ISSN 2169897X. doi: 10.1002/2016JD025476.

H.-m. H. Juang and M. Kanamitsu. The NMC Nested Regional Spectral
Model. Monthly Weather Review, 122(January):3–26, 1994.

N. W. Junker, J. E. Hoke, B. E. Sullivan, K. F. Brill, and F. J. Hughes.
Seasonal geographic variations in quantita- tive precipitation prediction
by NMC’s nested-grid model and medium-range forecast model. Wea.
Forecasting, 7:410–429, 1992.

T. R. Karl, P. Y. Groisman, R. W. Knight, and R. R. Heim. Recent vari-
ations of snow cover and snowfall in North America and their relation
to precipitation and temperature variations. Journal of Climate, 6(7):
1327–1344, 1993. ISSN 08948755. doi: 10.1175/1520-0442(1993)006〈1327:
RVOSCA〉2.0.CO;2.

E. J. Kendon, N. M. Roberts, H. J. Fowler, M. J. Roberts, S. C. Chan, and
C. A. Senior. Heavier summer downpours with climate change revealed by
weather forecast resolution model. Nature Climate Change, 4(7):570–576,
jul 2014. ISSN 1758-678X. doi: 10.1038/nclimate2258.

V. V. Kharin and F. W. Zwiers. Changes in the extremes in an ensemble
of transient climate simulations with a coupled atmosphere-ocean GCM.
Journal of Climate, 13(21):3760–3788, 2000. ISSN 08948755. doi: 10.
1175/1520-0442(2000)013〈3760:CITEIA〉2.0.CO;2.

S. Kobayashi, Y. Ota, Y. Harada, and A. Ebita. The JRA-55 Reanalysis:
General Specifications and Basic Characteristics. Journal of the Meteoro-
logical Society of Japan, 93(1):5–48, 2015.

165



Bibliography

R. D. Koster, W. McCarty, L. Coy, R. Gelaro, A. Huang, D. Merkova, E. B.
Smith, M. Sienkiewicz, and K. Wargan. MERRA-2 Input Observations:
Summary and Assessment. Technical Report NASA/TM–2016-104606,
National Aeronautics and Space Administration - NASA, Greenbelt, 2016.

C. K. B. Krishnamurthy, U. Lall, H.-H. Kwon, C. K. B. Krishnamurthy,
U. Lall, and H.-H. Kwon. Changing Frequency and Intensity of Rainfall
Extremes over India from 1951 to 2003. Journal of Climate, 22(18):4737–
4746, sep 2009. ISSN 0894-8755. doi: 10.1175/2009JCLI2896.1.

S. Kumar, V. Merwade, J. L. Kinter, and D. Niyogi. Evaluation of tem-
perature and precipitation trends and long-term persistence in CMIP5
twentieth-century climate simulations. Journal of Climate, 26(12):4168–
4185, 2013. ISSN 08948755. doi: 10.1175/JCLI-D-12-00259.1.

M. Kunz and C. Kottmeier. Orographic Enhancement of Precipitation over
Low Mountain Ranges. Part II: Simulations of Heavy Precipitation Events
over Southwest Germany. Journal Of Applied Meteorology And Climatol-
ogy, 45:1041–1055, 2006. ISSN 1558-8424. doi: 10.1175/JAM2390.1.

M. Laanela. Vancouver mayor absent as councillor calls for snow removal
inquiry — CBC News, 2016. URL https://www.cbc.ca/news/canada/

british-columbia/vancouver-snow-removal-1.3922282.

R. Lader, U. S. Bhatt, J. E. Walsh, T. S. Rupp, and P. a. Bieniek. Two-meter
temperature and precipitation from atmospheric reanalysis evaluated for
Alaska. Journal of Applied Meteorology and Climatology, 55(4):901–922,
2016. ISSN 15588432. doi: 10.1175/JAMC-D-15-0162.1.

F. Lalaurette. Early detection of abnormal weather conditions using a
probabilistic extreme forecast index. Quarterly Journal of the Royal
Meteorological Society, 129(594):3037–3057, 2003. ISSN 00359009. doi:
10.1256/qj.02.152.

M. Leadbetter, G. Lindgren, and H. Rootzen. Extremes and Related Prop-
erties of Random Sequences and Processes. Springer Verlag, 1983. ISBN
9780387775005. doi: 10.1007/978-0-387-98135-2.

R. Lindsay, M. Wensnahan, a. Schweiger, and J. Zhang. Evaluation of seven
different atmospheric reanalysis products in the arctic. Journal of Climate,
27(7):2588–2606, 2014. ISSN 08948755. doi: 10.1175/JCLI-D-13-00014.

166

https://www.cbc.ca/news/canada/british-columbia/vancouver-snow-removal-1.3922282
https://www.cbc.ca/news/canada/british-columbia/vancouver-snow-removal-1.3922282


Bibliography

G. Luymes. B.C. weather: Winter storm blows over in time for Family
Day — Vancouver Sun, 2017. URL https://vancouversun.com/news/

local-news/winter-storm-blows-over-in-time-for-family-day.

M. MacMahon. Fraser Valley hit hardest by snowfall, more on the way -
NEWS 1130, 2017. URL https://www.citynews1130.com/2017/02/06/

fraser-valley-hit-hardest-snowfall-way/.

H. B. Mann. Non-parametric tests against trend. Econometrica, 13(3):
245–259, 1945. ISSN 0168-6054. doi: 10.1016/j.annrmp.2004.07.001.

M. E. Mann and K. A. Emanuel. Atlantic hurricane trends linked to climate
change. Eos, Transactions American Geophysical Union, 87(24):233, jun
2006. ISSN 0096-3941. doi: 10.1029/2006EO240001.

D. McCollor and R. Stull. Hydrometeorological Accuracy Enhancement
via Postprocessing of Numerical Weather Forecasts in Complex Ter-
rain. Weather and Forecasting, 23:131–144, 2008a. ISSN 0882-8156.
doi: 10.1175/2008WAF2222177.1. URL http://journals.ametsoc.

org/doi/abs/10.1175/2008WAF2222177.1.

D. McCollor and R. Stull. Hydrometeorological Short-Range Ensemble Fore-
casts in Complex Terrain. Part I: Meteorological Evaluation. Weather
and Forecasting, 23(4):533–556, 2008b. ISSN 0882-8156. doi: 10.
1175/2008WAF2007063.1. URL http://journals.ametsoc.org/doi/

abs/10.1175/2008WAF2007063.1.

J. McElroy. Extended cold snap putting a strain on ser-
vices throughout Metro Vancouver — CBC News, 2016.
URL https://www.cbc.ca/news/canada/british-columbia/

extended-cold-snap-putting-a-strain-on-services-throughout-metro-vancouver-1.

3897474.

J. McElroy. Vancouver in its longest cold snap in over 30 years — CBC News,
2017a. URL https://www.cbc.ca/news/canada/british-columbia/

when-vancouver-had-winter-1.3918910.

J. McElroy. Weather closes every highway linking Lower
Mainland to rest of B.C. — CBC News, 2017b. URL
https://www.cbc.ca/news/canada/british-columbia/

weather-closes-every-highway-linking-lower-mainland-to-rest-of-b-c-1.

3975497.

167

https://vancouversun.com/news/local-news/winter-storm-blows-over-in-time-for-family-day
https://vancouversun.com/news/local-news/winter-storm-blows-over-in-time-for-family-day
https://www.citynews1130.com/2017/02/06/fraser-valley-hit-hardest-snowfall-way/
https://www.citynews1130.com/2017/02/06/fraser-valley-hit-hardest-snowfall-way/
http://journals.ametsoc.org/doi/abs/10.1175/2008WAF2222177.1
http://journals.ametsoc.org/doi/abs/10.1175/2008WAF2222177.1
http://journals.ametsoc.org/doi/abs/10.1175/2008WAF2007063.1
http://journals.ametsoc.org/doi/abs/10.1175/2008WAF2007063.1
https://www.cbc.ca/news/canada/british-columbia/extended-cold-snap-putting-a-strain-on-services-throughout-metro-vancouver-1.3897474
https://www.cbc.ca/news/canada/british-columbia/extended-cold-snap-putting-a-strain-on-services-throughout-metro-vancouver-1.3897474
https://www.cbc.ca/news/canada/british-columbia/extended-cold-snap-putting-a-strain-on-services-throughout-metro-vancouver-1.3897474
https://www.cbc.ca/news/canada/british-columbia/when-vancouver-had-winter-1.3918910
https://www.cbc.ca/news/canada/british-columbia/when-vancouver-had-winter-1.3918910
https://www.cbc.ca/news/canada/british-columbia/weather-closes-every-highway-linking-lower-mainland-to-rest-of-b-c-1.3975497
https://www.cbc.ca/news/canada/british-columbia/weather-closes-every-highway-linking-lower-mainland-to-rest-of-b-c-1.3975497
https://www.cbc.ca/news/canada/british-columbia/weather-closes-every-highway-linking-lower-mainland-to-rest-of-b-c-1.3975497


Bibliography
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É. Mekis and R. Brown. Derivation of an adjustment factor map for the
estimation of the water equivalent of snowfall from ruler measurements in
Canada. Atmosphere - Ocean, 48(4):284–293, 2010. ISSN 07055900. doi:
10.3137/AO1104.2010.

E. Mekis and W. D. Hogg. Rehabilitation and analysis of Canadian daily
precipitation time series. Atmosphere-Ocean, 37(1):53–85, 1999. ISSN
0705-5900. doi: 10.1080/07055900.1999.9649621.
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Appendix A

Surface weather stations

Table A.1: Surface weather stations description. Station name and abbre-
viation, longitude and latitude in degrees, elevation in meters, variable as
either 2-m temperature (T) or 1-day accumulated precipitation (p), network
and whether it is a SYNOP station.

Station Abbrev Lon Lat Elev Var Network

1 Abbotsford YXX -122.4 49.0 59 T, p ECCC(S)
2 Agassiz WZA -121.8 49.2 15 T, p ECCC(S)
3 Alouette ALU -122.5 49.3 125 T, p BCH
4 Atlin ATL -133.70 59.6 74 T, p ECCC
5 Barkerville BAR -121.5 53.1 128 p ECCC
6 Bella Coola YBD -126.6 52.4 36 T, p ECCC(S)
7 Blind Channel BCH -125.5 50.4 23 T ECCC
8 Blue River YCP -119.3 52.1 68 T, p ECCC(S)
9 Castlegar YCG -117.6 49.3 496 T, p ECCC(S)
10 Chatham Point WFM -125.4 50.3 23 p ECCC
11 Clowhom Falls CLO -123.5 49.7 10 T, p BCH
12 Comox YQQ -124.9 49.7 26 T, p ECCC(S)
13 Coquitlam CQM -122.8 49.5 290 T, p BCH
14 Cortes Island CIT -124.9 50.1 15 p ECCC

Tiber Bay
15 Cranbrook YXC -115.8 49.6 939 T, p ECCC(S)
16 Creston WJR 116.5 49.1 597 p ECCC
17 Darfield DAR -120.2 51.3 412 T, p ECCC
18 Dawson’s Creek YDQ -120.2 55.8 655 T ECCC(S)
19 Dease Lake WDL -130.0 58.4 807 T ECCC(S)
20 Dryad Point DAU -128.1 52.2 4 p ECCC
21 Duncan Kelvin DKC -123.7 48.7 103 p ECCC

Creek
22 Estevan Point WEB -126.6 49.4 7 T, p ECCC
23 Fernie FER -115.1 49.5 1001 p ECCC

Continued on next page
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Appendix A. Surface weather stations

Table A.1 – continued from previous page

Station Abbrev Lon Lat Elev Var Network

24 Fort Nelson YYE -122.6 58.8 382 T, p ECCC(S)
25 Fort St James VFS -124.3 54.5 686 T, p ECCC
26 Fort St John’s YXJ -120.7 56.2 695 T, p ECCC(S)
27 Germansen YGS -124.7 55.8 766 p ECCC

Landing
28 Glacier GLA -117.5 51.3 1323 T,p ECCC
29 Gold Creek GOC -122.5 49.45 794 T, p BCH
30 Golden YGE -117.0 51.3 785 T, p ECCC
31 Grand Forks GRF -118.5 49.0 532 T ECCC
32 Kamloops YKA -120.4 50.7 345 T, p ECCC(S)
33 Kaslo KAS -116.9 49.9 591 T ECCC
34 Kelowna YLW -119.6 49.8 417 T ECCC(S)
35 Kelowna KQG -119.6 49.8 417 p ECCC

Quails Gate
36 Laidlaw LAI -121.6 49.4 27 p ECCC
37 Langara WLA -133.1 54.3 41 T, p ECCC
38 Little Qualicum VOQ -124.5 49.4 30 p ECCC

Hatchery
39 McInnes Island WMS -128.7 52.3 26 T , p ECCC(S)
40 Merritt VME -120.8 50.1 609 T, p ECCC
41 Mica Dam MCD -118.6 52.1 579 T, p BCH
42 Nanaimo City YCD -124.0 49.2 114 p ECCC

Yard
43 Nass Camp NAC -129.0 55.2 290 p ECCC
44 Oliver OLI -119.5 49.2 297 T, p ECCC
45 Pachena Point PAP -125.1 48.7 37 p ECCC
46 Penticton YYF -119.6 49.5 344 T, p ECCC(S)
47 Port Alice POA -127.5 50.4 21 p ECCC
48 Port Hardy YZT -127.4 50.7 22 T, p ECCC(S)
49 Prince George YXS -122.7 53.9 691 T, p ECCC(S)
50 Prince Rupert YPR -130.5 54.3 35 T ECCC(S)
51 Princeton YDC -120.5 49.5 700 T, p ECCC(S)
52 Quesnel YQZ -122.5 53.0 545 T ECCC(S)
53 Quatsino WIF -127.7 50.5 8 T, p ECCC
54 Quinsam River QUI -125.3 50 46 T, p ECCC

Hatchery

Continued on next page
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Appendix A. Surface weather stations

Table A.1 – continued from previous page

Station Abbrev Lon Lat Elev Var Network

55 Saanichton SAN -123.4 48.6 61 p ECCC
56 Salmon Arm WSL -119.2 50.7 527 T, p ECCC
57 Sandspit YZP -131.8 53.3 6 T, p ECCC(S)
58 Shawnigan Lake SHL -123.6 48.6 138 T, p ECCC
59 Smithers YYD -127.2 54.8 522 T, p ECCC(S)
60 Stave Ridge STV -122.4 49.6 930 T, p BCH

Upper
61 Stewart ZST -130 55.9 7 T, p ECCC(S)
62 Tatlayoko XTL -124.4 51.7 870 T ECCC

Lake
63 Terrace YXT -128.6 54.5 7 T, p ECCC(S)
64 Tofino YAZ -125.8 49.1 24 p ECCC(S)
65 Ucluelet UKC -125.5 48.9 30 p ECCC

Kennedy Camp
66 Vancouver YVR -123.2 49.2 4 T, p ECCC(S)
67 Cheakamus CMU -123.1 50.1 880 T, p BCH

Upper CMU
68 Vavenby VAV -119.8 51.6 445 T, p ECCC
69 Vernon WJV -119.3 50.3 427 T, p ECCC(S)
70 Victoria YYJ -123.4 48.6 19 T, p ECCC(S)
71 Wahleach Jones WAH -121.6 49.2 641 T, p BCH

Reservoir
72 Wasa WAS -115.6 49.8 930 p ECCC
73 Wistaria WIS -126.2 53.8 863 T ECCC
74 William’s Lake WLK -122.1 52.2 940 T, p ECCC(S)
75 Wolf Ridge WOL -125.7 49.7 1490 T, p BCH

Upper
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Figure A.1: Elevation of 2-m temperature and 1-day accumulated precipitation stations.
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Appendix B

Train and test stations

Table B.1: Train surface weather stations description. Station name and
abbreviation, longitude and latitude in degrees, elevation in meters, vari-
able as either 2-m temperature (T) or 1-day accumulated precipitation (p),
network station.

Station Abbrev Lon Lat Elev Var Network

1 Alouette ALU -122.5 49.3 125 T BCH
2 Barkerville BAR -121.5 53.1 128 p ECCC
3 Bella Coola YBD -126.6 52.4 36 T, p ECCC
4 Blue River YCP -119.3 52.1 68 p ECCC
5 Chatham Point WFM -125.4 50.3 23 p ECCC
6 Coquitlam CQM -122.8 49.5 290 T, p BCH
7 Cortes Island CIT -124.9 50.1 15 p ECCC

Tiber Bay
8 Creston WJR 116.5 49.1 597 T ECCC
8 Darfield DAR -120.2 51.3 412 T, p ECCC
10 Dawson’s Creek YDQ -120.2 55.8 655 T ECCC
11 Duncan Kelvin DKC -123.7 48.7 103 p ECCC

Creek
12 Fernie FER -115.1 49.5 1001 p ECCC
13 Fort Nelson YYE -122.6 58.8 382 p ECCC
14 Fort St James VFS -124.3 54.5 686 T, p ECCC
15 Fort St John’s YXJ -120.7 56.2 695 T, p ECCC
16 Germansen YGS -124.7 55.8 766 T ECCC

Landing
17 Glacier GLA -117.5 51.3 1323 T ECCC
18 Gold Creek GOC -122.5 49.45 794 T, p BCH
19 Golden YGE -117.0 51.3 785 p ECCC
19 Ingenika ING -125.1 56.73 711 T BCH
20 Kamloops YKA -120.4 50.7 345 T, p ECCC
21 Kaslo KAS -116.9 49.9 591 T ECCC

Continued on next page
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Appendix B. Train and test stations

Table B.1 – continued from previous page

Station Abbrev Lon Lat Elev Var Network

22 Kelowna YLW -119.6 49.8 417 T ECCC
23 Langara WLA -133.1 54.3 41 T, p ECCC
24 McInnes Island WMS -128.7 52.3 26 T , p ECCC
25 Mica Dam MCD -118.6 52.1 579 p BCH
26 Nanaimo City YCD -124.0 49.2 114 p ECCC

Yard
27 Oliver OLI -119.5 49.2 297 T ECCC
28 Pachena Point PAP -125.1 48.7 37 p ECCC
29 Penticton YYF -119.6 49.5 344 T ECCC
30 Port Alice POA -127.5 50.4 21 p ECCC
31 Port Hardy YZT -127.4 50.7 22 T ECCC
32 Prince Rupert YPR -130.5 54.3 35 T ECCC
33 Princeton YDC -120.5 49.5 700 T ECCC
34 Quesnel YQZ -122.5 53.0 545 T ECCC
35 Quatsino WIF -127.7 50.5 8 p ECCC
36 Quinsam River QUI -125.3 50 46 T ECCC

Hatchery
37 Saanichton SAN -123.4 48.6 61 p ECCC
38 Salmon Arm WSL -119.2 50.7 527 T ECCC
39 Sandspit YZP -131.8 53.3 6 p ECCC
40 Shawnigan Lake SHL -123.6 48.6 138 p ECCC
41 Smithers YYD -127.2 54.8 522 T, p ECCC
42 Stave Ridge STV -122.4 49.6 930 T, p BCH

Upper
43 Stewart ZST -130 55.9 7 p ECCC
44 Tatlayoko XTL -124.4 51.7 870 T ECCC

Lake
45 Ucluelet UKC -125.5 48.9 30 p ECCC

Kennedy Camp
46 Vancouver YVR -123.2 49.2 4 T ECCC
47 Cheakamus CMU -123.1 50.1 880 p BCH

Upper CMU
48 Vavenby VAV -119.8 51.6 445 T, p ECCC
49 Vernon WJV -119.3 50.3 427 T, p ECCC
50 Victoria YYJ -123.4 48.6 19 T, p ECCC
51 Wasa WAS -115.6 49.8 930 p ECCC

Continued on next page
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Appendix B. Train and test stations

Table B.1 – continued from previous page

Station Abbrev Lon Lat Elev Var Network

52 Wistaria WIS -126.2 53.8 863 T ECCC
53 William’s Lake WLK -122.1 52.2 940 T, p ECCC

Table B.2: Test surface weather stations description. Station name and ab-
breviation, longitude and latitude in degrees, elevation in meters, variable as
either 2-m temperature (T) or 1-day accumulated precipitation (p), network
station.

Station Abbrev Lon Lat Elev Var Network

1 Agassiz WZA -121.8 49.2 15 T,p ECCC
2 Barnes Creek BRN -118.35 50.01 1620 T BCH
3 Blind Channel BCH -125.5 50.4 23 T ECCC
4 Blue River YCP -119.3 52.1 68 T ECCC
5 Cheakamus Creek CHK -123.03 50.08 640 T,p BCH
6 Comox YQQ -124.9 49.7 26 T,p ECCC
7 Cranbrook YXC -115.8 49.6 939 T ECCC
8 Creston WJR 116.5 49.1 597 p ECCC
9 Dease Lake WDL -130.0 58.4 807 T ECCC
10 Duncan Kelvin DKC -123.7 48.7 103 T,p ECCC

Creek
11 Estevan Point WEB -126.6 49.4 7 T,p ECCC
12 Fort Nelson YYE -122.6 58.8 382 T ECCC
13 Golden YGE -117.0 51.3 785 T ECCC
14 Goldstream GOL -118.6 51.67 600 p BCH
15 Germansen YGS -124.7 55.8 766 p ECCC

Landing
16 Glacier GLA -117.5 51.3 1323 T,p ECCC
17 Grand Forks GRF -118.5 49.0 532 T ECCC
18 Kemano KEM -127.9 53.6 87 p ECCC
19 Kelowna KQG -119.6 49.8 417 p ECCC
20 Laidlaw LAI -121.6 49.4 27 p ECCC
21 Little Qualicum VOQ -124.5 49.4 30 p ECCC

Hatchery
22 Little Qualicum VOQ -124.5 49.4 30 p ECCC

Continued on next page
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Appendix B. Train and test stations

Table B.2 – continued from previous page

Station Abbrev Lon Lat Elev Var Network

Hatchery
23 Oliver OLI -119.5 49.2 297 p ECCC
24 Ootsa VSL -126 53.8 861 p ECCC
25 Pack Lake PAK -123.04 55 675 p ECCC
26 Penticton YYF -119.6 49.5 344 p ECCC
27 Port Hardy YZT -127.4 50.7 22 p ECCC
28 Prince George YXS -122.7 53.9 691 T ECCC
29 Princeton YDC -120.5 49.5 700 p ECCC
30 Quatsino WIF -127.7 50.5 8 T ECCC
31 Quinsam River QUI -125.3 50 46 p ECCC

Hatchery
32 Sandspit YZP -131.8 53.3 6 T ECCC
33 Shawnigan Lake SHL -123.6 48.6 138 T ECCC
34 Stave Ridge STV -122.4 49.6 930 p BCH
35 Stewart ZST -130 55.9 7 T, ECCC
36 Terrace YXT -128.6 54.5 7 T, p ECCC
37 Tofino YAZ -125.8 49.1 24 p ECCC
38 Vancouver YVR -123.2 49.2 4 p ECCC
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