
THE DEVELOPMENT AND APPLICATION OF NEW

COMPUTATIONAL TOOLS FOR WORKING WITH VIRAL

METAGENOMIC DATA

by

Ezra Kitson

B.Sc., Imperial College London, 2017

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate and Postdoctoral Studies

(Microbiology and Immunology)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

April 2019

© Ezra Kitson, 2019

ii

The following individuals certify that they have read, and recommend to the Faculty of Graduate

and Postdoctoral Studies for acceptance, a thesis/dissertation entitled:

The Development and Application of New Computational Tools for Working with Viral

Metagenomic Data

submitted

by Ezra Kitson

in partial fulfillment of the requirements

for

the degree

of Master of Science

in Microbiology and Immunology

Examining Committee:

Curtis Suttle, Microbiology and Immunology

Supervisor

Steven Hallam, Microbiology and Immunology

Supervisory Committee Member

Supervisory Committee Member

William Hsiao, BC Centre for Disease Control

Additional Examiner

iii

Abstract

Next generation, high throughput sequencing has revolutionised the way in which we are able to

view the microbial world. We have now generated a large volume of metagenomic sequence data

describing viruses and bacteria in diverse environments across the planet. These data require

computational processing in order to be used in further analysis. Manipulating the data in the

way a bioinformatician wants is often a major difficulty in a metagenomic research. There are

two reasons for this. One is that, as the field is nascent, there are many useful data processing

tasks that do not yet have published computational tools. A second is that the computational tools

that have been published to date are often poorly documented and complicated making them

difficult to use in a routine application.

Research in this thesis focusses on developing simple computational tools for managing viral

metagenomic data. Viral metagenomic data presents the bioinformatician with specific

difficulties owing to its size, poor quality and largely novel sequence content. Four new

computational tools for managing viral metagenomic data are presented and benchmarked here.

Three of these tools expedite everyday researching tasks, automating a process that would

otherwise be done manually. The fourth, VHost-Classifier, allows a new scientific question to be

asked using viral metagenomic data.

In the final chapter VHost-Classifier is applied to analyse viruses published in the NCBI

taxonomy database by host organism. The results reveal a large anthropocentric bias in viral

sequencing.

iv

Lay Summary

Viral metagenomics datasets describe the genetic composition of virus communities in the

environment. The raw metagenomic data requires extensive computational processing to be used

to make meaningful analysis. Four new software tools are presented that enable processing of the

data; three automate routine tasks that would otherwise be done manually, and the fourth, VHost-

Classifier enables new questions to be asked of viral metagenomic data. In the final chapter

VHost-Classifier is used to analyse the sequencing bias to date in viral taxa published to NCBI

taxonomy.

v

Preface

The thesis was written by me with the guidance and encouragement of my colleagues and

supervisor, and with editorial input from my supervisor and Dr. Chris Deeg, Dr. Gideon

Mordecai, Dr. Jan Finke, Dr. Steven Hallam and Dr. William Hsiao. All four pieces of software

showcased in chapter two are designed and written by me and published on Github with an MIT

License. The analysis performed in chapter three was conceived in discussions with my

supervisor and performed by me; the raw data was accessed on the NCBI taxonomy database,

which is freely available online to download.

Chapter 2.1 of this thesis has been published in Oxford Bioinformatics as an Application Note.

Kitson,E. and Suttle,C.A. (2019) VHost-Classifier: Virus-Host Classification using natural

language processing. Bioinformatics, btz151 (https://doi.org/10.1093/bioinformatics/btz151).

https://doi.org/10.1093/bioinformatics/btz151

vi

Table of Contents

Abstract .. iii

Lay Summary ... iv

Preface ... v

Table of Contents ... vi

List of Tables .. ix

List of Figures ... x

Glossary .. xi

Acknowledgements ... xii

Dedication ... xiii

Chapter 1: Introduction ... 1

1.1. Viral Metagenomics ... 1

1.1.1. Protocol for Viral Metagenomics ... 1

1.1.2. Advantages and Drawbacks of Viral Metagenomics.. 2

1.2. Difficulties faced by researchers undertaking Bioinformatic analysis 3

1.2.1. Prohibitive software dependencies ... 3

1.2.2. Lack of Standardized Formats .. 4

1.2.3. Lack of tools for simple tasks ... 6

1.3. Difficulties faced by researchers undertaking Bioinformatic analysis on Viral

Metagenomic Data .. 6

1.3.1. Size of the Data ... 6

1.3.2. Quality of the Data.. 7

1.3.3. Content of the Data ... 8

1.4. Research objectives and thesis structure .. 10

vii

Chapter 2: Development of software tools for working with viral metagenomic data. 11

2.1. VHost-Classifier .. 11

2.1.1. Introduction... 11

2.1.2. Materials and Methods ... 11

2.1.3. Results .. 14

2.1.4. Conclusions .. 15

2.2 Optimal Translate.. 18

2.2.1. Introduction... 18

2.2.2. Materials and Methods ... 18

2.2.3. Results .. 19

2.2.4. Conclusions .. 19

2.3. Simple Circularise .. 20

2.3.1. Introduction... 20

2.3.2. Materials and Methods ... 20

2.3.3. Results .. 22

2.3.4. Conclusions .. 22

2.4. Bootstrap Jplace ... 23

2.4.1. Introduction... 23

2.4.2. Methods and Materials ... 23

2.4.3. Results .. 24

Chapter 3: Virus and Prejudice: >80% of viral taxa on the NCBI taxonomy database

belong to five genera, all infectious to humans. ... 25

3.1. Summary .. 25

3.2. Background ... 25

3.3. Materials and methods ... 26

viii

3.3.1 Virus Host Classification ... 26

3.3.2. Rank Information .. 27

3.4. Results .. 27

3.4.1. For each taxonomic rank the majority of potential host taxa did not have viruses

assigned to them. .. 27

3.4.2. The host distribution of published virus taxa is disproportionately skewed toward

certain host taxa. ... 29

3.4.3. The number of members within a host taxon is a moderate predictor of the number of

viruses assigned to that taxon. .. 30

3.4.4. The overrepresentation of Chordata is accounted for by high sequencing of human

infectious viruses. ... 31

3.4.5. In bacteriophages there is a bias toward medically relevant taxa. 32

3.5. Discussion .. 33

References .. 36

CODE APPENDIX ... 43

C1: VHost-Classifier ... 43

C2: Optimal-Translate .. 57

C3: Simple - Circularise.. 60

C4: Bootstrap – Jplace .. 65

ix

List of Tables

Table 1 Benchmarking accuracy and recall on 1000 randomly selected viral taxonIDs. 16

Table 2 Virus names VHost-Classifier was unable to process. ... 17

Table 3 Comparing performance between Circlator and Simple Circularise 22

Table 4: Viruses assigned to rank. ... 28

x

List of Figures

Figure 1 Viral Metagenomic Pipeline. ...9

Figure 2 Pipeline used by VHost-Classifier Algorithm. ..13

Figure 3 Directory tree that VHost-Classifier bins input taxonIDs into.14

Figure 4 Multiple alignment of nine circovirus replication protein fragments.19

Figure 5 Terminal display of Simple Circularise working on several sequences in a FASTA file.

..21

Figure 6 Phylogenetic trees visualised on iTOL. ...24

Figure 7 Hosts of Viruses.. ..29

Figure 8: Scatter plot of Class Size against Viruses… ..30

Figure 9: Viruses Infecting Chordates ...31

Figure 10: Hosts of Bacteriophages.. ...32

file:///C:/Users/Ezra/Documents/Thesis%20research/Draft%20Thesis/Ezra%20Kitson%20Thesis%20Draft%204%20.docx%23_Toc5880173
file:///C:/Users/Ezra/Documents/Thesis%20research/Draft%20Thesis/Ezra%20Kitson%20Thesis%20Draft%204%20.docx%23_Toc5880175

xi

Glossary

Assembly: The process by which short reads of nucleic acid are aligned based upon their

overlapping regions and combined into longer sequences called contigs.

BLAST (Basic Local Alignment Search Tool): Bioinformatics algorithm that assigns a biological

identity to nucleic acid sequences based on homology to sequences in a database.

Bootstrap value: A confidence score assigned to each node in a phylogenetic tree representing

the statistical uncertainty about the node topology. The tree data is randomly subsampled and the

phylogenetic analysis is rerun, the bootstrap value is the proportion of replicates in which a node

was present.

Contig: A longer, contiguous sequence of nucleic acids produced from the assembly of short

reads.

DIAMOND (Double Index AlignMent Of Next-generation sequencing Data: Bioinformatics

algorithm that assigns a biological identity to nucleic acid sequences based on homology to

sequences in a database.

Metadata: Data that describes data. The metadata about my thesis would include the title, author

name, page length, formatting, subject, abstract and keywords.

NCBI taxonomy database (National Center for Biotechnology Information): A database curating

taxonomic information on all biological entities discovered on the planet.

Open reading frame (ORF): Stretch of nucleic acid that codes for a gene between a start and stop

codon.

Read: A nucleotide sequence generated during a metagenomic sequencing run.

TaxonID: A unique number that is given to each genome uploaded onto NCBI taxonomy. The

number is the index position of the organism name in the NCBI database.

VtaxonID: A taxonID belonging to a virus.

xii

Acknowledgements

Work on this thesis was disrupted at the beginning of September 2018 by a bicycle accident in

which I sustained a concussion. The aftermath of the accident was of the most disorienting and

difficult periods of my life and I am immensely grateful for the support of my family, colleagues,

committee and supervisor; alone, I would not have been able to complete this work.

From an academic perspective, I would like to thank my supervisor, Prof. Curtis Suttle, for

enabling me to follow my passions in computational science, providing advice and feedback on

manuscripts, and supporting me through difficult times. I would also like to thank my thesis

committee, Prof. Philippe Tortell and Prof. Steven Hallam, who gave me encouragement and

helped shape the direction of this thesis.

I would like to thank members of the Suttle Lab, past and present who helped in many ways. I

would especially like to thank Dr. Marli Vlok, who introduced me to the field of viral

metagenomics and provided invaluable assistance in analysing the Watershed Discovery Project

data - she inspired me to create the tools presented here - and Dr. Chris Deeg who mentored me

throughout my first year and gave feedback on several manuscripts, including Chapters 2 and 3

of this thesis. Special thanks also to Dr. Jan Finke and Dr. Gideon Mordecai, who gave feedback

on Chapters 1 and 3, respectively, of this thesis.

Outside of the academic sphere, I would like to thank Grant and Jenny who discovered me after

my accident, took me to safety and called me an ambulance. Their good will and quick thinking

prevented much harm. I would also like to thank the staff at Vancouver General Hospital who

looked after me during my stay in hospital and my friends from Green College who came to keep

me company in the most trying hours.

Finally, I wish to thank my family who I have worried sick and who have never failed me in their

love and support.

xiii

Dedication

To my parents, Jim and Bev.

1

Chapter 1: Introduction

Viruses are the most abundant biological entity on the planet and a significant driver of

mortality and gene transfer in any ecosystem (Suttle, 2007) Viruses in the natural

environment regulate fundamental biogeochemical processes and likely constitute the biggest

reservoir of genetic diversity on the planet (Suttle, 2005). Research on environmental viruses

is therefore very important; however, it is handicapped by our inability to culture

representative isolates.

With the advent of metagenomics in the early 2000s, which used high-throughput sequencing

to study entire communities of microorganisms without the need for laboratory cultivation,

viral metagenomic data quickly became a fundamental resource for exploring the diversity

and impact of viruses in nature. Now there are wealth of metagenomic data from a range of

interesting environments, but a lack of accessible, widely used and standardized

computational tools to analyse these data. This thesis focused on the development and

application of new tools for working with viral metagenomic data.

In this introduction, I first explain the process of viral metagenomics, and briefly compare it

to cultivation-based approaches of virus characterisation. I then discuss the difficulties in

doing bioinformatic analysis on viral metagenomes. Some of the issues covered are general to

any bioinformatic analysis while others are specific to viral metagenomics. Finally, I

introduce the software tools I have developed that help address some of these issues.

1.1. Viral Metagenomics

Metagenomics is a cultivation-independent technique which uses high-throughput sequencing

and bioinformatic analysis to snapshot the genetic content of an entire community of

microorganisms. It has been used to explore microbial diversity in a plethora of contexts,

from the human microbiome to the upper atmosphere (Turnbaugh et al., 2007; Whon et al.,

2012).

1.1.1. Protocol for Viral Metagenomics

Viral metagenomics focuses on building an unbiased representation of the viral nucleic acid

present in an environmental sample. In conventional protocols this is achieved in three stages

(Anon, 2018). First, an environmental sample is obtained and filtered to separate the virion

components from the cellular ones, to reduce contamination of the genetic signal from the

2

cellular components. Next high-throughput sequencing techniques are used to generate

millions of short segments of nucleic acid, known as reads, which are fragments of all the

virus genomes present in the sample. For further analysis of the data, the short reads have to

be processed in a bioinformatic pipeline.

Bioinformatic analysis normally proceeds in three stages. Firstly, there is a cleaning process,

in which the reads are trimmed to remove adaptor and index sequences (small

oligonucleotides ligated to the ends of reads during the sequencing process) and low-quality

reads are removed. Secondly, short reads are assembled into longer stretches of nucleic acid

known as contiguous sequences (contigs). This is achieved by algorithms that compare

overlapping regions at the ends of reads. Next, contigs or reads are compared to a genetic

database and assigned a biological identity according to their similarity to sequences stored in

this database. Conventionally this is done using tBLASTx (basic local alignment search tool),

which translates the query sequences into all possible six reading frames, and compares these

primary structures with the NCBI non-redundant (nt) nucleotide database (McGinnis &

Madden, 2004). Subsequent bioinformatic analyses will be informed by the context of the

sample and the purpose of the study; for example, it might include placement of sequences on

phylogenetic trees, correlation analysis of sequence information alongside environmental data

and statistical analysis of species diversity among samples.

1.1.2. Advantages and Drawbacks of Viral Metagenomics

The primary advantage of the process described above over cultivation dependent approaches

is that there is no requirement for the presence of a host cell line. This greatly increases the

range of viral sequences that can be described, including viruses for which the host is not

known, and the amount of sequence data that can be generated, as there is no need to culture

a host.

Additionally, because environmental samples are sequenced directly and not heavily

manipulated in the lab, the results provide a more representative snapshot of viral species

composition in the natural environment. Viral metagenomics is therefore being widely used

for understanding viral ecology and is being used to characterise viral “communities” from

the surface atmosphere (Whon et al., 2012) to the deep ocean (Mizuno et al., 2016).

Viral metagenomics then, generates large volumes of data that are problematic to analyse.

Metagenomic data is big, typically accounting for many gigabytes, even terabytes of

information, and therefore a substantial investment of human and computational time and

3

effort must be dedicated to its analysis. It is also a nascent field of research and, as in all

emerging subjects of scientific endeavour, there are new and significant hurdles to overcome

for accurate analysis. Some of these problems are common to all bioinformatic analyses, but

the large size and poor quality of viral metagenomic data creates other problems that are

specific to this field (Figure 1).

1.2. Difficulties faced by researchers undertaking Bioinformatic analysis

Many of the difficulties in performing bioinformatic analysis on viral metagenomic data are

common to any work using bioinformatics software. Whilst undertaking research for my

Masters degree, I specifically identified the three following issues:

 i. Dependency reliant software;

 ii. A lack of standardized formats for modelling and data representation;

iii. A lack of appropriate tools to perform simple computational tasks.

1.2.1. Prohibitive software dependencies

 Much bioinformatics software is difficult to run due to a high number of dependencies on

other programs that have to be installed prior to using the software. Dependencies are

unavoidable in creating software with some complexity; however, often bioinformatics

software is published with dependencies that aren’t relevant to the function of the software.

A high number of dependencies can arise when bioinformatics tools are created ad hoc by

research groups during data analysis. If the tool is useful, it is often published as a subsidiary

to a data-driven research article. Programs created in this manner are often built into large

bioinformatic pipelines that have many version-specific software dependencies. Thus, to run

the programs outside of the pipelines, all of the other software on which the programs are

dependent, must be installed. Not only is this computationally inefficient, it can prevent

users running the software if, for example, version conflicts arise.

This problem has contributed to a lack of reproducibility in computational biology. Installing

just one piece of bioinformatics software requires such an investment of time that it becomes

unfeasible to try and replicate entire workflows on different machines. Garijo et al., (2013)

found that attempting to replicate the bioinformatic analysis of a drug discovery paper took

280 h, 160 of which was spent installing and configuring new software. The authors

4

highlighted that aside from the time, installing new software can incur a high financial price,

as some software requires installation of proprietary dependencies in order to run properly.

Thankfully, protocols are being developed to address the issue of reproducibility. The first

involves more stringent rules for accessibility in publishing application notes on

bioinformatics software. For example, in order to be published as an Application Note,

Oxford Bioinformatics requires software to be ‘run on nearly all conditions on a wide range

of machines’ and not ‘involve significant investment of time for the user to install’ (Anon,

n.d.). The second is package management systems like Bioconda, which allow users to install

and switch between different versions of software packages on the same machine (Dale et al.,

2017).

The final is the use of software containers like Docker (http://www.docker.com). These

programs allow developers to host a virtual environment on the cloud in which users can run

software. This virtual environment contains all the dependencies required to run the software

and users need only supply the input data. Docker represents a big step forward for

computational research, essentially future-proofing software from version conflicts, and

eliminating the need to install dependencies. In addition, computational performance appears

to be only negligibly affected by the use of Docker (Di Tommaso et al., 2015).

Software containers do not however address all the issues outlined above. First, because

software containers are not yet widely implemented in bioinformatics software publications,

and secondly because software containers are unlikely to improve reproducibility in

computational biology. Software containers only allow users to clone and run the workflow

of the original authors. They do not make it easier to reproduce a workflow from its

constituent parts on a different machine, and crucially do not allow users to freely interrogate

and configure those parts, a vital requirement in allowing users to independently validate the

performance of software.

1.2.2. Lack of Standardized Formats

Another difficulty is the lack of unanimously used, standardized formats in computational

biology. For example, currently there are seven commonly used formats for storing sequence

information, eight for sequence alignments and four for phylogenetic trees (Leonard,

Littlejohn & Baxevanis, 2007). Outside of the common formats, there are many more

hardware- and software-specific formats, and no list of all the formats used in bioinformatics

exists. This is problematic, because most bioinformatics software has specific format

http://www.docker.com/

5

requirements for a datatype, and these often differ among programs, so in any analysis,

pipeline steps must be included to convert data between datatypes. This issue is summarised

in the Roslin Institute’s ‘First Law of Bioinformatics’

(http://bioinformatics.roslin.ac.uk/lawslaws/):

“The first step in developing a new genetic analysis algorithm is to decide how to make the

input data file format different from all pre-existing analysis data file formats.”

This issue not only affects the representation of data, but also the modelling of data, as there

is no standard language to describe models and process descriptions in systems biology.

Biological metadata (data describing biological data) is also affected by a lack of

standardization. For example, a recent study has shown the variable quality of metadata

records in two biomedical databases, NCBI BioSample and EBI BioSamples; many authors

omitted field names or populated fields with incorrect data types when publishing biological

samples (Gonçalves & Musen, 2019).

Lack of standardized formats means computational analysis is prone to misuse. One example

of this is the placement of bootstrap support values on phylogenetic trees. The Newick

format, introduced in 1986, is one of the most widely used tree display formats; however,

there is still no standard for its use, and therefore no official way it should be interpreted or

processed into other formats. A study by Czech et al., (2017) showed how the support values

on the same tree are displayed differently on 20 tree viewers.

Recently there have been successful initiatives to address this issue in systems biology.

CoMBiNE (Computational Modelling in Biology Network) is a consortium that works to

promote open source standardized formats for computational modelling in biology (Hucka et

al., 2015), while the Systems biology format converter provides a web platform for

converting models among commonly used languages (Rodriguez et al., 2016). In

metagenomics, loose standards already exist for describing the entire analysis workflow

(STERK et al., 2009), which includes some guidance on output data formats. More stringent

guidelines have been proposed that specifically include formats for data analysis outputs (ten

Hoopen et al., 2017).

http://bioinformatics.roslin.ac.uk/lawslaws/

6

1.2.3. Lack of tools for simple tasks

A final difficulty is the lack of well documented tools to perform simple tasks in

computational biology. This difficulty arises because many bioinformatics toolkits are

created by research groups made up of computer scientists, who are not interested in, or

aware of, the simple tools needed to expedite ‘everyday’ bioinformatic research. This is

compounded by the fact that as more biological data are generated, and new data formats

arise, a large variety of simple format-specific programs are required. A cursory scroll

through bioinformatics forums reveals frustrated researchers trying to accomplish many

simple tasks without the tools to do so.

1.3. Difficulties faced by researchers undertaking Bioinformatic analysis on Viral

Metagenomic Data

For researchers doing analysis on viral metagenomic data there are several field-specific

issues that must be navigated. These are:

i. The size of the data is ‘big’1,

ii. The quality of the data is often poor,

iii. The sequence data produced often has little similarity to other sequences in databases.

1.3.1. Size of the Data

One of the foremost difficulties in working with metagenomic data is that the data are ‘big’;

sequencing runs can generate millions of short reads that occupy terabytes of space.

Assembly reduces the size of these files, but the output files still often occupy several

hundred gigabytes and consist of hundreds-of-thousands of contigs. The size of these datasets

is such that visualising them with GUI-driven software (e.g. Excel, Geneious) is unfeasible;

therefore, analysis must be automated from the command line. The size also means that any

software involved in analysis, even if the task is simple, must be designed to process the data

in a “reasonable” time. In recent years, assembly and alignment algorithms have been

1 The question of whether genomic data is ‘big data’ is unclear. ‘Big Data’ is a loosely defined and by some

interpretations would include metagenome studies. An early and much cited definition of Big Data by the

Gartner IT glossary (https://www.gartner.com/it-glossary/) precludes genomic data. Gartner defines big data as

data meeting the three V criteria: Velocity (meaning the data is received in a continuous stream and processed in

real-time), Variety (the data is unstructured and consists of several formats: e.g. image, text, audio) and Volume

(the data is so big it can’t be handled by standard machines and software). Genomic data meets only the latter of

these criteria.

7

developed to handle large metagenomic datasets; for example, DIAMOND is a sequence

aligner for translated DNA searches against the NR protein database. It essentially performs

the same function as BLASTx, but 500 to 20,000 times faster (Buchfink, Xie & Huson,

2015).

1.3.2. Quality of the Data

Another problem is the quality of the sequence data produced. The quality of viral

metagenome data is affected by contamination, either introduced because of ineffective

filtering or cross-contamination in the laboratory, and errors introduced during assembly

(Thurber et al., 2009).

Contamination primarily occurs because the size and density of microbial fractions overlap,

so it is very difficult to completely filter the viral components away from the cellular ones.

Another drawback of filtering is that it cannot separate viral sequences integrated into a host-

cell genome, from those of viruses replicating in cells, or attached to particles.; this may

constitute a significant amount of viral diversity, as it has been shown 60% of sequenced

bacterial genomes contain at least one prophage (Casjens, 2003).

A second cause of contamination is that, viral metagenomic data are often generated as part

of wider-scope metagenome studies, which also look at prokaryotic and eukaryotic microbial

communities. Often the preparation of all three fractions occurs in the same laboratory, so

the risk of cross-contamination is high.

Overall, the combined effect of laboratory contamination and poor filtration mean that often a

large proportion of the viral fraction in a metagenome study is non-viral - for an extreme

example over 90% of the DNA viral fraction produced during the watershed metagenome

project was of bacterial origin (unpublished findings, Uyaguari-Diaz et al., 2016), and this

observation has been made elsewhere (Rose et al., 2016) - while certain components of the

viral community, including giant viruses and prophages, are lost in the cellular fraction.

Hence, analysis of viral metagenomic data requires computational filtering to remove contigs

that are cellular in origin.

The quality of the sequence data is also affected by errors introduced from assembling

contigs. The assembly program used, and the parameters it is configured with, affect the

accuracy of the output assembly (Sczyrba et al., 2017). Misassemblies occur for a variety of

reasons. Assembly algorithms may 1) confuse closely related genomes by considering SNPs

8

to be errors in base-calling (Edwards & Rohwer, 2005), 2) be unable to identify repeated

sequences, and exclude them from the assembly, or insert identical repeats where there is

repeat polymorphism (Phillippy, Schatz & Pop, 2008), 3) and fail to circularise genomes and

add repeated regions to the end of assemblies (Hunt et al., 2015). Creating an effective

assembly process requires testing various assemblers against one another to achieve the

optimum assembly, and then identifying and correcting errors in the assembly.

1.3.3. Content of the Data

A final problem specific to viral metagenomic data is that the majority of sequences returned

are do not match any known genome sequences, and thus hard to correctly identify and

annotate as viral sequences. In the first environmental metagenomic sequencing studies 65%

of the viral sequences uncovered had no recognizable sequence identity to anything in

Genbank; in bacteria this figure was 10% (Edwards and Rohwer, 2005). Assigning these

sequences to an existing taxon can be problematic using a conventional tBLASTx approach

as a significant proportion (10 – 90%) will be returned as unknown (Huson et al., 2007). The

problem is compounded by the occurrence of lateral gene transfer between virus and host,

which means that virus genomes can share homologous regions with eukaryotic and bacterial

genomes.

Alternative approaches to taxonomic identification have been proposed. These include the

following: 1) referencing unknown sequences against a database of conserved protein

domains (as opposed to referencing against the NR database which contains all published

protein sequences), as conserved protein domains are more informative for purposes of viral

taxonomy (Zhang & Sun, 2011); 2) doing phylogenetic analysis on query sequences (i.e.

assume that homologous sequences will group together on a phylogenetic tree and build the

tree from query sequences and reference sequences) (von Mering et al., 2007) and 3)

identifying sequences based on nucleotide characteristics rather than sequence identity (e.g..

extract features of the sequence, such as the percent of A,C,G and T and use this to identify

the genome (Perry & Beiko, 2010)), virfinder, for example, uses a machine-learning-derived

algorithm to identify viral contigs by the k-mer frequency (i.e. the length of the contig

expressed in the number of short reads of length k that would fit into the contig) (Ren et al.,

2017).

For sequences identified as viral, it can be difficult to place them phylogenetically. Unlike

bacteria and eukaryotes, there is no gene universally found in all viruses that can be used to

9

make phylogenetic comparisons. Viruses must instead be distinguished by common genes

such as replication or capsid proteins; however, there are difficulties associated with the use

of these genes, such as genes with different evolutionary histories which encode the major

capsid & replication proteins (Zhong & Jacquet, 2014; Schulz et al., 2018).

Making accurate trees is also exacerbated because assembly often results in contigs that do

not cover the entire gene and the sequence reading frame can be ambiguous. When

generating phylogenies using gene fragments trees can have large branch lengths and low

support values. One solution is to use a tool such as the RaXML Evolutionary Placement

Algorithm (EPA), or pplacer, which shows the possible positions of a gene fragment on a

reference tree with statistical likelihood scores; thus, providing a more appropriate alternative

to BLAST-based phylogenetic placement (Berger, Krompass & Stamatakis, 2011; Matsen,

Kodner & Armbrust, 2010).

Figure 1 Viral Metagenomic Pipeline. The general and field specific difficulties of doing

computational analysis on viral metagenomic data are displayed with red text.

10

1.4. Research objectives and thesis structure

Overall, bioinformatic analysis of viral metagenomes is made difficult by a wide range of

factors; some of these are due to issues in the way bioinformatics software is written and

published, and others because of the exceptional quality and content of viral metagenomic

data

Driven by a desire to improve bioinformatic analysis of viral metagenomes, I wanted to

create software capable of automating a variety of data processing tasks that would otherwise

have to be done manually. I also wanted to write software that allowed viral metagenomes to

be analysed in new ways.

My philosophy in writing software was to make programs that were openly accessible, well

documented, fast and easy to use. To achieve this, I created programs in Python or BASH

that required only one or no dependencies to run, processed easy to obtain file formats and

ran quickly on big datasets, even on a midrange spec laptop.

In chapter two, I describe four new computational tools, VHost-Classifier, Optimal-Translate,

Simple-Circularise and Bootstrap-Jplace, that I created for working with viral metagenomic

data. The latter three tools automate data processing tasks, increasing the speed at which

further bioinformatic analysis can be performed. The first tool, VHost-Classifier, allows viral

metagenomic datasets to be analysed in a new way, namely by filtering the viruses returned

from a metagenomic sequencing run by their host organism. In the final chapter, I perform a

host analysis of all viruses currently published on the NCBI taxonomy database using this

software. The results highlight a major sequencing bias toward viruses infecting humans.

11

Chapter 2: Development of software tools for working with viral

metagenomic data.

2.1. VHost-Classifier

2.1.1. Introduction

BLAST analysis of viral metagenomic data against other databases often returns many

matches (i.e. hits) to other sequences from a diverse range of viruses; however, a researcher

may only be interested in viruses that infect specific hosts. In order to filter the results to

return only those sequences associated with viruses infecting specific hosts, the analysis must

manually be filtered using string lookups, or referenced against a database that has curated

virus host information, such as the Virus-Host DB (Mihara et al., 2016). Manually filtering

the results is untenable given that metagenomic runs produce hundreds of thousands of virus

reads. Filtering the results using the Virus-Host DB is more viable, however as the database

contains <10% of viral sequences on NCBI, many hits from the analysis will not have a host

assigned within the database.

Here I present VHost-Classifier, a natural language processing algorithm to automate virus-

host classification on a list of viral taxon IDs (vtaxonIDs) that are assigned to sequences

during a BLAST search. It groups vtaxonIDs based on the evolutionary lineage of their host

and is therefore useful for filtering vtaxonIDs, or for giving an overview of host diversity for

viruses found in a BLAST search, by listing hosts of related viruses.

2.1.2. Materials and Methods

VHost-Classifier is written in Python 3 and requires pre-installation of the ETE3 toolkit to

run (Huerta-Cepas et al., 2016). In the default behavior it takes a list of Taxon IDs as input

(one Taxon ID per row), which can be extracted as a column from the output of a BLAST

analysis. For more information visit: https://github.com/Kzra/VHost-Classifier (Code

Appendix, C1).

The pipeline used by the VHost-Classifier algorithm (Figure 2 - 1) first references the

taxonID against the Virus-Host DB and if a host taxon is found it is taken directly from the

database. If not found, the taxonID is converted to its English name and checked to make sure

it is a virus, based on whether it contains a virus descriptive string (e.g.

‘Virus’,’Phage’,’Satellite’) in its name. If it is a virus the English name is parsed against a

https://github.com/Kzra/VHost-Classifier

12

database of common animal names, and if any common animals names are found they are

converted to scientific names that can be used as look-up strings against the NCBI taxonomy

database.

 Once the conversion is done, the various words in the virus name are parsed to identify the

most likely look-up string that identifies the host. To achieve high accuracy, several rules are

followed, as detailed below.

First, the viral prefix (-noro -mega etc.) is ignored, as it is might be confused for the name of

a host taxon (e.g. ‘-noro’ may be confused for ‘Noronhia’, a genus of flowering plant).

Second, if a string is a genus name, it is concatenated with the following string to make genus

and species a single string. This is because species and genus names are confounded across

the tree of life, so must be used together in order to be a unique look-up string (e.g. if the

virus name is ‘Prunella vulgaris virus 1’, the string searched is ‘Prunella vulgaris’, as using

either the genus or species name alone is ambiguous; both describe multiple taxa in different

evolutionary lineages).

Third, if the virus is a strain of Influenza or Norovirus (> 75% of all virus taxonIDs belong to

these two taxa), the strain information is also parsed to identify a host. If a specific host

cannot be identified for these viruses, because the words in the name do not contain useful

host information, it is set as default to be Mammals or Aves depending on the virus subtype

(e.g. Influenza A subtypes without strain information are assigned to Aves whilst Influenza

B, C, D are assigned to Mammals).

Finally, when choosing between multiple valid look-up strings, basic conventions of English

are followed. For example, ‘Elephant seal virus’ is assigned to a seal not an elephant, as in

this case ‘Elephant’ is acting as an adjective and the virus infects a seal.

Once a look-up string is identified it is used to reference the NCBI taxonomy database, using

the ETE3 python toolkit (Huerta-Cepas et al., 2016). The evolutionary lineage of the host is

parsed and used to bin the input taxonIDs into a directory tree resembling a phylogenetic tree

(Figure 2). Each directory contains csv files that contain the taxonIDs belonging to a

particular taxon, and the index positions of these taxonIDs in the original input file. There is

also a Counts.csv file that gives the numbers of vtaxonIDs assigned to each taxon within that

rank. By default, hosts are binned to the ranks phylum, class and order but this can be set by

the user to phylum, order and family.

13

If a host cannot be assigned to a virus, the taxonID is referenced against a customized version

of the IMG/VR database (containing only metagenomic and isolate viral sequences) and a set

of if-statement rules in order to predict the environment it was sequenced from (Paez-Espino

et al., 2017). These taxonIDs are binned according to environment in a separate lineage of the

directory tree.

Figure 2 Pipeline used by VHost-Classifier Algorithm.

14

Figure 3 Directory tree that VHost-Classifier bins input taxonIDs into.

2.1.3. Results

When tested and manually checked on a subsample of 1000 vtaxonIDs chosen at random

using the Python ‘random’ module, from the 191,408 vtaxonIDs present on the NCBI

taxonomy database (downloaded June 2018), the program assigned a host to >95% of viruses

with an overall accuracy of 100%. Over 90% of hosts were resolved to the rank of class, and

37% could be resolved to the rank of family (Table 1). Coverage of the subsample dropped

sharply when assigning a host to the rank of order or family; this is because many viruses on

NCBI taxonomy are strains of Influenza or Norovirus that do not have host information in the

name. The software assigns a class to these viruses depending on their subtype (e.g. Influenza

A is assigned to Aves) but cannot resolve the host any further.

The recall score reflects the percentage of vtaxonIDs to which the authors could assign a host

when the software could not. For each rank assignment the recall score was substantially

higher than the coverage, demonstrating that in most cases when the software couldn’t assign

a host to a vtaxonID, it was because the vtaxonID did not have enough informative host

information in its virus name, and not because the software overlooked useful information.

15

Based on the virus names, of the 1000 vtaxonIDs queried the authors could assign a host to

nine of the 47 viruses, when the software could not assign a host or habitat (Table 2). In these

cases, the virus names either contained common names of animals, not present in the

Common_to_Sci conversion database (e.g. ‘threespine stickleback iridovirus’) or unusual

characters in the name string (e.g. ‘cyclovirus ng_chicken 3). A full list of the virus taxonIDs

in the subsample and their names can be found on the GitHub page.

The software was able to resolve a host to the rank of class for 93% of the 191,408 vtaxonIDs

in the NCBI taxonomy database in under three hours using our lab server (2x Intel Xeon

2GHz, 32 cores, 512 GB RAM). It is worth noting that there is a strong bias in the hosts of

published viruses toward viruses of Chordates (>90% of viruses published on NCBI), and

this was reflected in the subsample.

To demonstrate the ability of the software to classify hosts from a real-world metagenomic

study, we ran the software on the taxonIDs of ~30k viruses returned from a BLAST analysis

of the DNA fraction generated by the Watershed Metagenome Project (Uyaguari-Diaz et al.,

2016). It is typical in viral metagenomic studies for many sequences to be assigned as

uncharacterized viruses or environmental sequences, without discernible host information in

the name. Therefore, in this analysis the coverage scores were lower: 52.6%, 51.4%, 46%,

51.8% and 50.8% for superkingdom, phylum, class, order and family host assignments

respectively. In this case, there is an increase in coverage from class to order because some

hosts lack taxonomic information for class, but have it for order.

2.1.4. Conclusions

VHost-Classifier is a tool that will facilitate researchers working on viral metagenomic data

by enabling fast filtering of the output from a BLAST search by virus host. In addition, it can

give a broad insight into the composition of viruses in an environmental system by their host,

enabling new and interesting questions to be asked during viral metagenomic research.

16

Table 1 Benchmarking accuracy and recall on 1000 randomly selected viral taxonIDs.

Assignation Accuracy

(%)

Recall (%) Coverage

(%)

Superkingdom 100 100 95.5

Phlyum 100 99.7 95.5

Class 100 99.7 93.2

Order 100 84.0 45.5

Family 100 90.7 37.4

Note: “Accuracy” corresponds to the placement of a vtaxonID in the correct taxon corresponding to

rank. “Coverage” corresponds to the percentage of vtaxonIDs for which an assignment was made.

“Recall” is a measure of the number of vtaxonIDs the authors could assign a host for, based on the

virus name, when the software could not (if 100% the software did not overlook any vtaxonIDs).

17

Table 2 Virus names VHost-Classifier was unable to process.

18

2.2 Optimal Translate

2.2.1. Introduction

The process of sequence assembly results in the creation of contigs that may represent full

genomes, full genes, or partial gene fragments. If the gene is incomplete it is not always

apparent which of the six possible reading frames (three forward, three reverse) is the correct

translation. This information is required in order to make accurate amino-acid-based

alignments and phylogenetic trees, as the primary amino-acid sequence is dependent on the

translation frame.

 One solution is to use an ORF (open reading frame) finder which locates stretches of DNA

between a START (e.g. AUG) and a STOP codon (e.g. TAA, TAG or TGA); however,

START or STOP codons may not be present in an incomplete gene fragment, or there may be

multiple START/STOP stretches that could be used and is not immediately obvious which

one is correct. On Geneious, a widely used GUI (graphical user interface) driven

bioinformatics program, there is no alternate tool to determine the optimal reading frame, nor

is there a way to automate ORF detection on multiple sequences (Kearse et al., 2012).

Currently, users must manually calculate, choose and translate the correct reading frame, a

procedure which becomes laborious for long lists of sequences. A simple computational

solution is to translate a sequence in every possible reading frame and choose the one that has

the least number of STOP codons, as this is most likely to represent the true reading frame.

2.2.2. Materials and Methods

Optimal Translate is written in Python 3 and requires no additional dependencies to run

(Code Appendix, C2). It is available to be installed as a plugin extension to Geneious 11. It

can be run on a single sequence or several sequences in a FASTA file. For more information

visit https://github.com/Kzra/Optimal-Translate.

The software transcribes each sequence in all six frames and counts the number of STOP

codons in each. It then writes the original sequence in the optimal frame to an output FASTA

file, with the frame name appended to the contig name. In cases where there are multiple

optimal frames Optimal Translate writes both into the output FASTA file.

19

2.2.3. Results

When nine circovirus replication-protein contigs extracted from DNA virus data from the

Watershed Metagenome Project (Uyaguari-Diaz et al., 2016) were aligned before and after

running Optimal translate, the software greatly improved the quality of the alignment (Figure

3).

2.2.4. Conclusions

Optimal Translate is one of the few tools available online that allows contigs to be translated

in the correct reading frame without relying on ORF detection of START and STOP codons.

Additionally, it is the only plugin available on Geneious 11 that can automate translation in

different frames on a multi-fasta file. This makes it a useful tool for metagenomic researchers

who are dealing with gene fragments and analysing them using Geneious.

B

A

Figure 4 Multiple alignment of nine circovirus replication protein fragments, before

(A) and after (B) running optimal translate.

The images are screen shots of alignments made in Geneious 11. The numbers refer to

nucleotide positions, the light grey segments are sequences, the black segments are

regions of similarity among the sequences. The histogram records the mean pairwise

identity among sequences at a given nucleotide position, if the bar is green it means all

sequences are 100% identical at that position. In both cases the following alignment

conditions were used, Type: Global Alignment with free end gaps, Cost Matrix: Blosum

32, Gap open penalty: 12, Gap extension penalty: 3, Refinement iterations: 2.

20

2.3. Simple Circularise

2.3.1. Introduction

Once full sequences have been acquired and translated in the right frame, there is often

additional processing that needs to be done to remove artifacts acquired in the process of

assembly. One difficulty researchers encounter is that circular genomes are sometimes shown

by the assembler as being linear. This may be due to the assembler missing a region of the

contig, so the circular genome is incomplete, or because the assembler overlaps the ends of

the contig, so the circular genome appears linear.

Currently, the only software that corrects for either error is Circlator (Hunt et al., 2015),

which re-assembles reads on the ends of contigs, with algorithmic preference to producing a

circular genome. The process of re-assembly is computationally laborious and requires a

great deal of pre-requisite software. In cases where a genome hasn’t circularised due to

overlapping ends, it is also redundant; re-assembly of terminal reads is not needed to

circularise a contig, as the full circular genome lies inside the contig. A simple computational

solution to circularising such a contig is to find repeated sequences inside the contig of such

length as to be statistically significant, and to circularise the genome around these regions.

2.3.2. Materials and Methods

Simple Circularise is written in Python 3 and requires no additional dependencies to run

(Code Appendix, C3). It can be run on a single sequence or list of sequences and used as a

plugin extension on Geneious 11. For more information, visit

https://github.com/Kzra/Simple-Circularise.

With its default settings, Simple Circularise uses the binomial formula, or for genome sizes

over 10kb the poisson approximation of the binomial, to estimate the minimum size of

repeated sequence to look for (Equation 1: A & B). Users are able to change the probability

threshold for determining repeat size (default 0.005) and specify a minimum and maximum

output genome size. Simple-Circularise will return the largest sequence it can for the criteria

given; this is the closest approximation of the circular genome. Additionally, users can

change the behaviour of the software to maximise repeat size (as opposed to output genome

size) (Figure

4).

https://github.com/Kzra/Simple-Circularise

21

Figure 5 Terminal display of Simple Circularise working on several sequences in a FASTA file.

𝐀 𝑃(𝑥) =
𝑛!

(𝑛 − 𝑥)! 𝑥!
. 𝑝𝑥. 𝑞𝑛−𝑥 𝐁 𝑃(𝑥) =

𝜆𝑥. 𝑒−𝜆

𝑥!

Equation 1 Binomial formula (A) and Poisson Approximation of Binomial (B) used by Simple

Circularise to compute the length of sequence overlap to search for. Where P(x) is the probability of x

successes, n is the number of events, x is the number of successes, p is the probability of a single success,

q is the probability of a single failure, and 𝝀 = np.

22

2.3.3. Results

Compared with Circlator, Simple Circularise is a faster and more accessible tool for

circularising genome assemblies that have failed to circularise because of a fragment or

whole genome overlap. However, because the software does not involve a re-assembly

process, it is unable to extend a contig with a missing region, and therefore will not work on

truncated assemblies. (Table 3).

Table 3 Comparing performance between Circlator and Simple Circularise.

Software: Circlator Simple Circularise

Dependencies: BWA version >= 0.7.12

prodigal version >= 2.6

SAMtools (versions 0.1.9 to

1.3)

MUMmer version >= 3.23

Canu and/or SPAdes. SPAdes

version 3.6.2 or higher is

required, but 3.7.1 is

recommended (marginally

gave the best results on

NCTC data from the Circlator

publication, tested on all

SPAdes versions 3.6.2-3.9.0).

Python 3

Works on: Fragment Overlap, Genome

Overlap, Missing Region

Fragment Overlap, Genome

Overlap

Speed (default behaviour): Slow: > 4 minutes for 3GB

genome circularization.

Fast: < 1 minute for 3GB

genome circularization.

Note: Speed benchmarks for Simple-Circularise were performed on Dell XPS 15 laptop, with 16GB

RAM and i7-7700 HQ CPU, Circlator speed benchmarks were taken from the supplementary

information of the original publication (Hunt et al., 2015).

2.3.4. Conclusions

Simple Circularise is an easy to use tool that allows metagenomic researchers to circularise

overlapped genome assemblies without having to install and run assembly software. As such

it has become a popular tool with metagenomic researchers. Since it was published on

GitHub it has been downloaded over forty times, starred (highlighted on another researcher’s

software page) and forked (incorporated into another researcher’s pipeline).

23

2.4. Bootstrap Jplace

2.4.1. Introduction

When partial gene fragments are assembled from a metagenomic sequencing run, to assess

biological diversity it is of interest to see where the fragments are located on a reference

phylogenetic tree. Creating a tree through standard alignment algorithms and tree builders is

not suitable for visualizing partial gene fragments as they align poorly with reference

sequences, so produce unrealistic trees with long branch lengths and low bootstrap values.

One solution conceived by the RaXML research group is the evolutionary placement

algorithm (EPA), instead of making additional branches, reads are assigned to the node

metadata and can be visualised as branch symbols (Berger, Krompass & Stamatakis, 2011).

This is useful as it results in neatly arranged trees that give information about the diversity of

short reads. EPA produces trees in a unique jplace format, which is supported by several tree

viewers including interactive Tree Of Life (iTOL) (Letunic & Bork, 2007).

One issue with the jplace format is that it cannot support bootstrap values, so it is impossible

to have a tree displaying both evolutionary placements of short reads and confidence values.

This is a frustrating for researchers who want to publish the results of EPA, and the current

solution is to publish two trees, one with confidence values (in newick format) and the other

with short read placements (in jplace format), side by side

(https://groups.google.com/forum/#!topic/raxml/V7ZS5dhffgQ).

 A computational solution to this problem is to to use the dataset feature included with iTOL;

this allows the labelling of a tree with additional metadata not included in the tree file. By

comparing the newick and jplace files it is possible to write a dataset file that can

retroactively label a jplace tree with bootstrap values.

2.4.2. Methods and Materials

Bootstrap Jplace is written in BASH and requires no additional dependencies to run (Code

Appendix, C4). It takes a reference tree in newick format and an EPA tree in jplace format as

input and produces a dataset that can be used to add bootstrap values to an EPA jplace tree

viewed on iTOL. For more information visit https://github.com/Kzra/Bootstrap-Jplace.The

script works by comparing the jplace and newick trees; it reads the bootstrap node values of

the newick tree and assigns them to the corresponding node on the jplace tree. It stores this

24

information in the format of an iTOL dataset, which can then be used to add bootstrap values

to the jplace format produced by EPA.

2.4.3. Results

Using the Bootstrap Jplace BASH script it is possible to create bootstrapped jplace trees

showing both placement information and confidence values.

A

C

B

Figure 6 Phylogenetic trees visualised on iTOL.

Tree (A) is a jplace tree showing evolutionary placement, tree (B) is a newick tree

showing bootstrap values and tree (C) is a combined tree made using Bootstrap

Jplace showing both placement position and bootstrap values.

25

Chapter 3: Virus and Prejudice: >80% of viral taxa on the NCBI taxonomy

database belong to five genera, all infectious to humans.

3.1. Summary

Viruses are the most abundant biological entity on the planet; despite this, our understanding

of viruses is heavily skewed toward those that cause or are associated with disease in humans.

To quantify the scale of this bias, this study performed a comprehensive host analysis of virus

taxonIDs in the NCBI taxonomy database. The analysis was performed using VHost-

Classifier, a program that uses a natural language processing algorithm to assign a host to a

virus based on words in its name. More than 80% of virus taxonIDs belong to just five genera

of viruses, all of which are pathogenic to humans; moreover, virus taxonIDs were assigned to

only 39 host phyla, which is less than 20% of the phyla identified from nature. Understanding

the current sequencing effort bias highlights the vast reservoir of unexplored genetic diversity

in viruses and reveals neglected areas of concern, include viruses of antibiotic producing

bacteria, zoonotic viruses, viruses infecting wild animals and plants, and viruses of microbes

that play key roles in biogeochemical cycling and carbon sequestration.

3.2. Background

Viruses have been studied for decades; yet, there is a lack of knowledge about the overall

host range of viruses we have described (i.e. how phylogenetically diverse are the hosts of

sequenced viruses), and the weighting of published virus genomes per host taxon (i.e. for a

given host genus, family, order etc. how many virus sequences are published on NCBI?).

This lack of knowledge may in part be due to difficulties in assigning viruses to organismal

hosts. One issue is that viruses cultured in the laboratory may be isolated from a host but

infect a different host in nature. Another is that an increasing number of viruses are

discovered through metagenomics and, therefore, lack cultured representatives with host

information. Finally, a single virus may be able to infect cells belonging to different species;

thus, designating a single host can be subjective. Nevertheless, many virus genomes are

published with a host organism in the name and supporting metadata, and it is therefore

possible to get at least a coarse overview of virus-host assignment. Two reasons to be

interested in virus host assignment are outlined in the following paragraphs.

First, it is useful to know the number of described viruses that are associated with each host

taxonomic rank. For example, how many viruses have been sequenced for each of the

26

recognized 226 phyla of organisms, one of the most basal ranks? If the number is low, it

suggests there is a wealth of untapped viral genetic information to be discovered, as viruses

are genetically specialised to their host organism(s).

Second, quantifying the scale of anthropocentric bias in the selection of viruses that are

sequenced, can help guide future sequencing efforts. It is unsurprising that most sequenced

viruses cause human disease, but this bias ignores emerging concerns of zoonosis, the

transmission of viral infections from one host species to another, which can occur between

distantly related organisms (Yolken et al., 2014). Recent studies estimate that unknown

viruses account for over 99.9% of potential zoonoses (Carroll et al., 2018b). If only viruses

associated with known human diseases are sequenced, it handicaps our ability to recognize

emerging zoonotic diseases. In order to prevent significant loss of life during the early stages

of an outbreak, epidemiologists need to act on sequence data within a matter of weeks

(Gardy, Loman & Rambaut, 2015). Retroactively sequencing a new pathogen is not nearly as

effective as having a database of sequence information about related pathogens in advance.

In this chapter I use Natural Language Processing (NLP), the interpretation of human

language by computers, to process virus names using rules of the English language and

taxonomic naming conventions to predict their hosts. I use VHost-Classifier, a NLP

algorithm to assign a host to the current 191,463 viruses with taxonIDs in the NCBI

taxonomy database.

3.3. Materials and methods

3.3.1 Virus Host Classification

Virus host classification was performed on all 191,463 virus taxon IDs (vtaxonIDs) in the

NCBI taxonomy database downloaded in late June 2018. Virus classification was done using

VHost-Classifier, a program that predicts viral hosts based on words in the names of the

viruses; it then groups viruses based on the evolutionary lineage of their predicted host

(Kitson & Suttle, 2019). For more information visit: https://github.com/Kzra/VHost-

Classifier. (Code Appendix, C1).

VHost-Classifier assigned a host at the resolution of phylum, class, order and family to 95%,

93%, 43% and 37% of viruses in the NCBI database, respectively. The 5% of viruses for

which the software did not assign a host, were largely environmental viruses with no host

information in the name.

https://github.com/Kzra/VHost-Classifier
https://github.com/Kzra/VHost-Classifier

27

The raw results from the virus host classification used to make the analyses presented in the

results are available on the Github page.

3.3.2. Rank Information

Data on phyla, order, class and genera of hosts were downloaded from NCBI taxonomy in

late June 2018.

3.4. Results

3.4.1. For each taxonomic rank the majority of potential host taxa did not have viruses

assigned to them.

First, to see the coverage of viruses for each rank, the number of taxa in a rank to which virus

taxa were assigned was compared to the total number of taxa in that rank. At the highest

taxonomic resolution, virus taxonIDs were assigned to 39 phyla of a total of 226. The best

coverage was for Eukaryota (38%) and the worst for Bacteria (9.2%). At the lowest

taxonomic resolution, viruses were assigned to 738 out of 8881 families. The best coverage

was for Archaea (27.27%) and the worst for Eukaryota (7.60%). The best overall coverage

was for class (27.16%) and the worst for family (8.32%) (Table 4). It is important to note that

ranks (in terms of genetic distance) are not directly comparable between super kingdoms, nor

are the bacterial and eukaryotic taxonomic trees resolved to the same extent; this may account

for the opposite trends in coverage from Phylum to Family between Bacteria and Eukaryota.

28

Table 4: Viruses assigned to rank.

Viruses

Assigned

Total Number % Coverage

Phylum

Archaea

Bacteria

Eukaryota

39

4

14

21

226

22

152

55

17.26

18.18

9.21

38.18

Class

Archaea

Bacteria

Eukaryota

93

7

23

62

335

16

90

229

27.76

43.75

25.55

27.07

Order

Archaea

Bacteria

Eukaryota

311

10

57

244

1471

26

203

1233

21.14

38.46

28.08

19.79

Family

Archaea

Bacteria

Eukaryota

738

12

102

624

8881

44

492

8210

8.32

27.27

20.73

7.60

29

3.4.2. The host distribution of published virus taxa is disproportionately skewed toward

certain host taxa.

Next, among the host taxa for which viruses were assigned, the ten taxa with the most viruses

assigned were plotted. Virus sequencing efforts are heavily biased towards viruses of birds

and mammals, in particular the families comprising humans (Hominidae), pigs (Suidae),

waterfowl (Anatidae) and chickens (Phasianidae). Chordates are hosts to above 90% of the

viruses, based on the virus taxonIDs on NCBI, while Aves and Mammals account for 52%

and 45%, respectively. The high numbers of virus taxonIDs assigned to Aves in the rank of

class is likely an artefact of the VHost-Classifier analysis which assigns Influenza A subtypes

without host information in the name to Aves. (Figure 6). In reality, based on naming

convention (Anonymous, 1980) these should be assigned to human hosts.

Figure 7 Hosts of Viruses. Hosts of virus taxa classified to phylum, class, order and family rank. The

top ten hosts for each rank are shown; other comprises all other hosts within that rank. Virus taxonIDs

to which a rank couldn’t be assigned are not shown.

30

3.4.3. The number of members within a host taxon is a moderate predictor of the

number of viruses assigned to that taxon.

To determine whether the number of taxa within a class is related to the number of virus

taxonIDs assigned to that class, 91 classes with virus taxonIDs assigned to them were plotted

against the number of taxonIDs assigned to each class. There was a moderate correlation

between the number of taxonIDs within a class and the number of virus taxonIDs assigned to

that class (τb = .55, p = 4e-14), even if chordates are excluded (τb = .52, p = 6e-12).

Especially neglected classes are Insecta and Gammaproteobacteria, while overrepresented

classes include viruses of Chordates (Aves, Mammalia), as well as the Mamiellophyceae

(Green Algae) & Meristoma (Horseshoe crabs). (Figure 7)

Figure 8: Scatter plot of Class Size against Viruses. The number of taxonIDs within a class was

plotted against the number of virus taxonIDs assigned that class. Members of the phylum Chordata

are shown in red. Notable outliers have been labelled.

31

3.4.4. The overrepresentation of Chordata is accounted for by high sequencing of

human infectious viruses.

To determine the reason for the high number of viral taxa assigned to Chordates, the number

of virus taxonIDs in the five viral genera with the most virus taxonIDs on the NCBI

taxonomy database was plotted. More than 80% of all virus taxonIDs on the NCBI taxonomy

database are accounted for by five genera, all of which can be pathogenic to humans.

Influenza A, whose primary host is Aves, accounted for >55% of virus taxonIDs; whereas,

Norovirus, Influenza B, HIV-1 and Sapovirus, which infect humans and other mammals,

accounted for >20% of virus taxonIDs (Figure 8).

Figure 9: Viruses Infecting Chordates. The top-five virus genera or species that infect chordates

organised by number of published genomes. The red line shows the % of all virus taxonIDs that these

taxa account for.

32

3.4.5. In bacteriophages there is a bias toward medically relevant taxa.

To see whether a similar anthropocentric bias applies to viruses of bacteria, the number of

published bacteriophages was plotted against host taxa. The sequencing bias for viruses of

bacteria is less uneven than for all viruses. However, there is still a notable bias toward

viruses of Proteobacteria, in particular the family Enterobacteriacea which contains

pathogens such as members of the genera Salmonella, Escherechia, Klebsiella and Shigella;

also highly represented are viruses of Firmicutes and Actinobacteria, phyla of gram-positive

bacteria. Firmicutes includes the order Lactobacillales, members of which are involved in

bio-industrial processes such as carbohydrate fermentation, as well as medically relevant taxa

such as members of the families Streptococccaceae (Streptococcus spp.) and Bacillaceae

(Staphylocccus spp.). Actinobacteria contains the Mycobateriaceae, members of which

include the pathogens that cause leprosy (Mycobacterium leprae) and tuberculosis

(Mycobacterium tuberculosis) (Figure 9).

Figure 10: Hosts of Bacteriophages. Hosts of published bacteriophages classified to the ranks of

phylum, class, order and family. The top-ten hosts for each rank are shown; “other” comprises all

other hosts within that rank. Virus taxonIDs to which a rank couldn’t be assigned are not shown.

33

3.5. Discussion

Despite the immense diversity of viruses, sequencing efforts are heavily skewed toward

viruses infecting a few host taxa. More than 80% of virus taxonIDs on the NCBI taxonomy

database belong to only five genera, while no viruses have been assigned to >80% of

potential host phyla. This highlights how little of virus diversity has been explored.

Sequencing efforts for viruses have been largely focused on those which are known causative

agents of human disease. Efforts to explore viral diversity more broadly have been modest,

including potential zoonotic viruses from other species. This is important because a zoonotic

epidemic will potentially be deadlier if caused be a completely unknown virus, as it may

delay the development of an effective treatment and epidemiological strategy (Gardy, Loman

& Rambaut, 2015).

In order to address the deficit in our understanding of potentially zoonotic viruses, in 2018

the Global Virome Project (GVP) was initiated(Carroll et al., 2018a). The project has

identified 25 viral families which infect mammals and birds, which include up to 827,000

zoonotic viruses. The project is focussed on sequencing most of these viruses in the next ten

years and has assembled a wide range of stakeholders, including members of industry,

academia and inter-governmental organisations in order to do so. Using current sequencing

technology the projected cost is 7 billion USD, but it is anticipated that sequencing costs will

continue to decline (Anon, n.d.).

Projects like the GVP may increase our knowledge of viruses of birds and mammals, but not

of viruses in more diverse hosts. This is an issue because viruses play crucial roles from

biogeochemical cycling in soils and oceans, to controlling microbial community composition

in bioreactors such as sewage treatment systems, or of the microbial consortia in the guts of

organisms from termites to elephants.

 Global warming is predicted to dysregulate virus-host interactions that govern environmental

biomes to an unprecedented degree (Danovaro et al., 2011; Roberts et al., 2018), which in

turn could affect fundamental biogeochemical processes and the industrial use of

microorganisms. In order to understand the impact that global warming and climate change

will have on microbial communities, it is essential to understand the viruses infecting them.

An additional reason to isolate and sequence viruses from a broad range of hosts is the wealth

of new genetic information the viruses will contain. The isolation of two bacteriophages,

34

lambda and T4, uncovered genetic tools that shaped molecular biology for a century

(Delbrück, 1940; Lederberg & Lederberg, 1953). Given that for >90% of bacterial phyla

there are no corresponding virus taxonIDs in NCBI taxonomy, there is a high potential to

discover new viruses with biotechnological application.

Metagenomics is a field that is helping to diversify the hosts of sequenced viruses. The

advent of viral metagenomic sequencing over a decade ago uncovered a wealth of virus

genomes with no recognizable similarity to known sequences (Edwards & Rohwer, 2005;

Angly et al., 2006). Metagenomic sequencing is being used to explore microbial diversity at

high resolution across the planet (Whon et al., 2012; Mizuno et al., 2016; Roux et al., 2016).

The results often uncover a plethora of new viruses infecting microbial life including protists

(Flaviani et al., 2017), cyanobacteria (Flores-Uribe et al., 2018) and Bacteriodetes (Dutilh et

al., 2014).

However, environmental sequences still only contribute a small minority of the total virus

taxonIDs on NCBI Taxonomy (unpublished data). Moreover, host information is often absent

from metagenomically assembled virus genomes, and thus cannot be processed using VHost-

Classifier. Metagenomics may provide many new virus sequences belonging to new species,

but they are not named sufficiently to predict the hosts they infect. This trend is unlikely to

change as the ICTV (International Committee on Taxonomy of Viruses) does not require that

new taxa are named after their host (King et al., 2018), to predict a host for newly sequenced

viruses, analysis of the sequence submission metadata may be required.

It is important to consider several caveats when interpreting the results presented in this

chapter. First, the analysis was done based on all the viruses with taxon IDs in the NCBI

taxonomy database. This is not the same as a comprehensive analysis of all sequenced virus

genomes, as not all virus genome submissions to GenBank are assigned a virus taxonID on

NCBI. Additionally, some NCBI virus taxon IDs refer to taxonomic ranks not associated with

a particular genome (e.g. virus subfamilies or genera), while other virus taxonIDs are

associated with several genomes. However, analysing virus taxonIDs does give a robust

indication of sequencing trend, as most published virus genomes are assigned a virus taxon

ID.

The software was unable to assign a host to about 5% of viruses on NCBI Taxonomy, most of

which were environmental sequences without host information in the name. We have not

manually ascertained what hosts each of these viruses infect; if the majority don’t infect

35

Chordates, their exclusion may have exaggerated the reported sequencing bias. Another

shortcoming of the software is that it assigned Influenza A viruses that do not have host

information in the name to the class ‘Aves’; many of these viruses may infect humans, as the

Influenza WHO naming conventions only require host information to be present in the name

of viruses that do not infect humans (Anonymous, 1980). Correcting for this in subsequent

analysis would skew the host weighting further toward mammals and increase the coverage

of virus taxonIDs in the database at the resolution of Order and Family.

In the analysis of virus taxonIDs, virus-host pairings were made by parsing words in the virus

names. By assigning a single host based on the virus name, the potential for a virus to infect

multiple hosts is ignored and it is assumed that the host included in the virus name is

accurate. For viruses published without cultivation it is not possible to state that the host

assignment is correct. Nonetheless, most virus genomes in NCBI are from viruses in culture,

and most viruses are thought to be host specific; thus, the approach of assigning a virus to a

single host taxon, is reasonably robust.

Recently NCBI Virus has released an experimental interface which connects GenBank virus

accessions with host information; as of 10 April 2019 there were 200,217 complete virus

genomes, a large proportion of which have been assigned a host (Brister et al., 2015).

Analysing the host distribution of viruses in this dataset would provide secondary validation

of the trends described here.

The results of this study give quantitative support to the virus sequencing bias that has

already been identified (Carroll et al., 2018a). They should encourage further exploration of

the Earth’s virosphere in the example of initiatives such as the Tara Oceans Project and the

Global Virome Project (Bork et al., 2015; Carroll et al., 2018a). This study also highlights the

power of simple NLP algorithms when applied to biological metadata. Analysing biological

metadata (i.e. data describing the contents of biological data) uncovers trends in the overall

sequencing and publication of biological data that might be missed when our focus is on

single studies. These trends may be used to infer socioeconomic factors that bias the way

biological research is undertaken and to highlight research areas that are currently neglected.

To date, few studies have made use of biological metadata, and it remains a powerful

untapped resource.

36

References

Angly, F.E., Felts, B., Breitbart, M., Salamon, P., et al. (2006) The Marine Viromes of Four

Oceanic Regions Nancy A Moran (ed.). PLoS Biology. [Online] 4 (11), e368. Available

from: doi:10.1371/journal.pbio.0040368 [Accessed: 13 March 2019].

Anon (1980) A revision of the system of nomenclature for influenza viruses: a WHO

memorandum. [Online] 58 (4), 585–591. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/6969132 [Accessed: 11 April 2019].

Anon (n.d.) Bioinformatics.

Anon (n.d.) DNA Sequencing Costs: Data - National Human Genome Research Institute

(NHGRI). [Online]. Available from: https://www.genome.gov/27541954/dna-

sequencing-costs-data/ [Accessed: 3 January 2019b].

Berger, S.A., Krompass, D. & Stamatakis, A. (2011) Performance, Accuracy, and Web

Server for Evolutionary Placement of Short Sequence Reads under Maximum

Likelihood. Systematic Biology. [Online] 60 (3), 291–302. Available from:

doi:10.1093/sysbio/syr010 [Accessed: 21 November 2018].

Bork, P., Bowler, C., de Vargas, C., Gorsky, G., et al. (2015) Tara Oceans. Tara Oceans

studies plankton at planetary scale. Introduction. Science (New York, N.Y.). [Online] 348

(6237), 873. Available from: doi:10.1126/science.aac5605 [Accessed: 13 March 2019].

Brister, J.R., Ako-adjei, D., Bao, Y. & Blinkova, O. (2015) NCBI Viral Genomes Resource.

Nucleic Acids Research. [Online] 43 (D1), D571–D577. Available from:

doi:10.1093/nar/gku1207 [Accessed: 11 April 2019].

Buchfink, B., Xie, C. & Huson, D.H. (2015) Fast and sensitive protein alignment using

DIAMOND. Nature Methods. [Online] 12 (1), 59–60. Available from:

doi:10.1038/nmeth.3176 [Accessed: 22 November 2018].

Carroll, D., Daszak, P., Wolfe, N.D., Gao, G.F., et al. (2018a) The Global Virome Project.

Science. [Online] 359 (6378), 872 LP-874. Available from:

doi:10.1126/science.aap7463.

Carroll, D., Watson, B., Togami, E., Daszak, P., et al. (2018b) Building a global atlas of

zoonotic viruses. Bulletin of the World Health Organization. [Online] 96 (4), 292–294.

37

Available from: doi:10.2471/BLT.17.205005 [Accessed: 22 November 2018].

Casjens, S. (2003) Prophages and bacterial genomics: what have we learned so far?

Molecular Microbiology. [Online] 49 (2), 277–300. Available from: doi:10.1046/j.1365-

2958.2003.03580.x [Accessed: 13 November 2018].

Czech, L., Huerta-Cepas, J. & Stamatakis, A. (2017) A Critical Review on the Use of Support

Values in Tree Viewers and Bioinformatics Toolkits. Molecular biology and evolution.

[Online] 34 (6), 1535–1542. Available from: doi:10.1093/molbev/msx055 [Accessed: 17

November 2018].

Dale, R., Grüning, B., Sjödin, A., Rowe, J., et al. (2017) Bioconda: A sustainable and

comprehensive software distribution for the life sciences. bioRxiv. [Online] 207092.

Available from: doi:10.1101/207092 [Accessed: 11 April 2019].

Danovaro, R., Corinaldesi, C., Dell’Anno, A., Fuhrman, J.A., et al. (2011) Marine viruses

and global climate change. FEMS Microbiology Reviews. [Online] 35 (6), 993–1034.

Available from: doi:10.1111/j.1574-6976.2010.00258.x [Accessed: 21 December 2018].

Delbrück, M. (1940) THE GROWTH OF BACTERIOPHAGE AND LYSIS OF THE HOST.

The Journal of general physiology. [Online] 23 (5), 643–660. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/19873180 [Accessed: 7 January 2019].

Dutilh, B.E., Cassman, N., McNair, K., Sanchez, S.E., et al. (2014) A highly abundant

bacteriophage discovered in the unknown sequences of human faecal metagenomes.

Nature Communications. [Online] 5 (1), 4498. Available from:

doi:10.1038/ncomms5498 [Accessed: 3 January 2019].

Edwards, R.A. & Rohwer, F. (2005) Viral metagenomics. Nature Reviews Microbiology.

[Online] 3 (6), 504–510. Available from: doi:10.1038/nrmicro1163 [Accessed: 13

November 2018].

Flaviani, F., Schroeder, D.C., Balestreri, C., Schroeder, J.L., et al. (2017) A Pelagic

Microbiome (Viruses to Protists) from a Small Cup of Seawater. Viruses. [Online] 9 (3).

Available from: doi:10.3390/v9030047 [Accessed: 3 January 2019].

Flores-Uribe, J., Philosof, A., Sharon, I. & Beja, O. (2018) A novel oceanic uncultured

temperate cyanophage lineage. bioRxiv. [Online] 325100. Available from:

doi:10.1101/325100 [Accessed: 3 January 2019].

38

Gardy, J., Loman, N.J. & Rambaut, A. (2015) Real-time digital pathogen surveillance — the

time is now. Genome Biology. [Online] 16 (1), 155. Available from:

doi:10.1186/s13059-015-0726-x [Accessed: 18 December 2018].

Garijo, D., Kinnings, S., Xie, L., Xie, L., et al. (2013) Quantifying reproducibility in

computational biology: the case of the tuberculosis drugome. PloS one. [Online] 8 (11),

e80278. Available from: doi:10.1371/journal.pone.0080278 [Accessed: 17 November

2018].

Gonçalves, R.S. & Musen, M.A. (2019) The variable quality of metadata about biological

samples used in biomedical experiments. Scientific Data. [Online] 6, 190021. Available

from: doi:10.1038/sdata.2019.21 [Accessed: 1 April 2019].

ten Hoopen, P., Finn, R.D., Bongo, L.A., Corre, E., et al. (2017) The metagenomic data life-

cycle: standards and best practices. GigaScience. [Online] 6 (8), 1–11. Available from:

doi:10.1093/gigascience/gix047 [Accessed: 20 November 2018].

Hucka, M., Nickerson, D.P., Bader, G.D., Bergmann, F.T., et al. (2015) Promoting

Coordinated Development of Community-Based Information Standards for Modeling in

Biology: The COMBINE Initiative. Frontiers in bioengineering and biotechnology.

[Online] 3, 19. Available from: doi:10.3389/fbioe.2015.00019 [Accessed: 19 November

2018].

Hunt, M., Silva, N. De, Otto, T.D., Parkhill, J., et al. (2015) Circlator: automated

circularization of genome assemblies using long sequencing reads. Genome biology.

[Online] 16, 294. Available from: doi:10.1186/s13059-015-0849-0 [Accessed: 21

November 2018].

Huson, D.H., Auch, A.F., Qi, J. & Schuster, S.C. (2007) MEGAN analysis of metagenomic

data. Genome research. [Online] 17 (3), 377–386. Available from:

doi:10.1101/gr.5969107 [Accessed: 21 November 2018].

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., et al. (2012) Geneious Basic: An

integrated and extendable desktop software platform for the organization and analysis of

sequence data. Bioinformatics. [Online] 28 (12), 1647–1649. Available from:

doi:10.1093/bioinformatics/bts199 [Accessed: 17 December 2018].

King, A.M.Q., Lefkowitz, E.J., Mushegian, A.R., Adams, M.J., et al. (2018) Changes to

39

taxonomy and the International Code of Virus Classification and Nomenclature ratified

by the International Committee on Taxonomy of Viruses (2018). Archives of Virology.

[Online] 163 (9), 2601–2631. Available from: doi:10.1007/s00705-018-3847-1

[Accessed: 11 April 2019].

Kitson, E. & Suttle, C.A. (2019) VHost-Classifier: Virus-Host Classification using natural

language processing Jonathan Wren (ed.). Bioinformatics. [Online] Available from:

doi:10.1093/bioinformatics/btz151 [Accessed: 3 March 2019].

Lederberg, E.M. & Lederberg, J. (1953) Genetic Studies of Lysogenicity in Escherichia Coli.

Genetics. [Online] 38 (1), 51–64. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/17247421 [Accessed: 7 January 2019].

Leonard, S.A., Littlejohn, T.G. & Baxevanis, A.D. (2007) Common File Formats. In: Current

Protocols in Bioinformatics. [Online]. Hoboken, NJ, USA, John Wiley & Sons, Inc. p.

Appendix 1B. Available from: doi:10.1002/0471250953.bia01bs16 [Accessed: 19

November 2018].

Letunic, I. & Bork, P. (2007) Interactive Tree Of Life (iTOL): an online tool for phylogenetic

tree display and annotation. Bioinformatics. [Online] 23 (1), 127–128. Available from:

doi:10.1093/bioinformatics/btl529 [Accessed: 22 November 2018].

Matsen, F.A., Kodner, R.B. & Armbrust, E.V. (2010) pplacer: linear time maximum-

likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference

tree. BMC Bioinformatics. [Online] 11 (1), 538. Available from: doi:10.1186/1471-

2105-11-538 [Accessed: 3 January 2019].

McGinnis, S. & Madden, T.L. (2004) BLAST: at the core of a powerful and diverse set of

sequence analysis tools. Nucleic Acids Research. [Online] 32 (Web Server), W20–W25.

Available from: doi:10.1093/nar/gkh435 [Accessed: 3 January 2019].

von Mering, C., Hugenholtz, P., Raes, J., Tringe, S.G., et al. (2007) Quantitative phylogenetic

assessment of microbial communities in diverse environments. Science (New York,

N.Y.). [Online] 315 (5815), 1126–1130. Available from: doi:10.1126/science.1133420

[Accessed: 22 November 2018].

Mizuno, C.M., Ghai, R., Saghaï, A., López-García, P., et al. (2016) Genomes of Abundant

and Widespread Viruses from the Deep Ocean. mBio. [Online] 7 (4). Available from:

40

doi:10.1128/mBio.00805-16 [Accessed: 3 January 2019].

Vitantonio Pantaleo & Michela Chiumenti (eds.) (2018) Viral Metagenomics. Methods in

Molecular Biology. [Online]. New York, NY, Springer New York. Available from:

doi:10.1007/978-1-4939-7683-6 [Accessed: 13 November 2018].

Perry, S.C. & Beiko, R.G. (2010) Distinguishing microbial genome fragments based on their

composition: evolutionary and comparative genomic perspectives. Genome biology and

evolution. [Online] 2, 117–131. Available from: doi:10.1093/gbe/evq004 [Accessed: 22

November 2018].

Phillippy, A.M., Schatz, M.C. & Pop, M. (2008) Genome assembly forensics: finding the

elusive mis-assembly. Genome biology. [Online] 9 (3), R55. Available from:

doi:10.1186/gb-2008-9-3-r55 [Accessed: 21 November 2018].

Ren, J., Ahlgren, N.A., Lu, Y.Y., Fuhrman, J.A., et al. (2017) VirFinder: a novel k-mer based

tool for identifying viral sequences from assembled metagenomic data. Microbiome.

[Online] 5 (1), 69. Available from: doi:10.1186/s40168-017-0283-5 [Accessed: 3

January 2019].

Roberts, K.E., Hadfield, J.D., Sharma, M.D. & Longdon, B. (2018) Changes in temperature

alter the potential outcomes of virus host shifts David S. Schneider (ed.). PLOS

Pathogens. [Online] 14 (10), e1007185. Available from:

doi:10.1371/journal.ppat.1007185 [Accessed: 3 January 2019].

Rodriguez, N., Pettit, J.-B., Dalle Pezze, P., Li, L., et al. (2016) The systems biology format

converter. BMC bioinformatics. [Online] 17, 154. Available from: doi:10.1186/s12859-

016-1000-2 [Accessed: 19 November 2018].

Rose, R., Constantinides, B., Tapinos, A., Robertson, D.L., et al. (2016) Challenges in the

analysis of viral metagenomes. Virus evolution. [Online] 2 (2), vew022. Available from:

doi:10.1093/ve/vew022 [Accessed: 3 January 2019].

Roux, S., Brum, J.R., Dutilh, B.E., Sunagawa, S., et al. (2016) Ecogenomics and potential

biogeochemical impacts of globally abundant ocean viruses. Nature. [Online] 537

(7622), 689–693. Available from: doi:10.1038/nature19366 [Accessed: 13 March 2019].

Schulz, F., Alteio, L., Goudeau, D., Ryan, E.M., et al. (2018) Hidden diversity of soil giant

viruses. Nature Communications. [Online] 9 (1), 4881. Available from:

41

doi:10.1038/s41467-018-07335-2 [Accessed: 23 November 2018].

Sczyrba, A., Hofmann, P., Belmann, P., Koslicki, D., et al. (2017) Critical Assessment of

Metagenome Interpretation—a benchmark of metagenomics software. Nature Methods.

[Online] 14 (11), 1063–1071. Available from: doi:10.1038/nmeth.4458 [Accessed: 21

November 2018].

STERK, P., HIRSCHMAN, L., FIELD, D. & WOOLEY, J. (2009) GENOMIC

STANDARDS CONSORTIUM WORKSHOP: In: Biocomputing 2010. [Online].

WORLD SCIENTIFIC. pp. 481–484. Available from:

doi:10.1142/9789814295291_0050 [Accessed: 20 November 2018].

Suttle, C.A. (2007) Marine viruses — major players in the global ecosystem. Nature Reviews

Microbiology. [Online] 5 (10), 801–812. Available from: doi:10.1038/nrmicro1750

[Accessed: 11 March 2019].

Thurber, R. V, Haynes, M., Breitbart, M., Wegley, L., et al. (2009) Laboratory procedures to

generate viral metagenomes. Nature Protocols. [Online] 4 (4), 470–483. Available from:

doi:10.1038/nprot.2009.10 [Accessed: 20 November 2018].

Di Tommaso, P., Palumbo, E., Chatzou, M., Prieto, P., et al. (2015) The impact of Docker

containers on the performance of genomic pipelines. PeerJ. [Online] 3, e1273. Available

from: doi:10.7717/peerj.1273 [Accessed: 17 November 2018].

Turnbaugh, P.J., Ley, R.E., Hamady, M., Fraser-Liggett, C.M., et al. (2007) The human

microbiome project. Nature. [Online] 449 (7164), 804–810. Available from:

doi:10.1038/nature06244 [Accessed: 8 January 2019].

Uyaguari-Diaz, M.I., Chan, M., Chaban, B.L., Croxen, M.A., et al. (2016) A comprehensive

method for amplicon-based and metagenomic characterization of viruses, bacteria, and

eukaryotes in freshwater samples. Microbiome. [Online] 4 (1), 20. Available from:

doi:10.1186/s40168-016-0166-1 [Accessed: 21 November 2018].

Whon, T.W., Kim, M.-S., Roh, S.W., Shin, N.-R., et al. (2012) Metagenomic

Characterization of Airborne Viral DNA Diversity in the Near-Surface Atmosphere.

Journal of Virology. [Online] 86 (15), 8221–8231. Available from:

doi:10.1128/JVI.00293-12 [Accessed: 3 January 2019].

Yolken, R.H., Jones-Brando, L., Dunigan, D.D., Kannan, G., et al. (2014) Chlorovirus

42

ATCV-1 is part of the human oropharyngeal virome and is associated with changes in

cognitive functions in humans and mice. Proceedings of the National Academy of

Sciences of the United States of America. [Online] 111 (45), 16106–16111. Available

from: doi:10.1073/pnas.1418895111 [Accessed: 22 November 2018].

Zhang, Y. & Sun, Y. (2011) HMM-FRAME: accurate protein domain classification for

metagenomic sequences containing frameshift errors. BMC Bioinformatics. [Online] 12

(1), 198. Available from: doi:10.1186/1471-2105-12-198 [Accessed: 22 November

2018].

Zhong, X. & Jacquet, S. (2014) Contrasting diversity of phycodnavirus signature genes in

two large and deep western European lakes. Environmental Microbiology. [Online] 16

(3), 759–773. Available from: doi:10.1111/1462-2920.12201 [Accessed: 23 November

2018].

AGE

43

CODE APPENDIX

The code below represents the most up to date software versions for each of the

computational tools described in Chapter 2.

C1: VHost-Classifier

-*- coding: utf-8 -*-

"""

Created on Sun May 27 17:20:30 2018

@author: Ezra

"""

#!usr/bin/env python 3

#FUNCTIONS

def tax_groups (choice):

 group_one = []

 group_two = []

 group_three = []

 #make groups Phylum class order or phylum order family

 with open ('Phyla_in_NCBI.txt') as phyla, open('Order_in_NCBI.txt') as Orders,

open('Class_in_NCBI.txt') as Classs, open('Families_in_NCBI.txt') as Families:

 pat = csv.reader(phyla)

 cat = csv.reader(Classs)

 oat = csv.reader(Orders)

 fat = csv.reader(Families)

 if choice == 'PCO':

 for rowe in pat:

 row = rowe[0]

 group_one.append(row)

 for rowe in cat:

 row = rowe[0]

 group_two.append(row)

 for rowe in oat:

 row = rowe[0]

 group_three.append(row)

 if choice == 'POF':

 for rowe in pat:

 row = rowe[0]

 group_one.append(row)

 for rowe in oat:

 row = rowe[0]

 group_two.append(row)

 for rowe in fat:

 row = rowe[0]

 group_three.append(row)

 #get rid of empty elements

 group_one = list(filter(None, group_one))

 group_one.append('NA')

 group_two = list(filter(None, group_two))

 group_two.append('NA')

 group_three = list(filter(None, group_three))

 group_three.append('NA')

 #sort out some discrepancy between databases

 if choice == 'PCO':

 group_three.append('Cetartiodactyla')

 if choice == 'POF':

 group_two.append('Cetartiodactyla')

 g1 = {}

 keys = range(len(group_one))

 values = group_one

44

 for i in keys:

 g1[values[i]] = [i]

 g2 = {}

 keys = range(len(group_two))

 values = group_two

 for i in keys:

 g2[values[i]] = [i]

 g3 = {}

 keys = range(len(group_three))

 values = group_three

 for i in keys:

 g3[values[i]] = [i]

 return g1,g2,g3,group_one,group_two,group_three

def host_locate(taxonID,genera):

 #don't worry about case

 rhost = 'NA'

 host = 'NA'

 #name_change- the direct viral prefix has a latin root so will misclassify. However it can

be useful to assign host.

 #If we have used it to assign host name_change = true and therefore don't delete it later

in code.

 #Ignore RHOST if we are looking at phage

 name_change = False

 taxonID = taxonID.lower()

 if 'virus' in taxonID:

 host = taxonID.split('virus')[0]

 rhost = taxonID.split('virus')[1]

 if 'phage' in taxonID:

 host = taxonID.split('phage')[0]

 if 'viridae' in taxonID:

 host = taxonID.split('viridae')[0]

 rhost = taxonID.split('viridae')[1]

 if 'viroid' in taxonID:

 host = taxonID.split('viroid')[0]

 rhost = taxonID.split('viroid')[1]

 if 'virinae' in taxonID:

 host = taxonID.split('virinae')[0]

 rhost = taxonID.split('virinae')[1]

 if 'satellite' in taxonID:

 host = taxonID.split('satellite')[0]

 rhost = taxonID.split('satellite')[1]

 if 'virales' in taxonID:

 host = taxonID.split('virales')[0]

 rhost = taxonID.split('virales')[1]

 if 'hiv-1' in taxonID or 'hiv-2' in taxonID:

 host = taxonID

 lhost = host.split(' ')

 rlhost = rhost.split(' ')

 ref = len(lhost)-1

 lhost = lhost+rlhost

 ##associated means it is not an isolate

 ##we ignore this - ver 13

 ##Common names are often used for common animals in place of genus species, this needs to

be corrected

 ###Might be best to turn this into a .csv file and read through it?

 count = range(0,len(lhost))

 for c,w in zip(count,lhost):

 #if there is a genus name, make the next word genus+species providing a) there is

a next word b) the next word isnt a comname or a sci name

 change = True

 for g in genera:

 if w == g:

 try:

 if lhost[c+1] == '':

 change = False

 break

 if change == True:

 for nam,sci in zip(comname,sciname):

 if lhost[c+1] == nam or lhost[c+1] == sci:

 change = False

 break

45

 if change == True:

 lhost[c+1] = lhost[c]+' '+lhost[c+1]

 break

 if change == False:

 break

 except:

 break

 ##convert common names to their scientific names so they can be used to look up

NCBI database

 for nam,sci in zip(comname,sciname):

 if nam == w:

 lhost[c] = sci

 ##if we are dealing with influenza, find the strain - check it isn't

illegitimate

 if w == 'influenza':

 try:

 lhost[c+4] = lhost[c+4].split('/')[1]

 for ifs in infstrains:

 ifstrain = ifs[0]

 if lhost[c+4] == ifstrain:

 lhost[c+4] = 'na'

 break

 except:

 pass

 if lhost[c+1] == 'a':

 lhost[c] = 'aves'

 elif lhost[c+1] == 'b' or lhost[c+1] == 'c':

 lhost[c] = 'mammalia'

 else:

 lhost[c] = 'mammalia'

 #move the influenza to the first position - spiny eel influenza virus

- pop deletes and returns element

 lhost.insert(0,lhost.pop(c))

 #if we are dealing with norovirus

 if w =='noro':

 try:

 lhost[c+2] = lhost[c+2].split('/')[0]

 except:

 pass

 ##if we have changed the virus prefix

 if lhost[c] == lhost[ref]:

 name_change = True

 lhost.insert(0,lhost.pop(c))

 break

 if name_change == False:

 lhost.remove(lhost[ref])

 ref = len(lhost)-1

 if ref > -1:

 while ref > -1:

 name2taxonID = ncbi.get_name_translator([lhost[ref]])

 if name2taxonID:

 break

 else:

 ref = ref-1

 else:

 name2taxonID = {}

 ##include the IMGER database

 return name2taxonID

def env_groups (iecos,iecoc,iecot,iecost):

 n = 0

 e = 0

 f = 0

 r = 0

 ecosys = ['']*1000

 ecocat = ['']*1000

 ecotyp = ['']*1000

 ecosub = ['']*1000

46

 ecos = iecos[1:len(iecos)]

 ecoc = iecoc[1:len(iecoc)]

 ecot = iecot[1:len(iecot)]

 ecost = iecost[1:len(iecost)]

 for item in ecos:

 if item not in ecosys:

 ecosys[n]=item

 n = n + 1

 for item in ecoc:

 if item not in ecocat:

 ecocat[e]=item

 e = e + 1

 for item in ecot:

 if item not in ecotyp:

 ecotyp[f]=item

 f = f+ 1

 for item in ecost:

 if item not in ecosub:

 ecosub[r]=item

 r = r+ 1

 #get rid of empty elements

 ecosys = list(filter(None, ecosys))

 ecosys.append('NA')

 ecocat = list(filter(None, ecocat))

 ecocat.append('NA')

 ecocat.append('Bioreactor')

 ecotyp = list(filter(None, ecotyp))

 ecotyp.append('NA')

 ecosub = list(filter(None, ecosub))

 ecosub.append('NA')

 e1 = {}

 keys = range(len(ecosys))

 values = ecosys

 for i in keys:

 e1[values[i]] = [i]

 e2 = {}

 keys = range(len(ecocat))

 values = ecocat

 for i in keys:

 e2[values[i]] = [i]

 e3 = {}

 keys = range(len(ecotyp))

 values = ecotyp

 for i in keys:

 e3[values[i]] = [i]

 e4 = {}

 keys = range(len(ecosub))

 values = ecosub

 for i in keys:

 e4[values[i]] = [i]

 return e1,e2,e3,e4,ecosys,ecocat,ecotyp,ecosub

def environ_locate(name):

 name = name.lower()

 words = name.split(" ")

 ecoc = 'NA'

 ecos = 'NA'

 ecot = 'NA'

 ecost = 'NA'

 fd = False

 for w in words:

 if fd == True:

 break

 for nam,wa,wb,wc,wd in zip(dw,decoc,decos,decot,decost):

 if nam == w:

 ecos = wa

47

 ecoc = wb

 ecot = wc

 ecost = wd

 fd = True

 break

 return ecoc,ecos,ecot,ecost

##MAIN SCRIPT

#Initial filter of all the data for viruses

##The non-indent open and close here is a nice way to deal with multiple files that need to be

read/written simulataneously

If a taxon ID doesn't have a kingdom assignment - it won't have a name

#newline = '' used to make each entry go to row directly below

#INITALISE DATABASES

print('Initialising databases....')

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("Taxon_IDs", help="List of Taxon IDs to classify")

parser.add_argument("vhost_db", help ="Name of vhost file")

parser.add_argument("output_dir", help="Name of output directory")

parser.add_argument("-i","--index",type=int, help="value to index search terms from [default

0]")

parser.add_argument("-g","--groups",type=str,help="taxonomic groups to bin to [default PCO]")

parser.add_argument("-n","--names",type=str,help="parse file containing scientific names")

args = parser.parse_args()

if args.index:

 print ("Indexing search terms from:")

 print(str(args.index))

if args.names:

 print("parsing names file")

if args.groups == 'PCO':

 print('Classifying virus host to Phylum Class Order')

 choice = args.groups

elif args.groups == 'POF':

 print('Classifying virus host to Phylum Order Family')

 choice = args.groups

else:

 print('Classifying virus host to Phylum Class Order')

 choice = 'PCO'

import os

from ete3 import NCBITaxa

ncbi = NCBITaxa()

import csv

print('Filtering for viruses...')

##open com_sci

comname = []

sciname = []

cs2 = open('Common_to_Sci.csv')

comsci = csv.reader(cs2)

for row in comsci:

 comname.append(row[0])

 sciname.append(row[1])

##open word to env

dw = []

decoc = []

decos = []

48

decot = []

decost = []

wh = open('Word_to_Env.csv')

woho =csv.reader(wh)

for row in woho:

 dw.append(row[0])

 decoc.append(row[1])

 decos.append(row[2])

 decot.append(row[3])

 decost.append(row[4])

##create list of illegal influenza names

infstrains = []

with open('infstrains.txt') as ifs:

 infs = csv.reader(ifs)

 for row in infs:

 infstrains.append(row)

##initialise imger database

z1 = open('IMGER.csv', 'r')

imger = csv.reader(z1)

itaxonids = []

incbiids = []

ihost = []

iecos = []

iecoc = []

iecot = []

iecost = []

for rows in imger:

 incbiids.append(rows[7])

 ihost.append(rows[13])

 iecos.append(rows[8])

 iecoc.append(rows[9])

 iecost.append(rows[10])

 iecot.append(rows[11])

f2 = open(args.vhost_db, 'r')

c2 = csv.reader(f2,delimiter='\t')

vhostdb = list(c2)

##create taxonomic groups

(g1,g2,g3,group_one,group_two,group_three) = tax_groups(choice)

##create environmental groups

(e1,e2,e3,e4,ecosys,ecocat,ecotyp,ecosub) = env_groups(iecos,iecoc,iecot,iecost)

##need to remove the '/' character from the group list (this prevents the .csv file writing)

([s.strip('/') for s in group_one]) # remove the / from the string borders

group_one=([s.replace('/', '') for s in group_one]) # remove all the /s

([s.strip('/') for s in group_two]) # remove the 8 from the string borders

group_two=([s.replace('/', '') for s in group_two]) # remove all the /s

([s.strip('/') for s in group_three]) # remove the / from the string borders

group_three=([s.replace('/', '') for s in group_three]) # remove all the /s

#create genus list - used in binning

genera = []

import csv

with open ('Genus_in_NCBI.txt') as genus:

 sat = csv.reader(genus)

 for rowe in sat:

 row = rowe[0].lower()

 genera.append(row)

##BEGIN HOST ASSIGNMENT

print('Classifying hosts')

os.makedirs(args.output_dir,exist_ok=True)

e1 = open(args.Taxon_IDs, 'r')

49

##set this n to 0 to index from 0

n = 0

if args.index:

 n = args.index

os.chdir(args.output_dir)

with open('Virus.csv','w',newline='') as e3, open('Non-Virus.csv','w',newline='') as e4:

 d1 = csv.reader(e1)

 d3 = csv.writer(e3)

 d4 = csv.writer(e4)

 for row in d1:

 taxonID2name = ncbi.get_taxonID_translator([row[0]])

 ##deal with taxonids in ncbi but not in the database

 try:

 SN = (list(taxonID2name.values())[0])

 ##added below to support viruses not in NCBI

 except IndexError:

 if args.names:

 os.chdir('..')

 with open(args.names) as r1:

 #row.append(SN)

 t1 = csv.reader(r1)

 SN=[row for idx, row in enumerate(t1) if idx ==n]

 SN = SN[0][0]

 os.chdir(args.output_dir)

 else:

 SN = 'Not in database'

 SN = SN.lower()

 row.append(str(n))

 row.append(SN)

 if 'virus' in SN:

 d3.writerow(row)

 elif 'phage' in SN and not 'phagedenis' in SN:

 d3.writerow(row)

 elif 'viridae' in SN:

 d3.writerow(row)

 elif 'satellite' in SN:

 d3.writerow(row)

 elif 'virinae' in SN:

 d3.writerow(row)

 elif 'viroid' in SN:

 d3.writerow(row)

 elif 'hiv-1' in SN or 'hiv-2' in SN:

 d3.writerow(row)

 elif 'virales' in SN:

 d3.writerow(row)

 else:

 d4.writerow(row)

 n = n+1

Lifeform = ['Virus','NonVirus']

num_lines = ['Blank']*2

num_lines[0] = sum(1 for line in open('Virus.csv'))

num_lines[1] = sum(1 for line in open('Non-Virus.csv'))

with open ('Counts.csv','w') as counts:

 for i in zip(Lifeform,num_lines):

 co = csv.writer(counts)

 co.writerow(i)

e1.close()

os.makedirs('Virus',exist_ok=True)

f1 = open('Virus.csv', 'r')

os.chdir('Virus')

os.makedirs('Host Assigned',exist_ok=True)

os.chdir('Host Assigned')

f3 = open('Eukaryota.csv', 'w',newline='')

f4 = open('Bacteria.csv','w',newline='')

f5 = open('Virus.csv','w',newline='')

f6 = open('Archaea.csv','w',newline='')

c1 = csv.reader(f1)

c3 = csv.writer(f3)

c4 = csv.writer(f4)

c5 = csv.writer(f5)

50

c6 = csv.writer(f6)

icount = range(0,len(incbiids))

f9 = open('NAf.csv','w',newline='')

c9 = csv.writer(f9)

for row in c1:

 qtaxonID = row[0]

 qname = row[2]

 found = False

 ##First parse the vhostdb

 for master_row in vhostdb:

 dbtaxonID = master_row[0]

 host_name = master_row[8]

 if dbtaxonID == qtaxonID:

 #hn = [host_name.split(' ')[0]]

 name2taxonID = ncbi.get_name_translator([host_name])

 if 'root' in name2taxonID or 'bacteria' in name2taxonID:

 name2taxonID = []

 if not name2taxonID:

 pass

 else:

 row.append('VHostDB')

 found = True

 break

 if found == False:

 ##if not present try to predict the host

 name2taxonID = host_locate(qname,genera)

 try:

 lid = (list(name2taxonID.values())[0])

 except IndexError:

 c9.writerow(row)

 else:

 lineage = ncbi.get_lineage(lid[0])

 names = ncbi.get_taxonID_translator(lineage)

 lineage_trace = ([names[taxonID] for taxonID in lineage])

 ##deal with things not in NCBI

 while len(lineage_trace) < 3:

 lineage_trace.append('NA')

 gr1 = 'NA'

 for i in range(0,len(lineage_trace)):

 if lineage_trace[i] in group_one:

 gr1 = lineage_trace[i]

 gr2 = 'NA'

 for i in range(0,len(lineage_trace)):

 if lineage_trace[i] in group_two:

 gr2 = lineage_trace[i]

 gr3 = 'NA'

 for i in range(0,len(lineage_trace)):

 if lineage_trace[i] in group_three:

 gr3 = lineage_trace[i]

 if lineage_trace[2] == 'Eukaryota':

 c3.writerow(row)

 os.makedirs('Eukaryote',exist_ok=True)

 os.chdir('Eukaryote')

 key = g1[gr1]

 family = group_one[key[0]]

 d8 = open(family+'.csv','a',newline='')

 pr = csv.writer(d8)

 pr.writerow(row)

 d8.close()

 ##bin group 2 entries

 os.makedirs(gr1,exist_ok=True)

 os.chdir(gr1)

 key = g2[gr2]

 family = group_two[key[0]]

 ## 'a' to append to file

 d8 = open(family+'.csv','a',newline='')

 pr = csv.writer(d8)

 pr.writerow(row)

51

 d8.close()

 ####BIN GROUP 3

 os.makedirs(gr2,exist_ok=True)

 os.chdir(gr2)

 key = g3[gr3]

 family = group_three[key[0]]

 d8 = open(family+'.csv','a',newline='')

 pr = csv.writer(d8)

 pr.writerow(row)

 d8.close()

 os.chdir('../../..')

 elif lineage_trace[2] == 'Bacteria':

 c4.writerow(row)

 os.makedirs('Bacteria',exist_ok=True)

 os.chdir('Bacteria')

 key = g1[gr1]

 family = group_one[key[0]]

 d8 = open(family+'.csv','a',newline='')

 pr = csv.writer(d8)

 pr.writerow(row)

 d8.close()

 ####BIN GROUP 2 BACTERIA

 os.makedirs(family,exist_ok=True)

 os.chdir(family)

 key = g2[gr2]

 family = group_two[key[0]]

 d8 = open(family+'.csv','a',newline='')

 pr = csv.writer(d8)

 pr.writerow(row)

 d8.close()

 ####BIN GROUP 3 EBACTERIA

 os.makedirs(family,exist_ok=True)

 os.chdir(family)

 key = g3[gr3]

 family = group_three[key[0]]

 d8 = open(family+'.csv','a',newline='')

 pr = csv.writer(d8)

 pr.writerow(row)

 d8.close()

 os.chdir('../../..')

 elif lineage_trace[2] == 'Viruses':

 c5.writerow(row)

 #bin group 1 entries

 os.makedirs('Virus',exist_ok=True)

 os.chdir('Virus')

 key = g1[gr1]

 family = group_one[key[0]]

 d8 = open(family+'.csv','a',newline='')

 pr = csv.writer(d8)

 pr.writerow(row)

 d8.close()

 ####BIN GROUP 2 VIRUS

 os.makedirs(gr1,exist_ok=True)

 os.chdir(gr1)

 key = g2[gr2]

 family = group_two[key[0]]

 d8 = open(family+'.csv','a',newline='')

 pr = csv.writer(d8)

 pr.writerow(row)

 d8.close()

 ####BIN GROUP 3 VIRUS

 os.makedirs(gr2,exist_ok=True)

 os.chdir(gr2)

 key = g3[gr3]

 family = group_three[key[0]]

 d8 = open(family+'.csv','a',newline='')

 pr = csv.writer(d8)

 pr.writerow(row)

 d8.close()

 os.chdir('../../..')

 elif lineage_trace[2] == 'Archaea':

 c6.writerow(row)

 os.makedirs('Archaea',exist_ok=True)

 os.chdir('Archaea')

52

 key = g1[gr1]

 family = group_one[key[0]]

 d8 = open(family+'.csv','a',newline='')

 pr = csv.writer(d8)

 pr.writerow(row)

 d8.close()

 ####BIN GROUP 2 aRCHEA

 os.makedirs(gr1,exist_ok=True)

 os.chdir(gr1)

 key = g2[gr2]

 family = group_two[key[0]]

 d8 = open(family+'.csv','a',newline='')

 pr = csv.writer(d8)

 pr.writerow(row)

 d8.close()

 ####BIN GROUP 3 ARCHEA

 os.makedirs(gr2,exist_ok=True)

 os.chdir(gr2)

 key = g3[gr3]

 family = group_three[key[0]]

 d8 = open(family+'.csv','a',newline='')

 pr = csv.writer(d8)

 os.chdir('../../..')

 pr.writerow(row)

 d8.close()

 else:

 c9.writerow(row)

cs2.close()

f3.close()

f4.close()

f5.close()

f6.close()

f9.close()

#Begin Host_Counts

print('Counting host assignments....')

super_kingdoms = ['Eukaryota','Bacteria','Virus','Archaea','NA']

num_lines = ['Blank']*5

num_lines[0] = sum(1 for line in open('Eukaryota.csv'))

num_lines[1] = sum(1 for line in open('Bacteria.csv'))

num_lines[2] = sum(1 for line in open('Virus.csv'))

num_lines[3] = sum(1 for line in open('Archaea.csv'))

num_lines[4] = sum(1 for line in open('NAf.csv'))

with open ('Counts.csv','w') as counts:

 for i in zip(super_kingdoms,num_lines):

 co = csv.writer(counts)

 co.writerow(i)

##This will go through and do all the rest of counting

for fname in os.listdir():

 path = fname

 if os.path.isdir(path):

 os.chdir(path)

 for g in group_one:

 try:

 d8 = open('COUNTS.csv','a',newline='')

 pr = csv.writer(d8)

 num_lines = sum(1 for line in open(g+'.csv'))

 i = [g]+ [str(num_lines)]

 pr.writerow(i)

 d8.close()

 ###group 2 counts

 os.chdir(g)

 for g2 in group_two:

 try:

53

 d8 = open('COUNTS.csv','a',newline='')

 pr = csv.writer(d8)

 num_lines = sum(1 for line in open(g2+'.csv'))

 i = [g2]+ [str(num_lines)]

 pr.writerow(i)

 d8.close()

 os.chdir(g2)

 for g3 in group_three:

 try:

 d8 = open('COUNTS.csv','a',newline='')

 pr = csv.writer(d8)

 num_lines = sum(1 for line in open(g3+'.csv'))

 i = [g3]+ [str(num_lines)]

 pr.writerow(i)

 d8.close()

 except FileNotFoundError:

 pass

 os.chdir('..')

 except FileNotFoundError:

 pass

 os.chdir('..')

 except FileNotFoundError:

 pass

 os.chdir('..')

##

###BIN UNASSIGNED HOSTS

##

print('Classifying unassigned viruses....')

z2 = open('NAf.csv','r')

sourceids = csv.reader(z2)

os.chdir('..')

#VSource-Classifier

#Take all the unassigned hits and run through IMG ER database to assign to environment.

#Create a dictionary function like for the vhost-db to define the groups

os.makedirs('Host Unassigned')

os.chdir('Host Unassigned')

count = range(0,len(incbiids))

for results_row in sourceids:

 tids = results_row[0]

 name = results_row[2]

 found = False

 ##first use the imger database

 for c,incbi in zip(count,incbiids):

 if tids == incbi:

 found = True

 ecos = iecos[c]

 ecoc = iecoc[c]

 ecot = iecot[c]

 ecost = iecost[c]

 if not ecos:

 ecos = 'NA'

 if not ecoc:

 ecoc = 'NA'

 if not ecot:

 ecot = 'NA'

 if not ecost:

 ecost = 'NA'

 break

 ##if that doesn't work predict the environment

 if found == False:

 (ecoc,ecos,ecot,ecost) = environ_locate(name)

 if ecos == 'Host-associated':

 d8 = open(ecos+'.csv','a',newline='')

54

 pr = csv.writer(d8)

 pr.writerow(results_row)

 d8.close()

 ##BIN GROUP 1

 os.makedirs('Host-associated',exist_ok=True)

 os.chdir('Host-associated')

 d8 = open(ecoc+'.csv','a',newline='')

 pr = csv.writer(d8)

 pr.writerow(results_row)

 d8.close()

 ####BIN GROUP 2

 os.makedirs(ecoc,exist_ok=True)

 os.chdir(ecoc)

 d8 = open(ecot+'.csv','a',newline='')

 pr = csv.writer(d8)

 pr.writerow(results_row)

 d8.close()

 ####BIN GROUP 3

 os.makedirs(ecot,exist_ok=True)

 os.chdir(ecot)

 d8 = open(ecost+'.csv','a',newline='')

 pr = csv.writer(d8)

 pr.writerow(results_row)

 os.chdir('../../..')

 #break

 if ecos == 'Environmental':

 d8 = open(ecos+'.csv','a',newline='')

 pr = csv.writer(d8)

 pr.writerow(results_row)

 d8.close()

 ##BIN GROUP 1

 os.makedirs('Environmental',exist_ok=True)

 os.chdir('Environmental')

 d8 = open(ecoc+'.csv','a',newline='')

 pr = csv.writer(d8)

 pr.writerow(results_row)

 d8.close()

 ####BIN GROUP 2

 os.makedirs(ecoc,exist_ok=True)

 os.chdir(ecoc)

 d8 = open(ecot+'.csv','a',newline='')

 pr = csv.writer(d8)

 pr.writerow(results_row)

 d8.close()

 ####BIN GROUP 3

 os.makedirs(ecot,exist_ok=True)

 os.chdir(ecot)

 d8 = open(ecost+'.csv','a',newline='')

 pr = csv.writer(d8)

 pr.writerow(results_row)

 os.chdir('../../..')

 #break

 if ecos == 'Engineered':

 d8 = open(ecos+'.csv','a',newline='')

 pr = csv.writer(d8)

 pr.writerow(results_row)

 d8.close()

 ##BIN GROUP 1

 os.makedirs('Engineered',exist_ok=True)

 os.chdir('Engineered')

 d8 = open(ecoc+'.csv','a',newline='')

 pr = csv.writer(d8)

 pr.writerow(results_row)

 d8.close()

 ####BIN GROUP 2

 os.makedirs(ecoc,exist_ok=True)

 os.chdir(ecoc)

 d8 = open(ecot+'.csv','a',newline='')

 pr = csv.writer(d8)

 pr.writerow(results_row)

 d8.close()

 ####BIN GROUP 3

 os.makedirs(ecot,exist_ok=True)

 os.chdir(ecot)

 d8 = open(ecost+'.csv','a',newline='')

 pr = csv.writer(d8)

55

 pr.writerow(results_row)

 os.chdir('../../..')

 #break

 if ecos == 'NA':

 d8 = open(ecos+'.csv','a',newline='')

 pr = csv.writer(d8)

 pr.writerow(results_row)

 d8.close()

 ##BIN GROUP 1

 os.makedirs('NA',exist_ok=True)

 os.chdir('NA')

 d8 = open(ecoc+'.csv','a',newline='')

 pr = csv.writer(d8)

 pr.writerow(results_row)

 d8.close()

 ####BIN GROUP 2

 os.makedirs(ecoc,exist_ok=True)

 os.chdir(ecoc)

 d8 = open(ecot+'.csv','a',newline='')

 pr = csv.writer(d8)

 pr.writerow(results_row)

 d8.close()

 ####BIN GROUP 3

 os.makedirs(ecot,exist_ok=True)

 os.chdir(ecot)

 d8 = open(ecost+'.csv','a',newline='')

 pr = csv.writer(d8)

 pr.writerow(results_row)

 os.chdir('../../..')

 #break

z1.close()

z2.close()

BEGIN ENVIRONMENTAL COUNTS

print('Counting environmental groups....')

for g in ecosys:

 try:

 d8 = open('COUNTS1.csv','a',newline='')

 pr = csv.writer(d8)

 num_lines = sum(1 for line in open(g+'.csv'))

 i = [g]+ [str(num_lines)]

 pr.writerow(i)

 d8.close()

 os.chdir(g)

 for g2 in ecocat:

 try:

 d8 = open('COUNTS2.csv','a',newline='')

 pr = csv.writer(d8)

 num_lines = sum(1 for line in open(g2+'.csv'))

 i = [g2]+ [str(num_lines)]

 pr.writerow(i)

 d8.close()

 os.chdir(g2)

 for g3 in ecotyp:

 try:

 d8 = open('COUNTS3.csv','a',newline='')

 pr = csv.writer(d8)

 num_lines = sum(1 for line in open(g3+'.csv'))

 i = [g3]+ [str(num_lines)]

 pr.writerow(i)

 d8.close()

 os.chdir(g3)

 for g4 in ecosub:

 try:

 d8 = open('COUNTS4.csv','a',newline='')

 pr = csv.writer(d8)

 num_lines = sum(1 for line in open(g4+'.csv'))

 i = [g4]+ [str(num_lines)]

 pr.writerow(i)

 d8.close()

 except FileNotFoundError:

 pass

 os.chdir('..')

56

 except FileNotFoundError:

 pass

 os.chdir('..')

 except FileNotFoundError:

 pass

 os.chdir('..')

 except FileNotFoundError:

 pass

os.chdir('..')

#Finally do the host-assigned/unassigned counts (ugly code)

d8 = open('COUNTS.csv','a',newline='')

pr = csv.writer(d8)

os.chdir('Host Assigned')

bum_lines = sum(1 for line in open('NAf'+'.csv'))

i = ['Host Unassigned']+ [str(bum_lines)]

os.chdir('..')

pr.writerow(i)

d8.close()

d8 = open('COUNTS.csv','a',newline='')

pr = csv.writer(d8)

os.chdir('..')

num_lines = sum(1 for line in open('Virus'+'.csv'))

os.chdir('Virus')

i = ['Host Assigned']+ [str(num_lines-bum_lines)]

pr.writerow(i)

d8.close()

f1.close()

f2.close()

wh.close()

57

C2: Optimal-Translate

#!usr/bin/env python3

def transcribe(sequence,rev): #turns sequence into a list, cycles through letters and produces

reverse complement, rejoins list

 if sequence.find("U") == -1: #if you have dna

 if rev == 1:

 seq = list(sequence)

 rna_seq = ['Blank']*len(seq)

 rc = range(0,len(seq))

 for c,dna in zip(rc,seq):

 if dna == 'A':

 rna_seq[c] = 'U'

 if dna == 'T':

 rna_seq[c] = 'A'

 if dna == 'G':

 rna_seq[c] = 'C'

 if dna == 'C':

 rna_seq[c] = 'G'

 rna_seq = ("".join(rna_seq))

 else:

 rna_seq = sequence.replace('T','U')

 else:

 if rev == 1: #also the reverse complement for RNA

 seq = list(sequence)

 rna_seq = ['Blank']*len(seq)

 rc = range(0,len(seq))

 for c,rna in zip(rc,seq):

 if rna == 'A':

 rna_seq[c] = 'U'

 if rna == 'U':

 rna_seq[c] = 'A'

 if rna == 'G':

 rna_seq[c] = 'C'

 if rna == 'C':

 rna_seq[c] = 'G'

 rna_seq = ("".join(rna_seq))

 else:

 rna_seq = sequence

 return rna_seq

def translate(sequence): #this creates a dictionary {} which is essentially a hash table

linking codon to amino acid.

 codon2aa = {"AAA":"K", "AAC":"N", "AAG":"K", "AAU":"N",

 "ACA":"T", "ACC":"T", "ACG":"T", "ACU":"T",

 "AGA":"R", "AGC":"S", "AGG":"R", "AGU":"S",

 "AUA":"I", "AUC":"I", "AUG":"M", "AUU":"I",

 "CAA":"Q", "CAC":"H", "CAG":"Q", "CAU":"H",

 "CCA":"P", "CCC":"P", "CCG":"P", "CCU":"P",

 "CGA":"R", "CGC":"R", "CGG":"R", "CGU":"R",

 "CUA":"L", "CUC":"L", "CUG":"L", "CUU":"L",

 "GAA":"E", "GAC":"D", "GAG":"E", "GAU":"D",

 "GCA":"A", "GCC":"A", "GCG":"A", "GCU":"A",

 "GGA":"G", "GGC":"G", "GGG":"G", "GGU":"G",

 "GUA":"V", "GUC":"V", "GUG":"V", "GUU":"V",

 "UAA":"*", "UAC":"Y", "UAG":"*", "UAU":"T",

 "UCA":"S", "UCC":"S", "UCG":"S", "UCU":"S",

 "UGA":"*", "UGC":"C", "UGG":"W", "UGU":"C",

 "UUA":"L", "UUC":"F", "UUG":"L", "UUU":"F"}

 r = int(len(sequence)/3)

 codon = ['None']*r

 prim_seq = ['None']*r

 codon[0] = sequence[0:3]

 for i in range(1, r): #here range generates integers from 1 up to r (but not including r)

 n = i*3

 codon[i] = sequence[n:n+3] #in python between (:) excludes the last integer

58

 for i in range(0, r):

 prim_seq[i] = codon2aa[codon[i]]

 translation = ("".join(prim_seq))

 return translation

##This function transcribes DNA and then counts the number of stopcodons in each reading frame

(1 - 6) and finally translates the reading frame that produces the least number of stop

codons.

def count_stop_codons(sequence):

 nsequence = transcribe(sequence,0)

 rsequence = transcribe(sequence,1)

 frame_1 = nsequence

 frame_2 = nsequence[1:len(sequence)]

 frame_3 = nsequence[2:len(sequence)]

 reverse_sequence = rsequence[::-1] #this is a function of [] indexing called 'slicing'

 rframe_1 =reverse_sequence

 rframe_2 =reverse_sequence[1:len(reverse_sequence)]

 rframe_3 =reverse_sequence[2:len(reverse_sequence)]

 frames = [frame_1,frame_2,frame_3,rframe_1,rframe_2,rframe_3]

 reading_frame =['Frame_1','Frame_2','Frame_3','rFrame_1','rFrame_2','rFrame_3']

 stop_count = ['None']*6

 count = [0,1,2,3,4,5]

 for f,a in zip(frames, count): #Zip is a nice command that allows simultaneous iteration

of two same sized variables

 stopcodon = ['UAA','UGA','UAG']

 b = int(len(f)/3)

 codon = ['None']*b

 codon[0]=f[0:3]

 for i in range(1, b):

 c =i*3

 codon[i] = f[c:c+3]

 stopcodon[2]= codon.count('UAG')

 stopcodon[1] = codon.count('UGA')

 stopcodon[0] = codon.count('UAA')

 stop_count[a] = sum(stopcodon)

 min_value = min(stop_count)

 min_index = ([i for i, x in enumerate(stop_count) if x == min_value])

 optimal_translation = ['Blank']*len(min_index)

 optimal_frame = ['Blank']*len(min_index)

 tc = range(0, len(min_index))

 for v,index in zip(tc,min_index):

 optimal_translation[v] = translate(frames[index])

 optimal_frame[v] = reading_frame[index]

 return optimal_translation, optimal_frame

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("DNA_fasta_file", help="[Input]: list of DNA sequences to be translated")

parser.add_argument("output_fasta_file", help ="[Output]: list of translated sequences")

args = parser.parse_args()

ln = 1*10**7

with open(args.DNA_fasta_file, "rt") as data: #with open automatically calls file close

 text = data.read()

 sp = ([i for i, x in enumerate(text) if x == ">"]) #> demarks new sequences

 sequence_name = ['Blank']*len(sp)

 sequence = ['Blank']*len(sp)

59

 if sp == [0]:

 query = text

 #print(query)

 sequence_name = query.splitlines()[0]

 #print(sequence_name)

 sequence = query.splitlines()[1:ln] #obviously there are fewer lines than the ln but

this works

 #sequence = sequence[0] #removes double list

 #print(sequence)

 ##if there is more than one

 else:

 for ind in range(0,len(sp)-1):

 query = (text[sp[ind]:sp[ind+1]])

 #print(query)

 sequence_name[ind] = query.splitlines()[0]

 #print(sequence_name)

 sequence[ind] = query.splitlines()[1:ln] #obviously there are fewer lines than the

len(sequence) but this works

 #print(sequence)

 sequence[ind] = sequence[ind][0] #removes double list

 query = (text[sp[len(sp)-1]:len(text)]) #deal with the last sequence outside of the

for loop

 sequence_name[len(sp)-1] = query.splitlines()[0]

 sequence[len(sp)-1] = query.splitlines()[1:len(sequence)]

 sequence[len(sp)-1] = sequence[len(sp)-1][0]

optimal_translation = ['Blank']*len(sp)

reading_frame = ['Blank']*len(sp)

count = range(0,len(optimal_translation))

for ct,sq in zip(count,sequence):

 optimal_translation[ct] = count_stop_codons(sq)[0]

 reading_frame[ct] = count_stop_codons(sq)[1]

with open(args.output_fasta_file,'w') as output:

 for name,frame,trans in zip(sequence_name,reading_frame,optimal_translation):

 for f in range(0, len(trans)):

 temp = [name,frame[f]]

 temp = "_".join(temp)

 output.write(temp)

 output.write('\n')

 output.write(trans[f])

 output.write('\n')

 output.write('\n')

60

C3: Simple - Circularise

#!usr/bin/env python3

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("fasta_file", help="[Input]: list of sequences to be circularised")

parser.add_argument("output_fasta_file", help ="[Output]: circularised sequences")

parser.add_argument("-p","--probability",type=float, help="custom probability (default =

0.005)")

parser.add_argument("-max","--maximum_size",type=int,help="maximum size of output sequence")

parser.add_argument("-min","--minimum_size",type=int,help="minimum size of output sequence")

parser.add_argument("-r","--repeat",type=int,help="change behaviour to optimise repeat size

(default: optimise genome size)")

args = parser.parse_args()

if args.probability:

 print ("custom probability turned on")

if args.maximum_size:

 print("maxium_size turned on")

if args.minimum_size:

 print("minimum_size turned on")

if args.repeat:

 print("behaviour set to optimise size of repeat")

print("Circularising...")

import math

##calculates the probability of a string of length L occuring in a DNA seq.

def seq_prob (L):

 P = 0.25 ** L

 return P

##determine the number of events in a sequence of size S with a sub string size of L

def events (S,L):

 P = S - (L - 1)

 return P

#calculate probability of exactly b successes

** raises number to a power.

##where: a = number of events, b = number of successes, c = probability of success

def binomial_prob(a,b,c):

 d = 1 - c

 P = math.factorial(a)/ (math.factorial(a-b)* math.factorial(b)) * c**b * d**(a-b)

 return P

Use the poisson distribution to approximate

def poisson(lmbda,b):

 e = 2.71828

 P = (lmbda ** b * e ** -lmbda) / math.factorial(b)

 return P

def lambd_a (eventn,sprob):

 lmbda = (eventn * sprob)

 return lmbda

#calculate probability of at least two occurances of sequence

where a = number of events and c = probability of success

def cooccur_prob(a,c,lmbda,SeqL):

 d = 1 - c

 noccur = (d ** a)

 occur = 1 - noccur

 if SeqL > 9999:

 once = poisson(lmbda,1)

 else:

 once = binomial_prob(a,1,c)

 P = occur - once

 return P

##returns the probability that the linear contig is circular. That is the probability of a n

base region being repeated

twice or more

def pcircular(SeqL,SLength):

 sprob = seq_prob(SLength)

 eventn = events(SeqL,SLength)

 lmbda = lambd_a(eventn,sprob)

 #print(sprob)

61

 #print(eventn)

 co_prob = cooccur_prob(eventn,sprob,lmbda,SeqL)

 #print(co_prob)

 return co_prob

##for a sequence of size S how big does a sub string L have to be for it to be >99.5% certain

that duplication wasn't due to chance

##This is inefficient and only works for sequence lengths up to 10000. Above that values are

too large to compute

in factorial functions

Above 10KB the possion distribution is used as an approximation of the binomial

def framesize(SeqL):

 y = 0

 co_prob = 1

 if args.probability:

 cusprob = args.probability

 while co_prob > cusprob:

 y = y+1

 co_prob = pcircular(SeqL,y)

 else:

 while co_prob > 0.005:

 y = y+1

 co_prob = pcircular(SeqL,y)

 print('Probability of repeat ',co_prob)

 return y

 ##Script will return index values of duplicated elements in a list, modified from stack

overflow user 'PaulMcG'

##Two methods:

#def list_duplicates_of(seq,item):

 #start at -1 nice way to include a +1 term in a loop

 #while True will loop indefinitely, in this case untill the seq.index returns an error

 #start_at = loc means that when a duplicate is found, next time the seq.index runs it will

consider all the elements after that element

 # but it will know their true index position

 #start_at = -1

 #locs = []

 #while True:

 #try:

 #loc = seq.index(item,start_at+1)

 #except ValueError:

 #break

 #else:

 #locs.append(loc)

 #start_at = loc

 #return locs

#numpy useful scientific package, esp. for linear algebra etc.

#nonzero - find all instances of conditions that are true

#flat nonzero - give terms in 'flattened form' ie it levels out a nested list ([a,b],[c,d]) =

(a,b,c,d)

#this function will find all elements > than limit and set them to 0

def limit_size(size,limit,method):

 import numpy as np

 x = np.array(size)

 if method == 1:

 a = list(np.flatnonzero(x>limit))

 if method == 0:

 a = list(np.flatnonzero(x<limit))

 #print(a)

 x[a] = 0

 x = np.array(x).tolist()

 return x

#source = "AKTGRGRGEDSJAADSJSJWFAFDFAFK"

#print(list_duplicates_of(source, 'B'))

##Using defaultdict this will find all duplicated elements in a single stroke, and return them

and their index positions.

#Default dict makes a dict in the form (repeated element,[index_1, index_2]). Default dict is

used in place of dict, as default dict

#will not give an error if it encounters an element not in the dictionary, instead it saves it

as a new key.

62

#Using list as the default_factory, it is easy to group a sequence of key-value pairs into a

dictionary of lists.

#enumerate is being used here to give both the count and the current item being enumerated,

this will give the index for each item.

#tally is a default dict, so when an item is repeated it is saved to the same key and updates

the (i) element.

the return statement returns key locs, produced by the for command. the for command only

rpduces key,locs if len(locs) >1 i.e. if key is repeated.

#I've added lines to deduce the size of the contig

from collections import defaultdict

def list_duplicates(seq):

 #size = []

 tally = defaultdict(list)

 for i,item in enumerate(seq):

 tally[item].append(i)

 return ((key,locs) for key,locs in tally.items()

 if len(locs)>1)

def largest_repeat(seq):

 size = []

 #dup = []

 for key,locs in list_duplicates(seq):

 r = locs[1] - locs[0]

 size.append(r)

 if args.maximum_size:

 size = limit_size(size,args.maximum_size,1)

 if args.minimum_size:

 size = limit_size(size,args.minimum_size,0)

 max_value = max(size)

 if max_value == 0:

 max_value = []

 max_index = size.index(max_value)

 return max_index

We don't need to worry about reading in every frame

#list_duplicates will have duplicates ordered by index pos of first apperance, if two

sequences are same size, always take the lowest

#this will happen autmatically with this script

##To add - can pass a sequence or a list of sequences

can pass a minimum size of genome to circularise [optional - chance co-prob criteria untill

a size of this genome is made]

can pass a mandatory probability

ln means it can deal with sequences of any length

#we need sp-1 because the length command gives true length i.e. two elements = 2 not 1(0,1)

ln = 1*10**7

#fasta_file = input("File name?")

with open(args.fasta_file, "rt") as data: #with open automatically calls file close

 #The enumerate command gives an index for where the > is found

 text = data.read()

 sp = ([i for i, x in enumerate(text) if x == ">"]) #> demarks new sequences

 sequence_name = ['Blank']*len(sp)

 sequence = ['Blank']*len(sp)

 #print(sp)

 ##if there is only one sequence

 if sp == [0]:

 query = text

 #print(query)

 sequence_name = query.splitlines()[0]

 #print(sequence_name)

 sequence = query.splitlines()[1:ln] #obviously there are fewer lines than the ln but

this works

 #sequence = sequence[0] #removes double list

 #print(sequence)

 ##if there is more than one

 else:

 for ind in range(0,len(sp)-1):

 query = (text[sp[ind]:sp[ind+1]])

 #print(query)

63

 sequence_name[ind] = query.splitlines()[0]

 #print(sequence_name)

 sequence[ind] = query.splitlines()[1:ln] #obviously there are fewer lines than the

len(sequence) but this works

 #print(sequence)

 sequence[ind] = sequence[ind][0] #removes double list

 query = (text[sp[len(sp)-1]:len(text)]) #deal with the last sequence outside of the

for loop

 sequence_name[len(sp)-1] = query.splitlines()[0]

 sequence[len(sp)-1] = query.splitlines()[1:len(sequence)]

 sequence[len(sp)-1] = sequence[len(sp)-1][0]

 #print(query)

 #print(sequence_name)

 #print(sequence)

#if sp == 0 sequence must be contained in a list otherwise DNA read as first integer

circgenome = ['Blank']*len(sp)

count = range(0,len(sp))

for c,DNA in zip(count,sequence):

 print(sequence_name[c])

 #print(DNA)

 # sindex and gindex consider only the first and second element of the repeat

 if args.repeat:

 f = args.repeat-1;

 error = 0

 while error == 0:

 SeqL = len(DNA)

 f = f+1

 eventn = events(SeqL,f)

 repeats = ['Blank'] * eventn

 dupe = []

 for i in range(0,eventn):

 repeats[i] = DNA[i:f+i]

 for dup in list_duplicates(repeats):

 dupe.append(dup)

 try:

 index = largest_repeat(repeats)

 #print(index)

 except ValueError:

 print ("Maximum repeat size exceeded")

 #circgenome[c] = ' '

 error = 1

 except TypeError:

 print ("Maximum repeat size exceeded")

 #circgenome[c] = ' '

 error = 1

 else:

 sindex = (dupe[index][1][0])

 gindex = (dupe[index][1][1])

 #print(sindex)

 #print(gindex)

 circgenome[c] = (DNA[sindex:gindex])

 print('Searching for repeats of minimum length',f)

 print('Circularising at',(dupe[index]))

 print('Circularised genome size is',(gindex - sindex))

 else:

 SeqL = len(DNA)

 f = framesize(SeqL)

 print('Searching for repeats of minimum length',f)

 eventn = events(SeqL,f)

 repeats = ['Blank'] * eventn

 dupe = []

 for i in range(0,eventn):

 repeats[i] = DNA[i:f+i]

 for dup in list_duplicates(repeats):

64

 dupe.append(dup)

 try:

 index = largest_repeat(repeats)

 #print(index)

 except ValueError:

 print ("Oops! This genome couldn't be circularised [Try increasing the

probability]")

 circgenome[c] = ' '

 except TypeError:

 print ("Oops! This genome couldn't be circularised [Try changing the min max

boundaries]")

 circgenome[c] = ' '

 else:

 sindex = (dupe[index][1][0])

 gindex = (dupe[index][1][1])

 #print(sindex)

 #print(gindex)

 print('Circularising at',(dupe[index]))

 print('Circularised genome size is',(gindex - sindex))

 circgenome[c] = (DNA[sindex:gindex])

#print(circgenome)

with open(args.output_fasta_file,'w') as output:

 for name,genome in zip(sequence_name,circgenome):

 #for f in range(0, len(circgenome)):

 output.write(name)

 output.write('\n')

 output.write(genome)

 output.write('\n')

 output.write('\n')

65

C4: Bootstrap – Jplace

#!/usr/bin/bash

#This script was written using git bash for windows. On another OS '\).{3}' might be needed

with grep to escape the parenthesis.

#Where the reference tree, RAxML_bipartitions.ref_tree.out and the jplace tree,

RaxML_portableTree.EPA_tree.out.jplace have identical topology.

#Two output dataset files will be produced that can label a jplace tree with text or branch

symbols on iTOL.

#nodeID2 is the nodeID + 1, this ensures the bootstrap labels are consistent with those

produced from iTOL automatically on the reference tree. To use the true nodeiDs replace

nodeID2 with nodeID the the paste command.

grep -o -E ').{3}' $1 | sed 's/)//' | sed 's/:0//' | sed 's/://' >BS

grep -o -E '.{4}).{0}' $2 | sed 's/^.*{//' | sed 's/})//' >nodeID

while read p;

do echo "$(($p + 1))" >> nodeID2

done <nodeID

a=$(cat BS | wc -l)

yes "1" | head -$a > Symbol

yes "#B2B8D8" | head -$a > Colour

yes "0" | head -$a > Fill

yes "0.5" | head -$a > Position

cat > Bootstrap_Symbol.txt <<EOF

DATASET_SYMBOL

SEPARATOR COMMA

DATASET_LABEL,Bootstrap_Symbol

COLOR,#B2B8D8

MAXIMUM_SIZE,10

DATA

EOF

paste -d , nodeID2 Symbol BS Colour Fill Position >> Bootstrap_Symbol.txt

yes "normal" | head -$a>Style

yes "#000000" | head -$a >Text_Colour

yes "1" | head -$a >Size

yes "0" | head -$a >Rotation

cat > Bootstrap_Label.txt <<EOF

DATASET_TEXT

SEPARATOR COMMA

DATASET_LABEL,Bootstrap_Label

COLOR,#000000

DATA

EOF

paste -d , nodeID2 BS Position Text_Colour Style Size Rotation>> Bootstrap_Label.txt

rm -f nodeID2 BS Position Text_Colour Style Size Rotation Colour Fill Position Symbol-Node

