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Abstract 

Enhancing forest inventories using airborne laser scanning (ALS) and digital aerial 

photogrammetry (DAP) is a spatially extensive means of providing accurate and consistent 

measures of forest stand structure. While the cost of multi-temporal ALS is still sometimes 

prohibitive to its integration for growth assessment, DAP point cloud data have been proposed as 

a cost-effective alternative to those from ALS for inventory re-measurement. As such, the 

primary objective of this thesis was to examine the capacity of ALS and DAP technologies to 

assess height growth (HL) in a disturbed boreal forest near Slave Lake, Alberta. 

First, this thesis determined the variables to be used in modeling height growth, and 

investigated how the predictive model errors responded to stand condition. To evaluate 

appropriate variables for predictive modeling, a model using only height metrics (growth_single) 

was compared with one using height, canopy cover and height variability metrics (growth-

_multi). The growth_multi model estimated height growth with an RMSE of 1.42 m (%RMSE = 

164.18%) and the growth_single model estimated height growth with an RMSE of 1.76 m 

(%RMSE = 203.03%). To evaluate error response to stand condition, an iterative process was 

used to measure the accuracy of optimized height models while incrementing the mortality in the 

dataset. %RMSE increased with increasing plot-level mortality as a parabolic asymptotic curve. 

When the maximum allowable mortality was approximately 25% the %RMSE was just below 

100%. 

Second, this thesis determined growth patterns near Slave Lake with respect to eight 

ecological variables, ecosite type and ecosite phase. Analysis of variance (ANOVA) tests were 

conducted to test the significances of differences between the means of height growth (ΔH). 

Patterns demonstrated by the ecological variables were most apparent using nutrient regime, 
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moisture regime, species dominance and the soils classification. Growth patterns among ecosites 

and ecosite phases followed the patterns of the ecological variables that describe them.  

This research finds that, prior to utilizing multi-temporal remote sensing methods to 

assess stand-level height growth, forest managers must first understand local forest growth rates 

and mortality rates to ensure that the growth magnitudes and forest condition permit accurate 

height growth estimation using predictive models. 
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Lay Summary 

Quantifying forest growth is necessary to estimate the capacity of forest stands to provide 

ecological goods and services. Remote sensing science offers a more spatially-extensive and 

accurate means of quantification as compared to manual methods. The capacity for airborne laser 

scanning (ALS) technologies to be utilized in the quantification of forest attributes has been well 

established. However, aerial photography can be utilized to develop similar spatial data products 

and has the advantages of providing spectral data, and requiring more flexible acquisition flight 

specifications. As such this thesis assesses whether an initial acquisition of ALS, and a 

subsequent acquisition of aerial photography can be used to generate estimates of forest height 

growth near Slave Lake, Alberta. This research first explores how different predictive modeling 

approaches and stand conditions impact the accuracy of growth predictions. Then, patterns 

among different types of forest sites that emerge from site-wide growth estimates are evaluated.  
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Chapter 1:  

 

1.1 Boreal forests of Canada 

Canada’s 347 million ha of forests comprise 9% of the world’s forest cover, containing 

47 billion m3 of wood. The total forest area can be divided into managed (232 million ha), and 

unmanaged (115 million ha) regions. Canada’s forests are relatively slow growing, producing an 

average wood volume of 136m3/ha (The State of Canada’s Forests: Annual Report 2017). 

Approximately, 270 million ha of Canada’s forests occur within the boreal zone, which have 

heterogeneous patterns of composition and structure, with stands frequently disturbed by 

wildfires (Brandt et al. 2013). Canadian mixedwood boreal forests are dominated by several 

genera including Abies, Betula, Larix, Picea, Pinus and Populus. Growth rates vary greatly 

between regions (Gutsell and Johnson, 2002; Lieffers et al., 1996; Martin and Gower, 2006). The 

boreal zone, which grows slower than the Canadian average, produces an average wood volume 

of 111m3/ha (The State of Canada’s Forests: Annual Report 2017). 

Differences in species dominance and successional patterns along an east-west gradient 

in the Canadian boreal forest ecosystems vary primarily with climate and disturbance. The 

western boreal has a drier continental climate, and is prone to higher frequency of severe fires 

(Brassard and Chen 2006), whereas the eastern is cooler and wetter with less or reduced severity 

fires. Within the western boreal, the focus of this thesis, successional patterns vary with climate. 

Warmer mesic sites are often initially colonized by shade-intolerant trembling aspen (Populus 

tremuloides) with some presence of white birch (Betula papyrifera) (Gauthier et al., 2000). 

During the stem exclusion phase, stands are typically dense with an even structure. As stands are 

thinned out by competition, more growing space is available for the understory species such as 
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white spruce (Picea glauca) and balsam fir (Abies balsamifera), increasing the stand’s structural 

complexity (Brassard and Chen, 2006; Cumming et al., 2000). The shade-intolerant species are 

generally shorter-lived and begin to die off, allowing the shade-tolerant species to grow more. 

Stands may also be initially recruited by white spruce if conditions are too moist for trembling 

aspen establishment, but not excessively so as to inhibit the white spruce (Archibald et al., 1996). 

Mixedwood stands are able to continue recruiting broadleaved species (typically trembling 

aspen) as long as gaps formed in the canopy are large enough to allow sufficient sunlight 

(Kabzems and García, 2004). Gaps in drier, wetter and cooler sites all generally recruit 

coniferous species more effectively. Drier sites are often initially dominated by Jack pine (Pinus 

banksiana) and replaced by black spruce (Picea mariana), as white spruce establishes more 

effectively on more mesic or hygric sites (Timoney, 2003). In more mountainous regions such as 

the Rockies, drier and/or cooler sites more often recruit lodgepole pine (Pinus contorta) initially, 

to be replaced by black spruce (Archibald et al., 1996). Very wet and bog-type sites are only able 

to recruit black spruce, resulting in its dominance at all seral stages of succession (Parisien and 

Sirois, 2003). Gradients exist between all of these successional patterns given the presence of 

microsites and the non-linear nature of stand succession (Oliver and Larson 1996). 

Fire, windthrow and harvesting disturbances all modify boreal forest stand structures and 

successional patterns. Fires of varying severity have different effects on forest structure. While 

high-severity fires tend to bring about a new cohort of even-age colonizing species (Kipfmueller 

and Baker, 1998), low-severity fires are more frequent and often remove the understory along 

with a minority of overstory trees, leaving an open canopy (Schoennagel et al., 2004). Past 

research has affiliated stands previously affected by low-severity fires with structural attributes 

of late-successional stands, as partial burns cause stands to adopt multiple cohorts (Perry et al., 
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2011). However, other work has found that differences in mixed-severity fire regimes only have 

subtle differences in their convolution of stand structure, and that other factors such as elevation 

and aspect more strongly control impact magnitude (Marcoux et al., 2015).  

Most windthrow gaps in natural forests are smaller than 8 ha, and many are as small as a 

few trees (Nowacki and Kramer, 1998). Windthrow thus increases stand-level heterogeneity: 

overstory loss rates such that large windthrow gaps with many surviving trees often cannot be 

discerned from a mosaic of small gaps (Mitchell, 2013). Even-aged stands of new regeneration 

of trembling aspen and Jack pine tend to be the most susceptible (Rich et al., 2007). Wind-

induced mortality in stands is generally greatest for relatively intermediate-sized stems. Shorter 

stems are sheltered by other trees, while taller veteran trees are often more effectively adapted 

(Mitchell, 2013). As windthrow preferentially damages overstory trees, resulting in recruitment 

of regrowth or the release of understory stems, windthrow is generally viewed as a process that 

accelerates succession (Rich et al., 2007). Repeated wind damage thus leads to complex, multi-

cohort stands dominated by shade-tolerant species (Nowacki and Kramer, 1998). While stand-

replacing windstorms tend to be quite rare in the boreal forest, smaller gap-scale disturbances 

can be quite frequent (Harper et al., 2002).  

Harvesting can also modify the dynamics of a forest stand. The modifications incurred 

from selective harvesting depend on the species selected and the gap size created. Selective 

harvesting has historically targeted large, old stems. As such, gaps created from cutting these 

individuals were often large. Recruitment into these gaps are thus generally shade-intolerant 

species, namely trembling aspen in a boreal mixedwood context (Kabzems and García, 2004). 

Selective harvest over a stand thus generally pushes it towards an earlier seral stage in succession 

(Carleton, 2000). Alternatively, modifications from clearcut harvests depend on the stand type 
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that existed prior to harvest. Using mechanized harvesting methods, the overstory is removed 

while understory shrubs and saplings are often crushed by machinery, thus reinitiating the 

stand’s succession and recruiting shade-intolerant species. Species with serotinous cones, such as 

Jack pine, are difficult to establish without fire to open their cones (Carleton, 2000). 

The mosaicking of a forested landscape with cutblocks causes fragmentation and 

increases the amount of edges within the landscape. Forest edges in the boreal tend to have high 

levels of structural complexity due to the resulting openness of tree canopies, more downed logs 

and higher amounts of understory regeneration (Harper et al., 2015). Studies have shown that 

edge effects in boreal forests are less pronounced compared to temperate or tropical forests due 

to the natural patchiness occurring from regular, large-scale natural disturbances (Harper et al., 

2015; Kneeshaw et al., 2011). However, the edge effects in conjunction with insect disturbances 

and the other disturbances discussed above all culminate to create a diverse and structurally 

complex landscape. 

 

1.2 Drivers of growth in forests 

Ecological factors affecting forest growth regulate the supply of light, water and nutrients 

to considered organisms (Ashton and Kelty, 2018). These factors can be divided into biotic and 

abiotic components. Some biotic factors related to the amount of interspecific competition within 

a site, include age, density and species composition. Some authors have argued that age is an 

unimportant factor as it is an ineffective proxy for diameter at breast height, as the age of a tree 

can be unrelated to its position in the canopy if the tree is tolerant or suppressed (Huang and 

Titus, 1994; Lynch and Moser, 1986.) However, stands consistently demonstrate a set of stages 

in stand development including stand initiation, stem exclusion, understory regeneration and 
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finally old growth, although it is possible for stands to pass over stages or to revert in their 

development as they are subject to disturbance (Bergeron et al., 2014). Density relates to the 

number of organisms an individual will be interacting with at a given site while seeking to 

acquire light, water and nutrients. As such, density indirectly measures competition and 

facilitation among organisms (Callaway and Walker, 1997). Competition is generally higher in 

denser stands. Though larger trees generally have a competitive advantage to acquire the three 

listed resources, they may also act as facilitators to smaller trees in a forest stand. Recent studies 

have shown that large trees in a stand can act as mother trees, transferring nutrients to trees 

recognized as genetically similar through the underground mycorrhizal network (Pickles et al., 

2017). Mixed-species stands can be potentially facilitative environments. Certain trees may 

compliment others’ uses of water and soil nutrients, and shade-intolerant species in the overstory 

may provide cover for shade-tolerant species in the understory (Oliver and Larson, 1996). The 

balance between competitive and facilitative effects of other trees around an individual tree, and 

their contributions to an organism’s growth thus varies between individual organisms and their 

environments.  

The most influential abiotic factors of a site are climate and landform. Climate is the 

predominant controller of light and water (precipitation) input into an ecosystem. At the forest 

stand scale, topographical features can modify climatic effects. The atmosphere cools according 

to the adiabatic cooling rate (9.8°C/km), and so increasing elevations have a comparable to effect 

on the ambient temperature to large changes in latitude. Orographic lifting can also induce 

precipitation events due to the cooling of air parcels by the adiabatic rate (Ahrens 2009). The 

steepness and orientation of a slope can alter the amount and direction of incoming solar 

radiation to an area (Ashton and Kelty, 2018). Landform characteristics also affect the dispersion 
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of inputs across a given site. Topographical features and elevation differences dictate patterns of 

overland flow, as well as soil water flow. However, quantities and flow directions of soil water 

are affected by other attributes, including the depth of the soil to the parent material and the 

texture of the parent material. These two variables determine the field capacity and the allowable 

rooting depth. Finer textured soils have stronger capillary rise and so often retain more water and 

have slower flow rates than coarser textured soils (Ward and Robinson, 2000). Any ecosystem 

factors that control hydrological inputs or flows will also relate to the ecosystems proneness to 

flooding (or excess moisture), and its duration. As different species have different flood or 

drought tolerances, the frequency and regularity of the flood, and adaptation of the organisms 

onsite to those events determine the magnitude of flood impacts on vegetation productivity. 

Texture also relates the degree of weathering, an important factor in nutrient availability 

and exchange. Weathering rates depend on the type and exposure of the soil’s parent material. 

However, most nutrients in the boreal forest soil profile come from the decomposition of organic 

matter. Decomposition rates are controlled by climate and the ease with which the substrate is 

broken down, generally dictated by the species of vegetation providing the substrate. The organic 

matter accumulation and extent of disturbance will also affect the soil temperature. In cold soils, 

the rate of root development and the ability of plants to draw water are much less than in warmer 

soils (Larcher, 2003). Warmer soils also facilitate seedling establishment and growth 

(Beckingham and Archibald, 1996). 

 

1.3 Forest inventories in Canada 

Forest inventories report on the quantity, extent, and location of forests in some defined 

area (Penman et al., 2003). The forest attributes measured, the methods used for measurement, 
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and the desired quantifications inferred from these measurements depend on the objectives of the 

inventory, as information needs for forest managers are increasingly complex and wide-ranging. 

For example, national forest inventories (NFIs) are undertaken to inform on national-scale 

resources for strategic planning and policy development. Desired quantifications for these 

inventories may include canopy cover, growing stock volume, biomass and carbon stock 

estimates (White et al., 2016). They are often based on field samples (Tomppo et al., 2010). 

Conversely, industry-realized inventories contemporarily focus on supply chain optimization of 

forest resources, for which field sampling methods alone are often inadequate for the desired 

accuracy (Shabani et al., 2013). Desired quantifications for these generally focus on attributes 

informing on wood procurement, stand classification, biodiversity assessment and potential for 

forest growth. For these finer-scaled inventories, data acquisition generally includes ground-plot 

assessment and remote sensing methodologies (White et al., 2016). This thesis will focus on 

industry-realized inventories. 

 Forest management in Canada is a provincial/territorial responsibility and each 

jurisdiction implements its own methods to conduct forest inventories according to their 

respective requirements. Jurisdictions themselves are divided into forest management units 

and/or forest licenses, and inventories are often conducted over individual units or regions. 

Derived inventory data are provided to direct forest agencies and companies for use in 

management planning of each unit (Leckie and Gillis, 1995). Prior to the development of 

geographic information systems (GIS), Canadian forest inventories were conducted using a 

combination of ground plot data acquired from field campaigns along with manual interpretation 

of stereo aerial photography. The development of a forest inventory in a given province 

generally was implemented as follows: photo acquisition and processing, stand delineation, 
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photointerpretation of required attributes for delineated stands, transferring and drafting 

delineations and interpretations to new map sheets, and (following the implementation of GIS) 

digitizing (Leckie and Gillis, 1995).  Stands were delineated on the photos based on the 

perceived homogeneity of species composition, density, height, and age characteristics. 

Attributes were then estimated for each stand. Species composition was estimated based on 

apparent crown cover and stand volume, and the latter three characteristics were all quantified 

categorically, with some characteristics being interdependent. For example, age is estimated 

using interpreted height categories, as well as site characteristics. Ground and air calls are often 

used to aid in calibrating photo interpreters. Accuracy assessment of photo-interpreted 

information is difficult and is rarely undertaken (Magnussen and Russo, 2012) although audits 

may be done to assess specific attributes, namely timber volume. Quality is evaluated using a 

combination of aerial photography and field plot information, but the rigorousness of the 

evaluations are dependent on the expertise of the interpreters (Kangas and Maltamo, 2006). More 

experienced interpreters are faster, more accurate, and require less field work to calibrate their 

interpretations in a given forested region. However, inconsistencies between interpreters 

sometimes makes inventory comparisons within and between jurisdictions problematic. As well, 

acquiring experienced interpreters has historically been a major problem for forest agencies 

(Leckie and Gillis, 1995). Regardless, as the first form of remotely sensed data implemented into 

forest inventories (Smith, 1976), aerial photography has been a staple data source for operational 

inventories since the 1950s, so the costs are low and the step sequence for inventory 

development is familiar with personnel adequately prepared to train newcomers to the industry 

(Leckie and Gillis, 1995). To estimate growth, permanent sample plots were established in many 
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provinces and remeasured at 10-year intervals, while standard re-inventory was conducted at 

anywhere between 5- and 20-year intervals depending on the region (Smith, 1976). 

The introduction of new geographic information systems (GIS) in the 1980s revolutionized 

forest inventories by facilitating the transfer and drafting processes of the inventory step 

sequence, and greatly reducing the labour and time inputs required. Outcomes of these 

facilitations included improved capability for modelling, ease of data manipulation and display, 

improved data storage, and advancements in decision support systems (Leckie and Gillis, 1995). 

However, the technological advent of GIS and the changing demands of forest managers began 

to impact the precision of the data recorded. For example, age or height, which were formally 

recorded as classes are now more frequently recorded as actual values. GIS also increased the 

capacity of forest agencies to store inventory data and facilitated data sharing, allowing other 

agencies to make use of data collected for forest inventories. For example, management 

inventory data began to be used for operational planning where appropriate (e.g., estimating 

logging costs or the costs of road construction) (Leckie and Gillis, 1995). 

 

1.4 The role of remote sensing in forest inventories 

Currently, changing demands of forest managers reflect the changing global economic 

climate of forest products. The Canadian forest products industry must maximize the value of 

timber and other forest products, and improve supply chains. To accomplish this, enhanced forest 

inventories containing timely, accurate and consistent measures of forest stand structure, 

composition and productivity is required (Alam et al., 2014). Recent remote sensing advances, 

such as the development and use of three-dimensional point clouds to measure forest structural 

variables, have shown marked promise as a cost-effective and spatially extensive means of 
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supplementing traditional modes of inventory using the area-based approach (ABA) (White et 

al., 2013a). This two-step approach first develops predictive models from ground plot inventories 

and plot-level point cloud data, then applies them across the region of interest to generate wall-

to-wall estimates of forest inventory attributes (Næsset, 2002). The required point clouds are 

commonly developed using airborne laser scanning (ALS) technology. ALS is an active remote 

sensing technology that utilizes a near-infrared laser to emit pulses that return to a sensor to 

measure the location of targets (Lim et al., 2003). The laser is able to penetrate forest canopies at 

depth to construct a three-dimensional distribution of vegetation through the canopy (Wehr and 

Lohr, 1999). The discrete return ALS systems can now measure multiple returns per pulse 

emitted (Lim et al., 2003), and precise locations for ALS returns are enabled by an inertial 

measurement unit (IMU) and Global Positioning System (GPS) (White et al., 2016). A pulse 

density of 0.5-1 point/m2 is low but considered adequate for the application of ABA in most 

forest environments (Jakubowski et al., 2013).  

The ABA is now a proven concept (Wulder et al., 2012b), and currently applied 

operationally in a variety of forest types and for a range of managerial requirements (Bouvier et 

al., 2015; Næsset, 2007; Woods et al., 2011). Although ALS data may provide less accurate 

estimates of individual tree heights relative to field measurements, the loss in accuracy is easily 

offset by the extensive coverage afforded by the technology (Andersen et al., 2006). Remote 

sensing technologies also offer economies of scale, with acquisition costs per unit area 

decreasing as the area of interest increases (Franklin et al., 2002). Operationally, the ABA has 

become an agency-standard through which to produce predictive models for forest attributes 

from ALS point cloud data (White et al., 2013a). However, barriers still exist to the full 

integration of ALS, including the cost and complexity of the data acquisition and the availability 
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of trained and reliable personnel for subsequent processing (White et al., 2016). For example, 

trade-offs exist between the area covered by an acquisition flight and issues such as point density 

and scan angle (Jakubowski et al., 2013), thus optimizing the flight parameters for the best cost 

and to provide the necessary quality of data requires complex statistical analyses. As well, it is 

difficult for many managers to understand the value of ALS as a data source due to the lack of 

cost-benefit analyses in the literature (Holopainen et al., 2010). 

Extensive research has been conducted to assess survey design for growth monitoring of 

height increment with ALS (Hopkinson et al., 2008; Næsset and Gobakken, 2005; St-Onge and 

Vepakomma, 2004; Yu et al., 2008). However, two matters to address are how to link growth 

estimates derived from ALS to traditional growth and yield curves (Tompalski et al., 2018), and 

how to assess the error magnitudes associated with growth estimates relative to actual measured 

growth increments (Wulder et al., 2008). 

 

1.5 Assessing forest height growth with remote sensing 

One proposed method of addressing the issue of cost for repeat ALS acquisitions for 

growth assessments is to use ALS for an initial acquisition, primarily to obtain a detailed and 

accurate digital terrain model (DTM) under canopy, followed by  the use of digital aerial 

photogrammetry (DAP) point cloud data at subsequent time steps (White et al., 2016). Stereo 

photogrammetry allows the measurement of an object’s position when imaged from two different 

perspectives. Applying this to the many objects that compose a surface on overlapping images 

produces an image-based point cloud from which a digital surface model (DSM) can be created 

(St-Onge et al., 2008). Flights for photogrammetric image acquisition are typically conducted at 

a higher altitude and faster than ALS flights, with a wider field of view, consequently image 
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platforms can cover a much larger area for a given number of flying hours. In all, the cost of 

image acquisition is estimated at one-half to one-third that of ALS data (White et al., 2013b). 

However, pixel-matching algorithms are only applicable to objects that are directly visible in the 

images themselves and therefore image-based point clouds can only describe the upper canopy 

surface (Zimble et al. 2003). Oversmoothing and reduction of local variance between points in 

the point cloud distribution can hide canopy gaps and architectural details (Baltsavias et al., 

2008). A digital elevation model (DEM) can be subtracted from these point clouds to obtain the 

elevations of returns from vegetation, but DEMs of adequate resolution for normalization are 

usually available exclusively from ALS data (Reutebuch et al., 2003), particularly underneath 

forest canopies.  

DAP is currently infrequently used for forest inventories. However, research has 

established the potential for forest inventory applications (e.g. Korpela, 2006; Véga and St-Onge, 

2008; St-Onge et al., 2008). Comparisons of ALS and DAP derived point clouds using ABA for 

predictions of stand height, basal area and volume have generally concluded that ALS data 

provides more accurate estimates (Gobakken et al., 2015; Vastaranta et al., 2013; White et al., 

2015). Imagery is also affected by illumination conditions and viewing angles, limiting the 

optimal flying hours per day (White et al., 2013b). Overall, optimal photo acquisition parameters 

and their impacts on the resulting data quality are uncertain (White et al., 2016). However, using 

the data is convenient, as it can be stored and manipulated similarly to ALS once processed 

(Leberl et al. 2010). The data is comparatively inexpensive to collect, and provides spectral data 

not afforded by non-multispectral ALS sensors. Preliminary studies have shown the potential for 

combined structural and spectral metrics to be useful for predicting species composition (St-

Onge et al., 2015). Finally, photo-derived data complement the pre-existing expertise of photo-
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interpreters in the inventory process; the imagery can be used to create point clouds, as well as 

interpreted. 

 

1.6 Research objectives and questions 

Given the aforementioned context, the primary objective of this thesis was to examine the 

capacity of ALS and DAP technologies to assess Lorey’s height growth (ΔHL) over 

approximately eight years in the managed and highly disturbed mixedwood boreal forests near 

Slave Lake in central Alberta, Canada. Through this analysis, the following two research 

questions were addressed: 

 

Question 1. How can ALS and DAP point clouds be utilized to derive measures of height 

growth at Slave Lake, AB, Canada? 

 

Question 2. What patterns of growth are apparent in stands near Slave Lake, AB with respect 

to ecological factors available from the Albertan AVI and ecosite-scale 

inventories? 

  

To address the research objective and the two research questions presented here, this 

thesis has been broken down into the following chapters. 

Chapter 2 introduces the study site of Slave Lake, AB as well as the data used to derive 

estimates of ΔHL. As such, it outlines the specifications of the data acquisition and the required 

processing steps for the ALS and DAP point clouds. It also outlines the executed procedures for 

field data collection.  

Chapter 3 addresses the first research question by dividing it into two sub-questions. The 

first sub-question focuses on the optimization of the modelling approach used to produce 
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estimates of ΔHL. The second sub-question implements a sensitivity analysis with respect to plot-

level mortality to determine the effect of disturbance on ΔHL estimation accuracy. 

Chapter 4 addresses the second research question using a simple predictive model to 

extrapolate estimates of ΔHL across the Slave Lake study site. Spatially-explicit estimates of ΔHL 

were then analyzed using various ecological factors to determine that factors that were 

determinant in the apparent patterns of growth across the study area. 

Chapter 5 concludes the thesis by outlining some of the key findings from chapters 3 and 

4. Those findings are then used to contextualize this research for use by forest managers. The 

potential applicability of a multi-sensor approach to forest growth monitoring in a disturbed 

boreal site are discussed, and directions for future research in the application of a multi-sensor 

approach for forest growth assessments.  
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Chapter 2:  

 

2.1 Study area 

The focus site for this thesis is a 700,000 ha forest area located near the township of 

Slave Lake, Alberta (Figure 1), directly south of Lesser Slave Lake. The climate ranges between 

subarctic and humid continental. Winters are cold, summers are cool, and year-round 

precipitation averages about 600 mm (Natural Regions Committee, 2006). The site lies within 

three natural sub-regions: boreal mixedwood, lower foothills, and upper foothills, with a 

maximum elevation of 1375 m and a minimum elevation of 546 m above sea level. The relief is 

generally undulating. The Slave Lake forest is mixedwood boreal forest, including trembling 

aspen, white spruce, balsam poplar (Populus balsamifera), Jack pine and black spruce as some of 

the most common species (Natural Regions Committee, 2006). Forest dynamics are 

characterized by natural and anthropogenic disturbances, including wildfires, wind damage, 

harvesting activities, and oil exploration (Figure 1b). A large fire occurred in 2011 that burned 

40% of the township. The study area is bordered to the north by Highway 2 and split by 

Highway 33. West Fraser Mills Ltd. manages the forest for spruce-pine-fir lumber, bleached 

chemical thermos-mechanical pulp, and bio-products such as wood chips. 
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Figure 1: Location of the Slave Lake study site in Alberta Canada. The study site is shown a) Outlined in red within 

the province of Alberta. b) Overlain with the Composite-to-Change (C2C) forest change product (Hermosilla et al., 

2016) and outlined in Section 3.2.1. Shown are stand-replacing disturbances (fire and harvesting) that have occurred 

since 1985. Field plots are marked as black dots. The light gray area is the regional subset studied in Chapter 3. c) 

Overlain with species dominance data available from the AVI outlined in Section 2.3. The central area highlighted is 

the regional subset studied in Chapter 4. 
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2.2 Field plot measurement 

Twenty-seven plots were established and measured between 2004 and 2006 and re-

measured in 2012 or 2016. The plots were circular with a radius of 11.28 m and an area of 400 

m2. For each tree in the plot, location, species, diameter at breast height (DBH), height and 

height-to-live-crown were measured. Crown class was recorded by visually classifying the 

location of each tree crown within the vertical canopy structure as dominant, codominant, 

intermediate or suppressed. Lorey’s height (HL) was calculated for each plot as per Equation 1:  

 HL =  Σhi*gi/Σgi (1) 

where hi is the height of the ith tree and gi is the basal area of the ith tree on a plot. ΔHL was 

calculated as the difference between T1 and T2 values for a plot. Only trees with an initial DBH 

above 7 cm were used in this calculation. The HL data are summarized in Table 1. 

 

Table 1: Summary statistics of HL for the twenty-seven ground plots from T1, T2, and the change in HL. All units 
are in meters. 

 

 Minimum 
1st 

Quartile 
Median 

3rd 

Quartile 
Maximum Mean 

Standard 

Deviation 

T1 

Measurement 
6.75 12.70 14.03 17.06 23.38 14.67 3.89 

T2 

Measurement 
7.36 13.19 15.16 17.96 24.86 15.54 3.90 

ΔHL  -1.16 0.16 0.61 1.42 4.14 0.87 1.26 

 

 Of the many height-based measures used in forest inventories, Lorey’s height was used in 

this study as it is the most easily relatable to canopy surface height. If the canopy surface is an 

outer envelope containing vegetation underneath, then the canopy surface height is the vertical 

distance from of any point along this idealized surface to the ground (Magnussen and Boudewyn, 

1998), and the mean canopy surface height is the mean height of all points along this surface (St-
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Onge et al., 2003). An ALS acquisition over a forest canopy can be thought of as a sample of 

points from the canopy surface (Magnussen et al., 1999). As most canopy surface points from an 

ALS or DAP point cloud are not directly on tree apices, the average height of a sample of surface 

points is then an estimator of mean canopy height rather than any measure of mean tree height 

(St-Onge et al., 2003). As larger trees occupy a larger area, point clouds should then better 

approximate mean height metrics that give more weight to these larger trees such as Lorey’s 

height (Magnussen and Boudewyn, 1998). Lorey’s height is also stable as it is minimally 

affected by the mortality or harvesting of smaller trees. However, Lorey’s height is still sensitive 

to overstory mortality. Nelson (1997) notes that stand height estimations are sensitive to canopy 

shape factors such as species and structure. Extending this notion, the impact of tree mortality on 

estimates of Lorey’s height therefore depends on the extent to which the canopy shape is 

modified by the mortality. Canopy surface points along non-defoliated dead trees that have 

retained their upper branches can cause estimation discrepancies between Lorey’s height 

estimates derived from remote sensing and field-measured estimates if the field estimates are 

calculated only from live trees. Conversely, surface points over canopy gaps around defoliated 

snags can cause similar estimation discrepancies in the case that field estimates are calculated 

from both live and dead trees. Regardless, due to the link between canopy surface points and 

Lorey’s height, it continues to be a commonly used metric in remote sensing studies that quantify 

forest attributes (Gobakken et al., 2015; White et al., 2015; Yu et al., 2015). 

 

2.3 Stand-level attributes from forest inventories 

Stand-level attributes were obtained from the AVI (Alberta Vegetation Inventory 

Interpretation Standards, 2005). AVI data is developed using a series of interpreted photos 
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obtained between 1949 and 2012, supplemented with field campaigns for the assignment of 

stand-level attributes to delineated polygons. AVI attributes include stand density and mean 

height, percent species composition, stand structure, stand age, natural land cover, disturbance 

information, and a timber productivity rating (Alberta Vegetation Inventory Interpretation 

Standards, 2005). Each of the attributes, and their corresponding codes and legends, are listed in 

Table 2. The polygon-level inventory for the study area subset contained 13499 forested 

polygons (Figure 1c). A summary of counts and sizes of these polygons by species dominance 

are presented in Table 3. 

Ecosites are ecological units that are defined through an environmental stratification of 

climate, moisture, and nutrient regimes. Ecosite names convey ecological information about the 

unit, frequently referring to the common plant species present (Lawrence et al., 2005).  An 

ecosite phase is a subdivision of the ecosite that incorporates information on dominant tree 

species. Ecosites also have characteristics attributed to them through photointerpretation. Some 

of these include excess moisture, moisture regime, nutrient regime, soil temperature, a soil 

classification according to the Canadian system of soil classification, and soil texture. Excess 

moisture and soil temperature are categorized as limitations; meaning that categorical values 

indicate the extent to which quantified values are perceived to prohibit plant growth and 

establishment (Archibald et al., 1996). For example, a “high” rating for soil temperature implies 

that the soil temperature is expected to inhibit growth or establishment more than a “low” rating. 

Each of these eight attributes’ categories and their corresponding codes and legends are listed in 

Table 2. Ecosite phases are identified by the ecosite letter, name, and number representing the 

phase within the ecosite. Ecosite types and phases are specific to each of the natural sub-regions 

in Alberta (Lawrence et al., 2005). Ecosites, their respective phases and their names for each of 
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the three natural sub-regions within the study area are listed in Table 4. The ecosite-scale data in 

the subset contained 32441 forested polygons. A summary of counts and sizes of these polygons 

by ecosite is presented in Table 5. 

 

 

 

 

 
Table 2: Description of select forest attributes forest attributes at Slave Lake available from the AVI polygons and 

ecosite polygons available from the Alberta provincial government. Categories are those existing in the area shown 

in Figure 1c. An AVI polygon’s dominant species was considered the species with the highest percent composition. 

Excess moisture is categorized based on soil permeability derived from soil texture, and moisture regime to 

generalize surface moisture conditions. Soil temperature ratings are based on moisture regime, topographic position, 

surface texture and disturbance of surface layers. Soil classes are categorized based on the Canadian System of Soil 

Classification. Soil texture is categorized using a two or three-character code. The first is always an “S” that stands 

for “soil”. The second is a capital letter indicating either moisture content, or that the soil is organic (in which case 

the code is only two letters). The final character indicates either grain coarseness for soils ranging from very dry to 

moist with a value between 1 and 4, or substrate type for wet soils 

 

Ecological Variable Data Source Categorical Values Code Legend 

Canopy Cover AVI A, B, C, D 

A: 6% - 30%, 

B: 31% - 50%, 

C: 51% - 70%, 

D: 71% - 100% 

Species Dominance AVI 
Aw, Bw, Pb, Pl, Sb, 

Sw 
Alberta tree codes 

Excess Moisture Ecosites L, L-H, M-H, H 

L: Low, 

M: Medium, 

H: High 

Moisture Regime Ecosites 

Xeric, Subxeric, 

Submesic, Mesic, 

Subhygric, Hygric, 

Subhydric 

- 

Nutrient Regime Ecosites 

Very Poor, Poor, 

Medium, Rich, Very 

Rich 

- 

Soil Temperature Ecosites L, L-H, M, H 

L: Low, 

M: Medium, 

H: High 

Soil Class Ecosites 

BR.GL, CU.R, E.EB, 

O.EB, O.GL, O.HR., 

O.HR, O.LG, R.G, 

T.M, TY.M 

Canadian System of 

Soil Classification 
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Ecological Variable Data Source Categorical Values Code Legend 

Soil Texture Ecosites 
SV1, SV4, SD4, 

SM4, SWm, SR 

V: Very dry, D: Dry, 

M: Moist, W: wet, 

R: Organic, 

m: mineral, 

p: peaty, 1: Sandy, 

2: Coarse-Loamy, 

3: Silty-Loamy, 

4: Fine-Loamy-

Clayey 

 

 

Table 3: Summary of AVI polygon counts and areas by species dominance at Slave Lake. Counts and percentages 

are relative to the polygons included within the subset outlined in Figure 1c. 

 

Dominant 

Species 
Number of Stands Total Area 

Mean Stand 

Area 
 # % ha % ha 

Aw 2876 21.31 39659.77 25.12 13.79 

Bw 270 2.00 1902.97 1.21 7.05 

Fb 31 0.23 485.55 0.31 15.66 

Lt 32 0.24 248.42 0.16 7.76 

Pb 255 1.89 2529.25 1.6 9.92 

Pl 5163 38.25 70501.76 44.65 13.66 

Sb 3539 26.22 29056.70 18.4 8.21 

Sw 1333 9.87 13503.31 8.55 10.13 

TOTAL 13499 100 157887.70 100  

 

Table 4: Ecosite names and corresponding codes, and ecosite phase names are their corresponding codes. Boreal 

mixedwood ecosites and their phases are identified as per Beckingham and Archibald (1996), lower foothills 

ecosites and phases as per (Lawrence et al. 2005), and upper foothills ecosites and phases as per (Willoughby 2007). 

This list only incorporates ecosites and ecosite phases occurring within the subset outlined in Figure 1c. 

 

Natural sub-

region 
Ecosite code Ecosite name 

Ecosite phase 

code 

Ecosite phase 

name 

Boreal 

Mixedwood 

 

a 
lichen 

(subxeric/poor) 

a1 lichen-Pj 

b 
blueberry 

(submesic/medium) 

b2 blueberry - 

Aw(Bw) 

b4 blueberry - Sw-

Pj 
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Natural sub-

region 
Ecosite code Ecosite name 

Ecosite phase 

code 

Ecosite phase 

name 

d 
low-bush cranberry 

(mesic/medium) 

d1 low-bush 

cranberry - Aw 

d2 low-bush 

cranberry - Aw-

Sw 

d3 low-bush 

cranberry - Sw 

e 
dogwood 

(subhygric/rich) 

e1 dogwood - Pb-

Aw 

e2 dogwood - Pb-

Sw 

e3 dogwood - Sw 

f 
horsetail 

(hygric/rich) 

f1 horsetail - Pb-

Aw (Bw) 

Lower Foothills 

 

c 
hairy wild rye 

(submesic/medium) 

c1 hairy wild rye - 

Pl 

c3 hairy wild rye - 

Aw-Sw-Pl 

d 
Labrador tea - 

mesic (mesic/poor) 

d1 Labrador tea-

mesic - Pl-Sb 

d2 Labrador tea-

mesic - Pl 

e 
low-bush cranberry 

(mesic/medium) 

e1 low-bush 

cranberry - Pl 

e2 low-bush 

cranberry - Aw 

e3 low-bush 

cranberry - Aw-

Sw-Pl 

e4 low-bush 

cranberry - Sw 

f 

bracted 

honeysuckle 

(subhygric/rich) 

f1 bracted 

honeysuckle/fern 

- Pl 

f2 bracted 

honeysuckle/fern 

- Aw-Pb 

f3 bracted 

honeysuckle/fern 

- Aw-Sw-Pl 
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Natural sub-

region 
Ecosite code Ecosite name 

Ecosite phase 

code 

Ecosite phase 

name 

f4 bracted 

honeysuckle/fern 

- Sw 

h 
Labrador tea 

(subhygric/poor) 

h1 Labrador tea-

subhygric - Sb-

Pl 

i 
horsetail 

(hygric/rich) 

i1 horsetail - Pb-

Aw 

i2 horsetail - Pb-

Sw 

i3 horsetail - Sw 

k 
bog 

(subhydric/poor) 

k1 treed bog 

Upper Foothills 

 

a grassland 
a1 shrubby 

grassland 

c 
hairy wild rye 

(submesic/medium) 

c1 hairy wild rye - 

Pl 

c4 hairy wild rye - 

Sw 

d 
Labrador tea-mesic 

(mesic/poor) 

d1 Labrador tea-

mesic - Pl-Sb 

e 
tall bilberry/arnica 

(mesic/medium) 

e1 tall 

bilberry/arnica - 

Pl 

e2 tall 

bilberry/arnica - 

Aw-Sw-Pl 

e3 tall 

bilberry/arnica - 

Sw 

f 

bracted 

honeysuckle 

(subhygric/rich) 

f1 bracted 

honeysuckle - Pl 

f3 bracted 

honeysuckle - 

Pb-Sw-Pl 

f4 bracted 

honeysuckle - 

Sw 

h 

Labrador tea-

subhygric 

(subhygric/poor) 

h1 Labrador tea-

subhygric - Sb-

Pl 
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Natural sub-

region 
Ecosite code Ecosite name 

Ecosite phase 

code 

Ecosite phase 

name 

j 
horsetail 

(hygric/rich) 

j1 horsetail - Sw 

k 
bog 

(subhydric/poor) 

k1 treed bog 
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Table 5: Summary of ecosite polygon counts and areas at Slave Lake. Counts and percentages are relative to the 

polygons lying within the subset outlined in Figure 1c. 

 

Natural Sub-

region 

Ecosite 

Code 
Number of Units Total Area 

Mean 

Area 
  # % ha % ha 

Boreal 

Mixedwood 

a 113 0.35 29.41 0.02 0.26 

b 2233 6.88 1386.95 0.93 0.62 

c 8 0.02 21.63 0.01 2.7 

d 867 2.67 13694.09 9.21 15.79 

e 984 3.03 1679.1 1.13 1.71 

f 233 0.72 803.98 0.54 3.45 

g 6 0.02 5.25 0 0.87 

i 116 0.36 1986.5 1.34 17.13 

j 4 0.01 40.04 0.03 10.01 

TOTAL 4564 14.07 19646.95 13.21  

Lower Foothills 

b 62 0.19 15.61 0.01 0.25 

c 1370 4.22 4570.25 3.07 3.34 

d 3539 10.91 26234.21 17.64 7.41 

e 4301 13.26 30756.16 20.68 7.15 

f 5002 15.42 4940.96 3.32 0.99 

h 850 2.62 644.29 0.43 0.76 

i 1314 4.05 5209.31 3.5 3.96 

j 42 0.13 43.06 0.03 1.03 

k 1120 3.45 16575.87 11.15 14.8 

l 52 0.16 591.73 0.4 11.38 

m 11 0.03 118.49 0.08 10.77 

TOTAL 17663 54.45 89699.94 60.32  

Upper Foothills 

a 160 0.49 43.5 0.03 0.27 

c 3316 10.22 2211.49 1.49 0.67 

d 681 2.1 5806.44 3.9 8.53 

e 2702 8.33 25340.16 17.04 9.38 

f 2017 6.22 1673.62 1.13 0.83 

ff 227 0.7 874.58 0.59 3.85 

g 70 0.22 86.43 0.06 1.23 

h 444 1.37 287.19 0.19 0.65 

i 27 0.08 18.62 0.01 0.69 

j 356 1.1 761.87 0.51 2.14 

k 214 0.66 2245.33 1.51 10.49 

TOTAL 10214 31.48 39349.22 26.46  

       

 TOTAL 32441 100 148696.1 100  
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2.4 ALS data collection 

ALS data were acquired for the Slave Lake region between 2006 and 2008 using an 

Optech ALTM 3100 with a dual frequency Applanix POSAV 510 GPS receiver and inertial 

measurement unit. Data were acquired with a maximum scan angle of ±25° from nadir, a beam 

divergence of 0.3 mrad The average point density was 1.27 points/m2 within the 27 plots. In 

2006, the laser scanner operated at an altitude of 1250 m with a pulse repetition rate of 50 kHz 

and a scanning frequency of 30 Hz. In 2007 and 2008 the laser scanner operated at an altitude of 

1400 m with a pulse repetition rate of 70 kHz and a scanning frequency of 33 Hz. Data were 

collected in July 2006, in October 2007, and July through September, in 2008 and included both 

leaf-on and leaf-off conditions. 

 

2.5 DAP data collection 

A total of 1527 aerial images were acquired on 26 April, 9 May and 13 May 2015 using a 

Z/I DMC® II230 at nadir including blue, green, red and near-infrared spectral bands. The ground 

sample distance was 0.3 m and along-track and across-track overlaps were 60% and 30%, 

respectively. Using the ALS-derived DSM as a reference, 134 ground control points were used to 

register the image data.  

 

2.6 Point cloud data processing 

The DAP data were processed using the Agisoft PhotoScan software. The software first 

detected points in the source photos that were stable under viewpoint and lighting variations and 

generated a descriptor for each point based on its local neighborhood. It then used a greedy 

algorithm to find initial, approximate camera locations and which were later refined using a 
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bundle-adjustment algorithm similar to Bundler (Snavely et al., 2006). Photoscan then 

reconstructed the surface using the pair-wise depth map computation (Kamencay et al., 2012). 

Finally, the software parameterized a surface and blended the source photos to form a texture 

atlas. This resulted in a point cloud with an average point density of 0.82 points/m2 within the 27 

plots. 

A DEM was developed using returns from the ALS dataset at a 1 m spatial resolution. 

Ground classifications were based on adaptive triangulated irregular network (TIN) models 

(Axelsson, 2000). The DEM was then used to normalize both the ALS and DAP point heights 

and respectively generate T1 and T2 canopy height models (CHMs). Studies have shown that 

ALS can accurately and precisely be used to normalize DAP point clouds assuming the terrain 

surface is invariant between fly-overs (St-Onge et al., 2008). 
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Chapter 3:  

 

3.1 Introduction 

Forest managers require the development of a cost-effective inventory cycle using 

remotely sensed data (Pitt and Pineau, 2009). Research has shown that area-based forest attribute 

predictions can accurately be made from DAP on simple boreal sites (Bohlin et al., 2012; 

Järnstedt et al., 2012), as well as complex coastal environments with varying slope and canopy 

cover conditions(White et al., 2015). However, few studies have explored the accuracy of forest 

attribute estimates from image-based point clouds in highly disturbed forest environments. If 

such estimates are sufficiently robust, then the data could plausibly be used to realize more 

frequent inventory cycles at a lower cost (White et al., 2016). Accurate estimates are especially 

vital for change evaluation as predictions are based on assessments at two points in time. 

Two methods for assessing forest growth using three-dimensional point cloud datasets 

are commonly applied: direct and indirect methods (Cao et al., 2016; Goodbody et al., 2016). 

Direct methods are those that estimate growth from differences in common metrics acquired 

from two datasets at two different points in time. Indirect methods compute growth by 

differencing two estimates (e.g. of height), an initial and final, with the two models not requiring 

the same predictor variables (McRoberts et al., 2014). The direct method tends to minimize 

prediction errors by minimizing the number predicted values used as input. However, the indirect 

method avoids the assumption that ALS and DAP point cloud metrics are comparable to one 

another. The indirect method is therefore necessary for the application of a multi-sensor 

approach to estimating growth, but can only be effective if the prediction errors of the input 

values can be minimized. 
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Past studies investigating the use of multi-temporal datasets to monitor forest height 

growth with ABA are presented in Table 6. St-Onge and Vepakomma (2004) assessed average 

dominant height growth in stands divided by hardwood/softwood dominance and by height 

classes of 5-10 m, 10-15 m, and >15 m. Average differences in the upper height percentiles were 

near to average observed growth in the “medium” age category in hardwood and softwood 

stands. Height increases were generally close to the reference age-height table values (average 

deviation = 0.42 m). Næsset and Gobakken (2005) assessed growth in Lorey’s height at the plot 

and stand levels, stratified by age and site quality. Observed plot growth was close to the root 

mean square error (RMSE) in the young stand. Hopkinson et al. (2008) assessed mean height 

growth in a temperate coniferous plantation. Trends of observed stand height growth and DSM-

based height growth estimates were nearly parallel. Yu et al. (2008) produced estimates of 

Lorey’s height growth on plots, first using only dominant trees then with all trees, using three 

methods: individual tree crown differencing, DSM differencing and ABA. ABA produced 

models with the lowest R2 value and the highest RMSE of the three methods for all-tree and 

dominant-tree height estimates (R2 = 0.53, RMSE = 0.29). Véga and St-Onge (2008) used an 

archive of aerial photos and validation data derived from growth curves to develop height models 

for plots. Large time intervals facilitated accurate height estimates despite large errors in height 

estimates at individual times. Stepper et al. (2015) used bi-temporal DAP data to assess the 

periodic annual increment (PAI) of stand height in three different age classes. Derived PAI 

values were used as truth data, and PAI was shown to decrease as age class increased. Tompalski 

et al. (2018) assessed height growth using projections from plot-specific yield curves. Applied 

yield curves were calculated as the weighted mean of an array of candidate curves produced 

from a growth and yield projection system that best corresponded to each of the modeled 
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structural attributes at T1 and T2: top height, basal area, total volume and number of trees. The 

%RMSE of projected values at T2 was 13.2%.  

Overall, results have been better in forests with relatively taller mean stand heights. 

Consequently, results from temperate zones were generally good, while results from boreal zones 

varied. In boreal studies, success was facilitated by the use of large growth intervals (Véga and 

St-Onge 2008) and comparatively simpler stand structures (Yu et al. 2008). No patterns of 

success were apparent regarding scale or sensor choice. Of the studies that have evaluated height 

growth, few validated their models against independent data sources, and only two used a multi-

sensor approach (i.e., Tompalski et al., 2018; Véga and St-Onge, 2008). A multi-sensor approach 

can reduce the costs of acquiring  multi-temporal point cloud data for stand-level growth 

assessments, by leveraging the ALS-derived DTM from an initial acquisition of ALS data for the 

subsequent processing of DAP data acquisitions (White et al. 2013b), but it also can increase the 

uncertainty associated with the growth estimate. 

 

 

 

 

 

 

 

 

 

 



31 

 

Table 6: Results of studies on height growth modelling using the ABA with multi-temporal ALS and/or DAP point 

cloud data. 

 

Reference 
Site 

Location 

Forest 

Type 

Acquisition 

Years 
Sensor Scale 

Mean 

Tree/Plot 

Heights 

(m) 

R2 
RMSE 

(m) 

Bias 

(m) 

St-Onge & 
Vepakomma, 
2004 

Lake 
Duparquet, 
QC 

Mature 
boreal 
mixed 
forest 

T1 = 1998  
T2 = 2003 

ALS  
ALS 

Stand-
level 

Low: 5-10 
Med: 10-15 
High: 15+ 

---Not Reported--- 

Næsset & 

Gobakken, 
2005 

Våler, 

Norway 

Managed 

boreal 
regeneratio
n and 
plantation 

T1 = 1999 

T2 = 2001 

ALS  

ALS 

Plot- 

and 
stand-
level 

Young: 

13.7 
Mature, 
poor: 16.0 
Mature, 
rich: 19.2 

 0.47 – 

1.28 

-0.23 – 

0.27 

Hopkinson et 
al., 2008 

Toronto, 
ON 

Temperate 
coniferous 

plantation 

T1 = 2000  
T2 = 2002  

T3 = 2004  
T4 = 2005 

ALS  
ALS 

ALS 
ALS 

Plot- 
and 

stand-
level 

23.8 – 24.6  0.5 
(41%) 

 

Yu et al., 
2008 

Kalkkinen, 
Finland 

Mature 
boreal 
mixed 
forest 

T1 = 1998  
T2 = 2003 

ALS  
ALS 

Plot-
level 

7.2 – 28.7 0.51 0.36  

Véga & St-

Onge, 2008 

Lake 

Duparquet, 
QC 

Managed 

even-aged 
boreal 
forest 

T1 = 1945  

T2 = 1965  
T3 = 1983  
T4 = 2003 

 

 
DAP  
ALS 

Plot-

level 

Coniferous: 

22.3 
Deciduous: 
26.4 

---Not Reported--- 

Stepper et al., 
2015 

Traustein, 
Germany 

Temperate 
mixed 
forest 

T1 = 2009 
T2 = 2012 

DAP 
DAP 

Plot- 
and 
stand-
level 

27.7 

---Not Reported--- 

Tompalski et 
al., 2018 

Slave Lake, 
AB 

Managed 
boreal 
mixedwood 

T1 = 2006-
2008 
T2 = 2015 

ALS  
DAP 

Plot- 
and 
stand-
level 

17.7  2.23 
(13.23%) 

0.64 
(9.81%) 

I examine the capacity of ALS and DAP technologies to assess ΔHL over approximately 

eight years in the context of managed yet highly disturbed boreal forest stands near Slave Lake in 

central Alberta, Canada by answering the following specific questions. 

 

1. Does the predictive capability of linear models for Lorey’s mean height growth improve 

when including canopy cover and/or canopy height variability metrics in the T1 and T2 

models? 
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Studies that have developed predictive models for forest stand height using three-

dimensional point cloud data have often used only height metrics as predictor variables (e.g., 

Bohlin et al., 2012; Hopkinson et al., 2008; Stepper et al., 2015; Tompalski et al., 2018; Véga 

and St-Onge, 2008; Yu et al., 2008). However, canopy cover and canopy height variability 

metrics could be useful for three reasons. First, estimation errors from the T1 and T2 height 

models are compounded when making growth predictions. Second, growth estimates could be 

overwhelmed by noise if they are imprecise, as mean annual increments (MAI’s) are small. 

Third, canopy cover and height variability metrics can provide additional information in stands 

with high densities of large snags as they could obscure structural quantifications of live trees 

(Bollandsås et al., 2013). 

The forests around Slave Lake are highly disturbed and have high mortality rates. To 

assess the significance of including these additional predictor variables, I compared models using 

only height metrics with those using combinations of height, canopy cover and height variability 

metrics. 

 

2. How is the predictive capability for Lorey’s mean height growth impacted by increasing 

plot-level mortality? 

 

Stand-level mortality has been shown to alter forest structure as detectable in three-

dimensional point clouds (Coops et al., 2009). However, models developed for ABA estimates of 

mortality-related forest attributes, and which use statistics from three-dimensional point clouds 

as predictor variables, have generally included spectral intensity (Bright et al., 2013; Kim et al., 

2009). Intensity metrics have often been of limited use due to lack of calibration and differences 
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in optimal flying conditions for structural data and spectral data acquisitions. Without a means of 

quantifying mortality, there is a need to assess the impacts of plot-level mortality on the 

predictive accuracy of stand-level forest attribute models to determine what stand conditions can 

be modeled (Yoga et al., 2017). To assess the impacts of plot mortality on ΔHL estimates in 

Slave Lake, I iteratively measured the accuracy of optimized height models, while incrementing 

the mortality in the dataset. 

 

3.2 Methods 

 

3.2.1 Field plot selection 

Plots were omitted from this analysis if they had mortality rates of 100%, if there was 

evidence of harvesting or fire, or if they decreased in live volume over the measurement period.. 

These disturbances were identified using an updated version of the change history of forested 

ecosystems product developed by Hermosilla et al. (2016). This product was developed for the 

National Terrestial Ecosystem Monitoring System (NTEMS) project that characterizes the recent 

change history of Canada’s forests using freely available data from the Landsat archive (White et 

al., 2014). The product was developed using the Composite2Change (C2C) time series-based 

change mapping method presented in (Hermosilla et al., 2015), which utilizes best-available-

pixel (BAP) composites of surface reflectance values derived from Landsat image archives. 

These composites are then used to produce a database of annual change occurring over Canada’s 

forests, including amounts, types, and rates of disturbances from fire, harvesting, non-stand-

replacing disturbances, and construction of infrastructure. Results from the Canada-wide 
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assessment revealed the ability of spectral-trend analysis to  identify forest changes with 

extremely high accuracy (Hermosilla et al., 2016).  

After removal of the plots for the disturbances noted above, twenty-seven plots remained, 

all of which were located roughly in center of the study area. The minimum bounding rectangle 

containing these plots was approximately 200,000 ha (Figure 1b). 

 

3.2.2 Metric comparison 

As the timing of the T1 and T2 field measurements did not correspond exactly to the 

respective airborne data acquisitions, a correction factor was applied to field-measured plot-level 

HL as per Eq. 2: 

 Hadj = HL + (HT2 – HT1)/(tFT2 – tFT1)*(tA – tF) (2) 

where t is the acquisition year, and A and F correspond to airborne and field campaigns, 

respectively. All subsequent references to field-measured HL on plots are Hadj. 

Statistical metrics describing forest stand structure were extracted from the ALS and 

DAP point clouds within the sample plots. Metrics were generated using returns above 2 m 

(Nilsson, 1996), and using only first returns in case of the ALS. Metrics were divided into three 

categories based on the canopy structures they describe: height, canopy cover and variability in 

height (Lefsky et al., 2005; White et al., 2013a). To evaluate the relationships of height, canopy 

cover, and height variability metrics with field-measured HL, we calculated the Spearman rank 

correlation coefficient (r) between HL at T1 and T2, and the suite of candidate metrics (Table 7) 

from each sensor. 
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Table 7: Metrics calculated for both ALS and DAP plot-scale point clouds. The numbers in brackets indicate the 

number of metrics in each category. 

 

Variable Category Metrics 

Height (9) 

Mean Height, Mode of Height 

Height Percentile Values (10th, 25th, 50th, 75th, 

90th, 95th, 99th) 

Canopy Cover (3) 
Percentage of 1st returns above: Mean Height,  

Mode of Height, 2 m Height Threshold 

Height Variability (8) 

Interquartile Range, Skewness, Kurtosis, 

Variance, Standard Deviation, Coefficient of 

Variation (of height) 

Canopy Relief Ratio, Upper Surface Area 

 

 

3.2.3 Modeling Lorey’s height and growth 

Two approaches were used to assess the influence of including canopy cover and 

variability metrics in the predictive models. First, multiple linear regression was used to develop 

each of the models, dividing the potential predictor variables into categories to reduce 

redundancy in the models (Table 7). A forward stepwise variable selection approach was used, 

resulting in models with the lowest AIC and where all predictors were statistically significant (p 

< 0.05). Hereafter, these models are referred to as the multi models, since they are based on 

multiple predictor variables. For the second approach, we developed models using the height 

percentile with the strongest correlation with HL as the single predictor variable for a linear 

regression. These models will subsequently be referred to as the single models. The RMSE, 

%RMSE, bias and %bias for each model were calculated as per Equations 3 to 6: 

 

  RMSE = √(Σ((yi - ŷi)2)/n) (3) 

 %RMSE = RMSE/ȳi*100 (4) 

 bias = Σ(yi - ŷi)/n (5) 
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 %bias = bias/ȳi*100 (6) 

 

where yi is an observed value, ȳi is the mean of observed values and ŷi is a predicted value for the 

𝑖th sample plot.  

We used the indirect method to assess forest growth. Predicted values for ΔHL were 

derived by differencing the predicted values from selected height models at T1 and T2. RMSE 

for ΔHL were estimated from the RMSEs for the height models at times T1 and T2 as per 

Equation 7, adapted from (Hughes and Hase, 2010): 

 

 RMSEG = √(RMSET1
2 + RMSET2

2) (7) 

 

where RMSEG is the prediction error of the growth model and RMSET1 and RMSET2 are the errors 

of the T1 and T2 models. Pearson product moment correlation coefficients were also calculated 

between measures of observed and predicted ΔHL. 

 

3.2.4 Model sensitivity to stand condition 

An exploratory assessment of the relationship between plot-level mortality and %RMSEG 

was executed as per Workflow 1 below. Plots were ordered according to tree mortality (defined 

as the percentage of dead trees in a plot) observed during the T2 field campaign. Model error for 

ΔHL was then evaluated iteratively for a subset of plots with increasing sample size (one 

additional plot at each iteration), and incremental mortality. At each iteration, predictions and 

RMSEs were generated from the optimized T1 and T2 HL models, and %RMSEG was estimated. 
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The %RMSEG values developed from subsets ordered by T2 tree mortality are hereafter referred 

to as %RMSEGM. The trend was assessed between %RMSEGM and the plot-level mortality at T2. 

To determine whether the trend was an artefact of subset size (n), and to assess the utility 

of minimizing plot-level mortality to reduce %RMSEG, a Monte Carlo simulation was used. The 

method explained in Table 8 was repeated for N = 100 random arrangements of the plot list to 

develop a distribution of %RMSEG for each value of n. The %RMSEG values developed from 

these randomizations of plot subsets will subsequently be referred to as %RMSEGR. The 

distributions of %RMSEGR were then overlain with %RMSEGM values to visually compare them, 

and linear, quadratic and square root curves were fit to each to determine the similarity of the 

observed trends with respect to n. 

 

Table 8: Iterative calculations for the development of distributions of %RMSEGR. i goes to 27 which is the total 
number of remeasured plots at the study site near Slave Lake, AB. 

 

1 Arrange all plots by increasing T2 mortality 

2 for i = 2 to 27 do: 

3 Select i plots from the top of the plot list 

4 Generate T1 and T2 HL predictions, and calculate RMSE 

5 Propagate RMSEs from T1 and T2 

6 End 
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3.3 Results 

 

3.3.1 Metric comparison 

ALS height metrics showed the strongest correlations to HL. Correlation strength 

increased with increasing height percentiles, but the degree of correlation was very similar 

between the 90th and 99th percentiles. Correlation values were consistently around 0.6 across 

canopy cover metrics. Correlation values for variability metrics were moderately high (>= |0.6|) 

for standard deviation, variance, skewness and canopy relief ratio, but lower for the other three 

metrics (Table 9). 

  Correlations were lower for DAP than for ALS across all variables and categories. 

Correlation values followed the same trend as ALS with height percentiles, and were nearly the 

same from 90% to 99%. Correlation values were low for all canopy cover metrics, with the 

highest values for the percentage of points above the mode. Correlation values were also low for 

all variability metrics with the highest being for the interquartile range and the standard deviation 

(Table 9). 
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Table 9: Spearman rank correlation coefficients for ALS (T1) and DAP (T2) metric correlations with field-based 

measures of HL. Height metrics denoted by “P” are height percentile values. 

 

Variable Category Metric ALS DAP 

Height P10 0.72 0.72 

P25 0.81 0.75 

P50 0.86 0.79 

P75 0.91 0.88 

P90 0.96 0.93 

P95 0.96 0.93 

P99 0.95 0.93 

Mean of Height 0.90 0.83 

Mode of Height 0.73 0.73 

Canopy Cover 1st Returns Above 2m 

(%) 

0.66 -0.09 

1st Returns Above 

Mean of Elevation 

(%) 

0.59 -0.22 

1st Returns Above 

Mode of Elevation 

(%) 

0.61 0.35 

Height Variability Standard Deviation 0.72 0.29 

Variance 0.61 0.24 

Coefficient of 

Variation 

-0.17 0.00 

IQ Range 0.47 0.37 

Skewness -0.60 0.08 

Kurtosis 0.36 0.03 

Canopy Relief Ratio 0.69 0.14 

 

 

3.3.2 Plot-level estimations of Lorey’s height and growth 

Predictive models were developed for HL at T1 and T2 (Table 10, Figure 2). All single 

models were developed using the 90th percentile of height as a predictor variable as it 

demonstrated a strong correlation with HL for both the ALS and DAP datasets (Table 9). The T1 

ALS multi equation included 3 variables with positive parameter coefficients. The adjusted R2 
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and %RMSET1 were very similar between the two ALS models, although the T1 ALS single 

equation was slightly less accurate. The T2 DAP multi equation also included 3 variables, 

although the percentage of points above the mean had a negative coefficient. The adjusted R2 and 

%RMSET2 were also very similar between the two DAP models, although the difference in fit 

measures was slightly larger than between the ALS models, with the T2 DAP single equation 

being less accurate than T2 DAP multi equation. All parameters were statistically significant (p < 

0.01) for all models. 

 

Table 10: Equations and predictive accuracy measures of linear regression models for HL at T1 and T2. Models 

labeled multi are built using stepwise multiple linear regression and models labeled single are built using simple 

linear regression. Model scatterplots are shown in Figure 2. *p < 0.01. **p < 0.001. 

 

Model 
Explanatory 

Variables 
Parameters Intercept R2 

Adjusted 

R2 

RMSE 

(m) 

RMSE 

(%) 

Bias 

(m) 

Bias 

(%) 

T1 

ALS 

multi 

Standard 

deviation of 

height 

1.89 ** 2.61 0.94 0.94 0.90 6.11 0 0 

 10th Percentile 

of Height  

0.60 **        

 1st Returns 
Above Mode 

(%) 

0.05 *        

T1 

ALS 

single 

90th Percentile 

of Height 

0.75 ** 3.26 0.92 0.92 1.07 7.26 0 0 

T2 

DAP 

multi 

Mean of Height 0.84 ** 7.11 0.92 0.91 1.10 7.10 0 0 

 Coefficient of 

Variation of 

height 

11.36 **        

 1st Returns 

Above Mean 
(%) 

- 0.09 *        

T2 

DAP 

single 

90th Percentile 

of Height 

0.73 ** 4.40 0.87 0.86 1.40 9.00 0 0 
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Figure 2: Scatterplots of linear regression models for HL at T1 and T2. A) T1 ALS multi, B) T1 ALS single, C) T2 

DAP multi, D) T2 DAP single. Model equations and predictive accuracy measures are shown in Table 10. 

  

 

 The growth_multi model estimated height growth with an RMSE of 1.42 m (%RMSEG = 

164.18%) and correlation was strong between the observed and predicted values (r = 0.75). The 

growth_single model estimated height growth with an RMSEG of 1.76 m (%RMSEGM = 
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203.03%) and correlation between the observed and predicted values was weather than that of 

the growth_multi model (r = 0.65) (Figure 3). 

 

 

Figure 3: Scatterplots for observed and predicted values of ΔHL by the indirect approach. Growth shown using 

models built from A) multi equations and, B) single equations. Models input to the indirect approach are illustrated 

in Figure 2, and equations are available from Table 10. 

 

 

3.3.3 Model sensitivity to stand condition 

Sensitivity to mortality was assessed for the growth_multi model exclusively, as its 

predictions had a lower RMSEG and %RMSEG than the growth_single model. The plot of 

%RMSEGM versus mortality rate showed an asymptote located approximately at the optimized 

model’s %RMSEG value (Figure 4). 

Within the %RMSEGR distributions derived from 100 randomizations of plot order, the 

median of %RMSEGR was greater than 100% when the sample size was seven (Figure 5). 

%RMSEGM falls within the 1st quartile of %RMSEGR distributions at all sample sizes except 26 
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and 27, and from 16 – 20 where it falls outside of the distributions. The values of %RMSEGM 

best fit a linear trend while the median values of the %RMSEGR distributions best fit a square 

root curve. 

 

 

Figure 4: Mortality sensitivity of the growth_multi model. %RMSEGM is the error for ΔHL. Mortality rate is the 

ratio of dead stems to total stems in the plot. 
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Figure 5: %RMSEGR by sample size for N = 100 random orders of plots and comparison with %RMSEGM. The 

boxes present the interquartile range of the distributions of %RMSEGR while bars show the medians. The upper and 

lower tails of the boxes show the 1st and 4th quartiles of the distributions respectively. The grey circles present values 

of %RMSEGM. 

 

 

 

3.4 Discussion 

This study had two main objectives, first to assess whether predictions for ΔHL are more 

accurate when including canopy height and height variability metrics in the T1 and T2 models, 
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and second to assess the impact of plot-level mortality on the accuracy of ΔHL estimates. 

Predictive models were developed for HL at T1 and T2 using three categories of point cloud 

metrics. Including additional categories of predictor variables reduced %RMSEG, although 

%RMSEG was high for both multi and single equations. These results were attributed to slow 

height growth and to high amounts of plot-level mortality and disturbance.  

Correlations between T1 HL values and height metrics were expectedly lower for height 

percentiles below the 90th than for those above the 90th.  Correlations between T2 HL values and 

height metrics followed the same pattern as those from T1, while correlations with canopy cover 

and variability in height were much weaker. These results are similar to the findings of White et 

al. (2015), except for the correlation they found between HL and coefficient of variation (r = -

0.59 there, and r = 0 here). DAP-based point clouds only represent the outer canopy envelope by 

the nature of how they are generated (White et al., 2013b). As such, cloud metrics derived from 

DAP point clouds contain little information regarding the vertical distribution of canopy cover 

through the canopy and height variability.  

The T1 ALS multi model (R2 = 0.94) explained slightly more variance than the T2 DAP 

multi model (R2 = 0.91), and the differences in RMSE between the single and multi models were 

small at both T1 (0.17 m, 1.15%) and T2 (0.3 m, 2.90%). Including canopy cover and height 

variability in the predictive height models for T1 and T2 provided only minor improvements in 

accuracy. Both multi models performed comparably to each other and favorably to many other 

studies that have compared model accuracy for height growth with ALS and DAP for single 

dates. Studies with reported %RMSEs include Järnstedt et al. (2012); ALS = 11.79%, DAP = 

18.17%, Pitt et al. (2014); ALS = 7.30%, DAP = 10.8%; Tompalski et al. (2018); See Table 6, 

Vastaranta et al. (2013); ALS = 7.75%, DAP = 11.18%, White et al. (2015); ALS = 8.96%, DAP 
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= 14.00%. However, the RMSEG of the growth_multi model was 0.336 m (38.85%) less than the 

growth_single model and the correlation with the observed ΔHL was 0.09 greater than the 

growth_single model. Due to the slow growth observed in the plots (mean ΔHL of 0.87m over 8 

years), the differences in RMSE between single and multi models at T1 and T2 were large 

relative to the growth. Other studies that have performed growth analyses at the plot level have 

been in relatively homogenous, even-aged, comparatively fast-growing sites (e.g., Hopkinson et 

al., 2008; Næsset and Gobakken, 2005; Véga and St-Onge, 2008). In the context of growth 

analysis using the indirect method, minimizing the RMSE at T1 and T2 is crucial to discern the 

growth signal from RMSEG. The direct method can minimize growth estimation errors 

(Hopkinson et al., 2008; Yu et al., 2008), but is likely better suited to single-sensor approaches 

where derived point-cloud metrics are more equivalent (Yu et al., 2008).   

%RMSEG was high for both the growth_single and growth_multi models. This can be 

explained firstly by slow height growth and the resultant small increments to be predicted. 

Secondly by having not stratified the data by species/forest type prior to modeling. White et al. 

(2017) noted that coniferous/deciduous splits or splits by species dominance are suggested for 

ABA modeling, as done by Næsset and Gobakken (2005). Such stratification was not feasible for 

this study due to the limited plot size. Thirdly, tree mortality causes discrepancies between field 

measurements and modeled estimations if the deaths occur between the field and remote data 

acquisitions (White et al., 2013a). Finally, points from snags in or above the canopy may have 

affected the point cloud metrics used in modeling, by either obscuring live trees or by modifying 

the plot’s canopy surface (Bollandsås et al., 2013).  

The mortality sensitivity assessment showed that %RMSEGM increased with increasing 

plot-level mortality. The trend between model error and mortality indicated that when the 
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maximum allowable mortality was approximately 25%, the %RMSEGM was just below 100%. 

Given a mean growth rate of 0.11 m yr-1 in this set of plots, approximately 12.79 years (an 

additional ~5 years beyond what was used in this study) would be required for the growth to 

exceed the modeling error (Eq. 6). The overlay of %RMSEGM with distributions of %RMSEGR 

showed that minimizing plot-level mortality successfully minimized the prediction errors, 

particularly at sample sizes where n > 15. Small sample sizes were subject to variable RMSE 

magnitudes, making the error reduction more prominent as the sample size increased from five. 

When the subset included nearly all possible plots (n > 23), %RMSEGM converged back into the 

distributions of %RMSEGR. Though %RMSEGM and medians of %RMSEGR showed similar 

trends with sample size, their fitting to different curves supported the approach that minimizing 

plot-level mortality reduces prediction error. As single-date models were already quite accurate 

and error magnitudes were comparable to those found in previous works comparing ALS and 

DAP derived estimates of forest structural attributes, a multi-sensor approach to growth 

monitoring may be better suited to less disturbed boreal sites or faster growing sites such as 

temperate forests. 

Despite technological advancements over the past few decades, ALS data acquisition 

remains a relatively expensive option for monitoring forest growth. However, value in the 

application of ALS in a forestry context comes in the full suite of applications that are enabled 

by these data including forest operations, inventory, planning, and management for a broad suite 

of ecosystem goods and services. ALS acquisitions are also necessary for the production of a 

quality and highly detailed DEM, and  high-quality attribute estimates, which together can 

largely balance the costs from the data’s collection and processing (Lacriox and Charette, 2013). 

The province of Alberta, where this study area was located, has invested in near wall-to-wall 
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acquisition of ALS data between 2003 and 2014 and is interested in maximizing the utility of the 

existing data set (Coops et al., 2016). By supplementing ALS data acquisitions with DAP, the 

forest industry can save on costs (White et al., 2013b) and provide other predictive statistics 

including spectral tone, texture, and pattern (Pitt et al., 2014). These metrics have been valuable 

in quantifying other forest attributes that are challenging to resolve using ALS, such as species 

composition and health status (Wulder et al., 2008; White et al. 2013b). They also serve well for 

many forest monitoring applications including the monitoring of mountain pine beetle (Wulder et 

al., 2012a), monitoring forest fires (Rufino and Moccia, 2005) or tree species identification (Gini 

et al., 2012). These recommendations must also be considered with respect to the study site 

itself, where higher quality acquisitions are needed for disturbed, slow-growing, dense stands. 
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Chapter 4:  

 

4.1 Introduction 

In Chapter 3 of this thesis, I showed that both ALS and DAP can successfully derive 

forest attributes using the ABA, in complex and disturbed sites such as Slave Lake (Figure 1b). 

The results also indicated that using the indirect method to estimate growth, in this environment 

where stands are slow-growing was most effective in areas where mortality was low. Given 

individual tree dynamics and mortality typical of boreal environments, tree-level differences over 

time are hard to quantify (Yoga et al., 2017). However, forest inventories typically summarize 

forest characteristics at the stand level (Leckie and Gillis, 1995). Despite a high error-to-growth 

ratio on a per-plot basis in disturbed environments, if pixel-wise estimates were summarized to 

the stand-level and a sufficient sample size used, then general landscape-scale patterns in height 

growth should be apparent. 

In forest inventories, landscape-scale growth patterns can inform on, and help quantify 

ecosystem services provided by different forest types, such as carbon sequestration, biodiversity 

conservation and forest product provision. Canada calculates carbon flux magnitudes for forest 

ecosystems using stock value estimates at different times (Penman et al., 2003). Stand growth 

estimates can allow fluxes to be estimated directly from changes in stock. Reporting on these 

fluxes is essential to different global coalitions seeking to address climate change, such as the 

requirements imposed by the criteria and indicator processes of the Montreal Process (Gillis et 

al., 2005). Forest structure, in particular, has been used as a biodiversity indicator in many 

forests. Various disturbances that induce stem mortality, removal, or that defoliate live or dead 

stems modify canopy structure and microclimate. These modifications impact the species present 
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to varying extents, and so quantifying changes in these structures has conservation value (Guo et 

al., 2017). Finally, wood quality of individual stems, including species and size, inform on the 

product mixes available from them (Murphy, 2008). Quantifying growth can help inform 

predictions of future product mixes at the stand level and improve forecasting algorithms. In 

turn, drivers of growth inform forest managers on how to optimize the different ecosystem 

services provided by different site types. Quantifying growth patterns is an essential step in 

determining growth drivers. 

 Landscape-scale growth summaries can be used to study growth patterns, as well as for 

inventory purposes. The Albertan ecosite phase and ecosite-level stand summaries contain 

information regarding lesser-investigated ecological variables, such as soil temperature (Larcher, 

2003) or excess moisture (Ward and Robinson, 2000). However, other growth patterns are not 

well-established. For example, there is ongoing debate over whether monospecific or mixed-

species sites have higher growth rates (Harper, 2015). The same debate persists for coniferous 

sites versus mixedwood sites in the Canadian boreal forest. Given that results from growth and 

productivity comparisons between sites differing in species composition in the Canadian boreal 

tend to be regionally dependent  (Filipescu & Comeau, 2007; MacPherson et al., 2001; Man & 

Lieffers, 1999), determining growth patterns around the area of Slave Lake, Alberta is important 

for industry and jurisdictional forest managers to optimize harvesting operations and improve 

decision making in sustainable forest management. 

In this chapter I examine the capacity of ALS and DAP technologies to assess ΔH over a 

subset of the Slave Lake study site in central Alberta (Figure 1c). Through the generation of 

these estimates, I seek to evaluate growth patterns across this study site with respect to ecological 

variables available from the AVI- and ecosite-scale inventory information. 
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4.2 Methods 

 

4.2.1 Modeling height growth 

In order to derive a spatially-explicit characterization of height growth for the stands 

considered in this analysis, the T1 ALS and T2 DAP canopy height models were adjusted to 

ensure they represent maximum stand height at each time step, as the focus was to assess the 

growth of the overstory trees. These two CHMs were then differenced and resampled to a spatial 

resolution of 10 m. The resulting wall-to-wall 10 m ΔH raster was then used as the basis for the 

spatially-explicit investigation of variations in height growth. Field data for individual trees were 

obtained from the twenty-seven plots established and measured between 2004 and 2006 and re-

measured in 2012 or 2016 (Section 2.2). ALS data were acquired for the Slave Lake region 

between 2006 and 2008, and aerial images were acquired in 2015 (Sections 2.4 and 2.5). Despite 

the temporal mismatch between field and remote sensing datasets at both T1 and T2, field-

measured individual tree heights were not modified accordingly as done in Section 3.2.2. A 

detailed description of the modeling process is defined below. 

 

Matching: 

Individual trees (with DBH > 9 cm) within plots identified in Chapter 2 and used in 

Chapter 3 were isolated by either selecting locally tallest trees or spatially isolated trees on the 

ALS and DAP CHMs. The maximum height value within a 3 x 3 pixel window around each tree 

top was then matched to the corresponding field-measured heights. In total, sixty-four individual 

trees were matched. 
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 Modeling: 

A simple linear regression model was then developed to adjust the CHM to the heights of 

the field-measured trees. Separate models were developed for the T1 ALS and T2 DAP CHMs 

(Figure 6). Matches for each of the two models were filtered based on the magnitude of 

differences between field-measured heights and the CHM heights: the T1 matches were filtered 

for trees where this measured difference was > 1 m (n = 55); and the T2 matches were filtered 

for trees where this measured difference was > 1 m and < 8 m (n = 53). The modeled 

adjustments were then systematically applied to ALS and DAP CHMs (CHMadj). As the focus 

was to assess the growth of the overstory trees, both CHMs were filtered to remove cells with 

heights < 5 m and outliers > 40 m prior to model adjustment. 

 

 

Figure 6: Simple linear models used to adjust T1 and T2 CHMs developed from CHM pixel values to individual 
trees. Black line is the 1:1 line. Blue line is the line of best-fit. 
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 Differencing/Filtering: 

The T1 ALS CHMadj was subtracted from the T2 DAP CHMadj to generate the wall-to-

wall, spatially explicit estimate of growth for each 2 m x 2 m grid cell (ΔH).  

 

Aggregating: 

The ΔH layer was aggregated to a 10 m spatial resolution using a fixed window and 

selecting the maximum 2 m x 2 m pixel value of ΔH within each 10 m x 10 m cell. Areas with 

negative growth (defined as < -2m), such as stands that had been harvested or burnt between T2 

and T1 were set to no data. A 10 m buffer was applied to all stand boundaries to exclude edge 

pixels. Finally, areas of spatial mismatch where height growth exceeded 10 m (e.g. due to 

canopy gaps in T1 that were not captured by the DAP in T2) were excluded. Stand-level 

estimates of` height growth were then developed by calculating the mean value for all of the 10 

m ΔH pixels within each AVI stand or ecosite polygon. 

 

Product validation is critically important prior to the application of any model. Growth 

validation requires field-derived estimates that are spatially-explicit, that represent the diversity 

of forest types existing over the landscape, and that temporally match the aerial data acquisition 

(White et al., 2013a). Error estimates derived in Chapter 3 were developed based on point cloud 

metrics at the plot-scale, and so are not applicable here. While growth values of individual trees 

were not calculated, validation was available from individual trees at each time. The T1 adjusted 

CHM had an RMSE of 1.44 m and the T2 adjusted CHM had an RMSE of 1.85 m. While the 

mean growth of the trees used in the models is not calculated here, the mean growth in the 27 

plots presented in Chapter 3 was 0.87 m, suggesting that the error of the growth value of a given 
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pixel from the product is, on average, likely much higher than the actual growth of the 

represented in the pixel. 

 

4.2.2 Evaluating patterns of growth 

The height growth patterns across categories within each of the eight ecological variables 

(Table 2), and across/within ecosites within each of the three natural sub-regions (Table 4) were 

evaluated. The subset of Slave Lake included three natural sub-regions: boreal mixedwood, 

lower foothills, and upper foothills. Stand age was used to stratify the growth increments, and 

was derived from the AVI polygons: (1, young) < 60 yrs; (2, middle-aged) 60 yrs–120 yrs; > 120 

yrs (3, mature). 

A stratified proportional sampling method was used to sample polygons (Figure 7). A 

sample of 1500 polygons was selected in each of three age strata using the sample_n function in 

the “dplyr” package within the R statistical software package. An ecological class was required 

to have a minimum size of 50 polygons in order to be included in the analysis. In total, eight 

ecological variables were used, representing 47 categories (Table 2). If all categories were 

represented in each age strata, and if all of these samples were sufficiently large, then this would 

result in 141 samples.  

To sample stands within each ecosite type or ecosite phase, the same proportional 

sampling method was used as outlined above, except that ecosite units were split by natural sub-

region prior to age stratification (Figure 7). This was necessary as ecosite types and phases are 

specific to natural sub-regions. A sample of 1500 polygons was selected in each of three age 

strata and per natural sub-region using the sample_n function in the “dplyr” package within the R 

statistical software package, and the minimum threshold number of required stands including a 
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category in the analysis was again 50. Growth among ecosite phases was only compared within 

ecosites, therefore ecosite types consisting of a single ecotype phase were excluded from the 

comparison of ecosite phases. In total, three natural sub-regions were used, representing 20 

ecosite types and 23 ecosite phases. If all ecosite types were represented in each age strata, and if 

all of these samples were sufficiently large, then this would result in 60 samples of ecosite types. 

If each of these ecosite types further consisted of >1 ecosite phase (notably already known to be 

false, Table 4), and if each of these samples were sufficiently large, then this would result in 69 

samples of ecosite phases. 

One-way analysis of variance (ANOVA) was conducted to test for significant differences 

in mean canopy height growth. For the eight ecological variables, one ANOVA was performed 

per age strata for a theoretical total of 24 such comparisons. For ecosite types within each of the 

three natural sub-regions, one ANOVA was performed per age stratum for a theoretical total of 9 

ANOVAs. For ecosite phases, one ANOVA was performed per stratum of age, natural sub-

region and ecosite type combination. Tukey’s HSD post-hoc tests were used to determine which 

groups had significant differences.  
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Figure 7: Workflow illustrating the sampling methodology used for the proportional sampling of AVI and ecosite 

polygons to assess growth patterns across the landscape near Slave Lake. The green trajectory shows the steps 

involved in sampling the AVI stands and ecosite polygons to obtain samples categorized according to the eight 

considered ecological variables. The blue trajectory shows the steps involved in sampling the ecosite polygons to 

obtain samples categorized according to ecosite types and ecosite phases. The tan coloured shapes and arrows show 

steps and datasets involved in sampling for the ecological variables, ecosite types and ecosite phases. The “Samples” 

box (last of the three) shows a) samples by ecological variables, and b) samples by ecosite and ecosite phase 
obtained from each of three age strata. 
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4.3 Results 

The sampling criteria outlined in Section 4.2.2 caused some samples to be excluded from 

the analysis. The eight ecological variables representing 47 categories from three different age 

strata included 103 samples, the 20 ecosite types from the different age strata included 39 

samples, and the 23 ecosite phases from the different age strata included 39 samples. Restrictions 

caused all boreal mixedwood ecosite samples from age strata 2 and 3 to be excluded from the 

analysis. Height growth distributions from each of the eight ecological variables are shown in 

Figure 8. The one-way ANOVA result for each ecological variable and age class is presented in 

Table 11. Summary statistics of the height growth distributions describing each category of each 

ecological variable in each age class, and grouping results from the Tukey HSD post-hoc tests 

are presented in Table 12. 

While patterns across age classes varied among ecological variables, the samples overall 

presented minimal variability in growth. Over eight years, the range of growth rates in these 

samples was from 0.29 m/year to 0.68 m/year. Categorization by canopy cover, revealed few 

trends. Samples in age classes < 60 years and > 120 years demonstrated small increases in 

growth with increasing canopy cover. In the comparison of samples taken by species dominance, 

black spruce stands demonstrated the lowest mean growth across all age classes. The sample of 

black spruce stands < 60 years had mean = 2.35 m, sd = 1.20 m, black spruce stands 60 – 120 

years had mean = 2.70 m, sd = 1.07 m, and black spruce stands > 120 years had mean = 3.57 m, 

sd = 1.47 m. The sample of trembling aspen stands < 60 years demonstrated the highest mean 

growth of samples taken by species dominance and in that age class, with mean = 4.17 m, sd = 

1.17 m. Few trends were apparent from the categorization by excess moisture. Height growth 

among samples in the < 60 years strata minimally increased from low limitation to medium-high 
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limitation. Growth was lowest in the high limitation category among stands > 120 years. In the 

comparison of samples taken by moisture regime, among samples from units < 60 years, 

submesic units demonstrated the least growth with mean = 3.5 m, sd = 1.32 m. Among samples 

60 – 120 years mean growth and standard deviation increased from submesic to hygric. 

Subhydric-classified units demonstrated the least growth among samples 60 – 120 years (mean = 

2.59 m, sd = 1.02 m), and among samples > 120 years (mean = 3.41 m, sd = 1.39 m). Growth 

patterns examined by nutrient regime showed that mean growth and standard deviation increase 

with increasing nutrient availability. Among samples < 60 years, mean growth increased from 

poor to rich, and in samples 60 – 120 years, mean growth increased from very poor to rich. In 

samples 60 – 120 years and > 120 years, measures of mean growth in very poor-classified units 

were lowest among their respective age strata. Very poor-classified units in the 60 – 120 years 

strata had mean = 2.44 m, sd = 0.91 m, while those in the > 120 years strata had mean = 3.16 m, 

sd = 1.54 m. No clear trends were apparent from samples taken by categories of soil temperature. 

Units classified as high-limitation demonstrated the lowest mean growth in all age strata. From 

assessing growth patterns demonstrated by categories of primary Canadian soil classification, 

mean growth was highest in units with orthic eutric brunisols among samples < 60 years (O.EB, 

mean = 5.11, sd = 1.44 m), and among samples > 120 years (mean = 5.43, sd = 1.49 m). Mean 

growth was lowest in terric mesisol-classified units among samples 60 – 120 years (T.M, mean = 

2.65, sd = 1.14 m), and among samples > 120 years (mean = 3.59, sd = 1.57 m). Across age 

classes, mean growth measures in units with organic soils were lower than units with other soil 

classes. No growth trends were apparent across soil great groups, or subgroups. In examining 

units by categories of prevalent soil texture, in samples < 60 years, units with very dry sandy 

soils showed the lowest mean growth (SV1, mean = 3.39, sd = 1.23 m) while units with dry 
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clayey soils showed the greatest mean growth (SD4, mean = 4.86, sd = 1.37 m). Units with 

organic soils demonstrated the lowest mean growth among samples 60 – 120 years (SR, mean = 

2.65, sd = 1.04 m) and among samples > 120 years (mean = 3.26, sd = 1.43 m). 

 

 
Table 11: One-way ANOVA results describing categorical mean differences for each ecological variable and age 

class. *p < 0.05. **p < 0.01. ***p < 0.001. 

 

Ecological 

Variable 
Age Class F-statistic 

Degrees of 

Freedom 
p-value 

Canopy Cover 

 

1 56.58 3 *** 

2 2.96 3  

3 4.4 3 ** 

Species 

Dominance 

 

1 76.23 3 *** 

2 118.13 4 *** 

3 54.91 3 *** 

Nutrient Regime 

 

1 10.85 2 *** 

2 48.15 3 *** 

3 23.66 3 *** 

Moisture 

Regime 

 

1 9.84 3 *** 

2 35.49 4 *** 

3 16.1 4 *** 

Excess Moisture 

 

1 11.09 2 *** 

2 4.65 3 ** 

3 14.78 3 *** 

Soil 

Temperature 

 

1 7.18 3 *** 

2 10.44 3 *** 

3 17.4 3 *** 

Soil 

Classification 

 

1 32.91 4 *** 

2 12.4 6 *** 

3 10.47 5 *** 

Soil Texture 

 

1 34.17 2 *** 

2 25.82 4 *** 

3 20.96 3 *** 
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Figure 8: Stand growth distributions in categories of ecological variables. Distributions describe stands stratified by 

age class. Y-axis units for ΔH are estimated mean growth in m. Black horizontal bars within the boxes show the 

medians of the distributions. Boxes show the and 3rd and 2nd quartiles of the distributions, while limits of the upper 

and lower tails are (Q3 + 1.5 * IQR) and (Q2 - 1.5 * IQR) respectively. Q signifies quartile and IQR stands for 

interquartile range. 
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Table 12: Summary statistics of the height growth distributions describing each category of each ecological variable 

in each age class, and grouping results from the Tukey HSD post-hoc tests. Different letters under Tukey’s HSD 

group indicate significant difference between groups at α=0.05 determined with Tukey’s HSD test. Groups that 

share the same letter are not significantly different. For example, AVI polygon samples selected to compare stands 

with canopy cover classes A and B are not significantly different, while samples selected to compare stands with 
classes A and C are significantly different. 

 

Ecological 

Variable 
Age Class Category Mean 

Standard 

Deviation 
n 

Tukey’s 

HSD 

Group 

Canopy 

Cover 

 

1 

 

A 3.21 1.37 453 a 

B 3.41 1.29 318 a 

C 3.88 1.27 454 b 

D 4.43 1.34 273 c 

2 

 

A 3.58 1.32 513 a 

B 3.54 1.52 225 a 

C 3.74 1.39 419 a 

D 3.8 1.11 340 a 

3 

 

A 4.14 1.47 572 a 

B 4.38 1.69 256 ab 

C 4.32 1.59 389 ab 

D 4.52 1.37 282 b 

Species 

Dominance 

 

1 

 

Sb 2.35 1.2 78 a 

Pl 3.44 1.29 551 b 

Aw 4.17 1.17 693 c 

Bw 3.17 1.45 78 b 

2 

 

Sw 4.09 1.43 81 ab 

Sb 2.7 1.07 446 c 

Pl 3.93 1.01 420 a 

Aw 4.19 1.16 437 b 

Bw 3.8 1.25 56 ab 

3 

 

Sw 4.59 1.41 219 a 

Sb 3.57 1.47 455 b 

Pl 4.62 1.51 670 a 

Aw 4.76 1.48 138 a 

Nutrient 

Regime 

 

1 

 

Poor 2.88 1.02 50 a 

Medium 3.7 1.37 1017 b 

Rich 3.88 1.69 414 b 

2 

 

Very Poor 2.44 0.91 76 a 

Poor 3.7 1.23 287 b 

Medium 3.93 1.39 627 b 

Rich 4.43 1.7 505 c 

3 

 

Very Poor 3.16 1.54 85 a 

Poor 4.68 1.53 361 b 

Medium 4.78 1.7 580 b 
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Ecological 

Variable 
Age Class Category Mean 

Standard 

Deviation 
n 

Tukey’s 

HSD 

Group 

Rich 4.72 1.81 469 b 

Moisture 

Regime 

 

1 

 

Submesic 3.5 1.32 625 a 

Mesic 3.93 1.5 433 b 

Subhygric 3.92 1.63 338 b 

Hygric 3.95 1.99 61 ab 

2 

 

Submesic 3.64 1.36 286 a 

Mesic 4.04 1.18 548 b 

Subhygric 4.35 1.67 461 c 

Hygric 4.45 1.77 101 bc 

Subhydric 2.59 1.02 84 d 

3 

 

Submesic 4.78 1.64 201 a 

Mesic 4.92 1.59 647 b 

Subhygric 4.56 1.83 458 c 

Hygric 4.73 2.15 97 bc 

Subhydric 3.41 1.39 87 d 

Excess 

Moisture 

 

1 

 

L 3.56 1.36 970 a 

L_H 3.92 1.65 116 b 

M_H 3.95 1.64 367 b 

2 

 

H 3.75 1.87 174 a 

L 3.88 1.28 770 a 

L_H 3.76 1.23 82 ab 

M_H 4.14 1.61 472 b 

3 

 

H 3.9 1.68 182 a 

L 4.79 1.58 699 b 

L_H 4.87 1.72 157 b 

M_H 4.58 1.84 460 b 

Soil 

Temperature 

 

1 

 

 

L 3.61 1.37 970 a 

L_H 4 1.66 116 b 

M 3.97 1.69 337 b 

H 3.45 1.82 75 ab 

2 

 

L 3.78 1.25 770 a 

L_H 3.98 1.3 82 ab 

M 4.25 1.7 398 b 

H 3.74 1.67 248 a 

3 

 

L 4.81 1.53 699 a 

L_H 4.98 1.74 157 a 

M 4.58 2.05 372 a 

H 3.98 1.72 270 b 

Soil 

Classification 

 

1 

 

O.EB 5.11 1.44 78 a 

E.EB 3.39 1.07 358 b 

O.LG 4.11 1.6 168 c 
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Ecological 

Variable 
Age Class Category Mean 

Standard 

Deviation 
n 

Tukey’s 

HSD 

Group 

O.GL 3.25 1.22 183 b 

BR.GL 3.79 1.54 636 c 

2 

 

O.EB 4.02 1.39 72 ab 

E.EB 4.11 1.64 77 ab 

O.LG 4.52 1.7 110 a 

O.GL 4.2 1.71 111 ab 

BR.GL 3.96 1.4 940 b 

CU.R 4.46 1.89 74 ab 

T.M 2.65 1.14 60 c 

3 

 

O.EB 5.43 1.49 65 a 

O.LG 4.56 1.67 96 bc 

O.GL 4.27 1.92 124 bd 

BR.GL 4.8 1.7 1001 c 

CU.R 4.78 2.19 68 abc 

T.M 3.59 1.57 71 d 

Soil Texture 

 

1 

 

SV1 3.39 1.23 357 a 

SD4 4.86 1.37 75 b 

SM4 3.76 1.49 1012 c 

2 

 

SV1 3.95 1.52 76 a 

SD4 4.25 1.3 58 ab 

SM4 3.98 1.42 1172 a 

SWm 4.77 1.89 91 b 

SR 2.65 1.04 86 c 

3 

 

SD4 4.82 1.61 61 a 

SM4 4.61 1.69 1228 a 

SWm 4.97 1.84 92 a 

SR 3.26 1.43 92 b 

 

Height growth distributions categorized by ecosite type compared to units separated by 

each of the three natural sub-regions are shown in Figure 9. The one-way ANOVA result for 

each natural sub-region and age class is presented in Table 13. Summary statistics of the height 

growth distributions describing each ecosite of each natural sub-region in each age class, and 

grouping results from the Tukey HSD post-hoc tests are presented in Table 14. In the boreal 

mixedwood, among samples < 60 years, mean and standard deviation of height growth increased 
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from site types “a” to “f”. In the lower foothills, among samples < 60 years, mean growth 

decreased while the standard deviation of growth increased from site types “c” to “i”. Among 

samples 60 – 120 years, the mean growth increased from site types “d” to “f”, peaking at “i” 

(mean = 4.71, sd = 1.73 m). Site type “k” units demonstrated the lowest mean growth (mean = 

2.83, sd = 0.86 m). Samples > 120 years showed little variation in growth. Only site type “k” 

showed significantly less growth than the other samples (mean = 3.33, sd = 1.31 m, group = 

“b”).  In the upper foothills, in samples < 60 years, mean growth decreased from site types “e” to 

“ff”. Among samples 60 – 120 years, a trend of increasing mean growth was apparent from site 

types “a” to “j”. In samples > 120 years, no trend was apparent. 

 

 
Table 13: One-way ANOVA results describing ecosite mean differences for each natural sub-region and age class. 

*p < 0.05. **p < 0.01. ***p < 0.001. 

 

Natural Sub-

region 
Age Class F-statistic 

Degrees of 

Freedom 
p-value 

Boreal 

Mixedwood 
1 41.85 4 *** 

Lower 

Foothills 

 

1 11.39 3 *** 

2 25.98 6 *** 

3 14.68 6 *** 

Upper 

Foothills 

 

1 30.68 3 *** 

2 30.62 5 *** 

3 4.9 5 *** 
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Figure 9: Stand growth distributions categorized by ecosite type. Distributions describe stands stratified by age 

class. Y-axis units for ΔH are estimated mean growth in m. Black horizontal bars within the boxes show the medians 

of the distributions. Boxes show the and 3rd and 2nd quartiles of the distributions, while limits of the upper and lower 

tails are (Q3 + 1.5 * IQR) and (Q2 - 1.5 * IQR) respectively. Q signifies quartile and IQR stands for interquartile 

range. 

 

 

Table 14: Summary statistics of the height growth distributions describing each ecosite of each included natural 

sub-region and age class, and grouping results from the Tukey HSD post-hoc tests. Different letters under Tukey’s 

HSD group indicate significant difference between groups at α=0.05 determined with Tukey’s HSD test. Groups that 

share the same letter are not significantly different. For example, ecosite polygon samples selected to compare 

boreal mixedwood natural sub-region stands with ecosite types “b” and “d” are not significantly different, while 

samples selected to compare stands with ecosite types “a” and “b” are significantly different. 

 

Natural 

Sub-region 

Age 

Class 
Category Mean 

Standard 

Deviation 
n 

Tukey’s 

HSD 

group 

Boreal 

Mixedwood 

 

1 

 

a 2.67 0.98 56 a 

b 3.44 1.05 796 b 

d 3.30 1.17 229 b 

e 4.20 1.51 331 c 

f 4.45 2.05 68 c 

Lower 

Foothills 

 

1 

 

c 4.81 1.41 281 a 

e 4.49 1.41 668 b 

f 4.22 1.78 392 c 

i 3.91 1.94 88 c 

2 

 

c 3.91 1.30 94 ab 

d 3.70 1.09 294 a 

e 4.31 1.18 336 bc 
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Natural 

Sub-region 

Age 

Class 
Category Mean 

Standard 

Deviation 
n 

Tukey’s 

HSD 

group 

f 4.34 1.61 460 bc 

h 3.89 1.34 82 ab 

i 4.71 1.73 119 c 

k 2.83 0.86 93 d 

3 

 

c 5.05 1.56 98 a 

d 4.69 1.62 356 a 

e 5.00 1.52 324 a 

f 4.70 1.92 406 a 

h 4.60 1.68 79 a 

i 4.78 1.92 111 a 

k 3.33 1.31 111 b 

Upper 

Foothills 

 

1 

 

c 3.18 1.27 689 a 

e 3.91 1.52 369 b 

f 3.24 1.42 279 a 

ff 2.68 0.97 69 c 

2 

 

a 2.70 1.00 53 a 

c 3.28 1.28 587 b 

d 3.33 1.03 90 ab 

e 3.97 1.35 314 c 

f 4.04 1.70 272 c 

j 4.91 1.77 53 d 

3 

 

c 4.75 1.54 351 ab 

d 4.27 1.29 134 ac 

e 4.75 1.70 450 b 

f 4.29 1.85 315 c 

h 4.60 1.86 102 abc 

j 4.27 1.92 61 abc 

 

 Height growth distributions categorized by ecosite phase from units separated by each of 

the three natural sub-regions are shown in Figure 10. The one-way ANOVA result for each 

natural sub-region, age class, and ecosite is presented in Table 15. Summary statistics of the 

height growth distributions describing each ecosite phase of each natural sub-region in each age 

class, and grouping results from the Tukey HSD post-hoc tests are presented in Table 16. In the 

categorization by ecosite phase, in the boreal mixedwood, broadleaf-dominant phases 
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demonstrated larger mean growth than conifer-dominated phases in site types “b” and “c”. In the 

lower foothills, the mixedwood phase demonstrated higher mean growth than the lodgepole pine-

dominated phase in ecosite type “f” among samples < 60 years and 60 – 120 years. The 

mixedwood phase also demonstrated higher mean growth than the lodgepole pine-dominated 

phase in ecosite type “e” among samples 60 – 120 years. In the upper foothills, among samples < 

60 years, the mixedwood phase again demonstrated higher mean growth than the lodgepole pine-

dominated phase in ecosite type “e”. Among samples 60 – 120 years, the lodgepole pine-

dominated phase demonstrated higher mean growth than the white spruce-dominated phase 

across all ecosite types included in this stratum: “c”, “e”, and “f”. No significant differences were 

found among phases in sites > 120 years. 
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Table 15: One-way ANOVA results describing ecosite phase mean differences for each natural sub-region, age 

class, and ecosite type. *p < 0.05. **p < 0.01. ***p < 0.001. 

 

Natural Sub-

region 
Age Class Ecosite F-statistic 

Degrees of 

Freedom 
p-value 

Boreal 

Mixedwood 

1 

 

b 71.33571 1 *** 

d 58.78036 1 *** 

Lower 

Foothills 

 

1 

 

c 1.035431 1  

e 0.509704 2  

f 5.865129 2 ** 

2 

 

d 1.770373 1  

e 0.903013 2 * 

f 12.18725 2 *** 

3 

 

d 7.316688 1 ** 

e 1.725258 1  

f 1.717684 2  

Upper 

Foothills 

 

1 e 54.10336 1 *** 

2 

 

c 23.50248 1 *** 

e 39.97021 1 *** 

f 38.73211 1 *** 

3 

 

e 16.87644 1  

f 0.624205 1  

      

 

 

Figure 10: Stand growth distributions categorized by ecosite phase. Distributions describe stands stratified by age 

class. Y-axis units for ΔH are estimated mean growth in m. Black horizontal bars within the boxes show the medians 

of the distributions. Boxes show the and 3rd and 2nd quartiles of the distributions, while limits of the upper and lower 

tails are (Q3 + 1.5 * IQR) and (Q2 - 1.5 * IQR) respectively. Q signifies quartile and IQR stands for interquartile 

range. 
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Table 16: Summary statistics of the height growth distributions describing each ecosite phase of each included 

natural sub-region and age class, and grouping results from the Tukey HSD post-hoc tests. Different letters under 

Tukey’s HSD group indicate significant difference between groups at α=0.05 determined with Tukey’s HSD test. 

Groups that share the same letter are not significantly different. For example, ecosite polygon samples selected to 

compare lower foothills natural sub-region stands with ecosite phase types “f2” and “f3” are not significantly 
different, while samples selected to compare stands with ecosite phase types “f1” and “f2” are significantly 

different. 

 

Natural 

Sub-region 
Age Class Category Mean 

Standard 

Deviation 
n 

Tukey’s 

HSD 

group 

Boreal 

Mixedwood 

 

1 

 

b2 3.56 1.07 645 a 

b4 2.67 0.91 124 b 

d1 3.71 1.19 112 a 

d3 2.63 1.01 82 b 

Lower 

Foothills 

 

1 

c1 4.88 1.39 148 a 

c3 5.01 1.30 115 a 

e1 4.50 1.61 133 a 

e2 4.40 1.45 260 a 

e3 4.58 1.33 263 a 

f1 3.55 1.40 61 a 

f2 4.43 1.72 214 b 

f3 4.32 1.72 114 b 

2 

 

d1 3.68 0.93 103 a 

d2 3.77 1.05 190 a 

e1 3.73 1.19 56 a 

e2 4.05 1.01 159 a 

e3 4.63 1.29 95 b 

f1 4.00 1.42 209 a 

f2 4.67 1.54 158 b 

f3 4.85 1.41 79 b 

3 

 

d1 4.13 1.30 95 a 

d2 4.87 1.50 261 b 

e3 4.87 1.47 119 a 

e4 4.97 1.80 128 a 

f1 4.78 1.73 197 a 

f3 5.09 2.03 97 a 

f4 4.81 1.74 77 a 

Upper 

Foothills 

 

1 

 

e1 3.61 1.32 210 a 

e2 4.51 1.55 143 b 

2 

 

c1 3.39 1.18 446 a 

c4 2.70 1.26 137 b 

e1 4.25 1.22 176 a 

e3 3.24 1.18 105 b 

f1 4.76 1.60 132 a 
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Natural 

Sub-region 
Age Class Category Mean 

Standard 

Deviation 
n 

Tukey’s 

HSD 

group 

f4 3.53 1.46 123 b 

3 

 

e1 5.00 1.63 187 a 

e3 4.63 1.51 209 a 

f1 4.54 1.70 119 a 

f4 4.14 1.79 168 a 

 

 

4.4 Discussion 

The growth patterns seen across ecosites and natural sub-regions can be used to 

contextualize the possible relationships between the considered ecological variables and height 

growth (Figures 8 and 9). Generally, the links between patterns demonstrated by ecosite and by 

patterns demonstrated by the ecological variables were most apparent using nutrient regime, 

moisture regime, species dominance and the soils classification. First, bog type ecosites (“k”) 

had distinctly lower growth than other ecosites. This is expressed through trends in the 

ecological variables, including low growth in the very nutrient-poor units, in subhydric units,on 

sites dominated by black spruce, and units with organic soils (soil type = “SR”, soil classification 

= “T.M”). The second trend was the generally increasing mean growth across ecosites in the 

boreal mixedwood, and in units 60 – 120 years in the lower and upper foothills. The trend of 

increasing growth with increasing nutrient and moisture regime was apparent from “very poor” 

to “rich”, and from “submesic” to “hygric” respectively in corresponding age classes. However, 

the trend was not consistent. Thirdly, in young units in the lower and upper foothills, rich and 

moist ecosite types demonstrated comparatively lower mean growth than might be expected. One 

reason for this could be that the water table height has a large impact on the time required for 

seedling establishment in these natural sub-regions. When trees are removed due to disturbance, 
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the water table may rise significantly on wetter sites. In sites that are also more eutrophic, shrub, 

forb and grass species are often effective colonizers, further impeding tree establishment 

(Lawrence et al., 2005, Willoughby, 2007, Moisey et al., 2016). Following establishment, these 

sites may be highly productive, but the time required for establishment is variable. Leading from 

this, another possibility is that the observed decreasing trends were a result of the chosen limits 

for the age classes. Other studies on succession in this area of Alberta used different age limits 

for their designation of young and mature forests. Morgantini & Kansas (2003) studied 

successional rates in the upper foothills and subalpine natural sub-regions of Alberta and found 

that elevation and water table depth strongly influenced the progression of a site towards 

maturation. Stands included in their sample of a 70 – 130 year age class were described with 

qualities characteristic of young forests including high stem density, low proportion of shade-

tolerant species, and low volume of downed woody debris. Corns, Downing, & Little (2005) 

assessed top height in the lower foothills and upper foothills in stands up to 40 years old. The 

patterns shown there generally match the growth patterns presented here in stands < 60 years. 

The authors found that top height in the lower foothills generally decreased from drier, more 

mesotrophic sites to wetter, more eutrophic sites (“c” to “i”): top height in the upper foothills 

was low in “c”, higher in “d”, “e”, and “f”, and lower again towards “i”. 

 Stands composed of a deciduous/coniferous mix generally showed greater mean height 

growth than lodgepole pine stands, while the mean height growth of mixed stands was variable 

in comparison to trembling aspen stands. Other studies that have compared the productivity of 

monospecific stands to mixed-species stands within the natural sub-regions considered here 

came to different conclusions. MacPherson, Lieffers, & Blenis (2001) assessed biomass and 

periodic annual biomass increment (PAI) in trembling aspen stands, with and without white 
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spruce present in the understory, in northeastern Alberta. They found that both biomass and PAI 

were greater in mixed plots when summed over both species. Man & Lieffers (1999) provide an 

overview of ecological theory supporting why mixes of trembling aspen and white spruce would 

be expected to be more productive than monospecific stands of either species based on 

competitive reduction through differential utilization of resources and facilitative production 

through improved nutritional conditions, mitigation to pest attacks, and increased resistance to 

blowdown. However, Filipescu and Comeau (2007) studied competitive interactions between 

trembling aspen and white spruce in stands up to 60 years old in the boreal mixedwood natural 

sub-region. Their competition indices were able to predict spruce growth with an R2 of 0.7; 

however, they found that a separate model was required for the prediction of growth in stands 10 

– 20 years than for stands 20 – 60 years, suggesting that differences in competitive effects on 

growth exist between stands of different ages. Contextualized by Man & Lieffers (1999), this is 

likely due to differences in structural complexity of the stands in these age classes. In younger 

stands, competition was likely higher as the trembling aspen and white spruce trees would have 

been much closer in height, and nutritional inputs from organic matter would have been lower. 

Harper (2015) compared growth interactions in mixes of trembling aspen and lodgepole pine in 

stands 22 – 39 years in the Sub Boreal Spruce biogeoclimatic zone of northern interior British 

Columbia and found that pine growth was a linear function of competitive reduction, since pine 

volume, basal area, and merchantable volume were very sensitive to changes in aspen 

competition. This result suggests that the composition of the species mix may also affect the 

productivity in a comparison with monospecific stands. 

Growth distributions in units > 120 years were poorly differentiated using the ecological 

variables, the ecosites, and ecosite phases. As well, the mean height growth values in this age 
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class were similar to those of the first and second age classes, which is contrary to the 

understanding that stand height growth is initially rapid, and then slows with senescence (Ryan 

et al., 1997) (Tables 12, 14, 16). There are at least two potential explanations for this. First, the 

ranges of age classes were chosen to reflect the full range of ages present in the AVI data. As 

previously explained, successional rates are variable in this region as they are dependent on a 

number of ecological factors. If successional rates in the region are slow, then overall height 

growth in this age category may not have decreased yet. Second, it is possible that these data 

reflect the inability of DAP to record forest canopy gaps (Vastaranta et al., 2013; White et al., 

2018). In the presence of gaps, ALS is able to penetrate down into the canopy. When 

differencing the two CHMs, canopy gaps are likely to be locations of maximum local growth, 

which would be emphasized upon aggregation of the growth layer to a coarser resolution. As 

younger stands tend to be denser with fewer gaps, the growth of older stands may appear inflated 

in contrast (Chen and Popadiouk, 2002).  

The trends and distributions shown in this study support the use of a multi-sensor 

approach to observing growth patterns over an eight-year period in Alberta’s foothills and in the 

south of the boreal mixedwood sub-region in young and mature sites. In the first two age classes, 

growth trends across ecosite distributions generally followed the expected patterns, with logical 

ecological variables that differentiated them: species dominance, nutrient regime and moisture 

regime. However, caution must be taken when using this approach in this region to describe the 

expected growth of a given stand. The stands are slow-growing with high levels of mortality. As 

shown in Chapter 3, even optimized models for Lorey’s height growth had a high %RMSE as the 

model error was relatively large as compared to the growth magnitudes of the stands (Figure 3). 

While these data are suitable for characterizing large-area trends in height growth, to describe 
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individual stands with a multi-sensor approach using the quality of data presented here, the 

approach would either be best applied to more rapidly-growing stands, or the time between 

remotely-sensed data acquisitions would need to increase. 
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Chapter 5: Conclusion 

 

5.1 Overview 

The Canadian forest products industry aims to maximize the value of timber and other 

forest products, and improve supply chains. To accomplish this, enhanced forest inventories 

containing timely, accurate and consistent measures of forest stand structure, composition and 

productivity are required (Alam et al., 2014). The development and use of ALS point clouds to 

measure forest structural variables offer a spatially efficient means of complimenting existing 

methods of forest inventory. Barriers such as cost and complexity of data acquisition still impede 

the full integration of ALS technologies into data acquisition methods for forest inventories. 

DAP point clouds have been proposed as a cost-effective alternative to ALS point clouds for 

inventory re-measurement. The primary objective of this thesis was to examine the capacity of 

ALS and DAP technologies to assess Lorey’s height growth (ΔHL) in a disturbed boreal forest 

near Slave Lake in central Alberta. Findings from each of the research questions derived to fulfill 

this objective are outlined below. 

 

Question 1.  How can ALS and DAP point clouds be utilized to derive measures of height 

growth at Slave Lake, AB, Canada? 

 

This question was investigated in Chapter 3 of this thesis. As few studies have explored 

the accuracy of forest attribute estimates from image-based point clouds in highly disturbed 

environments (White et al., 2015), this question had to be divided into two subquestions. The 

first determined which variables to use in modeling height and the second investigated how the 
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predictive model errors responded to stand condition. Findings from each of these subquestions 

are summarized below. 

 

a)  Does the predictive capability of linear models for Lorey’s mean height growth improve when 

including canopy cover and/or canopy height variability metrics in the T1 and T2 models? 

 

To assess the utility of including additional predictor variables in the predictive models 

for ΔHL, I compared models using only height metrics with those using combinations of height, 

canopy cover, and height variability metrics. Predictor variables were selected using forward 

step-wise multiple linear regression.  

Including additional categories of predictor variables reduced the %RMSEG, although 

%RMSEG was high for both multi and single equations. These results were attributed to slow 

height growth and to high amounts of plot-level mortality and disturbance. Given a mean growth 

rate of 0.11 m yr-1 in this set of plots, approximately 12.79 years (an additional ~5 years) would 

be required for growth to exceed the modeling error (Eq. 6). Given the DAP correlation strengths 

with HL, the results indicate that metrics of canopy cover and height variability should not be 

included for HL modeling using DAP point clouds in disturbed boreal environments. However, 

given the results of comparative studies (e.g., White et al., 2015), the utility of including canopy 

cover and height variability metrics may depend on forest type and structure. 

 

b)  How is the predictive capability for Lorey’s mean height growth impacted by increasing plot-

level mortality? 

 



77 

 

To assess the impacts of plot mortality on ΔHL estimates in Slave Lake, I iteratively 

measured the accuracy of optimized height models while incrementing the mortality in the 

dataset. Plots were ordered according to tree mortality (defined as the percentage of dead trees in 

a plot) observed during the T2 field campaign. Model error for ΔHL was then evaluated 

iteratively for a subset of plots with increasing sample size (one additional plot at each iteration), 

and incremental mortality.  

The mortality sensitivity assessment showed that %RMSEGM increased with increasing 

plot-level mortality. The trend between model error and mortality indicated that when the 

maximum allowable mortality was approximately 25%, the %RMSEGM was just below 100%. 

The overlay of %RMSEGM with distributions of %RMSEGR showed that minimizing plot-level 

mortality successfully minimized the prediction errors, particularly at sample sizes where n > 15. 

 

Question 2.  What patterns of growth are apparent in stands near Slave Lake, AB with 

respect to ecological factors available from the Alberta AVI and ecosite-scale inventories? 

 

This question was investigated in Chapter 4 of this thesis. Quantifying growth patterns is 

an essential step in determining growth drivers. Landscape-scale growth patterns can also inform 

on, and help quantify, ecosystem services provided by different site types. Landscape-scale 

growth summaries can be used to study growth patterns, which can be used to inform on 

distributions of many ecosystem goods and services (Section 5.2). ALS and DAP point clouds at 

Slave Lake were used to determine site-wide patterns of ΔH with respect to eight selected 

ecological variables, ecosite types and ecosite phases. 
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 Building on the findings from Chapter 3, wall-to-wall height models for T1 and T2 were 

developed by systematically adjusting the T1 and T2 CHMs. A simple linear model for adjusting 

each CHM was developed by matching pixel values to heights of individual trees. The models 

were then extrapolated over the study sub-region (Figure 1c), and the difference was taken 

between the two adjusted CHMs to estimates ΔH. Pixel values were then aggregated (from 2 m 

to 10 m) and averaged generate a stand-level estimate of ΔH. ANOVA tests were conducted to 

test the significances of differences between the means of ΔH across eight ecological variables, 

ecosite types and ecosite phases. 

Patterns demonstrated by the ecological variables are most apparent using nutrient 

regime, moisture regime, species dominance, and the soil classification. Increasing height growth 

with increasing nutrient and moisture regime is apparent from “very poor” to “rich”, and from 

“submesic” to “hygric”, respectively, in young and mature units. Stands composed of a 

deciduous/coniferous mix generally showed a greater mean height growth than lodgepole pine 

stands, while mean height growth was variable in comparison to trembling aspen stands. Growth 

distributions in the oldest age class were poorly differentiated for all categories tested. Two 

suggested explanations were: a) the age ranges for the chosen classes were too broad to capture 

variability in growth patterns within younger age classes, b) stands in this age class possibly 

contain more gaps in which growth values were overestimated. The results from this study 

support the use of a multi-sensor approach to observe growth patterns in young and mature 

stands over an eight-year period in Alberta’s foothills and in the south of the boreal mixedwood 

sub-region. 
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5.2 Implications 

Forest managers should be cautious when utilizing multi-temporal remote sensing 

methods for assessing stand-level height growth if growth is slow and they have high levels of 

mortality on their landbase. Prior to use, forest managers must have a solid understanding of 

local forest structural attributes, including mortality rates, expected levels of growth, and gap 

dynamics. As the error magnitudes of predicted growth values are propagated when using an 

indirect modeling approach, estimates become more reliable as growth increases. Thus, multi-

temporal remote sensing of height growth is best suited either to faster-growing forests or to 

slow-growing forests with long re-measurement intervals.In either context, the key is that the 

timing of data acquisition should be guided by expectations of height growth, unless some other 

imperative drives the inventory cycle. 

DAP continues to show promise as a complementary source of 3D data to ALS for sites 

where mortality is low. The primary motive for implementing DAP for forest inventory re-

measurement is the significant cost savings over ALS acquisition flights, though the need for an 

ALS acquisition for the development of a high resolution DEM remains. From a forest 

management perspective, cost-savings translates into a greater ability to allocate resources 

towards quantifying forest attributes. This, in-turn, expands the data available to inform decision 

making by permitting analyses that relate forest attributes to ecosystem goods and services 

provided by forests. Below, I have divided some motivations behind forest attribute 

quantification into four categories: ecological, economic, cultural and sustainability.  
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Ecological: 

Two valuable ecosystem services provided by Canadian boreal forests include carbon 

sequestration and biodiversity conservation. Canada estimates its forest carbon budgets by 

calculating the difference between gains and losses, which requires detailed stock estimates at 

different times (Penman et al., 2003). Uncertainties are high in the above and below-ground 

estimation of carbon stocks and fluxes in Canada’s forests. Reducing the uncertainties of 

Canada’s current and future carbon balance requires addressing gaps in monitoring, observation 

and quantification of carbon cycling in forested ecosystems (Kurz et al., 2013). Forest vertical 

structure has also been used as a biodiversity indicator in a broad range of forest ecosystems. 

Structure is affected by disturbances such as wildfires, harvesting and road development and will 

in turn favour certain species. Variations in canopy structure create microclimates with differing 

habitats. Quantifying changes in forest structure therefore also has conservation value (Guo et 

al., 2017). 

 

Economic: 

In 2016, the forest industry contributed over $23.1 billion (1.2%) to Canada’s GDP. The 

industry accounted for 211,075 direct jobs, and approximately 95,000 indirect jobs in related 

activities, demonstrating that many peoples’ livelihoods and the well-being of the Canadian 

economy heavily depends on the industry’s performance (The State of Canada’s Forests: Annual 

Report 2016, 2016). Since the industry hit its lowest real-GDP contribution in 2009, it has been 

growing steadily with the Canadian economy. Some products derived from harvesting include 

lumber, newsprint, printing paper, wood panels, wood pulp and bioproducts. As forest products 

differ with respect to optimal desired wood quality, different forest compositions and site types 
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lend themselves to different product mixes (Murphy, 2008). As a means of assessing forest 

attributes and the supply of raw materials available from them, a means of quantifying forest 

attributes is necessary.  

 

Cultural: 

An estimated 70% of Indigenous people in Canada live near forests (The State of 

Canada’s Forests: Annual Report 2017, 2017), and hundreds of Indigenous communities are 

within the boreal region. The boreal landscape is extremely valuable to these populations for 

providing food and medicine, maintaining social structure and for spiritual connection with both 

ecosystem communities and the land itself. Edible plants provide vital nutritional supplements to 

many communities whose diets are often predominately meat-based. Different plant types can 

provide vitamins C, A, calcium, and fibre (Karst, 2010). Medicines are fundamental to holistic 

healing methods and come from a variety of plant types. As the economies of many communities 

depend on goods acquired from the forest, maintaining relationships between and within them 

rely on the quality and consistent availability of these goods (Parlee et al., 2006). Inherently, the 

belief system of many Indigenous communities is such that if you take care of the land through 

the respectful use of resources, then the land will take care of you. This ideology carries with it 

an understood meaning of “respectful use”, which although complex and often community 

specific, often includes the avoidance of overharvesting, waste, destruction of the land and 

generally responsible stewardship (Andre & Fehr, 2002; Marles et al., 2000; SENES Consultants 

Limited, 2008). In accordance with the laws around consultation and negotiation with Indigenous 

communities, a means of quantifying forest attributes related to food availability and sustainable 

harvest is required. 
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Sustainability 

It is necessary to provide comparable forest information in response to national and 

international concerns about sustainable forest management, including the assessment of forest 

health, biodiversity and forest productivity. It follows that Canada must address the criteria and 

indicator processes of the Montreal process to report on climate change (Gillis et al., 2005).  

To ensure sustainable forest harvest over the long term, harvesting volumes are regulated 

by the provincial and territorial governments through the specification of allowable annual cuts 

(AAC). AAC indicates the level of harvest permitted on a particular area of crown land over a set 

number of years (The State of Canada’s Forests: Annual Report 2017, 2017). Harvesting 

practices are subject to ongoing forest monitoring to ensure that specifications are followed. 

Forest inventories thus also have a vital role in temporal forest monitoring and sustainable forest 

management planning. 

 

5.3 Limitations 

There are a few general limitations to implementing DAP as compared to ALS which 

were factors in the DAP acquisitions in this study. First, pixel-matching algorithms that produce 

the point cloud are highly sensitive to ambient light and weather conditions (Baltsavias et al., 

2008; Gobakken et al., 2015). Data collection for DAP should be restricted to certain times of 

day and favorable weather conditions for image consistency if acquisition occurs over many 

days. This is slightly offset by the rapid rate of acquiring DAP, as flights can be higher and faster 

than ALS flights (Leberl et al., 2010). However, given the large size of the Slave Lake site, 

acquisition occurred over three days, and light and weather conditions varied slightly.  
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Caution should be taken when using the method for height growth estimation presented 

in Chapter 4 to describe the expected growth within a given unit. The stands around Slave Lake 

are slow-growing with high levels of mortality. As shown in Chapter 3, even optimized models 

for Lorey’s height growth using a multi-sensor approach in this region have a high %RMSE, as 

the model error is relatively large as compared to the growth magnitudes of the stands (Figure 3). 

As such, the following must be considered upon assessing the confidence in estimates from the 

wall-to-wall height growth product. First, height at each time was estimated by adjusting CHMs 

according to individual tree heights rather than by modeling height using suites of point cloud 

metrics. This approach was very rough as trees were matched to the maximum height of a 3 pixel 

by 3 pixel window on a grid over the individual stems. The uncertainty associated with this 

matching process was not evaluated. Furthermore, errors from height estimates at each time were 

not propagated, thus only the RMSE values from models at each time can be used to inform on 

the accuracy of growth values. Growth validation requires field-derived estimates that are 

spatially-explicit, that represent the diversity of forest types existing over the landscape, and that 

temporally match the timing of the aerial data acquisition (White et al., 2013a). Limitations to 

validation data meeting these criteria include costs of organizing field excursions, accessibility or 

remoteness of sample plot locations, and weather conditions (Köhl et al., 2006). In the 

assessment of growth, these challenges and limitations are compounded by the necessitation of 

more field excursions, the additional challenge of accurately relocating field plots, eliminating 

plots that experienced stand-replacing disturbances, and the required organization of more aerial 

data acquisitions that are temporally congruent with the field data.  Model validation must also 

be performed at the scale at which the model was developed. Validation for the product shown 
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here could therefore be performed using growth measured from trees used to model the CHM 

adjustments, or preferably using cross-validation (White et al., 2017). 

 

5.4 Future Research 

Future work in multi-sensor growth studies should continue to focus on attribute 

estimation and modeling optimization. The majority of studies assessing growth using 3-D 

remotely sensed data and DAP for inventory cycle optimization have been in less complex 

Scandinavian boreal sites. More research is required as an extension to Chapter 3 to evaluate the 

combination of ALS and DAP data to estimate forest growth in unmanaged, natural boreal 

forests, particularly for basal area and gross total volume. In the continued interest of reducing 

the costs of updating forest inventories, the refinement of growth estimation can be incorporated 

into growth and yield models for optimizing harvesting rotations (Tompalski et al., 2016). 

Future work assessing the utility of a multi-sensor approach to assess growth patterns on 

a landscape scale can be extended to identify the drivers of growth. Identifying growth patterns 

can be seen as a step in a larger workflow to develop predictive models for growth, which 

account for the spatial correlation of the considered environmental variables (Bontemps and 

Bouriaud, 2014). Patterns could also be identified among different ecological variables, and 

utilizing different data sources and methodologies than those presented in Chapter 4. Other 

variables that may be worth testing include insolation, canopy cover, and wet areas mapping 

data. Canopy cover is available from the AVI polygons; however, this product is estimated from 

aerial photo interpretation. A canopy cover product derived using ALS and summarized at the 

polygon scale may differentiate growth patterns more effectively. Wet areas maps are also a 

product derived from ALS that estimates depth to the water table based on landscape topography 
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and hydrographic features present on the surface. This product has already shown value for 

categorizing productivity and predicting regrowth in harvested stands (Nijland et al., 2015), and 

so may be able to provide different information than the available moisture regime classification 

from the AVI. 

In Chapter 4, the decision to aggregate growth using the maximum value was 

hypothesized to contribute to the increase in observed growth across all age classes. Three 

possible alternative methods to resolve this are as follows. First, aggregation could be avoided 

altogether and growth could be summarized at the AVI and ecosite polygon level by the mean of 

values obtained from the finer-resolution growth layer within the polygon boundaries. Second, a 

filter could be applied using an ALS-derived canopy cover product to ensure any method to 

summarize growth at a polygon scale excludes canopy gaps. Finally, a mask could be applied to 

remove the non-forested components of polygons identified as forest using spectral data 

available from the DAP prior to calculating the stand-level averages. 

 



86 

 

Bibliography 

Ahrens, C. D. 2009. Meteorology today: an introduction to weather, climate, and the 

environment. 9th editio. Brooks/Cole, Belmont, CA. 

 

Alam, M. B., C. Shahi, and R. Pulkki. 2014. Economic impact of enhanced forest inventory 

information and merchandizing yards in the forest product industry supply Chain. Socio-

Economic Planning Sciences 48:189–197. 

 

Alberta Sustainable Resource Development. Alberta Vegetation Inventory Interpretation 

Standards. 2005. . Edmonton. 

 

Andersen, H. E., S. E. Reutebuch, and R. J. McGaughey. 2006. A rigorous assessment of tree 

height measurements obtained using airborne lidar and conventional field methods. 

Canadian Journal of Remote Sensing 32:355–366. 

 

Andre, A., and A. Fehr. 2002. Gwich’in Ethnobotany, Plants used by the Gwich’in for Food, 

Medicine, Shelter and Tools. Inuvik, Northwest Territories. 

 

Archibald, J. H., G. D. Kappstein, and I. G. . Corns. 1996. Field guide to ecosites of 

southwestern Alberta. Canadian Forest Service, Northwest Region, Northern Forestry 

Centre, Edmonton, Alberta. 

 

Ashton, M. S., and M. J. Kelty. 2018. The practice of silviculture: Applied forest ecology. Page 

The Practice of Silviculture Applied Forest Ecology. 10th editi. John Wiley & Sons, Ltd, 

West Sussex, UK. 

 

Axelsson, P. 2000. DEM generation from laser scanner data using adaptive TIN models. 

International Archives of Photogrammetry and Remote Sensing XXXIII:110–117. 

 

Baltsavias, E., A. Gruen, H. Eisenbeiss, L. Zhang, and L. T. Waser. 2008. High-quality image 

matching and automated generation of 3D tree models. International Journal of Remote 

Sensing 29:1243–1259. 

 

Beckingham, J. D., and J. H. Archibald. 1996. Field guide to ecosites of northern Alberta. 

Canadian Forest Service, Northwest Region, Northern Forestry Centre, Edmonton, Alberta. 

 

Bergeron, Y., H. Y. H. Chen, N. C. Kenkel, A. L. Leduc, and S. E. Macdonald. 2014. Boreal 

mixedwood stand dynamics: Ecological processes underlying multiple pathways. Forestry 

Chronicle 90:202–213. 

 

Bohlin, J., J. Wallerman, and J. E. S. Fransson. 2012. Forest variable estimation using 

photogrammetric matching of digital aerial images in combination with a high-resolution 

DEM. Scandinavian Journal of Forest Research 27:692–699. 

 



87 

 

Bollandsås, O. M., T. G. Gregoire, E. Næsset, and B. H. Øyen. 2013. Detection of biomass 

change in a Norwegian mountain forest area using small footprint airborne laser scanner 

data. Statistical Methods and Applications 22:113–129. 

 

Bontemps, J. D., and O. Bouriaud. 2014. Predictive approaches to forest site productivity: Recent 

trends, challenges and future perspectives. Forestry 87:109–128. 

 

Bouvier, M., S. Durrieu, R. A. Fournier, and J. P. Renaud. 2015. Generalizing predictive models 

of forest inventory attributes using an area-based approach with airborne LiDAR data. 

Remote Sensing of Environment 156:322–334. 

 

Brandt, J. P., M. D. Flannigan, D. G. Maynard, I. D. Thompson, and W. J. A. Volney. 2013. An 

introduction to Canada’s boreal zone: ecosystem processes, health, sustainability, and 

environmental issues. Environmental Reviews 21:207–226. 

 

Brassard, B. W., and H. Y. H. Chen. 2006. Stand Structural Dynamics of North American Boreal 

Forests. Critical Reviews in Plant Sciences 25:115–137. 

 

Bright, B. C., A. T. Hudak, R. McGaughey, H. E. Andersen, and J. Negrón. 2013. Predicting live 

and dead tree basal area of bark beetle affected forests from discrete-return lidar. Canadian 

Journal of Remote Sensing 39:1–13. 

 

Callaway, R. M., and L. R. Walker. 1997. Competition and Facilitation : A Synthetic Approach 

to Interactions in Plant Communities. Ecology 78:1958–1965. 

 

Cao, L., N. C. Coops, J. L. Innes, S. R. J. Sheppard, L. Fu, H. Ruan, and G. She. 2016. 

Estimation of forest biomass dynamics in subtropical forests using multi-temporal airborne 

LiDAR data. Remote Sensing of Environment 178:158–171. 

 

Carleton, T. J. 2000. Vegetation Responses to the Natural Forest Landscape of Central and 

Northern Ontario. Pages 179–197 in A. H. Perera, D. L. Euler, and I. D. Thompson, editors. 

Ecology of a managed terrestrial landscape : patterns and processes of forest landscapes in 

Ontario. UBC Press, Vancouver, British Columbia. 

 

Chen, H. Y., and R. V Popadiouk. 2002. Dynamics of North American boreal mixedwoods. 

Environmental Reviews 10:137–166. 

 

Chikowore, T., and L. Willemse. 2017. Identifying the changes in the quality of life of Southern 

African Development Community (SADC) migrants in South Africa from 2001 to 2011. 

South African Geographical Journal 99:86–112. 

 

Coops, N. C., P. Tompaski, W. Nijland, G. J. M. Rickbeil, S. E. Nielsen, C. W. Bater, and J. J. 

Stadt. 2016. A forest structure habitat index based on airborne laser scanning data. 

Ecological Indicators 67:346–357. 

 



88 

 

Coops, N. C., A. Varhola, C. W. Bater, P. Teti, S. Boon, N. Goodwin, and M. Weiler. 2009. 

Assessing differences in tree and stand structure following beetle infestation using lidar 

data. Canadian Journal of Remote Sensing 35:497–508. 

 

Corns, I. G. W., D. J. Downing, and T. I. Little. 2005. Field guide to ecosites of west-central 

Alberta: supplement for managed forest stands up to 40 years of age (first approximation). 

Edmonton, Alberta. 

 

Cumming, S. G., F. K. A. Schmiegelow, and P. J. Burton. 2012. Gap Dynamics in Boreal Aspen 

Stands : Is the Forest Older than We Think? Ecological Applications 10:744–759. 

 

Filipescu, C. N., and P. G. Comeau. 2007. Competitive interactions between aspen and white 

spruce vary with stand age in boreal mixedwoods. Forest Ecology and Management 

247:175–184. 

 

Franklin, S. E., M. B. Lavigne, M. A. Wulder, and G. B. Stenhouse. 2002. Change detection and 

landscape structure mapping using remote sensing. Forestry Chronicle 78:618–625. 

 

Gauthier, S., L. Grandpré, and Y. Bergeron. 2000. Differences in forest composition in two 

boreal forest ecoregions of Quebec. Journal of Vegetation Science 11:781–790. 

 

Gillis, M. D., A. Y. Omule, and T. Brierley. 2005. Monitoring Canada’s forests: The national 

forest inventory. Forestry Chronicle 81:214–221. 

 

Gini, R., D. Passoni, L. Pinto, and G. Sona. 2012. Aerial images from a UAV system: 3D 

modelling and tree species classification in a park area. ISPRS - International Archives of 

the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXIX-B1:361–

366. 

 

Gobakken, T., O. M. Bollandsås, and E. Næsset. 2015. Comparing biophysical forest 

characteristics estimated from photogrammetric matching of aerial images and airborne 

laser scanning data. Scandinavian Journal of Forest Research 30:73–86. 

 

Goodbody, T. R. H., N. C. Coops, P. Tompalski, P. Crawford, and K. J. K. Day. 2016. Updating 

residual stem volume estimates using ALS- and UAV-acquired stereo-photogrammetric 

point clouds. International Journal of Remote Sensing 00:1–16. 

 

Guo, X., N. C. Coops, P. Tompalski, S. E. Nielsen, C. W. Bater, and J. John Stadt. 2017. 

Regional mapping of vegetation structure for biodiversity monitoring using airborne lidar 

data. Ecological Informatics 38:50–61. 

 

Gutsell, S. L., and E. A. Johnson. 2002. Accurately ageing trees and examining their height-

growth rates: Implications for interpreting forest dynamics. Journal of Ecology 90:153–166. 

 

Harper, G. 2015. Lodgepole pine and trembling aspen mixedwoods: Growth and yield within 22 



89 

 

to 39 year old pine plantations of northern interior British Columbia. The Forestry 

Chronicle 91:502–518. 

 

Harper, K. A., Y. Bergeron, S. Gauthier, and P. Drapeau. 2002. Post-fire development of canopy 

structure and composition in black spruce forests of Abitibi, Québec: A landscape scale 

study. Silva Fennica 36:249–263. 

 

Harper, K. A., S. E. Macdonald, M. S. Mayerhofer, S. R. Biswas, P. A. Esseen, K. Hylander, K. 

J. Stewart, A. U. Mallik, P. Drapeau, B. G. Jonsson, D. Lesieur, J. Kouki, and Y. Bergeron. 

2015. Edge influence on vegetation at natural and anthropogenic edges of boreal forests in 

Canada and Fennoscandia. Journal of Ecology 103:550–562. 

 

Hermosilla, T., M. A. Wulder, J. C. White, N. C. Coops, and G. W. Hobart. 2015. An integrated 

Landsat time series protocol for change detection and generation of annual gap-free surface 

reflectance composites. Remote Sensing of Environment 158:220–234. 

 

Hermosilla, T., M. A. Wulder, J. C. White, N. C. Coops, G. W. Hobart, and L. B. Campbell. 

2016. Mass data processing of time series Landsat imagery: pixels to data products for 

forest monitoring. International Journal of Digital Earth 9:1035–1054. 

 

Holopainen, M., A. Mäkinen, J. Rasinmäki, K. Hyytiäinen, S. Bayazidi, and I. Pietilä. 2010. 

Comparison of various sources of uncertainty in stand-level net present value estimates. 

Forest Policy and Economics 12:377–386. 

 

Hopkinson, C., L. Chasmer, and R. J. Hall. 2008. The uncertainty in conifer plantation growth 

prediction from multi-temporal lidar datasets. Remote Sensing of Environment 112:1168–

1180. 

 

Huang, S., and S. J. Titus. 1994, July. An age-independent individual tree height prediction 

model for boreal spruce-aspen stands in Alberta. NRC Research Press Ottawa, Canada. 

 

Hughes, I. G., and T. P. A. Hase. 2010. Measurements and their Uncertainties: A Practical Guide 

to Modern Error Analysis. Oxford University Press, New York. 

 

Jakubowski, M. K., Q. Guo, and M. Kelly. 2013. Tradeoffs between lidar pulse density and 

forest measurement accuracy. Remote Sensing of Environment 130:245–253. 

 

Järnstedt, J., A. Pekkarinen, S. Tuominen, C. Ginzler, M. Holopainen, and R. Viitala. 2012. 

Forest variable estimation using a high-resolution digital surface model. ISPRS Journal of 

Photogrammetry and Remote Sensing 74:78–84. 

 

Kabzems, R., and O. García. 2004. Structure and dynamics of trembling aspen — white spruce 

mixed stands near Fort Nelson, B.C. Canadian Journal of Forest Research 34:384–395. 

 

Kamencay, P., M. Breznan, R. Jarina, P. Lukac, and M. Zachariasova. 2012. Improved depth 



90 

 

map estimation from stereo images based on hybrid method. Radioengineering 21:79–85. 

 

Kangas, A., and M. Maltamo, editors. 2006. Forest inventory: methodology and applications. 

Managing Forest Ecosystems. 10th editi. Springer, Dordrecht, Netherlands. 

 

Karst, A. 2010. Conservation Value of the North American Boreal Forest from an 

Ethnobotanical Perspective. Canadian Boreal Initiative, David Suzuki Foundation and 

Boreal Songbird Initiative, Ottawa, ON; Vancouver, BC; Seattle, WA. 

 

Kim, Y., Z. Yang, W. B. Cohen, D. Pflugmacher, C. L. Lauver, and J. L. Vankat. 2009. 

Distinguishing between live and dead standing tree biomass on the North Rim of Grand 

Canyon National Park, USA using small-footprint lidar data. Remote Sensing of 

Environment 113:2499–2510. 

 

Kipfmueller, K. F., and W. L. Baker. 1998. A comparison of three techniques to date stand-

replacing fires in lodgepole pine forests. Forest Ecology and Management 104:171–177. 

 

Kneeshaw, D., Y. Bergeron, and T. Kuuluvainen. 2011. Forest ecosystem structure and 

disturbance dynamics across the circumboreal forest. Pages 261–278 in A. Millington, M. 

Blumer, and U. Schickoff, editors. The SAGE Handbook of Biogeography. SAGE 

Publications Ltd., London. 

 

Kneeshaw, D. D., and Y. Bergeron. 1998. Canopy Gap Characteristics and Tree Replacement in 

the Southeastern Boreal Forest. Ecology 79:783–794. 

 

Köhl, M., S. Magnussen, and M. Marchetti. 2006. Sampling in Forest Surveys. Pages 71–196 

Sampling Methods, Remote Sensing and GIS Multiresource Forest Inventory. Springer-

Verlag, Berlin, Heidlberg, Germany. 

 

Korpela, I. 2006. Geometrically accurate time series of archived aerial images and airborne lidar 

data in a forest environment. Silva Fennica 40:109–126. 

 

Kurz, W. A., C. H. Shaw, C. Boisvenue, G. Stinson, J. Metsaranta, D. Leckie, A. Dyk, C. Smyth, 

and E. T. Neilson. 2013. Carbon in Canada’s boreal forest — A synthesis. Environmental 

Reviews 21:260–292. 

 

Lacriox, S., and F. Charette. 2013. Better planning with LiDAR-enhanced forest inventory 14. 

 

Larcher, W. 2003. Physiological plant ecology: ecophysiology and stress physiology of 

functional groups. 4th editio. Springer, New York. 

 

Lawrence, D., M. Willoughby, C. Lane, D. Moisey, C. Hincz, C. Stone, and M. Alexander. 2005. 

Range Plant Community Types and Carrying Capacity for the Lower Foothills Subregion of 

Alberta: Fourth approximation. Edmonton, Alberta. 

 



91 

 

Leberl, F., A. Irschara, T. Pock, P. Meixner, M. Gruber, S. Scholz, and A. Wiechert. 2010. Point 

Clouds: Lidar versus 3D Vision. Photogrammetric Engineering & Remote Sensing 

76:1123–1134. 

 

Leckie, D. G., and M. D. Gillis. 1995. Forest inventory in Canada with emphasis on map 

production. Forestry Chronicle 71:74–88. 

 

Lefsky, M. A., A. T. Hudak, W. B. Cohen, and S. A. Acker. 2005. Patterns of covariance 

between forest stand and canopy structure in the Pacific Northwest. Remote Sensing of 

Environment 95:517–531. 

 

Lieffers, V. J., K. J. Stadt, and S. Navratil. 1996. Age structure and growth of understory white 

spruce under aspen. Canadian Journal of Forest Research 26:1002–1007. 

 

Lim, K., P. Treitz, M. Wulder, B. St-Ongé, and M. Flood. 2003. LiDAR remote sensing of forest 

structure. Progress in Physical Geography 27:88–106. 

 

Lynch, T. B., and J. W. Moser. 1986. A growth model for mixed species stands. Forest science 

32:697–706. 

 

MacPherson, D. M., V. J. Lieffers, and P. V. Blenis. 2001. Productivity of aspen stands with and 

without a spruce understory in Alberta’s boreal mixedwood forests. Forestry Chronicle 

77:351–356. 

 

Magnussen, S., and P. Boudewyn. 1998. Derivations of stand heights from airborne laser scanner 

data with canopy-based quantile estimators. Canadian Journal of Forest Research 28:1016–

1031. 

 

Magnussen, S., P. Eggermont, and V. N. Lariccia. 1999. Recovering Tree Heights from Airborne 

Laser Scanner Data. Forest Science 45:407–422. 

 

Magnussen, S., and G. Russo. 2012. Uncertainty in photo-interpreted forest inventory variables 

and effects on estimates of error in Canada’s national forest inventory. Forestry Chronicle 

88:439–447. 

 

Man, R., and V. J. Lieffers. 1999. Are mixtures of aspen and white spruce more productive than 

single species stands? Pages 505–513 Forestry Chronicle. 

 

Marcoux, H. M., L. D. Daniels, S. E. Gergel, E. Da Silva, Z. Gedalof, and P. F. Hessburg. 2015. 

Differentiating mixed- and high-severity fire regimes in mixed-conifer forests of the 

Canadian Cordillera. Forest Ecology and Management 341:45–58. 

 

Marles, R. J., C. Clavelle, L. Monteleone, N. Tays, and D. Burns. 2000. Aboriginal Plant Use in 

Canada’s Northwest Boreal Forest. Natural Resources Canada, Vancouver, British 

Columbia. 



92 

 

Martin, J. L., and S. T. Gower. 2006. Boreal mixedwood tree growth on contrasting soils and 

disturbance types. Canadian Journal of Forest Research 36:986–995. 

 

McRoberts, R. E., O. M. Bollandsås, and E. Næsset. 2014. Modeling and Estimating Change. 

Pages 293–313 Forestry Applications of Airborne Laser Scanning Concepts and Case 

Studies. 

 

Mitchell, S. J. 2013. Wind as a natural disturbance agent in forests: A synthesis. Forestry 

86:147–157. 

 

Moisey, D., J. Young, D. Lawrence, C. Stone, M. G. Willoughby, and A. Book. 2016. Guide to 

Range Plant Community Types and Carrying Capacity for the Dry and Central Mixedwood 

Subregions in Alberta: Eighth approximation. Edmonton, Alberta. 

 

Morgantini, L. E., and J. L. Kansas. 2003. Differentiating mature and old-growth forests in the 

upper foothills and Subalpine Subregions of West-Central Alberta. Forestry Chronicle 

79:602–612. 

 

Murphy, G. 2008. Determining Stand Value and Log Product Yields Using Terrestrial Lidar and 

Optimal Bucking : A Case Study. Journal of Forestry 106:317–324. 

 

Næsset, E. 2002. Predicting forest stand characteristics with airborne scanning laser using a 

practical two-stage procedure and field data. Remote Sensing of Environment 80:88–99. 

 

Næsset, E. 2007. Airborne laser scanning as a method in operational forest inventory: Status of 

accuracy assessments accomplished in Scandinavia. Scandinavian Journal of Forest 

Research 22:433–442. 

 

Næsset, E., and T. Gobakken. 2005. Estimating forest growth using canopy metrics derived from 

airborne laser scanner data. Remote Sensing of Environment 96:453–465. 

 

Natural Regions and Subregions of Alberta. 2006. . Page Government of Alberta. Edmonton, 

AB, Canada. 

 

Nelson, R. 1997. Modeling forest canopy heights: the effects of canopy shape. Remote Sensing 

of Environment 60:327–334. 

 

Nijland, W., N. C. Coops, S. E. Macdonald, S. E. Nielsen, C. W. Bater, B. White, J. Ogilvie, and 

J. Stadt. 2015. Remote sensing proxies of productivity and moisture predict forest stand 

type and recovery rate following experimental harvest. Forest Ecology and Management 

357:239–247. 

 

Nilsson, M. 1996. Estimation of tree heights and stand volume using an airborne lidar system. 

Remote Sensing of Environment 56:1–7. 

 



93 

 

Nowacki, G., and M. Kramer. 1998. The Effects of Wind Disturbance on Temperate Rain Forest 

Structure and Dynamics of Southeast Alaska. Page General Technical Report PNW-GTR-

421. Portland, Oregon. 

 

Oliver, D. C., and B. C. Larson. 1996. Forest stand dynamics. John Wiley & Sons, Ltd, New 

York, USA. 

 

Parisien, M.-A., and L. Sirois. 2003. Distribution and dynamics of tree species across a fire 

frequency gradient in the James Bay region of Quebec. Canadian Journal of Forest Research 

33:243–256. 

 

Parlee, B., F. Berkes, F. Berkes, and T. G. R. R. Council. 2006. Indigenous Knowledge of 

Ecological Variability and Commons Management: A Case Study on Berry Harvesting 

from Northern Canada. Human Ecology 34:515–528. 

 

Penman, J., M. Gytarsky, T. Hiraishi, T. Krug, D. Kruger, R. Piatti, L. Buendia, K. Miwa, T. 

Ngara, K. Tanabe, and F. Wagner. 2003. Good Practice Guidance for Land Use, Land-Use 

Change and Forestry. Page IPCC, 2003. Hayama, Kanagawa, Japan. 

 

Perry, D. A., P. F. Hessburg, C. N. Skinner, T. A. Spies, S. L. Stephens, A. H. Taylor, J. F. 

Franklin, B. McComb, and G. Riegel. 2011. The ecology of mixed severity fire regimes in 

Washington, Oregon, and Northern California. Forest Ecology and Management 262:703–

717. 

 

Pickles, B. J., R. Wilhelm, A. K. Asay, A. S. Hahn, S. W. Simard, and W. W. Mohn. 2017. 

Transfer of 13C between paired Douglas-fir seedlings reveals plant kinship effects and 

uptake of exudates by ectomycorrhizas. New Phytologist 214:400–411. 

 

Pitt, D. G., M. Woods, and M. Penner. 2014. A Comparison of point clouds derived from stereo 

imagery and airborne laser scanning for the area-based estimation of forest inventory 

attributes in boreal Ontario. Canadian Journal of Remote Sensing 40:214–232. 

 

Pitt, D., and J. Pineau. 2009. Forest inventory research at the Canadian Wood Fibre Centre: 

Notes from a research coordination workshop, June 3–4, 2009, Pointe Claire, QC. The 

Forestry Chronicle 85:859–869. 

 

Reutebuch, S. E., R. J. Mc Gaughey, H. E. Andersen, and W. W. Carson. 2003. Accuracy of a 

high-resolution lidar terrain model under a conifer forest canopy. Canadian Journal of 

Remote Sensing 29:527–535. 

 

Rich, R. L., L. E. Frelich, and P. B. Reich. 2007. Wind-throw mortality in the southern boreal 

forest: Effects of species, diameter and stand age. Journal of Ecology 95:1261–1273. 

 

Rufino, G., and A. Moccia. 2005. Integrated VIS-NIR Hyperspectral / Thermal-IR Electro-

Optical Payload System for a Mini-UAV. Page Infotech@Aerospace. Napoli, Italy. 



94 

 

Ryan, M. G., D. Binkley, and J. H. Fownes. 1997. Age-Related Decline in Forest Productivity: 

Pattern and Process. Advances in Ecological Research 27:213–262. 

 

Schoennagel, T., T. T. Veblen, and W. H. Romme. 2004. The Interaction of Fire, Fuels, and 

Climate across Rocky Mountain Forests. BioScience 54:661–676. 

 

SENES Consultants Limited. 2008. West Kitikmeot Slave Study State of Knowledge Report - 

2007 Update. 

 

Shabani, N., S. Akhtari, and T. Sowlati. 2013. Value chain optimization of forest biomass for 

bioenergy production: A review. Renewable and Sustainable Energy Reviews 23:299–311. 

 

Smith, V. G. 1976. Canadian forest inventory methods. Forestry Chronicle 52:9–14. 

 

Snavely, N., S. Seitz, and R. Szeliski. 2006. Photo Tourism: Exploring Photo Collections in 3D. 

Page SIGGRAPH 2006 Conference Proceedings. Boston, Massachusetts, USA. 

 

St-Onge, B., F. A. Audet, and J. Bégin. 2015. Characterizing the height structure and 

composition of a boreal forest using an individual tree crown approach applied to 

photogrammetric point clouds. Forests 6:3899–3922. 

 

St-Onge, B., P. Treitz, and M. A. Wulder. 2003. Tree and canopy height estimation with 

scanning Lidar. Pages 489–510 in M. A. Wulder and S. E. Franklin, editors. Remote 

Sensing of Forest Environments: Concepts and Case Studies. Kluwer Academic Publishers, 

Boston, Massachusetts, USA. 

 

St-Onge, B., C. Vega, R. A. Fournier, and Y. Hu. 2008. Mapping canopy height using a 

combination of digital stereo-photogrammetry and lidar. International Journal of Remote 

Sensing 29:3343–3364. 

 

St-Onge, B., and U. Vepakomma. 2004. Assessing forest gap dynamics and growth using multi-

temporal laser-scanner data. International Archives of Photogrammetry, Remote Sensing 

and Spatial Information Sciences XXXVI, Par:173–178. 

 

Stepper, C., C. Straub, and H. Pretzsch. 2015. Assessing height changes in a highly structured 

forest using regularly acquired aerial image data. Forestry 88:304–316. 

 

The State of Canada’s Forests: Annual Report 2016. 2016. . Ottawa, Ontario. 

 

The State of Canada’s Forests: Annual Report 2017. 2017. . Ottawa, Ontario. 

 

Timoney, K. P. 2003. The changing disturbance regime of the boreal forest of the Canadian 

Prairie Provinces. Forestry Chronicle 79:502–516. 

 

Tompalski, P., N. C. Coops, P. L. Marshall, J. C. White, M. A. Wulder, and T. Bailey. 2018. 



95 

 

Combining multi-date airborne laser scanning and digital aerial photogrammetric data for 

forest growth and yield modelling. Remote Sensing 10:347. 

 

Tompalski, P., N. C. Coops, J. C. White, and M. A. Wulder. 2016. Enhancing forest growth and 

yield predictions with airborne laser scanning data: Increasing spatial detail and optimizing 

yield curve selection through template matching. Forests 7:255. 

 

Tomppo, E., T. Gschwantner, M. Lawrence, and R. E. McRoberts. 2010. National forest 

inventories: Pathways for common reporting. Page National Forest Inventories: Pathways 

for Common Reporting. Springer. 

 

Vastaranta, M., M. A. Wulder, J. C. White, A. Pekkarinen, S. Tuominen, C. Ginzler, V. Kankare, 

M. Holopainen, J. Hyyppä, and H. Hyyppä. 2013. Airborne laser scanning and digital stereo 

imagery measures of forest structure: Comparative results and implications to forest 

mapping and inventory update. Canadian Journal of Remote Sensing 39:382–395. 

 

Véga, C., and B. St-Onge. 2008. Height growth reconstruction of a boreal forest canopy over a 

period of 58 years using a combination of photogrammetric and lidar models. Remote 

Sensing of Environment 112:1784–1794. 

 

Ward, R. C., and M. (Mark) Robinson. 2000. Principles of Hydrology. 4th editio. McGraw-Hill, 

Beckshire, England. 

 

Wehr, A., and U. Lohr. 1999. Airborne laser scanning - An introduction and overview. ISPRS 

Journal of Photogrammetry and Remote Sensing 54:68–82. 

 

White, J. C., N. C. Coops, M. A. Wulder, M. Vastaranta, T. Hilker, and P. Tompalski. 2016. 

Remote Sensing Technologies for Enhancing Forest Inventories: A Review. Canadian 

Journal of Remote Sensing 42:619–641. 

 

White, J. C., C. Stepper, P. Tompalski, N. C. Coops, and M. A. Wulder. 2015. Comparing ALS 

and image-based point cloud metrics and modelled forest inventory attributes in a complex 

coastal forest environment. Forests 6:3704–3732. 

 

White, J. C., P. Tompalski, N. C. Coops, and M. A. Wulder. 2018. Comparison of airborne laser 

scanning and digital stereo imagery for characterizing forest canopy gaps in coastal 

temperate rainforests. Remote Sensing of Environment 208:1–14. 

 

White, J. C., P. Tompalski, M. Vastaranta, M. A. Wulder, S. Saarinen, C. Stepper, and N. C. 

Coops. 2017. A model development and application guide for generating an enhanced forest 

inventory using airborne laser scanning data and an area-based approach. Canadian Wood 

Fibre Centre, Victoria, British Columbia. 

 

White, J. C., M. A. Wulder, G. W. Hobart, J. E. Luther, T. Hermosilla, P. Griffiths, N. C. Coops, 

R. J. Hall, P. Hostert, A. Dyk, and & L. Guindon. 2014. Pixel-Based Image Compositing for 



96 

 

Large-Area Dense Time Series Applications and Science. Canadian Journal of Remote 

Sensing 40:192–212. 

 

White, J. C., M. A. Wulder, A. Varhola, M. Vastaranta, N. C. Coops, B. D. Cook, D. Pitt, and M. 

Woods. 2013a. A best practices guide for generating forest inventory attributes from 

airborne laser scanning data using an area-based approach. Page Information Report FI-X-

010. Victoria, British Columbia. 

 

White, J. C., M. A. Wulder, M. Vastaranta, N. C. Coops, D. Pitt, and M. Woods. 2013b. The 

utility of image-based point clouds for forest inventory: A comparison with airborne laser 

scanning. Forests 4:518–536. 

 

Willoughby, M. G. 2007. Range Plant Community Types and Carrying Capacity for the Upper 

Foothills Subregion of Alberta: Sixth approximation. Edmonton, Alberta. 

 

Woods, M., D. Pitt, M. Penner, K. Lim, D. Nesbitt, D. Etheridge, and P. Treitz. 2011. 

Operational implementation of a LiDAR inventory in Boreal Ontario. Forestry Chronicle 

87:512–528. 

 

Wulder, M. A., J. C. White, S. Coggins, S. M. Ortlepp, N. C. Coops, J. Heath, and B. Mora. 

2012a. Digital high spatial resolution aerial imagery to support forest health monitoring: the 

mountain pine beetle context. Journal of Applied Remote Sensing 6:062527 1-10. 

 

Wulder, M. A., J. C. White, R. F. Nelson, E. Næsset, H. O. Ørka, N. C. Coops, T. Hilker, C. W. 

Bater, and T. Gobakken. 2012b. Lidar sampling for large-area forest characterization: A 

review. Remote Sensing of Environment 121:196–209. 

 

Wulder, M., C. Bater, N. C. Coops, T. Hilker, and J. C. White. 2008. The role of LiDAR in 

sustainable forest management. Forestry Chronicle 84:807–826. 

 

Yoga, S., J. Bégin, B. St-Onge, and D. Gatziolis. 2017. Lidar and multispectral imagery 

classifications of balsam fir tree status for accurate predictions of merchantable volume. 

Forests 8:253. 

 

Yu, X., J. Hyyppä, H. Kaartinen, M. Maltamo, and H. Hyyppä. 2008. Obtaining plotwise mean 

height and volume growth in boreal forests using multi‐temporal laser surveys and various 

change detection techniques. International Journal of Remote Sensing 29:1367–1386. 

 

Yu, X., J. Hyyppä, M. Karjalainen, K. Nurminen, K. Karila, M. Vastaranta, V. Kankare, H. 

Kaartinen, M. Holopainen, E. Honkavaara, A. Kukko, A. Jaakkola, X. Liang, Y. Wang, H. 

Hyyppä, and M. Katoh. 2015. Comparison of laser and stereo optical, SAR and InSAR 

point clouds from air- and space-borne sources in the retrieval of forest inventory attributes. 

Remote Sensing 7:15933–15954. 

 

Zimble, D. A., D. L. Evans, G. C. Carlson, R. C. Parker, S. C. Grado, and P. D. Gerard. 2003. 



97 

 

Characterizing vertical forest structure using small-footprint airborne LiDAR. Remote 

Sensing of Environment 87:171–182. 

 


