
Investigating Practices and Challenges in
Microservice-Based Development

by

Yingying Wang

B.SE., Dalian University of Technology, China, 2015

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL
STUDIES

(Electrical and Computer Engineering)

The University of British Columbia
(Vancouver)

April 2019

© Yingying Wang, 2019



The following individuals certify that they have read, and recommend to the Faculty
of Graduate and Postdoctoral Studies for acceptance, a thesis/dissertation entitled:

INVESTIGATING PRACTICES AND CHALLENGES IN MICROSERVICE-BASED DEVELOPMENT

submitted by YINGYING WANG in partial fulfillment of the require-
ments for

the degree of MASTER OF APPLIED SCIENCE

in ELECTRICAL AND COMPUTER ENGINEERING

Examining Committee:

JULIA RUBIN, ELECTRICAL AND COMPUTER ENGINEERING

Supervisor

PHILIPPE KRUCHTEN, ELECTRICAL AND COMPUTER ENGINEERING

Supervisory Committee Member

KONSTANTIN BEZNOSOV, ELECTRICAL AND COMPUTER ENGINEERING

Supervisory Committee Member

Additional Supervisory Committee Members:

Supervisory Committee Member

Supervisory Committee Member

ii



Abstract

Microservice-based architecture is a principle inspired by service-oriented ap-
proaches for building complex systems as a composition of small, loosely coupled
components that communicate with each other using language-agnostic APIs. This
architectural principle is now becoming increasingly popular in industry due to its
advantages, such as greater software development agility and improved scalability
of deployed applications.

In this thesis, we report on a broad interview study we conducted, which
involved practitioners developing microservice-based applications for commercial
use for at least two years. By deliberately excluding “newcomers” and focusing
the study on “mature” teams, our goal was to collect best practices, lessons learned,
and technical challenges practitioners face.

Our study helps inform researchers of challenges in developing microservice-
based applications, which can inspire novel software engineering methods and
techniques. The study also benefits practitioners who are interested to learn from
each other, to borrow successful ideas, and to avoid common mistakes.

iii



Lay Summary

In traditional software development processes, relatively large teams work on a
single, monolithic deployment artifact. However, such monolithic applications can
evolve into a “big ball of mud”. For better scalability and development agility,
practitioners start developing complex applications as a set of loosely coupled com-
ponents that communicate with each other through lightweight interfaces. Such an
approach is referred to as microservice-based development and is now becoming
increasingly popular in the industry. In this thesis, we report on the results of an
interview study we conducted with industrial practitioners developing successful
microservice-based applications. The goal of the study is to understand the best
practices, lessons learned, and challenges in microservice-based development. Our
study helps inform researchers about challenges in microservice-based develop-
ment and share thoughts on possible future directions. The study also benefits
practitioners who are interested to learn from each other, to borrow successful
ideas, and to avoid common mistakes when using microservices.

iv



Preface

This thesis is an original intellectual product of its author, Yingying Wang, done in
collaboration with Harshavardhan Kadiyala, under the supervision of Prof. Julia
Rubin. This work is covered by UBC Behavioural Research Ethics Board Number:
H18-00733.

Part of the work was presented as an invited talk at a Vancouver Microservices
Meetup event, attended by around 50 practitioners. This work was also presented
at a workshop of the 28th Annual International Conference on Computer Science
and Software Engineering (CASCON’18).

v



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Lay Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Findings Summary . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Novelty and Contribution . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Structure of This Thesis . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . 7

vi



2.1 Microservices and Their Characteristics . . . . . . . . . . . . . . 7
2.2 Claimed Advantages of Microservices . . . . . . . . . . . . . . . 9
2.3 Microservices vs. Collaborative Software Development . . . . . . 10
2.4 Existing Studies on Microservice-Based Development . . . . . . . 10

2.4.1 Exploratory Studies . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Literature Surveys . . . . . . . . . . . . . . . . . . . . . . 13

3 Study Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Ethical Considerations . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5.1 External Validity . . . . . . . . . . . . . . . . . . . . . . 22
3.5.2 Internal Validity . . . . . . . . . . . . . . . . . . . . . . . 22
3.5.3 Construct Validity . . . . . . . . . . . . . . . . . . . . . . 23

4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1 Microservice Granularity . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Microservice Ownership . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Language Diversity . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1 Logging and Monitoring . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Distributed Tracing . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Automating Processes . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Code Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1 Common Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Managing API Changes . . . . . . . . . . . . . . . . . . . . . . . 35
6.3 Managing Variants . . . . . . . . . . . . . . . . . . . . . . . . . 37

vii



7 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . 40

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

viii



List of Tables

Table 3.1 Interviewee Demographics . . . . . . . . . . . . . . . . . . . . 17
Table 3.2 Concept Frequency . . . . . . . . . . . . . . . . . . . . . . . . 20

Table 4.1 Microservice Granularity . . . . . . . . . . . . . . . . . . . . 24

Table 6.1 Common Code . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 6.2 Managing API Changes . . . . . . . . . . . . . . . . . . . . . 36
Table 6.3 Managing Variants . . . . . . . . . . . . . . . . . . . . . . . . 38

ix



List of Figures

Figure 1.1 Popularity of Searches for the Term “Microservices” (Google
Trends [62], March 2019) . . . . . . . . . . . . . . . . . . . 2

Figure 3.1 Data Collection and Analysis Process . . . . . . . . . . . . . 18
Figure 3.2 Mapping of Categories to Concepts . . . . . . . . . . . . . . 19

x



List of Acronyms

ACM Association for Computing Machinery

API Application Program Interface

BREB Behavioural Research Ethics Board

CD Continuous Delivery

CI Continuous Integration

CPU Central Processing Unit

DevOps Development and Operation

DRY Do Not Repeat Yourself

gRPC gRPC Remote Procedure Calls

HTTP HyperText Transfer Protocol

IoT Internet of Things

JAR Java Archive

MASc Master of Applied Science

REB Research Ethics Board

REST Representational State Transfer

xi



RPC Remote Procedure Call

SaaS Software as a Service

SIGSOFT The Association for Computing Machinery’s Special Interest Group
on Software Engineering

SOA Service-Oriented Architecture

UBC University of British Columbia

xii



Acknowledgements

First I would like to thank all study participants for volunteering their time to
participate in the study and sharing their experience with us. Their help and time
are much appreciated.

Back to my overall master studies, I would like to express my sincere gratitude
to my supervisor, Professor Julia Rubin, for introducing me the research world,
moreover, patiently supporting, guiding, and encouraging me along my studies. I
enjoy the venture a lot and look forward to continuing the expedition in the research
world under her excellent supervision.

Next, I would like to thank my committee members, Professor Philippe Kruchten
and Professor Konstantin Beznosov, for reviewing my thesis and providing con-
structive comments. I also would like to thank Professor Mieszko Lis for his
insightful feedback on shaping my defence presentation.

I also want to thank my collaborator, Harshavardhan Kadiyala, as well as
all my (previous and current) labmates from ReSeSS research group for all the
inspiring discussions we had, their insightful feedback on my presentations, and
the invaluable support during my defence.

Special thanks to my friends Sirou Zhuo, Xinwen Zhang, Lina Qiu, and Wendy
Ma for taking care of me during the hectic deadlines, leaving a light on for me
during my late nights, and borrowing an ear for me all the time.

Last but not least, I would like to express my deepest gratefulness to my parents
for their unconditional and continuing understanding, support, and encouragement,
closely and remotely, along the journey.

xiii



Dedication

To my beloved parents

致我亲爱的父母

xiv



Chapter 1

Introduction

1.1 Overview
Service-oriented architecture (SOA) is an architectural approach to designing
applications around a collection of independent services. A service can be any
business functionality that completes an action and provides a specific result, such
as processing a customer order or compiling an inventory report. Services can be
stitched together to create composite applications, providing greater functionality
to end users [48]. Service-orientation concept had received a lot of attention in early
2000s [17], but lost momentum in 2009. Since 2014, the interest in service-oriented
paradigms was renewed under the microservices moniker (see Figure 1.1).

The term microservice was coined at a workshop of software architects near
Venice in May 2011 [65]. It described what the participants saw as a common
architectural style that many of them had been exploring. Yet, microservice-based
architecture became really popular around 2014, when Lewis and Fowler published
their blog on the topic [33] and Netflix shared their expertise and lessons learned
from a successful transition to microservices at a Silicon Valley Microservices
Meetup event [42]. In 2015, researchers from Gartner [32] found that 68% of orga-
nizations implementing or actively investigating transition to microservices [28].
Gartner also ranked microservice-based architecture as one of the top 10 strate-

1



Figure 1.1: Popularity of Searches for the Term “Microservices” (Google
Trends [62], March 2019)

gic technology trends for 2016, which were predicted to shape opportunities in
digital business through 2020 [67]. In 2018, DZone [16], a programming and
DevOps community, conducted an internal survey, which received 732 replies;
nearly 50% of respondents stated that they are using microservices, and another
38.7% are considering microservices [25]. The Jakarta EE 2018 survey, covering
1,805 participants, reported that nearly 46% of respondents are now using microser-
vices, and another 21% plan to start using microservices within one year [44].
In another survey of 354 enterprises across 51 countries and 12 industries [13],
63% of companies surveyed are currently using microservice-based architectures.
“Famous” adopters of microservice-based architectures include Amazon, IBM,
Uber, LinkedIn, Groupon, and eBay [56].

At the core of microservice-based architecture is the SOA-inspired principle
of building complex applications as a composition of small, loosely coupled
components that encapsulate individual business capabilities and communicate with
each other using language-agnostic APIs. The current popularity of microservices
can possibly be explained by a combination of several factors:

2



• Agile software development: Agile movement promotes frequent software
releases, performed by small, independent teams. However, under the “tradi-
tional” software development model, teams need to synchronize on common
product release dates. Microservice-based architecture helps reduce cross-
team coordination, allowing each team to independently deploy changes to
production at the time appropriate for them. In a sense, it takes the already
popular agile development paradigm to the next level of flexibility, providing
the “architectural phase of the agile progression” [41].

• Cloud: Software hosted on a cloud, a.k.a. Software as a Service (SaaS), has
become a popular method of software delivery. A survey involving 2,151
Java Virtual Machine developers and IT professionals from Lightbend [37]
reported that 31% of developers are already running most of their appli-
cations in the cloud and 29% are in the process of creating a cloud-native
strategy. The flexible pay-as-you-go offering allows developers and compa-
nies to dynamically increase the number of machines when the application
is “busy” and decrease when it is used less. Breaking large applications
into microservices further supports this goal because of the ability to spin
up more instances of the specific “busy” microservices when needed, rather
than scale up the entire application. Such support is ideal to further decrease
the operation costs.

• Tools: The elasticity of microservices is further amplified by the availability
of open-source tools, such as Docker container [31], which makes it possible
to deploy and duplicate each individual microservice; Prometheus [7] and
Grafana [3], which provide monitoring, alerting, and visualization frame-
work for analyzing the running microservices; and Kubernetes cluster man-
ager [20], which facilitates automated deployment, scaling, and management
of microservices. For many organizations, availability of these tools enables
(or substantially simplifies) the transition to microservices.

Yet, just “jumping on the microservices trend”, expecting that the transition

3



itself will allow a company to achieve improvements similar to those reported by
Amazon and Netflix, is a false belief [47]. “Proper” adoption of microservices
requires several technical and organizational changes companies need to consider.
The goal of this research is thus to investigate best practices, lessons learned, and
current challenges in employing microservice-based architectures in industry.

To achieve this goal, we conducted a broad interview study, which involved
practitioners developing microservice-based applications for several years in suc-
cessful industrial companies. By deliberately excluding microservice newcomers
and focusing the study on “mature” teams, we believe our work benefits practi-
tioners who are interested to learn from each other, to borrow successful ideas,
and to avoid common mistakes. The work also informs researchers of challenges
in developing microservice-based applications, which can inspire novel software
engineering methods and techniques.

1.2 Findings Summary
In a nutshell, our participants learned that following the “standard” advice of split-
ting microservices based on business capabilities and using the most appropriate
programming language for each microservice is not always fruitful. While they
started with such an approach, they later had to redefine and merge microservices,
e.g., because the resulting product consumed an unacceptable amount of computing
resources, and also restrict the number of languages that they use, e.g.. because the
end product was difficult to maintain.

They also learned that an early investment in a robust infrastructure to support
automated setup and management, extensive logging and monitoring, tracing, and
more, are some of the main factors contributing to the success of their development
processes. Several practitioners indicated that while in practice they delayed setting
up a solid infrastructure, they regretted such decisions in the future. They found
that having a well-defined owner for each microservice is essential for the success
of their development process, as this owner is the one to ensure the architectural
integrity of the microservice, be the first to efficiently troubleshoot the microservice,

4



etc.
Our study also identifies several common challenges related to managing

code of microservices, where no explicit guidelines are available as part of the
microservices “cookbooks”. These include decisions on how to deal with code
shared by several microservices, e.g., for authentication and logging, how to
manage products consisting of multiple customer offerings, and more. Even
though solutions to these challenges might exist in the software engineering field
in general, they are still to be studied and adapted in the particular context of
microservices. Our study lists different possible solutions applied by the studied
companies and discusses the trade-offs related to each solution.

1.3 Novelty and Contribution
In the past few years, several studies focused on the process of transitioning to
microservices [61, 22, 27, 12, 9, 10, 24, 64]. These studies identified a number
of challenges related to the transition, such as difficulties around identifying the
desired service boundaries, costs involved in setting up the infrastructure to de-
ploy and monitor microservices, and the need for skilled developers to design,
implement, and maintain a large distributed system.

In our work, rather than focusing on the transition to microservices, we investi-
gate the experience of companies that have been successfully running microservices
for several years. Specifically, we focus on fully operational development teams of
companies serving the needs of their commercial customers by using microservice-
based solutions.

We report on best practices, lessons learned, and trade-offs we collected by
conducting 21 semi-structured interviews with participants from their subject
companies. All of the study participants are experienced software developers, with
12 years of experience on average, and all have at least two years of experience
developing microservice-based applications (see Table 3.1).

Our study can benefit industrial practitioners who develop such applications
and are interested to learn from each other, to borrow successful ideas, and to

5



avoid common mistakes. Moreover, a description of current practices and chal-
lenges practitioners face can inspire researchers and tool builders in devising novel
software engineering methods and techniques.

To summarize, this work makes the following contributions:

• It outlines the state-of-the-art in developing microservices, as described in
the literature (Chapter 2);

• It describes the main characteristics of microservice-based applications and
outlines the rationale for using microservices (Chapter 2);

• It identifies best practices, lessons learned, and challenges in developing
microservices, as viewed by our study participants, in terms of architectural
considerations (Chapter 4), infrastructure support (Chapter 5), and code
management (Chapter 6);

• It discusses the findings and outlines possible next steps for both researchers
and practitioners (Chapter 7).

1.4 Structure of This Thesis
The thesis is structured as follows:

• Chapter 2 introduces the concept of microservices, describes their main ad-
vantages, and reviews the related studies of microservice-based development
practices;

• Chapter 3 describes the methodology of the study;

• Chapter 4, 5, and 6 report the best practices, lessons learned, and challenges
in developing microservices, as viewed by our study participants;

• Chapter 7 discusses the findings of the study and possible future directions
for microservice-based development;

• Chapter 8 summarizes and concludes the study.

6



Chapter 2

Background and Related Work

In this chapter, we provide a brief introduction to microservices, outline their
promises, and then discuss the related studies of microservice-based development
practices.

2.1 Microservices and Their Characteristics
A microservice-based approach promotes building a single application as a suite of
(micro-)services1 which run in separate processes and can be deployed and scaled
independently [33]. Microservices communicate with each other – synchronously
or asynchronously – via lightweight language-agnostic protocols, such as HTTP
REST [18]. The services are split following business capabilities. Each service has
a fully automated pipeline and is independently deployable [33].

As discussed by Lewis and Fowler [33], a typical microservice-based architec-
ture has the following characteristics:

• Componentization via services. A component is defined as a software
unit that is independently replaceable and upgradeable. In microservice-
based architectures, the primary way of componentizing the software is by
breaking it down into services. Moreover, microservice practitioners usually

1We use service and microservice interchangeably.

7



see service decomposition as a further tool to enable application developers
to control changes in their application without slowing down a change.

• Smart endpoints and dumb pipes. Applications built from microservices
aim to be as decoupled and as cohesive as possible – they own their domain
logic, receive a request, apply logic as appropriate, and produce a response.
The two protocols used most commonly are HTTP REST and lightweight
messaging (e.g., RabbitMQ [51]).

• Decentralized data management. This includes decentralizing decisions
about conceptual models and data storage decisions. Distributed transactions
are difficult to implement and as a consequence, microservice has explicit
recognition that consistency may only be eventual consistency.

• Design for failure. Applications need to be designed to tolerate service
failures. Any service call could fail due to unavailability of the supplier and
the client has to respond to this as gracefully as possible. Moreover, it is
important to be able to detect the failures quickly and automatically restore
services.

• Infrastructure automation. Infrastructure automation techniques, includ-
ing continuous integration (CI) and continuous delivery (CD) are used to
reduce the operational complexity of building, deploying, and operating
microservices.

• Teams organized around business capabilities. Teams developing micro-
service-based applications are generally cross-functional and organized
around business capabilities.

• Products not projects. A team owns the software/product over its full
lifetime, rather than looking at the software as a set of functionalities to be
completed.

8



• Decentralized governance. Rather than using organizational-level guide-
lines, teams can choose the languages and tools that work best for the
functionality they want to implement.

2.2 Claimed Advantages of Microservices
In this section, we discuss advantages of microservices from two aspects: technical
and organizational.

Technical. Microservices aim at shortening the development lifecycle while im-
proving the quality, availability, and scalability of applications at runtime. From
the development perspective, cutting one big application into small independent
pieces reinforces the component abstraction, and makes it easier for the system to
maintain clear boundaries between components [21]. Developers are able to reason
about the system without people having the opportunity to break abstractions. In
monolithic application development, developers might “take shortcuts” and access
code at the wrong layers, while in microservices, APIs specified in the service
contract are the only channel for other teams to access the service.

Moreover, as different microservices can be developed using different lan-
guages, frameworks, and tools, developers have the freedom to choose languages
that work best for the functionality to implement and also easily experiment with
new technology stacks on a small piece of the system, before migrating the whole
application.

At runtime, microservices can be individually scaled by adding more instances
of only those microservices that experience increasing traffic. Moreover, while a
small change in part of the monolithic application could cause the whole deploy-
ment to fail, single defective microservice would not crash the entire application,
as long as the service is resilient.

Organizational. Independent deployment reduces communication and coordina-
tion effort needed to align on common delivery cycles. In monolith, teams have
to release everything at once, whereas microservices can be deployed in different

9



speed, following different timetables. The release of one microservice would not
get blocked by unfinished work in another microservice. Moreover, the failure
domains of microservices are rather independent; if one microservice failed, only
the specific team responsible for the microservice need to be notified.

Developers can also focus on small parts of an application, without the need
to reason about the complex dependencies and large code base. This is especially
beneficial for junior developers and for onboarding new team members. Dealing
with legacy software also becomes easier. As the application is broken down into
smaller, replaceable pieces, they become easier to understand and upgrade.

2.3 Microservices vs. Collaborative Software
Development

Microservice-based systems add additional complexity to “typical” collabora-
tive software development. These systems are distributed, their components are
loosely-coupled and communicate over the network, and are composed at runtime.
Therefore, tracing the interaction between the components, identifying inter-service
faults, and monitoring the behaviour of the entire system are more difficult.

Moreover, such systems consist of multiple independent executables, allowing
the flexibility of adding new components to the system and requiring setting up the
development pipeline and workflow for each such component. Thus, automation is
especially important to reduce operation cost.

These properties of microservices complicate development and call for software
development tools and practices uniquely suitable to support microservice-based
engineering, which we investigate in this thesis.

2.4 Existing Studies on Microservice-Based
Development

We divide the discussion of related work on microservice-based development into
exploratory studies and literature surveys. Overall, most existing studies focused

10



on the process of migration to microservices. In contrast, we collected experiences,
challenges, and lessons learned by organizations in the post-migration phase. We
also included companies that did not perform any migration but built their systems
using a microservice-based architecture from the start.

2.4.1 Exploratory Studies
The closest to ours is the study of Taibi et al., [61] who surveyed 21 practitioners
from industry who adopted a microservice-based architecture style for at least
two years. The goal of that survey was to analyze the motivation as well as pros
and cons of migration from monolithic to microservice-based architectures. The
authors found that maintainability and scalability were ranked as the most important
motivations, that the return on investment in the transition is not immediate, and
that the reduced maintenance effort in the long run is considered to compensate
for non-immediate return on investment. Unlike that work, our study does not
focus on the migration process. We also conducted in-depth interviews rather than
structured surveys, which allowed us to identify and discuss challenges in a higher
level of technical detail.

Like Taibi et al., Francesco et al. [22] also investigated the practices and
challenges in migration to microservices. The authors did that by conducting five
interviews and then followed up with a questionnaire. Similar to our study, they
also observed that finding a proper service granularity and setting up an initial
infrastructure for microservices, are some of the challenges that the developers
face. Again, while that study only focused on the initial stages of a transition
to microservices, our work covered organizations in advanced adoption stages.
Performing in-depth interviews with a substantially higher number of practitioners
in post-migration stages led us to discover additional challenges not mentioned in
earlier work, e.g., the need to redefine service granularity in resource-constrained
environments, issues related to variant and common code management, handling
API updates, and more.

Zhou et al. [68] focused particularly on fault analysis and debugging of mi-

11



croservices. The authors interviewed 16 practitioners from 12 companies, investi-
gating the fault cases these practitioners encountered in their microservice-based
systems, their debugging practices, and practical challenges they faced when debug-
ging microservices. The authors further created a benchmark microservice-based
system and replicated all fault cases extracted from the interviews. Then, the
authors evaluated the effectiveness of current debugging practices via an empirical
study. This study particularly focused on the debugging aspect of microservices,
while our study is more general and it investigates practices and challenges in the
development, management, and maintenance of microservices.

Gouigoux et al. [27] described the lessons learned during migration from
monolith to microservices in a French company named MGDIS SA. The study
focused on how the company determined a suitable granularity of services, and
their deployment and orchestration strategies. Rather than one case study, we
collect practices and challenges of multiple companies developing different types
of applications. Moreover, apart from collecting the list of challenges, we make
extra efforts enumerating and comparing all emerged alternative solutions for each
such challenge, to help practitioners and researchers get a better view of current
options for addressing the challenges.

Likewise, Bucchiarone et al. [12] reported on experience transitioning from
monolith to microservices in Danske Bank, showing that such transition improved
scalability. Similarly, Luz et al. [40] shared their observations on the transition
process of three Brazilian Government Institutions. The findings were cross-
validated by surveying 13 practitioners in the studied institutions. The authors
found that the lack of understanding on how to decompose a monolithic system into
a service and how to evaluate quality properties of a microservice are commonly
perceived as challenges in transition process. Balalaie et al. [9] also described the
migration of a commercial mobile backend application to microservices, focusing
on DevOps adoption practices that enabled a smooth transition for the company.
Our study does not focus on the migration phase, collects best practices and
challenges from multiple companies successfully completing the migration, and

12



discusses development challenges in a greater level of detail.
Balalaie et al. [10] reported on a set of migration and rearchitecting design

patterns that the authors empirically identified and collected from industrial-scale
software migration projects, such as decomposing monolith based on data owner-
ship, transforming code-level dependency to service-level dependency, introducing
internal and external load balancers, and more. The authors also presented three
independent industrial case-studies, in which they observed the recurrence of the
proposed pattern, demonstrating the practical value of these patterns.

Viggiato at al. [63] collected the general characteristics, advantages, and chal-
lenges of microservice-based development from literature and online posts. The
authors then conducted an online survey to confirm, in practice, if practitioners
developing microservices agree with the literature information. Similarly, Ghofrani
and Lübke [24] also conducted an online survey with 25 practitioners who an-
swered five questions related to goals and challenges in developing microservices,
notations used by practitioner to describe microservices, and concerns practitioners
have with using third-party libraries in their project. Our study has a broader scope;
its comprehensive and open-ended nature not only allows us to discover issues not
observed by previous work, but also sheds light on concerns of organizations of
different type and size.

Razavian and Lago [53] explored migration activities when transitioning to
SOA. The authors identified high-level activities, such as code analysis, architec-
tural recovery, and business model recovery, and traced these activities to practices
developed by the academic community. Our study focuses on more fine-grained
development activities and investigates challenges specific to management of mi-
croservices.

2.4.2 Literature Surveys
Pahl and Jamshidi [50] and Francesco et al. [23] performed systematic mapping
studies aiming to classify research approaches to architecting microservices and
proposed classification framework for categorizing, comparing, and evaluating

13



research work on microservices architectural solutions, methods, and techniques.
Both work stated the demand for empirical studies involving practitioners to better
understand the state of the practice on microservices, and our work serves such
need.

Dragoni et al. [15] reviewed the history of software architecture, discussed
characteristics of microservices, and outlined future challenges. The survey pri-
marily addressed newcomers to the discipline and did not ground the discussion on
any particular case study or experience.

Alshuqayran et al. [1] conducted a mapping study for identifying architectural
challenges, popular microservice architectural diagram types, and quality measure-
ment in microservices architectures mentioned in the literature. Vural et al. [64]
also undertook a systematic mapping study aiming to find out current trends around
microservices, the motivation behind microservices research, emerging standards,
and the possible research gaps. Our work is orthogonal to that as we focus on
identifying challenges of adopting microservices in industry rather than surveying
the state-of-the-art in research.

14



Chapter 3

Study Methodology

This chapter describes our study methodology: the selection of subjects, the
approach to data collection and analysis, and threats to the validity of the work.

3.1 Subjects
To gain a better understanding of current practices and challenges of microservice-
based development, we recruited software developers with solid experience devel-
oping microservice-based applications. More precisely, our selection criteria were
for participants who:

1. Have more than two years hands-on experience using microservice-based
architecture in industry.

2. Are a member of a team that designs, develops, and deploys microservices
for commercial use for at least two years.

3. Are familiar with processes and ways of interacting with other teams working
on the same product.

Such selection criteria ensure that the interviewees are experienced developers
from organizations that use microservices in a mature way.

For identifying the participants, we initially approached our network of collab-
orators and colleagues. We also reached out to developers who actively participate

15



in various microservice-related events and meetup groups [43]. In addition, we
used the LinkedIn web platform [38] to recruit developers listing microservices as
their core skills and holding active software development positions. Finally, we
applied snowballing [26], asking the interviewees to distribute a call for participa-
tion in their professional networks. We interviewed each participant and stopped
recruiting new participants when we reached data saturation [8]: we did not hear
new concerns in the last five interviews.

As the result of this process, we interviewed 21 practitioners from 15 companies.
Most participants hold a title of Software Engineer or Developer, Senior or Principal
Software Engineer, or Software Architect. They have between 2.5 and 22 years of
full-time software development experience, with a mean of 12.4 and a median of 12
years. In the microservices domain, the participants have between 2 and 10 years
of development experience, with a mean of 3.7 and a median of 3 years. They are
currently employed in teams that are practicing microservice-based development
between 2 and 15 years, with a mean of 4.6 and a median of 4 years. Notably,
some of the teams developed microservice-style systems long before the term was
introduced and popularized.

The size of the teams ranges between 4 and 20 members, with a mean of 9.2 and
a median of 8.5 members. The teams are responsible for 4 to 50 microservices, with
a mean of 16.6 and a median of 15 microservices. They develop human resources
applications, retail and social media portals, enterprise resource management and
cloud resource management applications, cloud infrastructure management and
IoT management applications, and more. Table 3.1 also presents demographic
information about the participants. Their ages range between 25 and 47 years, with
a mean of 35.3 and a median of 35 years. One participant holds a PhD degree,
four hold a Master’s level degree, and 14 hold a Bachelor’s level degree. One
participant, with 20 years of experience, is entirely self-taught.

16



Table 3.1: Interviewee Demographics

Item Value
Industrial Experience [years] Min=2.5; Max=22; Mean=12.4; Median=12

Microservice Experience [years] Min=2; Max=10; Mean=3.7; Median=3

Team Microservice Experience
[years]

Min=2; Max=15; Mean=4.6; Median=4

Number of Microservices (Team) Min=4; Max=50; Mean=16.6; Median=15

Team Size Min=4; Max=20; Mean=9.2; Median=8.5

Age Min=25; Max=47; Mean=35.3; Median=35

Education Level Bachelor’s=14; Master’s=5; PhD=1; Self-taught=1

3.2 Data Collection
The essence of our data collection and analysis process is outlined in Figure 3.1.
The study was based on semi-structured interviews with a set of open-ended ques-
tions. To identify an appropriate study protocol, we performed five pilot interviews
with colleagues, friends, and student interns employed in organizations that develop
microservices. These participants were not intended to satisfy our selection criteria
but rather help us clarify, reorder, and refine the interview questions. We proceeded
to the main study only when the pilot interviews ran smoothly; we discarded the
data collected during the pilot study and did not include it in our data analysis.

For the main study, we conducted 21 semi-structured interviews that took
around 50 minutes each (min=26; max=90; mean=49.9; median=47 minutes,
total=17.5 hours). As typical for this kind of study, the interview length was not
evenly distributed. At the beginning, the interviews were substantially longer,
with many follow-ups on open-ended questions. As the study progressed, we
repeatedly heard similar concerns and thus the interviews became shorter. We
collected quantitative data about the participants’ background, their project, and
team offline, which also saved time from interviews. Each interview revolved
around three central questions:

1. How, why, and when do you create new microservices?

17



Figure 3.1: Data Collection and Analysis Process

21 Interview
s

Q1

Q2

Q3

235 Quotes 
(19 excluded) 

10 
Subcategories 

3 C
ategories

C3: Code
Management

33 Concepts 
(14 excluded) 

C2:
Architecture

C1:
Infrastructure

2. How are microservices maintained, evolved, tested, and deployed to produc-
tion?

3. Which of your practices work well and what you think can be improved?

We followed up with subsequent questions and in-depth discussions that de-
pended on the interviewees’ responses. Our goal was to identify best practices,
lessons learned, and the set of challenges practitioners face when developing and
maintaining microservice-based applications.

Our study team consists of three investigators in total: the author of this
thesis, the author’s supervisor, and another MASc student with microservices and
qualitative studies background.

The interviews were conducted in English by at least two investigators of this
work. Four interviews were in person and the remaining ones – over the phone
or using telecommunication software, such as Skype. All but three interviewees
agreed to be recorded and the collected data was further transcribed word-by-word,
only removing colloquialism such as “um”, “so”, and “you know”, and breaking
long sentences into shorter ones. The additional three interviews were summarized
during the conversation.

We shared the transcripts with each corresponding interviewee for his or her
approval or corrections. In total, we received five corrections; most of them were
minor and related to the names of companies and tools, confidentiality-related
issues, and clarifications on the discussed topics. We applied all corrections to the

18



Figure 3.2: Mapping of Categories to Concepts

transcripts.

3.3 Data Analysis
To analyze the data, we used open coding – a technique from grounded theory for
deriving theoretical constructs from qualitative analysis [60]. More specifically,

19



Table 3.2: Concept Frequency

Category # Participants
Architecture

Microservice granularity 15
Microservice ownership 9
Language diversity 7

Infrastructure
Logging and monitoring 11
Distributed tracing 6
Automating processes 5
Tools 6

Code Management
Common code 14
Managing variants 12
Managing API changes 20

two of the investigators independently read the transcripts line by line and identified
concepts – key ideas contained in data. When looking for concepts, we searched
for the best phrase that describes conceptually what we believe is indicated by the
raw data.

On a weekly basis, all investigators met to discuss the identified concepts and
to refine and merge them if needed. As mentioned earlier, we proceeded with
more interviews as long as new concepts were detected, i.e., until we reached data
saturation and no new concepts emerged in the last five consecutive interviews.
Such interrelated data collection and analysis process is inspired by grounded
theory and is typical for interview studies.

In total, we identified 47 concepts, linked to 254 quotes. As qualitative analysis
seeks to find significant concepts and explore their relationships [60], we only
considered concepts that capture ideas mentioned by at least three study partici-
pants, excluding from the final results 19 quotes belonging to 14 concepts. We
ended up with 235 quotes and 33 concepts, as shown in Figure 3.1. We further
abstracted concepts into ten higher-level subcategories, which we grouped into

20



three main categories: architectural considerations, infrastructure support, and
code management.

Figure 3.2 further elaborates on these numbers, giving the detailed mapping of
categories to concepts. Due to confidentiality issues, we cannot list the full quotes;
we thus give the number of quotes for each concept.

Table 3.2 lists the identified categories/subcategories and the total number of
participants whose quotes have contributed to these categories. As our study has a
qualitative nature, all the reported numbers have informative rather than statistical
nature. As all our findings are linked to quotes extracted from the interviews,
results we report are grounded on the collected data. In the rest of the manuscript,
the quotes are presented in «this style».

For quality control, we sent the final report summarizing our findings to all
interviewees, asking them to comment on any misinterpretations that might have
occurred. The feedback we received shows that the study is accurate and repre-
sentative: “Overall, I think this is a very strong study that accurately reflects my
experience in the industry.”

3.4 Ethical Considerations
The University of British Columbia (UBC) requires that research involving human
participants must be reviewed and approved by the UBC-affiliated Research Ethics
Board (REB) prior to data collection. Prior to the start of our data collection,
we obtained an ethics approval from UBC’s REB. In the ethics application, we
summarize the intended purpose of our study, potential participants and recruitment
strategy, informed consent process, possible conflicts of interests, data collection
strategies, confidential data handling, etc.

Before each interview session started, the participant was required to review
our REB approved consent form and give us an informed consent to conduct the
study; we also ask for consent for recording the interview in the consent form.

21



3.5 Threats to Validity
Following the validity classification scheme described by Wohlin et al. [66], we
discuss the threats to the validity of this study from the following aspects: external
validity, internal validity, and construct validity.

3.5.1 External Validity
External validity is concerned with the conditions that limit the generalization of
our findings. As in many other exploratory studies in software engineering, our
research is inductive in nature and thus might not generalize beyond the subjects
that we studied. Yet, our sample is large enough and diverse enough to give
us confidence that it represents central and significant views. We intentionally
included in the study software developers from companies of different type and size.
We also interviewed practitioners in different roles – from software developers to
team leads and managers. We believe that these measures helped to mitigate this
threat.

3.5.2 Internal Validity
Threats to internal validity can affect the causality of the results due to the influences
on the independent variable that are not acknowledged by the researchers. In our
case, we might have misinterpreted participants’ answers or misidentified concept
and categories, introducing researcher bias to the analysis. We attempted to mitigate
this threat in two ways. First, all data analysis steps were performed independently
by at least two investigators of the work; furthermore, all disagreements were
discussed and resolved by all investigators. Second, we shared both the “raw” data
collected during the interviews and the resulting report with the participants of the
study for their validation. We thus believe our analysis is solid and reliable.

22



3.5.3 Construct Validity
Construct validity concerns whether the study builds up the correct operational
measures for the concept being studied. Since our goal was to understand the
best practices, lessons learned, and challenges in using microservices, we have
to approach industrial practitioners from different companies, thus we chose to
conduct an interview study as it serves our goal best.

23



Chapter 4

Architecture

In this chapter, we discuss architectural considerations of microservice-based
development, including concepts related to microservice granularity, ownership,
and languages used.

4.1 Microservice Granularity
Identifying the right granularity for a microservice is probably the most frequent
question raised by both microservice newcomers and experienced microservice
developers. Table 4.1 shows different, not necessarily mutually exclusive strategies
organizations apply, according to our study.

The majority of the study participants follow the common guidelines stating
that business capabilities are the primary consideration for defining a microservice:

Table 4.1: Microservice Granularity

Alternatives # Participants
Business capabilities 14
Data access 5
Dependencies 4
Team structure 3
Resource consumption 3

24



«It just does one thing and does it really well.» The size of the microservice in
terms of lines of code is a less important consideration: «Having a big service is
not that bad, as long as the service is cohesive and it deals with one thing.»

Looking at service dependencies and grouping together functions that talk to
the same APIs leads to minimizing service-to-service communication – another
consideration expressed by the study participants: «The key is to have correct
separation of concerns, such that [...] the service-to-service communication is
minimized. Otherwise, you just pulled in a monolith again with network traffic
between the various systems.»

Grouping together functions that need access to the same data is another well-
known guideline that enforces separation of concerns. In addition, it ensures that
only developers with the required permissions can access the appropriate data:
«Machine learning has access to user data, so we want to separate it out from
[other] microservices. [...] We have a couple of people who have the responsibility
and the ownership of that code.» In fact, several practitioners mentioned that team
structure and capabilities help them decide on the microservice boundaries: «If
[code] is very frontend-centric, then we will probably have teams of people who
think about web development and we will say that is a separate service. With the
data-centric thing, we might have a different group of people with different set
of skills that they work on that thing.» Another participant noted: «The size of a
microservice matters only as it relates to the size of the team that can support it.
[...] that matters more than just saying, ‘Well, this microservice needs to handle
these six methods only’ or something like that. It’s more about team size.»

Yet, we observed multiple cases where companies that initially split their mi-
croservices based on these commonly accepted guidelines had to later revisit this
decision. The most prominent is the concern related to computing resource con-
sumption, i.e., CPU, memory, and disk space. Consumption of these resources
might increase substantially when common libraries are duplicated in many individ-
ual containers, e.g., for executing common operations, such as authentication and
database access, in each individual microservice. Excessive resource consumption

25



increases costs for companies that deploy their solutions in a pay-as-you-go cloud
environment.

Furthermore, some companies need to deploy their solutions on proprietary
hardware, their own or of their customers. When applications exceeded the hard-
ware capacity allocated by the customer, companies had to merge microservices:
«[Our] customers have more restricted resources. Splitting up to many microser-
vices scared them away because each microservice takes a certain amount of
resources. [...] We were able to trim down more than half of the size of that original
module; we are still doing that today.»

Closely related to resource consumption is the anticipated microservice utiliza-
tion criterion: «We do not want too little traffic to a microservice. If we just serve
for one particular page that is not visited frequently, we are wasting our resources
starting up that microservice doing nothing for most of the time.»

 Lesson learned #1: Apart from the common practice of considering

business capabilities and data access when deciding on microservice granularity,

developers should also consider team structure, resource consumption, and

communication patterns between microservices.

4.2 Microservice Ownership
Some of the interviewees strongly believed that having a clear owner for each
microservice is a necessity for functional organizations. That is in contrast to the
currently becoming popular practice of feature-based teams that can “touch” any
microservice when implementing a new feature.

A service owner is a person or a team, who is the primary point-of-contact
when the microservice malfunctions: «Generally what happens is that if a service
isn’t working, that service’s owners or maintainers are informed and they are asked
to look into it.» Our participants report that, apart from troubleshooting, fixing
bugs, and deciding on the design and architecture of the microservice, service
owners also need to implement new features and train trusted committers for the

26



service.
Having service owners is important for defining clear architectures, with well-

defined service responsibilities and boundaries, and reducing architectural debt [35].
When changes to a microservice are proposed, the owner is responsible for assess-
ing how appropriate the change is and, if not appropriate, deciding on an alternative
way to satisfy the demand: «Because there wasn’t that sense of ownership, there
wasn’t continual like ‘this is the purpose of this service and it serves only that
purpose’. It started being ‘[this service] gonna do this, and this, and this, and that’.
And it did not do either of them particularly well as opposed to doing one thing
really well.»

 Lesson learned #2: Assigning owners to microservices facilitates efficient

troubleshooting and microservice architectural integrity.

4.3 Language Diversity
Being polyglot is one of the most advertised advantages of microservices, as it
gives developers the flexibility to choose the technology stack and languages that
work best for their needs, as well as the ability to try new languages on small
components without affecting the whole system.

However, introducing many languages and frameworks may actually decrease
the overall understandability and maintainability of the system: «We said, ‘Hey,
why not try using Golang? Why not try using Elixir?’ [...] so we wrote a service in
that language. But what happens then is you end up with one, maybe two people
who will understand it and nobody else can read the code or they struggle to read
it, so it makes the service a little bit less maintainable. And nobody wants to touch
it, and that is a big problem.»

Introducing many languages also makes the system harder to test: «We’ve got
some ColdFusion parts. We’ve got JS. We’ve got some Golang, we’ve got some
Python. So now you’ve got all these different microservices [...] they’re using
multiple different tools for testing and at the same time to test the entire flow from

27



front to the end, it’s quite difficult.»
As a result, several companies we interviewed now decided to standardize their

processes and restrict the development for one language for each “purpose”: «We
are trying to converge on three main languages, JavaScript in the front-end, Scala
for data, and Ruby on Rails for business logic. When we are building a new service,
we pick one of those three languages depending on what seems the most logical for
the problem that we are solving as well as the team that is gonna be implementing
it.»

Another justification for steering away from multiple languages and technolo-
gies is code and knowledge sharing: «We ended up saying, ‘Yeah, we kind of do
[standardize languages] just because of the shared knowledge’. You can reuse
ideas from one microservice to another even though all the documents say that can
be a really bad idea because it limits creativity and it limits your ability to try out
new ideas and stuff. And we are like, ‘You know what? We don’t wanna do that.
We just want to have a small number of different technologies and live with it.’»

 Lesson learned #3: For practical purposes, organizations should restrict

the number of programming languages used in a microservice-based system to a

few core languages: one for each high-level “purpose”.

28



Chapter 5

Infrastructure

As microservice-based applications consist of numerous independent components,
tracking their availability and performance, debugging the entire system, and using
an appropriate setup and maintenance infrastructure are critical activities, according
to our study participants.

5.1 Logging and Monitoring
One of the main criteria for a mature microservice-based development process is
the robustness of the logging and monitoring framework. Our participants report
that, apart from service availability and the number of requests, they log input,
output, and error data, response time, resource utilization, and more. Identifying
the right granularity level for logging is not a trivial task. Not logging enough
will cause problems when troubleshooting failures; logging too much might harm
the application performance. Several participants also stated that, when logging,
particular care is needed to preserve client privacy, e.g., by obfuscating logged data.
«Having metrics in place and reviewing them, making sure that they are the right
metrics, those are all things that get reviewed by the team ahead of time before you
actually launch.»

Practitioners use logged info for troubleshooting, monitoring and visualizing

29



the overall health of the system, creating reports for customers, e.g., on the delivered
quality of service, and compliance and auditing reports. Moreover, some run
statistical analysis on the logged info, to automatically identify failures, even
before customers notice them, and notify the corresponding team: «Any time that
the logs record a failure, we have tools to find out where there were a lot of failures
in this particular period of time, what percentage of failures there were, was the
latency for that call abnormal or something, did it exceed a certain threshold over a
certain period of time, etc. We have a tool that would monitor those logs and send
us alarms when those thresholds were exceeded, for example, latency thresholds or
success thresholds.»

Practitioners often regret the decision not to set up a logging and monitoring
framework early as the project starts: «Probably I will focus more on logging and
monitoring, right off the bat. Because trying to retrofit monitoring and logging
once we have all the services, is quite a bit of work.»

 Lesson learned #4: Logging and monitoring frameworks should be set

up at the onset of the project. Developers should carefully review the logged

information, to evaluate the effect of logging on the troubleshooting, monitoring,

and reporting abilities, performance of the application, and client privacy.

5.2 Distributed Tracing
When locating failures, most companies follow the chain of ownership, i.e., start
from the failing microservice and gradually track where problems are coming from.

As requests often span multiple services and the call relationships between
microservices get very complex, solutions like distributed tracing [55], which track
services participating in fulfilling a request, are applied: «There have been issues
that I have worked on which were chained through five different teams that are
completely unrelated. And it was like, ‘okay, this is where the initial source of this
thing came from’.»

Like logging and monitoring, setting up a distributed tracing framework is an

30



important task to do early as the project starts: «A lot of companies that start out,
do not think about distributed tracing right from the get-go. They think about it as
an afterthought. And distributed tracing is a lot harder to implement after the fact
than it is when you start a project.»

 Lesson learned #5: To efficiently troubleshoot a microservice-based

application, distributed tracing should be set up at the onset of the project. It is

harder to implement after the fact.

5.3 Automating Processes
Building infrastructure to automatically create new microservice stubs and to add
newly created microservices to the build and deployment pipeline substantially
reduces the operation costs: «When we first started doing microservices, it actually
took about a month or two to get all the infrastructures ready to create a new
microservice. Now we have the ability to create a microservice in five minutes.»
«The tooling is very important. There is kind of one way to create, at least, the
structure of projects for different platforms. So like, Scala microservices, they will
all look about the same. They will have the same structure. They will have the
same Jenkinsfile. They will have the same format in Kubernetes, the same way to
configure them, roughly. That is the core.»

Automated pipelines also help newcomers to start using microservices: «Today
we are working on our starter-kit for other teams to easily get on board with the
microservice-based architecture. Back to that time, we did not have a good way to
easily start up a new microservice, it involved a lot of learning curves.»

Like the aforementioned infrastructures, several interviewees, especially those
from large companies, mentioned that an important lesson they learned is not
treating automation as an afterthought: «If we had to start microservices again, I
think we would try to get the tooling for creating new services ready and begin
standardizing earlier. It is easy to say this in hindsight.»

31



 Lesson learned #6: For large projects, automating microservices setup

help reduce operation costs.

5.4 Tools
Early adopters of microservice-based architectures had to develop numerous propri-
etary frameworks and tools, to support development, maintenance, and deployment
of microservices. Some of these tools were later contributed to open source, e.g.,
Docker [31] developed by Docker Inc., Kubernetes [20] and Istio [4] by Google,
and Envoy [2] by Lyft. By now, there are more than 250 tools out there to support
development and deployment of microservices, service discovery and API manage-
ment at runtime, and more [19]. For smaller companies, building proprietary tools
no longer makes economic sense: «In the time that they were trying to build their
own, Kubernetes came about, and I think they realized now that they have wasted
a lot of time building the toolset.»

However, our study participants noticed that identifying an appropriate existing
solution takes time, which they usually lack as the development is driven by
business needs: «There are tools that are out or coming out that are solving a
lot of problems that we have. Things like gRPC, GraphQL, code generation and
documentation, service meshes, [...], they are great at solving a lot of problems.
We just do not have the time to actually move over to them.»

An advisable strategy is to stick to vendor-neutral interfaces, when possi-
ble, which decouples the implementation from vendors. For example, instead
of instrumenting the code to call a particular distributed tracing vendor, such as
Zipkin [49] or Jaeger [5], using the vendor-neutral distributed tracing framework
OpenTracing [6] facilitates the transition between vendors.

 Lesson learned #7: When available, choose vendor-neutral interfaces to

avoid vendor lock-in.

32



Chapter 6

Code Management

In this chapter, we discuss considerations related to managing code of microservice-
based applications. In particular, we present alternative strategies our participants
apply for dealing with code shared by multiple microservices, managing evolving
APIs, and developing applications consisting of multiple variants serving different
types of customers.

6.1 Common Code
Splitting an entire system into a set fully independent microservices is not realistic
in practice. Virtually all study participants stated that some functionalities and
code needs to be shared between microservices. These include cross-cutting
concerns such as logging and authentication, database access, common utilities,
and more. Simply duplicating code in multiple microservices is against the “do
not repeat yourself” (DRY) principle of software development [30] and will make
code unmanageable in the long run. We observed three alternative solutions for
managing common code (see Table 6.1).

The most common practice participants employ to minimize code duplication
observed is to package the common code in a shared library, which is imported at
build time. In the simplest case, all microservices use the same latest version of the

33



Table 6.1: Common Code

Alternatives # Participants
Latest-version shared library 6
Multiple-version shared library 4
Standalone microservice 4

library. Its downside is that a microservice cannot make independent changes to
that common code: «That is a [...] hassle because you change the common library
and then all the services that depend on this library need to change. [...] you have
to coordinate carefully and make sure that you do not do any breaking changes.»

To address this problem, several participants carefully version libraries and
allow services to rely on different versions of these libraries. Such an approach
could introduce another challenge – inconsistencies and application instability:
«Hopefully, we pick the right versions so that everything works because the worst
thing is when you have had transitive dependencies, and their version clashes with
something else that another library brings in. So dependency management can be
painful.»

As a compromise, participants agree that new changes should always be intro-
duced only in the latest version of the library. If a microservice requires a feature,
it has to import the newest version of the library: «We would not support changes
in the older version. We say, ‘If you are using version two and you want the new
features, you have to upgrade to version three first before you get new features.’
Everybody has to be converged on the same mainline version.»

A number of interviewees opted for wrapping common code in a standalone
microservice. This approach simplifies procedures as no redeployment of all
microservices that use the changed library is required: «If you put this common
code in a JAR and then [...] there’s a bug, you have to redeploy those [microservices
that use the JAR]. But if you have it [common code] outside [as a service], you just
deploy it once, that would be enough.» Yet, the clear disadvantage of this approach
is the introduction of network delays when executing the common code, which
affects application performance.

34



The other solution to the common code issue is sidecar, which has recently
emerged from the industry. Since such a strategy was mentioned by one participant
only, we did not include it in Table 6.1. Yet, we believe that this solution is worth
highlgihting. The main idea behind sidecar resembles a sidecar attached to a
motorcycle: it co-locates common code implemented as a standalone microservice
with the primary microservice, dynamically attaching it to the main container.

Using sidecar helps to avoid network overhead (as it runs on the same host as
the primary microservice) and solve the deployment problem (as sidecar can be
updated independently from the primary microservice). Moreover, it provides a
homogeneous interface for services across languages: «Applications do not have to
embed libraries and then encode anymore, they can use a container-based solution
that is going to provide common functionality. And that way, if one developer
makes a change to that common component, people can just pull down the latest
container image and run it as a sidecar. They do not need to go and get a new
version of the code to compile under their applications.»

 Lesson learned #8: Sharing common code in the form of software libraries

violates microservice independence. Such approach should be carefully managed.

Participants should also experiment with the newly emerged sidecar solution.

6.2 Managing API Changes
With services, the contract with downstream customers, external or internal, is
done at the API level. Best practices for defining APIs are well captured by Postel’s
law [52]: being liberal in what you accept and conservative in what you send. Our
study participants make an extra effort to avoid breaking API changes, unless those
are security-related. Breaking changes that face external customers are especially
discouraged: «If you break those, that’s a huge problem.» To reduce the chance of
breaking customer code, our participants encourage customers to ignore data they
do not use: «If [the clients] receive some data that they do not need, do not break
on that, just drop it because that may be a way of introducing new changes.»

35



Table 6.2: Managing API Changes

Alternatives # Participants
Direct API calls 14
Proxy 7
Client library 5
Message-based communication 4

When a company must change an API in a way that it is no longer compatible
with the original version, e.g., to support security features, they version the APIs
up, eventually deprecating the old version without breaking it: «If we are going to
delete something from the payload or we completely change the signature, we will
have to bump up the major version and create another version of the API and ask
people to move over.»

API changes are typically discussed in internal or external interlocks, doc-
umented, and systematically deployed. As shown in Table 6.2, a number of
interviewed teams use direct API calls for synchronous communication between
microservices. Some participants mentioned they use asynchronous message-based
communication within their product or across product boundaries. They mostly
rely on distributed stream-processing software, such as Apache Kafka [34] or
message brokers, such as RabbitMQ [51]).

With both direct calls and messaging, when a change is introduced, it is imple-
mented by an API with a new version number. Both the old and the new versions
are deployed alongside to allow a smooth transition of the clients, and the old API
is removed when clients stop using it: «You do your first deployment on the API.
You do the second deployment on the calling service. And then you do another
deployment on the API again to remove the old stuff.»

This strategy makes the transition simple and straightforward, but requires
changes in all clients using the API. Identifying and notifying such clients is
a challenging task. Various proxy solutions, e.g., API gateways [54], push the
complexity to the server side.

As breaking API changes often involve simple modifications, e.g., adding a

36



new input parameter to the API, a proxy can be programmed to detect old API
calls and transform them to a new version, e.g., by adding default values to fields
not passed by the client, making them backward compatible before forwarding the
requests to the new API version. In this way, clients stay oblivious to the actual
version they are using, as every request goes through the gateway and the gateway
just routes the request as needed.

Another solution for simplifying clients’ transition to new API versions is
to provide clients with a library that wraps calls to server APIs. Client libraries
are typically automatically generated, e.g., using tools such as Swagger [59].
Using libraries has numerous benefits over clients making direct HTTP calls [14].
First, developers can push upgrades to the clients more easily by using package
management tools. The upgrade process is also simplified for the customer as
they do not need to get acquainted with the details of the changes. Finally, client
libraries can handle low-level communication issues such as authentication with
the API server, again, reducing the burden on the customer side.

 Lesson learned #9: API breaking changes, especially those facing external

clients, are discouraged. When needed, e.g., for security upgrades, they should

be introduced via deprecation. APIs gateways and client libraries help to

mitigate the burden of upgrades for the client.

6.3 Managing Variants
Managing different customer offerings (a.k.a variants), e.g., for “free” vs. “pre-
mium” customers, is yet another challenge in developing microservices. More than
half of our study participants need to manage variants of their products and they
reported on three common strategies for managing product variants (see Table 6.3).
Feature flags are basically conditions that are passed with requests and that control
different paths in code. In the simplest form, these flags can identify a certain
group of users: «It can say, ‘Oh, if you are User X, do this code’, or ‘if you are
in this cohort, do this code’. We use feature flags very heavily, so we can turn on

37



Table 6.3: Managing Variants

Alternatives # Participants
Separate deployments 5
Feature flags 4
Role-based access 3

some code path for different people.»
More robust feature flags do not condition over particular users, which is hard

to scale, but rather specify high-level features: «When the feature is toggled for a
customer, it is more like a temporary thing where it is like a hack. [...] Typically,
when it is a specific feature, that is something that is determined at the API level
and passed in. It is a call to the service with feature X enabled.»

The biggest benefit of using feature flags is to be able to make changes on the
fly at run-time. Companies also use feature flags to support blue-green deploy-
ments [57] and to roll-out changes to a certain group of users: «We can say, ‘Let’s
push this new feature out to 1% of our user groups, 10%, and slowly see what the
response is over time’.»

The disadvantages of feature flags are that it requires extensive management
of feature themselves and the correspondence between features and code that
implement these features. Testing different combinations of features also becomes
challenging. Another approach for managing variants is role-based access which
provides access to APIs based on the user role. Such an approach is typically
supported by the API management tools and API gateways [54]. Each incoming
request has an API key tied back to a particular API plan, and an API gateway
routes the requests to a certain code, based on the developer-specified configuration.

The main advantage of the role-based access approach compared to feature flags
is that this approach makes the primary functionality selection in the infrastructure
layer, making it possible to deny access to certain clients, instead of performing
checks in the code: «Based on the customer ID, they are allowed to use a subset of
the service, when they try to call these other APIs that they are not supposed to,
they will just get an error back.»

38



Finally, a few participants reported that they use separate deployments for dif-
ferent customers, on the company’s or customers’ sides. In detailed interviews, the
practitioners explained that their projects started from using feature flags and other
code-level differentiation, but that complicated code management: «Previously we
were doing everything within the one microservice. [...] That became very messy
very quickly, so we ended up splitting an instance out into its own branch.»

Such projects maintain different code bases for different customers: «Dedicated
and local [offerings] are different because they are for only certain customers. [...]
We have a branch for the dedicated and local system; when we roll out a new
feature to the public system, they won’t get it automatically unless we pour that
feature to the branch.»

While separate branches induce the overhead of synchronizing the code bases,
some practitioners opt to do that to ease the maintenance effort: «Let’s say we have
product v6.0, v6.1, and v6.2. We found a bug in v6.0, and need to fix the bug in all
three versions. But the bug fix that is needed in the three versions can be different
due to compatibility issue. When fixing the bug, we need to independently fix all
versions.» Such a solution might be appropriate for cases when customer offers
diverge substantially.

 Lesson learned #10: Feature flags and role-based access for managing

product variants make it possible to maintain a single code base but complicate

its maintenance. Separate deployments can be considered when variants are

expected to substantially diverge.

39



Chapter 7

Discussion and Future Work

Microservices are advertised as a way to speed up development, reduce commu-
nication effort and dependencies, and increase performance and scalability of an
application at runtime. Together with these benefits, there are several pitfalls and
challenges related to the adoption of microservices that warrant a discussion. Simi-
lar to Chapter 2, here we discuss these challenges from two perspectives: technical
and organizational.

Technical. Identifying proper service granularity is one of the concerns of multiple
practitioners. Splitting and merging microservices is a process that is performed
continuously, long after the initial microservice topology is identified. This pro-
cess should be informed not only by architectural considerations, e.g., functional
decomposition and fan-in and fan-out metrics, but also by additional concerns such
as performance and security. Metrics and tools that help practitioners continuously
assess and refactor their microservice-based architectures are needed.

Likewise, many of the microservice technologies are built with the idea of
an open Web; introducing strict security guidelines, i.e., ensuring that networks
boundaries for calls within and between applications are properly guarded, requires
more efforts than in monolithic applications. It appears that innovation in this
area is mostly driven by industry, e.g., the concept of a service mesh, with built-in
access control for service-to-service communication [4, 45]. Given the increased

40



attack surface and distributed ownership, research on usable and robust security
models for microservice-based architectures will be fruitful.

Performance debugging for microservice is now mostly based on metrics and
logs, and is mostly done ad hoc. Application performance management software
for microservices also has not gained sufficient attention in the relevant commu-
nities [58, 29]. More research is needed to identify strategies for performance
monitoring of a microservice-based system under continuous software change.

Maintaining different variants is another important concern for microservice
organizations. While techniques like feature flags and segregation of functionality
by APIs are useful, they add complexity to the development processes and make
testing different combinations of features harder. Efficient management of product
variants is a research topic extensively studied by the software product line research
community [36]. Adapting the techniques developed by this community to the
context of microservices is a fruitful research direction.

Organizational. Interestingly, many of our study participants believed that break-
ing a system into small components makes it easier to understand. While a limited
scope indeed decreases the entrance barrier, it weakens the developers’ understand-
ing of the system as a whole. Under such a model, developers, in particular, the
junior ones, are trained to believe that they should only care about a few microser-
vices they directly work on. They develop the impression that it is easy(er) to
debug microservices, whereas debugging a distributed system composed of multi-
ple, independently managed and involving components, is in fact, a challenging
task [39, 11].

In the realm of managing API changes, several of the study participants indi-
cated that this process involves constant synchronization effort, e.g., daily inter-
locks between the teams to propose and discuss changes, and even synchroniza-
tion on deploying changes simultaneously. Even though most companies adopt
microservice-based architectures because of the promise to decouple the teams,
this synchronous communication still takes a substantial portion of the teams’ time.
Tools for assessing the impact of the proposed changes as well as practices that

41



focus on helping teams work together better in these complex, rapidly evolving
ecosystems are needed.

Our study also indicates the need for a systematic analysis of the different
available tools for supporting microservice-based development. Several partici-
pants indicated that they do not have a clear strategy in selecting an appropriate
tool, out of available alternatives. More systematic criteria and a set of metrics for
describing, evaluating, and comparing tools to each other are needed.

Microservices are commonly thought of as an architectural style that emerged
from the Agile and DevOps movements [41, 46], to solve the bottleneck of central-
ized delivery, to reduce the communication effort, and to shorten build-test-deploy
cycles. DevOps promotes full ownership from development to production and is
one of the main backbones of microservice-based architectures. Yet, for govern-
ment and healthcare-related organizations that are bound by privacy laws and need
special treatment in handling confidential data and personal data, implementing
DevOps is not always straightforward. They often rely on contractors that develop
the software, who do not have access to the company’s infrastructure. Regulatory
compliance products, where it is essential to produce audit trails before deployment,
also complicate matters. When such organizations want to adopt microservices,
they need to rethink DevOps and continuous delivery practices. We believe a more
focused study on development practices and needs of such organization is required.

42



Chapter 8

Conclusion

This thesis reports on best practices, lessons learned, and challenging design trade-
offs collected by interviewing 21 participants from companies that successfully
adopted microservice-based architectures.

Our participants indicated that a clear sense of ownership, strict API man-
agement, automated processes, and investment in robust logging and monitoring
infrastructure as some of the best practices they consider contributing to the success
of their development processes. They learned that using a plurality of languages
and following the advice to split microservice by business functionality is not
always fruitful.

Our study identified several common challenges faced by practitioners that use a
microservice-based architecture, such as identifying the proper service granularity,
ways to introduce API changes, managing code shared between microservices, and
managing multiple product variants. We reported on alternative solutions our study
participants employ and identified potential next steps the research community
can take to further facilitate efficient software engineering practices in developing
microservice-based applications. These include performance- and security-aware
solutions for managing design trade-offs, managing versions and variants, assessing
the impact of API changes, tools for performance debugging, and more.

We believe this thesis can help software engineering researchers to better focus

43



their agenda when devising solutions for organizations that employ a microservice-
based architecture and also be useful for practitioners that can learn from each
other’s experience, adopt best practices, and avoid common mistakes.

44



Bibliography

[1] N. Alshuqayran, N. Ali, and R. Evans. A Systematic Mapping Study in
Microservice Architecture. In Proceedings of IEEE International Conference
on Service-Oriented Computing and Applications (SOCA), pages 44–51,
2016.

[2] E. P. Authors. Envoy Proxy. https://www.envoyproxy.io/, 2019. (Last
accessed: April 2019).

[3] G. Authors. Grafana. https://grafana.com, 2019. (Last accessed: April
2019).

[4] I. Authors. Istio: Connect, Secure, Control, and Observe Services.
https://istio.io/, 2019. (Last accessed: April 2019).

[5] J. Authors. Jaeger: Open Source, End-To-End Distributed Tracing.
https://www.jaegertracing.io/, 2018. (Last accessed: April 2019).

[6] O. Authors. The OpenTracing Project. http://opentracing.io/, 2018.
(Last accessed: April 2019).

[7] P. Authors. Prometheus. https://prometheus.io, 2018. (Last accessed:
April 2019).

[8] E. Babbie. The Practice of Social Research. Nelson Education, 2015.

[9] A. Balalaie, A. Heydarnoori, and P. Jamshidi. Microservices Architecture
Enables Devops: Migration to a Cloud-Native Architecture. IEEE Software,
33(3):42–52, 2016.

[10] A. Balalaie, A. Heydarnoori, P. Jamshidi, D. A. Tamburri, and T. Lynn.
Microservices Migration Patterns. Software: Practice and Experience, pages
1–24, 2018.

45

https://www.envoyproxy.io/
https://grafana.com
https://istio.io/
https://www.jaegertracing.io/
http://opentracing.io/
https://prometheus.io


[11] I. Beschastnikh, P. Wang, Y. Brun, and M. D. Ernst. Debugging Distributed
Systems. Communications of the ACM, 59(8), 2016.

[12] A. Bucchiarone, N. Dragoni, S. Dustdar, S. T. Larsen, and M. Mazzara.
From Monolithic to Microservices: An Experience Report from the Banking
Domain. IEEE Software, 35(3):50–55, 2018.

[13] Camunda. New Research Shows 63 Percent of Enterprises Are Adopting
Microservices Architectures yet 50 Percent Are Unaware of the Impact on
Revenue-Generating Business Processes.
https://camunda.com/about/press/new-research-shows-63-percent-
of-enterprises-are-adopting-microservices-architectures-yet-50-
percent-are-unaware-of-the-impact-on-revenue-generating-
business-processes/, 2018. (Last accessed: April 2019).

[14] G. Cloud. Client Libraries Explained.
https://cloud.google.com/apis/docs/client-libraries-explained,
2018. (Last accessed: April 2019).

[15] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina. Microservices: Yesterday, Today, and Tomorrow.
Present and Ulterior Software Engineering, pages 195–216, 2017.

[16] DZone. Programming & DevOps News, Tutorials & Tools.
https://dzone.com, 2018. (Last accessed: April 2019).

[17] J. Fenn and A. Linden. Gartner’s Hype Cycle Special Report for 2005.
https:
//www.gartner.com/doc/484424/gartners-hype-cycle-special-report,
2005. (Last accessed: April 2019).

[18] R. T. Fielding. Architectural Styles and the Design of Network-Based
Software Architectures. PhD thesis, University of California, Irvine, 2000.

[19] C. N. C. Foundation. CNCF Cloud Native Interactive Landscape.
https://landscape.cncf.io/license=open-source, 2019. (Last accessed:
April 2019).

[20] T. L. Foundation. Kubernetes: Production-Grade Container Orchestration.
https://kubernetes.io, 2019. (Last accessed: April 2019).

46

https://camunda.com/about/press/new-research-shows-63-percent-of-enterprises-are-adopting-microservices-architectures-yet-50-percent-are-unaware-of-the-impact-on-revenue-generating-business-processes/
https://camunda.com/about/press/new-research-shows-63-percent-of-enterprises-are-adopting-microservices-architectures-yet-50-percent-are-unaware-of-the-impact-on-revenue-generating-business-processes/
https://camunda.com/about/press/new-research-shows-63-percent-of-enterprises-are-adopting-microservices-architectures-yet-50-percent-are-unaware-of-the-impact-on-revenue-generating-business-processes/
https://camunda.com/about/press/new-research-shows-63-percent-of-enterprises-are-adopting-microservices-architectures-yet-50-percent-are-unaware-of-the-impact-on-revenue-generating-business-processes/
https://cloud.google.com/apis/docs/client-libraries-explained
https://dzone.com
https://www.gartner.com/doc/484424/gartners-hype-cycle-special-report
https://www.gartner.com/doc/484424/gartners-hype-cycle-special-report
https://landscape.cncf.io/license=open-source
https://kubernetes.io


[21] M. Fowler. Microservice Trade-Offs.
https://martinfowler.com/articles/microservice-trade-offs.html,
2015. (Last accessed: April 2019).

[22] P. D. Francesco, P. Lago, and I. Malavolta. Migrating Towards Microservice
Architectures: An Industrial Survey. In Proceedings of IEEE International
Conference on Software Architecture (ICSA), pages 29–38, 2018.

[23] P. D. Francesco, I. Malavolta, and P. Lago. Research on Architecting
Microservices: Trends, Focus, and Potential for Industrial Adoption. In
Proceedings of IEEE International Conference on Software Architecture
(ICSA), pages 21–30, 2017.

[24] J. Ghofrani and D. Lübke. Challenges of Microservices Architecture: A
Survey on the State of the Practice. In Proceedings of the 10th Central
European Workshop on Services and Their Composition (ZEUS), pages 1–8,
2018.

[25] A. M. Glen. Microservices Priorities and Trends. https://dzone.com/
articles/dzone-research-microservices-priorities-and-trends,
2018. (Last accessed: April 2019).

[26] L. A. Goodman. Snowball Sampling. The Annals of Mathematical Statistics,
32(1):148–170, 1961.

[27] J.-P. Gouigoux and D. Tamzalit. From Monolith to Microservices: Lessons
Learned on an Industrial Migration to a Web Oriented Architecture. In
Proceedings of IEEE International Conference on Software Architecture
Workshops (ICSAW), pages 62–65, 2017.

[28] C. Green. Agile Development is Ideally Suited for Microservices.
https://www.belatrixsf.com/blog/agile-development-is-ideally-
suited-for-microservices/, 2017. (Last accessed: April 2019).

[29] R. Heinrich, A. van Hoorn, H. Knoche, F. Li, L. E. Lwakatare, C. Pahl,
S. Schulte, and J. Wettinger. Performance Engineering for Microservices:
Research Challenges and Directions. In Companion Proceedings of the 8th
ACM/SPEC on International Conference on Performance Engineering
(ICPE), pages 223–226, 2017.

47

https://martinfowler.com/articles/microservice-trade-offs.html
https://dzone.com/articles/dzone-research-microservices-priorities-and-trends
https://dzone.com/articles/dzone-research-microservices-priorities-and-trends
https://www.belatrixsf.com/blog/agile-development-is-ideally-suited-for-microservices/
https://www.belatrixsf.com/blog/agile-development-is-ideally-suited-for-microservices/


[30] A. Hunt and D. Thomas. The Pragmatic Programmer: From Journeyman to
Master. Addison-Wesley Longman Publishing, 1999.

[31] D. Inc. Docker: Build, Manage and Secure Your Apps Anywhere. Your Way.
https://www.docker.com, 2019. (Last accessed: April 2019).

[32] G. Inc. Gartner: the World’s Leading Research and Advisory Company.
https://www.gartner.com/, 2018. (Last accessed: April 2019).

[33] M. F. James Lewis. Microservices: A Definition of This New Architectural
Term. https://www.martinfowler.com/articles/microservices.html,
2014. (Last accessed: April 2019).

[34] A. Kafka. Apache Kafka: A Distributed Streaming Platform.
https://kafka.apache.org, 2017. (Last accessed: April 2019).

[35] P. Kruchten, R. L. Nord, and I. Ozkaya. Technical Debt: from Metaphor to
Theory and Practice. IEEE Software, 29(6):18–21, 2012.

[36] W. U. Lab. SPLC: Systems and Software Product Line Conference.
http://splc.net/, 2018. (Last accessed: April 2019).

[37] Lightbend. Enterprise Development Trends 2016.
https://info.lightbend.com/COLL-20XX-Enterprise-Development-
Trends-2016-Report_RES-LP.html?lst=PR, 2016. (Last accessed: April
2019).

[38] Linkedin. Linkedin. https://www.linkedin.com/, 2018. (Last accessed:
April 2019).

[39] X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu, M. F. Kaashoek,
and Z. Zhang. D3S: Debugging Deployed Distributed Systems. In
Proceedings of USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pages 423–437, 2008.

[40] W. Luz, E. Agilar, M. C. de Oliveira, C. E. R. de Melo, G. Pinto, and
R. Bonifácio. An Experience Report on the Adoption of Microservices in
Three Brazilian Government Institutions. In Proceedings of Brazilian
Symposium on Software Engineering (SBES), pages 32–41, 2018.

48

https://www.docker.com
https://www.gartner.com/
https://www.martinfowler.com/articles/microservices.html
https://kafka.apache.org
http://splc.net/
https://info.lightbend.com/COLL-20XX-Enterprise-Development-Trends-2016-Report_RES-LP.html?lst=PR
https://info.lightbend.com/COLL-20XX-Enterprise-Development-Trends-2016-Report_RES-LP.html?lst=PR
https://www.linkedin.com/


[41] M. McLarty. Microservice Architecture is Agile Software Architecture.
https://www.infoworld.com/article/3075880/microservice-
architecture-is-agile-software-architecture.html, 2016. (Last
accessed: April 2019).

[42] Meetup. Microservices: A Definition of This New Architectural Term.
https://www.meetup.com/microservices/events/195904072/, 2014.
(Last accessed: April 2019).

[43] Meetup. Meetup: We Are What We Do. https://www.meetup.com/, 2018.
(Last accessed: April 2019).

[44] M. Milinkovich. Jakarta EE Developer Survey. https://jakarta.ee/
documents/insights/2018-jakarta-ee-developer-survey.pdf, 2018.
(Last accessed: April 2019).

[45] W. Morgan. The History of the Service Mesh.
https://thenewstack.io/history-service-mesh/, 2018. (Last accessed:
April 2019).

[46] MuleSoft. Microservices and DevOps: Better Together.
https://www.mulesoft.com/resources/api/microservices-devops-
better-together, 2018. (Last accessed: April 2019).

[47] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen. Microservice
Architecture: Aligning Principles, Practices, and Culture. O’Reilly Media,
2016.

[48] E. Newcomer and G. Lomow. Understanding SOA with Web Services.
Addison-Wesley, 2005.

[49] Openzipkin. Zipkin: A Distributed Tracing System. https://zipkin.io/,
2019. (Last accessed: April 2019).

[50] C. Pahl and P. Jamshidi. Microservices: A Systematic Mapping Study. In
Proceedings of the International Conference on Cloud Computing and
Services Science (CLOSER), pages 137–146, 2016.

[51] Pivotal. RabbitMQ. https://www.rabbitmq.com, 2018. (Last accessed:
April 2019).

49

https://www.infoworld.com/article/3075880/microservice-architecture-is-agile-software-architecture.html
https://www.infoworld.com/article/3075880/microservice-architecture-is-agile-software-architecture.html
https://www.meetup.com/microservices/events/195904072/
https://www.meetup.com/
https://jakarta.ee/documents/insights/2018-jakarta-ee-developer-survey.pdf
https://jakarta.ee/documents/insights/2018-jakarta-ee-developer-survey.pdf
https://thenewstack.io/history-service-mesh/
https://www.mulesoft.com/resources/api/microservices-devops-better-together
https://www.mulesoft.com/resources/api/microservices-devops-better-together
https://zipkin.io/
https://www.rabbitmq.com


[52] J. Postel. DoD Standard Transmission Control Protocol. RFC, 761:1–88,
1980.

[53] M. Razavian and P. Lago. A Survey of SOA Migration in Industry. In
Proceedings of IEEE International Conference on Service-Oriented
Computing (ICSOC), pages 618–626, 2011.

[54] C. Richardson. API Gateway Pattern.
https://microservices.io/patterns/apigateway.html, 2018. (Last
accessed: April 2019).

[55] C. Richardson. Pattern: Distributed Tracing. https://microservices.io/
patterns/observability/distributed-tracing.html, 2018. (Last
accessed: April 2019).

[56] C. Richardson. Who is Using Microservices?
https://microservices.io/articles/whoisusingmicroservices.html,
2018. (Last accessed: April 2019).

[57] C. Rossi, E. Shibley, S. Su, K. Beck, T. Savor, and M. Stumm. Continuous
Deployment of Mobile Software at Facebook (Showcase). In Proceedings of
the ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE), pages 12–23, 2016.

[58] V. Seifermann. Application Performance Monitoring in Microservice-Based
Systems. Bachelor’s thesis, Institute of Software Technology Reliable
Software Systems, University of Stuttgart, 2017.

[59] S. Software. Swagger: The Best APIs are Built with Swagger Tools.
https://swagger.io/, 2019. (Last accessed: April 2019).

[60] A. Strauss and J. Corbin. Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory. Thousand Oaks, CA: Sage,
1998.

[61] D. Taibi, V. Lenarduzzi, and C. Pahl. Processes, Motivations, and Issues for
Migrating to Microservices Architectures: An Empirical Investigation. IEEE
Cloud Computing, 4(5):22–32, 2017.

[62] G. Trends. Google Trends. https://trends.google.com, 2018. (Last
accessed: April 2019).

50

https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/observability/distributed-tracing.html
https://microservices.io/patterns/observability/distributed-tracing.html
https://microservices.io/articles/whoisusingmicroservices.html
https://swagger.io/
https://trends.google.com


[63] M. Viggiato, R. Terra, H. Rocha, M. T. Valente, and E. Figueiredo.
Microservices in Practice: A Survey Study. In Brazilian Workshop on
Software Visualization, Evolution and Maintenance (VEM), pages 1–8, 2018.

[64] H. Vural, M. Koyuncu, and S. Guney. A Systematic Literature Review on
Microservices. In Proceedings of International Conference on
Computational Science and Its Applications (ICCSA), pages 203–217, 2017.

[65] Wikipedia. Microservices.
https://en.wikipedia.org/wiki/Microservices, 2019. (Last accessed:
April 2019).

[66] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén.
Experimentation in Software Engineering. Springer Science & Business
Media, 2012.

[67] V. Woods. Gartner Identifies the Top 10 Strategic Technology Trends for
2016. https:
//www.gartner.com/en/newsroom/press-releases/2015-10-06-gartner-
identifies-the-top-10-strategic-technology-trends-for-2016,
2015. (Last accessed: April 2019).

[68] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding. Fault Analysis
and Debugging of Microservice Systems: Industrial Survey, Benchmark
System, and Empirical Study. IEEE Transactions on Software Engineering,
14(8):1–18, 2018.

51

https://en.wikipedia.org/wiki/Microservices
https://www.gartner.com/en/newsroom/press-releases/2015-10-06-gartner-identifies-the-top-10-strategic-technology-trends-for-2016
https://www.gartner.com/en/newsroom/press-releases/2015-10-06-gartner-identifies-the-top-10-strategic-technology-trends-for-2016
https://www.gartner.com/en/newsroom/press-releases/2015-10-06-gartner-identifies-the-top-10-strategic-technology-trends-for-2016

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Acknowledgements
	Dedication
	1 Introduction
	1.1 Overview
	1.2 Findings Summary
	1.3 Novelty and Contribution
	1.4 Structure of This Thesis

	2 Background and Related Work
	2.1 Microservices and Their Characteristics
	2.2 Claimed Advantages of Microservices
	2.3 Microservices vs. Collaborative Software Development
	2.4 Existing Studies on Microservice-Based Development
	2.4.1 Exploratory Studies
	2.4.2 Literature Surveys


	3 Study Methodology
	3.1 Subjects
	3.2 Data Collection
	3.3 Data Analysis
	3.4 Ethical Considerations
	3.5 Threats to Validity
	3.5.1 External Validity
	3.5.2 Internal Validity
	3.5.3 Construct Validity


	4 Architecture
	4.1 Microservice Granularity
	4.2 Microservice Ownership
	4.3 Language Diversity

	5 Infrastructure
	5.1 Logging and Monitoring
	5.2 Distributed Tracing
	5.3 Automating Processes
	5.4 Tools

	6 Code Management
	6.1 Common Code
	6.2 Managing API Changes
	6.3 Managing Variants

	7 Discussion and Future Work
	8 Conclusion
	Bibliography

