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Abstract 

 

The recent trend in manufacturing is to develop intelligent and self-adjusting machining systems 

to improve productivity without overloading the machine tool. This thesis presents a novel digital 

machining system: the use of virtual machining simulation to feed predicted process data to on-

line monitoring and control system to improve its robustness. The process states (i.e. cutting forces, 

vibration, torque) are also extracted from CNC drive measurements to auto-tune the virtual model 

and control the process on-line. 

An on-line communication link between the CNC and external computer is developed where 

the virtual process model and on-line algorithms run in parallel with information exchange. Prior 

to the cutting operation, the machining process is simulated using a virtual machining system to 

calculate cutter-workpiece engagement and process states along tool-path. During the cutting 

operation, process forces are identified from feed drive motor current command measurements by 

compensating the corresponding friction, inertia of each drive and disturbance of structural 

dynamics through Kalman filters. The kinematics of the machine tool is solved to transform the 

individual compensated motor torque to the cutting forces acted on the tool without having to use 

external force sensors. The speed and load dependent structural dynamics of the spindle assembly 

are updated in a Kalman filter model by monitoring the vibrations at the spindle. 

Simulated machining states are accessed by the on-line machining process monitoring and 

control system as a virtual feedforward information to avoid false tool failure detection and 

transient force overshoots during adaptive control. The chatter vibrations are detected from the 

Fourier Spectrum of the spindle motor current measurements by compensating the structural 
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dynamics of the drive train. The proposed algorithms are integrated to an on-line process 

monitoring and control system, and demonstrated on a five-axis CNC machining center. 

The thesis presents the first comprehensive virtual process model assisted machining process 

monitoring and control system in the literature to form the foundations of a comprehensive digital 

twin for machining systems. The prediction of process states from mainly CNC inherent data 

makes the system more industry friendly. The system has been designed to be reconfigurable to 

add new monitoring and control algorithms. 
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Lay Summary 

In order to realize a digital machining twin within Industry 4.0 principles, the next generation CNC 

machine tools need to be self-adjusting, by using any inherently available sensory data and virtual 

process simulation feedback that assist the machine during cutting operations. The reliability of 

current machining process monitoring, and control systems have been suffering mainly because of 

having difficulties in installing practical and reliable sensors on the machine, and not being able 

to distinguish the actual machining process states from the effects of geometric changes along the 

tool path. 

This thesis develops an integrated system where the virtual machining process model and the 

on-line monitoring algorithms run in parallel with information exchange to increase the robustness 

of the on-line applications. The process states are identified from CNC inherent data which 

eliminates the need to mount costly and impractical sensors on the machine. 
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Preface 

This Ph.D. dissertation proposes a method to identify machining process states (i.e. cutting forces, 

torque, power, vibrations) from CNC inherent data and a novel integrated virtual and on-line 

machining process monitoring and control system. All the work presented was conducted by the 

Ph.D. candidate in the Manufacturing Automation Laboratories (MAL) at the University of British 

Columbia, under the supervision of Professor Yusuf Altintas. The research chapters of this 

dissertation are either already published or currently under preparation for submission. The 

contributions of the Ph.D. candidate for each chapter are explained as follows: 

• A concise version of Chapter 3 which is about prediction of cutting forces from feed drive 

current measurements has been published in [1], “Aslan, D., and Altintas, Y., 2018, 

Prediction of cutting forces in five-axis milling using feed drive current measurements, 

IEEE/ASME Transactions on Mechatronics, 23(2), pp. 833-844”. The manuscript was 

written by myself and edited by my supervisor. I was responsible for all of the system 

identification, concept formulation and implementation of the force prediction from the 

drive current measurements method. In addition, the validation experiments were 

completely planned, carried out, and analyzed by myself. This chapter also formed a basis 

for two other journal publications with Dr. Jixiang Yang who is a Post-Doctoral Fellow in 

MAL; [2] - “Yang, J., Aslan, D., and Altintas, Y., 2018, Identification of workpiece 

location on rotary tables to minimize tracking errors in five-axis machining, International 

Journal of Machine Tools and Manufacture, 125, pp. 89-98.” and [3] - “Yang, J., Aslan, 

D., and Altintas, Y., 2018, A feed rate scheduling algorithm to constrain tool tip position 

and tool orientation errors of five-axis CNC machining under cutting load disturbances, 

CIRP Journal of Manufacturing Science and Technology - 
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https://doi.org/10.1016/j.cirpj.2018.08.005”. I provided the process state prediction model 

to estimate the tracking errors due to cutting disturbances along the toolpath; Dr. Yang 

developed the workpiece location optimization and feed rate scheduling algorithms. 

Manuscripts were written by Dr. Yang and myself and edited by our supervisor. 

• There will be another journal paper that proposes a milling process monitoring algorithm 

by considering speed and load dependency of spindle and tool dynamics through sensor 

fusion which is described in Chapter 4. This work is from my 3-month CANRIMT 

internship at ETH Zürich, Institute of Machine Tools and Manufacturing (IWF), under 

supervision of Prof. Konrad Wegener. Martin Postel, a Ph.D. Candidate at the same 

Institute, and I did all the identification and cutting experiments together. Specially 

designed fixtures for system identification experiments are designed and patented by IWF, 

ETH Zürich and their industrial partners. 

• Contents of Chapter 5 which are about detecting chatter vibrations from CNC drive 

measurements has been published in [4], “Aslan, D., and Altintas, Y., 2018, Online chatter 

detection in milling using drive motor current commands extracted from CNC, 

International Journal of Machine Tools and Manufacture, 132, pp. 64-80”. The manuscript 

was written by myself and edited by my supervisor. I have developed the conceptual ideas, 

implemented the algorithm on the machine and conducted the verification experiments. 

• Chapter 6, which describes the virtual process model integrated on-line system 

architecture, has been published in [5], “Altintas, Y., and Aslan, D., 2017, Integration of 

virtual and on-line machining process control and monitoring, CIRP Annals – 

Manufacturing Technology 66(1), pp. 349-352”. The draft manuscript was written by 

myself and extensively revised by my supervisor. Algorithms developed previously by my 

https://doi.org/10.1016/j.cirpj.2018.08.005
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supervisor were used with virtual process model feedback by identifying the process states 

from CNC drive measurements. I was responsible for the implementation of the on-line 

system on the machine and conducted extensive experiments for validation.  



ix 

 

Table of Contents 

 

Abstract ......................................................................................................................................... iii 

Lay Summary .................................................................................................................................v 

Preface ........................................................................................................................................... vi 

Table of Contents ......................................................................................................................... ix 

List of Tables .............................................................................................................................. xiii 

List of Figures ............................................................................................................................. xiv 

List of Symbols ......................................................................................................................... xxiv 

List of Abbreviations ............................................................................................................. xxxiv 

Acknowledgements ..................................................................................................................xxxv 

Chapter 1: Introduction ................................................................................................................1 

Chapter 2: Literature Review .......................................................................................................5 

2.1 Overview ......................................................................................................................... 5 

2.2 Prediction of Process States from CNC inherent measurements .................................... 5 

2.3 Process State Predictions by Considering Speed and Load Dependent Spindle 

Dynamics .................................................................................................................................... 8 

2.4 On-line Chatter Detection in Milling Operations ......................................................... 11 

2.5 Process Monitoring and Control of Machining Operations .......................................... 14 

Chapter 3: Prediction of Cutting Forces in Milling using Feed Drive Current 

Measurements ..............................................................................................................................17 

3.1 Overview ....................................................................................................................... 17 

3.2 Identification of Feed Drive Dynamics......................................................................... 18 



x 

 

3.2.1 Equivalent Inertia and Friction Identification ........................................................... 19 

3.2.2 Transmission of Cutting Forces to Feed Drive Motor .............................................. 24 

3.2.3 Identification of Feed Drive Disturbance Frequency Response Function (FRF) ..... 26 

3.3 Dynamic Compensation of Feed Drive Current Measurements ................................... 31 

3.3.1 State Space Representation with the Disturbance Model Expansion ....................... 31 

3.3.2 Disturbance Kalman Filter Design............................................................................ 34 

3.4 Kinematic Model of the Machine Tool for Force Transformation ............................... 38 

3.4.1 Kinematic Model of the Five-Axis Machine ............................................................ 39 

3.4.2 Force Transformation Using the Jacobian Matrix .................................................... 41 

3.5 Experimental Verification ............................................................................................. 44 

3.6 Summary ....................................................................................................................... 55 

Chapter 4: Process State Predictions with Spindle Mounted Vibration Sensors Considering 

Speed and Load Dependent Dynamics .......................................................................................56 

4.1 Overview ....................................................................................................................... 56 

4.2 System Description and Identification of the Sensory Spindle .................................... 56 

4.2.1 Load Dependency of the Spindle Dynamics ............................................................. 58 

4.2.2 Speed Dependency of the Spindle Dynamics ........................................................... 61 

4.3 Load and Speed Dependent Dynamics Map of the Spindle ......................................... 63 

4.4 State Observer Design and Weighted Average Sensor Data Fusion ............................ 65 

4.4.1 State Observer Design............................................................................................... 65 

4.4.2 Weighted Average Sensor Data Fusion .................................................................... 70 

4.5 Experimental Verification ............................................................................................. 74 

4.5.1 Case 1: 40 mm diameter, 5-fluted Face Mill ............................................................ 75 



xi 

 

4.5.2 Case 2: 20 mm diameter, 2-fluted End Mill ............................................................. 81 

4.6 Summary ....................................................................................................................... 85 

Chapter 5: On-line Chatter Detection in Milling using Spindle and Feed Drive Motor 

Current Measurements ...............................................................................................................86 

5.1 Overview ....................................................................................................................... 86 

5.2 Spindle Drive System Identification ............................................................................. 86 

5.3 Dynamic compensation of Spindle Drive Current Measurements ............................... 98 

5.4 Detection of Chatter Frequency .................................................................................. 104 

5.5 Experimental Verification ........................................................................................... 107 

5.5.1 Chatter Detection Experiments ............................................................................... 107 

5.5.2 Resultant Force Prediction Experiments ................................................................. 123 

5.6 Summary ..................................................................................................................... 128 

Chapter 6: Integration of Virtual and On-line Machining Process Control and Monitoring

......................................................................................................................................................130 

6.1 Overview ..................................................................................................................... 130 

6.2 Integration of Virtual Model and On-line Application ............................................... 130 

6.2.1 Generating Virtual Model States and the Feedback File ........................................ 132 

6.2.2 Reading and Writing Data from/to CNC using External PC .................................. 136 

6.2.3 Synchronization of the Virtual Feedback File and the On-line Operation ............. 139 

6.3 Tool Breakage Monitoring with Virtual Feedback ..................................................... 141 

6.4 Adaptive Control of Milling Forces with Virtual Feedback ....................................... 147 

6.5 Experimental Verification ........................................................................................... 155 

6.6 Summary ..................................................................................................................... 158 



xii 

 

Chapter 7: Conclusion ...............................................................................................................159 

7.1 Conclusion .................................................................................................................. 159 

7.2 Future Research Directions ......................................................................................... 162 

References ...................................................................................................................................164 

Appendices ..................................................................................................................................170 

Appendix A Normalized Equivalent State-Space Matrices of the Rotary and Translational 

Feed Drives ............................................................................................................................. 170 

Appendix B Kalman Smoother ............................................................................................... 172 

Appendix C Position Dependency of the Drive Disturbance FRFs ........................................ 173 

Appendix D FRF of the Velocity Loop - Simulated and Measured with Sine Sweep Tests .. 175 

Appendix E Identified Transfer Function Modal Parameters of the Spindle Drive ............... 176 

Appendix F Recursive Parameter Estimation Algorithm ....................................................... 177 

Appendix G Generalized Predictive Control (GPC) Algorithm ............................................. 179 

 



xiii 

 

List of Tables 

Table 3.1: Inertia and motor torque constant values of axis feed drives ...................................... 20 

Table 3.2: LuGre friction parameters for axis feed drives ............................................................ 23 

Table 3.3: Pitch and efficiency values of axis feed drives ............................................................ 26 

Table 3.4: Modal parameters for drive disturbance FRFs ............................................................ 28 

Table 5.1: Induction motor parameters of the spindle drive (1st Speed Range = 0-3300 rev/min, 

2nd Speed Range = 3300-24000 rev/min). Identified mechanical parameters: 20.0316[kg.m ]eSJ = , 

0.009[Nm/(rad/s)]eSB = , 1.343[Nm/A]tSK =  for the 1st and 1.571[Nm/A]tSK =  for the 2nd Speed Ranges. 

(# of poles (P) = 2) ........................................................................................................................ 88 

Table 5.2: Measurement and system noise covariances with Luenberger observer gain vectors for 

1st and 2nd Speed Ranges ............................................................................................................. 102 

Table 5.3: Tool, Tool Holder and Insert Specifications for the Cutters used in experiments .... 108 

Table 5.4: Modal parameters in X (normal) and Y (feed) directions ......................................... 111 

Table 6.1: Explanations for the bullet-points shown in Figure 6.3 about MACHpro® Virtual 

Machining System ...................................................................................................................... 134 

Table 6.2: Explanations for the bullet-points shown in Figure 6.4 about virtual feedback file .. 136 

 



xiv 

 

List of Figures 

Figure 1.1: Parallel execution of virtual and on-line system with information exchange on 

external PC [5] ................................................................................................................................ 2 

Figure 3.1: a) Quaser UX600 5-axis machining center with Heidenhain CNC, b) Translational 

and rotary axes configuration of the machine tool ........................................................................ 18 

Figure 3.2: Illustration of material bristle deflection for LuGre model ........................................ 20 

Figure 3.3: Experimental and LuGre friction curves for C-axis with model parameters ............. 23 

Figure 3.4: Experimental and LuGre friction curves for axes ...................................................... 24 

Figure 3.5: Static load experiments to identify efficiency for A and C axes ................................ 25 

Figure 3.6: (a) Translational and (b) Rotary feed drive mechanism, (c) Disturbance transfer 

function ( d ) ................................................................................................................................ 27 

Figure 3.7: Experimental and curve fitted drive disturbance FRFs .............................................. 30 

Figure 3.8: Measured and Kalman filter compensated drive disturbance FRFs ........................... 37 

Figure 3.9: Kinematic configuration of the Quaser UX600 5-axis machining center with the Tool 

and Workpiece coordinate frames ................................................................................................ 39 

Figure 3.10: Flowchart of the overall procedure .......................................................................... 44 

Figure 3.11: Comparison of measured and compensated forces from the feed drive current with 

reference forces measured by table dynamometer for three-axis milling with two-fluted end mill. 

Axial depth = 4 mm, Radial depth = 20 mm, feed = 0.2 mm/tooth, X Axis/Direction ................ 46 

Figure 3.12: Comparison of measured and compensated forces from the feed drive current with 

reference forces measured by table dynamometer for three-axis milling with two-fluted end mill. 

Axial depth = 4 mm, Radial depth = 20 mm, feed = 0.2 mm/tooth, Y Axis/Direction ................ 48 



xv 

 

Figure 3.13: Comparison of measured and compensated forces from the feed drive current with 

reference forces measured by table dynamometer for three-axis milling with two-fluted end mill. 

Axial depth = 4 mm, Radial depth = 20 mm, feed = 0.2 mm/tooth, Z Axis/Direction ................. 49 

Figure 3.14: (a) Full turbine geometry, (b) Extracted single blade and toolpath in Siemens NX-

9®, (c) Experimental setup on the Quaser UX-600 and workpiece after roughing operation ...... 51 

Figure 3.15: Comparison of compensated + transformed forces from the feed drive current 

measurements and the reference forces measured from the rotary dynamometer – X Direction . 52 

Figure 3.16: Comparison of compensated + transformed forces from the feed drive current 

measurements and the reference forces measured from the rotary dynamometer – Y Direction . 53 

Figure 3.17: Comparison of compensated + transformed forces from the feed drive current 

measurements and the reference forces measured from the rotary dynamometer – Z Direction . 54 

Figure 4.1: Overall layout of the sensory spindle with the installed accelerometers (Acc.) and a 

displacement sensor (Disp.) in X direction ................................................................................... 57 

Figure 4.2: (a) Setup with the magnet to apply preload in Z direction at the tool tip, (b) dummy 

tip, (c) face mill ............................................................................................................................. 58 

Figure 4.3: Load dependency of the tool tip FRF in X and Y directions ..................................... 59 

Figure 4.4: Load dependency of the tool tip to accelerometer FRFs below spindle assembly 

location in X direction .................................................................................................................. 60 

Figure 4.5: Load dependency of the tool tip to accelerometer FRFs above spindle assembly 

location in X direction .................................................................................................................. 61 

Figure 4.6: Speed dependency of the tool tip FRF in X and Y directions .................................... 62 

Figure 4.7: Speed dependency of the tool tip to accelerometer FRFs (
1accd  and 

5accd ) in X 

direction ........................................................................................................................................ 63 



xvi 

 

Figure 4.8: Load and speed dependent dynamics map of the X direction (tool tip FRF) ............. 64 

Figure 4.9: Map of the tool tip to accelerometer FRFs (
1accd ) in X and Y directions ................... 64 

Figure 4.10: Examples for automated curve fitting to measured FRFs (in X Direction) ............. 66 

Figure 4.11: Measured (force to displacement - 
1Fsys , displacement to displacement - 

1dsys ), 

Kalman and Compensated FRFs for the cases presented in Figure 4.10 ...................................... 69 

Figure 4.12: Flowchart of tool tip displacement prediction from accelerometers on spindle 

structure (force prediction follows the same procedure) .............................................................. 70 

Figure 4.13: Framework of tool tip displacement prediction from accelerometer measurements 71 

Figure 4.14: Tool tip to accelerometer location FRFs for 15000 rev/min without load case (20 

mm diameter 2 fluted cutter shown in Figure 4.13)...................................................................... 72 

Figure 4.15: Assigned weights to the tool tip to accelerometer location FRFs given in Figure 4.14

....................................................................................................................................................... 72 

Figure 4.16: FRFs of tool tip and tool tip to fixture setup (A – location of hammer impact, B – 

Tool tip displacement measurement, C – Fixture displacement where the sensor is assembled) 74 

Figure 4.17: Measured force to force FRF of the dynamometer, designed Kalman Filter and 

resulting compensated FRFs in X and Y directions...................................................................... 75 

Figure 4.18: Tool vibration predictions - 
S  = 9000 rev/min, slot milling, axial depth of cut = 1.5 

mm, feed = 0.1 mm/tooth (
dispd  - Measurement from displacement sensor, ˆ

dispd - Estimated 

displacement from accelerometers through sensor fusion) ........................................................... 76 

Figure 4.19: Tool vibration predictions - 
S  = 12000 rev/min, slot milling, axial depth of cut = 

1.5 mm, feed = 0.1 mm/tooth ( dispd  - Measurement from displacement sensor, ˆ
dispd - Estimated 

displacement from accelerometers through sensor fusion) ........................................................... 77 



xvii 

 

Figure 4.20: Tool vibration predictions - 
S  = 15000 rev/min, slot milling, axial depth of cut = 

1.5 mm, feed = 0.1 mm/tooth (
dispd - Measurement from displacement sensor, ˆ

dispd - Estimated 

displacement from accelerometers through sensor fusion) ........................................................... 78 

Figure 4.21: Process force predictions in normal direction - 
S  = 9000 rev/min, slot milling, 

axial depth of cut = 1.5 mm, feed = 0.1 mm/tooth (
t xF −

 - Measurement from dynamometer in X 

direction of tool frame, 1F̂  - Estimated force from accelerometers through sensor fusion) ......... 79 

Figure 4.22: Process force predictions in normal direction - 
S  = 12000 rev/min, slot milling, 

axial depth of cut = 1.5 mm, feed = 0.1 mm/tooth (
t xF −

 - Measurement from dynamometer in X 

direction of tool frame, 
1F̂  - Estimated force from accelerometers through sensor fusion) ......... 80 

Figure 4.23: Process force predictions in normal direction - 
S  = 15000 rev/min, slot milling, 

axial depth of cut = 1.5 mm, feed = 0.1 mm/tooth (
t xF −

 - Measurement from dynamometer in X 

direction of tool frame, 
1F̂  - Estimated force from accelerometers through sensor fusion) ......... 81 

Figure 4.24: Tool vibration and process force predictions in normal direction - 
S  = 9000 

rev/min, quarter immersion milling, axial depth of cut = 5 mm, feed = 0.1 mm/tooth (
dispd  - 

Measurement from displacement sensor, ˆ
dispd  - Estimated displacement from accelerometers 

through sensor fusion, ˆ ( 1,...,5)
maccd m =  - Estimated displacements from individual accelerometers 

without sensor fusion, 
t xF −

 - Measurement from dynamometer in X direction of tool frame, 1F̂  - 

Estimated force from accelerometers through sensor fusion, ˆ ( 1,...,5)
maccF m =  - Estimated forces 

from individual accelerometers without sensor fusion) ................................................................ 82 

Figure 4.25: Tool vibration and process force predictions in normal direction - 
S  = 12000 

rev/min, half immersion milling, axial depth of cut = 5 mm, feed = 0.1 mm/tooth ( dispd  - 



xviii 

 

Measurement from displacement sensor, ˆ
dispd - Estimated displacement from accelerometers 

through sensor fusion, ˆ ( 1,...,5)
maccd m =  - Estimated displacements from individual accelerometers 

without sensor fusion, 
t xF −

 - Measurement from dynamometer in X direction of tool frame, 
1F̂  - 

Estimated force from accelerometers through sensor fusion, ˆ ( 1,...,5)
maccF m =  - Estimated forces 

from individual accelerometers without sensor fusion) ................................................................ 83 

Figure 4.26: Tool vibration and process force predictions in normal direction - 
S  = 15000 

rev/min, full immersion milling, axial depth of cut = 5 mm, feed = 0.1 mm/tooth (
dispd  - 

Measurement from displacement sensor, ˆ
dispd  - Estimated displacement from accelerometers 

through sensor fusion, ˆ ( 1,...,5)
maccd m =  - Estimated displacements from individual accelerometers 

without sensor fusion, 
t xF −

 - Measurement from dynamometer in X direction of tool frame, 1F̂  - 

Estimated force from accelerometers through sensor fusion, ˆ ( 1,...,5)
maccF m =  - Estimated forces 

from individual accelerometers without sensor fusion) ................................................................ 84 

Figure 5.1: a) Block diagram of the spindle control loop ( G
 = Velocity Controller, 

nom  = 

Nominal Velocity, 
act  = Actual Velocity, 

IG  = Current Controller, 
nomI  = Nominal Current, 

actI  

= Actual Current, 
bK  = Back emf constant = 0.12 V/rad/s. 

spG  = Spindle Drive), b) Induction 

motor equivalent circuit (3 phase symmetrical, , ,0k q d= ), Slip = difference between 

synchronous and operating speed: ( )s r sS n n n= − where 
sn  is stator electrical and 

rn  is rotor 

mechanical speed, ( X L= [86]) .................................................................................................. 89 

Figure 5.2: a) Simulated and Measured FRF of Closed Loop Current Controller for the 1st Speed 

Range (Bandwidth – Measured=385 Hz, Simulated=360 Hz), b) for the 2nd Speed Range 

(Bandwidth – Measured=1190 Hz, Simulated=1240 Hz) ............................................................ 94 



xix 

 

Figure 5.3: a) Simulated and measured FRF of open loop velocity controller for the 1st Speed 

Range, b) Identified and curve fitted spindle drive FRF .............................................................. 95 

Figure 5.4: Simulated and measured FRF of closed loop velocity controller for the 1st speed 

range (bandwidth – measured = 38 Hz, simulated = 34 Hz) ........................................................ 96 

Figure 5.5: a) Nominal current (
nomI ) / Disturbance torque (

d ) - ( ( ) ( ) ( )d nom dG s I s s = ) and Actual 

velocity (
act ) / Disturbance torque (

d ) – ( ( ) ( ) ( )d act dG s s s =  ) FRFs for the 1st and b) for the 

2nd Speed Range ............................................................................................................................ 97 

Figure 5.6: Verification of the simulated disturbance TF ( ( ) ( ) ( )d nom dG s I s s = ) through Modal Tap 

Test ................................................................................................................................................ 98 

Figure 5.7: Schematic of the system and the state observer ....................................................... 102 

Figure 5.8: Dynamic compensation of spindle drive disturbance TF ( ( )dG s
 - Eq. (5.12)): a) 1st 

Speed Range, b) 2nd Speed Range ............................................................................................... 103 

Figure 5.9: Flexibilities in the milling operation and cutting with rigid, forced and chatter 

vibration cases [51] ..................................................................................................................... 104 

Figure 5.10: Comb filter designed to remove a spindle frequency of 166.67 Hz (10000 rev/min) 

and its harmonics ........................................................................................................................ 106 

Figure 5.11: Tool tip FRFs of tools used for verification experiments ...................................... 109 

Figure 5.12: Corresponding stability diagrams for full radial immersion cases ......................... 110 

Figure 5.13: Chatter test with a 50 mm diameter 5 Fluted Face Mill (Tool #1) at spindle speed 

6000[rev/min]S =  ,tooth passing frequency ( t ) = 500 Hz, axial depth of cut = 2.25 mm, full 

immersion cut with feed rate of 0.1 mm/rev/tooth. Workpiece material Al7050; a) Spindle Drive 

Motor Current Command, b) Microphone Measurement, DFT and Comb Filtered DFT of; c) 



xx 

 

Spindle Current Raw Measurement, d) Microphone Measurement, e) Spindle Current 

Compensated Measurement (first 4096 samples of the cut), f) Identified chatter frequencies and 

c t   ratio for raw and compensated Spindle Current command measurements compared with 

the Microphone ........................................................................................................................... 113 

Figure 5.14: Chatter test with a 25 mm diameter 4 Fluted End Mill (Tool #2)  at spindle speed

4000[rev/min]S = ,tooth passing frequency ( t ) = 266.67 Hz, axial depth of cut = 3.5 mm, full 

immersion cut with feed rate of 0.1 mm/rev/tooth. Workpiece material Al7050; a) Spindle Drive 

Motor Current Command, b) Microphone Measurement, DFT and Comb Filtered DFT of; c) 

Spindle Current Raw Measurement, d) Microphone Measurement, e) Spindle Current 

Compensated Measurement (first 4096 samples of the cut), f) Identified chatter frequencies and 

c t   ratio for raw and compensated Spindle Current command measurements compared with 

the Microphone ........................................................................................................................... 115 

Figure 5.15: Chatter test with a 20 mm diameter 2 Fluted End Mill (Tool #3)  at spindle speed

5000[rev/min]S = , tooth passing frequency ( t ) = 166.67 Hz, axial depth of cut = 1 mm, full 

immersion cut with feed rate of 0.1 mm/rev/tooth. Workpiece material Al7050; a) Spindle Drive 

Motor Current Command, b) Microphone Measurement, DFT and Comb Filtered DFT of; c) 

Spindle Current Raw Measurement, d) Microphone Measurement, e) Spindle Current 

Compensated Measurement (first 4096 samples of the cut), f) Identified chatter frequencies and 

c t   ratio for raw and compensated Spindle Current command measurements compared with 

the Microphone ........................................................................................................................... 116 

Figure 5.16: Chatter test with a 10 mm diameter 2 Fluted End Mill (Tool #4)  at spindle speed 

10000[rev/min]S = , tooth passing frequency ( t ) = 333.33 Hz, axial depth of cut = 2 mm, full 



xxi 

 

immersion cut with feed rate of 0.1 mm/rev/tooth. Workpiece material Al7050; a) Spindle Drive 

Motor Current Command, b) Microphone Measurement, DFT and Comb Filtered DFT of; c) 

Spindle Current Raw Measurement, d) Microphone Measurement, e) Spindle Current 

Compensated Measurement (first 4096 samples of the cut), f) Identified chatter frequencies and 

c t   ratio for raw and compensated Spindle Current command measurements compared with 

the Microphone ........................................................................................................................... 118 

Figure 5.17: Chatter test with a 10 mm diameter, 2 Fluted End Mill (Tool #4) at spindle speed 

10000[rev/min]S = , tooth passing frequency ( t ) = 333.33 Hz, axial depth of cut = 2 mm, full 

immersion cut with feed rate of 0.1 mm/rev/tooth. Workpiece material Al7050; a) Feed Drive (Y 

axis) Motor Current Command, b) Microphone Measurement, DFT and Comb Filtered DFT of; 

c) Feed Drive Current Raw Measurement, d) Microphone Measurement, e) Feed Drive Current 

Compensated Measurement (first 4096 samples of the cut), f) Identified chatter frequencies and 

c t   ratio for raw and compensated Feed Drive Current command measurements compared 

with the Microphone ................................................................................................................... 120 

Figure 5.18: Stable cutting operations with the listed cutting conditions for a) Tool #1, b) Tool 

#2, c) Tool #3, d) Tool #4 ( p  is the frequency with the highest magnitude in the comb filtered 

signal) .......................................................................................................................................... 121 

Figure 5.19: Experiment setup with surface profiles of stable and unstable cutting experiments 

presented throughout this chapter ............................................................................................... 122 

Figure 5.20: Comparison of measured and compensated resultant forces from the spindle drive 

current with reference forces measured by table dynamometer for three-axis milling with two-



xxii 

 

fluted end mill. Axial depth = 4 mm, Radial depth = 20 mm, feed = 0.2 mm/tooth, Spindle Drive

..................................................................................................................................................... 126 

Figure 5.21: Measured force to force FRF of the dynamometer, designed Kalman Filter and 

Compensated FRFs ..................................................................................................................... 127 

Figure 5.22: Comparison of measured and compensated resultant forces from the spindle drive 

current with compensated reference forces measured by table dynamometer for three-axis 

milling with four-fluted end mill. Axial depth = 4 mm, Radial depth = 20 mm, feed = 0.2 

mm/tooth, Spindle Drive ............................................................................................................. 128 

Figure 6.1: Parallel execution of virtual and on-line system with information exchange on 

external PC [5] ............................................................................................................................ 131 

Figure 6.2: A test part with various milling operations and corresponding area of tool-workpiece 

contact ......................................................................................................................................... 132 

Figure 6.3: A screenshot from MACHpro® Virtual Machining System [93] with the 

corresponding verification part’s (shown in Figure 6.2) project ................................................ 133 

Figure 6.4: Virtual feedback file generated from the CWE and process state outputs of 

MACHpro® Virtual Machining System ...................................................................................... 135 

Figure 6.5: Communication structure between iTNC 530 and Windows Application on External 

PC [94] ........................................................................................................................................ 137 

Figure 6.6: Communication structure between the PLC and Windows Application on External 

PC [94] ........................................................................................................................................ 138 

Figure 6.7: Multi-thread structure of the on-line C++ code running on External PC ................. 140 

Figure 6.8: Robust detection of tool breakage around tooth period 500 with the feedback from 

virtual machining system ............................................................................................................ 144 



xxiii 

 

Figure 6.9: Tool breakage event around tooth period 500 where the operation is automatically 

stopped (Location #3 in Figure 6.8) ............................................................................................ 146 

Figure 6.10: Block diagram of the adaptive control system with the virtual model feedback ... 147 

Figure 6.11: Virtual model assisted GPC, adaptive control (AC) with force identified from feed 

drive current command measurements, no AC (NoAC), conventional AC (AC) and AC with 

virtual machining model feedback (ACwithVF) for the face milling operation of the demo part 

shown in Figure 6.2..................................................................................................................... 153 

Figure 6.12: Burr formation with (AC) and (AC with VF) at the exit region (location C in Figure 

6.11) ............................................................................................................................................ 154 

Figure 6.13: Tool breakage monitoring results for the demo part shown in Figure 6.2 ............. 155 

Figure 6.14: Virtual model assisted GPC, adaptive control (AC) with force identified from feed 

drive current command measurements, no AC (NoAC), conventional AC (AC) and AC with 

virtual machining model feedback (ACwithVF) for the demo part shown in Figure 6.2 ........... 156 

Figure 6.15: Final machined part on Quaser UX-600 machining center .................................... 157 

Figure 6.16: Priority levels of the integrated virtual and on-line monitoring and control system

..................................................................................................................................................... 158 

 



xxiv 

 

List of Symbols 

exp
A, A  Normalized equivalent and expanded system matrices of feed drives 

S exps
A , A  Normalized equivalent and expanded system matrices of spindle drive 

disp exp_disp
A , A  

Normalized equivalent and expanded system matrices of vibration 

sensors 

ds
A  Discrete observer state matrix of spindle drive  

2a  Linear offset between tilt-axis and table coordinate frames 

( 1,...,5)
iacca i =  Accelerations at the vibration sensors (accelerometer) on spindle body 

a   Axial depth of cut 

B  Normalized equivalent input matrix of feed drives 

S
B  Normalized equivalent input matrix of spindle drive 

disp
B  Normalized equivalent input matrix of vibration sensors 

eB   Equivalent viscous friction of spindle drive 

b   Width of cut 

exp
C,C  Normalized equivalent and expanded output matrices of feed drives 

S exps
C ,C  Normalized equivalent and expanded output matrices of spindle drive 

disp exp_disp
C ,C  

Normalized equivalent and expanded output matrices of vibration 

sensors 

dsC   Discrete observer output matrix of spindle drive  

c   Feed rate (chip load per tooth) 

D  Input transmission matrix of feed drives 



xxv 

 

S
D  Input transmission matrix of spindle drive 

( , , )moment id i x y z− =   Moment arm length between the tool tip and table center 

dispd  
Actual tool tip displacement (vibration) at the displacement sensor 

location 

ˆ
dispd  

Estimated tool tip displacement (vibration) at the displacement sensor 

location through weighted average data fusion 

( 1,...,5)
iaccd i =   

Actual displacements (vibration) at the vibration sensors 

(accelerometer) on spindle body 

ˆ ( 1,...,5)
iaccd i =   

Estimated tool tip displacements (vibration) from individual vibration 

sensors (accelerometer) without data fusion 

4d  Linear offset between tilt-axis and rotary-axis coordinate frames 

, ,j j jE F G   Recursively calculated polynomials uniquely defined in GPC algorithm 

,
ˆ

a aF F   Actual and estimated cutting force acting on drive 

ˆ
tF   Estimated tangential cutting force at the tool tip 

,t rF F   Cutting forces in tangential and radial directions 

hF   Impulse force by hammer 

pF   Peak force per spindle period 

rF   Reference force level for adaptive control 

1F   Actual force at the tool tip in displacement sensor direction 

1F̂  

Estimated force at the tool tip in displacement sensor direction through 

weighted average data fusion 



xxvi 

 

ˆ ( 1,...,5)
iaccF i =  

Estimated forces at the tool tip in displacement sensor direction from 

individual vibration (accelerometer) sensors without data fusion 

cf   Commanded feed rate of adaptive controller 

af   Actual feed rate of machine 

WPF   Cutting forces and torques vector acted on the tool in workpiece frame 

, ,t x t y t zF F F− − −
  Cutting forces in x-y-z directions in tool coordinate frame 

, ,wp x wp y wp zF F F− − −
 Cutting forces in x-y-z directions in workpiece coordinate frame 

ˆ ˆ ˆ, ,
a a aX Y ZF F F  Estimated cutting forces in x-y-z directions in drive coordinate frame 

resultantF   Resultant force in X-Y plane (tool coordinate frame) 

magnet ZF −
  

Force applied at the tool tip by the magnet in Z direction (tool 

coordinate frame) 

G
  Transfer function of the PI velocity controller of spindle drive 

IG   Transfer function of the PI current controller of spindle drive 

mG   Transfer function of the closed current loop of spindle drive 

oG 
 Transfer function of the open velocity loop of spindle drive 

cG   Transfer function of the closed velocity loop of spindle drive 

spG   Transfer function of spindle drive 

dG    
Transfer function between the disturbance torque and nominal 

(commanded) current of spindle drive 



xxvii 

 

dG 
  

Transfer function between disturbance torque and actual velocity of 

spindle drive 

LG    
Transfer function of Luenberger state observer designed for nominal 

(commanded) current of spindle drive 

cG 
  Transfer function of compensated disturbance system of spindle drive  

cbG   Transfer function of comb filter 

cG   
Combined feed drive and cutting process transfer function for adaptive 

control 

 IG   Control vector for GPC 

ph   Pitch length of ball screw 

nomI   Nominal (commanded) current 

actI   Actual current of feed drive 

actSI   Actual current of spindle drive 

dJ  Drive inertia 

eJ  Equivalent inertia of feed drive 

eSJ  Equivalent inertia of spindle drive 

mJ   Motor mass inertia 

J  Jacobian matrix 

K  Kalman Filter gain vector of feed drives 

disp
K  Kalman Filter gain vector of vibration sensors 



xxviii 

 

bK   Back emf constant of spindle drive 

tK   Motor torque constant of feed drives 

tSK   Motor torque constant of spindle drive 

,tc rcK K   Cutting force coefficients in tangential and radial directions 

,te reK K  Edge force coefficients in tangential and radial directions 

L   System noise vector 

dsL   Luenberger observer gain vector of spindle drive 

N   Number of teeth (flutes) on cutter tool 

sN  Stator turn ratio of spindle induction motor  

rN   Rotor turn ratio of spindle induction motor  

1, 2N N   Minimum and maximum prediction horizons of GPC 

sn   Stator electrical speed of spindle induction motor 

rn   Rotor mechanical speed of spindle induction motor 

P   Estimation error covariance matrix of feed drives 

S
P   Estimation error covariance matrix of spindle drive 

, ,i j kO O O  i-j-k orientations of tool in workpiece coordinate frame 

, ,x y zP P P  x-y-z positions of tool in workpiece coordinate frame 

Q   System noise covariance matrix of feed drives 

S
Q  System noise covariance matrix of spindle drive 

combQ   Quality factor of comb filter 



xxix 

 

q   
Linear and angular position command vector in machine coordinate 

frame 

R   Measurements noise covariance matrix of feed drives 

SR   Stator resistance of spindle induction motor 

rR   Rotor resistance of spindle induction motor 

spindle
R  Measurements noise covariance matrix of spindle drive 

toolr   Radius of the cutter tool 

gr   Transmission ratio of ball screw 

S   Slip of spindle induction motor 

st   Sampling time 

0, ,qs ds sV V V   Stator voltage values in q, d and 0 frames of spindle induction motor 

' ' '

0, ,qr dr rV V V  

Normalized rotor voltage values in q, d and 0 frames of spindle 

induction motor 

v   Measurement noise term 

fv   Relative velocity between two interacting surfaces 

sv   Stribeck velocity 

w   Process noise term 

ACw   AC periodic disturbance noise 

DCw   DC process noise 

( 1,...,5)mweight m =   
Assigned weights to vibration sensors (accelerometers) installed on 

spindle body 



xxx 

 

mX   Motor magnetizing reactance of spindle induction motor 

rX   Rotor leakage reactance of spindle induction motor 

SX   Stator leakage reactance of spindle induction motor 

z   

Average deflection of the material bristles between two interacting 

surfaces 

sz   Infinitesimally small step of z  in the sticking region  

&    Residues of transfer function in s domain 

,comb comba    Bandwidth coefficients of comb filter 

1 2,a a   Predetermined threshold factors for tool breakage alarm 

Tδ   Infinitesimally small displacement vector at the tool in workpiece frame 

q
δ  Infinitesimally small displacement vector of drives in drive frame 

1 2,    
Residues of time series filters applied on average torque per tooth in the 

tool breakage detection algorithm 

   Damping ratio 

AR   Uncorrelated random noise sequence of ARIMAX form in GPC 

   Efficiency 

   Angular position of motor shaft 

,DC AC    DC (static) and AC (harmonic) noise ratio terms 

   Weighting factor on the GPC input increment 

d   Drive disturbance Frequency Response Function 



xxxi 

 

KL   Kalman Filter FRF 

0   Stiffness of the elastic bristles between two interacting surfaces 

1  
Damping coefficient of the elastic bristles between two interacting 

surfaces 

2  Viscous friction coefficient 

TB   Percentage threshold value for tool breakage alarm 

ˆ,a a    Actual and estimated cutting torque acting on drive 

ˆ
d   Estimated disturbance torque acting on drive 

_ _,a DC a AC    
DC (static) and AC (harmonic) components of the actual cutting torque 

acting on drive 

Drivesτ   Drive forces and torques vector in drive frame 

ˆ ˆ,
a AA C    

Estimated cutting torque for A and C rotary drives in drive coordinate 

frame 

,m c    Measured motor and cutting torque of feed drives 

,mS cS   Measured motor and cutting torque of spindle drive 

sa   Average cutting torque per tooth period 

f   Friction torque of feed drives 

fS  Friction torque of spindle drive 

,coul stat    Coulomb and static friction torque of feed drive 

coulomb S −   Coulomb friction torque of spindle drive 



xxxii 

 

dsys  
FRF between tool tip displacement and vibration sensors 

(accelerometer) 

Fsys  FRF between force at the tool tip and vibration sensors (accelerometer) 

   Instantaneous angle of cutter tool immersion in workpiece 

1 2
ˆ ˆ,   

First-order adaptive time series filters to remove varying DC trend and 

runout on the signal 

   Flux linkage per second of spindle induction motor 

m   Angular velocity of the motor shaft of feed drives 

S  Angular velocity of spindle shaft 

nom   Nominal (commanded) velocity 

act   Actual velocity 

S rs−   Spindle speed in revolutions per second 

a   
Angular velocity of the arbitrary reference frame of spindle induction 

motor 

b   Angular velocity of the base electrical frame of spindle induction motor 

bw   Normalized bandwidth of comb filter 

c   Chatter frequency 

r   Angular velocity of the rotor frame of spindle induction motor 

n   Natural frequency 

t   Tooth passing frequency 



xxxiii 

 

r   Frequency resolution 

p   Frequency with the highest magnitude in the comb filtered signal 

sampling   Sampling frequency 

 



xxxiv 

 

List of Abbreviations 

 

ARIMA Autoregressive integrated moving average 

ARIMAX ARIMA model with additional time series input variables 

CWE Normalized equivalent and expanded system matrices for feed drives 

CNC Computer numerical control 

DNC Direct numerical control 

FRF Normalized equivalent and expanded system matrices for spindle drive 

GPC Adaptive generalized predictive control 

NC Numerical control 

PLC Programmable logic controller 

 



xxxv 

 

Acknowledgements 

I would like to start by thanking Prof. Yusuf Altintas for his support and guidance throughout my 

Ph.D. years. I appreciate his patience, excellent vision for engineering and research which helped 

me greatly to toughen up and improve myself every single day.  

Prof. Erhan Budak, my MSc supervisor, who supported me throughout all these years 

unconditionally, has my utmost respect and gratitude, he is and always will be more than a 

supervisor to me. 

I would also like to extend my gratitude towards all my colleagues and friends in 

Manufacturing Automation Laboratory (MAL), especially Onur Mert Ozturk, Alptunc Comak, 

Coskun Islam, Oguzhan Tuysuz, Ahmet Yildiz and Tayfun Ozdemir. I am grateful for all the 

technical and emotional support. 

I thank Prof. Konrad Wegener, Martin Postel and the Institute of Machine Tools and 

Manufacturing (IWF), ETH Zürich; for the opportunities I was provided during my stay. 

I thank the industrial supporter of this research; Hyundai WIA Machine Tools, and NSERC-

CANRIMT for the support during my PhD and internships. I thank Industrial Technology 

Research Institute of Taiwan (ITRI) for providing the Quaser UX-600 5-axis machining center. 

I cannot express how thankful I am to my family for their support, love and encouragement 

throughout my life. My dear mother and father, Gülser and Güven and my lovely sister Helin Su, 

I love you all. Finally, Genevieve, she is and was always right next to me when I had difficulties 

in my research and life and provided unquestioned support. I will do my best to reflect all the love 

and support back. 



1 

 

Chapter 1: Introduction 

In recent years, there has been an increasing interest in achieving unattended and self-adjusting 

machining systems. Researchers in the field mainly focus on the machining process monitoring 

and control where the primary applications can be listed as: tool wear and breakage monitoring, 

chatter detection and avoidance, adaptive control of the process forces and dimensional errors, 

thermal compensation of machines, collision avoidance, and machine tool health monitoring. A 

variety of sensors have been used such as force, vision, acoustic emission, vibration, power, strain 

gages, thermocouples and laser devices depending on the application.  

Though externally installed sensors provide useful information from the cutting region with 

high bandwidth, the reliability of such systems highly depends on the availability of industry 

friendly sensors and robustness of methods to avoid false alarms and incorrect actions. Installing 

external sensors within the work envelope increases the cost, as well as the risk of frequent failures 

due to harsh machining environment which disrupts the production.  Not being able to distinguish 

the actual machining process states from the effects of geometric changes along the tool path leads 

to false alarms and poor performance of the process control algorithms, therefore the majority of 

such systems have not been used in industry. Given the limitations of the above-mentioned 

systems, the use of CNC inherent data to predict process states and integration of virtual process 

model into the on-line algorithms is proposed to achieve an intelligent and robust unattended 

machining system in this thesis, as shown in Figure 1.1. The system extracts the cutting forces at 

the tool tip from the feed and spindle drive motor current commands and uses virtual model 

feedback to eliminate or reduce the false alarms while adaptively controlling the machining 

process. 
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First, an on-line communication link between CNC and external PC is developed in C++ via 

Ethernet connection. External PC can collect data from the CNC with up to 10 kHz sampling 

frequency and it can vary the spindle and feed overrides at 10 Hz interval which is sufficient for 

the targeted on-line applications. 

 

Figure 1.1: Parallel execution of virtual and on-line system with information exchange on external PC [5] 

By being able to read data from the CNC drives and write feed and spindle overrides back to 

CNC on-line, it is possible to monitor and control the machining process without installing external 

sensors on the machine tool. However, the prediction of cutting forces at the tool tip from servo 

drive measurements and running the on-line monitoring and control functions integrated with the 

virtual machining system introduce research challenges. 

It has been shown in the past that cutting force measurements leads to the most reliable process 

monitoring and control performance in machining operations. Typically, the cutting forces are 

measured via external sensors installed close to the cutting region which are prone to failures and 

increase the overall cost. Hence, it is desirable to solely use available information in the CNC 

system to monitor and control the machining processes. This thesis presents a method to predict 

the cutting forces at the tool tip from the feed drive motor current commands of CNC systems. 
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Remaining process states (i.e. torque, power, vibrations) are identified from either feed or spindle 

drive measurements to assist the monitoring and control functions. 

It is also important to note that the structural dynamics of the spindle, tool holder and tool 

system may change as a function of speed, load and thermal expansion as reported in the literature. 

Therefore, the intelligent machining systems should not rely on system models identified at idle 

state of the spindle or machine tool entirely but update themselves according to in-process 

variations. To investigate these in-process variations, vibration sensors are installed on the non-

rotating parts of the spindle structure, far from the cutting region. The variations of the structural 

dynamics of the spindle and tool are monitored on-line, and corresponding observer transfer 

functions are updated accordingly to predict tool tip vibration and process forces accurately. 

With the process states identified on-line, it is desired to ensure that the machining process is 

chatter free and stable. Chatter is typically detected by a microphone, accelerometer or acoustic 

emission sensor close to the cutting region and analyzing the frequency content of the 

corresponding measurements. Microphones tend to pick ambient noise from adjacent machines, 

and the sound signals may be amplified at certain frequencies as tool goes into cavities which 

trigger false alarms. Accelerometers and acoustic emission sensors are delicate and require 

additional analog to digital converters adding cost and complexity to the CNC systems. This thesis 

presents a method to detect chatter by using the spindle motor current commands readily available 

in CNCs. The dynamics of closed spindle velocity controller is identified automatically using 

available CNC functions. The effects of structural dynamics and servo elements on the 

measurements are compensated by state observers and the resulting signal is analyzed to isolate 

the chatter frequency. The spindle speed is regulated to avoid chatter on-line.  
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Once the process is chatter free, tool breakage monitoring and adaptive control of the process 

forces are run with the virtual model feedback. The proposed system brings critical information 

from the virtual machining system, and prevents false breakage alarms, transient overloads of the 

tool and collisions during adaptive control. The uncertainties in the virtual process model, such as 

cutting force coefficients, are calibrated from the on-line measurements at the beginning of the 

machining process and monitored continuously afterwards. 

Henceforth, the thesis is structured as follows: Chapter 2 discusses past research reported in 

the literature specifically in regard to process state prediction from drive current measurements, 

on-line tool breakage and chatter vibration monitoring, adaptive control of machining operations 

and varying spindle dynamics in milling operations. In Chapter 3, a comprehensive method to 

predict the cutting forces at the tool tip from CNC drive current measurements is presented. The 

method includes system identification of a feed drive, calculation of the force Jacobian and 

compensation of the structural dynamics between the tool tip and servo location. Chapter 4 

investigates the speed and load dependency of the spindle and tool dynamics from vibration 

sensors installed on the spindle structure with the purpose of updating the observer transfer 

functions depending on the varying process conditions to predict tool tip vibration and process 

forces. Chapter 5 describes an on-line chatter detection method using drive motor current 

commands where the spindle drive transfer function is identified automatically through sine 

sweeps. The structural dynamic modes of the spindle are compensated via a proposed observer. 

Chapter 6 presents the integrated intelligent machining system where the virtual process model 

and on-line monitoring and control functions run in parallel with information exchange. Benefits 

of the system are demonstrated on a sample part. Thesis is concluded in Chapter 7 and future 

research directions are suggested. 
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Chapter 2: Literature Review 

2.1 Overview 

The main objective of this thesis is to develop an intelligent, robust machining monitoring and 

control system that predicts the process states from CNC drive measurements and self-adjusts itself 

to varying process conditions. This chapter reviews the previous research related to process state 

predictions from drive measurements (Section 2.2) and from vibration sensors mounted on the 

spindle structure by considering in-process varying system dynamics (Section 2.3), on-line 

machining monitoring and control algorithms: chatter detection (Section 2.4) and tool breakage 

monitoring and adaptive control of machining operations (Section 2.5). Each section is concluded 

with a short summary that points out the gaps in the relevant literature where the fundamental 

contributions of this thesis are founded.  

2.2 Prediction of Process States from CNC inherent measurements 

Typically, intelligent machining systems are expected to monitor tool breakage, detect and 

suppress chatter and adaptively control maximum cutting loads to increase the material removal 

rates without violating the machine and cutting tool limits. It is desired to achieve these tasks by 

collecting critical information from the cutting region without increasing the overall cost of the 

production. It has been agreed in literature that the cutting forces provide the most valuable insight 

about the cutting process which are generally used in tool condition monitoring, adaptive control 

and cutting performance diagnosis [6]. 

There have been several force measurement techniques reported in literature, which can be 

classified as direct or indirect approaches. In the direct approach, the cutting forces are measured 

via external sensors installed within the cutting region, which can be combined with position 

tracking from CNC. Klocke et al. [7] and Totis et al. [8] used stationary and rotating dynamometers 
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installed on the table and spindle-tool interface, respectively, to measure the cutting forces and 

map them along the tool path. Although dynamometers provide high bandwidth and reliable force 

measurements, they are not resistant to cutting fluid, chips etc. and restrict the accessibility of the 

work envelope. In addition, they increase the overall cost, inertia and reduce the static and dynamic 

stiffness of the machine tool. To overcome these limitations, Mohring et al. [9] developed a system 

where three force sensors were embedded in the fixture system and Xie et al. [10] designed a smart 

tool holder with four displacement sensors installed. However, these systems are still costly, and 

their use is limited to a laboratory environment due to their delicate nature. Fusion of force and 

Acoustic Emission (AE) signals have also been commonly used especially for tool health 

monitoring in turning operations [11], [12], [13]. AE sensors are powerful in terms of detecting 

high frequency content generated by plastic deformation in the cutting region, yet, they are not 

applicable for milling operations since signals are extremely sensitive to interrupted nature of the 

cut and noise [14]. 

In the indirect force measuring category, there are also two approaches: sensors (force or 

displacement) can be built into the machine tool or forces can be extracted from the feed and 

spindle drive measurements without installing any external sensor. For the first approach, Tlusty 

[15] and Jeppsson [16] placed strain gauges on the outer ring of the spindle bearings and the 

housing, respectively, and measured the cutting forces indirectly. Later, Stein and Tu [17] modeled 

the spindle bearings to predict the forces caused by the thermally induced preloads using strain 

gauges and thermocouples where temperature dependency, sensor failures and complexity of the 

thermal modeling are major issues. Sarhan et al. [18] and Kang et al. [19] used displacement 

sensors such as capacitance and optical fiber but these sensors are limited to monitor the tool 

deflection due to their coarse resolutions and are prone to drive vibrations. 
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Park and Altintas [20] utilized a spindle integrated ring shaped force sensor installed between 

the spindle housing and the spindle flange at the bolt holes where piezoelectric sensors can measure 

the forces in three directions. They expanded the bandwidth of the sensing system by compensating 

the disturbance effects of structural dynamics of the spindle. Similarly, Bryne and O’Donnell [21] 

installed two piezoelectric force sensors between the spindle shaft and the housing in order to 

measure the process forces as well as monitor the spindle health. For the displacement sensors, 

Albrecht et al. [22] installed capacitance displacement sensors in the spindle housing and the 

measurements were interpreted as forces through calibration factors and dynamic compensation. 

Smith et al. [23] used strain gauges embedded in a spindle and measured the torque during milling 

operations. They benefit from the wide bandwidth due to high torsional stiffness. In these systems, 

the force is transmitted to the sensor location through the cutting tool and holder, whose structural 

deflection and moment arm lengths affect the force transmission ratios. As a result, the force 

sensors need to be calibrated for each tool and holder couple. Furthermore, the instrumentation of 

the spindle increases the installation and the operating cost considering that the spindles require 

frequent maintenance in industry.  

On the other hand, retrofit measurement solutions can be avoided since the latest modern 

control systems allow access to internal signals in the numerical controller [24] such as drive 

positions, velocity, motor torque, power and so forth. Matsushima et al. [25] and Constantinides 

and Bennett [26] attempted this first by predicting the cutting torque and forces from spindle motor 

and power. The issue with these studies were that the spindle motors only provide the tangential 

component of the cutting forces and the temperature dependence of the induction motor current 

measurements are significant as reported by Mannan and Broms [27]. Later, Altintas [28] was able 

to show that cutting forces can also be predicted from feed drive current measurements provided 
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that the friction in the drives are considered, and tooth passing frequency is within the bandwidth 

of the servo. Shinno et al. [29] developed a disturbance observer and implemented it within the 

position controller of a linear-motor driven aerostatic table system and predicted the cutting forces 

by only considering the rigid body transfer function of the drive system. The high bandwidth of 

linear feed drives is beneficial, and these systems have no considerable losses due to friction [6]. 

However, these studies do not consider the structural dynamics of the machine tool. Since the vast 

majority of the machine tool industry uses ball screw drive systems to handle the high cutting 

disturbance in machining operations, it can be concluded that, at the moment, force sensing from 

feed drive measurements has very narrow frequency bandwidths, limited to 2.5 and 3 axis 

operations with straight cuts, and do not consider the non-linear behavior of friction on 

translational and rotary drives of the machine tool, especially at transients where motion direction 

changes. 

Based on this literature survey it can be seen that there exists a gap in literature. At present, 

techniques have not been developed where the cutting forces are predicted from the CNC inherent 

signals for 5-axis milling operations by considering the complex nature of the friction on drives, 

compensating the distortions on the measurements due to structural dynamics of the machine tool 

and mapping the estimated cutting torque on each drive to the tool coordinate frame using the force 

Jacobian of the multi-axis machine tool. 

2.3 Process State Predictions by Considering Speed and Load Dependent Spindle 

Dynamics 

It has been observed in the literature that the structural dynamics of the spindle system change as 

a function of speed, load and thermal expansions [30], [31]. Since the measurement of tool tip 

Frequency Response Function (FRF) or tool tip to external sensor location FRFs are usually 
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performed at zero speed (idle state) under no load, it leads to inaccurate prediction of stability 

lobes and state observer designs for process monitoring and control purposes. Therefore, in-

process identification of speed and load dependent FRF of the spindle structure and updating 

corresponding stability lobes and state observers is essential. 

The spindle systems that operate at high speeds ( > 10000 rev/min) are commonly used in 

industry for high speed machining operations where the dynamics of the system change 

significantly [32]. This change is usually attributed to centrifugal forces and gyroscopic moments 

acting on bearings and the shaft. In addition, thermal expansion of the shaft changes the bearing 

preload where the load applied at the tool tip during cutting also affects the dynamics between the 

shaft and the bearing [33]. Cao et al. [34] and Rantatalo et al. [35] both developed detailed finite 

element models of the spindle structure and investigated the effects of gyroscopic moments and 

centrifugal forces on the spindle dynamics. The main drawback of these kind of modeling studies 

is that the accurate modeling of the entire spindle system requires the exact geometries of 

components, bearing preloads and contact parameters of the assembly locations which are also 

varying in-process continuously.  

Most commonly used approach for investigating the varying spindle dynamics is to identify 

the FRFs experimentally through shaker systems or impact tests during rotation. Cheng et al. [36] 

and Mascardelli et al. [37] performed impact tests on a standard, rotating artifact with a focus on 

regular ( > 20 mm diameter) and micro milling ( < 5 mm diameter), respectively. Postel et al. [31] 

identified the speed dependent spindle dynamics isolated from the tool holder-tool assembly, and 

used a receptance coupling approach afterwards to add tool holder and tool substructures to the 

identified spindle dynamics in order to obtain the tool tip FRFs. Effect of lateral forces, thermal 

variations and speed were investigated, and the updated stability charts were verified with 
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experiments. Besides impact tests, Matsubara et al. [38] used a non-contact excitation method with 

magnetic actuators and displacement sensors for evaluating the dynamic stiffness of a rotating 

spindle. Nonlinearities in the dynamic spindle stiffness were captured and its effect on cutting 

stability were investigated.  

In addition to these studies which are focusing on system identification under different 

conditions, an inverse stability method was also used to identify the FRF at the tool tip from cutting 

experiments [39]. Suzuki et al. [40] and Eynian [41] measured the chatter frequency in-process 

and solved the inverse stability to identify the tool tip FRF. Later, Ozsahin et al. [30] considered 

the shifting spindle modes and used the inverse stability technique as well. However, these studies 

assume that the mode shapes of the structure remain the same and they require chatter frequency 

measurements from unstable cutting experiments in a short range of spindle speeds. Researchers 

also applied receptance coupling (RC) analysis to rotating structures [36], [42] where Grossi et al. 

[43] used RC and predicted the speed varying dynamics of different setups but with the same tool 

holder. 

For the process monitoring and control part, although researches used sensory spindle systems 

before, there are no reported studies in the literature that consider the in-process variations of the 

spindle-holder-tool structure for predicting process states at the tool tip from externally installed 

sensors. Recently, Denkena et al. [44], [45] installed strain gauges between the guide rails and 

shoes of the spindle structure and performed tool deflection control. Force calibration and 

measurements were performed by linear regression analysis using the strain signals and the 

reference force signals applied at the tool tip, which makes the sensing system limited to only DC 

component of the process states (i.e. force and vibration at the tool tip). The spindle structure was 

also equipped with piezoelectric force sensors [46] and capacitance displacement sensors [22], 
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where the dynamic effects of the structural modes in the sensor measurements were properly 

compensated using state observers. However; system identification was performed in idle state at 

zero speed with no preload applied at the tool tip in all these studies. 

Based on this literature survey it can be concluded that the in-process variation of the spindle-

holder-tool assembly is not only crucial for stability predictions of machining operations, but also 

for on-line monitoring and control functions. There is still room for improvement in the literature 

in terms of updating the state observers of monitoring functions according to in-process varying 

structural dynamics. At present, studies focusing on process state (i.e. vibration, force) predictions 

from external sensors installed on the spindle structure do not consider these varying system 

dynamics under operational conditions.  

2.4 On-line Chatter Detection in Milling Operations 

Unless avoided, the self-excited vibrations (chatter) cause poor surface finish, reduces the tool and 

spindle life, hence limit the productivity in machining operations. As a result, automatic chatter 

detection and avoidance has been an important goal to achieve intelligent, productive machine 

tools without operator intervention. 

Early classical chatter theories presented by Tobias [47], and Tlusty [48] explain the 

fundamental mechanism of self-excited chatter vibrations for time invariant orthogonal cutting. 

Later, dynamics of milling and its stability have been modeled both in frequency [49], [50], [51] 

and discrete time domains [52]. It has been shown that the vibrations and forces are periodic at 

tooth passing frequencies when the process is stable, exhibiting a forced vibration phenomenon 

[53]. When a milling process chatters, the process exhibits both forced vibration at the harmonics 

of spindle/tooth passing frequencies as well as at the vicinity of the chattering natural frequency 

plus/minus the integer multiples of frequencies away from the chatter frequency. The challenge is 
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to separate the forced vibrations from chatter signals, and use robust and practical sensors to detect 

chatter and avoid it by changing the speed or cutting conditions automatically during machining. 

Furthermore, the chatter frequency may continuously change as the cutting conditions change or 

the machine exhibits position dependent structural dynamics. 

There have been several on-line chatter detection methods reported in literature, which can be 

classified as direct or indirect approaches as in Section 2.2. In the direct approach, researchers tried 

to achieve on-line detection of chatter vibrations by using external sensors installed either within 

the workspace or integrated with the machine tool. The most commonly used method is to collect 

sound measurements from the cutting region via microphone and use the spectrum of the measured 

signals to detect the chatter vibrations as implemented by Altintas and Chan [54], Sekhon [55], 

and Schmitz et al. [56]. These methods have been suffering from poor robustness since it is 

challenging to eliminate the ambient noise in the microphone measurements which can contain the 

sound from neighbouring machine tools and the sound signals show unpredictable behavior at 

certain frequencies as the tool goes in and out of cut, and through cavities along the toolpath. 

Researchers also used accelerometers [57], [58], AE sensors or dynamometers [59], spindle 

integrated force or displacement sensors [46] and sensory workpiece clamping systems [60]. These 

sensors need additional analog to digital converters adding cost and complexity to the CNC 

systems. In addition, instrumented spindle or workpiece clamping systems reduce the dynamic 

stiffness of the spindle, or the setup requires calibration for each tool, holder couple or workpiece 

geometry to compensate the effects coming from the structural dynamics in the measured signals. 

In the indirect approach, chatter vibrations are detected by estimating the process states (i.e. 

force, torque, vibration) from spindle and feed drive motor or encoder measurements. Soliman and 

Ismail [61] first attempted to detect chatter vibrations from spindle current measurements by 
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applying a statistical indicator which was found to be insensitive to speed, feed rate and geometry 

of the cut. However, the authors noted that further work is needed to investigate the sensitivity of 

the much-reduced current signals at higher frequencies due to decaying behavior of the drive 

disturbance transfer function. More recent studies from Kakinuma et al. [62] and Yoneoka et al. 

[63] applied disturbance observers on spindle current measurements in order to remove the effects 

of the structural and servo dynamics and isolate the chatter frequency. Shimoda et al. [64] 

expanded the disturbance observer approach to feed drives by also using high resolution linear 

encoder measurements. However, these studies ([62], [63], [64]) use low pass filter (LPF) based 

disturbance observers and case dependent band pass filters (BPF) to focus on a specific frequency 

range in order to detect the chatter frequency. Usage of BPF eliminates the need to compensate 

the effects of structural dynamics or servo elements along the signal transmission path from tool 

tip to the drive motor or the encoder location. However, it is not possible to pre-determine the 

bandpass frequency in a way that the output signal is free of dynamic distortions without losing 

the chatter vibration related frequency content for each tool/holder couple. Hence, the present 

methods need a manual intervention to adjust the parameters based on cutting conditions and 

structural frequencies of the machine tool and workpiece. 

Based on this literature survey, many techniques exist to detect chatter vibrations by installing 

external sensors or using drive current and encoder measurements with case dependent, manually 

tuned observers. However; there is still a gap in the literature in terms of considering the true 

dynamics of the drive and compensating the corresponding effects in the measurements to cover a 

wider frequency range without any need to install external sensors on the machine, case-dependent 

frequency range selection and experience-based observer tuning. 
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2.5 Process Monitoring and Control of Machining Operations 

There is a rich history of research and publication on the development and implementation of 

intelligent manufacturing systems since the early 1980s. In addition to detecting and suppressing 

chatter vibrations, intelligent machining systems are expected to monitor tool breakage and 

adaptively control maximum cutting loads to increase the material removal rates without violating 

process constraints.  

Several researchers have worked on tool condition monitoring for milling operations since on-

line tool breakage detection is crucial to prevent catastrophic failures in production. First, 

Matsushima et al. [25] applied a 28th order Auto-Regressive (AR) filter to detect tool breakage 

using the spindle motor current measurements. Lan et al. [65] used a similar approach by using a 

15th order AR filter where the high order filters cannot effectively distinguish tool breakages during 

the transient cutter-workpiece engagement variations such as entry-exit to cut, holes, feed rate 

variations and they require large computation time windows. In order to overcome these, Altintas 

[28], [66] proposed a 1st order AR filter to detect tool breakage with two residual indexes indicating 

the difference between the measured and predicted forces based on the AR filter and give large 

magnitudes when the tool is damaged. Altintas [53] also stated that the 1st order AR filter is 

sufficient since the cutting forces are functions of spindle and tooth passing frequencies with their 

harmonics. He argued that synchronization of cutting force measurements with these frequencies 

provide sufficient information to detect the tool breakage.  

It is also important to increase the productivity of machining processes through adaptive 

control (AC) of milling forces or tool tip deflection by adapting feed rate to changes in cutting 

conditions such as depth and width of cuts along the toolpath. Several researchers have used AC 

under different constraints to maximize the productivity by maintaining cutting forces at a desired 
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level. Tlusty and Elbestawi [67] analyzed the transients in an AC servomechanism for milling 

operations by using a state-space approach and focused on the time delay between drive velocity 

and cutting force change. Lauderbaugh [68] investigated process dynamics and included the 

corresponding effects in his controller design where Liu et al. [69] compared the performances of 

different controller types to show that early AC systems with fixed gains result in slow response 

or instability depending on process conditions along the toolpath. Finally, Altintas [53] presented 

an AC framework based on either pole-placement or a generalized predictive control (GPC) law, 

which is utilized to adjust feed rates of the XY table of the milling machine to keep the peak 

resultant force at a desired level. In addition, his approach can keep the static tool deflection within 

tolerances since the force in the normal to the finished surface can be constrained. Later, Park [46] 

used the same algorithm with the spindle integrated force sensor combined with the disturbance 

Kalman Filter to compensate dynamical distortions in the sensor measurements. 

There are also more recent studies in the literature under the category of intelligent machining 

systems which use the above listed algorithms by utilizing an externally installed sensory system 

or the CNC inherent data, some with position tracking from CNC [70], [71]. Klocke et al. [7] 

presented a position-oriented process monitoring strategy in freeform milling where stationary and 

rotating dynamometer measurements were synchronized with the encoder measurements from 

drives in order to monitor the process states by considering the cutter-workpiece engagement 

variations along the toolpath. Nouri et al. [72] also used a stationary dynamometer to monitor tool 

wear through a global parameter they defined based on the cutting coefficients. The wear 

coefficient’s behavior was tracked by using a mechanistic force model approach and looking at 

the total distance traveled by the tool, rather than considering complex cutter-workpiece 

engagement conditions. Mohring et al. [73] used an integrated sensory spindle and a fixture system 
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to monitor the process forces through sensor fusion. Koike et al. [74] followed a different path by 

utilizing a sensorless approach to detect the tool fracture in milling by integrating multi-axial servo 

information through case dependent observers with a rigid body drive model. Verl et al. [75] also 

used the signals available within the CNC to monitor the wear of feed drives by comparing the 

states with the initial measurements from when the machine is new. Van Houten and Kimura [76] 

developed a maintenance system to relate the predicted machining behavior and signals measured 

from multiple sensors to avoid machine tool part failures. Shinno and Hashuzime [29] and Hayashi 

et al. [77]  proposed an on-line process monitoring and adaptive control system for ultra-precision 

machining by using a sensorless approach and a temperature sensor mounted on the tool’s rake 

face to keep the temperature at a desired level along the toolpath, respectively. 

The Listed studies in this chapter which utilize tool breakage, wear monitoring and adaptive 

control of machining operations have not been used in industry due to false alarms, poor robustness 

of algorithms, and the lack of practical cutting force sensors. Therefore, it can be concluded from 

the literature survey that there is still a need for a system which performs the process monitoring 

and control functions by using only the CNC inherent data, with an integrated virtual model 

feedback not just for position tracking, but also for tracking the process states and providing critical 

feedback to the on-line algorithms to improve robustness. In addition, the virtual model can be 

calibrated from on-line measurements for improved accuracy.  
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Chapter 3: Prediction of Cutting Forces in Milling using Feed Drive Current 

Measurements 

3.1 Overview 

It is desired to use CNC inherent data for process monitoring and control of machining operations. 

However, at present no works are able to use CNC inherent data to control and monitor machining 

operations in a reliable way, where the machine tool structure, servo dynamics and kinematics are 

considered while simultaneously compensating the corresponding distortions in the measured 

signals in order to predict the cutting forces at the tool tip along the tool path for multi-axis milling 

operations. Conversely, literature consists of techniques either utilizing external sensors installed 

within the work envelope or using CNC inherent data without compensating the distortions on 

measured signals appropriately. 

In this chapter, a new framework is presented to identify cutting forces in five-axis milling 

operations using the feed drive motor current control commands obtained directly from the CNC 

of the machine tool. The friction and inertial loads, which are used for the rigid body motion of 

the machine, are first separated from the current commands, and the remaining current is 

considered to be spent on cutting. The dynamic force is distorted by the structural dynamics of the 

feed drive chain between the cutting point on the table and the drive motor. These structural 

dynamic effects are compensated by Kalman filters, which expand the bandwidth of the current 

sensing from the CNC data significantly. The estimated cutting torque at each feed axis is 

transmitted to the tool coordinate frame using the inverse kinematic model of the five-axis machine 

tool. The estimated forces can be used in monitoring the cutting forces along the five-axis tool 

path, which in turn can be used for both online calibration of virtual machining model as well as 
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for tool condition monitoring and adaptive control of maximum forces with virtual machining 

system assistance. 

3.2 Identification of Feed Drive Dynamics 

In order to predict the cutting forces at the tool tip from drive motor current measurements, feed 

drive dynamics have to be identified for each axis of the machine tool. A five-axis machine tool 

with three ball screw driven translational (X-Y-Z) and two rotational (A-C) drives with worm gear 

transmission mechanism is used for the illustration of the proposed methodology (see Figure 3.1). 

 

Figure 3.1: a) Quaser UX600 5-axis machining center with Heidenhain CNC, b) Translational and rotary axes 

configuration of the machine tool 

Regardless of the kinematic configuration of the machine tool, each feed drive motor must 

overcome both static and dynamic loads. Static loads include friction in the feed drive’s kinematic 

chain (i.e. ball screw, thrust bearing, and guideways), whereas dynamic loads are contributed by 

the acceleration and cutting forces delivered to the feed drive motor as torque disturbances. The 

total torque delivered by the motor ( m ) is spent to overcome all loads as [53];  

 m
m t nom e f c

d
K I J

dt
  


= = + +  (3.1) 
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where f  and c  are the friction and cutting torque, respectively; eJ
 
is the equivalent inertia 

reflected on the motor, and m  is the angular velocity of the motor shaft. The motor torque is 

proportional to the nominal current
 nomI  drawn by the motor, where tK  is the motor torque 

constant. Since the goal is to obtain the cutting torque portion ( c ) from the nominal current ( nomI

) measurements, the first step in system identification is to identify friction characteristics and the 

equivalent inertia for each drive as described in the following section. 

3.2.1 Equivalent Inertia and Friction Identification 

The friction and equivalent inertia of all drives can be identified from the velocity and current 

values supplied by the CNC while moving the drives at different velocities. In general, open 

architecture CNC systems allows on-line identification of drive dynamics. A square wave signal 

with variable pulse width, which has a rich frequency content, is supplied to the drive as the control 

signal by the CNC and the equivalent inertia is identified from the measured response [78]. 

However; the 5-axis machining center used in this study has a commercial Heidenhain iTNC530 

CNC which has a semi-open structure since it allows access from an external PC but only by using 

its proprietary communication libraries in Visual Studio C++. For system identification purposes, 

Heidenhain’s TNCopt® software is used which is a PC program for commissioning, optimizing 

and diagnostic of digital control loops. The dialog between TNCopt® installed on an external PC 

and CNC takes place via Ethernet connection. 

Table mass, motor shaft ( mJ ) and drive screw ( dJ ) are used to form an equivalent moment (

eJ  ) of inertia reflected on the motor and the motor torque constants are identified using built-in 

identification functions of TNCopt® which are given in Table 3.1. 
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Table 3.1: Inertia and motor torque constant values of axis feed drives 

 X Y Z A C 

2[kg.m ]mJ   0.0077 0.0077 0.0077 0.0015 0.001 

2[kg.m ]dJ   0.00596 0.00624 0.00440 0.009 0.00455 

2[kg.m ]eJ   0.01366 0.01394 0.01210 0.00240 0.00555 

[Nm/A]tK  1.964 1.964 1.964 2.106 1.522 

The Lund-Grenoble (LuGre) friction model is used to capture the Coulomb friction, Stribeck 

effect, hysteresis and pre-sliding displacement which introduces non-linear friction behavior.  

Unlike the classical Coulomb friction model, LuGre friction does not treat the non-linear friction 

regions as discontinuous changes at especially motion direction changes. Instead, it considers the 

average deflection of the material bristles between two surfaces ( z ), see Figure 3.2, which are in 

contact and captures the friction dynamics in the sticking region as well.  

 

Figure 3.2: Illustration of material bristle deflection for LuGre model 

The LuGre friction torque generated from the bending of the bristles between two surfaces is 

expressed as [79]; 

 
0 1 2f f

dz
z v

dt
   = + +  (3.2) 
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where 0  and 1  are the stiffness and damping coefficient of the elastic bristles within the friction 

interface between two interacting surfaces, respectively and are approximated as outlined in [80]. 

2  is the viscous friction coefficient and identified from the slope of the velocity-friction curve 

at the sliding region as described in [1], fv  is the relative velocity and z  is the average deflection 

of the bristles (see Figure 3.2) with its derivative defines as; 

 0
( )

f

f

f

vdz
v z

dt g v
= −  (3.3) 

The Stribeck effect is captured by ( )fg v  which depends on speed, material properties, lubrication 

and surface roughness, and defined as;
 

 
2( )

( ) ( ) f sv v

f coul stat coulg v e  
−

= + −  (3.4) 

where sv  is the Stribeck velocity, and coul  and stat  are coulomb and static friction values, 

respectively and identified from the velocity and current values supplied by the CNC while moving 

the drives at different velocities [80]. For 0 , a very small step of z  in the sticking region, 

referred as sz , is introduced to the drive and the stiffness constant is approximated as; 

 0

sgn( )
coul

s

dz dt

z
 =  (3.5) 

In addition, in the sticking region, where there is no apparent motion, the friction in Eq. (3.2) can 

be approximated as ( z  ); 

 
0 1 2f       + +  (3.6) 

where   is the angular displacement of the motor shaft. Therefore, the dynamics of the interaction 

between materials are modeled as in [80]; 
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1 2 0( ) ( )J u t     + + + =  (3.7) 

where Eq. (3.7) represents a damped second-order system, assuming a sufficiently damped motion 

which is the case for the feed drives considered in machine tools, 1  can be calculated as [80]; 

 1 0 22 J  = −  (3.8) 

The friction parameters 0 , 1 , 2  and ( )fg v  are approximated from measurements, but the 

average displacement of the bristles ( z ) is not measurable, hence it is solved numerically by 

solving Eq. (3.3) and using the Forward Euler Approximation as follows [78]; 

 0

[0]
[0] 0, [0] 0, 0

[ ]
[ ] [ 1]

( [ ])

[ ]
[ ] [ 1]

f

f

f

f

s

dz
v z

dt

v kdz
v k z k

dt g v k

dz k
z k z k t

dt



= = =

= − −

= − +

 (3.9) 

where 
st  is the sampling time and k  is the discrete time step. Once the friction parameters are 

identified for each drive, the corresponding average displacements of the bristles are calculated as 

given in Eq. (3.9) and the friction value is calculated with Eq. (3.2). The tuned friction parameters 

which give the identified LuGre curve shown in Figure 3.3, are given in Table 3.2 for both 

translational and rotary axes per each direction. 
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Figure 3.3: Experimental and LuGre friction curves for C-axis with model parameters 

Table 3.2: LuGre friction parameters for axis feed drives 

 X (+, -) Y (+, -) Z (+, -) A (+, -) C (+, -) 

0[Nm/rad]   525, 525 575, 575 475, 475 28e3, 28e3 20e3, 20e3 

1[Nm.s/rad]   15, 15 12.5, 12.5 10, 10 25, 15 20, 25 

2[Nm.s/rad]   0.175, 0.15 0.15, 0.11 0.065, 0.082 4.25, 1.3 0.82, 0.82 

[Nm]stat
 
 1.34, 1.32 1.62, 1.68 2.3, 2.3 2.7, 2.9 1.9, 1.82 

[Nm]coul   1.73, 1.84 1.78, 1.86 2.15, 2.1 1.57, 1.05 1.24, 1.24 

[rad/s]sv
 
 0.061, 0.087 0.087, 0.065 0.571, 0.222 0.012, 0.013 0.016, 0.017 

Corresponding LuGre friction curves for each axis are given in Figure 3.4 with the experimentally 

measured values. 
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Figure 3.4: Experimental and LuGre friction curves for axes 

3.2.2 Transmission of Cutting Forces to Feed Drive Motor 

Given that the equivalent inertia and friction characteristics are known for a drive, cutting torque 

component can be extracted from the measured motor torque by rewriting Eq. (3.1) as follows; 

 c m f e t nom f e

d d
J K I J

dt dt
   

 
= − − = − −  (3.10) 

where the source of the cutting torque ( c ) is the cutting force ( aF ) at the tool tip in the 

corresponding direction which is transmitted to the feed drive as a disturbance. First, using rigid 

body assumption for the feed drive, the relation between the cutting force ( aF ) and the cutting 

torque ( c ) delivered to the feed drive motor can be derived by the principle of conservation of 

work and energy as; 
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where 
gr   is the transmission ratio of ball screw with a pitch length of 

ph , and   is the efficiency. 

For rotary drives, cutting force at the tool tip (
aF ) is transmitted to the servo as follows; 

 
g moment i

ar a

r d
F



−
=  (3.12) 

where ( , , )moment id i x y z− =  is the moment arm length between the tool tip and table center. The 

efficiency values ( ) of the translational drives are obtained from the manufacturer catalogue, 

and they are identified experimentally for the rotational drives (A and C).  

Since the range of efficiency is quite wide (40-90%) for worm gears due to dependency on the 

preload amplitude, static load tests are performed to identify the specific efficiency values of the 

rotary drives. Both A and C axes are loaded from 31.75 kg (70 lbs) to 45.36 kg (100 lbs) with 4.53 

kg (10 lbs) increments applied at a specific location and the corresponding motor torque is obtained 

from the CNC (see Figure 3.5).  

 

Figure 3.5: Static load experiments to identify efficiency for A and C axes 
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Efficiency is calculated as the ratio between the applied torque to the drive and the 

corresponding measured motor torque for four different loading conditions and the average values 

are given in Table 3.3.  

Table 3.3: Pitch and efficiency values of axis feed drives 

 X Y Z A C 

[mm/rev] or [rad/rev]ph
 
 12 12 12 0.05235 0.06981 

[%]   92 92 92 62 81 

It should be noted that the equations provided so far in this chapter are only valid within the 

bandwidth of the disturbance transfer function between the cutting force and the drive motor 

current measurements. For higher frequencies, the corresponding disturbance transfer function 

should be identified and the effect of structural and servo dynamics on drive motor current 

measurements must be compensated as described in the following two sections, respectively. 

3.2.3 Identification of Feed Drive Disturbance Frequency Response Function (FRF) 

The cutting forces are transmitted to the feed drive motors as disturbance torque through the drive’s 

structural chain and servo amplifier as shown in Figure 3.6.  



27 

 

 

Figure 3.6: (a) Translational and (b) Rotary feed drive mechanism, (c) Disturbance transfer function ( d ) 

In milling, the cutting forces are periodic at tooth passing frequency which is equal to spindle 

speed times number of teeth on the cutter. In order to capture the milling forces, the bandwidth of 

the disturbance transfer function between the cutting force and the drive motor current must be at 

least higher than the tooth passing frequencies used during machining operations. Although the 

current amplifier of the CNC has >700 Hz bandwidth, unless compensated, the structural dynamics 

of the drive with natural frequencies around 20-70 Hz reduces the bandwidth of the force 

prediction from motor current to around 10-15 Hz or 300-450 rev/min spindle speed when a two-

fluted cutter is used. 

Disturbance FRFs (
d ) are measured by applying impulse force excitation at the table (see 

Figure 3.6 a & b), while measuring the current and angular position of motor shaft from the 

Heidenhain CNC via Ethernet connection. The impulse force ( ( )hF  ) is converted as an equivalent 

applied (input) torque by using Eq. (3.11) and (3.12), and the response torque from the motor is 
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( )c  . The experimentally measured FRFs are identified by a modal curve fitting technique (using 

CutPro® Modal Analysis [81]), which leads to the following transfer function; 

 
2 2

( )
( )

( ) 2

c k k
d

ka k nk nk

s s
s

s s s

  

   

+
 = =

+ +
  (3.13) 

where &k k  , 
k , 

nk  are the residues, damping, and natural frequency of mode k , respectively. 

The identified transfer function parameters of all five drives are listed in Table 3.4 where the 

experimental and curve fitted drive disturbance FRFs can be seen in Figure 3.7.  

Table 3.4: Modal parameters for drive disturbance FRFs 

Axis Mode (Hz)nk  (%)k  
 

k  
 

k  
 

X 

1 36.1 4.7 3042 38.1 

2 40.2 2.14 9413 47.1 

3 42 3.5 -292 86.8 

4 62.5 5 24575 152.5 

5 145 5 34073 -18.7 

6 179 4.23 195281 -99 

Y 

1 16.3 4.96 518 1.3 

2 31 2.9 2719 7.1 

3 36 3.3 6183 7.8 

4 47 2.8 2673 -10.2 

5 52 5 15591 9.98 

6 63.5 6 8849 21.1 

7 71 2.2 11459 3.9 
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8 77.5 3 57547 96.1 

9 85 2.2 16125 17.4 

10 102 1.2 5831 -10 

11 130 9.8 22339 115.6 

12 180 3.9 -108153 -158.2 

Z 

1 39 7 -1913 43.1 

2 43 3.81 3980 -3.3 

3 63.74 4.97 29270 55.8 

4 86 0.4 852 -1.5 

5 89 6.2 109192 185.1 

6 92.5 3 -38413 10.1 

7 150.5 1.8 30800 34.9 

8 183.3 0.31 11631 4.7 

A 

1 19.9 0.69 -8053 -26.2 

2 50 0.47 -123072 263.9 

3 63.86 0.22 105425 -132 

4 81.31 0.16 14992 -115 

5 167.8 0.122 140159 -44.6 

6 176.34 0.13 -116470 74.6 

C 

1 45.3 0.14 -11820 -244 

2 52.6 0.086 70505 453.6 

3 66.3 0.035 30915 16.6 
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4 75.2 0.022 9365 6.44 

5 98.9 0.052 -1126 -65.5 

 

 

Figure 3.7: Experimental and curve fitted drive disturbance FRFs 

The curve fitted transfer function in Eq. (3.13) can be mapped to polynomial form as;  

 
1 2 3

0 1 2 3

1 2

1 2

( ) ...
( )

( ) ...

n n n n

c
d m m m

a

s b s b s b s b s
s

s s a s a s





− − −

− −

+ + + +
 = =

+ + +
 (3.14) 

Parameters of the transfer function polynomials ( ,i ib a ) for each axis can be obtained from 

Table 3.4. The disturbance transfer functions given in Eq. (3.13) and (3.14) are mapped to the 

state-space form but by applying similarity transformation matrix on the states due to poorly 

conditioned state matrices [20]; 
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( ) ( ) ( )

( ) ( ) ( ) ( )c

t t t

y t t t t

= +

= = +

x Ax Bu

Cx Du
  (3.15) 

where ( )tx  and ( )y t  are state and output vectors, respectively. The state space model in continuous 

time domain consists of the normalized state A , the input B , the output C , and the input 

transmission D  matrices, which are given in Appendix A for each drive. The state-space model is 

used for dynamic compensation of drive current measurements to estimate the cutting torque 

caused by the forces on the feed drive motor at higher spindle speeds. 

3.3 Dynamic Compensation of Feed Drive Current Measurements 

The objective of dynamic compensation of drive current measurements is to reduce the influence 

of the structural dynamic modes (see Figure 3.7) that distort the measurements containing 

frequencies above the servo bandwidth (10-15 Hz). Prior to performing the dynamic 

compensation, friction, and inertial torque portions are removed from the motor torque.  

The inversion of the transfer function may lead to amplification of low amplitude noise and 

instabilities when the system has a nonminimum phase dynamics, hence it is not suited to use an 

inverse filtering of commanded motor torque obtained from the CNC. Instead, a disturbance 

Kalman Filter has been proposed to attenuate the noise and compensate the influence of structural 

modes on the cutting torque commands sampled at 0.1 millisecond (ms) intervals. 

3.3.1 State Space Representation with the Disturbance Model Expansion 

The actual cutting force acting on the cutting tool ( aF ) is distorted by the structural dynamics of 

the feed drive system governed by the disturbance transfer function given in Eq. (3.13). The aim 

of the Kalman Filter is to reconstruct the actual cutting torque ( a ) contributed by the machining 

process force ( aF ) to the motor torque command ( c ) by removing the effect of disturbance 
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dynamics in Eq. (3.13). The actual cutting torque reflected to the drive ( a ) can be separated to dc 

(static) and ac (harmonic) components as; 

 _ _a a DC a AC  = +  (3.16) 

The derivative of the dc process noise ( DCw ) is constant; 

 _a DC DCw =  (3.17) 

The harmonic part of the cutting torque can be represented as a cosine function at the tooth passing 

frequency (
t ), which can be expressed in the Laplace domain with a periodic disturbance noise (

ACw ) as; 

 
_

2 2

( )

( )

a AC

AC t

s s

w s s




=

+
 (3.18) 

with the corresponding state-space representation; 

 

 

2
_

_

_

_

_

10

01 0

1 0

a ACt

AC

a AC

a AC

a AC

a AC

w









  −  
= +    

    

 
=  

 

FF F

F

F

F

BA x

C

x

x

 (3.19) 

The normalized expanded state space equation can be written by substituting Eq. (3.16) and (3.19) 

into (3.15) as follows [20];  



33 

 

 

 

 

 
 

 

_

_

0

( ) 0 0 0 ( )

0 0

( ) 0 0 ( )

a DC DC

AC

c a DC

t w t

t v t

 



 

    
    

= +    
        

 
 

= + 
 
 

exp exp

exp

exp

F

exp

F F

LA x

C
F

x

A B BC x

x

A x

x

C

x

 (3.20) 

where exp
A  and exp

C  are the state and output matrices of the expanded state space model. Process 

and measurement noise terms are ( )w t  and ( )v t , respectively. L  is the noise coupling matrix, 

where 
DC   and 

AC  are the noise ratio terms ( ( )DC DCw w t =  , ( )AC ACw w t =  ). 

Since the sampling frequency (10 kHz) is quite high relative to the maximum tooth passing 

frequency achievable with the measured drive disturbance FRFs (0.2 kHz), the input torque can 

be treated as piecewise constant and the derivative of the applied torque depends only on the 

process noise ( w ); 

 a w =  (3.21) 

Therefore, the piecewise constant applied torque can be modeled as another state of the system as 

a single term; 

 
 

a

 
=  
 

exp

x
x  (3.22) 

The expanded state-space form in Eq. (3.20) is reduced to; 
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 

 
 

0
( ) ( )

0 0 1

0 ( )

a

c

a

t w t

v t






    
= +    
    

 
= + 

 

expexp

exp

exp

exp

LxA

C

x

A B x
x

x
C

 (3.23) 

The actual cutting torque (
a ) is now a state of the system and the cutting portion of the measured 

torque (
c ) depends on the disturbance dynamics ( exp

A , exp
C ), and the process ( ( )w t ) and 

measurements ( ( )v t ) noises.       

3.3.2 Disturbance Kalman Filter Design 

The actual torque (
a ) is estimated as ˆ

a  using the disturbance Kalman Filter of an individual 

drive as; 

 

 

exp exp

exp

exp

1

ˆ ˆ ˆ( )

ˆ ˆ( )

ˆ( )

ˆ ˆ 1a xn

y y

y

y



= + −

= + −

= − +

=  =

exp exp exp

exp exp exp exp

exp exp exp

0 exp 0

x A x K

A x K C x

A KC x K

C x C 0

 (3.24) 

where K  is continuous Kalman Filter gain and ˆ
exp

x  is the estimated state vector. The transfer 

function of the Kalman Filter can be derived from the state space representation given in Eq. (3.24)

; 

 
( )

ˆ
det[ ( )]

a c

adj s

s
 

  − −  
=  

− −  

0 exp exp

exp exp

C I A KC
K

I A KC
 (3.25) 

The discrete equivalent of the estimated state vector ˆ
exp

x  can be expressed as; 
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 

 
0

ˆ ˆ( 1) exp ( ) ( )

exp ( ) ( )

ˆ ˆ( 1)

d

d

t

a

k t k

t dt y k

k

 



+ = −

 
+ − 
  

+ =



exp exp exp exp

exp exp

0 exp

x A KC x

A KC K

C x

 (3.26) 

where the discrete sampling time (
dt ) is 0.1 ms. The Kalman Filter Gain ( K ) is identified by 

minimizing the state estimation error ( exp
x ) between the actual ( exp

x ) and estimated states ( ˆ
exp

x ); 

 ˆ= −
exp exp exp

x x x  (3.27) 

The differential equation for the state estimation error covariance matrix ( P ) is; 

 
( | ) ( ) ( | ) ( | ) ( ) ( ) ( ) ( )

( | ) ( ) ( ) ( | )

t t t t t t t t t t t

t t t t t t

= + +

−

T T

exp exp

T -1

exp exp

P A P P A L Q L

P C R C P
 (3.28) 

which is solved by using the Riccati Equation [82] and has to approach to zero for a stable observer. 

The measurement covariance matrix ( R ) is determined from the root mean square (RMS) of the 

air cutting torque fluctuations, whereas system covariance matrix ( Q ) is tuned to accommodate 

the compensations. The Kalman Filter gain is evaluated as follows;  

 ( ) ( | ) ( ) ( )t t t t t= T -1

expK P C R  (3.29) 

where the measurement ( R ), system noise ( Q ) covariance and the noise coupling matrix ( L ) for 

each drive shown in Figure 3.7 are; 

 

1 12

1 24

1 16

1 12

1 10

[0.0776], [200], [0 1]

[0.1159], [700], [0 1]

[0.6665], [2000], [0 1]

[1.0235], [800], [0 1]

[1.4903], [10000], [0 1]

T

x x

T

x

T

x

T

x

T

x

= = =

= = =

= = =

= = =

= = =

x x

y y y

z z z

A A A

c C C

R Q L

R Q L

R Q L

R Q L

R Q L

 (3.30) 
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The measured FRF of the uncompensated system ( ( ) ( ) ( )d c as s s  = ), the FRF of the 

Kalman Filter ( ˆ( ) ( ) ( )KL a cs s s  = ), and the FRF of the compensated system (

ˆ( ) ( ) ( ) ( )d KL a as s s s   = ) are illustrated for three translational (x, y, z) and two rotary drives 

(A, C) in Figure 3.8.  

In addition to the Kalman filtering, compensated force signals must be synchronized since they 

experience different phase shifts with the observer transfer function. In general, a number of 

sample delays are calculated from the phase of the compensated FRF and the compensated signals 

are synchronized using delay buffers [46]. In this study, a Kalman Smoother approach is used per 

each axis to correct these phase shifts in a more systematic way which is described in Appendix B 

[83]. 
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Figure 3.8: Measured and Kalman filter compensated drive disturbance FRFs 

The identified Kalman filter gains ( K ) that minimizes the error covariance matrices are; 



38 

 

 

[0.0211 0.0233 0.0064 0.0085 0.0028 0.0016 4.1 4 ...

2.9 4 7.7 4 3.9 4 2.7 4 1.1 4 0.6076],
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0.002 4 4 0.656],

[ 0.001 0.006 0.016 0.055 0.044 0.096 0.069 ...

0.066 0.067 0.

e e

e

e

−

− − − −

= −

− − − −

− −

= − − −

− − −

z

A

K

K

024 0.002 1.66 4 4 0.372],

[0.01 0.015 0.006 0.007 0.003 0.003 0.001 ...

9.68 4 1.87 4 1.08 4 0.911]

C

e

K

e e e

− − − − −

= − − −

− − − −

 (3.31) 

The Kalman filter gain vector ( K ) is taken as time invariant in the system once the covariance 

matrix converges to zero. As shown in Figure 3.8, the compensated system magnitude approaches 

unity and the bandwidth has been increased to 180 Hz for translational and to 120 Hz for the 

rotational drives. As a result, the measured cutting torque (
c ) can be compensated accurately at 

tooth passing frequencies up to 180 Hz (i.e. 5400 rev/min for 2 fluted end mill) and the 

compensated torques ( ˆ
a ) on each drive are transferred to the tool tip as estimated actual cutting 

forces ( ˆ
aF ) using the kinematic model of the five-axis machine. In summary, once the compensated 

torque values for each drive are obtained, they need to be transformed to the tool tip through the 

kinematic model of the machine tool that is described in the following section.    

3.4 Kinematic Model of the Machine Tool for Force Transformation 

The motion of the tool during five-axis operations depends on the movement of the three 

translational and two rotational drives. In order to transform the estimated cutting torque from the 

current drawn from each axis motor to the tool center position with respect to the machine table 
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center (machine reference frame origin), the kinematics of the machine tool is modeled by applying 

the Denavit-Hartenberg (DH) method [84]. 

3.4.1 Kinematic Model of the Five-Axis Machine 

The five-axis Quaser CNC machining center with a widely used tilting rotary table type kinematic 

configuration (see Figure 3.9) is used to demonstrate prediction of cutting forces from the feed 

drive motor current commands. 

 

Figure 3.9: Kinematic configuration of the Quaser UX600 5-axis machining center with the Tool and Workpiece 

coordinate frames 

The tool positions in workpiece coordinate system (P-system) is expressed as the position 

vector of the tool tip; 

 ( )
T

x y zt P P P =  TP  (3.32) 

and unit vector defining the tool orientation; 

 
T

i j kO O O =  TO  (3.33) 
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( )t
T

P  and ( )t
T

O  in P-system are transformed into position commands of the drives of the machine 

tool in machine coordinate system (M-system) through the inverse kinematics solution of the 

machine tool as; 

  ( ) ( ) ( ) ( ) ( ) ( )
T

A Ct x t y t z t t t =q  (3.34) 

The angular positions of the drives from the tool orientation are expressed as; 

 
1

sin( )

tan ( , )

A k

C i j

O

O O



 −

= −

=
 (3.35) 

which means the tool orientation in the P-system can be calculated from; 

 

cos sin

cos cos

sin

i A C

j A C

k A

O

O

O

 

 



   
   

=
   
   −   

 (3.36) 

The axis positions of the translational drives are evaluated from the tool tip position as; 

 
4

4 2

( ) cos sin 0 0 ( )

( ) cos sin cos cos sin sin ( )

( ) sin sin sin cos cos cos ( )

1 0 0 0 1 1

C C x
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 

     

     

     
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− −
     =
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     
     

 (3.37) 

where 4d  and 2a  are linear offsets between the rotary drive coordinate frames (Figure 3.9). By 

taking the inverse of the homogenous DH transformation matrix in Eq. (3.37), the tool position in 

the P-system is expressed as a function of the axes positions (M-system) as; 

 

2

2

2 4

( ) cos cos sin sin sin sin sin ( )

( ) sin cos cos cos sin cos sin ( )

( ) 0 sin cos cos ( )

1 0 0 0 1 1
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P t a y t
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      

      

  

− − −     
     

− −
     =
     − −
     
     

 (3.38) 
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The Jacobian matrix, which maps the differential change of the drive velocities to the 

differential change of the linear and angular velocities of the tool, can be calculated from Eq. (3.36) 

and (3.38) as; 

 

x x x x x
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y y y y y
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 
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J

6 5x




 (3.39) 

3.4.2 Force Transformation Using the Jacobian Matrix 

The Jacobian is used to define the relationship between forces at the tool and the torques at the 

drive motors. The force Jacobian is linked to the velocity Jacobian by the principal of virtual work, 

which denotes that the virtual work done in the tool space (external) and the virtual work done in 

the drive space (internal) should be equal at the static equilibrium. This means, given the 

infinitesimally small displacements at the tool (
Tδ ) in the workpiece frame and the drive frames 

(
q
δ ), equality of work done in both frames can be used as;   

 =T T

WP T Drives qF δ τ δ  (3.40) 

where 
WPF  contains the cutting forces and torques acting on the cutter in the workpiece frame and 

Drivesτ  contains the drive forces and torques; 
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By the definition of the Jacobian; 

 =
T q
δ Jδ  (3.42) 

and substituting it into Eq. (3.40); 

 =WP WP-Tool ToolF T F  (3.43) 

which should be true for all 
q
δ  ( T T

WP Drives
F J = τ ). Therefore; 

 = T

Drives WP
τ J F  (3.44) 

In order to map the cutting forces acted on the tool in the tool coordinate frame to the drive 

torques, the forces in the tool frame have to be transformed to the base coordinate frame in the 

kinematic chain (W.P frame in this study, see Figure 3.9) as; 

 =WP WP-Tool ToolF T F  (3.45) 

where the transformation between the drive torques and the cutting forces acted on tool in the tool 

coordinate frame can be written by plugging Eq. (3.45) in (3.44) as; 

 = T

Drives WP-Tool Tool
τ J T F  (3.46) 

The estimated cutting torque ( ˆ
a ) for the translational drives can be converted to the cutting 

force ( ˆ
aF ) on the corresponding drive by using Eq. (3.11). The Jacobian matrix for the tilting 

rotary table type kinematic configuration used in this work is given as; 
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where s  and c  stands for sine and cosine terms, respectively. The torque components at the tool 

tip are neglected since the primary objective is to find the cutting forces at the tool tip in X, Y, and 

Z directions. Hence, the torque components in the tool tip vector (
t i −

) and the corresponding terms 

in the transpose Jacobian and transformation matrices (marked with 
*

) are set to zero for the rest 

of the chapter. The rotation matrix from tool to workpiece frame is derived from the DH solution 

as; 
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 (3.48) 

where calculating T

WP-Tool
J T  term from Eq. (3.47) and (3.48), and substituting it in (3.46) results 

in; 
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 (3.49) 

From Eq. (3.49) the tool tip forces in the tool coordinate frame can be mapped to the drive torques 

as; 
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Reorganizing Eq. (3.46) in the form of; 



44 

 

 
+

 =  
T

Tool WP-Tool DrivesF J T τ  (3.51) 

where  
+

 is the generalized matrix inverse and gives the tool tip (cutting) forces from the drive 

torque measurements. In summary, the flowchart of the prediction of cutting forces in five-axis 

milling using the feed drive current measurements can be seen in Figure 3.10. 

 

Figure 3.10: Flowchart of the overall procedure 

3.5 Experimental Verification 

The proposed force prediction method from the servo drives’ current commands is experimentally 

validated on the Quaser UX-600 five-axis machining center. The algorithms are run on an external 

PC (Intel Core i7-3.40 GHz CPU, 8GB RAM), which communicates with the Heidenhain CNC 

via TNC Ethernet connection. A multithread real-time code is developed in C++ using the LSV-2 

communication protocol that collects the tool center position, the tangential velocity with 333 Hz 

interpolator sampling frequency and commanded, noise-free digital motor currents, drive speeds, 

and spindle speed with 10 kHz sampling frequency. The workpiece material is Aluminum 7050 

and tests are conducted with two different tools: a 20-mm diameter two-fluted end mill and a 16-

mm diameter two-fluted ball end mill both with a regular pitch and 300 helix angle. Two sets of 
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experiments are conducted, where the first set consists of three-axis and the second set consists of 

five-axis milling operations. Spindle speeds are selected as 1000, 2000, 3000, 4000, 5000 and 5500 

rev/min in order to cover the range of tooth passing frequencies, where the structural modes of the 

drives are located (see Figure 3.7). The reference cutting forces are measured with a stationary 

table dynamometer for three-axis and a rotary dynamometer for five-axis operations throughout 

the experiments. The measured and compensated torques/forces from the drives are compared to 

these reference forces for the verification of the methods. 

Slot milling operations are performed with the 20 mm diameter end mill at 1000, 2000, 3000, 

4000, 5000 and 5500 rev/min spindle speeds where the tooth passing frequencies (
t ) are 33.3, 

66.6, 100, 133.33, 166.67, 183.3 Hz, respectively. The axial depth of cut is selected as 4 mm and 

the feed rate is 0.2 mm/tooth, (see Figure 3.11, Figure 3.12 and Figure 3.13 for X, Y and Z 

directions, respectively).  



46 

 

 

Figure 3.11: Comparison of measured and compensated forces from the feed drive current with reference forces 

measured by table dynamometer for three-axis milling with two-fluted end mill. Axial depth = 4 mm, Radial depth = 

20 mm, feed = 0.2 mm/tooth, X Axis/Direction 
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In X direction (Figure 3.11), without Kalman filter compensation, the average errors between 

the reference forces measured with the dynamometer and estimated forces from drive motor 

current commands at the tooth passing frequency and its harmonics are 161%, 341%, 22%, 64%, 

158% and 49% respectively at the spindle speeds of 1000, 2000, 3000, 4000, 5000 and 5500 

rev/min. The errors are reduced to 18%, 6%, 4%, 12%, 32% and 17% with Kalman Filter 

compensation. The reason behind larger errors for 1000, 2000 and 5500 rev/min in the original 

measured drive signal is that the disturbance FRF of the X drive has modes with large magnitudes 

at the corresponding tooth passing frequency locations (see Figure 3.8), which are compensated 

by the designed Kalman Filter and the errors were reduced greatly as listed above. 

For the Y direction (Figure 3.12), the behavior of the measured drive current is different due 

to the drive’s individual disturbance FRF. In the Y direction, the errors between the reference and 

measured forces from the drive without compensation are 42%, 103%, 113%, 54%, 32% and 175% 

for 1000, 2000, 3000, 4000, 5000 and 5500 rev/min, respectively. After the Kalman filter 

compensation, they are reduced to 6%, 6%, 4%, 7%, 11% and 19%. As it can be seen from the 

results (Figure 3.12), the errors in the uncompensated drive measurement for 3000 and 5500 

rev/min cases are particularly larger than the other spindle speeds. This can be explained in a 

similar fashion with the previous case, the corresponding tooth passing frequencies for these 

speeds are 100 and 183.3 Hz respectively, where the disturbance FRF of the Y drive has two 

distinct modes that distort the drive current measurements (see Figure 3.8). In addition, for the 

5000 rev/min case where the spindle frequency hits a mode location in disturbance FRF exactly at 

83.3 Hz (Figure 3.12-e), the measured drive current is around 4 times higher than the reference 

measurement which is corrected by the Kalman filter transfer function. 
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Figure 3.12: Comparison of measured and compensated forces from the feed drive current with reference forces 

measured by table dynamometer for three-axis milling with two-fluted end mill. Axial depth = 4 mm, Radial depth = 

20 mm, feed = 0.2 mm/tooth, Y Axis/Direction 



49 

 

 

Figure 3.13: Comparison of measured and compensated forces from the feed drive current with reference forces 

measured by table dynamometer for three-axis milling with two-fluted end mill. Axial depth = 4 mm, Radial depth = 

20 mm, feed = 0.2 mm/tooth, Z Axis/Direction 
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Finally, for the 3-axis verification, the Z direction results are given in Figure 3.13 where the 

initial errors between the directly identified forces from the drive measurements and the reference 

are 218%, 102%, 243%, 5%, 312% and 260% respectively for 1000, 2000, 3000, 4000, 5000 and 

5500 rev/min spindle speeds. They were reduced to 23%, 10%, 26%, 4%, 70% and 60% after 

Kalman filter compensation. It should be noted that while the X and Y axes have distinct dominant 

modes, the Z axis modes are more coupled in the disturbance FRF, see Figure 3.7. As a result, 

these modes distort the transmitted force to the drives’ motor current more aggressively compared 

to the X and Y drives. In addition, the forces in the Z direction tend to be lower than in the other 

directions in end milling operations since most cutter tools have low (< 30 degrees) helix angles. 

Low forces which are difficult to be identified from the drive current measurements and 

gravitational compensation in the Z direction performed by CNC to carry the slider/spindle body 

which changes the AC behavior of the Z drive current event at idle positions are the major reasons 

behind the lower accuracy in the Z direction.  

A second set of experiments are conducted with a roughing operation for a turbine blade with 

freeform geometry by using the 16 mm diameter ball end mill. The spindle speed is selected as 

1000 rev/min ( t  = 33.3 Hz). The blade geometry, the extracted single blade, the roughing 

toolpath, and the workpiece after roughing operation with the experimental setup on the Quaser 

UX-600 are illustrated in Figure 3.14. 
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Figure 3.14: (a) Full turbine geometry, (b) Extracted single blade and toolpath in Siemens NX-9®, (c) Experimental 

setup on the Quaser UX-600 and workpiece after roughing operation 

Comparison of the tool tip forces obtained from the feed drive current measurements through 

Kalman Filter compensation and kinematic transformation vs. the rotary dynamometer (reference) 

measurements are given in Figure 3.15, Figure 3.16 and Figure 3.17 for the X, Y and Z directions, 

respectively. The cutting forces estimated from the feed drive current measurements agree with 

reference measurements at the tooth passing frequency and its harmonics with mean errors of 21%, 

16% and 27% for the X, Y and Z axes, respectively.  
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Figure 3.15: Comparison of compensated + transformed forces from the feed drive current measurements and the 

reference forces measured from the rotary dynamometer – X Direction 
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Figure 3.16: Comparison of compensated + transformed forces from the feed drive current measurements and the 

reference forces measured from the rotary dynamometer – Y Direction 
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Figure 3.17: Comparison of compensated + transformed forces from the feed drive current measurements and the 

reference forces measured from the rotary dynamometer – Z Direction 

Discrepancies between the cutting forces identified from the feed drive current commands and 

reference forces measured with the dynamometer can be attributed to errors in friction and inertia 

modeling, inaccuracies in experimentally identified drive disturbance FRFs and the position 

dependency of the structural modes (see Appendix C), especially for the rotary drives. Force 
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prediction accuracy can be increased by investigating the position dependency of the drive 

disturbance FRFs and scheduling the corresponding Kalman Filter gains as a function of drive 

positions. Higher error in Z direction is due to the low cutting forces and varying AC trend of Z 

feed drive current even at idle positions as in the 3-axis milling case. 

3.6 Summary 

This chapter presents a methodology to predict cutting forces at the tool tip from feed drive motor 

current measurements without installing external sensors on the machine tool. The accuracy of the 

cutting force prediction depends on the modeling of friction, disturbance transfer function between 

the force at the tool and motor, kinematics of five-axis machines, and tuning of the Kalman Filter 

to compensate the effects of the structural modes in the disturbance transfer function. The 

bandwidth of the force monitoring can be extended up to the bandwidth of the current loop of the 

controller provided that the structural modes of the drive chain are well separated and modeled. 

The proposed method is targeted to be used for on-line process monitoring and control for 

machining of complex parts, both the methodology and the results are published in [1].
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Chapter 4: Process State Predictions with Spindle Mounted Vibration Sensors 

Considering Speed and Load Dependent Dynamics 

4.1 Overview 

This chapter presents a sensory spindle system to predict tool tip vibrations and process forces by 

considering speed and load dependent spindle dynamics. Spindle is instrumented with externally 

installed vibration sensors (accelerometers) in X and Y directions and an offline map of structural 

dynamics of the system is identified under different preload and speed conditions. The offline map 

is accessed in-process to update the state observers accordingly and predict process states at the 

cutting interface between tool and workpiece with a sensor data fusion algorithm. Process state 

(i.e. tool tip vibration and cutting force) predictions are validated in milling tests with specially 

designed fixtures. 

Although vibration sensors are installed on the spindle externally for research purposes, it is 

aimed to have a sensory spindle system with embedded vibration, force and thermocouple sensors 

in the future to utilize the system for production environment. The sensory spindle system is 

developed to be used as an alternative for the method presented in the previous chapter (Chapter 

3) which uses CNC inherent data solely for process state predictions.  

4.2 System Description and Identification of the Sensory Spindle 

The sensory spindle system used in this study is illustrated in Figure 4.1 with the external sensor 

locations on GF AgieCharmilles – Mikron HPM 800U machine tool with a Step-Tec HPC170 CC 

spindle. The system is developed in collaboration with the Institute of Machine Tools and 

Manufacturing (IWF), ETH Zürich. Although several configurations with several accelerometers 

are used, final configuration in the cutting experiments is described here.  
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Figure 4.1: Overall layout of the sensory spindle with the installed accelerometers (Acc.) and a displacement sensor 

(Disp.) in X direction 

There are five accelerometers in total where four of them are installed on the spindle (Acc. 1, 

2, 3, 5) and one is installed on the slider of the machine tool (Acc. 4) (see Figure 4.1). 

Accelerometer measurements are numerically integrated twice to obtain the corresponding 

displacement signals. A non-contact eddy-current displacement sensor is mounted at the tool shank 

with two different fixtures shown in Figure 4.1 and Figure 4.2. A real-time signal analyzer (LDS 

Dactron Docus II) is used to collect all sensor data at 8192 Hz. An instrumented hammer is used 

to perform the FRF measurements where the impact is given at the tool tip when a dummy tool is 

used whereas it is given across the displacement sensor at the shank for a regular tool since hitting 

a rotating cutter at the tip where sharp edges are located is not possible. Based on the initial FRF 

measurements, it is decided to focus mainly on X direction due to its more responsive nature (see 

Figure 4.3 and Figure 4.6), and a single fixture (Figure 4.1) designed to use the non-contact 
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displacement sensor to measure the tool vibration in-process. System identification and process 

state predictions are also validated experimentally for the Y direction but not presented here to 

avoid repetition. 

4.2.1 Load Dependency of the Spindle Dynamics 

First, load dependency of a dummy tool is investigated. Load is applied in Z direction by using 

magnets with a fixture designed and patented by IWF, ETH Zürich. The system is shown in Figure 

4.2 where the magnet and the fixture are highlighted. With the designed fixture, magnet can be 

moved closer to or further from the tool to decrease or increase the applied load at the tool tip. 

 

Figure 4.2: (a) Setup with the magnet to apply preload in Z direction at the tool tip, (b) dummy tip, (c) face mill 

Load is applied only in Z direction since the effect of load in X and Y directions are found to 

be negligible compared to Z direction for this setup. A special dummy tool (Figure 4.2 – b) is used 

in the identification experiments but a face milling tool (Figure 4.2 – c) is used for the cutting 

experiments. The main reason being that the solid cylinder structure of the dummy tip with a planar 

surface at the bottom allows the magnet to apply higher forces than the face mill configuration. 
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Results for the dummy tool are presented to show the effect of the load in spindle-holder-tool pair 

dynamics in a wider range. Load applied at the tool tip by the magnet is calibrated with the 

dynamometer measurements located at the bottom of the system (Figure 4.2 – a). Five different 

load conditions are applied in Z direction at first as follows: 0, 100, 230, 330 and 430 N.  

Tool tip FRFs in X direction under different load conditions are shown in Figure 4.3. The 

dominant mode is shifting from 980 Hz to 800 Hz as the load ( magnet ZF − ) increases and the behavior 

between 600 and 1200 Hz is quite different between no load (0 N) and highest load (430 N) cases 

for the FRFs in X direction. Magnitudes at the dominant modes around 980 Hz and around 625Hz 

are also decreasing as load ( magnet ZF − ) increases for the FRFs in Y direction (Figure 4.3). 

 

Figure 4.3: Load dependency of the tool tip FRF in X and Y directions 

In addition, FRFs between the displacement sensor and the five accelerometers installed on the 

spindle for different load conditions are shown in Figure 4.4 and Figure 4.5 for the X direction 

where the Y direction also shows a very similar trend. In Figure 4.4, FRFs for the accelerometers 

located below the spindle assembly to the machine tool location are given which are closer to the 



60 

 

tool tip. FRFs between the tool tip (
dispd ) and the accelerometers ( ( 1,...,5)

iaccd i = ) are varying with 

load in a similar pattern. Hence, these effects should be considered in-process to predict the process 

states at the tool tip from accelerometer measurements. 

  

Figure 4.4: Load dependency of the tool tip to accelerometer FRFs below spindle assembly location in X direction 

In Figure 4.5, FRFs for the accelerometer on the slider of the machine (Acc. 4) and at the top 

of the spindle itself (Acc. 5) are shown. It should be noted that these accelerometers are located 

above the spindle assembly location which is the main reason behind their different behavior than 

the accelerometers located below (Figure 4.4). Distinct behavior of the Acc. 4 FRF is due to its 
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location on the machine tool rather than the spindle body itself (see Figure 4.1) which makes it a 

good candidate for spindle assembly health monitoring for future studies. 

 

Figure 4.5: Load dependency of the tool tip to accelerometer FRFs above spindle assembly location in X direction 

4.2.2 Speed Dependency of the Spindle Dynamics 

Speed dependency of the spindle dynamics is investigated from 0 to 15000 rev/min with 1500 

rev/min increments where impact is applied with an instrumented hammer across the displacement 

sensor as the tool is rotating. 50 impacts are applied for each speed to filter out the effect of rotating 

tool from the displacement sensor readings by subtracting the pure rotation parts from the tap test 

sections in frequency domain. Tool tip FRF variation with spindle speed is given in Figure 4.6. 
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Figure 4.6: Speed dependency of the tool tip FRF in X and Y directions 

Speed dependency of the dynamics at the tool tip are evident in the measurements (Figure 4.6) 

since magnitude at the dominant mode (980 Hz) decreased by 48% and 82% in X and Y directions, 

respectively. On the contrary, magnitude of the mode around 600 Hz increased by 45% and 25% 

for X and Y directions, respectively. This behavior can be attributed to variations in the centrifugal 

forces, gyroscopic moments acting on bearings, dynamic properties of the subassemblies (spindle, 

holder and tool) and the bearings themselves. Thus, tool point and tool point to accelerometer 

location FRFs measured at the idle state of the machining center will lead to incorrect process state 

predictions. As in the load dependency case, FRFs between the tool tip and the accelerometer 

locations (closest - Acc. 1 and furthest - Acc. 5 to the tool tip as an example) are shown in Figure 

4.7 for the X direction. These FRFs are provided here since accelerometers installed on the non-

rotating parts of the system will be used to predict the tool tip vibration and process forces which 

are exciting the system at the rotating parts (tool shank and tip).  
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Figure 4.7: Speed dependency of the tool tip to accelerometer FRFs (
1accd  and 

5accd ) in X direction 

Similar to the load dependency case, dynamics of the tool tip and tool tip to accelerometer 

location FRFs are quite responsive to speed as well.  

4.3 Load and Speed Dependent Dynamics Map of the Spindle 

As shown in the previous two sections, dynamics of the spindle, holder and tool system vary with 

load and speed. In this study, a map of the spindle dynamics is created by varying the load from 0 

to 450 N with around 50 N and speed from 0 to 15000 rev/min with 1500 rev/min increments. 110 

FRFs are measured in X and Y direction (55 FRFs each) where 50 tap tests are performed for each 

condition to filter out the effect of spindle revolution on sensor measurements and take the average 

of them for a smooth, noise-free FRF. After the tap tests, a map for varying dynamics of the spindle 

with respect to load and speed is created which is accessed by the process state prediction 

algorithm, so it can self-adjust itself to in-process conditions. As an example, speed dependency 
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of the tool tip FRF is shown in Figure 4.8 under different selected load conditions which gives the 

dynamics map of the structure in the X direction.  

 

Figure 4.8: Load and speed dependent dynamics map of the X direction (tool tip FRF) 

FRFs between the displacement sensor and the accelerometers are also measured under the 

same conditions to be used for process state predictions. For example, FRFs between the tool tip 

and the first accelerometer (Acc. 1 – see Figure 4.1) are given for 0 and 400 N load cases in Figure 

4.9. 

 

Figure 4.9: Map of the tool tip to accelerometer FRFs (
1accd ) in X and Y directions 

Results presented in Figure 4.9 show the necessity of considering the varying system dynamics 

in process state predictions at the tool tip. Measurements presented in this chapter so far belong to 
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the dummy tool/face mill cutter where the corresponding FRFs of additional tools used in the 

verification experiments are provided as they are introduced in the following sections. 

4.4 State Observer Design and Weighted Average Sensor Data Fusion  

4.4.1 State Observer Design 

To design state observers for the measured system dynamics, corresponding transfer functions 

must be known in s-domain, so they can be transformed to their corresponding state space 

representations. The common methodology to achieve this transformation is to perform manual 

curve-fitting techniques through selecting the “modes” in the measured FRF manually and obtain 

the transfer function in s-domain as done in Chapter 3. However; considering the excessive amount 

of FRFs measured in this portion of the research, an automated way of achieving this curve-fitting 

to obtain the transfer functions in s-domain is necessary.  

Once the FRFs are measured through the modal tap tests, they are fed in to the MATLAB’s 

System Identification Toolbox® (Release 2016b or higher) [85] which utilizes a Vector Fitting 

method with Sanathanan-Koerner (SK) iterations and returns the corresponding modal parameters 

of the transfer function to be expressed in s-domain. Few examples for the curve fitting 

performance are provided in Figure 4.10 for both tool tip and tool tip to accelerometer location 

FRFs for the X direction. 
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Figure 4.10: Examples for automated curve fitting to measured FRFs (in X Direction) 

For a given FRF measurement, MATLAB’s “modalfit” built-in function [85] provides the 

modal parameters after the curve fit as the natural frequencies (
nk ), damping ratios (

k ) and the 

residues ( &k ka  ). As described in Chapter 3, transfer functions between the input and the 

outputs of the system can be written in the following from;  
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where vibrations (displacement) at the tool tip is 
dispd  and ( 1,...,5)

iaccd i =  at the accelerometer 

locations on the non-rotating parts of the spindle, ( 1,...,5)m =  is the number of transfer functions 

between the displacement sensor and the accelerometers. Force ( 1F  ) component has a fixed index 

since process forces excite the system closer to the measurement location at the tool tip.  
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Having the transfer functions (
dmsys  or 

Fmsys ), procedure of obtaining the expanded state 

space system, designing the Kalman Filter observer and identifying the corresponding noise 

covariance parameters in an automated way are performed in a similar way as presented in Chapter 

3 and Chapter 5, respectively. Hence, they are not described in detail here again. Instead, 

construction of the input signal in the extended state space model with both DC and AC 

components is explained which is performed to achieve better state predictions considering the 

rich frequency content of the vibration sensors mounted on the spindle. Procedure is explained for 

the displacement transfer function ( ( ) ( )
iacc dispd s d s ) but it is identical for the force transfer 

function (
1( ) ( )

iaccd s F s ). First, the following state space model is obtained from the curve-fitted 

transfer function as follows; 
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y t

= +
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disp disp
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C x
 (4.2) 

Assumption of high sampling over the excitation frequency and treating the input signal as 

piecewise constant is not followed here as in Chapter 3 and the displacement signal (
dispd )  is 

denoted by its AC and DC components in s domain as follows; 

 _ _ _ _ 2 2
( ) ( ) ( ) ( )disp disp DC disp AC disp DC disp AC

S rs

s
d s d s d s w w s

s −

= + = +
+

  (4.3) 

where the derivative of the DC input is the dc process noise (
_disp DCw ) and the AC input is 

represented as a cosine function with a periodic noise disturbance of (
_disp ACw ) and base frequency 

of spindle revolution per second ( S rs− ). As given in Chapter 3, state space representation of the 

cosine function with the updated states is; 
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Substituting Eq. (4.3) and (4.4) into Eq. (4.2) gives; 
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Input of the system (
_disp disp DCd d= +

dispF dispF
C x ) is considered as one of the states as; 
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where the Kalman observer state space system is written with its gain vector of 
disp

K ; 
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  (4.7) 

Derivation of Kalman Filter transfer function to estimate the actual displacement signal ( ˆ
dispd

) through minimizing the error in state predictions is explained in Chapter 3 from Eq. (3.24) to 

(3.30). It should be noted that the contribution in this chapter does not lie within process or system 

modeling, but in investigating the in-process variation of spindle dynamics and showing that these 
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variations should be considered to update the state observers to predict process states from spindle 

mounted vibration sensors accurately. 

As an example, corresponding Kalman Filter FRFs of force to displacement (
Fmsys ) or 

displacement to displacement (
dmsys ) system transfer functions are provided in Figure 4.11 for 

the FRFs shown in Figure 4.10.  

 

Figure 4.11: Measured (force to displacement - 
1Fsys , displacement to displacement - 

1dsys ), Kalman and 

Compensated FRFs for the cases presented in Figure 4.10 

Considering both DC and AC components of the input signals ( 1F  for force and 
dispd  for 

displacements FRFs) improves the compensation performance, which are also present at the 

experimental results where the rich frequency content of the process states are successfully 

captured. 
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4.4.2 Weighted Average Sensor Data Fusion 

In this section, the weighted average sensor data fusion method used to predict process forces and 

vibrations at the tool tip from all five accelerometer signals is described. Although one 

accelerometer in each direction can be used to predict the process states in an acceptable level, 

data fusion provides enhanced accuracy and the advantage of eliminating sensor failure based 

down times in the production. Overall framework of the prediction procedure with data fusion is 

provided in Figure 4.12 with a flowchart where the supplementary visual on the experimental setup 

can be seen in Figure 4.13.  

 

Figure 4.12: Flowchart of tool tip displacement prediction from accelerometers on spindle structure (force 

prediction follows the same procedure) 

Acceleration measurements collected from the sensors are integrated twice by using the 

Forward Euler method to obtain the displacement (vibration) signals in discrete-time domain as 

follows; 
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These displacements are fed into their individual Kalman Filter transfer functions to 

compensate the distortions in the signals coming from the load and speed dependent structural 
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dynamics of the spindle system. Compensated displacements from each sensor are used to predict 

the displacement at the tool tip by utilizing a weighted average data fusion method.  

 

Figure 4.13: Framework of tool tip displacement prediction from accelerometer measurements 

Weight assignment to individual sensors are done by considering the magnitude of the 

measured FRFs between the tool tip and accelerometers. First, magnitudes are normalized with 

respect to the highest value at every frequency along the spectrum. Then, weights are assigned to 

the accelerometers accordingly in a linear fashion which are used in the data fusion stage.  

As an example, FRFs between the tool tip and accelerometer locations for the 20 mm diameter 

solid end mill cutter with 2 flutes (see Figure 4.13) are given in Figure 4.14 for 15000 rev/min 

with no load case. It is evident from these FRFs that each accelerometer has different magnitude 

of response along the frequency spectrum with respect to tool tip. Hence, it is proposed to assign 

weights to these sensors and prioritize them according to their magnitudes at a given frequency.  
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Figure 4.14: Tool tip to accelerometer location FRFs for 15000 rev/min without load case (20 mm diameter 2 fluted 

cutter shown in Figure 4.13) 

First, weights (%) are assigned correspondingly to each accelerometer as follows;  
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Calculated normalized weights in 0 to 1 range are given in Figure 4.15 for each sensor as a 

percentage. Naturally, summation of all weights at a certain frequency ( ) gives 1 (or 100% as a 

percentage); 
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Figure 4.15: Assigned weights to the tool tip to accelerometer location FRFs given in Figure 4.14 
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In summary, curve fitted FRFs (given in Figure 4.14) are converted to discrete-time domain 

using bilinear (Tustin) approximation to calculate the weights along the frequency spectrum 

(Figure 4.15). These discrete-time transfer functions are then used to obtain the process state 

predictions from compensated sensor measurements where the displacement predictions are 

calculated as follows;  
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  (4.11) 

and the force predictions are calculated in a similar fashion with the corresponding discrete-time 

displacement to force transfer functions; 
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  (4.12) 

This way, depending on the excitation frequency to the system (and its harmonics) coming 

from the cutting action at the tool-workpiece interface, the predictions are biased towards the 

signals coming from the sensors with higher weights at those specific frequencies. For example, if 

a milling operation with a 2-fluted end mill cutter is performed at 15000 rev/min, measurement of 

the accelerometer number 5 will be the most dominant signal at the tooth passing frequency (500 
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Hz) where accelerometer number 4 and 1 are the most dominant ones at the first and second 

harmonics of the tooth passing frequency, respectively (with the FRFs shown in Figure 4.14). 

4.5 Experimental Verification 

Presented methodology is verified through milling experiments where the workpiece material is 

Aluminum 7075 and tests are conducted with two different tools: a 40-mm diameter five-fluted 

face mill and a 20-mm diameter two-fluted end mill with a regular pitch angle. Spindle speeds are 

selected as 9000, 12000 and 15000 rev/min to cover a wide range of excitation frequency where 

the speed dependency of the system dynamics is evident. A fixture is designed by IWF in ETH 

Zürich to mount the displacement sensor to achieve in-process displacement measurement from 

the tool shank which has a dominant mode around 200 Hz (see Figure 4.16).  

 

Figure 4.16: FRFs of tool tip and tool tip to fixture setup (A – location of hammer impact, B – Tool tip 

displacement measurement, C – Fixture displacement where the sensor is assembled)  

As shown in Figure 4.16, after 250 Hz, FRF between the tool tip to fixture tip (location A to 

C, see Figure 4.16) is three orders of magnitude smaller than the tool tip FRF itself (location A to 
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B) in both X and Y directions. The fixture is kept at the presented form and the results are high 

pass filtered with a 250 Hz cutoff frequency to avoid this effect on the measurements. 

In addition, dynamics of the dynamometer should also be considered for the high frequency 

content. Force to force FRFs in X and Y directions are measured with the workpiece installed on 

the dynamometer (see Figure 4.17) and the dynamically distorted force measurements are 

compensated through Kalman Filters. 

 

Figure 4.17: Measured force to force FRF of the dynamometer, designed Kalman Filter and resulting compensated 

FRFs in X and Y directions 

4.5.1 Case 1: 40 mm diameter, 5-fluted Face Mill 

First, 3 slot cutting experiments are performed with the 40 mm diameter, five-fluted face mill at 

9000, 12000 and 15000 rev/min spindle speeds. Axial depth of cut is selected as 1.5 mm and the 

feed rate is 0.1 mm per tooth. To introduce rich frequency content to the measurements, impacts 

are given at the tool shank with an instrumented hammer during the cut for 9000 and 12000 rev/min 

speeds.   
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Tool vibration (at the shank where the displacement sensor is located) predictions from 

accelerometer measurements are compared with the displacement sensor measurements for three 

spindle speeds which are presented in Figure 4.18, Figure 4.19 and Figure 4.20 for 9000, 12000 

and 15000 rev/min spindle speed cases, respectively. 

 

Figure 4.18: Tool vibration predictions - 
S  = 9000 rev/min, slot milling, axial depth of cut = 1.5 mm, feed = 0.1 

mm/tooth (
dispd  - Measurement from displacement sensor, ˆ

dispd - Estimated displacement from accelerometers 

through sensor fusion) 

For 9000 rev/min, tooth passing frequency corresponds to 750 Hz and the first harmonic is at 

1500 Hz where both are located at speed and load dependent regions in the FRFs. Error between 

the displacement sensor measurements and predictions from accelerometers is below 15% along 

the cut including the transient regions at the beginning and the end of the cut. Displacements due 

to the impacts given to the tool shank during the cut are predicted with a high accuracy as well 

which shows that the system can monitor the frequency-rich transients. 
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The next speed is 12000 rev/min and the tooth passing frequency is 1000 Hz with its first 

harmonic located at 2000 Hz. Similar to the previous case, errors between the displacements 

measured with the displacement sensor and predicted from accelerometers are below 15%. 

 

Figure 4.19: Tool vibration predictions - 
S  = 12000 rev/min, slot milling, axial depth of cut = 1.5 mm, feed = 0.1 

mm/tooth (
dispd  - Measurement from displacement sensor, ˆ

dispd - Estimated displacement from accelerometers 

through sensor fusion) 

For 15000 rev/min, predictions in both entry and exit transients as well as the steady state 

portion are in good agreement with the measurements where the error is below 20%. Higher errors 

compared to lower speeds is due to the high frequency content with the first harmonic of the tooth 

passing frequency being at 2500 Hz. 
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Figure 4.20: Tool vibration predictions - 
S  = 15000 rev/min, slot milling, axial depth of cut = 1.5 mm, feed = 0.1 

mm/tooth (
dispd - Measurement from displacement sensor, ˆ

dispd - Estimated displacement from accelerometers 

through sensor fusion) 

In addition to the displacements, process forces are predicted as well which are given in Figure 

4.21, Figure 4.22 and Figure 4.23 for 9000, 12000 and 15000 rev/min cases, respectively. For the 

force predictions, since the impact was given at the tool shank during the cut for 9000 and 12000 

rev/min speed cases (no impact for 15000 rev/min), dynamometer measurements do not reflect the 

corresponding transients accurately (although they are dynamically compensated) due to the low 

contact stiffness between the tool and the workpiece during the operation. Hence, performance of 

force prediction is checked at steady cut portions, rather than the transients where the impacts are 

given at the tool shank. 
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Figure 4.21: Process force predictions in normal direction - 
S  = 9000 rev/min, slot milling, axial depth of cut = 

1.5 mm, feed = 0.1 mm/tooth (
t xF −

 - Measurement from dynamometer in X direction of tool frame, 1F̂  - Estimated 

force from accelerometers through sensor fusion) 

Results for the 9000 rev/min speed (see Figure 4.21) show that force predictions from 

accelerometers and the measurements from the dynamometer agree in an acceptable level where 

the average error along the cut is below 20%. Entry to cut transients are predicted accurately and 

the low amplitude forces at the steady cut portion are captured. 

Next, 12000 rev/min speed case shown in Figure 4.22 has a similar performance where the 

average error is below 25% at the entry-exit to cut transients and 18% at the steady cut portions. 
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Figure 4.22: Process force predictions in normal direction - 
S  = 12000 rev/min, slot milling, axial depth of cut = 

1.5 mm, feed = 0.1 mm/tooth (
t xF −

 - Measurement from dynamometer in X direction of tool frame, 
1F̂  - Estimated 

force from accelerometers through sensor fusion) 

For 15000 rev/min case, although average errors at the spindle (250 Hz) and the tooth passing 

(1250 Hz) frequencies are below 20%, error at the first harmonic of the tooth passing frequency 

(2500 Hz) reaches to 45-50%. This is the result of the frequency range (200-1800 Hz) used in the 

curve fitting with MATLAB’s system identification toolbox [85] since the FRFs are measured 

until 2000 Hz. To overcome this issue and improve the predictions, identification experiments 

(FRF measurements) can be repeated with a higher impact force, or with a harder hammer tip (i.e. 

metal) so higher frequencies can be compensated with the proposed algorithm. 
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Figure 4.23: Process force predictions in normal direction - 
S  = 15000 rev/min, slot milling, axial depth of cut = 

1.5 mm, feed = 0.1 mm/tooth (
t xF −

 - Measurement from dynamometer in X direction of tool frame, 
1F̂  - Estimated 

force from accelerometers through sensor fusion) 

4.5.2 Case 2: 20 mm diameter, 2-fluted End Mill 

Next, quarter, half and full immersion cuts are performed at 9000, 12000 and 15000 rev/min 

spindle speeds, respectively, with a 20 mm diameter 2-fluted end mill. Axial depth of cut is 

selected as 5 mm and the feed rate is kept at 0.1 mm per tooth. Load in Z direction is detected 

below 35-40 N both from the dynamometer and Z drive current measurements (see Chapter 3), 

hence the corresponding system dynamics are used to update the state observers. To show the 

effectiveness of the proposed method in detail, individual vibration and force predictions from 

each accelerometer are shown with the global prediction after data fusion. 

Results for the quarter immersion cut (5 mm width) at 9000 rev/min speed are shown in Figure 

4.24.  
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Figure 4.24: Tool vibration and process force predictions in normal direction - 
S  = 9000 rev/min, quarter 

immersion milling, axial depth of cut = 5 mm, feed = 0.1 mm/tooth (
dispd  - Measurement from displacement sensor, 

ˆ
dispd  - Estimated displacement from accelerometers through sensor fusion, ˆ ( 1,...,5)

maccd m =  - Estimated 

displacements from individual accelerometers without sensor fusion, 
t xF −

 - Measurement from dynamometer in X 

direction of tool frame, 1F̂  - Estimated force from accelerometers through sensor fusion, ˆ ( 1,...,5)
maccF m =  - 

Estimated forces from individual accelerometers without sensor fusion) 

Vibrations at the tool shank are predicted with a 15% error after data fusion. In addition, 

predictions from individual accelerometers can also be seen in Figure 4.24 which shows that if 

desired, any one of these sensors can be used individually to predict the states, but with a lower 

accuracy. Each sensor provides better predictions at the frequencies where they have higher 

magnitudes at their FRFs and correct each other with the weighted average method. For process 

forces, despite the intermittent nature of the quarter immersion cut, predictions have a good 

agreement with the dynamometer measurements. Predictions from individual sensors have 14%, 
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16%, 15%, 21% and 18% error between the dynamometer measurements from first to fifth 

accelerometer, respectively. After feeding them to the weighted average data fusion algorithm, 

maximum error is reduced to 8%.  

A half immersion experiment is performed with 12000 rev/min speed (see Figure 4.25) and 

vibration predictions have 9% error in the steady cut region. For the force predictions, the error is 

around 20% at the entry region and 17% at the exit, steady cut portion has less than a 6% error 

since the multiple sensors are correcting each other with the data fusion.  

 

Figure 4.25: Tool vibration and process force predictions in normal direction - 
S  = 12000 rev/min, half 

immersion milling, axial depth of cut = 5 mm, feed = 0.1 mm/tooth ( dispd  - Measurement from displacement sensor, 

ˆ
dispd - Estimated displacement from accelerometers through sensor fusion, ˆ ( 1,...,5)

maccd m =  - Estimated 

displacements from individual accelerometers without sensor fusion, t xF −  - Measurement from dynamometer in X 

direction of tool frame, 1F̂  - Estimated force from accelerometers through sensor fusion, ˆ ( 1,...,5)
maccF m =  - 

Estimated forces from individual accelerometers without sensor fusion) 
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Finally, a slot cutting experiment is performed at 15000 rev/min speed (see Figure 4.26). Tool 

vibration predictions suffer at the beginning and end of the cut whereas the prediction error is 

below 5% in the steady cut region. Force predictions have less than 9% error in entry and exit 

regions, and it drops to 4% during a steady cut. 

 

Figure 4.26: Tool vibration and process force predictions in normal direction - 
S  = 15000 rev/min, full immersion 

milling, axial depth of cut = 5 mm, feed = 0.1 mm/tooth (
dispd  - Measurement from displacement sensor, ˆ

dispd  - 

Estimated displacement from accelerometers through sensor fusion, ˆ ( 1,...,5)
maccd m =  - Estimated displacements 

from individual accelerometers without sensor fusion, 
t xF −

 - Measurement from dynamometer in X direction of tool 

frame, 1F̂  - Estimated force from accelerometers through sensor fusion, ˆ ( 1,...,5)
maccF m =  - Estimated forces from 

individual accelerometers without sensor fusion) 

The difference between two teeth in terms of chip load (hence force) in all speed cases is due 

to the runout at the tool tip which is measured as 35-40 micron. The same behavior is not seen in 
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the vibration measurements and predictions since they are located at the tool shank, instead of the 

tool tip where cutter flutes are interacting with the workpiece mounted on the dynamometer. 

4.6 Summary 

This chapter presents a tool vibration and cutting force prediction method with spindle mounted 

vibration sensors. Speed and load dependent system dynamics are identified through modal tap 

tests with specially designed fixtures which are then used to update the state observers according 

to in-process conditions. In addition, multiple sensors installed strategically on spindle structure 

are used with a data fusion algorithm where prioritizing sensors with a higher magnitude of 

response along the frequency spectrum improves prediction accuracy. Using multiple sensors also 

improves robustness with reinforced process state predictions and reduces the risk of downtimes 

due to sensor failures. The algorithm is experimentally verified in milling tests.   
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Chapter 5: On-line Chatter Detection in Milling using Spindle and Feed Drive 

Motor Current Measurements 

5.1 Overview 

This chapter presents an on-line chatter detection method in milling using drive motor current 

commands supplied by the CNC system. The methodology is described by using the spindle drive 

motor current command although it has been applied to the feed drives as well which is 

demonstrated in the results section. The transfer function of spindle velocity controller is 

constructed by reading the control law parameters and measuring the Frequency Response 

Function (FRF) of the system automatically using an external computer communicating with the 

CNC in real time. By subtracting the rigid body based FRF from the measured FRF of the velocity 

controller that includes the flexibilities, the structural modes of the spindle drive are identified. 

The closed loop transfer function between the cutting torque at the tool and corresponding noise 

free digital current commanded by the CNC is formed. The effects of structural dynamic modes of 

the spindle are compensated via a proposed observer. The bandwidth of the compensated FRF of 

the current command over cutting torque disturbance has been increased to 2.5 kHz with 10 kHz 

communication speed limit of the CNC with external PC. After removing the forced vibration 

components, the frequency and presence of chatter are detected from the Fourier Spectrum of the 

current commands supplied by CNC in real time. The proposed system is experimentally validated 

in milling tests. 

5.2 Spindle Drive System Identification 

As in the feed drive system described in Chapter 3, the cutting forces at the tool tip are transmitted 

to the spindle motor as disturbance torque through the drive structure and servo amplifier. The 
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total torque delivered to the spindle motor ( mS ) is spent to overcome friction, inertial and cutting 

loads as given in Eq. (3.1); 

 S
mS tS actS eS fS cS

d
K I J

dt
  


= = + +  (5.1) 

where S  is the angular velocity of the spindle shaft, eSJ  is the equivalent inertia of the spindle 

structure, cS  is the cutting and fS  is the friction torque which is identified using the Coulomb 

Friction model for the spindle drive since it often operates with a constant velocity during cutting 

operation; 

 fS coulomb S e SB  −= +   (5.2) 

The Coulomb friction ( coulomb S − ) and viscous friction coefficient ( eB ) are identified by 

conducting series of tests at steady state speeds while measuring the current, and the inertia ( eSJ ) 

is estimated from the step response of the velocity changes as described in [1] and [55]. The 

identified mechanical transfer function parameters of the spindle drive are given in Table 5.1. 
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Table 5.1: Induction motor parameters of the spindle drive (1st Speed Range = 0-3300 rev/min, 2nd Speed Range = 

3300-24000 rev/min). Identified mechanical parameters: 20.0316[kg.m ]eSJ = , 0.009[Nm/(rad/s)]eSB = , 

1.343[Nm/A]tSK =  for the 1st and 1.571[Nm/A]tSK =  for the 2nd Speed Ranges. (# of poles (P) = 2) 

 
1st Speed Range 

(0-3300 rev/min) 

Wye-

Delta 

Starter 

2nd Speed Range 

(3300-24000 rev/min) 

SR  (Stator Resistance) 0.156 

YD

Winding

Switch



→

 

0.156 

rR  (Rotor Resistance) 0.135 0.135 

SX  (Stator Leakage Reactance) 0.0042 0.00024 

rX  (Rotor Leakage Reactance) 0.0041 0.00024 

mX  (Motor Magnetizing Reactance) 0.0213 0.0127 

Nominal Frequency (Hz) 100 100 

The friction and inertial loads are separated from the motor torque measurements to predict the 

cutting torque for the spindle drive. However; the cutting forces are distorted by the structural 

dynamics of the spindle (or feed) drive system as they are transmitted to the motor’s current 

amplifier as a disturbance torque. The motor torque is proportional to the actual current ( actSI ) 

supplied to the motor where tSK  is the torque constant. While the actual ( actI ) and nominal 

command current ( nomI ) can be assumed to be the same for permanent magnet DC servo motors 

used in feed drives within the current loop bandwidth which leads to a speed independent constant 

value for 
tK , the actual current is both speed and disturbance load dependent for induction motors 

used on spindle drives. Hence, the transfer function between the actual and commanded nominal 

current needs to be derived as a function of winding and speed for induction motors in order to 



89 

 

estimate the disturbance torque. The spindle drive’s transfer function is modeled to predict the 

chatter from motor current as follows. 

The five-axis Quaser UX-600 machining center is equipped with Weiss 176039 – V7 type 

spindle with an induction motor which has been used to validate the proposed chatter detection 

algorithm. The machine is controlled by Heidenhain iTNC 530 CNC. The velocity control block 

diagram of the spindle drive is given in Figure 5.1-a where both velocity ( G ) and current ( IG ) 

controllers have a Proportional Integral (PI) structure whose gains are directly obtained from the 

CNC as; 

 
20 600 3.1 1010

; I

s s
G G

s s


+ +
= =  (5.3)   

 

Figure 5.1: a) Block diagram of the spindle control loop ( G
 = Velocity Controller, 

nom  = Nominal Velocity, 

act  = Actual Velocity, 
IG  = Current Controller, 

nomI  = Nominal Current, 
actI  = Actual Current, 

bK  = Back emf 

constant = 0.12 V/rad/s. spG  = Spindle Drive), b) Induction motor equivalent circuit (3 phase symmetrical, 

, ,0k q d= ), Slip = difference between synchronous and operating speed: ( )s r sS n n n= − where 
sn  is stator 

electrical and 
rn  is rotor mechanical speed, ( X L= [86]) 
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The closed loop transfer function of the current loop is derived from the winding parameters 

of the induction motor of the spindle. The equivalent circuit of the induction motor is given in 

Figure 5.1-b with the winding parameters specified by the manufacturer as listed in Table 5.1. 

The derivation of voltage equations in arbitrary reference frame for a 3-phase symmetrical 

induction motor are given in [86] and summarized as follows; 
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 (5.4) 

where ss s MX X X= +  and ' '

rrr MX X X= + . The angular velocity of the arbitrary reference frame 

and base electrical frame are a  and b , respectively, and   terms are the flux linkages per 

second as a function of 3-phase current terms ( ( , , )q d si ) [86]. '

( , ,0)q d ri , '

( , ,0)q d rV , '

( , ,0)q d r  terms are the 

rotor variables referred to the stator windings by the turn ratios of the rotor rN  and stator sN  

components as; 
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 ' ' '

( , ,0) ( , ,0) ( , ,0) ( , ,0) ( , ,0) ( , ,0); ;r r r
q d r q d r q d r q d r q d r q d r

s s s

N N N
i i V V

N N N
 = = =  (5.5) 

Electromagnetic torque generated by the induction motor is derived from the energy stored in 

the coupling field in machine frame [86] which can be expressed in term of d-q phase currents as; 

 ' '3
( )( )( )

4

M
e qs dr ds qr

b

XP
T i i i i


= −  (5.6) 

As shown in Eq. (5.6), unlike in permanent magnet dc servo motor, the torque is not 

proportional to current for induction motors but it is a function of both the speed and the amount 

of field load [86]. However; when the induction motor is driven using field-oriented control (as in 

iTNC 530), the flux linkage and torque components of current are aligned along the orthogonal d 

(direct) and q (quadrature) axes, respectively [86]. This orthogonal alignment enables dynamic 

torque response given that the flux linkage is not affected when the torque is controlled by q-axis 

current. Hence, the induction motor behaves similar to a DC motor for certain speed and load 

ranges provided that the parameters are calibrated for each range from the energy stored in the 

coupling field in machine frame as detailed in [55], [87], [88]. In this study, once the commanded 

current, hence the voltage input to the induction motor is known, d and q-axis components of the 

current are simulated, and the generated torque is calculated from the q-axis current component 

[86], [89]. It is observed that the relation between the q-axis current and the generated torque shows 

consistent characteristics within the first and second speed ranges which agrees with Heidenhain 

CNC’s tabulated steady state induction motor torque parameters given in Table 5.1. 

Due to highly non-linear nature of the induction motor system [86], and the couplings between 

the q and d frames, the analytical derivation of its transfer function is not a trivial task without 

considerable assumptions [89]. Therefore, a time domain model of the induction motor has been 



92 

 

constructed by implementing the governing motor Equations (5.4), (5.5) and (5.6) in 

MATLAB/Simulink® environment. The harmonic response of the motor current is simulated by 

inputting a sinusoidal voltage ( ( ) sinV t t= ) with a unit amplitude and obtaining the amplitude (

aI ) and phase ( ) of the current as ( ) sin( )aI t I t = −  using the motor winding parameters given 

in Table 5.1. The frequency response function is obtained up to 2500 Hz which is the limit of the 

CNC’s velocity loop Nyquist sampling frequency, and the following transfer functions are 

identified from the curve fitting simulations based on the induction motor model for two speed 

ranges as follows; 
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1

2

2

( ) 1
; Speed range 1 

( ) 1.658 7 0.002008 0.7521

 (1-3300) [rev/min]

( ) 1
; Speed range 2 

( ) 5.968 8 0.0003651 0.2106

 (3300-24000) [rev/min]

act

act

I s

V s e s s

I s

V s e s s

=
− + +



=
− + +



 (5.7) 

Since the current and velocity controller parameters are obtained from the CNC directly (Eq. 

(5.3)), having the induction motor’s model enables us to calculate the open and closed current loop 

transfer functions from simulations. The aim of having this model and calculating the current loop 

transfer functions is to leave the spindle drive’s transfer function ( ( )spG s ) as the only unknown in 

the system (Figure 5.1-a), and identify it ( ( )spG s ) from the open velocity loop (Eq. (5.9)) FRF 

measurement (Figure 5.3-a) as described in this section. After this is achieved, the transfer function 

between the disturbance torque ( d ) and the commanded current ( nomI ) (Eq. (5.12)) can be 

calculated which is then used for compensating the dynamical distortions in the commanded 

current signal with the proposed observer for robust chatter detection. 
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For the CNC systems where the system identification toolbox allows; the induction motor’s 

transfer function can also be identified from open or close loop current FRF measurements to avoid 

modeling the induction motor. However; some induction motors have multiple speed ranges and 

it is not always possible to measure the current loop FRF for each speed range depending on the 

CNC installed on the machine tool. Therefore, once the induction motor is modeled, after 

identifying the spindle drive’s transfer function ( )spG s ; open/closed loop current FRF, hence the 

open/closed loop velocity and finally the disturbance FRF for each speed range can be obtained to 

be used for chatter detection as described in the following sections. The procedure is described 

step by step as follows; 

First, by combining the transfer functions of the controller Eq. (5.3) and the motor circuit Eq. 

(5.7), the closed loop transfer function of the current controller for two speed ranges ( 1,2 ( )mG s− ) 

are evaluated as follows; 

 

2

1 4 3 2

1
2

2 4 3 2

2

( ) 0.0093 3.185 50.5
( )

( ) 4.973 10 6.033 6 0.01166 3.38 50.5

( ) 0.0093 3.185 50.5
( )

( ) 1.79 10 1.098 6 0.00995 3.353 50.5

act
m

nom

act
m

nom

I s s s
G s

I s e s e s s s

I s s s
G s

I s e s e s s s

−

−

+ +
= =

− + − + + +

+ +
= =

− + − + + +

 (5.8) 

The FRF of the closed current loop is simulated and compared with the experimental 

measurements collected from Heidenhain CNC (TNCOpt®) system identification tool box through 

sine sweep tests for both speed ranges, see Figure 5.2. The test was conducted at zero speed for 

range 1, and at 4000 (rev/min) for the second speed range.  
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Figure 5.2: a) Simulated and Measured FRF of Closed Loop Current Controller for the 1st Speed Range 

(Bandwidth – Measured=385 Hz, Simulated=360 Hz), b) for the 2nd Speed Range (Bandwidth – Measured=1190 

Hz, Simulated=1240 Hz) 

The open loop transfer function (Figure 5.1-a) of the spindle’s velocity controller ( ( )oG s ) is 

constructed from Equations (5.1), (5.3) and (5.8) as; 

 
( )

( ) ( ). ( ). . ( )
( )

act
o m t sp

nom

s
G s G s G s K G s

s
 


= =


 (5.9) 

where the spindle’s mechanical transfer function is assumed to be rigid body from Eq. (5.1), i.e. 

( ) 1 ( )sp e eG s J s B= +  initially. The FRF of the simulated and measured open velocity loop 

controller are given for the first speed range in Figure 5.3-a. The second speed range exhibits a 

similar behavior (see Appendix D). 
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Figure 5.3: a) Simulated and measured FRF of open loop velocity controller for the 1st Speed Range, b) Identified 

and curve fitted spindle drive FRF 

Discrepancy between the initial simulation and the measured FRF (Figure 5.3-a) after about 

300 Hz is due to the structural dynamic modes of the spindle assembly. The simulated FRF of the 

open loop velocity controller given in Eq. (5.9) is subtracted from the measured one to isolate the 

contributions of the structural modes. The remaining FRF is identified by a modal curve fitting 

technique (using CutPro® Modal Analysis [81]), which leads to the following transfer function as 

in Chapter 3; 

 2 2

( )
( )

( ) 2

act k k
sp

km k nk nk

s s
G s

s s s

 

   

 +
= =

+ +
  (5.10) 

where & , ,k k k nk     are the residues, damping and natural frequency of mode k , respectively 

(see Appendix E).  Since every transfer function in the block diagram is known accurately at this 
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point, the FRF of the closed velocity loop controller ( ( )cG s ) is calculated and compared with the 

measurement as a validation (Figure 5.4); 

 
( ). ( ). . ( )( )

( )
( ) 1 ( ). ( ). . ( )

m t spact
c

nom m t sp

G s G s K G ss
G s

s G s G s K G s








= =
 +

 (5.11) 

 

Figure 5.4: Simulated and measured FRF of closed loop velocity controller for the 1st speed range (bandwidth – 

measured = 38 Hz, simulated = 34 Hz) 

The transfer functions between the disturbance torque ( d ) and the nominal current ( nomI ) as 

well as the actual velocity measured from encoder (
act ) are evaluated as; 

 
( ). ( )( )

( )
( ) 1 ( ). ( ). . ( )

spnom
d

d m t sp

G s G sI s
G s

s G s G s K G s








= =
+

 (5.12) 

 
( )( )

( )
( ) 1 ( ). ( ). . ( )

spact
d

d m t sp

G ss
G s

s G s G s K G s





= =

+
 (5.13) 

and simulated as shown in Figure 5.5. The current command ( nomI ) or the actual velocity 

measurement (
act ) can be both used to detect the presence of chatter.   



97 

 

 

Figure 5.5: a) Nominal current (
nomI ) / Disturbance torque (

d ) - ( ( ) ( ) ( )d nom dG s I s s = ) and Actual velocity (
act

) / Disturbance torque (
d ) – ( ( ) ( ) ( )d act dG s s s =  ) FRFs for the 1st and b) for the 2nd Speed Range 

For verification purposes, the disturbance transfer function identified with the sine-sweep 

measurements (Eq. (5.12)) is validated through modal tap tests by applying torque from the tool 

tip with an instrumented hammer ( d  - disturbance input) and measuring the commanded current 

( nomI ) from the spindle drive which is shown in Figure 5.6.  
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Figure 5.6: Verification of the simulated disturbance TF ( ( ) ( ) ( )d nom dG s I s s = ) through Modal Tap Test 

Modal tap test is performed within the 1st speed range (0 rev/min) since it is practically not 

possible to apply a torque input to the system with the instrumented hammed when the spindle is 

rotating. Impact is applied tangent to the periphery of the tool, and input torque is calculated by 

multiplying the impact force with the tool radius. 

In addition, although this chapter solely focuses on the speed dependency of the drive 

disturbance transfer function due to induction motor dynamics (Y-D winding switch at 3300 

rev/min due to wye(Y)-delta(D) starter mechanism), it should also be noted that the structural 

dynamics of the spindle system may change as a function of speed, load and thermal expansion as 

reported in [30] (see Chapter 4 in this thesis). Postel et al. [31] also recently presented a method to 

update the spindle’s structural dynamics by detecting the changes in the natural frequency by 

monitoring vibrations during machining. 

5.3 Dynamic compensation of Spindle Drive Current Measurements 

The cutting forces are transmitted to the spindle drive motor as disturbance torque through the 

drive's structural chain and servo amplifier as shown in Figure 5.1-a. As described earlier in 

Chapter 3, in milling, the cutting forces are periodic at tooth passing frequency, which is equal to 

spindle speed times number of teeth on the cutter. Therefore, the bandwidth of the disturbance 
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transfer function between the cutting force and drive motor current (or actual velocity signal) must 

be high enough to capture the frequency content of the milling forces and the chatter vibrations 

from the motor current. A state observer has been designed to reduce the influence of the amplifier 

and structural dynamic modes which distort the measurements containing frequencies above the 

bandwidth of the current amplifier which is about 380Hz in this study.  

The state space representation of Eq. (5.12), the transfer function between the nominal current 

( nomI ) and disturbance torque ( d  ) can be expressed as; 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
s d

s nom s

t t u t t t

y t I t t u t

= + = +

= = +
s s s s s s s

s s

x A x B A x B

C x D
 (5.14) 

where S
x (t)  and ( )Sy t  are state and output vectors for the spindle drive disturbance transfer 

function, respectively. The state space model in continuous domain consists of the state S
A , the 

input S
B , the output S

C  and the input transmission S
D  matrices. System is then rewritten in a 

canonical form by changing the coordinates of the system matrices through a transformation matrix 

c
T  (i.e. →

S c S
x T x ) were the disturbance torque ( d ) to the system is modeled as another state as 

follows; 

 
 

d

 
=  
 

s

s

exp

x
x  (5.15) 

and the expanded state space equation becomes;  
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where the disturbance torque is a state of the system and the current command depends on the 

system dynamics and the noise characteristics as in Eq. (3.23) (Chapter 3). For the purpose of 

chatter detection from spindle drive current command measurements, a discrete state observer is 

designed in the following Luenberger form [90];  

 
exp exp

exp

ˆ ˆ ˆ( 1) ( ) ( ( ) ( ))

ˆ ˆ ˆ( ) ( ) ( )
s s

s d

k k y k y k

y k k k

+ = + −

= =
exps ds exps ds

exps exps

x A x L

C x
 (5.17) 

where ˆ ( )k
exps

x  and 
exp

ˆ ( )sy k  are the estimated state and output vectors, 
dsL  is the discretized 

Luenberger observer gain. The observer error is expressed as; 

 
ˆ( ) ( ) ( )

( 1) ( ) ( )

k k k

k k

= −

+ =
s exps exps

s ds ds ds s

e x x

e A - L C e
 (5.18) 

where ds
A  and 

dsC  are the state and output matrices of the discrete observer, respectively. The 

estimation error converges to zero when eigenvalues of (
ds ds dsA - L C ) lies within the unit circle 

[91].  

An LQE (Linear Quadratic Estimator) algorithm is used to place the observer poles to achieve 

the desired performance by minimizing the state estimation error covariance matrix defined as; 

 E  =  
T

s s s
P e e  (5.19) 

where the differential equation for the covariance matrix S
P  is solved by the Ricatti Equation [82] 

and has to converge to zero for the optimal observer performance as in Eq. (3.28); 

 0 ( ) ( | ) ( | ) ( )

( ) ( ) ( ) ( | ) ( ) ( ) ( | )

t t t t t t

t t t t t t t t t

= = +

+ −

.
T

s exps s s exps

T T -1

s s s s exps spindle exps s

P (t | t) A P P A

Γ Q Γ P C R C P
 (5.20) 

where 
spindle

R  is the noise covariance matrix which is determined as the RMS of the spindle drive 

current command measurement and the observer gain vector is evaluated as; 
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 = T -1

ds s exps spindleL P C  R  (5.21) 

where the difference between the procedure shown in Chapter 3 lies in the identification of system 

( S
Q ) noise covariance matrix which is numerically calculated using the Nelder-Mead method [85] 

to achieve a desired bandwidth with minimum error for the compensated monitoring system with 

following constraints: 

- Minimum root-mean-square error ( RMSe ) between the compensated FRF and unit gain (0 

dB) 

- Minimum signal to noise ratio ( 10signal noisePower Power dB ) 

- Maximum bandwidth achievable by ensuring the numerical stability of Linear Quadratic 

Estimator (LQE) without violating the remaining constraints ( 3 3RMSdB e dB−   + ) 

The measurement noise covariance (
spindle

R ) identified from the current and encoder signals, 

the system noise covariance matrix ( S
Q ) calculated by Nelder-Mead searching algorithm [85], 

and the evaluated Luenberger observer gain vectors (
dsL ) for spindle drive disturbance transfer 

function are listed in Table 5.2.  
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Table 5.2: Measurement and system noise covariances with Luenberger observer gain vectors for 1st and 2nd Speed 

Ranges 

 1st Speed Range 2nd Speed Range 

spindle
R     0.378    0.3711   

S
Q    3

21 21
20.10

x
diag 
 

   3

21 21
18.10

x
diag 
 

  

dsL   

[ 0.02,0.19,0.47, 1.96, 2.02,5.1,4.01,

3.81,2.15, 8.16, 1.88,3.7, 0.26,1.09,

1.97, 0.42, 0.94, 0.17,0.11,0.03,7.29]

− − −

− − − −

− − −

 

[ 0.022,0.176,0.42, 1.75, 1.81,4.33,0.35,

0.28, 0.68, 0.27,0.73,0.81,0.24, 0.31,

0.19, 0.01,0.02,0.005, 0.001,0.02,7.13]

− − −

− − − −

− − −

 

The signal to noise ratio constraint of the Nelder-Mead algorithm [85] can be tuned to 

accommodate the compensations and handle the disturbances, hence inaccuracies in the system 

identification phase. The overall structure of the system between the disturbance torque input ( d

) and measured current output ( nomI ) signals as well as the state observer which is used to obtain 

the estimated disturbance torque ( ˆ
d ) from the measured current output is given in Figure 5.7. 

 

Figure 5.7: Schematic of the system and the state observer 

The transfer function of the Luenberger state observer can be written as follows; 

 
1ˆ

( )d
L s ds ds ds ds

nom

G C sI A L C L
I



 − = = − −   (5.22) 
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where the transfer function of the compensated system (Figure 5.8) becomes the product of the 

uncompensated system given in Eq. (5.12) and the observer transfer function Eq. (5.22) as follows; 

 
ˆ ˆ( ) ( ) ( )

( ) .
( ) ( ) ( )

d nom d
c

d d nom

s I s s
G s

s s I s


 

 
= =  (5.23) 

 

Figure 5.8: Dynamic compensation of spindle drive disturbance TF ( ( )dG s
 - Eq. (5.12)): a) 1st Speed Range, b) 2nd 

Speed Range 

As shown in Figure 5.8, the compensated FRF magnitude (Eq. (5.23)) approaches to unity and 

the bandwidth has been increased up to 2500 Hz which is the limit of the CNC’s velocity loop 

Nyquist sampling frequency. Sampling time of the velocity control loop is 0.2 ms for the 

Heidenhain iTNC 530 used in this study, given that the sampling and the communication times 

can be lower for different CNCs, bandwidth of the proposed chatter detection system can be 

increased further. 
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Once the compensated current signals are obtained, they need to be evaluated on-line in order 

to decide whether the cutting operation is stable or not as described in the following section. 

5.4 Detection of Chatter Frequency 

If a regular pitch milling cutter with N  number of teeth is used at S rs−  (rev/sec) spindle speed, 

chatter free stable milling process will exhibit periodic forces and forced vibrations at tooth passing 

frequency ( [ ]t S rsHz N −=  ) when there is no run-out. If the cutter has a variable pitch or run-

out, the stable milling process becomes periodic at spindle frequency ( S rs− ). In order to 

generalize the detection algorithm for any milling tool, it is assumed that the chatter free milling 

process exhibits forced vibrations at the spindle’s rotational frequency ( S rs− ) and its harmonics 

( l ) which covers the tooth passing frequency (Figure 5.9).  

 

Figure 5.9: Flexibilities in the milling operation and cutting with rigid, forced and chatter vibration cases [51] 

The frequency ( d ) spectrum of the stable process will be dominated by the harmonics of spindle 

speed; 

  ; 1,2,...d S rsl l −=    (5.24) 
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Most commonly observed type of chatter vibrations are referred as Hopf Bifurcation in the 

literature [51], [52], [53]; when the process chatters at frequency 
c , the frequency spectrum of 

forces and vibrations will have both periodic forced vibrations at spindle speed ( S rs− ) and its 

harmonics ( S rsl − ), as well as the chatter frequency 
c  and at 

c S rsl −  . The frequency spectrum 

of the unstable process will exhibit the following pattern; 

 [ , ( )] ; (1,2,..)d S rs c S rsl l l − −      (5.25) 

If the forced vibrations ( S rsl − ) are removed from the frequency spectrum of the measured 

signals, the remaining spectra will be dominated by chatter only at frequencies (
c S rsl −  ). The 

forced excitation is removed from the observer compensated disturbance torque measurement ( ˆ
d

) using the following comb filter in discrete time intervals ( k  ); 

 
1ˆ ( )

( )
ˆ ( ) 1

d

d
cb d

d

zk
G z

k z



 

−

−

 −  = =
−

 (5.26) 

which is implemented in on-line monitoring as follows; 

  ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )d comb d comb d dk k d k k d      =  − + − −  (5.27) 

where 
comb  and 

comb  are the bandwidth coefficients of the comb filter, and d  is the integer 

number of samples collected in one spindle period. The filter coefficients are designed as follows; 

 

2
1 2 1

tan ; 1;
4 1 1

cb bw
comb comb

cb

G d

G


  

 

−
= = − =

+ +
 (5.28) 

where bw  is the desired normalized bandwidth with a quality factor of combQ ; 

 
( )2 . S rs sampling

bw

combQ

 


−
=  (5.29) 
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combQ  is set to 10 and the gain of the filter is selected as 0.708 3cbG dB= = −  at the sampling 

frequency (
sampling ) of 5000 Hz.  These parameters must be selected in a way that the magnitude 

of the comb filter at the spindle frequency and its harmonics converges to zero not to distort the 

neighboring frequencies and miss critical information related to chatter. A sample comb filter 

designed to remove the spindle frequency and its harmonics from the frequency spectrum of the 

measured signal can be seen in Figure 5.10. 

 

Figure 5.10: Comb filter designed to remove a spindle frequency of 166.67 Hz (10000 rev/min) and its harmonics 

First, the estimated disturbance torque ( ˆ ( )d n ) is passed through the comb filter transfer 

function at each sampling interval n , as described in Eq. (5.26), followed by applying the Discrete 

Fourier transform (DFT) with a moving window as; 

 

21

0

1
ˆ( ) ( ). ; 0,1,2,..,

2

samples

samples

N jk n
N samples

r d

nsamples

N
X k n e k

N



 
− −

=

=  =  (5.30) 

where ( )rX k  is the discrete-time Fourier transform at frequency rk  with a frequency 

resolution of (rad/s)r . The number of samples (
samplesN ) is selected as 4096 for the computational 

speed which corresponds to a frequency resolution of 1.22Hzr =  and the frequency content of 

the estimated and comb filtered disturbance torque is checked at every 0.1 second to monitor the 

occurrence of chatter vibrations. If the magnitude of the highest peak in the comb filtered DFT is 
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higher than a certain predefined percentage (is set to 150% in this work) of the magnitude of the 

tooth passing frequency ( t ) in the unfiltered signal then the cut is determined to have chatter, 

otherwise, it is stable. 

5.5 Experimental Verification 

5.5.1 Chatter Detection Experiments 

The proposed chatter detection method from drive current measurements is experimentally 

validated on the same Quaser UX-600 CNC machining center where algorithms run on an external 

PC (Intel® Core™ i7-3.40 GHz CPU, 8 GB RAM). External PC can communicate with the 

Heidenhein iTNC 530 CNC via TNC Ethernet connection and the multi-threaded on-line code in 

C++ collects noise free digital spindle drive motor current command data at 5 or 10 kHz sampling 

frequency using the LSV-2 communication protocol. 

The Aluminum 7050 workpiece material is milled at full immersion with regular pitch tools 

with different diameters and flute numbers (see Table 5.3).  
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Table 5.3: Tool, Tool Holder and Insert Specifications for the Cutters used in experiments 

Tool 

# 

Tool 

Diameter 

(mm) 

Tool 

Stick Out 

Length 

(mm) 

Tool 

Specification 
Tool Holder 

Holder 

Extension 

Insert 

Type 

1 
50 

5 teeth 
NA 

Sandvik 

CoroMill® 

R390-050Q22-

11M 

Sandvik® 

C4 – 391.05-22 

025 

Sandvik 

C5 – 

391.02-40 

085 

R390 

11T308E - 

NL 

2 
25 

4 teeth 
60 

Sandvik 

CoroMill® 

R390-025A25-

11L 

Sandvik® 

C4 – 392.41014-

63 40 

NA 

R390 

11T308E - 

NL 

3 
20 

4 teeth 
80 

Sandvik 

CoroMill® 

R390-

020A20L-11L 

Seco® 

E9304 5875 

40120 

NA 

R390 

11T308E - 

NL 

4 
10 

2 teeth 
60 

Sandvik 

CoroMill® 

R216.32-

10025-AK32A 

H10F 

Sandvik® 

Hydro Grip 

392.410CGA-63 

20 088B 

NA NA 

Tool tip FRF measurements in feed and normal directions as well as their corresponding 

stability diagrams are given in Figure 5.11 and Figure 5.12, respectively. If the spindle speed and 
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axial depth of cut pair is selected above the stability curves shown in Figure 5.12, process will be 

unstable (chatter) whereas if it is under the stability curve, process will be stable (chatter free) [53]. 

 

Figure 5.11: Tool tip FRFs of tools used for verification experiments 
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Figure 5.12: Corresponding stability diagrams for full radial immersion cases 

The identified modal parameters of the tools are given in Table 5.4. 
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Table 5.4: Modal parameters in X (normal) and Y (feed) directions 

 X Direction (Normal) Y Direction (Feed) 

Tool # Tool Diameter (mm) # (Hz)n   (%)   (N/m)k   (Hz)n  (%)  (N/m)k  

1 
50 

5 teeth 

1 282 5.3 5.9e7 300 1.1 6.6e7 

2 546 2.8 1.2e7 546 2.5 1.3e7 

3 1621 1.5 2.8e8 1607 2.9 2.9e8 

2 
25 

4 teeth 

1 871 4.2 1.7e8 821 4.5 6.9e7 

2 932 4.4 2.9e7 928 4.1 4.5e7 

3 1196 3.6 3.1e8 1169 4.3 1.6e8 

4 2003 9 1e8 1983 6.8 1.4e8 

5 2805 2.2 1.3e8 2812 1.9 1.4e8 

3 
20 

4 teeth 

1 717 3.5 1.3e7 734 3.6 2.5e6 

2 817 4.8 1.5e7 1026 0.3 3.3e7 

3 1364 1.8 2.9e7 1355 1.8 2.8e7 

4 
10 

2 teeth 

1 1413 2 2.1e7 1446 1.5 3.8e7 

2 1915 4.5 3e6 1924 3 5e6 

3 2400 5.9 1.9e7 2219 4.5 6.1e6 

4 2550 0.03 4.3e10 2540 3 3.6e7 

Sound measurements collected with a cardioid SHURE® PG81 microphone are used as a 

reference to compare the results against CNC supplied current commands. Surface profiles 
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generated at the cutting tests are measured with Mitutoyo® Surftest SV-500 to further validate the 

stable/unstable classification which are presented at the end of this chapter. 

The presence of chatter is decided by monitoring the magnitude ratio of spectrums ( c t  ) 

at the chatter frequency ( c ) and the tooth passing frequency ( t ). In the following figures for 

experimental results, signals labeled with “DFT” stands for the Discrete Fourier Transformation 

of the corresponding signal mentioned in the figure title, and “Comb+DFT” stands for the comb 

filtered (Eq. (5.26)) DFT signal to show the frequency content after removing the spindle, tooth 

passing frequency and their harmonics. The variation of the magnitude ratio ( c t  ) before and 

after the dynamic compensation is listed in the tables to illustrate the outcome of the presented 

method. 

First experiment is performed with a 5 fluted 50 mm diameter face mill where the spindle speed 

and axial depth of cut are selected as 6000 rev/min and 2.25 mm, respectively. The process is 

above the stability limit hence it chattered (see Figure 5.12 for the stability diagram and Figure 

5.13 for the current and sound measurements).  
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Figure 5.13: Chatter test with a 50 mm diameter 5 Fluted Face Mill (Tool #1) at spindle speed 6000[rev/min]S =  

,tooth passing frequency ( t ) = 500 Hz, axial depth of cut = 2.25 mm, full immersion cut with feed rate of 0.1 

mm/rev/tooth. Workpiece material Al7050; a) Spindle Drive Motor Current Command, b) Microphone 

Measurement, DFT and Comb Filtered DFT of; c) Spindle Current Raw Measurement, d) Microphone 

Measurement, e) Spindle Current Compensated Measurement (first 4096 samples of the cut), f) Identified chatter 

frequencies and 
c t   ratio for raw and compensated Spindle Current command measurements compared with 

the Microphone 

The chatter occurred at 570 Hz which is evident from both spindle motor current and 

microphone measurements as shown in Figure 5.13. However, the reduced magnitude of the 

current signals at higher frequencies can lead to false chatter detection as mentioned in [61]. The 

distortion of FRFs of the motor current by the structural dynamics of the spindle drive reduces the 
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bandwidth of the sensing system unless they are compensated as proposed in this thesis. The 

chatter detection with the proposed compensation strategy is validated by conducting a cutting test 

with a 25 mm diameter 4 fluted end mill having a dominant mode around 930 Hz (see Figure 5.11). 

A full immersion milling test is conducted at 4000 rev/min spindle speed with 3.5 mm axial depth 

of cut, which corresponds to an unstable cutting condition (see Figure 5.14).  

For this case, although the chatter frequency identified from drive measurements match with 

the microphone signal, the magnitude at the chatter frequency (935 Hz) is lower than magnitude 

at the tooth passing frequency (266.67 Hz) and its harmonics when the structural disturbance is 

not compensated from the current signals (Figure 5.14 – c&f). As a result, the chatter detection 

where the criteria is; 1.5c t    fails. This phenomenon does not exist on microphone signal 

which has a wide bandwidth ( 18 kHz) and not distorted by the machine structure/servo drives 

(Figure 5.14 b&d). On the other hand, as described earlier in this chapter, the cutting torque is 

transmitted to the motor through the chain of spindle structure, current amplifier, motor winding 

and velocity/current servo loops. The disturbance FRF ( ( )dG j  ) in between the nominal current 

( nomI ) and the disturbance torque ( d ) is shown in Figure 5.5, where the current sensor system 

attenuates the transmitted torque to the current loop greatly at frequencies 457 Hz (-32 dB=0.025) 

, 945 Hz (-39 dB=0.0112), 1380 Hz (-31 dB=0.028), 1811 Hz (-35 dB=0.018) and 2320 Hz (-29 

dB=0.035). As a result, the raw current command signals are highly distorted and give incorrect 

chatter detection by attenuating the signals at chatter frequency and amplifying them at the 

neighboring frequencies where the structure has natural modes, see Figure 5.11 and Table 5.4.  
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Figure 5.14: Chatter test with a 25 mm diameter 4 Fluted End Mill (Tool #2)  at spindle speed 4000[rev/min]S =

,tooth passing frequency ( t ) = 266.67 Hz, axial depth of cut = 3.5 mm, full immersion cut with feed rate of 0.1 

mm/rev/tooth. Workpiece material Al7050; a) Spindle Drive Motor Current Command, b) Microphone 

Measurement, DFT and Comb Filtered DFT of; c) Spindle Current Raw Measurement, d) Microphone 

Measurement, e) Spindle Current Compensated Measurement (first 4096 samples of the cut), f) Identified chatter 

frequencies and 
c t   ratio for raw and compensated Spindle Current command measurements compared with 

the Microphone 

However, when the structural, motor/servo dynamics are compensated and the forced 

vibrations are removed by comb filtering the spindle and tooth passing frequency harmonics, the 

amplitude at the chatter frequency (938 Hz) is corrected which becomes high as in the microphone 

measurement (Figure 5.14 – e&f). 
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Next, a 20 mm 2 fluted end mill is used where the chatter detection fails unless the current 

signals are compensated.  Chatter occurs at 771 Hz, and the amplitude at the chatter frequency is 

less than the amplitude of forced vibrations at tooth passing frequency of 166.67 Hz when the 

current signals are not compensated, see Figure 5.15 – c&f. When the signals are compensated, 

the magnitude ratio of chatter over the tooth passing frequency becomes 6 (Figure 5.15 – e&f), 

hence the chatter is detected successfully. 

 

Figure 5.15: Chatter test with a 20 mm diameter 2 Fluted End Mill (Tool #3)  at spindle speed 5000[rev/min]S = , 

tooth passing frequency ( t ) = 166.67 Hz, axial depth of cut = 1 mm, full immersion cut with feed rate of 0.1 

mm/rev/tooth. Workpiece material Al7050; a) Spindle Drive Motor Current Command, b) Microphone 

Measurement, DFT and Comb Filtered DFT of; c) Spindle Current Raw Measurement, d) Microphone 
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Measurement, e) Spindle Current Compensated Measurement (first 4096 samples of the cut), f) Identified chatter 

frequencies and 
c t   ratio for raw and compensated Spindle Current command measurements compared with 

the Microphone 

In the 3 cases presented so far, although the uncompensated spindle drive measurements failed 

to give a reliable magnitude ratio of ( c t  ), identified chatter frequencies are in an agreement 

with the microphone measurements since the frequency range of these experiments are still below 

1-1.5 kHz. In order to show a case with higher frequency content, a 10 mm 2 fluted end mill is 

used where the dominant mode of the tool lies around 1920 Hz (Figure 5.11). For this case, raw 

current measurement from the spindle drive fails to give both the correct chatter frequency and the 

magnitude ratio due to the decaying magnitude behavior of the corresponding disturbance transfer 

function given in Eq. (5.22). The dynamic distortions on the raw spindle drive measurement are 

clearly evident in the results presented in Figure 5.16. 



118 

 

 

Figure 5.16: Chatter test with a 10 mm diameter 2 Fluted End Mill (Tool #4)  at spindle speed 10000[rev/min]S =

, tooth passing frequency ( t ) = 333.33 Hz, axial depth of cut = 2 mm, full immersion cut with feed rate of 0.1 

mm/rev/tooth. Workpiece material Al7050; a) Spindle Drive Motor Current Command, b) Microphone 

Measurement, DFT and Comb Filtered DFT of; c) Spindle Current Raw Measurement, d) Microphone 

Measurement, e) Spindle Current Compensated Measurement (first 4096 samples of the cut), f) Identified chatter 

frequencies and 
c t   ratio for raw and compensated Spindle Current command measurements compared with 

the Microphone 

The chatter frequency is identified incorrectly as 1625 Hz with an incorrect ratio of ( c t 

), see Figure 5.16 – c&f. However; after the compensation with the state observer, the peak in the 
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comb filtered DFT occurs at the correct chatter frequency (1979 Hz, Figure 5.16 – e&f), which 

also agrees with the microphone measurement.  

Although the methodology is presented by modeling the spindle drive current command in this 

chapter, the proposed chatter detection is applied to the feed drive by identifying the disturbance 

transfer function Eq. (5.12) as described in Chapter 3 and [1]. The bandwidth of the disturbance 

transfer function identified in Chapter 3 for the feed drive (Y axis) is increased from 200 Hz to 2.5 

kHz for chatter detection purpose by using the Luenberger state observer. The chatter detection 

from feed drive current command is tested with the 2 fluted – 10 mm diameter end mill (see Figure 

5.17). The raw current measurement from feed drive led to incorrect chatter frequency of 2292 Hz 

(Figure 5.17 – c&f), whereas the chatter frequency is correctly identified as 1979 Hz after the 

compensation with the proposed state observer (Figure 5.17 – e&f). 
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Figure 5.17: Chatter test with a 10 mm diameter, 2 Fluted End Mill (Tool #4) at spindle speed 10000[rev/min]S =

, tooth passing frequency ( t ) = 333.33 Hz, axial depth of cut = 2 mm, full immersion cut with feed rate of 0.1 

mm/rev/tooth. Workpiece material Al7050; a) Feed Drive (Y axis) Motor Current Command, b) Microphone 

Measurement, DFT and Comb Filtered DFT of; c) Feed Drive Current Raw Measurement, d) Microphone 

Measurement, e) Feed Drive Current Compensated Measurement (first 4096 samples of the cut), f) Identified chatter 

frequencies and 
c t   ratio for raw and compensated Feed Drive Current command measurements compared 

with the Microphone 

For each case/tool with chatter vibrations presented so far, a stable cut is performed with a 

lower axial depth of cut to show the distinction between the unstable and stable cases and the 

corresponding measurements are given in Figure 5.18. It can be seen from the compensated 

measurements that the stable cutting conditions do not violate the chatter threshold set in this study 
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( 1.5c t   ). Therefore, it can be concluded that the proposed methodology is able to 

distinguish stable cuts from unstable cases which prevents false alarms during the operation. 

 

Figure 5.18: Stable cutting operations with the listed cutting conditions for a) Tool #1, b) Tool #2, c) Tool #3, d) 

Tool #4 ( p  is the frequency with the highest magnitude in the comb filtered signal) 

In addition, instead of relying solely on microphone signal for verification, surface profiles of 

stable and unstable cutting operations are measured as well which are given in Figure 5.19. 
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Figure 5.19: Experiment setup with surface profiles of stable and unstable cutting experiments presented throughout 

this chapter 
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The methodology presented in this study can be used as a foundation for other chatter detection 

algorithms or indicators (as in [58], [59], [61]) since the estimated disturbance torque from the 

drive current measurements contain sufficient and reliable information regarding the cutting 

process without interfering with the work envelope. 

5.5.2 Resultant Force Prediction Experiments 

Disturbance transfer function of the spindle drive can also be used to predict the tangential cutting 

force at the tool tip from the spindle drive current measurements in time domain for other process 

monitoring tasks. Relation between the estimated disturbance spindle torque ( ˆ
d ) and the 

tangential cutting force at the tool tip ( ˆ
tF )  is as follows; 

 
ˆˆ d

t

tool

F
r


=  (5.31) 

where toolr  is the tool radius. Estimated disturbance spindle torque ( ˆ
d ) is identified at every 

sampling time as described in Section 5.3, which means tangential cutting force at the tool tip ( ˆ
tF

) is also identified in-process. However; in most of the process monitoring and control applications, 

resultant forces in X-Y plane is used in order to incorporate forces both in tangential and radial 

directions in the analysis [5], [53].  

Knowing the process geometry and physics of end milling operations [53], resultant force in 

X-Y plane can be estimated from the tangential force signal in an acceptable level for regular end 

mill tools. First, cutting forces in feed and tangential direction can be written as follows; 
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where a  is the axial depth of cut, c  is the feed rate and   is the instantaneous angle of immersion. 

tcK  and rcK  are the cutting force coefficients contributed by the shearing action in tangential and 

radial directions, respectively where teK  and reK  are the edge constants. These cutting coefficients 

are assumed to be constant for a tool-work material pair and they are usually evaluated either 

mechanistically from experiments or by using the orthogonal to oblique transformations as 

described in [92]. The resultant force in X-Y plane ( resultantF ) can be written as follows; 

 2 2 2 2

resultant x y t rF F F F F= + = +  (5.33) 

For the scope of this study, edge forces are neglected for simplicity and rcK , radial cutting force 

coefficient is assumed to be 50% of the tangential component, tcK  [53]. With these assumptions, 

resultant force given in Eq. (5.33) can be rewritten as; 
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
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which means the resultant force in X-Y plane can be approximated from the tangential force 

component identified from the spindle drive current measurements as given in Eq. (5.31).  

This method brings simplicity compared to using feed drive current measurements to identify 

the resultant force at the tool tip since it does not require extensive system identification 

experiments. As described in Chapter 3, forces at the tool tip can be predicted from feed drive 

measurements given that the friction and structural dynamics of each individual axes are modeled, 

and kinematics of the machine tool is solved accurately. The approach presented here which gives 

the resultant forces from spindle drive current measurement is less accurate because of certain 

assumptions made as listed above, however, it is very practical since the dynamics of the spindle 
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drive are identified through automated sine sweeps and friction behavior is not crucial given that 

the spindle is rotating at a constant speed along the toolpath.  

For verification of this method, first, the same 3-axis milling experiments presented in Chapter 

3 are used where the work material is Aluminum 7050 and tool is a 20-mm diameter two-fluted 

end mill. Axial depth of cut is selected as 4 mm and it is a slot cutting operation with 0.2 mm/tooth 

feed rate. Spindle speeds are selected as 1000, 2000, 3000, 4000, 5000 and 5500 rev/min where 

the limiting factor was the 180-200 Hz bandwidth of the compensated feed drive dynamics. As it 

can be seen from the results presented in Figure 5.20, resultant forces identified from the 

compensated spindle drive current measurements match with the reference table dynamometer 

measurements with an acceptable accuracy where the mean error at the spindle and tooth passing 

frequencies are below 35% for all the cases. Specifically, mean errors were 15%, 18%, 32%, 19%, 

27% and 24% respectively at the spindle speeds of 1000, 2000, 3000, 4000, 5000 and 5500 

rev/min. Reference forces identified from raw spindle current measurements have a reducing 

magnitude behavior as the spindle speed, hence the tooth passing frequency which is the excitation 

frequency to the drive increases. This observation agrees with the measured disturbance FRF of 

the spindle drive as shown in Figure 5.5. Designed Luenberger observer is correcting this decaying 

magnitude behavior at every time step with its corresponding transfer function. 
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Figure 5.20: Comparison of measured and compensated resultant forces from the spindle drive current with 

reference forces measured by table dynamometer for three-axis milling with two-fluted end mill. Axial depth = 4 

mm, Radial depth = 20 mm, feed = 0.2 mm/tooth, Spindle Drive 
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Second, since the spindle drive offers higher bandwidth as described in this chapter (   2500 

Hz), cutting experiments with higher spindle speeds are performed at 12000, 15000 and 18000 

rev/min with a 20 mm diameter four-fluted end mill in order to scan a wider range of excitation 

frequencies to the system from 200 to 1200 Hz. However; for these cases, reference measurements 

from dynamometer must also be dynamically compensated since the bandwidth of the table 

dynamometer is around 750-800 Hz. Force to force transfer functions of the dynamometer are 

measured in X and Y directions and corresponding Kalman Filters are designed to compensate 

these dynamical distortions as shown in Figure 5.21.  

 

Figure 5.21: Measured force to force FRF of the dynamometer, designed Kalman Filter and Compensated FRFs 

Results of the high spindle speed experiments are shown in Figure 5.22 where the reference 

measurements from dynamometer are also compensated and labeled as “Reference*’. The 

frequency spectrum of the measurements shows the wide range of excitation to the spindle drive 

which are all compensated by the proposed observer and the average error between the 

compensated drive and compensated dynamometer measurements are 35%, 40% and 32% 

respectively at the spindle speeds of 12000, 15000 and 18000 rev/min.  Although errors are higher 

than previous cases, it should be noted that the resultant force is obtained from compensated 
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spindle drive current with certain assumptions as listed in this section and even reference forces 

measured by dynamometer are dynamically compensated since its bandwidth is violated in both 

directions. 

 

Figure 5.22: Comparison of measured and compensated resultant forces from the spindle drive current with 

compensated reference forces measured by table dynamometer for three-axis milling with four-fluted end mill. Axial 

depth = 4 mm, Radial depth = 20 mm, feed = 0.2 mm/tooth, Spindle Drive 

5.6 Summary 

This chapter presents a method for chatter detection from the drive motor current that is readily 

available within the CNC system. It is shown that the bandwidth of the spindle drive's torque 

disturbance transfer function can be significantly increased by compensating the effects of 
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structural dynamic modes which distort the transmitted cutting torque from tool tip to spindle drive 

servo. The proposed methodology does not require an experience based or case dependent 

frequency region selection for seeking the chatter frequency since it considers the true dynamics 

of the drive for the entire frequency range without any need to install external sensors on the 

machine. The application of the method is shown only using the most practical sensory data, the 

spindle motor current command supplied by the CNC. However, the approach is also applied to 

spindle speed and feed drive motor current commands successfully using the same approach, but 

not shown here in detail to avoid repetition of the modeling process. The proposed method is 

targeted to be used for on-line chatter detection to achieve unattended machining systems and the 

methodology as well as the results have been published in [4]. Finally, it is also shown that the 

compensated torque value can be used to practically estimate the resultant cutting force at the tool 

tip which can be used for on-line monitoring and control tasks. 
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Chapter 6: Integration of Virtual and On-line Machining Process Control and 

Monitoring 

6.1 Overview 

This chapter presents a virtually assisted on-line milling process monitoring and control system. 

A part machining process is simulated to predict the cutting forces, torque, power, chip load and 

other process states along the toolpath. The simulated machining states are accessed by an on-line 

monitoring system which detects the tool failure, adaptively adjusts the feed and detects chatter by 

predicting the forces from the feed and spindle drive motor current supplied by CNC. The tool 

breakage is detected from the average spindle torque, and the load on the cutting tool is maintained 

at the desired level by adaptively controlling the feed rate where the integration of virtual 

simulation with on-line measurements avoids false tool failure detection and transient overloads 

of the tools during adaptive control. The chatter is detected and avoided with the method presented 

in Chapter 5, and the locations of chatter events are mapped to tool path contained in virtual model. 

The robustness of algorithms is ensured by sending the part geometry changes and average force 

patterns from the stored, virtual part machining system. The uncertainties in the virtual model, 

such as cutting force coefficients, are calibrated from the on-line measurements at the beginning 

of the milling operation from a steady cut region. The system has been implemented on a CNC 

machining centre for use in production.  

6.2 Integration of Virtual Model and On-line Application 

The predicted cutting forces from feed and spindle drive motors (Chapter 3 and 5, respectively) 

are used for tool breakage detection and adaptive force control. The machine is Quaser UX-600 

CNC machining centre and the on-line algorithms are run on an external PC (Intel® CoreTM i7-
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3.40 GHz CPU, 8 GB RAM) which communicates with the Heidenhein CNC via Ethernet 

connection. A multi-threaded on-line code is developed in C++ using the LSV-2 communication 

protocol which collects commanded, noise free digital motor currents, drive speeds, tool centre 

point position, spindle speed, and tangential velocity between 330 Hz and 10 kHz sampling 

frequency. External PC can vary the spindle and feed speeds at 10 Hz interval which is sufficient 

for the targeted tool condition and process monitoring/control tasks outlined in this chapter. 

Overall structure of the integrated virtual and on-line system given in the introduction section of 

this thesis is revisited here in Figure 6.1. 

 

Figure 6.1: Parallel execution of virtual and on-line system with information exchange on external PC [5] 

First, prior to cutting operation, part machining process is simulated using MACHpro® Virtual 

Machining System [93] to calculate cutter-workpiece engagement (CWE), cutting forces, torque, 

power and machining states along the toolpath. These machining states are stored in a file and 

accessed by on-line machining process monitoring and control system as a virtual feedback to 

avoid false tool failure detection and to prevent transient force peaks during adaptive control where 

the uncertainties in the virtual model are updated for improved simulation accuracy.  

The proposed virtual model integrated on-line process monitoring and control system is 

demonstrated on an Aluminum 7050 part (see Figure 6.2)  throughout this chapter where the details 
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of the virtual process model as well as the monitoring and control algorithms are described in detail 

with examples from a part machining case. Facing, profiling and two slot milling operations are 

performed with a two fluted 20 mm diameter end mill with a regular pitch and 30 degrees helix 

angle. Spindle speed is selected as 1000 rev/min throughout the operations. Sample part is 

designed in a way that the cutter workpiece engagement (CWE) profile has sharp changes along 

the toolpath for each operation (Figure 6.2) where the purpose is to show that the virtual model 

feedback to on-line algorithms eliminates the false alarms and transient overloads of the tool for 

entire part machining. 

 

Figure 6.2: A test part with various milling operations and corresponding area of tool-workpiece contact 

6.2.1 Generating Virtual Model States and the Feedback File 

In order to simulate the process states and generate the virtual feedback file which assists the on-

line algorithms, in-house developed MACHpro® Virtual Machining System [93] is used in this 

study. In this section, MACHpro® Virtual Machining System and the structure of the virtual 

feedback file are explained. 

The main window of MACHpro® with the corresponding verification part’s (Figure 6.2) 

project is given in Figure 6.3 and the explanations for bullet-points can be found in Table 6.1. First, 

the solid block geometry, work material and the toolpath files are provided to software where it 
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automatically extracts the tools used in the toolpath file and their geometries to the project. Later, 

the toolpath sampling distance is given where the software calculates the engagement map between 

the tool and workpiece at the corresponding discrete tool center positions. In this study, it was set 

to 0.4 millimeters (mm) in order to have a high simulation resolution which means the software 

calculates the engagement maps and process states every 0.4 mm along the toolpath. 

 

Figure 6.3: A screenshot from MACHpro® Virtual Machining System [93] with the corresponding verification 

part’s (shown in Figure 6.2) project 
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Table 6.1: Explanations for the bullet-points shown in Figure 6.3 about MACHpro® Virtual Machining System 

Point # Module Name Explanation 

1 CNC Machine Type of the CNC machine should be specified  

2 Workpiece 
CAD model of the initial block is uploaded as an “.stl” file 

and the work material is selected from the material database 

3 NC Programs 
NC Programs are uploaded for each operation which have 

tool geometry, tool path and process parameter information 

4 Operations/Tools 
Tools are extracted from NC programs with their geometries 

automatically 

5 Engagement Maps 
Engagement maps between the cutter and work material are 

calculated with the engagement map sampling distance 

6 Process Analysis 
Process states (force, torque, power etc.) are selected to be 

simulated by the software along the tool path 

7 Process States 
Simulated process states are listed to be selected for the 

Graph Monitor 

8 
Part and Toolpath 

Visual 

Visual of the final part with the corresponding operation’s 

toolpath 

9 Graph Monitor 
A window to see the selected process state along the toolpath, 

can be plotted as a function of time or the toolpath distance 

As can be seen in Figure 6.3, MACHpro® simulates the process forces, torque, power etc. for 

a given simulation step distance. In addition, the software is also capable of optimizing the 

machining operation by scheduling the feed rate along the toolpath by respecting to the process 

and machine tool constraints. However; since it is not within the scope of this thesis, only the 

simulation aspect of the software is used and shown here. 

Once the part machining is simulated by considering the process physics, cutter workpiece 

engagement as well as the process states along the toolpath are exported as an “.xml” file which is 

then post-processed by a MATLAB script in order to organize and synchronize the tool tip 
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position, engagements and the process states which forms the virtual feedback file to the on-line 

monitoring and control functions as shown in Figure 6.4 where the details of each column in the 

file are explained in Table 6.2. 

 

Figure 6.4: Virtual feedback file generated from the CWE and process state outputs of MACHpro® Virtual 

Machining System 
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Table 6.2: Explanations for the bullet-points shown in Figure 6.4 about virtual feedback file 

Point # Column Title Explanation 

1 Pos. X Position of tool tip in X axis (mm) 

2 Pos. Y Position of tool tip in Y axis (mm) 

3 Pos. Z Position of tool tip in Z axis (mm) 

4 fc (mm/min) Tangential (commanded) feed rate at the tool tip (mm/min) 

5 
Binary Cut 

Index 

A binary index for determining when the tool is in or out of cut, the 

index is 0 when tool is out and 1 when it is in cut 

6 
Gain of 

CWE 
Gain of cutter-workpiece engagement (mm) 

7 tcK   Tangential cutting coefficient (N/mm2) 

8 resultantF   Resultant force in X-Y plane (N) 

9 NC Line # Corresponding line # in the NC file running on the machine 

Virtual feedback file shown in Figure 6.4 is an input to the on-line C++ code where the 

monitoring and control functions are running on the External PC.  

6.2.2 Reading and Writing Data from/to CNC using External PC 

On-line measurements from the CNC are obtained through LSV-2 C style library, designed to 

communicate with Heidenhain TNC. It supports both serial (RS-232 and RS-422) interfaces and 

ethernet connection for data transfer to external computers or other devices. Although only simple 

file servers can be implemented via the serial interfaces when using the ME or FE protocol, the 

LSV-2 protocol makes it possible to realize complex tasks with a bidirectional structure based on 

DIN 66019. LSV-2 protocol provides access to the integral oscilloscope of the iTNC530 which is 

available on the machine panel from External PC where the functions in the library hide the low-

level telegram-based communication mechanism and enables user to create functionalities easily. 

In addition, Heidenhain DNC, a C style library, is used to write data to send commands to CNC 

in-process, such as changing feed or spindle overrides to monitor and control the process in an on-
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line manner. Structure of the read (LSV-2) and write (DNC) libraries are explained in this section 

with their specific purposes. 

The following block diagram (Figure 6.5) shows the overall structure of the software 

components and their interaction with the iTNC 530 CNC; 

 

Figure 6.5: Communication structure between iTNC 530 and Windows Application on External PC [94] 

Heidenhain iTNC530 CNC installed on Quaser UX-600 machine has 3 milliseconds position 

interpolation sampling time which corresponds to 333 Hz read frequency of the tool tip nominal 

position from external PC. It is important to note that the CNC provides some of the channels (tool 

tip position, drive velocities, tangential feed rate etc.) with the position interpolator frequency (333 

Hz) and the rest (nominal or actual current, linear or rotary drive encoder pulses, axes positions in 

machine reference coordinates) with the current loop frequency (10 kHz). 

Once the data is read from the CNC and processed by the monitoring and control algorithms, 

two values are changed on the CNC from the External PC in-process: feed and spindle speed 

overrides. For this task, DNC library of the Heidenhain iTNC 530 is used which gives access to 
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the PLC addresses, hence, feed and spindle override values. The software and communication 

structure are shown in Figure 6.6. 

 

Figure 6.6: Communication structure between the PLC and Windows Application on External PC [94] 

Special DNC libraries of Heidenhain iTNC530; JHMachine, JHAutomatic and JHProcessData 

gives access to the PLC addresses from the External PC where any action can be taken as on the 

machine panel. NC start/stop, coolant on/off, emergency stop, feed-spindle override change and 

similar operations can be performed from the external PC during machining. In addition, 

parameters on machine’s kinematic table, control parameters or any other machine setup related 

parameter can be changed through DNC library when the machine is not operating for safety and 

part integrity reasons.  

In summary, LSV-2 library (Figure 6.5) is used to read data from CNC with high sampling 

frequency (330 Hz to 10 kHz) where DNC library (Figure 6.6) is used to change PLC addresses 

such as feed and spindle overrides (10 to 15 Hz) from External PC.  
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6.2.3 Synchronization of the Virtual Feedback File and the On-line Operation 

Once the virtual feedback file is uploaded and available on the External PC, the next step is to 

establish the synchronization with operation on the machine, so the virtual model and the on-line 

monitoring and control functions can work in parallel by exchanging information. 

In this study, the synchronization between the virtual feedback file and the on-line operation 

is achieved through tool tip position tracing. First three columns of the virtual feedback file are the 

X, Y and Z positions of the tool tip, moving along toolpath with the engagement map sampling 

distance (see Figure 6.4) where the nominal (commanded) X, Y, Z positions of the tool tip are 

measured from the CNC by using the LSV2 library. Once a tool tip position is measured from the 

CNC, it is searched in the virtual feedback file until the corresponding interval is found. The 

tolerance for this position tracing is set to 20 microns per axis which means the measured nominal 

position value is searched in the virtual feedback file with  10 microns tolerance for each 

direction. The position search itself is also designed for fast, on-line application where it starts 

searching the corresponding position in the virtual feedback file from the previous iteration.  

The described position tracing, hence virtual feedback file synchronization is running in 

parallel with the monitoring and control functions in a multi-thread structure where a circular 

buffer is used to exchange information between threads as well as sending commands to CNC in 

an organized way without missing data. CWin Thread Class of C++ is used for this purpose where 

the threads are started by AfxBeginThread for both LSV-2 and DNC connections. Multi-thread 

structure with the circular buffering can be seen in Figure 6.7 where the position synchronization 

is prioritized since it is essential that the connection between the virtual model and the on-line 

functions is not interrupted throughout the toolpath. 
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Figure 6.7: Multi-thread structure of the on-line C++ code running on External PC 

This multi-thread structure is essential to run both LSV-2 and DNC functions in-parallel since 

DNC actions interrupt LSV-2 connection to the integral oscilloscope of iTNC530 at every 

execution. Re-establishing the connection of LSV-2 to CNC after every override command using 

DNC is not acceptable since all the monitoring and control functions would sleep during this log-

in time which is approximately around 25-30 milliseconds. Multi-thread code prevents this issue 

since LSV-2 thread keeps reading data without interruption as DNC library is varying the feed and 

spindle overrides from its individual thread. This way, both LSV-2 and DNC libraries are 

connected to CNC throughout the toolpath where the main thread is working on the virtual 

feedback file, on-line application synchronization and providing critical feedback to monitoring 

and control functions. 

It should be noted that the engagement map sampling distance in the virtual model determines 

the resolution of the virtual feedback. For example, if the engagement map sampling distance is 

selected too high, poor resolution in the virtual feedback can cause problems in the on-line 

operations such as late threshold updates for tool breakage monitoring or late look-ahead action 
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for preventing the transient overloads of the tool during adaptive control. This distance is selected 

as 0.4 mm in this study by considering the demonstration part’s features, it can also be adaptively 

calculated depending on the part geometry and the toolpath with certain algorithms in the future. 

6.3 Tool Breakage Monitoring with Virtual Feedback 

Tool breakage in milling is detected with the algorithm given in [53] but with the feedback from 

the virtual machining system. The average cutting torque per tooth period ( ( )sa m ) is evaluated 

from the spindle motor current by compensating the distortions in the signal caused by the 

structural dynamics as described in Chapter 5; 
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ˆ ( )
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
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where ˆ
d  is the compensated spindle torque measurement (see Chapter 5.3), I  is the number of 

compensated torque samples collected at tooth period ( m ).  The average spindle torque per tooth 

period must remain constant if there is no change in the CWE geometry, and the cutter is free of 

tooth breakage and run-out. In such conditions, all teeth on the milling cutter produce equal 

average cutting torque, hence the first differences of the average cutting forces should be zero [53]; 

 
1( ) ( ) ( 1) (1 ) ( )sa sa sa sam m m z m   − = − − = −  (6.2) 

The average cutting torque profile will reflect the changes in the chip load and be nonzero if 

the CWE is varying, tooth is damaged or run-out exists. If the tool runs into a transient geometry 

along the geometrically complex toolpaths, the torque profile will follow the geometric trend. A 

first-order adaptive time series filter is used to remove the slow varying DC trend caused by 

varying CWE as given in [53]; 

 ( )  ( )1 1

1 1 1
ˆ ˆ( ) 1 ( ) ( 1) 1 ( )sa sa sam z m m z m     − −= − − − = −   (6.3) 
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where 1̂  is estimated from measurements ( )sa m  using a standard recursive least squares (RLS) 

algorithm at each period which is described in [53] and [46] thoroughly. In addition, the effect of 

tool runout can also produce high-amplitude residuals which can be removed by comparing the 

tooth’s performance by itself one revolution before as follows; 

 1 1

2 2 2
ˆ ˆ(1 )[ ( ) ( )] (1 ) ( )N

sa sa saz m m N z m     − −= − − − = −   (6.4) 

where N  is the number of flutes on the tool and 2̂  is estimated in a similar fashion as 1̂ . In 

previous studies ([28, 53]), these two adaptive time series filters are run recursively in parallel at 

every tooth period and the maximum residuals of both filters are measured at the beginning of the 

cut (for few spindle revolutions) to be compared with the rest of the operation. It is assumed that 

the tool is not broken within this period and the breakage thresholds are selected by scaling the 

maximum residuals measured at the beginning of the cut by pre-determined factors ( 1  and 2 ) as 

follows; 
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  
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= = =

= = =
 (6.5) 

where k  is the spindle period and ( # Sr ) is the number of spindle revolutions that the initial 

residues are calibrated at the beginning of the cut.  

Threshold factors (
1  and 

2 ) are usually intuitively selected between 2 and 3 in the literature 

([28, 53]) as constant values throughout the toolpath which works for single axis, unidirectional 

cutting operations with constant cutter-workpiece engagement (CWE) conditions in laboratory 

environment for verification purposes. However; if the algorithm is run on a real part machining 

environment, it is very challenging to determine the threshold values in an adaptive manner along 

the multi-axis toolpath with changing CWE conditions. Therefore, it is proposed to use the 
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feedback from the virtual machining model which runs in parallel with the online operation and 

adaptively change the tool breakage threshold values as a function of process geometry and chip 

load. This way, tool breakage algorithm is not blind to varying CWE conditions and capable of 

eliminating false breakage alarms caused by transient changes along the toolpath. In addition, the 

virtual feedback minimizes the need for the second residue given in Eq. (6.4) since adaptive 

threshold is capable of handling the runout on the tool given that the initial calibration is done 

accurately. Threshold value is re-written as follows; 

 1 TB sa simulatedLIMIT   −=  (6.6) 

where TB  is a percentage value which means the tool breakage threshold is adaptively changed 

as a function of the simulated average torque per tooth period. Now breakage threshold is a 

function of process geometry, kinematics, material properties and true chip load along the toolpath 

since the virtual model considers the listed items to calculate process states (average torque value 

for this part). The threshold value ( TB ) is selected as 40% in this study during the experiments, 

however it can also be an adaptive value given that the system is planned to be run in production 

where these parameters must be updated for consecutive operations.  

In order to show the effectiveness of the presented method by comparing it with the existing 

methods, a face milling operation shown in Figure 6.2 is experimented. 



144 

 

 

Figure 6.8: Robust detection of tool breakage around tooth period 500 with the feedback from virtual machining 

system 

As illustrated in Figure 6.8, tool is traveling along the toolpath which has varying engagement 

(i.e. axial depth of cut) conditions and on-line measured torque values are mapped on calculated 

ones with the virtual model. Residue ( 1 ) is plotted with both constant (identified as described 

above in this section and also in [53]), and adaptive thresholds (calculated as given in Eq. (6.6) 

with 40%). At location #1 in Figure 6.8, tool is in cut with steady conditions, hence the residue 

value is almost zero as expected since both flutes of the tool are under almost the same chip load 

which creates very close torque values. Since engagement conditions do not vary rapidly, both 

constant and adaptive threshold methods work without a false alarm at location #1. 

At location #2, axial depth of cut is suddenly increasing in a step manner which creates an 

unbalance between the two flutes in terms of axial depth, hence torque values. For the instant that 

the tool is merging into the new region at location #2, one of the flutes is experiencing the new, 

higher axial depth for a spindle revolution where the previous flute’s signal is still at the lower 
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depth, which creates an imbalance between the two torque values reflected on the residues. This 

peak in the residue value purely caused by the transient geometry change along the toolpath is 

considered as “tool breakage” event if the constant threshold check method is used since this value 

was calibrated at the beginning of the cut in the lower depth region. However; since the adaptive 

threshold is a function of CWE geometry with the virtual feedback, the proposed method is able 

to neglect this false breakage alarm and it does not stop the operation unnecessarily.  

In summary, the constant threshold method cannot distinguish the tool failure from the step 

changes in CWE geometry and gives false alarm at tooth periods 262-270. However; the proposed 

integrated system calibrates the cutting force coefficients from the CWE information and measured 

tangential force at the beginning of the cut and predicts the average torque accurately as the CWE 

geometry changes. The residual threshold is adaptively adjusted and alerts the tool condition 

monitoring system whenever both the measured and residual torque violate the limits. The virtual 

machine assisted algorithm does not give false alarm at step change (tooth periods 262-270) but 

detects the true tool failure event imposed around tooth period 500 (location 3# in Figure 6.8). 

At location #3, operation is paused and one of the inserts of the cutter is changed with a 

damaged one to impose the breakage event to the experiments in a controlled way. For the sake of 

illustration purposes, algorithm is not allowed to set the feed override to 0% and stop the operation 

when the breakage is detected, and constant violation of the threshold after location #3 can be seen 

in the residue plot (Figure 6.8). The algorithm is able to stop the operation at tool breakage event 

by using the feed override PLC address through the DNC library in 150-200 milliseconds which 

corresponds to 3-4 spindle revolutions with 1000 rev/min. The same operation is repeated and the 

region where the tool breakage is detected (location #3) and “set feed override to 0%” command 

sent to the CNC is shown in Figure 6.9. 
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Figure 6.9: Tool breakage event around tooth period 500 where the operation is automatically stopped (Location #3 

in Figure 6.8) 

In Figure 6.9, peak (a) is the first violation of the adaptive threshold where the next 3 tooth 

periods are checked until peak (b) to make sure of the breakage event. At peak (b) location, feed 

override is set to 0%, which is referred as “feed halt” in the literature, command is sent to the CNC 

and it takes 6 tooth periods since the machine stops its motion after that moment as shown at peak 

(c). After feed halt, since tool motion is stopped in the middle of the cut, one of the flutes keep 

touching the workpiece due to the runout on the tool, that is why both average torque per flute and 

corresponding residue values are not converging to zero but to a very small number ( < 0.25 Nm). 

For this experiment, one spindle revolution takes 60 milliseconds with 1000 rev/min, 6 tooth 

periods from peak (b) to (c) correspond to 3 spindle revolutions, hence operation is stopped within 

180 milliseconds once the tool breakage alarm is triggered. 

The algorithm is now more reliable and can be used in production since the thresholds are 

adaptive as a function of process geometry, physics and can be set as a % of the predicted values 

by considering only the disturbances caused by the tool run out. 
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6.4 Adaptive Control of Milling Forces with Virtual Feedback 

In addition to chatter detection and tool breakage monitoring modules, adaptive control is used to 

keep the peak forces ( ( )pF k ) at the desired reference level ( ( )rF k ) by manipulating the feed rate 

in-process at spindle periods ( k ). The main objective is to prevent tool shank breakage and 

constrain the bending deflections of the tool by keeping the resultant forces at a desired level 

throughout the operation. The resultant peak force in X-Y plane at each spindle period is estimated 

from the feed drive motor current commands as described in Chapter 3.  

Block diagram of the adaptive control system with the virtual model feedback is shown in 

Figure 6.10. 

 

Figure 6.10: Block diagram of the adaptive control system with the virtual model feedback 

As illustrated in the block diagram (Figure 6.10), the input to the adaptive control system is 

the reference level of the maximum cutting force ( rF ) which can be directly correlated to 

maximum static deflections left on finished surface to keep them within the tolerance of the 

workpiece. The actual cutting forces are monitored from feed drive current command 

measurements with the method presented in Chapter 3. The peak force ( pF )  at each spindle period 

( k ) is evaluated from the actual cutting forces, sent back as a feedback which is subtracted from 

the reference force level ( rF ) and passed to the control law in order to calculate the feed command 
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( cf ) sent to the CNC. The feed command ( cf ) is sent as a voltage command to the feed drive 

motors which move the table at an actual feed velocity ( af ). Since most of the machine tool 

cascade drive control dynamics are tuned to be overdamped with no overshoot, they can be 

assumed to have first-order dynamics. The cutting process itself also feels the change in the chip 

load and the depth of cut at least after one tooth period which means the cutting process can also 

be approximated as a first-order system with a time constant equal to one or more tooth periods 

(less than a spindle period). The combined CNC, machine tool feed drive and cutting process 

transfer function ( ( )cG z ) has time-varying parameters because CWE geometry varies along the 

toolpath. The commanded feed rate (input) and the peak force values (output) are sent to an on-

line recursive least squares (RLS) algorithm which estimates the parameters of the combined 

transfer function ( ( )cG z ) at every adaptive control interval. The estimated parameters are used to 

update the control law in an adaptive manner since they are adjusted according to the changes in 

the cutting process. 

Although the combined feed drive and cutting process transfer function ( ( )cG z ) can be 

approximated to have second-order dynamics, the order is increased by one to account for the non-

linear relationship between the feed rate (i.e. chip load) and the cutting forces. Therefore, the 

discrete time transfer function ( ( )cG z ) between the peak cutting force ( ( )pF k ) and commanded 

feed rate ( ( )cf k ) is expressed as; 
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where the parameters of polynomials B  and A  vary with time, depending on the CWE changes 

along the toolpath. Corresponding parameters ( 0b , 1b , 2b , 1a , 2a ) are estimated recursively 

through an RLS algorithm at each spindle (control) interval ( k ) from measured peak force ( pF ) 

and commanded feed ( cf ) vectors. The details of the on-line recursive parameter identification 

algorithm (RLS) is given in Appendix F ([53], [46]). Once the machining process transfer function 

( ( )cG z ) is identified, control law should be updated to calculate the next commanded feed rate 

which is described next. 

In this thesis, adaptive generalized predictive control (GPC) method described in [53] is used 

since it is robust to future transient CWE changes and cutting forces, as well as the varying time 

delay between the feed command generated by the controller and its actual execution by the CNC. 

The GPC method is devised for an ARIMAX forecast model where the details can be found in 

[53]. It uses a prediction approach where the controller predicts the changes in the controlled 

variable that will occur in the future using the present and past process knowledge and control. 

The predictions are done at discrete samples of j  and the GPC output ( cf ) is calculated to 

minimize the error between the reference ( rF ) and measured peak ( pF )  forces, within the 

minimum and maximum horizon, 1N  and 2N , respectively. The ARIMAX model is an extended 

version of the ARIMA (autoregressive integrated moving average) method which is also referred 

as the vector ARIMA or the dynamic regression model. The model assumes that the future values 

of a variable vector linearly depend on its past values, as well as on the values of the past 

(stochastic) transients. The plant transfer function can be written in the following ARIMAX form; 
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where ( )AR k  is assumed to be an uncorrelated random noise sequence and a j  step ahead peak 

force prediction is obtained by expressing the noise term by its partial fraction expansion as follows 

[53]; 
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which leads to the Diophantine equation as follows [53]; 
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where jE  and jF  are calculated for a given 
1( )A z−

 and prediction interval j . The j  step ahead 

prediction of peak cutting force ( pF ) at control interval ( k ) is given as [53]; 

 
1ˆ ( ) ( ) ( 1) ( )p j c j pF k j G z f k j F F k−+ =  + − +  (6.11) 

where 
1(1 )z− = −  and 1 1( ) ( )j jG z E B z− −= . The GPC algorithm takes predicted output values 

within the prediction output horizon when calculating the commanded feed rate. Minimum and 

maximum prediction output horizons are selected as 1 1N =  and 2 4N = , respectively as in [53]. 

GPC considers that future control inputs ( ( )cf k j+ ) do not change beyond the control horizon 

NU  which is set to be 1 ( ( 1) ( 2) ( 3) 0c c cf k f k f k + =  + =  + = ).  With these, Eq. (6.11) becomes; 

      ˆ ( )p I cF G f k f=  +  (6.12) 

where the derivations of vector  f  which contains present and past measured peak forces (

( ), 0,1, 2pF k i i− = ) and past feed commands ( ( ), 1, 2cf k i i− = ) and recursively calculated 

polynomials jG  and jF  are given in Appendix G. GPC determines the commanded feed rate value 
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by minimizing the expected value of a quadratic cost function containing future predicted errors (

r pF F− ) within the output horizon as follows [53]; 

  
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where   is the weighting factor on the control input increment ( ( ) ( 1)c cf k f k− − )  defined between 

0 and 1 and selected as 0.25 in this study to soften the impact of sudden CWE changes along the 

toolpath on the adaptive algorithm. The minimization of the quadratic cost function through (

0cJ f  = ) leads to the input feed command at control (spindle) interval k  as follows; 
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The polynomials in the GPC algorithm are recursively calculated at each control (spindle) 

interval where the details of the computations can be found in Appendix G. 

GPC algorithm described in this section is adopted from [53] but with the added virtual model 

feedback as shown in the block diagram given in Figure 6.10. Adaptive control system described 

so far has not been adopted by industry due to large transient force peaks, overloads of the tool 

which either breaks the tool or damages the part due to excessive deflections when the CWE 

geometry suddenly increases. When the tool enters into a cavity or the depth of cut is low, the 

corresponding peak force becomes low; hence the adaptive controller increases the feed rate to 

increase the force towards the reference value. When the tool exits the cavity or the depth of cut 

suddenly increases, the servo cannot reduce the feed quickly, the resulting high feed rate creates a 

large cutting load spike that breaks the tool, damages the part or might violate the tolerances of the 

workpiece due to the corresponding deflection peak at the tool tip. Hence, the intensive adaptive 

control research in the past has not been successfully used in practice.  
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This problem is solved by introducing the virtual model feedback which considers the CWE 

geometry conditions and simulated forces from the virtual machining system to the adaptive 

control algorithm ahead of sudden geometry changes in a look-ahead manner. Since the virtual 

feedback file and the on-line operation is running in synchronization, a look-ahead algorithm is 

used to prevent the transient overloads of the tool, collisions and increasing trend of feed rate at 

the exit locations which causes excessive amount of burrs. As the operation is running on the 

machine with virtual feedback file tracing, half second long look-ahead of a toolpath distance is 

checked in the virtual feedback file for every control interval; if the CWE area and the chip load 

are a certain percentage (15% in this study) higher than the current one, the flag value shown in 

the block diagram (Figure 6.10) is set to 1, and 0 otherwise. When the flag value is 1, the incoming 

force predicted by the virtual machining system is fed into the controller as a disturbance force 

prior the actual CWE change in the real operation. As a result, the adaptive controller slows down 

the feed rate before tool goes in to the higher CWE area or chip load region and prevents force 

overloads and collision spikes; hence the adaptive controller becomes robust and practical to be 

used in production, especially for roughing operations. In addition, the flag value is set to 2 when 

the tool is in the cavities, the controller is halted, and the feed rate is kept at a safe level to prevent 

excessive feed rates which may lead to collisions or exit burrs as the tool is leaving the workpiece. 

In order to compare the conventional and virtual model assisted GPC, face milling operation 

of the demo part (Figure 6.2) with sharp transient CWE changes is used here as an example. Results 

of no adaptive control, conventional adaptive control and adaptive control with virtual model 

feedback cases are illustrated in Figure 6.11.  

Reference force is selected as 325 N because feed override limits of the Heidenhain CNC is in 

between 20-150%. Programmed feed rate in NC program is 400 mm/min and the force profile 
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follows the step increase and decrease CWE profile of the part along the toolpath which is labeled 

as (NoAC) in Figure 6.11. When the adaptive control is activated with 325 N reference force, 

controller is able to keep the actual resultant cutting forces at the desired level with 5% error which 

is allowed in the algorithm to prevent oscillatory feed profile.  

 

Figure 6.11: Virtual model assisted GPC, adaptive control (AC) with force identified from feed drive current 

command measurements, no AC (NoAC), conventional AC (AC) and AC with virtual machining model feedback 

(ACwithVF) for the face milling operation of the demo part shown in Figure 6.2 

This type of conventional adaptive controller produces force overshoots at locations A and B 

(Figure 6.11) where CWE area suddenly increases because it is blind to current and future process 

geometry. Forces increase to almost 800 N at location A, which increases the error and the 

controller slows down the feed rate to take the force value back to the reference level. However; 

these kinds of large transient overloads of cutter tools are not desirable as mentioned earlier. 
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Similarly, at location B, tool is going into another deeper region suddenly and force overshoot can 

be seen in conventional adaptive control case. 

When the virtual model feedback is activated, half a second long look-ahead of tool path 

distance in virtual feedback file warns the controller before location A and B by setting the flag 

value to 1 (Figure 6.10), injecting the incoming force overshoot to the controller as a disturbance, 

enables controller to reduce the feed rate prior to the depth increase, hence prevent transient 

overloads of the tool and force overshoots (see ACwithVF in Figure 6.11). 

In addition, in the exit region (location C in Figure 6.11), the conventional adaptive controller 

is blind to the process geometry and it increases the feed rate to take the forces back to reference 

level as the tool is leaving the workpiece. Naturally, cutting force will approach and converge to 

zero when tool is at the exit region, as the controller increases the feed rate in this region, tool 

leaves the workpiece by accelerating, which leaves exit burrs on the finished workpiece (see Figure 

6.12).  

 

Figure 6.12: Burr formation with (AC) and (AC with VF) at the exit region (location C in Figure 6.11) 

However; with the virtual model assisted adaptive controller, the flag value is set to 2 when 

the tool is in the exit region (location C), controller is halted, and the feed rate is kept at a constant 

level which enables tool to exit the workpiece smoothly and prevent exit burrs which requires 

manual cleaning or polishing on the produced part. 
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6.5 Experimental Verification 

In this chapter, profile and two slot milling operations are demonstrated experimentally on a part 

shown in Figure 6.2. The results for the face milling are given in Sections 6.3 and 6.4, hence, they 

are not shown here. Rest of the results for the profile and two slot milling operations are 

summarized as follows. First, tool breakage monitoring results for individual operations are given 

in Figure 6.13. The virtual model and on-line measured average torque per tooth period values are 

in an agreement since cutting force coefficients in the virtual model are calibrated at the beginning 

of the cut (first 10 spindle revolutions).  

 

Figure 6.13: Tool breakage monitoring results for the demo part shown in Figure 6.2 

For comparison of the previous, constant threshold-based method and the adaptive threshold 

with the virtual model feedback, false alarm locations with the constant threshold check are 

highlighted in Figure 6.13. These false alarms are neglected by the virtual model assisted tool 
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breakage monitoring algorithm since the virtual model feedback adaptively changes the threshold 

value as a function of process geometry and physics. 

Next, adaptive control results are given in Figure 6.14 where constant feed rate with no 

adaptive control (NoAC), conventional adaptive control (AC) and virtual model assisted adaptive 

control (ACwithVF) cases can be compared with each other for every operation.  

 

Figure 6.14: Virtual model assisted GPC, adaptive control (AC) with force identified from feed drive current 

command measurements, no AC (NoAC), conventional AC (AC) and AC with virtual machining model feedback 

(ACwithVF) for the demo part shown in Figure 6.2 
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It is evident that the virtual model assisted adaptive control benefits from the virtual feedback 

which warns the GPC algorithm prior to the sharp CWE increase, enables it to reduce the feed rate 

and prevents the transient overloads of the tool. As shown in Figure 6.14, peak force profile with 

the virtual model assisted adaptive controller is overshoot free where the forces are at the desired 

reference levels for each operation. The final machined part is shown in Figure 6.15. 

 

Figure 6.15: Final machined part on Quaser UX-600 machining center 

Finally, it should be noted that the priority in the integrated system is given to the chatter 

detection/avoidance since the stability of the cutting process is the most important aspect and the 

tool breakage monitoring, as well as the adaptive control algorithms are designed for stable, 

chatter-free operations. Given that the process is stable, tool breakage monitoring has the next 

priority. Only when the operation is chatter-free, and tool is determined to be healthy, adaptive 

control is applied to increase the productivity further. The flowchart of the procedure is given in 

Figure 6.16 to show the structure clearly.  
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Figure 6.16: Priority levels of the integrated virtual and on-line monitoring and control system 

6.6 Summary 

This chapter presents a novel virtual machining integrated on-line process monitoring and control 

system. The use of CNC inherent force sensing eliminates the need to mount costly and impractical 

sensors on the machine. The proposed system in this chapter brings such critical information from 

the Virtual Machining system and enables the on-line monitoring and control algorithms to detect 

the tool failure and control the process more robustly. The application of the new approach has 

been proven on a demo part. The proposed method is aimed to let the machine tool to self-adjust 

itself to varying conditions in production by making robust decisions with the virtual machining 

feedback. The methodology as well as the results have been published in [5]. 
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Chapter 7: Conclusion 

 

7.1 Conclusion 

In this thesis, a virtual model integrated on-line machining process monitoring and control system 

is introduced as a novel step toward achieving a digital twin for machining systems. Process states 

(i.e. cutting forces) are predicted from feed drive current commands by modeling the friction, 

inertia and compensating the effect of structural dynamics on the measurements. The friction 

model can capture the non-linear effects and transients where motion direction changes. After 

separating the friction and inertial loads from the current commands, which are due to the rigid 

body motion of the system, remaining disturbance torque coming from the cutting operation at the 

tool-workpiece interface is obtained. The distortion of the measured disturbance torque by the 

structural dynamics of the feed drive chain as it is transferred from the tool-workpiece interface to 

the servo is compensated by Kalman Filters designed individually for each drive. The bandwidth 

of the disturbance transfer functions of the feed drives are increased from 15-20 Hz to 180-200 Hz 

which covers a wide range of spindle and tooth passing frequencies used for difficult to cut 

materials. These compensated cutting forces (for translational drives) and torques (for rotational 

drives) are then mapped to the tool tip using the kinematic model of the multi-axis machine tool. 

The study shows that it is possible to achieve an external sensorless monitoring system by using 

the feed drive motor current commands readily available in CNC systems. 

In addition, in-process varying dynamics of the tool, holder and spindle assembly are 

investigated by multiple vibration sensors installed on the spindle body and corresponding Kalman 

filters are updated accordingly. Process states are predicted from each vibration sensor to obtain 

more robust predictions with the data fusion method and the system can be used as an alternative 



160 

 

to the force monitoring method based on CNC inherent data. It is also aimed to embed these 

vibration sensors inside the spindle for production environment as a future work. 

The chatter vibrations are also detected from CNC drive current measurements without 

installing external sensors. Prior to state observer design, transfer function of the spindle drive is 

automatically identified with frequency sine-sweep tests using external PC – CNC connection. 

Knowing the transfer functions of the current and velocity controllers, transfer function between 

the disturbance torque coming from the tool tip and nominal (commanded) current supplied by the 

velocity controller is calculated and a Luenberger observer is used to compensate for the dynamical 

distortions in the measured nominal current signals. Proposed methodology does not require case 

dependent observers or filter tuning since the true dynamics of the system are considered where 

the presented results show that correct chatter frequency is identified regardless of the excitation 

frequency or the tool tip dynamics. The application of the method is shown mainly using the 

spindle motor current command. The proposed method is also able to predict the tangential 

component of the cutting force from the spindle drive current measurements which is then used to 

estimate the resultant force in X-Y plane. This method provides a practical and industry friendly 

way of estimating the resultant forces with an acceptable accuracy without going through extensive 

modeling of each translational and rotary feed drive on the machine tool. These practically 

estimated resultant forces can also be used for process monitoring and control applications. 

Following the process state prediction and chatter vibration detection by using CNC drive 

measurements, a novel virtual process model integrated on-line process monitoring and control 

system is developed. First, the cutting process is simulated using in-house developed MACHpro® 

Virtual Machining System and the corresponding process states along the toolpath are stored in a 

virtual feedback file on an External PC. These simulated process states are accessed by the on-line 
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monitoring and control system during the operation where the virtual model feedback prevents 

false tool breakage alarms, large transient overloads of the tool and collisions during adaptive 

control. The uncertainties in the virtual model, such as cutting force coefficients, are calibrated 

from on-line measurements for improved accuracy in the virtual model for future simulations. In 

order to read data from CNC, to run the process state and chatter vibration detection algorithms, 

and to trace the virtual model feedback file and change the feed and spindle speed overrides 

simultaneously, a multi-threaded on-line C++ code is developed by synchronizing the data flow in 

between threads using a circular buffer structure. The proposed system is demonstrated in 

machining a sample on a 5-axis CNC machining center. The prevention of false alarms, force 

overshoots and collisions are illustrated by disabling and enabling the virtual model feedback in 

consecutive passes.  

In summary, this thesis presents an integrated virtual process model and on-line process 

monitoring system. The system predicts process states using CNC inherent data without installing 

external sensors within the work envelope. The proposed framework is aimed to let the machine 

tool run unattended by self-adjusting itself to varying in-process conditions with the aid of the 

virtual process model.  
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7.2 Future Research Directions 

The methods presented in this thesis serve as a proof of concept for a digital machining twin to 

achieve an intelligent, self-adjusting and unattended machining systems utilizing CNC inherent 

data. The following future research can be carried out to improve the proposed system: 

• Friction of feed drive system is represented using LuGre model which can be improved by 

considering the strengthening or aging at zero relative sliding velocity, which is a widely 

observed phenomenon where the static friction increases logarithmically with stationary 

contact time. 

• Identification of drive disturbance FRFs is achieved through modal tap tests in this study. 

Alternatively, transfer function between the disturbance torque and nominal current can be 

calculated using frequency sine-sweeps, and the structural dynamics between the cutting 

region and the servo location can be added using receptance coupling or a similar tool to 

achieve automated system identification. 

• Drive disturbance FRFs are identified in the cutting region of the sample part. As shown 

in Appendix B, these FRFs are position dependent and can also be coupled depending on 

the machine tool configuration. Following identification of these position dependent FRFs, 

gains of the state observers (Kalman Filters in this study) can be scheduled according to 

tool tip position in machine coordinate frame for improved force prediction accuracy.  

• The induction motor of the spindle is modeled in time-domain using Simulink tool of 

MATLAB due to its highly non-linear, speed and load dependent behavior. For faster 

system identification, it can be modeled analytically by using practical assumptions. 

• Identified disturbance transfer function of the spindle drive relies on high torsional stiffness 

of the tool, holder and spindle structure. The model can be extended to cover tools with 
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torsional modes located lower than the bandwidth of the compensated disturbance transfer 

function (< 2500 Hz). 

• The process monitoring system can be extended to cover tool wear and machine tool health 

(i.e. spindle or feed drive) monitoring. Both the virtual machining process and machine 

tool models can be calibrated based on on-line measurements simultaneously. In return, 

virtual tools can provide useful information to the on-line algorithms in regards to 

preventative maintenance of spindle and feed drives to reduce downtimes and deciding 

when to change the tool due to wear prior to tool breakage or poor surface finishes. 

• Integrated virtual process model assisted on-line monitoring and control system can be 

implemented within CNC itself to prevent additional delays coming from the 

communication and execution between External PC and CNC. 

• Tool breakage percentage threshold value between the virtual process model and the on-

line application can be selected by learning from the previous available data. 

• Vibration sensors installed on the spindle body can be embedded inside which will make 

the system more practical to use in production environment. Having reliable vibration, 

force and thermocouple sensors strategically placed close to the bearings and assembly 

locations inside the spindle will provide more insight about the process states and spindle 

structure’s health. 
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Appendices 

 

Appendix A  Normalized Equivalent State-Space Matrices of the Rotary and Translational 

Feed Drives 
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Appendix B  Kalman Smoother 

Kalman smoother is applied to compensated forces in each axis to fix the phase shift introduced 

by the disturbance transfer function further. It is crucial to correct the phase shifts of compensated 

signals as much as possible before mapping them to the tool tip with the kinematics solution. 

Smoothing corresponds to consideration of additional measurements from the past and future 

states and acts similar to forward-backward filtering. Since targeted process monitoring and 

control algorithms run in tooth passing or spindle rotation periods, delay buffers are designed (with 

6 milliseconds duration) with 60 nominal current data points (  0.1 millisecond sampling time) 

to apply the Kalman Smoother with past and future available data points. Given that the estimated 

states are expx̂  (see Eq. (3.26)), Kalman smoother works as follows; 

 ˆ ˆ ˆ ˆ( )= + −
k k+1exp,s exp s,k exp,s exp exp

x x K x A x  (B.1) 

where Kalman smoother gain is calculated as; 

 =
+

k

k k

T

k exp

s,k T

exp k exp k

P A
K

A P A Q
 (B.2) 

and the smoother error covariance matrix (used as a smoothing performance criteria [83]) is 

updated as; 

 ( )= + − T

s,k k s,k s,k+1 k+1 s,kP P K P P K  (B.3) 

Compensated measurements are iteratively smoothed, and the synchronized estimations follow 

the on-line measurements with a delay of 6 milliseconds. Buffer size can be adjusted in order to 

reduce the delay further by sacrificing from the smoothing performance. Further details of the 

buffering and Kalman smoother algorithm can be found in [52] and [83], respectively. 
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Appendix C  Position Dependency of the Drive Disturbance FRFs 

Translational Drives; 
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Rotary Drives; 
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Appendix D  FRF of the Velocity Loop - Simulated and Measured with Sine Sweep Tests 

 

As illustrated above, the second speed range (4000 rev/min) exhibits a similar behavior with the 

first speed range (0 rev/min). Velocity closed loop FRF for the second speed range could not be 

measured due to the limitations in the Heidenhain CNC (TNCOpt®) system identification tool box. 
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Appendix E  Identified Transfer Function Modal Parameters of the Spindle Drive 

  1st Speed Range (0-3300 rev/min) 2nd Speed Range (3300-24000 rev/min) 

 Mode (Hz)nk  (%)k  
 

k  
 

k  
 (Hz)nk  (%)k  

k  
k  

Spindle 

Drive; 

( )

( )

act

m

s

s


  

1 21.9 83 8.6e1 -9.1e-1 21.4 77 8.5e1 -1.7e1 

2 66.8 94 -9.1e1 -2.9e2 

232.7 60 -

9.1e1 

7.7e1 

3 258.8 50 1.8e1 6.4e1 445.9 35 4.4 -5.5 

4 457.9 50 -8.9 -1e1 

666.5 20 -

3.6e1 

4.9 

5 640 15 -1.7 4.4 843.8 25 2.7e1 -3.8e1 

6 875 12 -4.9e-1 -1.8 1157.7 15 1.7e1 1.1e1 

7 1050 12 6.1e-1 1 1355.6 5.4 -2.3 3.9e-1 

8 1350 4 -3.5e-1 -9.9e-1 1659.8 10.9 8.3 2 

9 1800 3 -2.5e-1 1.3e-2 1766.2 8 -6.2 2.2 

10 2417 5 -4.3e-1 5.4e-1 2415.7 4.7 -1 2.3 
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Appendix F  Recursive Parameter Estimation Algorithm 

Recursive least squares algorithm used to find the transfer function parameters of the combined 

feed drive and cutting process transfer function (
cG )  given in Eq. (6.7) – Chapter 6 is summarized 

in this section [46]. First, the estimated parameter vector (coefficients of the transfer function - 
cG

) is written as; 

 
1 2 0 1 2

ˆ ˆ ˆˆ ˆ ˆ( )
T

t a a b b b  =
 

 (F.1) 

and the regression (observation) vector consists of previous input (commanded feed rate - cf ) and 

output  (peak force at each spindle period ( k ) - pF ) samples is constructed as; 

 ( ) ( 1) ( 2) ( 1) ( 2) ( 3)
T

p p c c ct F k F k f k f k f k  = − − − − − − −   (F.2) 

The estimated parameter vector is updated at every time step as follows; 

 ˆ ˆ ˆ( ) ( 1) ( ) ( )( ( ) ( ) ( 1))T

pt t a t k t F t t t   = − + − −  (F.3) 

where ( )k t  is the estimation gain; 

 
1( ) ( 1) ( )(1 ( ) ( 1) ( ))Tk t P t t t P t t   −= − + −  (F.4) 

Covariance matrix ( )P t  is calculated as; 

 1 2

( )
( )

( ( ))

P t
P t c c I

tr P t
= +  (F.5) 

and auxiliary covariance matrix ( )P t  is; 

 

( ) ( 1) ( ) ( ) ( ) ( 1)

ˆ1 ( ) ( ) ( 1) 2 ,
( )

0 ,

T

T

p

P t P t a t k t t P t

if F t t t
a t

otherwise



  

= − − −

 − − 
= 


 (F.6) 
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1c  and 2c  are greater than zero and   is an estimate of the magnitude tolerable fluctuation of the 

output of the process or noise. When the adaptive control algorithm runs in a steady cut region 

where the process conditions do not change for a long period, the covariance matrix usually 

becomes too small or large which leads to numerical instability. Therefore, trace of the covariance 

matrix ( ( ( ))tr P k ) should be monitored and the covariance matrix should be reset to its initial value 

when it becomes too small or large along the toolpath [53].  
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Appendix G  Generalized Predictive Control (GPC) Algorithm 

The recursive algorithm of GPC is summarized in this section [53]. The Diophantine equation 

becomes as follows when 1j = ; 

 
1 1 1 1

1 11 ( ) ( ) ( )A z E z z F z− − − −=  +  (G.1) 

which yields 10 10 1 11 2 11, ( 1), ( ),e f a f a a= = − − = − −  and 12 2f a=  where vector  f  is; 

  

11 12 10 11 12

22 23 20 21 22

33 34 30 31 32

44 45 40 41 42

( 1)

( 2)

( )

( 1)

( 2)

c

c

p

p

p

f k
g g f f f

f k
g g f f f

F kf
g g f f f

F k
g g f f f

F k

 − 
  

 −  
  

=   
  −
    −  

 (G.2) 

For 1j  , Diophantine equations at j  and 1j +  becomes; 

 1

1 1 0j

j j j jA E E z z F F− −

+ +
   − + − =     (G.3) 

which leads to; 

 

10 20 30 40 0

21 31 41 1

32 42 2

43 3

1e e e e e

e e e e

e e e

e e

= = = = =

= = =

= =

=

 (G.4) 

and 

 
1 1

1 1,0

, 1, 1 ( ) , 0,1,2
j i i

j j

j i j i e a a

e f

f f i
− +

− −

− + − −

=

= =
 (G.5) 

The polynomial jG  is then calculated as follows; 

 
1 2

0 1 2( )j j jG E B E b b z b z− −= = + +  (G.6) 
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These equations are recursively solved at each prediction step ( 1 2

0 1 2( )j j jG E B E b b z b z− −= = + + ) 

and the individual parameters are given as; 

( 1, 2,3, 4)jE j = ; 

 

1 0

1

2 0 1

1 2

3 0 1 2

1 2 3

4 0 1 2 3

E e

E e e z

E e e z e z

E e e z e z e z

−

− −

− − −

=

= +

= + +

= + + +

 (G.7) 

( 1, 2,3, 4)jF j = ; 

 

1 2

1 10 11 12

1 2

2 20 21 22

1 2

3 30 31 32

1 2

4 40 41 42

F f f z f z

F f f z f z

F f f z f z

F f f z f z

− −

− −

− −

− −

= + +

= + +

= + +

= + +

 (G.8) 

( 1, 2,3, 4)jG j = . ; 

 

1 2

1 10 11 12

1 2 3

2 20 21 22 23

1 2 3 4

3 30 31 32 33 34

1 2 3 4 5

4 40 41 42 43 44 45

G g g z g z

G g g z g z g z

G g g z g z g z g z

G g g z g z g z g z g z

− −

− − −

− − − −

− − − − −

= + +

= + + +

= + + + +

= + + + + +

  

The contents of the prediction, reference and gain vectors are as follows; 

      

0

1

2

3

ˆ ( 1) ( 1)

ˆ ( 2) ( 2)
ˆ , ,

ˆ ( 3)( 3)

( 4)ˆ ( 4)

p
r

p r

p r I

rp

r
p

F k gF k

F k gF k
F F G

gF kF k

gF kF k

 + +   
 

  + +     
= = =     

++     
     +   + 

 (G.9) 

where recursively calculated polynomials jE , jF  and jG  are [53]; 
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0 10 1 11 2 1 12 2

0 10 11 1 12 2

1 10 20 11 1 1 21 12 1 2 1

22 1 2 20 0 1 21 1 1 0 22 2 1 1 23 1 2

2 20 30 21 2 1 31

1;

1, ( 1), ( ), ,

, ,

2;

, ( 1), ( ),

, , , ,

3;

, ( 1),

For j

e f a f a a f a

g g g b g b

For j

e f f f e a f f e a a

f e a g b g g b e b g b e b g e b

For j

e f f f e a f

=

= = − − = − − =

= = =

=

= = − − = − −

= = = = + = + =

=

= = − − − = 22 2 2 1 32 2 2

30 0 31 1 2 32 2 1 1 2 0 33 1 2 2 1 34 2 2

3 30 40 31 3 1 41 32 3 2 1 42 3 2 40 0

41 2 3 43 1 2 2 1 3 0 44 2 2 3 1 45 3 2

( ), ,

, , , ,

4;

. ( 1), ( ), , ,

, , ,

f e a a f e a

g g g g g g b e b e b g e b e b g e b

For j

e f f f e a f f e a a f e a g g

g g g g e b e b e b g e b e b g e b

− − =

= = = = + + = + =

=

= = − − = − − = =

= = = + + = + =

 (G.10) 
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