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Abstract

This dissertation addresses the near-optimal deployment problem of robot-sensory nodes

in a spatiotemporal field. With limited resources, monitoring of a complex environment

may face serious challenges in providing sufficient information for spatiotemporal signal

estimation and reconstruction. It is therefore essential to retrieve most useful information

from sampling locations while using a small number of sensor nodes. In this dissertation,

three aspects are investigated to overcome the shortcomings of the existing information-

based sampling methods.

First, a sensor node deployment method is designed to find the minimum number of sen-

sor deployment locations while achieving near-optimal field estimation error. To this end,

a sampling-based field exploration method is used to find near-optimal sampling locations

over an infinite horizon. Moreover, spatiotemporal correlations of the sampling data are

studied to find redundant signals. The corresponding sampling locations of the redundant

signals are eliminated concerning the network connectivity.

Second, a deep reinforcement learning approach is proposed to accelerate the field ex-

ploration. Typically, field exploration methods are heavily dependent on random sampling,

which has low efficiency. To avoid unnecessary or redundant sampling locations, obser-

vations from the sampling locations are utilized. Then a model-based information gain

determination of the sampling locations is developed to evaluate the effectiveness of the ap-

proach. The proposed method can determine the informativeness of the spatiotemporal field

by learning the information gain from the sampled area. The mobile sensory agents are then
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encouraged to take more samples in the area of higher information gain. Consequently, the

spatiotemporal field can be efficiently explored. Moreover, the selected sampling locations

can near-optimally reconstruct the spatiotemporal field using statistical methods.

Third, a deep learning framework is designed to provide accurate reconstruction and

prediction of the spatiotemporal field, using a limited number of observations. Nonlin-

ear mapping from limited observations to the entire spatiotemporal field is needed in a

sufficiently large spatiotemporal field. Hence, a deep learning method is proposed to ex-

tract sparse representations of the field and their nonlinear mappings. It is also proven that

the proposed framework obeys Lipschitz continuity and that the observations collected by

sparse representations are sufficient for spatiotemporal field reconstruction.
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Lay Summary

The environmental pollution is a critical issue in todays world, and the ecological changes

and pollution may happen anywhere. For example, aquatic pollutants may come from

household waste, industrial effluent, and environmental contamination. Large scale moni-

toring systems can be established to determine the polluted areas and their dynamics. Then,

corrective actions can be taken using that information. This dissertation seeks to develop

information-based sampling approaches that can retrieve as much information as possible

from a spatiotemporal (space-time) field. Redundant sampling locations are detected and

eliminated to reduce the infrastructural cost. In this manner, the efficiency of the field ex-

ploration is improved while reducing the computational cost, by learning the sampling data.

The collected data can be used to estimate the spatiotemporal field. Besides, the field can

be reconstructed from the sampling data, and the environmental pollution and changes can

be detected or predicted.
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Chapter 1

Introduction

1.1 Motivation

In recent decades, public awareness has been considerably raised with regard to various

types of environmental pollution issues. Environment-related problems significantly affect

public health, in both developing and developed countries. In this context, environmen-

tal monitoring systems can be designed to sample the key attributes that adversely affect

the living environment and then inform the public and relevant authorities about the lat-

est undesirable conditions and take corrective actions. Deployed sensors may comprise a

wireless sensor network (WSN) that can carry out different types of tasks such as persistent

monitoring [1], event detection [2], and spatiotemporal field estimation and reconstruction

[3, 4].

Typically, an environmental monitoring system consists of a group of sensor nodes de-

ployed in an environment of interest (EOI). In practice, only a limited number of sensor

nodes are deployed in critical and fixed locations due to a limitation of resources, such as

battery life and the cost of sensor node components. It is therefore essential to allocate

sensor nodes to optimal locations and possible move them as appropriate when the opti-

mal conditions change. In this manner, a deployed sensor network can receive the greatest

amount of information while maintaining an acceptable environmental monitoring estima-

1



tion error.

Traditionally, dense deployment has been performed to achieve high monitoring resolu-

tion for a field. The deployed static sensors were assumed to detect events within a specific

sensing range, which is regarded as the coverage area of sensor nodes. As the sensor net-

work spreads over the field, the EOI can be fully covered. Originally, researchers tended

to deploy sensor nodes randomly in the field; efficient data transmission protocols and the

sleep-active scheduling method were then used to increase the network lifetime [5, 6]. How-

ever, randomly deployed sensor nodes in a field can result in high infrastructure costs and

redundant area coverage. Hence, the sensor nodes should be deployed within an infinite

horizon and dynamically according to suitable optimizing criteria.

In contrast to static sensor networks, mobile sensor networks provide mobility to sensor

nodes, enabling them to move as appropriate within the EOI. In this manner, mobile sensors

can optimize their locations to attain sufficient area coverage in an effective manner. The

mobility of sensor nodes may also help the sensor network adapt to environmental changes.

Researchers have made great efforts to maximize the coverage ratio and minimize the trav-

eling distance of the mobile sensors [7, 8]. Typically, a small number of mobile sensors are

randomly deployed or placed along a narrow area. A planning algorithm then instructs each

mobile agent to move around to increase the coverage ratio while minimizing the traveling

distance. In this manner, the maximum coverage area will be provided by the deployed

sensors in an “optimal” manner. Redundant sensors can be removed or relocated to further

optimize the system and reduce costs.

However, if the EOI is large, deploying sensors in a distributed manner may still require

a large number of sensor nodes. Hence, the EOI can be determined as a spatiotemporal field,

and sampling-based deployment strategies can be developed to use only a small number

of sensors to estimate the entire spatiotemporal field optimally. The sensor deployment

locations of the sampling-based strategies are determined by minimizing the estimation

error over the EOI, or by maximizing the information gain from the field. Novel algorithms
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have been developed to explore the spatiotemporal field efficiently and find the near-optimal

sampling locations for the sampling data [3, 9]. These approaches first model the EOI as an

analytical model. Mobile sensor nodes are then sent out to explore the EOI. Near-optimal

sampling locations can subsequently be determined by minimizing the field estimation error.

Moreover, maximum information can be retrieved from the EOI by selecting the most

informative subset from the sampling locations [10]. Information theory-based methods

calculate the entropy or mutual information of the sampling data, after which the subset of

the sampling data that provides maximum information is selected. Thus, the correspond-

ing locations of the selected subset can be determined as the most informative sampling

locations, and the maximum information gain can be achieved from the EOI.

In some cases, merely achieving minimal estimation error in a field might result in a

waste of limited resources. Sensory data collected from the deployment locations may have

some redundancy according to specific criteria, such as linear dependency or information

theory. In such cases, the selected near-optimal sampling locations can be further reduced

to minimize the number of deployed sensor nodes [11]. A redundancy-removing algorithm

can first find the optimal sensor deployment location set, which contains a set of sensors

that achieves the lowest estimation error in the EOI. The correlation of various sampling

locations is then investigated. If the sampling data at one or more locations can be recon-

structed from the remainder of the observations, they are regarded as redundant locations.

By removing these redundant locations, the most informative subset can be selected from

the optimal set to reduce the number of sensor nodes.

Currently, efficient optimization methods, such as RRT-based approaches, heavily de-

pend on exploration metrics, which may result in extensive computing time. The rapidly-

exploring random tree (RRT) algorithm, a common exploration method, can efficiently ex-

plore an infinite horizon [12]. Randomly selecting the subsequent sampling point in a field

guarantees an optimal solution for deployment locations; however, continuously sampling

random locations may result in a duplication of efforts. Hence, information acquired from
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sampled locations can be utilized to accelerate the exploration [13]. By learning the qual-

ity of sampled locations, reinforcement learning (RL)-based algorithms can decide the best

future exploration steps given the current sampling locations. Furthermore, geodesic dis-

tance, information gain, and estimation error can be considered as the sampling reward,

which helps to avoid unnecessary exploration locations.

Given the observations from the optimal sampling locations, it is also essential to predict

the full state of the EOI. Recently, researchers have attempted to reconstruct the EOI accord-

ing to the spatiotemporal correlations of the sampling data [4]. Statistical methods, such as

principal component analysis (PCA) and compressive sensing (CS), have been applied to

perform signal compression and reconstruction. These approaches project the original sig-

nal onto a lower-dimensional space, which indicates essential parts of the original signal.

Thus, the corresponding sampling location can be selected as the critical sampling location

for reconstruction, and used to interpret how the signal is encoded into this low-dimensional

space. Statistical methods can then decode the observations from the low-dimensional space

to the original signal. Hence, given future observations from the selected sampling location,

the entire spatiotemporal field can be predicted. However, traditional statistical approaches

may have limitations in capturing both spatial and temporal correlations. Consequently,

Deep Learning (DL) may be utilized to reconstruct signals at higher efficiency and preci-

sion.

1.2 Research Objectives

It is important to identify and evaluate the performance and the weaknesses of existing

environmental monitoring systems, with the aim of conducting persistent monitoring, spa-

tiotemporal reconstruction, and the information-based sampling of the systems. Optimiza-

tion methods can then be implemented to generate more efficient deployment strategies and

to precisely reconstruct the spatiotemporal field according to the sampled data. The primary

problem in this context is to find, using limited observations, an efficient and near-optimal

4



sensor deployment strategy for estimating and reconstructing the spatiotemporal field.

The first goal of this dissertation is to design a near-optimal sensor node deployment

algorithms with minimal sensor nodes for comprehensive environmental monitoring. The

second goal is to develop efficient exploration methods to accelerate the optimization. The

sampling-based near-optimal strategy that is developed for sensor node deployment should

be capable of learning sampled data and taking intelligent sampling actions. The third

goal is to reconstruct and predict the extensive spatiotemporal field, using limited data.

Since only a limited number of sensor nodes are deployed in the spatiotemporal field, the

observations taken from these sampling locations should be able to accurately reconstruct

the full scenario.

1.3 Related Work

1.3.1 Field Coverage with a Static Sensor Network

A static WSN, which is the most widely used type of sensor network in real-world

applications, provides high system redundancy and monitoring resolution over the EOI.

In the beginning, Vuran et al. worked on addressing challenges with regard to WSNs that

were densely deployed at fixed locations and used a large number of sensor nodes to con-

tinuously observe physical phenomenon [5]. The spatial and temporal correlations within

the WSNs were utilized for the development of efficient communication protocols to save

network costs and energy consumption. Next, Yoon et al. focused on the spatiotemporal

correlations of sensed data in WSNs and the inherent physics of the environment [6]. The

researchers developed a clustering algorithm to cluster nodes according to similar sensing

values and spatiotemporal correlation. Then, only one sensor reading is transmitted to one

cluster, to reduce transmission costs.

However, the spatial correlation between sensors and cluster-heads may result in low

accuracy and may not fully exploit spatial and temporal correlations. Moreover, the trans-

mitted data cannot be used to reconstruct the entire network, and choosing an appropriate
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threshold that suits the current environment would be extremely difficult.

Consequently, Gupta and his colleagues designed techniques that exploit spatiotempo-

ral correlations in sensor data to minimize the communication and energy costs of data

collection in a sensor network [1]. Their algorithm used linear regression methods to find

highly correlated sensor nodes and cluster them into small subsets. The sensor network then

needed to collect data from only one sensor node in each subset. Based on Guptas work,

Alsheikh et al. utilized neural networks to determine redundant sensors [11]. The use of

neural networks made the algorithm suitable for a variety of sensory data and improved the

regression accuracy.

Villas et al. considered the case of large-scale, dense WSNs [2, 14]. With high-density

deployment it is very likely to detect spatially and temporally correlated information in a

small group of sensor nodes. Such information can be used to reduce the extent of commu-

nication and data exchange; by eliminating such redundancy, energy can be saved.

However, in these methods, since these sensor networks are static, and unnecessary

sensor nodes are turned off but not removed, the deployment is not “optimal” and also there

will be significant initial deployment cost. Thus, it is not desirable to deploy static sensor

nodes arbitrarily and densely in large-scale field monitoring.

1.3.2 Field Coverage with Dynamic Sensor Network

In contrast to static sensor networks, mobile sensor networks empower sensor nodes

with mobility, enabling them to provide dynamic coverage of the field of interest. In this

manner, overlapping of the sensing areas by nodes can be minimized, and hence the number

of sensor nodes can be reduced. The mobility of sensor nodes may also help the sensor

network adapt to environmental changes in an optimal manner [15].

Heo and Varshney presented an autonomous deployment method for mobile WSNs

[16, 17]. Their algorithm converts random deployment into uniform distribution with min-

imal sensor node movement. They proposed an algorithm to increase the ratio of region
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coverage while using limited computational time and relatively short mean sensor node

travel distance, which can extend the network lifetime over the field of interest.

Abo and his colleagues attempted to use robotic sensors to maintain dynamic coverage

of a field for as long as possible [8, 18, 19]. The sensor node deployment strategy in the field

is the essential factor related to the coverage; however, the traditional dense deployment

method requires many static sensor nodes and can cause coverage gaps in the sensing field.

Therefore, the researchers proposed a new deployment method based on multi-objective

immune optimization to minimize the coverage gaps. The coverage area of the WSN is

maximized by rescheduling the placement of the mobile sensors with limited mobility and

communication connectivity. The sensors with mobility not only improve the coverage of

the area but also reduce the cost of long-term deployment.

Although mobile WSNs succeeded in minimizing the number of sensors required in the

field and the energy consumption of the network, they did not consider the sampling data

correlation, which is widely viewed in static sensor network protocols. In particular, data

redundancy can be minimized by modeling environmental dynamics, using information-

based sampling strategies.

1.3.3 Spatiotemporal Monitoring with Wireless Robotic Sensor
Networks

Typically, a wireless robotic sensor network consists of a fleet of mobile sensor nodes,

which can be spatiotemporally deployed in an EOI. Information-based sampling methods

utilize a limited number of mobile sensor nodes, which provide sufficient information from

a field when deployed in relatively few critical locations. It is therefore essential to allocate

sensor nodes to their optimal locations for receiving maximum possible information while

minimizing the environmental monitoring estimation error. To achieve this goal, sensor

nodes need to search dynamically within an infinite horizon with specific optimizing criteria

[20], and strategies such as spatiotemporal sensor deployment can be used [21] [22].

Outfitting sensor nodes with mobility makes a sensor network more efficient and flex-
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ible by reorganizing the sensor network and reducing the number of sensor nodes. These

methods deploy a limited number of sensor nodes that can provide maximum useful in-

formation [23] or achieve the least estimation error for an environment [3]. Krause et al.

proposed a mutual information approximation method that improves the sensor node place-

ment quality [10]. They tested this criterion using real-world datasets and determined that

mutual information can achieve lower root mean square error (RMSE) in the environmental

estimation than entropy. Du et al. proposed a near-optimal sensor node deployment strategy

for monitoring hydro-dynamics and water quality in urban areas. They used entropy [24]

and mutual information [23] ] to gather maximum information in selected locations [25]

[26].

Lan et al. developed Rapidly-exploring random cycles (RRC) to estimate a spatiotem-

poral field in a dynamic environment by deciding the locations in the field where one or

more robots should reach to acquire data [27–29]. RRC first models the environment using

past data, based on which mobile sensor nodes are deployed to explore the EOI. Locations

are then determined by minimizing the largest eigenvalue of the error covariance matrix

of the field estimate error over an infinite horizon. By doing so, they seek to estimate the

environment continuously with a minimum number of sensor nodes. Lan et al. proposed

a new scheme called Rapidly-exploring Random Cycles star (RRCstar) that enhances RRC

by escaping local minima [3]. RRCstar, a variant of RRC, seeks to find the lowest global

estimation error over the field by rewiring those deployments with high estimation error.

1.3.4 Field Exploration Assisted by Reinforcement Learning

Outfitting sensor nodes with mobility to monitor infinite horizon problems has improved

the performance and efficiency of WSNs significantly. Mobility approaches deploy a lim-

ited number of sensor nodes that can provide adequate amounts of useful information and

achieve the minimum estimation error for an environment [30].

Field exploration algorithms, such as the RRT, have been further proposed to efficiently
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search a non-convex field [20]. Karaman et al. evaluated the quality of solutions provided

by RRTs. The proposed algorithm, RRT∗, was proven to be asymptotically optimal as the

number of samples increases [31]. Subsequently, sampling-based path planning algorithms

have been used to study sampled data on-the-fly while exploring [3, 9, 32]. However, the

performance of RRT-based algorithms is highly reliant on the distance measures that are

applied, and the exploration strategy has low efficiency.

Sivamurugan et al. proposed a sampling-based policy iteration to explore an infinite

horizon efficiently [13]. Specifically, reinforcement learning (RL) was used to study the

relationship of geodesic distance among the sampled points on-the-fly, which significantly

improved the computational efficiency of RRT-based methods. However, only geodesic

distance was utilized as the cost function to calculate the rewards of the algorithm, which

neglected spatiotemporal correlations of the sampling data. With the help of RL, algorithms

can determine the best actions under the current state and converge to a near-optimal situa-

tion [33–38]. Nevertheless, more computation time is consumed by the algorithm to explore

all possible states, as the environment and the states become more complex. Moreover, the

applications of RL-based algorithms have been limited to environments with directly ex-

tractable features or to low-dimensional environments that are fully observable. Thus, DL

has been introduced to approximate similar states, which enables automatic feature learning

through the gradient descent process [39, 40].

Mnih et al. improved RL with the advantage of deep neural networks (DNNs) to address

the issue about a complex environment [41, 42]. A DNN, which can generate a precise

model of a complex nonlinear domain, is a useful tool in many fields, including image

recognition [43], natural language processing [44], and bioinformatics [45]. Mnih et al.

tested their Deep Reinforcement Learning (DRL) algorithms on the practical domain of

Atari 2600 games [46]. In their algorithm, DRL uses only the pixels and the game score as

inputs and achieves performance at the professional human level. Pfeiffer and his colleagues

adopted a DRL model for path-planning problems with respect to sensor data and goal
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information [47]. Robots can utilize such information to plan paths over an infinite horizon

and efficiently reach most informative goal positions. Shiarlis et al. also proposed an RL-

based scheme to avoid repeatedly calculating costly planning procedures [48]]; their method

achieved better performance with increased computational efficiency. However, the above

methods are suitable only for end-to-end navigation and not for searching over an EOI.

1.3.5 Spatiotemporal Field Reconstruction

Recently, data-driven approaches have been developed to find principal locations for op-

timal sensor deployment. After the sampled data from a spatiotemporal field are analyzed,

and the principal locations are calculated, the entire spatiotemporal field can be recon-

structed using a limited set of observations. Data-driven approaches are of low complexity

and more amenable to implementation than model-based convex optimization approaches.

These data-driven approaches are called sparse representations, which can define a rela-

tively large number of regions, such asO(2N), with merelyO(N) examples [49].Numerous

complex systems can be reconstructed and predicted using data-driven sparse representation

approaches. Applications include image reconstruction [50], image denoising [51–53], im-

age super-resolution [54, 55], and structured signal recovery [56].

Compressive Sensing (CS) is a widely used signal recovery method for unknown signal

reconstruction that utilizes sparse representations [57, 58]. Brunton et al. proposed a CS-

based sparse sensor placement method for characterizing or classifying a high-dimensional

system [59]. Their algorithm solves the `1 minimization problem of finding the measure-

ment with the fewest zero entities for reconstructing the original signal. Lu et al. then

proposed a convolutional CS framework to avoid inefficiency and blocking artifacts in the

traditional CS algorithms [60]. Their algorithm senses the input image using a set of con-

volutional filters and reconstructs the image using linear convolutional measurements. Al-

though CS can recover a comprehensive class of signals, it has limitations in capturing

spatiotemporal patterns and does not perform well for large signals. Moreover, CS-based
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algorithms need to solve a linear program to recover low-dimensional signals, which is

time-consuming and has low efficiency.

In contrast, principal component analysis (PCA) extracts low-dimensional patterns and

features from high-dimensional systems. PCA transforms input data into their orthogonal

coordinate system and projects the data onto coordinates according to the significance of

the variance. The selected principal components then retain the most variance in the data

and can easily reconstruct the system. Manohar et al. proposed an optimal sparse sensor

deployment scheme based on QR factorization of the sampling data matrix and singular

value decomposition (SVD) [4], which can outperform the CS-based approaches. Guo et

al. developed a sampling technique based on sparse topological data analysis to reconstruct

a high-dimensional signal from a limited set of observations [61]. The optimal sparse set

of samples was selected and used to reconstruct the input signal at high efficiency and

precision. Lu et al. used SVD to learn basis images from training data and perform sparse

reconstruction of fluid flows from random samples [62]. They investigated the interplay

of data sparsity in the underlying flow system and reconstructed the entire space using a

limited set of random samples.

A variant of PCA, called Sparse PCA (SPCA), has been developed as well. The princi-

pal components of traditional PCA are usually linear combinations of all input data, which

can lead to errors in interpreting the derived principal components [63–65]. Hence, to en-

code the high-order information of the input data, Jenatton et al. developed an extension of

SPCA, which specializes in image recognition and reconstruction [66]. Hein et al. focused

on nonlinear eigenproblems, which comprise the fundamental part of many machine learn-

ing and statistics problems [67]. They developed a generalized inverse power method that

guarantees convergence to a nonlinear eigenvector. Drmac et al. proposed a novel frame-

work to construct a discrete empirical interpolation method [68]. Their algorithm utilizes

QR factorization with column pivoting to provide near-optimal sampling for the recon-

struction of nonlinear systems. The algorithm, based on structured regularization in which
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sparse patterns are structured and stored in different sets of predetermined shapes, achieves

state-of-the-art performance when applied to clustering and SPCA problems. Erichson et

al. modeled SPCA as a matrix factorization problem with orthogonality constraints [69].

Their algorithm minimizes the subset of projection variables by incorporating various spar-

sity regularizers. Janková et al. suggested a de-biased SPCA to estimate the first vector of

loadings and the largest eigenvalue of the covariance matrix [70]. They identified the bias in

the traditional Lasso-based estimator and guaranteed asymptotic normality of the proposed

estimator. Mollenhauer et al. provided a solid analytical foundation for the eigenvalue de-

composition of operators on reproducing kernel Hilbert spaces, and extended the method of

using SVDs to solve the eigenvalue decomposition problem [71].

1.3.6 Optimal Sparse Representation Through Deep Learning

Recently, DL methods have been utilized to improve the accuracy of signal reconstruc-

tion. Zeiler et al. investigated the functionality of convolution networks and deconvolution

networks in image classification [72, 73]. Convolution networks downscale an original

image into a low-rank feature space, which can be regarded as compressed information.

In contrast, the unpooling of deconvolution networks reconstructs the compressed feature

back to the original signal. With the help of deep convolution/deconvolution networks, the

performance of compression and reconstruction improves significantly. Mousavi et al. de-

veloped a DL framework for recovering structured signals [56], using DL frameworks to

capture nonlinear relationships. The proposed stacked denoising autoencoder is an unsu-

pervised feature learner that captures statistical dependencies between various observations

and significantly improves signal recovery quality. Loh et al. built a DL framework to learn

the event reconstruction problem by placing photon sensors in an antineutrino detector [74].

Furthermore, generative models have succeeded in modeling data distributions using

neural networks. Kingma et al. proposed variational auto-encoders (VAEs) [75] to encode

a complex signal into a low-dimensional space and decode it. Goodfellow et al. then de-
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veloped generative adversarial networks (GANs), which either generate superficial images

or automatically encode input signals into compressed signals, using two neural networks

that contest with each other [76]. Bora et al. proposed a generative model based on the

compressive sensing method to use fewer measurements to achieve high accuracy [77]. The

generative model is built upon VAEs and GANs. The researchers also proved that given

the Lipschitz constant of the proposed algorithm, recovery performance can be guaranteed

within a certain probability and error rate. Calculation of the Lipschitz constant was in-

vestigated in [78], where Gouk et al. discussed the effects of regularizing neural networks

with Lipschitz continuity. They provided a method for calculating the Lipschitz constant

of a neural network and then used the calculated Lipschitz constant to formulate the train-

ing process of the neural network. The performance of neural networks has cumulatively

improved through regularization using Lipschitz continuity.

However, DL-based approaches usually encode the original signal into a low-dimensional

space with a complex model, which can exacerbate the difficulty of deciding the most criti-

cal observation locations.

1.4 Contributions and Organization of the Dissertation

The main contributions of the dissertation are listed below.

• A near-optimal sensor node deployment strategy for deploying a minimal number of

sensor nodes in a spatiotemporal field is developed. This strategy relocates sensor

nodes to their best sensing locations while reducing the required number of sensor

nodes without losing information. The approach is based on an environmental model

and the linear dependence of sensor readings. In particular, the spatiotemporal corre-

lation of sensor node deployment in a large geographic EOI is minimized. It is also

proven that the optimization objective function, which uses the prior estimation error,

is submodular and results in a near-optimal solution. Compared with other sensor

node deployment strategies and baseline algorithms, this new strategy requires much
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fewer sensor nodes to achieve the same, or lower, estimation error. The proposed al-

gorithm is applied to a real-world dataset, which is collected by the developed robotic

sensor nodes. The in situ tests confirm that the proposed near-optimal sensor node

deployment strategy can achieve lowest field estimation error with least sensor nodes.

• A DRL framework is proposed to improve the efficiency of searching for the most

informative sampling locations. The parameterized sampling locations in an infinite

horizon space are modeled according to their spatiotemporal correlations and sub-

ject to various constraints, including field estimation error and information gain. As

the model-based information gain can be efficiently calculated over an infinite hori-

zon, the effectiveness of the sampling locations is learned during exploration by the

robotic sensors. The robotic sensors are then instructed to avoid unnecessary sam-

pling locations in future iterations. Also, it is proven that the proposed algorithm is

capable of effectively searching for near-optimal sampling locations and guaranteeing

a minimum field estimation error. Simulation based on the Naval Oceanographic Of-

fice Regional Navy Coastal Ocean Model (NCOM) is presented, which demonstrates

the significant enhancements made by the proposed algorithm. Compared with tradi-

tional approaches, such as information theory, which is based on a greedy approach,

or random sampling, the proposed method shows superior performance with regard

to both estimation error and planning efficiency. Besides, a model-based statistical

approach is developed to reconstruct the entire spatiotemporal field with the obser-

vations collected from the most informative sampling locations. The results show

that the most informative sampling locations generated by the DRL framework can

near-optimally condition the spatiotemporal field reconstruction.

• A model-free approach is developed to reconstruct the spatiotemporal field from lim-

ited observations. The sampling locations in an infinite horizon are obtained via

canonical basis compression according to their spatiotemporal correlations and sub-
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ject to reconstruction performance. Then, a simulated annealing-based approach is

utilized to optimize the canonical basis for the optimal sampling locations. The sparse

representations of the spatiotemporal field given by the canonical basis indicate opti-

mal sampling locations. Auto-encoders are then tuned to reconstruct the spatiotem-

poral field from the observations in the selected sampling locations. In this manner,

reconstruction from the sparse representation to the spatiotemporal field is learned.

It is also proven that the proposed model is Lipschitz continuous and that the sparse

sampling strategy is sufficient for reconstruction.

The organization of the dissertation is as follows:

Chapter 2 introduces the developed near-optimal sensor node deployment strategy, which

is termed Rapid Random exploring tree with Linear Reduction and Connectivity (RRLR

Connectivity). Linear correlations are investigated among the sampling data to identify

spatiotemporally redundant observations. The corresponding sensor nodes of the redundant

observations are then removed to reduce the number of deployed sensor nodes, with regard

to the network connectivity. Besides, details regarding the proof about submodularity and

near-optimal guarantee are provided.

Chapter 3 presents a novel spatiotemporal field exploration method called Deep Rein-

forced Learning Tree (DRLT), which can learn the information gain at sampling locations

during exploration. The area with a lower information gain will subsequently have de-

creased probability of exploration. In this manner, the speed of finding the near-optimal

sampling locations will increase.

Chapter 4 presents a model-based sensor deployment strategy for spatio-temporal field

reconstruction. It shows that the model-based informative sampling strategy that is proposed

in Chapter 3 can near-optimally condition the reconstruction of the spatiotemporal field.

Also, a statistical method is developed to learn the linear mapping from observations of the

informative sampling locations to the entire spatiotemporal field.

Chapter 5 presents a model-free deep learning framework for spatiotemporal field recon-
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struction, called Spatiotemporal sparse Auto FiEld Reconstructor (SAFER). The canonical

basis is utilized to compress the spatiotemporal field into limited observations, and nonlin-

ear mapping from the observations to the original spatiotemporal field is learned. Further,

proofs regarding Lipschitz continuity of the deep learning framework and sufficiency for

the reconstruction of sparse representation are provided.

Chapter 6 illustrates the hardware design, the implementation of the robotic sensor mod-

ule, and the results of the in situ experimentation. An environmental model is established

based on the sampling data from the conducted in situ tests, according to the metrics intro-

duced in Chapter 2. Then, the proposed methods are applied to the established environment

model to test its effectiveness.

Chapter 7 concludes the dissertation by summarizing the main contributions, and indi-

cating possible future work.
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Chapter 2

Spatiotemporal Sensor Deployment

using Minimal Sensor Nodes

2.1 Introduction

In recent decades, different types of pollution issues have significantly raised the pub-

lic awareness, where water pollution has become a key concern. Water-related problems

severely affect peoples health not only in developing countries but also in developed coun-

tries. In this context, an environmental monitoring system has been designed in our lab-

oratory to sample the critical water quality attributes, determine the quality of water, and

inform the public and relevant authorities the obtained results with view to possible correc-

tive actions.

The layout of the developed environmental monitoring system is shown in Figure 2.1.

In the beginning, technologies such as satellite imaging, mobile WSNs, and static WSNs

may be utilized for sampling the conditions at several locations in the field. Then, based

on the time series data sourced from different locations, methods like kriging can be used

to establish a spatiotemporal model for the existing environment [79]. Next, based on this

environmental model, field exploration method and heuristic algorithms can be developed to

find the optimal sensor node deployment locations that meet specific optimization criteria
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(e.g., receiving most information, achieving least estimation error, minimizing the power

usage). Given these deployment locations, the redundant sensor nodes may be removed to

keep a minimal number of sensors in the field to reduce infrastructure costs. In this manner,

the deployed sensor nodes can form a WSN that persistently monitors the most informative

locations in the field for sensing.

Search the
environment

Model the current
environment

Find optimal locations
with minimal sensor

nodes

Deployment of mobile
sensor nodes

Environmental
change

detection

Start

Persitently
monitor the
environment

Figure 2.1: The framework of optimal sensor node deployment with minimal sensor
nodes.

It is essential to preserve the network connectivity of a WSN while eliminating possi-

ble redundant sensor nodes. Traditionally, the selection of informative sampling locations

does not consider the correlation of sampling data or the network connectivity. Hence, the

spatiotemporal filed might be over-sampled or under-sampled. Over-sampled sensor de-

ployment strategies do not consider the spatiotemporal correlation of the sampling data and

will result in sensor node redundancy. Under-sampled sensor deployment strategies cannot

provide sufficient sensor nodes to ensure network connectivity.

In this chapter, a method is proposed to identify proper nodes and remove linearly redun-

dant sensor nodes efficiently while maintaining network connectivity. Through this process,

the optimal sensor node deployment locations that achieve the lowest estimation error and

share least linear correlation are determined. Based on these selected deployment locations,
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mobile sensor nodes can be deployed to monitor the geographic EOI persistently. When a

change in the geographic EOI is detected, the above process has to be repeated to generate

a new model that satisfies the current environment.

The underlying method as proposed in this dissertation is called Rapid Random explor-

ing tree with Linear Reduction and Connectivity (RRLR Connectivity). RRLR Connectivity

is a near-optimal strategy of sensor node deployment, which is developed here to optimize

sensor node deployment locations for field estimation. Initially, it is proved that using prior

estimation error as the optimization function has a characteristic of submodularity, which

will result in a near-optimal solution. Then, an RRT-based approach is developed to search

for possible sensor node deployment locations by building space-filling trees. During the

tree expansion, sampling locations with the lowest prior estimation error are found. Then,

linearly correlated sampling data are investigated, and the redundant sampling locations

are eliminated according to the network connectivity. In essence, the proposed method

significantly reduces the number of sensor nodes required for persistent monitoring while

achieving a lower or similar prior estimation error.

2.2 Preliminaries

2.2.1 Modeling of Environment

A common environmental model that is used for geological and environmental systems

is chosen in this dissertation [79]. Consider a discrete time-variant scalar field vψ[t] ⊂ R,

where ψ ∈ A is an arbitrary point in the two-dimensional EOI (A), which can be non-

convex and filled with obstacles. Then, the environmental model can be represented as

the output value of desired locations at a given timestamp. The model can be expressed

as a function of the temporal information matrix (A), the spatial information matrix (Sψ),

location in the field ψ and time t:

vψ[t] = F (A,Sψ, ψ, t) (2.1)
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The spatiotemporal environmental model is considered to be separable [80]. Thus, vψ[t]

may be decomposed as the dot product of the spatial information Sψ and the time-varying

coefficient vector x[t][3]:

vψ[t] = Sψx[t] + v[t] (2.2)

where v[t] ∼ N(0,Rv) is Gaussian white noise, and Rv is its covariance matrix, which is

positive semidefinite. The noise is assumed to be time independent with E{v[i]v[j]T} =

0,∀ i 6= j. For simplicity, the variance of different noise is assumed to be the same [80].

The temporal information matrix A, can be used for calculating the time-varying coef-

ficient vector x[t] = [xt1 · · · xtk ]T , which is regard as the state variable of a linear discrete

time-invariant system:

x[t+ 1] = Ax[t] + w[t] (2.3)

where w[t] ∼ N(0,Rw), is Gaussian white noise and Rw is its covariance matrix, which

is positive semidefinite. Also, E{w[i]w[j]T} = 0,∀ i 6= j. Since v and w are uncorrelated,

E{w[i]v[j]T} = 0,∀ i, j. In this dissertation, temporal information matrix A and its covari-

ance matrix Rw can be learnt from sampled data at the station using subspace identification

methods [81, 82], with the raw observation data from National Centers for Environmental

Information (NCEI) of U.S. National Oceanic and Atmospheric Administration (NOAA)

[83–85].

Then, the spatial information matrix Sψ is the row vector consisting of k spatial basis

functions [79]:

Sψ = [s1(ψ), · · · , sk(ψ)] (2.4)

Each basis function is represented by a Gaussian basis function as si(ψ) = Ke−
||(ψ)−(ψi)||

2

2σ2 ,

where ψi represents the location of the ith basis center, and σ is its variance.

In this manner, Equations 2.2 and 2.3 jointly represent a linear discrete time-invariant

system, and the spatiotemporal information is captured. Although due to its robustness the

Gaussian radial basis function is selected to represent the basis, the proposed method does
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not rely on the specific type of basis function.

2.2.2 Estimation Error of Deployment Location

It has been shown that the linear Kalman filter is suitable for estimating time-varying

coefficients, and its prior error covariance matrix can be used as a quality measure for the

criteria. It is an optimal estimator that minimizes the mean square error (MSE) of the

system [80] [86]. The prior estimation of the linear Kalman filter is used for updating the

error covariance matrix as:

P[t+ 1|t] = AP[t|t]AT + Rw (2.5)

where:

(2.6)P[t|t] = P[t|t− 1]−P[t|t− 1]STψi × (SψiP[t|t− 1]STψi + Rv)
−1SψiP[t|t− 1]

Hence, the prior estimation error matrix of the linear Kalman filter can be represented

as:

(2.7)P[t+ 1|t] = AP[t|t− 1]AT

−AP[t|t− 1]STψi × (SψiP[t|t− 1]STψi + Rv)
−1SψiP[t|t− 1]AT + Rw

The maximum eigenvalue of the prior covariance matrix, π(P[t+ 1|t]), is the objective

function for optimization because the largest eigenvalue represents the worst estimation ac-

curacy at the current point. Furthermore, it has been shown that to remove the effect of

transient high error of estimation in the beginning, the prior error (persistent monitoring

error) should be evaluated as time goes to infinity. Also, when there are several deploy-

ment locations in each deployment strategy, estimation about a single sensor node in one

deployment strategy will converge as time goes to infinity [3]. It can be represented as:

(2.8)Pi
∞ = APi

∞AT −APi
∞STψi × (SψiP

i
∞STψi + Rv)

−1SψiP
i
∞AT + Rw

where Pi
∞ indicates the prior error covariance for the ith deployment location of strategy

N as time goes to infinity.
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Then, the minimum largest eigenvalue in each possible deployment strategy is the cost:

Γ(N ) = π(PN∞) = max
i=1,2,...

π(Pi
∞) (2.9)

where N is the deployment strategy containing several deployment locations that are se-

lected by the algorithm, Pi
∞ indicates the prior error covariance for the ith deployment

location of strategyN as time goes to infinity, and π(PN∞) denotes the largest eigenvalue of

the prior error covariance matrix for strategy N as time goes to infinity.

2.2.3 Matrix Linear Redundancy

Assume that a set of sensor nodes, N = {n1, n2, · · · , nk}, is persistently deployed in

a geographic EOI. Denote sensor readings for M snapshots asM = {m1,m2, · · · ,mk},

where m ∈ RM×1. Hence, the readings of these k sensor nodes can be placed in a matrix

M ∈ Rk×M as M = [m1,m2, · · · ,mk]
T . The goal is to find if there are readings mi that

can be linearly represented by other data rows in matrix M; i.e., M does not have the full

rank, and these rows can be expressed as a linear combination of others:

mi =
∑

kj ·mj, (kj 6= 0 and mi,mj ∈M). (2.10)

In this way, the redundancy of the node deployment can be indicated by the linear depen-

dent relationship of sensor node readings when they are persistently deployed. Any nonzero

mj with the associated nonzero kj is then defined as a correlated neighbor of mi. Then, mi

together with its correlated neighbors comprise a linearly correlated set Φ. If several nodes

are linearly dependent in set Φ, information from some of these nodes (called redundant

nodes) can be inferred from other nodes in this set.
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2.2.4 WSN Connectivity of the Informative Sampling Locations

The deployed sensor nodes comprise a wireless sensor network. During the process

of redundant sensor node elimination, the network connectivity might be broken if the re-

maining sensor nodes are far from each other. As shown in Figure 2.2, red sensor nodes

denote the ones that have spatiotemporally correlated sampling data, and one of them can

be removed. However, eliminating the sensor node as in Figure 2.2 (a) might break the

connectivity of the WSN due to the increase of communication distance. Instead, removing

the sensor node as in Figure 2.2 (b) can preserve the sensor network connectivity while

eliminating the redundant sensor node.

(a) Network connectivity broken due to
redundant sensor node removal.

(b) Network connectivity preserved after
redundant sensor node removal.

Figure 2.2: Illustration of network connectivity. (Red sensor nodes have spatiotempo-
rally correlated sampling data.)

In this dissertation, the network connectivity is assumed to be based on the communi-

cation distance of the robotic sensors and does not depend on the node size. Therefore, the

network connectivity can be formulated as:

∀ni, nj ∈ N ,∃k-hop communication path. (2.11)

For RRT-based informative sampling strategies, the distance between any 1-hop sensor
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nodes will be less than its exploration step size. Hence, making the step size less than the

communication distance can preserve the sensor networks connectivity. However, remov-

ing the redundant sensor nodes may break the sensor network connectivity, as shown in

Figure 2.2. Thus, the constraint of network connectivity should be considered during the

optimization of sampling locations.

2.2.5 Problem Formulation

Now, the informative sensor deployment problem can be formulated mathematically.

Assume that the spatial sensing field is geographically infinite since every location in the

field might be explored to obtain a better estimation of the environment. A small subset of

locations, N ⊆ A, can then choose to best estimate the environment. The quality of the

selected deployment strategy N can be evaluated by Γ(N ), which denotes the persistent

estimation error and the infinite horizon cost. Each deployment strategyN may have several

deployment locations, and every sampling location will persistently sample data from the

environment and generate the data matrix M. Moreover, redundant sensor nodes should be

eliminated while obtaining sufficient information and preserving the network connectivity.

The problem can be formally defined as:

min
N⊆A

Γ(N ), (2.12)

subject to:  |M|= rank(M)

Equation 2.11
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2.3 Rapidly-exploring Random Tree with Connected
Linear Reduction

2.3.1 Optimization Scheme for Near-optimal Sensor Node
Deployment

Selecting a small subset of locations over the infinite horizon to minimize the prior

estimation error has been shown to be NP-hard [10]. Therefore, it is unlikely to find the

optimal subsetN ⊆ A of this problem. Instead, a near-optimal solution is provided. In this

chapter, Rapid-exploring random tree (RRT) is used to search a non-convex geographic EOI

and find near-optimal solutions. RRT can efficiently build a space-filling tree G = (V,E)

over the infinite horizon, where V represents the vertices andE represents the edges. Space-

filling treeG contains many spanning trees, whose vertices indicate the possible deployment

locations within the field. Hence, the prior estimation error of the corresponding sampling

locations can be determined, and the spanning tree with the smallest estimation error can be

computed.

The critical factor for near-optimal optimization is that more observation will result in

less information gain and estimation error reduction. Moreover, it leads to convergence

of the maximization or minimization of the cost function. This concept is formalized as

submodularity [87]. A function Γ is said to be submodular if:

∀A∗ ⊆ A∗∗ ⊆ A and n ∈ A \ A∗∗

Γ(A∗ ∪ n)− Γ(A∗) ≥ Γ(A∗∗ ∪ n)− Γ(A∗∗)

Proposition 2.1 show that the cost function of the proposed method is submodular.

Proposition 2.1. Function Γ(N ) is submodular.

Proof. According to Equation 2.9, let N ⊆ N ∗ ⊆ A and a location n ∈ A \ N ∗. The goal
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is to satisfy following equation:

Γ(N ∪ n)− Γ(N ) ≥ Γ(N ∗ ∪ n)− Γ(N ∗). (2.13)

Then, let N ∪A = N ∗,

Γ(N ∗) = π(PN
∗

∞ ) = π(PN∪A∞ )

= max(max
i∈N

π(Pi
∞),max

i∈A
π(Pi

∞))

= max(α, β),

(2.14)

where α = max
i∈N

π(Pi
∞), β = max

i∈A
π(Pi

∞)). Thus, Γ(N ) = max
i∈N

π(Pi
∞) = α.

Similarly,

Γ(N ∗ ∪ n) = π(PN
∗∪n
∞ ) = π(PN∪A∞ ∪ n)

= max(max
i∈N

π(Pi
∞),max

i∈A
π(Pi

∞), π(Pn
∞))

= max(α, β, γ),

(2.15)

where π(Pn
∞) = γ. Then,

Γ(N ∪ n) = π(PN∪n∞ )

= max(max
i∈N

π(Pi
∞), π(Pn

∞))

= max(α, γ).

(2.16)

Next,

Γ(N ∪ n)− Γ(N )− Γ(N ∗ ∪ n) + Γ(N ∗)

= max(α, γ)− α−max(α, β, γ) + max(α, β).

(2.17)

If γ ≤ α, Equation 2.17 equals α− α−max(α, β) + max(α, β) = 0.
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If γ > α, when γ < β, Equation 2.17 equals:

γ − α−max(γ, β) +max(α, β)

→γ − α− β + β

→γ − α

> 0.

If γ > α, when γ > β, Equation 2.17 equals:

γ − α− γ +max(α, β)

→max(α, β)− α

≥ 0.

Thus,

max(α, γ)− α−max(α, β, γ) + max(α, β) > 0

→Γ(N ∪ n)− Γ(N )− Γ(N ∗ ∪ n) + Γ(N ∗) > 0

→Γ(N ∪ n)− Γ(N ) > Γ(N ∗ ∪ n)− Γ(N ∗),

which satisfies Equation 2.13.

Next, Proposition 2.2 proves that using RRT-based approach to find sensor deployment

locations guarantees a near-optimal result.

Proposition 2.2. RRT-based sampling algorithm finds near-minimal estimation error, as

the error monotonically decreases with the algorithm iterates.

Proof. Let Ni be the set of feasible deployment strategy produced in ith iteration, and the

corresponding estimation error is σi. Similarly, the set of feasible deployment strategy in

i + 1th iteration is Ni+1 and the estimation error is σi+1. Then, denote the new searching
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location in i + 1th iteration as n. According to Equation 2.12, the deployment strategy is

greedily selected to be the one with minimal estimation error:

σi+1 = min
N⊆Ni+1

Γ(N )

= min( min
N⊆Ni

Γ(N ), min
N⊆Ni+1\Ni

Γ(N )).

(2.18)

Then,

σi+1 = min(σi, min
N⊆Ni+1\Ni

Γ(N )) ≤ σi. (2.19)

Hence, the estimation error will decrease monotonically as the algorithm iterates. Be-

sides, according to the principle of submodularity, the greedily selected deployment strategy

is near-optimal. Thus, the result of RRT-based sampling algorithm has the near-minimal es-

timation error as it converges according to the iteration.

In this manner, the near-optimal sensor deployment locations can be found. Besides, the

linear dependence of the sampling data can be captured and eliminated by detecting their

linear correlation while expanding the spanning tree. The algorithm of RRLR Connectivity

is presented as Algorithm 2.1.

The inputs of Algorithm 2.1 are the exploration step size ρ, matrices A and S that

contain the spatiotemporal information, and the geographic EOI (A). Line 1 initializes the

algorithm by setting up the starting location of the space-filling tree, where G denotes the

space-filling tree generated by the rapid-exploring random tree, and V and E stand for its

vertices and edges, respectively. Then, line 2 initializes the estimation error and the sensor

deployment set. Also, τ denotes the set of computed deployment locations, which should

be empty in the beginning, and η records the infinite horizon cost calculated through prior

estimation error on locations in set τ .

Next, the algorithm is executed iteratively to find near-optimal sensor deployment loca-

tions. In each iteration, a location vrand will be randomly selected in A. Then, the nearest

vertex in the space-filling tree G will be calculated as vnearest, and the new sampling loca-
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Algorithm 2.1: Rapid-exploring Random tree with Connected
Linear Reduction.

Input: ρ, A, S, A
Output: η, τ

1 V ← φ0, E ← ∅, G← (V,E);
2 τ ← ∅, η ←∞;
3 for i = 1 to T do do
4 vrand = RAND NODE(A);
5 vnearest = NEARVERTEX(vrand, G);
6 vnew = STEP(vnearest, vrand, ρ);
7 N̂ = GenPath(G, vnew, vnearest);
8 η̃ = minÑ∈N̂ Γ(Ñ );
9 τ̃ = arg minÑ∈N̂ Γ(Ñ );

10 if η̃ < η then
11 η = η̃;
12 M = genSample(A,S, τ̃ , i,M );
13 M∗, I∗ = LinearDependentDetection(M, ε);
14 G, τ = RedundancyElimination(M∗, I∗, G, τ̃ , dcom);
15 end
16 V ← V ∪ vnew;
17 E ← E ∪ edge(vnearest, vnew);
18 end

tion vnew is selected by moving from vnearest in the direction of vrand at most ρ. Next, line 7

finds spanning trees N̂ of G that pass through the vertices vnew and vnearest. N̂ indicates the

possible sensor deployment strategies. The strategy with minimal estimation error within

set N̂ is calculated in line 8 to line 9. Therefore, as shown in line 10 to line 15, if a sensor

deployment strategy that has the lowest estimation error is found, it will be recorded and

checked for sampling location redundancy.

Line 12 generates sampling data based on the environment model and the sampling lo-

cation. Then, the data matrix M is passed to Algorithm 2.2 to detect linearly correlated

neighbors, and the results of Algorithm 2.2 are used to eliminate redundant sampling loca-

tions with regard to network connectivity according to Algorithm 2.4.

Last, the new vertex and its edge are added to the space-filling tree for next iterations.

RRLR Connectivity runs on a local or cloud server, which can communicate with each
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mobile sensor node. Currently, it is assumed that no communication is needed among the

sensor nodes. As a result, information will be processed by the local server. Instructions on

the sampling locations are sent to the mobile sensor nodes after computation.

2.3.2 Linearly Dependent Sampling Location Elimination with
regard to Network Connectivity

Usually, multiple homogeneous sensor nodes will be deployed in the spatiotemporal

field. Each of them will generate a time series of data for each type of sensor. Hence,

sampling data collected in different locations should be checked to examine the redundancy

of the deployed locations. If linearly correlated time series exist, the matrix of data will

not be of full rank, and the dimension of the data matrix can be reduced to its rank by

eliminating the redundant rows. Accordingly, it is not necessary to deploy sensor nodes in

all required locations because the information provided by these redundant sensor nodes can

be reconstructed [88, 89]. However, arbitrary removal of redundant sampling data according

to the rank of the data matrix might result in information loss. Figure 2.3 illustrates a

case for preserving information of the sampled data while removing redundant sampling

locations.

Figure 2.3 (a) presents a 5-by-M matrix with redundant entities, whose rank is 3. There-

fore, there exist two rows of the matrix that can be removed while not resulting in informa-

tion loss. Assuming that the rows of the matrix that have the same color are linearly corre-

lated, each row can be reconstructed by the rest of the rows with the same color according

to Equation 2.10. Note that the nodes that have gradient color from yellow to blue are lin-

early correlated with rows with both colors. In this manner, the rows with gradient color

contain the most duplicated information, and removing them may not result in information

loss since they have a higher chance to be reconstructed.

Figure 2.3 (b) presents a case where randomly removing redundant rows of the data

matrix may result in information loss. If the first row and the second row of the matrix are

removed due to the rank of the matrix, the information will be lost as the removed rows
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(a) A 5-by-M matrix with redundant
entities.

(b) The redundant removal strategy that
results in information loss.

(c) The removed entities can be
reconstructed.

Figure 2.3: Illustration of redundant sensor elimination.

cannot be reconstructed from the remaining rows. Therefore, a possible redundant removal

strategy is to remove the rows with the highest redundancy first. As shown in Figure 2.3

(c), removing the second row and the third row of the matrix does not result in information

loss.

During the process of removing redundant rows in the data matrix, the sensor network

connectivity should also be considered. Removing all the redundant sensor nodes might

break the connectivity of the wireless sensor network. Thus, the constraint concerning the
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wireless network connectivity is added:

∀ni ∈ N ,∃nj ∈ N : dist(ni, nj) ≤ dcom, (2.20)

where ni and nj are two locations belonging to the deployment set N , and dcom is the

threshold for the largest communication distance. If there exists at least one location whose

nearest neighbor is further than τcom, the connectivity of the network is broken.

Hence, the redundant removal strategy of RRLR Connectivity is proposed to detect and

eliminate redundant sensor nodes with regard to information loss and network connectivity.

This method first identifies linearly correlated neighbors and then removes the redundant

sampling locations. As a precursor to the algorithm, a way to detect linearly correlated

sampling data for a given matrix M is presented as Algorithm 2.2.

Algorithm 2.2: Linearly Correlated Neighbor Detection.
Input: M, ε
Output: M∗, I∗

1 M,k ← size(M);
2 r ← rank(M);
3 I = eye(M);
4 M∗, I∗ = GaussianElimination(M, I, ε,M, k, r);

As shown in Algorithm 2.2, the inputs are the data matrix M and the noise threshold

ε. Line 1 calculates the size of the input data matrix, and line 2 calculates its rank. Then,

line 3 builds an identity matrix at the size of sampling locations. Identity matrix records the

row addition actions of the Gaussian elimination and contains the information of linearly

correlated sets. The use of the identity matrix ensures that the ith row in I represents the

same row in matrix M. By carrying out the same row addition action (i.e., add the same

row with the same coefficient) as in matrix M, I can store the information about how row

addition is done in the matrix M. Then, data matrix, identity matrix, noise threshold, matrix

size, and the rank of the data matrix are passed to Algorithm 2.3 to detect linearly correlated

neighbors.
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Algorithm 2.3: Gaussian Elimination.
Input: M, I, ε,M, k, r
Output: M∗, I∗

1 i =1, j = 1;
2 while i ≤M do
3 imax = arg maxi=j,···,M abs(M[i, j]);
4 if M[imax, j] ≤ ε then
5 j + +;
6 else
7 pivot = M[imax, j];
8 swap(M[i, ·],M[imax, ·]);
9 swap(I[i, ·], I[imax, ·]);

10 M[i : M, j : k]− = M[i : M, j]× J1,k/pivot;
11 I[i : M, j : k]− = I[i : M, j]× J1,k/pivot;
12 i+ +, j + +;
13 end
14 M∗ = M, I∗ = I;

Line 1 of Algorithm 2.3 initializes the index of the data matrix. Then, line 3 finds the

pivot of the ith row. This step improves the stability of the algorithm and avoids adding

the same row multiple times. Then, the effect of noise is considered, and a threshold ε is

utilized to remove such effect. Line 4 checks whether the value of the pivot is less than ε for

the current iteration. If so, the current iteration should be skipped because it is considered

as a zero row.

Line 7 to Line 12 carry out row addition for each nonzero row. Line 7 records the

value of the pivot of this iteration. Then, line 10 carries out row addition for removing

row redundancy, where J is a 1-by-k matrix of ones. At the same time, line 11 records

the row addition action in identity matrix I. When the iteration ends, there should be zero

rows in the output matrix M∗ if the input matrix M has row redundancy, and the number

of zero rows plus the rank of the input matrix M should be equal to the row dimension

M . Moreover, the input identity matrix I records the information of how row addition is

operated in the matrix M, and such information is stored in the output matrix I∗.

Removing one redundant row found by Algorithm 2.3 will not result in information loss
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since it can be linearly represented by other rows. However, randomly removing multiple

rows in the data matrix may result in information loss, as shown in Figure 2.3.

Once the linearly correlated rows that stand for the corresponding redundant nodes have

been detected, they can be relocated to other uncovered places or completely removed, to

reduce the cost of resources. The fundamental requirements in the removal of redundant

rows from a correlating cluster are: 1. not breaking the correlation of any clusters, and

2. not resulting in information loss or broken network connectivity. Typically, different

clusters might share the same redundant nodes, and there remains uncertainty about whether

removing such nodes will break the linear correlation in other clusters. Besides, as there

might be multiple redundant nodes in all sampling nodes, randomly removing all of them

might result in information loss if the sampling data from the removed nodes cannot be

reconstructed.

To this end, redundant sensor readings are found by utilizing the output matrices M∗, I∗

through Algorithm 2.2. The row addition information about the Gaussian elimination of

data matrix M is stored in I∗. Zero rows of the data matrix are the redundant ones, whose

row addition information is stored in the corresponding rows of the matrix I∗, and the col-

umn indices of nonzero elements of I∗ represent the linearly correlated rows in matrix M.

Therefore, linearly correlated sampling data can be recovered from I∗.

Algorithm 2.4 aims to eliminate redundant rows and the deployment of the correspond-

ing sensor nodes. This algorithm reduces the size of the deployment set by discovering the

linear redundancy among the collected sampling data in different sensor nodes, based on

the outputs of Algorithm 2.2. Moreover, the network connectivity is preserved during the

elimination of redundant deployment locations.

Algorithm 2.4 first finds the set that stores the redundant sampling locations from line

2 to line 4. All rows (sensor nodes) within the linearly correlated set are picked into the

redundant sampling location J . Then, only |M∗|−rank(M∗) sensor nodes in the set J

should be selected as shown in line 7. Besides, as there are multiple options for removing

34



Algorithm 2.4: Redundancy elimination w.r.t. connectivity.
Input: M∗, I∗, G, τ, dcom
Output: G, τ

1 J ← ∅;
2 foreach max(M∗

·i) ≤ ε and I∗ij ≥ ε do
3 J ← J ∪ j;
4 end
5 J = |J |;
6 foreach j ∈ J do
7 while |J |≥ J + r −M do
8 if min-dist(τ(j), τ \ τ(j)) < dcom and |τ |< |M∗|−rank(M∗) then
9 τ \ τ(j);

10 G(τ(j)) = ∅;
11 J \ j;
12 end
13 end
14 end

the redundant sensor nodes to reduce the size of matrix M to its rank, network connectivity

should be considered during this process. As line 8 shows, if the minimal distance between

the redundant deployment location and the entire deployment strategy τ \ τ(j), which is

calculated by min-dist function, is less than the threshold, this redundant deployment can

be removed. In this manner, the network connectivity will not break when removing the

redundant sensor nodes.

2.4 Simulation Results

Numerical simulations are conducted using the dataset that was generated from a com-

putational fluid dynamics (CFD) model to simulate a 2-dimensional spatiotemporal field

based on COMSOL software [90]. Real-world experiments usually have restrictions on

the resources, which calls for the deployment of a limited number of sensor nodes in the

field. CFD simulations avoids this problem by generating an unlimited number of sensing

locations in the field. The test data generated by COMSOL software contains a simulation

of three heat sources in a squared aquatic field. It also considers the effects of diffusion,
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horizontal heat transfers by small flows and the influence of obstacles. In the present work,

a simulation generates a time series for 50 random sampling locations with noise in a 50-

meter by 50-meter square field. Figure 2.4 illustrates the sensor deployments. Orange

squares denote sensor node deployment locations, and the blue area indicates the aquatic

environment.

Figure 2.4: Deployment locations in CFD simulation.

The field estimation uncertainty is calculated to validate the effectiveness of the gener-

ated near-optimal deployment locations. Then, a color map is drawn to indicate the esti-

mation uncertainties according to the given deployment locations. High uncertain area has

bright color, and lower ones is shown in a dark color. The estimation uncertainty is calcu-

lated for each point ψ over the field A, which is denoted by its variance V (ψ), ψ ∈ A. The
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variance at location ψ can be calculated as:

V (ψ) = E[(Sψ(x[t]− x̂[t])) · (Sψ(x[t]− x̂[t]))T ]

= tr(P[t]STψSψ),

(2.21)

where tr function calculates the trace of the matrix.

Before applying RRLR Connectivity to these datasets, the parameters should be tuned to

satisfy the environment of the sampling area. Matrices A,S,Rw and Rv, are studied from

the data sampled from five sampling locations. In this case, the number of basis functions

is set to five. The parameter values for si(ψ) = Ke−
||(ψit)−(ψj)||

2

2σ2 are chosen as: σ2 = square

sum of the basis function variance, and K = average of the entire vector. The number of

iterations is set to 2000 and the step length is 10 meters.

The comparison algorithms, RRC and RRCstar are executed using the same parame-

ter values. Besides this, two algorithms, random search (RS) and greedy algorithm, are

executed as benchmark problems with the same common parameters. RS moves around

randomly from the initial point to different sampling locations. Then, the deployment with

minimal estimation error is computed from all locations visited in the field. Greedy Algo-

rithm is based on RS, but it does not take new observations randomly. It takes four (GD4)

or eight (GD8) random attempts in the current location. Each attempt will generate a new

observation location near the current location of the sensing agent. Then, together with

the existing observations, the action leading to lower estimation error will be picked and

executed as the next step. Also, a version of RRLR Connectivity that did not consider the

network connectivity, which is termed as RRLR, is added for benchmark. All experiments

were conducted on a PC with 4.0 GHz Quad-Core CPU and 16 G memory.

Figure 2.5 presents the simulation results generated from the CFD dataset using RRT-

based algorithms. RRC requires 10 sensor nodes to monitor the selected environment per-

sistently while RRC needs 12, as indicated in Figure 2.5 (a)-(b). In contrast, RRLR and

RRLR Connectivity reduce 9 and 4 redundant deployment locations, respectively, with the
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help of Linear Reduction. They only require 12 and 6 sensor nodes in the field, respectively.

Comparing Figure 2.5 (a)-(d), RRLR-based algorithms remove several closely deployed

sensor nodes according to their linear redundancy in the sampling data. This process not

only reduces the number of sensors in the field but also helps the system to explore more

area in the field with limited resources. Besides, by eliminating redundant deployments,

RRLR and RRLR Connectivity explore a more deployable area (i.e., the bottom left area in

Figure 2.5 (c)-(d)), which will reduce the field estimation uncertainty, as indicated in Figure

2.7.

Figure 2.5: Deployment results generated by RRT-based algorithms.
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Figure 2.6 (a) - (c) present the results generated by the random search and the greedy

algorithm, where too many sensor nodes are stuck in a narrow area of local minima and

cannot escape. Especially, RS is stuck around its initial search point as it picks the next

sampling location randomly. Although the greedy-based approach has good coverage on

exploring the EOI, the results easily entrap in local minima. As indicated in the figure, the

sampling nodes are narrowly deployed in a small area, which will result in a considerable

loss.

Figure 2.6: Deployment results generated by random search-based algorithms.

Figure 2.7 presents the field estimation uncertainty using the results generated through

the CFD dataset. The results show that all four RRT-based algorithms generate similar

uncertain regions in the EOI since all of them are near-optimal algorithms. RRLR-based

algorithms generate better results by placing the sensors close to the bottom left area of the

EOI, which results in lower estimation uncertainty in that area. The statistical measurements

of the estimation uncertainty and the required number of sensor nodes are shown in Table

2.1. The results show that the RRLR-based algorithms achieve low uncertainty over the field

with a small number of sensors. Especially, RRLR Connectivity finds the best deployment

strategy with low uncertainty and variance while using minimal sensor nodes.

Figure 2.8 shows the estimation error from different algorithms over the iterations. The
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Figure 2.7: Field estimation uncertainty results of RRT-based algorithms.

Table 2.1: Statistical measurement of the field estimation uncertainty.

Max Min Variance # sensors
RRC 3.74 3.05 ∗ 10−5 0.14 10

RRCstar 3.37 3.11 ∗ 10−5 0.16 12
RRLR 3.37 1.80 ∗ 10−5 0.16 12

RRLR Connectivity 3.48 1.82 ∗ 10−5 0.17 6
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randomized algorithm does not perform well and can hardly reduce the estimation error.

However, all RRT-based algorithms reduce the estimation error significantly and also con-

verge. Hence, according to Proposition 2.2, all the RRT-based algorithms achieve a near-

optimal solution with the CFD dataset. Moreover, as indicated in Table 2.1, RRLR Connec-

tivity uses least sensor nodes to perform the persistent monitoring with minimal field esti-

mation uncertainty. RRLR Connectivity only requires six sensor nodes in the field, while

all other benchmark algorithms need more than ten. Thus, it can be concluded that the pro-

posed algorithm achieves near-optimal solution while significantly reducing the number of

sensor nodes in the field.

Figure 2.8: Change of minimum estimation error.

In conclusion, RRLR Connectivity requires fewer sensor nodes to persistently monitor

the environment over the EOI while receiving the lowest estimation error and field estima-

tion uncertainty. This significant improvement results from the elimination of redundant
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sampling data during the tree expansion. RRLR Connectivity can also realize the near-

optimal sensor deployment strategy while preserving the network connectivity.

Another test based on in situ results is provided in Chapter 6.

2.5 Summary

In this chapter, a novel strategy was proposed to find a near-optimal solution for de-

termining the sensor node deployment locations in a spatiotemporal field. The proposed

method aimed to reduce the redundancy in sampled data while optimizing the estimation

over an infinite horizon and preserving the network connectivity. It utilized row redundancy

in the sampling data matrix to eliminate unnecessary rows (sensor nodes) and the structure

of the space-filling tree in the field to determine the suitable deployment locations. Also,

the redundant sampling locations were eliminated with regard to the network connectiv-

ity. Simulation results showed that the number of sensor nodes needed in the field was

significantly reduced while achieving maximum prior estimation error and minimal field

estimation uncertainty.
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Chapter 3

Deep Reinforced Learning Tree for

Efficient Spatiotemporal Exploration

3.1 Introduction

As introduced in Chapter 2, sampling location optimization is an essential part of spa-

tiotemporal monitoring, and the sampling redundancy can be detected and eliminated through

that. However, RRT-based spatiotemporal field exploration schemes are inefficient due to

random sampling. Therefore, this chapter seeks to improve the efficiency of spatiotemporal

field exploration.

Considerable research effort has gone into the monitoring of environmental processes

that occur in the ecosystems. Such work can facilitate the generation of early warnings

about events that can adversely affect the stability of an Environment of Interest (EOI) [91].

It will also provide adequate time for responding and minimizing possible negative impacts

on the environment, and taking proper corrective actions.

Typically, data sampling from a large EOI can be quite laborious. For example, when

monitoring an aquatic environment, sensors are primarily used to sample real-time data

of some critical parameters (e.g., temperature, conductivity) of the water [92]. For this,

oceanographers and limnologists commonly rely on the manual sensor deployment at fixed
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locations from boat [93]. Clearly, searching for suitable monitoring locations and conduct-

ing persistent monitoring using robotic sensors is a better approach.

Generally, the environmental features of an EOI are spatiotemporally correlated. Thus,

persistent monitoring using sensor networks or robotic sensors is required to ensure the ob-

servation quality while employing a relatively small number of sensor nodes in the field

[94]. Common strategies that can provide field coverage for persistent monitoring include

geometry coverage using disk models, and by placing robotic sensors in the most informa-

tive locations of the EOI.

The traditional approach of field monitoring utilizes a static sensor network, which is

not accurate and efficient. This approach first densely deploys sensor nodes in the EOI.

Then, redundant sensor nodes are removed according to the spatiotemporal correlation of

the sensor node location and readings [1, 5, 95–97]. Such methods typically require a dense

deployment of sensor nodes in the initial stage and then turning off the deployed sensors

selectively, which is costly not adequately accurate. For better performance, mobile sensor

nodes should be employed.

Researchers considered as well taking critical observations from the field according to

information theory rather than taking as many samples as possible. Guestrin et al., Krause

et al. and Singh et al. proposed mutual information-based methods that produce a near-

optimal informative sampling strategy [10, 23, 87]. They tested their methods using real-

world datasets and in situ tests and determined that mutual information could acquire more

information from the field while achieving a lower root mean square error (RMSE) for

the environment estimation. Du et al. proposed an optimal sensor placement strategy for

monitoring hydrodynamics and water quality in an urban district, using entropy and mutual

information to gather most information in selected locations [24, 25]. Nguyen et al. pro-

posed an efficient spatial sensor selection method using Mutual Information and Gaussian

Markov random fields [98]. Ma et al. developed a data-driven learning method and planning

metrics for environmental sampling [99]. However, approaches that are based on traditional
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information theory only focus on choosing a subset that is most informative from the per-

spective of pre-determined observation locations. Although these approaches find sampling

locations in a near-optimal way, they may not be suitable for infinite horizon problems.

Researchers have recognized that mobile sensor nodes can search over an infinite hori-

zon with improved performance and efficiency in persistent field monitoring. Typically,

field exploration methods like RRT are used to search over an infinite horizon. How-

ever, RRT-based approaches pick sampling locations randomly, and do not utilize the sam-

pled information, which causes low efficiency. RL is utilized to accelerate the sampling

scheme [13]. When the learning agents in the RL-based algorithms face complex real-

world situations, it is hard for them to derive environmental features efficiently through

high-dimensional sensory inputs. Deep learning may be utilized to help RL understand a

complex environment [42].

In the present dissertation, the EOI is modeled as a Gaussian process (GP), and the cov-

erage of the field can be provided by searching for the most informative sampling locations

[10, 100]. The objective of the informative planning method that is developed in this dis-

sertation is to determine a set of sampling locations that minimize the field estimation error

over the EOI. This objective can be achieved by taking samples from the EOI and identify-

ing the most informative subset of sampling locations, using field exploration methods like

RRT. Then, as the sampling data from different locations are not equally important, not all

sampling locations that are selected by RRT need to be visited. Therefore, a deep reinforce-

ment learning (DRL) approach is utilized in the present work to study the effectiveness of

the sampled locations and to avoid unnecessary sampling locations. The process of search-

ing over the spatiotemporal EOI can be accelerated in this manner and the most informative

sampling locations can found efficiently.

Also, a novel field exploration method is developed in the dissertation based on the de-

veloped DRL model. The developed algorithm is called Deep Reinforced exploring Learn-

ing Tree (DRLT), which can efficiently find near-optimal sampling locations for a set of
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mobile robotic sensors in an EOI. The robotic sensors are assumed to be point sensors,

which only capture information at their location, in the presence of Gaussian white noise.

Moreover, the placement quality of the robotic sensors is determined by the field estimation

error as calculated by a Kalman filter [3], and the field coverage is evaluated by estimating

the monitoring uncertainty in the field. Usually, finding an optimal solution over an infi-

nite horizon is intractable, and it has shown to be NP-hard. However, DRLT can produce

a series of sampling locations with monotonically decreasing cost, which is proved to be

near-optimal with minimum estimation error of the EOI.

3.2 Problem Definition and Mathematical Background

3.2.1 Modeling of Environment

In this chapter, the primary goal is to accelerate the field exploration scheme that was

introduced in Chapter 2, by learning from the sampled data. The environment modeling

approach that is used in the present chapter is the same as in Chapter 2, which is a com-

mon environmental model used for geological and environmental systems. A discrete time-

variant scalar field vψ[t] ⊂ R is used to present the spatiotemporal field, where ψ ∈ A is an

arbitrary point in a two-dimensional (2-D) EOIA, which can be non-convex and filled with

obstacles. The model can be expressed as a function of the temporal information matrix

(A), the spatial information matrix (Sψ), location in the field ψ and time t:

vψ[t] = Sψx[t] + v[t],

x[t+ 1] = Ax[t] + w[t].

(3.1)

The temporal information matrix A is used to calculate the time-varying coefficient

vector x[t] = [xt1 · · ·xtk ]T . x[t], which is considered as the state vector of a linear discrete

time-invariant system. The spatial information matrix Sψ is the row vector consisting of k

spatial basis functions Sψ = [s1(ψ), · · · , sk(ψ)].

46



3.2.2 Sampling Quality of Deployment Location

Estimation Error

In the present chapter, a linear Kalman filter is also used for estimating the system output

vψ[t], as in Chapter 2. Linear Kalman filter is an optimal estimator for a linear discrete time-

invariant system[86, 101]. Thus, the prior estimation error calculated by the Kalman filter is

used as a criterion to indicate the estimation quality over the field [28]. The prior estimation

of the linear Kalman filter is used for updating the error covariance matrix [101].

As shown in Chapter 2, the largest eigenvalue in the estimation error matrix is regarded

as the cost of the deployment strategy:

Γ(N ) = π(PN∞) = max
i=1,2,...

π(Pi
∞).

Here π(PN∞) denotes the largest eigenvalue of the prior error covariance matrix for strat-

egy N as time goes to infinity. The efficient computation of the prior estimation error

follows the approach given in [3].

Accordingly, the near-optimal solution is achieved by finding the deployment strategies

of minimal cost:

Nopt = arg min
N

Γ(N ) = arg min
N

π(PN∞)

= arg min
N

(max
i∈N

π(Pi
∞)).

Information Gain of New Sampling Locations

In the present work, information theory provides the basis for learning tree expansion.

It depends on a location with higher entropy or mutual information that will collect more

information from the field. Then, the sampling location has higher information gain and

gives a higher opportunity to reduce the field estimation error. Assume that A is a field to
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be monitored and all possible observations compose the set A. Let N ⊂ A means a subset

in this field, which contains information about the deployment locations.

In the set of selected locations in the EOI, Ni = {n1, n2, · · ·ni} ⊂ A, the chain rule of

entropy gives:

H(Ni) = H(ni|Ni−1) + · · ·+H(n2|N1) +H(n1|N0). (3.2)

Based on entropy, a subset is found that maximizes the mutual information (MI) between

the observed locations (N ) and the rest of the space (A \ N ). MI can be expressed as a

function of entropy:

MI(N ) =MI(N ;A \ N ) = H(N )−H(N|A \ N )

= H(N )−H(A) +H(A \ N ),

(3.3)

where H(A \ N ) is the entropy of unobserved locations in the field, and H(A \ N|N ) is

the conditional entropy of unobserved location set A \ N given observations at N .

Deep Reinforcement Learning

Unlike supervised learning, reinforcement learning (RL) does not require a dataset to

train; it learns through interaction with the environment [102, 103]. In this work, the learn-

ing process of DRL network takes place while analyzing the information gain of the new

observations in the field. Higher information gain encourages the DRL to take more ob-

servations and not get trapped at locations, which helps in reducing the estimation error.

Thus, the goal of the proposed method is to select actions that maximize cumulative future

information gain.

To model a RL problem, five key attributes should be defined: states n ∈ A, action set

a ∈ A, transition probability between states T (n, a, n′), policy P (n), reward r and value

function QP (·)(n, a). The action set contains information about the actions can be taken in
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different states; e.g., move forward or make a turn. Thus, each state n corresponds to an

action set A and actions will make the robot move from state n to n′. In the present work,

the transition between states is deterministic; hence, T (n, a, n′) = 1. To select suitable

actions in the current state, policy P (n) should be defined, which regulates the rule of

searching over the field and determines all possible next states that can be reached by the

given actions at ∈ Ant in its current state st. Then, the reward r of taking action a at

state n can be calculated. Rewards provide a form of evaluation for possible actions from

a particular state, and they are bounded. A value function is introduced to quantify the

accumulated reward based on the selected action in the current state. It can be represented

using Bellman equations for a given policy P (·):

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a
Q(st+1, at+1)−Q(st, at)]. (3.4)

Here γ is the discount factor for future rewards and α is the learning rate. Also, the

maximization function ensures that actions with best future rewards will be selected in each

iteration.

Based on the mentioned theory, the process of RL is shown as follows. First, initial

state s0 is selected. Second, an action a0 is selected according to the rewards, which leads

to some state s1. Third, by executing these steps iteratively, RL will generate a sequence

including states and action:

s0, a0, s1, a1, · · · , st, at.

The accumulated rewards will converge to a maximum value and lead to a steady state

[104] [105].

3.2.3 Field Coverage and Network Connectivity Analysis

Apart from achieving the lowest field estimation error, it is also essential to ensure

that the deployment strategy has good coverage of the EOI. Good coverage of EOI avoids
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densely sampling on a narrow area with high variance and provides better recognition of

the field. In the present work, point sensors are carried by the robotic platforms to mon-

itor a large field. Hence, the traditional disk model [106] for active sensors, like radar or

sonar, cannot be used, and the coverage of the field is determined by taking into account

estimation uncertainty. The field estimation uncertainty is determined by the variance of the

observation in each point of the field, given that the robotic sensor is deployed according

to the deployment strategy. The variance of a location in the EOI, V ar(vψ), according to

Equation 2.2 and [3], is given by:

V ar(vψ) = E[(Sψ(x[t]− x̂[t])) · (Sψ(x[t]− x̂[t]))T ]

= tr(P[t]STψSψ).

Then the pixel-wise uncertainty of the EOI is calculated based on the corresponding

covariance matrix P[t] and the spatial correlation matrix Sψ.

Robotic sensors establish a WSN network, which requires them to communicate with

each other. It is assumed that the network connectivity is based only on the positions of the

robotic sensors and does not depend on the node size. Also, it is assumed that the locations

are known, bandwidth is adequate, and all the robotic sensors are homogeneous. Constraints

ensure that the deployed sensors and the sinks form a connected wireless sensor network is

as:

∀ni ∈ N ,∃nj ∈ N : ||ni − nj||≤ τcom.

Since the informative deployment strategy is generated from the exploring tree, the

parent node np of ni will be no farther than the exploring step size τstep. Hence, letting

τstep ≤ τcom, there exists at least one node np in N within maximum communication dis-

tance of each robotic sensor ni. This ensures the network connectivity.

50



3.3 Deep Reinforced Learning Tree

In this section, a sampling-based exploring tree is presented to find the near-optimal

solution for informative sampling over an infinite horizon. Unlike the traditional RRT-based

algorithms, in the present approach, the sampling locations are not chosen randomly, and

the information gain is utilized to assist a DRL model in efficiently finding areas with more

significant information gain. Typically, RRT-based algorithms sample new observations

from the field randomly, which has low efficiency. In the present work, DRLT uses a DRL

model to study the information gain of new observations of each action. Higher information

gain will give a higher reward to the DRL, and the DRL will instruct the exploring tree to

sample areas with more information rather than sample randomly.

However, naively computing the information gain from the infinite horizon is compu-

tationally intensive. Therefore, the present method also provides an efficient computation

method for the information gain. In this chapter, the EOI is modeled as a linear-Gaussian

dynamic system, which captures spatiotemporal correlations. Hence, the sampling value at

each point of the EOI can be modeled as a dependent variable of other sampling locations.

Additionally, a model-based mutual information gain is developed. Given a specific envi-

ronmental model, the information gain can be computed efficiently from the spatiotemporal

correlation. Thus, by encouraging the exploration and learning of areas of higher informa-

tion gain, the locations for achieving a lower estimation error can be determined efficiently.

3.3.1 Guaranteed Near-optimality for Informative Sampling Using
Exploring Tree

The sampling-based exploring tree can find the deployment strategy with minimal esti-

mation error over the field, and overall, the solution is near-optimal. A pertinent proposition

is presented now.

Proposition 3.1. DRLT algorithm gives the minimal feasible estimation error, which mono-

tonically decreases as the exploring tree expands.
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Proof of Proposition 3.1. Let Gi is the graph produced by the exploring tree iteration i,

which contains a set of paths N̂i. Then, Ni ∈ N̂i gives the sampling locations computed

by DRLT in the ith iteration, where Ni = arg minN∈N̂i Γ(N ), and the estimation error is

εi = minN∈N̂i Γ(N ). Thus, Ni gives the deployment set with minimal feasible estimation

error εi in its iteration.

Next, in the iteration i + 1, a new sampling location n is added to graph Gi, and the

graph become Gi+1, and the set of paths become N̂i+1. Denoting the added paths as N̂ ,

where N̂ ∪ N̂i = N̂i+1. The minimal error in iteration i+ 1 becomes:

εi+1 = min
N∈N̂i+1

Γ(N ) = min
N∈{N̂∪N̂i}

Γ(N )

= min(εi, min
N∈N̂

Γ(N )) ≤ εi.

Thus, DRLT produces a monotonically decreasing estimation error as the algorithm

iterates.

Given the deployment strategy with minimal estimation error over the field, it can be

shown that this result is near-optimal. Generally, the selection of locations over an EOI

to minimize the cost is NP-hard [10], and finding the optimal solution is computationally

expensive. Thus, a near-optimal solution is provided.

Normally, a near-optimal optimization can be guaranteed by greedy maximization or

minimization of the submodular function [107]. The diminishing return property ensures

convergence of the submodular function. A function f(·) is submodular if:

f(A ∪ n)− f(A) ≥ f(B ∪ n)− f(B), (3.5)

where A ⊂ B ⊂ C, and n ∈ C \B.

Proposition 3.2. The sampling locations with minimum estimation error returned by DRLT

are near-optimal.
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Proof of Proposition 3.2. First, the function to calculate the estimation error should be sub-

modular. Let N and N ∗ be two sets that contain sampling locations, where N ⊂ N ∗ ⊂ A.

Denote the new observation location as n ∈ A \ N ∗, and the subtraction of sets is N̂ =

N ∗ \ N . Thus, the estimation error of set N ∗ is:

Γ(N ∗) = π(PN
∗

∞ ) =π(PN∪N̂∞ )

= max(max
i∈N

π(Pi
∞),max

i∈N̂
π(Pi

∞)).

Similarly,

Γ(N ∗ ∪ n) =π(PN∪N̂∪n∞ )

= max(max
i∈N

π(Pi
∞),max

i∈N̂
π(Pi

∞), π(Pn
∞))

Γ(N ∪ n) =π(PN∪n∞ )

= max(max
i∈N

π(Pi
∞), π(Pn

∞)).

Then,

Γ(N ∪ n)− Γ(N )− Γ(N ∗ ∪ n) + Γ(N ∗)

= max(max
i∈N

π(Pi
∞), π(Pn

∞))−max
i∈N

π(Pi
∞)−

max(max
i∈N

π(Pi
∞),max

i∈N̂
π(Pi

∞), π(Pn
∞))+

max(max
i∈N

π(Pi
∞),max

i∈N̂
π(Pi

∞))

≥0.

(3.6)

Equation 3.6 can be reorganized as:

Γ(N ∪ n)− Γ(N ) ≥ Γ(N ∗ ∪ n)− Γ(N ∗). (3.7)

This is identical to Equation 3.5. Thus, the set function Γ(·) is submodular. Then,
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using the greedily selected deployment set as shown in Proposition 3.1, we can achieve

near-optimal solution.

3.3.2 Model-based Spatiotemporal Information Gain

Now, a model-based spatiotemporal mutual information calculation is developed to ef-

ficiently capture the information gain of new observation locations. The result can be used

as the action rewards of the DRL model, which accelerate the process of finding the deploy-

ment strategy with near-optimal estimation error on the EOI.

First, the covariance of two random variables, which represents the modeled value in

two locations of EOI, can be computed from the environmental model according to:

cov(X, Y ) = E[XY T ]− E[X]E[Y ]T , (3.8)

where X = vψi [t + 1], Y = vψj [t + 1]. Given the environmental model in Equation 2.2,

where w[t] and v[t] are both Gaussian white noise with a zero mean, we can represent the

X and Y in Equation 3.8 as:

vψi [t] =Sψix[t] + v[t]

=Sψi(Ax[t− 1] + w[t− 1]) + v[t]

⇒ X = vψi [t+ 1] =SψiAx[t] + Sψiw[t] + v[t+ 1].

(3.9)

and

Y = vψj [t+ 1] = SψjAx[t] + Sψjw[t] + v[t+ 1]. (3.10)
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Substitute, Equation 3.9 and 3.10 into E[XY T ]:

E[XY T ] =E[(SψiAx[t] + Sψiw[t] + v[t+ 1])

· (SψjAx[t] + Sψjw[t] + v[t+ 1])T ]

=E[SψiAx[t]x[t]TATSTψj + Sψiw[t]x[t]TATSTψj

+ v[t+ 1]x[t]TATSTψj + SψiAx[t]w[t]TSTψj

+ Sψiw[t]w[t]TSTψj + v[t+ 1]w[t]TSTψj

+ SψiAx[t]v[t+ 1]T + Sψiw[t]v[t+ 1]T

+ v[t+ 1]v[t+ 1]T ].

Since v[t] does not depend on x[t], we have E[v[t]x[t]T ] = 0. Also, E{w[i]v[j]T} =

0,∀ i, j, E{w[t]v[t+ 1]T} = 0. Hence,

E[XY T ] =E[SψiAx[t]x[t]TATSTψj ]

+ E[Sψiw[t]x[t]TATSTψj ]

+ E[SψiAx[t]w[t]TSTψj ]

+ E[Sψiw[t]w[t]TSTψj ] + E[v[t+ 1]v[t+ 1]T ].

(3.11)

Furthermore, E[x[t]w[t]T ] can be simplified as:

E[x[t]w[t]T ] = E[(Ax[t− 1] + w[t− 1])w[t]T ]

= E[Ax[t− 1]w[t]T + w[t− 1]w[t]T ]

= E[Ax[t− 1]w[t]T ]

= · · ·

= E[At−1x[0]w[t]T ] = At−1x[0]E[w[t]T ]

= At−1x[0] · 0 = 0.

(3.12)

Next, substitute E[w[t]w[t]T ] = Rw, E[v[t+ 1]v[t+ 1]T ] = Rv and Equation 3.12 into
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Equation 3.11:

E[XY T ] =SψiAE[x[t]x[t]T ]ATSTψj + SψiRwSTψj + Rv. (3.13)

Then, the E[X]E[Y ]T part in Equation 3.8 can be expressed as :

E[X]E[Y ]T =E[SψiAx[t] + Sψiw[t] + v[t]]

· E[SψjAx[t] + Sψjw[t] + v[t]]T

=E[SψiAx[t]] · E[SψjAx[t]]

=E[SψiAx[t]x[t]TASψj ]

=SψiAE[x[t]x[t]T ]ASψj .

(3.14)

Substitute equation 3.13 and 3.14 into function 3.8:

cov(vψi , vψj) = SψiRwSTψj + Rv

Some Gaussian noise is added to avoid the singularity.

As the values of all feasible sampling points, vψi , are random variables, they can be

formulated as a random vector V = [vψ1 , vψ2 , · · · , vψn ]T . The matrix Σ is the covariance

matrix of V, where Σij = cov(vψi , vψj) = SψiRwSTψj + Rv. Then,

Σ =



Sψ1RwSTψ1
Sψ1RwSTψ2

· · · Sψ1RwSTψn

Sψ2RwSTψ1
Sψ2RwSTψ2

· · · Sψ2RwSTψn

...
... . . . ...

SψnRwSTψ1
SψnRwSTψ2

· · · SψnRwSTψn



+ Rv · J, (3.15)
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where J is the matrix of ones.

It has been shown that entropy can be represented as a function of covariance [10].

Hence, the conditional entropy function in the right-hand side of Equation 3.2 can be repre-

sented as the monotonic function of its variance:

H(ni|Ni−1) =
1

2
log(2πeσ2

ni|Ni−1
)

=
1

2
log(σ2

ni|Ni−1
) +

1

2
(log(2π) + 1).

(3.16)

Denote Σ∗, the sub-matrix of Σ, as the covariance matrix of ni and Ni−1, which com-

putes the conditional variance σni|Ni−1
[108, 109]. The covariance matrix Σ∗ is denoted

as:

Σ∗ =

Σ11 Σ12

Σ21 Σ22

 ,
where Σ11 is the variance of ni, and Σ22 is the covariance of set Ni−1. Then, Σ12 and Σ21

give the covariances between the random variable ni and the set Ni−1. The conditional

variance σni|Ni−1
can be expressed as:

σni|Ni−1
= Σ11 − Σ12Σ−1

22 Σ21. (3.17)

As the present goal is to maximize the increased MI while retrieving new observations

n from the field in each iteration, the increased MI (information gain) can be represented

as:

δn =MI(N ∪ n)−MI(N ). (3.18)
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According to [10] and Equations 3.3, 3.16 and 3.17, Equation 3.18 can be simplified as:

δn = H(n|N )−H(n|N̄ )

=
1

2
log(σ2

n|N )− 1

2
log(σ2

n|N̄ )

= log(|Σn − ΣnNΣ−1
NNΣNn

Σn − ΣnN̄Σ−1
N̄ N̄ΣN̄n

|),

(3.19)

where N̄ = A \ (N ∪ n).

In this manner, the model-based spatiotemporal information gain can be calculated ef-

ficiently using Equation 3.15 and Equation 3.19. Besides, the calculation for information

gain on any new sampling location over the infinite horizon is feasible.

3.3.3 Deep Reinforcement Learning Model for Maximum
Information Retrieval over a Spatiotemporal Field

In this section, a DRL model is developed for learning the information gain of sampling

locations and gives instructions on sampling actions. The DRL model does not depend

on prior training knowledge to accelerate the exploration, and it facilitates the exploring

tree to expand by monitoring the quality of the new sampling locations online. The model

architecture is shown in Figure 3.1.

Inputs
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Feature
maps
64@8x8

Feature
maps
64@5x5

Convolution
12x8 kernel

Convolution
7x7 kernel

Convolution
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Action
1

Fully
connected

Fully
connected

Figure 3.1: Schematic architecture for DRL model1

1This figure is generated by adapting the code from https://github.com/gwding/draw convnet
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The input for the DRL model is the frame that indicates the current sampling locations

on the EOI. Then the input frame is downscaled to a 90×60×3 image (from 1200×800×3

) to reduce the computational expense and the memory usage. The input frame to the DNN

has size 90×60×3, which is processed by a convolution layer with 32 filters of 12×8 with

stride 6× 4, followed by rectifier linearity (ReLu). The second layer has 64 filters of 7× 7

with stride 1, is also followed by a ReLu. The third convolutional layer convolves 64 filters

of size 4× 4 with stride 1 followed by ReLu. The final hidden layer is fully-connected and

consists of 512 rectifier units. The output layer is fully-connected with a single output for

each valid action.

In the case of random exploring trees, the location of the newly added observation on

the EOI is infinite. So, in the proposed model, the selection of the location is narrowed

down towards the direction of its closest vertex in the spanning tree. Then, their relative

direction is divided into right angles, and the selection of new locations is decomposed into

four actions. In Figure 3.2, the blue circle represents the current sampling locations, and

diamonds stand for the possible sampling locations for the next step. The relative angle is

divided into four right angles as indicated by the background color. Note that the actions

pass to the DRL model includes only the corresponding right angle of the new sampling

location.

The reward that is passed to the DRL network is given by the information gain, as ob-

tained in Section 3.3.3. In each iteration, the information gain of the new sampling location

is calculated and encourages the mobile agents to move towards the area of higher informa-

tion gain. Besides, as the variable with the small value in the logarithmic function (Equation

3.19) gives a sizable negative information gain, all non-positive gains are clipped to zero.

Clipping the information gain in this manner makes the model to merely focus on searching

the area with a more significant positive information gain and makes it easier to learn.

The DRL model takes on the learning process as the tree expands. In the beginning, the

DRL model produces random actions for the exploring tree. Then, as more rewards from
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θ1

θ2

Figure 3.2: Illustration of the action structure. Blue circle: current sampling locations;
diamonds: possible sampling locations for next step.

Algorithm 3.1: extendDRL()
Input: G,A,Σ
Output: n

1 Initialization: set replay buffer B with size N , set value function Q with randomized
weight θ;

2 With probability p select a random action at ∈ A, otherwise select
at = arg maxaQ(st, at; θ);

3 Compute new sampling location n based on at and A.;
4 Generate deployment strategy N based on n and G;
5 Limit selected action at to step size;
6 Execute action at to calculate reward rt = δn|N from Σ and observe new state st+1;
7 Save state transition (st, at, st+1, rt) to B;
8 Perform a Adam optimization to update the model.

the sampling location are given, more precise instructions on the tree expanding will be

obtained. The deep Q-learning algorithm for tree expansion is given in Algorithm 3.1.

The input for the Algorithm 3.1 is the exploring tree, which provides the current state

and then outputs the generated sampling location. In the beginning, the agent selects an

action with the p-greedy policy based on Q, which selects a random action from the action

set A with probability p and uses the Q-based greedy policy with probability 1 − p. Then,
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the action is executed, and the deployment strategy is generated to calculate the reward.

The deployment strategy is the new sampling location n combined with its closest path in

the tree G. Last, the model is updated with experience replay [42] and a double Q-network

to [110] to avoid divergence. In this manner, the utilization of the deep Q-network can

study the information gain during the tree exploration period. Then, as areas with higher

information gain are sampled at a higher priority, the overall estimation error will reduce

quickly.

3.3.4 Architecture for Deep Reinforced Learning Tree

Based on the results in Sections 3.3.1, 3.3.2 and 3.3.3, DRLT is proposed here to search

for near-optimal sampling locations and efficiently estimate the spatiotemporal EOI.

The deep reinforced exploring learning tree is built based on the proposed DRL model to

accelerate the process of finding near-optimal sampling locations. The DRLT builds a rein-

forced space-filling tree, which efficiently searches the non-convex EOI. Unlike traditional

RRT-based algorithms, DRLT does not randomly expand the space-filling tree. It studies

the collected information from the field and focuses more on areas of higher interest, which

helps to achieve lower estimation error faster. The DRLT is described in Algorithm 3.2. It

begins with the initialization of the exploring tree and the value of estimation error. The ini-

tial estimation error is set to positive infinity. Then, the algorithm iterates T times. In each

iteration, the sampling location is estimated by the DRL model using the method presented

in Algorithm 3.1. Then, line 4 finds the nearest vertex of n in G. And line 5 finds a set of

vertices in tree G, which is within the radius r of the sampling point n. It is followed by the

function that generates all possible sampling strategies in line 6. The details of line 6 are

in Algorithm 3.3. Next, line 7 finds the sampling strategies with the lowest estimation error

given the new sampling point n. Last, the algorithm checks if a lower overall estimation

error is reached and correspondingly expands the exploring tree. In this manner, the DRLT

algorithm finds the near-optimal solution for the informative sampling problem, which is
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executed efficiently through the help of DRL model.

Algorithm 3.2: Deep Reinforced exploring Learning Tree
Input: A,A,Rw,Rv,Sψ,Σ
Output: N

1 Initialization: set exploring tree V with starting point ψ0, edge E as empty set ∅ and
tree G as (V,E). The minimum estimation error is set to infinity in the beginning,
ω =∞;

2 for 1 to T do
3 n = extendDRL(G,A,Σ);
4 nnear = Nearest(n,G);
5 E = Cluster(G, n, r);
6 N̂ = GenDEPL(n, E, G);
7 Ñ = arg minÑ∈N̂ Γ(Ñ );
8 if Γ(Ñ ) < ω then
9 ω = Γ(Ñ );

10 N = Ñ ;
11 end
12 V ← V ∪ n;
13 E ← E ∪ edge(n, nnear);
14 G← (V,E);
15 end

Algorithm 3.3 generates possible sampling strategies given the new sampling location n

and its neighbors E. It outputs a set of subtrees ofG as sampling plans including node n and

each of its neighbors. Then, the sampling plan with lowest estimation error is selected from

these available sampling plans. Next, the deployment strategy is compared with the overall

estimation error to find the global minimal. The input set for Algorithm 3.3 is the new

sampling point n, the set of its neighbors E, and the exploration tree G. Each deployment

strategy is generated based on the basic RRT-based planning principle, which traces back

from the locations in the set E to its root. Hence, the algorithm generates sampling strategies

for each neighbor of n.

In this manner, the DRLT algorithm can find a near-optimal deployment strategy with

minimal estimation error from the field. By encouraging itself to explore areas with higher

information gain using DRL, the DRLT algorithm also completes the goal efficiently.
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Algorithm 3.3: GenDEPL()
Input: n, E, G
Output: N̂

1 N̂ = ∅;
2 foreach ne ∈ E do
3 n′ = ne;
4 N = {n, n′};
5 while hasparent(n′) do
6 n′=parent(n′, G);
7 N ∪ n′
8 end
9 N̂ ∪N

10 end

3.4 Simulation Results

This section presents numerical simulations using the proposed algorithm and data from

NOAA. Specifically, the DRLT algorithm and benchmark algorithms are used to plan the

most informative sampling locations to estimate the SST over the Caribbean Sea.

3.4.1 NOAA Sea Surface Temperature Dataset

The test dataset for the proposed algorithm and the benchmark algorithms is NOAA

coastal water temperature dataset, which contains the sea surface temperature of a rectangu-

lar region of size 1200 units× 800 units at 1/30 degree (∼3km) resolution in the Caribbean

Sea [83, 85]. In this dataset, the locations of the obstacles and the sampling data of the

basis center are given. The preprocessing of the dataset fills the missing measurements of

the stationary data, and the missing measurements are merely recorded as the same value as

the previous one. As the values of such attributes do not change significantly in a day when

compared to seasonal changes, the dataset is down-sampled to simplify the modeling pro-

cess by setting a time window to 6 hours. After that, the subspace identification algorithm

[82] is utilized to learn temporal information of the environmental model.
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3.4.2 Benchmark Algorithms

The proposed algorithm are compared with three state-of-art algorithms: Information

driven planner (INFO) [99], Rapidly exploring Random Cycles (RRC) [3], and Policy iter-

ation on continuous domains using RRTs (RRTPI) [13]. Also, a native RRT is implemented

to find informative sampling locations for the benchmark algorithm. Only the informa-

tiveness maximization procedure of INFO is adapted to produce sampling locations; the

exploration method remains the same for the proposed algorithm and other benchmark al-

gorithms. The planner of INFO samples the next point with the largest mutual information

gain in the field. By building an exploring tree with such points, it will gradually find the

most informative strategy with the lowest estimation error. Besides, RRC seeks to build

cycles from the exploring tree with the lowest estimation error. The deployment strategy is

established by finding suitable cycles with the lowest estimation error among the paths of

an exploring tree. Similar to RRC, the RRT finds the paths but not cycles of the exploring

tree with the lowest estimation error. Also, both RRC and RRT explore the tree by random

sampling from the field, which does not utilize the feedback of information gain of the sam-

pling points. RRTPI is an approach that is intended for solving geodesic-based problems.

Therefore, top-10 locations are picked in the area with the highest mutual information. The

exploring tree will have more substantial rewards when approaching those top-10 locations.

In this manner, the exploring tree will tend to sample more points in the areas of higher

information gain. The simulation was conducted on a PC with 4.0 GHz Quad-Core CPU

and 16 G memory. The DRL model was implemented using the TensorFlow framework

[111] and run without GPUs.

The change of SST is modeled using the spatial basis function and the temporal corre-

lation. As given in Equation 2.4, the Gaussian radian basis function is selected as the basis

function. Hence, the ith element of the temporal matrix is si(ψ) = Ke−||(ψ
i
t)−(ψj)||2/2σ2 ,

whereK is the scale factor, ψit is the location of the ith robotic sensor in the field at time t, ψj

is the location of the ith basis center, and σ is the Gaussian variance. In the present work, the

64



scale factors are selected as 10 and the variance is 100 units. The Gaussian radial basis cen-

ters are selected using the metrics described in [3], and the number of basis centers is nine.

The temporal information is learned from the NOAA dataset. The starting location of the

exploring tree for the proposed and benchmark algorithms is ψ0 = {500units, 200units}

and the step size for the exploring tree is 300 units. The number of iteration is limited to

500 times due to the fast convergence of the proposed algorithm. It is found that the perfor-

mance of the proposed work does not depend on the selected environmental model and its

parameters.

3.4.3 Performance Comparison

Figure 3.3 (a) - (e) presents the information-based sensor deployment strategies as com-

puted using INFO, RRC, RRT, RRTPI, and DRLT, respectively, where the black stars indi-

cate the location of informative sampling locations, the grey area represents the obstacles,

the white area is the EOI, and the blue lines indicate the exploring tree generated from

different algorithms. In Figure 3.3 (d), yellow squares represent the pre-calculated top-10

locations with the highest information gain in the EOI. For all five figures, the proposed

algorithm and the benchmark algorithms, both searched over most of the EOI, which fulfill

the goal of minimizing the estimation error over the EOI by making observations. Besides,

the proposed algorithm tends to search some specific areas that have higher information

gain and leads to a faster realization of the minimum estimation error.

Figure 3.4 shows the field estimation uncertainty over the EOI when deploying robotic

sensors using the information-based deployment strategy as generated by the proposed and

the benchmark algorithms. Then, the color map is used to indicate the estimation uncertain-

ties when deploying robotic sensors in the locations of red dots. A more significant number

in the color bar represents a higher variance in the EOI, and indicates that the deploy-

ment strategy will have higher uncertainty in this area. Also, as all five algorithms achieve

near-optimal solutions, the estimation uncertainty over the field of the resulting sampling
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(a) Deployment result of INFO (b) Deployment result of RRC

(c) Deployment result of RRT (d) Deployment result of RRTPI

(e) Deployment result of DRLT

Figure 3.3: Deployment strategy for information-based sampling. Red dots: com-
puted information-based sampling locations; blue lines: exploring tree; yellow
squares: informative centers for RRTPI.

strategies is at a low level. Specifically, when the robotic sensors are deployed using the

strategy provided by DRLT, the maximum uncertainty over the field is 4.75, and the uncer-

tainty does not exceed 2 in most areas. Also, the average field uncertainty is as low as 0.73,

which means that the proposed information-based deployment strategy has fast convergence

in the EOI. INFO has performed well in minimizing the field estimation uncertainty with

the computed deployment strategy. As it is an algorithm that is based on information gain,

it attempts to find the sampling location with the highest information gain from the field.
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(a) Field estimation uncertainty of INFO (b) Field estimation uncertainty of RRC

(c) Field estimation uncertainty of RRT (d) Field estimation uncertainty of RRTPI

(e) Field estimation uncertainty of DRLT
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Figure 3.4: Field estimation uncertainty for information-based sampling.

Hence, it achieves a low field estimation uncertainty. Other benchmark algorithms also

achieve low estimation uncertainty as all of them can find near-optimal results.

Figure 3.5 shows how the estimation error changes as the number of iterations increases.

The upper bound for visualizing the lowest estimation error is limited to 400 due to the high

estimation error in the beginning. The cost of the computed informative sampling strate-

gies decreases monotonically as the algorithms execute. The proposed algorithm, DRLT,

uses the least number of iterations to reduce the overall estimation error from infinity to

400, which shows an exceptional ability in finding better sampling locations with limited

information. The DRLT also finds a deployment strategy with lower estimation error faster,

compared to the benchmark algorithms in the subsequent iterations. Moreover, among all

five algorithms, DRLT achieves the lowest estimation error in the field using a limited num-
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Figure 3.5: Reduction of the estimation error with iteration (Blue solid line: result of
INFO; green dash line: RRC; red dash-dot line: RRT; light blue dot line: RRTPI;
purple dash-dash line: DRLT).

ber of iterations, which also shows that it can find a near-optimal solution efficiently and

using fewer iterations of computation.

Figure 3.6 presents the minimal estimation found by the proposed and the benchmark

algorithms with respect to the computational time. The RRC algorithm takes the longest

time to complete 500 iterations of tree expansion, followed by the INFO algorithm. Both

algorithms take more than two thousand seconds, which is not computationally efficient

when compared to the speed of other three algorithms. Since RRT, RRTPI, and DRLT use

less than eight hundred seconds to complete the computation, Figure 3.6 is zoomed in as

Figure 3.7 to compare their performance.

Figure 3.7 indicates that DRLT uses the least computing time to find the deployment

strategy with the lowest estimation error in the field. RRT and RRTPI also find a good

deployment strategy efficiently, but they seem to get trapped locally, and the estimation
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Figure 3.6: Estimation error of the information-based deployment strategy determined
by the proposed and the benchmark algorithms decreases monotonically with
time.

error stops decreasing quite early. INFO performs worst with the highest estimation error

and long computation time. Moreover, although RRC finds the second best solution within

three hundred seconds, it takes more than ten thousand seconds to finish all five hundred

iterations, which might be caused by the high computational cost of finding cycles among

the paths in the exploring tree. The cycles are determined by finding two paths that share

the same parent from the newly added observation. Hence, as the size of the exploring

tree grows, the computation for finding the cycles with a lower estimation error increases

exponentially.

Figure 3.8 presents the change of the cumulative reward of DRLT during the exploration

and the corresponding estimation error in each iteration. In the present work, the cumulative

reward is set to the sum of the information gain when sampling in a new location, and higher

cumulative rewards can lead to a better learning process. Notably, DRLT maximizes the
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Figure 3.7: Estimation error of the information-based deployment strategy determined
by the proposed and the benchmark algorithms decreases monotonically with
time. (Zoomed in)

cumulative reward in a stable manner as the tree explores, which lead to a steady state with

the near-optimal result. By comparing the two curves in Figure 3.8, it is seen that DRLT can

retrieve information from the field continuously to efficiently reduce the estimation error.

Table 3.1 summaries the numerical results of the simulations. It shows that the DRLT

achieves the lowest estimation error at 33.66, which is 9% lower than the second-best result

(RRC) and about half the worst result. Also, DRLT does not require a high computing time

to obtain this near-optimal result. It only takes 771.85 seconds to complete 500 iterations of

tree exploration, which only takes 7% of the computing time to outperform the second-best

result. The small estimation error together with the low computing time indicate that DRLT

is the most efficient algorithm out of those considered, for obtaining a near-optimal deploy-

ment strategy. Besides, by adopting sampling strategies for robotic sensor deployment from

both the proposed and benchmark algorithms, the field estimation uncertainty also becomes
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Figure 3.8: Cumulative reward and estimation error of DRLT. (Red dashed line: cu-
mulative reward of the DRLT; solid blue line: corresponding estimation Error).

small. In particular, the maximum uncertainty over the field does not exceed 5 for all algo-

rithms, and the average uncertainty is about 0.7. The speed reduction of the estimation error

convergence is also examined. Setting the threshold at 400, DRLT only takes 11 iterations

and 11.44 seconds to reduce the estimation error from infinity to the threshold value. All

other algorithms require more than 30 iterations to achieve this reduction.

Table 3.1: Numerical results for DRLT and benchmarks.

Algorithm INFO RRC RRT RRTPI DRLT
Estimation Error 66.62 36.86 44.31 41.78 33.66
Computing Time 2608.61 10375.94 653.27 649.10 771.85
Max Uncertainty 4.60 4.61 4.61 4.86 4.75
Min Uncertainty 0.0056 0.0056 0.0056 0.0060 0.0058
Mean Uncertainty 0.70 0.71 0.69 0.81 0.73
Estimation Error Reaches
400 (iteration) 39 30 39 30 11

Estimation Error Reaches
400 (time) 49.49 21.30 4.96 8.017 11.44
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3.5 Summary

This chapter focused on developing a WSN deployment strategy that could efficiently

achieve minimal estimation error. A novel algorithm, DRLT, was proposed to search over

a sizable spatiotemporal field efficiently with the assistance of information gain. The de-

veloped deployment strategy was proved to be near-optimal. The simulation results were

obtained for the NOAA dataset, and they confirmed that the proposed algorithm could out-

perform the benchmark algorithms in both performance and efficiency.
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Chapter 4

Model-based Sensor Deployment for

Spatiotemporal Field Reconstruction

4.1 Introduction

Besides spatiotemporal field estimation, it is essential to reconstruct the spatiotemporal

field using the sampling data. The pollution and environmental changes can be detected

and predicted from the reconstructed field. Subsequently, corrective actions may be taken

to minimize the hazards. This chapter seeks to reconstruct the entire spatiotemporal field

from the observations sampled at near-optimal sampling locations.

The spatiotemporal field should be constructed using observations sampled in the model-

based near-optimal sampling locations. With the help of sparse learning, statistical methods

are widely used to recover signals from limited observations [4, 58, 112]. Sparse learning

investigates linear mappings from low-dimensional sparse observations to the original high-

dimensional signal. To this end, a method based on principal component analysis (PCA)

can be utilized to learn a projection basis from the training data. Then, a tailored singular

value decomposition (SVD) approach can be used to reconstruct the entire spatiotemporal

field, given future observations in the field.

In this chapter, a model-based approach for sensor node deployment and spatiotemporal
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field reconstruction is proposed. The proposed approach deploys sensor nodes that can rep-

resent the spatiotemporal field near-optimally given the environmental model. Observations

in the deployed locations can then be used to reconstruct the spatiotemporal field by learn-

ing the sparse representation mapping. Moreover, it is proven that the sensor deployment

method, DRLT, generates near-optimal sensor deployment locations for spatiotemporal field

reconstruction.

4.2 Mathematical Background and Problem Formulation

4.2.1 Sparse Sensor Deployment Analysis

The PCA is optimal for recovering high-dimensional signals from unknown contents.

It converts correlated observations into principal components that have mere linear redun-

dancy. In this manner, high-dimensional signals can be represented by a few sparse repre-

sentations in the field. Then, sparse learning methods can be used to study the relationship

between the compressed signal and the original one, to reconstruct a full signal from a small

subset of measurements.

Denote the EOI as a high dimensional state φ ∈ Rm, and the spatiotemporal dynamics

of φ can be captured by the low dimensional observations. The selected observations (y)

can be represented by a measurement matrix C ∈ Rr×m, where r � m is the number of

measurements:

y = C · φ. (4.1)

Note that φ can be sparsely represented by a principal basis:

φ = Ψr · a, (4.2)

where Ψr ∈ Rm×r is the principal basis learned from training data, and a ∈ Rr.
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4.2.2 Problem Formulation

Mathematically, the sparse signal reconstruction and be expressed as the projection from

a low-dimensional observation space to a high-dimensional signal:

φ̂← ξ(y) : Rm ← Rr.

As r � m, this system is underdetermined. Hence, there are infinite solutions. In this

manner, sampling locations should be optimized, and the mean error is utilized to evaluate

the reconstructed spatiotemporal field:

arg min
ξ
‖φ− ξ(y)‖.

4.3 Proposed Method

4.3.1 Sparse Learning for Spatiotemporal Reconstruction

High-dimensional states φ ∈ Rm can be represented as linear combinations of r or-

thogonal eigenmodes ψ. This low-dimensional state can be learned from training data by

pruning the PCA basis. φ may be decomposed to produce temporal and spatial coefficient

[4]. In this manner, the linear combination of φ shown in Equation 4.2 can be represented

as:

φi ≈
r∑

k=1

ak(ti)ψk(φ), (4.3)

where φi is the spatiotemporal field at time i and ψk(φ) is the time independent spatial

coefficient. The temporal coefficient ak(ti) varies with time ti.

Next, ψk and ak can be computed by Singular Value Decomposition (SVD). Training

data Φ = [φ1φ2 . . .φM ] are given for M snapshots. The tailored SVD basis consists of

orthonormal left singular vectors Ψ, right singular vectors V and the diagonal matrix S.
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Hence, the training data can be represented as:

Φ = Ψ · S ·V. (4.4)

Then, the dimension of the right-hand part of Equation 4.4 can be reduced to r according

to the Eckart-Young theorem [113]:

Φ ≈ Φ∗ = arg min
Φ̃

∥∥∥Φ− Φ̃
∥∥∥
F

s.t. rank(Φ̃) = r,

(4.5)

where Φ∗ = Ψr ·Sr ·Vr and ‖·‖F is the Frobenius norm. In this manner, PCA can reduce the

dimension of the high-dimensional system by using orthogonal projection. In the present

work, rank r indicates the number of observations in the EOI. Hence, information in the

corresponding r rows of Ψ, S, and V will be extracted as Ψr, Sr, and Vr respectively.

Then, a canonical measurement matrix C is used to select critical sampling locations

sparsely, according to Equation 4.1:

C = [eγ1 , eγ2 , · · · , eγr ]T , (4.6)

where ej ∈ Rm is the canonical basis vectors. Since matrix C is canonical, the observation

y can be simplified as:

y = Cφ = [φγ1 , φγ2 , · · · , φγr ]T , (4.7)

where γ = {γ1, γ2, · · · , γr} ⊂ {1, 2, · · · ,m} is the set of indexes for selected sensors. In

this manner, Equation 4.1 can be used to derive sampling locations from φ efficiently.

Next, the observations in the field, φj ∈ φ, can be represented as a linear combination

of the basis and the coefficients according to Equation 4.3 and Equation 4.5:

φj =
r∑

k=1

Ψjkak. (4.8)
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Observations in the sensor deployment locations can then be expressed as the linear

combination of the canonical basis and the states according to Equation 4.7 and Equation

4.8:

yi =
n∑
j=1

Cijφj =
n∑
j=1

Cij ·
r∑

k=1

Ψjkak. (4.9)

Equation 4.9 can be simplified as:

y = C ·Ψr · a. (4.10)

According to Equation 4.3, φ can be reconstructed by the basis coefficients â:

φ̂ = Ψrâ. (4.11)

Usually, only r sensors are deployed in the field, and only the corresponding readings

are obtained, which is denoted as y ∈ Rr. Hence, according to Equation 4.10 and Equation

4.11:

φ̂ =Ψrâ

=Ψr(CΨr)
−1y,

(4.12)

where Ψr ∈ Rn×r can be learned through SVD. C ∈ Rr×n can be obtained by finding the

most informative locations in the field, such as near-optimal sensor deployment locations

developed in Chapter 3. Thus, the environment φ̂ can be reconstructed given r observations

y, where m� r.

4.3.2 Model-based Sparse Sensor Deployment with Informative
Sampling

Optimal sensor deployment locations can guarantee the most accurate reconstruction of

φ̂. For this reason, the locations of the sensor nodes should be optimized to acquire the most
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information from point measurements in sparsely selected sampling locations. Observations

from the sparse sampling locations can then be used to reconstruct high-dimensional states,

given the tailored SVD basis. Recall that γ represents the structure of the canonical matrix

C, which gives the sampling locations in the field. Therefore, γ affects the reconstruction

performance. Thus, the optimal γ and its corresponding sampling locations should provide

the most information about the field.

Choosing a suitable number of sensors in the field while maintaining a low noise level

in the data is a challenge. Gavish et al. proved an optimal threshold, singular value hard

thresholding (SVHT), that guarantees minimal signal reconstruction error [114]. While

ensuring least reconstruction error, SVHT finds only the optimal value for reducing the

size of the tailored SVD basis and cannot find the optimal sensor deployment locations.

Hence, the result provided by SVHT is regarded as the reconstruction target. In this manner,

the number of sampling locations, r, can be calculated, and r rows of Ψ, corresponding

to the sensor deployment locations should be obtained with maximum information in the

spatiotemporal field.

DRLT is a model-based informative sampling technique that finds near-optimal sam-

pling locations for spatiotemporal field estimation. Proposition 4.1 shows that the sampling

locations selected by DRLT can near-optimally represent the field.

Proposition 4.1. DRLT generates sampling locations that near-optimally condition the rep-

resentation of the spatiotemporal field for spatiotemporal reconstruction.

Proof. Proposition 3.2 shows that the objective function of DRLT is submodular. The di-

minishing returns property of the submodular function guarantees a near-optimal solution

in the case of greedy maximization/minimization [107].

Moreover, as shown in algorithm 3.2, DRLT greedily selects target sensor deployment

locations. Hence, as the learning tree expands, sufficient samples are observed in the field,

and the greedy selection guarantees that the resulting sampling set is near-optimal. The

objective function finds the sensor deployment set that seeks the lowest estimation error
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during the greedy selection process. At the same time, DRLT encourages a sensor to take

more samples in the area with higher information gain. Therefore, the mutual information

between the sampling locations and the rest of the field is maximized. Thus, DRLT can

generate sampling locations that near-optimally represent and reconstruct the spatiotempo-

ral field by collecting the most information from the spatiotemporal field.

In this manner, r sampling locations selected by DRLT can be converted into γ to con-

struct the canonical measurement matrix C. Given the observations at these locations, the

spatiotemporal field can be reconstructed.

The proposed sparse learning method for spatiotemporal field reconstruction is given in

Algorithm 4.1. Line 1 initializes the algorithm by pre-processing the training data, where

the training data can be obtained from the environmental model. Mean normalization is

carried out to facilitate faster learning. Line 2 learns the training data by decomposing it

into orthonormal matrices using SVD. Line 3 to line 7 project the calculated near-optimal

sampling set (N ) into the corresponding locations (γ) in the φ space, whereN is generated

by DRLT using Algorithm 3.2. Next, γ is organized as the canonical matrix C, and the

low-dimensional representation of the orthonormal singular vector Ψ is extracted to finish

the training process. Last, line 10 performs the spatiotemporal reconstruction from limited

observation y to φ̂.

In this way, the spatiotemporal field can be reconstructed by using the observations from

the calculated sparse sampling locations.

4.4 Simulation

This section presents the simulation results of the proposed model-based sensor deploy-

ment approach for spatiotemporal field reconstruction, using a National Oceanic and Atmo-

spheric Administration (NOAA) dataset. The proposed algorithm is compared with state-

of-the-art informative sensor deployment methods, and the reconstruction performance is
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Algorithm 4.1: Sparse Learning from Training Data.
Input: N ,Φtrain,y
Output: φ̂

1 Init.;
2 Ψ,S,V = svd(Φtrain);
3 γ = ∅;
4 for i = 1, 2, · · · , r do
5 γi

Ψ←− Ni;
6 γ = [γ, γi];
7 end
8 C← canonical(γ);
9 Ψr ← C ·Ψ;

10 φ̂← Ψr(CΨr)
−1y;

analyzed based on the mean square error (MSE) between the reconstructed field and the

ground truth.

4.4.1 Experimental Setup

The NOAA dataset covers the southeast Americas Seas region, which includes the Gulf

of Mexico and the Caribbean Sea [83]. The daily sea surface temperature in 2017 was

extracted from this dataset to model the environment.

The performance target and the benchmark algorithms for informative sensor deploy-

ment are as follows:

• SVHT. Singular value hard thresholding (SVHT) finds optimal thresholds for the

dimensions of the tailored SVD basis that guarantee minimal signal reconstruction

error [114]. The SVHT compression and reconstruction method reduces only the size

of the SVD basis, and the resulting tailored SVD basis is used to represent a higher-

dimensional space. Therefore, SVHT cannot find the sampling locations because it

requires the state to be fully observable and encodes the original signal to another

space with a lower dimension. The result generated by SVHT is regarded as the

performance target.
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• RRC: Rapidly-exploring random cycles (RRC) is an RRT-based method that gen-

erates sampling locations with the lowest estimation error along with a cycled path

within the space-filling tree [3]. The cycled sampling locations can be used to perform

periodic sampling using a single robot.

• INFO: The approach of informativeness maximization is utilized to find sampling

locations with maximum mutual information in the field [99]. As more samples are

taken in the spatiotemporal field, a near-optimal sampling set that maximizes the

mutual information is generated.

• RRTPI: RRTPI is a reinforcement learning-based RRT method that efficiently solves

geodesic-based exploration [13]. Ten locations with the highest mutual information

are selected in the spatiotemporal field, and the exploring tree has a higher probability

of exploring areas with higher information gain and efficiently finding the sampling

locations with the lowest estimation error.

4.4.2 Simulation Results

Figure 4.1 presents the ground truth of a spatiotemporal field for testing as well as

the reconstruction results. The red circles in the figure indicate the informative sampling

locations calculated by the corresponding planning algorithms. SVHT generates the best

reconstruction result as it tailors only the information that is less significant in the SVD

basis. The input signal is compressed and reconstructed via an orthogonal projection with a

tailored SVD basis.

RRC and RRTPI collect only limited information and have the worst reconstruction per-

formance as they focus merely on minimizing the estimation error of the spatiotemporal

field. The MSEs for the field reconstruction of RRC and RRTPI are 39.37 and 64.17, re-

spectively. As these two methods do not optimize the information gain in the field, sensor

nodes may be placed in locations that provide less effective observations. Some spatial lo-

cations may reduce the estimation error by finding abrupt changes in the field but not help
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(a) Ground truth (b) SVHT (c) RRC

(d) RRTPI (e) INFO (f) DRLT

Figure 4.1: Ground-truth and reconstruction results from the proposed and bench-
mark algorithms. (Red circle: sampling locations generated from different
information-based planning algorithms.)

to represent the general information in the field.

Note that both INFO and DRLT achieve lower reconstruction error as they maximize the

mutual information in the field, which is critical for representing the spatiotemporal field.

The MSEs for the field reconstruction of INFO and DRLT are 9.08 and 2.59, respectively.

INFO captured more information in the southern Caribbean Sea and performed better in

reconstruction than RRC and RRTPI. However, the reconstruction in the northern Caribbean

Sea and the Gulf of Mexico is rather poor due to the inadequateness of information is

captured. DRLT leverages the minimization of the estimation error and the maximization

of information gain to outperform the benchmarks in reconstruction. As shown in Figure

4.1 (f), the reconstruction in both southern and northern Caribbean Sea is better than in

the benchmark algorithms. The Gulf of Mexico is the only location where information is

missing as no sampling locations exist.

Table 4.1 indicates the MSE for the reconstruction using the proposed method and the

benchmark algorithms. The target reconstruction performance, generated by SVHT, is 0.12.

DRLT produces the sampling locations with lower MSE when compared to the benchmark
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Table 4.1: MSE of the proposed method and the benchmark algorithms.

SVHT∗ RRC RRTPI INFO DRLT
0.12 39.37 64.17 9.08 2.59

algorithms.

4.5 Summary

This chapter proposed a model-based sensor deployment strategy for spatiotemporal

field reconstruction. The proposed model-based sensor deployment strategy significantly

outperformed the benchmark algorithms in reconstructing a spatiotemporal field with lim-

ited observations. However, the reconstruction accuracy of the proposed method was high

compared with the target performance generated by SVHT. Therefore, the reconstruction of

a spatiotemporal field has room for improvement. In general, model-based sampling meth-

ods may result in inaccuracy when the environmental model cannot adequately express a

highly dynamic field of interest. Hence, model-free approaches, such as DL approaches,

should be utilized to improve the spatiotemporal reconstruction accuracy.
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Chapter 5

Model-free Sensor Deployment for

Spatiotemporal Field Reconstruction

and Prediction

5.1 Introduction

Chapter 4 introduced the linear reconstruction of the spatiotemporal field from the ob-

servations. Linear reconstruction may cause some inaccuracies in capturing spatiotemporal

mappings between the observations and the overall spatiotemporal field. In this chapter,

nonlinear spatiotemporal mappings are investigated to optimize the sampling location and

improve the spatiotemporal reconstruction accuracy.

Optimal spatiotemporal field reconstruction usually leverages a latent low-dimensional

representation, which empowers sparse sampling. In this context, it is clearly advanta-

geous to deploy a small number of sensors optimally when estimating and predicting a

high-dimensional systems. The optimal sensor deployment is intractable using brute-force

approaches, and it is shown to be NP-hard.

Typically, sensor locations are chosen using convex optimization. Model-based sam-

pling approaches have been utilized for deploying sensors near-optimally to estimate moderate-
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size spaces [3, 9, 115]. Also, robotic sensors can be deployed to sample and estimate an

environment [116–119]. Moreover, probabilistic approaches have been proposed to han-

dle the trade-off between exploration and exploitation in an increasingly generic manner

[120, 121]. Their objective is formulated based on information theory, which enables a

robotic sensor to sample unexplored areas in the field at higher information gain. However,

these approaches mainly focus on simultaneous localization and mapping (SLAM) tasks,

which are limited to geometric relationships. In general, model-based convex optimization

methods highly rely on the environmental model and use a greedy approach only to navi-

gate robots to the most informative sampling locations. Hence, model-based near-optimal

sensor deployment methods may entrap at local minima and result in less accurate field

reconstruction and prediction.

Recently, data-driven approaches, such as principal component analysis (PCA) and

compressive sensing (CS), have been developed to determine the primary locations for opti-

mal or near-optimal sensor deployment. Data-driven approaches are of low complexity and

are easier to implement than model-based convex optimization approaches. Observations

obtained from the sampling locations can be used to reconstruct the entire spatiotemporal

field. In contrast to CS and PCA systems, which employ sparse linear representations for

signal reconstruction, a deep learning (DL) framework can support both linear and nonlin-

ear measurement reconstruction and provide better reconstruction performance. Besides,

the nonlinear activation function of a DL framework reduces the likelihood of gradient van-

ishing.

In this chapter, a novel DL framework called Spatiotemporal sparse Auto FiEld Recon-

structor (SAFER) is developed to optimize the sensor deployment locations for spatiotem-

poral field reconstruction and prediction. The spatiotemporal field is encoded into sparse

sampling locations, where key deployment locations are selected as the low-rank repre-

sentation of the entire spatiotemporal field. Then, an auto-reconstructor is used to capture

nonlinear spatiotemporal correlations between the sparse sampling locations and the rest of
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the field. The observations in the selected locations can then be decoded to the entire spa-

tiotemporal field. The proposed DL framework is proven to be Lipschitz continuous, and it

is adequate for reconstructing and predicting the spatiotemporal field via observations in a

minimal number of sampling locations.

5.2 Preliminary and Problem Formulation of Sensor
Selection

There are
(
m
r

)
= m(m−1)...(m−r+1)

r(r−1)...1
possible selections of r sensors in an m-dimensional

environment. It has been shown that recovering the corresponding r-sparse signal from

r � m observations is an NP-hard problem [122]. The PCA and CS methods have shown

their capability to recover high-dimensional signals from an unknown content. However,

they are limited to the analysis of linear correlations between the low-dimensional rep-

resentations and the high-dimensional space. Besides, the spatiotemporal pattern of the

signal can be obtained by extracting dominating features from the training set. Hence, a

higher reconstruction performance can be achieved by learning the nonlinear mappings in

the specific domain of interest.

Typically, sparse sampling can reconstruct a full signal from a small subset of measure-

ments. Denote the physical phenomenon of an Environment of Interest (EOI) as the high

dimensional state φ ∈ Rm. The nonlinear spatiotemporal dynamics of φ can be captured by

the low dimensional observations for prediction and control. Hence, φ̃ can be reconstructed

from its low-rank representations based on sparse sampling that optimizes the spatiotempo-

ral field reconstruction:

φ̃ = Gr(y), (5.1)

where Gr : Rr → Rm is the reconstruction function, and y ∈ Rr is the sparsely sampled

data from φ. Therefore, the principal task of the proposed work is to design a measurement
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matrix C ∈ Rr×m to sparsely sample critical observations from φ:

y = C · φ, (5.2)

where r � m is the number of measurements.

Substituting Equation 5.1 into Equation 5.2 yields:

φ̃ = Gr(C · φ) = G(φ), (5.3)

where G is the DL framework used for reconstructing the spatiotemporal field with sparsely

sampled measurements. The goal in this work is to optimize sensor placement locations

within φ, which correspond to the measurement matrix C.

5.2.1 Sparse Sensor Deployment Analysis

In sparse sensor deployment, the spatiotemporal field is only observable at the locations

that have deployed sensors. Then, a model is trained to reconstruct the entire spatiotemporal

field with limited observations by investigating their nonlinear mappings.

A high-dimensional system φ ∈ Rm may be expressed as the linear/nonlinear combina-

tions of r orthogonal eigenmodes. Hence, high-dimensional systems can be projected into

the lower-dimensional subspace. Then, high-dimensional system at time i, φi ∈ Rm, can

be represented according to Equation 5.1:

φi ≈ φ̃i = Gr(yi), (5.4)

where yi are the observations from the deployment locations and Gr is the time independent

auto-reconstructor. The temporal coefficient yi varies with time i. Therefore, G can be can

be trained from the sampled data, given the measurements Φ = [φ1,φ2, . . .φM ] for M
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snapshots:

Φ̃ = G(Φ, θ̂), (5.5)

where θ̂ stands for the hyper-parameters.

The model is trained to minimize the difference between the training data and the model

output:

Φ∗ = arg min
Φ̃

∥∥∥Φ− Φ̃
∥∥∥

2
, (5.6)

where Φ∗ is the reconstructed signal and ‖·‖2 is the `2 norm. The model G that generates

the reconstructed signal can be used for predicting the future spatiotemporal field, given the

sampling data at that time.

In this manner, the problem of sparse sensor deployment can be formulated as:

min
∑
φ∈Φ

∥∥∥φ− G(φ, θ̂)
∥∥∥

2
,

s.t. |C · φ|= r,

(5.7)

where |·| is the cardinality of the selected sampling locations.

5.3 Sparse Sensor Deployment using Auto Field
Reconstructor

The proposed approach incorporates a DL framework to learn spatiotemporal correla-

tions in the training data, and determines the critical sampling locations that optimize the

spatiotemporal field reconstruction. It is a model-free approach, which does not need to

model the environment with prior knowledge.

5.3.1 Sparse Sampling for Reconstruction

In this chapter, a high-dimensional signal is assumed to be reconstructed from a small

subset of point observations. Therefore, the sensor deployment locations are optimized

to achieve better reconstruction performance. Denote the spatiotemporal field as an m-
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dimensional space:

φ = [φ1φ2 · · ·φm]T , (5.8)

where φ· is a random variable that represents the sampling value at the corresponding loca-

tion.

Then, the measurement matrix C can be used to select the sampling locations:

C = [eγ1eγ2 · · · eγr ]T , (5.9)

where ej ∈ Rm are the canonical basis vectors.

According to Equation 5.2, observations in the sensor placement locations can be ex-

pressed as a linear combination of the canonical basis and the high dimensional input data:

yi = eγiφ

Since matrix C is canonical, the observation y can be simplified as:

y = [φγ1φγ2 · · ·φγr ]T , (5.10)

where γ = {γ1, γ2, · · · , γr} ⊂ {1, 2, · · · ,m} is the set of indices for the selected sam-

pling locations. Hence, the observations in y are downsampled from the m-dimensional

spatiotemporal field. Then, as y can be directly observed from the spatiotemporal field, the

spatiotemporal field φ̃ can be reconstructed given the observations at the sampling locations

and the nonlinear mapping Gr.

A schematic diagram for sparse sensor deployment is illustrated in Figure 5.1. The

observations at the sampling locations y are selected by the measurement matrix C to guar-

antee the best feasible reconstruction φ̃.

The sensor deployment locations in the spatiotemporal field correspond to the sensor

readings in the input matrix φ. Hence, the sparse sensor deployment strategy is to compute
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y C φ

= ×

Figure 5.1: Illustration of generating sparse sampling locations using a canonical ba-
sis. Dark blue region in matrix C stands for 1, rest of the matrix contains 0;
second, seventh and fifth row of φ is extracted according to C and compose y.

the rows of φ that optimally represent the spatiotemporal correlation in the field. Gr should

be trained to learn spatiotemporal correlations between the observation y and φ.

5.3.2 Deep Learning based Spatiotemporal Field Reconstruction

According to Equation 5.1, input signal φ can be compressed as y = Cφ. Hence, the

input training dataset can be expressed as Φ and the corresponding compressed signal is

Y = [y1y2 . . .yM ]. Given a suitable canonical matrix C ∈ Rr×m, the input data matrix can

be compressed to key observations:

Y = CΦ (5.11)

Then, the training set for the proposed deep learning framework hasM pairs of the input

signal and the corresponding observations in the selected locations:

Strain = {(y1,φ1), (y2,φ2), · · · , (yM ,φM)}.

The nonlinear signal reconstruction mapping is learned from this training set. Similarly,

90



the test set Stest contains several pairs of signals and observations.

Traditional sparse reconstruction methods show that using greedy and iterative approaches

provide better performance by using the matrix-vector multiplication with the computa-

tional cost of O(nr) [56]. Besides, fully connected layers suffer from the curse of dimen-

sionality and consume vast system memory [123]. For example, the spatiotemporal field

in the training data is a 360 × 180 image, and there are 44219 non-obstacle pixels in each

image. Then, the weights between two fully connected layers will be stored in a 44219-by-

44219 matrix using float 32, which consumes a massive amount of memory and it is hard

to train. Specifically,

memory consumption = 442192 ∗ 32 bits

= 62570238752 bits

= 7.82 GB.

(5.12)

Therefore, a stacked structure is utilized to save memory, where each layer of the DL

framework has m inputs and r outputs or vice versa.

Then, a multi-layer DNN is used to learn the signal reconstruction from limited sampling

points. In the beginning, the input signal is compressed to r-dimension using a logical

matrix with the canonical basis:

y = C · φ. (5.13)

Then, each hidden layer can be represented as

xhi+1
= T (Whixhi + bhi), (5.14)

where Whi ∈ Rm×r,bhi ∈ Rm or Whi ∈ Rr×m,bhi ∈ Rr, depending on the size of the

input data.

Besides, x denotes the hidden neurons and T (·) is the element-wise nonlinear rectifier

function. Note that xh0 is the input of the hidden layers, y. Then, the calculation for the
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φ

y = C · φ

xhi+1
= T (Whi

xhi
+ bhi

) ~φ = G(φ)

Figure 5.2: The framework of the auto field reconstructor. Yellow nodes represent the
compression layers which optimize sparse sampling locations; blue nodes are
neurons in the hidden layer for model fitting; red layer is the output layer.

output layer is given by:

φ̃ = T (Woxh + bo), (5.15)

where Wo ∈ Rr×m and bo ∈ Rm are the weighting matrix and the bias of last hidden layer,

respectively. As the size of the output layer must match the dimension of the environment,

the number of hidden layers must be even.

Denote hyper-parameters as θ̂ = {C,Wh1 ,bh1 ,Wh2 ,bh2 , · · · ,Wo,bo}. The nonlinear

mapping from the input training data φ to the output data φ̃ can be represented as φ̃ =

G(φ, θ̂). The the mean squared error (MSE) is used as the loss function:

L(G,C) =
1

M

M∑
i=1

∥∥∥G(φi, θ̂)− φi
∥∥∥2

2
(5.16)

The framework of the proposed model is shown in Figure 5.2. Two-dimensional images
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of the spatiotemporal field are reshaped into a one-dimensional vector at size m and fed

into the input layer. Then, r key sampling locations, y, are selected via the canonical mea-

surement matrix C. Next, y is passed through the multi-layer stacked auto-reconstructor to

reconstruct the spatiotemporal field (φ̃). All hidden layers are applied with nonlinear Rec-

tified Linear Units (ReLU). Last, Adam optimization is utilized to compare the difference

between φ̃ and φ, and minimize the loss.

Once the training process minimizes the difference between the model output and the

input data, the auto field reconstructor learns the spatiotemporal correlation between the

selected deployment locations and the entire spatiotemporal field. Hence, once the sensor

samples new data after the deployment, the entire spatiotemporal field can be reconstructed.

Next, it is essential to optimize C matrix for sparse sampling. Finding the best sampling

locations helps to train optimal decoders for the best reconstruction performance. Algorithm

5.1 explains how the sparse sampling locations are optimized during the model training

process for reconstruction.

Algorithm 5.1: SAFER
Input: Φ
Output: G(·), C

1 Initialization: set measurement matrix C as a random canonical matrix, and
randomly draw hyper-parameters θ̂ from uniform distributions with a zero mean.;

2 for 1 to T do
3 Shuffle m input data;
4 Use Adam optimization to minimize L(G,C);
5 Ĉ = swap(C);
6 if L(Ĝ, Ĉ) < L(G,C)||rand() < ρ then
7 C = Ĉ;
8 G = Ĝ;
9 end

10 end

Initially, a random measurement matrix C is generated to randomly select the sensor

deployment locations. Also, the hyper-parameters are initialized. Then, the training pro-

cess iterates for T times to optimize the deployment strategy for the spatiotemporal field
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reconstruction. In each iteration, m input data are shuffled to reduce the variance and en-

sure the model to be general and has less over-fit. Line 4 minimize the loss according to

the model indicated in Figure 5.2. Line 5 to line 10 seek to find a better sensor deployment

strategy in each iteration. Line 5 swaps one non-zero column in the matrix C with one zero

column to search for better sensor deployment strategies by introducing new observations

for the model. Line 6 checks if the updated measurement matrix and the model will result

in a lower loss. If new observations can achieve better performance, the updated model

will be able to provide overall better performance. This scheme not only achieves a better

model but also adopts a worse model according to a slowly decreasing probability ρ. Al-

lowing worse solutions provides the capability to avoid local minima in simulated annealing

approaches [124].

5.3.3 Lipschitz Continuity and Reconstruction Capability for the
Proposed Framework

Lipschitz continuity is a strong property of function continuity in mathematical analysis.

It limits the change rate of the function and bounds the slope of the function within the

Lipschitz constant. Lipschitz continuity also guarantees that the function obeys the Cauchy-

Lipschitz Theorem, which ensures the existence and uniqueness of solutions to certain first-

order equations [125]. Definition 5.1 and Proposition 5.1 show that the proposed model G

is L-Lipschitz. Besides, Definition 5.2 and Lemma 5.1 show that r samples are sufficient

for spatiotemporal field reconstruction.

The definition of Lipschitz continuity can be formulated as follows:

Definition 5.1. A function, G : Rr → Rm , is Lipschitz continuous if there exists a positive

real constant L such that:

‖G(x1)− G(x2)‖2 ≤ L ‖x1 − x2‖2 ,∀x1,x2 ∈ Rr, (5.17)

where the value of L is the Lipschitz constant, and the function G is L-Lipschitz.
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Then, as shown in Proposition 5.1, the Lipschitz continuity of the proposed network can

be proved layer-by-layer and the corresponding Lipschitz constant can be calculated.

Proposition 5.1. G is L-Lipschitz.

Proof. The Lipschitz constant of the proposed framework can be computed as a series of

function compositions:

G(φ) = (G1 ◦ G2 ◦ · · ·)(x), (5.18)

where Gi can be the linear operation between layers and activation function. Denote the

Lipschitz constant of the function as L(·). Then, Lipschitz constant of the functional com-

positions can be expressed as:

L(G) =
∏

L(Gi). (5.19)

In this manner, the Lipschitz constant of G can be calculated layer by layer. Denote a

hidden layer with r inputs as

Gh(φ) = Wx + b. (5.20)

The Lipschitz constant is given by the spectral norm of the weighting matrix under the

`2 norm [126, 127]. Substitute Equation 5.20 in to Equation 5.17:

‖(Wx1 + b)− (Wx2 + b)‖2 ≤ L ‖x1 − x2‖2

‖Wα‖2 ≤ L ‖α‖2

‖Wα‖2

‖α‖2

≤ L,

(5.21)

where α = x1 − x2. Hence, the smallest Lipschitz constant can be derived as the operator

norm:

L(Gh) = sup
α 6=0

‖Wα‖2

‖α‖2

. (5.22)

In the case of `2 norm, the operator norm can be computed by using the largest singular
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value of the weighting matrix W [78, 126].

The W is initialized with Gaussian random variables. Then WTW is its Wishart en-

semble. The expectation of the largest eigenvalue of WTW is 4r according to [128–130].

Hence, the largest singular value of W is the square root of WTW, which is 2
√
r. Thus,

Gh(·) is Lipschitz continuous and its Lipschitz constant is 2
√
r. Similarly, the hidden layer

with m inputs has a Lipschitz constant of 2
√
m.

The Lipschitz constant of the compression layer can also be calculated similarly. The

smallest Lipschitz constant of the compression layer is the largest singular value of the

logical matrix with the canonical basis:

L(Gc) = sup
α 6=0

‖Cα‖2

‖α‖2

. (5.23)

The singular values of the matrix C are the square roots of the eigenvalues of CTC.

Denote λ as the eigenvalue of CTC and v = [v1v2 · · · vm]. Then:

λv = CTCv

= Ev,

(5.24)

where E = diag(e1, e2, · · · , em), ei ∈ {0, 1} is a diagonal identity matrix.

Therefore,

(λ− ei)vi = 0. (5.25)

The eigenvalue of CTC is either 0 or 1, thus the Lipschitz constant of compress layer

(largest singular value of matrix C) is L(Gc) = 1.

The Lipschitz continuity of the activation function can be analyzed in a similar manner.

In this chapter, ReLU is used as the activation function:

ReLU(x) = max(0, x), (5.26)
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whose derivative is:

ReLU ′(x) =


0, if x > 0

1, otherwise.
(5.27)

Hence, the maximum gradient of the ReLU function is 1, which indicates that ReLU is

Lipschitz continuous and the Lipschitz constant of ReLU is L(Gai) = 1.

In this manner, the Lipschitz constant for the whole network can be derived according

to Equation 5.19:

L(G) =
∏

L(Ghi)×
∏

L(Gai)× L(Gc)

=
∏

L(Ghi)

= (4
√
mr)d/2,

(5.28)

where d is the number of hidden layers. Thus, the proposed model G follows Lipschitz

continuity.

Next, it is essential to show that the sparsely sampled observations are sufficient to

reconstruct a spatiotemporal field. In sparse sampling and reconstruction, Restricted Eigen-

value Condition (REC) is a sufficient condition for robust reconstruction. REC requires all

sparse vectors φ to be far from the null-space of matrix C:

‖Cφ‖ ≥ γ ‖φ‖ , (5.29)

where γ is a constant greater than 0. It has been proved that the functions satisfying the

REC is sufficient for reconstruct sparse signals, such as Lasso [131, 132] and Elastic Net

[133].

In this chapter, a restricted version of REC is proposed to fit the sparse sample recon-

struction problem, called Canonical Restricted Eigenvalue Condition (CREC).

Definition 5.2. Denoting G ∈ Rr, a canonical matrix C is said to satisfy CREC(G, γ, δ), if
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∀x1, x2 ∈ S and ∃γ > 0, δ ≥ 0,

‖C(x1 − x2)‖2 ≥ γ ‖x1 − x2‖2 − δ.

The CREC definition restricts that for any two signals in G, the corresponding com-

pressed observations should have at least the same significance as the original signal. There-

fore, there is a possibility to recover the unknown vector from these observations. A canon-

ical matrix C is used to perform sparse sampling for signal reconstruction rather than the

iid random matrix used for signal compression in [77].

Proposition 5.1 has shown that the proposed framework for signal reconstruction is L-

Lipschitz. Then, following lemmas show that the canonical matrix sampling r observations

will satisfy the CREC for sparse signal reconstruction given Gr : Rr → Rm.

Lemma 5.1. Denote B(r) = {y|y ∈ Rr} as the `2-norm ball in Rr. A random canonical

matrix, C, satisfies CREC(Gr(B(r)), γ, δ), where γ > 0, δ > 0.

Proof. Denote y ∈ Rr, where x = Gr(y), for any y,y′ ∈ B(r), the sparse signal recon-

struction model is L-Lipschitz according to Definition 5.1. Hence,

‖Gr(y)− Gr(y′)‖2 ≤ L ‖y − y′‖2 .

Denote a net ζ to be the δ
L

-net onB(r). Then, Gr(ζ) is the δ-cover of Gr(B(r)) according

to the L-Lipschitz property.

Then, ∀y,y′ ∈ B, ∃y1,y2 ∈ ζ , such that Gr(y1) and Gr(y2) are δ-close to Gr(y) and

Gr(y′), respectively. Therefore, according to triangle inequality,

‖Gr(y)− Gr(y′)‖2 ≤‖Gr(y)− Gr(y1)‖2 +

‖Gr(y1)− Gr(y2)‖2 + ‖Gr(y2)− Gr(y′)‖2

≤‖Gr(y1)− Gr(y2)‖2 + 2δ

(5.30)
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Similarly,

‖CGr(y1)−CGr(y2)‖2 ≤‖CGr(y1)−CGr(y)‖2 +

‖CGr(y)−CGr(y′)‖2 +

‖CGr(y′)−CGr(y2)‖2

≤‖CGr(y)−CGr(y′)‖2 +O(δ).

(5.31)

Then, for samples in the δ-cover of Gr(B(r)),

‖Gr(y1)− Gr(y2)‖2 =
∥∥CTCGr(y1)−CTCGr(y2)

∥∥
2

≤
∥∥CT

∥∥
2
‖CGr(y1)−CGr(y2)‖2 .

(5.32)

The `2 norm,
∥∥CT

∥∥
2
, is the largest singular value of CT according to Lemma 5.2.

Hence,

‖CGr(y1)−CGr(y2)‖2

‖Gr(y1)− Gr(y2)‖2

≥ 1

‖CT‖2

≥ 1

‖CGr(y1)−CGr(y2)‖2 ≥
1

‖CT‖2

‖Gr(y1)− Gr(y2)‖2 .

(5.33)

Next, substitute Equation 5.30 and Equation 5.31 into Equation 5.33:

1

‖CT‖
‖Gr(y)− Gr(y′)‖ ≤ ‖CGr(y)−CGr(y′)‖+O(δ). (5.34)

Thus, C satisfies CREC(Gr(B(r)), γ, δ), where γ = 1
‖CT ‖ .

Lemma 5.2. `2 norm of the canonical matrix C equals the largest singular value of C.

Proof. `2 norm of a matrix can be expressed as the square root of the inner product of the

matrix itself and its conjugate transpose:

‖C‖2 =
√

C†C. (5.35)
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Besides, the spectral norm of matrix C, ‖C‖2 can be represented as:

‖C‖2 = sup
‖x‖2=1

‖Cx‖2 , (5.36)

where x is a temporary variable that assists the proof in this lemma.

Denote H = C†C, which is a Hermitian matrix. Then, iff (if and only if) a linear

transformation of Euclidean space E is Hermite, there exists an orthonormal basis of E that

comprises all the eigenvectors of H. Let λ1, λ2, · · · , λm be the eigenvalues of Hermitian

matrix H, and e1, e2, · · · , em be the orthonormal basis of E.

Also, let x = a1e1 + a2e2 + · · ·+ amem. The norm of x is :

‖x‖ = 〈
m∑
i=1

aiei,
m∑
i=1

aiei〉
1
2 =

√∑m

i=1
a2
i = 1. (5.37)

Hence,

‖Cx‖2 = 〈Cx,Cx〉 = 〈x,C†Cx〉

= 〈x,Hx〉

=
∑m

i=1

√
λiai

≤
√
λ∗,

(5.38)

where
√
λ∗ as the largest eigenvalue of matrix H. Therefore, ‖C‖2 ≤

√
λ∗.

Besides,

‖C‖2 ≥ 〈x,Hx〉 = 〈e∗, λ∗e∗〉 =
√
λ∗. (5.39)

Thus, ‖C‖2 =
√
λ∗. Also, as the largest singular value of C is equal to the square root

of H, the `2 norm of the canonical matrix C equals the largest singular value of C.

Therefore, Proposition 5.1 and Lemma 5.1 are proved, and they jointly confirm that the
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proposed model G is L-Lipschitz and is sufficient to reconstruct a spatiotemporal field with

r observations.

5.4 Simulation Results

This section presents the conducted numerical simulations of SAFER using data from

NOAA. The proposed algorithm is compared with some state-of-the-art algorithms for re-

constructing a global spatiotemporal field.

5.4.1 Experimental Setup

Model training

Back-propagation is used to fine-tune the layer weights and biases for SAFER. The

proposed network is trained with ADAM optimizer [134] by using the default settings:

β1 = 0.9, β2 = 0.999 and ε = 108. The learning rate is set to 0.001, and the mini-batch

size is set to 20. The input sequence is shuffled to avoid model overfitting and reduce

the variance. The dataset is divided into a training set, and a test set according to their

sequence in the time series. The beginning part of the time series is regarded as the training

set for learning the nonlinear map from the observations to the entire spatiotemporal field.

The test set then composes the remaining snapshots of the spatiotemporal field in the time

series. Hence, the training error indicates the reconstruction performance of the conducted

algorithm, while the test error indicates the prediction performance. In this manner, given

the unknown future observations in the deployed location, the ability to predict the future

spatiotemporal field is examined.

The simulation was conducted on a PC with 4.0 GHz Quad-Core CPU and 16 G mem-

ory. The DL framework was implemented using the TensorFlow framework [111] and run

without GPUs.
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Dataset

Simulations were conducted using two global climate datasets. The first one is the Na-

tional Oceanic and Atmospheric Administration (NOAA) global sea surface temperature

dataset (SST) spanning from 1990 to 2018, which is publicly available online at [135]. The

SST dataset provides weekly global sea surface temperature means in 1.0-degree latitude×

1.0-degree longitude global grid (180× 360) [136]. The second dataset is the NOAA’s PRE-

Cipitation REConstruction Dataset (PREC) [137]. This dataset provides monthly global

precipitation constructed on a 2.5-degree latitude × 2.5-degree longitude grid over the

global (72 × 144) for the period from Jan. 1948 to Aug. 2018 [138].

Following [4], the data for the first 16 years are selected as the training set, and the

remaining data are used as the test set, for the SST dataset. As for PREC dataset, the first

70% of spatiotemporal field scenarios are chosen as the training set, and the remaining 30%

scenarios are used as the test set for performance evaluation.

Evaluation Metrics

The proposed framework is evaluated by using two metrics, MSE@N , and VAR@N ,

where N is the number of deployed sensor nodes. MSE@N is the Mean Square Error that

measures the average of the squares of the errors between predictions and the ground truth.

It is calculated as:

MSE@N =
1

m ·M

m∑
i=1

M∑
j=1

(Φij − Φ̃ij)
2. (5.40)

VAR@N calculates the mean variance of MSE for all snapshots of the spatiotemporal

field. Then, a low VAR@N indicates that the MSE of the predicting test snapshots will not

change significantly in most locations. Hence, the model can perform a more generalized

reconstruction and have a higher prediction ability.

VAR@N =
1

m

m∑
i=1

(
1

M

M∑
j=1

(Φij − Φ̃ij)
2 −MSE@N)2. (5.41)
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Benchmark Algorithm

The proposed algorithm, SAFER, is compared with the following benchmark algo-

rithms:

• SVHT. Singular value hard thresholding (SVHT) is a PCA-based approach that finds

optimal thresholds for the dimensions of the tailored SVD basis, guaranteeing min-

imal signal reconstruction error [114]. The SVHT compression and reconstruction

method reduces only the size of the SVD basis, and the resulting tailored SVD ba-

sis can be used to represent a higher-dimensional space as a low-dimensional one.

The reconstruction is based on the signal that is compressed via the tailored SVD

basis, using the left singular vectors and the corresponding orthogonal projections

[139, 140]. Therefore, SVHT cannot find the sampling locations because it requires

the state to be fully observable and encodes the original signal to another space with

a lower dimension. Nevertheless, SVHT-based reconstruction is widely used in sta-

tistical signal processing to reduce the size of an original signal. Hence, the result of

SVHT is regarded as the target performance.

• Q-DEIM. QR factorization with the discrete empirical interpolation method (Q-DEIM)

utilizes a greedy approximation solution provided by the matrix QR factorization with

column pivoting. The sensor deployment scheme of Q-DEIM seeks rows of Ψr, cor-

responding to the point sensor locations in the spatiotemporal field that will optimally

condition the inversion of the measurement matrix [4, 68]. The canonical measure-

ment matrix C is then extracted from the corresponding sampling locations of Ψr.

• CS. Compressive sensing (CS) can efficiently compress and reconstruct a signal by

solving suitable underdetermined linear systems [57, 58, 141]. Similar to SAFER and

Q-DEIM, the signal is compressed via a canonical sparse sensing matrix: y = C ·φ.

• `2 Random. `2 Random is a baseline algorithm in which the sensor nodes are ran-

domly deployed in the field. The reconstruction method of `2 Random is the same
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as that of Q-DEIM, and the random seed for generating the sampling locations is set

same as the one used in CS. Hence, the sensors are deployed in the same locations

as in CS. The spatiotemporal field is reconstructed using the observations from these

random locations and the information is learned from the training data.

5.4.2 Training Details

Figure 5.3 presents the reconstruction error in the SST dataset for both the training set

and the test set during the model training. Four thresholds for sparse reconstruction are

selected, including the optimal threshold for signal reconstruction, calculated by singular

value hard thresholding (SVHT) [114]. The optimal hard threshold for singular value re-

construction is 302, and the other thresholds are chosen as 100, 200, and 400. All selected

thresholds result in a rapid MSE decrease within a few iterations. All the final training errors

are less than 0.3, and the test errors are less than 0.45. The MSE variance during the train-

ing process increases as more sensor nodes are deployed in the field. Note that 100 sparse

sampling sensors are sufficient to achieve the lowest training error and the second-lowest

test error. Moreover, since increasing the number of sampling locations would not result in

a significant reconstruction improvement in the test set, 100 sparse sampling locations are

sufficient for sparse field reconstruction in this dataset.

Figure 5.4 presents the training and test errors for the PREC dataset. The optimal hard

threshold, SVHT, is 206, and the other thresholds are selected as 50, 100, and 300. Fig-

ure 5.4 (a) shows that the MSE of the training decreases steadily for all threshold values.

Thresholds 206 and 300 achieve the lowest training error, which is close to 0.1, and the cor-

responding test error, which is approximately 0.25, is significantly lower than the test error

for the rest of the threshold values. Furthermore, the training variance is small for thresholds

206 and 300. In these cases, deploying 206 sensors in the field can provide a highly accu-

rate reconstruction for global precipitation reconstruction while using the smallest number

of sensor nodes.
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Figure 5.3: Training using SST dataset with 100, 200, 302, 400 sparse sampling sen-
sors.
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Figure 5.4: Training using PREC dataset with 50, 100, 206, 300 sparse sampling sen-
sors.
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5.4.3 Performance Comparison

SST Dataset

Figure 5.5 presents the reconstruction results for the SST dataset with 100 sensor nodes,

using the proposed and the benchmark algorithms. The black diamonds in this figure indi-

cate the sensor deployment locations. The first snapshot of the SVHT and SAFER produces

the visibly best reconstruction when compared with the ground truth. Details of the ground

truth are fully reconstructed, and critical features of global SST, such as ocean current and

El Niño, are captured. As shown in Figure 5.5 (f), SAFER tends to deploy sensor nodes

near the boundaries of different temperature levels.

As sea surface temperature is profoundly affected by variations in solar radiation and

the natural properties of water, global SST is usually similar at the same latitude or near the

same ocean current. Hence, the discovered temperature boundary can be utilized to provide

more information as the environment changes. In this manner, the SST distribution patterns

and the sampling locations identified in the training data can provide sufficient information

for nonlinear mapping, from limited observations to the entire spatiotemporal field. More-

over, the features and sampling locations can better fit the test data that are generated in the

future. Consequently, more information can be collected, and the reconstruction model can

be generalized to estimate the entire spatiotemporal field, given limited observations.

Q-DEIM produces slightly worse reconstruction results than SAFER. The reconstructed

SST increases significantly over the Indian Ocean. Nevertheless, the SST reconstruction for

other oceans is successful. Note that the sensor deployment locations selected by Q-DEIM

are close to the borders of continents, which may occur due to higher dynamics in coastal

areas. However, although the information collected in coastal regions has a higher variance

than in blue water, it is difficult to generalize local information to a global situation. Instead,

more observations in the oceanic area will help to produce a better reconstruction model. In

comparison, the proposed method, SAFER, learns more information by deploying sensor
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Figure 5.5: Ground truth of the testing spatiotemporal field and reconstruction from
the proposed and the benchmark algorithms in SST dataset. (Black diamonds:
sampling locations.)
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nodes in a more distributed manner over the spatiotemporal field.

CS generates less accurate reconstruction results than Q-DEIM. The temperature dis-

tributions along the latitude are captured; however, the details of the ground truth are lost,

which blurs the reconstructed field image. Information about inland bodies of water, such

as the Mediterranean Sea, the Black Sea, and the Great Lakes, is also lost. Moreover, as

CS-based approaches do not provide a scheme to optimize the sensor deployment locations,

the sparse sensing matrix is randomly chosen. Therefore, the reconstruction process may

have higher variance if the selected sampling locations are ineffective.

`2 Random produces the worst reconstruction results. The reconstructed SST is signifi-

cantly higher than the ground truth in several oceans. As in CS, the sampling locations are

randomly selected; therefore, less valid observations are obtained. As a result, `2 Random

cannot provide satisfactory results in reconstruction and estimation.

Figure 5.6 presents the prediction variance for all test sets, which examine the recon-

struction variance for long-term observation and evaluate the ability to predict the future

spatiotemporal field. The presented variance is calculated pixel-wise and evaluates if the

reconstruction MSE changes significantly for the prediction of all future time series gener-

ations. Hence, a higher variance shown in this figure indicates a lower confidence for future

prediction.

As shown in Figure 5.6 (a), SVHT achieves the lowest variance across the entire field.

SAFER has the second-lowest estimation variance for the test data. Higher uncertainty in

prediction occurs in some offshore areas. For example, the variance in the northern Pacific

Ocean is high, which may be affected by the Aleutian Islands for the SST disturbance in-

troduced by the archipelago. CS and Q-DEIM have higher variance in predicting future

spatiotemporal fields than SAFER. Their reconstruction and prediction models are not gen-

eralized and are not robust for estimating environmental changes.

Moreover, the selected sensor deployment locations cannot provide sufficient informa-

tion for the reconstruction model. As a result, when the environment changes, the sensor
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Figure 5.6: Reconstruction variance for all test snapshots in the SST dataset.
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deployment strategies generated by these two approaches cannot perform well. `2 Random

has the highest variance due to randomly deployed sensor nodes. Hence, CS, Q-DEIM and

`2 Random are not suitable for sensor deployment or spatiotemporal field reconstruction.

PREC Dataset

Figure 5.7 presents the reconstruction results for the PREC dataset. Generally, as global

precipitation is more complicated than sea surface temperature, the reconstruction results

are less accurate for the PREC dataset than for the SST dataset. Similar to the results for

the SST dataset, SVHT and SAFER produce the best reconstruction results for the PREC

dataset, while Q-DEIM produces the second-best reconstruction result. SAFER generates

a more generalized model than Q-DEIM. Although some features are lost, the spatiotem-

poral field is accurately reconstructed. In contrast, Q-DEIM tends to over-fit the training

data. Hence, slight increases/decreases in precipitation may have a significant impact on

the reconstruction, causing a higher reconstruction MSE.

As shown in Figure 5.7 (d)-(e), CS and `2 Random cannot produce effective reconstruc-

tion for the PREC dataset. Significant disturbance and variance are introduced, and the

original spatiotemporal field can neither be reconstructed nor predicted.

The variances in predicting future spatiotemporal fields for the PREC dataset are pre-

sented in Figure 5.8. The results for `2 Random are excluded from this figure due to the high

variance of this approach in all the sampling locations. SAFER achieves the lowest overall

variance throughout the spatiotemporal field, which means that this approach has high ro-

bustness for predicting a complex spatiotemporal field. SVHT and Q-DEIM have elevated

variance for all test sets, and the variance in test snapshots changes dramatically. Moreover,

future spatiotemporal field reconstruction and prediction will be significantly less accurate.

Hence, although the reconstruction snapshots shown in Figure 5.7 (b) - (c) are satisfactory,

SVHT and Q-DEIM are not suitable for long-term spatiotemporal field reconstruction and

prediction. Similarly, CS performs poorly in future spatiotemporal field reconstruction and
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Figure 5.7: Ground truth of the testing spatiotemporal field and reconstruction from
the proposed and benchmark algorithms in the PREC dataset. (Blue diamonds:
sampling locations.)
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Figure 5.8: Reconstruction variance for all test snapshots in the PREC dataset.

prediction.

Table 5.1 summarizes the performance of the SST and the PREC datasets based on the

evaluation metrics described in Section 5.4.1. In general, SAFER achieves the best recon-

struction accuracy for long-term spatiotemporal field reconstruction and prediction in both
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datasets, given limited observations. SAFER provides a performance superior to that of the

benchmark algorithms, concerning both reconstruction accuracy and model robustness. The

minimum reconstruction errors of SAFER in the SST and the PREC datasets are 0.393 and

0.252, respectively. Also, these values that are close to the optimal reconstruction bound.

The reconstruction accuracy is at least 61.49% higher than in the benchmark algorithms,

and the model robustness in predicting long-term spatiotemporal fields is increased by at

least 33.85%. The lowest variance in predicting long-term precipitation data is obtained in

SAFER. Hence, in reconstructing and predicting complex long-term spatiotemporal data,

SAFER can produce a more generalized and robust model.

Q-DEIM and CS generate the second-best results in reconstructing and predicting the

spatiotemporal data, given few observations. Q-DEIM can achieve better performance if

the number of sensor nodes is small since its mechanism attempts to extract the essential

information from the SVD basis. However, as the number of sensor nodes in the field

increases and more information is observed, CS gradually achieves better results.

`2 Random produces the worst results with both datasets, as it generates the highest

reconstruction error and variance.

5.5 Summary

In this chapter, a model-free sensor deployment strategy for spatiotemporal field recon-

struction and prediction was developed. A novel DL framework was established to optimize

sensor deployment locations for spatiotemporal field reconstruction and prediction. It was

proven in this chapter that the proposed model is Lipschitz continuous and that the sparse

sampling strategy is sufficient for reconstruction. Simulation results were conducted using

two NOAA environmental datasets. The results showed that the proposed method could

outperform the benchmark algorithms in both reconstruction accuracy and model robust-

ness.

1SVHT provides the optimal reconstruction MSE bound and is regarded as the target algorithm for recon-
structing an encoded signal. Note that SVHT cannot reconstruct the signal given few observations.

112



Table 5.1: Comparison of performance using the two datasets.

Dataset Metric SVHT1 Q-DEIM `2 Random CS SAFER Improv.

SST

MSE@100 0.212 1.783 25.520 2.083 0.396 77.79%
MSE@200 0.161 2.329 27.477 1.564 0.408 73.91%
MSE@302 0.133 2.534 26.748 1.400 0.393 71.93%
MSE@400 0.114 2.53 27.904 1.253 0.407 67.52%
VAR@100 0.002 0.527 163.12 1.174 0.130 75.33%
VAR@200 0.001 0.654 195.78 0.426 0.129 70.41%
VAR@302 8.8e-04 1.049 155.66 0.250 0.106 57.60%
VAR@400 6.6e-04 1.076 124.73 0.192 0.127 33.85%

PREC

MSE@50 0.174 0.857 19.213 1.216 0.330 61.49%
MSE@100 0.119 0.981 23.400 1.013 0.281 71.36%
MSE@206 0.076 1.147 30.260 1.019 0.258 74.68%
MSE@300 0.059 1.424 33.822 0.900 0.252 72.00%
VAR@50 0.002 0.193 185.36 0.550 4.6e-04 99.76%

VAR@100 0.001 0.406 137.07 0.338 6.96e-05 99.98%
VAR@206 4.3e-04 0.44 106.64 0.342 9.49e-05 99.97%
VAR@300 2.7e-04 0.528 81.895 0.227 6.47e-05 99.97%
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Chapter 6

Hardware Implementation and

Experimentation

6.1 Introduction

This chapter presents the hardware design and implementation of the environmental

monitoring system, as well as the in situ experimentation carried out at the Yosef Wosk

Reflecting Pool of the University of British Columbia in Vancouver, Canada. A prototype

unmanned surface vehicle (USV) is developed to take water data samples in the aquatic

field, which can model the environment for validating the proposed algorithms.

Researchers have developed robotic sensors and sensor networks to monitor aquatic

environments. However, the existing work has some drawbacks such as not using self-

propelled monitoring platforms [87, 142], or has difficulties in long-term deployment in

extensive areas [143, 144]. In this chapter, a fully automated and cost-effective USV is

developed for environmental monitoring.

As shown in Figure 6.1, the USV consists of three groups of components: water quality

sensors, onboard controllers, and the mobile base of the USV. Figure 6.1 (a) shows the

top view of the USV; for signal transmission, the onboard controller and a GPS receiver

are placed on top of the USV. Figures 6.1 (b)-(c) show the arrangement of the sensors and
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(a) Top view. (b) Back view.

(c) Front-right view. (d) Side view.

Figure 6.1: The prototype of the developed USV.

propellers; to take water data samples, the water quality sensors are placed around the USV

without interfering with one another. Also, to power the sensors, a solar panel is used,

which is placed on top of the USV.

The USVs can explore the field of interest and sample data in a distributed manner. The

collected data is then used to build the environmental model for information-based sensor

deployment.

6.2 Hardware Design

6.2.1 Water Quality Sensors

The water quality sensors used in the hardware implementation are Libelium Plug &

Sense devices. Five types of water quality sensors are adopted in the developed USV: pH
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Table 6.1: Specifications for the water quality sensors.

Sensor Sensing range Accuracy
pH value sensor 0 - 14 pH ±0.5 mV
DO sensor 0 - 20 mg/L ±2%
Temperature sensor 0 - 100◦C ±0.60
Conductivity sensor N/A N/A
ORP sensor 0 - ±1999 mV N/A

value, dissolved oxygen (DO), temperature, conductivity, and oxidation-reduction potential

(ORP). These sensors can adequately carry out water quality monitoring. Sensor data is

read via serial ports, using Arduino-based software 1. The specifications for the selected

sensors are given in Table 6.1 2

6.2.2 Onboard Controllers

TThe onboard controller and the design of the autonomous navigation system of the

USV are all based on Pixhawk, an autopilot controller for small unmanned vehicles 3. The

USV can be automatically navigated to selected locations, based on the GPS coordinates

and gyroscope data. In the beginning of the navigation process, a map of the field of interest

is loaded, and obstacles are detected. The GPS receiver provides the current location of the

USV, and the pose of the USV is obtained from the gyroscope. The USV can then adjust

itself during the navigation process according to the relative angle between the USV and

the target location. The feedback control loop of the USV navigation system is shown in

Figure 6.2. As shown there, the USV can continuously adjust its movements according to

the localization information and through feedback of its relative position from the target

point.

1https://www.arduino.cc/
2http://www.libelium.com/downloads/documentation/smart water sensor board.pdf
3http://pixhawk.org
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Figure 6.2: Feedback control of the USV.

6.2.3 Mobile Base of USV

The mobile base is developed from the Blue Robotics T100 Thruster 4. To extend the

USV life, fewer propellers are used, and the water sealing and buoyancy of the USV are

redesigned. A buoy is added to provide sufficient buoyancy for onboard equipment, such as

water quality sensors and the onboard controller. To prevent water damage to the electronic

equipment, the onboard equipment is placed in a sealed enclosure, while the antennas are

kept on top of the USV to transmit data.

As the in situ experiments are carried out in an aquatic environment with a weak current,

the USV is equipped with only two propellers. More propellers can be added to the USV

to provide sufficient thrust, depending on the environment of a field test. The specifications

for the propellers are given in Table 6.2 5

Table 6.2: Specifications for the propeller.

Item Specification
Maximum Forward Thrust 2.36 kgf
Maximum Reverse Thrust 1.85 kgf
Minimum Thrust 0.01 kgf
Rotational Speed 300-4200 rev/min

4https://www.bluerobotics.com/
5https://docs.bluerobotics.com/thrusters/
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6.3 In Situ Tests and Experimental Results

6.3.1 Experiment Setup for In Situ Tests

The developed USV is used for in situ experiments carried out at the Yosef Wosk Re-

flecting Pool. The framework for the conducted tests is shown in Figure 6.3. In the begin-

ning of the experimental process, the USV explores the field of interest for a generalized

understanding of the environment. Then, based on the sampled data, the environment is spa-

tiotemporally modeled according to the metrics introduced in Chapter 2. Next, information-

based sampling strategies are executed to find near-optimal sampling locations, such as field

estimation, reconstruction, and prediction. Finally, the sensor nodes (USVs) are deployed

in the computed locations for long-term monitoring. The above process will be periodically

executed to update the model and obtain better performance of the algorithm.

Exploration of the
field of interest. 

Model of
environment

Information-based
sampling strategies

Sensor deployment
at key locations

Periodically
update the

model

Estimation PredictionReconstruction

Figure 6.3: The framework for in situ experiments.

The in situ test collects five key water quality attributes (temperature, pH value, con-
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ductivity, ORP, and DO) from five locations in the pool. Sampling locations are shown in

Figure 6.4 (a), where an orange square denotes a sensor node location, blue area indicates

the aquatic environment, and the gray area is the region (land or obstacle) that the mobile

sensor nodes cannot reach. The area shown in Figure 6.4 (a) is 120 meters wide and 90

meters long. Boundaries are drawn according to the rough GPS coordinates and turned into

the scale of one meter by selecting the top-left point as the origin. Figure 6.4 (b) presents

the real-world experiment scenario. The proposed information-based sampling method as-

sumes that each sensor node collects only one water quality attribute, and the spatiotemporal

model is established based on the temperature sensor readings.

(a) Sensor deployment locations. (b) Real-world deployment scenario.

Figure 6.4: Sensor deployment for the in situ test.

6.3.2 Experimental Results for Spatiotemporal Sensor Deployment
using Minimal Sensor Nodes

In this section, methods introduced in Chapter 2 are carried out based on the in situ

test results. Figure 6.5 shows the results generated from four RRT-based algorithms and the

environmental model generated from the real-world sampled data. Figure 6.5 (a) and Figure

6.5 (b) are generated from two benchmark algorithms, and Figure 6.5 (c) and Figure 6.5

(d) show the results generated by the proposed algorithm RRLR and RRLR Connectivity,

respectively. The yellow square denotes the suitable sensor node deployment location; red
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diamond blocks represent the redundant deployment locations, and the blue lines indicate

graph G with several spanning trees.

As shown in Figure 6.5 (a) and Figure 6.5 (b), both RRC and RRCstar require 12 sensor

node deployment locations to achieve the minimum prior estimation error. However, some

sensor nodes are too close, which can result in redundancy. They can be eliminated by using

the RRLR algorithm, as shown in Figure 6.5 (c) and Figure 6.5 (d). Only eight sensor nodes

are needed to be deployed in the geographic EOI when using RRLR to achieve minimum

prior estimation error. Moreover, RRLR Connectivity not only reduces the redundant sam-

pling locations but also maintains the network connectivity. If we remove the results of all

redundant sensor nodes from RRLR as shown in Figure 6.5 (c), the wireless sensor network

will be split into two parts, and the connectivity will be broken. RRLR Connectivity only

removes two redundant sampling locations to maintain both network connectivity and the

minimal deployment location.

Figures 6.6 (a) - (c) present the results generated by RS, GD4, and GD8, respectively.

RS only searches a small part of the environment as it uses a randomized approach, which

may not generate a near-optimal result. In contrast, GD4 and GD8 search the field suffi-

ciently and achieves a lower estimation error as indicated in Figure 6.8. However, these

benchmark methods require many deployment locations and may not be able to explore a

sufficient geographic EOI. Hence, the randomized approach cannot collect sufficient infor-

mation from the field, and the sampling data redundancy is not investigated. Hence, they

cannot guarantee a near-optimal spatiotemporal sensor deployment while using minimal

sensor nodes.

Figure 6.7 presents the field estimation uncertainty results when using the deployment

strategies generated by the RRT-based algorithms. The field estimation uncertainty is cal-

culated based on what is presented in Chapter 2. Estimation uncertainties of random search

methods are ignored due to their poor performance in generating deployment strategies. As

Figure 6.7 shows, all four methods will generate reasonable estimation of the EOI since
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Figure 6.5: Deployment results generated by RRT-based algorithms.

most regions of the estimated field have low estimation uncertainty.

Moreover, as Table 6.3 shows, the overall estimation uncertainty is very low over the

EOI for all algorithms. Thus, both the proposed algorithm and the benchmark RRT-based

algorithm will generate good deployment locations with low estimation uncertainty. Be-

sides, the proposed algorithms use 33% and 25% fewer sensor nodes to achieve similar

performance.

Table 6.3: Statistical measurement of the field estimation uncertainty.

Method Max Min Variance # sensors
RRC 1.31 ∗ 10−118 0 2.55 ∗ 10−120 12

RRCstar 1.02 ∗ 10−118 0 1.99 ∗ 10−120 12
RRLR 8.39 ∗ 10−118 0 1.63 ∗ 10−119 8

RRLR Connectivity 2.09 ∗ 10−118 0 4.08 ∗ 10−120 9

Figure 6.8 presents the minimal prior estimation error found by the algorithms at each
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Figure 6.6: Deployment results generated by random search-based algorithms.

Figure 6.7: Field estimation uncertainty results of RRT-based algorithms.

iteration. All results are monotonically decreasing as the minimum estimation error is

recorded in each iteration. The prior estimation error generated by the randomized methods

stays at a high level, while the one provided by the RRT-based algorithms decrease signif-

icantly. RS algorithm produces the worst result since it is only able to search in a limited

area. The greedy search-based approach improves the performance slightly by exploring
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more parts of EOI. However, all these three algorithms can easily entrap at local minima

without achieving a near-optimal solution.

Figure 6.8: Change of minimum estimation error.

According to Proposition 2.2, all four RRT-based algorithms provides near-optimal re-

sults after 1000 iterations as the estimation error converges. Hence, the estimation error of

the RRT-based algorithms converges with the number of iteration. In this manner, the in situ

test confirms that the proposed method achieves the lowest estimation error while deploying

minimal sensor nodes.

6.4 Summary

In this chapter, the developed prototype of the autonomous surface vehicle was de-

scribed and used for the in situ experiments. An environmental model was built based

on the conducted in situ tests and used for evaluating the effectiveness of the proposed

information-based sampling strategies. The results confirmed that the proposed methods
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outperform the benchmark algorithms in both simulation tests and real-world tests.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this dissertation, several main challenges of informative sampling for spatiotemporal

field estimation, reconstruction, and prediction were investigated. Sampled data from the

field was analyzed so as to preserve the most informative sampling locations and minimize

infrastructure costs. In this manner, the selected sampling locations were able to provide

sufficient information for various monitoring tasks such as field estimation, reconstruction,

and prediction. Learning methods were also used to improve the model efficiency and

performance. In the present work, the actual sensor navigation cost is not considered, which

simplifies the computations in the optimization algorithms.

The first goal of this dissertation was to find the most informative sampling locations

in a field in order to minimize the infrastructure costs while maintaining a good estimation

accuracy of the field and preserving the network connectivity. To this end, a near-optimal

sensor node deployment strategy was developed. The proposed method investigated the

linear dependency of the sampled data, given the environment model. Then, spatiotempo-

rally correlated sampling locations could be eliminated while giving due consideration to

network connectivity. Moreover, it was proven in the dissertation that the proposed method

had submodularity and generated a near-optimal sampling plan. The results demonstrated
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that the proposed method required fewer sensor nodes than the benchmark algorithms to

achieve a sufficiently low estimation error.

Second, the computational complexity in finding the near-optimal sampling locations

was reduced. A DRL-based field exploration method was proposed to accelerate the pro-

cess of finding the most informative sampling locations. Feedback from each sampling lo-

cation in the field was studied to avoid unnecessary sampling locations, and a model-based

information gain was calculated to evaluate the effectiveness of each sampling location dur-

ing the exploration. As a result, the proposed method, DRLT, was able to learn from the

sampled locations and guide the robotic sensor to avoid unnecessary sampling locations.

The sampling locations found by the DRL model were proven to be near-optimal. Simula-

tions were conducted using an NCOM dataset. The proposed algorithm showed significant

improvement in both field estimation performance and planning efficiency.

Then, the spatiotemporal field was reconstructed based on the observations from the se-

lected near-optimal sampling locations. A model-based sensor deployment strategy was de-

veloped to reconstruct the spatiotemporal field with limited observations. Statistical meth-

ods were utilized to find linear mappings from the observations to the entire spatiotemporal

field. The sampling locations generated by the proposed method were proven to be near-

optimal for spatiotemporal reconstruction. Moreover, the simulation results demonstrated

that the proposed information-based sampling methods provided the best reconstruction

performance when compared with the benchmark algorithms.

However, model-based reconstruction methods find only the linear mappings from the

sampling data to the overall spatiotemporal field. Some features of the original signal were

lost when the spatiotemporal field became more complicated. Therefore, a model-free DL-

based framework was developed to capture the nonlinear relationships between the observa-

tions in the critical sampling locations and the spatiotemporal field. The sensor deployment

locations were then optimized by a simulated annealing-based approach during the training.

Hence, the new observations in the selected sampling locations could be used to reconstruct
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and predict the entire spatiotemporal field, given the trained DL framework.

It was proven as well that the proposed DL framework had Lipschitz continuity, and

that the generated sampling locations were sufficient for spatiotemporal reconstruction and

prediction.

Several USVs were developed for environmental monitoring, and in situ tests were con-

ducted. The collected data samples were used to build an environmental model for an

information-based sampling algorithm. The experimental results showed that the proposed

algorithm had superior performance in real-world scenarios when compared to the bench-

mark algorithms.

7.2 Future Work

In possible future developments, multichannel sensor data analysis may be carried out

to perform multi-object information sampling. In the present investigation, the proposed

methods and the state-of-the-art approaches focused only on detecting the most informative

sampling locations for a single channel of data sampling. In future work, sensor fusion and

multichannel signal processing may be utilized to analyze various types of sensor data and

to decide the optimal sampling locations for spatiotemporal field monitoring.

In this dissertation, DL methods were utilized to investigate the optimal nonlinear spatial

mappings from the observations to the entire spatiotemporal field. However, the analysis of

the spatial and temporal information was separate. Time series data analysis methods may

be incorporated to more accurately predict the spatiotemporal field. Techniques such as

recurrent neural networks (RNNs) and long short-term memory (LSTM) may also be used

to learn temporal changes while learning the spatial mappings between the observations and

the overall spatiotemporal field [145–147]. In this manner, nonlinear spatial mappings can

be captured based on the temporal predictions. Consequently, the reconstruction precision

of the field will improve.

The USV developed in this dissertation has limitations in carrying out experiments in

127



quite complex environments. Currently, the environment of interest is assumed to be known,

and the obstacles are assumed to be static. Hence, fully autonomous exploration in an un-

known environment with dynamic obstacles would not be feasible with the current USVs.

Simultaneous localization and mapping (SLAM) techniques may be utilized to build a map

of an unknown environment while simultaneously enabling the USV to localize [148–150].

RGB cameras and laser range finders may be employed to meet the requirements of SLAM,

and to simultaneously enable the USV to avoid dynamic obstacles. Moreover, open-source

robotic middleware, such as robot operating systems (ROS) may be used for easier devel-

opment and control of a USV [151].
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