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Abstract

Whole genome sequencing of cancers for variant discovery and patient stratification generates vast

amounts of data including on the order of 10ˆ 6 relevant features per sample. The current practice

is to store this data in flat files whose structure complicates tasks required to optimally store, query

and conduct integrative data mining and analysis of orthogonally collected data such as phenotype

and clinical outcomes. In this study we designed, developed and optimized an object-relational

database to support optimal storage, integration, querying, analysis and visualization of largescale

whole genome profiling data at the level of genome-wide individual somatic variants (CNAs, SNVs,

SVs and indels). We structured variant data from analytics pipelines and implemented a Post-

greSQL database in which we bulk-loaded clinical outcomes and somatic variants from 88 Triple

Negative Breast cancers (TNBCs). Our focus on TNBC was driven by the current and urgent

need for better characterization of the genetic, molecular and clinical biomarkers of this hetero-

geneous, more aggressive and difficult to treat breast cancer subtype for which there are limited

treatment options. Secondly, our inclination to whole genome sequencing (WGS) was attributed

to the ability of WGS approaches to provide an in-depth analysis and elucidation of the landscape

of mutations occurring across the genome that may reflect specific mutational processes as tar-

getable vulnerabilities in human cancers. However, a whole genome sequencing study in TNBC at

scale to investigate genomic properties as a stratification tool has not been undertaken. Hinged on

these notions, we applied the developed database and present its indispensable utility in support-

ing optimal access, exploration, analysis and visualization of genomic contents of patient tumours

to support quality control, inference of patterns of mutations and genomic events underpinning

a patient’s disease, population level aggregation analysis, gene mutation visualization and patient

stratification. Furthermore, we developed Genome-Miner, a web-based database user interface to

additionally support interactive and convenient access, sharing, interrogation and visualization of

collected data across various research groups. We anticipate the database infrastructure we present

will have utility in other whole genome studies and push the field beyond the use of flat files for

managing whole genome datasets in cancer.
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Lay Summary

Since the inception of DNA sequencing in the 1970s, various sequencing technologies have been

introduced to help biologists understand the genetic makeup of individuals towards optimized

treatment of diseases especially complex diseases such as cancer. These sequencing technologies

generate vast amounts of data that are mostly stored in flat files whose structure does not support

optimal storage, access, exploration, analysis and visualization of vast amounts of related genomic

and clinical outcomes data. Using whole genome profiling data from 88 Triple Negative Breast

Cancers (TNBC), we designed, developed, optimized and implemented a postgreSQL database and

further developed Genome-Miner, a database-driven and web-based tool to support the optimal

storage, exploration, analysis, visualization and global sharing of clinical outcomes and genomic

contents of cancers in whole genome studies. We present the indispensable application of databases

for quality control, population level aggregation analysis, gene mutation visualization and patient

stratification.
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Chapter 1

Introduction

1.1 Breast cancer

Worldwide, breast cancer is reported as one of the most common cancers with more than 1,300,000

cases and 450,000 deaths each year [1]. The multiple subtypes of breast cancer portray its hetero-

geneity that has proven an invaluable asset in understanding differences in patient outcomes and

responses to therapy. Clinically, there are three therapeutic categories of breast cancer established

by the presence or lack of three hormone receptors: oestrogen receptor (ER), human epidermal

growth factor receptor 2 (HER2) - also called ERBB2 and progesterone receptor (PR). However,

various studies [1–3] have demonstrated that the heterogeneity of breast cancer extends far beyond

these immunohistochemical (IHC) classifications. Intrinsic molecular breast cancer can also be clas-

sified as either luminal or basal-like dependent on the expression of different cytokeratins (basal-like

cytokeratins: KRT5, KRT6A, KRT6B, KRT14, KRT16, KRT17, KRT23, and KRT81 ; luminal cy-

tokeratins: KRT7, KRT8, KRT18, and KRT19 )[4, 5] with the basal-like subtype accounting for

10-25% of all invasive breast cancers [6].

In addition to cytokeratin expression, breast cancers have further been classified as basal-like,

HER2-like, normal breast–like, luminal A, and luminal B based on an “intrinsic/UNC” 306-gene set

[2, 3]. This intrinsic subtyping of breast cancer by gene expression analyses was further supported

by research done by The Cancer Genome Atlas Network [1] in which various omics data (DNA

copy-number arrays, DNA methylation, exome sequencing, messenger-RNA arrays, microRNA se-

quencing, and reverse-phase protein arrays) were integrated to report four molecular breast cancer

subtypes: luminal/ER+, HER2 and basal-like. Each of the identified subtypes exhibited molecular

heterogeneity, distinct domination of specific signaling pathways and enrichment for mutations in

certain genes like the enrichment of specific mutations in GATA3, PIK3CA and MAP3K1 within

the luminal A subtype.

Histopathologically, breast cancer can be broadly classified into in situ carcinoma or invasive (infil-
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trating) carcinoma (figure 1.1). in situ carcinoma can be further subdivided into ductal carcinoma

(DCIS) or lobular carcinoma (LCIS) which arises from multiple foci (10 or more) and therefore

regarded as multicentric; bilateral LCIS is also common [7]. LCIS is not a premalignant lesion but

is regarded indispensable in identifying women at increased risk of developing succeeding invasive

breast cancers (DCIS) and as such mammographies taken regularly could help in early breast can-

cer detection [7]. DCIS on the other hand are more prevalent and heterogeneous compared to LCIS

and have a likelihood of progressing into an invasive cancer. DCIS is therefore characterized as

pre-invasive or a precursor lesion and accounts for about 16% of all detected breast cancer malig-

nancies. It is also reported to be multicentric in 40% of breast cancer cases with high rates of local

relapse (50% recurrences) that could exceed those of invasive cancer after monotherapy treatment

with breast-conserving surgery [8].

Figure 1.1: Histological classification of breast cancer subtypes. Figure modified from Malhotra
et al. [9].

Invasive (infiltrating) carcinomas on the other hand are a heterogeneous group of tumors differenti-

ated into seven histological subtypes: tubular, ductal/lobular, invasive lobular, infiltrating ductal,

mucinous (colloid), medullary and papillary carcinomas (Fig. 1.1). Infiltrating ductal carcinoma

(IDC) is the most common subtype accounting for 70–80% of all invasive lesions [9] and is fur-

ther sub-classified by grade as either being well-differentiated, moderately differentiated or poorly

differentiated [9].

Classification of breast cancers by histological grade has long been used as an indication of prog-

nosis with a significant bearing on the choice of patient treatment. Grading is done based on cell
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morphology, similarity of cancerous cells to non-cancerous cells and the nuclear grade which shades

light on the size and shape of the nucleous and proliferative index (NCI, 2013). Histological grades

range from grade 1 to grade 3. In Grade 1, the cancer cells look like normal cells with a high

homology to the normal breast terminal duct lobular unit. They are small and uniform with a

mild degree of pleomorphism and are usually slow-growing compared to other breast cancer grades.

Grade 1 is therefore regarded well-differentiated with a low proliferative index. Grade 2 breast

cancer has cells slightly bigger than normal cells. They vary in shape, grow faster than normal cells

and are moderately differentiated while Grade 3 cells look more abnormal compared to normal cells

and are poorly differentiated or undifferentiated highly proliferative tumours (Fig. 1.2).

Figure 1.2: Histological grades of breast cancer obtained using the Nottingham Grading System:
(a) Grade 1 - well differentiated tumors that exhibit high homology to the normal breast terminal
duct lobular unit, low mitotic rates, a low incidence of nuclear polymorphism and are arranged in
small tubes (tubule formation > 75%). (b) Grade 2 - moderately differentiated tumor. (c) Grade
3 - poorly or undifferentiated tumor - lacks normal features (no tubule formation < 10%), higher
incidence of nuclear polymorphism, tends to grow and spread faster. Source: Rakha et.al [10].

Besides using breast cancer grades to classify patients, the tumor node metastasis (TNM) system

was developed by the American Joint Committee on Cancer to stratify patients based on prognosis.

Characteristics of a patient’s primary tumour such as the size, lymph node status, invasiveness and

existence of metastasis (local or distant) are among the key features incorporated into this system.

Treatment of breast cancer patients is currently informed by hormone receptor status (ER, PR and

HER2), tumour size, lymph node status, cancer stage and the general health condition of a patient.

Local, non-invasive breast cancers are treated with surgery as a mono-therapy or in combination

with radiation. Towards effective surgery, neoadjuvant therapy is administered before surgery to

reduce the size of a patient’s tumour. In patients whose lymph node status is positive, adjuvant
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Stage Tumour Size Node Involvement
I < 2cm No axillary lymph node involvement

> 5cm No node involvement
III Extensive ipsilateral axillary lymph node positivity or supraclavicular

lymph node involvement. Inflammatory carcinoma. Tumour extension
into the chest wall or skin in the form of ulceration

IV Distant metastasis

Table 1.1: Breast cancer stages, corresponding tumour sizes and node involvement. Patients with
the poorest prognosis commonly present with stage III or IV breast cancer, tumour sizes >5cm
and/ with a node positive status (node positivity indicates the likelihood of cancer spread to other
tissues).

therapy is administered after surgery to reduce the risk of disease recurrence. More systematic

approaches that have been applied in the treatment of breast cancer include the administration

of chemotherapy, and targeted therapies that putitively reduce toxicity to normal cells. Among

the current targeted therapies and standard of care for patients with breast cancer is tamoxifen,

an anti-hormonal endocrine compound used to treat patients with ER and PR positive cancers.

Trastuzumab a monoclonal antibody has also been used in the treatment of HER2 positive breast

cancer.

1.2 Triple Negative Breast Cancer (TNBC)

1.2.1 Immunohistochemical classification and clinical characteristics of TNBC

Triple Negative Breast Cancer (TNBC) is a distinct subtype of breast cancer that represents 10%

- 20% of all breast cancers worldwide [1, 4]. Immunohistochemically, TNBC is a breast cancer

phenotype whose tumors are a subtype of exclusion, characterized by the lack of expression of

biomarkers: estrogen receptor (ER) and progesterone receptor (PR) and for which the human

epidermal growth factor receptor 2 (HER-2) is not over expressed or its gene not amplified as

assessed by fluorescence in situ hybridization. TNBCs are also classified as basal-like based on the

PAM50 classification in which 80.6% of TNBCs classified as basal-like. The notion that basal-like

breast cancers account for the highest proportion of TNBCs is also supported by studies conducted

by the TCGA [1], Lehman et al. [4] and Curtis et al. [11]. Synonymous to basal-like cancers,

TNBCs exhibit high proliferative indices, mutations and genomic deletions in TP53 and RB1 [12].

They are also closely associated with the expression of high-molecular-weight basal cytokeratins
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5/6, 14, and 17, P-cadherin, p53, and EGFR [1, 13, 14].

Clinically, TNBC is the most aggressive form of breast cancer [2] with the majority TNBCs histolog-

ically classified as being of higher grade compared to other types of breast cancer. They are invasive

ductal carcinoma, usually found at a late stage [15, 16]. TNBCs are also characterized with large

tumors whose size incongruity does not correlate with node status in women whose tumours < 5cm.

In a study conducted by Dent et al., even small tumours in TNBC had a high rate of node positivity

with 55% of women with tumours < 1cm having at least one positive lymph node [17] indicating

an increased risk of their cancer spreading. TNBCs are also reported to be more common in young

women (age < 50years) [4, 16, 18] with a higher incidence among African-American and Hispanic

women [19, 20].

Compared to hormone receptor positive invasive ductal carcinomas, TNBCs exhibit poorer prog-

nosis with patients exhibiting a shorter time to relapse, metastatic disease and overall survival

[15, 19, 21]. TNBC metastases also distinctively and predominantly affect the central nervous

system, lymph nodes and visceral organs (especially the lungs) [22, 23] compared to other breast

cancers whose relapses are commonly in bone and skin [22, 24, 25]. The high proliferative index

and median survival of TNBC metastases (∼ 12 months) are both reported much higher compared

to other breast cancer types. Treatment of TNBCs with presurgical (neoadjuvant) chemotherapy

has reported higher clinical response rates in some patients compared to response rates in other

beast cancer types [1, 4, 18] (clinical response rates of up to 85% and pathologic complete response

(pCR) rates of 30 - 40% [26]), however, despite these encouraging response rates, the vast major-

ity of TNBC patients have very poor outcomes and are still at a greater risk of distant disease

recurrence and rapid disease progression within 3 - 5 years of recurrence (Fig. 1.3) [17, 26, 27].

All patients with metastatic TNBC eventually die of the disease, despite having had adjuvant

chemotherapy [17, 18].

1.2.2 Molecular and genomic stratification of TNBC

1.2.2.1 Molecular heterogeneity of TNBC

Current efforts towards elucidating TNBC and the stratification of patient groups that may elicit

different biology and treatment response have been underway. In a study conducted by Lehmann et

al. [4], the results from an aggregate analysis of 21 publicly available expression data sets: 3,247 pri-

mary human breast cancers and 587 TNBC gene expression profiles identified six distinct molecular
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Figure 1.3: Rates of distance recurrence following surgery in a cohort of TNBC patients compared
to other breast cancer patients. The hazard ratio for distant recurrence within the first 5 years
post-surgery in TNBC compared to other breast cancers was 2.6; 95% Confidence interval (CI) 2.0
– 3.5. Source: Lee et.al [27].

TNBC subtypes: ((two basal-like (BL1 and BL2), two Mesenchymal subtypes (Mesenchymal (M)

and Mesenchymal Stem-Like (MSL), Immunomodulatory (IM) and Luminal Androgen Receptor

(LAR))), each showing distinctive biological phenotypes, gene ontologies, gene expression patterns

and clinical outcomes. Pharmacological targeting of predicted driver signaling pathways in cell line

models representative of each of the six subtypes revealed sensitivity to targeted therapeutic agents

in the different subtypes.

The BL1 subtype was found to be enriched in cell cycle and DNA damage response gene expression

signatures. Patients with tumors in this subtype putatively benefit from agents that preferentially

target highly proliferative tumors (e.g., use of proliferation biomarkers such as Ki-67, anti-mitotic

and DNA-damaging agents); cisplatin and PARP inhibitors. BL2 on the other hand was found to

be enriched in growth factor signaling and myoepithelial markers and preferentially responded to

mTOR and growth factor inhibitors. The IM subtype enriched in immune cell signaling pathways

responded to cisplatin and PARP inhibitors. The M and MSL subtypes- (with the MSL subtype

displaying low expression levels of claudins), were found to be characterized with high expression of

genes involved in differentiation and growth factor pathways. The mesenchymal subtypes responded

to dasatinib, an SRC inhibitor. The LAR subtype on the other hand was driven by androgen

receptor signaling and exhibited a high expression of luminal markers, FOXA1 and XBP1 and

benefited from targeting both the AR antagonist bicalutamide and PI3K inhibitors (PI3K/mTOR

inhibitor NVP-BEZ235 ) attributed to the high frequency of PIK3CA mutations in this subtype
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[1, 4]. Based on this study, 47% of TNBCs were classified as basal-like, 17% luminal A, 12% normal

breast-like, 6% luminal B, 6% HER2, and 12% were unclassified. These findings further revealed

that not all TNBCs are basal like.

Besides exhibiting unique biology, the study conducted by Lehman et al. also portrayed distinct

subtype variations in patient relapse-free survival (RFS) and distant-metastasis-free survival despite

the administration of subtype preferential treatments. RFS was significantly decreased in the LAR

subtype compared to other non-luminal subtypes. RFS was significantly decreased in the M subtype

compared with BL1 and IM subtypes, while the MSL subtype had higher RFS than the M subtype.

Distant-metastasis-free survival (DMFS) did not vary between TNBC subtypes. The M and MSL

subtypes differed clinically, with patients in the M subtype presenting with shorter RFS. These

findings suggest that patient outcomes are strongly correlated with their tumor composition or

subtype.

Despite these salient findings on TNBC and its heterogeniety, the analysis of IHC-confirmed ER,

PR and HER2 expression tumors in Lehman et al.’s study led to the observation of only 5 of the 6

gene expression subtypes. Hinged on this limitation, Burstein and colleagues [28], conducted RNA

and DNA profiling analyses on 198 tumors, revealing four distinct and stable TNBC subtypes:

(1) Luminal-AR (LAR); 2) Mesenchymal (MES); 3) Basal-Like Immune-Suppressed (BLIS), and

4) Basal-Like Immune-Activated (BLIA). Like the 6 gene expression subtypes from Lehman et

al.’s study, each of the 4 subtypes identified in Burstein et al.’s study showed distinct molecular

profiles with distinct prognoses, with the BLIS tumors having the worst prognosis while the BLIA

tumors had the best. Subtype-specific targets included androgen receptor and the cell surface mucin

MUC1 in the LAR subtype; growth factor receptors (PDGF receptor A; c-Kit) in the MES subtype;

an immune suppressing molecule (VTCN1) in BLIS; and Stat signal transduction molecules and

cytokines in the BLIA subtype [28].

In contrast to the therapies identified for the 6 gene expression subtypes, Burstein et al.’s study

[28] suggests the application of MUC1 and AR antagonists in the treatment of AR- and MUC1 -

overexpressing LAR tumors; MES tumors would preferentially respond to beta blockers, IGF in-

hibitors, or PDGFR inhibitors. BLIS tumors would benefit from immune-based strategies (e.g.,

PD1 or VTCN1 antibodies) while STAT inhibitors, cytokine or cytokine receptor antibodies, or

ipilumimab a CTLA4 inhibitor [29] may be effective treatments for BLIA tumors. The findings
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of this study suggest that analysis of TNBCs beyond gene expression profiles reveals novel TNBC

subtype-specific markers that could be targeted for more effective treatment of TNBCs.

In a more recent study conducted by Lehmann et al. to further elucidate triple-negative breast

cancer subtypes, the original six molecular classifications were refined into four: basal- like 1 (BL1),

basal-like 2 (BL2), luminal androgen receptor (LAR) and mesenchymal (M) [30] and are shown to

co-occur within given tumours when analyzed using single-cell genomics [31]. These studies show

for and confirm the heterogeneity of TNBC and the treatment complications associated with it.

1.2.2.2 Driver mutations in TNBCs

Various studies have been conducted to identify the molecular portraits and sub-type specific mu-

tations that provide a selective growth advantage and thus promote cancer development in TNBC

to better understand the disease [1, 2, 4, 28, 32].

In a study conducted by The Cancer Genome Atlas (TCGA), somatic mutations in TP53, PIK3CA,

and GATA3 were identified occurring at a frequency higher than 10% [1] in primary breast cancers.

TP53 mutations (mostly nonsense and frameshift) were identified to be most prevalent in basal-

like breast cancers exhibiting a TP53 loss of function. Specific to TNBC, Shah et al. identified

TP53, PIK3CA, USH2A, MYO3A, PTEN and RBI as the most frequently mutated genes in

TNBC [32]. Most of the loss-of-function and gain-of-function alterations in TNBC involve genes

associated with DNA damage repair and phosphatidylinositol 3-kinase (PI3K) signalling pathways,

respectively [1]. Apart from loss of TP53, other alterations in DNA damage repair genes include

loss of RB1 and loss of BRCA1 function [18]. Low PTEN protein levels have also been reported

in TNBCs [4]. FGFR2, MAPK13, SRC family, MUC family, and the BCL2 family are another set

of hyper-activated genes identified from the exploration of TNBC genomic profiles in which they

are revealed to exhibit higher expression levels, more copy number changes (most characterized by

loss of 5q and 10q) [1, 11], lower DNA methylation levels (also in concordance with the TCGA

study [1]), or seen as targets of miRNAs with lower expression in TNBC than in normal samples.

EGFR is also reported to be upregulated in approximately 60% of basal-like TNBCs [13]. A further

review of the 6 TNBC subtypes identified by Lehman et al.[4] revealed higher mutation rates in

basal-like cancers however with less diversity [18]. This finding suggests that the high mutation rate

of a gene significantly contributes to fueling a disease as opposed to the diversity and recurrence

of mutated genes in the genome. Combining CNA, and mutation data with expression data also

8



1.2. Triple Negative Breast Cancer (TNBC)

implicated well known oncogenes and tumour suppressors: TP53, PIK3CA, NRAS, EGFR, RB1,

ATM. PARK2, RB1, PTEN and EGFR were the most frequently observed copy number events that

mostly belonged to the BL2 subtype that is heavily enriched for growth factor signaling pathways

[32]. These genes are suggested to be potential targets for TNBC treatment [33].

1.2.2.3 "BRCAness" in TNBC

Approximately 10 – 20% of TNBC patients harbour germline BRCA mutations. Even in wild-type

BRCA patients, somatic mutations of the homologous recombination (HR) pathway can produce a

similar phenotype termed "BRCAness" [27, 34].

Tumours with known BRCA1 and BRCA2 mutations display phenotypes that correlate with the

basal-like subtype [4, 35], a subtype that is also characterized by genomic instability [36]. In par-

ticular though, TNBCs exhibit gene expression profiles similar to those of BRCA1-deficient tumors

[15], inheriting the increased sensitivity to genotoxic agents exhibited by BRCA [37]. Sporadic

basal-like breast tumors and tumors arising in BRCA1 carriers possess a similar etiology, they are

both likely to be of high grade, both express basal keratins, they are ER/PR-negative, HER2-

negative and have a high frequency of TP53 mutations [18]. Other hallmarks of "BRCAness"

include, EGFR expression, c-MYC amplification, loss of RAD51 -focus formation, and sensitivity

to DNA-crosslinking agents [38]. To note is that the genomic instability reported in TNBCs and

BRCA associated breast cancers could be as a result of deficient DNA repair and may lead to the

success of some chemotherapy regimens [39]. A study conducted by Jiang et al.[40] on the predic-

tors of chemosensitivity in TNBC revealed an RNA-based BRCA-deficient subtype that included

up to 50% of TNBC tumors that appeared immune primed. It was also found that mutations that

lowered the levels of functional BRCA1 or BRCA2 RNA were associated with significantly better

survival outcomes [40].

1.2.2.4 The clonal spectrum of TNBCs

TNBCs exhibit a wide and continuous spectrum of genomic evolution that portrays a continuously

varying distribution of mutation abundance among tumors [32].

By analyzing somatic mutations, copy number aberrations (CNA), gene fusions, and gene expression

patterns of 104 primary TNBCs, Shah et al. revealed a mismatch in the proportion of somatic

mutation abundance relative to the proportion of the genome altered by CNAs in TNBC cases,
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with some cases having numerous mutations but only close to 1% alterations in the genome, while

other cases presented with few mutations but with notably high numbers of genomic alterations. A

significant variation in the clonal composition of TNBCs was also found, with some cases presenting

with few genotypes while others presented with multiple genotypes. We would expect that an

increase in mutations would increase clonal frequency and that mutations in driver genes occur in

the highest frequency groups, however, this was not evidenced in this study as some cases were

found to have driver genes in low clonal frequency groups. 12% of cases did not have mutations in

any known driver genes, further suggesting that TNBCs are mutationally heterogeneous from the

outset with variations in early clonal expansion drivers. Basal-like TNBCs were also reported to

present with higher clonality at diagnosis compared to non-basal TNBCs [32]. Jiang et al. further

confirmed this notion in their study that also revealed an increased clonal mutational burden

(more clonal tumors with a higher number of mutations per clone) in TNBC tumors that are

BRCA deficient [40]. The pathways of the most frequently mutated genes (TP53, PIK3CA, PTEN

- basal-like and luminal) as analysed in Shah et al.’s study were seen in high clonal frequency

groups while genes in cell motility and ECM pathways (mesenchymal-like) were seen in lower

clonal frequency groups and are believed to have mutations that were acquired much later [32].

The key findings of this study suggest that TNBC tumours are unique, with varying mutational

content in particular pathways; they have varying numbers of implicated molecular pathways and

are shaped by distinctive mutagens and biological processes that drive mutations, clonal evolution

and expansion.

1.2.2.5 TNBC mutational signatures

Somatic mutations in genes that control cellular growth and division are a consequence of muta-

tional processes such as exogenous (ultra-violet radiation and tobacco) or endogenous (age, DNA

repair deficiencies) mutagenic processes that offer insights into tumour causative events. These

mutational processes are linked to specific molecular lesions and subsequent repair mechanisms

initiated by a cell to mitigate the damage which in-turn generates unique combinations of mutation

types (signatures) that change DNA in a specific way [41, 42]. For example, endogenous processes

like DNA repair deficiencies initiate point mutations and structural variations [43]; APOBEC dys-

regulation results in C→T substitutions [44] while C→A substitutions are reported induced by

tobacco smoke [41]. These signatures can indicate which causative mechanisms are active in a pa-

tient’s tumor and can reveal clinically actionable events and key features for patient stratification
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[42, 45, 46].

In an effort to determine the role of genomic rearrangements as driver mutations in breast cancer,

Nik-Zainal et al. identified six rearrangement signatures, 2 of which are associated with TNBC

[47]. All rearrangements in Signature 1 were characterized by tandem duplications (> 100kb),

evenly distributed across the genome. Cancers exhibiting this phenomenon are frequently TP53

mutated. Signature 3 was characterized by tandem duplications (<10kb) and most of the cancers

(91%) with BRCA1 mutations or promoter hypermethylation were found in this group, a group

also enriched for basal-like TNBCs. Signature 5, characterized by deletions (<100kb) was strongly

associated with the presence of BRCA1 mutations or promoter hypermethylation, BRCA2 muta-

tions and with rearrangement signature 1 large tandem deletions. These events were also revealed

to be evenly distributed across the genome. Signature 2 on the other hand was characterized by

deletions (>100kb), inversions and interchromosamal translocations and contains components im-

plicated in kataegis-focal base substitutions and APOBEC DNA-editing proteins. Signature 4 was

characterized by interchromosomal translocations while signature 6 was characterized by inversions

and deletions.

In Nik-Zainal et al.’s study, cancers without identifiable mutations of BRCA1/2 or BRCA1 pro-

moter methylation showed similar features with those of BRCA1/2. This implies that either the

BRCA1 mutations might have been missed or other mutated or promoter methylated genes may

be exerting similar effects [47]. Based on this observation, combinations of base substitutions, indel

and rearrangement mutational signatures may be better biomarkers of defective homologous recom-

bination of DNA double strand break repair and better biomarkers of responsiveness to cisplatin

and PARP inhibitors other than relying on BRCA1/2 mutations/promoter methylation alone.

In a more recent and generalized study on breast and ovary somatic mutations conducted by Funell

et.al to better understand mutation signatures from the perspective of DNA repair deficiency, both

SNVs and SVs were used for mutation signature inference in which an age-related signature (SNV),

APOBEC signature (SNV), deletion (SV), tandem duplication (SV) and HRD (SNV) signatures

were identified associated with breast cancer. Unsupervised clustering of tumours revealed sub-

groups with mutations in BRCA1/BRCA2 that were associated with an HRD signature. This study

also revealed the salient role of mutation signatures and their application in prognostic, patient and

therapeutic subgroup discovery[42].
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1.2.3 Treatment of TNBC

Hormone receptors ER, PR and HER2 (also called ERBB2 ) are known to fuel most breast cancers

[4, 32] for which intense efforts have been made to identify druggable targets [4, 28]. To date, the

most successful therapies for breast cancer are those that target these receptors, with the most

successful being the targeting of HER2 and ER in HER2+ and ER+ patients respectively [1]. In

contrast, due to the lack of targetable receptors, TNBC patients do not benefit from hormonal

therapies. Further, the lack of identification of significant genomic driver alterations in TNBC,

and the degree of tumor cell heterogeneity, has limited a targeted approach to the management of

TNBC. This has left surgery, radiation and chemotherapy or a combination of these therapies as

the first line of treatment for TNBC patients [48]. However, more recently, research has shown the

benefit for and identified certain receptors as putative targets for new therapeutic drugs as will be

discussed in subsequent sections.

1.2.3.1 Surgery, radiotherapy and chemotherapy treatment in TNBC

Predominantly, local and non-invasive TNBCs are treated with surgery. This is done with or

without radiation to eliminate residual disease and reduce recurrence. Studies have shown that the

younger age, higher grade or biological aggressiveness of a patient’s disease does not impact surgical

treatment choices; that is mastectomy vs lumpectomy, with the surgical choice mostly done based

on clinicopathological variables and patient preferences [49]. Current surgical approaches however

advocate for breast-conservative surgery (BCS) followed by radiation as opposed to mastectomy -

a more radical procedure given that both are associated with equivalent survival rates with CBS

further reducing surgical complications [50]. TNBCs are reported to be appropriate candidates for

breast-conservative surgery as the local recurrence rate after surgery is not as high as that of other

breast cancer subtypes [51]. However, this remains controversial as some research teams suggest

that BCS followed by radiation therapy in early stage TNBC is not equivalent to mastectomy given

the rapid growth and locally aggressive nature of TNBCs [52]. Secondly, given that some TNBCs

harbour mutations in BRCA1, these tumors are deficient in double-strand DNA break repair by

homologous recombination and are potentially highly radiosensitive[53]. Given the complex nature

of TNBC and most cancers in general, more systematic treatment options that go beyond surgery

and radiotherapy have been applied towards effective treatment of patients.

Among the systematic approaches applied in the treatment of TNBC has been the application of
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chemotherapy that combines the use of drugs with surgery and radiotherapy. Currently, the most

common chemotherapeutic regimens include anthracyclineetaxane chemotherapy (either in the neo-

adjuvant or adjuvant setting)[54]. Compared to estrogen receptor positive tumors, TNBCs have

shown a higher response rate to neoadjuvant therapy [55], however, there is a higher risk of recur-

rence in patients who do not achieve pathological complete response. In such cases with metastatic

TNBC (mTNBC)), the only available strategy is the re-administration of systemic chemotherapy;

unfortunately, this approach is limited by poor response, toxicity and eventual multi-drug resis-

tance. Chemotherapy works by impairing proliferation. It elicits a selective effect on cells that

divide rapidly. As chemotherapeutic cytotoxicity is highly proliferative and non-exclusive to cancer

cells, normal cells are affected too. This results in undesirable side effects such as anemia, alopecia,

fever, mucositis, myelosuppression and immunosuppression [56]. Residual disease is also associated

with a poorer prognosis compared to other types of residual breast cancer.

Our evolving and improved understanding of the underpinnings and molecular biology of TNBC

is beginning to shed more light on possible and effective theraputic modalities and has led to

the discovery of new agents that target specific pathways in TNBC as will be discussed in the

subsequent section.

1.2.3.2 Emerging therapeutic modalities in TNBC

Recently, the application of massively parallel sequencing and other ‘omics’ technologies for ge-

nomic analysis has begun to reveal molecular alterations and potentially actionable features such

as BRCA1/2 mutations ("BRCAness") and the presence of the androgen receptor in some TNBC

subtypes. This has allowed for the discovery of targeted therapies that could be included into

clinical trials to improve patient outomces. Various therapeutic modalities (agents targeting some

component(s) of the signalling cascades) active in TNBC like PARP, Src, EGFR and VEGF in-

hibitors, have been proposed and identified to putatively benefit TNBC patients.

Poly (ADP-ribose) polymerase inhibitors (PARPi): As earlier mentioned, about 10 - 20%

of TNBCs harbor mutations in BRCA1/2 ; genes that are pivotal for genomic stability and regu-

lation of DNA damage repair and maintenance. Cells in tumors with loss of BRCA1 or BRCA2

function are deficient for homologous recombination DNA repair mechanisms, hence TNBCs pref-

erentially respond to DNA damaging agents such as PARP inhibitors that catalyze the fusion of
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components needed for alternative pathways of DNA repair (Fig. 1.4), recognize DNA damage and

facilitate DNA repair to maintain genomic stability [57, 58].

Figure 1.4: PARP inhibitors: DNA double strand break caused by PARPi via 2 mechanisms of
action: inhibition of PARP enzyme activity and PARP trapping. In HR competent tumors, tumor
cells with homologous recombination repair survive while in HR deficient cancers, blockade of this
pathway by PARP inhibition leads to synthetic lethality and cell death. Source: Lim et.al [59].

In research done by Carey et al., it was hypothesized that “PARP inhibition, in conjunction with

the loss of DNA repair via BRCA-dependent mechanisms, would result in synthetic lethality and

augmented cell death” however, identifying patients most likely to respond to PARP inhibitors

is still a challenge [60]. Poly-ADP ribose polymerase inhibitors – (mono-therapies: veliparib and

olaparib) are currently in clinical trials and have shown improved overall response rates when

combined with chemotherapy [27].

Other emerging therapeutic modalities in TNBC: Somatic mutations involving the Epi-

dermal Growth Factor Receptor (EGFR) lead to its activation which subsequently produces

uncontrolled cell division, proliferation, epithelial-mesenchymal transition (EMT), migration, inva-

sion and angiogenesis [61] which in-turn promote primary tumorigenesis and metastasis. EGFR is a

promising therapeutic target for TNBC given that it has been reported expressed in approximately

89% of TNBCs [62]. Angiogenesis inhibition using VEGF (Vascular Endothelial Growth Fac-

tor) pathway inhibitors have also been involved in TNBC clinical trials due to the poorer prognosis
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associated with VEGF and its expression that is reported significantly higher in TNBCs compared

to other breast cancer subtypes [63]. Src an oncoprotein and member of the family of nonreceptor

tyrosine kinases is reported expressed higher in TNBC cells than in ER+ cancer cells regulating a

number of signaling pathways including but not limited to proliferation, metastasis, survival, mi-

gration, invasion, and angiogenesis [64, 65]. The combination of dasatinib, cetuximab and cisplatin

have provided therapeutic promise by enhancing the inhibition of cell growth, migration and inva-

sion [66]. A number of clinical trials using androgen receptor targeting therapy for the treatment

of AR-positive TNBC are also underway as Androgen Receptor (AR) is reported expressed in 12 –

60% of TNBCs, particularly in the LAR-subtype [67]. AR inhibitors such as Tamoxifen have shown

to reduce disease recurrence in AR-positive TNBCs [68]. Other promising treatments are a combi-

nation of AR inhibition + radiotherapy and the combination of antiandrogens + immunotherapy

for TNBC patients that co-express AR and PD-L1 [69].

Some of the above mentioned therapeutic modalities in TNBC have undergone multiple clinical

trials whereas others have only been investigated in early-phase trials or tested preclinically using

TNBC cell lines. Despite these efforts, no targeted therapies have been approved for TNBC. Current

research has shown promising prospects in effectively treating TNBC patients, however, some clini-

cal trials have reported no objective response to therapies such as those involving EGFR inhibitors

like erlotinib and lapatinib and the monoclonal antibodies (mAbs) cetuximab and panitumumab

[70, 71]. Other clinical trials such as those involving the administration of anti-angiogenic therapies,

bevacizumab in combination with chemotherapy to improve pCR in a neoadjuavent setting have

resulted in undesirable side effects like hypertension and cardiotoxicity [26] and high rates of high

grade (3 and 4) toxicities when tyrosine kinase inhibitors (RTKIs) like Sorafenib in combination

with chemotherapy are administered [72]. Secondly, the development of these targeted therapies

has been hindered by the inability to define patient groups that would preferentially benefit from a

particular targeted agent. There is still a dire need to understand TNBC and develop new strategies

for classifying and treating TNBC patients, including recurrent and metastatic cases.

1.2.4 Whole genome profiling as a stratification tool in cancer

Recent cancer studies have implemented the use of Next Generation Sequencing (NGS) to reveal

variants (SNVs and idels) that have provided insights into the genomic landscapes, molecular and

genomic underpinnings and the heterogeneity existing in different cancer tumours. However, the
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variants revealed in these studies reside in protein-coding regions that comprise < 1% of the human

genome [1, 11, 32]. Furthermore, in complex diseases like cancers, genotypic biomarkers do not

provide a comprehensive representation of the biological nature of a cancer [73]. The breadth and

significance of various mutation types across multiple genes affecting biological pathways relevant

to cancer and their potential clinical significance remain largely unexplored.

Whole-genome sequencing (WGS) has been proven as a useful approach for in-depth analysis of

the landscape of mutations occurring across the genome [73, 74] and has over the years elucidated

complex mutational processes at all scales through the exploration of genomic aberrations like copy

number aberrations (CNAs), structural variants (SVs), small insertions and deletions (indels), single

nucleotide variants (SNVs) including the identification of intricate events like SV patterns (tandem

duplications, interchromosomal translocations, foldback inversions and interstitial deletions) that

represent double-strand break repair mechanisms in tumors characterized with genomic instability

[73, 75].

In concurrence with the above notions, Wang et al. analyzed whole-genome point mutations and

structural variation patterns of 133 ovary tumors to reveal seven subgroups within the studied

ovarian cancer cohort. In this study, somatic alterations in the tumor genome of each patient were

identified to include SVs, indels, CNAs, and SNVs. They then conducted hierarchical clustering

of the 133 patients based on selected genomic features like the aforementioned identified genomic

aberrations and mutation signatures revealing 7 distinct subgroups "(G-BC: GCT tumors with mu-

tation signature S.BC (associated with breast cancer and medulloblastoma); E-MSI: MSI ENOC

tumors characterized by mutation signature S.MMR (reflective of mismatch-repair deficiency); Mix-

ture: HGSC, CCOC, and ENOC cases without obvious discriminant features; C-APOBEC: CCOC

cases characterized by mutation signature S.APOBEC (attributed to activity of the AID/APOBEC

family of cytidine deaminases); C-AGE: CCOC cases characterized by mutation signature S.AGE

(associated with age at diagnosis); H-FBI: HGSC cases with high prevalence of foldback inversion

SVs; H-HRD: HGSCs with prevalence of duplications or deletion rearrangements and mutation

signature S.HRD (reflective of homologous recombination deficiency)"[73].

In Wang et al.’s study. structural variants and point mutations in the somatic genome were seen

to provide solid, discriminant biomarkers for subgroup discovery in ovarian cancer. This ground

breaking research established whole genome profiling as a useful design for patient stratification

and further highlights specific genomic events as putative targetable vulnerabilities suggestive of
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better treatment strategies for patients. Based on the findings of this study and the notion that

TNBCs are genomically similar to high-grade serous carcinoma (HGSC) - both well characterized

by genomic instability, heterogeneity and mutations in BRCA1/2; can TNBCs similarly be stratified

based on their whole genome profiles? We answer this question in chapter 3.

1.2.5 Databases for large scale and integrated genomic data mining and

analysis

Databases have long been used as an indispensable tool in modelling and organizing vast amounts

of data, not excluding biological data. Currently, though, profiling of patient genomes to infer

patterns of mutations and genomic events underpinning a patient’s disease heavily relies on data

stored in flat files. Flat files such as bam (Binary Alignment Map), vcf (Variant Call Format), txt

(text) or csv (comma-separated values) are structured to contain a collection of singular records

each having atomic data with record specific fields. Each of the fields in these files is separated by

delimiters such as commas, white space or tabs. The structure of these files makes them relatively

quick, easy to set up and use, however, this very structure complicates tasks required to query and

analyze highly relational and complexly structured genomic data coupled with data redundancy

and high efforts required to access data in flat files.

The explosive growth of biological data such as data from sequencing, gene expression, annotation

of features and genomic events, protein structures, and data from alignment has continuously seen

the need for storing, managing and accessing data using data structures that supersede those of flat

files. This rapid explosion of sequencing data is attributed to the decreasing cost to sequence whole

genomes and is evidenced by the exponential increase in entries from commonly used systems such

as the Catalogue of Somatic Mutations in Cancer (COSMIC), dbSNP, the Cancer Genome Atlas

(TCGA), European Molecular Biology Laboratory (EMBL) and the Protein Data Bank (PDB)

[76]. To this effect, data generation is no longer a bottle neck but the management and analysis

of these large volumes of data is [77], which has made database management systems an attractive

solution for the storage and management of genomic data. In existence are different types of

structural database management systems that include types such as hierarchical, network, object-

oriented and relational databases. Given the highly relational data under study, we opted for

relational databases that support relational data structures between objects and are more reliable

than hierarchical or network database structures.
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1.2.5.1 Why database management systems?

The concept of database management systems (DMBS) and in particular relational (DBMSs) as

a solution to data management started as far back as 1970 [78] and has since matured to provide

faster and more accurate access to large amounts of data, excellent data integration capabilities

and effective and efficient data management, sharing, storage and analysis functions. Relational

databases collect data in multiple tables linked together by a common piece of data and can be

arranged to support ad hoc queries. Relational databases are able to capture data of various

types (numbers, strings, images, booleans, dates and time, arrays, integers, floats, characters etc.)

and provide advanced data structuring capabilities that support the creation of more complex

relationships between data. This has further supported storage, organization, retrieval and sharing

of large data sets with the ability to facilitate data visualization. Extending these functionalities

to support analysis of genome data directly within databases has allowed for reliable management

of genome data and the analysis of genomic variants [79].

The application of databases for genomic data analysis also supports flexible user defined parame-

terization and analysis of data on the fly - directly from a database using query and programming

languages such as SQL without incurring costly data exports or having to rely on precomputed

results. Secondly, database query optimizers have the ability to analyse queries using statistical

data characteristics in a database to determine the most efficient execution mechanism for a query

to improve query performance and execution runtime. Queries used also provide the execution de-

scription that can be used for documentation purposes and reproducibility of the analysis process.

The DBMS data architecture supports for data independence where changes in the application layer

or user view are immune to changes in the physical (storage) or logical (conceptual) schemas and vice

versa. For instance the addition or removal of new entities, attributes, or relationships is possible

without having to rewrite existing application programs or changing the inter file organization

system or storage structures, storage devices or indexing strategy. DBMSs also enforce both user

and system defined constraints to support data consistency, integrity and security. They possess

excellent concurrency control mechanisms like Strict-Two-Phase locking (Strict 2PL) where shared

locks are acquired to read a data object in a database and exclusive locks acquired when an object

needs to be modified. This prevents update anomalies such as a database user process reading

data that is still in the process of being updated by another concurrent user process. Defined in

the ARIES recovery algorithm to avoid data loss in event of a crash, DBMs execute crash recovery
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protocols such as write-ahead logging where all updates must be written to stable storage before

they are written to disk. The recovery algorithm also retraces all actions of a database before a

crash and restores it to the state it was before a crash.

With the vast amounts of data from sequencing has come the need for better management and access

methods for data from sequencing. To this effect, publicly available databases have been widely

established and used to aid the access, querying and visualization of data in these repositories for

example the cBioPortal [80] that fuses cancer genomics data at gene level from multiple and various

studies, platforms and other databases such as the NCBI Gene database and the Human Reference

Protein Database (HPRD). The cBioPortal was established to support interactive exploration,

visualizing, and analysis of clinical outcomes and molecular profiling data (e.g gene expression,

genetic and proteomic events) across multiple samples, genes and pathways. The portal in itself

is a web service interface that supports database access and querying for the presence of specific

biological events in each sample such as, gene homozygous deletions, amplifications and increased

or decreased mRNA or miRNA expression) as a means to accelerate the translation of genomic

data into new biological insights and therapies [80].

Another similar database is the Database of Genomic Variants that [81] consists of a front-end

web application that facilitates data analysis and a back-end relational database (implemented

in PostgreSQL) that supports flexible and interactive database querying for structural variations

within or across multiple studies.

1.2.6 Research aims, rationale and hypotheses

Currently, TNBC clinical trials use a similar patient selection criteria, however, these trials of-

ten display surprising heterogeneity in response to treatment, survival rates, and the likelihood

of recurrence and metastasis. This is attributed to the differences in prognostic factors and pa-

tient characteristics like mutations and molecular signatures, gene expression profiles and tissue

and organ morphologies. To improve our understanding of TNBC and to identify potential clini-

cally actionable events, better characterization of the genetic, molecular and clinical biomarkers of

TNBC is still urgently needed. Whole genome sequencing approaches have shown to reflect specific

mutational processes as targetable vulnerabilities in human cancers. However, a whole genome se-

quencing study in TNBC at scale to investigate genomic properties as a stratification tool has not

been undertaken. Secondly, data from whole genome sequencing is often stored and management
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in flat file format. This format is very cumbersome and ineffective for the optimal exploration,

analysis and visualization of clinical outcomes and vast amounts of genomic data from which novel

insights into complex diseases such as TNBC can be generated. Hinged on the hypotheses that

(1) TNBC patients can be stratified into distinct subgroups based on their whole genome profiles

and (2) the identified TNBC subgroups exhibit distinct clinical, molecular and genomic character-

istics; the main objective of this study was to design and develop a relational database of highly

structured clinical and mutation data of a cohort of TNBC and implement the developed database

to support the exploration of the genomic landscape and mutational characteristics underpinning

TNBCs. The developed clinical and genomic variants database was further applied to support the

comprehensive analysis of clinical and whole genome profiles of 88 TNBC patients, with a novel

aim of stratifying TNBC patients into distinct genomic subgroups to improve our understanding

of the disease and provide valuable insights into options for novel therapeutic modalities and the

identification of patients most likely to respond to specific modalities. The results of this study

will also go a long way in identifying subgroup-specific clinically actionable events, clarifying uncer-

tain histopathological diagnosis, informing prognosis, guiding treatment options for patients and

supporting the use of the genome as a potential biomarker in patient treatment.

Towards testing our hypotheses and achieving the main goal of this research, the following specific

objectives were established:

Objective 1: Design and develop an object-relational database of clinical outcomes and genome-

wide somatic variants extracted from whole genome sequencing data of 88 TNBCs

Objective 2: Structure output data from variant calling and analytics pipelines and implement

data loaders to bulk-load the structured variants and clinical outcomes into the database

Objective 3: Apply the developed database for the exploration and analysis of the clinical data

and genomic variants in the developed database with specific focus on the following:

– Conduct quality control checks and analyses on the data from whole genome sequencing

– Identify and analyse all genome-wide somatic mutations (copy number aberrations (CNAs),

structural variants (SVs), insertions/deletions (indels) and single-nucleotide variants (SNVs))

in a cohort of TNBC of 88 cases and extract genomic features for patient stratification

– Identify the significantly mutated genes (SMG) in the TNBC cohort
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– Identify TNBC genomic subgroups and conduct comparative subgroup analyses:

— Compute the prevalence of mutations in each subgroup, specifically on the alterations

(SNVs, CNAs, and SVs) in DNA damage repair genes and the identified SMGs

— Investigate the association between SMGs and the genomic subgroups

— Examine the association between the identified subgroups and clinical outcomes

— Identify mutations that appear mutually exclusive between the identified genomic sub-

groups

— Investigate the association between driver mutations and mutation signatures which

stratified the genomic subgroups of the TNBC cohort

Objective 4: Build a database user interface to support interactive data access, exploration, user

defined querying and analysis, interpretation and sharing of the stored genomic variants and clinical

outcomes among various research groups.

1.2.6.1 Research questions the database infrastructure is intended to support:

1. Can we stratify TNBC patients using their whole genome profiles?

2. Can we identify fold-back inversion events in TNBC tumours?

3. Do mutational signatures associate with specific driver mutations?

4. Are the segregated TNBC subgroups associated with distinct clinical outcomes?

1.2.6.2 Research methods and workflow

Samples from 88 TNBC cases were collected from various facilities across Canada (British Columbia,

Montreal, Alberta) and tumor/normal sample pairs subjected to whole genome sequencing using

Illumina HiSeq2500 (Fig. 1.5). Patient clinical data was also collected to include but not limited

to: the date of diagnosis, age at diagnosis, tumour grade, tumour size (in centimeters), node status,

patient status, HER2, ER2 and PR status and survival and recurrence status. However, due to

the premature data collected on the overall survival status of patients, comprehensive analyses

involving overall survival were not included in this study.

Aim 1: The exponential growth of data generated from DNA sequencing has continually seen the

need for optimal data management, access, analysis and visualization methods. Currently data
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Figure 1.5: Research workflow.

from sequencing is often stored in flat files which are inefficient for optimal storage, querying and

analysis of orthogonally collected data. To overcome these challenges, we designed and developed a

relational database structure to support optimal storage, access, querying, exploration and analysis

of clinical outcomes and whole genome profiling data at the level of genome-wide individual variants

from the 88 TNBCs in this study cohort. Entity relationship modeling using Crow’s Foot Notation

was used to design the database that was implemented using PostgreSQL (psql version 10.5, server

9.4.8), an object-relational database management system (DBMS). The developed database was

hosted, run and managed on a CentOS 6.5 server, with an Intel(R) Xeon(R) CPU(E5-2660v2) with

a 2.20GHz base frequency (2 CPUs, 10 physical cores per CPU, 20 logical CPU units in total),

126GB of RAM and a 40GB InfiniBand connection. The choice of this DBMS (PostgreSQL) stems

from its ability to hold highly relational and large datasets which are characteristic of genomic data.

PostgreSQL also supports parameterized and user defined queries, custom data-types and indexes

for query optimization; it is an open source DBMS that supports ACID (Atomicity, Consistency,

Isolation, Durability) properties and stored procedures/SQL functions. The choice of this DBMS
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was also based on its interoperability and ability to support other languages such as pgSQL, python

and R that were largely used in this study.

Aim 2: Genomic alterations have over time been shown to have predictive and prognostic

implications in cancer patients. The discovery of all genome-wide somatic mutations was done

to support the identification of putative molecular underpinnings of patients with TNBC and the

potentially actionable molecular events that could provide insights into treatment options for TNBC

patients. Applied were a number of various bioinformatics tools developed and assembled into an

analytics pipelines to support variant calling and analyses of data from whole genome sequencing.

TITAN [82], an R Bioconductor package was used to compute cellularity and identify regions

(clonal and subclonal) of copy number alterations within patient samples. To further support our

analysis, gene annotations for each copy number segment was performed using pygenes a python

library based on the human genome reference Homo sapiens GRCh37.73.gtf. Structural variants

(SVs) including rearrangement breakpoints were predicted using deStruct [83], a tool that identifies

breakpoints and assigns read alignments to the identified breakpoints. Deletions, duplications,

inversions, translocations and foldback inversions were identified based on the relative position and

orientation of the break-ends in the genome. Breakpoints detected by an alternative variant calling

tool - Lumpy [84] were used to filter results from deStruct and to remove low mapability regions.

Single nucleotide variants (SNVs) were predicted using mutationSeq [85] while the variant calling

analysis for somatic SNVs and insertion/deletions (indels) was performed using Strelka [86]. The

SnpEff tool was used to annotate the identified SNVs and indels for variant effects and gene-coding

status. All put together, the variants identified in this cohort shed more light on the mutation

patterns and signatures exhibited by different patients and patient subgroups.

Given the nature of the various tools used for variant calling, the data output from the variant

calling pipelines was in disparate formats and in flat files. As earlier mentioned, this complicates

data querying and processes that involve comparative data analyses. To solve this problem, the

data was structured using python and R scripts that were also used to load all the structured data

into the database. Also loaded in the database were statistics derived from bam files using the

Flagstat software tool to extract bamstats and mpileup to extract average read coverage. These

statistics were also structured and loaded into the database for further exploration.

Aim 3: We then applied the developed database to support optimal access, exploration, analysis
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and visualization of the mutation contents and clinical outcomes in the developed database towards

answering our research questions and providing insights and a better understanding of TNBCs.

First, we used the database to conduct quality control checks and analyses on data from whole

genome sequencing. Of interest was the average read coverage of tumour samples for which sam-

ples that did not meet the set threshold (60X) were excluded. We then used the database to identify

and explore somatic mutations (copy number aberrations (CNAs), structural variants (SVs), in-

sertions/deletions (indels) and single-nucleotide variants (SNVs)) by analysing mutation loads and

patters across the cohort and per case. All analyses were completed using R which was both locally

and remotely linked to the developed database.

MutSigCV [87] was used to identify the significantly mutated genes (SMGs) across the TNBC cohort

as it has the ability to discover unexpected variations in the mutation frequency and spectrum across

the genome with a unique ability to incorporate mutational heterogeneity to eliminate most of the

artifactual significantly mutated genes. This enables the identification of genes truly associated

with a cancer type. In this study, only genes whose false discovery rate < 0 .1 were regarded

as most significantly muted in this TNBC cohort. The identification of the significantly mutated

genes in this cohort shed light on the subgroup putative drivers and implicated pathways that could

further be probed for druggable targets. This analysis also shed light on defects co-occurring in

certain pathways that may be of benefit in patient treatment for example a combination of defects

in two DDR pathways leads to synthetic lethality that may be an effective therapeutic strategy for

patients with such defects.

Stratification of patients is key in providing effective treatment options. To identify the genomic

subgroups in this TNBC cohort, patient stratification was done based on the integration of the

identified genomic features: CNAs, SVs, indels, SNVs and mutation signatures discovered using

the multi-modal correlated topic model (MMCTM) [42]. Non-negative matrix factorization (NMF)

approaches have been used extensively to study point mutation and structural variation signatures,

however, NMF does not effectively support joint inference of signatures. MMCTM on the other

hand provides an integrative approach that infers signatures using joint statistical inference from

multiple mutation types like point mutations and structural variants. This further supports dis-

covery of signatures active among patient groups as seen in the case of homologous recombination

deficiency that induces patterns of both SNVs and SVs in breast and high grade serous ovarian can-

cers [42]. It’s because of the aforementioned attributes that MMCTM was preferred in this study
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to support signature inference for the discovery of genomic subgroups in this TNBC cohort. All

the identified stratification features were used for integrative hierarchical clustering analysis using

the R package pheatmap and the manhattan distance measure to determine patient subgroups and

to support the discovery of prognostic and therapeutic stratification, driver-gene associations and

clinical predictions.

To further our understanding on the identified genomic subgroups, a number of comparative analy-

ses were done. The overall mutation loads were computed and the prevalence of mutations in SMGs

and DNA damage repair genes identified per subgroup. Chi-square tests were run to identify muta-

tions that appear mutually exclusive between the subgroups. Also conducted were investigations on

the association between SMGs and the genomic subgroups and the association between driver mu-

tations and mutation signatures to provide insights into the identified subgroups and their genomic

and clinical characteristics.

In most studies, mutation profiles and signatures are not routinely investigated in the clinical setting

despite their salient benefit in detecting subtypes implicated in pathways that are associated with

favourable prognosis [47] like those with defective mismatch repair that may benefit from immune

checkpoint inhibition. In this study, the integrative analysis of the various mutation types (CNAs,

SVs, SNVs and indels) with clinical data shed more light on the correlation between mutation

profiles and clinical outcomes.

Aim 4: Finally, we developed a database user interface using Shiny, Plotly and JavaScript to

extend the database functionality to various research groups. The developed back-end PostgresQL

database was linked with the data analysis module (R) to support both local and remote data

extraction, exploration, analysis and visualisation, results of which are rendered dynamically into

the front-end web application for utilization by researchers, biologists and clinicians using intuitive

and interactive plots and data tables. The data can be shared across individuals and research groups

that also have the ability to upload files for data analysis and visualization without having to need

any programming knowledge. This establishment will go a long way in helping researchers generate

novel insights and hypotheses by triggering analyses and visualizations of the clinical outcomes and

genomic variants data in the database.
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Chapter 2

Database Design, Implementation and

Optimization

The research presented herein was hinged on the application of relational databases as an indis-

pensable tool for the exploration and analysis of tumour contents of patients in cancer studies.

This chapter presents work done on the design, development and optimization of the database of

clinical outcomes and genomic variants of TNBC cases in this study. Section 2.1 starts with a

preliminary overview of the data structuring processes to suit database storage and downstream

analysis. Section 2.2 presents the design of the variants database followed by the physical database

implementation to meet data mining and data analysis functions and the methods deployed to

optimize the developed database in Section 2.3.

2.1 Data structuring

The large volumes of data generated by genomic pipelines like variant calling pipelines is produced

in formats such as the Variant Call Format (VCF), tsv (Tab Separated Values) or text files. As

earlier mentioned in section 1.2.5, these output data files take on formats that do not support

effective and efficient data mining processes. To prepare pipeline output data for database storage

and further downstream analysis, the data was structured before bulk loading into the database as

will be presented in the following sections.

VCF files: The Variant Call Format (VCF) is a file specification format used to store genetic

variation data obtained from genomic sequencing and large-scale genotyping. It specifies a text

format that contains three main sections: (1) metadata lines prefixed by "##" that describe the

data values in the body of a file (Fig. 2.1). These lines describe the INFO (information), FILTER

and FORMAT fields used in the body of a VCF file. (2) The header line prefixed by "#" contains

8 fixed and mandatory fields: "#CHROM POS ID REF ALT QUAL FILTER INFO". The header
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line also contains a "FORMAT" field and an arbitrary number of "sample ID" fields if genotype

data is present in a file and finally (3) the data section that contains the variants per chromosome

position for each field (Fig. 2.2).

INFO fields in the metadata lines are described as follows:

##INFO=<ID=PR,Number=1,Type=Float,Description="Probability of somatic mutation">

The above line shows the data value being captured, "PR" (probability of somatic mutation) and also

shows the number of expected PR values. In this example, the number is equal to 1 (Number=1)

and implies that we can only have one value for the probability of a variant call being a somatic

mutation. Also included is the data type and in this case PR is of type float (Type=Float). Other

data types captured in INFO fields include: integer, flag, character and string.
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##INFO=<ID=PR,Number=1,Type=Float,Description="Probability of somatic mutation">
##INFO=<ID=TC,Number=1,Type=String,Description="Tri-nucleotide context">
##INFO=<ID=TR,Number=1,Type=String,Description="Count of tumour with reference to REF">
##INFO=<ID=TA,Number=1,Type=String,Description="Count of tumour with reference to ALT">
##INFO=<ID=NR,Number=1,Type=String,Description="Count of normal with reference to REF">
##INFO=<ID=NA,Number=1,Type=String,Description="Count of normal with reference to ALT">
##INFO=<ID=ND,Number=1,Type=String,Description="Number of Deletions">
##INFO=<ID=NI,Number=1,Type=String,Description="Number of Insertions">
##FILTER=<ID=threshold,Description="Threshold on probability of positive call">
##SnpEffVersion="4.3t (build 2017-11-24 10:18), by Pablo Cingolani"
##SnpEffCmd="SnpEff GRCh37.75 -noStats /shahlab/archive/sochan_tmp/jobs/SA681/temp/wgs_SA681/mutationseq/
museq.vcf "
##INFO=<ID=ANN,Number=.,Type=String,Description="Functional annotations: ’Allele | Annotation |
Annotation_Impact | Gene_Name | Gene_ID | Feature_Type | Feature_ID | Transcript_BioType | Rank |
HGVS.c | HGVS.p | cDNA.pos / cDNA.length | CDS.pos / CDS.length | AA.pos / AA.length | Distance |
ERRORS / WARNINGS / INFO’ ">
##INFO=<ID=LOF,Number=.,Type=String,Description="Predicted loss of function effects for this
variant. Format: ’Gene_Name | Gene_ID | Number_of_transcripts_in_gene | Percent_of_transcripts_affected’">
##INFO=<ID=NMD,Number=.,Type=String,Description="Predicted nonsense mediated decay effects for
this variant. Format: ’Gene_Name | Gene_ID | Number_of_transcripts_in_gene | Percent_of_transcripts_
affected’">
##INFO=<ID=MA,Number=.,Type=String,Description="Predicted functional impact of amino-acid substitutions in
proteins.Format: (Mutation|RefGenome variant|Gene|Uniprot|Info|Uniprot variant|Func. Impact|FI score) ">
##DBSNP_DB=/shahlab/pipelines/reference/dbsnp_142.human_9606.all.vcf.gz
##INFO=<ID=DBSNP,Number=.,Type=String,Description="DBSNP flag">
##1000Gen_DB=/shahlab/pipelines/reference/1000G_release_20130502_genotypes.vcf.gz
##INFO=<ID=1000Gen,Number=.,Type=String,Description="1000Gen flag">
##Cosmic_DB=/shahlab/dgrewal/cosmic/CosmicMutantExport.sorted.vcf.gz
##INFO=<ID=Cosmic,Number=.,Type=String,Description="Cosmic flag">
#CHROM POS ID REF ALT QUAL FILTER INFO
20 64871 . C A 7.36 PASS PR=0.82;TR=40;TA=4;NR=28;NA=0;TC=ACA;NI=0;ND=32;
ANN=A|upstream_gene_variant|MODIFIER|DEFB125|ENSG00000178591|transcript|ENST00000382410|protein_coding|
|c.-3480C>A|||||3480|,A|upstream_gene_variant|MODIFIER|DEFB125|ENSG00000178591|transcript|ENST00000608838|
processed_transcript||n.-3020C>A|||||3020|,A|intergenic_region|MODIFIER|CHR_START-DEFB125|
CHR_START-ENSG00000178591|intergenic_region|CHR_START-ENSG00000178591|||n.64871C>A||||||;
MA=();DBSNP=F;1000Gen=F;Cosmic=F
20 139915 . T A 5.73 INDL PR=0.73;TR=53;TA=5;NR=33;NA=0;TC=CTA;NI=31;ND=1;
ANN=A|downstream_gene_variant|MODIFIER|DEFB127|ENSG00000088782|transcript|ENST00000382388|protein_coding|
|c.*250T>A|||||111|,A|intergenic_region|MODIFIER|DEFB127-DEFB128|ENSG00000088782-ENSG00000185982|
intergenic_region|ENSG00000088782-ENSG00000185982|||n.139915T>A||||||;
MA=();DBSNP=[rs11471580,rs386393059,rs386393060,rs397947941];1000Gen=F;Cosmic=F
20 351395 . G A 17.61 PASS PR=0.98;TR=58;TA=14;NR=38;NA=0;TC=TGT;NI=0;ND=0;
ANN=A|intergenic_region|MODIFIER|NRSN2-TRIB3|ENSG00000125841-ENSG00000101255|intergenic_region|
ENSG00000125841-ENSG00000101255|||n.351395G>A||||||;MA=();DBSNP=F;1000Gen=F;Cosmic=F

Figure 2.1: Variant Call Format (VCF) file structure.

#CHROM POS ID REF ALT QUAL FILTER INFO
20 64871 . C A 7.36 PASS PR=0.82;TR=40;TA=4;NR=28;NA=0;TC=ACA;NI=0;ND=32;
ANN=A|upstream_gene_variant|MODIFIER|DEFB125|ENSG00000178591|transcript|ENST00000382410|protein_coding|
|c.-3480C>A|||||3480|,A|upstream_gene_variant|MODIFIER|DEFB125|ENSG00000178591|transcript|ENST00000608838|
processed_transcript||n.-3020C>A|||||3020|,A|intergenic_region|MODIFIER|CHR_START-DEFB125|
CHR_START-ENSG00000178591|intergenic_region|CHR_START-ENSG00000178591|||n.64871C>A||||||;
MA=();DBSNP=F;1000Gen=F;Cosmic=F

Figure 2.2: VCF data line.

Another key field captured in VCF files is the annotation (ANN) field (Fig. 2.3) described as shown
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in the INFO field in Fig. 2.4:

ANN=A|upstream_gene_variant|MODIFIER|DEFB125|ENSG00000178591|transcript|ENST00000382410|protein_coding|
|c.-3480C>A|||||3480|,A|upstream_gene_variant|MODIFIER|DEFB125|ENSG00000178591|transcript|ENST00000608838|
processed_transcript||n.-3020C>A|||||3020|,A|intergenic_region|MODIFIER|CHR_START-DEFB125|
CHR_START-ENSG00000178591|intergenic_region|CHR_START-ENSG00000178591|||n.64871C>A||||||;
MA=();DBSNP=F;1000Gen=F;Cosmic=F

Figure 2.3: VCF annotation (ANN) field and corresponding data values.

##INFO=<ID=ANN,Number=.,Type=String,Description="Functional annotations: ’Allele | Annotation |
Annotation_Impact | Gene_Name | Gene_ID | Feature_Type | Feature_ID | Transcript_BioType | Rank |
HGVS.c | HGVS.p | cDNA.pos / cDNA.length | CDS.pos / CDS.length | AA.pos / AA.length | Distance |
ERRORS / WARNINGS / INFO’ ">

Figure 2.4: VCF INFO field describing the annotation (ANN) field.

The metadata section also contains filters that have been applied to the data and are described as

follows:

##FILTER=<ID=threshold,Description="Threshold on probability of positive call">

Fig. 2.1 shows a snippet from a VCF file of one of the TNBC samples in this study cohort. Of

particular interest to the data structuring process was the decomposition of multi-valued fields like

the functional annotation (ANN) field into atomic values. The annotation field contains multiple

data fields for one genomic position, encoded separated by a pipe sign "|" and each annotation

delimited by ";". Multiple effects (consequences) are separated by a comma as shown in Fig.

2.3. Atomizing mutli-valued fields involved decomposing and mapping each distinct functional

annotation with each genomic position providing distinct variant tupples with a one-to-one mapping

(one record/tupple for each REF/ALT combination) to support relational and downstream data

analysis (Fig. 2.5).

Example data line extract: chr20 64871 . C A,A . . ANN=A|... , A|...

Structured output of the above line:

chr20 64871 . C A . . ANN=A|...

chr20 64871 . C A . . ANN=A|...

Data structuring also involved breaking down INFO fields into atomic variables.
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Example line: PR=0.82;TR=40;TA=4;NR=28;NA=0;TC=ACA;NI=0;ND=32;

Structured output of the above line:

chr pos ref alt pr tr ta nr na tc ni nd

20 64871 C A 0.82 40 4 28 0 ACA 0 32

The structured data from all VCF files as called by respective variant callers (MutationSeq, Strelka

and Lumpy) was then loaded into respective database tables (Fig. 2.5 and Fig. 2.6) in which fields

are denoted by: tumour_id , chrom , pos , ref , alt, pr , tc , tr , ta , nr , na , nd , ni , annotation

, annotation_impact , gene_name , gene_id , feature_type , feature_id , transcript_biotype ,

rank , hgvs_c , hgvs_p , cdna_pos_cdna_length , cds_pos_cds_length , aa_pos_aa_length ,

distance , errors_warnings_info , lof , nmd , ma , dbsnp , x1000gen and cosmic with each record

containing one genomic event at a particular chromosomal position. Having an atomic value for

each data field enabled effective data mining, querying, manipulation and analysis.

Figure 2.5: Extract of a structured VCF file: Rows denote data values captured for each variable/
field(columns).
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Figure 2.6: Structured VCF file - sample database extract.

BAMStats Output Files: Sequence Alignment Map (SAM) and Binary Alignment Map (BAM)

file formats have long been used as a standard of storage for large sequence alignments generated

from genome mapping. The BAMstats software tool (Flagstat) was used to generate mapping

statistics on BAM files containing sequence data to provide statistics on the total_reads, qc_failure,

number of duplicate reads, number of mapped reads, mapped_percentage, paired_in_sequencing,

reads (1 and 2), properly_paired, properly_paired_percentage, self_and_mate_mapped, single-

tons, singletons_percentage, MAPQ values, and the avg_read_coverage (Fig. 2.7).

Figure 2.7: Sample BAMStats output file showing row-wise data fields and values.

BAMStats output file data was then transformed and structured into specific fields and their respec-

tive values that were later loaded into database tables (bamstats_tumour and bamstats_normal

for tumour and normal bam files respectively) for further downstream analysis (Fig. 2.8). Below

are examples of data lines from BAMstats output files structured to suit database storage.

Example Line1: 1136651250 in total

Example Line2: 1044480124 properly paired (91.89%)

Structured output:
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total_reads properly_paired properly_paired_percentage

1136651250 1044480124 91.89

Figure 2.8: Structured BAM statistics output file - database extract of selected columns.

Text Files: Variant callers like TITAN, and deStruct provide output in form of text files (Fig.

2.9) most of which conform to a "unique_field - singular_value" data structure. Files such as these

were loaded into the database as is with a few changes made to support database storage (Fig.

2.10).

Figure 2.9: TITAN pipeline output in text file format specifying atomic values for each data field
(tab delimited).

Figure 2.10: Titan output file - database extract.

2.2 Database design and development

A good and well thought-out database design is a prerequisite for the development of effective and

high performance databases that address efficient data manipulation, mining and analysis processes
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by minimizing data redundancy and the cost of running a query in terms of total execution/run

time. They also enforce referential integrity and alleviate the need for data restructuring.

The key tasks undertaken to design the clinical outcomes and genomic variants database involved

identifying data objects (entities represented as a logical collection of items and correspond to a

table in the database), their attributes that correspond to the columns of a particular table and the

relationships between the identified objects. Entity relationship diagrams (ERDs) have long been

used as data models for relational databases to map out and show database entities, attributes,

constraints and relationships between them. Fig.2.11 shows the created data model upon which the

database was built. The entities and their description, attributes and constraints of the developed

database as shown in the data model are extensively presented in a data dictionary in Appendix

C.

2.2.1 Relationships between entities and data constraints
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2.2. Database design and development

Figure 2.11: Database model (Entity Relationship Diagram (ERD)) developed using Crow’s Foot
Notation: Database entities are represented as boxes while relationships between entities are repre-
sented as lines. The cardinality of a relationship is represented by symbols |, -0<-, |<- that denote
"one and only one", "zero to many", or "one to many" relationships respectively.
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Towards creating an effective database, we imposed a number of constraints in the database design:

1. Primary keys are record identifiers that support efficient database querying. Primary key

constraints were supplied to a column or group of columns to uniquely identify the rows

in each database table. In cases where tables had no candidate primary keys, a sequential

key was supplied. This was common for entities that contain variant data. In such entities

one sample, identified by the tumour_id can have multiple genomic variant entries. This

implies that in any single table that captures variants, the tumour_id is duplicated across

rows making it ineligible for primary key candidacy. Apart from being unique, fields chosen

as primary keys were also required not to be null.

2. Fields expected to have a data value were specified with the "NOT NULL" constraint so

that a null value is not assumed. A case in point is, if data at a genomic position has been

captured, we expect entries of the chromosome and position not to be null. On the other

hand, a patients’ ER status or tumour grade may be unknown. Such fields were left to default

to "NULL" in case data on a subject was not available.

3. A unique constraint was supplied for fields whose data is expected to be unique.

4. A data type for each field was specified to validate the kind of data that can be stored in

a field. As examples, date_of_diagnosis of a patient was stored with a data type ‘date’,

the field that captures a patient’s age was constrained to store integers, chromosome was

constrained to store character data, position was constrained to store big integers (8 Bytes),

pr (probability of somatic mutation) was constrained to store floating-point data values and

annotation and annotation impact were constrained to store variable character data.

5. Referential integrity is a key feature in the design of relational databases. This constraint

ensures that implied relationships between database entities are enforced hence the notion

"relational database". To implement referential integrity, foreign key constraints were supplied

specifying which values in a column (or a group of columns) must match the values appearing

in a row of another table. The enforcement of this and other constraints mentioned in 1 -

4 above is shown in the example query below that was used to create the samples database

object. The query specifies the following constraints:- "primary key" (unique by default), "not

null", "foreign keys" and the "data variable types":

cur.execute("
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CREATE TABLE samples(tumour_id VARCHAR,

normal_id VARCHAR NOT NULL,

consent_id VARCHAR REFERENCES clinical (consent_id) ON DELETE CASCADE,

facility_of_origin VARCHAR NOT NULL,

sample_type VARCHAR NOT NULL,

project_code VARCHAR REFERENCES projects (project_code)

ON DELETE CASCADE, PRIMARY KEY (tumour_id))")

In the above query, the samples table is being created with 6 fields or variables whose data

types such as "VARCHAR" (variable character) are shown: tumour_id, normal_id , con-

sent_id, facility_of_origin, sample_type and project_code. The consent_id field references

the consent_id field (primary key) in the clinical table and the project_code field references

the project_code field in the project table. This further implies that the clinical and project

tables (parent tables) be created before the samples table (child) as some of its fields reference

fields in other tables. Also, in such cases, an update or deletion of a patient by consent_id in

the clinical table would require a cascade update or delete of all corresponding patient records

in child tables. Thus a row in a parent table cannot be deleted until all referenced rows in

the child tables are deleted towards enforcing database integrity.

2.3 Database optimization

Databases have the ability to store enormous amounts of data and support the storage of millions of

data entries. In this study, we opted for the deployment of a PostreSQL database that unlike other

database types like MySQL or MongoDB has an unlimited database size that supports storage of as

much data as required with the main constraint being system based storage constraints. PostreSQL

databases also support a 32 terabyte (TB) maximum table size. With such large databases that

have the ability to contain large table sizes comes the salient issue of database performance - the

larger the table, the higher the cost of running a table scan in terms of total execution/ run-time

and page I/Os (reads and writes of blocks containing data records to and from disk into main

memory) as shown in the query plan extracts below:

Smaller table with 91 rows:
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Aggregate (cost=2.14..2.15 rows=1 width=0)

(actual time=0.047..0.048 rows=1 loops=1)

-> Seq Scan on samples (cost=0.00..1.91 rows=91 width=0)

(actual time=0.016..0.023 rows=91 loops=1)

Planning time: 0.393 ms

Execution time: 0.132 ms

Larger table with 157,070,329 rows:

Aggregate (cost=3919120.84..3919120.85 rows=1 width=0)

(actual time=27677.309..27677.309 rows=1 loops=1)

-> Seq Scan on titan_outfile_cnas

(cost=0.00..3526380.07 rows=157096307 width=0)

(actual time=0.020..17813.013 rows=157070329 loops=1)

Planning time: 0.070 ms

Execution time: 27677.332 ms

Given the high cost associated with working with large databases and in particular the database

created herein to store mutation data, database optimization was imperative to reduce the sys-

tem response time by maximizing the speed and efficiency with which data is retrieved. To opti-

mize database performance, various optimization strategies were implemented to include: indexing,

query optimization, vacuuming, partition large tables and bulk loading as will be presented in the

following sections.

2.3.1 Indexing

Indexing has long been proven to be one of the most beneficial methods for optimizing database

and query performance by supporting fast access to data records in associated database tables and

minimizing the overall cost required to process a user query. These data structures are created

using column(s) from a database table and contain a search key value and a pointer that holds the

address of the disk block where a particular key value can be found.

In existence are B+ tree indexes that allow both range (e.g. 50 > age > 80) and equality (e.g. age

= 60) searches, and Hash indexes that only support equality searches, the most common being B+
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tree indexes as they support both search types. Well constructed indexes have a huge bearing on

query optimization as these could avoid scanning an entire table for results by opting for a more

efficient query plan such as an index scan that involves iterating over most or all index items when

an index item meets a search condition. The required records as specified by a query are retrieved

through an index whose entries (Fig. 2.12) are read left to right. In cases where all required data

can be accessed through an index, there is no need for the database query optimizer to visit the

much larger data table whose access consequently amounts to more page I/Os and greater run-time.

Another alternative access path to a table scan is an index seek/ probe that requires searching an

index for a specific value or a small set of values (fewer than those required in an index scan).

B+ tree indexes on data tables in the developed databases were created using queries like the below:

CREATE INDEX dest_idx1 ON destruct_breakpoints (tumour_id);

Where "dest_idx1" is the name of the index being created on column "tumour_id" in the database

table "destruct_breakpoints".

When a new index is created, the database server automatically updates database statistics from

which a query optimizer can discover the distribution of values in a column to determine the optimal

execution plan for a query. The rough estimate of the number of elements within a specific range

in a histogram of the query optimizer helps the optimizer decide on whether to use an index scan

or a table scan for query execution.

There are two types of B+ tree indexes: clustered and non-clustered indexes, each with unique

benefits depending on the data or query in question. Clustered indexes sort the data and dictate

the storage order of the data records in a table (Fig. 2.12) - the order of data records is the same

(or close) to the order of data entries in an index. As an example, given a B+ tree index on a

column with patient ages, the ages will be ordered in ascending order, in that, ages 20 - 30 could

be on one page while ages 30 - 60 on another index page. Running a query that requires retrieving

ages between 50 and 60 would require reading one page into memory. This type of index is more

efficient if build on columns of data that are most often accessed for ranges of values. Given that

data entries are arranged in sorted order, this index type also excels at finding a specific row when

the indexed value is unique.
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Figure 2.12: Clustered and unclusterd B+ tree index structure: A hierarchical data search struc-
ture is maintained with all searches beginning at the root of the tree to the lowest level of the tree
(leaf level containing data entries). Using node pointers (separated by search key values), index
entries direct searches to the correct leaf page. In clustered B+ tree indexes, node pointers to the
left of a key value k point to a subtree that contains only data entries less than k and the node
pointer to the right of a key value k points to a subtree that contains only data entries greater than
or equal to k while unclustered indexes do no maintain this order.

In contrast, with non clustered indexes, two records that are close to each other as defined by the

index might not appear on the same data page or adjacent data pages. With such indexes, there

is no defined order as seen in Fig. 2.12. This implies that if we have patient ages scattered across

multiple pages and we have a query that searches for patients aged between 30 and 60, we can

read as many as 30+ pages into memory instead of 1!! as is the case in clustered indexes. This is

because all records are on different pages that all need to be fetched into memory. Because of the

high costs accrued with unclusted indexes, clustered indexes were applied in this study.

Application of clustered B+ tree indexes for optimization

Given a database query for the tumour_id, gene_name, age, grade and overall survival status for all

patients with a high impact mutation in PIK3CA, BRCA1 and BRCA2 and for which the variant

was called at a probability > = 0.9, we could run the below query that produces the database

output shown in Fig. 2.13:

SELECT DISTINCT s.tumour_id, i.gene_name, c.age, c.grade, c.os_status
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FROM clinical_data c, snvs_intersect i, samples s

WHERE c.tumour_id = s.tumour_id and s.tumour_id = i.tumour_id

AND (i.gene_name = ‘PIK3CA’ or i.gene_name = ‘BRCA2’ or i.gene_name = ‘BRCA1’)

AND i.pr > = 0.9

AND (i.annotation_impact = ‘HIGH’ or i.annotation_impact = ‘MODERATE’) ORDER BY 2;

Relational Algebraic Notation of the above query:

π tumour_id, gene_name, age, grade, os_status ((σ(gene_name = ‘PIK3CA’ ∨ gene_name = ‘BRCA2’ ∨ gene_name = ‘BRCA1’) ∧ pr >= 0.9 ∧ (annotation_impact = ‘HIGH’ ∨ annotation_impact = ‘MODERATE’)

snvs_intersect) ./ samples ./ clinical_data)

Figure 2.13: Database query output.

Query tree without indexing:

The relational algebra tree in Fig. 2.14 shows the query evaluation plan of the query in question and

consists of annotations at each tree node indicating the data access methods for the query. Query

execution starts with a full table/file scan of the snvs_intersect table for gene_name = (‘PIK3CA’

or ‘BRCA2’ or ‘BRCA1’) and pr > = 0.9 and annotation_impact = ‘HIGH’ or ‘MODERATE’.

Records that satisfy the query conditions are selected (selection denoted by sigma (σ)) and the

results of this subtree query are joined by tumour_id (using a Nested Loop Join (joins denoted by

a bowtie ./) to the samples table. Using a Merge Join, the resultant subquery results are joined

to the clinical_data table by tumour_id from which an overall projection (denoted by pi (π)) of
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the requested queried data preceded by a Hash Aggregate to select distinct records is returned.

In the query tree, ‘∧’ denotes an intersection (or ‘AND’) while ‘∨’ denotes union (or ‘OR’). The

query plan of the query and corresponding tree in Fig. 2.14 is shown in (Fig. 2.15). The total total

execution time for this query is 19423.822ms.

Figure 2.14: Query tree without indexing.

Query plan without indexing:

Figure 2.15: Query plan without indexing (Run-time = 19423.822ms).
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Applying a clustered B+ tree:

Below is a query used to create a clustered B+ tree index on columns (pr and gene_name) in the

snvs_intersect database table:

CREATE INDEX gene_pr_idx ON snvs_intersect (pr, gene_name);

CLUSTER snvs_intersect USING gene_pr_idx;

With the application of a clustered B+ tree index on columns (pr and gene_name) of the

snvs_intersect table, a scan on the index is done for only data entries whose values (pr and

gene_name) satisfy the search conditions in the query (Fig. 2.16 and Fig. 2.17 ). These (fewer)

data entries are then used to return only the required data as specified by the query conditions.

This decreases the cost required to execute the query by avoiding a full table scan. The total

execution time for this query is 876.877ms compared to 19423.822ms without an index.

Query tree with indexing:

Figure 2.16: Query tree with indexing (Clustered B+ Tree).

Query plan with indexing:
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Figure 2.17: Query plan with index (Run-time = 5876.877ms).

2.3.2 Query optimization

Besides the application of indexes to enhance performance, the construction of smart queries that

leverage knowledge on database tables can also yield faster data access. Below is a differently

structured query that provides the same output as seen in Fig. 2.13, however, this query has a

longer execution time (10935.661 ms, Fig. 2.18) despite the created clustered index.

SELECT DISTINCT s.tumour_id, i.gene_name, c.age, c.grade, c.os_status

FROM clinical c

JOIN samples s on c.tumour_id = s.tumour_id

JOIN snvs_intersect i on s.tumour_id = i.tumour_id

WHERE (i.gene_name like ‘PIK3CA’ or i.gene_name like ‘BRCA2’ or

i.gene_name like ‘BRCA1’)

AND i.pr > = 0.9

AND (i.annotation_impact = ‘HIGH’ or i.annotation_impact = ‘MODERATE’) ORDER BY 2;
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Figure 2.18: Query plan of poor performance query: Increased run-time regardless of applied
indexes.

2.3.3 Re-clustering

Clustered tables are physically ordered based on the order of created clustered indexes, however,

as clustering is a one time operation, subsequent table updates or inserts are not clustered. For

example, if data records are ordered by probability of somatic mutation (pr), new table entries may

be inserted at the end of a file whereby a new record with pr = 0.5 may be found on a page whose

pr range was originally 0.8 - 1.0. With time, a table tends to be unclustered which ends up affecting

performance by increasing the cost of executing a query. To avoid this, occasional reclustering was

done by reissuing the same clustering command especially on updated tables.

2.3.4 Vacuuming

Vacuuming is another optimization mechanism that was used to reclaim storage occupied by dead

tuples in database tables. In normal database operations, records that are deleted or obsolete by

an update are not physically/completely removed from a table and keep occupying storage space

until a "VACUUM" is done. Fig. 2.19 shows an example of vacuuming done on a sample table

(clinical) to reclaim storage space from dead tuples not removed by "autovacuum".
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Figure 2.19: Vacuuming for database optimization.

2.3.5 Bulk-loading

All data in the developed database was bulk-loaded using developed data loading scripts. This

approach significantly improved performance as it is much faster than repeated inserts. Secondly

records are sorted before bulk-loading. All scripts that performed data structuring of pipeline data

had a database loading function to pass structured data instantly to the database as shown below.

#Database connection

pw <- { " "}

drv <- dbDriver("PostgreSQL")

con <- dbConnect(drv, dbname = "genomic_variants", host = "",

user = "", password = pw)

rm(pw)

.

.

data structuring script

.

.

#Writing structured data to the database into table "museq_unfiltered"

dbWriteTable(con, "museq_unfiltered", museq_unfiltered, append=TRUE,

row.names=0)

Unlike pipeline output data that contained genomic variants, the clinical data used in this study

was loaded from a .csv file as shown in the abstract script below.
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#!/home/rasiimwe/miniconda3/bin/python

import psycopg2

import sys

import csv

import os

con = None

try:

con = psycopg2.connect("host=‘localhost’ dbname=‘genomic_variants’

user=‘ ’ password=‘ ’")

cur = con.cursor()

path="path to file"

## Creating table clinical_data

##-----------------------------------------------------------------

cur.execute("DROP TABLE IF EXISTS clinical_data")

cur.execute("CREATE TABLE clinical_data (...)

## Data Loading

##-----------------------------------------------------------------

cur.execute("COPY clinical (consent_id, diagnosis_date, age, ...)

FROM ‘%s’ delimiter ‘,’ csv header" % (path))

##-----------------------------------------------------------------

con.commit()

except psycopg2.DatabaseError as e:

if con:

con.rollback()
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print (‘Error %s’) % e

sys.exit(1)

finally:

if con:

con.close()
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Chapter 3

Database Application to Whole

Genome Profiling and Stratification of

TNBCs

This chapter presents the utility of the developed database in facilitating the exploration and

analysis of mutation contents and patterns in complex diseases with emphasis on understanding

the genomic landscape and mutational characteristics underlying TNBCs towards TNBC subgroup

discovery. Section 3.1 provides an overview of the utility of the developed database in supporting

preliminary quality control (QC) checks and analyses on the data in the database. Section 3.2

presents database mining and exploratory functions to support comprehensive genome and gene-

level analyses in the cohort to further support the discovery and subsequent analysis of TNBC

genomic subgroups as presented in section 3.3.

3.1 Quality Control (QC)

QC checks for whole genome sequencing:- Before embarking on downstream data analysis,

the database was explored for sequencing thresholds that were applied to the data during whole

genome sequencing. The sequencing parameters used in this study were derived from the bam file of

each sample using the SAMtools-mpileup utility and were thereon loaded into the database for stor-

age and subsequent analysis. Among the data variables captured in the bam statistics data tables

include ‘total_reads’, ‘qc_failure’, ‘duplicates’, ‘mapped’, ‘mapped_percentage’, ‘paired_in_seq’,

‘read1’, ‘read2’, ‘properly_paired’, ‘properly_paired_percentage’, ‘self_and_mate_mapped’, ‘sin-

gletons’, ‘singletons_percentage’ and ‘avg_read_coverage’. Of interest to our study was the average

read coverage used for whole genome sequencing (Fig. 3.1) and the percentage of mapped and prop-

erly paired reads (Fig. 3.2 and Fig. 3.3 respectively). For effective and high confidence variant
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discovery, the established average read coverage threshold in this study was 60X. All samples that

did not meet this threshold were flagged for higher resequencing coverage and excluded from further

downstream analyses. Queries such as the below were used to extract data used to check sequencing

parameters:

stats.tumour <- dbGetQuery(con,

"SELECT tumour_id, mapped_percentage, properly_paired,

avg_read_coverage

FROM bamstats_tumour

ORDER BY 3 DESC)")
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Figure 3.1: Average read coverage: (a) Tumour samples: mean = 79.91X, range = 66.88X -
89.83X. (b) Normal samples: mean = 39.81X, range = 34.80X - 45.07X.
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Figure 3.2: Percentage of mapped reads: (a) Tumour samples: mean = 92.41%, range = 78.83%
- 95.44%. (b) Normal samples: mean = 94.16%, range = 89.85% - 99.77%.
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Figure 3.3: Percentage of properly paired reads: (a) Tumour samples: mean = 90.81%, range =
77.42% - 93.74%. (b) Normal samples: mean = 92.55%, range = 88.50% - 97.58%.

QC checks for normal contamination levels:- In various genomic studies, sequencing of

matched tumor and normal samples has become a conventional study design to distinguish between

somatic and germline variants towards supporting reliable detection of somatic mutations. Tumor-

normal sample contamination causes decreased sensitivity in mutation detection that could result

in inaccurate sequencing data [88]. The detection of normal contamination estimates in this study

was derived from TITAN output data [82]. From the perspective of copy number inference, the

exploration and analysis of genomic allelic imbalances and loss of heterozygosity events as derived

from allelic ratio data (RefCount/Depth) is significantly influenced by the proportion of the normal

content in a tumour sample (tumour content = 1 - (normal contamination estimate)) [82]. Fig.

3.4 presents database derived normal contamination estimates of the samples in this cohort, all of

which were rendered viable for subsequent downstream analysis. To note is that 7 out of 11 samples

with no normal contamination are patient-derived xenografts (PDX).

QC implementations for genomic variant data:- In our study, the identification of genome-

wide somatic mutations was executed using the Kronos workflow assembler [89] that was used

to run TITAN [82] to infer copy number aberrations and loss of heterozygosity (LOH) events in

each patient_tumour sample(s), deStruct [83] and Lumpy [84] to infer structural variants (SVs),

mutationSeq [85] to infer single nucleotide variants (SNVs) and Strelka [86] to infer both indel and

single nucleotide variants. All QC implementations by the various pipeline tools were applied to

the TNBC whole genome sequencing data. To maintain high confidence calls, further downstream

quality control involved intersecting SVs inferred by deStruct and Lumpy and removing those with

breakpoints falling in low-mapability regions. SNVs called by both mutationSeq and Strelka were

also intersected and variants for which the probability of somatic mutation (pr) >= 0.9 were used

in all subsequent study analyses. Given that databases support computation of results on demand,
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Figure 3.4: Normal contamination estimates: (a) Proportion of the normal content in a tumour
sample (tumour content = 1 - (normal contamination estimate)), mean = 0.45, range = 0 - 0.76.
(b) Corresponding density plot showing the distribution of the normal contamination estimate in
this cohort.

pr thresholds were directly applied during database query time allowing for flexibility in setting

thresholds for data analysis. Below is an example query that returns results based on user defined

parameters.

gene <- "BRCA1"

effect <- "stop_gained"

pr.pass <- 0.9

query <- fn$identity("

SELECT DISTINCT tumour_id, gene_name, annotation

FROM strelka_indels

WHERE gene_name = ‘$gene’ AND annotation like ‘$effect’

UNION SELECT distinct tumour_id, gene_name, annotation

FROM snvs_intersect

WHERE gene_name = ‘$gene’ AND annotation like ‘$effect’

AND pr >= $pr.pass ORDER BY 1 ASC")

data <- dbGetQuery(con, query)
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3.2. Somatic aberrations characteristic of TNBC

Output of the above query:

tumour_id | gene_name | annotation

-----------+-----------+-------------

SA296 | BRCA1 | stop_gained

SA535 | BRCA1 | stop_gained

SA590 | BRCA1 | stop_gained

SA655 | BRCA1 | stop_gained

3.2 Somatic aberrations characteristic of TNBC

Somatic aberrations (CNAs, SVs, SNVs and indels) present in the tumor genome of each patient

were discovered using the aforementioned variant calling tools:- TITAN, deStruct and Lumpy,

mutationSeq and Strelka (snvs) and strelka (indels) respectively. Database driven explorations and

analyses conducted on the identified somatic mutations to infer patient specific and cohort-wide

mutation loads, patterns and characteristics are presented in the following sections.

3.2.1 Distribution of mutation loads per sample and across the cohort

The distribution of mutation loads in this TNBC cohort as depicted in Fig. 3.5 shows a varying

distribution of mutation loads among TNBC cases with variations seen across the cohort and in the

mutation-type loads in each sample. Some key questions to ask here would be whether mutation

loads have a bearing on survival outcomes and patient stratification and whether cases with higher

mutation burdens associate with higher levels of genomic instability. We answer these questions in

section 3.3.
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3.2. Somatic aberrations characteristic of TNBC

Figure 3.5: Distribution of mutation loads: Track 1 (a) shows the number of SNV mutations
(y-axis) for each sample (x-axis), (mean = 8172.62, range = 0 - 77463). b) Shows the number of
SVs for each sample (mean = 180.70, range = 0 - 785), c) shows the number of indels for each
sample (mean = 1327.41, range = 1 - 10373) and d) shows the total mutation load for each of the
samples (mean = 9680.74, range = 149 - 79075). Samples are sorted in ascending order based on
the total mutation load.
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3.2. Somatic aberrations characteristic of TNBC

3.2.2 Structural variants
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Figure 3.6: Distribution of structural variants (SVs) per sample and across the cohort: (a) and (b)
show the distribution and abundance of SV types across the cohort, sorted in ascending order based
on the total number of mutations observed in each SV type (inversions, foldback, translocations,
deletions and duplications). (c) The proportion of SV types (y-axis) identified in each sample
(x-axis).

Overall, we see that TNBCs are enriched for duplications followed by deletions (Fig. 3.6 a))

with clear genomic heterogeneity observed between cases in this cohort, some harboring significant

structural variations in specific variant types compared to others (Fig. 3.6 c)). Specific structural

variants disrupt gene structures and consequently promote tumour progression. SVs and mutation

signatures derived from specific structural variants have played an important role in patient and

prognostic stratification and the identification of potentially actionable events [42, 47, 73]. Detected

SVs in this study were used as key features for patient stratification as will be expounded on in

section 3.3. The data object ‘breakpoints.all’ used to store structural variant data extracted from

the database and used to generate figures 3.6 a), b) and c) was created using the following query:
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3.2. Somatic aberrations characteristic of TNBC

breakpoints.all <- dbGetQuery(con,

"SELECT DISTINCT tumour_id, type, COUNT(*)

FROM svs_filtered

WHERE type = ‘foldback’

GROUP BY 1, 2

UNION SELECT DISTINCT tumour_id, type, COUNT(*)

FROM svs_filtered

WHERE type = ‘duplication’

GROUP BY 1, 2

UNION SELECT DISTINCT tumour_id, type, count(*)

FROM svs_filtered WHERE type = ‘translocation’

GROUP BY 1, 2

... ")

Sample data extract:

tumour_id | type | count

-----------+---------------+-------

SA1071 | duplication | 22

SA669 | inversion | 26

SA673 | deletion | 23

SA586 | duplication | 18

SA423 | duplication | 94

SA287 | foldback | 1

SA275 | inversion | 5

SA232 | duplication | 99

SA997 | duplication | 10

SA211 | translocation | 37
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3.2. Somatic aberrations characteristic of TNBC

3.2.3 Copy number aberrations
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Figure 3.7: Distribution of copy number aberrations (CNAs) per sample and across the cohort: (a)
and (b) The distribution and abundance of CNA types across the cohort, sorted in ascending order
based on the total number of mutations observed in each CNA type (Homozygous deletion (HOMD),
Unbalanced CNA (UBCNA), Allele-specific CNA (ASCNA), Balanced CNA (BCNA), Amplified
LOH (ALOH), Copy-neutral LOH (NLOH), Hemizygous deletion (DLOH), Diploid heterozygous
(HET) and copy number GAIN). (c) The proportion of CNA types (y-axis) identified in each
sample (x-axis).

Fig. 3.7 (c) shows the variation in copy number profiles in the TNBC cohort and the heterogeneity

of TNBCs at CNA level. The Intra-sample heterogeneity at both CNA and SV level is further

depicted in Fig. 3.8 that displays the variations in the genome structure of patient sample SA586

and the corresponding relationships between genomic intervals.
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3.2. Somatic aberrations characteristic of TNBC

Figure 3.8: Intra-sample heterogeneity at both CNA and SV levels: Circos plot showing the type
of copy number aberrations (HET, BCNA, UBCNA, ALOH, ASCNA, NLOH, DLOH, HOMD,
GAIN) across the genome (track 1), copy number variations in the genome (track 2 and 3) and the
type of structural variations (translocation, duplication, foldback, deletions, and inversions - track
4) followed by corresponding links between genomic positions.

Figure 3.9: Case-based copy number profile: Copy number profile of patient sample SA586 showing
copy number variations (y-axis) along the genome denoted by coordinates representing genomic
positions (x-axis).

The below snippet shows the database call required to extract the data used to generate Fig. 3.8

and Fig. 3.9 for CNAs and SVs respectively followed by sample data extracts.
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3.2. Somatic aberrations characteristic of TNBC

CNAs data call:

sample <- input$sample_id

query <- fn$identity("SELECT chromosome, start_position_bp, end_position_bp,

titan_call, copy_number

FROM titan_segs_cnas

WHERE tumour_id = ‘$sample’")

cnas <- dbGetQuery(con, query)

Sample data extract (CNAs):

chromosome | start_position_bp | end_position_bp | titan_call | copy_number

-----------+-------------------+-----------------+------------+-------------

13 | 50046072 | 79052038 | ALOH | 8

7 | 66617961 | 66628179 | ALOH | 8

7 | 66591794 | 66594881 | ALOH | 8

4 | 156518707 | 191043593 | ALOH | 3

22 | 47415860 | 47415875 | ALOH | 8

SVs data call:

sample <- input$sample_id

query <- fn$identity("SELECT chrom_1, brk_1, chrom_2, brk_2, brk_dist, type

FROM svs_filtered

WHERE tumour_id = ‘$sample’ ORDER BY 1")

svs <- dbGetQuery(con, query)

Sample data extract (SVs):

chrom_1 | brk_1 | chrom_2 | brk_2 | brk_dist | type

---------+-----------+---------+-----------+----------+---------------

1 | 64435479 | 3 | 101565610 | Infinity | translocation

10 | 61995259 | 10 | 61993238 | 2021 | duplication
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3.2. Somatic aberrations characteristic of TNBC

10 | 34280375 | 10 | 34280333 | 42 | foldback

10 | 28596747 | 10 | 28596716 | 31 | foldback

10 | 43885134 | 10 | 43885091 | 43 | foldback

10 | 124903202 | 10 | 124903123 | 79 | foldback

10 | 83072235 | 10 | 83106088 | 33853 | deletion

10 | 2186974 | 10 | 2186941 | 33 | foldback

11 | 124022349 | 11 | 124022281 | 68 | foldback

11 | 119800299 | 13 | 68122937 | Infinity | translocation

3.2.4 Gene-level analysis

The identification of significantly mutated genes (Appendix B) across this TNBC cohort was ac-

complished using MutSigCV from which EMCN, TP53, MUC21, PIK3CA, MUC4, MB, CTU2,

RAB3IL1, PTEN were identified as the most significantly mutated genes in this cohort (FDR <

0.1). Database derived mutations in each gene per case were visualized using an oncoplot (Fig.

3.10) with each row representing a gene and each column representing a case. As expected, PIK3CA

mutations appear mutually exclusive with PTEN loss. The script written to extract the data used

to generate Fig. 3.10 is shown in Appendix A.2.0.2.

Figure 3.10: Visualizing gene-based mutations: Oncoplot showing high impact mutations in each
gene (rows) per sample (columns). Multiple mutations in a gene are represented by multiple colors
representative of specific mutation types in a single gene. TP53 (56.9%) was identified as the
most frequently mutated gene in this cohort, followed by PIK3CA (8.9%), PTEN (7.3%), BRCA1
(5.7%), USH2A (4.9%), MUC4 (4.9%) and RB1 (4.1%) respectively.
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3.3. TNBC genomic subgroup discovery

3.3 TNBC genomic subgroup discovery

One of the main objectives of this study was to stratify TNBCs into distinct subgroups us-

ing genomic features extracted from the developed database. This was hinged on our hypothe-

sis that TNBC patients can be stratified into distinct genomic subgroups based on their whole

genome profiles. Genomic features integrated for subgroup discovery included CNAs (HET,

DLOH, GAIN, NLOH, HOMD, ASCNA, ALOH, BCNA and UBCNA), SNVs (stop_gained,

splice_donor, splice_acceptor, start_lost and stop_lost), indels (frameshift_variant, splice_donor,

splice_acceptor, stop_gained, bidirectional_gene_fusion, gene_fusion and stop_lost), SVs (dupli-

cation, deletion, translocation, inversion and foldback) and mutation signatures (POLE, APOBEC,

HRD (Homologous Recombination Deficiency), UNK (Unknown), MMRD (Mismatch Repair De-

ficiency), T→C, M-Dup (Medium Duplications), S-Del (Small Deletions), Cl-SV (Clustered Struc-

tural Variants), FBI (Foldback Inversions), Cl-FBI (Clustered Foldback Inversions), L-Del (Large

Deletions), S-Dup (Small Duplications), Tr (Translocations) and L-Dup (Large Duplications)).

CNAs, SNVs, SVs, and indels were computed as the proportion of each variant over all domain

specific variants while mutation signatures were inferred using the multi-modal correlated topic

model (MMCTM) [42]. All the identified stratification features were used for integrative hierar-

chical clustering analysis using the R package pheatmap and the Manhattan distance measure to

support the discovery of patient subgroups and their genomic and clinical characteristics. Figures

3.11, 3.12, 3.13, 3.14, 3.15 and 3.17 show subgroups identified by mutation signatures, CNAs, SNVs,

indels, SVs and by multi-feature integration respectively.

60



3.3. TNBC genomic subgroup discovery

3.3.1 TNBC subgroups identified by mutation signatures

Figure 3.11: TNBC genomic subgroups identified by mutation signatures: Hierarchical clustering
of 88 TNBC cases (x-axis) reveals 5 subgroups using scaled values of mutation signatures (POLE,
APOBEC, HRD, UNK, MMRD, T→C, M-Dup, S-Del, Cl-SV, FBI, Cl-FBI, L-Del, S-Dup, Tr and
L-Dup) (rows in the bottom panel of the heatmap). Color scales range from blue to red to reflect
no or low proportions of a variant (blue) relative to high variant proportion levels (red) in each
case. Heatmap annotations are shown in rows in the top panel where blue signifies presence of a
mutation (mutant) in significantly mutated genes and in DNA damage repair genes while white
signifies absence of a mutation in a gene (wild type) for each case.

Stratification of TNBC cases in this cohort by mutation signatures (Fig. 3.11) led to the discovery

of 5 main subgroups. The first 2 groups (leftmost) were identified enriched for the HRD signature

and further distinguished by S-Dup and S-Del signatures in group 1 and group 2 respectively. ∼1/5

of the samples in group 1 were identified enriched for the APOBEC signature. Group 3 unlike other

groups was highly enriched for the Cl-SV signature, group 4 was enriched for APOBEC, FBI and a

signature unknown (UNK) while group 5 was enriched for FBI, UNK and MMRD. 3 cases (cluster

3 and 7) did not fall in any of the main clusters and therefore flagged as outliers. Based on this

stratification, all patients with a BRCA1/BRCA 2 mutation were classified in group 1 which also

had no case with a PIK3CA mutation. All cases with a PTEN mutation were also classified in

group 1. A chi-square test was conducted to check for mutual exclusivity among subgroup gene-

based mutations, however, this test and all subsequent tests yielded low p-values (> 0.33) due to

few observations. There are future prospects of re-testing mutual exclusivity with a larger cohort.
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3.3.2 TNBC subgroups identified by CNAS

Figure 3.12: Stratification of cases by scaled values of CNA proportions (HET, DLOH, GAIN,
NLOH, HOMD, ASCNA, ALOH, BCNA and UBCNA) reveals 5 subgroups.

Stratification of TNBC cases by copy number aberrations revealed 5 subgroups (Fig. 3.12); group

1 (leftmost) was enriched for HET, DLOH, GAIN and NLOH; group 2 was significantly enriched

for HET, with ∼3/4 of the cases being enriched for copy number GAIN, the third and 4th clusters

containing 2 cases each were flagged as outliers. Group 3 and 4 were identified enriched for copy

number GAIN with NLOH being a distinguishing feature found enriched in group 4 while group 5

was identified enriched for UBCNA compared to other subgroups followed by ALOH and BCNA

respectively. All cases with a mutation in PTEN were found in group 4 which also comprised of

most cases with a BRCA1 mutation and no case with a PIK3CA mutation. Group 2 that was

enriched for HET, had the fewest cases with a TP53 mutation and with the highest number of

cases with a mutation in PIK3CA.
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3.3.3 TNBC subgroups identified by SNVs

Figure 3.13: Stratification of cases by scaled values of SNV proportions (stop_gained, splice_donor,
splice_acceptor, start_lost and stop_lost) reveals 4 subgroups.

Patient stratification by SNVs revealed 4 main subgroups (Fig. 3.13), the first (leftmost) heavily

enriched for stop_gained mutations while group 2 was identified enriched for stop_gained with

∼1/2 of the cases in this group being enriched for splice_donor and splice_acceptor mutations

(∼1/3). Group 3 was heavily enriched for splice_donor while group 4 was heavily enriched for

splice_acceptor. The 3 right-most clusters comprising of 2 cases each were flagged as outliers.

Most cases with BRCA1, PIK3CA or LAMB4 mutations were clustered in group 1 which had no

case with a PTEN mutation. Group 2 had most cases with a mutation in MUC4, group 3 had no

cases with either a BRCA1 or PIK3CA mutation while group 4 had cases with the fewest mutations

in the genes of interest.
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3.3.4 TNBC subgroups identified by indels

Figure 3.14: Stratification of cases by scaled values of indel proportions (frameshift_variant,
splice_donor, splice_acceptor, stop_gained, bidirectional_gene_fusion, gene_fusion and
stop_lost) identifies 3 subgroups.

Stratification of TNBC cases by indels (Fig. 3.14) identified 3 groups, all of which were enriched

for frame_shift variants with a stronger enrichment in group 1. Compared to other groups, group

2 and 3 had a higher signal for splice_acceptor and splice_donor mutations respectively. Flagged

as outliers were the right-most 4 clusters comprising of 1 case each. Whether cases in group 2 and

3 have no BRCA1/2 mutations remains inconclusive due to the few cases in these groups.

3.3.5 TNBC subgroups identified by SVS

Figure 3.15: Stratification of cases by scaled values of SV proportions (duplication, deletion, translo-
cation, inversion and foldback) reveals 6 subgroups.
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Patient stratification was also done based on SVs (Fig. 3.15) from which 6 subgroups were identified.

Group 1 (leftmost) in which all cases with a PTEN or a BRCA1/2 mutation were clustered was

heavily enriched for duplications. Group 2 was identified enriched for duplications, deletions and

inversions while group 3 was heavily enriched for deletions. Group 4 was enriched for inversions

(compared to other groups) while group 5 and 6 were enriched for translocations and foldback

inversions respectively. No cases in groups 2 - 6 had a mutation in PTEN, BRCA1 and BRCA2.

The above database derived analyses for patient stratification show that TNBCs can be stratified

based on mutation signatures and individual domain specific somatic variants (CNAs, SVs, SNVs

and indels) into subgroups that depict unique patterns and characteristics with mutations in SMGs

or in DNA damage repair genes seen enriched in certain groups compared to others. We also see

that some driver mutations are associated with mutation signatures that stratified the TNBCs as

seen in Fig. 3.11 where all BRCA1, BRCA2 and PTEN mutations were seen enriched in the HRD

group.

3.3.6 TNBC subgroup discovery by genomic feature integration

The preceding section demonstrates that TNBCs can be stratified into distinct subgroups by muta-

tion signatures and by domain specific genomic variants (CNAS, SNVs, indels and SVs). Integrat-

ing all genomic features (CNAs (HET, DLOH, GAIN, NLOH, HOMD, ASCNA, ALOH, BCNA

and UBCNA), SNVs (stop_gained, splice_donor, splice_acceptor, start_lost and stop_lost), in-

dels (frameshift_variant, splice_donor, splice_acceptor, stop_gained, bidirectional_gene_fusion,

gene_fusion and stop_lost), SVs (duplication, deletion, translocation, inversion and foldback) and

mutation signatures (POLE, APOBEC, HRD, UNK, MMRD, T→C, M-Dup, S-Del, Cl-SV, FBI,

Cl-FBI, L-Del, S-Dup, Tr and L-Dup)) for patient stratification identified 5 subgroups (Fig. 3.17).

The optimal number of clusters was identified using the Elbow method (Fig. 3.16) that suggested

5 optimal clusters.
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Figure 3.16: TNBC genomic subgroups - Optimal number of clusters: (a) Optimal number of
clusters = 5 as identified by the Elbow method. (b) Silhouette measure (range = -1 to +1) of
within-cluster similarity where high values indicate that a case is well matched to its own cluster
and poorly matched to neighboring clusters).
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Figure 3.17: TNBC genomic subgroups identified by genomic feature integration (mutation signa-
tures, CNAs, SVs, SNVs and indels): Hierarchical clustering of 88 TNBC cases (x-axis) revealed
by scaled values of mutation signatures (HRD, S-Dup, Tr, T→C, S-Del, APOBEC, FBI, UKN,
L-Dup, MMRD, L-Del, Cl-SV, POLE, Cl-FBI, M-Dup), CNAs (HET, NLOH, GAIN, DLOH, AS-
CNA, ALOH, BCNA, UBCNA) (rows in the bottom panel of the heatmap) with a dendrogram of
the hierarchical cluster analysis. Color scales range from blue to red to reflect no or low proportions
of a variant (blue) relative to high variant proportion levels (red) in each case. Heatmap anno-
tations are shown in rows in the top panel where blue signifies presence of a mutation (mutant)
in significantly mutated genes and in DNA damage repair genes while white signifies absence of a
mutation in a gene (wild type) for each case.

Stratification of TNBCs in this cohort by genomic feature integration using hierarchical clustering

and the Manhattan distance measure, identified 5 novel TNBC subgroups. Group 1 and 2 (leftmost)

were found enriched for the HRD signature and were further distinguished by the S-Dup signature

that is seen only enriched in group 1. Unlike group 2, group 1 was also enriched for copy number

aberration HET. Flagged as an outlier was the third cluster comprising of one case heavily enriched

for the Cl-FBI signature compared to other subgroups. Group 3 and 4 were enriched for the FBI

signature with a stronger signal found in group 3. These 2 groups were further distinguished by

the Cl-SV signature that was enriched in group 4. Group 5 was enriched for HET with ∼1/3

of the cases enriched for APOBEC. All groups except for group 1 had at least one case with a

PIK3CA mutation. No cases with a mutation in MUC4 were identified in group 1 and 4 while

all groups except for groups 2, 3 and 4 had at least one case with a BRCA1 mutation. All cases

with a mutation in PTEN or in BRCA2 were clustered in group 1. As seen in previous analyses,

the identified subgroups are associated with differing characteristics such as the enrichment of
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mutations in the genes of interest and the association of specific gene mutations with mutation

signatures. Almost all BRCA1 mutant cases are seen associated with the HRD group (group 1)

that contains all the cases with a BRCA2 or PTEN mutation. We also see less association of

PIK3CA and MUC4 mutations with the HRD signature.

3.3.7 TNBC genomic subgroup analysis

3.3.7.1 Subgroup comparative analyses of mutation loads

To improve our understanding of the identified genomic subgroups beyond their association with

SMGs, DNA damage repair genes, mutation signatures and somatic aberrations, comparative anal-

yses were conducted from both genomic and clinical perspectives to compute the prevalence of

mutations in each subgroup and to conduct comparative clinical data analyses. Fig. 3.18 shows

the mutation loads per subgroup based on a) SNVS, b) indels, c) SVs and d) the total mutation

load. Based on SNVs, group 2 (HRD) had the highest mutation load followed by group 1 (HRD +

S-Dup) while group 3 had the lowest (FBI) and by indels, group 4 (FBI + Cl-SV) had the highest

mutation load while group 3 (FBI) had the lowest. Based on SVs, group 1 (HRD + S-Dup) had

the highest mutation load while group 5 (HET) had the lowest. Overall, group 2 (HRD) had the

highest mutation load followed by group 1 (HRD + S-Dup) while group 3 had the lowest. The

summary of these analyses is presented in Fig. 3.19.
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Figure 3.18: Subgroup mutation loads: (a): SNV average mutation load per subgroup:- Group
1 = 8,630, Group 2 = 11,001, Group 3 = 4,041, Group 4 = 7,222, Group 5 = 6,463, (b): Indel
average mutation load per subgroup:- Group 1 = 1,406, Group 2 = 1,847, Group 3 = 609, Group
4 = 2,211, Group 5 = 982, (c): SV average mutation load per subgroup:- Group 1 = 284, Group
2 = 193, Group 3 = 81, Group 4 = 196, Group 5 = 59, (d): Total average mutation load per
subgroup:- Group 1 = 10,320, Group 2 = 13,041, Group 3 = 4,674, Group 4 = 9,628, Group 5 =
7,504.

mean_indels mean_snvs mean_svs mean_total_load

3 5 4 1 2 3 5 4 1 2 3 5 4 1 2 3 5 4 1 2
0

2500

5000

7500

10000

12500

subgroup

m
ut

at
io

n 
lo

ad
s

Figure 3.19: Subgroup mean mutation loads

3.3.7.2 Subgroup comparative analyses of the distribution of rearrangements

Comparative analyses for subgroup rearrangement distributions were conducted (Fig. 3.20) and

identified a high proportion of translocations, duplications, deletions, inversions (other types of

inversions other than foldback inversions), and foldback inversions in group 2, 1, 2, 4 and 3 respec-

tively as shown below.
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Figure 3.20: Subgroup rearrangement distributions. Group 1 was found enriched for duplications
(58.69%), Group 2 enriched for deletions (37.73%), Group 3 enriched for deletions (30.64%), Group
4 enriched for inversions (28.27%) while group 5 was enriched for duplications (38.69%). The group
that associated with the highest translocations was Group 2, duplications - Group 1, deletions -
Group 2, inversions - Group 4 and foldback - Group 3.

| Group 1 Group 2 Group 3 Group 4 Group 5

---------------|------------------------------------------------------------

Translocation |17.26% 22.15% 13.83% 15.78% 14.40%

Duplication |58.69% 19.24% 21.03% 22.13% 38.70%

Deletion |14.62% 37.73% 30.64% 22.21% 26.66%

Inversion |5.69% 11.65% 20.01% 28.27% 13.39%

Foldback |3.74% 9.22% 14.48% 11.61% 6.86%

3.3.7.3 Subgroup comparative analyses of trinucleotide distributions

Trinucleotide distribution analyses (Fig. 3.21) also revealed distinct trinucleotide distributions per

subgroup where group 2 (HRD) was enriched for C→A substritutions followed by group 1 (HRD

+ S-Dup) with the least abundance of C→A substritutions identified in group 3 (FBI). Group 2

(HRD) followed by group 1 (HRD + S-Dup) had the highest abundance of C→G substitutions

while group 3 (FBI) had the lowest. C→T substritutions were highest in group 5 (HET) closely

followed by group 2 while group 3 had the lowest. The abundance of T→A substritutions was

seen enriched in group 2 (HRD) and lowest in group 3 (FBI). T→C substritutions were enriched

in group 2 (HRD) compared to group 3 (FBI) that had the lowest while T→G substritutions were

most abundant in group 2 (HRD).
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Figure 3.21: Subgroup trinucleotide distributions: (a) C→A substitutions: Means = 802.7714,
948.5385, 281.25, 598.1429, 404.6 for groups 1 - 5 respectively. (b) C→G substitutions: Means
= 867.4571, 1055, 269.75, 570.1429, 290.4 for groups 1 - 5 respectively. (c) C→T substitutions:
Means = 1001.286, 1279.308, 771.9375, 1154, 1279.4 for groups 1 - 5 respectively. (d) T→A sub-
stitutions: Means = 590.1714, 717, 208.75, 409.7143, 279.2 for groups 1 - 5 respectively. (e) T→C
substitutions: Means = 680, 984.2308, 325.125, 590.1429, 758.2667 for groups 1 - 5 respectively.
(f) T→G substitutions: Means = 371.7429, 514.4615, 162.3125, 265.1429, 233.7333 for groups 1 -
5 respectively.

3.3.7.4 Subgroup comparative analyses from a clinical perspective

To determine the association between the identified subgroups and clinical outcomes, comparative

analyses of patient groups by age, tumour_size, node status, grade and overall survival were con-

ducted. Comparison of subgroups by age identified no large variance in subgroup mean ages (means

= 50.08, 52.01, 58.85, 64.5, 62.11 for groups 1 - 5 respectively), however, as seen in (Fig. 3.22: a)),

group 4 (FBI + Cl-SV) was identified having the highest average age (range: 47 - 81) while group

1 (HRD + S-Dup) had patients with the youngest ages (range: 26 - 80), with more than half of

the patients having age < 50. We would expect that younger patients would be associated with a
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3.3. TNBC genomic subgroup discovery

lower mutation burden but this was on the contrary as younger patients were clustered in one of the

groups with the highest mutation burden (HRD + S-Dup group) suggestive of the likelihood that

younger patients have more proliferative disease and therefore the tumors accumulate mutations

at a higher rate.

Figure 3.22: Subgroup comparative analyses based on clinical outcomes - age: (a) Age distribution
per subgroup. (b) Age distribution of cases in this TNBC cohort: average age = 55.4years, range
= 26years - 82years.

Based on tumour size and grade, group 2 (HRD) had the highest average tumour_size while group

5 (HET) had the lowest (Fig. 3.23: a)). As shown in (Fig. 3.23: c)), 24% of the patients in

group 1 (HRD + S-Dup) were found node positive, while 40%, 67%, 50% and 54% of the patients

in groups 2, 3, 4 and 5 were found node positive respectively. Noted from these analyses is that

node positivity is not associated with mutation burden as groups with high mutation loads had

fewer patients whose tumours were node positive. 67% of patients in the lowest mutation load

group (group 3 (FBI)) were node positive while only 24% of the patients in a higher mutation load

group were node positive (group 1 (HRD + S-Dup)). Also, tumour size was found dissociated from

node positivy as seen with groups 1 (HRD + S-Dup) (24% node +ve, average tumour_ size =

2.7), 3 (FBI) (67% node +ve, average tumour_size = 2.4) and 2 (HRD) (40% node +ve, average

tumour_size = 2.9). All cases in each subgroup presented with high grade tumours but for group

3 (FBI) that had some cases (27%) with low grade tumors.
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3.3. TNBC genomic subgroup discovery

Figure 3.23: Subgroup comparative analyses based on clinical outcomes - tumour size, node status
and grade: (a) Tumour_size distribution: Means = 2.77cm, 2.93cm, 2.43cm, 2.83cm, 2.33cm for
groups 1 - 5 respectively. (b) Relationship between tumour size, node status and overall survival.
(c) Chi-square contingency table of node status and grade observations per subgroup.

A preliminary sniff into the overall survival of the identified patient subgroups identified group 5

(HET) to putatively have the best survival outcomes while group 2 (HRD) has the worst. Despite

the HRD group (group 2) having the highest mutation burden and the worst overall survival (OS),

we also see that the FBI group (group 3) with the lowest mutation burden is not associated with

the best overall survival but group 5 (HET) is. This goes to show that the mutation burden may

not necessarily have a large bearing on patient outcomes. Secondly, group 1 (HRD + S-Dup) with

a higher average mutation burden has better OS than the FBI group with a lower average mutation

burden.

From these statistical analyses we can putatively deduce that:

1. Mutation burden may not necessarily have a large bearing on patient outcomes as the FBI

group (group 3) with the lowest mutation burden was not found associated with the best

overall survival (OS). Secondly, group 1 (HRD + S-Dup) with a higher average mutation

burden was found to have a better OS than the FBI group with a lower average mutation

burden.
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2. Node positivity is not associated with mutation burden as groups with high mutation loads

had fewer patients whose tumours were node positive. 67% of patients in the lowest mutation

load group (group 3 (FBI)) were node positive while only 24% of the patients in a higher

mutation load group were node positive (group 1 (HRD + S-Dup)).

3. Younger patients were identified in one of the groups with the highest mutation burden (HRD

+ S-Dup, group 1) suggestive of more proliferative disease that could lead to a higher rate at

which tumours accumulate mutations in younger patients.

4. Low grade tumours were found associated with a low mutation load subgroup (group 3 (FBI)).

5. Tumour size has no bearing on node positivy as seen with groups 1 (HRD + S-Dup) (24%

node +ve, average tumour_ size = 2.7), 3 (FBI) (67% node +ve, average tumour_size =

2.4).

** All the above deductions pend validation with a larger cohort. This will also go a long way in

identifying a solid association between SMGs and clinical outcomes.
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Chapter 4

Data Access and Visualization

Interface

Current advances in sequencing technologies have led to the generation of vast amounts of sequenc-

ing data that have come with a salient need for data management, access, analysis and visualisation.

Secondly, as genomic research has become increasingly collaborative, it has become crucial to access

and share data in a way that is understandable to research teams, both technical and non tech-

nical. We extended this functionality to the implemented database by developing Genome-Miner,

a flexible, convenient, and interactive web-based database interface to support global data access,

interactive exploration, querying, analysis, visualization and sharing of clinical outcomes and whole

genome profiling data in the developed database, results of which are rendered dynamically into the

front-end web application and directly from the database for utilisation by researchers, biologists

and clinicians using intuitive and interactive plots and data tables, as shown in this chapter. The

developed interface also allows researchers to download all results and upload files for data anal-

ysis and visualization without the need of any programming knowledge. This establishment will

go a long way in helping researchers generate novel insights and hypotheses by visualizing clinical

outcomes and genomic variant data on CNAs, SNVs, SVs and indels.

4.1 Genome-Miner

The front page to the developed platform provides users with the objective and overview of Genome-

Miner (Fig. 4.1). This page also provides navigational links to the interface implementations of

the analyses conducted on the data in the database based on quality control, mutation burden,

genomic visualization, trinucleotide distributions, CNAs, rearrangements, gene-level analysis, sub-

group discovery and clinical outcomes analyses and visualizations.
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4.1. Genome-Miner

Figure 4.1: Genome-Miner: Front page showing navigational links to the main analysis and vi-
sualisation themes availed through this platform (QC, Mutation Loads, Genomic Visualization,
Trinucleotide Distributions, CNAs, Rearrangements, Gene Level Analysis, Subgroups and Clinical
Outcomes).

76



4.2. Quality control analyses and visualizations

4.2 Quality control analyses and visualizations

a

b
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4.2. Quality control analyses and visualizations

c

Figure 4.2: Database interface - user defined QC explorations and visualizations for a) average
read coverage b) mapped percentage and c) normal contamination estimates.

QC explorations, analyses and visualizations are based on 5 main parameters: average read cover-

age, mapped percentage, properly paired reads, normal contamination estimates and tumour ploidy

estimates. These analyses are based on sequencing statistics extracted from bam files (average read

coverage, mapped percentage, properly paired reads) and Titan output files (normal contamination

and ploidy estimates) providing an overview of the distribution of specified parameters across the

cohort. More data on each of the samples in the cohort is availed through data tables that can be

manipulated to dynamically trigger visualizations of interest.
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4.3 Mutation load analyses and visualizations per sample and

across the cohort

a

b

Figure 4.3: Database interface - mutation loads: User defined explorations, analyses and visualiza-
tions for a) SNV mutation loads and b) total mutation loads.
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4.4. Genomic visualizations

Interface enabled explorations, analyses and visualizations of mutation loads per sample and across

the cohort based on variant types: SNVs, SVs, indels and the total mutation load are shown in

Fig. 4.3. Data tables provide sample specific mutation loads that can be ordered (ascending or

descending) by variant type and based on a user’s visualization preference. Users also have the

ability to refer to the average read coverage for cases of interest.

4.4 Genomic visualizations

The database interface also enables user-triggered visualizations for genomic events across a pa-

tient’s chromosome by CNAs (Fig. 4.4 a)), breakpoints or by a combination of CNAs and break-

points (Fig. 4.4 b)). A user specifies two parameters: the sample of interest and the mutation

type, parameters that are subsequently used to generate and render circos plots on the fly as is the

case with all other plots.

a
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b

Figure 4.4: Database interface - genomic visualization: a) Genomic visualization by CNAs. b)
Genomic visualization by CNAs and SNVs.

Fig. 4.4 a) (top plot) shows a circos plot rendered to the user where track 1 in the plot shows

the type of copy number aberration per genomic position while the copy number variations are

shown in track 2 and 3. The bottom plot shows the copy number profile of the sample of interest

(case SA586) and shows copy number variations (y-axis) along the genome denoted by coordinates

representing genomic positions (x-axis). Fig. 4.4 b) on the other hand shows a user-triggered

circos plot for both copy number aberrations and structural variants. Structural variations across

the chromosome (translocations, duplications, foldback inversions, deletions, and inversions) are

shown in track 4 followed by corresponding links between genomic positions. The interface will

also support visualizations of multiple circos plots to support comparative visualizations of the

genomic structures of multiple cases, for example, visualizations by subgroup.
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4.5. Intra-sample trinucleotide distribution

4.5 Intra-sample trinucleotide distribution

Figure 4.5: Database interface - trinucleotide distribution per sample.

The developed interface supports visualizations of the trinucleotide distribution across the chro-

mosome of each case as shown in Fig. 4.5. Trinuclueotide substitution (C>A, C>G, C>T, T>A,

T>C, T>G) counts (y-axis) are shown for every chromosome (x-axis) with an extract of required

source data and details provided in the data table.

4.6 CNAs analysis and visualizations per sample and across the

cohort

Explorations and visualizations of the distribution and abundance of copy number aberrations

across the cohort and within each sample as triggered by the interface user are shown in Fig. 4.6

a) and b) respectively.
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4.6. CNAs analysis and visualizations per sample and across the cohort

a

b

Figure 4.6: Database interface - distribution of CNAs: a) Overall distribution b) Cohort-wide and
intrasample distribution.
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4.7. SVs analysis and visualizations per sample and across the cohort

4.7 SVs analysis and visualizations per sample and across the

cohort

The distribution and abundance of structural variants across the cohort and within each sample

are shown in Fig. 4.7 a) and b) respectively. By specifying parameters of interest, the interface

renders reactive plots and data tables to support user interaction with both the data and rendered

plots as shown in Fig. 4.7.

a
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4.8. Gene-level analysis

b

Figure 4.7: Database interface - distribution of SVs: a) Overall distribution b) Cohort-wide and
intrasample distribution.

4.8 Gene-level analysis

Genome-Miner also supports user defined visualizations of mutations in each gene per case (Fig.

4.8). Here, a user specifies genes and variants of interest and an oncoplot showing which cases

have the specified mutations in selected genes is generated. Each row represents a gene and each

column represents a case. Multiple hits in a gene are represented by multiple colors representative

of specific mutation types in a single gene.
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Figure 4.8: Database interface - gene-level analysis.

4.9 TNBC subgroup analysis and visualizations

Database-derived stratification of patients as enabled by the developed interface (Fig. 4.9) can

be done based on the user’s choice of individual variants: SNVs, CNAs, indels, SVs, mutation

signatures or by the integration of all features (SNVs, CNAs, indels, SVs and mutation signatures).

For inclusion will be user-based selections of genes of interest to apply for annotating the clustered

heatmap and choices of variants from various variant domains for inclusion as stratification features.
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Figure 4.9: Database interface - subgroup discovery by a) CNAs b) mutation signatures and c)
integrated genomic features.
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Chapter 5

Conclusions and Future Work

Relational databases have long been used as an indispensable tool in modelling and organizing

vast amounts of data, including biological data. Currently, profiling of patient genomes to infer

patterns of mutations and genomic events underpinning a patient’s disease heavily relies on data

stored in flat files whose structure complicates tasks required for analyzing relational and com-

plexly structured genomic data. To the best of our knowledge, this is the first research of its kind

that solves this problem by implementing a database driven approach to integrate data from whole

genome sequences with clinical outcomes for the exploration of the genomic landscapes and muta-

tion characteristics underpinning cancers. The developed clinical outcomes and genomic variants

database was further applied to support the mining and comprehensive analysis of clinical outcomes

and whole genome profiles of 88 TNBC patients. Functionality of the database was extended to

support global data access, interactive exploration, querying, analysis, visualization and sharing

of collected data among various research groups through the birth of Genome-Miner, a flexible,

convenient, and interactive web-based platform.

We demonstrate the applicability of the database to effectively support and enforce quality control

checks and measures by filtering data to meet down stream analysis requirements. We also demon-

strate the utility of the developed database for the exploration and analysis of somatic alterations

(CNAs, SNVs, SVs and indels), results of which show a varying distribution of mutation loads in

this TNBC cohort. Also identified was the variation in the mutation type loads within each sample

and the heterogeneity of TNBCs at CNA, SV, SNV and indel level. In this study cohort, TP53

(56.9%), PIK3CA (8.9%), PTEN (7.3%), BRCA1 (5.7%), USH2A (4.9%), MUC4 (4.9%) and RB1

(4.1%) were identified as the most frequently mutated genes.

We further applied the database to mine and compute genomic features used for patient strat-

ification and demonstrate for the first time and to the best of our knowledge, the discovery of

5 putative and distinct TNBC genomic subgroups revealed by 23 significant genomic features, 8

of which were mined and computed from the developed database (proportions of: HET, GAIN,
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DLOH, NLOH, ASCNA, ALOH, BCNA, UBCNA) and the other 15 (mutation signatures: POLE,

APOBEC, HRD, UNK, MMRD, T→C, M-Dup, S-Del, Cl-SV, FBI, Cl-FBI, L-Del, S-Dup, Tr and

L-Dup) derived using the multi-modal correlated topic model (MMCTM). Each of the identified

subgroups exhibited distinct genomic and clinical characteristics.

Results from this research show and confirm our hypothesis that TNBC patients can be stratified

into distinct subgroups based on their whole genome profiles and that the identified TNBC sub-

groups exhibit distinct clinical and genomic characteristics. Our results also show that mutation

signatures enriched in identified subgroups associate with specific driver mutations or mutations

in DNA damage repair genes. These results provide an improved understanding of TNBCs and

will further provide valuable insights into subgroup specific clinically actionable events, options

for novel therapeutic modalities and the identification of patients most likely to respond to spe-

cific modalities. These results also show for the utility of the genome as a potential discriminant

biomarker in patient treatment.

5.1 Limitations and future work

The research herein focused on the analysis of whole genome profiles and clinical outcomes of

TNBC patients, however, the elucidation of TNBC subgroups and their respective characteristics

further requires a multi-omics approach that integrates and analyses data from all platforms (DNA

methylation, messenger RNA arrays, exome sequencing, microRNA sequencing and reverse-phase

protein arrays) for the discovery of more informative subgroups. Also, the analysis of a larger

cohort is still needed to provide more insights into the genomic underpinnings of TBCs and to

corroborate the identified subgroups in this study or identify additional subgroups in TNBC.

Secondly, the database was structured to suit the data output from respective variant callers (mu-

tationSeq, Titan, deStruct, Lumpy and Strelka). A more generic approach of storing and mining

variants discovered using other variant calling tools other than those used in this study is needed.

Also, to note is that the variants in this study were annotated using snpEff. A more generic solution

will require the mapping and inclusion of annotations from other variant annotation tools such as

VEP.

Future work will involve implementing a more generalizable database and bulk-loading genomic data

from other cancers such as ovary into the database to support integrated analyses and inferences
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from different cancer types. Prospects to include more data such as gene expression data are

underway.
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Appendix A

Examples of Data Structuring,

Bulk-loading and Data Extraction

Scripts

A.1 Examples of data structuring and loading scripts

A.1.1 Script to structure and load bam file statics derived by flagstats

#!/home/rasiimwe/miniconda3/bin/python

import psycopg2

import sys

import csv

import os

import string

import subprocess

con = None

try:

con = psycopg2.connect("host=‘localhost’ dbname=‘genomic_variants’

user=‘ ’ password=‘ ’")

cur = con.cursor()

#creating tumour_bamstats database object

create table tumour_bamstats (tumour_id varchar primary key references
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samples (tumour_id), normal_id varchar, total_reads bigint, qc_failure

bigint, duplicates bigint, mapped bigint, mapped_percentage float,

paired_in_seq bigint, read1 bigint, read2 bigint, properly_paired

bigint, properly_paired_percentage float,self_and_mate_mapped bigint,

singletons bigint, singletons_percentage float, mate_map_diff_chr

bigint, mate_map_diff_chr_mapq bigint, mapq varchar, mapq2 varchar,

avg_read_coverage float)

#Calling extracted stats, structuring and loading into database

#-----------------------------------------------------------------------------

path = ""

os.chdir(path)

for file in os.listdir(path):

tumour_id = ‘_illumina’.join(file.split(‘_illumina’)[:-1])

f = open(file, "r")

for i, line in enumerate(f):

if i == 0: #in total e.g. 843990938

total = int(filter(str.isdigit, line))

elif i == 1: #QC failure e.g. 0

qc.f = int(filter(str.isdigit, line))

elif i == 2: #duplicates e.g. 623568175

duplicates = int(filter(str.isdigit, line))

elif i == 3: #mapped e.g. 801225533, percentage

#mapped eg (94.93%) # pass mapped and percentage

#mapped as 2 diff variales

mapped = ‘ ’.join(line.split(‘ ’)[:1])

da = ‘ ’.join(line.split(‘ ’)[-1:])

db = str(da)[1:-1]
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dc = ‘)’.join(db.split(‘)’)[:-1])

mapped_percentage= ‘%’.join(dc.split(‘%’)[:-1])

elif i==4: #paired in sequencing e.g. 843990938

paired_in_seq = int(filter(str.isdigit, line))

elif i == 5: #read1 e.g. 421995469

read1 = ‘ ’.join(line.split(‘ ’)[:1])

elif i == 6: #read2 e.g. 421995469

read12 = ‘ ’.join(line.split(‘ ’)[:1])

elif i == 7: #properly paired e.g. 791170058,

#percentage of properly paired (93.74%)

properly_paired = ‘ ’.join(line.split(‘ ’)[:1])

ha = ‘ ’.join(line.split(‘ ’)[-1:])

hb = str(ha)[1:-1]

hc = ‘)’.join(hb.split(‘)’)[:-1])

properly_paired_percentage = ‘%’.join(hc.split

(‘%’)[:-1])

elif i == 8: #with itself and mate mapped

#e.g. 795636451

self_and_mate_mapped = int(filter(str.isdigit,

line))

elif i == 9: #singletons e.g. 42764211 percentage

#of singletons (5.07%)

singletons = ‘ ’.join(line.split(‘ ’)[:1])

ja = ‘ ’.join(line.split(‘ ’)[-1:])

jb = str(ja)[1:-1]
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jc = ‘)’.join(jb.split(‘)’)[:-1])

singletons_percentage =

’%’.join(jc.split(‘%’)[:-1])

elif i == 10: #with mate mapped to a different chr

#e.g. 2882215

mate.mapped.chr= int(filter(str.isdigit, line))

elif i == 11: #with mate mapped to a different chr

#e.g. 2178551, mapQ (mapQ>=5)

mate.mapped.chr.diff =

‘ ’.join(line.split(‘ ’)[:1])

la = ‘ ’.join(line.split(‘ ’)[-1:])

lb = str(la)[1:-1]

mapq = ‘)’.join(lb.split(‘)’)[:-1])

mapq2 = ‘Q’.join(l2.split(‘Q’)[-1:])

cur.execute ("""

update tumour_bamstats set

total_reads=(%s), qc_failure=(%s),duplicates=(%s),

mapped=(%s), mapped_percentage=(%s),

paired_in_seq=(%s), read1=(%s), read2=(%s),

properly_paired=(%s), properly_paired_percentage=(%s),

self_and_mate_mapped=(%s),

singletons=(%s), singletons_percentage=(%s),

mate_map_diff_chr=(%s), mate_map_diff_chr_mapq=(%s),

mapq=(%s), mapq2=(%s)

where tumour_id = (select tumour_id from samples where

tumour_archive_id =(%s) and

samples.tumour_id = tumour_bamstats.tumour_id)

""", [total, qc.f, duplicates, mapped,

104
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mapped_percentage, paired_in_seq, read1,

read2, properly_paired,properly_paired_percentage,

self_and_mate_mapped, singletons,

singletons_percentage, mate.mapped.chr,

mate.mapped.chr.diff, mapq, mapq2, tumour_id])

#-----------------------------------------------------------------------------

con.commit()

except psycopg2.DatabaseError, e:

if con:

con.rollback()

print ‘Eror %s’ % e

sys.exit(1)
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A.1.2 Script to structure and load mutationSeq data

library(VariantAnnotation)

library(dplyr)

library(tidyr)

library(splitstackshape)

library(RPostgreSQL)

pw <- { " "}

drv <- dbDriver("PostgreSQL")

con <- dbConnect(drv, dbname = "genomic_variants", host = "localhost",

user = "rasiimwe", password = pw)

rm(pw)

dbExistsTable(con, "pipeline_result_paths")

museqsnvs <- dbGetQuery(con, "select tumour_id, mutationseq from

pipeline_result_paths")

museqsnvs <- as.data.frame(museqsnvs)

tumour_id1 = museqsnvs[1]

museqsnvs.path = museqsnvs[2]

for(i in museqsnvs.path){

files <- Sys.glob(file.path(i, "*.vcf"))

for (f in files){

x <- matrix(unlist(strsplit(as.character(f), ‘/’)), ncol=1,

byrow=TRUE)

tumour_id <- as.character(x[5])

vcf <- readVcf(f, "hg19")

if (dim(vcf)[1]! = 0){

initial <- data.frame(info(vcf))

initial <- tibble::rownames_to_column(initial,
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"chrom_pos_ref_alt")

split1 <- matrix(unlist(strsplit(as.character

(initial$chrom_pos_ref_alt), ‘:’)), ncol=2,byrow=TRUE)

df <- cbind(initial$chrom_pos_ref_alt,

as.data.frame(split1))

names(df) <- c("chrom_pos_ref_alt", "chrom", "pos")

split2 <- matrix(unlist(strsplit(as.character

(df$pos), ‘_’)), ncol = 2, byrow=TRUE)

df2 <- cbind(df, split2)

names(df2) <- c("chrom_pos_ref_alt", "chrom",

"pos1", "pos", "ref_alt")

split3 <- matrix(unlist(strsplit(as.character

(df2$ref_alt), ‘/’)), ncol = 2, byrow = TRUE)

df3 <- cbind(df2, split3)

names(df3) <- c("chrom_pos_ref_alt", "chrom",

"pos1", "pos", "ref_alt", "ref", "alt")

initial <- cbind (df3$chrom, df3$pos,

df3$ref,df3$alt,initial)

names(initial)[names(initial)==‘df3$chrom’]<-‘chrom’

names(initial)[names(initial) == ‘df3$pos’]<- ‘pos’

names(initial)[names(initial) == ‘df3$ref’]<- ‘ref’

names(initial)[names(initial) == ‘df3$alt’]<- ‘alt’

initial$chrom_pos_ref_alt <- NULL

newann <- cSplit(initial, 13, sep = ",",

direction = "long", fixed = FALSE, drop = TRUE,

stripWhite = TRUE, makeEqual =FALSE,

type.convert = TRUE)

newann <- as.data.frame(newann)
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newann[] <- lapply(newann, gsub, pattern=‘"’,

replacement=‘’)

newann <- cSplit(newann, "ANN", "|")

names(newann)[names(newann) %in% ...

newann[] <- lapply(newann, gsub,

pattern = ‘\\(’, replacement=‘’)

newann[] <- lapply(newann, gsub, pattern=‘)’,

replacement = ‘’)

newann$allele[] <- lapply(newann$allele, gsub,

pattern = ‘c’, replacement=‘’)

newann$tumour_id <- " "

newann$tumour_id <- tumour_id

newann <- setNames(newann, tolower(colnames(newann)))

museq_unfiltered <- newann[,c(35,1:12,19:34,13:18)]

#museq_unfiltered <- newann[,c(1:12,19:34,13:18)]

museq_unfiltered<-cbind("id"=1:nrow(museq_unfiltered),

museq_unfiltered)

dbWriteTable(con,"museq_unfiltered", museq_unfiltered,

append=TRUE, row.names=0)

}

}

}

dbDisconnect(con)
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A.2 Examples of data extraction scripts

A.2.0.1 Extracting mutation loads per case:

dbExistsTable(con, "snvs_intersect", "svs_filtered", "strelka_indels")

#snvs

mutation.load <- dbGetQuery(con,

"SELECT load1.tumour_id, snvs_load, svs_load,

indel_load

FROM (SELECT DISTINCT tumour_id, COUNT(DISTINCT(

tumour_id, chrom, pos)) AS snvs_load

FROM snvs_intersect

WHERE pr >= 0.9 GROUP BY 1 ORDER BY 2)load1

LEFT OUTER JOIN LATERAL

(SELECT COUNT(tumour_id) AS svs_load

FROM svs_filtered

WHERE load1.tumour_id = svs_filtered.tumour_id

GROUP BY tumour_id )load2

ON TRUE LEFT OUTER JOIN LATERAL

(SELECT COUNT(DISTINCT(tumour_id, chrom, pos))

AS indel_load

FROM strelka_indels

WHERE load1.tumour_id = strelka_indels.tumour_id)load3

ON TRUE")

#sample output

------------------------------------------------------------------------------

tumour_id | snvs_load | svs_load | indel_load

-----------+-----------+----------+-------------

SA1064 | 129 | 1 | 18

SA1058 | 269 | 16 | 23

SA296 | 450 | 28 | 2
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SA576 | 645 | 37 | 5

SA1027 | 1376 | 32 | 78

SA680 | 1954 | 51 | 32

SA402 | 2127 | 43 | 121

SA230 | 2193 | 75 | 239

SA1071 | 2536 | 61 | 29

SA601 | 2640 | 20 | 45

SA596 | 2672 | 102 | 71

SA275 | 2746 | 44 | 32

SA423 | 3040 | 136 | 161

SA1062 | 3250 | 89 | 42

SA286 | 3293 | 43 | 77

A.2.0.2 Extracting samples with specified mutations in genes of interest:

gene.effect <- function(gene, annotation){

if (!is.character(gene) | !is.character(annotation)) {

stop(paste("Expecting gene or annotation to be of type character.

You supplied", typeof(gene), "for gene and ",

typeof(annotation),"for annotation"))

}

else

if(is_empty(gene) | is_empty(annotation)){

stop(paste("Expecting gene or annotation elements.

Your vector is empty"))

}

else

{

genes <- as.vector(gene)

for(i in genes){

annotation <- paste(annotation, "%", sep="")

annotation <- paste( "%", annotation, sep="")
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annotations <- as.vector(annotation)

for(j in annotations){

#magic_for(print, silent = TRUE)

gene <- i

effect <- j

query <- fn$identity("select distinct tumour_id, gene_name, annotation

from strelka_indels where gene_name like ‘$gene’ and annotation like

‘$effect’ union select distinct tumour_id, gene_name, annotation from

snvs_intersect where gene_name like ‘$gene’ and annotation like

‘$effect’ and pr >= 0.90 order by gene_name asc")

x <- dbGetQuery(con, query)

x <- as.data.frame(x)

if (nrow(x)! = 0)

{

x <- as.data.frame(x)

x <- na.omit(x)

print(x)

}

else{

next

}

}

}

}

}

output.gene.effect <- as.data.frame(capture.output(gene.effect(gene, annotation)))
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A.2.0.3 Extracting copy number profile of a case of interest:

pw <- {

" "

}

drv <- dbDriver("PostgreSQL")

con <- dbConnect(drv, dbname = "genomic_variants",

host = "localhost", port = 5433,

user = "rasiimwe", password = pw)

#on.exit(dbDisconnect(con))

sample <- ‘SA994’

query <- fn$identity("select chromosome, start_position_bp as start_pos,

end_position_bp as end_pos, titan_call, copy_number

from titan_segs_cnas where

tumour_id = ‘$sample’ order by 1, 5 asc")

cna.profile <- dbGetQuery(con, query)

#sample output

-----------------------------------------------------------------------------

chromosome | start_pos | end_pos | titan_call | copy_number

------------+-----------+-----------+------------+-------------

1 | 774883 | 811735 | HOMD | 0

1 | 1809509 | 2831790 | NLOH | 2

1 | 814077 | 1514183 | NLOH | 2

1 | 17019673 | 17266878 | HET | 2

1 | 5812704 | 8640892 | NLOH | 2

1 | 3833193 | 5798176 | NLOH | 2

1 | 8695522 | 17005876 | NLOH | 2

1 | 17275895 | 19582338 | NLOH | 2

1 | 19587201 | 19806850 | NLOH | 2

1 | 37365498 | 39169657 | NLOH | 2
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1 | 232230516 | 249208389 | NLOH | 2

1 | 2835487 | 3089976 | NLOH | 2

1 | 20376717 | 36454013 | NLOH | 2

1 | 120919943 | 146528957 | BCNA | 4

1 | 231220183 | 232224588 | BCNA | 4

1 | 226334605 | 231187205 | BCNA | 4

1 | 225887453 | 226292868 | BCNA | 4

1 | 197254186 | 225611118 | BCNA | 4

1 | 192443500 | 197201223 | BCNA | 4

1 | 36496696 | 37362015 | ALOH | 4
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Significantly Mutated Genes

B.1 50 top significantly mutated genes (SMGs) in this TNBC

study cohort identified using MutsigCV

gene expr reptime hic N_nonsilent N_silent N_noncoding n_nonsilent n_silent n_noncoding

nnei x X p q

EMCN 231787 807 -5 127075 34775 421590 6 0 2 50 10 19776510 0 0

TP53 2069567 213 34 200785 55445 348465 37 0 1 50 6 18124470 0 0

MUC21 2483101 261 36 248820 84435 111735 7 1 0 47 4 16643185 2.332409e-06 1.466463e-02

PIK3CA 401889 613 11 513110 127855 660270 9 0 0 26 5 12899575 1.166765e-05 5.501878e-02

MUC4 920866 365 49 551915 154570 713895 23 4 0 4 4 1561300 6.284072e-05 1.812296e-01

MB 936853 205 -13 74165 19240 108225 2 0 0 50 11 17708145 7.135792e-05 1.812296e-01

CTU2 802673 189 41 242840 70720 398190 3 0 0 50 12 20439705 7.879780e-05 1.812296e-01

RAB3IL1 1998419 212 69 177970 53105 165750 3 0 0 50 5 24505325 8.475045e-05 1.812296e-01

PTEN 259678 300 34 196820 45760 336765 3 0 0 50 10 20711470 8.647367e-05 1.812296e-01

CLEC9A 351158 445 9 119535 26715 384150 2 0 0 50 11 26085865 1.262553e-04 2.160980e-01

NOL10 804107 344 32 337220 81445 295815 3 0 0 50 11 20631910 1.449161e-04 2.160980e-01

LAMB4 487451 326 4 838240 218270 1281150 5 1 0 37 4 18093855 1.474913e-04 2.160980e-01

PLP1 472103 NaN 26 129610 37700 355875 2 0 0 24 2 13731445 1.489383e-04 2.160980e-01

SPATA4 134663 504 -4 144040 38870 182910 3 0 0 50 14 23871315 1.707353e-04 2.300293e-01

PRB3 311837 673 -1 137020 47840 184275 3 0 0 50 7 15785380 2.310394e-04 2.856918e-01

PDCD6IP 293448 409 9 411580 112970 586755 5 0 1 38 10 17206410 2.423427e-04 2.856918e-01

PIK3R1 48999 619 32 368940 91455 665730 6 1 0 50 12 19350110 2.707102e-04 2.901350e-01

MIDN 2214581 234 29 208325 70720 121875 2 0 0 50 2 15072785 2.768757e-04 2.901350e-01

SERPINB3 174293 370 -5 187460 46735 297960 2 0 0 50 9 23473580 3.351789e-04 3.311552e-01

SYT8 916434 481 33 181610 60190 156390 2 0 0 50 8 20130760 3.559895e-04 3.311552e-01

TFCP2L1 240173 568 9 231140 60970 481065 2 0 0 50 8 24944725 3.686915e-04 3.311552e-01

RUNX1 164915 429 45 226135 70265 319800 3 0 0 50 9 22489350 4.203889e-04 3.481186e-01

ANO2 349024 712 13 478335 125970 716430 5 0 0 11 1 5744960 4.279815e-04 3.481186e-01

TMEM41A 953031 366 31 121290 37245 147030 2 0 0 50 5 21343595 4.568487e-04 3.481186e-01

EZR 564251 163 55 283010 70525 564525 2 0 0 50 5 18855655 4.660136e-04 3.481186e-01
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ZCCHC5 263052 NaN 20 216775 61685 11895 3 0 0 50 8 18993455 4.798581e-04 3.481186e-01

CREB3L1 801520 158 36 242255 70525 130845 2 0 0 50 5 19788925 5.353796e-04 3.740122e-01

DNAJC17 1011507 172 46 148395 38610 636285 2 0 0 15 2 7109895 5.709995e-04 3.846497e-01

C6orf89 836025 244 43 169130 44005 263250 2 0 0 50 4 20571005 7.313133e-04 4.680890e-01

OR4X1 400891 509 -27 137735 41080 20280 4 0 0 50 11 18862740 7.533784e-04 4.680890e-01

115



Appendix C

Database Data Dictionary

The data dictionary presented herein shows the database objects (entities) for which data was

collected and their respective descriptions. Described are the fields (variables), their description,

data type and constraints for each corresponding object.

Entity 1: Projects - Towards database expansion and analysis of data from different studies,

the projects table contains data about the different projects to which each collected sample data

belongs. All current samples in the developed database belong to the TNBC project.

Entity: Projects

Field Name Description Data Type Constraints

project_code Project code uniquely identifies studies

in the database for which variant data

from WGS has been collected

CHARACTER_

VARYING

PRIMARY_

KEY

name Project name CHARACTER_

VARYING

NOT NULL

Table C.1: Database entity - Projects

Entity 2: Clinical_data - This table contains available clinical outcomes data collected on the

samples in this TNBC cohort. Clinical data was collected from various institutions (BC outcomes

unit, Montreal, Alberta and McGill) from which samples were collected.

Entity: Clinical_data

Field Name Description Data Type Constraints

consent_id Clinical id that uniquely identifies pa-

tients across systems

CHARACTER_

VARYING

PRIMARY_

KEY
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diagnosis_date Date of cancer diagnosis DATE NULL

age Patient’s age at diagnosis INTEGER NULL

grade This field captures the patient’s tumour

grade and takes on values such as 3,

2 or 1 for grades 3, 2 and 1 respec-

tively. The tumour grade can also be un-

known, therefore the field accommodates

null values

INTEGER NULL

tumour_size Patient’s tumour size in cm. Null values

are accommodated as a patient’s tumour

size may be unknown

FLOAT NULL

node_status Node status (can either be positive, neg-

ative or unknown (NULL))

CHARACTER_

VARYING

NULL

HER_status A patient’s HER2 status as identified by

IHC (can either be positive, negative or

unknown (NULL))

CHARACTER_

VARYING

NULL

ER_status A patient’s ER2 status as identified by

IHC (can either be positive, negative or

unknown (NULL))

CHARACTER_

VARYING

NULL

PR_status A patient’s PR status as identified by

IHC (can either be positive, negative or

unknown (NULL))

CHARACTER_

VARYING

NULL

OS_status A patient’s overall survival status (can

either be alive or dead or unknown

(NULL))

CHARACTER_

VARYING

NULL

OS_years A patient’s overall survival in years FLOAT NULL

DSS_status A patient’s disease specific survival sta-

tus (can either be alive or dead or un-

known (NULL))

CHARACTER_

VARYING

NULL

DSS_years A patient’s disease specific survival in

years

FLOAT NULL
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PFS_status A patient’s progression free survival sta-

tus (can either be alive or dead or un-

known (NULL))

CHARACTER_

VARYING

NULL

PFS_years A patient’s progression free survival in

years

FLOAT NULL

Table C.2: Database entity - Clinical_data

Entity 3: Samples - This table contains metadata on each of the patient samples. Data collected

includes the sample identifier, clinical identifier, facility of origin, sample type and the associated

project to which a sample belongs.

Entity: Samples

Field Name Description Data Type Constraints

tumour_id This field captures the unique tumour

identifier

CHARACTER_

VARYING

COMPOSITE

PRIMARY_

KEY (unique

id pair (tu-

mour_id &

normal_id))

normal_id Normal sample identifier (part of the

composite primary key). This value is

not unique as a patient with 2 tumour

samples will have 1 normal sample asso-

ciated with each matched tumour sample

CHARACTER_

VARYING

NOT NULL

consent_id Patient clinical identifier CHARACTER_

VARYING

FOREIGN_

KEY ref-

erences

clinical_data

(consent_id)

facility_of_

origin

This field captures the facility/institu-

tion of origin of each sample

CHARACTER_

VARYING

NOT NULL
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sample_type The sample type can either be xenograft

or primary

CHARACTER_

VARYING

NOT NULL

project_code The code (identifier) of the project to

which a sample belongs

CHARACTER_

VARYING

FOREIGN_

KEY ref-

erences

projects

(project_code)

Table C.3: Database entity - Samples

Entity 4: Titan_params_cnas - This table contains relevant parameters (nor-

mal_contamination_estimate and average_tumour_ploidy_estimate ) on each sample inferred

by TITAN.

Entity: Titan_params_cnas

Field Name Description Data Type Constraints

tumour_id Unique identifier for a tumour sample CHARACTER_

VARYING

PRIMARY_

KEY

normal_

contamination_

estimate

This field captures the normal contam-

ination estimate derived from TITAN

and denotes the proportion of normal

content in a sample

FLOAT NOT NULL

average_

tumour_ploidy_

estimate

The average number of estimated copies

in the genome (2 represents diploid)

FLOAT NOT NULL

Table C.4: Database entity - Titan_params_cnas

Entity 5: Titan_segs_cnas - This table contains copy number aberrations per genomic seg-

ment inferred by TITAN.

Entity: Titan_segs_cnas

Field Name Description Data Type Constraints
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id Serial id INTEGER PRIMARY_

KEY(SEQ)

tumour_id Tumour/sample id associated with the

variant called

CHARACTER_

VARYING

chromosome Chromosome with copy number aberra-

tion

CHARACTER_

VARYING

NOT NULL

start_position_

bp

Segment start position BIGINT NOT NULL

end_position_

bp

Segment end position BIGINT NOT NULL

length_bp Number of SNPs in the segment INTEGER NOT NULL

median_ratio Median allelic ratio across SNPs in a seg-

ment

FLOAT NOT NULL

median_logr Median log ratio across SNPs in the seg-

ment

FLOAT NOT NULL

titan_state State number used by TITAN INTEGER NOT NULL

titan_call Interpretable TITAN state (Can be

HOMD, DLOH, HET, NLOH, ALOH,

ASCNA, BCNA, UBCNA)

CHARACTER_

VARYING

NOT NULL

copy_number Predicted TITAN copy number INTEGER NOT NULL

minorcn Copy number of minor allele INTEGER NOT NULL

majorcn Copy number of major allele INTEGER NOT NULL

clonal_cluster Predicted TITAN clonal cluster INTEGER NOT NULL

clonal_

frequency

Clonal frequency INTEGER NOT NULL

gene_name Mutated gene(s) in segment CHARACTER_

VARYING

NOT NULL

Table C.5: Database entity - Titan_segs_cnas

Entity 6: Titan_outfile_cnas - This table contains CNAs derived from Titan.
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Entity: Titan_outfile_cnas

Field Name Description Data Type Constraints

id Serial id CHARACTER_

VARYING

NOT NULL

tumour_id Tumour/sample id associated with the

variant called

CHARACTER_

VARYING

chr Chromosome CHARACTER_

VARYING

NOT NULL

position Position BIGINT

refcount Number of reads matching the reference

base

INTEGER NOT NULL

nrefcount Number of reads matching the non-

reference base

INTEGER NOT NULL

depth Total read depth at a position INTEGER NOT NULL

allelicratio Refcount/depth FLOAT NOT NULL

logratio Log2 ratio between normalized tumour

and normal read depths

FLOAT NOT NULL

copynumber Predicted TITAN copy number INTEGER NOT NULL

titanstate Internal state number used by TITAN INTEGER NOT NULL

titancall Interpretable TITAN state (Can be

HOMD, DLOH, HET, NLOH, ALOH,

ASCNA, BCNA, UBCNA)

CHARACTER_

VARYING

NOT NULL

clonalcluster Predicted TITAN clonal cluster INTEGER NOT NULL

cellular

prevalence

Proportion of tumour cells containing ge-

nomic event

FLOAT NOT NULL

Table C.6: Database entity - Titan_outfile_cnas

Entity 7: Museq_snvs - This table contains somatic single nucleotide variants (SNV) detected

at each genomic position using mutationSeq for each sample in the cohort.

** The table snvs_intersect contains a mapping of snvs detected by mutationSeq with those de-

tected by Strelka. The table therefore inherits fields and descriptions as those of the museq_snvs
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table.

Entity: Museq_snvs

Field Name Description Data Type Constraints

id Serial id CHARACTER_

VARYING

NOT NULL

tumour_id Sample identifier associated with the

variant called at each position

CHARACTER_

VARYING

NOT NULL

chrom Chromosome identifier from the refer-

ence genome

CHARACTER_

VARYING

NOT NULL

pos Reference position BIGINT NOT NULL

ref Reference nucleotide at position (pos) of

the chromosome

CHARACTER_

VARYING

NOT NULL

alt Alternate non-reference allele CHARACTER_

VARYING

NOT NULL

pr Probability of somatic mutation FLOAT NOT NULL

tc Tri-nucleotide context CHARACTER_

VARYING

NOT NULL

tr Count of tumour with reference to REF INTEGER NOT NULL

ta Count of tumour with reference to ALT INTEGER NOT NULL

nr Count of normal with reference to REF INTEGER NOT NULL

na Count of normal with reference to ALT INTEGER NOT NULL

nd Number of deletions INTEGER NOT NULL

ni Number of insertions INTEGER NOT NULL

allele Identifies the alt being referred to in in-

stances of multiple alt fields

CHARACTER_

VARYING

NOT NULL

annotation Effect or consequence annotated

using sequence ontology terms e.g

splice_donor

CHARACTER_

VARYING

NOT NULL

annotation_

impact

Estimation of putative impact or delete-

riousness (Can either be HIGH, MOD-

ERATE, LOW or MODIFIER)

CHARACTER_

VARYING

NOT NULL
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gene_name Common gene name (HGNC) CHARACTER_

VARYING

NOT NULL

gene_id Gene ID CHARACTER_

VARYING

NOT NULL

feature_type Transcript, motif, miRNA CHARACTER_

VARYING

NOT NULL

feature_id Depending on the annotation, this may

be: Transcript ID Motif ID, miRNA,

ChipSeq peak, Histone mark, etc

CHARACTER_

VARYING

NOT NULL

transcript_

biotype

Description on whether the transcript is

coding or noncoding

CHARACTER_

VARYING

NOT NULL

rank Exon or intron rank or total number of

exons or introns

CHARACTER_

VARYING

NOT NULL

hgvs_c Variant using HGVS notation (DNA

level)

CHARACTER_

VARYING

NOT NULL

hgvs_p If variant is coding, this field describes

the variant using HGVS notation (pro-

tein level)

CHARACTER_

VARYING

NOT NULL

cdna_pos_

cdna_length

Position in cDNA and trancript’s cDNA

length

INTEGER NOT NULL

cds_pos_cds_

length

Position and number of coding bases INTEGER NOT NULL

aa_pos_aa_

length

Position and number of AA INTEGER NOT NULL
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distance Context and implementation dependent.

E.g. when the variant is “intronic” the

annotation may show the distance to the

closest exon; when the variant is “inter-

genic” it may show the distance to the

closest gene; and when the variant is “up-

stream or downstream” may show the

distance to the closest 5’UTR or 3’UTR

base

INTEGER NOT NULL

errors_

warning_

info

Warnings or information messages CHARACTER_

VARYING

NOT NULL

Table C.7: Database entity - Museq_snvs

Entity 8: Strelka_snvs - This table contains somatic single nucleotide variants (SNV) detected

at each genomic position using Strelka for each sample in the cohort.

Entity: Strelka_snvs

Field Name Description Data Type Constraints

id Serial id CHARACTER_

VARYING

NOT NULL

tumour_id Sample identifier associated with the

variant called at each position

CHARACTER_

VARYING

NOT NULL

chrom Chromosome identifier from the refer-

ence genome

CHARACTER_

VARYING

NOT NULL

pos Reference position BIGINT NOT NULL

ref Reference nucleotide at position (pos) of

the chromosome

CHARACTER_

VARYING

NOT NULL

alt Alternate non-reference allele CHARACTER_

VARYING

NOT NULL

qss SNV quality score INTEGER NOT NULL
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tqss Data tier used to compute QSS INTEGER NOT NULL

nt Genotype of the normal in all data tiers,

as used to classify somatic variants

CHARACTER_

VARYING

NOT NULL

qss_nt Quality score reflecting the joint proba-

bility of a somatic variant and NT

INTEGER NOT NULL

tqss_nt Data tier used to compute QSS_NT INTEGER NOT NULL

sgt Most likely somatic genotype excluding

normal noise states

CHARACTER_

VARYING

NOT NULL

somatic Denoting somatic mutation CHARACTER_

VARYING

NOT NULL

allele Identifies the alt being referred to in in-

stances of multiple alt fields

CHARACTER_

VARYING

NOT NULL

annotation Effect or consequence annotated

using sequence ontology terms e.g

splice_donor

CHARACTER_

VARYING

NOT NULL

annotation_

impact

Estimation of putative impact or delete-

riousness (Can either be HIGH, MOD-

ERATE, LOW or MODIFIER)

CHARACTER_

VARYING

NOT NULL

gene_name Common gene name (HGNC) CHARACTER_

VARYING

NOT NULL

gene_id Gene ID CHARACTER_

VARYING

NOT NULL

feature_type Transcript, motif, miRNA CHARACTER_

VARYING

NOT NULL

feature_id Depending on the annotation, this may

be: Transcript ID Motif ID, miRNA,

ChipSeq peak, Histone mark, etc

CHARACTER_

VARYING

NOT NULL

transcript_

biotype

Description on whether the transcript is

coding or noncoding

CHARACTER_

VARYING

NOT NULL

rank Exon or intron rank or total number of

exons or introns

CHARACTER_

VARYING

NOT NULL
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hgvs_c Variant using HGVS notation (DNA

level)

CHARACTER_

VARYING

NOT NULL

hgvs_p If variant is coding, this field describes

the variant using HGVS notation (Pro-

tein level)

CHARACTER_

VARYING

NOT NULL

cdna_pos_

cdna_length

Position in cDNA and trancript’s cDNA

length

INTEGER NOT NULL

cds_pos_cds_

length

Position and number of coding bases INTEGER NOT NULL

aa_pos_aa_

length

Position and number of AA INTEGER NOT NULL

distance Context and implementation dependent.

E.g. when the variant is “intronic” the

annotation may show the distance to the

closest exon; when the variant is “inter-

genic” it may show the distance to the

closest gene; and when the variant is “up-

stream or downstream” may show the

distance to the closest 5’UTR or 3’UTR

base

INTEGER NOT NULL

errors_

warning_

info

Warnings or information messages CHARACTER_

VARYING

NOT NULL

Table C.8: Database entity - Strelka_snvs

Entity 9: Strelka_indels - This table contains insertions and deletions detected at each ge-

nomic position using Strelka for each sample in the cohort.

Entity: Strelka_indles

Field Name Description Data Type Constraints
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id Serial id CHARACTER_

VARYING

NOT NULL

tumour_id Sample identifier associated with the

variant called at each position

CHARACTER_

VARYING

NOT NULL

chrom Chromosome identifier from the refer-

ence genome

CHARACTER_

VARYING

NOT NULL

pos Reference position BIGINT NOT NULL

ref Reference nucleotide at position (pos) of

the chromosome

CHARACTER_

VARYING

NOT NULL

alt Alternate non-reference allele CHARACTER_

VARYING

NOT NULL

qsi Quality score for variant INTEGER NOT NULL

tqsi Data tier used to compute QSI INTEGER NOT NULL

nt Genotype of the normal in all data tiers,

as used to classify somatic variants

CHARACTER_

VARYING

NOT NULL

qsi_nt Quality score reflecting the joint proba-

bility of a somatic variant and NT

INTEGER NOT NULL

tqsi_nt Data tier used to compute QSI_NT INTEGER NOT NULL

sgt Most likely somatic genotype excluding

normal noise states

CHARACTER_

VARYING

NOT NULL

ru Smallest repeating sequence unit in in-

serted or deleted sequence

CHARACTER_

VARYING

NOT NULL

rc Number of times RU repeats in the ref-

erence allele

INTEGER NOT NULL

ic Number of times RU repeats in the indel

allele

INTEGER NOT NULL

ihp Largest reference interrupted homopoly-

mer length intersecting with the indel

INTEGER NOT NULL

svtype Type of structural variant CHARACTER_

VARYING

NOT NULL
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somatic Flag denoting somatic mutation CHARACTER_

VARYING

NOT NULL

overlap Flag denoting somatic indel possibly

overlaps a second indel

CHARACTER_

VARYING

NOT NULL

allele Identifies the alt being referred to in in-

stances of multiple alt fields

CHARACTER_

VARYING

NOT NULL

annotation Effect or consequence annotated

using sequence ontology terms e.g

splice_donor

CHARACTER_

VARYING

NOT NULL

annotation_

impact

Estimation of putative impact or delete-

riousness (Can either be HIGH, MOD-

ERATE, LOW or MODIFIER)

CHARACTER_

VARYING

NOT NULL

gene_name Common gene name (HGNC) CHARACTER_

VARYING

NOT NULL

gene_id Gene ID CHARACTER_

VARYING

NOT NULL

feature_type Transcript, motif, miRNA CHARACTER_

VARYING

NOT NULL

feature_id Depending on the annotation, this may

be: Transcript ID Motif ID, miRNA,

ChipSeq peak, Histone mark, etc

CHARACTER_

VARYING

NOT NULL

transcript_

biotype

Description on whether the transcript is

coding or noncoding

CHARACTER_

VARYING

NOT NULL

rank Exon or intron rank or total number of

exons or introns

CHARACTER_

VARYING

NOT NULL

hgvs_c Variant using HGVS notation (DNA

level)

CHARACTER_

VARYING

NOT NULL

hgvs_p If variant is coding, this field describes

the variant using HGVS notation (pro-

tein level)

CHARACTER_

VARYING

NOT NULL
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cdna_pos_

cdna_length

Position in cDNA and trancript’s cDNA

length

INTEGER NOT NULL

cds_pos_cds_

length

Position and number of coding bases INTEGER NOT NULL

aa_pos_aa_

length

Position and number of AA INTEGER NOT NULL

distance Context and implementation dependent.

E.g. when the variant is “intronic” the

annotation may show the distance to the

closest exon; when the variant is “inter-

genic” it may show the distance to the

closest gene; and when the variant is “up-

stream or downstream” may show the

distance to the closest 5’UTR or 3’UTR

base

INTEGER NOT NULL

errors_

warning_

info

Warnings or information messages CHARACTER_

VARYING

NOT NULL

Table C.9: Database entity - Strelka_indels

Entity 10: Destruct_breakpoints - This table contains structural variants derived from de-

Struct.

Entity: Destruct_breakpoints

Field Name Description Data Type Constraints

id Serial id CHARACTER_

VARYING

NOT NULL

tumour_id Sample identifier associated with the

variant called at each position

CHARACTER_

VARYING

NOT NULL

prediction_id Unique identifier of the breakpoint pre-

diction

INTEGER NOT NULL
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chromosome_1 Chromosome for breakend 1 CHARACTER_

VARYING

NOT NULL

strand_1 Strand for breakend 1 CHARACTER_

VARYING

NOT NULL

position_1 Position of breakend 1 BIGINT NOT NULL

chromosome_2 Chromosome for breakend 2 CHARACTER_

VARYING

NOT NULL

strand_2 Strand for breakend 2 CHARACTER_

VARYING

NOT NULL

position_2 Position of breakend 2 BIGINT NOT NULL

homology Sequence homology at the breakpoint INTEGER NOT NULL

num_split Total number of discordant reads split by

the breakpoint

INTEGER NOT NULL

inserted Nucleotides inserted at the breakpoint CHARACTER_

VARYING

NOT NULL

mate_score Average score of mate reads aligning as

if concordant

FLOAT NOT NULL

template_

length_1

Length of region to which discordant

reads align at breakend 1

INTEGER NOT NULL

log_cdf Mean cdf of discordant read alignment

likelihood

FLOAT NOT NULL

template_

length_2

Length of region to which discordant

reads align at breakend 2

INTEGER NOT NULL

log_likelihood Mean likelihood of discordant read align-

ments

FLOAT NOT NULL

template_

length_min

Minimum of template_length_1 and

template_length_2

INTEGER NOT NULL

num_reads Total number of discordant reads INTEGER NOT NULL

num_unique_

reads

Total number of discordant reads, poten-

tial PCR duplicates removed

INTEGER NOT NULL
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type Breakpoint orientation type deletion: +-

, inversion: ++ or –, duplication -+,

translocation: 2 different chromosomes

CHARACTER_

VARYING

NOT NULL

num_inserted Number of untemplated nucleotides in-

serted at the breakpoint

INTEGER NOT NULL

sequence Sequence as predicted by discordant

reads and possibly split reads

CHARACTER_

VARYING

NOT NULL

gene_id_1 Ensembl gene id for gene at or near

breakend 1

CHARACTER_

VARYING

NOT NULL

gene_name_1 Name of the gene at or near breakend 1 CHARACTER_

VARYING

NOT NULL

gene_location_

1

Location of the gene with respect to the

breakpoint for breakend 1

CHARACTER_

VARYING

NOT NULL

gene_id_2 Ensembl gene id for gene at or near

breakend 2

CHARACTER_

VARYING

NOT NULL

gene_name_2 Name of the gene at or near breakend 2 CHARACTER_

VARYING

NOT NULL

gene_location_

2

Location of the gene with respect to the

breakpoint for breakend 2

CHARACTER_

VARYING

NOT NULL

dgv_ids Database of genomic variants annotation

for germline variants

CHARACTER_

VARYING

NOT NULL

Table C.10: Database entity - Destruct_breakpoints

Entity 11: Lumpy_svs - This table contains sample specific structural variants discovered by

Lumpy.

Entity: Lumpy_svs

Field Name Description Data Type Constraints

id Serial id CHARACTER_

VARYING

NOT NULL
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tumour_id Sample identifier associated with the

variant called at each position

CHARACTER_

VARYING

NOT NULL

chrom Chromosome CHARACTER_

VARYING

chstart Chromosome start INTEGER NOT NULL

chend Chromosome end INTEGER NOT NULL

width Width of range CHARACTER_

VARYING

NOT NULL

strand Segment strand CHARACTER_

VARYING

NOT NULL

paramrangeid Distinguishes which records came from

which range

CHARACTER_

VARYING

NULL

ref Reference nucleotide at position (pos) of

the chromosome

CHARACTER_

VARYING

NOT NULL

alt Alternate non-reference allele CHARACTER_

VARYING

NOT NULL

qual Phred_quality score CHARACTER_

VARYING

NOT NULL

filter PASS if the probability of being somatic

is greater than threshold

NOT NULL

svtype Type of structural variant CHARACTER_

VARYING

NOT NULL

svlen Difference in length between REF and

ALT alleles

INTEGER NOT NULL

end End position of the variant described in

this record

BIGINT NOT NULL

strands Strand orientation of the adjacency

in BEDPE format (DEL:+-, DUP:-+,

INV:++/–)

CHARACTER_

VARYING

NOT NULL

imprecise Flag denoting imprecise structural varia-

tion

CHARACTER_

VARYING

NOT NULL
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cipos Confidence interval around POS for im-

precise variants

INTEGER NOT NULL

ciend Confidence interval around END for im-

precise variants

INTEGER NOT NULL

cipos95 Confidence interval (95%) around POS

for imprecise variants

INTEGER NOT NULL

ciend95 Confidence interval (95%) around END

for imprecise variants

INTEGER NOT NULL

mateid ID of mate breakends CHARACTER_

VARYING

NOT NULL

event ID of event associated to breakend CHARACTER_

VARYING

NOT NULL

secondary Flag denoting secondary breakend in a

multi-line variants

CHARACTER_

VARYING

NOT NULL

su Number of pieces of evidence supporting

the variant across all samples

INTEGER NOT NULL

pe Number of paired-end reads supporting

the variant across all samples

INTEGER NOT NULL

sr Number of split reads supporting the

variant across all samples

INTEGER NOT NULL

bd Amount of BED evidence supporting the

variant across all samples

INTEGER NOT NULL

ev Type of LUMPY evidence contributing

to the variant call

CHARACTER_

VARYING

NOT NULL

prpos Probability curve of the POS breakend CHARACTER_

VARYING

NOT NULL

prend Probability curve of the END breakend CHARACTER_

VARYING

NOT NULL

Table C.11: Database entity - Lumpy_svs
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Entity 12: Svs_filtered - Table containing breakpoints filtered for low mapability regions from

both deStruct and lumpy

Entity: Svs_filtered

Field Name Description Data Type Constraints

id Serial id CHARACTER_

VARYING

NOT NULL

tumour_id Sample identifier associated with the

variant called at each position

CHARACTER_

VARYING

NOT NULL

chrom_1 Chromosome for breakend 1 CHARACTER_

VARYING

NOT NULL

brk_1 Break 1 BIGINT NOT NULL

chrom_2 Chromosome for breakend 2 CHARACTER_

VARYING

NOT NULL

brk_2 Break 2 BIGINT NOT NULL

homlen Length of base pair identical micro-

homology at event breakpoints

BIGINT NOT NULL

brk_dist Break distance BIGINT NOT NULL

type Type of structural variant CHARACTER_

VARYING

NOT NULL

Table C.12: Database entity - Svs_filtered

Entity 13: Bamstats_tumour - This table contains sequencing statistics derived from the

bam file of each tumour sample.

Entity: Bamstats_tumour

Field Name Description Data Type Constraints

tumour_id Sample identifier associated with the

variant called at each position

CHARACTER_

VARYING

NOT NULL

total_reads Number of reads that are in a sample’s

bam file

INTEGER NOT NULL

qc_failure Number of reads marked QC failure INTEGER NOT NULL
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duplicates Number of duplicate reads INTEGER NOT NULL

mapped Number of reads marked mapped in the

flag

INTEGER

mapped_

percentage

Number of mapped reads / total

reads(%)

FLOAT NOT NULL

paired_in_seq Reads paired in sequencing INTEGER NOT NULL

read1 Count read1 INTEGER NOT NULL

read2 Count read2 INTEGER

properly_paired Properly paired reads INTEGER NOT NULL

properly_paired

_percentage

Percentage of properly paired reads FLOAT NOT NULL

self_and_mate

_mapped

Number of reads for which both reads

mapped

INTEGER NOT NULL

singletons Reads that mapped but the mate didn’t INTEGER

singletons

_percentage

Percentage of reads that mapped but the

mate didn’t

FLOAT NOT NULL

mate_map_diff

_chr

Number of reads with a mate mapped

on a different chromosome

INTEGER NOT NULL

mate_map_diff

_chr_mapq

Number of reads with a mate mapped on

a different chromosome - mapping qual-

ity

INTEGER NOT NULL

mapq The phred scaled probability of the

alignment/base being wrong

FLOAT NOT NULL

avg_read_

coverage

Average read coverage FLOAT NOT NULL

Table C.13: Database entity - Bamstats_tumour

Entity 14: Bamstats_normal - This table contains sequencing statistics derived from the

bam file of each normal sample.

Entity: Bamstats_normal
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Field Name Description Data Type Constraints

normal_id Matched normal-sample identifier CHARACTER_

VARYING

NOT NULL

total_reads Number of reads that are in a sample’s

bam file

INTEGER NOT NULL

qc_failure Number of reads marked QC failure INTEGER NOT NULL

duplicates Number of duplicate reads INTEGER NOT NULL

mapped Number of reads marked mapped in the

flag

INTEGER

mapped_

percentage

Number of mapped reads / total

reads(%)

FLOAT NOT NULL

paired_in_seq Reads paired in sequencing INTEGER NOT NULL

read1 Count read1 INTEGER NOT NULL

read2 Count read2 INTEGER

properly_paired Properly paired reads INTEGER NOT NULL

properly_paired

_percentage

Percentage of properly paired reads FLOAT NOT NULL

self_and_mate

_mapped

Number of reads for which both reads

mapped

INTEGER NOT NULL

singletons Reads that mapped but the mate didn’t INTEGER

singletons

_percentage

Percentage of reads that mapped but the

mate didn’t

FLOAT NOT NULL

mate_map_diff

_chr

Number of reads with a mate mapped

on a different chromosome

INTEGER NOT NULL

mate_map_diff

_chr_mapq

Number of reads with a mate mapped on

a different chromosome - mapping qual-

ity

INTEGER NOT NULL

mapq The phred scaled probability of the

alignment/base being wrong

FLOAT NOT NULL
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avg_read_

coverage

Average read coverage FLOAT NOT NULL

Table C.14: Database entity - Bamstats_normal

137


	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acknowledgements
	Dedication
	Introduction
	Breast cancer
	Triple Negative Breast Cancer (TNBC)
	Immunohistochemical classification and clinical characteristics of TNBC
	Molecular and genomic stratification of TNBC
	Molecular heterogeneity of TNBC
	Driver mutations in TNBCs
	"BRCAness" in TNBC
	The clonal spectrum of TNBCs
	TNBC mutational signatures

	Treatment of TNBC
	Surgery, radiotherapy and chemotherapy treatment in TNBC
	Emerging therapeutic modalities in TNBC

	Whole genome profiling as a stratification tool in cancer
	Databases for large scale and integrated genomic data mining and analysis
	Why database management systems?

	Research aims, rationale and hypotheses
	Research questions the database infrastructure is intended to support:
	Research methods and workflow



	Database Design, Implementation and Optimization
	Data structuring
	Database design and development
	Relationships between entities and data constraints

	Database optimization
	Indexing
	Query optimization
	Re-clustering
	Vacuuming
	Bulk-loading


	Database Application to Whole Genome Profiling and Stratification of TNBCs
	Quality Control (QC)
	Somatic aberrations characteristic of TNBC
	Distribution of mutation loads per sample and across the cohort
	Structural variants
	Copy number aberrations
	Gene-level analysis

	TNBC genomic subgroup discovery
	TNBC subgroups identified by mutation signatures
	TNBC subgroups identified by CNAS
	TNBC subgroups identified by SNVs
	TNBC subgroups identified by indels
	TNBC subgroups identified by SVS
	TNBC subgroup discovery by genomic feature integration
	TNBC genomic subgroup analysis
	Subgroup comparative analyses of mutation loads
	Subgroup comparative analyses of the distribution of rearrangements
	Subgroup comparative analyses of trinucleotide distributions
	Subgroup comparative analyses from a clinical perspective



	Data Access and Visualization Interface
	Genome-Miner
	Quality control analyses and visualizations
	Mutation load analyses and visualizations per sample and across the cohort
	Genomic visualizations
	Intra-sample trinucleotide distribution
	CNAs analysis and visualizations per sample and across the cohort
	SVs analysis and visualizations per sample and across the cohort
	Gene-level analysis
	TNBC subgroup analysis and visualizations

	Conclusions and Future Work
	Limitations and future work

	Bibliography
	Examples of Data Structuring, Bulk-loading and Data Extraction Scripts
	Examples of data structuring and loading scripts
	Script to structure and load bam file statics derived by flagstats
	Script to structure and load mutationSeq data

	Examples of data extraction scripts
	Extracting mutation loads per case:
	Extracting samples with specified mutations in genes of interest:
	Extracting copy number profile of a case of interest:



	Significantly Mutated Genes
	50 top significantly mutated genes (SMGs) in this TNBC study cohort identified using MutsigCV

	Database Data Dictionary 

