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Abstract 

 

Many migratory terrestrial mammal species within North America rely on particular habitat 

characteristics to provide shelter from snow cover in order to assure inter-annual survivorship. 

Mule deer (Odocoileus hemionus) in particular, are reported to be in decline across South-central 

British Columbia, likely due to reductions in adequate winter range habitat, limiting the degree 

of shelter that can be utilized to avoid snow and low temperatures. This thesis sought to evaluate 

predictions from multiple step selection functions (SSF) by considering both mule deer responses 

to the timing and distribution of snow cover as well as forest stand attributes including canopy 

cover and forest edge. In order to generate such SSFs, increasing spatial and temporal 

information regarding snow timing and distribution across the landscape was required. 

Previously however, predictions of fine-scale snow dynamics across the landscape suitable for 

analysis with hourly telemetry data were limited. Therefore, the first component of this thesis 

was to utilize the strengths of both medium spatial resolution and high temporal resolution 

satellite imagery and develop a data fusion algorithm to predict snow cover dynamics at a 30m 

spatial resolution daily, since 2000 using Landsat data with MODIS (Moderate Resolution 

Imaging Spectroradiometer) snow map data as inputs. The final fused snow map product 

(MODSAT-NDSI) achieved an overall accuracy of 90% using 33 validation test sites, which 

included government snow pillow data and an installed camera network. Environmental 

covariates from MODSAT-NDSI snow maps and 77 deer’s GPS telemetry data in the mule deer 

SSFs were used to produce predictions of relative probability of use for population-level 

estimates of habitat selection patterns. The top-ranked SSF models (based on AIC) indicated that 

mule deer avoided areas with greater, and more persistent, snow cover, and selected areas closer 
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to forest edge. Key thesis outcomes include generated snow cover maps that can be updated and 

utilized in further studies, a data fusion algorithm that can be replicated for other remote sensing 

metrics, and habitat selection models that may help to inform future mule deer habitat 

management.   
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Lay Summary 

Snow cover influences the natural environment in many ways. For example, melt water from 

snow affects flood timing, and snow pack protects the Earth from solar radiation. Snow cover 

also affects the health of many wildlife populations. Previous studies indicate that snow cover 

affects the health of mule deer (Odocoileus hemionus), that migrate to winter range habitats in 

order to survive the winter. To explore this relationship, this thesis develops and then uses new 

snow cover maps to predict habitat types selected by deer. The research found that mule deer 

avoid areas with early snowfall, late snowmelt, and remain close to the forest edge during winter. 

Future applications include using the new snow maps in climate change research, and using the 

habitat predictions to help inform land management. 
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Chapter 1: Introduction 

1.1 Background and motivation 

Both the public, and land managers, are increasingly recognizing the importance of ecosystem 

services in regional and local land management plans (Bennett, Peterson, & Gordon, 2009; B. 

Fisher, Turner, & Morling, 2009). However, much of the provisional, supporting, regulating and 

cultural services are globally declining in terms of abundance and quality (Assembly, 2015; 

Carpenter et al., 2006; Foley et al., 2005; Sachs & Reid, 2006). Whether an anthropocentric or 

biocentric philosophy is considered, the maintenance and/or recovery of these goods and services 

is critical to our survival. Ecology and wildlife research has helped drive the impetus to conserve 

not only material goods and services, but also the systems and organisms that are fundamentally 

connected with those goods and services (Collins et al., 2011; Gustafsson, 2013; Haila, 1999).  

 

Land managers and the public have the responsibility to uphold the United Nations Sustainable 

Development Goals, which include taking urgent action to combat climate change, and to 

protect, restore and promote sustainable use of terrestrial ecosystems while halting biodiversity 

loss (Assembly, 2015). However, habitat loss and degradation continues to occur due to 

industrial development, resource extraction, and climate change, complicating efforts to recover 

wildlife populations (Arthur, Manly, Mcdonald, & Garner, 1996; Bergman, Bishop, Freddy, 

White, & Doherty, 2014; Beschta et al., 2013; Boyce, Meyer, & Irwin, 1994; Mladenoff & 

Sickley, 1998; Sawyer, Nielson, Lindzey, & Mcdonald, 2006).  

 

Migratory ungulate species have been impacted by habitat loss and climate change as well, and 

land managers have particular difficulty managing for these mobile populations that change and 
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adapt behavior according to altered environments. Characteristically, migration is the relatively 

long-distance movement of individuals, usually on a seasonal basis, between regions that are 

optimized for seasonal needs (Dingle & Drake, 2007). The regions may be alternatively 

habitable and inhabitable – as in the case of alpine meadows that become snow packed in winter 

– or otherwise less conducive in particular months to providing quality shelter and food. 

Migration is a consequence of mobile populations, and is required for certain organism to 

complete their life cycle (Dingle and Drake, 2007). Changes in temperature and land cover can 

alter environmental cues – and therefore subsequent migratory ungulate responses to those cues 

– or may be occurring at such a rate as to prevent adaptation by creating a lag between new 

environmental cues and the affected species’ responses. Animal migration therefore is a 

significant ecological dynamic, and an understanding of migration patterns is a critical 

component in many wildlife studies (Bohrer, Beck, Ngene, Skidmore, & Douglas-Hamilton, 

2014; Dodge et al., 2013; Gavashelishvili, McGrady, Ghasabian, & Bildstein, 2012; Gillespie, 

2001; Jonsen, Myers, & Flemming, 2003; Moore, 2011; Puckett, Delaney, & Antonios, 2006; 

Schick et al., 2013).   

 

Industrial development and other human-caused disturbances have impacted one migratory 

ungulate species in particular within southern interior British Columbia: the mule deer 

(Odocoileus hemionus) (Armleder, Waterhouse, Keisker, & Dawson, 1994; Poole & Wright, 

2010; Procter, 2013). The status of mule deer across their native but scattered habitat range 

throughout western North America is of least concern according to the International Union for 

the Conservation of Nature (IUCN, 2016). However, a large body of literature has grown to 

include many cases where particular mule deer populations have declined due to several context-
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dependent factors, including habitat loss, overhunting, and predation (Ballard et al., 2001; Innes, 

2013). This thesis was motivated by the perceived declines in mule deer populations that have 

been documented in British Columbia as well as by several other studies, from Montana to 

California, and Alberta to British Columbia (Anthony, 1977; Cullingham et al., 2011; Mackie, 

1970; Pierce et al., 2009; Poole & Wright, 2010; Sawyer et al., 2006). In these studies, habitat 

loss was most often found to be the likely cause of such population declines. In addition, chronic 

wasting disease (CWD), which continues to increase mule deer and other ungulate species’ 

mortality throughout western North America (Nobert, Merrill, Pybus, Bollinger, & Hwang, 

2016; Russell, Gude, Anderson, & Ramsey, 2015; Salazar, Waldner, Stookey, & Bollinger, 

2016) is becoming more prevalent. The variation between particular populations’ reductions in 

terms of rate and cause is the result of the specie’s far-reaching but often isolated and scattered 

dispersal and occupancy, where populations are separated by major desert regions including the 

Sonoran desert and cold deserts of northeastern Arizona (Innes, 2013). For example, desert mule 

deer populations within their southern-most range in central Mexico are likely affected by 

drought (Olivas-Sánchez, Vital-García, Flores-Margez, Mora-Covarrubias, & Clemente-

Sánchez, 2018). Concurrently, recent declines in mule deer populations within Southern Interior 

British Columbia are likely due to habitat loss, eliciting news coverage and the large-scale B.C. 

Interior Mule Deer Project (“BCWF- Southern Interior Mule Deer Project,” n.d.; Lowe, 2018; 

Zeman, n.d.). Mule deer also occupy tundra environments within Alaska, the great plains within 

northern United States and southern Canada, and the Canadian boreal forest where quaking 

aspen (Populus tremuloides) parkland, with many populations remaining stable or increasing 

(Innes, 2013).  
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Within my study area, St’át’imc First Nations communities and their government organization 

St’át’imc Government Services (SGS) greatly influenced and motivated this thesis research due 

to their concerns for particular mule deer populations within their territory. Habitat loss due to 

flooding, logging, road development and fire has been attributed to be the cause of observed and 

notable population declines (Senger, Hamiton, & McLellan, 2008). St’át’imc concern for many 

different wildlife species (including grizzly bear, ungulates, and fish) resulted in this thesis’ final 

study area boundary (see Chapter 2, section 2.2), which reflects a buffered version of the 

threatened grizzly bear population units for southwestern British Columbia (Ministry of 

Environment, 2012). 

 

Adequate quality and availability of mule deer winter range (MDWR) habitat has been found to 

be a particularly critical factor in ungulate wildlife survivorship (Doerr, Degayner, & Ith, 2005; 

Poole & Wright, 2010), and therefore may be one of the most critical habitat types to conserve in 

order to facilitate population maintenance or recovery. MDWR is characterized by areas 

occupied by mule deer during the winter in order to obtain food and shelter. It’s policy definition 

in BC considers those areas that contain the winter habitat requirements of mule deer, and special 

management practices must be conducted in order to maintain those habitat requirements 

(Government of British Columbia, 2004). Mule deer thrive in higher elevations during spring 

and summer, where continental weather patterns ensure warm temperatures even at these higher 

elevations. Vegetation green up during these periods then allows for plentiful forage. However, 

previous studies indicate that snow processes have a direct effect on mule deer species 

survivorship as they relocate to winter range areas in order to survive the winter (Armleder et al., 

1994; Doerr et al., 2005; Gilbert, Hundertmark, Person, Lindberg, & Boyce, 2017; Parker, 
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Robbins, & Hanley, 1984). Snow cover within topographically variable landscapes force 

migratory species to lower elevations, limiting the range over which forage can be located. 

Simultaneously, greater energy is expended via locomotion through deep snowpack that can 

result in starvation and exhaustion (Parker et al., 1984), or prevent deer from escaping predators. 

Therefore, quality MDWR habitat would provide enough sustenance, cover from predators, and 

thermal cover from the cold while allowing for low-energy-cost movement. In order to ensure 

the continued survival of a species that provides humans with revenue, protein, and cultural 

identity from hiking, hunting and other activities, a greater understanding of winter range habitat 

selection and snow cover dynamics effects on selection is vital.  

 

Beyond its effects on MDWR habitat selection, snow dynamics are an important determinant in 

many environmental, meteorological and ecological systems (Liston, 1999). The importance of 

modelling snow dynamics is well known, due in part to the onset of global climate change 

(Onstott, 1997). Climate change research continues to monitor how anthropogenic activities may 

affect environmental processes of varying scale (Assembly, 2015) while the timing of spring 

habitat release and location of snow refugia may be more accurately predicted using snow maps 

for Grizzly bear (Ursus arctos ssp.) and wolverine (Gulo gulo) studies (Kelly and Reynolds, 

2015; Pigeon, Stenhouse, & Côté, 2016). Water flow from snow melt can be derived from snow 

cover maps, and may better inform local hydro facilities and fish management (Nolin, 2010). 

Snow processes have thus been shown to also improve our understanding of wildlife populations 

when snow cover is mapped at the appropriate temporal and spatial scale (Beniston & Stoffel, 

2016; Kelly & Reynolds, 2015; Manning & Garton, 2012). Therefore, mapping snow distribution 
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patterns through time in order to research MDWR habitat selection may contribute to a number 

of future research fields and topics.  

 

1.2 Remote sensing of snow 

MODerate-resolution Imaging Spectroradiometer (MODIS) and Landsat satellite sensors are 

widely used by Earth scientists to map, monitor and geospatially analyze terrestrial, atmospheric 

and oceanic processes. MODIS captures daily imagery at 250, 500 and 1000 m spatial resolution 

while Landsat sensors generates 30 m by 30 m imagery with a revisit time of 16 days. The highly 

variable and practical use of datasets derived from these satellite instruments have generated 

great interest in procedures to download, distribute, further process and analyze these imagery 

datasets (Barnes et al., 2003; Beck, Atzberger, Høgda, Johansen, & Skidmore, 2006; Hansen et 

al., 2003; Justice et al., 2002). 

 

The monitoring of snow cover and albedo has helped researchers to obtain information on the 

extent and timing of snow cover within remote, expansive and hard-to-reach areas (Crawford, 

2015; Czyzowska-Wisniewski, van Leeuwen, Hirschboeck, Marsh, & Wisniewski, 2015; Nolin, 

2011; Selkowitz & Forster, 2015). Snow cover maps and Geographic Information System (GIS) 

layers produced from MODIS and Landsat sensors have undergone various evolutions in light of 

their conceptual and mathematical bases. The Normalized Difference Snow Index (NDSI) can be 

calculated from data from both sensors to estimate the fractional Snow Covered Area (fSCA), 

where an fSCA value between 0 and 100 indicates the percentage of the pixel area covered by 

snow. NDSI utilizes particular bandwidths of the electromagnetic spectrum, which have been 

designed to isolate various spectral signals linked to particular land cover surface types or 
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features (Hall et al., 1998). Differences in NDSI reflectivity are known to change as a function of 

the age of snow (Hall & Martinec, 1985; Salomonson & Appel, 2004). Overtime, snow 

accumulates moisture, measured as the snow water equivalent (SWE). Before melting occurs, the 

moisture in snow alters the crystalline structure and thus greater scattering of Near Infrared 

(NIR) reflectance occurs, resulting in an attenuated response detected by the satellite sensor (Hall 

& Riggs, 2007).  

 

One of the current versions of daily snow cover products available is MODIS Snow-Covered 

Area and Grain size (MODSCAG), and at longer time step intervals the Landsat’s Thematic 

Mapper Snow-Covered Area and Grain size (TMSCAG). These snow detection algorithms were 

developed as an alternative to NDSI whereby spectral mixture analysis is used to calculate fSCA 

(Painter et al., 2009; Rittger et al., 2013). Both MODSCAG and TMSCAG apply spectral 

mixture analysis by incorporating the pure surface reflectance signatures of snow which change 

as a function of the size of snow grains. These reflectance signatures are called endmembers, 

obtained from extensive imaging spectrometer libraries. Along with the endmembers of rock, 

soil, vegetation and ice, the algorithm can detect the percentage of snow cover present within a 

single pixel by linearly weighting the respective proportion of each endmembers reflectance 

(Nolin, 2010). The algorithm accounts for the spatial variability of mountainous terrain by 

solving for grain size in conjunction with fSCA. Solving for both parameters allows for differing 

slopes and aspects and their effect on snow grain size to alter the spectral reflectance of snow, 

resulting in a spectral mixture analysis tailored to each pixel undergoing the analysis (Painter el 

al., 2009).   
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TMSCAG has the appropriate spatial resolution, but can only track changes in snow cover 

distribution in 16-day time step intervals. These intervals are often greatly extended due to cloud 

cover severely reducing the quality of images. Such large gaps in temporal resolution prevent the 

monitoring of snow conditions during critical time periods where snow cover and depth can 

change daily (Garvelmann et al., 2013). Such critical periods affecting the timing of mule deer 

migration include melt and green up phases that elicit winter to spring migration, as well as 

initial snowfall periods that initiate the transition from rut to winter season migration (Poole and 

Wright, 2010).  

 

Although the MODSCAG and TMSCAG algorithms have been shown to be better at capturing 

the spatial heterogeneity of snow cover compared to NDSI (Rittger et al., 2009), MODSCAG is 

still only able to estimate fSCA for a 500 m by 500 m area. Mule deer movement occurs at much 

finer spatial scales than 500 m, which has necessitated the generation of 30 m by 30 m landcover 

data sets (Gilbert et al., 2017). Even still, the research area utilized by Gilbert et al. (2017) in 

Southeast Alaska is much less heterogeneous in terms of topography and elevation compared to 

the coastal mountain range of British Columbia, where this thesis’ research takes place (Poole 

and Wright, 2010). Elevation only increases up to approximately 1000 m in the Alaskan study, 

with large stretches of beach and coastline while the Coast Mountains within southern British 

Columbia reach elevations of nearly 3000 meters; large extents within the south-central and 

south-western BC having severely scoured terrain and river systems.  
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1.2.1 Remote sensing data fusion 

A possible solution to the aforementioned trade-offs between temporal and spatial resolution is 

the use of data fusion, specifically the consolidation of data from a number of satellites with 

other geospatial datasets such as climate and terrain. In this thesis, I address this disparity 

between spatial and temporal resolution by applying a novel data fusion technique for a new 

region, since wildlife telemetry research often requires environmental data sets to be both 

spatially and temporally fine-scaled.  

 

In previous studies, Terra and Aqua’s MODIS have been data fused with Landsat’s Thematic 

Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI) 

(Gao et al., 2006a; Hilker et al., 2009; Hwang et al., 2011; Walker et al., 2012; Wu et al., 2012). 

Data from sensors of varying spatial and temporal resolution require novel algorithms to be 

developed in order to concurrently utilize the strengths of both, known as data fusion techniques. 

For example, the MODIS sensor has a low spatial resolution with a single pixel covering an area 

of 250,000 m2 (Hall and Riggs, 2016) whereas Landsat detects moderate spatial detail of 900 m2, 

accounting for much more of the heterogeneity within a landscape. The disadvantage of high 

spatial resolution relates to the tradeoff between spatial versus temporal resolution (Coops et al., 

2012; Gao et al., 2006b). Landsat satellites orbit sun-synchronously, scanning the entirety of the 

Earth every 16 days, resulting in a revisit time once during this period. Analysis or monitoring of 

ecological events and changes that occur more frequently than every 16 days are thereby greatly 

hindered by such low temporal density of Landsat (Coops et al., 2012). Alternatively, MODIS 

has a daily repeat coverage but less detail. 
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A number of research projects that monitor land cover change at a temporal resolution greater 

than every 16 days have incorporated MODIS or other coarse spatial resolution instruments into 

their research. There are differing approaches to data fusion in the literature many of which are 

focused on phenology (Hilker et al., 2009). Phenology concerns the study of the relationship 

between recurring biotic and abiotic events (Lieth, 2013) which include the budding and eventual 

senescing of deciduous foliage (Fisher, Mustard, & Vadeboncoeur, 2006) and by this definition, 

would also include snow events in relation to wildlife habitat selection. The technique developed 

by Fisher et al. (2006) and adapted by others (Melaas, Friedl, & Zhu, 2013; Nijland, Bolton, 

Coops, & Stenhouse, 2016) uses the entire Landsat record to generate a curve-fitting formula 

segmented into a 2-part sigmoid curve, charting the average season length and reflective 

magnitude of all Landsat observations via pixel-by-pixel based analysis. For snow, the first part 

of this sigmoid curve represents the rise of snow reflectance at the onset of the winter season, 

while the second sigmoid signals the decrease in snow cover reflectance towards the end of the 

season.  

 

Initially, this averaged phenology curve technique was able to accurately describe phenological 

variability only within relatively homogenous deciduous forest (Fisher et al., 2006). Interannual 

variability was addressed by weighting anomalous land surface temperatures while considering a 

time lag between the curve-fitted average and a specific year’s uni-modal green-up and/or 

senescing signal. Nijland et al., (2016) adapted the technique to mixed and coniferous forest 

stands, while also building on validation techniques utilizing phenocamera networks within their 

respective study area. The yearly adjusted phase shift of the averaged phenology curves 
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produced good agreement with day of the year (DOY) environmental cues observed from plot 

based camera networks, especially green up with a RMSE of 7 days (Nijland et al., 2016).  

 

1.2.2 Field validation and snow depth measurement techniques 

Conditions at the plot level such as snow depth and/or snow presence/absence using near-surface 

remote sensing generates detailed and useful information, but such datasets have been difficult to 

apply to heterogeneous landscapes across broad scales (Casey & Kelly, 2010; Marty & Meister, 

2012; Juraj Parajka, Haas, Kirnbauer, Jansa, & Blöschl, 2012b; Ryan, Doesken, & Fassnacht, 

2008; Singh et al., 2011; Varhola, Coops, Weiler, & Moore, 2010). Snow stakes with measured 

markings indicating depth along have been a cost effective and reliable method of monitoring 

snow cover (Marty and Meister, 2012), while snow depth ultra-sonic sensors and radar are able 

to log highly accurate measurements, as much as within 1 cm or less (Ryan and Doesken, 2008; 

Singh et al., 2011).   

 

Cameras determine snow, no-snow conditions visually, rather than through a calibrated measure 

of distance as in the case of sensors, which have a known ground level, and then emit an active 

pulse. Depth is determined by the time it takes for the pulse to return to the sensor. The lack of 

visual confirmation from sensors can be prone to error once snow cover is only 1 or 2 

centimeters thick (Ryan and Doesken, 2008). Cost and maintenance of various snow depth 

sensors has additionally limited the wide spread use of the technology (Varhola et al., 2010). The 

stake method allows for the monitoring of depth at a particular point in the foreground while also 

potentially observing spatio-temporal changes in snow cover over the greater landscape in the 

background (Parajka et al., 2012a). 
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The study by Gilbert et al. (2017) used a combination of snow stakes and temperature loggers to 

derive daily averages of snow depth across the northern portion of Prince of Wales Island, 

Southeast Alaska. This study was able to interpolate snow depth across the region using inverse 

distance weighting across field station measurements, followed by raster-based, cell-by-cell 

regressions of the 30 m by 30 m snow depth raster against a vegetation species composition 

raster dataset.  

 

In situ monitoring of snow cover using camera traps may readily distinguish snow from snow 

free conditions. However, the current literature highlight difficulties in measuring snow depth 

using near-surface remote sensing and then applying measurements to broader scales (Casey and 

Kelly; 2010; Marty and Meister, 2012; Parajka et al., 2012a; Ryan and Doesken, 2008; Singh et 

al., 2011). Therefore, snow cover and snow depth continues to be a challenge to monitor and 

represents an important topic of research in remote sensing. 

 

1.3 Telemetry tracking of animal movement 

Remote sensing technologies can provide useful data to better understand the effects of climate 

change and habitat loss on mule deer migration and habitat selection. These technologies can 

reduce costs by remotely collecting large amounts of quantifiable data over larger spatial scales 

compared to in situ observations, with ground-based data collection often requiring both more 

time and labor (Neumann et al., 2015). Remote sensing allows for greater detail and insight to be 

gained from individual movement patterns in remote/isolated areas, as well as the environmental 
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variables influencing migration such as primary productivity or snow cover and depth (Gilbert et 

al., 2017; Neumann et al., 2015). 

 

Concurrent with advances in remote sensing technologies, animal tracking has progressed from 

coarse Doppler radar technologies – with greatly attenuated signals within moist environments in 

the 1950s – to very high frequency (VHF) radio tracking, which allowed for periodic relocation 

of animals. Global positioning systems (GPS) have subsequently been developed for animal 

tracking that specifically allows for the most consistent collection of location data with the 

highest volumes through automated tracking (Zschille, Stier, & Roth, 2008), allowing for nearly 

limitless access to observing animal locations. Remote sensing technologies are therefore able to 

track animal movements while simultaneously informing researchers of the state of, and the 

pressures on landscape biodiversity at multiple scales (Pettorelli et al., 2014). Statistically 

verifiable relationships between animal movements and multiple environmental factors derived 

from remote sensing products can act as proxies for animal movements when extrapolation is 

necessary for wildlife management decisions. Some limitations of GPS tracking include the fact 

that it remains difficult to determine what activity an individual was performing when relocated 

(Macdonald, 1978). In addition, older VHF telemetry data has shown to be less reliable 

compared to satellite data (Johansson, Simms, & McCarthy, 2016), while canopy cover and 

limited number of satellites continue to affect the accuracy of satellite data (Moen, Pastor, & 

Cohen, 1997) 
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1.4 Modelling migration and habitat selection 

The final component linking environmental observations with GPS location data is the analytical 

techniques and species distribution models (SDMs) used to describe relationships between 

organisms and their environment. Such an endeavor has become increasingly important 

following the proliferation of new statistical methods, developments in information technology 

and rapid advances in GIS and remote sensing (Elith & Leathwick, 2009; Lele, Merrill, Keim, & 

Boyce, 2013). After the gathering of data rich information such as remote sensing imagery for an 

entire region, these advances have translated into the increased use of model-based interpolation 

in order to map suitable habitat in unsampled sites for conservation and land management (Elith 

and Leathwick, 2009). Austin (2002) as well as Elith and Leathwick (2009) noted the need for 

statistical models to continually undergo scrutiny and increased sophistication in order to utilize 

ecological concepts and the growing volume of data available to modelers. While traditional 

SDMs were more static and limited to what field data can be obtained, many current modelling 

methods account for potentially erroneous linear assumptions, spatial autocorrelation and/or lack 

of ecological concepts and proximal indicators. Such models include resource selection functions 

(RSFs), generalised linear models (GLMs) and step-selection functions (SSFs). SSF and RSF are 

associated with approaches of SDM termed step selection analysis (SSA) and resource selection 

analysis (RSA) respectively (Avgar, Potts, Lewis, & Boyce, 2016). 

 

SDMs which are explicitly proportional to the probability of use of a resource by a species are 

defined as RSFs (Boyce and McDonald, 1999; Lele et al., 2013). RSFs can account for some of 

the disparities mentioned by Austin (2002) by quantitatively characterizing resource use and by 

being intrinsically accommodating of spatial structure (Boyce and McDonald, 1999). Such 
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models have been adapted to make strong predictions of polar bear (Ursus maritimus) seasonal 

habitat selection based on pack ice concentration and the variables affecting its temporal and 

spatial distribution (Arthur et al., 1996). Spotted owl (Strix occidentalis caurina) nest site 

distributions were accurately mapped according to old growth habitat (Boyce et al., 1994; Manly 

et al., 2007) and timber wolf (Canis lupus) populations were projected using prey density 

estimates and several other variables within the Great Lakes and New England Regions of the 

United States (Mladenoff et al., 1998).  

 

The SSF is another type of RSF that focuses on steps, or the consecutive relocations from 

telemetry points, and is a method of investigating the correlation between biotic and abiotic 

processes as well (Thurfjell, Ciuti, & Boyce, 2014). Each GPS point is denoted as a location, 

while every interval between locations is a step, and use is associated with the steps and 

locations observed by the individual. Available steps and locations are determined by generating 

any number of random steps using animal movement patterns such as the distance between 

locations, the angle of trajectory from one step to the next, and/or speed. RSF can then be applied 

in a conditional logistic regression model comparing either used and available steps or used 

versus available locations in order to generate utilization distributions (UDs).  

 

The Brownian bridge movement model (BBMM) developed by Horne et al. (2007) is another 

model developed specifically for the application of GPS relocation data. The technique explicitly 

incorporates the time interval between relocation points, thereby permitting speed to be 

implemented as a parameter in predictive modelling. This has been proven to be important in 

stochastic modelling since it predicts that slower organisms travelling greater distances will have 
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more uncertain (i.e., flatter) utilization distributions (Horne, Garton, Krone, & Lewis, 2007) 

compared to faster organisms travelling shorter distances. The added parameter and resulting 

refinement in the model offers the potential to utilize BBMM probabilities in regressions against 

any number of environmental covariates to build relationships between movements/habitat range 

and abiotic characteristics (Rickbeil, Coops, & Adamczewski, 2015).  

 

Specific to mule deer, modelling and statistical techniques have ranged in approaches. They have 

included selectivity indices to determine mule deer food selection within a home range (Doerr et 

al., 2005), resource use and availability analysis (Armleder et al., 1994; Byers, Steinhorst, & 

Krausman, 1984), and fixed-kernel density estimators that utilize observations from neighboring 

locations to generate filters representing the probability density of wildlife observations (Seaman 

& Powell, 1996). In the aforementioned study conducted by Gilbert et al. (2017), SSFs as well as 

an ecological understanding of mule deer calorie intake requirements were used to identify used 

and available habitat locations. RSF was then adapted to represent the relative probability of a 

location being selected using a 2-step modelling approach utilizing conditional logistic and 

mixed-effects regressions. The work by Gilbert et al. (2017) is an important step in mule deer 

modelling as snow depth became a time-varying predictor variable that allowed for dynamic 

geographic factors to influence models that may have otherwise remained static.  

 

1.5 Research objectives 

Remote sensing data was utilized in this research in order to generate spatially explicit 

information regarding spatial and temporal snow distribution. Such information was generated at 

the ecologically relevant spatial and temporal scales (30 m x 30 m, daily to weekly temporal 
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resolution). While snow dynamics has been monitored and well researched at the global scale 

using sensors of low/coarse spatial resolution, local and regional snow dynamic assessment has 

proven to be more difficult due to trade-offs between sensors’ spatial and temporal resolution 

(Coops et al., 2012; Gao et al., 2006b; Kelly and Reynolds, 2015; Onstott, 1997).  

 

The aim of my MSc research is to integrate spatial and temporal dynamics of snow cover data 

over an 18-year period with GPS telemetry data of mule deer locations from 2007 – 2014 

(Mitchell and Wilton, 2012; Poole and Wright, 2010; Procter and Iredale, 2013). In doing so, I 

aim to better predict where priority winter range conservation areas may be located, based on 

particular habitat characteristics including snow cover. To do so, the most current remote sensing 

technologies were used to map snow cover timing and distribution over an 18-year period in 

order to analyze snow cover patterns and dynamics. I used previously acquired radio collar and 

GPS data from over 80 mule deer from three different studies to calculate step selection 

functions related to different seasons of the year. Finally, the relative probability of selection for 

winter range areas are analyzed against snow cover maps according to temporal and spatial snow 

dynamics and resource selectivity analysis, an approach similarly conducted by Gilbert et al. 

(2017). 

 

The overall thesis objective is to answer the question: 

How can the understanding of mule deer winter habitat use be improved by remotely sensed 

snow cover dynamics?  
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1) How can snow cover temporal and spatial dynamics be mapped using a combination of 

satellite remote sensing datasets to produce information relevant for wildlife studies?  

  

2) Will mule deer preferentially select locations with decreased snow cover and of greater 

canopy interception (i.e., areas providing shelter and forage)?  

 

1.6 Dissertation overview  

The format of this dissertation is four chapters: this introduction, two research chapters which 

address the main research objectives and a final concluding chapter.  

 

Chapter 2 describes the novel algorithm for data fusion and assesses the accuracy of the snow 

maps using field validation data and is published in Canadian Journal of Remote Sensing. 

 

Chapter 3 is the submitted article which utilizes the newly produced snow map data along with 

other core covariate data sets to generate step selection function models of mule deer movement 

and habitat selection using GPS telemetry data from previous studies. This paper is submitted to 

Journal of Applied Ecology. 

 

In Chapter 4, conclusions are drawn which highlight the main findings from each of the two 

aforementioned chapters and discuss insights gained in this dissertation. I also detail limitations 

of the thesis project as a whole and consider directions for future research.  
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Chapter 2: How can snow cover temporal and spatial dynamics be mapped 

using a combination of satellite remote sensing datasets to produce 

information relevant for wildlife studies? 

 

2.1 Introduction 

The timing and distribution of snow cover through accumulation and melt cycles impacts many 

of the Earth’s biotic and abiotic processes, and are a vital determinant in hydrologic systems, 

radiation balances, ecological functioning and global climate change (Cohen, Koshida, & 

Mortsch, 2015; Liston, 1999; Moore, 2011; Onstott, 1997). Snow cover extent, and persistence, 

have become reliable indicators of shifting climate trends (Lemke et al., 2007; Qin, Liu, & Li, 

2006; Shuai, Masek, Gao, & Schaaf, 2011; Whetton, Haylock, & Galloway, 1996) while the 

modelling and mapping of snow distribution patterns through time can be used to estimate water 

flow during spring melt seasons (Nolin, 2011). Such information often derived from snow 

models helps to better inform local hydrological facilities, fish management, and sea ice research 

(Jost & Weber, 2012; Khadka et al., 2017; Parajka & Blöschl, 2008; Sproles, Roth, & Nolin, 

2017; Wegmann et al., 2015). Beyond fresh water systems of fisheries and dams, snow cover 

also economically impacts communities that require road access during winter, as well as 

agricultural activities in northern latitude regions (Bokhorst et al., 2016). In addition, there is a 

growing urgency to understand snow processes and its effects on terrestrial wildlife populations 

at ecologically relevant temporal and spatial scales (Beniston & Stoffel, 2016; Kelly & 

Reynolds, 2015; Manning & Garton, 2012). Spring release of habitat from snow (hereafter spring 

release) is one such process affected by snow dynamics, as it relates to the timing of receding 
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snow cover and its impact on the availability of plant-based food sources. Wildlife populations 

such as Grizzly bears (Pigeon, Stenhouse, & Côté, 2016) are greatly affected by the timing of 

spring release, as early emergence from dens due to earlier food availability has been linked to 

increased numbers of bear-human conflicts (Pigeon, Côté, & Stenhouse, 2016). The location of 

snow refugia can also be identified and more accurately predicted using spatially explicit models 

of snow cover in conjunction with other environmental covariates. Species such as wolverine 

(Gulo gulo) and mule deer (Odocoileus hemionus) have been shown to rely on winter habitat that 

provides thermoneutrality and forage respectively, with snow dynamics providing the link 

between thermoregulation and specific habitat types (Armleder et al., 1994; Bergman et al., 

2014; Copeland et al., 2010; Doerr et al., 2005; Poole & Wright, 2010; Robinson & Merrill, 

2012). The inherent connection between snow dynamics and the array of complex adaptive 

systems mentioned speaks to the range of applications for snow modelling. Therefore, the need 

to continually monitor snow dynamics, while improving the accuracy and predictive power of 

such maps and models, remains critical to a number of industries, scientific disciplines, and 

policy objectives. 

 

Imagery acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on board 

TERRA and AQUA has been widely used by scientists to map, monitor and geospatially analyze 

terrestrial, atmospheric and oceanic processes including snow. The monitoring of snow cover 

and albedo at daily temporal resolutions from MODIS has provided key insights into the extent 

and timing of snow cover within remote, expansive areas (Crawford, 2015; Czyzowska-

Wisniewski et al., 2015; Nolin, 2011; Selkowitz & Forster, 2015). To do so, the Normalized 

Difference Snow Index (NDSI) detection algorithm of Hall, Riggs, & Salomonson (1995) is 
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often used which exploits differences in reflectance between spectral bands in order to isolate the 

particular spectral signature of snow cover. Similar to clouds, the presence of snow corresponds 

to high surface reflectance of bands within the visible spectrum. However, clouds continue to 

reflect radiation beyond the visible spectrum including short-wave infrared whereas snow does 

not. Therefore, the difference between the reflectance of the visible and short-wave bands is able 

to discriminate snow from cloud while normalizing an index whose ratio represents the degree of 

radiation reflected back to the sensor. This methodology has produced a range of daily map layer 

products, including MOD10A1 with a spatial resolution of 500 m (Stroeve, Box, & Haran, 

2006), to MOD10C1C with a spatial resolution of 0.25°, or approximately 28 km at the equator 

(Hall & Riggs, 2007).  

 

The most recent version of the daily snow cover product is the MODIS Snow-Covered Area and 

Grain size (MODSCAG) product which was developed as an alternative to NDSI and uses 

spectral mixture analysis to calculate the fractional Snow Covered Area (fSCA) which ranges 

between 0 - 100 indicating the pixel area covered by snow (Painter et al., 2009; Rittger, Painter, 

& Dozier, 2013; Salomonson & Appel, 2006). MODSCAG incorporates the pure surface 

reflectance signatures of snow which change as a function of the size of snow grains. The 

algorithm accounts for the spatial variability of mountainous terrain by solving for grain size in 

conjunction with fSCA, allowing differing slope and aspects and their effect on snow grain size 

to alter the spectral reflectance of snow (Painter et al., 2009). The algorithm’s daily temporal 

resolution remains as a principal advantage over other methods, while the shortcoming continues 

to be spatial estimates that are between 500 m to many kilometres wide.  
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While snow dynamics have been monitored and well researched at the global scale using remote 

sensing instruments of coarse spatial resolution such as MODIS, local and regional snow 

dynamic assessment has proven to be more difficult (Coops et al., 2012; Gao, Xu, Zhao, Pal, & 

Giorgi, 2006; Jönsson & Eklundh, 2004; Kelly & Reynolds, 2015; Onstott, 1997; Sirén, Somos-

valenzuela, Callahan, & Kilborn, 2018). Snow grain morphology is one such phenomenon 

influencing the viability of detection by satellites over complex landscapes (Stroeve et al., 2006). 

Particular topographic features such as aspect within mountainous terrain heterogeneously 

affects the metamorphosis of snow crystal structure across the landscape, as solar radiation 

attenuating at differing intensities and durations results in varying melt rates that impact snow 

cover and depth. Insulation properties of closed canopies are also a potential source of greater 

snow cover variability (Armleder et al., 1994) and forest cover has been associated with higher 

detection errors due to canopy interception and viewing geometry (Crawford, 2015; Hall, Foster, 

Verbyla, Klein, & Benson, 1998; Parajka, Holko, Kostka, & Blöschl, 2012b). In order to address 

the most significant sources of detection error, finer spatial resolution data is often desired to 

more accurately capture and model snow cover dynamics within variable terrain and land cover 

(Hall et al., 1998; Kostadinov & Lookingbill, 2015; Raleigh et al., 2013; Rittger et al., 2013; 

Walters, Watson, Marshall, McNamara, & Flores, 2014). 

 

Spatial estimates of snow cover have also been generated from sensor systems on board Landsat 

satellites (Lauer, Morain, & Salomonson, 1997). Landsat Thematic Mapper to the Operational 

Land Imager allow for continual coverage of the Earth since 1982, providing vast opportunities 

for long-term environmental research (Markham, Storey, Williams, & Irons, 2004; Wulder, 

Masek, Cohen, Loveland, & Woodcock, 2012). Landsat’s improved spatial resolution over 
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MODIS allows generation of the NDSI index at a spatial resolution of 30 m, while Dozier (1989) 

incorporated additional spectral bands from Thematic Mapper in order to distinguish differing 

types of snow cover in terms of grain size. The Landsat TM Snow-Covered Area and Grain size 

(TMSCAG) is another snow detection algorithm utilized by Painter et al. (2009) and Selkowitz 

& Forster (2015) which employs radiative transfer models and the spectral endmembers 

representing a range of land cover types spectral endmembers to calculate fSCA for sub-level 

estimates of the snow cover extent within a pixel. Although satellite-based approaches have 

shown to be capable of capturing broad scale snow dynamics (Painter et al., 2009), MODIS 

products remain limited in their spatial resolution, while TMSCAG and other Landsat-derived 

algorithms are limited in their ability to temporally track changes in snow cover distribution. The 

Landsat 16-day repeat cycle is a consequence of the trade-off between orbital repeat, size of 

swath scans, and spatial resolution, and can limit the number of viable observations to one every 

few months if cloud cover is especially frequent.  

 

A possible solution to the orbital repeat times and/or scanning swaths preventing production of 

daily, finer scale maps is the use of novel data fusion algorithms. Data fusion algorithms utilize 

the strengths of different satellite datasets, applied to the monitoring of snow or other 

phenomenon where fine scale conditions can change daily, including snow cover, depth and 

albedo (Garvelmann, Pohl, & Weiler, 2013; Shuai et al., 2011). Data fusion techniques include 

the Spatial and Temporal Adaptive Reflectance Fusion Models (STARFM) developed by Gao, 

Masek, Schwaller, & Hall (2006) which develops relationships between weighted neighbouring 

pixels that are relatively homogenous between coarse and fine pixel values (Hilker et al., 2009; 

Walker, De Beurs, Wynne, & Gao, 2012; Wu, Mingquan, Niu, Zheng, Wang, Changyao, Wu, 
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Chaoyang, Li, 2012). Other examples of data fusion techniques include downscaling common 

products such as NDVI from MODIS to Landsat (Hwang, Song, Bolstad, & Band, 2011), 

developing data fusion algorithms using a process related to speech recognition (Baumann, 

Ozdogan, Richardson, & Radeloff, 2017; Berman et al., 2018) and utilizing the entire long term 

Landsat record to generate a curve-fitting formula segmented into a 2-part sigmoid curve (Fisher 

et al., 2006; Nijland et al., 2016). The final example applied the method in a phenology study, 

charting the average season length and reflective magnitude of all Landsat observations via 

pixel-by-pixel based analysis, a method which this article has adapted to mapping snow. 

 

The aim of this first phase of my master’s thesis is to integrate spatial and temporal dynamics of 

snow cover data over an 18-year period in order to produce daily imagery of snow cover at a 

landscape scale of 30 m by 30 m spatial resolution. To do so, the high temporal density of 

imagery collected from the MODIS satellite was combined with comparatively fine-spatial scale 

Landsat satellite imagery in the novel dataset fusion algorithm MODSAT-NDSI (MODIS and 

Landsat’s Normalized Difference Snow Index). The MODSAT-NDSI algorithm utilizes NDSI, 

the metric common to both imagery datasets, in a technique employing the extensive Landsat 

record to generate long-term-trend NDSI curves for each pixel. The Landsat NDSI values are 

then resampled and overlaid with daily MODIS NDSI imagery to calculate the final NDSI 

values.  The resulting snow distribution predictions have a range of applications including 

forestry, conservation and land management groups. Ultimately this research could provide 

greater certainty in land use decisions by improving our understanding of snow timing and 

distribution throughout the landscape, and be utilized for a number of other applications relating 

to hydrology and wildlife studies. 
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2.2 Materials and methods 

2.2.1 Study area for chapter 2 

 

Figure 1: (A) Focus area extent represented as a digital elevation model (DEM) layer and (B) 4 land cover 

classes. Validation sites are distributed throughout varying elevations and land cover types, which include: 

provincial automated snow pillows (ASPs), federal climate monitoring stations, and time-lapse camera 

networks installed for this project. In addition, frame A and B preview the extent of the maps shown in the 

results section of the paper. 
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This MSC project is supported by the St’át’imc Government Services (SGS), Lillooet, BC with a 

focus area comprising the St’át’imc First Nations territory (Figure 1). The St’át’imc are an 

Interior Salish people, occupying 2.2 million ha of the 5.6 million ha research area; governed by 

an independent and united Chiefs Council. SGS has several departments including the SGS 

Environment Program, which is engaged in many activities including wildlife research and 

conservation projects (www.statimc.ca). Focus is currently directed towards grizzly bear 

protection as an umbrella species, as well as salmon and mule deer research and conservation.  

 

The study area includes the Central Interior Ecoprovince, the Pacific Ranges Ecoregion and the 

Southern Interior Ecoprovince (Province of British Columbia, 2016). Characteristically humid 

within the Pacific Ranges while east of the Coast Range is dominated by a pronounced rain 

shadow effect, both the Central and Southern Interior Ecoprovinces experience continental 

climates much drier than that of the coast. Within the most mountainous areas, climate varies 

greatly in relation to elevation (Poole and Wright, 2010) while precipitation including snow pack 

is largely dependent on aspect (Armleder and Waterhouse, 1994; Poole and Wright, 2010). 

 

Approximately 54 % of the study area is forested, and habitat within the area ranges from 

bunchgrass/sagebrush (Artemisia tridentata) bench lands along the Fraser River, through mid-

elevation interior Douglas-fir (Pseudotsuga menziesii) stands. Higher elevation lodgepole pine 

(Pinus contorta) and Engelmann spruce (Picea glauca x engelmannii) -subalpine-fir (Abies 

lasiocarpa) plateaus graduate into alpine forests and tundra in central areas (Lloyd et al. 1990). 

Agricultural land use occurs along the benches of the Fraser River, Pemberton meadows and 
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within valley bottoms in warmer drainages. Cattle ranges are an additional and notable portion of 

the landscape within the North Cascades area south of Lytton. 

 

The last two decades marks the period where elders and the general public within the St’át’imc 

Nation began to voice their concerns for the mule deer and other terrestrial wildlife populations. 

The greater frequency and extent of development and clearcut harvesting during this time likely 

resulted in less available habitat for wildlife, as discussed in previous studies (Anthony and 

Smith, 1977; Mackie, 1970; Poole and Wright, 2010; Procter and Iredale, 2013; Sawyer et al., 

2006). Beginning in the mid 1950’s, forest harvesting began in the territory and continues to this 

day. The most rapid increases in harvesting intensity occurred in the 1980’s and 90’s, 

particularly around the northern extent denoted as the Northern Forestry Plan (NFP) area 

(St’át’imc Government Services, 2016).  

 

2.2.2 Remotely sensed data sources 

Table 1: The MODIS tiles identification number based on grid of horizontal and vertical coordinates, and 

Landsat paths/rows used in the MODSAT-NDSI algorithm. 

Satellite Tiles / Scenes Date Range Used in Processing 

MODIS  

 

H09/V04, H10/V03, H10/V04 

 

2000-02-24 to 2017-12-31 

 

Landsat  

45/26, 46/25, 46/26, 47/24, 47/25, 

47/26, 48/24, 48/25, 49/24 

 

Landsat 4-5: 1984-11-16 to 2011-10-23 

Landsat 7 ETM+ 1999-07-05 to 2016-12-31 

Landsat 8 OLI/TIRS 2013-04-19 to 2017-12-31 

 



28 

 

2.2.3 Landsat 

Landsat Level-2 Surface Reflectance data from November 16, 1984 - December 31, 2017 were 

downloaded from the United States Geological Survey (USGS) Government Agency 

(https://landsat.usgs.gov/). A total of 9 Landsat footprints were used from the Thematic Mapper 

(TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI) sensors 

(Table 1). These products included a pixel quality assessment layer for each image, which was 

used to filter erroneous observations that were cloud, shadow or water contaminated. A total of 

7,138 Landsat images were downloaded. Although Landsat data from 1984 to 2017 were used to 

develop NDSI median average curves, the results reported span from 2000 to 2017 due to the 

need to fuse Landsat observations with data from the MODIS instrument on board the TERRA 

satellite, first launched in 2000. 

 

2.2.4 MODIS 

Daily MOD10A1 (V6) snow cover data from TERRA were downloaded from February 24, 2000 

- December 31, 2017 from the National Aeronautics and Space Administration Snow and Ice 

Data Center webpage (http://nsidc.org/data/MOD10A1/versions/6#) (Hall & Riggs, 2016). The 

product has NDSI values calculated and normalized from 0 – 100. The MOD10A1 algorithm 

used to obtain the final NDSI values includes procedures to identify the best observation for each 

day, and several data quality tests used to screen out and/or flag pixels. For example, 

observations were screened based on: low green band reflectance values of ≤ 10, near infrared ≤ 

11, NDSI < 10, solar zenith angles > 70°, and finally surface temperature and height are ≥ 281 K 

and ≤ 1300 m respectively. The final screening accounts for pixels at lower elevations emitting 

temperatures too warm for there to be snow present. Pixels falling above and below tested 
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thresholds in the screening process are flagged as a lower quality observation due to increased 

uncertainty, reversed from snow covered to no snow or labelled NA. A total of 19,038 images 

were downloaded. 

 

2.2.5 Land cover classification map  

The study area has recently been mapped by the SGS Environment Program in 2014 through the 

landcover classification project. The study area was built from Landscape units within the 

Threatened Grizzly Bear Population Unit map (Ministry of Environment, 2012) (Figure 1). 

Using remote sensing data and ground truthed validation field data, an ecologically relevant 

thematic land cover map was generated by Chance et al. (2016). The project was completed in 

2015, resulting in a cloudless, seamless mosaic of all 9 Landsat 8 OLI surface reflectance scenes 

from 2013 and 2014 that were used (Table 2). This map provides land cover information at a 

resolution of 30 m x 30 m pixels that was used in the ground truthed validation phase for snow 

cover when identifying areas with tree canopy cover.  

 

Table 2: The path/row and dates of the Landsat 8 Operational Land Imager (OLI) Surface Reflectance (SR) 

images used in the mosaic. Table from Chance et al., 2016. 

LANDSAT OLI PATH/ROW DATE OF IMAGE 

45/26 July 15, 2014 

46/25 July 3, 2013 

46/26 July 3, 2013 

47/24 July 13, 2014 

47/25 July 13, 2014 
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47/26 July 13, 2014 

48/24 September 6, 2014 

48/25 September 6, 2014 

49/24 July 11, 2014 

 

 

Table 3: The definitions of the 15 land cover/land use classes in the study area. Table from Chance et al., 

2016.  

Class Definition 

Open coniferous forest ≥50% of tree cover is conifer, 6 - 29% canopy closure 

Moderate coniferous forest ≥50% of tree cover is conifer, 30 - 74% crown closure 

Dense coniferous forest ≥50% of tree cover is conifer, >75% conifer closure 

Grassland >25% grass cover, <25% shrub cover, <6% tree cover, <25% herb 

cover OR if 6%<25% of any vegetation cover type but grass cover is 

most-dominant 

Broadleaf forest >50% tree cover, >50% stems broadleaf 

Shrub >25% shrub cover, <6% tree cover, <25% herb cover, <25% grass 

cover OR if 6%<25% of any vegetation cover type but shrub is most-

dominant 

Herbaceous >25% herb cover, <25% shrub cover, <6% tree cover, <25% grass 

cover OR if 6%<25% of any vegetation cover type but herbaceous is 

most-dominant 

Cropland/human-maintained grassland Human-maintained grassland, not including rangeland 

Barren land <6% vegetation cover, including sediment along rivers and lakes, 

rocks 
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Developed Impervious, human-created surface 

Ice 
 

Clear water 
 

Turbid Water 
 

 

 

2.2.6 Snow camera data 

I stratified the focus area into five elevation classes to account for differences in snowpack at 500 

meter intervals from 0 to > 2000. Pairs of field cameras (either Bushnell Trophy Game Camera 

HD, Aggressor No-Glow 14 MP or Moultrie Wingscapes TimelapseCam Digital Camera) were 

installed at each stratified elevation band, one under canopy cover of 60% or more, the other in 

an open area. This pairing was designed to account for differences in land cover type. Plots were 

additionally selected based on having a view of the foreground that is 30 m distance or more 

from the cameras, reflecting the spatial resolution of Landsat. Proximity to a useable road and 

accessibility was also a factor in plot selection given the highly variable terrain and often remote 

areas. Images were acquired every 15 minutes from 11:00 to 15:00 to coincide with the orbital 

repeat time of the TERRA satellite, as well as to ensure that there are quality observations for 

each day.  

 

2.2.7 Data fusion technique  

I fused MODIS and Landsat data to create daily 30 m NDSI predictions by adapting data fusion 

techniques originally developed for phenological mapping. Fisher et al. (2006) developed a data 

fusion approach which combined phenology camera data with Landsat satellite imagery. In the 



32 

 

study they accurately described phenological variability within a relatively homogenous 

deciduous forest. Inter-annual variability was addressed by weighting anomalous land surface 

temperatures while considering a time lag between the curve-fitted average and a specific year’s 

unimodal green-up and/or senescing signal. Nijland et al. (2016) adapted the technique to mixed 

and coniferous forest stands, and utilized data from a phenocamera networks to validate the 

estimates. The yearly adjusted, phase shifted phenology curves, produced good agreement with 

day of the year (DOY) environmental cues observed from plot based camera networks, 

especially green up, with a RMSE of 7 days (Nijland et al., 2016).  

 

In this chapter I adapt the approach of Nijland et al. (2016) to map snow cover (rather than 

greenness) by developing inter-annual trajectories of NDSI at the Landsat resolution on a pixel-

by-pixel basis with a moving average binning window. Historical Landsat images were used to 

obtain the historical snow distribution patterns when computing the median average for each 

Landsat-sized pixel. The yearly adjusted phase shift is calculated by averaging Landsat NDSI 

values lying within the larger MODIS pixel area when overlaid, and then applying the difference 

to each Landsat NDSI value. The general approach is shown in Figure 2 and detailed below.  
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Figure 2: Workflow of MODSAT-NDSI (MODIS and Landsat’s Normalized Difference Snow Index) data 

fusion algorithm. The landcover mask was derived from the Virtual Land Cover Engine (VLCE) developed 

by Hermosilla et al. (2018). 

 

2.2.7.1 Step 1:  Pre-processing 

The NDSI snow detection method has been used extensively to assess the variability in snow 

cover (Hall et al., 1998; Keshri, Shukla, & Gupta, 2009; Shimamura, Izumi, & Matsuyama, 

2006; Xiao, Shen, & Qin, 2001) and forms the basis of the data fusion approach. Therefore, 

NDSI values were calculated for each Landsat image in order to match the processed MOD10A1 

NDSI pixel values using the green and short-wave infrared bands (Equation 1).   
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 NDSI = (RVIS – RSWIR) / ((RVIS + RSWIR) * 100           (1) 

 

Where RVIS is the degree of reflectance in the green visible spectrum (band 2 in Landsat TM and 

ETM+, band 3 in OLI), and RSWIR denotes the short wave infrared band, being 5 for TM and 

ETM+ or 6 for OLI. The resultant index from 0 to 100 indicates the degree of a pixel area 

reflecting the portions of the electromagnetic spectrum associated with snow (i.e., the spectral 

signature of snow). 

 

On a pixel-by-pixel basis, all downloaded Landsat scenes were used to generate a smoothed 

median NDSI for each DOY, regardless of year. The median was calculated using a temporal 

moving window of 16 days, 8 days prior and 8 days after each DOY, generating a single curve of 

NDSI values for every pixel. Each curve of values thus represents the generalized pattern of how 

NDSI (i.e., snow cover) changes throughout any given year for every processed Landsat pixel. 

For both the MODIS MOD10A1 product and the smoothed median Landsat scenes, a similar 

approach to Dozier, Painter, Rittger, & Frew (2008) was followed in order to interpolate through 

any missing daily observations. First, nearest neighbour interpolation was applied to the first 

DOY and last 15 DOYs. The MATLAB functions csaps and imgaussfilt were then utilized in a 

cubic spline function. The nearest neighbour step was used to account for the MATLAB function 

assuming that data begins and ends at zero. 
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2.2.7.2 Step 2:  Algorithm 

To facilitate a comparison between the two datasets the Landsat NDSI values were averaged 

within, and resampled to, the same resolution as the 500 m by 500 m MODIS pixel, as was 

similarly done by Hwang et al. (2011) when they used Landsat imagery to assess the accuracy of 

the MODIS snow product. For each DOY (1-365) and year (2000 – 2017), these 500 m average 

Landsat NDSI values were related to the corresponding MODIS NDSI value using the following 

equation:  

 

 Ratio = MODISNDSI / LandsatNDSI(x̅)   (2) 

 

Each respective Landsat pixel within the larger 500 x 500 m area was then multiplied by this 

ratio, thereby adjusting the Landsat NDSI value by the MODIS NDSI value for each DOY and 

year, resulting in a daily, 30 m NDSI product from 2000-2017.  

 

2.2.7.3 Step 3:  Post-processing 

As it is well established that canopy cover affects the response of NDSI (Hall et al., 1998; Hall & 

Riggs, 2007; Liu et al., 2008; Molotch & Margulis, 2008; Parajka et al., 2012b) a Landsat 

derived canopy cover layer (Hermosilla, Wulder, White, Coops, & Hobart, 2018) was used to 

generate a mask for forested areas. During data fusion, the forest mask was used to identify 

forested pixels and alter the NDSI threshold for those pixel areas when classifying snow. 

Relationships between NDSI and snow cover were derived independently for winter (DOY 1 – 

DOY 151, & DOY 306 – DOY 365), melt (DOY 152 – DOY 182), summer (DOY 183 – DOY 
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273), and accumulation periods (DOY 274 – DOY 305) using a series of 16 field sites for 

training (described below). For both validation and training sites, snow and snow-free days were 

identified by setting a threshold of depth and snow water equivalent (SWE) for weather stations, 

and by qualitatively assessing ground cover in camera photos. Thresholds of NDSI were 

iteratively varied in order to maximize the accuracy of separating snow and snow-free days in 

the training sites within each time period, using both time-lapse camera and weather station data. 

This process was conducted independently for both open and forest pixels, with the derived 

thresholds displayed in Table 2. The training sites used to determine these thresholds were not 

included in the final validation to ensure that the validation was independent of the training 

process.    

 

Table 4: Derived seasonal periods and their associated NDSI thresholds based on training validation data 

Periods DOY 
Open Areas’ 

NDSI Threshold 
Forested Areas’ NDSI 

Threshold 

 
Winter 

January 1st – May 31st, and 
November 2nd – December 31st 

 

1 – 151, and  
306 – 365 

33 8 

 
Melt 

June 1st – July 1st 

 

152 – 182 28 7 

 
Summer 

July 2nd – September 30th 

 

183 – 273 33 8 

 
Accumulation 

October 1st – November 1st 

 

274 – 305 52 13 
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2.2.8 Field validation using time-lapse photography  

Validation of the daily 30m snow cover estimates was undertaken based on snow cover data 

derived from a field camera network installed within the study area (Figure 1A). Ground based 

cameras with daily photographs were used to qualitatively estimate snow, similar to methods 

used by Parajka, Haas, Kirnbauer, Jansa, & Blöschl  (2012a). Graduated snow stakes within a 

camera’s field of view is a reliable method to document snow cover change dynamics and other 

environmental processes in long-term studies (Graham, Hamilton, Mishler, Rundel, & Hansen, 

2006; Graham, Riordan, Yuen, Estrin, & Rundel, 2010; Marty & Meister, 2012). Snow cover 

and depth measurement plots were installed on October 22-24 and December 14-16 2016, and 

March 16-20, September 29-October 4, and November 8-10 2017. The location of camera 

installations were based on an elevation stratification as well as degree of forest canopy cover 

(Table 3). Camera sites were paired with one camera placed in the open, and one in an area of 

60% canopy cover or more. Within the foreground, snow stakes were taped with colored tape to 

indicate graduated 10 cm height intervals. Depth measurement poles were constructed from 2-

inch x 10 ft. PVC pipes and 5 ft. tall rebar. Each pole was threaded through 1 rod of rebar to 

ensure stability. Rods were hammered into soil, submerged around half way (i.e., ~ 0.8 m). 

Cameras were set to take daily images between 11:00 and 15:00, within the window of the 

TERRA overpass. 

 

In addition, snow survey data from the automated snow pillow (ASP) stations throughout British 

Columbia and federal climate data was utilized for validation (British Columbia Ministry of 

Forests Lands and Natural Resource Operations, 2017; Government of Canada, n.d.).  
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Table 5: Camera sites: CamA plots = Open/non-forested. CamB plots = Forested, ≥ 60% canopy cover. 

Elevation classes 1 – 5 = 0 – 500 m, 500 – 1000 m, 1000 – 1500 m, 1500 – 2000 m, and > 2000 m.  

*Provincial snow pillow sites. **Federal climate data sites. 

Plot ID Elevation (m) 
Elevation Class (1-4) 

 Start of data 
record used in 
analysis 

Coordinates (UTM 10N 
WGS84) 

Land cover  

Cam1A_older_site 1900 (class 4) 23-OCT-16 X: 0572946 Y: 5586634 
 

 

Cam1A_new_site 1855 (class 4) 17-MAR-17 X: 0573109.Y: 5586668 
 

 

Cam1B 1880 (class 4) 23-OCT-16 X: 0572942 Y: 5586652 
 

 

Cam2A 1702 (class 4) 24-OCT-16 X: 0572440 Y: 5587659 
 

 

Cam2B 1683 (class 3) 24-OCT-16 X: 0572510 Y: 5587749 
 

 

Cam3A 1428 (class 3) 24-OCT-16 X: 0575007 Y: 5592602 
 

 

Cam3B_older_site 1428 (class 3) 24-OCT-16 X: 0575138 Y: 5592728 
 

 

Cam3B_new_site 1428 (class 3) 01-OCT-17 X: 0575139 Y: 5592688 
 

 

Cam4A 741 (class 2) 15-DEC-16 X: 0579026 Y: 5606733 
 

 

Cam4B  790 (class 2) 15-DEC-16 X: 0578912 Y: 5606768 
 

 

Cam5A  323 (class 1) 16-DEC-16 X: 0583942 Y: 5601251 
 

 

Cam5B  323 (class 1) 16-DEC-16 X: 0583865 Y: 5601363 
 

 

Cam6A 1512 (class 4) 16-DEC-16 X: 0550489 Y: 5577942 
 

 

Cam6B 1502 (class 4) 17-MAR-17 X: 0550427 Y: 5577996 
 

 

Cam7A 1152 (class 3) 18-MAR-17 X: 0536819 Y: 5634731 
 

 

Cam7B 1090 (class 3) 18-MAR-17 X: 0537073 Y: 5634761 
 

 

Blackcomb Base Sliding Center**  937 (class 2) 31-APR-07 X: 0504551 Y: 5550026 
 

Forested 

Butcher Creek** 580 (class 2) 01-JAN-00 X: 0574557 Y: 5658212 
 

Open 

Callaghan Valley** 870 (class 2) 06-MAR-07 X: 0537076 Y: 5555006 
 

Forested to Open 

Downton Lake Upper* 1829 (class 4) 29-AUG-15 X: 0442531 Y: 5635316 
 

Forested 

Green Mountain* 1766 (class 4) 01-JAN-00 X: 0435379 Y: 5626131 
 

Forested 

Lytton 2** 174 (class 1) 01-JAN-00 X: 0599242 Y: 5568126 
 

Open 

Lytton RCS** 225 (class 1) 01-MAY-06 X: 0601152 Y: 5564548 
 

Open 

Mission Ridge* 1903 (class 4) 01-JAN-00 X: 0485891 Y: 5622044 
 

Forested 

North Tyaughton* 1969 (class 4) 28-AUG-15 X: 0554788 Y: 5666797 
 

Forested 

Pemberton Airport CS** 204 (class 1) 01-JAN-00 X: 0518936 Y: 5572648 
 

Open 

Pemberton Airport CWS** 204 (class 1) 04-JAN-10 X: 0518674 Y: 5572298 
 

Open 

Shalalth** 243 (class 1) 01-JAN-00 X: 0553600 Y: 5619890 
 

Open 

Tenquille Lake* 1669 (class 4) 31-AUG-00 X: 0505906 Y: 5597935 
 

Open 

Upper Squamish* 1387 (class 3) 01-JAN-00 X: 0469041 Y: 5555398 
 

Forested 

Whistler Mountain High Level** 1640 (class 4) 13-JUN-05 X: 0503855 Y: 5547188 
 

Forested 

Whistler Mountain Mid-
Station** 

1320 (class 3) 23-JUL-07 X: 0502563 Y: 5548082 
 Open 

Whistler Nesters** 659 (class 2) 13-JUN-05 X: 0503244 Y: 5552968 Open 
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Plot ID Elevation (m) 
Elevation Class (1-4) 

 Start of data 
record used in 
analysis 

Coordinates (UTM 10N 
WGS84) 

Land cover  

 

Whistler Roundhouse** 1835 (class 4) 01-JAN-00 X: 0503777 Y: 5546168 
 

Open 

 

Validation of the snow mapping algorithm required the use of a combination of data sets (Table 

3). A total of 15 camera sites, 6 provincial ASPs, and 12 federal climate stations were used to 

conduct an accuracy assessment by comparing the presence/absence of snow. Each daily 

observation was compared between NDSI snow mapped pixels and their associated validation 

datasets. The snow mapped pixels analyzed were identified by overlaying a point layer dataset, 

generated using the validation data set’s geographic coordinates. Camera observations extended 

from fall 2016 – winter 2017 while all other sites vary in historical record length, with over 50% 

of sites having at least 10 years or more of data. A binary validation dataset was developed from 

each type of site. For the camera network, presence of snow cover was determined by 

qualitatively assessing whether each photograph showed 15 % or more of snow covered ground. 

Setting the binary threshold to  ≥ 15 % for camera photos was designed to mimic the 

recommended fSCA threshold used by other authors, who note the limitations of sub-pixel 

information retrieval from satellite sensors (Cortés, Girotto, & Margulis, 2014; Painter et al., 

2009; Rittger et al., 2013). A subset of the government weather station data used for validation 

recorded snow depth in centimetres, and these records were used to create a binary threshold of 

snow / no snow using a ≥ 20 cm threshold (Huang, Liang, Zhang, & Guo, 2011). The second set 

of government data used for validation were British Columbian automated snow pillows, which 

recorded snow water equivalent data. The threshold for setting snow/no snow for pillow data sets 

was ≥ 15 cm SWE, based on iterating through multiple trials of the training data set and the 
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uncertainty that is present in these data when examining SI within shallower snowpack (Huang et 

al., 2011; Ryan et al., 2008; Singh et al., 2011; Varhola, Wawerla, et al., 2010).  

 

The 30 m daily NDSI values were classified into 4 classes in the final snow fusion product 

(Table 4). Once NDSI thresholds were established for each period, NDSI values below the 

threshold were considered to represent 0 to 24 % snow cover within a pixel. The remaining 

pixels with values equal to or greater than the threshold were categorized into low, moderate and 

high degrees of snow cover by setting 3 evenly spaced intervals between the threshold and 100. 

The 3 generalized estimations of snow cover within a pixel range from 25 to 100 %. Classes of 

25 % snow cover or more were considered snow covered in the binary accuracy assessment. 

 

Table 6: MODSAT-NDSI algorithm’s end product classification 

Example NDSI Threshold Intervals 
 (Melt Period in open site) 

Classified 
Value 

Classification 

n/a 
 

0 
 

Unprocessed 

< 28 
 

1 
 

0 – 25 % Snow cover  
(NDSI value lower than threshold) 

≥ 28 ≤ 52 
 

2 

 
25 – 50 % Snow cover (low) 

> 52 ≤ 76 
 

3 

 
50 – 75 % Snow cover (moderate) 

> 76 
 

4 

 
75 – 100 % Snow cover (high) 

 

The overall accuracy of the daily, 30 m Landsat NDSI product was assessed using Equation 3. 
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 Accuracy = (Tp + Tn)/( Tp + Tn + Fp + Fn)   (3) 

 

Tp are true positive cases of snow being present, validated by comparing predicted and observed 

values (0 or 1). Tn are true negative cases, and Fp and Fn are false positive and false negative 

observations respectively. Final accuracy therefore ranged from 0 – 100%. 

 

 Precision = (Tp)/( Tp + Fp)   (4) 

 Recall = (Tp)/( Tp + Fn)   (5) 

 Inverse Precision = (Tn)/( Tn + Fn)   (6) 

 Inverse Recall = (Tn)/( Tn + Fp)   (7) 

 

The four performance measures calculated and shown as equations 4 – 7, identified the 

proportion of noise (precision and inverse precision) generated in relation to the total number of 

samples correctly matched (recall and inverse recall). 

 

2.2.9 Inter-annual variability 

Once validated, this study demonstrates an application of the MODSAT-NDSI algorithm across 

6 forested and 6 open elevation classes. A subset of the resulting NDSI fusion map dataset was 

used to compare snow melt rates and the total number of snow-present days at different 

elevations and under forested and open conditions. Randomly sampled pixels for each class were 
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selected across a subset of the focus area (Figure 1, Frame A and/or B) for half the number of 

years (i.e., 2000 – 2008). The sum of the number of days with snow presence, and the transition 

DOY of the melt and accumulation periods were calculated using a moving average with a 

window of 16 days. A thousand pixels were first classified into 1 of the 12 classes, then 

transition dates were calculated for each pixel. Transition dates from pixels within each class 

were averaged for each year. The 9 averaged transition DOY values from each of the 9 years 

were used to generate the final inter annual averages.  

 

2.3 Results 

2.3.1 Landsat 

 

Figure 3: Per pixel processing of median NDSI trend. Median value generated for each day of the year using 

16 day moving window, capturing the inter-annual trend of NDSI as it changes throughout any given year 

from 2000 to 2017. Figure shows the total number of Landsat observations (n = 557), the final observations 
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used to calculate the median values once pixel quality assessment was applied (n = 266) and the trajectory of 

change. 

Using the 16 day moving window, a resulting image stack for each scene charts the median 

NDSI value for each day, accounting for the neighbouring spatial relationships that would be 

present between Landsat-sized pixels throughout the years 2000 to 2017 (Figure 3). The pattern 

is clear and apparent as snow accumulates in the fall (DOY 270 to 325) and spring melt (DOY 

150 to 180).  

 

2.3.2 MODIS 

 

Figure 4: Cubic spline interpolation of MOD10A1 dataset, with additional nearest neighbour interpolations 

for the start and end periods. 

 

Figure 4 is an example of an interpolated MODIS pixel, where NDSI values initially given by 

the dataset is often discontinuous due to cloud cover. The daily interpolated values for each pixel 
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was then the input for a spatial low-pass filter which allowed for MODIS-scale pixel values to be 

smoothed out over the landscape, facilitating more continuous edge-effects once Landsat 

imagery is applied to the MODIS stacks. 
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2.3.3 Accuracy 

 

Figure 5: Accuracy assessment of the MODSAT-NDSI algorithm using 17 different validation sites. Frame E: 

Overall accuracy calculated for each DOY through all years (2000 to 2017). Examples of accuracy 
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assessments derived from individual years are shown in frames A to D. The validation sites include 15 

timelapse camera sites, 6 provincial ASPs, and 12 federal climate stations. 

 

The daily accuracy comparison indicated an overall accuracy of presence of snow of 90% 

(Figure 5, Frame E). Two distinct troughs in the daily accuracy values indicate an overall 

decrease in accuracy during the melt and accumulation times of the year. 

 

 

Figure 6: Overall accuracy per month, based on the snow cover algorithms' binary matching of each DOY to 

test data set comprising of 17 validation sites: they include both camera plots, federal data, and provincial 

ASPs. Both the fusion algorithm MODSAT-NDSI and MOD10A1 are included for comparison. The 

interpolated NDSI data values were used when assessing the accuracy of MOD10A1, and the well established 

method of setting the binary NDSI threshold to 0.4 was used to classify snow. The percentage of area covered 

in snow each month is also illustrated to exhibit how accuracy may change as snow cover becomes more 

dynamic throughout the study area. 

 

E 
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At a monthly time step, the overall accuracy varied from 71 – 97.6% (Figure 6) with the lowest 

accuracy between June and October, and the highest accuracy during the winter months, 

December to April. MODIS’ MOD10A1 version 6 algorithm was also tested for accuracy using 

the interpolated NDSI values that was generated in the pre-processing step. Snow cover was 

classified using an NDSI threshold of 0.4. The resulting overall accuracy of the MODIS product 

was 88.51 %. For each month, the proportion of land covered by snow relative to the total area of 

the study region is also shown in figure 6, demonstrating how accuracy relates to stable versus 

more dynamic periods of snow cover. 

 

Table 7: Performance measures used to evaluate the MODSAT-NDSI algorithm, each result gives the overall 

performance measure of all DOYs.  

  

Comparing precision and recall with the inverse measures of each reveals that the positive 

identification of snow is more accurate than detecting days when there is no snow, according to 

the F-measure 91.68, compared to 88.67, calculated as the harmonic mean of precision and 

recall, and the inverse harmonic mean of precision and recall respectively. 

 

Precision Recall F-Score Inverse Precision Inverse Recall Inverse F-Score Accuracy 

92.42 90.96 91.68 87.71 89.65 88.67 90.41 
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Figure 7: Performance measures of precision and recall, for both positive and negative cases. 

 

The proportion of predictions correctly labelling a pixel area as snow free (i.e., inverse precision) 

remains high during the accumulation period, shown in figure 7A between DOY 274 and 305 

(October 1 to November 1). Within the same period, inverse recall, or the proportion of the 

model’s ability to correctly identify all instances of when snow is free (i.e., not just the correctly 
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predicted observations), continues to decrease (Figure 7B). During melt between DOY 152 to 

182 (i.e., June 1 to July 1) both inverse precision and inverse recall increase as precision and 

recall decrease. The other important feature to note is that, for positive cases (i.e., the detection 

of snow) the precision and recall curves follow a similar pattern, remaining very high (within 90 

– 100%) for most of the year, and between the melt and accumulation periods, it is seen that both 

performance measures drop to zero percent, signalling that any random snow events during the 

summer would not be detected by the algorithm. These performance measures can estimate the 

signal to noise ratio, as it relates to the total number of samples. Specifically within 

accumulation, the combination of high inverse precision but lower inverse recall means that 

predictions made concerning the absence of snow remains accurate, but the total number of snow 

free instances is either greater or less than what is being captured in all predictions (i.e., true 

negatives and false negatives combined). Precision and recall which describes the degree of true 

or false positives can help to identify whether the case is the former or latter: increasing precision 

and recall during approximately the same period of time (Figure 7A and B) is usually due to the 

total number of real positive cases being very low initially, so a great deal of noise remains in 

predictions. Over time, the increasing instances of snow events improves recall and precision, 

meaning that inverse recall was decreasing because there are an increasing number of real 

negatives not being captured in the model, rather they are being included in an increasing sample 

size of positive snow events.  
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Figure 8: Effect of MODIS’ current year observations on Landsat inter-annual trend. Frames A to F: NDSI 

trajectory through 2012 – 2017 for site Cam1A’s associated pixel. Note: NDSI fusion output is affected not 

only by MODIS, but also by the average of NDSI values generated within each MODIS pixel. The ratio from 

the difference between MODIS and the Landsat average affects specific Landsat pixels by either increasing or 

decreasing the median. 

 

Figure 8 shows the trajectory of NDSI values from three different data sets for a given pixel: the 

inter-annual Landsat median layer stack, the MODIS layer stack from January 1st to December 

31st for years 2012 to 2017, and the output of the fusion algorithm for the given 30 x 30 m pixel. 

The final result is determined by the MODIS dataset as well as the average of all Landsat values 
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falling within the given MODIS pixel, therefore the average was higher than the MODIS NDSI 

value in different periods in different years, as seen in Figure 8.  

 

 

Figure 9: Comparison of map products within study area boundary (see study area map in previous section). 

Note: no color/transparent areas of snow layer indicate unprocessed areas. Frame A demonstrates the 

MOD10A1 NDSI snow cover product, labelled according to the classes generated by the new NDSI data 

fusion algorithm (Frame C). Frame B displays the Landsat resolution true color composite used to overlay 

snow layer products. Layers from both products are from October 30, 2017. 

 

NDSI values are shown for a subset in figure 9. The fusion layer (Frame C) is compared to the 

MOD10A1 product (Frame A) for October 30, 2017. Spatially, the NDSI fusion output shows to 

trace the cover of snow at a much finer spatial resolution, outlining the contours of valleys, 

avalanche chutes, and higher elevation ridges that can be seen independent of either product in 

Frame B.  
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Figure 10: Observed change in snow cover from fusion snow mapping algorithm layers. Note: no 

color/transparent areas of snow layer indicate NDSI values below the threshold, and therefore classified as 

snow free. Frames display spatial patterns of the snow melt period for every 8 days, from May 20, 2017 to 

June 13, 2017. 
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2.3.4 Inter-annual variability  

 

Figure 11: Averaged number of days that 1000 randomly sampled pixels were covered by snow, averaged 

across all pixels initially. Box plots represent distribution of pixel averages across years 2000 to 2008. 

 

A general linear trend is evident in terms of the number of days with snow cover with increasing 

elevation resulting in increasing number of snow days (Figure 11). Interestingly, forested areas at 

lower elevations retain snow cover for longer durations, and this trend is reversed when 

observing the total number of snow days at the highest elevation bands. 
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Figure 12: Comparison between transition DOYs within each elevation and land cover class, for the melt and 

accumulation periods. The 9 averaged transition DOY values from each of the 9 years were used to generate 

the final inter annual averages summarized in the box plots above. 

 

A similar linear relationship between elevation and the beginning of the melt (lowest median to 

highest = 45 to 165) and accumulation periods (median range = 325 to 276) is apparent. Within 

each elevation strata, the same trend appears in the melt period as it does in Figure 11, with 

forested areas retaining snow cover longer than open areas until 1500 m. The average difference 

in the median for the first 4 elevation bands is 23.5 DOY. Again, for the two highest elevation 

bands, the trend is then reversed, the average difference in the median decreasing to 20.5. For the 

accumulation period, forested areas consistently retain snow cover earlier in the season 

compared to open areas, with the gap between land cover types gradually decreasing as elevation 

increases. The lower 3 elevation band’s average difference in the median is 20, and the higher 3 

is 8. 
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2.4 Discussion 

The MODSAT-NDSI algorithm has been shown to be capable of utilizing a large quantity of 

data from two spatially and temporally divergent optical remote sensing instruments. Through 

the relatively simple computation of averaging and deriving difference ratios, the NDSI metric 

common to both instruments can be used to enable accurate, frequent, and fine-scale snow 

mapping. The development of a snow cover product that is daily, and 30 m spatial resolution, 

allows finer detail predictions of snow occurrence. Such predictions can be used for a range of 

applications, including improved wildlife habitat research (Hamer & Herrero, 1987; Luccarini, 

Mauri, Apollonio, Lamberti, & Ciuti, 2006; Schwartz et al., 2009) and hydrologic modelling by 

increasing spatial and/or temporal resolution of snow cover maps (De Lannoy et al., 2010; Flint 

& Flint, 2012; S. Härer, Bernhardt, & Schulz, 2016; Wood et al., 2011). 

 

The use of publicly available climate data as well as time lapse camera networks has allowed for 

the validation of the algorithm using over 30 sites. Cameras provide information on snow cover 

visually, rather than through a calibrated measure of distance, as is the case of sensors which 

have a known ground level, and then emit an active pulse. Depth, and in turn the presence or 

absence of snow, is determined by the time taken for the pulse to return to the sensor. The lack of 

visual confirmation from these sonic sensors can be prone to error, especially when snow pack 

reaches shallower depths (Lundberg, Granlund, & Gustafsson, 2010; Ryan et al., 2008; Varhola, 

Wawerla, et al., 2010). The camera method is an economic, efficient alternative (Farinotti, 

Magnusson, Huss, & Bauder, 2010; Fortin, Jean, Brown, & Payette, 2015) allowing for the 

monitoring of snow cover and depth using stakes at a particular point in the foreground, while 
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also potentially observing spatio-temporal changes in snow cover over the greater landscape in 

the background (Parajka et al., 2012a).  

 

The algorithm performs well overall, achieving an accuracy of 90.41 % when accounting for all 

years, based on the independent validation data. Powers (2011) notes how the method of 

calculating accuracy should account for both a model’s ability to predict true positive cases (i.e., 

precision) as well as true negative observations, or inverse precision. The model during the 

accumulation period is able to capture most instances of snow, generating low degrees of noise. 

However, as the total number of snow free instances decreases during accumulation, it becomes 

more likely that the few days that are snow free are included in the positive predictions. This 

does not greatly affect the signal to noise ratio of precision with an increasing sample size, but 

can greatly lower the signal to noise ratio of inverse precision or decrease inverse recall due to 

real negatives steadily decreasing in sample size. This effect is reversed during the melt period, 

as false negative predictions of snow are increasingly included in the growing number of false 

and true negative predictions.  

 

The highest accuracy achieved using the training data necessitated NDSI thresholds to vary from 

season to season, and from open to forested areas. I argue therefore, as Stefan Härer, Bernhardt, 

Siebers, & Schulz, (2017) and others have, that NDSI is a less static snow detection tool, and can 

be tailored according to how different factors affect reflectance (Burns & Nolin, 2014; S. Härer 

et al., 2016; Stefan Härer et al., 2017; Maher, Treitz, & Ferguson, 2012; Racoviteanu, Paul, 

Raup, Khalsa, & Armstrong, 2009; Silverio & Jacquet, 2009; Yin, Cao, Chen, Shao, & Chen, 

2013). In one case, land cover can affect the detection of snow by attenuating the signal within 
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the visible or infrared spectrum. In such cases, a number of studies reveal how different 

combinations of landscape greenness (NDVI) can be used to reduce the threshold in forested 

areas to as low as 0.1, a threshold which in this instance still signals the presence of snow (Hall 

& Riggs, 2007; Molotch & Margulis, 2008). Härer et al. (2016) have also found that shadow 

alters results, and thus they calibrated the NDSI threshold value using shadow masks and 

camera-derived data for specific focus areas. The brightness, temperature, moisture content and 

grain structure of snow is also known to change over time, and thus has an effect on radiative 

reflectance and absorbance (Czyzowska-Wisniewski et al., 2015; Hall & Martinec, 1986; Hall, 

Riggs, & Barton, 2001; Salomonson & Appel, 2004). For example, when considering melt rates 

between different elevations, aspects, and degrees of canopy closure, the moisture in snow before 

melt is known to alter the crystalline structure. The altered structure scatters passive microwave 

radiation, attenuating the response of a portion of the electromagnetic spectrum often used to 

detect snow (Hall et al., 2001). Hall et al. (2001) also found that older snow crystalline structure 

changes from Lambertian to specular, which can result in the visible spectrum in multiband 

sensors being forward scattered, depending on viewing angle. In view of these considerations, it 

is important to note that the current MOD10A1 version does not set a binary threshold using the 

common NDSI > 0.4 method. The product’s user guide explicitly states that the data from their 

algorithm is meant for users to utilize the full range of NDSI values in potentially more flexible 

modelling approaches, and to adapt thresholds based on locally relevant features/processes 

(Riggs & Hall, 2015).  

 

For the focus area, the detection of snow based on NDSI thresholds appear to vary in response to 

season and forest cover. As snow pack develops, the albedo of snow tends to decrease (Amaral, 
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Wake, Dibb, Burakowski, & Stampone, 2017), and this may be the reason for detection 

accuracies improving with lower NDSI thresholds during the melt period, as it allows the 

algorithm to be more sensitive to old but still present snowpack. The reason for using greater 

NDSI thresholds for open sites compared to forested sites was aforementioned, while the highest 

thresholds used for the accumulation period may be due to weaker signals of ephemeral and/or 

gradual snow accumulation from snowfall. Seasonally senesced features may also potentially 

reflect the visible and short-wave bands more similarly to snow during this period compared to 

spring or summer, and so only stronger NDSI signals may be indicating snow cover.  

 

Based on the NDSI thresholds used, accuracy is shown to be high during the winter season 

(Figure 5E and 6), and less so in transition periods on average, likely due to the effects of the 

coast having differing accumulation periods than the interior in the fall. For the melt period, 

prolonged periods of snow cover persisting as late as June or July in the high elevation interior 

regions may result in albedo/reflectance changes large enough to warrant further tailoring of 

NDSI thresholds. There are also permanent ice/snow fields within the study area but they likely 

did not affect results, as the highest validation site was at 1969 meters above sea level. For 

winter habitat selection for ungulates, and other terrestrial species active during the peak of 

winter, the MODSAT-NDSI algorithm is particularly appropriate, for the fact that accuracy 

remains the highest during this period of time. For example, ongoing research identifying mule 

deer (Odocoileus hemionus) winter habitat identifies snow cover and/or depth as an important 

variable during the winter season, affecting movement rates and resource selection (Armleder, 

Waterhouse, Keisker, & Dawson, 1994; Doerr et al., 2005; Gilbert et al., 2017; Parker et al., 

1984; Poole & Wright, 2010).  
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The results show that the MODSAT-NDSI algorithm is able to identify a clear linear trend 

between total snow cover days and transition periods against elevation (Figure 11 and 12). There 

is also a clear trend between the number of snow cover days and land cover type. The insulating 

properties of the forest canopy may be the cause of the significant difference between the timing 

of melt periods between the two land cover types (Figure 12). Comparatively warmer 

temperatures at lower elevations facilitate more rapid snowmelt rates as seasonal temperatures 

increase, while the tree shaded areas within the same elevations retain cooler temperatures, 

preventing snow from melting sooner (Anderson, 1956). The difference in the average median 

day of transition between open and forested is more than 3 weeks, resulting in forested areas at 

lower elevations having many more days of snow cover on average. The highest median 

difference being as much as 62 DOYs – or more than 2 months – for elevation strata 250 – 500 

m. The trend may reverse at the highest elevation bands due to the same reason: temperatures 

remaining cold at the highest elevations may allow for the persistence of snow in open areas, 

while tree cover may intercept snow fall and insulate enough heat to promote ablation sooner for 

snow under the canopy. Otherwise, the presence of generally greater volumes of snow at the 

highest elevations results in a greater length of time needed for snow to melt completely.  
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Chapter 3: Will mule deer preferentially select locations with decreased 

fractional snow cover and of greater canopy interception (i.e., areas providing 

shelter and forage)?  

 

3.1 Introduction 

In recent years, the challenge of adapting habitat management for winter survival in migratory 

ungulates has driven wildlife researchers to concurrently analyze how local environments may be 

changing, either due to climate change (Beschta et al., 2013; Wu et al., 2017) habitat loss 

(Bergman et al, 2014;  Sawyer et al., 2006) or seasonality (O’Kane & Macdonald, 2018; Viana et 

al., 2018). The adaptive behavior of migratory ungulates permits individuals to take advantage of 

resources available between differing locations (Gilbert et al., 2017; Winkler et al., 2014). The 

mechanisms of migration and habitat selection form from a broad spectrum of behavioral 

characteristics, aspects of population ecology, and the constantly changing availability and 

location of resources and territory (Dingle & Drake, 2007; Messier, 1991; Robinson & Merrill, 

2012). Therefore, an improved understanding of migration patterns and how changes in 

environmental conditions affect these patterns is a critical component in wildlife habitat 

management and research (Bohrer et al., 2014; Dodge et al., 2013; Gavashelishvili et al., 2012; 

Gillespie, 2001; Jonsen et al., 2003; Moore, 2011; Puckett et al., 2006; Schick et al., 2013). 

 

The mechanisms involved in migration and habitat selection are noted in the literature to create 

unique challenges for land management due to continuously dynamic environments being altered 

by climate change and/or habitat loss (Moore, 2011; Poole & Wright, 2010; Rockwell & 
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Gormezano, 2009). However, recent advances in remote sensing technology enable land cover 

information to be updated at an increasing rate, allowing researchers to conduct fine-scale animal 

movement studies that may better explain how a constantly changing environment can affect 

daily or even hourly habitat selection decisions. In this study, I addressed the challenge of 

managing for ungulate winter survival by analyzing telemetry data of mule deer (Odocoileus 

hemionus) with novel, daily, and fine-scaled snow cover maps during both the winter as well as 

spring and fall “shoulder seasons”. I sought to determine the effect that snow cover has on the 

seasonal selection of habitat, and hope my results will help inform management decisions about 

protecting winter range.  

 

Mule deer are an economically and culturally important wildlife species, as well as an integral 

part of many other ecosystem services that are regulatory and supportive in nature (Anthony, 

1977; Mackie, 1970; Putman, 1996). For many First Nations communities, including the 

St’át’imc, mule deer are an essential part of the diet, providing sustenance to those harvesting 

them as a source of protein. Many communities have also developed a deep reverence and 

connection to the mule deer, perpetuating both the cultural and recreational values and services 

attributed to the species (Poole & Wright, 2010; Procter, Bio, & Iredale, 2013).  

 

There are several studies indicating declines in mule deer populations throughout various regions 

of North America and at different periods of time throughout the last 100 years (Anderson et al., 

2012; Bergman et al., 2014; Mackie, 1970; Sawyer et al., 2006). Habitat loss and degradation 

continue to occur within mule deer range due to industrial development and resource extraction 

(Poole & Wright, 2010; Procter et al., 2013). Development is often associated with disrupting 
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migratory routes to which mule deer retain a high fidelity (Lendrum, Anderson, Long, Kie, & 

Bowyer, 2012) and altering mule deer habitat selection to a level where they are likely forced 

into areas with less food, lower quality food or both. Most importantly for this paper, degraded 

habitat used in winter is also highly linked to decreases in annual survivorship, as reductions in 

forest cover allows for deeper snow pack to accumulate, burying potential forage and limiting 

mobility (Anderson et al., 2012; Armleder, Dawson, & Thomson, 1986; Bergman et al., 2014; 

Doerr, Degayner, & Ith, 2005; Parker, Robbins, & Hanley, 1984).  

 

For mule deer and many other homeotherms in northern climates, winter has proven to be the 

seasonal period where a net energy deficit occurs (Armleder and Waterhouse (1994). Energy 

losses during winter are generally not recovered until later seasons, and if winter range habitat is 

arduous to traverse while providing little forage and shelter, fatal losses of fat reserves are likely 

to occur (Armleder et al., 1994; Parker et al., 1984). Therefore, quality winter range habitat that 

mitigates the effects of exhaustion and starvation is necessary for mule deer survival.  

 

Mule deer winter range (MDWR) is characterized as areas occupied by mule deer during the 

winter, and the quality of MDWR has been associated with limited snow cover and adequate tree 

cover (Armleder et al., 1994; Doerr et al., 2005; Gilbert, Hundertmark, Person, Lindberg, & 

Boyce, 2017; Poole & Wright, 2010). Greater tree canopy closure is believed to ensure greater 

snow fall interception, resulting in unburied forage and snow that is shallow enough to traverse 

with limited effort. Knowing where snow cover occurs on the landscape during winter months at 

the ecologically relevant temporal and spatial scale is therefore important in winter range habitat 

selection research, since comparisons can then be made between winter ranges of varying 
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proximity to forested and open areas, and snow cover in relation to Global Positioning System 

(GPS) radio collar point locations.  

 

Previous studies have been hindered when characterizing MDWR habitat selection by inadequate 

snow data (Armleder et al., 1994; Doerr et al., 2005; Poole & Wright, 2010; Procter & Iredale), 

due to the disparity between fine spatial resolution snow map data and temporally frequent snow 

cover information. Therefore, data fusion techniques designed to combine the strengths of coarse 

and finer spatial resolution satellite instruments have been developed (Berman et al., 2018; as 

well as discussed in Chapter 2). Such snow cover maps can be especially valuable for wildlife 

telemetry data analysis, where daily or even hourly relocation frequencies and individual point 

data may require daily, fine-scale environmental data sets to best capture the conditions of the 

landscape and how species respond to such conditions (Berman et al., n.d.). 

 

In this study, I integrated spatial and temporal dynamics of snow cover data from a newly 

developed data fusion algorithm (Mityók et al., 2018) into step selection functions (SSFs). I 

tested these snow data sets in this paper for the winter and also the spring and fall “shoulder 

seasons”, in order to address the gap in knowledge between mule deer habitat selection and snow 

cover. I compare SSF model outputs calculating the relative probability of use against core 

model covariates, and demonstrated how novel data fusion snow maps can be incorporated into 

wildlife research which often requires finer-scaled environmental data. I subset GPS telemetry 

data of mule deer locations from three previous studies (Mitchell, Wilton, & Reynolds, 2012; 

Poole & Wright, 2010; Procter et al., 2013) to first test the efficacy of different types of snow 

cover information on different periods of the year: if snow cover persistence temporally 
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increases in the shoulder seasons of spring and fall (hereafter spring/fall periods), then the 

relative probability of mule deer habitat selection decreases. The second hypothesis is: if snow 

cover spatial extent and distribution increases in an area during the winter, then the relative 

probability of selection for that area decreases. To compare results between the winter and 

spring/fall periods, I produced two separate step selection function models for GPS locations 

observed in the spring/fall periods and those retrieved in the winter. The final hypothesis is: 

wintering deer will select for greater canopy cover and forest edge and less bare ground and 

herbaceous areas compared to deer in the spring/fall periods, as the need for cover is greater 

during the winter where snow cover extent is greatest.  

 

3.2 Materials and methods 

An overview of the SSF and environmental data mapping methods is provided in subsequent 

sections. The SSF model selection steps and environmental covariates were used to develop the 

relative probability of use figures and maps found in the results section. 
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3.2.1 Study area for chapter 3 

 

Figure 13: Entirety of the mule deer collar data extent, which includes the Northeastern extent of the 

St’át’imc territory located in south-central British Columbia, Canada. Total number of deer used in 

spring/fall periods SSF analysis = 77. Total number of deer used in winter period SSF analysis = 38. 

Spring/fall periods were from months April 1 – May 31 and September 1 – October 31, and relocation 

frequency was 1 hour. Winter period was from November 1 – March 31 and relocation frequency was 45 

minutes. 
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This thesis’ second study area is smaller than the extent used to develop MODSAT-NDSI, and 

includes portions of St’át’imc First Nations territory as well as surrounding landscape unit areas 

linked to Grizzly bear meta-populations, and is approximately 29,000 km2. The landscape unit 

areas adjacent to the territory border were previously used to outline the study area extent in a 

land cover classification and change detection study (Chance, Hermosilla, Coops, Wulder, & 

White, 2016) (Figure 13). Consequently, this chapter uses the same northeastern boundary as 

Chance et al. (2016) to develop the environmental covariate maps used in modelling.  

 

The St’át’imc First Nation’s northeastern portion of the territory encompasses approximately 75 

% of the smaller area used to analyze the mule deer GPS data, and is within prime mule deer 

habitat. Within the St’át’imc nation, mule deer have been in decline according to elders, with the 

Ministry of Environment’s harvesting population index supporting this claim (Poole & Wright, 

2010). The greater frequency and extent of industrial development and clear-cut harvesting is 

believed to have resulted in less available habitat for wildlife (Anthony, 1977; Mackie, 1970; 

Poole & Wright, 2010; Procter et al., 2013; Sawyer et al., 2006). Mining activities, road 

development, and flooding have resulted in cumulative impacts increasing wildlife mortality 

(Senger et al.,  2008). Road networks developed for accessing timber have specifically been 

linked to increases in hunting pressure on mule deer and other wildlife, facilitating greater access 

into wildlife habitat (Boulanger, Stenhouse, & Margalida, 2014; Ciarniello, Boyce, Heard, & 

Seip, 2007).  

 

In light of the archived literature by Mackie (1970, p. 23) and Wood (1949, p. 44), as well as the 

fact that many First Nations’ elders are inciting the impetus to address the decline of mule deer 
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populations, the “shifting baseline syndrome” is likely occurring in relation to mule deer. The 

syndrome describes how human beings misidentify contemporary population abundance as the 

baseline for a given species. Current generations are therefore unable to perceive real and 

potentially dramatic declines, while previous generations who remember healthier ecological 

conditions from their youth do (Pauly, 1995). Indications of the shifting baseline syndrome 

occurring for mule deer within the study area is not only supported by elders and government, 

but also by reviewing archived scientific literature:  

 

“In summer, the deer range as high as the timberline. They are the most plentiful big-game 

animal. Around Spruce Lake or upper Tyaughton Creek, it is not uncommon to see 30 or 40 deer 

in the course of a day’s walk. However, Bralorne and Pioneer residents who hunt on the slopes 

adjacent to the Bridge River Valley claim that the animals are becoming fewer each year” 

(Wood, 1949, p. 44).   

 

3.2.2 GPS collar data 

Table 8: Previous mule deer research conducted within the St’át’imc territory and the sources of this paper’s 

GPS data. 

Study 

Number 

of deer 

Sex Region Date Range 

Minimum and Maximum  

Distance Travelled During 

Migration (km) 

Poole & Wright 

(2010) 

29 Female Fraser Valley 2007 – 2009 2 – 94 

Procter & Iredale 

(2013) 

42 Male 

Carpenter Lake 

 

Fraser Valley 

2010 – 2013 

 

2010 – 2013 

16 – 40 
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Mitchell, Wilton 

& Reynolds 

(2012) 

12 Female Pemberton Valley 2010 – 2012 18 – 96 

 

Migration routes and winter ranges have been recorded using GPS radio collars attached to a 

subset of the mule deer population within the study area in 2007 to 2009 and 2010 to 2014 

(Poole & Wright, 2010; Procter and Iredale, 2013 respectively). Additional GPS data was used 

from the Pemberton and Upper Lillooet Valleys in 2009 to 2011 (Mitchell et al., 2012) (Table 8). 

Poole and Wright (2010) incorporated St’át’imc elders’ Traditional Ecological Knowledge 

(TEK) by comparing GPS relocation data with the elders’ delineated migration corridors to 

determine MDWR habitat beyond the area designated by Ministry of Environment (Poole & 

Wright, 2010). GPS data matched quite well with local TEK, demonstrating that mule deer retain 

high fidelity to their respective migration routes from year to year. Seasonal migration distances 

averaged to 50.3 km for the Pemberton Valley mule deer, all of which were migratory (Mitchell 

et al., 2012). The mule deer does analyzed by Poole and Wright (2010) included resident and 

migratory deer, where resident deer were identified in all previous studies as those with 

overlapping summer and winter ranges. Migratory does moved an average of 39 km from spring 

to summer range. Finally, among the migratory mule deer bucks collared by Procter and Iredale 

(2013), an average of 29.4 km were covered between summer and winter range. For this paper’s 

analysis, I removed six deer due to having less than 500 observations within the winter or 

spring/fall period.  

 

I defined the winter period – when mule deer are residing within their winter range – using the 

previous studies that identified seasonal ranges based on movement rate analysis and visually 
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assessing movement patterns and herd density (Mitchell et al., 2012; Poole & Wright, 2010; 

Procter, 2013). Poole and Wright (2010) define winter range as between November 1 to late 

February. However, my study includes a large number of GPS relocation data from September 1 

to October 31, as well as from April 1 to the end of May. From a total number of 551,158 GPS 

points used in this analysis, 55 % were obtained between the September-October and April-May 

periods. According to the aforementioned research as well as the Kelly & Reynolds (2015) study, 

spring migration has generally occurred later than March and fall migration begins in September. 

Therefore, I compared mule deer habitat selection in the spring and fall to selection patterns 

observed in the winter, with GPS collar telemetry data sets separated into a winter period data set 

from November 1 to March 31, and a spring/fall period using data from April 1 to May 31, and 

September 1 to October 31. Of 77 deer used in the spring/fall data set, 15 were resident deer. Of 

the 42 wintering deer, 5 were residents. In addition, I resampled the GPS locations to a uniform 

fix rate of 1 hour for the spring/fall GPS data set, and 45 minute intervals for the winter range 

data set, each having a tolerance of 15 minutes in order to include relocations that were not 

precisely recorded at the respective intervals. The difference in relocation sampling between the 

two data sets was the result of the previous studies programming alternate relocation frequencies 

according to season. For example, Procter and Iredale (2013) attempted locations every 45 

minutes from May to June, and September to December in their Carpenter Lake study. Then, 

between January and April, they altered the relocation frequency to every 3.5 hours.  
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3.2.3 Satellite data 

3.2.3.1 Snow covariates 

My first two hypotheses test whether mule deer avoid areas of greater snow cover extent and 

persistence in both the spring/fall periods and in winter. I described snow cover extent and 

persistence by producing five different types of snow cover information in order to determine the 

type of snow cover information that is most significant when testing the first two hypotheses. 

The five types of snow cover information fall under either the spatial covariate group, or 

temporal covariate group (Table 9). Two of the five snow covariates are related to the spatial 

distribution of snow cover, and include snow cover extent and snow pack variability. The second 

group of snow covariates provide temporal information related to the timing and duration of 

snow events (Table 9). The five snow covariates were derived from the daily, 30 m resolution 

snow cover maps recently developed (Chapter 2), named MODSAT- Normalized Difference 

Snow Index (NDSI). The MODSAT-NDSI data set has values for every day of year (DOY) from 

2000 – 2017. Snow covariate values were generated for the years of mule deer GPS observations 

(annually-derived covariates) and also averaged across the 18 years of available snow cover data 

(time-averaged covariates) in order to compare univariate models that used either yearly data that 

matched the GPS observation year or the long term average. I used Akaike’s Information 

Criterion (AIC) to determine whether yearly or long term average snow covariates would be used 

in subsequent models (Burnham & Anderson, 2002). To differentiate long-term time-averaged 

snow covariates from annually derived covariates, I denote long-term information as average, 

and annual data as yearly. For all covariates including snow and other habitat covariates, I tested 

for collinearity by removing any covariates that were greater than 0.7 and performed worse than 
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the best univariate model, according to AIC (D’Eon & Serrouya, 2005; Gilbert et al., 2017; 

McKee et al., 2015). 

 

Table 9: The remote sensing environmental data sets used in step selection regressions. All snow related data 

was derived from MODSAT-NDSI (discussed in Chapter 2). Matasci et al.’s (2018) imputation algorithm 

generated the canopy cover maps for the study area. The St’át’imc Land Cover Classification and distance to forest 

edge maps were derived from Chance et al.’s (2016) land cover map. 

Map Product 

Abbreviated 

Covariate Name 

Snow 

Covariate 

Type 

Values Spatial/Temporal Resolution 

MODSAT-NDSI (Ave)SW Spatial 

1 = < 25 % snow cover 

2 = 25 – 50 % snow 

cover 

3 = 50 – 75 % snow 

cover 

4 = > 75 % snow cover 

30 m daily 

Low pass filtered (120 m2 kernel) 

Total Snow Covered 

Days 

(Ave)SUM Temporal 

1 – 365 days of the 

year 

30 m yearly 

Low pass filtered (120 m2 kernel) 

Accumulation Date (Ave)ACC Temporal 

1 – 365 days of the 

year 

30 m yearly 

Low pass filtered (120 m2 kernel) 

Melt Date (Ave)MELT Temporal 

1 – 365 days of the 

year 

30 m yearly 

Low pass filtered (120 m2 kernel) 

Snowpack 

Variability Index 

(Ave)VAR Spatial 0 – > 1.4 

30 m yearly 

Calculated using MODSAT-NDSI 

and applying Shannon’s Diversity 

index on a 120 m2 kernel 

Percent Canopy 

Cover 

CC n/a 0 – 100 % 

30 m yearly 

Low pass filtered (120 m2 kernel) 
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St’át’imc Land 

Cover Classification 

Bare  

& 

NTV 

n/a 

Bare = proportional 

coverage (%) 

Non-treed vegetation = 

proportional coverage 

(%) 

30 m single year 

Calculated using 120 m2 kernel 

Distance to Forest 

Edge 

DFE n/a Meters 

Point to polyline distance 

Single year used 

Digital Elevation 

Model 

DEM n/a Meters above sea level 30 m 

 

The first spatial snow covariate is snow rank (SW), and was produced using the snow cover 

classification values from the MODSAT- NDSI. I expected that an increase in the snow rank 

within a pixel – indicating greater snow cover extent – would decrease deer selection for that 

pixel area. Ecologically, I also expected that spatial snow covariates would affect mule deer 

habitat selection more than temporal snow covariates during winter, and therefore spatial snow 

covariates would replace temporal ones in the top winter model. The MODSAT-NDSI data set 

consists of pixels ranked for each day of the study period according to the strength of their NDSI 

signal, which corresponds to snow cover extent, and is therefore a 4-class model with values 

ranging from 1 to 4 (Table 9). For every pixel and every day associated with a deer GPS point 

observation, the snow rank ordinal category was appended to each GPS relocation to first obtain 

daily values. I averaged the daily snow rank values across the 18 years to provide a single time-

averaged snow rank for each pixel for each day of deer observations, resulting in a continuous 

rather than ordinal covariate (i.e., average snow rank, or AveSW). I compared AIC scores for 

univariate models of the raw MODSAT-NDSI data set and the derived time-averaged daily data 

set. I generated univariate models separately for the winter and spring/fall period GPS data sets. 
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For winter and spring/fall periods, the time-averaged snow rank covariate performed better (an 

AIC difference of 4.3 and 35.1 respectively).  

 

The second spatial snow cover covariate developed was the snow pack variability index 

(hereafter VAR). VAR was created to capture the degree of evenness of the four snow classes, 

which was done to quantify the degree of “patchiness” of snow cover across the landscape within 

a larger 120 m2 area. The derived VAR snow map data set indicates zero or near zero occurs in 

regions where snow is not present, and therefore deer I predicted that deer most likely select 

areas with very low variability, especially at lower elevations where the chance of finding snow 

free ground is greatest. However, at the highest elevations where snow cover becomes largely 

unavoidable (i.e., very few areas with a value near zero or snow free ground); I expect deer to 

select areas with higher snow pack variability. A highly variable, “patchy” environment would 

be selected for at higher elevations as the chance of finding forage unburied increases with snow 

pack variability. VAR was calculated using Shannon’s Diversity Index (Shannon, 1948): 

 

𝐻 =  − ∑ 𝑝𝑗 ln 𝑝𝑗
𝑧
𝑗=1                                 (8) 

 

Where j is the snow rank class and pj is the relative proportion of the j th snow rank to the total 

number of snow ranks occurring in each 120 m2 pixel kernel. The natural logarithm (lnpj) of pj is 

then multiplied against this proportion, summed across each snow rank, and multiplied by -1 to 

provide a final VAR between zero (indicating complete evenness or no variability) to 

approximately 1.4 (i.e., the highest degree of snow pack variability, where a given pixel has 

equal distribution among the 4 snow cover classes across the year). VAR values were calculated 
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for each year of deer observations (yearly VAR), and time-averaged across all 18 years to 

produce AveVAR. For the spring/fall periods, yearly VAR performed better than AveVAR 

(Δ AIC = 17) while AveVAR was the better covariate for the winter period (Δ AIC = 65). 

 

The second group of covariates defined as temporal snow covariates (Table 9). These timing-

related measures of persistence are expected to affect habitat selection, where the greatest 

number of snow covered days, latest melt periods (with consequently the latest forage green up) 

and earliest start of winter dates all produce increasingly negative selection patterns. 

Ecologically, I also expected that temporal snow covariates would impact mule deer habitat 

selection more than spatial snow covariates during spring/fall, since there is much less snow and 

the timing of melt and accumulation would have the greatest effect on decisions to migrate and 

forage. Therefore, I expected temporal snow covariates to be in the top spring/fall model. The 

temporal snow covariates were calculated by first generating a binary daily snow cover map 

from raw MODSAT-NDSI rank values, where a snow rank value of 1 indicates no snow and 

rank values 2 – 4 indicates snow cover within a pixel (between 25 and 100 %) (Table 9). For 

spring/fall dates (i.e., ACC and MELT), I used a 16 day moving window to calculate the day of 

year (DOY) when there was at least 8 consecutive days of snow or snow free days for each year. 

Total number of snow-covered days (SUM) is the sum of each year’s binary snow cover data set 

on a pixel-by-pixel basis. I calculated long-term temporal trends by time averaging the DOYs of 

ACC and MELT, and the snow day totals of SUM across all 18 years. For both the spring/fall 

and winter periods, yearly ACC, average MELT (AveMELT), and average SUM (AveSUM) 

performed best when comparing univariate models’ AIC. 
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3.2.3.2 Other habitat covariates 

For the third hypothesis, I predicted that deer would avoid areas with high canopy cover during 

spring and fall, as snow interception is less important at this time, and warmer temperatures 

facilitate greater forage biomass accumulation in open areas. All models included four core 

habitat covariates assumed to reflect the degree of snowfall interception or forage availability: 

canopy cover (as both a linear and squared term), distance to forest edge (hereafter DFE) and the 

proportional coverage of bare ground and non-treed vegetation (hereafter NTV). Percent canopy 

cover was a raster data set produced for each year of GPS data observations (2007 to 2014) from 

the imputation algorithm developed by Matasci et al. (2018) using both Light Detection and 

Ranging (LIDAR) and Landsat time series imagery. I expected deer to select intermediate 

canopy cover in winter, given the hypothesis that the optimal winter range habitat will provide 

tree cover as well as more open foraging space (Gilbert et al., 2017; Prokopenko, Boyce, & 

Avgar, 2017), and thus I include linear and quadratic terms for percent cover.  

 

The remaining three core habitat covariates were derived from a classification map developed by 

Chance et al., (2016) for the St’át’imc Government Services Environmental Program. The 

classification map utilized Landsat Operational Land Imager (OLI) satellite imagery from 2014 

and included three classes of non-treed vegetation: grassland, herbaceous land cover and shrub 

land. I combined the three classes into my single NTV land cover class. To produce a continuous 

variable from the NTV and bare ground class variables, I used a 120 m2 kernel to calculate the 

proportional coverage of each class as a percentage within the larger kernelled area. I expected 

deer to avoid habitats that are more open during the winter compared to the spring/fall periods, 

since the winter would have the greatest spatial or temporal persistence of snow cover. Deer 
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were expected to seek shelter and thermal cover more frequently due to increased snowfall that 

likely buries palatable herbs and shrubs and makes it more difficult to move within non-forested 

areas.  

 

The “bare ground” class was combined from initially separate land cover classes of ice, urban, 

and barren/dirt/rock, capturing the types of areas that provide neither cover nor forage for mule 

deer, and consequently is expected to be avoided. However, with decreasing number of snow 

cover days or more shallow and uniform snow pack, and I expected that deer would increasingly 

tolerate and therefore increase selection for bare ground, in their search for forage. A 30 m 

digital elevation model was also incorporated into core models, but only when snow covariates 

did not correlate with elevation beyond a threshold of |r| > 0.7 (D’Eon & Serrouya, 2005; Gilbert 

et al., 2017; McKee et al., 2015).  

 

Lastly, deer are believed to increase selection for areas closest to the forest edge during winter in 

order to balance the amount of cover and forage that they require according to changing 

conditions in snow pack and weather. The opposite effect is believed to occur during the spring 

and fall, where deer will avoid areas closest to the forest edge and venture out into much more 

open environments including alpine meadows and low-lying grasslands. I calculated DFE for 

each collar GPS relocation point using ArcGIS Pro (ESRI, Redlands, CA, USA) once all forest 

cover classes from the classification map were reclassified into a single forest class. I defined 

edge as the interface between areas classified as forested and areas containing bare ground, NTV 

or water.  
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3.2.4 Modelling habitat selection  

Species distribution models which are explicitly proportional to the probability of use of a 

resource by a species are defined as resource selection functions (RSF) (Boyce & McDonald, 

1999; Lele et al., 2013). The RSF has since been adapted in order to denote types of habitat as 

the culmination of specific types of resources being used; their relative importance incorporated 

as any number of independent variables (Xi) in a log-linear model: 

 

               W(X) = exp(𝛽0X0 + 𝛽1X1 + … 𝛽kXk)                      (9) 

 

Where W(X) is the relative probability of use. The log linear model is utilized in this thesis by 

adapting it into an SSF that uses conditional logistic regression to compare used and available 

locations rather than the steps within each strata. Each GPS point is denoted as a location, while 

every interval between consecutive locations for a given individual is a step. Each strata was the 

grouping of a single used and five random locations that were sampled for that single used 

observation. 

 

I adapted the SSF approach of Gilbert et al. (2017), representing W(X) as the relative probability 

of a location being selected, and using a 2-step modelling approach consisting of using 

conditional logistic and mixed-effects regressions. This method takes individual deer behavior 

into account by using the survival and TwoStepCLogit packages in R which develops population-

level covariate coefficients from the two-step estimation method (Craiu, Duchesne, Fortin, & 

Baillargeon, 2011; Therneau & Lumley, 2018).  
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Compared to the relatively consistent directional persistence and greater distances between 

locations of migrating deer, those that have reached their respective winter ranges have been 

documented as having circuitous movements and long rest periods (Gilbert et al., 2017). 

Therefore, for this study, I determined that locations or points are more indicative of utilization 

distributions compared to steps. I randomly generated available locations for each used location 

using the exponential distribution of step lengths (i.e., λ−1) and a uniform distribution of turning 

angles from each individual deer. Lambda (λ) was defined using twice the mean of observed step 

lengths to account for possible missed relocations to produce five alternative available locations 

for every used GPS location.  

 

3.2.5 Model selection 

I extracted the set of environmental covariates (Table 9) for each mule deer GPS relocation point 

and its associated five available locations. In cases where correlation between covariates was 

more than 0.7, univariate models were used to determine the best covariate to use based on AIC. 

Then, different combinations of covariates were grouped into four groups of models: models 

with no snow variables, (hereafter “core” models), core model + spatial snow covariates, core 

model + temporal snow covariates, and core model + both spatial and temporal snow covariates. 

Within each model group, different candidate models were tested by adding interaction terms for 

snow covariates. Snow interactions were included with the third hypothesis in mind: that a deer’s 

selection for all other habitat covariates would change according to how much snow cover extent 

and persistence increases. Concurrently, interactions between different spatial and temporal 

aspects of snow cover are likely to interact. For example, deer are more likely to avoid areas 

where snow not only accumulated early, but also melted later in the year, since such areas would 
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have forage buried for a much longer period compared to an area where snow accumulated early 

but also melted early. Twenty-three models were produced for the spring/fall periods and twenty-

eight models for the winter (See Appendix A).   

 

I fit the candidate models to the used and available locations for each individual deer. Models 

were then ranked using AIC values and weights. For each candidate model, all AIC weights from 

each individual deer were averaged to give the candidate model a mean AIC weight (𝑤̅i). The 

model with the highest mean AIC weight was then selected for the winter and spring/fall period 

data sets (Burnham & Anderson, 2002; Gilbert et al., 2017). After the best candidate models 

were selected for the winter and spring/fall periods, I used the R package TwoStepCLogit (Craiu 

et al., 2011) to generate the population-level beta coefficients from the top models. The package 

performs mixed-effects regressions to estimate standard errors and coefficients, the latter used to 

calculate the relative probability of selection (W(X)). Resident deer were included in all 

modelling steps for both winter and spring/fall periods, while four deer were removed from the 

population-level winter regression due to the limited variability in snow rank (AveSW) 

observations, which produces a matrix singularity when using the TwoStepCLogit package. For 

the four deer removed, the standard deviation and variance of AveSW was less than 2 and 3 

respectively, while the average of both metrics for all remaining deer were 45 and 2412. 

Therefore, 77 deer were used in the final spring/fall period population-level model, and 38 deer 

were used in the final winter period population-level model.  
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3.3 Results 

3.3.1 Model selection 

Contrary to expectations, mule deer habitat selection during the spring/fall periods was best 

explained by the spatial snow covariate: yearly snow pack variability (VAR, Table 10), rather 

than one of the three temporal snow covariates. For the spring/fall models, the two best 

performances utilized the yearly snow pack variability (VAR) snow covariate, while the second 

best model (SP2) included VAR as well as the average snow cover rank (AveSW). For a 

comparison between the top 3 spring/fall models and the remaining 20, including the model with 

no snow covariates, see Appendix A. Model SP3 incorporated the temporal snow covariate 

AveSUM, or the average total number of snow covered days along with AveSW. Only one 

winter model achieved a 𝑤̅i  of 0.10 or more (Table 11), with the remaining candidate models 

ranging from 0.0027 to 0.084 (see Appendix A). In the top winter model (W1), my hypothesis 

that mule deer would avoid areas with higher snow cover rank during winter was supported 

(Table 11). However, temporal snow covariates including the yearly start (ACC) and average 

end (AveMELT) of winter were also present in W1, with AveMELT also used as the interaction 

term. 

 

Table 10: Top ranked mule deer model outputs including population-level coefficients (β) and standard 

errors in parentheses for the spring/fall periods. Interactions are indicated with a “×” symbol. Models with an 

AIC average (𝒘̅i) of > 0.10 are reported, of which there were 3 out of 23 candidate models (i.e., models SP1, 

SP2 and SP3). Blank cells indicate that a variable was not used in the model.  

 

Variable 

 

Model SP1 

β (SE) 

 

Model SP2 

β (SE) 

 

Model SP3 

β (SE) 

 

Yearly snowpack variability (VAR) 

 

0.01 (0.008) 

 

0.02 (0.02) 
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Average snow covered days (AveSUM)   -0.004 (0.007) 

 

Bare ground 

 

0.002 (0.004) 

 

0.007 (0.005) 

 

0.001 (0.003) 

 

Bare ground × VAR 

 
-0.0003 (6𝑒-5) -0.0002 (7𝑒-5) 

 

 

Bare ground × AveSUM 

 

  -9𝑒-5 (4𝑒-5) 

 

Non-treed vegetation (NTV) 

 

-0.006 (0.004) 

 

-0.006 (0.005) 

 

-0.004 (0.003) 

 

NTV × VAR 

 
8𝑒-5 (5𝑒-5) 

 

-6𝑒-5 (-6𝑒-5) 

 

 

NTV × AveSUM 

 

  3𝑒-5 (3𝑒-5) 

 

Canopy cover (CC) 

 

7.06 (6.84) 

 

1.01 (7.33) 

 

-0.27 (4.96) 

 

CC × VAR 

 

-0.21 (0.08) 

 

-0.16 (0.08) 

 

 

CC × AveSUM 

 

  -0.11 (0.04) 

 

CC2 

 

-5.40 (4.88) 

 

-10.06 (5.07) 

 

-4.82 (3.36) 

 

CC2 × VAR 

 

-0.003 (0.06) 

 

0.06 (0.06) 

 

 

CC2 × AveSUM 

 

  0.0008 (0.02) 

 

Distance to forest edge (DFE) 

 

-0.0006 (0.0007) 

 

-0.001 (0.0006) 

 

-0.0007 (0.0007) 

 

DFE × VAR 

 
-2𝑒-5 (8𝑒-5) 

 

7𝑒-6 (7𝑒-6) 

 

 

DFE × AveSUM   -2𝑒-6 (5𝑒-6) 

 

Elevation 

 

0.0004 (0.0006) 

 

0.0004 (0.0008) 

 

 

Elevation × VAR 

 

-5𝑒-5 (6𝑒-5) 

 

5𝑒-7 (7𝑒-6) 

 

 

Average snow rank (AveSW) 

 

 0.03 (0.01) 

 

-0.02 (0.01) 

 

AveSW × VAR 

 

 -0.0003 (0.0001) 

 

 

AveSW × AveSUM 

 

  9𝑒-5 (7𝑒-5) 

 

𝒘̅i 

 

0.162 

 
0.158 0.103 

 

 

Table 11: Top ranked model outputs including population-level coefficients (β) and standard errors in 

parentheses for the winter period. Interactions are indicated with a “×” symbol. Models with a weighted AIC 

average (𝒘̅i) of > 0.10 are reported, of which there was one (i.e., model W1). Blank cells indicate that a 

variable was not used in the model. 

 

Variable 

 

Model W1 
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β (SE) 

 

Average winter end date (AveMELT) 

 

-1.66 (0.05) 

Bare ground 

 

-0.008 (0.003) 

 

Bare ground × AveMELT 

 
2𝑒-5 (5𝑒-5) 

 

NTV 

 

-0.003 (0.006) 

 

NTV × AveMELT 

 

6𝑒-5 (7𝑒-5) 

 

CC 

 

-3.41 (10.69) 

 

CC × AveMELT 

 

-0.07 (0.10) 

 

CC2 

 

-2.52 (6.17) 

 

CC2 × AveMELT 

 

-0.04 (0.06) 

 

DFE 

 

-0.0004 (0.0006) 

 

DFE × AveMELT 

 
1𝑒-6 (1𝑒-6) 

 

Yearly winter start date (ACC) 

 

-0.03 (0.02) 

 

ACC × AveMELT 

 

0.0006 (0.0002) 

 

AveSW 

 

-0.002 (0.001) 

 

AveSW × AveMELT 

 
4𝑒-5 (1𝑒-5) 

 

𝒘̅i 

 

0.171 

  

 

3.3.2 Individual variation 

The following table highlights the individual-level variation in selection results (Table 12). The 

variance for each covariate’s population-level coefficient was calculated using all estimated 

coefficients from each deer, using the top winter and spring/fall model (i.e., W1 and SP1 

respectively). Therefore, mule deer individuals that respond similarly to a given environmental 

covariate, such as distance to forest edge (DFE), will have a very small variance value when the 

population-level coefficient is estimated (Table 12). Among all individual deer coefficients, the 

variance of the response to canopy cover (CC variable combinations) is greatest, being many 

orders of magnitude greater than other covariates.  
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Table 12: The variance-covariance matrix values of the regression coefficients calculated by the 

TwoStepCLogit package in R (Craiu et al., 2011). Blank cells indicate variables that were not used in either 

the top winter (W1) or spring/fall (SP1) model. 

 

Variable 

 

Variance 

 

  SP1 

 

W1 

 
Bare 0.0007 0.0001 

NTV 0.0006 0.001 

CC 2418 3681 

CC2 1137 1158 

DFE 2𝑒-5 9𝑒-6 

DEM 2𝑒-5  

VAR 0.003  

Bare × VAR 2𝑒-7  

NTV × VAR 1𝑒-7  

CC × VAR 0.3  

 CC2 × VAR 0.2  

DFE × VAR 2𝑒-9  

DEM × VAR 1𝑒-9  

AveMELT  0.07 

AveSW  3𝑒-5 

ACC  0.008 

Bare × AveMELT  6𝑒-8 

NTV × AveMELT  2𝑒-7 

CC × AveMELT  0.3 

CC2 × AveMELT  0.1 

DFE × AveMELT  8𝑒-10 

AveSW × AveMELT  4𝑒-9 

ACC × AveMELT 
 

7𝑒-7 
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3.3.3 Relative probability of use – spring/fall periods 

 

 

Figure 14: Probability of use plotted against the covariates used in the top population-level spring/fall model 

(SP1). The model calculated the probability of use for all 77 spring/fall mule deer’s available GPS locations 

using SP1. Figure panels show cubic splines of 4 knots through 250,961 available locations. SP1 model 

contained the yearly snow pack variability (VAR) covariate (A) which was not correlated more than 0.7 with 

elevation. Therefore, elevation was also included in the model SP1 (C). The third best model SP3 included 

average number of snow cover days per pixel (AveSUM), which was plotted here (B and D) to compare 

selection responses to the covariate to VAR. 

 

As expected, snow pack variability negatively affected deer habitat selection (Figure 14A). 

However, deer were more likely to select for greater snow pack variability at higher elevations 
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(Figure 14C), and when the average number of snow-covered days were fewest (Figure 14D). As 

shown in Table 10, model SP3 included average total number of snow cover days, with Figure 

14B indicating how the temporal snow covariate negatively affects selection as the total number 

of snow cover days increases.  

 

To compare the performance of models with and without the spatial snow covariate VAR, see 

Appendix B. Averaged AIC weights from all models (see Appendix A) were used to calculate 

the evidence ratio between models containing each of the snow covariates. The evidence ratio is 

used to determine how many times more likely a model is the best model compared to the one it 

is being compared to (Wagenmakers & Farrell, 2004). Appendix B provides an evidence ratio of 

each snow covariate compared to those models containing both the core covariates and the DEM. 
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3.3.4 Relative probability of use – winter range 

 

Figure 15: Probability of use plotted against the covariates used in the top population-level winter model 

(W1), with the exception of elevation. The model calculated the probability of use for all 38 winter mule 

deer’s available GPS locations using W1. Figure panels show cubic splines of 4 knots through 207,580 

available locations. The top model containing average winter end (AveMELT) day of the year (DOY) as an 

interaction term is shown separately (C). The other two snow covariates appearing in the top ranked model 

were average snow cover rank (AveSW) (A) and yearly winter start (ACC) DOY (B). AveMELT’s interaction 

effects on the two other snow covariates (D and E) and elevation (F) is presented. 

 

During winter, probability of selection decreased with greater snow cover rank (Figure 15A), 

earlier winter start DOY (Figure 15B) and later winter end DOY (Figure 15C). This combination 
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of spatial and temporal snow covariates within the top model support the second hypothesis, 

which predicted that greater snow cover extent and persistence would decrease the probability of 

selection for an area by mule deer. The result also highlights the fact that temporal snow data 

also affects habitat selection, not just the spatial extent and distribution of snow cover. In 

locations with later winter end DOY, deer were least likely to select for high snow cover (Figure 

15D) and early winter start DOY (Figure 15E). Within different strata of elevation, probability of 

selection decreases as average winter end DOY increases, but mule deer at higher elevations 

show to be more tolerant of more persistent snow cover (Figure 15F).   
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3.3.5 Relative probability of use – other habitat covariates 

 

Figure 16: Figure panels A and B display only core forest covariate results, comparing winter to spring/fall. 

Distance to forest edge (DFE) results show smoothed available locations are also stratified by average number 
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of snow-covered days (AveSUM, Figures 16C-D) or Non-treed Vegetation (NTV, Figures 16E-F). Canopy 

cover results plotted against the relative probability of use and stratified by AveSUM are shown in the final 

two panels G and H. 

  

Figure 16A supports the third and final hypothesis, showing that with increased snow cover and 

persistence in the winter compared to spring/fall, deer are more likely to remain close to the 

forest edge. DFE however, also affects mule deer habitat selection depending on the degree of 

snow cover and persistence. Mule deer will most likely select areas closest to the forest edge as 

the extent and persistence of snow increases (Figures 16C and D). Canopy cover (Figure 16A, G 

and H) had little change apart from when locations were also stratified according to the average 

snow cover days, in which case wintering deer appear to select greater canopy cover in areas 

with less snow, the opposite of what I expected (Figure 16G). Figure 16E and 16F are displayed 

in order to note the optimal proportion of NTV selected for according to how far deer are from 

the forest edge, showing that deer are more likely to use areas with approximately 30 – 40 % 

NTV cover in both the winter and spring/fall when furthest from the edge. 

 

Not all combinations of plot results are reported here (Figure 16), as several showed no notable 

trends (for example, proportional coverage of bare ground). Initial data exploration of used deer 

locations however, showed greater variability of NTV and bare ground land occurrence as a 

percentage during the spring/fall periods. During winter, deer are more restrictive of their use of 

the same covariates, particularly with bare ground, which consists of no more than 20 % of the 

proportional cover at any time on average (See Appendix C).  
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Figure 17: Average number of snow cover days (AveSUM) map for the study area (A) and model-predicted 

habitat selection probability in winter (B). Habitat selection probability maps were calculated using 

population-level model coefficients multiplied by each model covariate by using pixel values from the map 

data sets (see Table 9 and Equation 9). In order to compare finer-scaled predictions of relative probability of 

use, a smaller geographic area is shown for demonstration, using spring/fall (C) and winter (D) population-

level models.  
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The two top models calculated and mapped the relative probability of habitat selection using 

their respective beta coefficients across the study area (Figure 17). Deer are shown to be less 

likely to select particular patches during the spring/fall compared to the winter period, based on 

top population-level model outputs (Figure 17D, large yellow area compared to the similarly 

shaped purple area of 17C). During the spring/fall periods, deer are most likely to be in open, 

low-lying grassland, in this case along the benches of the Fraser River (Figure 17C, darkest 

green areas).  

 

3.4 Discussion 

A 2-step SSF modelling approach has been developed to address information needs associated 

with potential mule deer winter range habitat requirements using fine temporal and spatial snow 

cover map information. Herein, I demonstrate the applicability of using such snow cover maps 

over large areas by presenting relative probability of use results from models developed from 

two large GPS data sets. The production of more nuanced snow cover information from the daily 

MODSAT-NDSI maps highlights the inherent flexibility that is now possible when developing 

habitat selection models. More specified environmental covariates allows researchers and land 

managers to examine wildlife responses to more precise characteristics of snow cover dynamics.  

 

As indicated in my methods and results, utilizing remote sensing technologies to improve the 

spatial and temporal resolution of environmental data has many benefits, with snow cover being 

one of the key sets of information used to model fine-scale wildlife movement and habitat 

selection (Robinson & Merrill, 2012; Schwartz et al., 2009). I have shown that the resulting 
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outputs from MODSAT-NDSI improves models of mule deer habitat selection for both winter 

range and periods in the spring and fall (Table 10 and 11, as well as Appendix A and B).  

 

Gilbert et al. (2017) note how the discipline of wildlife habitat selection analysis increasingly 

recognizes the complexities involved in fine-scale and time dependent movement behavior. 

Models incorporating estimators that vary through time have captured ecological dynamics in a 

more intuitive manner (Gilbert et al., 2017; Kie et al., 2010; McLoughlin, Morris, Fortin, Vander 

Wal, & Contasti, 2010; van Beest, Van Moorter, & Milner, 2012). Individuals of a species can 

have varying life histories, and adapt and respond to external stimuli in innumerable ways 

according to resource availability and temporal cues. Such plasticity in selection behavior points 

to a need for less mechanistic and static models while calling for a greater ability to characterize 

complex adaptive systems (Levin, 1998; Trifa, Girod, & Collier, 2007) when testing hypotheses. 

Consequently, I incorporated snow cover dynamic information averaged over 18 years, time-

varying predictors updated for each year of deer observations, and average fractional snow cover 

ranks adjusted for every day of the year when developing step selection function models. These 

snow covariates have been produced from a daily 30 m resolution snow cover data set in order to 

utilize the power of data fusion remote sensing technologies while attempting to best capture the 

temporal and spatial snow cover conditions that wildlife experience on what can now be an 

hourly or sub-hourly rate.  

 

Gilbert et al. (2017) showed that depth of snow is a key predictor of habitat selection for mule 

deer in Southeast Alaska. The study found that models incorporating snow depth and any other 

combination of covariates ubiquitously indicated deer selecting against snow depth. If models 
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incorporated a degree of habitat availability, defined as landscape configuration and composition 

at a given time, snow cover information could be used to determine the direction and magnitude 

of selection for these variables, such as old versus second growth forest or shrub biomass. The 

aforementioned study did not explicitly include canopy cover as a covariate, but rather different 

degrees of forest stand age and volume. The snow depth model generated in the study also 

required specialized field equipment and measurements, as well as regionally specific models 

acquired from previous research (Gilbert et al., 2017). Gaps in knowledge that this paper 

addressed included the explicit relationship between habitat selection and canopy cover as a 

percent for populations in south-central British Columbia. The snow cover information that this 

paper used are from data sets that are more readily available to both scientists and land use 

managers in the form of thematic maps, which may be generated for any area without field 

measurements of depth or locally developed linear regression models. Therefore, this paper also 

sought to evaluate the efficacy of using other metrics related to snow cover besides depth in 

habitat selection research, and proved that certain types of snow cover information utilized in 

different combinations for different seasons generate the best performing habitat selection 

models (Table 10 and 11; Appendix A and B).  

 

3.4.1 Relative probability of use – spring/fall periods 

This study also found that the effects of individual snow cover dynamic variables on mule deer 

habitat selection differ as seasons change (Table 10 and 11), with the core spring/fall periods 

model producing the highest weighted AIC score once yearly snow pack variability was included 

and with an interaction term. This result addresses the first question concerning the affect that 

snow cover dynamics may have on habitat selection during spring/fall periods. Yearly adjusted 
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snow pack variability suggest that during spring/fall periods, snow that remains present on the 

landscape does continue to have an effect on deer movement and habitat selection, and the 

relationship between snow pack variability and habitat selection is strongest when accounting for 

changes in snowpack variability conditions year to year. In addition, Figure 14C and 14D show 

that when colder temperatures allow snow pack to accumulate sooner or persist during spring 

longer, the variability of the snow pack becomes an important determinant in finding forage in 

unburied patches or through varying depths in snow cover. 

 

3.4.2 Relative probability of use – winter range 

In addressing the second question: how and what aspect of snow cover dynamics affect winter 

range habitat selection, the top winter model was found to include the long term or average 

winter end date while concurrently utilizing yearly changes in winter start date (Figure 15). The 

reason for one covariate being averaged while one is yearly adjusted may relate to one process 

being more consistent and gradual than the other. Snow ablation may be a more stable and 

therefore consistent process through time. Indeed, hydrologic models using parameters such as 

snow grain size and temperature have been shown to better predict snow melt compared to 

models using snowfall (Marshall & Oglesby, 1994). Variance in relative changes in snowfall and 

accumulation however may be best explained by more complex wind field models compared to 

comparatively static land cover parameters (Varhola, Coops, et al., 2010; Winstral & Marks, 

2002). In terms of deer ecology, results from Figure 15 may highlight the fact that deer will 

select areas where snow melts the earliest in order to locate the earliest greening forage to 

replenish the negative energy balance incurred during winter (Garrott, White, Bartmann, 

Carpenter, & Alldredge, 1987). Garrott et al. (1987) also note how harsher winters result in 
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physiologically weaker deer, and therefore Figure 15 supports the idea that mule deer will most 

likely select areas where the severity of winter is comparatively milder in terms of winter length 

(i.e., where winter begins later and ends sooner). In addition, the average snow cover rank 

covariate in the winter range model has selection trends reversing at particular ranges (Figure 

15A), suggesting other interactions may begin to affect selection within such areas. For example, 

snow pack that has allowed to accumulate over the entirety of the winter season may result in a 

uniformly snow covered landscape by late March – early April, but generally increasing 

temperatures entice deer to select for or travel through such areas despite them likely having a 

snow rank of 4. The yearly winter start day of year (DOY) (Figure 15B) also appears to affect 

selection differently between the 340th DOY (i.e., the second week of December), and the middle 

of January of the following year. Interactions that were not considered in this analysis that may 

be affecting selection during this time may include inter species competition, predation and 

hunting.  

 

From the last three panels (Figures 15D, E and F), it is apparent that the additive effect of having 

later melt periods, greater fractional snow covered area and earlier winter start dates generates 

the most negative trends in winter range habitat selection. Although average fractional snow 

cover describes current snow cover conditions in terms of distribution across the landscape, the 

inclusion of temporal dynamics in snow cover better describes current conditions. Earlier 

accumulation and later melt may be a proxy measure for snow pack depth, and may better 

explain the additional processes that may be occurring at ranges where selection probability 

trends reverse. If there are many regions for example, where winter begins later but the same 
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areas eventually accumulate much deeper snow packs that persist longer into the spring, then 

deer habitat selection for such areas may remain less probable compared to other sites.  

 

3.4.3 Relative probability of use – other habitat covariates 

Figure 16 characterizes the type of habitat mule deer would be using when avoiding snow cover 

and persistence. Contrary to my hypothesis, canopy cover selection appears to remain relatively 

similar in both the spring/fall and winter periods (Figure 16B), while individual variation in 

response to this covariate was found to be the greatest among both spring/fall and winter deer 

(Table 12). Differences in the use of forest edges, however, was more pronounced between 

periods (Figure 16A), where increases in snow cover extent and persistence increased the 

probability of selection for areas closer and closer to the forest edge. Interestingly, the only 

identified trend between canopy cover and snow appeared in the winter range data set when the 

total number of snow covered days would be plotted against relative probability of use (Figure 

16G). Although the average number of snow cover days was not a snow covariate appearing in 

the top winter model, the result is reported here as it shows selection of denser canopy cover is 

highest within regions of low snow cover and decreases as snow cover days increases. This 

suggests that deer select for denser canopy cover for reasons other than snowfall interception. 

Large varying degrees of predation risk between deer may account for this discrepancy, and also 

may help to explain the large variability in individual responses to canopy cover. 

 

In terms of DFE, all snow covariates for both winter and spring minimally affect the probability 

of selection when deer are closest to the forest edge, and as the distance increases along with 

snow cover and/or persistence, selection becomes increasingly more unlikely (Figures 16C-D). 
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One of Gilbert et al.’s (2017) hypotheses included the prediction that if snow depth increased 

while both canopy interception and forage would be available, deer would most likely select 

such an area above one which only provided cover. To some extent, this hypothesis is supported 

in this paper, since mule deer appear to prefer to remain near both open and forested areas even 

when snow cover extent and persistence is greatest, rather than retreat further into the forest.  

 

The probability of selection for non-treed vegetation was found to be highest in areas furthest 

from the forest edge, with NTV comprising 30 – 40 % of a given 120 m2 area (Figure 16E-F). 

These last two panels support the notion that deer select for ecologically complex and 

heterogeneous landscapes when not seeking shelter along the forest edge, but rather preferring 

habitat that has a mix of both NTV and approximately 25 % canopy cover or less (Figure 16B).  
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Chapter 4: Conclusions 

 

The aim of this thesis was to establish the feasibility of applying a novel fusion algorithm to 

snow cover map data sets and use such data sets to analyze mule deer habitat selection patterns 

within south-central British Columbia. To accomplish this task, I downloaded Landsat and 

MODIS satellite imagery and used them as inputs in the MODSAT-NDSI data fusion algorithm. 

I assessed the accuracy of the new maps using 33 validation test sites, and used the original map 

data output from the validated MODSAT-NDSI algorithm to derive further snow map data sets. 

These new snow map data sets were used as environmental covariates in a step selection analysis 

of mule deer GPS relocation points. Finally, I have assessed results from the step selection 

function to determine biological implications.  

 

4.1 Overview of answer to main research question: How can the understanding of mule 

deer winter habitat use be improved by remotely sensed snow cover dynamics?  

I answer the main research question by first obtaining the aforementioned results from the 

MODSAT-NDSI distribution layers, which will likely be relevant to a range of potential users, 

including forestry, conservation and land management groups. I generated daily 30 m snow 

cover maps for years 2000 – 2017 with an overall accuracy of 90%, using 33 validation sites 

distributed throughout south-central British Columbia. Analyzed snow cover trends across 

stratified elevation bands and land cover types reveal that snow cover persists under lower 

elevation forests for an average of 23.5 days longer than in adjacent open areas during spring. 

The algorithm itself is a flexible, computationally simple approach that may be applied to any 

other area of interest, to other metrics (a MODSAT-NDVI algorithm for example) and even to 
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satellite imagery other than MODIS or Landsat, as long as there is a common metric produced 

between a coarse and fine resolution instrument. The case for improving spatial and temporal 

resolution simultaneously for snow cover is strengthened by the fact that snow cover is highly 

variable at scales even finer than 30 m, particularly within more complex and heterogeneous 

landscapes. Ultimately, this research could provide greater certainty in land use decisions by 

producing a snow cover maps that can be used to estimate snow meltwater volume and timing, 

an important piece of information in hydrology, fish and wildlife studies. Emergency 

preparedness for floods and avalanches would require detailed snow maps to estimate snow 

meltwater as well, and would additionally use such maps to estimate snow pack depth, extent, 

and volume. Emergency preparedness for wildfires may also find snow cover maps valuable by 

using them to determine sites that are driest and wettest as snow cover begins to ablate. 

Evaluations of road/working conditions for forestry operations and other industrial activities 

would also require readily updateable snow maps in order to decide where and when harvesting 

operations should occur.  

 

Secondly, I utilized more than 70 individuals across 8 years of deer telemetry data in the second 

part of my analysis. Individual variations in responses are accounted for when generating 

population-level habitat selection trends, and my findings of mule deer responses to forest edge 

against multiple aspects of snow cover timing and distribution provide support for preserving 

forested habitats for mule deer. In particular, those forested habitats naturally occurring within 

the dry interior Douglas Fir (Pseudotsuga menziesii) and Ponderosa pine (Pinus ponderosa) 

forest stands, which have characteristically less canopy cover at lower elevations compared to 

higher elevations (Pojar, Klinka, & Meidinger, 1987). In addition, it also would be important to 
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conserve those forested habitats providing enough variability in land cover to facilitate readily 

adaptive changes in selection patterns, such as utilizing cover and forage interchangeably. The 

forest/open area interface facilitates such adaptive behavior in response to current resource needs 

(Alaback, 2010; Gilbert et al., 2017). In terms of snowmelt and accumulation, the melt and 

accumulation periods of snow pack differ between open and forested sites within the study area 

as discussed in chapter 2. However, the forest/open area interface can provide complex 

microhabitats, integrating characteristics from both forested and open landscapes in terms of 

moisture regime, shade, precipitation interception, forage, concealment from predators, and snow 

pack patchiness.  

 

4.2 Significance of research 

The main novelty and significance of this work falls in two areas. First, this thesis develops a 

novel algorithm MODSAT-NDSI to harness the strengths of both coarse and finer spatial 

resolution imagery by fusing MODIS and Landsat normalized difference snow index (NDSI) 

data. The MODSAT-NDSI approach captures temporal and spatial advantages of freely available 

snow cover datasets and can be modified to suit a variety of novel investigations relating to snow 

cover or other spectral indices. I found notable differences in the timing and duration of snow 

cover between different land cover types and elevation gradients. This thesis also utilized the 

MODSAT-NDSI snow maps to produce additional temporal and spatial information concerning 

snow cover that are new for the region, and included such snow information as variables in step 

selection analysis to evaluate mule deer habitat selection behavior.  
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The second area concerns habitat modelling. I demonstrate how novel snow maps produced from 

data fusion algorithms could be incorporated into wildlife telemetry research that often requires 

environmental data to be at finer temporal and spatial scales than is typically available. It is now 

shown that mule deer negatively selected for all variables associated with increased snow cover 

and longer snow cover duration. Mule deer selected areas nearest to forested habitats during the 

winter while the selection pattern reversed during the spring and fall. In addition, the relative 

probability of selection of canopy cover as a percentage did not notably change from fall to 

spring, highlighting the fact that habitats with greater heterogeneity in terms of snow cover 

distribution and land cover types within the forest/herb/shrub/grassland interface are a more 

significant factor in selection during the winter seasons. 

 

4.3 Implications 

This research is a partnered effort between SGS, the MITACS organization, and the University 

of British Columbia to help recover and maintain the health of regional mule deer populations. 

An improved  understanding of how snow cover and timing has been affecting where mule deer 

migrate and seek shelter in the winter will allow St’át’imc Government Services (SGS) and other 

organizations to better predict where shelter habitat needs to be conserved and improved. Priority 

winter range areas could then be identified and protected from deforestation and degradation. In 

addition, annual snowpack data is typically summarized at a regional scale and used to make 

forecasts for spring melt conditions and flooding. However, the spatial pattern of snow, its 

accumulation and melting across the land base, also directly influences the movement and habitat 

selection for many wildlife species, which in turn affects forest harvesting, and resource 

management decisions. By examining the spatial distribution of snow on the finer temporal and 
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spatial scale that is now available via MODSAT-NDSI, and incorporating existing wildlife data, 

better models can be created for wildlife habitat management and climate change impacts. Such 

data and modelling becomes a valuable service opportunity for SGS and others to use in the 

creation of partnerships for forest harvesting, wildlife management, conservation, tourism, and 

heritage projects. It also becomes the leverage for climate change adaptation projects, which will 

influence future economic opportunities.  

 

In this research, I show that mule deer selected forest edges and avoided areas with greater snow 

cover. This research thus helps to provide greater certainty in land use decisions regarding 

winter-season-mortality of mule deer. Mortality could be mitigated by assuring that adequate tree 

cover is provided while diverse microhabitats are facilitated by land use practices within winter 

range. The dry interior Douglas fir forest stands within my study area include vast spaces of 

sparsely distributed stems, fragmented by sagebrush grasslands which may provide enough of 

the snowfall interception necessary for survival without being further thinned by the selection 

system currently recommended by management prescriptions (Armleder et al., 1986). Because 

the mule deer species inhabits lands from California to Alaska (Anderson et al., 2012; Bergman 

et al., 2014; Doerr et al., 2005; Gilbert et al., 2017; Lomas & Bender, 2007; Mackie, 1970; 

Sawyer et al., 2006; Woods, Schumaker, Pesavento, Crossley, & Swift, 2018), the effect of 

canopy cover on habitat selection in one region – such as the Cariboo region highlighted in the 

Armleder et al. (1986) handbook – may likely differ from another. Bergman et al. (2014) 

empirically demonstrated how increasing mule deer habitat range (i.e., increasing the coverage 

of brush vegetation cover) has improved the survivorship of the species in their study site within 

Colorado, U.S.A. In western Wyoming, U.S.A, Sawyer et al. (2006) were able to detect abrupt 
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and altered patterns in behavior associated with oil and gas development. Wildlife management 

should be encouraged to remain flexible and take changing landscapes and conditions into 

account in conservation management decisions, especially in the current age of big data where 

large volumes of spatial information can now be integrated into ecological models and 

summarized faster than ever before.   

 

4.4 Limitations 

Limitations within this study include the availability of GPS data points for the winter range data 

set. For the spring/fall periods, I used 77 individuals in the development of models, while 38 deer 

provided enough GPS relocation data during the winter to develop the 2-step population-level 

model results. Although all of the 38 winter range deer were included in the spring/fall period 

models, the greater sample size and added variability in deer habitat selection in the spring/fall 

period model strengthens the confidence in the model’s results compared to the winter range 

model. In addition, a single year (2014) of land cover data was used to generate the NTV, bare 

ground and DFE land cover classes, a temporal resolution which removes the context-dependent 

effect of habitat selection for changing stand productivity, forest succession and/or disturbances 

from potentially impacting results (Gilbert et al., 2017; Sawyer et al., 2006). Along with 

anthropogenic and natural stand-replacing disturbances, several other factors can play a role in 

mule deer habitat selection that were not included in this research, including predators 

(Altendorf, Laundré, López González, & Brown, 2001; Benson, Sikich, & Riley, 2016), resource 

competition (Wielgus, 2017) and the sex and age of cohorts observed (Long, Kie, Terry Bowyer, 

& Hurley, 2009). Finally, in the specific case of Poole and Wright’s (2010) study, distinctive 

differences were found between migratory and resident populations, the latter groups identified 
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as having overlapping winter, spring and summer ranges, occupied the same area year-round, 

and/or occupied a much larger proportion of agricultural lands (in this case, 18% more than 

migratory populations). Future research can and should involve identifying the proportion of 

resident and migratory mule deer within a broader context, as well as determine whether mule 

deer switch between strategies on an individual scale, as these are additional factors to consider 

in future MDWR habitat management decisions. 

 

A major strength of this thesis is the derivation of dynamic snow maps derived from robust and 

rigorous validation tests using ground-truth data. However, additional environmental data sets 

used in this thesis did not undergo the same degree of accuracy assessment, particularly the 

canopy cover rasters. The canopy cover estimating algorithm used and applied to my study area 

has been validated by Matasci et al. (2018) using the Canadian boreal zone, but greater 

confidence in the canopy cover algorithm’s accuracy within this study’s region could be assured 

by acquiring field validation data in the future. Such future validation may be especially helpful 

when updating MODSAT-NDSI for future winter years since canopy cover is the metric used in 

the data fusion algorithm to determine the final NDSI thresholds in forested and open areas. The 

canopy cover data set was also included in the mule deer step selection functions, and therefore 

any conclusions drawn from my movement model results concerning canopy cover use would 

also be strengthened by further ground truthing.  

 

Lastly, the habitat selection analysis conducted in this thesis focused on third-order selection, 

which is the finest spatial scale of selection observing differences between each individual’s 

telemetry locations and the randomly sampled available locations (Johnson, 1980). The two-step 
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conditional logistic regression used in this thesis accounts for individual variations in covariate 

coefficients, thereby allowing for population-level extrapolation. However, Gilbert et al. (2017) 

note how studies focusing explicitly on second or first-orders of selection (i.e., studies comparing 

individual or population-level home ranges to available ranges of the equivalent scale 

respectively) are also important to consider when determining habitat selection. An example of 

such complimentary and augmenting research would include designing resource selection 

functions that compare the three herd populations used in this thesis (i.e., Pemberton Valley, 

Carpenter Lake and Fraser Valley mule deer herds). Comparing resource selection patterns 

between the three herd populations would be described by Manly, McDonald, Thomas, 

McDonald, & Erickson, (2002) as a type 1 experimental design, where selection patterns can be 

drawn by comparing resource availability found within the total study area to the used resources 

within each of the three separate herd populations’ home ranges. Considering multiple selection 

scales in this way can help to draw further conclusions regarding responses to snow timing and 

distribution and forest habitat types, as sub regions included in this thesis such as Pemberton 

Valley likely experiences very different climatic and hydrologic processes compared to the drier 

mid-Fraser valley. A type 1 experimental design can account for differing snow dynamics found 

within differing regions, while testing for whether deer still select for the lowest degree of snow 

cover and persistence according to their regionally specific extrema.   

 

4.5 Directions for future research 

Temporal and spatial dynamics of snow cover is critical for hydrological modelling, aquatic 

environment assessment and wildlife survival and habitat selection. With the newly developed 

data fusion snow maps, a comparison between snow dynamics and forest fire footprints can be 
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conducted, as well as further data analysis of the snow map to derive potentially changing snow 

cover trends that may be utilized in land management strategies addressing future climate change 

scenarios. This thesis also provides a new technique for mapping snow cover into the future, 

which can be input into new models, designed to provide insights for other terrestrial wildlife 

management decisions for species including grizzly bears, wolverines, salmon and other 

ungulate species.  

 

The data fusion algorithm produced can be applied to any remote sensing spectral indices or 

metric, as long as it is common to the two satellite instruments used in the data fusion algorithm. 

This includes finer spatial and temporal resolution products of NDVI estimates, burn ratios, 

wetness and productivity indices, and geology indices such as the ferrous minerals ratio. The 

aforementioned list is by no means exhaustive, and the final application of this thesis that paves 

the way for future research is the snow depth data. With daily 30 m MODSAT-NDSI imagery 

and more than 20 field sites measuring depth from 2016 to 2017, future researchers can develop 

models relating snow cover, depth and any combination of other environmental variables (air 

temperature, aspect, NDVI, etc.,) to predict snow depth using remote sensing. Such models can 

then be calibrated and validated using the now available snow depth field data. Predicting snow 

depth is a difficult task that would non-the-less greatly improve all models related to snow pack 

measurements, hydrological modelling of meltwater runoff, and wildlife movement research as 

well.   
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Appendices 

 

Appendix A   

Appendix A: All candidate models used in model selection. “Core” includes all of the non-snow related 

habitat covariates, with the exception of elevation (DEM) as DEM was found to be collinear with most snow 

covariates. * Indicates that a covariate’s interaction terms were included in the candidate model. Note: “Ave” 

before variable name indicates time-averaged covariate; otherwise, it is the yearly value. ACC = 

accumulation date, MELT = ablation date, SUM = total snow covered days, SW = snow rank, and VAR = 

snow pack variability. Bold values indicate top ranked models with an AIC weight greater than 0.10. 

 

Model  

Group 

 

Variables 

 

Average 

AIC Weight 

 

Tally 

 Core + AveACC  0.0088 0 

Spring/fall Core + AveACC + AveSW  0.0157 1 

 Core + AveACC + AveSW*  0.0419 3 

 Core + AveACC* 0.0683 7 

 Core + AveMELT  0.0079 1 

 Core + AveMELT + AveSW  0.0068 0 

 Core + AveMELT + AveSW*  0.0077 0 

 Core + AveMELT*  0.0377 4 

 Core + AveSUM  0.0063 0 

 Core + AveSUM + AveSW  0.0205 3 

 Core + AveSUM + AveSW*  0.0132 1 

 Core + AveSUM*  0.0539 3 

 Core + AveSW + AveACC*   0.0935 7 

 Core + AveSW + AveMELT*  0.0706 5 

 Core + AveSW + AveSUM*  0.1031 8 

 Core + DEM 0.0228 2 

 Core + DEM + AveSW  0.0143 0 

 Core + DEM + AveSW + VAR*  0.1584 12 

 Core + DEM + AveSW*  0.0329 2 

 Core + DEM + VAR  0.0234 1 

 Core + DEM + VAR + AveSW*  0.0457 3 

 Core + DEM + VAR + AveSW  0.0094 0 

 Core + DEM + VAR*  0.1617 14 
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TOTAL = 77 

 

Winter Core + ACC + AveMELT  0.0055 0 

 Core + ACC + AveMELT + AveSW  0.0028 0 

 Core + ACC + AveMELT + AveSW*  0.0349 1 

 Core + ACC + AveMELT*  0.0482 2 

 Core + ACC + AveVAR + AveSW  0.0044 0 

 Core + ACC + AveVAR + AveSW*  0.0771 4 

 Core + AveMELT  0.0083 0 

 Core + AveMELT + ACC* 0.0644 3 

 Core + AveMELT*  0.0253 1 

 Core + AveSUM  0.0097 0 

 Core + AveSUM + AveSW  0.0041 0 

 Core + AveSUM + AveSW*  0.0205 1 

 Core + AveSUM*  0.0254 1 

 Core + AveSW + ACC + AveMELT*  0.1711 7 

 Core + AveSW + ACC + AveVAR*  0.0804 3 

 Core + AveSW + AveMELT + ACC*  0.0871 3 

 Core + AveSW + AveSUM*  0.0524 2 

 Core + AveSW + AveVAR + ACC*  0.0495 3 

 Core + AveSW + AveVAR*  0.0292 0 

 Core + AveVAR  0.0129 1 

 Core + AveVAR + AveSW  0.0075 0 

 Core + AveVAR + AveSW*  0.0312 1 

 Core + AveVAR*  0.0340 3 

 Core + DEM 0.0110 1 

 Core + DEM + ACC  0.0126 0 

 Core + DEM + AveSW  0.0066 0 

 Core + DEM + AveSW*  0.0300 1 

 Core + DEM +ACC* 0.0870 4 

 

  

 

TOTAL = 42 

 

 

 

 

 

 

 



142 

 

Appendix B   

Appendix B: AIC weights from all models shown in Appendix A that were averaged based on the presence of 

each covariate listed below. “Core” includes all of the non-snow related habitat covariates, with the exception 

of elevation (DEM) as DEM was found to be collinear with most snow covariates. Evidence Ratio calculated 

by dividing each snow covariate models’ average AIC weight with the average AIC weight of Core + DEM 

models’ average. This produces a numerical value for how many times more likely a given model is the best 

one over the other (Wagenmakers & Farrell, 2004). Note: “Ave” before variable name indicates time-

averaged covariate; otherwise, it is the yearly value. ACC = accumulation date, MELT = ablation date, SUM 

= total snow covered days, SW = snow rank, and VAR = snow pack variability. Bold values indicate top 

ranked covariates, based on their averaged AIC weight. 

 

Model  

Group 

 

Variables 

 

Average  

AIC Weight 

Evidence Ratio 

compared to  

Core + DEM  

models’ average 

 AveACC  0.0456 0.7782 

Spring/fall AveMELT  0.0261 0.4454 

 AveSUM 0.0394 0.6724 

 VAR  0.0863 1.47 

 AveSW 0.0453 0.7730 

 Core + DEM  0.0586 n/a 

 

 

  

 

Winter ACC  0.0558 1.8980 

 AveMELT  0.0497 1.6905 

 AveSUM  0.0224 0.7619 

 AveVAR  0.0325 1.1054 

 AveMELT  0.0431 1.4660 

 Core + DEM  0.0294 n/a 
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Appendix C   

Initial data exploration of used deer locations showed greater variability of NTV and bare ground 

land occurrence as a percentage during the spring/fall periods. During winter, deer are more 

restrictive of their use of the same covariates, particularly with bare ground, which consists of no 

more than 20 % of the proportional cover at any time on average: 

 

 

 

Appendix C: Variability in the percent of ground cover for (A) non-treed vegetation (NTV) and (B) bare 

ground, according to used mule deer GPS locations. Spring/Fall (n) = 77, Winter (n) = 42.  

 

 

 

 


