
Modelling exciton dynamics in

light-harvesting molecules

by

Leonard Ruocco

M.Phys, The University of Sussex, 2012

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES

(Physics)

The University of British Columbia

(Vancouver)

February 2019

c© Leonard Ruocco, 2019



The following individuals certify that they have read, and recommend to the Faculty of Graduate 
and Postdoctoral Studies for acceptance, the dissertation entitled: 

 

Modelling exciton dynamics in light-harvesting molecules 

 

submitted by Leonard Ruocco  in partial fulfillment of the requirements for 

the degree 
of Doctor of Philosophy 

in Physics 

 

Examining Committee: 

Prof. Philip Stamp 

Supervisor  

Prof. Ian Affleck 

Supervisory Committee Member  

Prof. Gordon Semenoff 

Supervisory Committee Member 

 

University Examiner 

 

University Examiner 

 
 
Additional Supervisory Committee Members: 

Prof. Robert Kiefl 

Supervisory Committee Member 

 

Supervisory Committee Member 

 

Prof. Roman Krems

Prof. George Sawatzky



Abstract

I investigate the dynamics of multi-state central systems coupled bilinearly to an external

oscillator bath within the noninteracting-blip approximation. I focus on both a 3-site

configuration, as well as a 2-site model for the central systems of interest. The 2-site

model, dubbed the dual-coupling spin-boson (DCSB) model, includes both diagonal and

non-diagonal system-bath couplings, whereas the 3-site model considers only diagonal

couplings. The bath spectral densities considered in this work include both Ohmic and

super-Ohmic forms, as well as single optical phonon peaks. This work is motivated by the

recent observance of long-lived quantum coherence effects in the photosynthetic organism

known as the Fenna-Matthews-Olson (FMO) complex. The models investigated in this

thesis are applied to this system in an attempt to explain its remarkably efficient exciton

transfer mechanism, as well as to shed light on the functionality of coherence. The DCSB

model is shown to reproduce the rapid exciton transfer times as well as the relatively long

coherence times observed in the FMO complex. The non-diagonal system-bath coupling

is shown to play a crucial role in this process. This can be attributed to the inelastic

phonon-assisted tunnelling (IPAT) mechanism arising from the presence of significant

non-diagonal system-bath interactions. Conversely, the 3-site model predicts rapid but

incoherent exciton transfer. This can be attributed to the presence of a resonant state in

the 3-site architecture, resulting in a relatively slow exciton transfer mode in the system.

Therefore efficient exciton transfer requires a careful configuration of the chromophore

energy landscape to avoid a resonant 3-site-V configuration. Furthermore, I conclude

that coherence effects arising from excitons delocalised across multiple chromophores,

promotes IPAT processes arising from non-diagonal system-bath couplings, producing

rapid exciton transfer between chromophores. This offers a potential explanation as to the

functional role that coherence plays in the energy transfer mechanism of photosynthesis.
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Lay summary

A number of landmark experiments in the last decade have suggested that quantum

mechanics may be responsible for the remarkably efficient energy transfer in photosyn-

thesis. Theoretical research has ensued hoping to explain the role of quantum mechanics

in this process; however, the exact mechanism responsible for these observations remains

unexplained. In this thesis I investigate certain mathematical models that could poten-

tially explain this mechanism. I compare the results of these calculations with those

determined experimentally on certain photosynthetic organisms. In doing so I manage

to closely reproduce the observed coherence times with a model that incorporates critical

physical features that, as of yet, have not been applied to the photosynthesis theoretical

modelling process. Nature has managed to produce remarkably efficient light harvesting

organisms. A better understanding of the underlying mechanisms responsible for this may

enable us to harness this knowledge towards the improvement of our own light-capturing

technologies.
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Preface

This thesis includes both original work, as well as introductory material based upon a

summary of the relevant literature. The work presented in Chapters 3, 4 and 5 is origi-

nal, unpublished work, carried out by the author, Leonard Ruocco, under the guidance

of supervisor Prof. Philip Stamp. The work presented in Chapters 4 and 5 is under

preparation for publication in the near future.
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Glossary

Antenna complex : A system containing many individual chromophores which acts

as the first point of entry for photon absorption in photosynthesis.

Bacteriochlorophyll A (BChla): The principle light harvesting molecule present in

green sulfur bacteria. Contains a magnesium atom at its centre, surrounded by 4

nitrogen atoms. A delocalised π-electron spans the entire molecule.

Bath correlation function: Determines how the environment fluctuations affect the

central system through the system-environment coupling λ. This tells us how a

perturbation of the environment caused by the central system through λ, affects

the system at a later time through λ. Fluctuations of the bath coupled to the

central system at some time are correlated with fluctuations at some later time.

Boson: A particle with integer spin that obeys Bose-Einstein statistics, so there is

no restriction of the number of them occupying the same quantum state.

Coherence: Describes a degree of correlation between physical quantities of a sin-

gle wave, or between several waves. In in the context of wave mechanics, and

by extension the wave-like aspect to quantum mechanics, coherence describes the

constructive interference of waves (wavefunctions). Therefore coherence depends

on the relative phase of the two waves. Temporal/spatial coherence describes the

correlation beween waves observed at different moments in time/points in space.

Therefore coherence between energy states in a quantum mechanical system de-

scribes the overlap of the wavefunctions corresponding to each state. A particle

tunnelling coherently between states is said to be ’delocalised’ across the states

involved in the tunnelling process.

Central system: In the language of open quantum systems, the central system de-

scribes the system of interest. It usually contains only a few degrees of freedom
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compared to its environment which contains many. We are usually interested in

observing physical quantities pertaining to the central system under the influence

of its environment. Therefore the variables pertaining to the environment are ’in-

tegrated out’, leaving our dynamical equations in terms of variables corresponding

to the central system only.

Chromophore: A light-absorbing-conjugated molecule that contains extended π-

orbitals, the energy difference of which falls within the visible spectrum. Often

interchanged with ’pigment’.

Cut-off frequency ωc: A high frequency mode of the bath that regularises the bath

spectral density to negligibly small values for ω � ωc. This fixes the ultra-violet

divergences present in power-law spectral densities and represents a physical limit

to the frequency of bath fluctuations.

Dark state: A term coined in quantum optics, a dark state, represents an atom or

molecule that cannot absorb or emit photons. In the molecular context, a dark-

state represents an eigenstate of a molecular system (or interacting molecules), that

doesn’t couple to any external bath. Therefore an exciton that occupies the dark-

state will remain ’trapped’. The external bath does not ’see’ the dark-state, as it

does not couple to it, and therefore offers the exciton no means of leaving that state

within the system.

Decoherence: The loss of quantum coherence from a central system of interest

due to interactions with an external environment. In the language of quantum

measurement theory, decoherence represents the process of wavefunction collapse

within the central system due to measurements made by an external environment.

Density matrix : A quantum mechanical operator, or matrix, that describes the sta-

tistical state of a system. The density matrix is capable of describing a statistical

mixture of states whereas the quantum mechanical state vector can only describe

a ’pure state’ with no mixture. Mixed states arise in situations where the experi-

menter does not know which particular states are being manipulated. Therefore the

density matrix contains information regarding superpositions of states and there-

fore quantum mechanical coherences. The diagonal elements of the density matrix

represent the probability of finding the system in a particular state, and are there-

fore dubbed the ’populations’. The off-diagonal elements on the other hand contain
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information regarding interference effects and are correspondingly dubbed ’coher-

ences’. A particularly illuminating form for the density matrix comes by way of

the path-integral formalism of quantum mechanics. In this case the density matrix

represents two independent paths including possible interference effects between

them. Therefore the diagonal elements represent both paths starting and ending

in the same state, whereas the off-diagonal elements represent different endpoints

of the paths and therefore superpositions between states.

Diagonal coupling : A system-environment interaction that couples the environment

to the diagonal elements of the Hamiltonian. Therefore the diagonal coupling

corresponds to fluctuations in the on-site (or kinetic energies) of the central system.

Often referred to as ’local’ coupling due to the environment coupling to quantities

pertaining to individual states in the system..

Dimer : A molecular aggregate containing two constituent molecules, one acting as

the ’donor’ and the other the ’acceptor’.

Direct-Coulomb interaction: A pair interaction term in the Hamiltonian. It de-

scribes the classical Coulomb interaction between charge densities due to electrons

occupying orbitals on different molecules. For the long range Coulomb interaction,

the point-dipole approximation is invoked which results in the dipole-dipole ap-

proximation of pair interactions. In molecular transport theory, retention of only

this potential term in the Hamiltonian results in Förster theory.

Donor/acceptor molecules : A donor molecule represents the point of entry of an

exciton to the system. The acceptor molecule, coupled to the donor, represents the

additional state in the two-level system that the exciton can tunnel to.

Dual-coupling-spin-boson model (DCSB): An extension to the well known Spin-

boson (SB) model that includes both diagonal and non-diagonal system-bath cou-

plings. The SB model only includes diagonal couplings.

Environment (bath): The environment surrounding the central system of interest,

usually composed of a very large number of degrees (d.o.f) of freedom with respect

to the central system d.o.f. When coupled to the central system, the bath d.o.f in-

fluence the dynamics, and quantum properties like coherence, of the central system

d.o.f. Usually one is concerned with the time-evolution of the central system d.o.f

only, so the bath d.o.f are ’integrated out’.
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Exciton: A bound state of an electron-hole pair. The electron and hole interact

via the Coulmomb interaction forming a charge-neutral quasiparticle that has less

energy than the unbound electron and hole. Exciton’s can be highly delocalised due

to the screening force of surrounding electrons. However, in amorphous biosystems,

exciton delocalisation is suppressed due to disorder by way of Anderson localisation.

Exchange interaction: A pair interaction term in the Hamiltonian that includes

an appreciable overlap of neighbouring molecular wavefunctions. Inclusion of this

term permits inelastic tunnelling processes involving particle exchange. Unlike the

direct-Coulomb interaction, this term has no classical analog. With the inclusion

of an external bath coupled to the system, this term permits tunnelling processes

involving particle exchange with the bath.

Fenna-Matthews-Olson complex : A water-soluble light-harvesting complex that ex-

ists in green sulfur bacteria. It is composed of BChla molecules and mediates the

energy transfer from light-harvesting chlorosomes in the antenna complex to the

reaction center.

Fermion: A half-integer-spin particle that is subject to the Pauli exclusion principle

and therefore obeys Fermi-Dirac statistics.

Fermi’s Golden Rule (FGR): A formula describing the transition rate from one

energy eigenstate of a quantum system to a continuum of energy eigenstates. The

formula is derived using time-dependent perturbation theory in the tunnelling ma-

trix element between initial and final states. Therefore it is assumed that the

tunnelling time is much longer than the transition time to the continuum which

puts the theory in the regime of very strong system-bath coupling.

Förster theory : A molecular theory of energy transport between two chromophores.

A donor molecule may transfer an exciton to an acceptor molecule via the direct-

Coulomb interaction (dipole-dipole coupling). With the inclusion of spectral broad-

ening to the spectral lineshapes of the donor and acceptor molecule, the equations

of motion are derived with use of a FGR approach, treating the exciton tunnelling

term as a perturbation. Förster theory therefore describes incoherent hopping of

an exciton between chromophores.

Green sulfur bacteria: Photosynthetic organisms that contain the FMO complex

as part of their light-harvesting mechanism. They can be found living in the low-
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est light intensity regions of any known photosynthetic organism and exhibit a

remarkably efficient energy transfer process, from the point of photon capture to

photochemsitry.

Green’s function: See Propagator.

Hamiltonian: A quantum mechanical operator, or matrix, corresponding to the

total energy of the system.

Highest-occupied-molecular orbital (HOMO): A molecular orbital representing the

highest energy state of the molecule occupied by an electron.

Ideal-dipole approximation: An approximation valid when the wavelength asso-

ciated with the energy of the dipole is much larger than the size of the atom.

Therefore the dipole is considered to be a point in space.

Inelastic scattering process : A scattering process in which the kinetic energy of a

particle is not conserved. The energy can be lost or increased by exchange with its

environment.

Instanton: A semi-classical solution to the equations of motion regarding tunnelling

between potential wells. In the path integral formalism, the instanton solution

describes instantaneous jumps between potential wells, hence the name.

Light-harvesting complex/molecule (LHC): A photosynthetic complex of subunit

proteins that may be part of a larger supercomplex. A LHC therefore forms part of

the functional process of photosynthesis. They contain a number of chromophores,

used to capture a photon of light and/or shuttle an exciton through the complex

to the next part of the photosynthesis process.

Localisation: The process by which an atomic or molecular wavefunction is confined

to the atom or molecule due to wavefunction collapse. This is the opposite of the

delocalised limit where a wavefunction spans several or more atoms or molecules

and retains coherence effects. Localisation therefore reflects the incoherent limit of

particle hopping.

Lowest-unoccupied-molecular orbital (LUMO): A molecular orbital representing the

lowest energy state of the molecule’s excited states. The LUMO state is unoccupied

in the ground state of the molecule, and occupied by an electron in the 1st-excited

state.
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Markovian approximation: An approximation used to simplify the equations of

motion for an open quantum system. It assumes that the correlation time of the

bath dynamics is much smaller than the characteristic timescale of central system

dynamics. Therefore ’memory effects’ induced by the bath are neglected. In other

words a bath mode excited by the central system immediately relaxes to its ground

state, from the perspective of the central system, and does not affect the central

system dynamics at a later time.

Monomer : A single molecule that is classified in this way as it can undergo ’poly-

merisation’ in certain circumstances leading to polymer formation involving multi-

ple monomers.

Non-diagonal coupling : A system-environment interaction that couples the envi-

ronment to the off-diagonal elements of the central system Hamiltonian. Therefore

fluctuations in the environment modulate the tunnelling matrix elements (potential

energy terms/transfer integrals) of the central system. Often referred to as ’nonlo-

cal’ coupling due to the environment coupling to quantities pertaining to transitions

between states in the system.

Non-interacting-blip approximation (NIBA): An approximation used to simplify the

equations of motion (e.o.m) of a central system interacting with its environment

(bath). A general e.o.m will include bath correlations that extend to t → ∞. In

a diagrammatic language this means that all higher order system-bath interaction

diagrams as well as bath-bath interaction diagrams are considered. NIBA uses

the assumption that the system spends vastly more time in diagonal states of

the reduced density matrix for the system, than off-diagonal states. In a path

integral language, it permits the system to spend one ’time block’ in an off-diagonal

state before returning to a diagonal state. In a diagrammatric language NIBA

retains only the self-interaction term of the bath correlation function and excludes

any higher order bath-bath interaction diagrams. The approximation also retains

the system-bath interaction diagram pertaining to neighbouring interactions only.

Since these diagrams are exponentiated in the propagator describing the central

system dynamics, they are still considered to all orders in the system-bath coupling

energy. Therefore NIBA represents a non-perturbative, quasi-coherent limit to the

dynamics of the system.

Ohmic/super-Ohmic/Optical phonon spectral density : Ohmic and super-Ohmic de-
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scribe algebraic frequency dependence of the spectral density with linear order

and powers higher than one respectively. A regularisation function with a high-

frequency cut-off is required to avoid the ultraviolet divergences. An optical spectral

density represents a peak in the profile. The peak is centered around a particular

frequency and therefore represents a collection of bath excitations with just one

frequency. Hence the application to optical phonon spectral densities.

On-site (bias) energy ε: The kinetic energy term in the Hamiltonian. For interacting

molecules in the two-state limit, the on-site energy represents the energy difference

between the two molecules LUMOs, which form the basis for the interacting system.

Open quantum system: A global quantum system that involves some ’central sys-

tem’ of ’interest’, and a classical or quantum environment that may be coupled to

the central system.

Oscillator bath: An environment (bath) surrounding a central system, comprised

of a large number of simple-harmonic oscillators.

Path-integral : An alternative to the classical single trajectory of a system. Instead

the trajectory involves a sum, or functional integral, over an infinite number of

possible trajectories permitted by quantum mechanics.

Perturbation theory : An approximate solution to a system where the full, com-

plex, system has a small quantity relative to other comparable quantities. The

small quantity is considered separately first, with the remaining part of the system

containing a known solution. Then the small quantity is reintroduced, and the ap-

proximate solution to the full problem is calculated using the fact that correction

is a ’perturbation’ from the known solution.

π-bond/π-electron: A covalent bond where two ’lobes’ of an orbital on one atom

is shared with two lobes on another atom. π-bonds tend to be much weaker than

other covalent bonds and can result in a delocalised π-electron across the molecule.

Pigment : See Chromophore

Phonon: acoustic: An ’in-phase’ collective motion of atoms out of their equilib-

rium position. Acoustic phonons exhibit a linear relationship between frequency

and phonon wavevector for long wavelengths which tends to zero for the longest

wavelengths; the limit relevant to amorphous materials.
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Phonon: optical : An ’out-of-phase’ collective movement of atoms where one atom

moves in the opposite direction to its neighbour. Optical phonons show no dis-

persion, and therefore constant energy, in the long-wavelength limit which is the

limit relevant to amorphous materials. In molecular theory, optical phonons inter-

acting with a molecule, usually come from intramolecular bonds. For e.g. BChla

molecules contain a Carbon-Carbon bond that oscillates within the optical range

and couples strongly to delocalised π-electron over the molecule.

Phonon-assisted tunnelling (PAT): A tunnelling process that is assisted by inter-

actions with phonons in the environment. PAT is usually characterised as elastic

or inelastic phonon-assisted tunnelling. Elastic PAT results from only diagonal

system-bath couplings in a certain parameter space where the tunnelling rate is fa-

cilitated by the bath. Inelastic PAT arises from non-diagonal system-bath couplings

which permits a tunnelling process via phonon exchange.

Polaron: A quasi-particle formed from an electron and phonon ’cloud’. As an

electron moves through a solid, it displaces the atoms around it from their equi-

librium positions, dragging them along with it. This results in a bound state of

the electron-phonon cloud, lowering the energy compared to the non-interacting

system.

Propagator : A function that specifies the probability amplitude of a particle to go

from one state to another. State in this case is purely general and could describe

anything from position to abstract energy eigenstates. Propagators in the context

of quantum field theory are often referred to as Green’s functions.

Quantum beating signal : Time-dependent oscillations in the cross-peak correla-

tions measured using 2D-spectroscopy. Quantum beating signals are interpreted as

measuring coherence in a system.

Quantum master equations (QME): A completely general QME simply represents

the dynamics of the density matrix as opposed to just a quantum state vector. This

way coherences, as well as site populations, can be tracked over time. The term

QME are often however used interchangeably with Lindblad, or Redfield, equations

and therefore represents a restricted class of equations subject to the secular and

Markovian approximations.
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Reaction center (RC): A sub unit of the photosynthesis mechanism of Green sulfur

bacteria. It is situated after the FMO complex, harvesting the exciton to create

a charge separation. This provides the energy required for the photochemistry

pertaining to photosynthesis. The RC therefore represents the target destination

of the exciton.

Redfield equation: An approximate QME that utilises the Markovian and secular

approximations.

Relaxation time: The timescale associated with the inverse of a decay rate. The

pure relaxation time refers to the inverse of the decay rate out of the high-energy

state to the lower-energy state. Dephasing time is the timescale associated with

the decay rate of oscillatory terms in the exciton dynamics.

Reorganisation energy : The energy associated with the bath reconfiguration back to

equilibrium. This is a measurable quantity in many cases, and is the energy emitted

by the bath upon relaxing to its ground state after excitation due to interaction

with an exciton.

Resonance/exciton-energy transfer (RET/EET): A process describing energy, or

exciton, transfer from one (donor) molecule to an (acceptor) molecule in biological

light-harvestin complexes.

Resonant states : A condition when two energy eigenstates are equal.

Secular approximation: An approximation to the dynamics of a central system

in which rapidly oscillating terms in the Markovian quantum master equation are

disregarded.

Solvent : The liquid solution that permeates the surrounding regions of the chro-

mophores in photosynthetic organisms. Usually constitutes water and electrolytes

giving the solvent dialectic properties.

Spectral broadening : The broadening of an unphysical delta function peak in a

spectrum to a physical peak with some finite linewidth. The linewidth comes from

interaction processes with external systems, representing an exchange of energy

with the environment. A delta function peak is said to be unphysical in principle

because a quantum system can never completely isolated from its environment.
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At the very least, there will also exist some broadening due to the Heisenberg

uncertainty principle.

Spectral density : A function that maps out the system-environment interactions

across the range of bath frequencies. It therefore depends on the distribution of

bath frequencies, the density of states, and the system-bath interaction energy to

each bath mode.

Spin-boson model (SB): A mathematical model that includes a spin-1/2 particle

(two-state system) coupled non-perturbatively to an oscillator bath. NIBA is in-

voked to close the system of equations of motion and achieve results in various lim-

its, and for various bath spectral densities. The spin-boson mode is valid in large

regions of the parameter space due to the non-perturbative path-integral techniques

employed. However, for arbitrary system-bath couplings, it can generally be said

that the SB model is valid for large bias energies relative to tunnelling energies.

Three-site-V system: A quantum mechanical central system that contains three

states, two of which permit tunnelling between them. Configured in a V shape, the

upper two sites are non-interacting and no tunnelling can occur between them. The

lower site is coupled to a continuum of states, or in the context of quantum optics,

a laser field. In either case the lower site can be depleted due to its interaction with

an external source.

Transition dipole moment : An electric dipole moment associated with the transition

between two states. Molecular orbitals have different charge distributions and thus

two orbitals, or states, will have a transition dipole moment associated with them.

Trimer : A molecular aggregate containing three units, each unit containing one or

more molecules.

Tunnelling matrix element ∆: A term in the central system Hamiltonian represent-

ing a coupling between different states. Often used interchangeably with transfer

integral or inter-state coupling.

Two-dimensional spectroscopy : Correlates excitation and emission energies of a

sample as a function of delay time between events. Spectra are plotted as a func-

tion of absorption and emission where diagonal peaks represent on-site energies

and cross-peaks represent transitions. This essentially measures the Hamiltonian.
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The time-dependence of cross-peak rephasing can be observed to measure coher-

ence. This essentially measures the density matrix and the off-diagonal components

identified as ’quantum beating signals’.
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Chapter 1

Introduction

1.1 Background and motivation

Understanding the role of quantum coherence effects in molecular systems has been the

subject of intensive research for a number of decades. The obvious applications to quan-

tum computing [1] and energy-transport mechanisms at the nanoscale [2] have been a

primary motivating factor, not to mention the general interest that physicists have in

understanding the quantum-to-classical transition. Quantum coherence effects are well

understood at the atomic scale, and it is generally accepted that they can manifest at

the molecular scale under optimum conditions. However for most systems comprised of a

large number of molecules, in contact with a densely packed local environment at physi-

ological temperatures, we expect quantum coherence effects to be absent. The ‘hot’ and

‘messy’ environments that characterise many molecular systems involve a large number

of rapidly fluctuating degrees of freedom which overall lead to a relatively strong system-

environment interaction. These are far from optimal conditions for quantum coherence

effects and one would expect molecular wavefunctions to be fairly well localised on each

molecule, representing the incoherent regime of energy transport. In other words, the

timescale for coherence effects should be relatively short compared to the timescale of

dynamics of energy transport and thus coherence effects are not expected to play a sig-

nificant role in the process. This is indeed the case for systems such as betaine dye

molecules [3] and charge transport in trans-polyacetylene [4], which see coherence times

of the order of femtoseconds, in line with inter-molecular transfer times. As a result, a

classical description of the energy transfer mechanisms usually suffices in such systems

and the role of quantum coherence effects can largely be ignored.
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A landmark experiment performed by Engel et al. in 2007 [5] reported the discovery of

relatively ‘long-lived quantum-beating signals’ in the prototypical photosynthetic system

Chlorobaculum tepidum (green sulfur bacteria) at cryogenic temperatures. Other exper-

iments found similar coherence effects in the system Rhodobacter sphaeroides [6], also at

cryogenic temperatures, and furthermore, subsequent experiments [7, 8] found coherence

effects persisted even at physiological temperatures. To this date, the functional role of

quantum mechanics in the energy transport process of these particular photosynthetic

systems remains unclear [9], and considering the delicate nature of quantum coherence

effects at such scales and temperatures, it is a surprising discovery to find the presence

of these so-called ‘quantum-beating signals’ in biomolecules.

It has long been known that certain photosynthetic organisms can harvest sunlight

with near perfect efficiency; however, the application of classical energy-transport models

has proven unsuccessful at reproducing the observed efficiencies [10, 11, 12, 13, 14]. The

question remains, to what degree do quantum effects play a functional role in optimising

the photosynthesis process?

Since the publication of the experiments mentioned above, a plethora of theoretical

work has ensued aiming to understand these findings. However, the degree to which

quantum coherence effects actually facilitate the energy transfer process in photosyn-

thesis remains controversial. Recently a number of theoretical studies have suggested

that quantum effects might actually play a key role in optimising the efficiency of energy

transfer in biomolecules [15, 16, 17, 18, 19, 20, 21, 22, 23]. Most theoretical work to

date has relied upon a number of assumptions that are arguably invalid when it comes

to the specific systems of interest: the mathematical models employed have either been

perturbative, or assumed incoherent energy transfer dynamics from the outset. Neither

are able to predict the relatively long coherence times observed in experiment.

The task of including the full breadth of coherence effects in such a complex system

is formidable, and most studies so far have resorted to fairly extreme approximations in

order to make the problem tractable. These approximations tend to exclude any possibil-

ity of coherent dynamics from the outset, producing models that are ill-equipped to find

coherent behaviour. Attempts to go beyond these limiting models have had promising re-

sults [24, 25, 26, 27], and the predicted coherence times are now comparable to those seen

in experiments. However, much of this progress has so far been facilitated to a greater

or lesser extent by numerics, and a rigorous analytical framework of understanding is

lacking. While the numerical results are in accordance with observation, the underlying

physical mechanisms remain elusive and a deeper analytical understanding is required.
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One mathematical model that treats the interaction of a central spin-half system with

its environment non-perturbatively is the spin-boson (SB) model. Originally introduced

by Emery and Luther [28] to shed light on the Kondo problem, they demonstrated that

the phase space of the low-temperature Kondo model can be understood with the use

of the equivalent SB model. Caldeira and Leggett [29, 30, 31, 32], as well as a number

of contemporaries [33, 34, 35, 36], used the model to study the effects of dissipation in

the dynamics of a particle hopping between two states. The model used the influence

functional technique developed by Feynman and Vernon [37] to analyse the effects of

the environment non-perturbatively on the central two-state system. Functional integral

methods were also employed to study a particle tunnelling in a periodic potential inter-

acting with its environment [38].

Quantum coherence effects are retained up to a certain degree in the SB model, and

it has been a powerful tool for modelling 2-state systems interacting with their environ-

ments. The model has had many applications ranging from quantum computation [39]

to condensed matter and solid-state physics [40]. It has also seen some cursory appli-

cations to the photosynthesis mechanism [41, 42, 43, 27]. Here, certain 2-level systems

with appreciable wavefunction overlap and the appropriate parameters were selected from

specific photosynthetic systems. It was also found recently that in a slight extension to

the SB model, where certain higher order coherence effects were taken in to account,

decoherence times calculated in the system matched those observed experimentally [27].

Such a direct application of the results of the SB model to photosynthesis is of course

restricted to just two states interacting with a shared environment. The energy-transport

structure in photosynthesis generally involves more than just two sites and the larger,

more representative structure, has generally been approached numerically due to its com-

plexity. It has however been argued that for the photosynthetic systems of interest, the

full multi-level structure effectively reduces to a 3-site model [44, 45]. Furthermore, ex-

citon wavefunctions in the FMO complex have been shown to be delocalised across two

to three molecules at a time [46]. Therefore in the interest of accurately modelling the

energy transport mechanism in photosynthesis analytically, we propose the extension of

the SB model to three sites for one model of study in this thesis. This will not only

model coherent effects analytically in photosynthesis, but will give a more accurate rep-

resentation of the structure of the photosynthesis mechanism.

Another limiting aspect of the SB model is the fact that it only considers ‘diagonal’

system-environment couplings. This kind of system-environment interaction couples the

environment to the diagonal elements of the central system Hamiltonian only. In other
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words, the diagonal interaction induces fluctuations in the potential energy terms of the

two-state system, but not the kinetic energy terms, which constitute the non-diagonal

components of the Hamiltonian. In the original theoretical treatment of the SB model,

it was argued that one can ignore couplings to the non-diagonal-Hamiltonian elements,

provided the tunnelling matrix elements–the kinetic energy terms–are small compared to

the on-site energies–the potential energies. These non-diagonal couplings were first intro-

duced by Holstein in 1959 [47] in the context of polaron motion within a one-dimensional

crystal lattice. Later they would be discussed in the context of the Peierls transition

[48] and subsequently in the Su-Schrieffer-Heeger model of polyacetylene [49]. These

non-diagonal couplings correspond to transitions in the central system that involve an

absorption or emission of a boson from the environment. As the non-diagonal system-

environment coupling energy should be proportional to the tunnelling energy [50], one

expects these couplings to be relatively small in the limit of small tunnelling energy.

Indeed, the limit of large on-site energy to tunnelling energy is also the limit in which

the noninteracting-blip approximation—one of the key approximations used to solve the

SB model—is valid.

The problem with this heuristic justification for the exclusion of the non-diagonal

couplings in the original SB model is that, while the tunnelling energy is indeed small

relative to the bias energy, it is not negligibly small. In fact, the SB model is consid-

ered such a powerful model because it retains coherence effects (up to a degree), and

contributing to this, is a small but significant tunnelling energy. Numerical studies mod-

elling polaron formation on a lattice, with the inclusion of both non-diagonal as well as

diagonal couplings, demonstrated how even small values of the non-diagonal coupling

strength greatly alter the polaron properties [50]. Experimental evidence for significant

non-diagonal exciton-phonon couplings in photosynthetic systems has also surfaced [51].

Despite this, the inclusion of non-diagonal couplings in theoretical modelling of photo-

synthesis has largely been ignored. As Mahan [52] remarked, the system-environment

couplings of this type are usually excluded due to the difficulty of obtaining reliable so-

lutions with them [53].

Some preliminary theoretical work has been done exploring the role that non-diagonal

couplings play in photosynthesis [18, 53]. However, in these cases, some fairly limiting

assumptions were employed. In [18] each state in the system was assumed to interact

only with its own local, and independent, environment–meaning that the possibility of

environment induced transitions between states was ignored. For the effects of non-

diagonal couplings on coherent dynamics to be truly resolved, one needs to consider a
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shared environment between the states in the system, as is done in this work. In [53],

a shared environment was included, however a quantum-master-equation approach was

used, assuming that the system-environment interaction could be treated perturbatively.

A perturbative approach has been argued to be valid for strong diagonal system-bath

couplings modelling the residual system-bath interaction for a system transformed into

the polaron frame [54]. However, the inclusion of non-diagonal system-bath couplings–

which can be much smaller than diagonal couplings–can render this approach invalid.

Therefore a non-perturbative approach, even in the polaron transformed frame, is neces-

sary. The importance of non-diagonal couplings in the photosynthesis modelling process

is apparent now, however a proper treatment of the system-environment interaction in-

cluding these couplings is still lacking.

Aside from the general interest that one might have in the inclusion of non-diagonal

couplings to the SB model and photosynthesis, the need for such an extension to the

model has found applications in other areas too, for example in the modelling of charge

transfer in polymeric solar cells (PSC) [55]. Non-diagonal couplings have also been shown

to play an important role in charge trasnfer modelling of organic semiconductors [56].

Recent experiments performed on PSC’s have found ‘ultrafast quantum beating signals‘

with surprisingly short periods [57] not unlike those found in photosynthesis. It has been

suggested that phonon-assisted transfer may be responsible for this, as the tunnelling

energies present in the system cannot account for the ultrafast oscillation frequencies

alone [58]. Perhaps the same mechanism is responsible for the long-lived coherence ef-

fects observed in photosynthesis too?

One major question that arises from all these considerations is: to what degree does

coherence play a functional role in exciton transport in biomolecules? While it is de-

sirable to explain the emergence of coherence in photosynthesis, the coherent nature of

transport in these systems could be just a coincidence unless a specific functional role

is identified. Coherence-enhanced functionality in biological systems has been discussed

previously involving constructive interference of exciton pathways through molecules,

leading to improved transfer efficiency [59]. However, how these phenomena apply to

photosynthesis remains unclear. In this work, the importance of non-diagonal couplings

in modelling exciton transfer is demonstrated. Since couplings of this nature arise when

there is appreciable exciton wavefunction overlap across neighbouring molecules, the func-

tional role of coherent exciton dynamics is possibly due to this effect. In other words, the

propagation of coherent excitons through the system, facilitates the process of phonon-

assisted-transport between molecules, greatly improving transport efficiency.

5



In summary, the original work presented in this thesis primarily constitutes the fol-

lowing: a new analytical model for the photosynthesis mechanism involving a dimer non-

perturbatively coupled both diagonally and non-diagonally to an oscillator bath, and a

3-site model non-perturbatively coupled diagonally to an oscillator bath. Both models

shed light on important processes present in the photosynthesis mechanism. The dual

coupling dimer model, where both diagonal and non-diagonal system-bath couplings are

included, reveals the importance of non-diagonal couplings in not only assisting exciton

transfer through the system, but also retaining coherence effects at the same time. The

3-site model demonstrates the potential importance of the dark-state in the photosyn-

thesis mechanism. The dark-state is a state intrinsic to the 3-site-V configuration, and

the application of this model to the FMO complex reveals this state to have the longest

relaxation times in the system.

Relaxation times in both models are found to be comparable to those observed ex-

perimentally. The inclusion of non-diagonal couplings is shown to have a particularly

strong influence on both the rate of exciton transfer through the system, as well as the

coherence of the exciton. Three different spectral densities, that characterise the envi-

ronment, are used and their effects on exciton dynamics explored. These constitute two

low-frequency distributions of the environment oscillator modes: known as Ohmic and

super-Ohmic, and one discrete optical mode with spectral broadening. The inclusion of

optical phonons in the environment is shown to be especially important for the FMO

complex, which exhibits an experimentally determined spectrum with multiple discrete

peaks. Both optical and acoustic phonons are shown to aid in exciton transfer through

a photosynthetic dimer system. The non-diagonal system-bath coupling is shown to not

only decrease exciton transfer times for relatively large coupling strengths, but also in-

troduce a further decoherence mechanism in to the system. However, while the exciton

coherence is shown to decrease with increasing non-diagonal coupling, the coherence time

remains longer than the exciton transfer time. This indicates that the exciton motion

through the dimer remains coherent for its full duration.

An additional novel feature of the present work involves the retention of the on-site

energies in modelling the photosynthesis mechanism with a dual coupling approach. The

spin-boson model, with diagonal couplings only, is often simplified to the resonant case

where the energy difference between the two central system states is zero [33, 60, 61].

Resonant two-level systems, coupled diagonally to the bath, produce a simple, quadratic

pole structure to the propagator which is easily dealt with analytically. Dual coupling

models for photosynthesis have also looked at the resonant case [53], however the validity
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of such a simplification is dubious. The non-diagonal coupling serves to renormalise the

on-site energies in the polaron frame, and setting these energies to zero after the polaron

transformation trivialises the non-diagonal interaction. In this work, the on-site energy

is retained, and the cubic pole structure of the propagator evaluated analytically. The

cubic formalism also serves as the solution to the pole structure of the 3-site configuration

in this work.

This thesis is organised as follows: the rest of the introduction chapter will introduce

the biological system of interest, the FMO complex, and review some of the ways it

has been modelled so far. I discuss why they are lacking in their application to pho-

tosynthesis and motivate a more advanced approach. Finally I motivate the study of

a 3-site system to model the photosynthesis mechanism and discuss the experimental

signatures for a dominant 3-site system operating within the larger seven-site system.

In Chapter 2 I introduce the mathematical models to be used in later chapters, and the

path integral techniques used to analyse their dynamics. In Chapter 3 I analyse first the

‘bare’ 3-site model i.e. just 3-sites and their respective tunnelling terms, isolated from

any environment; and I then incorporate the environment perturbatively. In Chapter

4, I treat the system-environment interaction non-perturbatively, producing my general

results for the 3-site-boson model. In Chapter 5 I look at the inclusion of non-diagonal

system-bath couplings to a 2-site model. At the end of each results chapter, I apply my

results to the case of photosynthesis. This involves identifying the parameters relevant

to the respective model and calculating the relevant relaxation times, decay rates and

coherent-incoherent phase spaces of the system. In Chapter 6 I summarise my findings,

draw some conclusions and suggest avenues of future work. Appended at the end of this

thesis is a section on nomenclature. Due to the interdisciplinary nature of this thesis

and the many esoteric concepts introduced and referenced later on, an alphabetical list

where each term is summarised is included to assist the reader.

1.2 Quantum phenomena in photosynthesis

One of the key motivations of this thesis is to understand the emergence of quantum

effects in photosynthetic biological systems. While there have been a number of photo-

synthetic organisms shown to exhibit quantum effects at the molecular scale, I focus my

study on one such organism, namely that of green-sulfur bacteria Chlorobaculum tepidum.

Green-sulfur bacteria has been extensively studied using state-of-the-art spectroscopy

measurements and much is known about its internal energetic structure therefore. It is
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also one of the key photosynthetic organisms known to exhibit very high energy-transfer

efficiency as well as long-lived quantum coherence effects in certain parts of its exciton

transfer pathway.

1.2.1 Light-harvesting molecules

Every photosynthetic organism contains light-harvesting complexes (LHC) comprised of

chromophores: light-absorbing molecules attached to a protein structure holding them in

place. These molecules typically consist of a small collection of atoms with separations

between molecular-orbital energy levels that fall within the visible spectrum [46, 62, 11,

12]. There are various photosynthetic organisms with different structural arrangements;

however, the general process starts with the absorption of light by a chromophore in

an antenna-like structure consisting of many individual chromophores. In Figure 1.1 one

important chromophore—the bacteriochlorophyll A (BChla) molecule—and its molecular

arrangement are depicted.

Figure 1.1: Single BChla chlorophyll molecule.
Adapted and reprinted with permission from [63]. c©
2018 DOAJ

BChla is the principle chlorophyll-type pigment in the majority of photosynthetic bac-

teria [12]. Spanning around 10Å on its side, it contains a magnesium atom in the center

and is surrounded by four nitrogen atoms. An extensive delocalised π-electron system

extends over the molecule. The chlorophyll contains two major absorption bands, one in

the near ultra-violet region and one in the near infra-red region. These absorption bands

come from the molecular transitions within the molecule. Each transition arises due to
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different electron density distributions across the molecule, resulting in different dipole

moments. In BChla these charge density distributions are primarily governed by the

acetyl group at the C-3 position in the molecule, and the single bond in ring B between

C-7 and C-8 [12]. This reduces the degree of conjugation as well as the symmetry of the

molecule.

The spectra are understood theoretically using a 4-molecular-orbital model. These

are made up from the two highest occupied molecular orbitals (HOMOs) and the two

lowest unoccupied molecular orbital (LUMOs). While this picture is an approximation

of a complex relationship between electronic states and orbital energies, it is generally

understood that two dominant transitions arise from these states [12]. Associated with

each transition is a transition dipole moment with different strengths. Spectroscopic data

of the BChla molecule resolves two fairly dominant peaks for intramolecular transitions

corresponding to the HOMO and LUMOs of the molecule and hence form the basis for

the 2-state model considered for each chromophore [12, 64].

The photons absorbed in the antennae chromophores create a molecular excitation

known as an exciton [65]. The exciton is a bound state created from the transition from

one molecular orbital to another; an electron found in the LUMO and an electron hole

found in the HOMO, bound together via the Coloumb interaction [66, 67]. After its

creation by photon absorption in the antenna complex, the exciton travels through a

number of structures, eventually reaching its target destination where it creates a charge

separation used for the biochemistry of photosynthesis [11]. This final destination is usu-

ally known as the Reaction Center (RC) and the biological structures preceding it serve

to ‘funnel’ the captured photon energy to the RC in as efficient a manner as possible.

Molecular excitons typically have characteristic lifetimes on the order of nanoseconds,

after which relaxation to the ground state of the molecule occurs with photon or phonon

emission. Associated with each molecular state is a specific electronic density and thus

different charge distributions across the molecule. This gives rise to a transition dipole

moment that interacts with either the photon of light incident on a LHC or with the dipole

moment of a neighbouring chromophore. The chromophore can therefore be modelled

as a two-level system and for example, two interacting chromophores would comprise a

4-D Hilbert space with states |LUMO〉1 , |HOMO〉1 , |LUMO〉2 , |HOMO〉2 corresponding

to the ground (HOMO) and excited (LUMO) states of chromophores 1 and 2. Typi-

cal relaxation times of chromophore excited states (radiative lifetime) are of the order

τrad ∼ 10ns whereas inter-chromophore excitation transfer τ ∼ 10ps happens on the order

of picoseconds for BChla molecules in the light harvesting complex LH-2 [68]. Therefore
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the ratio τrad/τ � 1 tells us that we can exclude the ground states and consider only the

interactions between excited states, effectively truncating the Hilbert space to include

only the LUMOs of each chromophore.

It turns out that almost every exciton created in the antennae complex by photon

absorption eventually makes it to the RC [12]. This is the ’quantum efficiency’ usually

quoted in the literature pertaining to photosynthesis; the ratio of excitons that reach the

RC over the number created by photons. This is simply reflected in the fact that the

radiative lifetime (or recombination time) of the exciton τrad is very large compared to

the exciton transfer time. In this sense, we can see that the quantum efficiency of photo-

synthesis is facilitated by the processes that lead to making the ratio τrad/τ so large. We

will see in this thesis that the presence of non-diagonal couplings is one of the driving

mechanisms in reducing the exciton transfer time τ . Perhaps a more meaningful measure

of the efficiency of photosynthesis is the percentage of energy absorbed by a photosyn-

thetic organism that is eventually stored in the RC. This number is actually around 27%

[12], which is comparatively low compared to the ’near unity quantum efficiencies’ quoted

in the literature. Therefore the results of this thesis make progress towards explaining

the quantum efficiency of photosynthesis more so than the energy efficiency.

1.2.2 The Fenna-Matthews-Olson complex

One such example of an intermediate sub-system that exhibits remarkably efficient ex-

citon transfer in photosynthesis is the Fenna-Matthew-Olson (FMO) complex, named

after the researchers who discovered and determined its structure [69]. Forming part of

the full light-harvesting infrastructure of Chlorobaculum tepidum, it essentially serves as

a ‘molecular wire’, transferring an exciton created by photon absorption in the antenna

complex to the RC (see Figure 1.2). The FMO complex has long been known to ex-

hibit near unity exciton transfer efficiency1 [12] to the RC; however our understanding

of exactly how this high efficiency is achieved is lacking.

1The ‘near unity’ quantum efficiency usually quoted in the literature refers to the ratio of photons
absorbed to excitons that reach the RC. The amount of energy that reaches the RC compared to that
absorbed is actually much lower, reflecting the dissipative effects that happen along the way. This can
be anywhere from 30%-50% in the literature [12], however this is still remarkably high and unexplained
by the exciton transfer modeling techniques to date.
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Figure 1.2: Composition of light harvesting systems
within Chlorobaculum tepidum

The FMO complex consists of a trimer, formed of three identical monomers, each con-

taining seven BChla molecules as depicted in Figure 1.3. An eighth site has recently been

identified with energy ∼ 500cm−1, which sits close to the antenna complex and possibly

acts as the entry point to the system [70].

Figure 1.3: Structural depiction of the Fenna-Matthew-
Olson complex from Chlorobaculum tepidum. (a) Full
view of FMO trimer including 3 monomer subunits. (b)
Single view of monomer sub unit plus surrounding pro-
teins (grey lines). (c) Single monomer of 8 BChla pig-
ments excluding surrounding protein scaffold. Reprinted
with permission from [71].

As the couplings between BChla molecules in neighbouring monomers are negligible

compared to couplings between chromophores in the same monomer, exciton transfer is

only modelled through an individual monomer [72, 46]. The trimer therefore is considered

to contain 3 independent paths of energy transfer to the RC complex.

We see in Figure 1.3 how the eight chromophores in the FMO complex are situated
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inside a protein scaffold indicated by the grey lines surrounding the chromophores. This

protein structure surrounding the chromophores serves to hold the chromophores at the

right distances and orientations for efficient energy transfer [46]. In addition to this

local environment of proteins is a surrounding aqueous solvent that permeates the whole

structure [73].

It is the FMO complex that was investigated in the landmark 2007 paper by Engel and

Fleming [5], which reported on experimental observations of long-lived coherence effects

in the exciton transfer pathways. Here, using 2D femtosecond nonlinear spectroscopy,

they observed quantum coherence effects in the energy transfer process to persist for

∼ 660fs at T = 77K [5] and 300fs at T = 300K [7, 8].

Figure 1.4: Quantum beating signatures for a 77 K
FMO 2D spectrum. Axes ωτ and ωt represent the Fourier
transformed excitation and detection pulses respectively,
of a pump and probe laser directed on the FMO sample.
The third, vertical axis, ωT , represents the Fourier trans-
form of the signals evolving over time. The presence of
cross-peak frequencies, evolving over time indicates exci-
ton delocalisation across pigments, and thus coherence.
Reprinted with permission from [74].

In Figure 1.4 we see an example of 2D spectroscopic FMO data that is interpreted as

evidence of coherence in the system. The ωτ and ωt axes represent the Fourier trans-

formed excitation and detection pulses respectively, of a pump and probe laser directed

on the FMO sample. Frequencies where ωτ = ωt are associated with chromophore on-site

energies and the cross-peaks ωτ 6= ωt represent tunnelling energies in the system. The
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plane ωτ , ωt therefore maps out the Hamiltonian of the FMO complex. The third axis,

ωT , represents the Fourier transform of the signals evolving over time. Time evolution of

the cross-peaks is interpreted as a ’quantum beating’ signal and thus evidence of exciton

delocalisation across chromophores.

1.3 Microscopic origin of chromophore-environment

interactions

The BChla molecules of the FMO complex exist not only in an aqueous solution but

are also embedded in a protein scaffold. The effect of this is to shift the excitation en-

ergies of the BChla molecules as well as modulate the distance between the molecules.

For the solution surrounding the molecule, it is the solvent’s dialectric that changes its

energy, and for the protein scaffold it is predominantly charged amino acids that interact

with the molecule [46]. The interaction of the chromophores with the various parts of

their local environment leads to fluctuations of not only the excitation energies, but the

couplings between chromophores too. On the one hand, environmental changes induce

fluctuating local electric fields that induce a Stark shift in the excitation energies and

thus the transition dipoles of the chromophores to fluctuate. This results in the diago-

nal system-environment coupling. On the other hand, changes in the environment will

affect the relative spacing of the chromophores, introducing a fluctuating component to

the inter-chromophore couplings. This results in the non-diagonal system-environment

coupling.

While most studies to date have focused on the diagonal couplings, a number of recent

studies have indicated the importance of including both types of coupling in photosynthe-

sis [75, 76]. While it should be noted that some experiments have found the non-diagonal

couplings to be small compared to the diagonal ones [77], it has nonetheless been demon-

strated that even small non-diagonal couplings can have a considerable impact on the

exciton dynamics [78, 53]. Furthermore, in the study of polaron dynamics, Marchand et

al found similarly strong effects arising from non-diagonal couplings to phonons [79, 50].

It is worth remarking at this point that determining the exact size of the system-

environment coupling parameters from experiments of the FMO complex is difficult.

Analysing spectroscopic data requires complex fitting algorithms based upon models of

system-environment interactions [46, 14]. The size of the parameters obtained are highly

dependent on the models employed. Furthermore, non-diagonal couplings are usually
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excluded from these models meaning that the magnitudes of these couplings are undeter-

mined. This also highlights an issue with the sizes of the diagonal coupling parameters

determined to date. If non-diagonal couplings should be present in the models, and the

two types of couplings distinguished, then the models that assume only diagonal cou-

plings have presumably determined the size of a composite diagonal and non-diagonal

coupling parameter instead.

1.3.1 Diagonal and non-diagonal couplings in chromophores

Two interacting chromophores will have associated with them: excitation energies per-

taining to each molecule and tunnelling energies between the molecules. The effect of the

environment induces fluctuations in the chromophore’s energies, which leads to a dynam-

ical modulation of these parameters. Therefore we can think about two distinct types of

system-environment interactions. The first type of interaction is one that modulates the

excitation energies of the chromophores. This is known as a ‘diagonal’ interaction as the

environment is coupling to the diagonal elements of the central system’s Hamiltonian.

The second type of interaction is the ‘non-diagonal’ interaction, where the environment

modulates the tunnelling energies between chromophores. In this section I discuss the

microscopic origin of these two types of interaction in the context of biomolecules.

As I discussed in Section 1.2.1, chromophores contain two dominant molecular states:

the HOMO and LUMO, which form the basis for their ground and excited states re-

spectively. We recall that the radiative lifetime of the excited (LUMO) state of each

chromophore relaxing to their ground (HOMO) state is orders of magnitude smaller than

the interchromophore transfer time. Therefore we only consider the interaction of two

chromophores’ LUMO states. Associated with each chromophores’ LUMO states is a

dipole moment. If the chromophore’s surrounding environment, comprised of a solvent

and protein scaffolding, is sufficiently far away, we can treat the chromophore within

the dipole approximation. This leads to a central assumption in the Förster picture of

energy transfer between chromophores, which we discuss below. Charges present in the

chromophore’s environment, coming from the surrounding solvent or amino acid residues

in proteins, produce an electric field. This leads to a fluctuating energy term for the

exciton of the form

∆Eα =
1

ε

∑
j

qj~µi · ~xij
R3
ij

(1.1)
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where ~µi is the dipole moment of an exciton on the ith chromophore, ε is the optical di-

aletric constant, Rij the distance from the center of the chromophore to the environmen-

tal charge, and xij is the fluctuation about the equilibrium position of the chromophore.

Since the fluctuating energy shift depends on the relative distance between chromophores

and amino acid residues, we see how phonon vibrations present in the surrounding protein

structure couple to the system as they modulate this distance. In a second quantised

language the site displacement operator for the phonon xq =
√

~/2Mωq(bq + b†q) (see

Mahan [52]) gives

∆Eα =
∑
q

λα,q(bq + b†q) (1.2)

where α here labels a chromophore and q a phonon mode of the bath. The chromophore-

bath coupling λα,q, is a function of the charges present in the surrounding medium and

is therefore thought of as a backreaction resulting from the polarisation of the environ-

ment by the chromophore (see section 2.5.1.2 in [64]). This is the origin of the diagonal

couplings.

We now turn to the microscopic origin of the non-diagonal chromophore-environment

couplings. Provided the interchromophore spacing is large compared to the width of a

chromophore i.e. more than several Angstroms [12], then the exciton transfer between

chromophores can be considered a long range dipole-dipole interaction. This leads to the

ideal-dipole approximation of molecular interactions often employed in the literature,

where non-diagonal couplings can be excluded. If however the interchromophore spacing

is such that there exists appreciable wavefunction overlap between molecular orbitals

then this approximation breaks down.

Calculations performed using the ideal-dipole approximation of chromophore-chromophore

interaction, compared to experiment, demonstrate the failure of the ideal-dipole approx-

imation for BChla molecules [80]. The sizes of the chromophores in this case are ∼ 9Å,

which is comparable to the inter-chromophore distance determined to be ∼ 15Å, which

puts the system out of the range of applicability of the ideal dipole approximation.

Wavefunction overlap of neighbouring chromophores contains an exponential depen-

dence on separation distance. Vibrations in the local environment can cause the two

chromophores to move closer or further away from each other, thereby modulating the

separation distance. For an environment with quantised vibrations, this introduces a

process by which an exciton can hop between chromophores by way of an inelastic scat-

tering process [52]. Phonons are not conserved in this case and an exciton can tunnel

15



between chromophores by absorption or emission of phonons. Since the tunnelling term

depends exponentially on separation now due to the molecular wavefunction overlap of

the two interacting chromophores, it follows that the tunnelling frequency between donor

d and acceptor a molecules ∆ad is modulated by

∆̃ad = ∆ad exp

[
−
∑
q

Fad,q
~ωq

xq

]
(1.3)

where Fad,q is the force between the two chromophores due to the displacement xq, and q

labels the phonon mode. In a second quantised language the site displacement operator

for the phonon position xq =
√
~/2Mωq(bq + b†q) gives us

∆̃ad = ∆adexp

[
−
∑
q

Vq
~ωq

(bq + b†q)

]
(1.4)

with Vq representing the product of the force applied by the phonon mode q and the

distance between the two chromophores, with ωq the frequency of phonon mode q, and

bq, b
†
q the destruction/creation operators for the phonons. We can expand this to linear

order in Vq/~ωq, provided the phonons modulate the distance between chromophores only

slightly. In this case we have

∆̃ad = ∆ad −
∑
q

λad,q(bq + b†q) (1.5)

where the coupling strength λad,q is now a function of the tunneling matrix element

between the donor and acceptor molecules and the phonon frequency. So we see that the

phonons modulate the distance between chromophores, thereby modulating the tunneling

amplitude. This is the origin of the non-diagonal coupling between chromophores.

1.4 Exciton dynamics in photosynthetic systems: tra-

ditional theories and their limitations

I now discuss the conventional theories of excitation energy transfer (EET) that use the

molecular parameters described above to obtain rate constants determining dynamics

within FMO and associated relaxation effects. There is of course no general theory (yet)

that applies across the whole parameter space, but the choice of theory depends on the

relative strength of pigment-pigment and pigment-environment couplings.
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Traditionally, EET in FMO has been modelled in two limits. One limit, known

as Förster theory, considers small chromophore-chromophore couplings ∆ compared to

chromophore-environment couplings Λ (I define the coupling here to be Λ in anticipation

of its relationship to the experimentally determined reorganisation energy of the bath).

In this case the exciton is localised on each chromophore and ∆ can be treated perturba-

tively. In the opposite limit, the exciton-bath coupling Λ is treated perturbatively, leading

to Redfield theory. Associated with each of these couplings are therefore two separate

timescales. One is the inverse of the bath coupling 1/Λ, which describes the timescale

over which energy is transferred to the environment. The other is the inverse of the

exciton-exciton coupling 1/∆, which describes the timescale of exciton transfer between

chromophores. Therefore in the Forster limit 1/Λ � 1/∆ we have a rapid energy loss

to the environment occurring over a timescale much shorter than the inter-chromophore

transfer. Conversely in the opposite limit, exciton transfer occurs at a much faster rate

than dissipation to the environment.

In the case of FMO the tunnelling energies are of order ∆ ∼ 1meV corresponding to

a transfer time τ ∼ 4ps, while reorganisation energies are found to be around Λ ∼ 4meV

corresponding to a dissipation time τΛ ∼ 1ps[62]. The reorganisation energy is an ex-

perimentally determined value related to the system-bath coupling strength (see Section

2.3) So we see that in FMO the size of these parameters are actually similar and one

must therefore go beyond the limiting cases and utilise a non-perturbative theory. It

was shown by Sharp et al. [81] as well as Ishizaki et al. [24] that a calculation of the

2D optical spectrum assuming weak coupling to the environment fails to reproduce the

oscillations seen by Engel et al. [5]. Therefore the application of these models to date has

been arguably inappropriate to the FMO complex, and a non-peturbative analysis such

as the one I have employed here is warranted. Nonetheless I briefly summarise some of

these traditional methods before discussing the results of my non-perturbative methods

and their application to FMO.

1.4.1 Resonance Energy Transfer

First I will describe the process of exciton couplings across different chromophores. This is

known as resonance energy transfer (RET) and describes the transfer of energy from one

molecule (the Donor) to another (the Acceptor) in biological chromophores. A molecule

(or chromophore) is initially excited by a laser pulse in a lab setting or a monochromatic

light source in a natural setting, creating an exciton on the first molecule. Splitting the
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chromophore coupling into its long and short range components, i.e. dipole-dipole Vc and

exchange terms Vex respectively, reads

V = Vc + Vex. (1.6)

It is assumed in RET that the exciton is transferred between molecules via a dipole-dipole

interaction, therefore V ≈ Vc where

Vc =
1

4πε0

κµDµA
R3

(1.7)

where κ = µD · µA − 3(µD ·R)(µA ·R) is an orientation factor that reflects the fact that

no interaction is observed between perpendicularly oriented chromophores. ~R is the sep-

aration vector between the molecule’s centres and ~µd and ~µa are the donor and acceptor

transition dipole moments respictively. The transition probability is proportional to |∆|2

and therefore goes as 1/R6. The dipole-dipole interaction expression is obtained from

the expansion of the Coulomb interaction in the acceptor-donor distance parameter to

get a multipole series, while retaining only the dominant term.

1.4.2 Forster theory

Forster theory presented a key step in the understanding of EET at the molecular scale

when it was introduced in the last century [82]. Its applications have had success not

only in understanding light-harvesting mechanisms in biochemistry but also in the de-

velopment of artificial organic-based light-emitting diodes [83]. Its application to the

experimental sphere facilitated the development of fluorescence-resonance-energy trans-

fer (FRET) [67], a technique that has been widely used to detail the structure of biological

systems. Central to the theory, however, is the approximation of weak inter-chromophores

coupling ∆da (between donor and accepter chromophores) compared to environmental

couplings γ. Forster therefore derived his EET rate expression with the use of the Fermi-

Golden-rule approach, treating ∆ as the perturbation in time-dependent perturbation

theory. The rate of exciton transfer between donor and acceptor states was derived by

Forster [82] to be

kd→a = ∆2
da

ˆ
dω

2π
Re
{
Ad
}

Re
{
Fa
}

(1.8)

where Ad and Fa are the absorption and fluorescence lineshapes of the donor and acceptor

chromophores. The resulting rate expression is expressed as the overlap integral between
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the fluorescence spectrum of a donor and the absorption spectrum of an acceptor [84].

The limitations of this approach to modeling EET rest upon some key, rather limiting

assumptions. The donor and acceptor molecule must be coupled sufficiently weakly

compared to chromophore-bath coupling such that Fermi’s Golden Rule applies. This

leads to incoherent hopping between donor-acceptor molecules such that the dissipation

to the bath is one-way. No feedback to the system from the bath is permitted and the

theory excludes possible coherence effects in principle due to the assumption of very

strong system-bath coupling relative to the tunnelling energy.

1.4.3 Quantum master equations in molecular systems: the

Redfield equation

In the opposite limit to Forster theory, quantum master equations are used to describe

exciton dynamics. The fundamental assumptions here are that the exciton-environment

coupling is small compared to inter-molecular interactions and so the system-environment

coupling is treated perturbatively. The most commonly used version of this approach in

the context of biomolecules is the Redfield equation [64, 85]. Master equations have also

seen widespread application in the field quantum optics [86].

Derivations of quantum master equations for specific systems usually start from the

Liouville equation [87]

∂tρ(t) = − i
~

[H, ρ] (1.9)

where ρ(t) is the time-dependent density matrix of the entire system: central system S

plus bath B such that the Hamiltonian is H = HS + HB + HI where HI is the system-

bath interaction. The Liouville equation is essentially the density matrix form of the

Schrodinger equation and so allows the time-evolution of a statistical mixture of states.

One is generally interested in the dynamics of the central system so we trace over the

bath degrees of freedom

ρS(t) = TrB[ρ(t)]. (1.10)

In deriving the Redfield equation one starts from the assumption that the initial system

and bath states factorise

ρ(0) = ρS(0)⊗ ρB (1.11)
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This assumption is valid in the context of exciton dynamics as the creation of the exciton

in the system at t = 0 is incredibly fast compared to the inverse bath couplings. We

recall that in light-harvesting complexes, an exciton is created either by the sudden

absorption of light, or the injection of an exciton from the antenna complex. Another

key assumption in Redfield theory takes the system-environment coupling to be weak and

second-order perturbation theory is used accordingly. In addition to these assumptions

is the use of the Markov approximation, which makes the master equation local in time.

This latter simplification, it should be noted, removes any possibility for feedback in to

the central system from the bath i.e. any energy transfer to the bath is one way and

cannot re-enter the central system at a later time. The relevant physical condition for

the Markov approximation is when the memory timescale τB of the bath is very small

compared to the timescale t of the dynamics of the central system. This means that the

bath correlation function decays sufficiently during an appreciable timescale over which

the central system evolves, removing the possibility for bath memory effects [88]. The

resulting Redfield equation is [24]

∂tραβ(t) = −iωαβρ(t) +
∑
α′,β′

Rαβ,α′β′ρα′β′(t) (1.12)

where ~ωαβ = εα − εβ describes the energy gap between chromophores and the indices

α, β run over chromophore sites. The second term describes the relaxation dynamics

where the Redfield tensor is given by

Rαβ,α′β′ = Γβ′β,αα′ + Γ∗α′α,ββ′ − δββ′
∑
µ

Γαµ,µα′ − δαα′
∑
µ

Γ∗βµ,µβ′ (1.13)

The damping terms are given by

Γαβ,α′β′ =
1

~2

∑
qq′

λαβ,qλα′β′,q′Cqq′(ωi′j′) (1.14)

where λαβ,q = 〈α|λq |β〉 are the chromophore-bath couplings. The Fourier transformed

bath correlation function is defined as

Cqq′(ω) =

ˆ ∞
0

dteiωtCqq′(t) (1.15)

where the time-domain correlation function is
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Cqq′(t) =
~
π

ˆ ∞
∞

dωJqq′(ω)[n(ω) + 1]e−iωt (1.16)

and n(ω) = 1/(eβ~ω−1) is the Bose-Einstein distribution function and Jqq′(ω) the spectral

density of the bath (see Section 2.3). An additional approximation applied to equation

1.12, which casts it in the quantum master equation form commonly used in the liter-

ature [88, 64], is known as the secular approximation. This amounts to neglecting the

rapidly oscillating terms that contain ei(ωi−ωi′ ), which effectively amounts to a Rotating

Wave approximation. This is generally justified under the Riemann-Lebesgue-Lemma

that states that the integral of a rapidly oscillating function goes to zero in the limit

when in this case ωi − ωi′ →∞.

Along with the fundamental assumption that the system-bath interaction is perturba-

tive to second order, we see that the Redfield equation describes a fairly restricted class

of systems. Despite the popularity of quantum master equation approaches to modelling

photosynthesis [15, 23, 16, 17], a number of studies have shown explicitly the failure of

this approach [24, 84, 89] in the context of photosynthesis.

There have been some attempts to go beyond the traditional theories described how-

ever, often these changes have involved small deviations from the master equations models

[21, 84]. In this case non-Markovian effects are reintroduced, however the system-bath

coupling is still treated perturbatively. Some analytical studies on photosynthetic sys-

tems have utilised non-perturbative methods. The spin-boson model, with just diagonal

system-bath couplings, was applied to the FMO complex and found persistent oscillations

in the exciton dynamics in accordance with the experimentally determined values [27].

However, this model assumes a relatively large tunnelling energy between chromophores

which can account for the predicted rapid exciton transfer rates. Furthermore, the model

assumes just an Ohmic form for the bath spectral density in order to utilise the results

from the spin-boson literature. Despite these limitations the initial success of utilising

non-perturbative methods in studying the FMO system is promising.

In the next chapter, I set up the path-integral approach to analysing exciton dynamics.

In subsequent chapters, this will be used to model the FMO system in photosynthesis

with the intention of accurately predicting relaxation rates compared to experiment as

well as providing a better understanding of the underlying physics.
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1.5 3-site configurations in the Fenna-Matthew-Olson

complex

I now turn to the motivation behind studying a 3-site model in the context of photosyn-

thesis in more detail. I begin with some preliminary, qualitative considerations: looking

at the energy structure of the FMO system and how the branched nature of the system

leads to an intuitive 3-site reduced model. I also look at some spectroscopic data, which

has hinted at the presence of a dominant 3-site structure in the system. While there

have been a number of studies investigating a 3-site-ladder model for the FMO complex

[44, 90], where the site energies are therefore different, here we focus on the 3-site-V

configurations [45].

To see how a 3-site-V configuration can be effective at modelling the dynamics of

the full FMO system, we first look at the on-site energies and transition matrix ele-

ments between sites (dipole-dipole couplings between chromophores), established from

spectroscopic data [46].

HFMO =



26.7 −12.9 0.6 −0.5 4.7 −0.58 −1.0

−13.0 27.3 4.0 0.9 0.7 1.0 0.1

0.6 4.0 0 −5.8 0.12 −1.0 0.63

−0.5 0.9 −5.8 15.5 −8.8 −1.8 −7.6

0.58 0.7 0.12 −8.8 55.8 89.7 −2.5

−15.1 8.3 −8.1 −14.7 11.1 41 4.1

−1.0 0.1 0.63 −7.6 −0.31 4.1 34.7


(meV) (1.17)

In Figure 1.5 we see a pictorial representation of the FMO Hamiltonian equation 1.17,

including only dominant couplings greater than 3.7meV.
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Figure 1.5: Pictorial representation of Hamiltonian for
FMO complex, taken from spectroscopic studies [46], in
units of meV. Coloured lines indicate excitation ener-
gies of different chromophores (diagonal Hamiltonian en-
tries). Arrows indicate inter-chromophore couplings (off-
diagonal Hamiltonian entries). Numbers included next
to lines and arrows indicate the associated energy with
that excitation energy of coupling respectively. Only
dominant energy transfer pathways included; couplings
> 4meV

Having only included dominant energy transfer pathways above 4meV we hope to demon-

strate the branched nature of the system. It’s clear that there are two dominant branches

in the system with relatively small tunnelling energies between them. One connects states

|1〉 ↔ |2〉 ↔ |3〉 and the other connects states |3〉 ↔ |4〉 ↔ |5〉 ↔ |6〉 ↔ |7〉. If the states

that comprise the excited state portion of each branch can be described by a single ‘ef-

fective’ state, with some correponding ‘effective’ tunneling energy with the ground state

at |3〉, then the remaining system would be of the 3-site-V form depicted in Figure 1.6.
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Figure 1.6: Effective 3-site-V configuration for FMO
complex.

Schmidt and Renger, in fact, demonstrated that there is no qualitative difference in

the site-population dyamics between the full FMO Hamiltonian and an ‘effective’ 3-site

model [90].

After some qualitative considerations of the possible 3-site nature of the FMO system,

I look now at some spectroscopic data suggestive of a dominant 3-site structure in FMO.

The energy spacing of excitonic levels is relatively small compared to the inhomogenous

broadening present in the optical transitions, so much so that the resulting linear ab-

sorption spectrum is almost entirely featureless at physiological temperatures [91]. At

cryogenic temperatures of ∼ 77K however, 3 distinct peaks emerge in the spectra of

FMO. Simulations performed in the literature [46, 91, 71] suggest exciton delocalisation

across combinations of 2-3 chromophores in FMO. If coherence effects are to play a role in

efficient energy transfer in the FMO complex, then it is across at most three chromophores

that this effect will be present. Beyond that the system presumably evolves according

to the Forster limit corresponding to incoherent hopping between chromophores. The

various 3-chromophore delocalisation configurations are shown in Figure 1.7. Here we

see the results of experimental spectroscopic data on FMO showing the emergence of

three distinct peaks at cryogenic temperatures. We also see the extent of wavefunction

delocalisation across the various chromophores.
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Figure 1.7: (A) Arrangement of BChla pigments within
the FMO units. BChla site numbering according to Fenna
is in black Roman numerals. Schematic representation of
spatial extent of the excitons according to Adolphs et al.
[46] is shown by shaded areas. Exciton numbering (red
numbers) is given in order of increasing energy. (B) Lin-
ear absorption spectrum of FMO at 77 K with excitonic
transitions (vide infra) represented by vertical bars. (C)
Normalized absorptive 2D spectra at increasing popula-
tion delays with dashed lines indicating excitonic transi-
tion energies. All spectra were recorded in 1:2 aqueous
buffer:glycerol mixture at 77 K. Reprinted with permis-
sion from [91].

The central 3-site-V system parameters to be used in our analysis we take from [46],

where the electronic energies and couplings between them were determined from a time-

dependent density functional theory (DFT) on the chromophores with an electrostatic

Poisson-Boltzmann type calculation. Similar studies have also used a DFT approach to

determine the chlorophyll energies immersed in organic solvents to great effect, comparing

their results to experimentally observed spectra [92]. The calculated diagonal site energies

and tunneling terms in [46] are shown in Table 1.1.
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BChl site On-site energy (meV) BChl-BChl transition
Tunneling

(meV)

Ground state: |0〉 0 |0〉 → |1〉 1.8

Site 1: |1〉 20 |0〉 → |2〉 3.2

Site 2: |2〉 20

Table 1.1: Tuned V-system parameters. From Adolphs
et al [46]

We see in Table 1.1 how the on-site energies are large compared to the tunnelling energies,

putting us within the strong-localisation region. Just based upon these numbers one

would expect the wavefunctions of each chromophore to be fairly-well localised around

their respective BChla molecules, with possibly some delocalisation spreading out to

neighbouring chromophores. This is somewhat in line with the data presented in Figure

1.7, however there is clearly still some delocalisation across chromophores.
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Chapter 2

A path-integral approach to exciton

transfer

In this chapter, I set up the 3-site model in a path-integral formalism. While I will

primarily focus on the 3-site application here, the resulting formalism will be applicable

to the 2-site model used in Chapter 5 with the appropriate modifications. Indeed, the

2-site path integral formalism has been described extensively in the literature and so in

this chapter I will focus on the extensions of the 2-site formalism to the 3-site case.

While my final results will be non-perturbative in the system-bath coupling, the auxil-

iary approximations made along the way will build upon a number of techniques employed

in the famous spin-boson model. The spin-boson model [31], considered a spin-1/2 system

coupled to an oscillator bath, developed in the path integral formalism along with the

noninteracting-blip approximation (NIBA). While this approach is fully non-perturbative

in the system-bath coupling, and permits memory effects in the system, the underlying

approximation restricts the longevity of coherences in the central system. My 3-site-

boson model will involve an extension to this model, by way of the addition of not only a

third site to the system but an extra tunnelling matrix element. Although this extended

mathematical model will also share many of the varied applications that the spin-boson

model has, it is the recent surge of theoretical physics research in the area of quantum

transport phenomena in photosynthesis that primarily motivates the development of this

model.

There have been a few preliminary studies, looking at the role that 3-level systems

might potentially play in photosynthesis [45, 44]. However they have so far relied upon

numerical techniques that assume one-way dissipation to the bath, which are insufficient
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at modelling coherence effects. Therefore in order to model the photosynthesis mechanism

more accurately, such that the possibility of relatively long-lived coherences can be estab-

lished, one must adopt a more advanced approach to modelling the system-environment

interaction—one that retains the desired coherence effects. A number of numerical ap-

proaches are suited to this; however, in this thesis we are interested in the possibility of

obtaining analytic results and ultimately applying them to the case of photosynthesis.

2.1 Truncation procedure for the 3-site-boson model

from an extended system

Prior to performing any analysis I must set up the problem, and like most physical systems

of interest, I am considering an approximation of some more general system. In my case

this amounts to the truncation of a more general potential energy landscape, with three

distinct potential wells that permit tunnelling between them, down to three distinct,

interacting ground states of each potential well. The problem that I wish to investigate

therefore involves a quantum-mechanical system that occupies a 3-dimensional Hilbert

space.

In the more general case, the system has a continuous degree of freedom q with a

corresponding potential energy function V (q), that forms three separate potential wells.

Each well supports multiple quantum mechanical states, but if we assume that the barrier

heights between wells are large compared to the energy separation between the ground

and first excited state of each well, then the states should localise within each well.

Moreover if I assume that the temperature of the system kBT , as well as bias energies

separating the ground states of the potential minima, are small compared to the excited

state energies, then states in each well should still be restricted to just their ground

states. In other words, the bias energies are small enough such that the system does not

localise in any one well, and the temperature kBT is not too large so as to thermally

excite any higher energy states. In effect, the system is now described by a 3D Hilbert

space spanned by these three ground states. In this regime, the dynamics of the system

is governed by tunnelling between the wells associated with a tunnelling matrix element

~∆, which must also be small compared to the energy level spacings within wells so as

not to mix the ground and excited states.

Isolated systems like this are known to exhibit quantum mechanical interference effects

between wells. Realistically though any physical realisation of such a system is not
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isolated, and exists in the presence of some environment. So far I have only considered

a 3-level system isolated from any environment. I refer to this as the ‘central system’ for

which the truncated Hamiltonian is

H0 = ε1 |1〉〈1|+ ε2 |2〉〈2|+ ε0 |0〉〈0|+ ∆10(|1〉〈0|+ h.c.) + ∆20(|2〉〈0|+ h.c.) (2.1)

where the lower site energy ε0 = 0.

The complete 3-state central system would of course include a tunnelling term between

the upper two levels as well. We exclude this term here due to our interest in this partic-

ular configuration of the 3-site system, often referred to as a V-system in the quantum

optics literature where it sees widespread application [86]. Our interest in this partic-

ular 3-site-V-system configuration is motivated by its application to the photosynthesis

mechanism discussed in Chapter 1.

2.2 Modelling the environment as a macroscopic har-

monic oscillator bath with linear system-bath

coupling

I now discuss the interaction of the central system with an external environment. Here I

am considering a central system that contains only a few degrees of freedom with respect

to the environment, which is assumed to be large with many modes. As the interaction

between the central system and each environmental mode is inversely proportional to the

size of the bath, for a macroscopic environment we can assume weak coupling to each

individual mode. However, the total coupling to the bath can be strong since the full

coupling is due to a summation over the couplings to each bath mode. Therefore we can

assume that the coupling is linear in bath coordinates, since each individual coupling is
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small, but the total coupling can be arbitrarily large [61].

Any linear system composed of a distribution of interacting oscillators can be rep-

resented by an equivalent set of independent oscillators [37]. In other words, a linear

transformation of the coordinates of the interacting oscillators, recasts the system in

terms of its eigenmodes. Since we’re assuming that the bath is comprised of a set of

simple harmonic oscillators, perturbed only slightly from their equilibrium position, then

it is permissible to consider the equivalent set of independent oscillators. Since the bath

coordinates will ultimately be summed over, and therefore appear as dummy variables

as part of the path-integral measure, it is inconsequential whether the coordinates repre-

sent positions or otherwise. The linear transformation coefficients will of course introduce

some new normalisation term due to the path-integration measure, however, this is taken

in to account in the path integral formalism [37]. I therefore write the Hamiltonian as

H = HS +HB +HI (2.2)

where HS is the Hamiltonian of the central system, the 3-site system, HB is the Hamil-

tonian describing the environment and HI the coupling between the two. In the state

space the central system is a function of the state label α and for a bath of N Harmonic

oscillators

HB =
N∑
q=1

(
p2
q

2mq

+
1

2
mqω

2
qx

2
q

)
(2.3)

and

HI = −
∑
αβ

N∑
q=1

Fαβ,q |α〉〈β|xq(t) (2.4)

where the interaction is linear in bath coordinate xq(t) and we have excluded a counter-

term in the interaction that offsets the renormalisation of the potential in HS. Fαβ,q is

the state-dependent force between state αβ and an oscillator mode q. Therefore we have

associated with this force some state-dependent fluctuating energy Eαβ(t). We have kept

HI general for now, permitting both diagonal α = β and non-diagonal α 6= β couplings.

Second quantising the bath and interaction terms gives

HB +HI =
N∑
q=1

ωqb
†
qbq +

∑
αβ

|α〉〈β|
N∑
q=1

λαβ,q(bq + b†q) (2.5)
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where Fαβ,q =
√

2mqωqλαβ,q. For the case of just diagonal couplings α = β in the 3-site

model the state-dependent couplings would be λα,q ∈ {λ1,q, λ2,q, λ0,q}. Physically, we have

described here a bath that is sensitive to the degrees of freedom of the central system.

In the polaron literature for example, this usually describes phonons in the environment

that are sensitive to the spatial coordinate of the central system particle of interest; i.e.

as the particle moves through the environment of phonons, the environment and the

particle experience a force between them as a function of their spatial separation [52].

Here, since we’re considering a central system in state space, the environment couples

individually to each state in the system and there exists a force between each state and

each oscillator mode corresponding to a coupling constant λαβ,q.

2.3 The oscillator bath spectral density

I have so far only stipulated that the environment is comprised of a large set of har-

monic oscillators and restricted the system-bath coupling to a linear form. However the

environment, being the large, complicated structure that it often is, requires further spec-

ification as to the distribution of its modes across frequency space. For the case where

a thermal equilibrium statistical average is taken over the initial and final states of the

environment, then the system-environment coupling can be completely characterised by

the spectral density [31, 61]

Jα(ω) =
π

2

∑
q

λ2
α,q

ωq
δ(ω − ωq) (2.6)

which contains the density of states of the bath weighted by the state-dependent system-

bath coupling λα,q. So we have a spectral density corresponding to each state in the

central system with the bath mode part of the coupling summed over. When considering

both diagonal and non-diagonal bath couplings we will also have to differentiate between

diagonal and non-diagonal coupling strengths. If one is considering some vibronic de-

grees of freedom in the environment, such as phonons, then to linear order, the bath

modes couple to some coordinate in the central system. In the standard literature this is

usually derived as a particle, moving with a geometrical coordinate interacting with its

environment by displacing the positions of the atoms around it. Therefore the interac-

tion potential depends on the position of the particle from the atoms in the environment

around it. To linear order in displacement one arrives at the Hamiltonian above. However

since we’re considering a state space for the central system, which does not necessarily
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involve spatial coordinates, then we don’t describe the coupling as being dependent on

the central system coordinate, but instead dependent on the state α. In the original

spin-boson model for the TSS, the system is said to suddenly jump between positions

±q0/2, where the bath is coupled to these relative positions. This arises as a coupling

to q0σz in the interaction term of the Hamiltonian. In fact, the original motivator for

Leggett et al. to work on the SB model was to apply it to the SQUID system where

the central system coordinate was the flux ϕ and not at all a geometrical coordinate

[93]. Nevertheless they used the coordinate q0 throughout, along with that caveat. Here

instead I consider a coupling λα,q which contains both the state dependence and bath

mode dependence.

In the limit of a large number of bath oscillators, where the frequencies ωq are suffi-

ciently dense so as to form a continuous spectrum, it is appropriate to replace the discrete

sum in Jα(ω) by a continuous integral. In the low frequency limit of the spectral density

the spectral density takes the general form

Jα(ω) = Aα,sω
sω1−s

ph e−ω/ωc (2.7)

For s = 1 we have the Ohmic case, for s > 1 we are in the super-Ohmic regime. In the

latter case we see that the bath frequency is defined in relation to some characteristic

bath frequency ωph that fixes the dimensionality of the spectral density. The state de-

pendence is now contained within the parameter Aα,s, which will change depending on

the value of s and which I will define explicitly in the next sections.

A quantitative measure of the system-bath coupling strength usually used in the lit-

erature is the reorganisation energy Λ [84, 27, 94]. This describes the energy released by

the bath when relaxing to its equilibrium ground state [64].

Λ =
1

π

ˆ ∞
0

dω
J(ω)

ω
(2.8)

This parameter can be determined experimentally using spectroscopy [95] and is found

to be around Λ = 4meV [24, 26]. The justification for quantifying the coupling strength

with the measurable reoganisation energy is usually understood in the literature, by first

considering the case of zero tunnelling matrix element [56]. Then the chromophore re-

duces to the well known Independent-boson model [52], an exactly diagonalisable model,

which results in site energies shifted by the distortion of the local environment. Asso-

ciated with this deformation is the reorganisation energy, and the system-environment

coupling in this limit is clearly defined. Reintroducing small, but appreciable, tunnelling
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matrix elements is then assumed to leave the reoganisation energy picture of system-bath

couplings unaltered.

2.3.1 Ohmic damping: s = 1

For the special case of Ohmic spectral densities, which will be one form of J(ω) con-

sidered in this work, the damping in the system is independent of frequency [34, 29].

This situation is known to describe the environmental effects of conduction electrons in

solids [40, 96] and has been argued to model dissipative energy transfer mechanisms in

photosynthesis as well [42, 24, 27] (see also Section 2.3.4). In the Langevin equation this

corresponds to a frictional force proportional to the velocity of the path (hence the term

Ohmic) [61]. In the high temperature limit, the classical Langevin equation is recovered,

which describes a heavy Brownian particle immersed in a fluid of light particles [61]. In

this limit the power spectrum of the thermal fluctuations can be described by Johnson-

Nyquist noise [97], and thus is of Ohmic form. that In this case the spectral density takes

the form

Jα(ω) = ηαωe
−ω/ωc (2.9)

which is valid for all frequencies much less than some cutoff frequency ωc. As the spectral

density is a function of both the density of states of the bath modes as well as the state-

dependent system-bath coupling, the parameter ηα has an index corresponding to each

chromophore. This parameter therefore has units of Joule · seconds and is often referred

to as the viscosity coefficient [61]. At this point I can define a dimensionless coupling

constant

γα =
ηα
π~

(2.10)

which will be used in proceeding calculations.

The measured value of the dimensionless coupling constant is measured to be γ = 0.22

for an Ohmic bath in the FMO complex [98]. The corresponding cut-off frequency was

found to be ~ωc = 21.1meV.

2.3.2 Super-Ohmic damping (acoustic phonons): s = 3

For the case of s = 3 the spectral density is known as super-Ohmic. The physical

basis for a spectral density of this form can be realised in the coupling of the system to
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a 3-dimensional acoustic phonon bath [61, 31]. One can arrive at this cubic frequency

dependence with a system-bath coupling λq ∝ ω
−1/2
q for elastic waves and a Debye density

of state
∑

q δ(ω − ωq) ∝ ω2. Recall that, for low enough frequencies, it is assumed that

phonons still have a well defined wavevector for amorphous solids. Further summation

over the one longitudinal, and two transverse branches of the dispersion, results in a

spectral density to the 3rd order in ω [99]. Therefore, for the low frequency distribution

of the bath, the spectral density takes the form

Jα(ω) = ρα
ω3

ω2
ph

e−ω/ωc (2.11)

Once again the coefficient ρα has units of Joule · seconds. I can therefore define a

dimensionless coupling parameter that this time takes the form

ζα =
ρα
π~

(2.12)

which is independent of the characteristic bath frequency ωph. Instead, we’ll see that

during the calculations in subsequent chapters, that I instead end up with a ratio of cut-off

frequency to characteristic phonon bath frequency in our expressions. The dimensionless

coupling constant and cut-off frequency were found to be ζ = 0.31 and ~ωc = 8.7meV

respectively [98].

It is worth briefly discussing the significance of phonons and super-Ohmic spectral

densities in the context of amorphous solids. Phonons are normally discussed in the

context of ordered lattices where there exists a well-defined translational symmetry. In

this case we can describe the distribution of phonon modes with a dispersion relation

according to a well-defined plane-wave excitation momentum. In disordered (amorphous)

solids, despite the lack of translational symmetry, low-frequency vibrational modes similar

to those of a crystalline lattice [100, 101] are present. This can be conceptually understood

by first considering an ordered lattice with a phonon dispersion. Introducing disorder

should affect the high-frequency modes first as the low-frequency modes do not ’see’ the

disorder due to their long wavelength. For higher, and higher disorders, we expect the

high frequency phonons to be scattered and only very low frequency modes to survive.

The environment of a chromophore is of course not an ordered lattice but an amorphous

one with some degree of disorder. Nevertheless it is clear that vibrational excitations

exist in such amorphous systems arising from the protein structure that surrounds each

chromophore [46, 102].

34



2.3.3 Optical phonon damping with spectral broadening

For the case of optical phonons the spectral density contains just one frequency ω0 and

the zero-temperature spectral density includes just a delta function. However for realistic

applications we would like to add a small linewidth to simulate some damping by the

environment. In this case I choose a Gaussian lineshape

Jα(ω) = λαexp

[
−(ω − ω0)2

2ξ2

]
(2.13)

with fullwidth-half-maximum ξ and coupling strength λα that determines the height of

the peak and has units of Joules. In this case the coupling strength λα corresponds

directly to the coupling strength in the system-bath interaction part of the Hamiltonian

(see equation 2.5). The dimensionless coupling parameter in this case is

να =
λαξ

π~ω2
0

(2.14)

where ξ and ωo have units of frequency.

Optical phonon peaks appearing in the structured spectra of the FMO complex, tend

to be relatively narrow and oscillate at very high frequency relative to the FMO system

tunnelling frequencies. Linewdiths are of the order ~ξ ∼ 1 − 10meV, and oscillation

frequencies ~ω0 ∼ 50− 250meV. This range of values describes narrow peaks centered at

relatively high energies.

2.3.4 Spectral density functions for light-harvesting molecules

Having introduced various general forms for spectral density functions, I now discuss their

application to the case of photosynthesis. Previous analytical approaches to modelling

chromophore dynamics have made various assumptions as to the nature of chromophore-

environment interactions. Approaches by Gilmore [41, 42, 43], Ishizaki [21] and Cho

[103] have assumed a Debye-solvent approximation to the susceptibility function of the

environment. The resulting spectral density is of the Ohmic form with a Drude-Lorentz

regularisation [87], which has the same low-frequency behaviour as the overdamped Brow-

nian oscillator model [104, 105]. The Ohmic form for the spectral density describes a

heavy Brownian particle immersed in a fluid of relatively light particles [61]. The model

is linear in bath-mode-frequencies with a long-tail high frequency cut-off. For the case

of a Debye-solvent, the model assumes that the environment is a homogeneous dielectric

[41, 42] based upon the Onsager model of solvation [106, 107]. This combined with the
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Debye-solvent approximation models the dielectric solvent well, provided it is highly di-

lute [108].

While this model is useful in considering a specific microscopic model, of given so-

lute dimensions as well as solvent dielectrics, it is generally restricted to the class of

solvents and excludes any rigid protein structure in the environment. In either case one

would expect the influence of both acoustic and optical phonons to play a significant

role in chromophore dynamics. Nonetheless, light-harvesting molecules are suspended in

an aqueous solution and we expect the solvent to affect the solute dynamics as well as

possibly explaining why the Ohmic form for the spectral density has had some success

in modelling light-harvesting molecules [109, 110, 111].

Light-harvesting molecules are surrounded by a protein structure that contains a large

number of degrees of freedom. We are often interested in the response of the system to

the low-frequency portion of the spectrum and thus a super-Ohmic spectral density can

be employed. A number of studies on these systems have used a super-Ohmic spectral

density [112, 46, 113]. One can of course turn to experimentally determined spectra for

an understanding of the nature of system-environment interactions. An accurate de-

termination of the energetic structure and system-environment interactions present in a

complex system such as FMO is difficult. As a result, the general method of determining

these parameters is to perform complex fitting algorithms on experimentally determined

optical spectra, and various approximations have been proposed and implemented on

FMO.

One of the canonical works on FMO line-spectra calculations is that by Adolphs and

Renger [46]. They estimated the exciton-environment coupling based on the fluorescence

line-narrowing spectrum. The result was a spectral density of cubic form with a peak at

around 0.02eV and an exponential cut-off for high frequencies. Nalbach et al. extended

this to a ω5 frequency dependence as well as the inclusion of a single optical transition

peak. They found the inclusion of the peak to alter the exciton dynamics only slightly

[26]. Flemming’s group [21] calculated the exciton dynamics using a low-frequency Ohmic

approximation for the spectral function that relies on the Drude approximation for the

solvent environment [41]. Olbrich et al. [114] have calculated the spectral function based

on a combination of exponential and damped oscillations for the correlation function. The

resulting function is combination of a temperature-dependent function and Lorentzians.

The number of peaks corresponds to the number of terms included in their fitting func-

tions to experimental data. Depending on their algorithm, they find around 13 peaks

with various spectral weights.
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Figure 2.1: Spectral densities for the FMO trimer used
in studies by Ishizaki and Fleming [21], Cho et al. [103],
Adolphs and Renger [46], as well as Nalbach et al. [26].
Spectral densities fitted to experimental data by Olbrich
[114] also included, indicated by the lines ‘present - BChl
1-6’, ‘present - BChl 7’, ‘present - BChl 8’, corresponding
to the average over BChl molecules 1-6, 7 and 8 respec-
tively. The inset shows an enlarged energy and spectral
density range. Reprinted with permission from [114].

We see from Figure 2.1, where the results of the various approximation methods are com-

pared, that they differ not only in qualitative features, but also in magnitude. The studies

of Cho [103], Adolphs [46] and Ishizaki [21] assumed only low-frequency vibrational modes

of either Ohmic or super-Ohmic form. Nalbach [26] included a single internal vibrational

mode, evident by the single peak on top of the low-frequency distribution. However, the

most up-to-date study by Olbrich et al. [114] not only found many more optical phonon

transitions in the spectra, but found a much larger amplitude to the spectral density

across frequencies, especially for the outlying BChla molecules 7 and 8 that sit on the

peripheries of the FMO structure and are thus weakly bound. The core of the FMO

structure, comprised of BChla 1-6, which were the focus of the other studies, are more

relevant to compare. Olbrich et al. still finds an elevated amplitude across frequencies
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but less significant optical phonon transitions. This is with the exception, however, of a

strong peak at around 0.22eV. This peak has been attributed to several carbon-oxygen

and carbon-carbon bonds, present in the BChla molecules internal structure that vibrate

with similar frequencies [115, 114]. For low-energies below 0.01eV, Olbrich find system-

bath interactions approximately 2-3 times larger than other studies. In Table 2.1, two

optical phonon peaks are selected from the FMO spectra calculated by Olbrich [114],

corresponding to the 0.22eV peak and a lower frequency peak at 0.075eV. We see how

the dimensionless coupling parameter associated with these peaks is much less than one

which suggests a perturbative approach to modelling the system-bath dynamics with

these optical phonon peaks should be sufficient. This is done in Section 3.3. In the

interest of investigating the non-perturbative effect of optical phonon peaks on the FMO

dynamics, I also select peaks at 6, 8 & 10meV

Optical phonons

ν λ(meV ) ξ(meV ) ω0(meV )

0.003 35 12.5 220

0.004 12.5 5 75

0.1 12.5 0.5 5

Table 2.1: FMO parameters for optical phonons charac-
terised by their peak height λ, full-width-half-maximum
ξ and dimensionless coupling parameter ν = λξ/πω2

o in
units of meV . Taken from Olbrich et al. [114].

In the interest of clarity I’ve converted all the parameters to units of meV (N.B. Planck’s

constant in the above units is ~ = 658meV · fs).
For the acoustic phonons I take the FMO values determined from Jang and Mennucci

[98], which provides an up-to-date, comprehensive review of fitted spectral functions for

the system-environment interactions in FMO. Here the spectral density function used is

of the form

Jα = ρα
ω3

ω2
c

e−ω/ωc (2.15)

where the corresponding dimensionless coupling is ζα = 0.31 and cut-off frequency ωc =

8.7meV.

For an Ohmic bath, the spectral density function used is of the form
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Jα = ηαωe
−ω/ωc (2.16)

where the corresponding dimensionless coupling is γα = 0.22 and cut-off frequency ωc =

21.1meV.

2.4 The path-integral approach to modelling open-

quantum mechanical systems and the Feynman-

Vernon influence functional

When investigating how a quantum mechanical system interacts with its environment,

we are usually interested in tracking the degrees of freedom within the ‘central’ quantum

mechanical system under the influence of the degrees of freedom within the environment.

This ultimately means that the mathematical formalism I wish to work with must cast the

effects of the external system only in terms of the coordinates of the central system. This

way I can explore the free parameters of the central system of interest under the influence

of its environment without having to track every degree of freedom in the problem,

system-plus-environment at once. One of the most successful formalisms that achieves

this is that of the Feynman-Vernon influence functional approach [37]. The resulting

mathematical object that facilitates these calculations is known as the Feynman-Vernon

influence functional. This method allows us to consider an arbitrarily strong coupling to

the environment and retain ‘memory effects’, such that the system can feed energy to

the bath and experience feedback as well.

2.4.1 The path integral formalism of quantum mechanics

Central to this method of modelling open quantum systems is the path-integral approach

to quantum mechanics devised by Feynman [116]. When the formalism was introduced

in the mid-20th century it provided physicists with the understanding that a quantum

mechanical system can be thought of as exploring every possible path available to it,

with each path weighted by a phase factor. The overall probability amplitude for a given

process therefore amounts to integrating (or summing) over all possible paths the system

might take. The resulting functional integral can be thought of as a sum over possible

configurations of the system at each consecutive time. I briefly describe this concept

below due to its relevance to our calculations in subsequent chapters.
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Consider a time-independent Hamiltonian for a particle of massM in a one-dimensional

potential V (x), with coordinate x

H = T + V, T =
p2

2M
(2.17)

where p is the particle’s momentum. The solution of the Schrödinger equation can be

written in the form

|Ψ(t)〉 = e−iHt/~ |Ψ(0)〉 〈x|Ψ(t)〉 =

ˆ
dx′G(x, t;x′, t′ = 0) 〈x′|Ψ(0)〉 , t > 0 (2.18)

with the introduction of the propagator (or Greens function)

G(x, t;x′, 0) = 〈x| e−iHt/~ |x′〉 (2.19)

Dividing the time interval into infinitely small pieces and utilising the Trotter product (see

Section 3.2 of [117]), which allows one to ignore the non-commutivity of the kinetic and

potential operators in the Hamiltonian, leads to the path integral form of the propagator

G(x, t;x′, 0) =

ˆ x

x′
DxeiScl (2.20)

where

Scl =

ˆ t

0

dt′
Mẋ2

2
− V (2.21)

is the classical action and

Dx = lim
N→∞

ˆ
dx1...dxN−1

(
MN

2πit

)N
2

(2.22)

is the Feynman path integral measure. We see from equation 2.20 how the problem of

calculating the Greens function for a system is reduced to ‘summing over all possible

paths’. In the case of our relatively simple system, where there are only a few degrees of

freedom in the central system, this functional integral amounts to the product of time

‘slices’, where we sum over all possible configurations of the system at each time slice.

Such a formalism for the transition amplitude involves a single path integral. In the

interest of modelling decoherence processes, one must consider a double path integral

formalism for the density matrix. For the isolated case, where there is no environment
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and just a central system, the two paths are independent. In realistic physical systems

we have an environment interacting with our ‘central system’ and this couples the two

paths. Therefore I must include some system-bath interaction term in the Hamiltonian

and then deal with all the degrees of freedom introduced to the problem with the bath.

The method I employ here to do so is the influence functional method.

2.4.2 The influence functional

I now include the environment by way of the influence functional method developed by

Feynman and Vernon [37]. This method would later see application to the spin-boson

model analysed by Leggett et al. [31]. Here I briefly summarise the technique.

Suppose that at time t = 0 the system and environment are uncoupled and the en-

vironment is in thermal equilibrium. In this case the density matrix of the composite

system is in a product state

ρ(0) = ρS(0)⊗ ρE(0) (2.23)

where ρS is the reduced density matrix for the central system and ρE that of the envi-

ronment. It should be noted that this is of course a somewhat artificial situation but

nonetheless one that can bear direct experimental relevance to a system if it is initially

prepared in this state with sufficiently strong bias forces, which are subsequently switched

off at t = 0. It’s also worth noting, within the context of the applied model to photosyn-

thesis, that this initial condition has been argued to be valid [21]. Since the electronic

excitation process in EET corresponds to an excited (or ground) state prepared by pho-

toexcitation in accordance with the Franck-Condon transition, this factorised initial state

should be applicable. Incidentally the product initial state is the simplest starting point

for these kinds of calculations and so is utilised in this work. I therefore assume that

the system-bath coupling is suddenly switched on at t = 0 and I consider the dynamics

of ρ(t),∀ t > 0. Feynman and Vernon found the resulting form for the reduced density

matrix to be

ρS(xf , x
′
f ; t) =

∑
xi,x′i

KFV (xf , x
′
f ;xi, x

′
i; t)ρ(xi, x

′
i; 0)

KFV (xf , x
′
f ;xi, x

′
i; t) =

ˆ xf

x

Dx

ˆ x′f

x′
Dx′exp

{
i

~
(SS[x]− SS[x′])

}
FFV [x, x′] (2.24)
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where KFV is the propagating function determining the time evolution of the central

system under the influence of the bath. The object FFV [x, x′] is the Feynman-Vernon

influence functional, which contains all the information about the bath as a function of

the central system coordinates x, x′. Therefore the coordinates pertaining to the bath

variables are integrated out within the influence functional itself and we are left with

only the system coordinates as desired. One of the main results of the work of Feynman-

Vernon was to calculate the exact form of the influence functional for a bath of harmonic

oscillators coupled linearly to the central system. The result is

Fαβγδ
[
x, x′

]
= exp

{
− 1

π~

ˆ t

t0

dτ

ˆ τ

t0

ds
[
− iL′(τ − s)

(
xα(τ) + x′β(τ)

)(
xγ(s)− x′δ(s)

)
(2.25)

+ L′′(τ − s)
(
xα(τ)− x′β(τ)

)(
xγ(s)− x′δ(s)

)]}
(2.26)

where xα, x
′
α represent the two paths of the density matrix that can visit each state in

the system [37, 61]. The full influence functional involves a sum over all possible paths

F =
∑
αβγδ

Fαβγδ (2.27)

The bath correlators

L′(τ − s) =

ˆ ∞
0

dωJ(ω) sinω(τ − s) (2.28)

L′′(τ − s) =

ˆ ∞
0

dωJ(ω) cosω(τ − s) coth(β~ω/2) (2.29)

describe the time evolution of the bath, and contain the bath spectral density J(ω). L′(t)

is related to the damping kernel in the classical Langevin equation [61] and physically

describes the coherent exchange of energy with the environment. L′(t) determines the loss

of phase coherence in the system due to fluctuations in the environment. It is convenient

to transform the double path integral over x and x′, into a single path integral that visits

all the possible states. For this I define ξ, χ to be the anti-symmetric and symmetric

paths respectively

ξαβ(t) ≡ xα(t)− x′β(t), χαβ(t) ≡ xα(t) + x′β(t) (2.30)
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The state ξ(t) represents the off-diagonal terms of the rotated density matrix–the quan-

tum coherences of the state between different positions. The state χ(t) indexes how far

down the diagonal of the density matrix we move and so tracks the incoherent hopping

of the system. So ξ(t) measures the difference in coordinates x−x′ and is zero whenever

the system is in a diagonal (onsite) state and vice versa for χ. For a 3-site system, which

allows the values xα ∈ {x1, x0, x2}, we have for the density matrix therefore

ρ =

ρx1,x1 ρx1,x0 ρx1,x2

ρx0,x1 ρx0,x0 ρx0,x2

ρx2,x1 ρx2,x0 ρx2,x2

 (2.31)

Which is reparameterised in terms of the functions χ, ξ as

ρ =

 ρχ11,0 ρχ10,ξ10 ρχ12,ξ12

ρχ01,ξ01 ρχ00,0 ρχ02,ξ02

ρχ21,ξ21 ρχ20,ξ20 ρχ22,0

 (2.32)

1

0

−1

x(t)

1

0

−1

x′(t)
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χ(t)
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−1
−2

ξ(t)

Figure 2.2: An example of possible paths x, x′ ∈
{1, 0,−1} for the general 3-site system and their
corresponding symmetric/anti-symmetric paths χ ∈
{2, 1, 0,−1,−2}, ξ ∈ {2, 1, 0,−1,−2}.

In Figure 2.2 we see an example of possible paths taken by x and x′ for a general 3-site

system and the corresponding symmetric and anti-symmetric paths χ, ξ.

Substituting the symmetric and antisymmetric paths into the influence functional

gives

Fαβγδ
[
χ, ξ
]

= exp
{ 1

π~

ˆ t

t0

dτ

ˆ τ

t0

ds
[
2iL′(τ − s)χαβ(τ)ξγδ(s)− L′′(τ − s)ξαβ(τ)ξγδ(s)

]}
(2.33)

I assume here that the paths take the form of an instantaneous flip whereby the path

jumps between the available locations instantly. Assuming the system begins in a sojourn

state, and flips between successive sojourn states via blips in either transition |1〉 ↔ |0〉
or |2〉 ↔ |0〉, I can parameterise the symmetric/anti-symmetric paths according to the

sudden-flip approximation [31]
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χαβ(t) ≡
∑
i=0

χαβj

[
Θ(t− t2i)−Θ(t− t2i+1)

]
, ξαβ(t) ≡

∑
j=1

ξαβj

[
Θ(t− t2j−1)−Θ(t− t2j)

]
(2.34)

This particular parameterisation in terms of the above combination of step functions

produces sojourns that live for even-times t2i+1 − t2i and blips for odd-times t2j − t2j−1

N.b. I assume we start in a sojourn at t = 0. This way, the system moves from sojourn-

blip-sojourn and so forth. We’ll see below that the construction of the influence functional

is such that the effect of the bath is to suppress time spent in the blip states, i.e. the

coherent/off-diagonal states. And so in the classical limit, where the bath has fully

suppressed the blips, the system hops incoherently between sojourns i.e. diagonal states

within the system. Substituting into the influence functional and performing the integrals

gives

Fαβγδ
[
χ, ξ
]

= exp
{ 1

π~

[
i
∑
i=0

∑
j=1

χαβi ξγδj Xij −
∑
j

(
ξαβj

)2

Q′′2j,2j−1 −
∑
i=1

∑
j=2

ξαβi ξγδj Λij

]}
(2.35)

where I have defined the bath correlations Λij between blip-blip pairs {i, j} and blip-

sojourn correlations Xij between a sojourn at i and a blip at j

Xij ≡ Q′2i,2j+1 +Q′2i−1,2k −Q′2i,2k −Q′2i−1,2k+1

Λij ≡ Q′′2i,2j−1 +Q′′2i−1,2k −Q′′2i,2k −Q′′2i−1,2k−1 (2.36)

where I have used the compact notation

Q′i,j ≡ Q′(t2i − tj) Q′′i,j ≡ Q′′(ti − tj) (2.37)

and where

Q′(t− t′) =

ˆ ∞
0

dω
j(ω)

ω2
sinω(t− t′) (2.38)

Q′′(t− t′) =

ˆ ∞
0

dω
j(ω)

ω2
(1− cosω(t− t′)) coth(β~ω/2) (2.39)
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So a sojourn at time interval i can interact with a blip at j and a blip can interact with

itself as well as other blips.

It’s worth noting that the prescription to sum over all paths in the path integral

formalism involves an integration over each ‘time-slice’ as well as a sum over all the

possible blip and sojourn states that are available within each transition. The first term

in the influence functional represents interferences between sojourn-blip-sojourn paths,

i.e. paths that start in some sojourn, undergo a blip, and return to the same sojourn.

The second term is the self-interaction of the blips, so the same blip interacting with

itself. The third term is the interaction between different blips, therefore a blip at some

interval tj− tk in one transition can interact at a later time with another blip from either

transition.

The sojourns themselves represent the diagonal elements of the density matrix while

the blips represent the off-diagonal elements. Therefore one should think of the blips

as the coherences between states in the system. We see that the second term in the

influence functional serves to suppress the weight of these coherent paths. Physically,

this represents the bath ‘measuring’ the system and leading to the destruction of phase

coherence between paths through the system. The effect of the bath therefore is to induce

decoherence in the system, such that the paths eventually are restricted to the classical

case of hopping between discrete sites.

2.5 The noninteracting-blip approximation (NIBA)

The full influence functional as it stands includes all possible pairings of blips and so-

journs as well as blip-blip interactions. This means that all time-non-local interactions

are included such that a blip-sojourn/sojourn-sojourn interaction can occur for blips and

sojourns separated across the entire time domain. Not only does this include an inordi-

nate number of pairings for large number of flips n, but the exponentiation of these, in

the path integral formalism, creates all possible diagrams. Therefore in its general form,

the influence functional presents a formidable mathematical object to evaluate and some

approximations are required. In the interest of retaining a non-perturbative system-bath

coupling, one approach to truncating the number of processes is to consider a system

that dwells mostly in diagonal states of the density matrix. The system is still permitted

to occupy the off-diagonal elements, and therefore we retain those quantum coherence

effects; however, these excursions are infrequent and short-lived. This means that time-

non-local interactions between these off-diagonal states with each other are suppressed

46



due to the fact that they are separated by large time-intervals, and the memory effects

introduced via the bath are lost. This amounts to the well-known noninteracting-blip

approximation (NIBA) [31].

The underlying assumption here is that the average time spent by the system in a

diagonal element (sojourn) of the density matrix 〈s〉 is much larger than that spent in

an off-diagonal element (blip) 〈b〉. This ultimately amounts to neglecting interactions

between different blips except for the self-interaction of blips. This leads to a strong

suppression of time spent in the off-diagonal terms of the density matrix as the bath is

rapidly measuring the state of the central system and forcing it back to diagonal states.

For the 3-site-system of interest, this mathematically corresponds to considering only the

interaction between diagonal states χ11, χ22, χ00 and off-diagonal blips ξ10, ξ20.

Figure 2.3: Diagrammatic depiction of possible co-
herent states (blips) permitted in 3-site-V model under
NIBA. ξ10 represents a wavefunction overlapping with
states |1〉 and |0〉, while ξ10 represents an overlap with
|2〉 and |0〉

To see this we first inspect the term involving the bath correlator Q′(t− t′) in equation

2.39. In the influence functional, this term appears in the part involving sojourn-blip

interactions. Upon inspection we see that the full function Xij that contains all the bath

correlators Q′, reduces to just the single term Q′(t2j − t2j−1), in the limit of 〈b〉/〈s〉 → 0

as the length of sojourns dominates. Terms that involve interactions between blips and

sojourns and are not nearest-neighbours in time, contain arguments that are very large

and they become rapidly oscillating functions. By the Riemann-Lebesgue lemma these

terms go to zero with the integral over ω

ˆ ∞
0

dω
J(ω)

ω2
sinω(τ)→ 0 as |τ | → ∞ (2.40)
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The blip-blip interactions are handled in a less direct way within NIBA. The third term

in equation 2.35 represents the interaction of non-time-local blips, and for this to be

neglected, the blip-blip-propagators contained in Λj,k ∀j 6= k must all be much less than

the blip-sojourn propagators contained in Xj,j−1 as well as the blip-self-interaction term

containing Q′′j,j−1. This amounts to minimising the ratio

Q′′〈s〉+ 〈b〉)
Q′(〈s〉)

(2.41)

where 〈s〉, 〈b〉 are the average sojourn and blip times respectively. Q′′〈s〉+ 〈b〉) contains

as its argument the time between nearest-neighbour blips, separated by the sojourn

interval. In order to better understand this part of NIBA, I pre-emptively quote the

forms of the bath correlators Q′(t), Q′′(t) for an Ohmic spectral density so that I can

justify the approximation in the appropriate regime. The Ohmic form of the correlators

are [31]

Q′(t) = arctan(ωct) (2.42)

Q′′(t) =
1

2
ln(1 + ω2

c t
2) + ln

[
~β
πt

sinh

(
πt

~β

)]
(2.43)

The length of a sojourn is of the order 1/∆ and if one considers timescales in the problem

ωc/∆� 1, then the blip-sojourn propagator Q′(〈s〉) = arctan(ωc/∆) ∼ π/2. In the limit

of 〈s〉 � 〈b〉, the argument of the blip-blip-propagator term, which contains non-local

interactions between blips, vanishes, i.e.

lim
〈s〉�〈b〉

Λjk → 0 (2.44)

This is because the propagators in Λij involve non-local blip-blip interactions whose

time arguments are of the order of 〈s〉 + 〈b〉 ∼ 〈s〉 and therefore cancel. In Figure

2.4 we see a graphical representation of the nearest-neighbor contribution to the term∑
i=1

∑
j=i+1 ξiξjΛij, where the four propagators lines correspond to the four terms in

the equation

Λ12 ≡ Q′′(t4 − t1) +Q′′(t3 − t2)−Q′′(t4 − t2)−Q′′(t3 − t1) (2.45)

and all the terms in this function cancel when the resolution of the blips 〈b〉 vanishes.
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t1 t2 t3 t4

〈b〉 〈s〉

Figure 2.4: Diagrammatic representation of the in-
teraction terms contributing to the blip-blip interaction
propagators Λjk. The contribution depicted is a nearest-
neighbor interaction of blips.

In summary, NIBA amounts to setting the factors Q′i,j to zero for j 6= i − 1 such that

we’re just left with Q′2j,2j−1 = Q′(t2j − t2j−1). I also set all Q′′ij equal to zero as they

represent blip-blip interactions.

As it stands, the full density matrix in equation 2.32 presents a fairly formidable

combinatorics problem in terms of the possible paths that can be tracked through it.

Since in NIBA we are permitted to spend only one time interval in an off-diagonal state

of the density matrix, this greatly reduces the number of possible paths. In this case the

states ξ12, ξ21 become inaccessible and the intermediate states χ10, χ20, χ12 are neglected

as well.

ρ =

ρχ11 ρξ10 0

ρξ01 ρχ00 ρξ02

0 ρξ20 ρχ22

 (2.46)

So the blips and sojourns for the 3-site-V system within NIBA can take on the values

ξαβ ∈ {ξ10, ξ20}, χαβ ∈ {χ11, χ00, χ22} (2.47)

Having established that NIBA corresponds to the situation where 〈s〉 � 〈b〉, it is prudent

to ask in what regions of the parameter space of the system is it valid. A general central

system of interest can be parametrised by bias energy ε, tunnelling energy ∆, temperature
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kBT and system-environment coupling λ. The first intuitive limit to consider, which is

most applicable to this thesis, is where ε� ∆. In this limit, one intuitively expects the

system to spend more time in the diagonal elements of the density matrix as opposed

to the off-diagonal elements. This can be appreciated as the limit where the central

system is best described in the site basis as opposed to the eigenstate basis. In the latter

case, where tunnelling energies dominate, states are hybridised and one would expect

the system to spend relatively long time intervals in off-diagonal elements of the density

matrix. However, NIBA is known to be applicable in other areas of the parameter space

and is worth commenting on there.

When the bias energy is not necessarily large, long blips are known to be suppressed

at long times in conjunction with large damping and/or high temperatures for Ohmic

baths. Incidentally both of these criteria are actually met in this thesis when Ohmic

baths are considered, indeed they are necessary assumptions to achieve analytic solutions.

For super-Ohmic spectral densities, blip-blip interactions tend to be suppressed relative

to intrablip interactions for large temperatures, and the NIBA condition is met [61].

Finally, for zero bias, NIBA is also known to be valid in the limit of weak system-bath

coupling such that only one-phonon processes need be considered [31]. In fact it is exact

in this limit, and can be used to evaluate the bath correlation functions when applying

perturbation theory in the system-environment interaction.

2.6 Validity of NIBA: a quantitative measure

I established in the preceding section that the condition that must be met in order to

ignore the time-non-local blip-sojourn and sojourn-sojourn interactions in the influence

functional is 〈s〉 � 〈b〉. How this condition is met depends upon the various parameters

in the model, as discussed above, and will change depending on the limits I inspect.

In order to quantify the validity of NIBA in each limit more precisely, I outline the

mathematical condition that applies. As the influence functional contains all the bath

parameters, including the system-bath coupling, it dictates the nature of the blips and

sojourns in the system. I am interested specifically in the average length of a blip 〈b〉, and

I can extract this quantity from a consideration of the various moments to the probability

distribution that the influence functional represents. To see this I first expand the general

influence functional in a power series about λ = 0

F (λ) = F0 + F1λ+ ... (2.48)
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where

F0 = lim
λ→0

F (λ), F1 = lim
λ→0

∂

∂λ
F (λ) (2.49)

The first term, F0, in the expansion represents the purely incoherent decay rate from the

system and the ratio, F1/F0 = 〈b〉, is the first moment of the system. To see this, recall

that the expansion of the moment-generating function of a random variable X is

MX(t) = 1 +m1t+m2
t2

2!
+ ..., mn = lim

t→0

dnMX

dtn
(2.50)

where mn is the nth moment. We further recall that the term in the influence functional

that’s a function of Q′′(t), controls the width of the blips. Therefore, aside from the

additional cosine terms coming from the tunneling matrix element renormalisation, the

first moment of the influence functional tells us the average blip width 〈b〉. NIBA is valid

when 〈b〉/〈s〉 = F1 � 1 since 〈s〉 = 1/F0 [31].

I have outlined above a prescription for calculating the mathematical condition for

which NIBA is valid. This means that for a given central system, with certain spectral

density function for the environment, one can calculate the quantity F1 and inspect the

regimes in which it is minimised for the various parameters in the model. In subsequent

chapters I will perform this calculation explicitly each time NIBA is invoked. For the

case of photosynthesis, I have already identified the values of all the relevant parameters,

which means a calculation of F1 will result in a final number for inspection.
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Chapter 3

Limiting and perturbative analysis

of the 3-site-boson model

Before entering into the full, non-perturbative calculations of the 3-site system plus os-

cillator bath, I first inspect some of the limiting cases of the model so as to better

understand the system. To the same end I also then look at the inclusion of certain

parameters perturbatively.

3.1 The central 3-site system

The first case that I look at in detail is that of the ‘bare’ 3-site system which comprises

the central system of interest. It is described as ‘bare’ as I exclude the oscillator bath for

now.

3.1.1 The 3-site-V configuration and population trapping

It is well understood that the addition of a perturbation to the degenerate two state

system (with no coupling between states) , gives rise to an avoided crossing in the energy

dispersion diagram. This is often discussed in terms of lowered energy eigenstates and

thus more stable configurations in chemical physics [118], level repulsion and tunnelling.

The fact that the eigenenergy dispersion lines avoid any crossing reflects the fact that

an excitation in the system can tunnel between the available eigenstates. This is due to

the introduction of a potential energy term that is present even if the states are brought

into resonance at zero energy. In certain configurations of 3-level systems; however, the

situation is more interesting. Let us consider the Hamiltonian
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H3 =

ε+ δ ∆10 0

∆10 0 ∆20

0 ∆20 ε− δ

 (3.1)

which describes a 3-site system with the zero energy set at the second site, two different

couplings and some detuning between the upper levels. I’ll refer to this configuration as

a V-system [86, 119]. Finding the eigenvalue expressions for the general case of δ 6= 0

requires solving a cubic equation and produces long, unilluminating expressions. If we

set δ = 0 however, one can easily find the eigenenergies to be

λ± =
1

2

(
ε±

√
ε2 + 4(∆2

10 + ∆2
20)

)
, λ0 = ε (3.2)

With δ 6= 0, a cubic polynomial provides the energies, the exact expressions of which I’ve

chosen not to include here due to their lengthy nature; however, I’ve included them in

Appendix C.
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Figure 3.1: Eigenvalues λ0(red), λ+(blue), λ−(orange),
as a function of (a) bias energy ε for the tuned system
where ε1 = ε − δ/2, ε2 = ε + δ/2, (b) tunnelling matrix
element separation ∆ where ∆10 = −∆/2,∆20 = ∆/2,
(c) detuning δ where ∆10 = 0.5,∆20 = 0.5, (d) detuning
δ where ∆10 = 0.5,∆20 = 1 . In units of ε.

We see that the avoided crossing between the two eigenergies λ1,2 is equal to 4(∆2
10 +∆2

20)

but there also exists an eigenenergy λ0 with a linear dispersion. Considering that one

could always make a shift in the zero energy, let us refer to this state as the zero energy, a

concept often discussed within the field of quantum optics in terms of 2-photon resonance

of dressed states [120]. This represents an anti-symmetric coherent superposition of the

upper two states with eigenvector

δ = 0 : |D〉 =
1√

∆2
10 + ∆2

20

(
∆20 |1〉 −∆10 |2〉

)
(3.3)

and for completeness I will also include the symmetric combination, often referred to as

the ‘bright state’

54



δ = 0 : |B〉 =
1√

∆2
10 + ∆2

20

(
∆10 |1〉+ ∆20 |2〉

)
(3.4)

The reason this has been ascribed the population trapping state (or dark state) moniker

is because even if one considers some decay mode out of the ground state |0〉, the state

|D〉 never actually ‘sees’ this decay mode. In other words, as equation 3.3 contains no

overlap with the lower-decaying site, any excitation propagating through the system that

enters in to this state will remain there. From equation 3.3 we see that, if we start the

system of in one of the upper states, for e.g. state |1〉, then the final long-time population

left in the system after |±〉 have decayed, is the overlap of state |1〉 with the dark-state

| 〈1|D〉 |2 =
1

1 +
(

∆10

∆20

)2 (3.5)

We see that the ‘trapped’ population is maximised for ∆10 = ∆20.

As is the case with the 2-level system, the ratio of the tunnelling elements to bias

energies ∆/ε describes the general nature of the dynamics. If this ratio is small, then the

eigenstates are small deviations from the basis states |α〉. In the opposite limit, where

the bias energies go to zero, the eigenstates are mixtures of the basis states in the system.

The resulting eigenstates include the dark-state |D〉 included above as well as the states

|±〉 =
1√

∆2
10 + ∆2

20 +N2
+

(
∆10 |1〉 −N+ |0〉+ ∆20 |2〉

)
(3.6)

In equation 3.6 one notices the link between |±〉 and the bright-state |B〉. While the

bright-state is not an eigenstate of the 3-site-V-system, it is an eigenstate of the unbiased

2-level system. As |D〉 remains unchanged upon the introduction of a 3rd state (|0〉) and

a bias energy ε, it’s the bright state that must split into |±〉 becoming a mixture of the

basis states of the 3-basis-states. While in the limit ε/∆ � 1, it would be appropriate

to cast the 3-site-boson Hamiltonian in the eigenstate basis {|D〉 , |+〉 , |−〉} and solve

the system from there. However because we’re mostly concerned with the opposite limit,

ε/∆� 1, in the application to photosynthesis, we therefore remain in the state basis.

3.1.2 A path-integral formalism for the bare 3-site system

I now develop the path-integral formalism for the bare 3-site system–the isolated central

3-site system without any environment–by first calculating the transition amplitude, or
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Greens function [121]. This will form the basis of my analysis using the path integral for-

malism to include the system-bath coupling both perturbatively and non-perturbatively.

As discussed in Section 2.4.1, the bare amplitudes in the Hamiltonian formalism can

be related to the transition amplitudes for the bare system in the path integral formalism

[61] by

A[σf , σi] =

ˆ σf

σi

DσeiS0[σ] = 〈σf | e−iH0t/~ |σi〉 (3.7)

and then for an unbiased system I rewrite the exponential as an infinite sum

〈σf | e−iĤ0t |σi〉 = 〈σf |

(
∞∑
n=0

(−iĤ0t/~)n

n!

)
|σi〉 (3.8)

where I’ve been careful to identify the fact that Ĥ0 is in fact an operator. Therefore I’ve

avoided the power series expansion in terms of individual terms within the Hamiltonian

due to the non-commutativity of the constituent operators eA+B 6= eAeB for [A,B] 6= 0.

Instead we inspect the even and odd power contributions to equation 3.8,

A[σf , σi; t] = 〈σf |

(
∞∑
n=0

(−iĤ0t/~)2n

(2n)!
+
∞∑
n=0

(−iĤ0t/~)2n+1

(2n+ 1)!

)
|σi〉 (3.9)

I find

A[σf , σi; t] = 〈σf |

(
1+

∞∑
n=1

(∆2
10+∆2

20)n−1 (−it)2n

(2n)!
(Ĥ0)2+

∞∑
n=0

(∆2
10+∆2

20)n
(−it)2n+1

(2n+ 1)!
Ĥ0

)
|σi〉

(3.10)

where for the unbiased system

H0 =

 0 ∆10 0

∆10 0 ∆20

0 ∆20 0

 , (H0)2 =

 ∆2
10 0 ∆10∆20

0 ∆2
10 + ∆2

20 0

∆10∆20 0 ∆2
20

 (3.11)

The bare amplitude can then be rewritten as an infinite series of products of time-

intervals. For the A11(t) element this reads

A11(t) = 1 + ∆2
10

∞∑
n=1

(−i)2n(∆2
10 + ∆2

20)n−1

ˆ t

0

dt2n

ˆ t2n

0

dt2n−1...

ˆ t2

0

dt1 (3.12)

Once I consider the full system, including the effects of the bath by way of the influence
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functional, I’ll proceed with the analysis by way of taking Laplace transforms. Here I

preemptively take the Laplace transform of 3.12 and also check the method against a

simple matrix inversion to calculate the Greens function

A11(λ) =
1

λ
+ ∆2

10

∞∑
n=1

(−i)2n(∆2
10 + ∆2

20)n−1L

[ˆ t

0

dt2n

ˆ t2n

0

dt2n−1...

ˆ t2

0

dt1

]
(3.13)

which yields

A11(λ) =
1

λ
+ ∆2

10

∞∑
n=1

(−i)2n
(
∆2

10 + ∆2
20

)n−1 1

λ2n+1
(3.14)

and the summation can be performed to give

A11(λ) =
λ2 + ∆2

20

λ3 + λ(∆2
10 + ∆2

20)
(3.15)

The inverse-Laplace transform yields the dynamics

A11(t) =
∆2

20 + ∆2
10 cos

(√
∆2

10 + ∆2
20t
)

∆2
10 + ∆2

20

(3.16)

It’s worth remarking at this point that the (∆2
10+∆2

20)n−1 term arises due to the ambiguity

as to whether the system flips in either branch. This is where we pick up the above

superposition of ∆2
10 and ∆2

20 terms due to the summation over both outcomes, n − 1

times, until we reach the final state.

To check our result here we can compare to the calculation of the bare 3-site Greens

function by simple matrix inversion

Aσ,σ′(λ) = 〈σ|
(

1

λ1+ iĤ0

)
|σ′〉 (3.17)

where the A11(λ) element is given by

A11(λ) =

∣∣∣∣∣∣∣
λ −i∆10 0

−i∆10 λ −i∆20

0 −i∆20 λ

∣∣∣∣∣∣∣
−1 ∣∣∣∣∣ λ −i∆20

−i∆20 λ

∣∣∣∣∣ (3.18)

which does indeed give equation 3.15 confirming the above formulation of the 3-site path

57



integral.

The simplest case, which is useful to note here for future calculations, is the ground-

state propagator

A00(λ) =
1

λ
+
∞∑
n=1

(−i)2n(∆2
10 + ∆2

20)nL

[ˆ t

0

dt2n

ˆ t2n

0

dt2n−1...

ˆ t2

0

dt1

]
(3.19)

which gives

A00(λ) =
λ

λ2 + (∆2
10 + ∆2

20)
(3.20)

and

A00(t) = cos

(√
∆2

10 + ∆2
20t

)
(3.21)

Now I would like to complete the bare-system by adding the biases ε1 and ε2. The

introduction of the kinetic energy term is using the Suzuki-Trotter decomposition of the

propagator [117]. The simplest way to proceed is to add the appropriate bias terms to

equation 3.13 and explain the physical basis for each term

A11(λ) =
1

λ+ iε1
+ ∆2

10

∞∑
n=1

(−i)2nL

[ˆ t

0

dt2ne
−iε1(t−t2n)

ˆ t2n

0

dt2n−1

ˆ t2n−1

0

dt2n−2

(
∆2

10e
−iε1(t2n−1−t2n−2) + ∆2

20e
−iε2(t2n−1−t2n−2)

) ˆ t2n−2

0

dt2n−3...

ˆ t2

0

dt1e
−iε1(t2−t1)

]
(3.22)

The first term represents the free-particle Greens function: the transition amplitude for

the system to remain in state |1〉 stipulated by the initial conditions. The second term,

which contains all higher order processes, begins with a transition matrix element ∆2
10,

coming from the initial and final conditions. The system starts and ends in state |1〉,
therefore with one or more flips in the system, there will at least be two coming from

the left branch so as to bring the system back again. So we see that the n = 1 term

satisfies this condition, and only contains the propagator for state |1〉 integrated over one

intermediate time interval that lets the system sit in state |0〉 for some time (weighted

by unity since ε0 = 0) and then return to |1〉. All higher order terms contain n − 1 of

the superposition (∆2
10exp[−ε1(t2n−1 − t2n−2)] + ∆2

20exp[−ε2(t2n−1 − t2n−2)]). This comes
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from the fact that whenever the system enters the lower site |0〉, it has the option to either

subsequently flip in either branch. We also see that there will be n contributions from

the number of times the system visits site |3〉, which will show up as a 1/λn term in the

Laplace transform. A sum over all possible paths will include any combination of these

processes, i.e. the system should be allowed to propagate as many times as it likes in

either branch and with any possible combination of flips in both branches. Computing

the Laplace transform I find

A11(λ) =
1

λ+ iε1
+ ∆2

10

∞∑
n=1

(−i)2n

(
1

λ+ iε1

)2(
∆2

10

λ+ iε1
+

∆2
20

λ+ iε2

)n−1
1

λn
(3.23)

and computing the series summation then gives

A11(λ) =
λ(λ+ iε2) + ∆2

20

λ(λ+ iε1)(λ+ iε2) + (λ+ iε1)∆2
20 + (λ+ iε2)∆2

10

(3.24)

For the case where the upper two levels are ‘tuned’ such that ε1 = ε2, the transition

amplitude can be inverse Laplace transformed to give

A11(t) =
∆2

20e
itε

∆2
10 + ∆2

20

+
2∆2

10e
itε
2
− 1

2
it
√

4∆2
10+4∆2

20+ε2√
4∆2

10 + 4∆2
20 + ε2

(√
4∆2

10 + 4∆2
20 + ε2 + ε

)
+

2∆2
10e

1
2
it
√

4∆2
10+4∆2

20+ε2+ itε
2√

4∆2
10 + 4∆2

20 + ε2
(√

4∆2
10 + 4∆2

20 + ε2 − ε
) (3.25)

Once again we can check this result against a simple matrix inversion which does indeed

produce equation 3.24, confirming our procedure for the biased case as well.

I similarly calculate the ground state propagator

A00(λ) =
1

λ
+
∞∑
n=1

(−i)2n

(
∆2

10

λ+ iε1
+

∆2
20

λ+ iε2

)n
1

λn+1
(3.26)

which yields

A00(λ) =
(λ+ iε1)(λ+ iε2)

λ(λ+ iε1)(λ+ iε2) + (λ+ iε1)∆2
20 + (λ+ iε2)∆2

10

(3.27)
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3.1.3 Population trapping in a 3-site-V system

In this section I would like to demonstrate the phenomenon of population trapping in

the dynamics of the 3-site-V system. The simplest way to do this, is by considering a

decay channel coupled only to the ground state |3〉 that manifests from an environment

with a white-noise spectrum [61]. This represents a form of irreversible decay [120] from

the system. For this, the Greens function is

A11(λ) =
(λ+ Γ)(λ+ iε2) + ∆2

20

(λ+ Γ)(λ+ iε1)(λ+ iε2) + (λ+ iε1)∆2
20 + (λ+ iε2)∆2

10

(3.28)

and the configuration with the introduction of the sink is depicted in Figure 3.2

Figure 3.2: Diagrammatric representation of 3-site-V
model coupled to a sink via an irreversible decay channel
from the ground state

As before I calculate the inverse-Laplace transform to find the time-domain amplitude.

Then the probability to start and return to site one can be calculated from

P11(t) = K11;11(t)ρ11(0) (3.29)

where the density matrix propagator is

K11;11(t) = A∗11(t)A11(t) (3.30)
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Return probability to site 1: P11(t), as a
function of time for tuned (red) and detuned (blue) cases.
In units of ε1 = 1. ε2 = 1.5ε1(blue), ε2 = ε1 = 1(red).
(a): Γ = 0.1, ∆10 = 0.5, ∆20 = 0.3, (b): Γ = 0.1, ∆10 =
1,∆20 = 0.8, (c): Γ = 0.1, ∆10 = 0.5,∆20 = 0.5, (d):
Γ = 0.5, ∆10 = 0.2,∆20 = 0.1, (e): Γ = 0.5, ∆10 =
0.1,∆20 = 0.1, (f): Γ = 0.5, ∆10 = 1,∆20 = 0.1

In Figure 3.3 we see the return probabilities to site 1 for various areas of the parameter

space. The blue line corresponds to the detuned system with a δ = 0.25 and the red lines

the tuned case with δ = 0. The irreversible decay from state 0 is quantified in the rate Γ.
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For the underdamped case, where Γ is sufficiently small to permit the system to execute

various cycles, we see damped coherent oscillations in the dynamics. The beat signals

characteristic of the two interfering frequencies in the 3-site system are present in the

underdamped case and visible for a few cycles (see Figures 3.3b and 3.3c). However the

beats are evidently suppressed after a few cycles. Population trapping is visible in the

underdamped cases with the tuned (red) lines maintaining some asymptotic occupation

probability for long times, while the detuned case (blue), decays eventually.

The efficacy of the population trapping effect is evident even in the overdamped case

(see Figures 3.3d and 3.3e), where the system is unable to even complete one cycle in the

detuned case, while the tuned case makes it through about one cycle before settling in

to the ‘dark state’. Furthermore we see the effect of tuned tunnelling matrix elements on

the dynamics. In the underdamped case, Figure 3.3b, demonstrates the complimentary

effect that the tuning of the tunneling energy has on population trapping. We see that it

leaves the tuned system with increased occupation probability at long times. This effect

is also clearly visible in the overdamped regime too (see Figure 3.3d). We can also see

the destruction of the dark-state properties of the system when the second tunnelling

matrix element ∆20 of the system is too small relative to the decay Γ out of site-3, and

the system is unable to enter into dark-state. Here we see that the long-time population

decays to zero in a similar fashion to the 2-state system where population trapping is

absent.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Return probability to ground state |0〉:
P00(t), as a function of time for tuned (red) and detuned
(blue) cases. In units of ε1 = 1. ε2 = 1.5ε1(blue),ε2 =
ε1 = 1(red). (a): Γ = 0.1, ∆10 = 0.5, ∆20 = 0.3,
(b): Γ = 0.1, ∆10 = 1,∆20 = 0.8, (c): Γ = 0.1,
∆10 = 0.5,∆20 = 0.5, (d): Γ = 0.5, ∆10 = 0.2,∆20 = 0.1,
(e): Γ = 0.5, ∆10 = 0.1,∆20 = 0.1, (f): Γ = 0.5,
∆10 = 1,∆20 = 0.1

In Figure 3.4 I calculate the ground-state dynamics P00(t) for the same parameters as

the P11(t) dynamics of Figure 3.3. We immediately notice how the ground state is

63



unaffected by the dark-state occupancy, considering that it has no overlap with |D〉.
The tuned biases do however introduce a phase-shift in the dynamics as can be seen in

Figures 3.4a,3.4b, 3.4c. In accordance with this, the dynamics decay faster, and coherent

oscillations persist for shorter times. Coherent oscillations are entirely washed out for a

strong ground-state-decay rate relative to the tunnelling matrix elements, and we are in

the fully incoherent regime.

The other limit of interest within the biased regime is that of small bias relative to

tunnelling matrix element. In this regime we expect the tunnelling terms to dominate,

such that we observe strong coherent oscillations persisting as well as beat frequencies

arising from the interference of the two branches.

(a) (b)

(c) (d)

Figure 3.5: Return probability to state |1〉: P11(t), as
a function of time for tuned biases (red) and detuned
biases (blue), as well as tuned tunnelling (green) and
detuned tunnelling (purple), in the small bias regime.
ε2 = 0.2, ε1 = 0.1 (blue), ε2 = ε1 = 0.1(red). (a): Γ = 0.1,
∆10 = 1, ∆20 = 0.8, (b): Γ = 0.01, ∆10 = 1,∆20 = 0.8,
(c): Γ = 0.5, ∆10 = 1,∆20 = 0.8, (d): Γ = 0.5,
∆10 = 0.2,∆20 = 0.1, (e): Γ = 0.1, ∆10 = 1,∆20 = 0.8
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(a) (b)

Figure 3.6: Return probability to site 1 for unbiased
system. ∆10 = 1, ∆20 = 0.5 (purple), ∆10 = 1, ∆20 =
1(green). (a): Γ = 0.1, (b): Γ = 0.5

We see from the unbiased plots in Figure 3.6 the presence of the zero energy ‘dark-state’

eigenvalue λ = 0 in the long-time population trapping. The effect of tuning the transition

matrix elements to aid in population trapping is also evident even in the case of strong

dissipation.

From the perspective of population trapping, it is instructive to investigate the long

time dynamics P11(t→∞).

(a) (b)

Figure 3.7: Return probability to site 1 at t → ∞:
P11(∞), as a function of detuning δ = ε1 − ε2. ∆10 =
∆20 = 0.1, ε = 1 (a) Γ = 0 (Bath off) (b) Dark-state
peak for various decay rates

For the case of zero-decay rate to the reservoir 3.7a, we see how the detuning parameter

δ introduces a phase shift in the dynamics. In the incoherent regime, with non-zero

decay to the reservoir, we see the effect that continuously varying the detuning has on
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P11 for long times. For large detuning, again we see how for large level asymmetry (large

detuning), the system fails to leave |1〉. This is symptomatic of a large level-spacing

leading to localisation and not population trapping. For small detuning, the system is

well within the parameter regime for the 3-site model. For small, but non-zero δ, the

system is depleted due to Γ and there is no state 1 population for long times. For δ → 0

however, the system enters in to the dark state and population remains for long times,

indicated by the peak in Figure 3.7a.

(a) (b)

Figure 3.8: Long time return probability P11(∞) to site
1 vs ∆10: ∆20 = ∆20 = 0.1, ε = 1; (a) δ = 1 (b) δ = 0

3.2 Weak system-bath coupling regime for the 3-

site-V system

If the system bath couplings are small then I can perform perturbation theory in the

ratio uαq = λα/ωq. Here I apply the Lang-Firsov polaron transformation [52] to the

bare 3-site Hamiltonian coupled diagonally to an oscillator bath, which decouples the

central system from the bath. To do this I define the unitary operator U = eS, where

S = −
∑

αq uαq(bq − b†q) |α〉〈α| and uαq = λαq/ωq such that H → UHU † = eSHe−S.

Physically, this represents the shifting of the boson cloud to its new equilibrium position.

So S can be thought of as a shift operator, for the diagonal system-bath interaction.

Applying this transformation, and using the Baker-Campbell-Hausdorff formula, yields
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H̃ = ε1 |1〉〈1|+ ε2 |2〉〈2|+ ε0 |0〉〈0|

+ ∆10

(
|1〉〈0|B10 + |0〉〈1|B01

)
+ ∆20

(
|2〉〈0|B20 + |0〉〈2|B02

)
+HB (3.31)

where Bαβ = exp (φα − φβ), φα =
∑

q uαq(bq − b†q) and a constant (−1)
∑

q uαqλαq |α〉〈α|
has also been dropped in H̃ such that the zero energy has been shifted accordingly1.

Since the bath is decoupled from the central system via the polaron transformation, I

can calculate the ground-state density matrix propagator of H̃ via

K̃00;00(t) = 〈Ã00(t)Ã∗00(t)〉B (3.32)

where the statistical average is over the bath coordinates and I assume that the initial

density matrix components for the bath and central system factorise at t = 0 such that

ρ(0) = ρS(0)⊗ ρB(0). Since the transformation has decoupled the bath from the central

system, I can infer the transition amplitude Ã(t) for the transformed Hamiltonian H̃,

from the form determined in Section 3.1.2. Now each tunneling matrix element also

contains a corresponding term Bαβ that shifts the boson cloud as well. I present the

form for the unbiased transformed Greens function here for brevity

A00(t) = 1 +
∞∑
n=1

(−i)2n

ˆ t

0

dt2n

ˆ t2n

0

dt2n−1

[
∆2

10B10(t2n)B01(t2n−1) + ∆2
20B20(t2n)B02(t2n−1)

]
× ...
ˆ t2

0

dt1

[
∆2

10B10(t2)B01(t1) + ∆2
20B20(t2)B02(t1)

]
(3.33)

Therefore the ground-state-density-matrix propagator is

K00;00(t) =

〈
1−
ˆ t

0

dt2

ˆ t2

0

dt1

[
k10(t1, t2) + k20(t1, t2)

]
+

ˆ t

0

dt4

ˆ t4

0

dt3

ˆ t3

0

dt2

ˆ t2

0

dt1

[
k10(t1, t2)k10(t3, t4) + k10(t1, t2)k20(t3, t4)

+ k20(t1, t2)k10(t3, t4) + k20(t1, t2)k20(t3, t4)
]

+ ...

〉
B

(3.34)

1I can rewrite the shift operators in terms of the momentum operator φα =
∑
q(xαcq/mqω

2
q )p̂α where

we can see more explicitly how the transformation serves to displace the oscillators about the distance
xα − xβ , corresponding to the separation between wells
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where the kernels

kαβ(t, t′) =
∆2
αβ

2

[
Bαβ(t)Bβα(t′) +Bβα(t)Bαβ(t′)

]
(3.35)

describe the ‘blips’ in the system, in the language of the spin-boson model. The terms

Bαβ(t) are the shift operators for the bath modes. They move the bosons between the

potential minima in the system and are dependent on the system-bath coupling, and the

temperature of the bath.

The statistical average over the bath modes leads to the coupled-bath correlation

functions containing the coupled-boson propagator, which I introduce shortly. We see

that in the general case of equation 3.34 above, where blip interactions can be long range

in time, that we have all higher order combinations of blip-blip interactions in the full

summation. Since we’re operating in the weak-coupling limit, and the shift operators

Bαβ(t) are functions of the dimensionless coupling parameter uαq, we can partially sum

this series by only including the zeroth order blip interaction, i.e. the self-interaction

of the blip. Blip-blip interactions contain terms that are higher order in uαq and are

therefore neglected. All of this is suggestive of a physical description of the situation

that involves the bath rapidly measuring the state of the system and thereby suppressing

coherent states within it. A blip–as discussed in the context of the spin-boson model–

represents an off-diagonal excursion within the reduced density matrix of the central

system. In the current formalism it takes the equivalent form of a tunnelling process

(back and forth between wells) that interacts with the bath along the way. With this in

mind the partial re-summation is

K̃00;00(t) = 1 +
∞∑
n=1

(−i)2n

ˆ t

0

dt2n

ˆ t2n

0

dt2n−1

(
Σ10(t2n, t2n−1) + Σ20(t2n, t2n−1)

) ˆ t2n−1

0

dt2n−2

× ...
ˆ t3

0

dt2

ˆ t2

0

dt1

(
Σ10(t2, t1) + Σ20(t2, t1)

)
(3.36)

where

Σαβ(t, t′) =
∆2
αβ

2

[
e−i(εα−εβ)(t−t′)/~

〈
Bαβ(t)Bβα(t′)

〉
B

+ ei(εα−εβ)(t−t′)/~
〈
Bβα(t)Bαβ(t′)

〉
B

]
(3.37)

and the bias terms have been reintroduced. Since I have decoupled the bath from the
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central system, what I have here is a similar situation to the bare-3-site model of Section

3.1.2. The system can flip in either transition and return to the ground state each time,

but now each time the system flips, it displaces the bath and drags a ‘cloud’ of bosons

with it. This is accounted for by the averages 〈Bαβ(t)Bαβ(t′)〉 which displace the boson-

cloud to site α at time t and then back to site β at time t′. The bath correlator Σ(t, t′)

includes both the forwards and backwards paths due to the density matrix formalism.

Implicit in the analysis so far is the assumption that bath correlations die off for long

times, which is why I have only included nearest-neighbour-bath correlations. This is

equivalent to the application of NIBA [99]. I will also investigate the regions of validity

of this approximation later on in this chapter. Computing the Laplace transforms to

solve the system yields

K̃00;00(λ) =
1

λ
+
∞∑
n=1

(−i)2n
(

Σ10(λ) + Σ20(λ)
)n 1

λn+1
(3.38)

where the self-energies are

Σαβ(t, t′) = ∆2
αβ〈Bαβ〉〈Bβα〉 cos

[
(εα − εβ)(t− t′)/~

]
eϕαβ(t−t′) (3.39)

and 〈Bαβ〉 give rise to the Debye-Waller factor that renormalises the tunnelling energy

([99]) ∆̃αβ = ∆αβ

√
〈Bαβ〉〈Bβα〉. This term represents the adiabatic renormalisation of

the tunnelling energy due to high-frequency bath modes much greater than the tunnelling

frequency. The bath correlations are contained in the second, exponential term, whose

expansion contains all possible diagrams of electron-boson interaction. The phase factor

is given by the well-known coupled phonon propagator [52]

ϕαβ(t) =
∑
q

(uαq − uβq)2
[
nq
(
1− eiωqt

)
+ (1 + nq)

(
1− e−iωqt

) ]
(3.40)

with the Bose occupation numbers nq = (eβωq − 1)−1, and the dimensionless coupling

parameter uαq = λαq/ωq. In Appendix B I show how in the continuum limit, the phase

is equivalent to

ϕαβ(t) =
1

~

ˆ ∞
0

dω
Jαβ(ω)

ω2

[
i sin(ωt)− (1− cos(ωt)) coth(~βω/2)

]
(3.41)
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For weak system-bath interaction uαq � 1, the 1st-order expansion of the self-energy in

terms of the phase ϕ, gives

Σαβ(t) ≈ ∆̃2
αβ

(
cos
[
(εα − εβ)t/~

]
(1 + ϕαβ(t)

)
(3.42)

Absorbing the bias term into the phase, such that

Σαβ(t) ≈ ∆̃2
αβ

(
cos
[
(εα − εβ)t/~

]
+ ϕ̃αβ(t, εα − εβ)

)
(3.43)

where

ϕ̃αβ(t, εα − εβ) = cos
[
(εα − εβ)t/~

]
ϕαβ(t) (3.44)

The Laplace-transformed self-energy is therefore

Σαβ(λ) ≈ ∆̃2
αβ

(
2λ

λ2 + [(εα − εβ)/~]2
+ ϕαβ(λ, εα − εβ)

)
(3.45)

and the biased ground-state propagator becomes

K̃00;00(λ) =
1

λ+ (Σ10(λ) + Σ20(λ))
(3.46)

Equation 3.46 has a formidable pole structure in the arbitrary bias regime ε1 6= ε2. In the

interest of producing tractable analytic results here, I inspect the case of tuned biases

ε1 = ε2 = ε, with the ground state ε0 = 0. In this case the pole structure produces a pole

at λ = 0 and solutions to the cubic polynomial

λ3 + λ2Φ(λ) + λE2 + ε2Φ(λ) = 0 (3.47)

where

Φ(λ) = ∆̃2
10ϕ10(λ, ε) + ∆̃2

20ϕ20(λ, ε)

E =
√
ε2 + Ω̃2, Ω̃2 = ∆̃2

10 + ∆̃2
20 (3.48)

N.B. when the bath couplings are zero (or equal), the bath decouples from the central

system and the phase factors go to zero. In this limit I recover the Laplace-transformed

dynamics for the bare-site system of equation 3.15, as one would expect. In accordance
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with the perturbative approach I have taken here, I assume that the phase factors are

small fluctuations about the bare poles, and so I Taylor expand these functions to 1st-

order and evaluate them at the points

λD = 0, λ± = ±iE/2 (3.49)

which are the solutions to the pole structure of equation 3.47 in the absence of damping

ϕ = 0. Recall that in the bare system, ε is the energy required to excite the dark state

|D〉 and (ε ± E)/2 for the states |λ±〉. The term involving the bath correlators Φ(λ)

(evaluated at the bare poles) can be evaluated with use of the Fluctuation-Dissipation

theorem [122, 31] (see Appendix D).

3.2.1 Linear response and the fluctuation-dissipation theorem

I now make a quick digression here to provide a heuristic derivation of the bath correlators

above in the linear response regime and show how this is a form of the well known

fluctuation-dissipation theorem.

The fluctuation-dissipation theorem is a central feature of linear response theory and

is applied here in the 3-site perturbative model. The theorem relates the relaxation of

a weakly perturbed system to the thermal fluctuations in the environment. The main

result of the theory relates the power spectrum S(ω) of the fluctuations, to the Fourier

transform of the susceptibility χ(ω) (the linear response function). We begin with the

bath correlation function

ϕ(t) = cos(εt/~)

ˆ ∞
0

dω
J(ω)

~ω2

(
i sinωt− (1− cosωt) coth(~βω/2)

)
(3.50)

the exponentiation of which produces all orders of possible bath interactions with the

central system. In the perturbative limit the exponential is expanded to linear order

and the Laplace transform of the function reduces to just the transform of the bath

correlation function. The phase therefore describes the corrections to the system intro-

duced by the bath. The time-independent term can be factorised in the exponential as

a renormalisation of the tunneling energy. So the remaining fluctuating part is
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ϕ(t) = cos(εt/~)

ˆ ∞
0

dω
J(ω)

~ω2

(
i sinωt+ cosωt coth(~βω/2)

)
(3.51)

In the perturbative limit we expect the solutions to the system to be small deviations

from the ’bare-system’ eigenvalues and thus I Taylor expand the phase about these points.

In this case the complex frequencies of the transform take on the bare-eigenvalues λ0 and

we have

ϕ(λ0) =
1

~

ˆ ∞
0

dte−λ0t cos(εt/~)

ˆ ∞
0

dω
J(ω)

~ω2

(
i sinωt+ cosωt coth(~βω/2)

)
(3.52)

For the bare-system, uncoupled from the bath, the complex frequencies contain no real

part and are related to the Fourier-transform real frequencies by λ0 ∼ iω0. Performing

the time integration first, and using the definition of the delta-function, we find

ϕ(ω0) =
1

4~

ˆ ∞
0

dω
J(ω)

ω2

{[
δ(ω − ω0 + ε/~) + δ(ω − ω0 − ε/~)

− δ(ω + ω0 − ε/~)− δ(ω + ω0 + ε/~)
]

+
[
δ(ω − ω0 + ε/~) + δ(ω − ω0 − ε/~)

+ δ(ω + ω0 − ε/~) + δ(ω + ω0 + ε/~)
]

coth(~βω/2)

}
(3.53)

and performing the frequency integrals

ϕ(ω0) =
1

4~

[
J(ω0 − ε/~)

(ω0 − ε/~)2
+
J(ω0 + ε/~)

(ω0 + ε/~)2
− J(ε/~− ω0)

(ω0 − ε/~)2
− J(−ω0 − ε/~)

(ω0 + ε/~)2

+
J(ω0 − ε/~)

(ω0 − ε/~)2
coth(~β(ω0 − ε/~)/2) +

J(ω0 + ε/~)

(ω0 + ε/~)2
coth(~β(ω0 + ε/~)/2)

− J(ε/~− ω0)

(ω0 − ε/~)2
coth(~β(ω0 − ε/~)/2)− J(−ω0 − ε/~)

(ω0 + ε/~)2
coth(~β(ω0 + ε/~)/2)

]
(3.54)

A comparison with the formal result of the fluctuation-dissipation theorem provided

in Appendix D shows the similarity between the two results. What I have done, is

effectively derive the power spectrum of the fluctuations within linear response theory

72



for the density matrix propagator. The linear response function quoted in the formal

theory usually applies to the 2-point propagator (Greens function). We’ve left the above

result general for any form of the spectral density, and we see below how it simplifies for

the various specific forms of interest.

3.2.2 Results of the 3-site-boson model in the perturbative regime

The solutions to equation 3.47 are obtained using the method outlined in Appendix

E for solving cubic polynomials [123, 124, 125]. When the discriminant D of the cubic

polynomial is greater than zero: D > 0, we have 1-real and 2-complex roots. I can ascribe

the real pole to the Dark-state, as with tuned upper energy levels we have no oscillation

frequency between them, so the resultant energy is purely real. The polynomial is solved

in the most illuminating form as

λ̃D = Γγ(0)− Γr(0)

λ̃± = −Γγ(±E)

2
− Γr(±E)± iω(±E) (3.55)

where

Γr(z) =
Φ(z)

3
, Γγ(z) = u(z)− v(z), ω(z) =

√
3

2
(u(z) + v(z))

u =
3

√
√
D − (2Φ3 − 9ΦE2 + 27ε2Φ)

54
, ∀D > 0

v =
3

√
√
D +

(2Φ3 − 9ΦE2 + 27ε2Φ)

54
, ∀D > 0 (3.56)

So I have one entirely real pole λD that contains two decay rates Γr and Γγ. The remain-

ing complex-conjugate poles contain a combination of the decay rates with a different

argument and the frequency of oscillation ω. The discriminant D tells us the nature of

the poles

D =

(
2Φ3 − 9ΦE2 + 27ε2Φ

2916

)2

+

(
3E2 − Φ2

81

)3

(3.57)

For Ohmic spectral densities the bath correlation function takes the form
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ΦD(0) =
1

ε
[∆̃2

10γ10 + ∆̃2
20γ20] coth

(
ε

ωc

)
coth

(
~βε
2

)

Φ±(±E) = [∆̃2
10γ10 + ∆̃2

20γ20]

{
coth

(
E−ε
ωc

)
E − ε

[
1 + coth

(
~β(E − ε)

2

)]

+
coth

(
E+ε
ωc

)
E + ε

[
1 + coth

(
~β(E + ε)

2

)]}
(3.58)

For super-Ohmic spectral densities the bath correlation function takes the form

ΦD(0) = ε[∆̃2
10γ10 + ∆̃2

20γ20] coth

(
ε

ωc

)
coth

(
~βε
2

)
Φ±(±E) = [∆̃2

10γ10 + ∆̃2
20γ20]

{
coth

(
E − ε
ωc

)
(E − ε)

[
1 + coth

(
~β(E − ε)

2

)]
+ coth

(
E + ε

ωc

)
(E + ε)

[
1 + coth

(
~β(E + ε)

2

)]}
(3.59)

3.2.3 Validity of NIBA in the perturbative regime for Ohmic

and super-Ohmic damping

In Section 2.5 I introduced NIBA and discussed the mathematical condition for its va-

lidity. This amounted to the calculation of the 1st-moment of the self-energy (influence

functional) which tells us the ratio of the blip/sojourn times F1. In order for the coher-

ences in the system to be short-lived, this 1st-moment must be small, such that F1 � 1,

and NIBA applies. Here we quantify it for the various spectral densities of interest within

the perturbative regime. For Ohmic spectral densities the bath correlators take the form

ϕαβ(λ) =
1

π~
(ηα − ηβ)2λ coth

(
βλ

2

)
(3.60)

and for the super-Ohmic case

ϕαβ(λ) =
1

π~
(ρα − ρβ)2λ3 coth

(
βλ

2

)
(3.61)

where λ are the complex-frequencies of the bare-3-site system. The total self-energy is

Σ(λ) = Σ10(λ) + Σ20(λ), where
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Σαβ(λ) ≈ ∆̃2
αβ

(
λ

λ2 + (εα − εβ)2
+ ϕαβ(λ− i(εα − εβ)) + ϕαβ(λ+ i(εα − εβ))

)
(3.62)

In order to calculate F1, I compute the derivative of the self-energy, which for both Ohmic

and super-Ohmic spectral densities, I find

F1 = lim
λ→0

∂

∂λ
Σ(λ) =

∆2
10

ε21
+

∆2
20

ε22
(3.63)

The condition for F1 here in the perturbative regime, demonstrates the dependency of

NIBA on the ratio ∆/ε. We see that as the bias energy goes to zero, the 1st-moment

diverges, and thus we invalidate NIBA in this regime. Therefore NIBA only applies

to biased systems in the perturbative regime, specifically small values of the tunnelling

frequency relative to the bias energy. Qualitatively this is intuitive; as for large tunnelling

frequency, we expect the system to spend more time in the off-diagonal states, and

correspondingly for small bias energies, the system becomes less localised in each well.

The coherences become more pronounced in this limit, and thus interactions between

coherences to higher orders must be considered.

3.2.4 Coherent phase space in the perturbative regime

I now investigate the coherent-incoherent phase space of the model here in the perturba-

tive limit. The sign of the discriminant D (see equation 3.57) determines what region of

the phase space we’re in.
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(a) (b)

Figure 3.9: Coherent-incoherent phase space of tuned-
perturbative 3-site-bath model. Parameters: ∆10 = 0.1,
∆20 = 0.12 γ1 = 0.01, γ2 = 0.05, in units of ε. (blue)
Ohmic, (orange) super-Ohmic.

In Figure 3.9 I investigate only the region where NIBA is valid, i.e. for large bias relative

to tunnelling terms. We see that for all temperatures, the discriminant remains positive,

and therefore the system is always in the underdamped regime. Therefore there are always

two complex conjugate solutions and one real solution to the poles of the propagator.

3.2.5 Decay times in the perturbative regime for Ohmic spec-

tral densities

Here I investigate the relationship of the various decay times in the system versus temper-

ature and system-bath coupling for Ohmic spectral densities. In the high-temperature

limit I can expand the temperature dependent function in terms of the dimensionless

parameter z/KBT � 1

coth

(
z

2kBT

)
=

2kBT

z
+

2z

3kBT
+ ... (3.64)

where z ∈ {ε, ε ± E}. If I take just the 1st order term I can investigate this for various

spectral densities. The relaxation time τr is the inverse of the pure relaxation rate

Φ ≡ 1/τr and for an Ohmic spectral density, the times are
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τ±r =
1

(ε± E)[(γ1 − γ3)2 + (γ2 − γ3)2]
, T = 0K, (Ohmic)

τDr =
1

ε[(γ1 − γ3)2 + (γ2 − γ3)2]
, T = 0K, (Ohmic)

τ±r = TDr =
1

2kBT [(γ1 − γ3)2 + (γ2 − γ3)2]
, kBT � ε± E, ε, (Ohmic) (3.65)

The relaxation time τγ is far more complicated in analytic form so instead I graph the

full decay times associated with the frequencies λ̃D, λ̃±

(a) (b)

Figure 3.10: (a) Pure relaxation times vs kBT ; τ±r =
3/Φ(E) (orange/green), τDr = 3/Φ(ε) (blue), (b) Full re-
laxation times vs kBT ; τ± = 1/Reλ̃± (orange/green),
τD = 1/Reλ̃D (blue). Parameters: γ1 = 0.01, γ2 = 0.05,
ε = 1, ∆10 = 0.1, ∆20 = 0.2,

We see that the pure relaxation times corresponding to λ±, λD are different for low

temperatures. As the temperature is increased however, the two times converge and

follow an inverse function of kBT , independent of ε, E as indicated in equation 3.65. The

system rapidly relaxes to the bath in this limit.

For all kBT the dark-state dominates the dynamics as its relaxation time is much lower

than the other relaxation time in the system. Furthermore, the dark-state relaxation time

tends towards zero very rapidly with increasing temperature, whereas τ± tends towards

a constant asymptotic value and the two relaxation times τ± become unresolved in this

limit. This suggests that for high enough temperatures, the dark state is hardly populated

and it is |±〉 that dominates the dynamics. Additionally, in this limit we expect only two

distinct frequencies to be present as Γ± have become unresolved. Of course as we take
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this limit further ε/∆ → ∞, the relaxation times should tend to infinity as we recover

the Independent-boson-model discussed above, where we have only pure dephasing and

no energy relaxation.

3.2.6 Decay times in the perturbative regime for super-Ohmic

spectral densities

Here I investigate the relationship of the various decay times in the system versus tem-

perature and system-bath coupling for super-Ohmic spectral densities. Once again I

investigate the zero T = 0K and high-T limits of the pure decay times but in the super-

Ohmic regime now. For the decay times I find

τ±r =
1

(ε± E)3[(γ1 − γ3)2 + (γ2 − γ3)2]
, T = 0K, (super-Ohmic)

τDr =
1

ε3[(γ1 − γ3)2 + (γ2 − γ3)2]
, T = 0K, (super-Ohmic)

τ±r =
1

2kBT (ε± E)2[(γ1 − γ3)2 + (γ2 − γ3)2]
, kBT � ε± E, (super-Ohmic)

τDr =
1

2kBTε2[(γ1 − γ3)2 + (γ2 − γ3)2]
, kBT � ε, (super-Ohmic) (3.66)

Immediately we notice that the full decay times do not converge and τDr , τ
±
r remain

distinct for all temperatures in the super-Ohmic regime. We also see that the decay

times fall off as a power-law in the bare-energies ε, ε± E.
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(a) (b)

Figure 3.11: (a) Pure relaxation times vs kBT ; τ±r =
3/Φ(E) (orange/green), τDr = 3/Φ(ε) (blue), (b) Full re-
laxation times vs kBT ; τ± = 1/Reλ̃± (orange/green),
τD = 1/Reλ̃D (blue). Parameters: γ1 = 0.01, γ2 = 0.05,
ε = 1, ∆10 = 0.1, ∆20 = 0.2,

Once again, the dark-state decay channel is evidently the most sensitive to the bath for

all but the lowest temperatures here in the super-Ohmic regime.

3.3 Perturbative analysis: optical phonon bath with

Lorentzian lineshape

I now investigate the 3-site model coupled perturbatively to an optical phonon bath. The

spectral density for a realistic optical phonon bath will contain some line-broadening and

here I choose a Lorentzian lineshape. Normally Lorentzians are difficult to deal with

due to their long tails. However the result of equation 3.54 shows that the phase is

dependent only on the spectral density evaluated at the bare poles. Therefore, the

divergent frequency integral of the Lorentzian is avoided in this case and I indulge in the

use of a Lorentzian spectral density here.

The spectral function for a Lorentzian lineshape centered around a frequency ω0 and

width ξ, including our dimensionless parameter is

1

π~
Jα(ω) = Ξα

ω2
0ξ

ξ2 + (ω − ω0)2
(3.67)

where the dimensionless coupling parameter for Lorentzian-optical phonons is defined as

Ξα =
ναξ

π~ω2
0

(3.68)
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Applying my perturbative analysis above, the bath correlators for the 3-poles are calcu-

lated to be

ΦD(0) =
8ω3

0ξ
(

∆̃2
10Ξ10 + ∆̃2

20Ξ20

)
coth(~βε/2)

ε
(
ξ2 + ε2 − 2εω0 + ω2

0

)(
ξ2 + ε2 + 2εω0 + ω2

0

)
Φ±(±E) = ξω2

0

(
∆̃2

10Ξ10 + ∆̃2
20Ξ20

)(coth(~β(±E − ε)/2)
(

1
(∓E+ω0+ε)2+ξ2

− 1
(±E+ω0−ε)2+ξ2

)
(±E − ε)2

+
coth(~β(±E + ε)/2)

(
1

(±E−ω0+ε)2+ξ2
− 1

(±E+ω0+ε)2+ξ2

)
(±E + ε)2

+
1

(±E + ε)2 ((±E − ω0 + ε) 2 + ξ2)
− 1

(±E − ε)2 ((±E + ω0 − ε) 2 + ξ2)

+
1

(±E − ε)2 ((∓E + ω0 + ε) 2 + ξ2)
− 1

(±E + ε)2 ((±E + ω0 + ε) 2 + ξ2)

)
(3.69)

In Figure 3.12 I calculate the three decay times for the optical phonon spectral density

in the perturbative limit. I split the two temperature scales 0 < kBT < 10 and 10 <

kBT < 100 to show how the decay times τ± are indistinguishable for low temperatures,

and distinct for high temperatures. We see how for low-T, the dark-state decay channel

displays the longest relaxation time, but falls below τ± for high-T.

(a) (b)

Figure 3.12: Decay times for 3-site model and optical
phonons. Parameters: ∆10 = 0.1, ∆20 = 0.2, Ξ1 = 0.01,
Ξ2 = 0.01, Γ = 0.001, ω0 = 10.

In Figure 3.13 I plot the phase-space of the 3-site-optical-phonon model showing how the
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system remains in the coherent phase for all temperatures in this perturbative limit.

Figure 3.13: Phase space for 3-site model and opti-
cal phonons. τ± (orange/green), τD (blue). Parameters:
∆10 = 0.1, ∆20 = 0.2, Ξ1 = 0.01, Ξ2 = 0.01, Γ = 0.001,
ω0 = 10.

For the optical-phonon spectral density, the dark-state is the most robust state for rela-

tively low-temperatures. We see that as the temperature increases however the 3 decay

rates converge.

3.4 The 3-site-independent-boson model and dephas-

ing

I now make a short comment on the limiting case of zero tunnelling ∆10 = ∆20 = ∆ = 0.

In this limit we only have bias energies εα as well as the bath HB including the system-

bath coupling. This happens to be an exactly solvable model, given the application of

the well known Independent-Boson model [52]. This amounts to applying the polaron

transformation to each site independently. What we see in the dynamics amounts to

the case of ‘pure dephasing’, where only the off-diagonal density matrix elements are

depleted, while the diagonal elements remain unchanged. The Hamiltonian in this case

is

H(∆ = 0) = ε1 |1〉〈1|+ ε2 |2〉〈2|+ ε3 |3〉〈3|+
∑
q

3∑
α

|α〉〈α|λα,q(bq + b†q) +
∑
q

ωqb
†
qbq

(3.70)
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Since the bath is sensitive to the position of the particle, i.e. which well it occupies, and

the tunnelling between wells has been turned off, the particles position does not change

and there is no energy dissipated to the bath. We can see that the time-evolution of the

diagonal populations is accordingly zero, such that ∂t〈Pαα〉 = 0 and

∂

∂t
Pαα = −i[Pαα, H(∆ = 0)] = 0,

∂

∂t
Pαβ = −i[Pαβ, H(∆ = 0)] 6= 0 (3.71)

whereas the evolution of the off-diagonal populations is non-zero. In the latter case we

have what is known as ‘pure dephasing’. As this is an exactly solvable model, with just

three copies of the well known Independent-boson model, I will only comment on the

results here in the text. I have included a calculation of the dynamics for the Ohmic

and super-Ohmic spectral density in Appendix G for reference. The dynamics of the

system are qualitatively the same for both spectral densities. In the zero-temperature to

low-temperature limit, the off-diagonal density matrix elements decay only algebraically

in time. For mid-to-high temperatures however, we see an exponential decay.

3.4.1 Summary

In this Chapter I have analysed the 3-site-V system in a number of limiting cases. First

of all I considered the case of no environmental coupling such that the 3-site-V system

is isolated but for a decaying ground state. This served to demonstrate the phenomenon

of population trapping due to the formation of the dark-state. I then included an oscil-

lator bath coupled weakly to the diagonal elements of the 3-site-V Hamiltonian. This

corresponds to the diagonal system-bath interaction and was treated using perturbation

theory due to the weak nature of the coupling. I investigated this system for three differ-

ent spectral densities: Ohmic, super-Ohmic and optical. The resulting relaxation times

in the system were compared and the dark-state relaxation time, associated with the

inverse of the pure decay rate, was shown to be the shortest in the system for all spectral

densities. This suggests that for a perturbative system-bath coupling, the dark-state is

actually the most sensitive to the effects of the bath and experiences the fastest decay.
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Chapter 4

Non-perturbative analysis of the

3-site system coupled diagonally to

an Ohmic oscillator bath

I now proceed to treat the oscillator bath coupling to the 3-site-V system non-perturbatively.

In Chapter 3, I analysed the 3-site model perturbatively in the system-bath coupling pa-

rameter. Here I relax that condition such that the system-bath coupling parameter can

be arbitrarily strong. To do this I return to the analysis framework of the 3-site model

outlined in Section 3.2, but this time evaluate the influence function non-perturbatively.

In this chapter I consider just an Ohmic form for the bath spectral density. However in

the next chapter, where I include non-diagonal couplings as well as diagonal system-bath

couplings for a 2-state-spin-boson model, I will consider both a super-Ohmic form for the

spectral density and a line-broadened optical phonon spectral density.

4.1 NIBA in the 3-site-boson model

We learned from the calculation of the bare transition amplitude for the system, that the

path integral formalism for the bare-3-site-system involves a path that returns sequen-

tially to the ground state, and for each subsequent flip, has the option of entering either

the left or right branch before once again returning to the ground state. The symmetry

about the ground state |0〉 means that we can be certain that with every flip the system

makes from the ground state, it can either go to state |1〉 or state |2〉 and return. In the

density matrix formalism, my return state is therefore the sojourn χ00. This is possible
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to deduce because I operate within NIBA, which favours occupation of diagonal states

and only allows an excursion in the off-diagonal portion of the density matrix over one

time interval in the path-integral formalism (see section 2.5). Otherwise, the possible

blip-sojourn paths would involve a nearest-neighbour hopping around a three-by-three

square with all possible combinations of hops. This is a substantially harder combi-

natorics problem and essentially comes down to the fact that there would exist states

χ10, χ20, χ12 which would form intermediate symmetric paths in the off-diagonal portion

of the density matrix. As I am working in NIBA, which suppresses the time spent by the

system in the off-diagonal terms of the density matrix, these states are also suppressed.

Mathematically they would manifest in the influence functional as terms that go like

cos(χ10ξ12) and would physically represent subsequent coherent-superposition-states.

With this in mind the influence functional describing this system is

F ξ10;ξ20
χ11;χ22

(t) = f ξ
10

χ11(t) + f ξ
20

χ22(t) + f ξ
10

χ00(t) + f ξ
20

χ00(t),

= 4∆2
10

[
cos
(
χ11ξ10Q′j

)
+ 1
]
e−(ξ10)

2
Q′′j + 4∆2

20

[
cos
(
χ22ξ20Q′j

)
+ 1
]
e−(ξ20)

2
Q′′j

= 8∆2
10 cos2

(
χ11ξ10Q′j/2

)
e−(ξ10)

2
Q′′j + 8∆2

20 cos2
(
χ22ξ20Q′j/2

)
e−(ξ20)

2
Q′′j (4.1)

where

Q′(t) =

ˆ ∞
0

dω
j(ω)

ω2
sinωt

Q′′(t) =

ˆ ∞
0

dω
j(ω)

ω2
(1− cosωt) coth(β~ω/2) (4.2)

The factor 8 in equation 4.1 comes from the summation of various blips and sojourn

combinations: χx,x′ and χx′,x, as well as ξx,x′ and ξx′,x. Remember that we’re effectively

summing the probabilities for the system to be in all possible states. The function j(ω)

in this case includes only the density of states of the bath and the system-bath coupling

parameter has been absorbed in to the blip and sojourn terms in equation 4.1.

The influence functional describes the correlations between the outbound and return

path, in this case, to return to state |0〉 where the weight to remain in this state is unity.

The two terms represent both paths x, x′ propagating through either branch, via the blips
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ξ10 and ξ20 respectively1. I’ve simplified the influence functional in this case by setting

γ0 = 0, and thus the sojourn χ00 = 0. One can think of this as setting the zero spatial

position at the ground state.

At this point it is worth checking that the influence functional reduces to the Caldeira-

Leggett SB influence functional in the limit that ∆10 = ∆,∆20 = 0 and γ2 = γ0. In this

limit the influence functional becomes

fSB(t2j − t2j−1) = ∆2 cos
(
γ2Q′j

)
e−γ

2Q′′j (4.3)

which is indeed the SB model influence functional. Here I have made the same substi-

tutions γ1 = γ/2, γ0 = γ2 = −γ/2 in order to recover the Caldeira-Leggett influence

functional (see equation 4.33 in [31].

4.1.1 Ground-state propagator for the unbiased 3-site-boson

system

The simplest propagator to calculate is K00;00(t) which describes the return probability

to the ground state. In the interest of calculating relaxation times in the system, all the

relevant information can be extracted from this propagator as the denominator contains

the pole structure of the system. In the path-integral-Influence-Functional formalism it

reads in the time domain

K00;00(t) = 1 +
∞∑
n=1

(−i)2n

ˆ t

0

dt2n

ˆ t2n

0

dt2n−1F
ξ10;ξ20
χ11;χ22

(t2n − t2n−1)

× ...
ˆ t3

0

dt2

ˆ t2

0

dt1F
ξ10;ξ20
χ11;χ22

(t2 − t1) (4.4)

where we’ve collected the state couplings ∆10,∆20into the relevant influence functionals.

The Laplace transform is

1I’ve used the shorthand notation Q′j = Q′2j,2j−1, Q
′′
j = Q′′2j,2j−1
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K00;00(λ) =
1

λ
+
∞∑
n=1

(−i)2n 1

λn+1

(
F ξ10;ξ20
χ11;χ22

(λ)
)n

=
1

λ+ F ξ10;ξ20
χ11;χ22(λ)

(4.5)

where F ξ10;ξ20
χ11;χ22

(λ) is the full influence functional that allows flips in both branches.

4.1.2 Excited-state propagator for the unbiased 3-site-boson

system

While this thesis will focus on calculating the ground-state propagator, I include the

excited-state propagator here in the interest of potential further work that requires such

propagators. One must take care in the construction of the excited-state propagator as

one must take in to the account the final return ’flip’ to the excited state, as we did in

section 3.2, for the bare-3-site Greens function. Here we look at the return probability

to site |1〉, defined by the propagator K11;11(t). A further complication arises in the

3-site-boson propagator calculation as the influence functional for the system contains

time-non-local interacting blips. This forces us to separate terms in the propagator

K11;11(λ) =
λ+ f ξ20χ22

(λ)

λ2 + λF ξ10;ξ20
χ11;χ22(λ)

K22;22(λ) =
λ+ f ξ10χ11

(λ)

λ2 + λF ξ10;ξ20
χ11;χ22(λ)

(4.6)

The inverse Laplace transform of equations 4.6 provides the dynamics of the excited

states in the system.

4.1.3 The influence functional for a biased 3-site system

I previously demonstrated the path integral decomposition for the calculation of the bare-

3-site system in Section 3.1.2. For the full system, including the bath, I calculate the

density matrix; which compares two paths coupled via the influence functional. When

the paths x, x′ visit the same state, we see that the bias contribution from the bare

transition amplitudes A[x]A∗[x] produces a factor 1. Whereas when x(x′) are, for e.g.
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in states |1〉 (|2〉), we pick up factors in the transition amplitudes (ignoring factors dt2

from the Suzuki-Trotter decomposition) of exp(−iε1t)[exp(iε2t)]. I therefore define the

bias factors B{ξ} acting on a blip between times t2j − t2j−1 to be

Bξ10(t2j − t2j−1) = exp
[
− iε1ξ10(t2j − t2j−1)

]
,

Bξ20(t2j − t2j−1) = exp
[
− iε2ξ20(t2j − t2j−1)

]
(4.7)

The K00;00 propagator starts and ends in the sojourn χ00, where I set the zero point

energy ε0 = 0. Therefore, for the 3-site system in question, the system is constrained

to evolve from that point to either χ11 or χ22 via ξ10 or ξ20. For the final time-interval

t − t2n, the system is constrained to be in state |0〉, so both propagators in the density

matrix combine to give just 1. I’ve collected the bias factors in to the influence functional

terms according to

F̃ ξ10;ξ20
χ11;χ22

(τj) = 8∆2
10 cos

(
iε1τj

)
cos2

(
χ11ξ10Q

′
j/2
)
e−ξ

2
10Q
′′
j

+8∆2
20 cos

(
iε2τj

)
cos2

(
χ22ξ20Q

′
j/2
)
e−ξ

2
20Q
′′
j (4.8)

where the time interval is defined as τj = t2j − t2j−1. In order to proceed with the

analysis I must define the form of the spectral densities which then allows me to evaluate

the correlation functions.

4.2 Non-perturbative analysis for Ohmic spectral den-

sities

For Ohmic dissipation we have the following form for the spectral density (discussed in

Section 2.3.1)

Jα(ω) = ηαωe
−ω/ωc (4.9)

The dimensionless coupling parameter was defined as

γα =
ηα
π~

(4.10)
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however in our formulation of the influence functional above, we have for simplicity, set

the zero-position to x0 = 0.

The bath correlators here contain just the bath density of states portion j(ω) of the

spectral density. Performing the integrals in Q′(t) and Q′′(t) one gets [31]

Q′(t) = arctan(ωct) (4.11)

Q′′(t) =
1

2
ln(1 + ω2

c t
2) + ln

[
~β
πt

sinh

(
πt

~β

)]
(4.12)

The Laplace-transformed influence functional reads

fα(λ) = 8

ˆ ∞
0

dt e−λt cos2
[
γα tan−1(ωct)

](
1 + ω2

c t
2
)−γα[~β

πt
sinh(

πt

~β
)
]−2γα

(4.13)

As we’re considering times much greater than ω−1
c , i.e. times greater than the character-

istic timescale of the bath, the quantity ωct is much greater than one. Therefore applying

the approximation ωct >> 1 to zeroth order provides the approximations

1 + ω2
c t

2 ≈ ω2
c t

2, cos2
[
a arctan(ωct)

]
≈ cos2(aπ) (4.14)

such that

fα(λ) ≈ 8

(
~β
π
ωc

)−2γα

cos2
(
πγα

) ˆ ∞
0

dt e−λt sinh

(
πt

~β

)−2γα

(4.15)

At this point one perform the Laplace transform here using the known integral [126]

ˆ ∞
0

dxe−at sinhb cx =
1

2b+1c
B

(
a

2c
− b

2
, b+ 1

)
(4.16)

where B(x, y) is the Beta function, producing

fα(λ) = 8

(
~β
2π

)1−2γα

ω−2γα
c cos2

(
πγα

)
B

(
~βλ
2π

+ γα, 1− 2γα

)
(4.17)

Turning the Beta function in to Gamma functions using

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
(4.18)
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finally yields

fα(λ) = 8ω−2γα
c cos2

(
πγα

)
Γ[1− 2γα]

(
~β
2π

)1−2γα Γ(γα + ~βλ/2π)

Γ(1− γα + ~βλ/2π)
(4.19)

I can collect constant terms in 4.19 that contribute only to the renormalisation of the

tunneling matrix elements in to

Cχ11

ξ10
= 8ω−2γ1

c cos2(πγ1)Γ(1− 2γ1), Cχ22

ξ20
= 8ω−2γ2

c cos2(πγ2)Γ(1− 2γ2) (4.20)

These renormalisation constants renormalise the tunneling matrix elements according

∆̃1 =

√
8ω−2γ1

c cos2(πγ1)Γ(1− 2γ1)∆1, ∆̃2 =

√
8ω−2γ2

c cos2(πγ2)Γ(1− 2γ2)∆2 (4.21)

Extrapolating to the full biased influence functional F̃ with all terms included we find

F̃ ξ10;ξ20
χ11;χ22

(λ) = ∆̃2
1µ

1−2γ1
Γ(γ1 + ~β(λ+ iε)/2π)

Γ(1− γ1 + ~β(λ+ iε)/2π)
+ ∆̃2

2µ
1−2γ2

Γ(γ2 + ~β(λ+ iε2)/2π)

Γ(1− γ2 + ~β(λ+ iε2)/2π)

(4.22)

where I’ve defined

µ =
~β
2π

(4.23)

The next steps in the analysis of the 3-site system coupled to an Ohmic bath requires

approximations of the Gamma functions, which at this point create polynomials in the

pole structure of the propagators up to infinite order as they stand. As the expansion

in the coupling constant has already been treated in the perturbative analysis, we’ll

of course focus here on the different temperature regimes so as to expand the Gamma

functions. However as it turns out, the fully analytic form in the low-T (and zero-T by

extension) regime is unfortunately unavailable to us in the case of the 3-site model. This

is because the pole structure of the propagator takes on an arbitrary order due to the

presence of terms that go like λγ. The work on the original 2-site-spin-boson model was

able to get around this and reduce the pole structure to a tractable form because there
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was only one exponent γ which could be factored out. However in our case, there are

two, coming from the two paths in the system and the pole structure remains intractable

analytically. Of course one can easily solve these polynomials numerically, however that

is beyond the scope of this thesis which is primarily interested in analytic solutions.

4.2.1 Validity of NIBA for the 3-site-Ohmic-boson model

I first inspect the regions of validity of NIBA so as to guide my exploration of the

parameter space of results. In order to determine the validity of NIBA in this regime I

once again calculate the ratio F1

F1 =
〈b〉
〈s〉

= lim
λ→0

∂

∂λ
F ξ10;ξ20
χ11;χ22

(λ) (4.24)

to be

F1 = − 2µ2−γ1∆̃2
10

Γ(1− γ1/2− iµε1)(γ1 − 2iµε1)2

(
Γ(γ1/2− iµε1)

(
2 + ψ0(1− γ1/2− iµε1)− ψ0(γ1/2− iµε1)

)
γ1

− 2iµε1

(
2 + ψ0(1− γ1/2− iµε1)− ψ0(γ1/2− iµε1)

))

− 2µ2−γ1∆̃2
10

Γ(1− γ1/2 + iµε1)(γ1 + 2iµε1)2

(
Γ(γ1/2 + iµε1)

(
2 + ψ0(1− γ1/2 + iµε1)− ψ0(γ1/2 + iµε1)

)
γ1

+ 2iµε1

(
2 + ψ0(1− γ1/2 + iµε1)− ψ0(γ1/2 + iµε1)

))

− 2µ2−γ2∆̃2
20

Γ(1− γ2/2− iµε2)(γ2 − 2iµε2)2

(
Γ(γ2/2− iµε2)

(
2 + ψ0(1− γ2/2− iµε2)− ψ0(γ2/2− iµε2)

)
γ2

− 2iµε2

(
2 + ψ0(1− γ2/2− iµε2)− ψ0(γ2/2− iµε2)

))

− 2µ2−γ2∆̃2
20

Γ(1− γ2/2 + iµε2)(γ2 + 2iµε2)2

(
Γ(γ2/2 + iµε2)

(
2 + ψ0(1− γ2/2 + iµε2)− ψ0(γ2/2 + iµε2)

)
γ2

+ 2iµε2

(
2 + ψ0(1− γ2/2 + iµε2)− ψ0(γ2/2 + iµε2)

))
(4.25)

We see from inspection of equation 4.25 how temperature, tunnelling and coupling

strength affect the NIBA condition F1 � 1. The parameter µ = ~/2πkBT contains
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the temperature dependence. The function for F1 contains a fairly complicated depen-

dence on the free parameters T, ε, γ,∆, due to the presence of the polygamma functions.

F1 does however display a simple quadratic dependence in the the renormalised tunnel-

ing terms ∆̃ where we see that by increasing the tunnelling strength brings us out of the

regime of validity of NIBA. Intuitively this makes sense, as more dominant tunnelling

leads to an increase coherence effects and thus counteracts the effect of the environment

to affect decoherence in the system. It’s for this reason that NIBA is indeed valid for

small values of ∆/ωc. We see more clearly here how NIBA remains a valid approximation

for kBT � ∆ as in this limit I minimise F1. Upon inspection of the function govern-

ing the renormalisation of the tunneling matrix element (see equation 4.21), we see how

NIBA becomes exact for γ = 1/4, verifying a result previously identified by Leggett et al.

[31] to be the so called Toulouse limit. This happens because the cos(2πγ) term coming

from the blip-sojourn interaction part of the influence functional vanishes in this limit.

(a) (b)

(c) (d)

Figure 4.1: F1 vs γ1 figures (a) and (b), F1 vs kBT
figures (c) and (d). Parameters: γ0 = 0, γ2 = 0.2, ε1 = 1,
ε2 = 1.5. (a) ∆10 = 0.1,∆20 = 0.2, kBT = 10 (b) ∆10 =
0.1,∆20 = 0.2, kBT = 0.1, (c) ∆10 = 0.1,∆20 = 0.2,
γ1 = 0.2, (d) ∆10 = 0.1,∆20 = 0.2, γ1 = 0.8
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We see from Figure 4.1 how F1 is minimised for a range of γ1, predominantly in the

mid-strong coupling regime. For small values of γ1, as one would expect, F1 is large,

and therefore outside the region of validity of NIBA. Here the system exhibits strongly

coherent oscillations, and one must go beyond NIBA in order to account for this. As γ1

approaches 1 we also see a rapid divergence in F1 coming from the Γ[1− γ] factor in the

tunnelling renormalisation term.

Figure 4.2: F1 vs γ2. Parameters: γ0 = 0, γ1 = 0.2,
ε1 = ε2 = 1, ∆1 = ∆2 = ∆ = 1 (a) γ2 = 0.2, (b)
kBT = 10

In Figure 4.2 I inspect the regime where the tunnelling elements are comparable to the

bias energies. We see that NIBA is essentially invalid here, as F1 remains much larger

than 1 throughout the range of γ even for high-temperature.

4.2.2 Mid-high temperatures in the non-perturbative regime

In the high temperature regime, kBT � ~∆, I can expand the Gamma functions in the

influence functional in terms of the parameter µλ, where µ = 2π/kBT . First I express

the influence functional in the form

f ξχ(λ) =

(
µ1−2γ

γ + µλ

)
Γ(1 + γ + µλ)

Γ(1− γ + µλ)
(4.26)

having used the functional relation of the gamma function Γ(1 + z) = zΓ(z) N.B. this

relationship for the Gamma function takes it from its holomorphic form to its meromor-

phic form which therefore allows us to access the pole structure of the propagator [127].

Taylor expanding about µλ = 0 up to 2nd order
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f ξχ(λ) ≈
(
µ1−2γ

γ + µλ

)
Γ(1 + γ)

Γ(1− γ)

[
1 + µλ

(
ψ0(1 + γ)− ψ0(1− γ)

)
+

(µλ)2

2

(
ψ2

0(1− γ) + ψ2
0(1 + γ)− 2ψ0(1− γ)ψ0(1 + γ)

−ψ1(1− γ) + ψ1(1 + γ)
)]

(4.27)

where ψ0(z) is the digamma function defined as

ψ0(z) =
Γ′(z)

Γ(z)
, ψm =

dm

dzm
ψ0(z) (4.28)

Explicitly the full influence functional in this regime is found to be

F ξ10;ξ20
χ11;χ22

(λ) = ∆̃2
1

(
µ1−2γ1

γ1 + µλ

)
ν1

(
1 + µΛ1λ+

µ2Θ1

2
λ2

)
+ ∆̃2

2

(
µ1−2γ2

γ2 + µλ

)
ν2

(
1 + µΛ2λ+

µ2Θ2

2
λ2

)
(4.29)

with the biases introduced via

F̃ ξ10;ξ20
χ11;χ22

(λ) = f̃ ξ10χ11
(λ+ iε) + f̃ ξ10χ11

(λ− iε) + f̃ ξ20χ22
(λ+ iε) + f̃ ξ20χ22

(λ− iε) (4.30)

where

ν1 =
Γ(1 + γ1)

Γ(1− γ1)
, ν2 =

Γ(1 + γ2)

Γ(1− γ2)
,

Λ1 = ψ0(γ1)− ψ0(1− γ1), Λ2 = ψ0(γ2)− ψ0(1− γ2),

Θ1 = ψ2
0(1− γ1) + ψ2

0(1 + γ1)− 2ψ0(1− γ1)ψ0(1 + γ1)− ψ1(1− γ1) + ψ1(1 + γ1),

Θ2 = ψ2
0(1− γ2) + ψ2

0(1 + γ2)− 2ψ0(1− γ2)ψ0(1 + γ2)− ψ1(1− γ2) + ψ1(1 + γ2)

(4.31)

The pole structure of the propagator takes a cubic form if I restrict myself to the limit

ε1 = ε2 = ε and γ1 = −γ2. So I have for the pole structure of the propagator
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λ+ Ω2

(
µ1−2γ

γ + µ(λ− iε)

)
ν1

(
1 + µΛ(λ− iε) +

µ2Θ

2
(λ− iε)2

)
+Ω2

(
µ1−2γ

γ + µ(λ+ iε)

)
ν

(
1 + µΛ(λ+ iε) +

µ2Θ

2
(λ+ iε)2

)
= 0 (4.32)

where the coefficients of the cubic equation

aλ3 + bλ2 + cλ+ d = 0 (4.33)

are

a =
γθνΩ2µ3−2γ + 2ΛνΩ2µ3−2γ + 2γµ

θνΩ2µ4−2γ + µ2
(4.34)

b =
γ2 + 2γΛνΩ2µ2−2γ + 2νΩ2µ2−2γ + θνΩ2ε2µ4−2γ + µ2ε2

θνΩ2µ4−2γ + µ2

d =
2γνΩ2µ1−2γ − γθνΩ2ε2µ3−2γ + 2ΛνΩ2ε2µ3−2γ

θνΩ2µ4−2γ + µ2
(4.35)

One can also verify, upon turning off the bath couplings γ1 = γ2 = 0, that we recover

the bare-3-site frequencies of the density matrix propagator, which is an important con-

sistency check.

4.2.3 Coherent phase space and relaxation times: Ohmic regime

for mid-high-temperatures

Next I inspect the relaxation times in the system for an Ohmic spectral density in the

high-T regime. For the case of small tunnelling relative to bias energies, the system is in

the coherent phase. This is characterised by a positive discriminant for all system-bath

coupling values up to a critical value, and so I solve the cubic equation using the solutions

outlined in Appendix E.
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(a) (b)

(c) (d)

Figure 4.3: Phase space, decay rates, relaxation times
and oscillation frequency vs γ (coherent regime). ΓD, τD
(blue), Γ−, τ+ (green), Γ+, τ− (orange). Parameters:
∆1 = 0.1, ∆2 = 0.05, ε = 1, kBT = 10

In Figure 4.3 we see the results for the symmetric, high temperature, 3-site-boson model

with Ohmic spectral density. I find for the parameter range considered here that the

system remains in a persistent coherent phase across the range of the system-bath di-

mensionless coupling parameter. As such I calculate the three oscillation frequencies in

the system and find them to be relatively constant for small system-bath couplings. For

large enough couplings they diverge however with the dark state having the smallest

oscillation frequency. We also find that the dark state relaxation time dominates sub-

stantially over small coupling strengths and for intermediate to high coupling strengths

it remains dominant but to a lesser degree.

4.2.4 3-site-Ohmic bath model in FMO

I now look at the results of the 3-site-boson model within the context of photosyn-

thesis, for an Ohmic spectral density. In Section 4.2 I was able to solve the system
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non-perturbatively in the Ohmic regime of the bath in the limit of γ1 = γ2 = γ and

ε1 = ε2 = ε. Therefore I apply these results here to the case of the FMO complex in

photosynthesis. The parameters used for the FMO system were outlined in Chapters 1

and 2. It was determined that for an effective 3-site-model in the FMO complex the two

tunnelling energies are ∆10 = 2meV and ∆20 = 3meV, the bias energy is ε = 20meV.

Feeding these parameters in to the non-perturbative analysis of Section 4.2 and leaving

the system-bath coupling as a free parameter for now, I present the coherent phase and

relaxation times in Figure 4.4.

(a) (b)

Figure 4.4: Phase space and relaxation times of FMO
complex at T=300K in units of femtoseconds with Ohmic
bath. FMO parameters: ∆̃10 = 2meV , ∆̃20 = 3meV ,
ε = 20meV

We see from figure 4.4 how the 3-level system coupled to an Ohmic bath remains in the

coherent phase even at physiological temperatures for system-bath couplings below the

critical value γ = 1. Incidentally, this is the same critical value for the diagonal coupling

where the coherent-incoherent phase transition was also observed in the original spin-

boson model. For the FMO parameter γ = 0.22, we are therefore in the coherent phase.

We see that the dark-state relaxation time dominates and in this case I find relaxation

times τD ∼ 800fs, τ± ∼ 100fs.

4.2.5 Summary

In this Chapter I have treated the coupling of a 3-state-V system to an external oscillator

bath non-perturbatively. The oscillator bath spectral density was assumed to be of Ohmic

form and the system was analysed using the influence functional techniques outlined

in Chapter 2. In this case it was found that the relaxation time associated with the
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dark-state, the pure relaxation time with no oscillatory component, was found to be

the longest-lived of the three times in the system. This suggests that for the 3-site-V

system coupled non-perturbatively to an Ohmic oscillator bath, the dark-state is actually

the most robust state and the population trapping mechanism described in Chapter 3,

prevalent. The presence of the dark-state serves as a potential hindrance to efficient

exciton transfer in the FMO complex. The 3-site-V system was shown in Chapter 3 to

have its applications to the FMO complex either as a configuration of three chromophores,

or an effective 3-site model for the full FMO system. These results suggest that the FMO

complex, with strong system-environment couplings, must avoid these possible trapping

states in order to facilitate efficient exciton transfer. Tuning of chromophore energy levels

leading to a 3-site-V configuration as used in this analysis has been shown to lead to the

formation of a relatively long-lived dark-state in the system. Therefore, one can conclude

from this, that the avoidance of tuned chromophore energy levels in the FMO complex

is a crucial aspect to facilitating efficient exciton transfer through the system.
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Chapter 5

A dual-coupling-spin-boson model

for light-harvesting molecules

In this chapter I investigate the effect of non-diagonal couplings on the 2-state-spin-boson

(SB) model for both super-ohmic and optical spectral densities. The new model is there-

fore dubbed the Dual-coupling-spin-boson (DCSB) model. This means that I include not

only the coupling of the bath to the diagonal elements of the central system Hamilto-

nian (σz), as is present in the original spin-boson model, but also include couplings to

the off-diagonal elements (σx) too. The heuristic justification for excluding non-diagonal

couplings in the SB model normally relies on the assumption that small tunnelling rate

relative to the on-site energy: ∆ � ε, renders the non-diagonal coupling negligible [31].

Since any interaction to σx should be proportional to the wavefunction overlap of the

two wells–and is therefore proportional to ∆–the non-diagonal coupling is assumed to be

comparatively small.

The problem with this assumption in the context of the SB model is that, while the

tunnelling energy is indeed required to be small relative to the bias energy for NIBA to

apply, it is not negligibly small. In fact, the SB model is considered such a powerful model

because it retains coherence effects up to a degree, and this is because of a small but

appreciable tunnelling energy. A perturbative tunnelling energy would actually justify a

Fermi’s-Golden-Rule approach as we saw in Section 1.4.2, which permits only a one way

transfer of energy to the bath and removes any coherence effects. All of this suggests

that the SB model is somewhat incomplete without non-diagonal couplings.

Indeed there are a number of problems where non-diagonal couplings are warranted.

For example, tunnelling defects in solids interact with their surrounding atoms not only

98



by a fluctuation of their on-site energies (diagonal coupling) but can emit and absorb

phonons (non-diagonal coupling) corresponding to atomic vibrations that modulate the

distance between defects. This latter effect should lead to an increase in the well known

phenomenon of phonon-assisted tunnelling [128, 99].

Non-diagonal couplings were first discussed by Holstein (1959) [47] in the context of his

‘small’ polaron model. The first application of these couplings was in the SSH model for

polyacetylene [129]. Silbey and Munn [130, 131, 132] later used a canonical transforma-

tion method along with numerical approximations to investigate non-diagonal couplings

in molecular crystals. In their three part series on electron-phonon coupling, they found

that the diffusion coefficient of charge carriers in molecular crystals is dominated by the

competition of the two forms of coupling. Since then non-diagonal couplings have seen

application to the SB model treated with a two bath approach [55] as well as numerical

approaches [133, 134]. Recently we’ve seen that the inclusion of both diagonal and non-

diagonal couplings in the SSH model leads to a sharp transition between the behaviour

at weak and strong couplings [50, 79].

5.1 The dual-coupling polaron transformation

For the general case of a bath coupled to the diagonal and non-diagonal elements of the

2-state tunnelling system we have

H = ε({bq})
σz
2

+ ∆({bq})
σx
2

+HB (5.1)

where HB =
∑

q ωqb
†
qbq is the kinetic energy of the bosonic bath. The Pauli spin matrices

here are defined as σz = |1〉〈1|− |2〉〈2| and σx = |1〉〈2|+ |2〉〈1|. Both the on-site energies

and transition matrix elements are modulated by the bath in this case. To linear order

in the bath couplings [50] (see Section 1.3) we then have

H =
ε

2
σz +

∆

2
σx +

σx
2

∑
q

λx,q(bq + b†q) +
σz
2

∑
q

λz,q(bq + b†q) +HB (5.2)

We can decouple the bath from the central system with the appropriate unitary trans-

formation, which in this case involves a product of the shift operators for the diagonal

and non-diagonal couplings respectively

U = e−S, S =
σx
2

∑
q

ux,q(bq − b†q) +
σz
2

∑
q

uz,q(bq − b†q) (5.3)
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where ux,q = λx,q/ωq and uz,q = λz,q/ωq. Performing the transformation H → UHUT ≡
H̃ using the Baker-Campbell-Hausdorff formula

H̃ = H − [S,H] +
1

2!
[S, [S,H]]− 1

3!
[S, [S, [S,H]]] +

1

4!
[S, [S, [S, [S,H]]]] + ... (5.4)

I find for the the transformed Hamiltonian

H̃ = ε̂σz + K̂−σ+ + K̂+σ− +HB (5.5)

where I have introduced the operator notation ε̂ to reflect the fact that the on-site energy,

in the transformed Hamiltonian picture, is fluctuating due to the non-diagonal coupling.

The on-site energy is now

ε̂ =
∆

2
+
ε

2
cosh

(
φ̂x
)
− ∆

2
cosh

(
φ̂z
)

(5.6)

The kernels are defined as

K̂± =
ε

2
+

∆

2
B±z −

ε

2
B±x (5.7)

where

φ̂x =
∑
q

ux,q(bq − b†q), φ̂z =
∑
q

uz,q(bq − b†q) (5.8)

I identify the boson shift operators [52, 61, 99]

Bx
± = exp

(
±φ̂x

)
, Bz

± = exp
(
±φ̂z

)
(5.9)

One can also verify that the transformed Hamiltonian reduces to the 2-state tunnelling

Hamiltonian with the system-bath coupling turned off.

5.2 Dynamics of the dual-coupling-spin-boson model

The time evolution of the system is governed by the reduced density matrix ρs(t). The

probabilities for each state are therefore 〈σf | ρs(t) |σ′f〉 ≡ ρs(σf , σ
′
f ; t), and can be de-

scribed in the Feynman-Vernon path integral formalism as
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ρs(σf , σ
′
f ; t) =

∑
σi,σ′i

ˆ σf

σi

Dσ(τ)

ˆ σ′f

σ′i

Dσ′(τ ′)eiS0[σ(τ)]−iS0[σ′(τ ′)]F [σ(τ), σ′(τ ′)]ρs(σi, σ
′
i; 0)

(5.10)

where σf = σ(τ = t), σ′f = σ′(τ ′ = t), σi = σ(τ = 0), σ′i = σ′(τ ′ = 0) are paths that

visit the two states in the central system σ, σ′ ∈ {|1〉 , |2〉}. The paths σ, σ′ in the central

system are coupled via the influence functional F [σ, σ′], which incorporates all of the

effects of the bath. Since the bath has been decoupled from the central system via the

dual-coupling polaron transformation, the transformed Hamiltonian H̃ of equation 5.5

corresponds to a transformed action for the central system S̃0. Therefore the reduced

density matrix for the transformed action

ρs(σf , σ
′
f ; t) =

〈∑
σi,σ′i

ˆ σf

σi

Dσ(τ)

ˆ σ′f

σ′i

Dσ′(τ ′)eiS̃0[σ(τ)]−iS̃0[σ′(τ ′)]ρs(σi, σ
′
i; 0)

〉
B

(5.11)

contains the effects of the bath in the transformed probability amplitudes, and the trace

over the bath degrees of freedom leaves the dynamics in terms of central system variables

only. The transformed probability amplitudes are

Ãσf ,σi(t) ≡
ˆ σf

σi

Dσ(τ)eiS̃0[σ(τ)] = 〈σf | e−iH̃t/~ |σi〉 (5.12)

The effects of the bath enter via the transformed on-site energies±ε/2 |±〉〈±| → ±ε̂ |±〉〈±|,
and transition matrix elements ∆σ± → K∓σ±, which are now operators containing the

bath shift operators B̂±. In this formalism, the probability amplitudes can be calculated

independently, and the trace over the bath degrees of freedom performed to obtain a

closed expression for the central system dynamics. Expanding each transition amplitude

for the density matrix, following the analysis outlined in Section 3.1.2 gives

ρs(1, 1; t) =

〈(
1−
ˆ t

0

dt2

ˆ t2

0

dt1e
−2iε̃(t2−t1)K+(t2)K−(t1) + ...

)

×

(
1−
ˆ t

0

dt2

ˆ t2

0

dt1e
2iε̃(t2−t1)K−(t2)K+(t1) + ...

)〉
B

(5.13)

where the density matrix element corresponding to the probability to start and end in

state |1〉 was chosen. For clarity the ground state energy has been shifted to state |1〉,
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such that ε1 = 0, and the amplitude for no transitions Ã
(0)
11 (t)=1. Therefore the energy

of state |2〉 is ε2 = −2ε̂. Collecting terms

ρs(1, 1; t) = 1−
ˆ t

0

dt2

ˆ t2

0

dt1Υ̃(t1, t2)

+

ˆ t

0

dt4

ˆ t4

0

dt3

ˆ t3

0

dt2

ˆ t2

0

dt1Υ̃(t1, t2)Υ̃(t3, t4) + ... (5.14)

The kernel acting at times t, t′ is therefore

Υ̃(t, t′) =
〈
ei2ε̂(t−t

′)/~K+(t)K−(t′)
〉
B

+
〈
e−i2ε̂(t−t

′)/~K−(t)K+(t′)
〉
B

(5.15)

where NIBA has been invoked such that

〈
K+(t1)K−(t2)K+(t3)K−(t4)

〉
B
≡
〈
K+(t1)K−(t2)

〉
B

〈
K+(t3)K−(t4)

〉
B

(5.16)

and only correlations between successive bath fluctuations are permitted. This approxi-

mation is valid when the system spends vastly more time in diagonal states of the density

matrix compared to off-diagonal states (see Section 2.5). Separating the transformed on-

site energy in to the sum of its average value ε̃ ≡ 〈ε̂〉, and fluctuations about its mean

value δε̂, leads to ε̂ ≡ ε̃+ δε̂. Now the Kernel reads

Υ̃(t, t′) = ei2ε̃(t−t
′)/~
〈
ei2δε̂(t−t

′)/~K+(t)K−(t′)
〉
B

+ e−i2ε̃(t−t
′)/~
〈
e−i2δε̂(t−t

′)/~K−(t)K+(t′)
〉
B

(5.17)

The system is solved by taking the Laplace transform of the density matrix

ρs(1, 1;λ) =
1

λ
−L

[ˆ t

0

dt2

ˆ t2

0

dt1Υ̃(t1, t2)

]

+ L

[ ˆ t

0

dt4

ˆ t4

0

dt3

ˆ t3

0

dt2

ˆ t2

0

dt1Υ̃(t1, t2)Υ̃(t3, t4)

]
+ ... (5.18)

and the Laplace-transform of the Kernel is therefore
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Υ̃(λ) =

ˆ ∞
0

dte−λt

[
ei2ε̃t/~

〈
ei2δε̂t/~K+(t)K−(t)

〉
B

+ e−i2ε̃t/~
〈
e−i2δε̂t/~K−(t)K+(t)

〉
B

]
(5.19)

The fluctuations of the on-site energy δε̂ come from the shift operators δB±. They

introduce terms in the integrand that go like e−iεδB±t/~. These terms become rapidly

oscillating functions, and by the stationary phase approximation, integrate to zero for

large arguments of the phase. Therefore I can approximate this integral as

Υ̃(λ) =

ˆ ∞
0

dte−λt
[
ei2ε̃t/~

〈
K+(t)K−(t)

〉
B

+ e−i2ε̃t/~
〈
K−(t)K+(t)

〉
B

]
(5.20)

The functions
〈
K+(t)K−(t′)

〉
B

describe the interactions of successive flips within the

system - dragging their respective boson clouds with them, and are multiplied by a pre-

factor corresponding to the kinetic energy term of the Hamiltonian. So I retain only the

average of the fluctuating on-site energy

ε̃ =
∆

2
+
ε

2

〈
cosh

(
φx
)〉

B
− ∆

2

〈
cosh

(
φz
)〉

B

=
∆

2
+
ε

2
〈Bx〉B −

∆

2
〈Bz〉B (5.21)

Laplace transforming ρS(1, 1; t) leads to the geometric series summation

ρS(1, 1;λ) =
∞∑
n=0

(−1)2n Υ̃(λ)n

λn+1
=

1

λ+ Υ̃(λ)
(5.22)

The Kernel is expanded to

Υ̃(λ) =
1

2

ˆ ∞
0

dte−λt
{

cos(2ε̃t)
[
ε2
(
1− 2Bx

)
+ 2ε∆Bz

]
+ ε2B2

xfxx(t) + ∆2B2
zfzz(t)− 2ε∆BxBzfxz(t)

}
(5.23)

Paying close attention to the distinction here between diagonal and non-diagonal cou-

plings, the bath correlation functions are calculated following Mahan [52] and are found

to be
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〈Bα
±(t)Bβ

∓(0)〉B = 〈Bα
±〉〈B

β
∓〉eϕαβ(t) (5.24)

where the indices α, β ∈ {x, z}, and 〈Bα
±(t)Bβ

∓(0)〉B = 〈Bα
∓(t)Bβ

±(0)〉†B. The phase

ϕαβ(t) = iQ′αβ(t) +Q′′αβ(t) (5.25)

is comprised of the functions

Q′αβ(t) =

ˆ ∞
0

dω

√
Jα(ω)Jβ(ω)

~ω2
sin(ωt)

Q′′αβ(t) =

ˆ ∞
0

dω

√
Jα(ω)Jβ(ω)

~ω2
cos(ωt) coth(~βω/2) (5.26)

The biased influence functionals, within NIBA, are therefore

fαβ(t) = BαBβ cos
[
2ε̃t+Q′αβ(t)

]
eQ
′′
αβ(t) (5.27)

The spectral density function Jα(ω) = (π/2)
∑

q(λ
2
α,q/ωq)δ(ω − ωq) describes the distri-

bution of bath modes weighted by their coupling to the exciton. The terms Bx ≡ 〈Bx
±〉B,

Bz ≡ 〈Bz
±〉B are the Debye-Waller factors, which can be cast in the continuum limit as

[61]

〈Bα
±〉B = exp

[
−
ˆ ∞

0

dω
Jα(ω)

ω2
coth(βω/2)

]
(5.28)

We see that the Debye-Waller factor has an infra-red divergence for Ohmic spectral

densities leading to an orthogonality catastrophe [61], however for super-Ohmic spectral

densities the integral is infrared convergent, reflecting the probability for the system to

tunnel between wells without exciting the bath.

It’s prudent to check that when the non-diagonal coupling ζx → 0 is turned off, we

recover the spin-boson-model influence function result with just diagonal coupling ζz.

One can verify that this indeed the case. One can also verify that by turning off the bath

entirely–both diagonal and non-diagonal couplings, we recover the eigenvalues of the 2-

site tunnelling Hamiltonian. In this case the pole structure for the propagator reduces

to
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λ2 + ε2 + ∆2 = 0,→ λ = ±i
√
ε2 + ∆2 (5.29)

which is the pole structure for the propagator of the isolated 2-site system.

5.3 Super-Ohmic spectral densities in the DCSB model

I now turn to the case of a bath characterised by a super-Ohmic spectral density. In this

case the spectral density takes the form

Jx(ω) = ρx
ω3

ω2
ph

e−ω/ωc , Jz(ω) = ρz
ω3

ω2
ph

e−ω/ωc (5.30)

where in section 2.3.2 I defined a dimensionless coupling constant for acoustic phonons

as

ζα =
ρα
π~

(5.31)

The first step in evaluating the super-Ohmic influence functional is to do the frequency

integrals in Q′(t), Q′′(t) given in their general form in equation 4.2. For the super-Ohmic

phonon density of states they take the form

Q′ph(t) =

ˆ ∞
0

dω ωe−ω/ωc sin(ωt)

Q′′ph(t) =

ˆ ∞
0

dω ωe−ω/ωc(1− cos(ωt)) coth(~βω/2) (5.32)

which appear in the individual influence functionals

f̃α(t) =
1

2
cos
(
2ε̃t+ ζαQ

′
ph(t)/ω

2
ph

)
exp
(
− ζαQ′′ph(t)/ω2

ph

)
(5.33)

and the indices form the set α ∈ {z, x, xz}. Next I split up the second bath correlator in

to its time-independent and time-dependent parts

Q′′ph(t) = Q′′0 − Q̃′′ph(t) (5.34)

The time-independent term is therefore
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Q′′0 =

ˆ ∞
0

dω ωe−ω/ωc coth(~βω/2) (5.35)

which leads to the adiabatic phonon dressing of the tunnelling matrix element [34]. The

exponentiation of this time-independent term can be factorised out from the full influ-

ence functional and the corresponding factor that is absorbed into the tunnelling matrix

element is known as the Debye-Waller factor [99]. This term serves to renormalise pa-

rameters due to thermal excitations of the polaron cloud [34]. The integral I calculate to

be

Q′′0 = −ω2
c + 2

(
kBT

~

)2

ψ′
(
kBT

~ωc

)
(5.36)

Expanding to 2nd-order in kBT � ~ωc � 1 produces

Q′′0 ∼ ω2
c +

1

3

(
πkBT

~

)2

+ 2
ψ′′(1)

ωc

(
kBT

~

)3

+
π4(kBT )4

15~4ω2
c

(5.37)

I absorb these terms into the renormalisation factors defined earlier

Bz = e−θzz , Bx = e−θxx , Bxz = e−θxz (5.38)

where

θzz = ζzQ
′′
0/ω

2
ph, θxx = ζxQ

′′
0/ω

2
ph, θxz =

√
ζxζzQ

′′
0/ω

2
ph (5.39)

The time-dependent part of the influence phase left over is

ϕ(t) = iQ′ph(t) + Q̃′′ph(t) (5.40)

Defining a complex time-variable

τ = t− i~β/2 (5.41)

the phase can be cast in the convenient form for the phonon-phase in the complex time-

domain

f̃αβ(τ) = Re
{

exp
[
ϕαβ(τ)/ω2

c + 2iε̃(τ + i~β/2)
]}

(5.42)

Computing the frequency integral using known integrals (Section 4.13 in [126]) yields

106



ϕ(τ) =
1

(~β)2

[
ψ′
(

1

2
+

1− iωcτ
~ωcβ

)
+ ψ′

(
1

2
+

1 + iωcτ

~ωcβ

)]
(5.43)

where the polygamma functions are defined

ψn(z) =
dn

dzn
ψ0(z), ψ0(z) =

dn

dzn
ln
[
Γ(z)

]
(5.44)

Analytic continuation of the phase back to the real axis yields

ϕαβ(t) =

√
ζαζβ

(~β)2

[
ψ′
(

1− iωct
~ωcβ

)
+ ψ′

(
1 + ~ωcβ + iωct

~ωcβ

)]
(5.45)

As it stands, the Laplace transforms of the individual influence functionals in Equa-

tion 5.23, are intractable. In the interest of exploring physiological temperatures, where

kBT = 27meV (T = 300K), and phonon cut-off frequencies ωc = 8.7meV [98], we can

expand in the parameter ~ωcβ � 1. Asymptotic expansion of Equation 5.45 to third

order yields

ϕαβ(t) ≈ Θαβ + iφαβt− Φαβt
2

Θαβ =
√
ζαζβ

(
2ωc
β

+
ω3
cβ

3

)
, φαβ = 2

√
ζαζβω

3
c ,

Φαβ =
2
√
ζαζβω

3
c

β
(5.46)

It now remains to evaluate the Laplace transform of the propagator.

5.4 High-temperature limit in the super-Ohmic NDSB

model

As they stand, the influence functionals produce a pole structure in the propagator of

Equation 5.22 of infinite order in λ, representing all possible excited states of the system

across the whole temperature range. In the interest of keeping the system-bath couplings

to all orders, I can investigate certain temperature limits. In the high-temperature limit

I can expand the influence phase in the small quantity λβ � 1. the biased influence

functional can be Taylor expanded to 1st-order as
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f̃αβ = f̃ 0
αβ − f̃ 1

αβλ (5.47)

where the coefficients are

f̃ 0
αβ = eΘαβ

ˆ ∞
0

dt cos(2ε̃t+ φαβt)e
−Φαβt

2

f̃ 1
αβ = eΘαβ

ˆ ∞
0

dt t cos(2ε̃t+ φαβt)e
−Φαβt

2

(5.48)

The time interval in f̃ 0
αβ can be evaluated with the known integral BI (263)(5) in [126]

to be

f̃ 0
αβ =

eΘαβ

2

√
π

Φαβ

exp

[
− (2ε̃+ φαβ)2

4Φαβ

]
(5.49)

The first order coefficient f̃ 1
αβ can be evaluated using the known integral BI (362)(2) in

[126] and the Maclaurin series of the Dawson function [135]D(x) =
∑∞

n=0(−2)nx2n+1/(2n+

1)!!, to get

f̃ 1
αβ =

eΘαβ

2Φαβ

− eΘαβ

2Φ
3/2
αβ

(2ε̃+ φαβ)D

(
2ε̃+ φαβ

2
√

Φαβ

)
(5.50)

The pole structure of the propagator now takes the form

λ+

(
ε2
(
1− 2Bx

)
+ 2ε∆Bz

)
λ

2(λ2 + 4ε̃2)
+ Υ0 −Υ1λ = 0 (5.51)

where

Υ0 = ∆2B2
zf̃

0
z + ε2B2

xf̃
0
x − 2∆εBxBzf̃ 0

xz

Υ1 = ∆2B2
zf̃

1
z + ε2B2

xf̃
1
x − 2∆εBxBzf̃ 1

xz (5.52)

Rearranging the pole structure to
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2(1−Υ1)λ3 + 2λ2Υ0 + λ
(
2ε2
(
1− 2Bx

)
+ 4ε∆Bz + 8ε̃2 − 4ε̃2Υ1

)
+ 8ε̃2Υ0 = 0 (5.53)

The solutions of the cubic equation are obtained using the analysis framework of Ap-

pendix E. For the poles I find

λr = Γγ − Γθ

λφ = −Γγ
2
− Γθ ± iω (5.54)

where

Γθ =
Υ0

3(1−Υ1)
, Γγ = u− v, ω =

√
3

2
(u+ v)

u = 3

√√
D − q

2
, ∀D > 0

v = 3

√√
D +

q

2
, ∀D > 0

q =
2(Υ0/(1−Υ1))3 − 9(Υ0Ξ)/(4(1−Υ1)2) + 108ε̃2Υ0/(4(1−Υ1))

27

p =
3Ξ/(4(1−Υ1)−Υ2

0/(1−Υ1)2

3

Ξ = ε2
(
1− 2Bx

)
+ 2ε∆Bz + 4ε̃2 − 4ε̃2Υ1 (5.55)

The entirely real pole λr ≡ Γr represents the pure relaxation rate. This pole leads to a

term describing exponential relaxation in the time regime upon Laplace inversion. The

inverse of Γr represents the inverse time scale for relaxation of the system to its ground

state, and is therefore interpreted as the exciton transfer time through the sysytem. The

real part of the other two poles Γφ ≡ Re[λφ] is the decoherence rate describing the inverse

timescale for the loss of phase coherence in the system. It manifests as the damping rate

of the oscillatory terms in the dynamics upon Laplace-inversion [61].

D =
(q

2

)2

+
(p

3

)3

(5.56)
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(a) (b)

(c) (d)

Figure 5.1: Phase space, decay rates and oscillation
frequency for Non-diagonal-SB model vs ζx. ζz = 1. Pa-
rameters: ε = 1, ∆ = 0.3, kBT = 5, ωc = 0.1. In units of
ε.

In Figure 5.1 the results for the DCSB model are presented as a function of non-diagonal

coupling strength ζx. The discriminant D remains positive, therefore the system remains

in the coherent phase for 0 < ζx � ζz. However this just means that the exciton has

some oscillatory component to its dynamics. The duration of these oscillations can be

seen in Figure c. The timescale associated with the decay of the exciton oscillations is

τφ ≡ τ±, and we see that it remains longer than the exciton transfer time τr for small

values of ζx. In the intermediate regime of ζx, for the range considered here, the coherence

time falls below the exciton transfer time. For larger values of ζx we see the coherence

time is once again longer than τr. In Figure d the effect of phonon-assisted transport

(normally associated with the oscillation frequency) can be seen by continuously varying

the non-diagonal coupling parameter γx, and the dimer oscillation frequency rises. For

high enough values of γx, however, we see ω reduce rapidly due to an ‘over dressing’ of the

particle’s phonon cloud [52] i.e it becomes more difficult for the particle to tunnel between

wells as it gets heavier. Therefore, while the non-diagonal coupling serves as an additional
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decoherence mechanism in the system, it suppresses coherence at a slower rate than the

exciton transfer time. This means that the exciton moves rapidly through the dimer

system while remaining coherent for the duration of its transfer between chromophores.

5.4.1 DCSB model for the FMO system with acoustic phonons

I now apply the DCSB model with super-Ohmic spectral densities to a dimer of two

chromophores in the FMO complex. I use the excitation energies of the chromophores

and the inter-chromophore tunnelling energies determined in Section 1.5. The strength

of the diagonal system-environment coupling was discussed in Section 2.3.2.

Figure 5.2: Exciton transfer time τr, coherence time
τφ, and dimer oscillation frequency ω as a function of
non-diagonal coupling strength ζx. Parameters: ε =
20meV, ζz + ζx = 1, kBT = 27meV, ωc = 8.7meV.
Bath spectral density of super-Ohmic form: J(x,z)(ω) =
π~ ζ(x,z)(ω

3/ω2
c )exp(−ω/ωc).

In Figure 5.2 we see how varying the system-bath coupling strength affects the exciton

transfer time, coherence time and oscillation frequency of the dimer with both diagonal

and non-diagonal couplings. We observe the increase in dimer oscillation frequency as

ζx is varied for small ζx. Along with this increase in oscillation frequency, the transfer

time is seen to also increase. This can be interpreted as coherent tunnelling back and
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forth within the dimer, as the density of states available to the exciton increases with

phonon-assisted tunnelling. For large enough non-diagonal coupling strength, the trans-

fer time is seen to rapidly decrease as the exciton tunnelling becomes one-way. At the

same time the exciton coherence time is seen to decrease with the additional decoherence

mechanism provided by the non-diagonal coupling. However, the coherence time is seen

to remain persistently longer than the transfer time, indicating the exciton is coherent

for the duration of its motion.

The sum of diagonal and non-diagonal coupling strengths used for these calculations

was ζz + ζx = 1. This number can be determined from the experimentally determined

reorganisation energy of a super-Ohmic spectral density bath model for the FMO com-

plex. This was discussed in Section 2.3. The non-diagonal coupling strength for the FMO

complex has not been experimentally measured yet and is therefore kept a free parameter

in the results.

5.5 The DCSB model coupled to optical phonons

In this section I model the environment as an oscillator bath comprised of optical phonons

with frequency ω0. We saw in Section 2.3.4, how the experimentally determined spec-

tra for biomolecules actually contain structure beyond a continuous distribution of low-

frequency modes. Sharp optical transition peaks were observed revealing the presence

of discrete oscillation modes present in the environment of the biomolecule. Therefore,

I would like to investigate the effect of including optical phonon modes in the spectral

density of the DCSB model. Considering an optical phonon spectral density with spectral

broadening of, the spectral density function takes the form

Jα(ω) = λαe
−(ω−ω0)2/2ξ2 (5.57)

where ω0 is the optical phonon frequency, λx, λz the non-diagonal and diagonal coupling

energies respectively and ξ the peak width. The dimensionless coupling constant for

optical phonons is να = λαξ/πω
2
0. We see that the optical phonon coupling scales linearly

with the spectral weight λξ and with the inverse of the optical phonon frequency squared.

Therefore optical phonon peaks at high frequency with relatively small spectral weight

couple weakly to the exciton. In the interest of studying non-perturbative effects we

therefore consider relatively low-frequency optical phonons.

The influence phase in complex time is now
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ϕαβ(τ) =
√
νανβ

ˆ ∞
0

dω

ω2
e−(ω−ω0)2/2ξ2 cos(ωτ)csch(~βω/2) (5.58)

The frequency integral can be evaluated with the use of the saddle-point approxima-

tion since for light-harvesting molecules, the optical phonon peaks have a very narrow

linewidth ξ. This means that the prefactor to the argument of the Gaussian exponential

spectral function x = 1/2ξ2 is very large, and the peak therefore very narrow around the

point ω0. We find for the Gaussian-optical phonon influence phase

ϕαβ(τ) =
ξ
√

2πλαλβ

π~ω2
0

cos(ω0τ)csch(~βω0/2) (5.59)

and for the Debye-Waller factors

Bα = exp
(
−να
√

2π coth ~βω0/2
)

(5.60)

Expanding the influence phase in the limit ω0τ � 1 produces a Gaussian integral

ϕαβ(τ) ≈
ξ
√

2πλαλβ

π~ω2
0

(
1− ω2

0τ
2
)

csch(~βω0/2) (5.61)

Analytically continuing ϕ(τ) to the real time axis and evaluating the first two terms of

ϕ(λ), again expanded in λβ � 1, yields

f̃ 0
αβ =

eΛαβ

2

√
π

Λαβω2
0

exp

[
−(2ε̃+ Λαβω

2
0β)2

4Λαβω2
0

]
f̃ 1
αβ =

eΛαβ

2(Λαβω2
0)3/2

[√
Λαβω2

0

− (Λαβω
2
0~β + 2ε̃)D

(
2ε̃+ Λαβω

2
0~β

2
√

Λαβω2
0

)]
(5.62)

where Λαβ =
√

2πνανβcsch(~βω0/2). The poles of the density matrix propagator with

optical phonons is then given by substituting Equations 5.62 and 5.60 in to the density

matrix of Equation 5.22.

113



(a) (b)

(c)

Figure 5.3: (a) ∆̃ = 0.3, ε = 1, kBT = 1, ωo = 0.4,
ξ = 0.01, λz = 5 in units of (meV).

In Figure 5.3, the results for the DCSB model are presented in the low temperature regime

kBT = 0.1. The discriminant D remains positive and the system is therefore persistently

in the coherent phase. As the non-diagonal coupling energy λx is turned, the oscilla-

tion frequency of the dimer is seen to increase in accordance with the phonon-assisted

transport mechanism. As λx is increased further however, the oscillation frequency drops

off rapidly. The dimer relaxation rate Γr is seen to increase slightly for increasing λx,

representing the inverse timescale for the dimer relaxation to its ground state.

5.5.1 DCSB model for the FMO system with optical phonons

In this section I apply the DCSB model with an optical phonon bath to the FMO com-

plex. It was determined in Section 2.3.4, for certain peaks selected from FMO spectral

data, that the corresponding optical phonon dimensionless coupling parameter was small

enough to permit a perturbative calculation of the system-bath interaction. This was

done in Section 3.3. Here I use various optical phonon peaks at 6,8 and 10 meV, with
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linewidth 0.5meV, and spectral weight 15meV to investigate the non-perturbative effect

of optical phonons on the FMO system. This optical phonon frequency falls within the

bandwidth of the FMO dimer and is expected to greatly affect the dynamics. This is in

contrast to the perturbative results for very large optical phonon frequency relative to

FMO dimer parameters.

Figure 5.4: Exciton transfer time τr (blue line), co-
herence time τφ (orange line), and dimer oscillation fre-
quency ω (purple line) as a function of non-diagonal cou-
pling strength νx. Parameters: ε = 20meV, ∆ = 6meV,
ζz=1, kBT = 27meV, ω0 = 6meV. Bath spectral density
of Gaussian-optical form: J(x,z)(ω) = λ(x,z)exp(−(ω −
ω0)2/2ξ2).

In Figure 5.4 we see the effect of turning on the non-diagonal coupling on a dimer with

FMO parameters. We see qualitatively similar results to the FMO system coupled to an

acoustic phonon bath. The dimer oscillation frequency is once again seen to increase in

accordance with the phonon-assisted transport mechanism and drop off for large enough

values of the non-diagonal coupling energy. For small values of νx the exciton time is seen

to increase, alongside a an increase in the dimer oscillation frequency. As the non-diagonal

coupling energy is increased further, both the transfer time and coherence time, decrease

rapidly as the additional coupling mechanism begins to decrease coherence effects and aid

in transfer rate of the exciton through the dimer system. However, despite the additional

decoherence observed with non-diagonal coupling, once again the coherence time remains

persistently longer than the transfer. Therefore we can conclude that the exciton remains

coherent for the duration of its motion.
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5.5.2 Summary

In this chapter I have analysed a two-state central system coupled both diagonally and

non-diagonally to an oscillator bath. I dubbed this model the Dual-coupling spin-boson

(DCSB) model. I used both a super-Ohmic and optical spectral density for the bath,

with the optical spectral density having a Gaussian form for the spectral broadening.

The application of the DCSB model to photosynthesis was motivated in Chapters 2 and

3 by the presence of delocalised excitons across two chromophores in the FMO complex.

Oscillator baths consisting of acoustic phonons motivated the use of a super-Ohmic spec-

tral density and optical phonons motivated the Gaussian-optical spectral density.

For a super-Ohmic bath, the DCSB model found the exciton to remain in the coherent

phase as the non-diagonal coupling was turned on and varied. The exciton transfer time

through the dimer was found to decrease rapidly for larger non-diagonal couplings as did

the exciton coherence. Oscillations were found to persist in the exciton dynamics for the

range of non-diagonal coupling strengths, with the coherence time found to be longer

than the exciton transfer time for the full range of non-diagonal couplings. Therefore the

non-diagonal coupling was found to not only facilitate exciton transfer through the dimer

system, but produce coherent exciton transfer for relatively large non-diagonal coupling

strengths. Similar results were found for a Gaussian-optical spectral density. Both the

exciton transfer time and coherence time were found to decrease rapidly for significant

non-diagonal coupling strengths, with the coherence time again remaining longer than

the transfer time.

Both of these results can be interpreted within the context of the inelastic-phonon-

assisted tunnelling mechanism. By turning on the non-diagonal coupling to the bath,

inelastic processes are introduced to the dynamics. Excitons can tunnel between chro-

mophores by emission and absorption of phonons from the bath. This produces an

increased density of final states available to the exciton, and therefore facilitates exci-

ton tunnelling. As the coupling strength becomes large enough, the tunnelling becomes

one-way as the exciton becomes heavily dressed with its phonon cloud.
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Chapter 6

Summary, conclusions and future

work

I now summarise the work presented in this thesis, and draw conclusions pertaining to

the results of the 3-site-boson model, and the dual-coupling-spin-boson (DCSB) model.

I also conclude the investigation of applying both models to the photosynthesis mecha-

nism. Finally I suggest a number of avenues of further research.

In Chapter 3 I introduced some of the key aspects of the 3-site model isolated from

any environment, as well as some of the limiting and perturbative treatments of the 3-site

system interacting with a harmonic oscillator bath. First, I introduced the concept of

population trapping in a 3-site-V configuration. I demonstrated that the addition of an

arbitrarily strong decay mode out of the lower ground state still leads to a long-time

population present in the dynamics. This ‘trapping’ effect can be attributed to the pres-

ence of an eigenstate, known as the ‘dark state’, that overlaps only with the upper two

levels despite there being no tunnelling term between these levels in the 3-site-V config-

uration. I demonstrated how, by tuning the on-site energies of the upper two levels, this

dark-state is accessed and contains no overlap with the decaying ground-state, leading to

the long-time population trapping. To do this I established a path-integral formalism for

the ‘bare’ 3-site system, not only to calculate the Greens functions for the bare system,

but also to set up the analysis for subsequent chapters where I treat the system-bath

coupling non-perturbatively. In the interest of exploring the 3-site system coupled to

some environment, I first introduced a perturbative system-bath coupling to an external

oscillator bath.

I then solved the 3-site-V system coupled perturbatively to a harmonic oscillator bath
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for 3-different spectral densities: Ohmic, super-Ohmic and optical phonons. I applied

the noninteracting-blip-approximation (NIBA) to truncate the number of coherent-bath

interaction processes corresponding to higher-order coherence effects. The region of va-

lidity of this approximation was not just discussed qualitatively—in the introduction

chapter—but quantified. The quantity F1, describing the ratio of average time spent in

an off-diagonal state to a diagonal state of the density matrix, was shown to be minimised

in the perturbative regime provided the tunnelling energies were small compared to the

on-site energies. With this condition met, NIBA was shown to be valid in this regime.

My final results for this model involved calculations of the three frequencies present in

the system and an exploration of the coherent-incoherent phase space. We saw that

the system operates only in the coherent phase across the full temperature range (N.B.

I don’t vary the system-bath coupling parameter here as it represents a perturbative

quantity in this model). I found that the relaxation time associated with the dark-state

was the shortest of the three in both the Ohmic and super-Ohmic regime. Therefore, in

the perturbative limit at least, I show that the dark-state is the most sensitive state in

the system to the effects of the bath, and coherence effects attributed to this state are

strongly suppressed. However, the opposite is found to be true for the case of an optical

phonon bath for low-temperatures. Here, the dark-state dominates the relaxation times

and therefore is the most robust state in terms of exhibiting long-time coherence effects.

For mid-high temperatures the decay rates are shown to converge and the corresponding

relaxation times in this limit are comparable.

In Chapter 4 I moved beyond the perturbative analysis of the 3-site-boson model,

incorporating the effects of the bath to all orders in the system-bath coupling parameter.

Building on the path integral formalism for the 3-site propagator set up in Chapter 3, I

used an influence functional approach to model the system-bath interactions. NIBA was

once again employed to simplify the number of coherent system-bath processes, however

the influence functionals still required expansions in small parameters in order to obtain

tractable pole structures for the propagators. Therefore I chose to inspect the high-

temperature limit in the interest of modelling physiological temperatures T = 300K in

the FMO complex. This provided me once again with a cubic pole structure for the prop-

agator, this time to all orders in the system-bath coupling parameter. Incidentally, for

the case of Ohmic-bath spectral densities, I was unable to explore the low-temperature

regime for three distinct frequencies, as the pole structure in this limit is an arbitrary

order polynomial in the system-bath coupling parameter. The original 2-site spin-boson

model was able to explore this limit by utilising the special function: the Mittag-Leffler
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function [31, 61], however the 3-site problem remains intractable analytically. A numeri-

cal solution to the propagators pole structure is still permitted of course, but beyond the

scope of this thesis. Nevertheless, the high-temperature regime was still accessible for

the Ohmic case and it is in this regime that we see the coherent-incoherent phase tran-

sition. I was once again able to explore the phase space of the model by inspecting the

discriminant of the cubic polynomial, and in a similar fashion to the original spin-boson

model, we saw a phase transition beyond a critical value of the coupling parameter.

I also quantified the validity of NIBA in the non-perturbative regime with a calcula-

tion of F1 for various areas of the parameter space. I demonstrated how for the Ohmic

case, NIBA is primarily valid in the semi-classical regime of small tunnelling energy rel-

ative to on-site energy. The complicated dependence of F1 on the system-bath coupling

parameter as well as temperature required a graphical analysis. In general, we saw that

NIBA is valid in the mid-high temperature regime as well as the strong coupling regime.

This is intuitive as NIBA is a strong-decoherence approximation and one would expect

this to apply in the case of strong system-bath coupling and/or high-temperature.

The primary results of the non-perturbative analysis are the relaxation times. In the

Ohmic regime I calculated the three distinct frequencies coming from the cubic pole

structure in the high-temperature limit. For the parameter space explored in this sec-

tion: ε/∆ ∼ 10, kBT � ωc, γ < 1, I found the system to exhibit a persistent coherent

phase. The frequency associated with the dark-state of the system was found to have the

slowest decay rate, and correspondingly the longest relaxation time, especially for small

to intermediate values of the coupling parameter. Therefore, it is this state in the system

that dominates the long-time coherence in the system across the range 0 < γ < 1.

The 3-site boson model, for an Ohmic bath spectral density, is ultimately applied to

the FMO complex. For the FMO parameters determined for an effective 3-site system

coupled to an Ohmic bath, I found relaxation times τD ∼ 800fs, τ± ∼ 100fs at physio-

logical temperatures. These results put the exciton transfer well within the incoherent

regime, as the exciton coherence dies out faster than the time taken for the exciton to

propagate through the system.

In Chapter 5 I formulated the dual-coupling spin-boson model (DCSB) and investi-

gated the results in both a general parameter regime–in units of the bias energy ε, and

for the FMO-complex parameters. This model describes a dimer system coupled both

diagonally and non-diagonally to an oscillator bath, and I utilised an environment char-

acterised by both super-Ohmic and optical phonon spectral densities. I once again used

NIBA to evaluate the influence functionals, meaning that this model applies in the regime
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of small tunnelling energy to on-site energy.

For the case of a super-Ohmic oscillator bath, I was able to explore results in the

high temperature limit. We saw in this limit how the system remained in a persistent

coherent phase as the dimensionless non-diagonal coupling parameter is varied. For small

couplings the dimer oscillation frequency rapidly increases along with a slight reduction in

the pure relaxation rate. The physical basis for this is due to the inelastic phonon-assisted

transport mechanism, whereby the transfer rate between dimer states is increased due

to the allowance of phonon emission/absorption processes. As the coupling is increased

beyond a certain point, the oscillation frequency dies off as the particle’s phonon cloud

becomes heavier, making it harder for the particle to tunnel between wells. For the

DCSB model with acoustic phonons applied to the FMO complex, similar effects were

found. The exciton transfer time–the inverse of the pure relaxation rate–was found to

increase slightly for small enough values of the non-diagonal coupling parameter as well.

Correspondingly, the coherent relaxation time–the time associated with the relaxation of

the oscillatory terms in the dynamics–was found to also increase for small non-diagonal

couplings. However, as the non-diagonal coupling was increased further, both the trans-

fer and coherence times of exciton were seen to rapidly decrease. This happens alongside

a reduction in dimer oscillation frequency and can be interpreted within the context of

phonon-assisted tunnelling. For small enough couplings the exciton is able to tunnel back

and forth coherently between the two states in the system. This is due to an increased

density of final states available to the exciton by way of phonon emission/absorption pro-

cesses. However, as the coupling becomes sufficiently strong, the exciton is over ’dressed’

by its phonon cloud and tunnelling becomes one-way.

The addition of non-diagonal system-bath coupling serves to not only increase the rate

at which the exciton is transferred through the dimer but also introduce an additional

decoherence mechanism. However, the coherence time remains longer than the exciton

transfer within a certain range of non-diagonal couplings. Therefore, one can conclude

that, provided the non-diagonal coupling strength is significant, the exciton remains co-

herent as it travels through the FMO dimer according to the DCSB model.

The DCSB model has successfully managed to produce both rapid and coherent exci-

ton transfer in the FMO complex. Traditional models for FRET fail to reproduce these

effects, which suggests the inclusion of non-diagonal couplings is crucial to the exciton

transfer mechanism in the FMO complex. Förster theory can produce rapid exciton trans-

fer times but excludes any possibility of coherence. In the opposite limit, Redfield theory

fails to produce the rapid exciton transfer times observed in the FMO complex. Fur-
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thermore, in both cases, the model parameters do not accurately reflect the real physical

systems they model. Neither the assumption of perturbative tunnelling energy relative to

system-bath coupling in Förster theory, nor the Markov approximation and perturbative

system-bath coupling assumed in Redfield theory are valid. A non-perturbative theory,

in any of these parameters, falls within the purview of the spin-boson model. When

applied to the FMO complex, the spin-boson model predicts incoherent exciton transfer

for Ohmic spectral densities, and coherent but slow exciton transfer for super-Ohmic

baths. Therefore one can conclude that the inclusion of non-diagonal couplings is crucial

to the maintenance of rapid and coherent exciton transfer in the FMO complex with a

super-Ohmic bath.

Motivated by the evidence of structured spectral densities in the FMO complex, I also

investigated the DCSB model for an optical phonon bath. A Gaussian lineshape was

used to model the optical phonon peaks, and the bath correlators were evaluated using

the saddle-point approximation. This technique is valid for spectral lineshapes with very

small width which is indeed the case for the FMO complex. We saw in Section 2.3.4,

that experimentally determined spectra for the FMO complex found optical phonon

peaks at relatively high frequencies with small linewidths. Therefore the saddle-point

approximation was justified in this case. I also demonstrated in Section 2.3.4, how the

dimensionless coupling parameters pertaining to the dominant peaks in the FMO spectra

were very small. This permitted a perturbative approach to modelling the system-bath

couplings. In the interest of investigating the non-perturbative effects of optical phonons

on the FMO system, a fictitious peak with frequency within the bandwidth of the FMO

parameters was chosen for the DCSB model. The strong coupling to this optical phonon

peak is hoped to reflect the overall coupling of the FMO system to the many weak optical

phonon vibrations.

The results of the DCSB model with an optical phonon bath were similar to the acous-

tic phonon (super-Ohmic) results. The dimer oscillation frequency increased for small

enough values of the non-diagonal system-bath coupling energy, and the coherence time

remained longer than the pure relaxation time for the range of couplings. Once again,

while both the exciton transfer time and coherence time were greatly reduced for signifi-

cant non-diagonal couplines, the coherence time remained persistently longer. Therefore

the optical phonon bath also aids in exciton transfer through the dimer in a similarly

efficacious way to the acoustic phonon bath, while the exciton remains coherent for the

duration of its motion.

It is prudent to ask the question at this point: what is the functionality of coherence
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in the FMO exciton transfer mechanism? The experimental evidence for coherence in the

system is clear, and the success of the DCSB model here has demonstrated the impor-

tance of including non-diagonal couplings in the modelling of exciton transfer. However,

what do these results say about the functionality of coherence in the system? Coherent

(delocalised) excitons are characterised by overlapping exciton wavefunctions on nearby

chromophores. The resulting exciton dynamics behaves in a wave-like manner, and asso-

ciated with this will be the oscillatory ‘quantum beating’ signals observed in experiment.

When there exists significant wavefunction overlap between chromophores, non-diagonal

couplings should be present. The DCSB model has demonstrated that significant non-

diagonal couplings promotes exciton transfer through the dimer system in accordance

with the experimentally observed values. While the presence of non-diagonal couplings

serves to introduce an additional decoherence mechanism, the coherence time of exciton

remains longer than the exciton transfer time. This is perhaps unsurprising, since the

presence of non-diagonal couplings is predicated on the coherent nature of excitons in

the first place. Therefore, the functionality of coherence in photosynthesis, if any, could

be to introduce non-diagonal system-bath couplings between chromophores. This facil-

itates the inelastic phonon-assisted transport mechanism and provides the exciton with

additional tunnelling pathways between chromophores.

6.1 Further Work

I now discuss a number of avenues of further research that could build on the work pre-

sented in this thesis. Neither the 3-site boson model presented in this thesis nor the

DCSB model are exactly solvable due to the complicated nature of the system-bath cou-

pling. The noninteracting-blip approximation (NIBA) employed here is a first step along

the way of treating the system-bath interaction processes in a non-perturbative coupling

approach. A number of analytic studies have been done that go beyond NIBA. These

take the form of summing a larger class of diagrams, including higher order system-bath

processes. The nearest-neighbour blip-approximation (NNBA) for example includes con-

secutive blip-blip interaction terms, permitting the system to spend more time in the

off-diagonal state of the density matrix and therefore incorporate longer-lived coherence

effects. This would allow one to consider stronger tunnelling matrix elements with re-

spect to the on-site energies in both the 3-site and 2-site models. This is because the

system is permitted to spend more time in off-diagonal states of the density matrix. This

preserves longer coherence effects and one would expect to see an increase in relaxation
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times calculated for these systems. For the FMO complex, there are a number of three-

and two-site molecular configurations that contain a larger ratio of ∆/ε than considered

in this work. Modelling these molecular configurations would require a model that goes

beyond NIBA, and NNBA could be a candidate for this. Of course, as one considers

increasingly higher order diagrams in this regard, the analytical complexity of the model

greatly increases. However for the 2-site spin-boson model this has nevertheless been

shown to remain a tractable analytical problem yielding illuminating results [27, 99].

For the 3-site boson model it remains unclear whether such a relaxed approxima-

tion (NNBA) can be applied successfully analytically. The problem one faces in the

3-dimensional Hilbert space of the model is substantially harder than that for the 2-

D Hilbert space of the 2-site model. Excursions into the off-diagonal elements of the

3-by-3 density matrix need to take into account all possible consecutive blip-blip and

blip-sojourn interactions which make up the space of the 3-by-3 density matrix. Since

the system is permitted to spend additional time in the off-diagonal space of the density

matrix, the combinatorics problem grows substantially. Nevertheless, the solution to this

problem would be a valuable one not just in the interest of relaxation NIBA and ob-

serving the additional coherence effects in the model but also because it would allow the

system to occupy the coherent state in the system that overlaps with both the upper two

levels. This possibility was excluded in our model because of the application of NIBA

which quenches the off-diagonal excursions too rapidly before they can enter into this

fragile coherent state.

One of the famous applications of the spin-boson model was to the Kondo problem.

It was shown that the peculiar singular behaviour of charged interstitials in conducting

metals could be explained by the high density of electron-hole excitations around the

Fermi surface. This leads to a self-trapping phase transition at zero temperature above a

critical value of the coupling strength, as well as an anomalous temperature dependence

on diffusion. The spin-boson model was appropriate in this case because the impurities

can be represented by a spin-1/2 central system, and the surrounding Fermi gas can be

characterised by electron-hole excitations around the Fermi surface at such low tempera-

tures. These electron-hole pairs are bosonic in character and obey an Ohmic form for the

spectral density. Therefore, in the context of this research, one could ask the question:

how does the Kondo effect change when the impurity is actually a 3-level system such

as the one studied in this system? As discussed in this thesis, the 3-level system con-

tains intrinsic properties such as population trapping that are very different to a 2-level

system. This could have dramatic effects on the Kondo effect when applied to metals.
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The 3-level model coupled to an Ohmic oscillator bath would need to be explored in the

zero temperature regime, as only the high-T regime was considered in this thesis. One

would also need to inspect certain response functions such as the magnetic susceptibility

in order to answer specific questions relating to the Kondo effect.

Finally I would like to comment on the implications of these findings with respect to

the development of artificial light-harvesting systems. Research into photosynthesis is

motivated not only by our general interest in a complete understanding of the biophysics

but also by the potential applications to our own light-capturing technologies. Nature

has had millions of years to optimise these processes, and reverse engineering the en-

ergy transfer mechanism in photosynthesis could help us make our own artificial light

harvesting technologies more efficient. If we are to achieve higher efficiencies in light-

capturing technologies, it is possible that this can be achieved by promoting inelastic

phonon-assisted tunnelling processes in the exciton transport schemes of these devices.

This would mean reducing the inter-molecular spacing as much as possible, as this would

facilitate greater exciton wavefunction overlap between molecules, and therefore aug-

mented phonon-assisted tunnelling. We have learned from photosynthesis, that even in

hot and messy molecular environments, exciton transfer can be very efficient, provided

the inter-molecular distances are kept sufficiently small. In this case, quantum effects are

allowed to persist in otherwise non-ideal environments.
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Appendix A

Calculation of the electron-phonon

correlation function for DCSB model

Here I present the calculation of the electron-phonon correlation function used to de-

scribe the effects of the phonon bath on a central system. In section chapter 5 I required

a calculation of the electron-phonon correlation function 〈Bx
+(t)Bz

−(t)〉, which involves

a correlation between phonon displacement operators pertaining to both diagonal and

non-diagonal couplings. While following a derivation in Mahan [52] in evaluating these

correlation functions, I present the specifics of my deviations rather than simply quoting

the results, as I must be careful to distinguish between the diagonal and non-diagonal

couplings λx and λz respectively. In the traditional literature, the electron correlation

function calculation usually assumes just diagonal couplings present in the system there-

fore I must present the more general derivation case here. Starting from the calculation

of the trace over the phonon distributions

Fxz(t) =
〈
Bx

+(t)Bz
−(0)

〉
B

= eβΩphTr
[
e−β

∑
q ωqnqBx

+(t)Bz
−(0)

]
(A.1)

Averaging each phonon state independently
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Fxz(t) =
∏
q

fxzq (t)

fxzq (t) = eβΩph

∞∑
nq=0

e−βnqωq 〈nq| e−λ
x
q (b†qe

iωqt−bqe−iωqt)eλ
z
q(b†q−bq) |nq〉 (A.2)

where

eβΩq =

 ∞∑
nq=0

e−βnqωq

−1

= 1− e−βωq (A.3)

is a normalisation prefactor. For brevity we drop the phonon wavevector subscript q for

the time being.

fxz(t) = (1− e−βω)
∞∑
n=0

e−βnω 〈n|−λ
x(b†eiωt−be−iωt) eλ

z(b†−b) |n〉 (A.4)

The state of n bosonic excitations is given by

|n〉 =
(b†)n√
n!
|0〉 (A.5)

Performing the Feynman-disentangling of operators [52] and applying the BCH formula

eA+B = eAeBe−(1/2)[A,B] we find

Bx
+(t)Bz

−(0) = e−λ
2
x/2−λ2z/2exp

(
−λxb†eiωt + λxbe

−iωt + λzb
† − λzb

)
(A.6)

In the interest of getting all the destruction operators on the right hand side and the

creation operators on the left, the center two operators need to be exchanged

eλxb(t)eλzb
†

= eλzb
†
[
e−λzb

†
eλxb

†(t)eλzb
†
]

(A.7)

Applying the BCH formula to evaluate the expression

e−λzb
†
beλzb

†
= b+ λz (A.8)

allows us to express

eλxb(t)eλzb
†

= eλzb
†
exp

[
λxe

−iωt(b+ λz)
]

= eλzb
†
eλxλze

−iωt
eλxb(t) (A.9)
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So this leaves us for the electron-phonon correlation function for each wavevector q

fxz(t) =(1− e−βω)exp

(
−λ

2
x

2
− λ2

z

2
+ λxλze

−iωt
)

×
∞∑
n=0

e−βωnexp 〈n|
[
(λz − λxeiωt)b† − (λz − λxe−iωt)b

]
|n〉 (A.10)

defining u = λz − λxeiωt, we can expand in a power series

e−ua |n〉 =
∞∑
l=0

(−u)l

l!
al |n〉 (A.11)

Using the properties of the boson annihilation operators acting on the harmonic oscillator

states gives us

e−ua |n〉 =
n∑
l=0

(−u)l

l!

[
n!

(n− l)!

]1/2

|n− l〉 (A.12)

Using the orthogonality of harmonic oscillator states and identifying the Laguerre poly-

nomial of order n

〈n| e−u∗a†e−ua |n〉 = Ln(|u|2) (A.13)

Performing the summation over boson states by identifying the generating function of

Laguerre polynomials [52]

(1− z)
∞∑
n=0

Ln(|u|2)zn = e|u|
2z/(z−1) (A.14)

where z = e−βω and −z/(z − 1) = N = 1/(eβω − 1). This leaves us with

f qxz(t) = exp
(
−λ2

x(1 +Nq)/2− λ2
z(1 +Nq)/2

)
exp

(
λxλz(1 +Nq)e

−iωt + λxλze
iωtNq

)
(A.15)

Therefore the full electron-phonon correlation function is the product over phonon states
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Fxz(t) =
∏
q

f qxz(t)

=
∏
q

exp
(
−u2

x(1 +Nq)/2− u2
z(1 +Nq)/2

)
exp

(
uxuz

[
eiωqt +Nq

(
eiωqt + e−iωqt

)])
(A.16)

which in its continuous form (see the next section B) is

Fxz(t) = exp

(
−
ˆ ∞

0

dω

2ω2

(
Jx(ω) + Jz(ω)

)
coth

(
~βω/2

))
× exp

(ˆ ∞
0

dω

√
Jx(ω)Jz(ω)

ω2

(
i sinωt+ cos(ωt) coth

(
~βω/2

)))
(A.17)

which is the result we use in chapter 5.
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Appendix B

Connection between continuous and

discrete electron-phonon correlation

function

In the text we use two different forms for the electron-phonon propagator and here make

the link between the two. In the literature, the connection between the two is never

made and usually the reader is expected to assume the jump between the discrete and

continuous forms of the electron-phonon propagator. Here we start with the continuous

form

ϕ(t) =

ˆ ∞
0

dω
J(ω)

ω2

(
i sinωt− (1− cosωt) coth

(
~βω/2

))
(B.1)

Inserting the general form of the spectral function
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2

ˆ ∞
0

dω
∑
q

λ2

ω2
δ(ω − ωq)

(
i sinωt− (1− cosωt) coth ~βω/2

)
=
∑
q

u2
q

[
eiωqt − e−iωqt +

(
eiωqt + e−iωqt − 1

)
coth ~βωq/2

]
=
∑
q

u2
q

[
eiωqt − e−iωqt +

(
eiωqt + e−iωqt − 1

)
(1 + 2nq)

]
=
∑
q

u2
q

[
2eiωqt + 2nq

(
eiωqt + e−iωqt

)
− (1 + 2nq)

]
=
∑
q

u2
q

[
nq

(
eiωqt − 1

)
+ (1 + nq)

(
e−iωqt − 1

)]
(B.2)

where

nq =
1

e~βωq − 1
(B.3)

and we recognise the finally form as the discrete form of the electron-phonon propagator

(see Mahan).
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Appendix C

Full eigenvalues of

detuned-3-site-V-system

Here we present the eigenvalue solutions to the Hamiltonian

H3 = ε1 |1〉〈1|+ ε2 |2〉〈2|+ ε0 |0〉〈0|+ ∆10(|1〉〈0|+ h.c.) + ∆20(|2〉〈0|+ h.c.) (C.1)

where ε0 = 0 is the ground state. This Hamiltonian represents the most general case

of the 3-site-V system, with the potential for detuned upper levels ε1 6= ε2. We include

the solutions here for the bare-3-site-V system primarily to demonstrate the complicated

nature of the eigenvalues even without a bath. In the main text we mostly deal with the

tuned case ε1 = ε2. The eigenvalues are calculated to be

λ1 =
ε1 + ε2

3
−

3
√

2

3N

[
(ε1 + ε2)2 + 3Ω̃2 − ε1ε2

]
− N

3 3
√

2

λ2 =
ε1 + ε2

3
− (1 + i

√
3)

3N

[
(ε1 + ε2)2 + 3Ω̃2 − ε1ε2

]
+

(1− i
√

3)N

6 3
√

2

λ3 =
ε1 + ε2

3
− (1− i

√
3)

3N

[
(ε1 + ε2)2 + 3Ω̃2 − ε1ε2

]
+

(1 + i
√

3)N

6 3
√

2
(C.2)

where
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N =
[
− 9∆2

10ε1 + 18∆2
20ε1 + 18∆2

10ε2 − 9∆2
20ε2

+
[
4
(
−3
(
∆2

10 + ∆2
20 − ε1ε2

)
− (ε1 + ε2) 2

)
3

+
(
−9∆2

10ε1 + 18∆2
20ε1 + 18∆2

10ε2 − 9∆2
20ε2 − 2ε31 + 3ε2ε

2
1 + 3ε22ε1 − 2ε32

)
2
]1/2

− 2ε31 + 3ε2ε
2
1 + 3ε22ε1 − 2ε32

] 1
3

(C.3)

144



Appendix D

Fluctuation-dissipation theorem

The fluctuation-dissipation theory is a central feature of linear response theory and is

applied in the perturbative model in the text. The theorem relates the relaxation of a

weakly perturbed system to the thermal fluctuations in the environment i.e. the response

of the system to a small applied force is equivalent to the response to a spontaneous

fluctuation. The main result of the theory relates the power spectrum S(ω) of the

fluctuations, to the Fourier transform of the susceptibility χ(ω) (the linear response

function)

S(ω) = ~Imχ(ω) coth(~βω/2) (D.1)

with the random force correlation function given in the time-domain by

〈ξ(t)ξ(0)〉 =

ˆ ∞
0

dωJ(ω)
(

coth(β~ω/2)− i sin(ωt)
)

(D.2)

and the power spectrum is found to be [61]

S(ω) = J(ω) coth(β~ω/2) (D.3)
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Appendix E

Cubic polynomials

The central problem in this thesis involves investigating a 3-site system interacting with

its environment. Intrinsic to this problem in the various areas of the parameter space

of interest involves solutions to cubic polynomials which appear as the pole structure of

the propagators. Here we detail the general form that these solutions take as a reference

for the main section of the thesis. The formalism presented here can be easily checked

against those presented in [123, 124, 125]. Consider the equation

x3 + ax2 + bx+ c = 0 (E.1)

One solves this equation with the substitution

x = t− a

3
(E.2)

which produces the solvable cubic

t3 + pt+ q = 0 (E.3)

where

p =
3b− a2

3
, q =

2a3 − 9ab+ 27c

27
(E.4)

Limiting cases include;

If q = 0 then

t3 + pt = 0, t = ±
√
−p (E.5)
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and the original 3-roots are

x1 = −a
3
, x2,3 = ±

√
−p− a

3
(E.6)

If p = 0 then t = 3
√
−q and the 3-roots of our original equation are

x1 = 3
√
−q − a

3
, x2,3 = 3

√
−q(−1

2
±
√

3i/2− a

3
(E.7)

Beyond the simple cases outlined above we now present the general solutions. First we

must define the discriminant that determines the nature of the roots. The discriminant

is

D =
(q

2

)2

+
(p

3

)3

(E.8)

and the 3-regimes are;

If D > 0 then we have one real root and 2-complex conjugate roots and the solutions are

x1 = u− v − a

3
, x2,3 = −1

2
(u− v)± (u+ v)

√
3

2
i− a

3
(E.9)

where

u = 3

√√
D − q

2
, v = 3

√√
D +

q

2
(E.10)

If D < 0 then all 3 roots are real and distinct and the solutions are obtained with the

cosine substitution

x1 = 2 3
√
r cos

(
φ

3

)
− a

3

x2 = 2 3
√
r cos

(
(φ+ 2π)

3

)
− a

3

x3 = 2 3
√
r cos

(
(φ+ 4π)

3

)
− a

3
(E.11)

where

r =

√
(−p

3
)3, φ = arccos

(
−q
2r

)
(E.12)
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If D = 0 then all the roots are real and 2 are equal

x1 = 2 3

√
−q

2
− a

3

x2,3 = − 3

√
−q

2
− a

3
(E.13)
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Appendix F

Saddle point integration of optical

phonon correlation functions

Here I present the calculation of the correlation function for an optical phonon as required

in the text. The influence phase is given by

ϕop = iQ′op +Q′′op =

ˆ ∞
0

dω

ω2
e
− (ω−ω0)

2

ξ2 cos(ωτ)csch(~βω/2) (F.1)

This integral is divergent as it stands however the saddle-point approximation can be

used to calculate it [136]. This method is valid in the limit of very large exponential

arguments, which in this case corresponds to 1/ξ2 � 1. As ξ represents the full-width-

half-maximum (FWHM) of the Guassian peak, this condition applies to a very narrow

peak, centred around ω0. The saddle point method evaluates real integrals of the form

I =

ˆ b

a

dωe−xf(ω)g(ω) (F.2)

where x is very large. Another necessary condition for the use of the saddle-point method

is for the peak to be symmetrical about its center such that f(ω0) = 0, which is valid for

the Guassian lineshape used here. Expanding about ω0

f(ω) = f(ω0) +
1

2
f ′′(ω0)(ω − ω0)2 + ..., g(ω) = g(ω0) + ... (F.3)

which inserted in to the integral equation gives

I = e−xf(ω0)

ˆ b

a

dωe−
x
2
f ′′(ω0)(ω−ω0)2g(ω0) (F.4)
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Making the change of variables ω = ω0 + y
√

2/f ′′(ω0) such that

I = e−xf(ω0)

√
2

f ′′(ω0)

ˆ b′

a′
dye−xy

2

g(ω0) (F.5)

where a′ = (a−ω0)
√
f ′′(ω0)/2 and correspondingly for b′. The parameter x is very large,

so the reparameterised Guassian is also very narrow with center at y = 0 this time. This

means we can extend the limits to infinity. Thus,

I = e−xf(ω0)

√
2

f ′′(ω0)

ˆ ∞
−∞

dye−xy
2

g(ω0) (F.6)

Making a further change of variable z =
√
xy yields

I = e−xf(ω0)

√
2

xf ′′(ω0)

ˆ ∞
−∞

dze−z
2

g(ω0) (F.7)

and the Guassian integral can be performed to give

I = e−xf(ω0)

√
2π

xf ′′(ω0)
g(ω0) (F.8)

which is the result we use in the text.
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Appendix G

Pure dephasing dynamics in the

3-site-V system

I mention briefly in Section 3.4 of the main text how, in the limit of zero tunnelling

∆10 = ∆20 = ∆ = 0 (for the 3-site-V system), the system exhibits ‘pure dephasing’. This

corresponds to no change in the diagonal elements of the density matrix, but a decay in

the off-diagonal elements despite the absence of tunnelling between states. This is entirely

due to the fluctuating on-site energies induced by the bath, and leads to decoherence in

the system without energy dissipation. As this is an exactly solvable model, with just

three copies of the well known Independent-boson model, we merely comment on it in the

text and do not quote the corresponding calculations for the dynamics. Instead I include

them here for reference. The system is easily solved by transforming the Hamiltonian

with the Lang-Firsov unitary operator U = eS, where S = −
∑

αq uαq(bq − b†q) |α〉〈α| and

uαq = λαq/ωq such that H → UHU † = eSHe−S. Physically, this represents the shifting

of the boson cloud to its new equilibrium position. So S can be thought of as a shift

operator. Here we find (using the Baker-Campbell-Hausdorff formula)

UHU−1 =
∑
q

ωqb
†
qbq −

∑
q

uαq (G.1)

The dynamics of the coherences are thus

〈Pαβ(t)〉 = TrB
[
Uρs ⊗ ρBU−1UPαβU

−1
]

(G.2)

where we’ve assumed an initial spin-bath factorised state and inserted the identity 1 =

UU−1. Defining Φα = −2i
∑

q uαq(bq − b†q) we can apply the BCH formula again to state
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Pαβ = |α〉〈β| to evaluate

UPαβU
−1 = |α〉〈β|+

[
−i
∑
α

|α〉〈α| Φα

2
, |α〉〈β|

]
+ ...

= |α〉〈β|
(

1 + i(Φβ/2− Φα/2) + ...
)

(G.3)

eventually one finds (including the biases now)

〈Pαβ(t)〉 = Re e−i(εα−εβ)e−Q
′′(t)

Q′′αβ(t) =

ˆ
dω
|Jα(ω)− Jβ(ω)|

ω2
(1− cos(ωt)) coth

(
βω

2

)
(G.4)

where we’re interested in the probability of occupancy of the off-diagonal states and

so inspect the real part. We see that the bath correlation term above corresponds to

the real part of the reparameterised Feynamn-Vernon influence function as discussed

in the introduction. It is indeed this term that is responsible for dephasing owing to

the self-interaction of the off-diagonal paths in the density matrix. The coherences are

exponentially damped in this regime with the rate depending on the difference of the

spectral densities corresponding to the states constituting the coherent superposition.

The bath correlation function Q′′ determines the rate Γαβϕ , which is the pure dephasing

rate: the rate at which the off-diagonal elements are suppressed without relaxation effects

due to tunnelling processes. When tunnelling processes are included, the decay of the

off-diagonal density matrix elements will include a combination of the pure dephasing

rate and relaxation rate. For now however, without tunnelling included, the decoherence

rate is equivalent to the dephasing rate.

The spectral densities are unspecified in the above but generally there will be some

dependence of the coupling on the position of the wells. Since the dephasing rate is

evidently dependent on the difference between spectral densities, it will also depend on

the well separation and as this increases the dephasing rate does accordingly. This makes

sense physically as for larger well separation we expect the overlap between wavefunctions

to decrease and coherences to become less pronounced.

For the Ohmic case (s=1) we have for the spectral density Jα(ω) = ηαωe
ω/ωc such that

the frequency integral can be formed in the bath correlation function to get
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Q′′αβ(t) =
1

2
γαβ ln(1 + ω2

c t
2) + γαβ ln

[
β

πt
sinh

(
πt

β

)]
(G.5)

where γαβ = (ηα − ηβ)2/π~. In the various limits we find for the dynamics

|〈Pαβ(t)〉| = 1

[1 + (ωct)2]γαβ/2
, T = 0K (G.6)

where for short times below the characteristic time-scale of the bath

|〈Pαβ(t)〉| = 1− γαβ
(ωct)

2

2
, ∀ ωct� 1, T = 0K (G.7)

For intermediate times we observe the power-law governed dephasing

|〈Pαβ(t)〉| = (ωct)
−γαβ ∀ 1/ωc � t, T = 0K (G.8)

So we see that at zero temperature we still have dephasing but at a slower than exponen-

tial rate; instead the off-diagonal elements decay algebraically. Recall that when γα = γβ

the bath decouples from the central system and we expect the decoherence rate in this

case to go to zero. When we include non-zero temperatures

|〈Pαβ(t)〉| = [(~β/πt) sinh(πt/~β)]−γαβ

[1 + (ωct)2]γαβ/2
(G.9)

We can once again inspect for short times. First we look at the low-T case where we

expand in the dimensionless quantity πt/~β << 1, which essentially defines the limit of

small bath fluctuations relative to tunnelling energy i.e. for t ∼ 1/∆, kBT/~∆� 1

|〈Pαβ(t)〉| =

[
1

[1 + (ωct)2]γαβ/2

][(
πt

~β

)−γαβ−1

− γαβ
6

(
πt

~β

)−γαβ+1
]
, ∀ πt/~β � 1

|〈Pαβ(t)〉| =

[
1

[1 + (ωct)2]γαβ/2

](
πt

2~β

)
exp(−γαβπt/~β), ∀ πt/~β � 1 (G.10)

For the super-Ohmic case (s=3) we have for the spectral density Jα(ω) = ρα(ω3/ω2
c )e

ω/ωc .

Calculating the bath-correlator

Q̃′′ph(t) =

ˆ ∞
0

dω ωe−ω/ωc [1− cos(ωt)] coth(~βω/2) (G.11)
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we find for the zero-temperature case

Q̃′′ph(t) =
ω2
c (ωct)

2
[
3 + (ωct)

2
]

[
1 + (ωct)2

]2 for T = 0K (G.12)

For short and long times respectively (to 2nd-order in the respective small parameters)

Q̃′′ph(t) = 3ω4
c t

2 for ∀ T = 0K,ωct� 1

Q̃′′ph(t) = ω2
c

(
1 + (ωct)

2

(ωct)2

)
∀ T = 0K,ωct� 1 (G.13)

For non-zero temperatures we get a temperature dependent correction and the integral

is computed to be

Q̃′′ph(t) = −
ω2
c (ωct)

2
[
3 + (ωct)

2
]

[
1 + (ωct)2

]2 − 1

4(~β)2

[
2ψ′(1/ωc~β)− ψ′

(
1− iωct
~ωcβ

)
− ψ′

(
1 + iωct

~ωcβ

)]
(G.14)

which still contains the small parameter ωc~β � 1 intrinsic to the continuous-discrete

system truncation procedure and would be inconsistent to relax it now. We find

Q̃′′ph(t) =
ω2
c (ωct)

2
[
3 + (ωct)

2
]

[
1 + (ωct)2

]2 +
π4t2

[
1 + (ωct)

2
]2

240(~β)4
[
1 + (ωct)2

]2 (G.15)

We can explore the same limiting time-domains as before

Q̃′′ph(t) = 3ω4
c t

2 +
π4t2

240(~β)4
for ∀ ~∆/kBT � 1, ωct� 1

Q̃′′ph(t) = ω2
c

(
1 + (ωct)

2

(ωct)2

)
+

π4t2

240(~β)4
∀ ~∆/kBT � 1, ωct� 1 (G.16)

where in both cases we obtain a temperature dependent correction that goes as T 4. So

for the case of short times and low temperatures, the loss of coherence is algebraic in

time
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|〈Pαβ(t)〉| ∼ 1− 3γαβω
4
c t

2 − π4γαβt
2

(~β)4
(G.17)

and for long times and/or high temperatures, the loss of coherence is of course exponential

in time.
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