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Abstract 

Securing a healthy and biodiverse ocean is vital to our human wellbeing. However, marine 

conservation is challenging, especially for data-poor species, whose habitats and threats 

are understudied. My dissertation explored how to address such challenges at two large 

spatial scales (in China and globally), with a focus on the little studied seahorses 

(Hippocampus spp.).  

In the first two data chapters, I explored the utility of various sources of information 

about species and habitat covariates in species distribution models (SDMs). My results 

from the first chapter showed that local ecological knowledge provided useful 

biogeographic data of five Chinese seahorse species to predict their distributions, which 

were mainly associated with ocean temperature. My second chapter at the global scale 

indicated that integrating citizen sciences, museum collections, and research-grade data 

with continuous predictors derived the best SDM models; these models predicted reliable 

habitat maps for 33 out of 42 species that were primarily associated with depths, 

proximity to macrohabitats (e.g., sponges), pH, and ocean temperature. 

In the third analytical chapter, I explored global threat patterns and conservation status 

for 42 seahorse species with two cumulative-human-impact (CHI) models (spatial and 

non-spatial) and random forest (RF) models. I found that human-impact indices (from 

the CHI models) can be used to predict conservation status at high accuracies (87% and 

96%) in RF models. Applying a non-spatial CHI model derived indices better predicted 

conservation status, while using a spatial CHI model identified distribution patterns of 

threats. 

In the fourth data chapter, I integrated the derived biogeographic and threat maps in a 

novel framework to set conservation priorities for seahorse habitats in China and globally, 

using Marxan software. I found that the two major outputs of Marxan (i.e., selection 

frequency and best solution) were useful to determine feasible priority solutions at large 

spatial scales.  
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My results identified valuable datasets and approaches to advancing ecological and 

conservation knowledge for data-poor marine species, an essential precursor to action 

for the ocean. 
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Lay Summary 

Managing and protecting marine life requires an understanding of where species live, 

what threatens them and their habitats, and what we might do to help them.  Seahorses 

are particularly charming examples of the many marine species that are little understood.  

I set off to study seahorses in China, where they are heavily fished, and around the world. 

I found we could learn most by integrating information from diverse sources, including 

local fishers’ knowledge, citizen science (e.g., divers’ observations), museum 

collections, and scientists’ knowledge and data. We then applied novel computer 

techniques (e.g. machine learning models and decision-making software) and 

considered our results from both natural and social science perspectives.  This helped us 

find out what seahorses are threatened and allowed us to plan possible conservation 

action, particularly for deciding where to urge creation of protected areas.  Our new 

methods are of value to many species and spaces. 
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Chapter 1: Introduction 

1.1 Rationale 

As oceans face unprecedented pressures, conservationists urgently need to know about 

organisms whose populations, habitats, and threats are understudied. Over the past few 

centuries, intensified human activities have imposed enormous pressures on the oceans 

(Halpern et al. 2008, McCauley et al. 2015). These pressures have gradually degraded the 

health of the oceans, and thus depleted the benefits (e.g., food provision) that oceans have 

given us since time immemorial (Halpern et al. 2012). For instance, we have overfished 

31% of commercially important fish stocks in the ocean (FAO 2016). Non-selective fishing 

gears (e.g., bottom trawlers, purse sines) have been particularly problematic because of 

their high bycatch of non-target organisms, such as marine turtles, fishes, and many other 

organisms (Alverson 1994, Lewison et al. 2004). In addition to fishing, pollutions, habitat 

destruction, invasive species, and climate change are collectively making marine 

conservation very challenging. Currently, thousands of marine species can be considered 

as data poor given the few data available about their populations, habitats, or threats that 

can help determine conservation status or action plans (McCauley et al. 2015). Such data 

paucity has long been a notable concern in marine conservation.  

 

In this thesis, I illustrate new ways to explore species distributions, threats, and priority 

habitats for data-poor marine organisms, with ecological and conservation perspectives. 

Understanding species distributions and habitat/environmental drivers is key to ecological 

studies and wildlife conservation (Brooks et al. 2002, Hanski 2011). Determining 

threatened status and underlying anthropogenic stressors is also fundamental for 

conservation sciences (Halpern et al. 2008, Davidson et al. 2012). However, revealing the 

distribution and threat patterns demands considerable data and is generally very 

challenging for understudied species. To address this challenge, I examine the utility of 

multiple types of datasets (including stakeholders’ knowledge) in analyzing species 

distribution patterns and threatened status for data-poor species. To explore the value of 

these studies for guiding conservation practices, I apply my newly acquired knowledge to 
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identify priority areas/habitats for data-poor organisms. It is my intention that such 

prioritization can be used to help reconcile marine conservation and economic use 

(Margules and Pressey 2000, Aswani et al. 2018).  

I am particularly interested in case studies of seahorse species (Hippocampus spp.) at large 

spatial scales. Seahorses are flagship organisms for marine conservation (Foster and 

Vincent 2004). They are a genus of sedentary fishes living in coastal waters, which are at 

the front line of exposure to human impacts. Although conservation actions are urgently 

needed, seahorse populations are understudied in most regions (Vincent et al. 2011), with 

no papers published on the ecology or distribution of most species.  In my thesis, I first 

conduct a national scale biogeographic study on seahorse populations in China (Chapter 

2), where I come from. I then zoom out to the global scale to examine distribution patterns 

(Chapter 3) and threat patterns (Chapter 4) for different seahorse species. Such large 

geographic coverage is not only essential to generalizing ecological patterns (e.g., species-

habitat relationships) (MacArthur 1984, Rahbek 2005), but also vital to obtaining a holistic 

profile of human impacts upon different populations/species. Based on these studies, I then 

set conservation priorities for Chinese seahorse populations and for all seahorse species 

around the world (Chapter 5).  

1.2 Background 

To stem biodiversity loss with constrained resources, conservation prioritization (a.k.a., 

conservation planning) is an essential approach that is used worldwide (Margules and 

Pressey 2000). Human activities (e.g., overexploitation) are causing a biodiversity crisis 

with species extinction rates up to 1000 times higher than background (Pimm et al. 1995). 

Populations of plants (e.g., tropical forests) and animals (e.g., amphibians, mammals) 

continue to decline both in terrestrial and aquatic ecosystems (Bland et al. 2015, McCauley 

et al. 2015). Facing this challenge, scientists have developed various approaches and advice 

to guide decision makers (e.g., government leaders) to take actions (Gullison et al. 2000, 

Wilson et al. 2009). As conservation resources (e.g. funds) are usually limited (James et al. 

1999, Waldron et al. 2013), resource-use prioritizing is crucial in many conservation 

initiatives. This prioritization includes selecting populations/species (e.g., umbrella species, 
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flagship species) under threat to be preferentially protected, and choosing priority habitats 

to protect species in situ ((Roberge and Angelstam 2004, Brooks et al. 2006). My 

dissertation focus on the latter, which is known as conservation prioritization/planning. It 

is a vital approach in designing protected areas to meet a given conservation target (e.g., a 

certain amount of habitats) with minimum costs (Margules and Pressey 2000).  

To inform conservation planning, we first need to address at least four essential questions: 

(1) Which species are threatened and where are they? (2) Which human-induced stressors 

drive the species to be threatened? (3) Where are the populations impacted the most and 

the least? (4) How can we integrate socioeconomic costs in conservation prioritization? 

The first question may emerge from field observations (e.g., population decline) and is 

fundamental to determining conservation targets (Joseph et al. 2009). The second question 

then arises to guide conservation measures (e.g., threat mitigation programs) for threatened 

species (Maxwell et al. 2013). To better do so, we should know where populations are the 

most and the least threatened (i.e., the third question). Locating the most threatened 

populations could inform where conservation measures are urgently needed (Maxwell et 

al. 2013). Often the least threatened populations may be preferred in conservation planning 

as they imply higher probability of population recovery with potentially minimum cost 

(Klein et al. 2013).  However, other socioeconomic costs (e.g., land/sea uses) should also 

be considered in conservation prioritization to ensure that the proposed priorities will be 

well supported by stakeholders (Ban and Klein 2009). 

Addressing the above four questions is challenging but urgently needed for many 

organisms, whose populations and conservation context are understudied. First, we need 

solid data to assess threatened status (a.k.a., conservation status). These data may include 

population’s demographic information (e.g. population size and trend), species distribution 

maps, and knowledge about potential threats (Mace et al. 2008, Davidson et al. 2012). Such 

data are currently unavailable for 12,464 animal species (i.e., Data Deficient species) on 

the IUCN Red List – 18.5% of all assessed animals (IUCN 2018). Second, we need data to 

understand why certain species are threatened. Different species can be threatened because 

of a variety of human-induced stressors, including overexploitation, habitat destruction, 

pollution, climate change, and invasive species (Gibbons et al. 2000, Halpern et al. 2008). 



4 
 

Third, we need data about the distribution of species and stressors – and about how species 

respond to stressors - to understand where species are most/least threatened (Crain et al. 

2008). Such studies have only been done for certain species in some data-abundant regions, 

such as Australian continent (Evans et al. 2011), and Mediterranean Sea (Coll et al. 2012). 

Forth, we need good spatial data to estimate socioeconomic costs if conservation 

prioritization is to be meaningful (Ban et al. 2009). This is especially true when the spatial 

scale is very large and data quality may vary from place to place (Agardy et al. 2011). 

Nevertheless, most data-poor species are predicted to be threatened, creating a huge need 

for conservation actions in many data poor situations (Bland et al. 2015).  

Facing the challenges of data paucity, scientists have been learning how to tap into multiple 

data sources and modeling approaches. These data sources may include local/traditional 

ecological knowledge (Huntington 2000, Drew 2005), citizen science (Silvertown 2009, 

Bonney et al. 2014), museum collections, unpublished data, and expert knowledge (Martin 

et al. 2012, Bennett et al. 2017). Local ecological knowledge refers to the knowledge 

acquired by local citizens (e.g., hunter, fisher) through interactions with their environment 

and wildlife therein (Huntington 2000). It can be very useful in monitoring local population 

abundance (Anadon et al. 2009, Parry and Peres 2015), and mapping habitats (Bergmann 

et al. 2004, Aylesworth et al. 2017). Citizen science is the scientific research conducted 

partly or wholly by people who are generally not professional scientists (Silvertown 2009). 

Citizen-science initiatives (e.g., iNaturalist) can be cost-effective for collecting 

biogeographic data both on land and in the ocean (Silvertown 2009, Thiel et al. 2014), 

assuming careful attention to data quality. Museum collections and unpublished data can 

provide historical and up-to-date information for data-poor species (Suarez and Tsutsui 

2004, Tweh et al. 2015). Expert knowledge can be vital to evaluating species vulnerability 

to human-induced stressors for data-poor species (Cheung et al. 2005, Maxwell et al. 2013). 

On the other hand, computer modeling techniques (e.g., machine learning) can empower 

scientists to deal with data-poor situations (Elith et al. 2006, Phillips et al. 2006). For 

instance, species distribution models can be very useful to derive spatially-explicit maps 

for species with limited occurrences (Franklin 2010). 
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Marine conservation planning lags far behind its terrestrial counterpart and is more 

challenging (Turpie et al. 2000, Lourie and Vincent 2004). Marine ecosystems – especially 

the near-shore regions – have been facing increasing threats from land- and ocean-based 

human pressures (Halpern et al. 2008, Halpern et al. 2015). However, we generally know 

little even about many of the abundant marine species. Only recently (since ~ 1960s) have 

we gained technological capabilities to observe marine organisms in the oceans, and to 

obtain essential knowledge about their populations and habitats (Lourie and Vincent 2004, 

Selig et al. 2014). Human-derived threats to marine ecosystems and ocean health are 

increasingly recognized and evaluated (Halpern et al. 2012, Martin et al. 2012). To date, 

however, initiatives towards setting marine priorities have only been conducted for some 

well-known marine animals, such as commercial fishes (Turpie et al. 2000, Fox and 

Beckley 2005), sea turtles (Wallace et al. 2011), and sharks (Lucifora et al. 2011) at the 

global or regional scales. There is little prioritization research specifically focused on data-

poor marine species. Although ecosystem-based management is becoming the notional 

mainstream of fisheries management and conservation, conservation planning for focal 

species (e.g., flagship species) deserves no less concern than community- or ecosystem-

level research (Olsoy et al. 2016). 

As a Chinese national, I feel that China tends to face greater challenges than many 

developed maritime nations in marine conservation. First, marine biological research only 

began in the 1920s in China (Wang and Nie 1932, Xiang 2003), while in the Europe this 

can be traced back at least two centuries earlier to the time of Captain James Cook (1728 

– 1779). Moreover, marine biogeographic data are still rarely documented or published in 

China (Liu 2013), while such information are often much better recorded and open-access 

in many developed countries (Boakes et al. 2010). Second, compared with the developed 

western countries, marine conservation in China can be more severely challenged by the 

socioeconomic context. This includes the lower social-wellbeing status, higher demand for 

economic growth, and higher livelihood dependency of local communities on fisheries 

(Caldwell and Vincent 2013, Han et al. 2017). As a result, China is facing great challenges 

in marine conservation initiatives such as the implementation of marine protected areas 

(Qiu et al. 2009).  
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Within this thesis, I address the four conservation questions for marine data-poor organisms 

in China and at the global scale. More specifically, I conduct studies to explore the utility 

of various biogeographic datasets (e.g., local ecological knowledge, citizen science) in 

predicting species distributions and species-habitat relationships.  I then integrate expert 

knowledge and spatial data to identify major stressors and map cumulative human impacts 

for data-poor species. These results are used to set conservation priorities for data-poor 

species in different socioeconomic scenarios. My goal is to generate both ecological and 

practical knowledge to guide marine conservation planning for data-poor species. 

1.3 Case Study 

My thesis uses seahorses (Hippocampus spp.) to examine pragmatic approaches in deriving 

conservation knowledge for data-poor marine species. At the beginning of my research (in 

2016), only 42 species were considered as valid (Lourie et al. 2016; Zhang et al. 2016), 

thus this number was kept consistently throughout the thesis. But it should be noted that a 

new species was published in 2017 (Han et al. 2017), and there are still debates on 

taxonomy of serval species complex (e.g., Hippocampus kuda, see details in Lourie et al. 

2016) and new species might emerge in the future. As a case study, I investigate Chinese 

seahorse populations at a national scale and the 42 species at the global scale.  

Seahorses are a genus of data-poor fishes, whose populations, habitats, and threats are 

generally understudied for most species (Vincent et al. 2011). Seahorse species live in the 

world’s shallow seas (typically < 30 m in depth) from the temperate to the tropical zones 

(Foster and Vincent 2004). These small sedentary fishes are masters of camouflage and 

locally rare with low population density (Foster and Vincent 2004; Vincent et al. 2011). 

Such biological traits rendered them difficult to find or study in the field (Aylesworth et al. 

2017). As a result, population demographic data (e.g., population size, growth rate) and 

habitat knowledge were only known for a handful of species at small spatial scales (e.g., a 

lagoon or an estuary) (Vincent et al. 2011, Caldwell and Vincent 2013, Cohen et al. 2017). 

There were no spatially-explicit maps of distributions for seahorse species, although we 

roughly inferred their distribution ranges (see geographic range maps in Lourie et al. 2016). 

Among the 42 species, 14 species were considered as threatened, 11 species were not 

threatened, but 17 species were “Data Deficient” according to the IUCN Red List 
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assessments (IUCN 2018). Major known threats included fishing using non-selective gears 

(e.g., bottom trawlers, purse seines) and habitat degradation (Vincent et al. 2011; IUCN 

2018). Nevertheless, there were no maps to demonstrate human impacts for each species.  

Using seahorses as the case study is meaningful to advancing marine conservation. First, 

seahorses’ biological traits render them flagship species in promoting marine conservation 

around the world (Vincent et al. 2011, Harasti et al. 2014). Seahorses display a fantastic 

diversity of attractive looks, mate fidelity (for most species), and unique male pregnancy 

(Foster and Vincent 2004; Lourie et al. 2016). Their low fecundity, mate fidelity, small 

home range, low population density, and inshore residence can render them susceptible to 

human activities (Foster and Vincent 2004). Seahorses are among the most attractive 

denizens of many vital marine ecosystems such as seagrass beds, estuaries, mangroves, and 

coral reefs (Foster and Vincent 2004). Protecting seahorse might benefit many other 

species living in the same habitats (Vincent et al. 2011). Second, there is some suggestion 

that seahorse populations may be able to recover well if the impacts are not severe and 

removed, given their rapid growth rate, early age at maturity, and short generation time 

(Curtis and Vincent 2006). Such an optimistic outlook may encourage marine conservation 

actions. Third, seahorses are found, fished and traded around the world for traditional 

medicines, curios, and aquarium fishes (Vincent et al. 2011, Foster et al. 2016). Global 

concerns about the unsustainable trade led to seahorses being the first fully marine fishes 

listed on Appendix II of the Convention on International Trade in Endangered Species 

(CITES) in 2002 (effective since 2004) (Vincent et al. 2011). Such a worldwide visibility 

and relevance makes seahorses an excellent ‘story-teller’ for global marine conservation.  

China faces enormous challenges in marine conservation and fisheries management along 

with its rapid development. China has grown to be the second largest economic power 

(GDP ~ 11 trillion USD in 2016; data.worldbank.org) through unprecedented economic 

development over past four decades. However, such a long-term rapid growth has included 

overexploitation of China’s marine resources and accelerated the degradation of coastal 

ecosystems (He et al. 2014). Nowadays China’s marine systems provide ecosystem 

services to approximately half of the nation’s population and 45 of the 60 major cities (He 

et al. 2014), while they are also the home to over 22,000 known marine species (Liu 2013). 
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Nearly 6% of the coastal provinces’ GDP (2010) came directly from marine industries 

including fisheries, tourism, transportation, and oil/gas production (SOA 2010). 

Approximately half of the nation’s domestic marine catch comes from trawlers (Goldstein 

2013, Shen and Heino 2014), which have been blamed for the decline of body sizes and 

trophic levels of marine fish (He et al. 2014). Water pollution has caused harmful algal 

blooms (e.g. red tides) which are nearly ten times more frequent than in the 1980s (He et 

al. 2014). Coral coverage in the South China Sea has decreased to less than 15% of that 

four decades ago (Zhao et al. 2012, He et al. 2014). Facing these and other challenges, 

China has gradually established many well-intentioned laws and policies to stem marine 

overexploitation and ecosystem degradation. These include fisheries management policies 

(e.g. ‘Zero Growth’) to sustain marine catch (see a review by Shen and Heino 2014), marine 

protected areas and conservation planning (e.g., ecological redline) to prevent overuse of 

coastal habitats (Qiu et al. 2009, Lu et al. 2015). However, a lack of local political will – 

aided by a dearth of scientific information - has limited China’s performance in marine 

conservation (Liu 2013; Lu et al. 2015). 

Chinese seahorses were among the most poorly known seahorse populations around the 

world, despite being heavily exploited. China is considered as the largest consumer of dried 

seahorses (Vincent et al. 2011). Seahorses are distinguished by their heavy use (in trade 

amounting to tens of millions of individual seahorses per year) in Traditional Chinese 

Medicine (TCM), which accounts for about 95% of seahorses in trade (Vincent et al. 2011, 

Lawson et al. 2017). The use of seahorses in TCM can be traced back to about 2,000 years 

ago (Tang 1987, Zhu and Woerdenbag 1995), and is still quite common in China especially 

the southern coastal areas (e.g., Hong Kong and Guangdong). However, formal seahorse 

population and conservation studies were rare in China. Most studies focus on seahorse 

evolution, medical functions, and aquaculture. Six seahorse species were purportedly 

present, and all were considered as threatened by China’s Red List based on the same 

criteria developed by IUCN (Wang and Xie 2009). One of them, H. kelloggi (Great 

seahorse), is on China’s List of Wildlife under National Protection (MEP 2002). The other 

four have been proposed for addition to the List (Zhang Chun-Guang, per. comm.).  
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1.4 Context and Collaborators 

My study is supported by the Project Seahorse (www.projectseahorse.org) team, based at 

the University of British Columbia and the Zoological Society of London (UK). Project 

Seahorse is an interdisciplinary and international organization committed to conservation 

and sustainable use of the world’s coastal marine ecosystems. We engage in connected 

research and management at scales ranging from community initiatives to international 

accords. Collaborating with stakeholders and partners, we use seahorses to focus our efforts 

in finding marine conservation solutions. We serve as the IUCN Seahorse, Pipefish and 

Stickleback Specialist Group (www.iucn-seahorse.org).  Project Seahorse has engaged in 

China intermittently since 1993. 

In China, my research was supported by many organizations, including academic 

institutions, local governments, fishing communities, NGOs, etc. Colleagues from the 

South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences 

(CAFS) provided the major support to help me reach to many local fishers in South China 

Sea. Colleagues from the Yellow Sea Fisheries Research Institute, CAFS helped me 

establish contacts with local fishers in the East China Sea and Yellow Sea. I provided more 

detailed information about these collaborators in thesis Chapter 2 and acknowledged their 

contributions to my research. 

1.5 Research Questions 

In this thesis, I address four major questions related to conservation research on data-poor 

marine species. These questions are as follows: 

1) How is local fishers’ ecological knowledge useful for mapping distributions for 

data-poor marine species? (Chapter 2) 

2) How can we derive useful species occurrences and habitat variables for identifying 

suitable habitats of data-poor marine species at the global scale? (Chapter 3) 

3) How can we estimate cumulative human impacts and threatened status for data-

poor marine species? (Chapter 4) 



10 
 

4) How can we identify priority areas for data-poor marine species at large spatial 

scales? (Chapter 5) 

1.6 Thesis Outline 

This dissertation contains the introduction (Chapter 1) and four research chapters, followed by a 

general discussion about conservation implications and research suggestions for data-poor marine 

species. The four research chapters are highly organized to address the four research questions (Fig. 

1.1). 
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Figure 1. 1 Schematic outline of this thesis. 
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1.6.1 Chapter 2: Integrating multiple datasets with species distribution models to 

inform conservation of the poorly-recorded Chinese seahorses 

In Chapter 2, I examine the value of local ecological knowledge in determining 

distributions of Chinese seahorse populations. My interest is to answer four specific 

questions: 1) How different is local fishers’ knowledge compared with researchers’ 

observations? 2) How can we integrate coarse-grain species data in species distribution 

models? 3) How does the distribution pattern and species-habitat relationship differ 

among seahorse species? To answer these, I gather species data from global sources, 

Chinese peer-reviewed literature, and local fishers’ ecological knowledge. I use species 

distribution models (SDMs) to examine their quality in predicting presences for each 

species. Among the many marine species poorly studied in China, seahorses are highly 

valued and used as traditional medicine in large numbers by Chinese people. However, 

we still know little about the species composition and distribution ranges of these 

valuable species in China’s seas. In this chapter, I undertake the first systematic study to 

understand the species composition, geographic distributions, and ecological traits of 

Chinese seahorse populations. To fill knowledge gaps, I deploy semi-structured 

interviews to gather local ecological knowledge from Chinese fishers – an approach that 

has rarely been used in China.  

1.6.2 Chapter 3: Predicting distributions, habitat preferences, and associated 

conservation implications for a genus of data-poor species, seahorses 

(Hippocampus spp.) 

In this chapter, I examine suitable habitats and habitat preferences for seahorse species at 

the global scale. Specifically, I address four questions: 1) How does citizen science and 

museum collections contribute to map suitable habitats for data-poor species? 2) What 

are the useful habitat variables correlated with seahorse species? 3) How can we apply 

species distribution models in assessing conservation status for data-poor species?  

Although data-poor species are by its definition understudied, there are some piecemeal 

occurrences hidden in existing databases such as the Ocean Biogeographic Information 

System, unpublished studies, peer-reviewed literatures, and citizen sciences. Collating 

species data from such sources is needed to maximize data availability and minimize 
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errors, although their quality might vary in resolution and accuracy. Moreover, habitat 

data (e.g. locations of coral reefs) might be essential predictors for modeling distribution 

of marine species.  The appropriate use of both species and habitat data can be crucial to 

model performance and species-habitat relations. My research in this chapter represents 

the first attempt to explore the above issues for a genus of data-poor marine fish species 

(i.e. seahorses).  

1.6.3 Chapter 4: Cumulative human impact models reveal threat patterns of 

seahorses (Hippocampus spp.) 

In Chapter 4, I develop quantitative models to evaluate cumulative human impact (CHI) 

for seahorses, and use the result to estimate their threatened status at the global scale. In 

undertaking this research, I am interested in answering three major questions: 1) Can 

linear-additive models be useful to quantify CHI for data-poor seahorses? 2) Are human-

impact indices based on CHI models useful to predict conservation status for seahorses? 

3) What are the major stressors and where seahorses are threatened the most/least? Threat 

status is poorly known for thousands of data-poor marine species, despite the IUCN’s 

efforts. Studies on cumulative human impact (CHI) might provide a useful approach to 

infer threats for such data-poor marine organisms. The CHI research assesses cumulative 

human impact based on the intensity of human stressors and expert knowledge about the 

vulnerability of the species to each stressor. Previous CHI studies have mainly focused on 

mapping human impacts on marine habitats, with litter attention given to score CHI for 

particular species. Theoretically, species with higher CHI scores are more likely 

threatened by human activities. However, assessing CHI is challenging since species’ 

responses to stresses may be non-linear and interactions between stressors are common in 

nature (i.e., additive, synergistic, antagonistic effects). Given these are difficult to 

determine for most marine species, previous studies often utilize linear-additive models. 

For this chapter, I develop linear-additive models to quantify CHI to address the three 

research questions for seahorses.  
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1.6.4 Chapter 5: Conservation prioritization at large spatial scales for seahorses 

(Hippocampus spp.) 

In Chapter 5, I combine the research results from Chapters 2 – 4 to identify conservation 

priorities for seahorses in China and around the world. I am mainly interested in 

exploring three questions at large spatial scales: 1) How can we incorporate 

socioeconomic data in marine conservation planning? 2) How can we derive priority 

solutions to inform conservation actions? 3) Where are the priority areas for global and 

Chinese seahorses? Marine protected areas (MPAs) play a vital role in addressing fishing 

pressures on marine ecosystems and species. However, MPAs are frequently challenged 

by local communities because of the dearth of socioeconomic considerations included in 

designing MPAs. Conservation prioritization or planning at large spatial scales is 

challenging, although there is an emergent demand to create large-scale networks of 

MPAs. There is also a geographic bias on marine conservation prioritization at regional 

scales, with little research has been conducted in developing countries such as China, 

which faces one of the highest levels of cumulative human impact around the world. The 

extent of spatial gaps between present MPAs and priority areas for marine species almost 

remains unknown, although both areas are expanding. In the final research chapter, I 

develop a conservation prioritization framework for marine species at large spatial scales. 

Based on this framework, I incorporate socioeconomic costs with seahorse and human-

impact maps (from the above chapters) to conduct conservation prioritization in China 

and globally.  

1.6.5 Chapter 6: Discussion 

In this final chapter, I end with a general discussion of findings from my thesis, their 

conservation implications for data-poor marine species, and future research directions. 
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Chapter 2: Integrating multiple datasets with species 

distribution models to inform conservation of the 

poorly-recorded Chinese seahorses 

2.1 Summary 

Modeling and mapping species distributions are vital to biodiversity conservation but are 

challenging for data-limited species whose localities are poorly recorded. Here I examine 

the utility of three datasets and species distribution models in conservation of seahorses 

(Hippocampus spp.), a genus of poorly-recorded marine fishes. I collated occurrences from 

field data of species sightings (SS), peer-reviewed literature (PRL), and fishers’ local 

ecological knowledge (LEK) for five seahorse species in China. I modelled seahorse 

distributions using different combinations of these datasets. I first compared model 

performance and predictions between PRL and LEK, and then evaluated the impact of 

adding LEK and/or PRL to SS. My results indicated that LEK provided higher-resolution 

maps than PRL and tended to generate slightly better models. There is more predictive 

consistency between LEK and PRL on presence-probability maps than on 

presence/absence maps. Adding LEK and/or PRL to SS improved model performance 

across species. My study suggests that integrating LEK (and PRL) and limited SS with 

species distribution models can usefully inform conservation for poorly-recorded species. 

2.2 Introduction 

Species distribution maps are vital to biodiversity conservation (Pimm et al. 2014). 

Anthropogenic activities have driven incredible biodiversity loss and ecosystem 

degradation, which in turn has significant impact on human society. To protect the 

threatened wildlife, we need biogeographic information to assess their conservation status 

(Mace et al. 2008), and design nature reserves (Lourie and Vincent 2004, Micheli et al. 

2013). Wildlife habitat maps are also indispensable for resource management, as new 

development projects expand across land and the sea (McShane et al. 2011, Reis et al. 

2012). 
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Mapping species distributions is challenging for poorly-recorded species, whose 

population localities are poorly documented in peer-reviewed literature or other sources. 

This difficulty often necessitates the use of multiple datasets, including new field data. 

Fine-resolution (e.g. 10 x 10 m2) species sightings (SS, in the form of GPS coordinates) 

from natural history collections or other sources (e.g. citizen science) are the most 

frequently-used datasets. But SS collection is often biased towards easily-accessed regions 

and common taxa (Phillips et al. 2009, Robinson et al. 2011). Peer-reviewed literature 

(PRL) can be a second dataset, but it may only contribute coarse range maps for poorly-

recorded species. A third source of species data is local ecological knowledge (LEK), 

which refers to the knowledge system learnt by people through interactions with their local 

environment (Berkes 1993). Compared with traditional surveys (e.g. transect sampling), 

interview-based LEK research can generate cost-effective but often coarse-resolution (e.g. 

10 x 10 km2) datasets (Carter and Nielsen 2011, Laze and Gordon 2016).  

Species distribution models (SDMs), which predict presence probability of focal species 

based on limited species presences/absences and environmental data, might provide a 

powerful way to derive spatially-explicit maps and to inform conservation for poorly-

recorded species (Guisan and Thuiller 2005, Franklin 2010). The predictive maps based on 

SDMs have facilitated population surveys for rare species (Guisan et al. 2006, Stirling et 

al. 2016), and are useful for conservation planning (Guisan et al. 2013). Some SDMs 

contain techniques to examine species-habitat relationships, which are central to ecology 

(Guisan and Thuiller 2005). In literature, there are basically two types of SDMs regarding 

the availability of species-absence data: presence-absence models, and presence-only 

models (see Franklin 2010 for a review). Presence-only models are more suitable to poorly-

recorded species since their absences are hard to determine.  

Mapping and modeling species distributions is particularly challenging for poorly-recorded 

marine species. Marine biota and environmental surveys have historically fallen behind the 

terrestrial counterparts (Costello et al. 2010).  Scuba-diving has only been used for 

collecting site-level species data since ~ 1960s (Caddy 1968), and remote sensing 

techniques have only contributed spatial data for marine environments since 1980s 

(Bernstein 1982, Wentz and Schabel 2000). The utility of survey techniques (e.g. 
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underwater visual census) can be restricted by the unique features of marine environment 

(water clarity, depth, etc.). These characteristics of ocean systems make it more difficult to 

study geographic distributions of marine organisms.  

Seahorses (Hippocampus spp.) provide a typical example of rarely-recorded marine 

organisms whose distributions are difficult to determine. These relatively rare, cryptic, and 

small fishes are difficult to detect or survey (Vincent et al. 2011; Aylesworth et al. 2017). 

Additionally, seahorses can raft with holdfasts (e.g. seaweed) and disperse over long 

distances, although they are generally stationary (Lourie et al. 2005, Caldwell and Vincent 

2013). Our knowledge about their distribution ranges is still developing. About 15% of the 

current total sightings from our citizen science database (iSeahorse, iseahorse.org) are 

located beyond the ranges that we previously knew. To date, seahorse localities are poorly-

recorded in many regions. 

China is among the countries where seahorses are poorly-documented and threatened. 

Seahorses are distinguished by their heavy use in Traditional Chinese Medicine (TCM). 

Every year, millions of dried seahorses are used in TCM by Chinese people (Vincent et al. 

2011). To date, formal seahorse biogeographic research is rare in China. Six seahorse 

species are purportedly present, and probably all are threatened (Wang and Xie 2009). One 

of these species, H. kelloggi (great seahorse), is on China’s List of Wildlife under National 

Protection, mandating a nationwide ban on its catch and trade by law (MEP 2002). The 

other five species have been proposed to be added to the List, which is under review (Zhang 

Chun-Guang, per. comm.). However, the lack of distribution knowledge of seahorse 

populations in China’s vast marine territory impedes the protection of these poorly-known 

animals. 

Here I present the first biogeographic study of seahorses in China, with an aim to inform 

their conservation. I collate multiple species datasets (i.e. SS, PRL, and LEK) and 

environmental data to build and compare species distribution models. I test whether species 

data from PRL and LEK can generate similar predictions of seahorse distributions. I 

examine if adding information from LEK and PRL to SS can improve model performance 

and predictions. By doing so, my study provides insights on species data collection and 

analyzing techniques for distribution modeling studies on poorly-recorded species. 
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2.3 Methods 

2.3.1 Study area 

My study area spans China’s coastal waters (17° to 41°N; 106° to 125°E, Fig. 2.1), which 

are fringed by the Bohai Sea, Yellow Sea, East China Sea, and the northern South China 

Sea. The coastline stretches across 18,000 km from temperate to tropical zones (see details 

in Liu 2013).  

 

2.3.2 Species distribution model 

I used a typical presence-only model, maximum entropy (Maxent, Phillips et al. 2006), to 

analyze my data and to predict seahorse distributions. Maxent produces a habitat suitability 

map for the focal species based on a set of related variables (model predictors) and a set of 

georeferenced occurrences. Maxent is considered as one of the most powerful modeling 

techniques (Hernandez et al. 2006, Phillips and Dudík 2008), as it is 1) robust to positional 

uncertainty/errors in species occurrences (Graham et al. 2008, Fernandez et al. 2009), 2) 

suitable for limited occurrences (e.g. SS dataset in my case), and 3) reliable for deriving 

predictive maps with coarse-grain data (Osborne and Leitao 2009).  

 

2.3.3 Model predictors 

I compiled data for twenty-one variables belonging to three categories: 1) climate and 

geophysical suitability (Tyberghein et al. 2012), 2) food availability, and 3) macro-habitat 

availability from online databases (Table A.1 in Appendix A). Original data were 

interpolated with resolution of 1/12 degree in latitude and longitude (~ 10 km) using 

Inverse Distance Weighting in an ArcMap (Cheung et al. 2009). I chose 1/12 degree as 

my standard resolution because the majority of the original data were at this resolution, 

and it also represents cells explicit enough for mapping seahorses at the broad spatial 

scale of my study area. Since seahorses are typically found in shallow waters, I used a 

200-m depth envelope (commonly considered to be continental shelf) as the geographic 

boundary for all environmental data. By doing so, I can prevent model over-prediction. I 
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then used Pearson correlation coefficients to identify and exclude highly correlated 

variables (|r| > 0.7), which were not used in the model.  

 

Figure 2. 1. Study area displaying the sampled fishing ports (red points) along the coast 

(including islands) of the People’s Republic of China. 
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2.3.4 Species data 

Species sightings (SS)  

I first obtained a total of 33 species sightings (SS) from five online databases: Global 

Biodiversity Information Faculty (GBIF, www.gbif.org), Oceanic Biodiversity Information 

System (OBIS, www.iobis.org), FishNet2 (www.fishnet2.net), FishBase 

(www.fishbase.org), and iSeahorse (www.iseahorse.org). I then obtained new sightings 

records of seahorses from Chinese colleagues, divers, and fishers during my interview-

based research in China (see next paragraph of local ecological knowledge). I validated the 

species identification for all records by checking specimens where possible, using a 

standard identification textbook (Lourie et al. 2004). To ensure data quality, sightings 

located on land or out of my defined range (i.e. 200-m depth of China’s seas) were not 

used. 

Peer-reviewed literature (PRL) 

I extracted data from peer-reviewed literature (PRL) drawn from the China Knowledge 

Resource Integrated Database (www.eng.oversea.cnki.net, see Appendix A), having found 

little information in western literature. I emailed authors to request photos of the specimens 

to validate their identifications. If specific localities were not documented, I included the 

entire study/sampling area described in the paper as part of the species’ range. All species 

maps from the validated records in literature were digitalized in an ArcMap. 

Local ecological knowledge (LEK) 

To derive local ecological knowledge (LEK), I conducted semi-structured interviews 

(Huntington 2000) at 79 fishing ports (Fig. 2.1) along the entire coast of China from April 

to September 2015 (see protocol in Appendix A). The choice of these sites was based on 

comprehensive consultation with four Chinese colleagues and 28 fishers in the field. At 

each fishing port, I first chose participants recommended by local fisheries scientists, 

community leaders, and interviewed fishers. I also haphazardly reached out to other fishers 

who were available and knowledgeable (e.g. skippers). I conducted each semi-structured 

interview on board a vessel allowing all fishers working on the boat to participate. This 
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group setting allowed me to cross-validate data among the fishers. My interviews covered 

fishers using different types of fishing gears (n = 10) in situ. 

 

In each interview, I first identified the seahorses (Fig. 2.2). I evaluated available specimens 

in situ then presented a collection of seahorse photographs to help participants recall 

seahorses that they had sighted. After the interview, I validated the interview data by 

checking specimens from other sources at the same site. These sources included other 

participants, local seafood landings and markets, and stores at the same fishing port.   

 

 

Figure 2. 2. Process of seahorse taxonomic data collection and validation based on fishers’ 

local ecological knowledge. 

 

After the taxonomic portion of the interview, I worked with participants to generate 

distribution maps of each species (Fig. 2.3). Local commercial fishers often use China’s 

fishing-zone maps (Fig. A.1 in Appendix A), sometimes in a digital version, to guide 

their fishing activities, such as locating fishing grounds. Therefore, these maps were ideal 

tools to help fishers describe (without drawing) species locations. I also asked fishers to 

recall habitat (depth, substrate) or geographic (distance to landmarks) features of each 
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location if they could. These additional data were checked against nautical charts prior to 

analyses as a manner to test the reliability of fishers’ knowledge. If fishers were not 

familiar with fishing-zone maps, I presented nautical charts instead for them to recall 

species distributions. I used an iPad with iGIS software to facilitate fishers’ mapping in 

the field, and digitalized their narrative data in an ArcMap later. As a final step to ensure 

data quality, I overlaid all fishers’ maps of the same species and only retained areas that 

included at least two observations.  

 

 

Figure 2. 3. Processes of mapping and validation of seahorse species distributions based on 

fishers' local ecological knowledge. 

 

Occurrence-points sampling from PRL and LEK coarse maps 

Given that species distribution models can only use species point data rather than polygon 

maps (PRL and LEK original datasets), I systematically sampled presence points from the 

PRL and LEK maps. To do so, I first refined the original irregular polygons (i.e. PRL or 

LEK maps) to range maps consisting of cells with my standard resolution (1/12 degree) in 

an ArcMap (see Appendix A).  

To generate occurrence points from the coarse range maps, I adapted a probability-based 

sampling approach based on habitat suitability (Niamir et al. 2011). This approach 



23 
 

performed better than another technique, random sampling, in an initial trial (see Appendix 

A). The probability-based approach assigns denser occurrence points to more suitable 

habitats within the range map, based on the ecological principle that higher abundance was 

expected in more suitable areas. The required habitat suitability was derived from the 

Maxent model based on the SS dataset (see 1st scenario in 2.3.5). I then employed the 

spatially-balanced sampling in an ArcMap to generate occurrences from the range maps of 

LEK and PRL for each dataset. This probability-based sampling tool considers sampling 

probability (i.e. habitat suitability, in this case) and minimizes spatial autocorrelations 

among the generated points (Theobald et al. 2007).  

 

2.3.5 Model scenarios and settings 

I executed three model scenarios based on different datasets (and combinations) for each 

species (Table 2.1): 1) a model with only SS data (1st scenario), 2) three models respectively 

based on LEK, PRL, and their combination (LEK&PRL, 2nd scenario), and 3) three models 

separately with SS&LEK, SS&PRL, and ALL (i.e. all sources of datasets, 3rd scenario).  

 

To generate pseudo-absence points for each model, I created explicit bias files to determine 

sampling background for Maxent (Phillips et al. 2006). For SS datasets, I defined a buffer 

zone around sightings of all species as the common sampling background for each species. 

By doing so, the model will generate pseudo-absences only within a certain distance from 

seahorse presence points. This can advance model’s ability to discriminate “highly suitable” 

from “suitable” habitats (i.e. minimizing over-prediction) (Mateo et al. 2010), which is 

important for mapping distributions for rare species like seahorses (Zarnetske et al. 2007). 

I chose ¼ degree (~ 15 nautical miles) as the buffer size, as it produced models with the 

smallest variation among model parameter estimates using different buffer sizes in an 

initial trial. Similarly, for LEK (or PRL) datasets, I used the union of range maps from LEK 

(or PRL) of all species as the same sampling background for each species. For each 

combination of different datasets, I overlaid the sampling backgrounds from the member 

datasets as the new sampling background. Then I created the bias file based on the sampling 

background for each model. All the above processes were done by using the SMDtoolbox 

(Brown 2014). 
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I conducted all models by using the Maxent software (version 3.3.3k, Phillips et al. 2006). 

For each model, the number of pseudo-absence points were kept at default (n < 10,000). I 

randomly divided the species data into training and test subsets (75% and 25% respectively) 

and replicated the randomizations 15 times. I applied the regularization multiplier to 

control for over-parameterization (Crall et al. 2015).  

 

Table 2. 1. The three model scenarios tested in the study.  Abbreviation: SS, species sightings; 

LEK, local ecological knowledge; PRL, peer-reviewed literature; ALL, all data combined (SS, 

LEK, and PRL); AUC, Area under the curve.  

Model 

scenario 
Dataset Model measure 

Statistical 

analysis 
Aim 

1st 

Scenario 

SS AUC, Sensitivity, 

Specificity 

- To derive probability map; to 

examine effects of adding 

LEK and/or PRL data to SS 

when combined with the 3rd 

Scenario 

2nd 

Scenario 

LEK, PRL, 

LEK&PRL 

AUC, Sensitivity, 

Specificity; 

 I similarity statistic, 

presence agreement, 

absence agreement 

Quade 

test 

To compare model 

performance and results 

between LEK and PRL 

3rd 

Scenario 

SS&LEK, 

SS&PRL, 

ALL 

AUC, Sensitivity, 

Specificity 

Quade 

test 

To examine effects of adding 

LEK and/or PRL data to SS 

when combined with the 1st 

Scenario 

 

 

2.3.6 Model evaluation and statistics analyses 

I used the mean and standard deviation of three statistics as measures of model performance 

and variability. The first statistic was the area under the curve (AUC) of the receiver-

operating characteristic (ROC) plot (Hanley and McNeil 1982), which is one of outputs of 

the Maxent (i.e. test AUC). The ROC plot demonstrates presence/absence prediction 

accuracy with all possible thresholds of the probability value predicted by the model. The 

AUC of the ROC plot measures model’s general accuracy of both presence and absence 

predictions. Although the use of AUC has been criticized (Lobo et al. 2008), it is reliable 
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for evaluating presence-only models without applying any probability threshold (Lawson 

et al. 2014). The second and third statistics were Sensitivity (true presence rate) and 

Specificity (true absence rate) (Altman and Bland 1994). These two are threshold-

dependent and could be better indicators of a model’s discriminatory power than the AUC 

(Lobo et al. 2008). I used the probability threshold at which training Sensitivity plus 

Specificity was maximized (hereafter SSM threshold) to calculate these two statistics (Liu 

et al. 2005). In the 2nd scenario of comparison between LEK and PRL, I used SS datasets 

as independent test data to estimate Sensitivity and Specificity. The calculation was 

realized in R (R Core Team 2016) based on the output data from Maxent.  

 

I used Quade tests (Quade 1979) to examine the effect of using different datasets (LEK, 

PRL, LEK&PRL) on model performance and variability by controlling for species (n = 5) 

in the 2nd scenario. For each species, I employed the I similarity statistic (ISS) to measure 

the strength of agreement on presence-probability maps between LEK and PRL (Warren et 

al. 2008). I derived the presence/absence maps (SSM thresholds, see above) for LEK and 

PRL to calculate an agreement ratio (spatial overlap to spatial union) respectively for the 

predicted presence and absence. Both ISS and the two agreement ratios range from 0 

(unmatched) to 1 (fully matched). I then examine the effect of adding LEK and/or PRL to 

SS on model performance and variability by Quade tests based on model results of the 1st 

and the 3rd scenarios (Table 2.1).  

 

2.3.7 Model prediction and ecological interpretation 

I followed three steps to determine the presence/absence map for each species. First, I 

only considered the four models in the first and third scenarios based on datasets 

including SS, given that SS were more precise than those points downscaled from LEK 

and PRL maps. Second, I rejected poorly fitting models (AUC lower than 0.7) and 

derived the presence/absence maps (by SSM threshold) for the remaining models (Manel 

et al. 2001). Third, I derived an original-data map by overlaying original SS, LEK, and 

PRL datasets, and then compared the original-data map with each of the predictive maps. 

I finally selected the predictive map that had a higher number of overlaps with the 

original-data map and covered less area. If some of the original sightings/ranges were not 
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represented by the selected map, I added the cells occupied by these sightings/ranges to 

the “selected” map and labeled them as “omission points/ranges”.  

 

I derived a species-richness map by stacking the presence-probability maps instead of the 

binary presence/absence maps to avoid overprediction on species richness (Calabrese et 

al. 2014). The presence-probability map for each species was from the logistic-

probability predictions of the model that generated the “selected” map (hereafter, selected 

model). The species-richness map was derived by overlaying these probability maps in an 

ArcMap.  

 

I applied the selected model’s permutation importance to identify key environmental 

factors (Searcy and Shaffer 2016), and the partial response curves to interpret species 

ecological niches (Stirling et al. 2016).  

 

2.4 Results 

2.4.1 Species data 

I obtained a total of 55 species sightings (SS), 463 fishers’ maps (LEK), and 42 literature 

maps (PRL) across the same five species (Table 2.2, see Fig. B.1 – B.3 in Appendix B). 

Four other species were reported but not validated (see details in Appendix B and Table 

B.1 and B.2 therein). I excluded these species and their maps (21% of total maps) from 

model datasets. Among the valid species, H. trimaculatus was the most frequently sighted 

in SS dataset and the most frequently reported in the LEK dataset. Hippocampus mohnikei 

was the most frequently recorded in PRL dataset. All LEK and PRL data were range maps 

coarser than my mapping resolution, but LEK were finer (LEK: 1,177 ± 1,115 km2, PRL: 

12,453 ± 11,630 km2). I generated occurrence points (n = 50 – 200, Table 2.2) from the 

coarse-grain maps (LEK and PRL) by PBS approach. The total number of points differed 

among species given the different sizes of total area covered by original maps. A minimum 

of 50 points and a maximum of 200 points were chosen to build robust models and 

minimize spatial autocorrelation after initial trials. 
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Table 2.2. Summary of five Chinese seahorse species with the frequency of records 

(Frequency), the total number of maps (Maps), and the total amount of points (Points) from 

three sources: species sightings, local ecological knowledge, and peer-reviewed literature. For 

the latter two, the points were generated by the downscaling technique based on original maps. 

Seahorse 

species 

Species sightings 
Local ecological 

knowledge 
Peer-reviewed literature 

Frequency Points Frequency Maps Points Frequency Maps Points 

H. kelloggi 10.9% 6 13.4% 37 100 11.8% 4 100 

H. kuda 27.3% 15 11.2% 31 50 5.9% 2 50 

H. mohnikei 14.5% 8 37.1% 103 100 82.4% 28 100 

H. spinosissimus 9.1% 5 18.3% 51 100 2.9% 1 100 

H. trimaculatus 38.2% 21 87.0% 241 200 8.8% 3 200 

 

2.4.2 Local ecological knowledge (LEK) vs. peer-reviewed literature (PRL) 

I found that although LEK tended to produce better models than PRL and LEK&PRL (Fig. 

2.4), the differences were not statistically significant. The highest AUC was obtained by 

LEK for all species except H. trimaculatus (Fig. B.4 in Appendix B). The highest values 

of true presence rate (Sensitivity) were derived from LEK for all species but H. kelloggi 

(Fig. B.4). The highest values of true absence rate (Specificity) were also generated by 

LEK datasets for all species except H. mohnikei and H. kuda (Fig. B.4). All model 

performance measures (AUC mean and SD, Sensitivity, and Specificity) across species 

were not statistically different among the three datasets (LEK vs. PRL vs. LEK&PRL, 

Quade tests, all p > 0.05).  

 

My result indicated that LEK and PRL were generally consistent on model predictions 

when tested on probability maps, but they did not match well on predicted distributions. 

The I similarity statistics were medium to high across the five species (0.571 – 0.853, Table 

2.3), suggesting a roughly good agreement on the predictive probabilities between LEK 

and PRL. In contrast, the Presence agreements between model results of the two datasets 

were generally low (Mean = 21.3%), although the Absence agreements were relatively high 

(Mean = 71.9%, Table 2.3).  
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Figure 2. 4. Boxplots of model performance and variability of Maxent models generated from 

three different datasets (PRL, LEK, LEK&PRL) based on four measures: AUC (area under 

the curve) mean and SD (standard deviation), Sensitivity (true presence rate), and Specificity 

(true absence rate). PRL, peer-reviewed literature data; LEK, local ecological knowledge 

data; LEK&PRL, the combination of the two. 

Table 2. 3. Estimates of agreements on predictive maps between models of local ecological 

knowledge and models of peer-reviewed literature across the five seahorse species, based on 

three different measures: I similarity statistic, Presence agreement, and Absence agreement. 

Species 
I similarity 

statistic 

Presence 

agreement 
Absence agreement 

H. kelloggi 0.571 12.0% 64.7% 

H. kuda 0.804 7.1% 86.1% 

H. mohnikei 0.681 26.7% 54.0% 

H. spinosissimus 0.778 16.6% 75.6% 

H. trimaculatus 0.853 44.3% 78.9% 

Mean 0.737 21.3% 71.9% 
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2..4.3 Effects of adding species locations from coarse-grain data (LEK and PRL) to 

species sightings (SS) 

I found that adding LEK and/or PRL to SS generally derived better predictive models than 

using SS alone (Fig. 2.5 left), although the effects differed among the measures. I detected 

significant differences on Sensitivity (true presence rate) among datasets (Quade tests, p < 

0.05, n = 5), although not on AUC (p = 0.115) or Specificity (true absence rate; p = 0.108). 

Sensitivity mean value for SS dataset was significantly lower than those for SS&PRL and 

SS&LEK (both p < 0.05), but not for ALL (p = 0.07). Therefore, adding LEK or PRL, but 

not both, to SS could significantly improve presence prediction. Model general 

performance (AUC mean) tended to improve by adding LEK and/or PRL (Fig. 2.5 left), 

while absence prediction (Specificity mean) only tended to improve by adding LEK alone 

(Fig. 2.5 left).  

 

For model variability, I obtained similar but more consistent results on different measures 

(Fig. 2.5 right). I examined statistical differences on standard deviations of all measures 

(AUC, Sensitivity, and Specificity) among the compared datasets (Quade tests, all p < 0.05, 

n = 5). The standard deviations of AUC and Sensitivity for SS dataset were significantly 

higher than those for the others (posthoc-Quade test, all p < 0.05). The standard deviation 

of Specificity for SS dataset was significantly higher than SS&PRL and ALL (both p < 

0.05), but not SS&LEK (p = 0.06). These results revealed that adding LEK and/or PRL 

reduced model variability on predicting presence; while only adding PRL or LEK&PRL 

data decreased model variability on predicting absence. 
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Figure 2. 5. Boxplots of model performance (mean, left panel) and variability (SD, standard 

deviation; right panel) measured with the AUC (area under the curve), Sensitivity (true 

presence rate), and Specificity (true absence rate) among all five seahorse species, based on 

four different datasets: SS, species sightings; SS&PRL, sightings plus peer-reviewed 

literature; ALL, sightings plus peer-reviewed literature plus local ecological knowledge; and 

SS&LEK, sightings plus local ecological knowledge.  
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Figure 2. 6. Predicted distribution maps of a) H. kelloggi, b) H. kuda, c) H. mohnikei, d) H. 

spinosissimus, e) H. trimaculatus, and f) species richness of seahorses in China. Omission 

range or point represent model predictive errors.  AUC, area under the curve; Sensitivity, 

true presence rate; Specificity, true absence rate. 
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2.4.4 Model prediction 

The predictive maps indicated that these five seahorse species were generally divergent in 

spatial distributions, with more species located in the south (Fig. 2.6). I derived 

presence/absence maps (Fig. 2.6 a - e) and presence-probability maps (Fig. B.5 in Appendix 

B) based on SS&LEK datasets for all species but H. mohnikei, for which ALL dataset was 

used. Stacking the presence-probability maps derived a species richness ranging from 0.05 

to 3.13, which were then rounded to the nearest integer (i.e. 0 to 3, Fig. 2.6 f). That resulted 

in an area of 70.3% of my defined shallow seas was probably occupied by only one 

seahorse species, 2.1% by two species together, and 0.1% by three species together. 

Different seahorse species mainly co-existed in the South, especially the eastern Hainan 

Island and the Penghu Archipelago (Taiwan Province, Fig. 2.6 f). 

 

2.4.5 Parameter estimation and species ecological niches 

I selected eight predictors from the original twenty-one factors (Table 2.4; Table A.1 in 

Appendix A). The rest thirteen predictors were removed since they were highly correlated 

with one of remaining eight predictors (Pearson correlation test, |r| > 0.7; see details in 

Table A.1). The ecological niches of different species were reflected in the response curves 

on the selected environmental predictors (Fig. B.6 – B.13 in Appendix B). Spatial 

autocorrelation was low (Moran’s I = 0.01 to 0.09) in the model datasets for all species, 

which justified the use the model results to interpret predictor importance and species 

ecological niches. 

 

The importance of different predictors varied among species, with sea surface temperature 

(SST mean) generally the most influential variable (Table 2.4). Hippocampus mohnikei 

was the only species that was more likely to occur in colder waters (Fig. B.6), which might 

explain the significant spatial separation between H. mohnikei and the other four species. 

Species niche separation was also reflected on other predictors. For example, compared 

with other species, the presence probabilities of H. kuda, H. mohnikei, H. trimaculatus 

were higher in shallower water closer to the shore (Fig. B.7 and B.8). 
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Table 2. 4. Selected model predictors and their relative importance (%) for the model of each 

species, based on analysis of variable contributions in the Maxent model. Predictors were 

ranked by the average importance across the five species. 

Predictors 

Predictor importance % in modeling for each species   

H. 

kelloggi 

H. 

kuda 

H. 

mohnikei 

H. 

spinosissimus 

H. 

trimaculatus 
Mean 

sea surface 

temperature  
65.6 46.2 72.2 47.6 58.2 58.0 

distance to shore 2.4 31 16.8 2.2 17.6 14.0 

calcite concentration 11.3 14.3 2 20.3 7.4 11.1 

silicate concentration 16.1 4.4 2.8 10.7 5.1 7.8 

depth 0.7 1.9 4.4 1.1 7 3.0 

pH 1.9 1.3 0.5 10.6 0.3 2.9 

primary productivity 2.2 0.3 0.6 6.7 3.1 2.6 

macro-habitat 0.6 0.6 0.8 0.9 1.3 0.8 

 

2.5 Discussion 

My study demonstrated that spatially-explicit population-distribution maps of poorly-

documented species can be derived by integrating readily available data with species 

distribution models. Lacking explicit occurrence maps is a common challenge for 

conservation planning for poorly-recorded organisms (Rondinini et al. 2006, Levin et al. 

2014). I indicated that valuable species data could be derived from local ecological 

knowledge (LEK) and peer-reviewed literature (PRL), when species sightings (i.e., SS) 

were rare. By integrating different species datasets with a presence-only model (i.e. 

Maxent), I illustrated that it is beneficial to add LEK and/or PRL to the limited SS. These 

findings are encouraging given the need to inform conservation actions for rarely-studied 

species (Rondinini et al. 2006), but the financial and temporal constraints on data collection 

(Anadón et al. 2009).  

 

I demonstrated that fishers can provide species-level maps for seahorse species in China, a 

capacity which is not universally held by fishers (Aylesworth et al. 2017). The divergence 

might relate to fisher interest, seahorse morphology, and overlaps in seahorse distributions. 

For instance, in Thailand, fishers were poor at distinguishing species and may have lacked 

incentives to care (Aylesworth et al. 2017). In contrast, Chinese fishers could benefit 
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financially from species identification, for large or smooth seahorses fetched higher prices 

according to respondents. In Thailand, morphological divergences among the seven species 

may be difficult to differentiate, whereas the five Chinese species have apparent differences 

on species-specific features, body size, and smoothness (see details in Appendix B and Fig. 

B.14 and B.15 therein, and Lourie et al. 2004). In the Thai study, there was likely 

considerable overlap in seven seahorse species’ distributions across the five degrees of 

latitude (5-10°N) in a tropic zone, whereas the five species in China were apparently more 

dispersed across the 24 degrees of latitude (17° to 41°N). Fishers in my study only 

mentioned a maximum of two species each, suggesting little overlap. The uncertainty of 

the rest four un-validated species may, however, reflects that not all fishers are 

knowledgeable in seahorse identifications in China. Identifying the key informants is 

indeed important for using local ecological knowledge. 

 

2.5.1 Seahorse species distributions   

The distribution patterns for the five species in China are generally consistent with 

counterparts in other regions. As in Peninsular Malaysia (Choo and Liew 2003), I found 

that H. kelloggi were more likely to occur in deep (> 30 m) offshore waters, and H. kuda 

was patchily restricted to shallow inshore waters in China. Hippocampus mohnikei, was 

largely clumped in China’s temperate zone, as in Japan (Lourie et al. 2004), and Korea 

(Choi et al. 2012). But this species could occasionally occur in China’s warmer regions 

extending to Southeast Asian countries (see Aylesworth et al. 2016 and references therein). 

Hippocampus spinosissimus and H. trimaculatus were more likely to be sympatric, and 

less patchy than the other three species (Choo and Liew 2003, Lawson et al. 2015). 

Hippocampus trimaculatus also had the widest habitat and was relatively more abundant 

than the other species in bycatch (Choo and Liew 2003). I noted that Chinese seahorse 

populations were not likely to be found in estuaries, in contrast to its Malaysian 

counterparts. A possible explanation might be the relatively higher environmental stress 

(e.g., water pollution) in China’s estuaries (SOA 2012). 

 

My study indicated that seahorse distributions are highly correlated with ocean temperature 

at a large spatial scale, in line with many other marine taxa (Tittensor et al. 2010). As 
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ectothermic fish, seahorses are expected to require suitable water temperatures to sustain 

their metabolism and reproduce (Beitinger and Fitzpatrick 1979). This temperature 

suitability could vary among species as indicated in my study and reported from studies in 

seahorse aquaculture (Koldewey and Martin-Smith 2010). Given China’s seas are among 

the world’s most rapid warming zones (Belkin 2009), a further study to explore the impact 

of global warming on seahorse distributions in China would be interesting and meaningful. 

 

2.5.2 Limitations 

The low modeling importance of macro-habitat and the derived species-habitat relations 

should be viewed with caution, given the constraints on my data availability and spatial 

scale. First, the macro-habitat datasets I used here were largely drawn from global sources, 

and thus they might not have good coverage or resolutions in China’s seas. Second, I learnt 

from fishers that Chinese seahorses use various other macro-habitats, including macro-

algae, sea fans, and artisanal structures (e.g. mussel farms) (Aylesworth et al. 2016). 

However, I was unable to obtain these habitat data for China. On the other hand, the 

importance of macro-habitats might be more prominent at a smaller spatial scale (e.g. a 

lagoon), as found in European seahorses (Curtis and Vincent 2005) and reef fishes 

(Komyakova et al. 2013). To clarify the truth, a study in multiple spatial scales with more 

comprehensive and explicit macro-habitat variables could be helpful.  

 

2.5.3 Implications for conservation and management in China 

My new spatially-explicit maps for five seahorse species across China can be used for 

conservation and management in at least four ways. First, the predictive maps can guide 

local authorities and researchers to identify more specific locations of seahorse populations 

for further conservation actions (e.g. protected areas). Second, Chinese authorities can use 

my maps to protect seahorses through fisheries management. For instance, fisheries 

officers can explore overlap between seahorse distribution maps and fishing-zone maps to 

identify locations, where reducing or relocating fishing activities could maximize the 

benefit for seahorse conservation (Foster and Arreguin‐Sánchez 2014). Third, local law 

enforcement officers can identify localities (e.g. fishing ports) that are close to seahorse 
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habitats to effectively strike against illegal fishing and trade in seahorses. Fourth, my maps 

come timely to serve China’s ongoing coastal ecological-redline planning, which aims to 

protect coastal waters with significant ecological importance (Peng et al. 2016). Given that 

seahorses are found in various coastal ecosystems, protecting seahorses means protecting 

these critical waters. I think a planning includes seahorse habitats could be ecologically 

meaningful and beneficial to China’s marine systems. 

 

2.5.4 Integrating multiple datasets in SDM research 

Among the approaches used in this study, I adapted a technique especially applicable for 

poorly-recorded species to address the coarse-grain maps in SDM research. The use of 

LEK in modeling distributions is a common challenge in both terrestrial and marine 

systems. Local citizens could only provide coarse-range maps for the focal organisms 

(Bergmann et al. 2004; Carter and Nielsen 2011; Laze and Gordon, 2016; Aylesworth et 

al. 2017). Downscaling techniques are thus vital to generate finer-resolution data from 

coarse-grain maps like LEK. I adapted the downscaling technique of Niamir et al. (2011), 

which used expert knowledge to determine habitat suitability for each species. Expert 

knowledge may be only available for well-known populations (Murray et al. 2009, Niamir 

et al. 2011), and not for rarely-studied ones like Chinese seahorses. To fill the gap, I used 

the Maxent model to generate habitat suitability, as it only requires a small number of 

species sightings (n ≥ 5). This advantage may make my technique more applicable to 

poorly-documented species, which was rarely addressed in the literature. 

 

My study indicated that integrating multiple datasets in predicting distributions for poorly-

recorded species is beneficial, but it should be done with appropriate datasets combinations. 

I demonstrated that integrating LEK with PRL should be taken with caution, as it may not 

necessarily improve model performance. In my study, both LEK and PRL occurrences 

were sourced from coarse-grain maps, which were not very consistent in space. Previous 

studies of comparing LEK with data from traditional biological surveys have also shown 

similar mismatch on other species (Thornton and Scheer 2012). Combining species data 

from “inconsistent” sources might cumulate spatial variances or variances in tuning species 
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niche to environmental factors. Besides, given both LEK and PRL are likely coarse maps 

and opportunistic observations, the derived occurrences could include some spatial errors 

and biases. This is especially true for PRL maps in my study (10 times coarser than LEK 

maps, on average). Both reasons above could increase model residual and degrade model 

performance (Graham et al. 2008). I suggest future studies, which aim to integrate datasets 

from different sources (especially coarse-grain data), better compare different scenarios as 

I executed to identify the best datasets combinations and model predictions. 

 

I highlight the possible utility of LEK in species distribution modeling for poorly-recorded 

marine species, in line with similar studies on terrestrial counterparts (Irvine et al. 2009, 

Anadón et al. 2010, Laze and Gordon 2016). As acknowledged in terrestrial studies 

(Anadón et al. 2010), I think that LEK can be a cost-effective data source for modeling 

poorly-recorded species in marine systems. In addition, LEK can provide information to 

potentially improve model predictions. For instance, with the key information about 

physical features (e.g. fence, roads) and weightings of environment factors, Irvine et al. 

(2009) significantly improved model predictions of deer (Cervus elaphus). In my study, 

local fishers have sighted seahorses often co-occurring with sea fans in bycatch, and 

clumps of juvenile seahorses drifting in water column with branches of macro-algae (Fig. 

B.16 in Appendix B). These LEK data suggest that other related macro-habitats variables 

if available might derive better predictions. 

 

2.5.5 The importance of spatially-explicit maps of poorly-recorded species 

Spatially-explicit biogeographic maps for poorly-recorded species can help inform 

conservation actions. In particular, greater detail in spatially-explicit biogeographic maps 

can improve conservation planning (Rondinini et al. 2006). For instance, species of concern 

can benefit from fine-grain resolution when exploring overlaps between their distributions 

and protected areas (Rondinini et al. 2006; Pimm et al. 2014). The corollary is that fine-

resolution distribution maps of focal species can inform us of conservation gaps, where 

actions should be taken. The ability to develop such spatially-explicit maps for poorly-

known species should allow protective measures even as knowledge is being improved. 

Such potential may be particularly important in the many biodiverse countries (e.g. China) 



38 
 

with limited biogeographic data and resources (Liu 2013). In such instances tapping into 

diverse sources of information (including local ecological knowledge) can create valuable 

species distribution models and predictive maps. 
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Chapter 3: Predicting distributions, habitat preferences, 

and associated conservation implications for a genus of 

rare fishes, seahorses (Hippocampus spp.) 

3.1 Summary 

Using species distribution models to determine global distributions of rare species and their 

species-habitat relationships is vital to biodiversity conservation, but often challenged by 

the shortage of data. My study provides guidance for identifying useful sources of species 

data and instrumental habitat variables to build robust species distribution models for rare 

marine fishes, using seahorses (Hippocampus spp.) as the case study. My study 

demonstrated that using “proximity to macrohabitats” and integrating all datasets of species 

occurrences derived models with the highest accuracies among all dataset variations. This 

finding highlighted that using proper habitat variables is crucial to determine distributions 

and habitat preferences for rare and habitat-dependent marine fishes; collating and 

integrating quality-unknown occurrences (e.g. citizen science and museum collections) 

with quality research data is meaningful for building SDMs for rare species. I also 

encourage the application of SDMs to estimate area of occupancy for rare organisms to 

facilitate their conservation status assessment. 

 

3.2 Introduction 

Understanding global distribution and habitat preference of rare animals is key to ecology, 

and wildlife conservation (Brooks et al. 2002, Hanski 2011). Over the past few centuries, 

anthropogenic activities have caused astonishing biodiversity loss, with a detrimental 

impact on human society (Hooper et al. 2012). Rare species, with low densities or small 

ranges, are more sensitive to human disturbance and usually have higher extinction risks 

than common species (Reynolds et al. 2005). Estimating threatened status of rare species 

usually requires a good knowledge about their geographical distributions (Gaston and 

Fuller 2009). Their distribution maps are also helpful for identifying global biodiversity 
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hotspots (high species-richness sites that are threatened), where limited conservation 

resources should be allocated (Myers et al. 2000, Mittermeier et al. 2011). In addition to 

distribution maps, habitat-preference knowledge is essential to find species at local scales, 

where conservation actions are usually taken (Harris et al. 2005).  

 

Species distribution models (SDMs) are useful for analyzing species distributions and 

habitat preferences for rare species conservation (Franklin 2010, Marcer et al. 2013). These 

techniques are built on a variety of algorithms that correlate species occurrences and 

ecological covariates (i.e. model predictors) based on the “ecological niche” concept 

(Whittaker et al. 1973). This concept suggests that species choose their habitats based on 

their fitness to various surrounding factors. The model approach includes quantitative 

description of the relationship between species occurrences and ecological covariates. By 

modeling this relationship, biologists can predict species distributions in un-surveyed 

regions and generate a global view of species distribution patterns (Franklin 2010). 

Moreover, integrating habitat variables in the model allows identification of critical 

habitats based on the parameter estimation function. The spatially-explicit maps derived 

from SDMs can be used to estimate area of occupancy (AOO), which is a critical measure 

for assessing threatened status (IUCN Standards and Petitions Subcommittee 2017).  

 

Identifying useful species data and habitat-related predictors is essential for building robust 

SDMs for rare species (Aubry et al. 2017). Given the difficulty in studying rare organisms, 

scientists usually need to collate distribution data from quality-unknown sources (e.g. 

citizen science) to supplement the limited high-accuracy data (e.g. research data). Applying 

unknown-quality data can be problematic and might, through errors, generate different 

results than quality data (Graham et al. 2004, Aubry et al. 2017). Studies comparing 

different data sources are rare in the literature (Jackson et al. 2015). Furthermore, including 

appropriate habitat covariates in SDMs can be critical for rare species whose presences are 

correlated with important resources (e.g. food, shelters) within a particular habitat (Rainho 

and Palmeirim 2011). These issues above can degrade model accuracy and distort species-

habitat relationships if they are not addressed appropriately (Aubry et al. 2017).  
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Seahorses are rare animals, whose conservation is of global concern (Vincent et al. 2011). 

Seahorses are a genus (Hippocampus Rafinesque, 1810) of small, cryptic, and sedentary 

marine fishes in the family Syngnathidae, well-known for their male pregnancy and 

charismatic appearance. They are usually found at low population densities (0 – 0.51 

individuals /m2, Foster and Vincent 2004). Because of this and other biological traits (e.g. 

low fecundity, extensive paternal care and, often, mate fidelity), seahorses are vulnerable 

to various human activities, especially poorly managed fisheries and habitat degradation 

(Foster and Vincent 2004). Wild seahorses are often caught in fisheries and traded 

worldwide, mainly for traditional medicines. In 2002, seahorses became the first marine 

fishes to be listed on Appendix II of the Convention on International Trade in Endangered 

Species (CITES). This listing mandates 183 Parties to CITES to ensure that their exports 

do not threaten wild seahorse populations. The recent estimate of annual seahorse catches 

in 22 countries, totaling at least 37 million individuals (Lawson et al. 2017), emphasizes 

the importance of global actions to conserve these rare species. 

 

Global distribution, habitat preference, and conservation status are poorly known for 

seahorses. Studies of seahorse ecology have only centered on a small fraction of species 

(Cohen et al. 2017). Available species-range maps are not spatially explicit enough to 

inform global and local conservation actions (Lourie et al. 2016). Comprehensive habitat 

knowledge is lacking for most species, though site-level or regional-scale habitat studies 

are available for some populations (Gullison et al. 2000, Harasti et al. 2014, Aylesworth et 

al. 2015). Currently, 14 species are considered as threatened (Endangered or Vulnerable), 

but 17 species are still “Data Deficient” according to the latest IUCN Red List assessment 

(IUCN 2018; Pollom et al. in preparation).  

 

My study aims to apply SDMs to advance global conservation for all seahorse species. I 

am interested in examining the utility of quality-unknown species data and identifying 

proper habitat variables to build robust SDMs for rare species. In undertaking this work, I 

collated species-level seahorse occurrences and ecological covariates including habitat 

variables. I then identified the best species datasets and habitat variables deriving the most 
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accurate models. I used these models to predict seahorse distributions, to understand 

species habitat preferences, and to inform their conservation-status assessment.  

3.3 Methods 

3.3.1 Species distribution model 

I used maximum entropy (Maxent; Phillips et al. 2006) to build species distribution models. 

Maxent is one of the most powerful and popular SDMs (Hernandez et al. 2006; Phillips 

and Dudík 2008). It estimates presence probability by finding a distribution with maximum 

entropy (i.e. closest to uniform), subject to constraints defined by conditions at known 

occurrence locations (Phillips et al. 2004). Earlier research indicated that Maxent is robust 

to positional uncertainty/errors in species occurrences (Graham et al. 2008; Fernandez et 

al. 2009), and particularly suitable for rare species with limited occurrences (Pearson et al. 

2007). I developed the models with the latest Maxent software (Version 3.4.1) (Phillips et 

al. 2017b). 

 

3.3.2 Study species 

My study focused on 42 valid species of the genus Hippocampus (Lourie et al. 2016; Zhang 

et al. 2016). Seahorses were typically found in shallow waters (depth < 200 m) from tropic 

to temperate zones. They are cryptic, sedentary, small fishes (usually body height < 35 cm) 

that ambush zooplankton and benthic organisms (e.g. Crustacea and Amphipoda) 

(Manning 2017). Their predators are believed rare, although they were occasionally found 

in diets of various marine species such as larger fishes and birds (Kleiber et al. 2011). 

Identification of seahorses at the species level is sometimes challenging because of 

morphological similarity across species and individual phenotypic plasticity within species 

(Curtis 2006, Roos et al. 2011). I used work by Lourie et al. (2016), which clarified 

seahorse nomenclature and revealed many synonyms, as the basis for modeling species-

level distributions in my study.  

 

3.3.3 Data collection  
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I gathered data for model predictors that have ecological relevance and available 

information. I first derived data for 12 variables related to seahorse physiological suitability 

and primary productivity (Foster and Vincent, 2004; Table 3.1). I selected seven variables 

from these twelve covariates to minimize collinearity based on Pearson correlation tests 

(|r| > 0.7) (Dormann et al. 2013). The resulting seven predictors were depth, pH, salinity, 

sea-surface-temperature mean and range, and chlorophyll-a mean and range.  

 

I then derived datasets of nine categories of potentially key habitats (e.g. coral reefs) from 

online biogeographic databases (Table 3.1, Table C.1, Supporting Information Appendix 

C), and generated a binary and a continuous variable for each habitat category. The binary 

variable was ‘habitat presence/absence (1/0)’, and the continuous variable was the 

‘distance to the nearest location of each habitat’. I generated all these model predictors as 

global maps with a resolution of 1 km2 (Cylindrical Equal-area Projection), constrained 

within the 200-m depth range in ArcMap (version 10.2.2). I predicted that continuous 

habitat variables could be more useful than binary ones, as the former would be resilient to 

some extent of mismatch between species occurrences and habitat locations. This is crucial 

as I found many species occurrences and sightings of habitat-forming organisms have no 

location-certainty information or have coarse resolutions (e.g. 10×10 km2). This coarse-

resolution issue may distort the modeled species-habitat relations, as the recorded species 

locations and its habitat locations might not overlap in space as they should be. 

 

I collected species-level (presence-only) locations of seahorses from multiple databases 

including online biogeographic databases, published peer-reviewed literature, unpublished 

research data (from Project Seahorse), and iSeahorse (www.iseahorse.org) – a global 

citizen-science platform for gathering seahorse occurrences. I collated the species location 

data by checking nomenclature and spatial errors. Based on the collated geo-referenced 

species occurrences, I determined the potential geographic range (i.e. modeling envelope, 

Fig. 3.1) for each species to constrain model prediction. I predicted that the quality of 

multiple sources of species data might differ. Therefore, I divided all occurrences of each 

species into three commonly-used categories: research grade, citizen science, and museum 



44 
 

collection. A more detailed description of this section is provided in Supporting 

Information Appendix C. 

 

Table 3. 1. Original data resolutions and sources for seahorse ecological variables. ‘*’ 

indicates the seven selected predictors from the original twelve covariates of physiological 

suitability and primary productivity. SST, sea surface temperature; GEBCO, General 

Bathymetric Chart of the Oceans; UNEP-WCMC, United Nations Environmental 

Programme World Conservation Monitoring Centre; GBIF, Global Biodiversity Information 

Facility; OBIS, Ocean Biogeographic Information System. 

Categories Parameters Resolutions (arc-degree) Data Sources 

Physiological 

suitability 
depth* 0.00833 GEBCO 2014 

pH* 0.0833 Tyberghein et al. 2012 

salinity* 0.0833 Tyberghein et al. 2012 

dissolved oxygen 0.0833 Tyberghein et al. 2012 

SST mean * 0.0833 Tyberghein et al. 2012 

SST range * 0.0833 Tyberghein et al. 2012 

SST maximum 0.0833 Tyberghein et al. 2012 

SST minimum 0.0833 Tyberghein et al. 2012 

Primary 

productivity 
Chlorophyll a (mean) * 0.0833 Tyberghein et al. 2012 

Chlorophyll a (range) * 0.0833 Tyberghein et al. 2012 

Chlorophyll a (maximum) 0.0833 Tyberghein et al. 2012 

Chlorophyll a (minimum) 0.0833 Tyberghein et al. 2012 

Habitat 

availability 
coral reefs 0.0003 – 0.01 UNEP-WCMC 2010 

seagrass beds 0.0026 UNEP-WCMC 2016 

mangroves 0.0003 UNEP-WCMC 2011 

estuary - 
UNEP-WCMC Global 

Estuary Database 

soft corals - GBIFandOBIS 

seaweed - GBIFandOBIS 

sponge - GBIFandOBIS 

sea pen - GBIFandOBIS 

hydrozoa - GBIFandOBIS 
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Figure 3. 1. A map of the potential distribution ranges of all seahorse species combined 

(polygons in red), that we used in the model to constrain model prediction. 

Table 3. 2. Description of model variations used to test the utility of different types of 

macrohabitat variables (Group 1) and different sources of seahorse data (Group 2). Note that 

one type of model variation (based on all occurrences and predictor Dataset 3) was used in 

both groups. 

Model group Species dataset Predictor dataset Model statistics 

Group1: Testing 

the utility of 

different habitat 

variables (3 

models per 

species). 

All occurrences Each model uses one of 

the three types:  

Dataset 1: seven 

selected variables; 

Dataset 2: Dataset 1 + 

nine binary 

macrohabitat variables; 

Dataset 3: Dataset 1 + 

nine distance-based 

macrohabitat variables 

Area under the curve 

(AUC),  

Habitat variable 

importance (HVI), 

Predicted area ratio 

(PAR) 

Group 2: 

Testing the 

utility of 

different sources 

of species data.  

(7 models per 

species) 

Each model uses one 

of the seven types: 

Research grade 

(RG), citizen science 

(CS), museum 

collection (MC), 

CS+MC, RG+CS, 

RG+MC, and all 

occurrences (ALL) 

Dataset 3 as described 

above 

Sensitivity, I 

Similarity Statistic, 

Presence Agreement 
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3.3.4 Model description and evaluation 

I executed two groups of model variations (Table 3.2) to examine my datasets. To do so, I 

created different predictor datasets and species datasets. First, I developed three different 

predictor datasets which represented the three methods of habitat data usage in the model 

(none, binary, continuous; Table 3.2): Dataset 1 – Seven selected predictors reflecting 

species’ physiological suitability and primary productivity (Table 3.1); Dataset 2 – 

Combination of Dataset 1 and nine binary habitat variables (see Section 3.3.3); and Dataset 

3 – Combination of Dataset 1 and nine continuous habitat variables (see Section 3.3.3). 

Secondly, I generated seven different datasets of species occurrences (Table 3.2): 1) 

research grade (RG), 2) citizen science (CS), 3) museum collections (MC), 4) CS plus MC, 

5) RG plus CS, 6) RG plus MC, and 7) ALL (i.e. RG plus CS plus MC).  

 

Model Group 1: To examine the utility of habitat variables, I built models for each 

species based on the species dataset ALL and each of the three predictor datasets (Datasets 

1 – 3). I then compared the three models across species using three statistics: area under 

the curve of the receiver operating characteristic (AUC; Hanley and McNeil 1982), Habitat 

Variable Importance (HVI), and Predicted Area Ratio (PAR). The AUC is a standard 

technique for measuring models’ omission and commission errors, producing a score (0 – 

1) for general predictive accuracy. Score ‘1’ means no errors of commission or omission, 

and ‘AUC ≤ 0.5’ means the model prediction is no better than random selection. I defined 

HVI as the cumulative permutation importance of all habitat variables, and used it as an 

index of species habitat dependency. The PAR is the proportion of the predicted area to the 

modeling envelope of each species (see Section 3.3.3). Both HVI and PAR can be easily 

derived from Maxent’s summary file (i.e., ‘maxentResults.csv’). 

 

Model Group 2: To examine the utility of different sources of species data, I conducted 

models for each species based on the ‘best performing’ predictor dataset (derived from 

Model Group 1) and each of the seven datasets of seahorse occurrences: RG, CS, MC, CS 

plus MC, RG plus CS, RG plus MC, and ALL (i.e. RG plus MC plus CS). I compared the 

accuracy in predicting presences (i.e. Sensitivity; Altman and Bland, 1994) among the 

models, and estimated prediction agreement between models of individual species-data 
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sources (RG, CS, and MC) based on I Similarity Statistic (Warren et al. 2008) and Presence 

Agreement (see results from Chapter 2). The former was used to estimate similarity 

between two presence-probability maps, while the latter evaluated overlapping rate 

between two predictive-presence maps. 

 

To ensure robust statistical analyses, I only built models on species with a total sample size 

(i.e. the number of occurrences) ≥ 50 in Group 1, and executed models on species with a 

sample size ≥ 30 from each source (i.e. RG, CS, and MC) in Group 2. Detailed methods of 

Section 3.3.4 can be found in Supporting Information Appendix D. 

 

3.3.5 Model prediction and interpretation 

I applied Maxent to generate the presence-probability map for every species that had at 

least 5 occurrences (Pearson et al. 2007), based on the best predictor and species datasets 

identified above.  To estimate species richness, I stacked the presence-probability maps of 

all species that had fair to excellent model performance (i.e. AUC ≥ 0.7; Calabrese et al. 

2014). For species that I were unable to derive acceptable predictive maps or that had few 

occurrences (n < 5), I added their collated occurrences directly to corresponding pixels of 

the stacked map in ArcMap.  

 

I applied Maxent’s variable permutation importance and marginal response curve to 

interpret species-habitat relationships (Searcy and Shaffer 2016; Stirling et al. 2016). To 

this end, I first converted permutation importance values into ranks, with rank 1 assigned 

to the largest value (Supporting Information Appendix D). I then used the mean rank (of 

each variable across species) as an index of the general importance of that variable in 

determining seahorse distributions. I also calculated Habitat Variable Importance (HVI) 

for each seahorse species. I identified habitats that were positively correlated with species 

presence probability through examining the marginal response curves, and ranked them by 

permutation importance. This allowed me to determine the rank of importance of each 

habitat for each species. 

 

3.3.6 Identifying potentially threatened species  
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With the above distribution information, I calculated and compared geographic metrics 

(extent of occurrence, area of occupancy) against the IUCN threatened thresholds for 

geographic range (Criteria B and D), and number of locations (Criterion D) to identify 

potentially threatened species, following the latest IUCN Red List Guidelines (IUCN 

Standards and Petitions Subcommittee 2017; Supporting Information Appendix D).  

 

3.4 Results 

I obtained a total of 6,128 unique occurrences (collated from the original 6,316 occurrences) 

for 42 species, with a wide range of sample size (1 – 1,990 occurrences per species). The 

temporal range spanned from 1828 to 2016 (96% from 1950 to 2016). Most occurrences 

had no location-precision information, except 448 records (precision = 727 ± 609 m). Most 

seahorse occurrences were sourced from MC (75%), followed by RG (18%) and CS (7%). 

In general, seahorses were found in a very wide geographic range (46.73° S to 54.75° N, 

160.62° W to 179.12° E) and diverse environmental spaces (Table E.1 in Supporting 

Information Appendix E). According to the sample-size requirement to build robust models 

(see Section 3.3.4), a total of 16 species were used in Model Group 1, and two species (H. 

erectus and H. kuda) were examined in Model Group 2. 

 

3.4.1 Group 1: Utility of habitat predictors 

My results indicated that including habitat variables had statistically significant 

improvements on model predictive accuracy, with models using continuous habitat 

predictors (Dataset 3) having the best performance (Fig. 3.2a). The AUC values (model 

performance) of Dataset 3 and Dataset 2 were significantly higher than those of Dataset 1 

(n = 16, paired Wilcoxon tests; Dataset 3 vs. 1, p < 0.005; Dataset 2 vs. 1, p < 0.01), and 

Dataset 3 derived higher performance than Dataset 2 (n = 16, paired Wilcoxon test, p < 

0.005).  

I didn’t find statistically significant difference between Predicted Area Ratios estimated 

from different predictor datasets (n = 16, paired Wilcoxon tests, p = 0.12, 0.12, 0.46). But 

models based on Dataset 3 consistently derived the smallest predicted areas (Fig. 3.2b).  
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I found that Dataset 3 was more informative given it revealed the importance of habitats to 

seahorse distributions (Fig. 3.2c). On average, models using Dataset 3 derived high values 

of Habitat Variable Importance (46.2 ± 20.3), which were significantly larger than those 

using binary counterparts in Dataset 2 (9.2 ± 8.9; n = 16, paired Wilcoxon test, p < 0.001).  

 

 

Figure 3. 2. Maxent models compared among three predictor datasets (Dataset 1, 2, and 3) 

across 16 species using a) AUC (model predictive accuracy), and b) predicted area ratio 

(proportion of predictive presences to the potential range), and c) habitat-variable 

importance (cumulative importance of all habitat variables used in the model). Dataset 1, 

using model predictors excluding macro-habitat variables; Dataset 2, using binary 

macrohabitat predictors (macrohabitat presence/absence) and Dataset 1; Dataset 3, using 

continuous macrohabitat predictors (distance to the nearest macrohabitat) and Dataset 1.  
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Figure 3. 3. Comparisons among Maxent models based on three different sources of seahorse 

occurrences, i.e. research grade (RG), citizen science (CS), and museum collections (MC), 

and their combinations. They were compared on two species (H. erectus, H. kuda) with 

sufficient sightings from each source (N ≥ 30). Panel a) depicts the model accuracy of different 

sources (RG, CS, MC) and combinations: CS+MC, RG+MC, RG+CS, and ALL (all three 

datasets combined). Panels b) and c) respectively demonstrates the probability similarity and 

the overlapping rate between each pair of models (RG&CS, MC&CS, MC&RG).
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3.4.2 Group 2: Utility of different sources of species data 

My comparisons indicated that CS and MC data derived less accurate models than RG data 

and integrating all three derive the best models (Fig. 3.3a). I found that RG consistently 

derived the most accurate models (Sensitivity = 0.55 on H. erectus and 0.83 on H. kuda) 

among the individual datasets (Fig. 3.3a). When individual datasets were combined, adding 

MC or CS to RG consistently improved model performance (Fig. 3.3a). Moreover, using 

all occurrences derived the most accurate models (Sensitivity = 0.69 and 0.94, respectively; 

Fig. 3.3a). Interestingly, while “CS plus MC” derived a model with the 2nd highest accuracy 

on H. erectus (0.66), it resulted in the lowest-accurate model on H. kuda. (0.27; Fig. 3.3a), 

suggesting that the reliability of this type of combination varies between species. 

 

There were moderate to high consistencies (I Similarity = 0.68 – 0.95) in predicting 

presence probability, but low agreements in predictive presences (PA = 2% to 34%) 

between different species data sources (Fig. 3.3bandc). The I Similarity Statistics (i.e. 

presence-probability similarity) suggested that the agreement between RG models and CS 

models (0.71 and 0.93, respectively) were slightly higher than those between RG models 

and MC models (0.68 and 0.91, respectively; Fig. 3.3b). This difference was more 

prominent in the measure of Presence Agreement (i.e. overlapping rate, Fig. 3.3c).  

 

3.4.3 Seahorse global distributions and biodiversity epicenters 

Based on the above results, I chose Dataset 3 (the best predictor dataset) and dataset ALL 

(the best species dataset) to construct models for the 34 species with a least 5 occurrences 

(Tables E.2 and E.3). The remaining eight species with fewer occurrences were not 

modeled (Table E.4). Finally, I derived acceptable models for 33 species, with excellent 

performance (AUC = 0.90 – 1) for ten species, good performance (AUC = 0.80 – 0.89) for 

twelve species, and fair performance (AUC = 0.70 – 0.78) for eleven species (Table E.3). 

The model was poor (AUC = 0.56) and rejected for one species (H. casscsio, endemic to 

China and only recently described by Zhang et al. 2016).  

 

The predicted biodiversity map demonstrated that locations with high species richness 

(value = 4 – 9) of seahorses were largely concentrated in tropical shallow waters of the 
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central Indo-Pacific, with the epicenters mainly in the Philippines (Fig. 3.4 and 3.5, also 

see Fig. E.1 - E.13 in Supporting Information Appendix E). Other biodiversity epicenters 

near the central Indo-Pacific were in southern India and Sri Lanka (Fig. E.3), Taiwan 

(China, Fig. E.4), subtropical Japan (Fig. E.4), and Sydney and Melbourne in Australia 

(Fig. E.6). I also predicted moderate species richness (value = 3) in southern Florida (Fig. 

E.1), northern and central Red Sea (Fig. E.2), southeast Africa (Fig. E.2), Hawaii and Fiji 

(Fig. E.7).  

 

 

Figure 3. 4. Global map of biodiversity distributions of seahorse species (n = 42). 

In total, the predicted suitable area for seahorses was 9 million km2 (2.5% of the ocean’s 

surface), with large extents of geographic separation among species. 84% of the ‘potential 

range’ (Fig. 3.1) was either unsuitable to seahorses (40.8%) or suitable to one species alone 

(43.2%). 15.5% of the potential range was suitable to two (13.3%) or three (2.3%) species 

together, and 0.4% was fit for more than three species together. 
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Figure 3. 5. Separated maps of different levels of seahorse species richness.
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3.4.4 Key predictors and habitats 

The ranks of predictor importance suggested that all 16 predictors provided valuable 

information in my models, although the most important factors varied among species (Fig. 

3.6).  On average, depth, distance to the nearest sponge, distance to the nearest macroalgae, 

pH, and ocean temperature (range and mean) were the most influential predictors (Fig. 3.6, 

Table E.5). The marginal response curves revealed that generally seahorses were more 

likely to live in shallower waters (< 50 m; Fig. 3.7 a); many species tended to live close to 

sponges but have divergent adaptations to other factors like ocean temperature (Fig. 3.7 b 

and 2.7 c). Habitat variable importance (HVI = 3.9 – 99%) and key habitat types differed 

largely among seahorse species (Table E.2). Two pygmy seahorses specializing in 

gorgonian corals, H. denise and H. bargibanti, had the highest HVI values.  

 

 

Figure 3. 6. Ranks of predictor importance across 33 seahorse species with acceptable models 

in our study. The boxplots are shown with the rank on the x-axis, and predictors on the y-

axis ordered by the mean rank (not the median) from the highest (up) to the lowest (bottom). 

Note that lower numbers indicate higher ranks.  
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Figure 3. 7. Species response curves of a) depth, b) distance to the nearest sponge, and c) mean 

sea surface temperature, with different colors and types of line for different species. Note that 

not all species were shown in the curves, either because the importance of the variables was 

low (< 1%) or the species was not sensitive to the change of the variables.  



56 
 

3.4.5 Potentially threatened species based on IUCN Criteria  

My results suggested that four species met the “Endangered” thresholds, and two met the 

“Vulnerable” thresholds based on geographic range alone (IUCN Criterion B; Table E.3). 

Among the six species, four met the IUCN thresholds based on Area of Occupancy (AOO) 

but not Extent of Occurrence (EOO), and the other two met thresholds for both AOO and 

EOO. However, information about population fragmentation, fluctuation or decline are 

required to fully justify these categories under Criterion B of IUCN. I also identified seven 

species with fewer than five known locations (Table E.4) that might be considered as 

“Vulnerable” based on IUCN Criterion D2. 

 

3.5 Discussion 

My study demonstrates that appropriate integration of multiple sources of species 

occurrences and habitat datasets is vital to derive robust SDMs to inform rare-species 

conservation. I provide global-scale, spatially-explicit maps and conservation knowledge 

that are urgently needed for a group of rare and data-poor marine fishes (i.e. seahorses). 

My analyses highlight that ‘proximity to habitats’ is more informative than ‘habitat 

presence/absence’ for improving model accuracy and detecting key habitats. Meanwhile, I 

indicate that it is better to combine CS and/or MC with RG, whenever available, to improve 

model accuracy. My study also demonstrates that SDM-based predictive maps can help to 

identify potentially threatened species with small Area of Occupancy.   

 

3.5.1 Global biogeographic pattern and habitat associations of seahorses 

The predicted biogeographic pattern of seahorse species from my study is consistent with 

a previous analysis of coastal fishes in general (Tittensor et al. 2010). The latitudinal 

gradient that generally more species live in the tropics may be largely shaped by 

temperature (Tittensor et al. 2010). Temperature variables can influence food availability 

and climate suitability (Willig et al. 2003), and had high importances in my models. But 

like other shore fishes, more species of seahorses are predicted to occur in the central Indo-

Pacific (especially the Philippines) versus other tropical regions (e.g. Caribbean; Tittensor 
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et al. 2010). This longitudinal divergence matches well with the hypothesized footprints of 

seahorse origin (probably in northeastern Australia), dispersal (by rafting), segregation (e.g. 

the closure of the Isthmus of Panama), and evolution over past 20 - 30 million years (Casey 

et al. 2004, Teske et al. 2004, Boehm et al. 2013). Higher availability and heterogeneity of 

shallow-water habitats in the central Indo-Pacific might facilitate species immigration and 

diversification (Sanciangco et al. 2013), as I find that seahorses tend to live in shallow 

depths and have diverse habitat preferences among species. 

 

My study provides comprehensive, global evidence to support the hypothesis that seahorse 

species have different levels of habitat reliance and species-specific habitat preferences 

(Curtis and Vincent 2005). I am the first to provide quantitative evidence that habitat 

dependency varies largely among seahorse species. I demonstrate global divergences on 

distributions and habitat associations among species, which has been observed in local 

studies (Curtis and Vincent 2005; Lourie et al. 2005; also see Chapter 2). Similar 

divergence patterns among congeneric species are also common in pipefishes (Malavasi et 

al. 2007), and other fishes (Lombarte et al. 2000, Fairclough et al. 2008). Such segregation 

and difference may be important to minimize competition among closely-related species 

(Fairclough et al. 2008). My evidence suggests that habitat-forming sponges are important 

to many seahorse species at large spatial scales. These sponges may provide various 

functional roles (e.g. shelter, prey sources) in seahorse’s life (Bell 2008). Further 

discussion about seahorse-habitat/environment relationships are presented in Supporting 

Information Appendix S4. 

 

3.5.2 Conservation implications for seahorses 

The spatially-explicit maps and habitat-preference knowledge derived from my models 

may inform both global- and local-scale seahorse conservation. For instance, to minimize 

the impact of international trade, CITES Parties can use my maps to locate focus areas rich 

in those heavily-traded species at the global scale (Vincent et al. 2011). These maps can 

further be used with threat maps if available to determine global priority areas for seahorse 

conservation. Conservation programs can use and validate my maps and habitat knowledge 

to study and protect seahorse populations at local scales.  
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My study provided new geographic information to assess conservation status for seahorses. 

IUCN requires assessors to evaluate species against all criteria (A – E) with available data, 

and to assign the most severe category to the species (IUCN Standards and Petitions 

Subcommittee 2017). Previous assessments of seahorses largely applied Criterion A (i.e. 

population decline rate). Only one case (H. capensis) used Criterion B1 (Extent of 

Occurrence). I identified six species that met threatened thresholds of Criterion B2 (Area 

of Occupancy, AOO). Currently, one (H. capensis) has been evaluated as Endangered, but 

other five were either “Least Concern” or “Data Deficient” (Table E.3, IUCN 2018). 

Although the AOO is estimated based on predictive maps and thus contain uncertainties 

and require further improvement (Guisan et al. 2013), it is likely that I overestimated the 

AOO. If I include other constraint factors (e.g. anthropogenic impacts) in my models, the 

AOO might become smaller. Given that, these five species can still justify the IUCN 

‘Vulnerable’ threshold of AOO (< 2,000 km2) for Criterion B2.  

 

3.5.3 Utility of distance-based habitat predictors in SDMs 

I am the first to demonstrate that ‘proximity to macrohabitats’ is more informative than 

‘habitat presence/absence’ to predict distributions of low-mobility organisms. Proximity to 

macrohabitats has been employed and proved useful in SDMs for high-mobility animals, 

including reef fishes (Shelton et al. 2014), Bonelli’s eagles (Balbontín 2005), and bats 

(Rainho and Palmeirim 2011). One underlying assumption is that high-mobility animals 

choose to live close to important resource patches (e.g. feeding grounds). But this 

assumption might be questionable for low-mobility species, as they were believed unlikely 

able to select habitats at large spatial scales. Instead, site-level habitat characteristics (e.g. 

habitat presence/absence) were used in low-mobility species including Madagascar geckos 

(Pearson et al. 2007) and Juliana’s golden mole (Jackson and Robertson 2011). Although 

a few studies have used proximity to macrohabitats for low-mobility species (Dorrough 

and Ash 1999, Dillard et al. 2008), mine is the first to indicate that proximity to 

macrohabitats can be more useful than habitat presence/absence for low-mobility animals.  
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The correlations between sedentary animals and the proximity to habitats may result from 

two factors: 1) behavior and ecology of the animal, and 2) coarse resolution of original 

data. First, low-mobility organisms can disperse across large spatial scales through natural 

disturbance (e.g. ocean currents) and hitchhiking (Luiz et al. 2015). They may then choose 

‘stops’ in preferred habitats or be ‘dropped’ in unsuitable ones. In the second case, the 

animal may move over a distance longer than its home range to find suitable habitats 

(Matthews 1990, Caldwell and Vincent 2013). Some sightings of the species might be 

recorded during this ‘habitat-finding’ process and thus distorted the species-habitat spatial 

relations. Second, there might be spatial mismatch between species occurrences and habitat 

locations due to coarse resolutions of the original records. As a result, some species 

occurrences might not overlap with suitable habitats, but they are still close in space.  

 

3.5.4 Utility of different sources of species data in SDMs 

This study is among the first to demonstrate that adding citizen science (CS) and museum 

collections (MC) to research-grade data (RG) can help to derive more accurate SDMs. I 

encourage the integration of MC and/or CS data with RG data as MC and CS can be more 

sufficient and helpful for improving model accuracy.  MC are usually the most data-rich 

source for many organisms (Ponder et al. 2001), as is also shown in my study of seahorses. 

MC have been commonly used in SDM research (Newbold 2010), although I demonstrate 

that, compared with RG, MC may derive lower quality models with quite different 

predictions (Aubry et al. 2017). This is also true for citizen science. My results suggest that 

combining quality-unknown data (MC and CS) without RG is risky, as this may 

accumulate errors and result in lower-accuracy models (see Discussion in Chapter 2).  

 

Additionally, compared with MC, CS might have some advantages. First, CS provide more 

recent geo-referenced information than historical collections to reflect the current 

distributions of species. Second, validating CS data might be easier than checking the 

historical specimens from worldwide museums. These advantages may partly explain why 

CS derived more similar predictions to those of RG data than MC did in my study. A recent 

study on a rare snow quail species also indicated that CS data could derive similar 
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predictions to those based on RG data (Jackson et al. 2015), encouraging the use of citizen-

science data sources.  

 

3.5.5 Applying SDMs to IUCN Red List assessment 

My study highlights that applying SDMs can derive useful geographic information for the 

assessment of conservation status for rare species (Aubry et al. 2017). Rare species 

(especially habitat specialists) that have low population density are often patchily 

distributed along with their key habitats (Marcer et al. 2013). Therefore, even though they 

may have large extent of occurrence (EOO, IUCN Criterion B1), their area of occupancy 

(AOO, IUCN Criterion B2) could be very small. For example, in my study, H. fisheri (a 

species endemic to Hawaii) has an EOO that does not meet a threatened threshold, but its 

AOO is smaller than the “Endangered” threshold of AOO according to IUCN Criteria B2. 

Therefore, estimating AOO based on SDMs like Maxent may add essential information to 

assess conservation status for rare species.  
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Chapter 4: Cumulative human impact models reveal 

threats for seahorses (Hippocampus spp.) 

4.1 Summary 

Understanding cumulative human impact (CHI) on marine organisms is vital, given that 

they are threatened by multiple anthropogenic pressures. Here we provide a global-scale 

study on human impacts on, and conservation status of, a genus of rare marine fishes, 

seahorses (Hippocampus spp.). We developed species-level models to assess and map the 

cumulative impact of 12 anthropogenic stressors on 42 seahorse species, based on expert 

knowledge and spatial datasets. I then compared the CHI estimates between ‘threatened’ 

and ‘un-threatened’ species listed on the IUCN Red List. To predict conservation status for 

‘Data Deficient’ species, I built random forest models based on the derived human impact 

indices from the CHI models. I mapped the CHI on seahorses and compared it with CHI 

on marine ecosystems. The results indicate that my CHI estimates for ‘threatened’ species 

are significantly higher than counterparts for ‘un-threatened’ species. The random forest 

models suggest that five of the 19 ‘Data Deficient’ species are ‘threatened’. The major 

stressors that determine conservation status are demersal fishing with high bycatch and 

(ocean and nutrient) pollutions. The threat epicenters with high CHIs on seahorses 

concentrate in the East and South China Seas, Southeast Asian waters, and European waters. 

I show that impacts on seahorses are more likely higher in shallower inshore waters 

compared with previous estimates on marine ecosystems, with only a medium correlation 

between them. My study highlights the importance of developing species-level CHI models 

to better estimate and map threats on specific organisms. I provide useful maps to guide 

threat management on seahorse species. My approaches might be useful to analyze threats 

and conservation status for other marine species, especially data-poor fishes.  

4.2 Introduction 

Understanding which marine species are most threatened and where threat epicenters are 

located has long been a concern in marine conservation. The past few centuries has 

witnessed an increasing intensity of human disturbances in the ocean, which caused 
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prominent ecosystem degradations and population depletions of many marine organisms 

(Halpern et al. 2008, McCauley et al. 2015). To address this pressing issue, we need first 

to identify those threatened species and understand the underlying drivers. Such work has 

been mainly done by the International Union for Conservation of Nature (IUCN) Red List 

assessments (www.iucn.redlist). While evaluating threatened status, we also want to know 

where species are most impacted so that conservation actions may be guided towards to 

these places. Such spatial knowledge has long been required (Gundlach and Hayes 1978), 

but a systematic methodology only occurred ten years ago with a study of global 

cumulative human impact (CHI) on marine ecosystems (hereafter, ecosystem-scale CHI; 

Halpern et al. 2008). This study has since motivated an increasing amount of assessments 

of human impacts on various marine ecosystem components, including specific organisms 

and habitats (see a review by Korpinen and Andersen 2016).  

 

Despite the IUCN’s efforts, the conservation status of many marine taxa is still poorly 

known (McCauley et al. 2015). To date, the majority of marine species are not evaluated 

by IUCN and thousands of the evaluated species are ‘Data Deficient’ (IUCN 2018). For 

instance, more than half of the marine fish species are still not evaluated by IUCN; among 

the 8,905 evaluated ones (Actinopterygii, Cephalaspidomorphi, and Chondrichthyes), 

nearly 19% are ‘Data Deficient’ (IUCN 2018). One major reason is the difficulty in 

collecting sufficient data in the ocean (McClenachan et al. 2012). Given this challenge, 

scientists have started to use alternative approaches to assess extinction risks of data-poor 

marine species. For instance, some biologists have identified extinction-prone traits such 

as body size to evaluate vulnerability or predict extinction risks for marine organisms 

(Dulvy et al. 2004, Reynolds et al. 2005).  

 

Studies on cumulative human impact (CHI) at species levels might provide a promising 

approach to quantify threats for data-poor marine organisms. Previous CHI models usually 

combine the intensity of anthropogenic stressors and the vulnerability of ecosystem 

components (e.g. habitats/species) to different stressors (Korpinen and Andersen 2016). 

Therefore, if I derive a CHI index for the focal species based on the model, such index 

might be useful predictors of species threatened status. Some colleagues have already 
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examined this question but might not use appropriate CHI data (Davidson et al. 2012). In 

their study, a CHI index (measured for marine ecosystems) and species intrinsic factors 

(e.g. body mass at weaning) were used to predict threatened status for marine mammals. 

They found that the CHI index had very little significance in predicting threatened status 

for these mammals (Davidson et al. 2012). However, the conclusion might be different if 

the used CHI index was estimated based on the vulnerability of the focal mammals, rather 

than ecosystems, to anthropogenic stressors. The vulnerability measures might be highly 

different when it was compared between a given ecosystem and a species (Maxwell et al. 

2013). However, current CHI studies mainly focus on mapping impact on ecosystems 

rather than deriving impact indices to predict status for particular species (Korpinen and 

Andresen 2016). 

Seahorses (Hippocampus spp.) are data-poor marine fishes that are naturally susceptible to 

various human activities (Vincent et al. 2011). Seahorses are rare and sedentary fishes 

living in shallow waters (generally < 50 m, (Foster and Vincent 2004). Unlike many other 

marine fish, seahorses have relatively low fecundity, mate fidelity, and lengthy parental 

care (Foster and Vincent 2004). These characteristics can make them highly exposed and 

sensitive to human activities including demersal high-bycatch fisheries such as bottom 

trawling. A recent estimate showed that annually about 37 million seahorses were caught 

as bycatch from 22 countries alone (Lawson et al. 2017). By far, 17 seahorse species are 

Data Deficient on the IUCN Red List, while 14 are ‘threatened’ (2 Endangered and 12 

Vulnerable) and another 11 are ‘non-threatened’ (10 “Least Concern” and one “Near 

Threatened”; IUCN 2018). 

This study aims to 1) create species-level models to estimate and map cumulative human 

impact (CHI) for seahorses, 2) examine whether the model outputs can be used to predict 

threatened status for Data Deficient species, 3) identify regions where seahorse populations 

are under high impacts, and 4) distinguish major stressors. To do so, I build CHI models 

based on various spatial datasets and expert knowledge on species vulnerability to various 

human activities. I compared the derived CHI indices between threatened and unthreatened 

species according to IUCN Red List assessments. By doing so, I examined whether my 

CHI indices were consistent with IUCN assessments. I then utilized machine-learning 
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models to correlate threatened status with human impact indices. I explored the importance 

of each stressor and identified the most-accurate models to predict threatened status for 

Data Deficient species.  

4.3 Methods 

4.3.1 Species-level Cumulative Human Impact (CHI) Models 

Based on CHI studies for other marine species (Maxwell et al. 2013), I developed two 

‘linear-additive’ models to estimate and map CHI at the species level for seahorses (Table 

4.1). One is a ‘non-spatial’ model, which was used to derive a CHI index for each species. 

The other is a ‘spatial’ model, which was developed for mapping CHI for each species at 

1 km by 1 km resolution.  

Non-spatial CHI model 

I calculated the human-impact index (𝐻𝐼𝑖,𝑗) of stressor i upon species j with the following 

model: 

𝐻𝐼𝑖,𝑗 = 𝐼𝑖,𝑗 × 𝐸𝐷𝑖,𝑗 ×  𝑆𝑖,𝑗 = 𝐼𝑖,𝑗 × (𝑃𝑆𝑖,𝑗 ×  𝐹𝑖,𝑗) × 𝑆𝑖,𝑗                                           (1) 

where 𝐼𝑖,𝑗 is the intensity of stressor i across species j’s habitat; 𝐸𝐷𝑖,𝑗 is the exposure degree 

of species j to stressor i; 𝑆𝑖,𝑗 is the sensitivity (degree of intolerance and incapability of 

recovery) of species j to stressor i; 𝑃𝑆𝑖,𝑗 is the proportion of the species j’s habitats 

experiencing the stressor i; and 𝐹𝑖,𝑗 is the corresponding  frequency (i.e., how often the 

stressor j occurs to species i). Here 𝑃𝑆𝑖,𝑗 and 𝐹𝑖,𝑗  were used to measure exposure degree 

spatially and temporally.  

The cumulative human impact (𝐶𝐻𝐼𝑗) of all stressors upon species j was estimated by 

adding up 𝐻𝐼𝑖,𝑗 across stressors: 

𝐶𝐻𝐼𝑗 = ∑ 𝐻𝐼𝑖,𝑗𝑖 =  ∑ 𝐼𝑖,𝑗 × (𝑃𝑆𝑖,𝑗 ×  𝐹𝑖,𝑗) ×  𝑆𝑖,𝑗𝑖                                                   (2)
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Table 4. 1. Summary of the two cumulative-human-impact models used to estimate and map human impacts for each seahorse species. 

𝑯𝑰𝒊,𝒋, human impact of stressor i upon species j; 𝑯𝑰𝒊,𝒋,𝒎, human impact of stressor i on species j in location m; 𝑰𝒊,𝒋, the intensity of stressor i 

across species j’s habitat; 𝑬𝑫𝒊,𝒋, the exposure degree of species j to stressor i;  𝑰𝒊,𝒋,𝒎  and 𝑬𝑫𝒊,𝒋,𝒎, respectively the intensity and exposure 

degree of stressor i to species j in location m; 𝑷𝒋,𝒎, the presence probability of species j in location m; 𝑺𝒊,𝒋 , the sensitivity (degree of 

intolerance and incapability of recovery) of species j to stressor i; 𝑷𝑺𝒊,𝒋, the proportion of the species j’s habitats experiencing the stressor i 

(𝑷𝑺𝒊,𝒋); 𝑭𝒊,𝒋, the corresponding  frequency (i.e., how often the stressor j occurs to species i); 𝑪𝑯𝑰𝒋, cumulative human impact on species j; 

𝑪𝑯𝑰𝒋,𝒎, cumulative human impact on species j at location m. 

Model Purpose Model equations Variable explanations 

Non-spatial CHI 

model 

Estimate human impact indexes 

(human impact of individual 

stressor, and cumulative human 

impact of all stressor) at species 

level. 

𝐻𝐼𝑖,𝑗 = 𝐼𝑖,𝑗 × 𝐸𝐷𝑖,𝑗 ×  𝑆𝑖,𝑗 

= 𝐼𝑖,𝑗 × (𝑃𝑆𝑖,𝑗 ×  𝐹𝑖,𝑗) ×  𝑆𝑖,𝑗 

𝐶𝐻𝐼𝑗 = ∑ 𝐻𝐼𝑖,𝑗𝑖 =  ∑ 𝐼𝑖,𝑗 × (𝑃𝑆𝑖,𝑗 ×𝑖

 𝐹𝑖,𝑗) ×  𝑆𝑖,𝑗 

Only require estimates of 

stressors’ intensities (𝐼𝑖,𝑗), species 

exposure degree (𝑃𝑆𝑖,𝑗 ×  𝐹𝑖,𝑗) 

and sensitivities (𝑆𝑖,𝑗) to the 

stressors.  

Spatial  

CHI model 

Map human impact indexes and can 

also calculate human impact 

indexes across species habitat. 

𝐻𝐼𝑖,𝑗,𝑚 = 𝐼𝑖,𝑗,𝑚 × 𝐸𝐷𝑖,𝑗,𝑚 ×  𝑆𝑖,𝑗 

     = 𝐼𝑖,𝑗,m × (𝑃𝑗,𝑚 ×  𝐹𝑖,𝑗) ×  𝑆𝑖,𝑗 

𝐶𝐻𝐼𝑗,𝑚 = ∑ 𝐻𝐼𝑖,𝑗,𝑚𝑖 = ∑  𝐼𝑖,𝑗,𝑚 ×𝑖

(𝑃𝑗,𝑚 ×  𝐹𝑖,𝑗) ×  𝑆𝑖,𝑗  

Only stressor’s intensity ( 𝐼𝑖,𝑗,𝑚 ) 

and species presence-probability 

(𝑃𝑗,𝑚 ) require spatial datasets; 

other variables are the same as 

non-spatial model. 
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Spatial CHI model 

Correspondingly, I defined a spatial CHI model (adapted from Maxwell et al. 2013) to 

estimate the human impact (𝐻𝐼𝑖,𝑗,𝑚) of stressor i on species j in location m (here, a 1 km by 

1 km cell in species habitat): 

𝐻𝐼𝑖,𝑗,𝑚 =   𝐼𝑖,𝑗,𝑚 × 𝐸𝐷𝑖,𝑗,𝑚 × 𝑆𝑖,𝑗 =  𝐼𝑖,𝑗,𝑚 × (𝑃𝑗,𝑚 × 𝐹𝑖,𝑗)  ×  𝑆𝑖,𝑗                      (3) 

where  𝐼𝑖,𝑗,𝑚  and 𝐸𝐷𝑖,𝑗,𝑚 are respectively the intensity and exposure degree of stressor i to 

species j in location m; 𝑃𝑗,𝑚  is the presence probability of species j in location m; while 𝐹𝑖,𝑗 

and  𝑆𝑖,𝑗 are the same as in the non-spatial model. 

I then estimated the cumulative human impact (𝐶𝐻𝐼𝑗,𝑚) on species j in location m with the 

following model: 

𝐶𝐻𝐼𝑗,𝑚 = ∑ 𝐻𝐼𝑖,𝑗,𝑚𝑖 =  ∑  [ 𝐼𝑖,𝑗,𝑚 × (𝑃𝑗,𝑚 ×  𝐹𝑖,𝑗)  ×  𝑆𝑖,𝑗𝑖 ]                             (4) 

I also generated human impact indices from the spatial model, with the purpose to compare 

the indices between the spatial and non-spatial models. The overall human impact of 

stressor i upon species j across its habitat was estimated by the following model: 

𝐻𝐼𝑖,𝑗 = 
∑ (𝐼𝑖,𝑗,𝑚 × 𝐸𝐷𝑖,𝑗,𝑚 × 𝑆𝑖,𝑗)𝑚 

∑  𝑃𝑗,𝑚 𝑚
 = 

∑ [𝐼𝑖,𝑗,𝑚 ×(𝑃𝑗,𝑚 × 𝐹𝑖,𝑗) × 𝑆𝑖,𝑗]𝑚 

∑  𝑃𝑗,𝑚 𝑚
                                  (5) 

The cumulative human impact of all stressors (i = 1, 2, …, n) upon species j across the 

habitat was calculated by the following model: 

𝐶𝐻𝐼𝑗 = ∑ 𝐻𝐼𝑖,𝑗𝑖 =  ∑  
∑ [𝐼𝑖,𝑗,𝑚 ×(𝑃𝑗,𝑚 × 𝐹𝑖,𝑗) × 𝑆𝑖,𝑗]𝑚 

∑  𝑃𝑗,𝑚 𝑚
𝑖                                       (6) 

In Eq. 5 and 6, I used a numerator (∑  𝑃𝑗,𝑚𝑚 ) to eliminate the influence of species’ suitable-

habitat size on the value of overall impact. This numerator was the sum of habitat suitability 

(𝑃𝑗,𝑚) multiplied by the pixel size (1 km2) across species’ geographic range. By doing so, I 

was able to compare these impact indices (𝐻𝐼𝑖,𝑗 and 𝐶𝐻𝐼𝑗) among species.
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Table 4. 2. Summary of 12 anthropogenic stressors on seahorses. All datasets are from http://ohi-science.org/data/. 

Category Measures Description Original resolution 

Fishing Demersal destructive 

fishing (DDF) 

bomb/chemical (all types), bottom trawl (all types), 

dredge (all types) 

half-degree 

Demersal, non-

destructive, high-bycatch 

fishing (DNHF) 

gillnet fixed, gillnet encircling, seine, beach seine, 

boat seine, trammel (all types), trap (all types) 

half-degree 

Pelagic high-bycatch 

fishing (PHF) 

driftnets, midwater trawl half-degree 

Artisanal fishing (AF) 
an estimate that cannot distinguish between 

methods that do and do not modify habitat.  

modeled 1 km2 

Habitat change Habitat destruction 

caused by fishing (HDF) 

bomb/chemical (all types), bottom trawl (all types), 

dredge (all types) 

half-degree 

Coastal development 

(CD) 

estimated by population density + oil rigs modeled 1 km2 

Pollution Nutrient pollution (NuP) modeled based on fertilizer data modeled 1 km2 

Ocean pollution (OP) 
mainly oil spills estimated by commercial shipping 

intensity plus port volume 

modeled 1 km2 

Noise pollution (NoP) 
estimated by the intensity of shipping + all kinds of 

fishing + oil rigs + population density 

modeled 1 km2 

Invasive species Invasive species (IS) the amount of cargo at ports modeled 1 km2 

Climate change 
SST abnormality (SSTA) 

frequency of SST passes the long-term mean SST 

(i.e. threshold) 

~21 km2 

Ocean acidification (OA) 

differences on the aragonite saturation state of the 

ocean between pre-industrial (circa 1870) and 

modern times (2000 - 2009) 

1 degree 
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Non-spatial and spatial models were similar in structure (Eq. 1 vs. Eq. 3, Eq. 2 vs. Eq. 4) 

and share some variables (𝐹𝑖,𝑗 and  𝑆𝑖,𝑗). In the spatial CHI model, the stressor’s intensity 

(  𝐼𝑖,𝑗,𝑚 ) and species presence-probability ( 𝑃𝑗,𝑚 ) require spatial datasets, which could 

constrain its utility for data-poor species. A further model explanation including some 

assumptions is given in Appendix G. 

To construct the above CHI models, I identified 12 anthropogenic stressors (Table 4.2) on 

the 42 valid seahorse species (Lourie et al. 2016, Zhang et al. 2016) (see a detailed 

description in Appendix G). These stressors covered five dimensions of human-derived 

threats commonly found on marine species: fishing (here, high by-catch fisheries), habitat 

change (i.e., degradation/loss), pollution, invasive species, and climate change (Halpern et 

al. 2008).  

4.3.2 Data collection for model variables 

I first gathered the spatial datasets to separately estimate 𝐼𝑖,𝑗,𝑚, 𝐼𝑖,𝑗, and 𝑃𝑗,𝑚. The original 

intensity dataset of all 12 stressors were extracted from a global-scale study (Halpern et al. 

2015) (see a description in Appendix G). I then derived 𝐼𝑖,𝑗,𝑚 from this global-scale dataset 

for the spatial CHI model. This was done by extracting the original intensity maps of 

stressor i into the distribution range of species j (see Methods in Chapter 3). I then averaged 

the intensities of stressor i across species j’s distribution range as the estimate of 𝐼𝑖,𝑗 for the 

non-spatial CHI model. The dataset of 𝑃𝑗,𝑚 for the spatial CHI model was from Chapter 3. 

This study produced robust presence-probability maps for 33 seahorse species based on 

species distribution models. I was unable to derive similar maps for the other nine species 

mainly because of data paucity, and therefore they were not assessed in the spatial CHI 

model. But all 42 species were involved in the non-spatial CHI model. The intensity (𝐼𝑖,𝑗,𝑚) 

and presence probability (𝑃𝑗,𝑚) datasets were projected at 1 km2 resolution under an equal 

area projection (WGS84 Mollweide) to prevent the distortion of the “area” property 

(Halpern et al. 2008).  

I estimated the remaining vulnerability variables, i.e., exposure degree and sensitivity 

(𝑃𝑆𝑖,𝑗, 𝐹𝑖,𝑗, 𝑆𝑖,𝑗), by eliciting expert knowledge. I conducted expert-opinion surveys among 
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seahorse experts around the world through emails, skypes and phones (Halpern et al. 2007, 

Teck et al. 2010) (see details in Appendix H1). In the survey, I asked experts to score each 

vulnerability variable for each species-stressor pair. The scores of the exposure degree 

measures (i.e. 𝑃𝑆𝑖,𝑗 and 𝐹𝑖,𝑗) were estimated into five levels ranging from 0 to 4 (𝑃𝑆𝑖,𝑗) and 

from 1 to 5 (𝐹𝑖,𝑗), respectively. Higher scores represented higher exposure degrees. The 

score of sensitivity (𝑆𝑖,𝑗) was assigned to three levels: low, 1; medium, 3; and high, 5. For 

species that lacked expert evaluations, I assessed them based on the literature review and 

experts’ knowledge of other species which share the similar habitats (see a review in 

Appendix G and Vincent et al. 2011). For each estimation, experts were asked to provide 

a certainty index to reflect their confidence levels: 1, not sure; 2, likely; 3, confident; 4, 

very confident. I then used the certainty-weighted average to estimate each vulnerability 

variable for each species-stressor pair (Halpern et al. 2007; see Appendix H).  

4.3.3 CHI Model computations and comparisons 

I calculated species-level impact indices and plotted individual and cumulative human 

impacts (𝐻𝐼𝑖,𝑗 and C𝐻𝐼𝑗) based on the equations of both non-spatial and spatial CHI models. 

I derived the CHI index from the non-spatial model for each of the 42 species (hereafter, 

CHI_n). Given that only 33 species had presence-probability maps (𝑃𝑗,𝑚, see Results from 

Chapter 3), I only calculated CHI indices for these species from the spatial model (hereafter, 

CHI_s). I also derived an ‘ecosystem-scale’ CHI index for these 33 species (hereafter, 

CHI_e). This index was estimated based on the global map of CHI on marine ecosystems 

(from Halpern et al. 2015) and species presence-probability maps for the 33 species (see 

Appendix G). The global CHI map was based on a different set of vulnerability measures 

of marine ecosystems (rather than seahorse species) to a total of 18 stressors (rather than 

12 stressors). I aimed to examine whether the species-level CHIs would differ from its 

counterpart estimated at the ecosystem level (CHI_e) in seahorse habitats. To this end, I 

examined their correlations using Spearman rank correlation and simple linear regression 

models.  

I compared the above CHI indices (CHI_n, CHI_s, and CHI_e) with IUCN Red List 

assessments. This was done by examining whether CHI indices of “threatened” species 
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were significantly higher from the counterparts of “non-threatened” species (Mann-

Whitney U tests). Seahorse species with IUCN threatened categories (here, Vulnerable and 

Endangered) were considered as “threatened” (n = 14), species with Near Threatened or 

Least Concern categories were considered as “non-threatened” (n = 18; Davidson et al. 

2012).  

4.3.4 Predicting extinction risks for Data Deficient species 

I correlated the impact indices (individual impact and CHI) and species status 

(threatened/non-threatened) using a random forest (RF) model (R package randomForest) 

of 500 classification trees (Liaw and Wiener 2002, Cutler et al. 2007). I applied the Boruta 

algorithm (R package Boruta) to select important predictors by iteratively comparing 

original predictors’ importance with importance achievable at random using permuted 

copies of all predictors (a.k.a., shadow attributes) (Kursa and Rudnicki 2010). The 

predictor’s importance was determined by using the Z score, which was the mean accuracy 

loss resulting from permutation of the focal variable divided by its standard deviation 

across the trees in the random forest. To identify the ‘minimal-optimal’ predictors which 

could derive the most accurate model, I then rerun the model by removing the least 

important predictor stepwise. Model accuracy was measured with the percentage of species 

correctly classified based on model predictions (Cutler et al. 2007, Davidson et al. 2012), 

and Cohen’s kappa statistic (function kappa2 in R package irr) (Fielding and Bell 1997, 

Gamer et al. 2007). The latter measures the agreement between predicted and actual status, 

while correcting for random effect (Prasad et al. 2006, Cutler et al. 2007). I equally 

weighted classification costs in the RF models.  

All above processes were done respectively for the impact indices (i.e., model predictors) 

derived from my spatial and non-spatial CHI models. Therefore, two best RF models with 

optimal predictors were derived separately. I then applied these two best RF models to 

predict threatened status for Data Deficient species.  

4.3.5 Identifying threat patterns: threat epicenters and major drivers 
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I identified threat epicenters and major drivers for the threatened seahorse species based 

on my spatial CHI model outputs. I first plotted the CHI of threatened species (including 

the predicted ones by this study) by overlaying their CHI maps in ArcMap, with the sums 

assigned to overlapping cells (Halpern et al. 2008, Maxwell et al. 2013). I classified the 

ultimate CHI values to five levels (Very Low, Low, Medium, High, and Very High) based 

on the Jenks Natural Breaks algorithm in ArcMap (De Smith et al. 2007). This 

classification algorithm was based on the natural grouping inherent in the data, which 

maximized the difference between classes and similarity within each class. For reporting 

purpose, locations with ‘High’ to ‘Very High’ impacts (i.e., threat epicenters) were 

highlighted. I then plotted intensity maps of the identified truly important stressors across 

these epicenters.  

I conducted sensitivity analyses for my methods of determining CHI’s spatial patterns. I 

explored the effects of using different versions of species groups (threatened-only vs. all 

33 species) and CHI algorithms (additive vs. average) for overlapping pixels. The effects 

were tested on the derived CHI’s spatial patterns and its correlation to species richness (see 

details in Appendix G). I also compared the additive CHI map of all seahorse species 

against the additive CHI map of marine ecosystems (extracted from Halpern et al. 2015) to 

explore how they might differ in space.    

4.4 Results 

4.4.1 Cumulative human impact indices 

I obtained wide ranges of CHI indices from the non-spatial model (CHI_n = 1.22 – 63.40, 

n = 42) and the spatial model (CHI_s = 0.78 – 16.23, n = 33). The highest values of the 

two models were given to a Vulnerable species, H. kelloggi. The lowest CHI_s was given 

to a Data Deficient species (H. camelopardalis), and the lowest CHI_n to another Data 

Deficient species (H. pusillus). The CHI index based on vulnerability measures of marine 

ecosystems (CHI_e) had a much wider range of values (0.17 – 8103.24, n = 33), with the 

highest value given to an Endangered species (H. capensis) but the lowest value to another 

Endangered species (H. whitei). 
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I found a strong rank-order correlation between the indices derived from my two CHI 

models (CHI_n vs. CHI_s: r = 0.91, P < 0.001), but not between the ecosystem-scale index 

and the two species-level indices (CHI_e vs. CHI_n, r = - 0.09, P = 0.66; CHI_e vs. CHI_s, 

r = - 0.21, P = 0.33). I found that CHI_n and CHI_s had a high linear correlation (R2 = 0.78; 

Fig. I.1 in Appendix I). The impact indices derived from my species-level CHI models 

were significantly higher in the ‘threatened’ species (CHI_n = 23.5 ± 18.2, CHI_s = 7.7 ± 

3.7) than those in the ‘non-threatened’ species (CHI_n = 8.2 ± 6.7, CHI_s = 4.7 ± 3.1; 

Mann-Whitney U tests, both P < 0.01; Fig. 4.1). However, the ecosystem-scale index 

(CHI_e), however, didn’t differ between the ‘threatened’ species and ‘non-threatened’ 

species (Mann-Whitney U tests, P = 0.71). 

 

Figure 4. 1. Comparisons of cumulative human impacts based on (a) a non-spatial model and 

(b) a spatial model for ‘non-threatened’ species and ‘threatened’ species.  
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4.4.2 Predictions on conservation status of ‘Data Deficient’ species 

I obtained high-accuracy RF models based on datasets from both CHI models (non-spatial 

and spatial), with some differences on predictor’s importance. Generally, five stressors 

were important to the RF models based on both datasets (Fig. 4.2): 1) demersal, non-

destructive, high-bycatch fishing (DNHF), 2) nutrient pollution (NuP), 3) ocean pollution 

(OP), 4) demersal destructive fishing (DDF), and 5) habitat change caused by fishing 

(HCF). More specifically, nine stressors were important to determining conservation status, 

when impact indices from the non-spatial CHI model were used (Fig. 4.2a). The minimal-

optimal predictors only contained three most important variables: DNHF, NuP, and CHI_n. 

They derived the best RF model that classified species on the IUCN Red List with 95.7% 

accuracy (Cohen’s kappa = 0.911, P < 0.0001). Only seven stressors were important when 

impact indices from the spatial CHI model were applied (Fig. 4.2b). Three most important 

variables composed the minimal-optimal predictors: OP, DNHF, and NuP, in the 

decreasing order of importance. They derived the best RF model which classified species 

on the IUCN Red List with 87% accuracy (Cohen’s kappa = 0.738, P < 0.001).  

Predictions on Data Deficient species were highly consistent between the two optimal RF 

models (based on indices from non-spatial and spatial CHI models). The optimal RF model, 

based on the indices from my non-spatial CHI model, predicted that four species were 

‘threatened’ and 13 ‘non-threatened’ (Table 4.3). Given data limitations, the optimal RF 

model, based on the indices from my spatial CHI model, only predicted status for nine 

species. It predicted that four species were ‘threatened’ and five ‘non-threatened’ (Table 

4.3), which were consistent with the those based on indices from the non-spatial CHI model, 

except for one species (H. camelopardalis). This species was predicted to be ‘threatened’ 

by the RF model based on the spatial CHI dataset, but ‘non-threatened’ by the non-spatial 

CHI dataset. It also had apparently very low values of CHI_s (0.78) and CHI_n (2.35). 

Therefore, I determined that H. camelopardalis were likely not threatened. Another species 

(H. debelius) was predicted to be ‘non-threatened’ by the RF model based on the non-

spatial CHI dataset, but it had relatively higher values of CHI_n (17.9) than other ‘non-

threatened’ species and was only reported from a few locations (see Results from Chapter 

3). I therefore decided its status was ‘threatened’. 
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Figure 4. 2. Predictors’ relative importance (measured by the normalized mean decrease in model accuracy after permutating data of the 

predictor) for stressors from (a) the non-spatial CHI model, and (b) the spatial CHI model. AF, artisanal fishing; CD, coastal development; 

CHI_n, cumulative human impact derived from the non-spatial model; CHI_s, cumulative human impact derived from the spatial model; 

DDF, demersal destructive fishing; DNHF, demersal non-destructive high-bycatch fishing; HCF, habitat change caused by fishing; IS, 

invasive species; NoP, noise pollution; NuP, nutrient pollution; OA, ocean acidification; OP, ocean pollution; PHF, pelagic high-bycatch 

fishing; SSTA, sea-surface-temperature abnormality; shadowMax, the maximum importance of ‘shadow’ variables in each permutation. 

The shadow variables’ values are derived by shuffling values of the original attribute across objects. Each time, the minimum, mean, and 

maximum importance value of all shadow variables were calculated. This shuffling was performed multiple times (here, <800) to obtain 

statistically valid results. The maximum importance of the shadow variables was used as a reference for detecting important attributes. 

Attributes with green boxes were important, while attributes with red boxes were not important. 
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Table 4. 3. Summary of threatened status assessments and predictions, cumulative human 

impact, and expert evaluation confidence for 17 ‘Data Deficient’ seahorse species according 

to IUCN Red List. CHI_s, cumulative human impact based on our spatial evaluation model; 

CHI_n, cumulative human impact based on our non-spatial evaluation model;  Confidence, 

average confidence level for the estimates of CHI_s and CHI_n (4, very confident; 3, confident; 

2, likely; 1, not sure); ORF_s model, optimal random forest model for predictor datasets 

derived from our spatial evaluation model; ORF_n model, optimal random forest model for 

predictor datasets derived from our non-spatial evaluation model; T, threatened; NoT, non-

threatened. 

Species CHI_s CHI_n Confidence 

ORF_s 

model 

prediction 

ORF_n model 

prediction 

H. camelopardalis 0.78 2.35 3 T* NoT 

H. casscsio - 46.612 3 - T 

H. coronatus 10.96 23.18 2 T T 

H. guttulatus 10.57 35.75 2 T T 

H. hippocampus 14.56 42.8 2 T T 

H. bargibanti 2.49 2.95 2 NoT NoT 

H. colemani - 2.09 2 - NoT 

H. debelius - 17.9 2 - NoT** 

H. denise 2.59 7.2 2 NoT NoT 

H. jugumus - 1.54 2 - NoT 

H. minotaur 3.35 6.66 2 NoT NoT 

H. paradoxus - 6.37 2 - NoT 

H. pusillus - 1.22 2 - NoT 

H. satomiae - 6.51 2 - NoT 

H. subelongatus 5.36 5.16 2 NoT NoT 

H. tyro - 3.29 2 - NoT 

H. zebra 3.35 7.6 2 NoT NoT 

* Corrected to ‘non-threatened’ given the low CHI_s and CHI_n values; ** Corrected to 

‘threatened’ given the high CHI_n value. 

 

4.4.3 Threat epicenters for seahorse species and major stressors therein 

The cumulative human impacts on the ‘threatened’ seahorse species (including my inferred 

ones) demonstrated prominent spatial heterogeneity (Fig. 4.3). Generally, cumulative 

human impacts were low in the Americas, Africa, and Australia (Fig. 4.3 a). Some small 
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and patchy areas of ‘High’ impacts occurred in Europe, especially the Mediterranean (Fig. 

4.3b). The threat epicenters (‘High’ and ‘Very High’ impacts) mainly concentrated in Asia, 

with the largest areas in the East China Sea and northern South China Sea (Fig. 4.3). Other 

threat epicenters were found in the southeastern Korea Peninsula, southern Japan, southern 

Viet Nam and Cambodia, Peninsula Thai-Malaysia-Myanmar, northeastern Borneo, 

central Philippines, India, and Sri Lanka (Fig. 4.3c – e). These threat epicenters accounted 

for 8.3% of the total habitat area of all ‘threatened’ seahorse species, with a smaller fraction 

(1.1%) but relatively large area (63,261 km2) experiencing ‘Very High’ impacts (CHI_s > 

42.1). In these threat epicenters, the identified major stressors were high and widespread, 

except nutrient pollution which was largely confined to inshore waters (Fig. 4.4 and Fig. 

I.2 in Appendix I). The contributions of stressors to the CHI varied among threatened 

species, with demersal non-selective fishing and/or pollution-related activities representing 

the major stressors (Fig. I.3). 

My sensitivity analyses indicated that the distribution patterns of CHI were very similar 

between the two groups (19 threatened species vs. all 33 species; Fig. 4.5). I found that the 

standardized CHI map for all 33 seahorse species only had a medium positive correlation 

with the counterpart for marine ecosystems (r = 0.50, Pearson’s correlation coefficient; Fig. 

I.4). The latter also overestimated CHI on seahorses in almost all (99.96%) habitat pixels, 

with a tendency to have higher estimates than the former in offshore deeper waters (Fig. 

I.5). The CHI maps based on two different algorithms (additive vs. average for overlapping 

cells among species) were highly correlated (r = 0.74 and 0.75; Pearson correlation 

coefficients) but showed some divergences in spatial distribution patterns (Fig. 4.5). 

Compared with the CHI map by additive algorithm (Fig. 4.5c and 4.5d), the CHI map by 

average algorithm showed that habitats with high CHI values were more widely spread and 

included some patches in North and South America (Fig. 4.5e and 4.5f). I found medium 

positive correlations between species richness and CHI by additive algorithm (r = 0.46, 

0.64) but no significant correlations between species richness and CHI by average 

algorithm (r = -0.09, 0.08).  
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Figure 4. 3. Global map of cumulative human impact on seahorse species known or inferred to be threatened. The classification of 

cumulative human impact (from Very Low to Very High) is based on the Jenks Natural Breaks algorithm, which maximizes the difference 

between classes and similarity within each class.  (Note that the spatial map might be inaccurate in some regions, such as the Gulf of Thailand, 

because of data limitation).
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Figure 4. 4. Intensity map of four important anthropogenic stressors in threat epicenters of 

threatened seahorses: (a) demersal destructive fishing (DDF), (b) demersal, non-destructive, 

high-bycatch fishing (DNHF), (c) nutrient pollution (NuP), and (d) ocean pollution (OP). Note 

that another important stressor, habitat change caused by fishing was not displayed as its 

intensity was estimated by demersal destructive fishing (i.e., same as (a)). 
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Figure 4. 5. Spatial distributions of species richness and two versions of cumulative human impact (sum across species vs. average across 

species) for all seahorse species (n = 33) and threatened species only (n = 19). The classification of cumulative human impact (from Very 

Low to Very High) is based on the Jenks Natural Breaks algorithm, which maximizes the difference between classes and similarity within 

each class.  



80 
 

4.5 Discussion 

I find that threat patterns of data-poor marine species can be identified by integrating expert 

knowledge and spatial datasets with modeling techniques. My two CHI models 

demonstrate good consistency with IUCN Red List assessments in estimating species’ 

status. I also show that CHI models can derive useful human-impact indices to predict 

threatened status for Data Deficient species. This finding is encouraging as it might provide 

an alternative approach to assessing the many Data Deficient marine taxa (especially fishes) 

on the IUCN Red List (McCauley et al. 2015, IUCN 2018). My study also provides a global 

spatially-explicit map of CHI on marine species and identifies major stressors. These 

results are useful for coastal management and conservation (Halpern et al. 2008). Although 

my study was initiated for seahorses, the general framework and techniques have the 

potential to be used for many other marine taxa. 

4.5.1 Threat patterns and their conservation implications for seahorses 

My study contributes new and quantitative knowledge about human impacts for the whole 

genus of 42 seahorse species. I am the first to evaluate cumulative human impact for 

seahorse species. I predicted five ‘threatened’ and 14 ‘non-threatened’ species among the 

Data Deficient species on the IUCN Red List (IUCN 2018). This finding, along with 

current IUCN assessments, suggests that a total of 19 (45%) seahorse species are globally 

threatened by anthropogenic pressures. All seahorse species have been listed on the 

Appendix II of the Convention on International Trade in Endangered Species (CITES) 

since 2002, with implementation in 2004 (Vincent et al. 2014). This listing requires CITES 

Parties to ensure their exports of seahorses do not damage wild populations. I found that 

all 19 ‘threatened’ species are traded internationally (Foster et al. 2014) and need focused 

attention by CITES. I identify the major threat epicenters as concentrated in China and 

Southeast Asian countries, where marine ecosystems are also highly impacted (Halpern et 

al. 2008, Halpern et al. 2015). Among them, China is the largest consumer and importer of 

seahorses, and Southeast Asian countries are the major exporters (Vincent et al. 2011, 

Foster et al. 2016).    



81 
 

My findings highlight the importance of mitigating demersal, non-destructive, high-

bycatch fishing (DNHF, e.g., purse seines), ocean pollution (OP), and nutrient pollution 

(NuP) for seahorse conservation. Previous studies often considered demersal destructive 

fishing (DDF) such as bottom trawling as the major threat on seahorses, as it is the major 

source of traded seahorses and damages seahorse habitats (Vincent et al. 2011). Only 

recently have studies indicated that DNHF (e.g. purse seines) may catch similarly large 

numbers of seahorses as DDF (Lawson et al. 2017). As well, ocean and nutrient pollutions 

(OP and NuP) have usually been considered a secondary concern for seahorses, although 

they can cause eutrophication, hypoxia, and degradation of seahorse habitats (e.g., seagrass 

beds; Vincent et al. 2011). My models suggest that DNHF, OP, and NuP may be more 

important than DDF in determining seahorse threatened status, perhaps because the 

impacts of the first three stressors (DNHF, OP, NuP) had greater divergences between 

‘threatened’ species and ‘non-threatened’ species than counterparts of DDF. My results 

thus suggest that we might have previously underestimated the influence of DNHF, OP, 

and NuP in determining extinction risks of seahorses. 

4.5.2 Cumulative human impacts on marine organisms and ecosystems 

I highlight the importance of developing species-level CHI models to estimate cumulative 

impacts for particular marine taxa (Maxwell et al. 2013). My models are meaningful as 

they derived significantly higher CHI indices (CHI_n and CHI_s) for threatened species 

than non-threatened species. In contrast, such difference didn’t exist for the CHI index 

(CHI_e) based on marine ecosystems’ vulnerability data, suggesting that the vulnerability 

measures for marine ecosystems differ from counterparts for specific organisms (Maxwell 

et al. 2013). The spatial difference between my CHI map for seahorses and the CHI map 

for marine ecosystems might result from seahorses’ greater distributions in shallower 

waters (see Results from Chapter 3). Therefore, higher CHI values for seahorses were 

concentrated in shallower waters, compared to the CHI for marine ecosystems.  

Building species-level CHI models is helpful for generating conservation plans for 

different focal organisms. My results suggest that some leading threats (e.g., climate 

change) on marine offshore ecosystems may not be the leading stressors to inshore fish 
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species (Halpern et al. 2008, Halpern et al. 2015). Given that importance of each stressor 

varies among species, there is clearly a need to tailor threat-mitigation plans to particular 

organisms (Maxwell et al. 2013). Given that some major pressures on seahorses (e.g., non-

selective fishing and pollutions) are also leading stressors on marine mammals, sea birds 

and turtles (Maxwell et al. 2013, Avila et al. 2018), mitigating impacts of these stressors 

may benefit a large variety of marine animals (Maxwell et al. 2013). Identifying such 

stressors could be beneficial to achieve broad conservation goals. 

My research suggests that the actual cumulative human impact is more complex than a 

linear-additive model can explain. As with many other CHI studies, my CHI models are 

based on the ‘linear additive’ assumptions (Halpern and Fujita 2013), which might be not 

valid in marine ecosystems (Crain et al. 2008, Coll et al. 2012). Therefore, researchers are 

highly recommended to validate the modeled CHI with observed status of the ecosystem 

components (Korpinen and Andresen, 2016). The few studies have done so report both 

positive and negative findings (Andersen et al. 2015, Clark et al. 2016, Korpinen and 

Andersen 2016). One other study showed the relationship between the CHI and degradation 

conditions of Mediterranean coralligenous outcrops was best fitted by a log-log model 

rather than linear model (Bevilacqua et al. 2018). I correlated my CHI estimates with IUCN 

Red List assessments and found a generally good consistency between them. However, 

threatened and non-threatened species cannot be clearly split by CHI indices alone (CHI_s 

or CHI_n). My random forest models demonstrated that impacts of several individual 

stressors were more important than the CHI (of all stressors) in predicting threatened status. 

I highlight that distribution patterns of CHI can be influenced by using different algorithms 

(sum vs. average) to derive CHIs in overlapping cells of multiple species. Halpern et al. 

(2008) showed that the average algorithm derived a CHI map very similar to that by the 

additive algorithm. I displayed that although these two algorithms also derived similar 

results for seahorses, the differences were also notable and further influenced the 

relationship between CHI and species richness. Previous studies have shown significant 

positive correlations between CHI (based on the additive algorithm) and species richness. 

For instance, a substantial overlap between regions with high species richness and high 

cumulative threats was found in the Mediterranean Sea (Coll et al. 2012). A global-scale 



83 
 

study also indicated that species richness is positively correlated to cumulative human 

impacts on marine ecosystems (Lindegren et al. 2018). I also showed such correlation exist 

in seahorses. However, this correlation became insignificant when the average algorithm 

was used for CHI in my case. This finding suggests that using additive algorithm could 

fake the relationship between species richness and human impacts. Another potential risk 

of using additive algorithm is that species-poor regions could be overshadowed by species-

rich ones as shown in my results. However, if one aims to estimate cumulative impact on 

all species in the same location, using the additive algorithm will be more reasonable than 

using the average algorithm.  

4.5.3 Challenges and limitations 

My study was subject to several limitations such that some results should be interpreted 

with caution. First, the number of expert evaluations per species and the confidence levels 

of most evaluations were not high, especially for impacts from climate change (see 

Appendix H). These two concerns reflect the paucity of experts and studies on impacts of 

anthropogenic stressors upon seahorses (Vincent et al. 2011, Cohen et al. 2017). Further 

species-stressor studies might change current threat patterns. Second, I may not involve or 

estimate well some important stressors, as their spatial intensities are difficult to model. 

This may particularly explain the unexpected low CHI values of the two Endangered 

seahorse species, H. capensis and H. whitei. Hippocampus capensis lives in a narrow range 

(several estuaries in South Africa) and is thought to be negatively affected by a pressure 

not included in my stressor data set: storm-water runoff with heavy loads of sediments 

(Pollom 2017). Hippocampus whitei inhabits estuaries and areas with habitat-forming biota 

(e.g. seagrasses) in Australia. It is mainly threatened by habitat change caused by coastal 

development (Harasti and Pollom 2017), which was mainly inferred from population 

density in my study. Further analyses that better map intensities of these and other stressors 

are needed. 

4.5.4 Applying CHI models to guide marine conservation 
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I am the first to illustrate that human-impact indices derived from CHI models can be used 

to estimate conservation status for data-poor species. I found that the ecosystem-scale CHI 

index did little to predict conservation status of seahorses, just as was previously found for 

marine mammals (Davidson et al. 2012). In contrast, I found that human-impact indices 

derived from species-level CHI models are highly useful in conservation-status prediction. 

This supports my hypothesis that species-level models can derive human-impact indices 

more relevant to conservation status than does an ecosystem-scale model.  

I also indicate that a non-spatial CHI model can derive impact indices to better predict 

threatened status than a spatial model. This is encouraging for many Data Deficient marine 

species that lack spatial maps for applying a spatial CHI model (McCauley et al. 2015). In 

general, the non-spatial CHI model relies more on expert’s knowledge. The better 

predictions based on indices from my non-spatial model might be explained by the fact that 

eight out of my 22 experts have also participated in IUCN Red List assessments, with five 

as Assessors, two as Reviewers, and one as the Contributor for a total of 14 seahorse species. 

Interestingly, in a post-hoc survey, almost all experts reported that they directly used their 

knowledge or data rather than IUCN Red List assessments in evaluating my measures. 

Given my CHI system is different from the IUCN Red List system, the high consistency 

between the two reflects the utility of my approach to supplement IUCN system in 

evaluating Data Deficient species. 

As shown in my study, a spatial CHI model can also derive results generally consistent 

with IUCN Red List assessments. The merit of a spatial CHI model is to provide spatially-

explicit maps of human impacts on focal species (Maxwell et al. 2013). Currently, we need 

such maps to better understand the patterns of human impacts on many marine organisms 

(Maxwell et al. 2013). Understanding these threat patterns is vital to develop cost-effective 

management plans for ameliorating their impacts (Lewison et al. 2004, Crain et al. 2009). 

The impact map can be further used to deduce conservation costs in marine conservation 

planning and prioritization (Ban and Klein 2009, da Luz Fernandes et al. 2017). 
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Chapter 5: Conservation prioritization at large spatial 

scales for seahorses (Hippocampus spp.) 

5.1 Summary 

To ensure that marine protected areas (MPAs) are supported by multiple stakeholders, 

planners must integrate scientific evidence and socioeconomic costs into conservation 

prioritization. However, such practices are challenging at large spatial scales. To explore 

possibilities, I initiated a framework of large-scale conservation prioritization for marine 

species. My framework combines a gap analysis of the conservation targets against current 

MPAs and a further prioritization with consideration of different socioeconomic costs. I 

illustrated this with case studies of seahorses (Hippocampus spp.) at the global scale and 

at a national scale in China. At both scales, I built a conservation scenario and four 

alternative scenarios to examine the effect of socioeconomic concerns on priority selection 

with Marxan software. I set a minimum conservation target to protect 2,000 km2 area of 

occupancy (AOO, sensu IUCN) for each species, representing a notional bottom line for 

protecting marine species with limited conservation budgets. I examined two approaches 

based on Marxan outputs (best solution vs. selection frequency) to deriving priority 

integrated solutions. My results at both scales indicated that current MPA coverage meets 

this notional bottom-line target for most seahorse species, but more habitats were covered 

by lower-protection MPAs than greater-protection MPAs (i.e., no-take reserves). Nine 

species globally and one species in China did not even meet the very minimal target for 

MPA coverage. Global priorities for enhanced protection include habitats in Hawaii, South 

Africa, Australia, Southeast Asia, and Japan. New priority areas for China were mainly 

located in southern Hainan and Taiwan provinces. I found that the selection-frequency 

approach performed better than the best-solution approach in two of the three prioritization 

cases. My study highlights the complexity of selecting conservation priorities under 

different socioeconomic constraints at large spatial scales and provides a template for such 

an approach. 
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5.2 Introduction 

Marine protected areas (MPA) have served as a major cornerstone in marine conservation, 

but they are often challenged by socioeconomic interests (Klein et al. 2013, Costello and 

Ballantine 2015). Globally, MPAs are widely used to safeguard marine biodiversity and 

threatened ecosystems (Klein et al. 2013). Well-managed MPAs not only protect the 

conservation targets but also deliver socioeconomic benefits and ecosystem services 

(Murray et al. 1999, Cinner et al. 2005, McCook et al. 2010). Many countries have set up 

MPAs to meet their obligations under the Convention on Biological Diversity (CBD) and 

the Aichi Target 11 (protecting 10% of the ocean by 2020) (Costello and Ballantine 2015). 

However, the implementation of MPAs has often encountered challenges because of 

noncompliance of stakeholders, especially fishers (Gill et al. 2017).  One reason is the lack 

of clarity in fisheries benefits from MPAs.  Another reason is the failure to embrace 

socioeconomic factors in setting up MPAs (Green et al. 2009, Weeks et al. 2010, Cisneros-

Montemayor and Vincent 2016). 

Conservation prioritization/planning is a vital approach in identifying potential MPAs that 

can meet a given conservation target with minimum socioeconomic costs (Margules and 

Pressey 2000, Smith et al. 2006). Usually the conservation target is to protect a certain 

amount of habitats that could secure the focal biodiversity (Brooks et al. 2006, Drummond 

et al. 2010). The socioeconomic costs mainly include three components (Naidoo et al. 2006, 

Ban and Klein 2009): (1) management costs from enforcing and maintaining the priority 

habitats (Balmford et al. 2004); (2) transaction costs resulting from negotiating protection 

(Naidoo et al. 2006); and (3) opportunity costs from foregone revenues (e.g., fisheries value) 

(Cameron et al. 2008).  Additionally, human impacts have also been used as a type of cost 

in prioritization studies (Tallis et al. 2008, Ban and Klein 2009, Klein et al. 2013), based 

on the assumption that protecting highly-impacted habitats/populations leads to higher 

costs (Klein et al. 2013). Integrating these socioeconomic costs into prioritization is crucial 

for understanding stakeholders’ interests and setting up feasible MPAs (Scholz et al. 2004, 

Carwardine et al. 2008, Klein et al. 2008). 
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Marine conservation prioritization (MCP) at large spatial scales (nationally or 

internationally) is challenging, although increasingly popular. First, few spatially-explicit 

data for socio-economic costs exist for the oceans at large scales (Balmford et al. 2004, 

Ban and Klein 2009, Freudenberger et al. 2013). Second, only a few prioritization tools 

(e.g., Marxan) can incorporate socio-economic costs especially for large-scale datasets 

(Stelzenmüller et al. 2013, Pınarbaşı et al. 2017). Third, few prioritization tools provide 

exact priority solutions, as they were normally designed to produce multiple choices for 

local stakeholders’ negotiations (Ban and Klein 2009, Pınarbaşı et al. 2017). At large 

spatial scales, such negotiation can be much more formidable than at local scales. 

Techniques to address this gap are understudied in the literature (Solovyev et al. 2017). On 

the other hand, there is an emergent need for large-scale MCP for the development of large 

MPA networks (Douvere 2008, Mazor et al. 2014). Currently, MCP studies at the 

multinational and global scales are rare and dominated by the ‘biodiversity hotspot’ schema 

(Myers et al. 2000). Most studies have only used area and/or human impacts as the 

surrogates for conservation costs (Selig et al. 2014, Asaad et al. 2018, Lindegren et al. 

2018).  

Large-scale MCP studies can derive large networks of MPAs that may better protect marine 

species and ecosystems. Conservation initiatives should be based on a clear understanding 

of the scale at which they are working (Lourie and Vincent 2004). Marine species usually 

have large geographic ranges (e.g., over 100,000 km2) and may migrate to different habitats 

throughout their life history (Hooker et al. 2002). As well, numerous anthropogenic 

activities (e.g., fishing) often occur at large spatial scales. Such ecological and social 

factors require large-scale conservation planning to identify and protect all priority habitats 

across the species ranges (Agardy et al. 2011). Marine species covered by large networks 

of MPAs are likely more resilient to large-scale disturbances. Such resilience is vital for 

organisms to survive and adapt in a changing ocean environment (Hazen et al. 2013). 

Ignoring the importance of large-scale MCP could cause conservation failures (Agardy et 

al. 2011).  

Seahorses (Hippocampus spp.) are a genus of flagship fishes whose conservation 

prioritization may benefit many other marine species. Given their charismatic appearance 
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and threatened status, seahorses have been used as ‘flagships’ for promoting marine 

conservation around the word (Vincent et al. 2011, Harasti et al. 2014). Nearly 45% of 

seahorse species are known/predicted as being threatened (IUCN 2018; see Chapter 3), 

calling for urgent conservation measures such as new marine reserves to protect them. 

Distributing around the world’s shallow seas from the temperate to the tropic, seahorses 

are found in many of the species-rich habitats such as seagrass beds, estuaries, mangroves, 

and coral reefs (Foster and Vincent 2004). Such geographic and habitat traits imply that 

protecting seahorse habitats may benefit many other species therein. Seahorses are traded 

around the world for traditional medicines, curios, and aquarium fishes (Vincent et al. 2011, 

Foster et al. 2014). As the first fully marine genus being listed on Appendix II of the 

Convention on International Trade in Endangered Species (CITES) (effective since 2004; 

Vincent et al. 2011), seahorse conservation planning may help CITES parties better fulfil 

their obligations and set an example for other listed species such as sharks and rays.  

My study seeks approaches to marine conservation planning at large spatial scales, using 

seahorses as the case study. I here mainly examine three questions: 1) How do we 

incorporate socioeconomic costs in marine conservation planning at large spatial scales? 2) 

How do we derive priority solutions from prioritization tools? 3) Where are the priority 

areas for seahorses? To address the above questions, I developed a new prioritization 

framework. I collated habitat and socioeconomic-cost maps for seahorse species, and 

global and regional MPA maps. I used this framework to set priorities for seahorses at the 

global and national scales. To do so, I first examined current MPA coverage of seahorse 

habitats, and then examined two novel approaches to selecting priority habitats. This work 

is directed at developing a framework with useful techniques to address current challenges 

in large-scale MCP for marine species. 

5.3 Methods 

5.3.1 Prioritization framework for conservation and management 

I developed a framework to set conservation and management priorities based on previous 

schemas of systematic conservation planning (Fig. 5.1) (Margules and Pressey 2000, 
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McIntosh et al. 2017). My framework considered the focal species as the conservation 

features. I set the conservation target to protect at least 2,000 km2 of ‘area of occupancy 

(AOO)’ for each species. Here, the AOO is defined by the guidelines for using the IUCN 

Red List criteria (IUCN 2005). I chose 2,000 km2 because this is the threshold of AOO 

(Criterion B2) below which the IUCN considers species to be threatened, starting with 

Vulnerable. This threshold is not conservative in identifying threatened marine species and 

sets aside at least three possible concerns.  First, conservation status of most marine species 

(including seahorses) on the IUCN Red List has been evaluated against population decline 

rate (Criterion A) rather than the AOO (Criterion B2), Second, Red Listing under Criterion 

B2 requires more than just AOO in deciding on conservation status based on geographic 

criteria (e.g., evidence about population fragmentation or highly fluctuated; IUCN 2005).  

Third, one reason that Criterion B2 is seldom used for marine species is that 2,000 km2 is 

very low as a target for protecting marine species, where AOO of even very threatened 

species could easily exceed this threshold.  However, these caveats notwithstanding, I used 

this ‘bottom-line’ target of 2,000 km2 in the absence of better advice. I first compared it 

against current MPAs and related conservation plans. I then identified supplementary 

priorities for conservation and management based on multiple socioeconomic scenarios. 

Ideally, I would like to protect species AOO with the least cumulative human impact (CHI) 

and fewest management costs (hereafter, CHI-cost scenario), since such areas would likely 

have the highest probability of saving the species with least effort. But using least CHI 

does not minimize costs to specific stakeholders for CHI is a composite of individual 

impacts (Ban and Klein, 2009). Therefore, alternative scenarios were applied to identify 

priorities that could minimize the opportunity costs (e.g., fisheries) for different 

stakeholders in using species habitats. I compared the CHI-cost scenario with each 

alternative scenario to explore spatial convergences and divergences. I considered the 

convergences as potential priorities for no-take reserves, and the divergences as priorities 

for sustainable use multizone MPAs. To illustrate the approach, I applied the framework 

to identify priorities for seahorses in two spatial scales: nationally in China and globally.  
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Figure 5.1. The framework of conservation prioritization for marine species at large spatial 

scales. 

5.3.2 The national-scale case study on seahorse populations in China  

I aimed to protect at least 2,000 km2 AOO for each of the six Chinese seahorse species 

whose AOO maps were available. Approximately 14 seahorse species inhabit China’s 

waters (including Hong Kong and Taiwan) based on my study in Chapter 2 and Chinese 

colleagues’ records (see details in Table J.1 in Appendix J). Currently, only six of them 

have habitat maps in China’s waters from my studies in Chapter 2 and 3, so could be used 

for this study.  Among them, the habitat map of the Spiny seahorse (Hippocampus histrix) 
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came from my global-scale study (Chapter 3) and the others from my national-scale study 

(Chapter 2). All these six species are threatened in China (Wang and Xie 2009), as well as 

globally (IUCN 2018).  

I gathered China’s MPA and marine-spatial-planning data from local sources and 

categorized them as greater-protection areas (GPAs) and lower-protection areas (LPAs). 

China’s coastal provinces/municipalities have initiated ‘marine functional zoning’ and 

‘ecological-redline’ planning in recent years (Lu et al. 2015). These plans have defined 

marine reserves as no-take zones (here, as GPAs) and other important zones for sustainable 

multiple uses (here, as LPAs). The latter allow certain types of human uses (including 

fisheries) but prohibit constructions (e.g., sea filling/reclamation) and pollutions (Lu et al. 

2015). I gathered these maps for coastal regions from local governments’ websites and 

Chinese colleagues (see Table J.2 in Appendix J). I then estimated the proportion of each 

seahorse’s habitats covered by GPAs and LPAs separately, as well as all protected areas 

together (i.e., the union of GPAs and LPAs).  

 

For those species whose MPA coverage was less than my target, I conducted conservation 

planning in five scenarios (Table 5.1). The planning units were the AOO cells (1 x 1 km2 

pixels) of each species that were not protected by existing MPAs. The first scenario was 

composed of the management cost and the cumulative human impact (i.e., CHI-cost 

scenario; Table 1). Four alternative scenarios replaced the CHI cost with one of the 

socioeconomic surrogates (Table 1), respectively: (1) commercial fisheries, (2) artisanal 

fisheries, (3) shipping, and (4) (land-based) nutrient pollution. I used the total boundary 

length of the selected planning units as the surrogate of management cost (Possingham et 

al. 2000, Balmford et al. 2004, Ban and Klein 2009). This management cost was derived 

with the ArcMarxan Toolbox based on the default setting in an ArcMap. The other five 

types of cost were derived from Halpern et al. (2015) and my Chapter 3 (see detailed 

descriptions in Appendix J). Among them, commercial fisheries were model estimates of 

catch from demersal non-selective fisheries (e.g., bottom trawling and purse seine). I only 

included these types of fisheries as such active gears exerted the major pressures on 

seahorses which live close to the seafloor (see Results in Chapter 3).  
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Table 5. 1. Five cost scenarios for conservation and management planning for seahorses. 

Cost surrogates 
Conservation cost scenarios 

CHI-cost 

scenario 

AF 

scenario 

CF 

scenario 

SP 

scenario 

NP 

scenario 

Total boundary length √ √ √ √ √ 

Cumulative human impact (CHI) √     

Artisanal fisheries (AF)  √    

Commercial fisheries (CF)   √   

Shipping (SP)    √  

Nutrient pollution (NP)     √ 

 

I used Marxan software (version 2.3.4; Possingham et al. 2000) to configure priorities that 

minimize conservation costs in the above five scenarios. Marxan is one the most widely 

used prioritization tools that allows researchers to incorporate socioeconomic constraints 

in planning (Possingham et al. 2000). Compared with other tools, Marxan also has capacity 

to handle large datasets (Leslie et al. 2003). The simulated annealing algorithm and 

iterative improvement features were chosen in Marxan. In each scenario, I ran Marxan with 

500 replicates at 1 million or 10 million iterations for each repeat after initial trials of 

calibration (different times of iterations used in different species cases) (see guideline by 

Game and Grantham, 2008). This resulted in 500 solutions that satisfied my goal and 

demonstrated how frequently the planning units contributed to my goal. Marxan uses two 

weighting factors to balance the conservation goal and total boundary length (here, 

management cost): species penalty factor (SPF), and boundary length modifier (BLM).  By 

following previous guides, we determined the values for these factors to ensure my 

conservation targets were always met and priorities were compact and cost-effective 

(Stewart and Possingham 2005, Game and Grantham 2008, Ardron et al. 2010). See a 

detailed description in Appendix J. 

I derived priority solutions based on two approaches and compared solutions of the CHI-

cost scenario against the other four scenarios. To do so, I plotted two Marxan outputs, the 

best selection and solution frequency in each scenario. The best solution is an optimal 
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solution with the least cost among the 500 replicates in determining whether a planning 

unit should be selected as priority site (1, selected; 0, not selected). This best solution does 

not necessarily ensure the best priority system and it may only marginally better than the 

other solutions (Game and Grantham 2008). The solution frequency records the number of 

times (0 – 500) of each planning unit being selected among the 500 replicates. I examined 

the Spearman’s rank correlations on the selection frequency (0 – 500) between each 

scenario pair. For each scenario, I determined the priority units based on the solution 

frequency by using a frequency threshold, which ensured the conservation targets were met 

with the minimum number of planning units (see detailed methods in Appendix J). By 

doing so, I converted the solution frequency into a binary map (‘priority’ and ‘non-priority’, 

1 and 0), same as the best-solution map. I then compared the two types of priority solutions 

(solution frequency vs. best solution) using Cohen’s kappa statistic (function kappa2 in R 

package irr) (Fielding and Bell 1997, Gamer et al. 2007). This measures the agreement 

between two different solutions, while correcting for random effects (Prasad et al. 2006, 

Cutler et al. 2007). I also used this statistic to examine the extent of spatial convergence in 

priority solutions between the CHI-cost scenario and other cost scenarios respectively. In 

this case, both priority solutions (selection frequency vs. best solution) were tested 

individually to examine the effect of different solution methods on the extent of spatial 

convergence.  

Finally, I identified priorities based on the above comparisons. I decided to use the solution 

(selection frequency vs. best solution) that derived more spatial convergences between the 

CHI-cost scenario and alternative scenarios. Based on such a solution, I identified the 

planning units that were agreed by all scenarios (i.e., spatial convergences) and units that 

were not (i.e., spatial divergences). The former represented the units with the lowest values 

for my full set of human uses, and thus were considered as priorities for greater-protection 

areas (GPAs): prohibiting demersal non-selective fishing, artisanal fishing, shipping and 

nutrient pollution. In contrast, the latter represented conflict zones and was considered as 

priority sites for lower-protection areas (LPAs, e.g., multiple-use zones). The permitted 

types of human uses could be determined by which socioeconomic factors were influential. 
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5.3.3 The global-scale study on seahorse species 

At the global scale, I aimed to protect at least 2,000 km2 habitat for each of the 33 species 

whose AOO maps were available from my study in Chapter 3.  

To achieve this goal, I first explored the extent of AOO for each species fell within current 

MPA coverage (unit: km2). I gathered the MPA data from the World Database on Protected 

Areas (UNEP-WCMC and IUCN 2018). I then categorized them into two groups as I did 

in China: greater-protection areas (GPAs) and lesser-protection areas (LPAs). The GPAs 

(n = 3313) contained all MPAs with IUCN Categories I – IV and MPAs without IUCN 

Categories that were claimed to be entirely ‘no-take’. Protected areas with IUCN 

Categories I – IV are commonly considered as strict marine reserves (Soutullo et al. 2008, 

Jenkins and Van Houtan 2016), although their protection efficacy can be variable. The 

LPAs (n = 6520) contained all remaining MPAs, including those with IUCN Categories V 

and VI, which were created for sustainable multiple uses (e.g. recreation and tourism) 

(Dudley 2008, Kenchington 2010). The GPAs and LPAs maps from China were also added 

to the global categories respectively. I then calculated 1) the AOO of each species covered 

by GPAs and LPAs separately, and 2) the difference between the protection coverage (by 

all MPAs) and my conservation target. I then applied Marxan to identify priority areas for 

species whose habitats were not sufficiently protected following the same approach 

described in the case study of Chinese seahorses. 

5.4 Results 

5.4.1 National-scale MPA coverage in the areas of occupancy of Chinese seahorse 

populations 

I found that the conservation targets of five Chinese seahorse species were met by current 

MPAs and spatial planning, with only H. histrix (protected AOO < 2,000 km2) remained 

for further prioritization in Marxan at the national level (Table 5.2). The Japanese seahorse 

(H. mohnikei) and the Three-spot seahorse (H. trimaculatus) had the largest values of AOO 

covered by both greater- and lower-protection areas. In contrast, the ratio of protected AOO 

to all AOO (per species) was low (4 – 11%) for five Chinese seahorses, but moderate (50%) 
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for H. histrix (Table 5.2). The AOO covered by greater-protection areas (GPAs, 10,380 

km2) only accounted for 16% of the overall protected AOO. The unprotected AOO units 

of H. histrix were located in coastal waters of Hainan and Taiwan Provinces, where I 

further set priorities. 

Table 5. 2. Summary of conservation coverage in the area of occupancy (AOO) of six seahorse 

species in China, sorted by AOO. The protected area (Area / km2) and main region of the 

protection for each species were summarized for two types of MPAs: greater-protection areas 

and lower-protection areas.  All MPAs (km2): the overall protected areas for each species by 

all MPAs. Protection ratio: the ratio of protected AOO to all AOO for each species. 

Species 

Greater-protection areas Lower-protection areas All MPAs Area of occupancy 

Area  

(km2) 
Main region 

Area 

(km2) 
Main region (km2) 

Area 

(km2) 

Protection 

ratio 

H. histrix 175 Pingtung (Taiwan) 1,159 Wenchang (Hainan) 1,334 2,622 0.51 

H. kelloggi 212 Beihai (Guangxi) 4,758 
Beibuwan Bay 

(Guangxi) 
4,970 83,396 0.06 

H. kuda 1,662 Dongsha Islands 7,499 Hainan  9,161 93,323 0.10 

H. spinosissimus 1,035 Dongsha Islands 4,452 Hainan  5,487 128,365 0.04 

H. mohnikei 6,802 
Lianyungang 

(Jiangsu) 
34,609 

Zhoushan Islands 

(Zhejiang) 
41,411 351,795 0.12 

H. trimaculatus 5,036 
Zhoushan Islands 

(Zhejiang) 
31,115 Hainan 36,151 387,582 0.09 

 

5.4.2 National-scale priorities for Chinese seahorse populations 

For H. histrix, the CHI-cost scenario (Fig. 5.2a and 5.2f) had high correlations in terms of 

selection frequency with all alternative scenarios (Table 5.3), with the highest correlation 

with the artisanal-fisheries scenario (r = 0.95, Fig. 5.2b and 5.2g), followed by the nutrient-

pollution (r = 0.81, Fig. 5.2c and 5.2h), shipping (r = 0.77, Fig. 5.2d and 5.2i), and 

commercial-fisheries scenarios (r = 0.76; Fig. 5.2e and 5.2j).  
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Table 5. 3. Comparisons on prioritization results between the CHI-cost scenario and other 

four scenarios: artisanal fisheries, commercial fisheries, nutrient pollution, and shipping. The 

prioritization was done in three regions: China (for H. histrix), Southeast Asia (for 

Hippocampus barbouri), and Australia (for H. abdominalis and H. minotaur). r, Spearman 

rank correlation coefficient of the pairwise selection frequencies; Kappa-f, Cohen’s kappa 

statistic of the pairwise binary solutions based on the selection frequency data; Kappa-b, 

Cohen’s kappa statistic of the pairwise binary solutions based on the best solution data. 

Alternative 

scenarios 

CHI-cost scenario 

(China) 

CHI-cost scenario 

(Southeast Asia) 

CHI-cost scenario 

(Australia) 

r Kappa-f 
Kappa-

b 
r 

Kappa-

f 

Kappa-

b 
r Kappa-f Kappa-b 

Artisanal 

fisheries 
0.950 0.860 0.715 0.606 0.630 0.433 0.307 0.724 0.484 

Commercial 

fisheries 
0.760 0.800 0.639 0.446 0.280 0.611 -0.009* 0.553 0.372 

Nutrient 

pollution 
0.810 0.600 0.515 0.426 0.520 0.491 0.346 0.625 0.443 

Shipping 0.770 0.710 0.559 0.526 0.250 -0.027 -0.026 0.365 0.458 

*NOT statistically significant (P > 0.05). 

 

Table 5. 4. Measure of cumulative human impact (CHI), total boundary length (TBL), total 

number of patches (TP), and ratio of greater-protection areas (GPAs) to lower-protection 

areas (LPAs, value shown as area by km2) of the priority solutions based on two approaches 

(selection frequency vs. best solution) for three regions (and species): Southeast Asia (H. 

barbouri), Australia (H. abdominalis and H. minotaur) and China (H. histrix). 

Solution 

approach 

China Southeast Asia Australia 

CHI TBL TP 
GPAs : 

LPAs 
CHI TBL TP 

GPAs : 

LPAs 
CHI TBL TP 

GPAs : 

LPAs 

Selection 

frequency 
197.7 740 41 447:219 343.7 1016 30 828:844 91.5 704 13 0:1415 

Best 

solution 
199.9 776 50 407:260 337 1044 39 649:1021 97.7 670 10 0:1415 
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The selection-frequency approach performed better than the best-solution approach in 

determining priority solutions from Marxan outputs. Compared with the best solution, the 

selection frequency derived priorities with higher convergence between CHI-cost and 

alternative scenarios (Kappa-f > Kappa-b in Table 5.3), except for the shipping scenario. 

Consequentially, more priorities were selected as greater-protection areas (GPAs) based 

on the selection frequency than based on the best solution (Table 5.4, Fig. K.1 and K.2 in 

Appendix K). The priority areas based on the selection frequency also contained less 

cumulative human impacts, shorter total boundary length, and less patches than based on 

the best solution (Table 5.4). There were medium to high extents of consistency between 

the two types of priority solutions (selection frequency vs. best solution) within each 

scenario (Cohen’s kappa = 0.645 – 0.806, all P < 0.001).  

Given the above comparison, I chose the priorities based on the selection-frequency 

approach for H. histrix. A total of 447 km2 AOO (47% out of the 944 planning units) were 

selected as GPAs, and 219 km2 AOO as LPAs in Hainan and Taiwan (Fig. 5.3 and Fig. 

K.2). 
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Figure 5. 2. Selection frequency of planning units for the Chinese seahorse population of 

Hippocampus histrix in Hainan (a – e) and Taiwan (f – j) for five cost scenarios: cumulative-

human-impact cost (CHI-cost scenario, (a) and (f)), artisanal fisheries (AF scenario, (b) and 

(g)), nutrient pollution (NP scenario, (c) and (h)), shipping (SP scenario, (d) and (i)), and 

commercial fisheries (CF scenario, (e) and (j)). Selection frequency was classified into four 

categories based on the quantiles in the distribution of the selection frequency. 
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Figure 5. 3. Conservation priorities for Chinese seahorses including habitats covered by 

current marine protected areas, i.e., greater-protection areas (GPAs) and lower-protection 

areas (LPAs), and selected priorities for GPAs and LPAs based on the selection frequency in 

Marxan.  

 

5.4.3 Global MPA coverage in the areas of occupancy (AOO) of seahorses 

I found that all the 33 species have some part (10 – 128,299 km2, or 2 – 85%) of their AOO 

covered by existing MPAs, but nine species fell short of my already very low target (MPA 

coverage < 2,000 km2, Table 5.5). An Australian species currently assessed as ‘Least 

Concern’ (H. angustus) benefited from the highest MPA coverage, while a South African 

species assessed as ‘Endangered’ (H. capensis) was afforded the least MPA coverage. 

Generally, significantly more AOO was covered by lower-protection areas (LPAs) than by 
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greater-protection areas (GPAs; paired Wilcoxon test, P < 0.001; Fig. 5.4a). Indeed, GPAs 

(206,385 km2) only accounted for 35% of the overall protected AOOs of seahorses. 

Furthermore, the protected AOO largely consisted of small patches (area < 10 km2), itself 

a conservation concern. I found that threatened species benefited from significantly more 

protected AOO (absolute value per species) than did non-threatened species (Wilcoxon test, 

P < 0.05). Further tests revealed that, although AOO protected by GPAs (i.e., GPA 

coverage) did not significantly vary between the two groups (threatened vs. non-threatened, 

Wilcoxon test, P = 0.059; Fig. 5.4b), AOO protected by LPAs (i.e., LPA coverage) was 

significantly higher for threatened species than for non-threatened species (Wilcoxon test, 

P < 0.05; Fig. 5.4c). However, when the ratio of the MPA coverage to all AOO (per species) 

was used instead of the absolute value, I found that the MPA-coverage ratio for threatened 

species was in fact significantly lower than that for non-threatened species (Wilcoxon test, 

P < 0.05). 

Among the nine species falling short of conservation target, six rarest species had AOO 

smaller than 2,000 km2 based on results from my Chapter 3 (Table 5.4). It was, therefore, 

important to include all their habitats (i.e., AOOs) as conservation priorities for greater 

protections.  That left only three species for habitat prioritization analyses in Marxan: one 

Southeast Asian species (H. barbouri) and two sympatric Australian species (H. 

abdominalis and H. minotaur). I conducted the prioritization for H. barbouri alone as it 

does not share habitats with the other two species, whose prioritization was done together. 

In the end, I derived a total of 20 priority solutions (2 regions x 5 cost scenarios x 2 priority-

selection approaches). 
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Table 5.5. Summary of marine protected area (MPA) coverage in the areas of occupancy (AOO) of each seahorse species at the global scale, 

ranked by AOO. Threatened status based on the IUCN Red List: EN, Endangered; VU, Vulnerable; NT, Near Threatened; LC, Least 

Concern; DD, Data Deficient. Threatened status of Data Deficient species predicted by my Chapter 3: T, threatened; NoT, non-threatened. 

The protected area (km2) and main region of the protection for each species (Main region) were summarized for two types of MPAs: greater-

protection areas and lower-protection areas.  All MPAs (km2): the overall protected areas for each species by all MPAs. Protection ratio: 

the ratio of protected AOO to all AOO for each species. 

Species 
Threatened 

status 

Greater-protection areas Lower-protection areas All MPAs Area of occupancy 

Area (km2) Main region Area (km2) Main region  (km2) Area (km2) 
Protection 

ratio 

H. capensis EN - - 10 South Africa 10 64 0.16 

H. fisheri LC 169 United States - - 169 280 0.60 

H. sindonis LC - - 155 Japan 155 376 0.41 

H. subelongatus DD, NoT - - 58 Australia 58 396 0.15 

H. planifrons LC 323 Australia 4 Australia 327 560 0.58 

H. denise DD, NoT 64 Australia 323 Indonesia 387 832 0.47 

H. barbouri VU 116 Philippines 214 Philippines 330 4,152 0.08 

H. coronatus DD, T 373 South Korea 4,033 Japan 4,406 5,968 0.74 

H. minotaur DD, NoT 413 Australia 172 Australia 585 6,824 0.09 

H. breviceps LC 2,179 Australia 1,949 Australia 4,128 12,360 0.33 

H. jayakari LC 3,096 Saudi Arabia 1,949 Saudi Arabia 5,045 13,036 0.39 

H. dahli LC 3,382 Australia 6,425 Australia 9,807 13,836 0.71 

H. zebra DD, NoT 4,003 Australia 10,259 Australia 14,262 16,708 0.85 

H. camelopardalis DD, NoT 35 Mozambique 4,014 Mozambique 4,049 19,716 0.21 

H. abdominalis LC 509 Australia 672 Australia 1,181 21,776 0.05 

H. bargibanti DD, NoT 4,082 Australia 8,305 Australia 12,387 24,804 0.50 

H. zosterae LC 2,953 United States 8,181 United States 11,134 25,784 0.43 
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Species 
Threatened 

status 

Greater-protection areas Lower-protection areas All MPAs Area of occupancy 

Area (km2) Main region Area (km2) Main region  (km2) Area (km2) 
Protection 

ratio 

H. comes VU 1,525 Thailand 1,845 Indonesia 3,370 29,880 0.11 

H. ingens VU 2,809 Mexico 13,220 Mexico 16,029 52,560 0.30 

H. whitei EN 12,553 Australia 24,909 Australia 37,462 57,356 0.65 

H. pontohi LC 4,992 Indonesia 13,895 Indonesia 18,887 134,948 0.14 

H. guttulatus DD, T 6,855 Italy 28,969 Spain 35,824 147,056 0.24 

H. patagonicus VU 522 Uruguay 2,171 Argentina 2,693 176,284 0.02 

H. erectus VU 80,008 United States 30,600 United States 110,608 204,396 0.54 

H. hippocampus DD, T 12,592 Netherlands 54,838 United Kingdom 67,430 226,100 0.30 

H. reidi NT 27,813 Cuba 33,331 United States 61,144 398,832 0.15 

H. spinosissimus VU 24,177 Australia 54,949 Australia 79,126 569,124 0.14 

H. angustus LC 29,101 Australia 99,198 Australia 128,299 573,012 0.22 

H. histrix VU 17,503 Indonesia 51,872 Indonesia 69,375 652,468 0.11 

H. kelloggi VU 4,471 Thailand 13,997 China 18,468 667,876 0.03 

H. mohnikei VU 12,975 China 62,314 China 75,289 909,216 0.08 

H. kuda VU 52,257 

British Indian 

Ocean 

Territory  

84,941 Australia 137,198 957,420 0.14 

H. trimaculatus VU 24,695 Indonesia 84,916 China 109,611 1,928,620 0.06 
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Figure 5. 4. Boxplots of (a) area of occupancy (AOO) covered by marine protected areas 

estimated for each seahorse species (n = 33), (b) AOO covered by greater-protection areas 

(GPAs) estimated for non-threatened vs. threatened species, and (c) AOO covered by lower-

protection areas (LPAs) estimated for non-threatened vs. threatened species.
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Figure 5. 5. Selection frequency of planning units for a Southeast Asian species (Hippocampus barbouri) in five scenarios: (a) cumulative 

human impact (CHI) cost, (b) artisanal-fisheries cost, (c) commercial-fisheries cost, (d) shipping cost, and (e) nutrient-pollution cost. 

Selection frequency was classified into four categories based on the quartiles in the distribution of the selection frequency. 
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Figure 5. 6. Selection frequency of planning units for the two Australian species 

(Hippocampus abdominalis and H. minotaur) in five cost scenarios: (a) cumulative human 

impact (CHI) cost, (b) artisanal-fisheries scenario, (c) nutrient-pollution scenario, (d) 

commercial-fisheries scenario, and (e) shipping scenario. Selection frequency was classified 

into four categories based on the quartiles in the distribution of the selection frequency.
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5.4.4 Conservation priorities for three focal species at the global scale 

I found that the CHI-cost scenario and alternative scenarios can derive either very similar 

or very different priorities (Table 5.3). In the case of H. barbouri, selection frequency of 

CHI-cost scenario (Fig. 5.5a) was generally similar to that of artisanal-fisheries (Fig. 5.5b), 

commercial-fisheries (Fig. 5.5c), shipping (Fig. 5.5d), and nutrient-pollution scenarios (Fig. 

5.5e), in decreasing order of similarity (r = 0.86 – 0.60). In the case of two Australian 

seahorses (H. abdominalis and H. minotaur), selection frequency of CHI-cost scenario (Fig. 

5.6a) was generally different from that of artisanal-fisheries (Fig. 5.6b), nutrient-pollution 

(Fig. 5.6c), commercial-fisheries (Fig. 5.6d), and shipping scenarios (Fig. 5.6e), in 

decreasing order of similarity (r = 0.63 – 0.25).  

The priority solution (i.e., selected priority units) based on the selection frequency 

performed better than that based on the best solution for H. barbouri, but not for the two 

Australian species. Compared with the best solution, the selection frequency derived 

generally higher convergences (i.e., higher Cohen’s kappa statistics) between CHI-cost 

scenario and alternative scenarios (Kappa-f vs. Kappa-b in Table 5.3). For H. barbouri, the 

selection frequency derived more priority units agreed by all scenarios than did the best 

solution (Table 5.4, also see Fig. K.3 vs. K.4 in Appendix K). The priority solution based 

on the selection frequency also contained lower CHI cost, shorter total boundary length, 

and fewer patches than did the best solution (Table 5.4). For the two Australian species, no 

priorities were agreed by all five scenarios based on either the selection frequency or the 

best solution (Table 5.4, also see Fig. K.5 vs. K.6 in Appendix K). The priority solution 

based on the selection frequency contained slightly lower CHI cost than the best solution 

(Table 5.4). However, the former contained longer total boundary length and more patches 

than the latter for the Australian species (Table 5.4). I found medium to high extents of 

consistency between the two types of priority solutions (selection frequency vs. best 

solution) within each scenario (Cohen’s kappa = 0.622 – 0.927, all P < 0.001; Table K.1).  
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Based on the above comparison, I chose the selection-frequency approach to set priorities 

for H. barbouri, and the best-solution approach for the two Australian species (H. 

abdominalis and H. minotaur). For H. barbouri, a total of 1672 km2 area (i.e., 53% out of 

the 3,156 planning units) in the Philippines and northeast Malaysia were selected as 

priorities by the CHI-cost scenario (Fig. 5.7). Within these priorities, 828 km2 area were 

also selected by all four socioeconomic scenarios (i.e., spatial convergence) and thus were 

considered as priorities for greater-protection areas (e.g., no-take reserves, Fig. 5.7). The 

remaining 844 km2 habitats selected by CHI-cost scenario were not consistently selected 

by the four alternative scenarios, and thus were considered as priorities for lower-protection 

areas (e.g., multiple-use zones, Fig. 5.7 and Fig. K.4). For H. abdominalis and H. minotaur, 

a total of 1415 km2 (13% out of the 10,685 planning units) in the southeast Australia were 

selected by CHI-cost scenario but not agreed by alternative scenarios (Fig. 5.7 and Fig. 

K.6). These habitats were then all considered as priorities for lower-protection areas. I 

included the unprotected habitats of the six rarest species in the global priority map (Fig. 

5.8). These unprotected habitats included shallow waters in Hawaii, George to Plettenberg 

Bay (South Africa), Shark Bay (Western Australia), Mandurah to Perth (Western Australia), 

the Coral Triangle region, and Shizuoka (Japan) (see Fig. K.7 – K.13 in Appendix K).   
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Figure 5. 7. Conservation priorities for the seahorse species in (a) the Philippines and (b) southeastern Australia, including habitats covered 

by existing lower-protection areas (LPAs) and greater-protection areas (GPAs), habitats not yet in MPAs for six rarest species (here in (a), 

H. denise), and identified priorities for LPAs and GPAs in Marxan.  



109 
 

  

 

Figure 5. 8. Global conservation priorities for 33 seahorse species, including habitats covered by lower-protection areas (LPAs) and greater-

protection areas (GPAs), habitats falling outside MPAs for six rarest species, supplementary priorities for LPAs and GPMs. Note that 

conservation priorities in China are included in the map.
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5.5 Discussion 

My study demonstrates that setting conservation priorities for marine species at large 

spatial scales can be achieved by integrating multiple socioeconomic costs in my novel 

prioritization framework. Like its antecedents, my prioritization framework includes a ‘gap 

analysis’ by assessing the coverage of conservation targets by current protection measures 

(Margules and Pressey 2000, McIntosh et al. 2017). This analysis helps me narrow down 

my focus from many seahorse species to just a few least protected species, and from large 

spatial scales to much smaller scales. Unlike previous frameworks, however, I distinguish 

among MPAs in terms of their proposed management strictness (GPAs vs. LPAs). This 

helps us further understand that the protected habitats of seahorses are mainly located in 

the less-protection MPAs (i.e., LPAs), flagging the uncertainty of true protection 

effectiveness. The prioritization analysis in different cost scenarios reveals that 

incorporating different socioeconomic costs can profoundly influence the selection of 

priorities (Mazor et al. 2014). The level of convergence on priorities between the CHI-cost 

scenario and other socioeconomic scenarios depends on the focal species/regions and the 

approaches chosen for priority solution. I find that both the selection-frequency approach 

and the best-solution approach can derive priority solutions from Marxan, although the 

former performed better than the latter in two out of the three cases. These approaches may 

help planners derive practical priority solutions at large spatial scales, which has rarely 

been addressed in the literature (Ban and Klein 2009). My framework provides a platform 

for future expansion of prioritization for marine conservation and management at large 

spatial scales. 

5.5.1 Conservation and management priorities for seahorses 

Although my study indicates that many seahorse species have a very minimal AOO (that I 

set) covered by existing MPAs, this finding should not be interpreted as a success for 

seahorse conservation. In this exercise, I used only on a bottom-line requirement for 

preventing extinction of some species: area of occupancy (AOO) > 2,000 km2, according 

to the IUCN Red List Criterion B2 (IUCN 2005).  Such a limit is seldom invoked for 

marine species whose populations are likely to have plummeted considerably, qualifying 
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them as threatened under Criterion A, long before they qualify under Criterion B, 

associated with range.  Except for the six narrow-ranged species (AOO < 2,000 km2), 

reducing the wide-spread global habitats of most seahorse species to just two thousand km2 

would likely be recipe for disaster. My attempt here is purely to identify the species that 

most require habitat protection, and to determine their priority habitats within this bottom-

line requirement, as a starting point for application of this approach.  

My research reveals some new insights about the role of existing MPAs to seahorse 

conservation. Given at least 45% seahorse species are threatened primarily by non-

selective bottom fishing (IUCN 2018; see my Chapter 3), MPAs that prevent these fishing 

practices (e.g., no-take reserves) may play a vital role in safeguarding seahorses. However, 

my study indicates that this might be not the case by far, given such greater-protection 

MPAs remain relatively small in covering seahorse habitats in China and worldwide. 

Moreover, I found that the threatened seahorses may require more habitat protection, since 

their MPA-coverage rates were lower than those of non-threatened species. In China and 

worldwide, protecting seahorses is very challenging, since they are experiencing great 

pressure from anthropogenic activities especially demersal non-selective fishing (see 

Chapters 2 and 3). I found that China’s marine spatial planning and existing MPAs include 

habitats of these species, suggesting that these MPAs and plans might be meaningful in 

terms of protecting seahorses and related habitats (e.g., coral reefs and mangroves). 

However, the effectiveness of implementation for both China’s and global MPAs are quite 

uncertain and may be generally low (Ma et al. 2013, Gill et al. 2017, Zhang et al. 2017). 

China has historically engaged in little or no social consultation before implementing 

MPAs (Qiu et al. 2009). Effective implementation will require collaboration between MPA 

managers and fisheries managers (Hilborn 2016), as well as the engagement of local 

stakeholders (e.g. fishers) who benefit from seahorse trade (Vincent et al. 2011).  In 

addition, MPAs need good staffing and resourcing to ensure their effectiveness and viable 

conservation contributions (Gill et al. 2017). 

The identified priorities for the Spiny seahorse H. histrix in China, especially in Hainan 

Province, highlight the potential gaps in local government’s conservation plans (Lu et al. 

2015, Peng et al. 2016). This Vulnerable species is found in various habitats including 
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weedy rocky reefs, sponges, soft corals, and seagrass beds (Lourie et al. 2004, also see my 

Chapter 3). Their habitats in China were mainly distributed in the southern coastal waters 

of Hainan. Although there are existing marine reserves for coral reefs (in Sanya) and 

seagrasses (in Xincun) near the supplementary priorities, these reserves are small and have 

long been threatened by human activities especially fishing and aquaculture (Yang and 

Yang 2009, Zhao et al. 2012). Given my study used modeled fishing data and didn’t include 

aquaculture information, ground truthing the feasibility of my identified priorities would 

be interesting and necessary. This can be done through surveys on local stakeholders such 

as fishers and farmers (Hamel et al. 2018). 

My global-scale study of conservation priorities for seahorses revealed priority species and 

habitats for future conservation efforts. At the global scale, nine species’ AOO are 

insufficiently covered by current MPAs even against the minimal bottom-line target, 

indicating that they deserve a high priority for further habitat protection. The priorities for 

H. barbouri contain large areas of spatial convergence that are potential for GPAs (e.g., 

eastern water of the Panay Island, the Philippines), suggesting likely high compliance of 

local communities in protecting these waters. However, again this should be examined in 

the field given my socioeconomic data were model estimates with few studies in the 

literature to validate them. In contrast, the selected priorities for the two Australian species 

have no spatial match among all five scenarios, suggesting intensive conflicts between 

conservation and human activities (e.g., fishing and shipping) in these waters (e.g., New 

South Wales) (Gladstone 2014, Jordan et al. 2016). The six rarest species (AOO < 2,000 

km2) are currently not assessed as threatened (see Chapters 3 and 4), except the 

‘Endangered’ H. capensis (IUCN 2018). Local conservationists need to focus on the AOO 

of these species, which are currently unprotected, with management strategies that can 

anticipate and preclude future human impacts. For instance, the pygmy seahorse H. denise 

is highly specialized to live in gorganian corals (e.g., Annella reticulata) (Lourie and 

Randall 2003). Demersal destructive fishing and pollution should be eliminated near these 

coral habitats within the unprotected AOO. In some instances, the use of permanent 

artificial habitats (e.g., jetty pilings, swimming nets) may benefit some species such as H. 

subelongatus (Clynick 2008, Hellyer et al. 2011). This might be also true of H. capensis, 
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since it has been found in higher density in Reno mattresses within Thesen Islands Marina 

than in natural habitats (Claassens et al. 2018).  

5.5.2 Deriving priority solutions from Marxan’s outputs: selection frequency vs. best 

solution 

I provide a novel approach to determine priority solutions from Marxan’s outputs, which 

has been understudied in literature (Ban and Klein 2009, Mazor et al. 2014). Previous 

studies have determined priorities from the selection frequency or from the best solution 

alone (Ardron et al. 2010, Hamel et al. 2018), and rarely compared the two. I am among 

the first to do the comparison and demonstrate that using my selection-frequency approach 

might be generally, although not universally, more meaningful than the best solution in 

setting conservation priorities. When the selection frequency was used, I recommend my 

approach to determining the frequency threshold which could meet conservation targets at 

minimum costs. Previous studies using the selection frequency often derive priority 

solutions based on arbitrary frequency thresholds (e.g., frequency > 50%) (Mazor et al. 

2014, Solovyev et al. 2017), which might not ensure that all conservation targets be met or 

might result in an over-represented reserve system. 

Future researchers should be aware of a few issues about using my selection-frequency and 

the best-solution approaches. First, my study indicates that using these two approaches can 

derive very similar or different priority solutions in various scenarios. Given this, I 

recommend future research compare the two approaches to identify a better solution for 

specific cases based on methods illustrated in my study. Second, it should be noted that 

using the single best solution from multiple runs can be risky (Game and Grantham 2008, 

Ardron et al. 2010). Another set of runs may derive a different version of best solution, 

given the commonly-used algorithm of Marxan (i.e., simulated annealing) is finding near-

optimal rather than absolutely the best solution (Possingham et al. 2000). Third, using 

selection frequency to determine an exact priority solution is more meaningful when 

Marxan is often finding near-optimal solutions with appropriate setting of parameters as I 

did in my study (e.g. high SPF value; Ardron et al. 2010).  
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5.5.3 Marine spatial prioritization at large spatial scales 

I am among the first to set priorities for both strict management (i.e., greater protection) 

and multiple uses (i.e., less protection) for focal marine species at large spatial scales (Klein 

et al. 2010; Pompa et al. 2011). It is important to identify an optimal set of priority habitats 

for wildlife that is associated with minimum costs in conservation planning (Ban and Klein 

2009), but this is very challenging at large spatial scales (Solovyev et al. 2017). Usually, 

marine conservation needs strict marine reserves to constrain fishing pressures upon focal 

species (Costello and Ballantine 2015). It also requires managers to set up sustainable 

multiple-use zones where conflicts of interest occur, and to make these zones work together 

with no-take reserves (Hilborn 2016). By setting priorities for both areas during the 

planning process, one should be able to establish a network of protected areas that works 

for both the species and the people that rely on marine resources. The new version of 

Marxan software, Marxan with Zones, can do comparable work if specific targets for 

socioeconomic values are considered in the prioritization (Watts et al. 2009).  

To identify conservation priorities at large scales, it will work best if planners present an 

ideal conservation scenario against different socioeconomic scenarios (Cameron et al. 2008, 

Ban and Klein 2009, Mazor et al. 2014), as I did in my study. This enables planners to 

explore their commonalities and differences with stakeholders. Previous studies at smaller 

spatial scales have also used alternative-scenario approaches to help stakeholders better 

understand and reconcile each other’s interest, with an expectation of finding feasible 

priority solutions (Ban and Klein 2009). Unlike these local-scale studies, I identified 

priority solutions based on spatial convergences and divergences among different cost 

scenarios, which might provide a practical and clear comparison among different 

stakeholder’s interests at large spatial scales. The map of convergence and divergences 

based on this comparison demonstrated clear agreements and conflicts between 

conservation and human uses in the sea. In other conservation circumstances, people might 

prefer to combine multiple costs into one cost for ease of the planning. But such a 

combination is very challenging, because weighting each cost appropriately is often 

difficult or contentious (Cameron et al. 2008, Ban and Klein, 2009). Using my approach 

could avoid such problem.
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Chapter 6: Conclusion 

6.1  Overview 

My dissertation sought novel approaches in ecological and conservation studies for data-

poor marine species at large spatial scales, using seahorses as a case study. Large-scale 

ecological and conservation research demands a good deal of data, which can be very 

challenging for understudied species. In Chapter 2, I initiated the first nationwide 

biogeographic study of Chinese seahorses to examine the application of local ecological 

knowledge (LEK) in determining species distributions. In Chapter 3, I conducted a global-

scale study of 42 seahorse species to explore the appropriate approaches to integrating 

biogeographic datasets and habitat variables in models of species-habitat relationships. In 

Chapter 4, I explored modeling techniques to estimate cumulative human impact (CHI) for 

42 seahorse species at the global scale, and revealed conservation status for data-poor 

species. With my final data chapter (Chapter 5), I used results from previous chapters to 

set conservation priorities for seahorses in China and globally based on a novel framework 

and priority-solution approaches.  

 

Here I first highlight a few general contributions of my thesis, and then review my four 

research questions and summarize my corresponding findings in each chapter. I then talk 

about some of the limitations in my studies with recommendations for future research. I 

finally conclude the thesis with highlights of the possible value of my studies for current 

conservation thinking and action. 

6.2  Research Contributions 

My research offers a rare comprehensive study to address conservation knowledge gaps 

for data-poor marine species at large spatial scales. We are living in a complex world: On 

one hand, many species are data-poor and potentially threatened, demanding expeditious 

conservation actions (Jaric et al. 2016); On the other hand, human development generally 

draws on ever more natural resources and conservation budgets are usually limited 

(Margules and Pressey 2000, Spalding et al. 2013). Such complexity usually overwhelms 
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decision makers and undermines global conservation actions (Spalding et al. 2013). Facing 

this challenge, I identified four critical and entangled questions that can be encountered in 

conservation planning (Chapter 1). To address these questions, I then conducted a diverse 

research in species-habitat relationships, cumulative human impacts, threatened status, and 

conservation planning for data-poor marine species.  

My research is of value to the current conservation literature for at least two reasons. First, 

it presents a rare example of how to integrate multiple data sources and approaches to 

derive conservation knowledge at large spatial scales. Ecological and conservation 

knowledge are always limited for many species (Devictor et al. 2010, Agardy et al. 2011, 

Martin et al. 2012). It is thus crucial for conservationists to know which data sources and 

approaches are potentially useful. My thesis addressed this important question in different 

chapters. Second, my research is among the first to address these issues in-depth at large 

spatial scales (globally and nationally). Although there are many conservation studies for 

marine species at local spatial scales (< 100 km2), publications focused on large spatial 

scales are limited (Velasco et al. 2015). Drawing a large-scale picture could expand our 

understanding and enhance conservation of marine species, which usually have wide 

geographic ranges. Local studies may reveal population knowledge in small areas, while a 

holistic understanding of species distributions requires global-scale studies. When 

protected areas are proposed to protect marine species, ignoring regional or global priorities 

may lead to protecting less important habitats in local areas (Mills et al. 2010, Agardy et 

al. 2011).  

The approaches and techniques in my thesis provide a template that can be used for 

conservation studies on other data-poor marine species. My interview approach and down-

scaling technique (Chapter 2) can be useful for commercially valuable or charismatic fishes 

(e.g., dogtooth grouper, whale shark, small-eye stingray) (Moore 2010, Stacey et al. 2012, 

Boltachev et al. 2013), marine mammals (e.g., killer whales) (Higdon et al. 2014), and sea 

turtles (Moore et al. 2010). My novel approaches to selecting useful data in modeling 

species-habitat relationships (Chapter 3) can be applicable for widespread but locally rare 

animals, such as sea turtles (Cornwell and Campbell 2012), whale sharks (Araujo et al. 

2017), and humpback whales (Bruce et al. 2014). My cumulative-human-impact (CHI) 
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approaches (Chapter 4) can be used to understand threat patterns and conservation status 

for thousands of Data Deficient marine species on IUCN Red List (IUCN 2018). Such 

species-level knowledge (e.g., CHI maps) will supplement the ecosystem-level data to 

better guide threat management and global biodiversity conservation in the marine realm 

(Maxwell et al. 2013). The prioritization framework and techniques developed in Chapter 

5 can further help to set large-scale conservation priorities for marine species or habitats. 

These large-scale priorities may facilitate nations to meet their obligations for Aichi 

Biodiversity Target 11.   

I now comment on how my findings contribute to address the research question in each 

analytical chapter. 

6.2.1 How is local fishers’ ecological knowledge useful for mapping distributions for 

data-poor marine species? (Chapter 2) 

My Chapter 2 provides a rare example of integrating local ecological knowledge (LEK) in 

species distribution models (SDMs) for data-poor marine species. Previously, LEK has 

been used in both terrestrial and marine studies on a variety of ecological and conservation 

issues, including mapping species habitats (Drew 2005, Anadon et al. 2009). However, the 

application of LEK remains controversial. For instance, LEK-based maps are usually very 

coarse in resolution (Aylesworth et al. 2017, Laze and Gordon 2016, Selgrath et al. 2016) 

– as I found in my Chapter 2, and thus might be imprecise in guiding conservation practices 

such as conservation planning and other activities (Gilchrist et al. 2005). My study 

indicates that such problem can be addressed by applying a downscaling technique and 

integrating LEK with quality data (i.e., fine-resolution occurrence) in SDMs. Although 

similar studies have been done in terrestrial systems (Anadon et al. 2010, Laze and Gordon 

2016), I am among the first to take this more comprehensive approach in marine systems. 

Such technique may extend the capability of future researchers to use LEK in predicting 

species distributions for data-poor marine species. Additionally, I pointed out that 

combining two coarse-grain datasets can degrade model performance of SDMs.  
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My results from Chapter 2 indicate that LEK can provide useful information for data-poor 

marine fishes, in line with the limited studies of other taxa in China (e.g., amphibians and 

mammals) (Turvey et al. 2013, Pan et al. 2016, Liu et al. 2017). Although LEK has been 

studied over three decades and increasingly recognized as valuable around the world 

(Johannes 1989, Brook and McLachlan 2008, Beaudreau and Levin 2014, Martinez-

Levasseur et al. 2017, Bélisle et al. 2018), similar research only has emerged very recently 

in China (Turvey et al. 2013, Pan et al. 2016, Liu et al. 2017). A relevant obstacle is likely 

that many colleagues, especially in less developed countries, lack the training in applying 

LEK (e.g., interview approaches) or the awareness of LEK. This is especially true in China 

based on my own observation in conducting this study. Like the previous few cases, my 

research on China’s seahorses present an evidence that LEK can provide instrumental 

information for data-poor species. Moreover, I demonstrated that it is possible to derive 

species-level distribution maps from fishers under certain circumstances, which is rare in 

the literature (Aylesworth et al. 2017). Such finding is encouraging to colleagues in 

countries like China, where marine biogeographic data are often limited (Liu 2013, 

Costello et al. 2010).  

6.2.2 How can we derive useful species occurrences and habitat variables for 

identifying suitable habitats of data-poor marine species at the global scale? 

(Chapter 3) 

My Chapter 3 provides a rare study on modeling species-habitat relationships for data-poor 

marine species. Species-habitat relations are the cornerstone in many of the ecological 

studies (Grand and Cushman 2004, Rice 2005, Stuber et al. 2017), as well as in predicting 

suitable habitats for species-conservation purpose (Rice 2005, Franklin 2010). 

Understanding how marine organisms use their habitats, and how they interact with or 

respond to the change of the ocean environment is an urgent need, because many marine 

ecosystems are threatened by human activities (Halpern et al. 2008, Halpern et al. 2015). 

My research contributes to the current literature by addressing seahorses at the global scale, 

which are difficult because of data paucity. I demonstrated that this can be achieved 

through mining various data sources, both the historical records and current observations, 

both quality-unknown sources and quality research datasets. Moreover, I compared 
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modeling results based on each dataset and various ways of integrating these datasets, 

which is rare in the literature. Such data comparison and integration approaches provide 

useful insights for future relevant studies on data-poor marine species at global scales. 

The results show that collating and adding data of unknown quality such as from citizen 

sciences (CS) and museum collections (MC) into limited research-grade data (RG) can 

allow better models of species-habitat relationships, which is encouraging to many data-

poor species. Unlike Chapter 2, CS and MC constitute the datasets with unknown quality 

at the global scale in Chapter 3. I demonstrated that (1) the quality-unknown CS and MC 

can provide more abundant occurrences than RG for data-poor species, and (2) adding MC 

and/or CS to RG can significantly improve model accuracy. Although different data 

sources, including MC and RG, have already been used in other marine SDM studies such 

as the ocean sunfishes (Phillips et al. 2017a), few studies have focused on the appropriate 

way of combining these different datasets. Additionally, CS have rarely been applied in 

SDMs for marine species, although they are used for other purposes such as monitoring 

population abundance (Thiel et al. 2014). My research in Chapter 3 highlights the utility 

of CS in predicting suitable habitats for data-poor marine species. Moreover, as found in 

Chapter 2, I demonstrate that it is more sensible to combine quality-unknown data (e.g., 

MC and CS) with quality data to derive better SDMs, but integrating multiple datasets with 

unknown quality is not encouraged because of potential error accumulation.  

I highlight the importance of using appropriate macrohabitat variables to derive habitat 

knowledge for sedentary and locally-rare marine species, which is rarely addressed in the 

literature. Selecting appropriate predictors is vital to model species-habitat relations in 

SDMs (Petitpierre et al. 2017). For locally rare species whose distributions may highly 

depend on scarce patchy habitats and resources therein, it is important to understand which 

habitats they might prefer. My research indicates that the proximity to habitat-forming 

benthos (i.e., continuous variable) can be a more useful predictor than presence/absence of 

habitat-forming benthos (i.e., binary variable) in SDMs for rare marine species, even for 

those with low mobility. Such finding contrasts with the previous assumption in terrestrial 

animals: Distributions of low-mobility species are more related with macrohabitat 

presence/absence than proximity to macrohabitats, given they cannot move far away from 
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macrohabitats (Jackson and Robertson 2011). My results suggest that low-mobility species 

can still move among macrohabitats through external forces, which is especially common 

in the ocean given that the dispersal of many marine species (e.g., fish with pelagic larval 

stages) relies on ocean currents and buoyant agents (e.g., seagrass/macroalgae debris) 

(Kinlan and Gaines 2003, Cowen and Sponaugle 2009). 

6.2.3 How can we estimate cumulative human impacts and threatened status for 

data-poor marine species? (Chapter 4) 

In Chapter 4, I addressed gaps in our knowledge about pressures on data-poor marine 

species. Over past decade, CHI has been mapped for a variety of marine species, including 

mammals, sea birds, sea turtles, and commercial fishes (Davidson et al. 2012, Maxwell et 

al. 2013, Korpinen and Andresen 2016). My research is among the first to study a group of 

data-poor and rare marine fish (i.e., seahorses) at the global scale. A unique feature of my 

research is that I have not only created a spatial model to map CHI, but also built a non-

spatial model to estimate human-impact indices. The latter is especially important to many 

data-poor species, for which spatial data such as presence-probability maps are rarely 

available for application of the spatial CHI model. Moreover, I illustrated that human-

impact indices derived from the non-spatial model are more useful than the spatial model 

in predicting species threatened status. This finding encourages the use of more expert 

knowledge (with the non-spatial model) in estimating threatened status for data-poor 

species. However, the benefit of the spatial CHI model is also apparent if the goal is to 

identify threat patterns in species habitats (Maxwell et al. 2013). Therefore, I recommend 

future researchers use both spatial and non-spatial models to derive different types of threat 

knowledge for data-poor species. 

My results suggest that CHI is more complex than a linear-additive model can explain, 

although the latter can derive estimates generally consistent with IUCN Red List 

assessments. Current estimations of CHI on marine ecosystems are largely based on the 

assumptions that species’ responses to impacts are linear and interactions among impacts 

are additive (Halpern and Fujita 2013). Although it is well documented that threshold 

responses and synergistic and mitigative interactions commonly exist in marine ecosystems 
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(Crain et al. 2008), there is insufficient data to estimate relations in CHI models (Halpern 

et al. 2015). Linear-additive models remain popular as they are simple and transparent. My 

research is among the first attempts of using linear-additive models to estimate CHI for a 

genus of data-poor marine species at the global scale. The results demonstrate that although 

a linear-additive model can derive useful CHI estimates, the realistic cumulative impact 

might be much more complicated, in line with previous findings (Andersen et al. 2015, 

Bevilacqua et al. 2018). However, when little is known about species responses and impact 

interactions, which is likely common in data-poor species, my finding encourages the use 

of linear-additive models. But the results should be validated with relevant 

observations/assessments (e.g., IUCN Red List assessments). 

I am among the first to indicated that human-impact indices have the potential to be used 

for predicting conservation status. Although IUCN Red List Categories and Criteria have 

been widely used to quantitatively assess species threatened status, already more than 2,000 

marine species of those that have been evaluated (and most have never been evaluated) are 

listed as Data Deficient (IUCN 2018). Lack of sufficient population data to apply IUCN 

criteria is a major obstacle in the assessments. My research indicates that this data-paucity 

problem can be addressed with human-impact indices and machine learning techniques 

(e.g., random forest). Although previous studies have also applied similar techniques to 

predict conservation status both on land and in the ocean, they have been based mostly on 

biological (e.g., life history traits) and geographical/environmental factors (Reynolds et al. 

2005, Jetz and Freckleton 2015, Luiz et al. 2016), and only a few studies also used threat 

information such as human-population density (Bland 2017) or CHI on marine ecosystems 

(Davidson et al. 2012). My research thus highlights the utility of human-impact indices, 

which integrated threat intensity and species vulnerability (based on species-level CHI 

models), in predicting threatened status for Data Deficient species.  

6.2.4 How can we identify priority areas for data-poor marine species at large 

spatial scales? (Chapter 5) 

In Chapter 5, I create a novel framework to set conservation priorities for marine species 

at large spatial scales. Marine conservation planning at large spatial scales is challenging, 
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despite a rising demand for large MPA networks around the world (Douvere 2008, Mazor 

et al. 2014). My research is timely in addressing the issue by proposing a prioritization 

framework. It embraces the ‘gap analysis’ concept from systematic conservation planning 

(Margules and Pressey 2000, McIntosh et al. 2017), and discriminates priorities between 

strictly-managed reserves and multiple-use zones, keeping in mind the frequent need to 

reconcile conservation and socioeconomic use (Gill et al. 2017). The framework also 

incorporates one part of IUCN criterion B2 (i.e., area of occupancy < 2,000 km2) in 

defining bottom-line conservation targets (Maze et al. 2008), rather than using arbitrary 

values (e.g., 10% of each habitat) as in previous studies (Klein et al. 2013, Mazor et al. 

2014).  That said, this Criterion B has seldom been used for marine species, being less 

relevant than Criterion A (decline trends) and may represent only a notional bottom line.  

It is also rare to include large-scale socioeconomic costs in prioritization frameworks 

(Klein et al. 2013), as did in my thesis. Such a framework may lay a solid ground for further 

methodology expansion in conservation prioritization at large spatial scales.  

My research indicates that the framework and associated prioritization methods are useful 

in conservation prioritization for seahorse species. I demonstrate that conservation 

prioritization for data-poor species can be done based on the inferred habitats (i.e., area of 

occupancy; Chapter 2 and 3), estimated cumulative human impacts (Chapter 4), and 

socioeconomic costs (Chapter 4). The use of ‘gap analysis’ in estimating MPA coverages 

can largely reduce the dataset size, thus making my planning tools (i.e., Marxan software) 

more applicable. This is encouraging to future prioritization studies aiming at large-scale 

planning. By comparing an ideal conservation scenario with alternative socioeconomic 

scenarios, I then identified priorities for strict management (i.e., greater protection) and 

multiple uses (i.e., lower protection). The results suggest that the two major outputs of 

Marxan (i.e., selection frequency vs. best solution) can be used to determine priority 

solutions, with the selection-frequency approach tending to derive better priority networks 

than the best-solution approach. Such finding is helpful to address the methodology gap of 

deriving priority solutions from Marxan, especially in large-scale studies (Ardron et al. 

2010, Hamel et al. 2018).  
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6.3 Caveats and Recommendations for Future Research 

In conducting this research, I encountered some challenges related to each research chapter. 

Some of these challenges have been discussed in the above chapters. Here I highlight 

several other issues that were not covered sufficiently elsewhere. I then shed a light on the 

directions for future studies on data-poor marine species. 

I found that the major challenges in Chapter 2 were the availability of macro-habitat data 

(e.g., distributions of soft corals and macroalgae) and the coarse-grain nature of fishers’ 

maps. I learned from local fishers that seahorses are usually found with various habitat-

forming benthos (e.g., macroalgae, sea fans) in China’s seas. However, given data paucity 

of these habitat-forming organisms in China, I could not examine well the species-habitat 

relations for Chinese seahorse populations. Such a barrier calls for Chinese biologists to 

document and publish biogeographic data for their marine life including vital habitat-

forming creatures (Liu 2013).  On the other hand, the use of coarse-grain biogeographic 

maps from fishers can be a common challenge elsewhere (Laze and Gordon 2016). To 

solve this problem, I developed a downscaling technique that requires a minimum of five 

geo-referenced occurrences to generate a preliminary suitability map. However, such data 

requirement could not be met elsewhere, especially in poorly-surveyed regions such as in 

the deep seas (Costello et al. 2010). I then recommend future researchers use alternative 

sources of information including citizen sciences and expert knowledge to fill the gap: 

either to gather fine-resolution occurrences or to elicit species-habitat relations.  

My research in Chapter 3 was challenged by the limitation of both habitat data and species 

occurrences. As for Chapter 2, habitat data included in Chapter 3 were not exclusive as 

well, although there were abundant geo-referenced data of habit-forming benthos such as 

soft corals and sponges at the global scale from open-access database (e.g., Ocean 

Biogeographic Information System). Other habitats used by seahorses, such as sandy or 

muddy open bottoms and artificial habitats (e.g., harbor swimming nets, Reno mattress; 

Foster and Vincent, 2004, Clynick 2008, Claassens et al. 2018), were however not globally 

available for my research. It is likely that this limitation will last at large spatial scales but 

can be more easily addressed in local scales where in situ surveys can be carried out in 
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reasonable time periods. Citizen science programs that engage participants (e.g., divers) to 

record underwater natural and artificial habitats in coastal waters might be a promising 

approach to fill this information gap at large spatial scales in the future. This is also true to 

address another challenge in this chapter: lacking occurrences for some understudied 

species. Thanks to the development of internet and smartphones, more and more citizens 

are participating in citizen-science programs around the world (Crain et al. 2014). I expect 

that citizen sciences will play a more vital role in future marine conservation, especially 

for the vast numbers of data-poor species (Devictor et al. 2010).  

My study on cumulative human impact (CHI) on seahorse species in Chapter 4 is subject 

to several limitations that may be encountered elsewhere. First, given that our CHI models 

rely on expert knowledge to derive vulnerability measures for each species-stressor pair, I 

found it was challenging to find and engage experts to meet this end. I highly recommend 

that future researchers take the opportunities of international meetings/conferences to reach 

out to the experts. It is also important to make the evaluation protocol concise and easy to 

follow for experts, and it may be better to gather their evaluations through interviews than 

questionnaires or online surveys. A further concern is the very small pool of experts on 

many marine taxa, which meant that there was some overlap in those who conducted IUCN 

conservation assessments and those who offered expert opinion on threats; convergence in 

findings may not, therefore, be particularly surprising.  Second, future researchers should 

be aware of other approaches to eliciting expert knowledge that were not applied in my 

research. These alternative but more complex approaches include fuzzy logic and multi-

criteria decision models (Cheung et al. 2005, Teck et al. 2010). Third, I did not include 

life-history variables or geographic factors in predicting the threatened status for seahorse 

species, given that my focus lay in examining the utility of human-impact indices and life-

history and geographical data are only available for some seahorse populations. However, 

these biological and geographical data might be available in other cases and should then 

be used in predicting threatened status (Davidson et al. 2012). 

Future researchers should take caution with at least two issues in my research in Chapter 

5. First, it should be noted that robust conservation planning relies on the good mapping of 

conservation cost to stakeholders, which is a real challenge in marine conservation 
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planning (Mazor et al. 2014). For instance, mapping the cost of fisheries, a major type of 

human uses of the oceans, is still in its infancy (Hamel et al. 2018). This is partly because 

of gaps in coverage or accessibility of spatially-explicit and precise fisheries data, 

especially for very large spatial scales (e.g., nationally or globally; Watson et al. 2004, 

Kroodsma et al. 2018). In Chapter 5, I used the modeled catch dataset from previous studies 

(Halpern et al. 2015), as this was the most available and spatially-explicit data at the 

beginning of my initiative. Recently, the Global Fishing Watch program has provided 

another valuable database for mapping global industrial fishing effort on the oceans 

(Kroodsma et al. 2018). Another obstacle of incorporating fisheries value in MCP is the 

difficulty of assigning monetary values to different fisheries in space (Sala et al. 2002, 

O’Higgins et al. 2010, Guerry et al. 2015). This challenge can be more crucial if values of 

multiple fisheries sectors are integrated to a single monetary value. Second, my 

conservation prioritization was done only for seahorses given that they can be flagship and 

indicator species for important marine habitats. However, other data-poor marine species 

may not have such characteristics. In such cases, their conservation planning may need to 

be embedded in a holistic project for the whole communities or ecosystems (Norris 2012). 

6.4 Conclusions 

Human wellbeing relies on a biodiverse and healthy ocean, which has been profoundly 

degraded due to centuries of intensified anthropogenic activities. Although we have taken 

some remedial measures around the world, reversing this trend undoubtedly urgently 

requires many more initiatives to address the remaining gaps. Marine biologists play an 

essential role by empowering decision makers with scientific knowledge about the species, 

their habitats and major threats, and priority solutions. However, such data are lacking for 

thousands of data-poor species, which is especially true in many developing countries (e.g., 

China).  My thesis addressed these knowledge gaps related to data-poor marine species at 

large spatial scales. From my research, it is evident that these knowledge gaps can be filled 

with a variety of datasets and techniques: local ecological knowledge, citizen sciences, 

museum collections, peer-reviewed literature, expert knowledge, habitat-feature datasets, 

interviews, model estimates, GIS, and decision-making tools. Based on these data and 

approaches, I derived scientific knowledge for a genus of data-poor marine fish – seahorses 
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(Hippocampus spp.): suitable habitats, threatened status, cumulative human impacts, major 

stressors, and conservation priorities. Such information may contribute to guide 

conservation actions for these species with global concern. Although my thesis used 

seahorses as the case study, the approaches and findings are relevant to addressing similar 

knowledge gaps for many other data-poor species in the marine realm. It is my expectation 

that this research can help and stimulate more conservation studies and actions for data-

poor marine species.
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Appendix A Supplementary methods for Chapter 2 

This appendix contains approaches and techniques related to the following contents: semi-

structured interviews and data validation of fishers’ local ecological knowledge (LEK), 

literature mining, spatial data editing (e.g. polygon to raster, resolution standardization), 

comparison between probability-based sampling and random sampling, original predictor 

data collection and creation, and macro-habitat data editing. Table A.1 demonstrates the 

original predictor data of twenty-one parameters collected from various online databases. 

Figures A.1 show the fishing-zone map used for collecting LEK data. 
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Table A.1. Original predictors collected for modeling seahorse distributions in China. Those in bold represent the parameters selected by Pearson 

correlation test. Other predictors (marked with superscripts) were highly correlated (|r| > 0.7) with the selected ones: 1, sea surface temperature 

(mean); 2, calcite concentration; 3, depth (mean); 4, primary productivity (Dec.). 

Category Predictors 
Resolution 

(arc-degree) 
Units 

Manipulation 
Source 

Climate and 

geophysical 

suitability 

Sea surface temperature (mean) 0.0833 ℃ 
Temporal mean from monthly 

climatologies (2002-2009)  
Aqua-MODIS  

Sea surface temperature (maximum)1 0.0833 ℃ 
Temporal maximum from monthly 

climatologies (2002-2009)  
Aqua-MODIS  

Sea surface temperature (range)1 0.0833 ℃ 
Temporal range from monthly 

climatologies (2002-2009)  
Aqua-MODIS  

Sea surface temperature (minimum)1 0.0833 ℃ 
Temporal minimum from monthly 

climatologies (2002-2009)  
Aqua-MODIS  

Chlorophyll A (maximum)2 0.0833 mg/m³ 
Temporal maximum from monthly 

climatologies (2002-2009)  
Aqua-MODIS  

Chlorophyll A (minimum)2 0.0833 mg/m³ 
Temporal minimum from monthly 

climatologies (2002-2009)  
Aqua-MODIS  

Chlorophyll A (mean)2 0.0833 mg/m³ 
Temporal mean from monthly 

climatologies (2002-2009)  
Aqua-MODIS  

Chlorophyll A (range)2 0.0833 mg/m³ 
Temporal range from monthly 

climatologies (2002-2009)  
Aqua-MODIS  

Dissolved oxygen1 0.0833 ml/l 
DIVA interpolation of in-situ 

measurements 
WOD 2009 

Nitrate1 0.0833 µmol/l  
DIVA interpolation of in-situ 

measurements 
WOD 2009 

pH 0.0833 - 
DIVA interpolation of in-situ 

measurements 
WOD 2009 

Silicate 0.0833 µmol/l  
DIVA interpolation of in-situ 

measurements 
WOD 2009 
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Category Predictors 
Resolution 

(arc-degree) 
Units 

Manipulation 
Source 

Calcite concentration 0.0833 mol/m³  
DIVA interpolation of in-situ 

measurements 
WOD 2009 

Salinity1 0.0833 pps 
DIVA interpolation of in-situ 

measurements 
WOD 2009 

Depth (mean) 0.00833 m 
Interpolation with in-situ sounding data 

guided by satellite-derived gravity data 
GEBCO 2014 

Depth (minimum)3 0.00833 m 
Interpolation with in-situ sounding data 

guided by satellite-derived gravity data 
GEBCO 2014 

Depth (maximum)3 0.00833 m 
Interpolation with in-situ sounding data 

guided by satellite-derived gravity data 
GEBCO 2014 

Distance to shore 0.01 km Interpolation NOAA 2009  

Food availability 

Primary productivity (Dec.) 0.18 mg C/(㎡*day) 
VGPM algorithm with satellite images 

(Modis, SeaWiFS) from 2003-2007 
Kershaw 2008 

Primary productivity (Jun.)4 0.18 mg C/(㎡*day) 
VGPM algorithm with satellite images 

(Modis, SeaWiFS) from 2003-2007 
Kershaw 2008 

Macro-habitat 

Coral reefs 0.0003 – 0.01 - Field survey 1954-2009 
UNEP-WCMC 

2010 

Seagrass beds 0.0026 - 
Field survey and expert data  

1934-2004 

UNEP-WCMC 

2005 

Mangroves 0.0003 - satellite imagery 1997-2000 
UNEP-WCMC 

2011 

Island waters 0.0833 - see description This study 



154 
 

Semi-structured interviews and data validation 

Our interviews were conducted during fishers’ breaks and followed UBC’s Human Ethics. 

We approached to fishers with some ice-breaking questions such as 1) How was your 

fishing today? 2) How many fishes have you caught? 3) Where is your hometown? We 

then identify if they have caught seahorses.  We then started our interviews with those 

knowledgeable persons with an introduction about our purpose to build trust. Each 

interview lasted from 15 to 60 min depending on the amount of data provided by fishers or 

their time availability. Given budget and time constraints, we sampled at least five vessels 

per type of fishing gear if available at each port. Sampling efforts varied locally but we 

normally spent 3 - 7 days at each fishing port, depending on the size of local fisheries and 

budget constraints. We continue interviewing fishers at the fishing port until little new 

information was reported (a.k.a. data saturation, Glaser and Strauss 1967, Francis et al. 

2010), or no more fishers could be interviewed without our sampling efforts.  

During the interview, we took the following steps to derive and validate taxonomy data 

from fishers. Respondents were first asked to display seahorse specimens (either dry or 

fresh) or photos (in cellphones) of seahorses they had caught. If they have specimens at 

hand, we then identified the species of the presented specimens.  

If they didn’t stored specimens or they claimed that there were other species not included 

in the presented specimens, we used both fresh and dried seahorse photographs to prompt 

fishers’ recalls. The fresh-specimen photos included different colors and sizes of same 

species, and covered 13 Southeast Asian seahorse species and 3 Japanese seahorse species 

collected from our iSeahorse database (iseahorse.org) and photos of fresh specimens taken 

in this field study. Photos of dried seahorses were taken from a collection of specimens that 

had been collected and identified by Project Seahorse, and from the specimens sighted 

during this field study. Fishers were asked to draw on differences among the constant body 

characteristics (e.g. spiny or not, snout length, body size, etc.) rather than using color which 

is an unreliable trait. Given fishers working on the same vessel tend to have the same 

knowledge profile of seahorses and could cross-validate each other’s information, we 

interviewed more than just one fisher (if available) on each vessel to identify seahorse 

species and then map their distributions (See below).  
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Additionally, we used specimens sighted at the same fishing port from other fishers, local 

seafood landings or markets, or stores to validate the identification data from fishers’ 

recalls based on our photographs. To be conservative, only those recalls that agreed with 

sighted specimens were considered as reliable. 

To derive distribution maps for each identified species, we designed the following logical 

flow. First, we asked the respondents if they knew which fishing zones (Fig. A1) have the 

specific species. For management convenience, China has published fishing-zone maps 

that evenly divide its marine territory into hundreds of coded fishing zones (resembling a 

fishnet, Fig. A.1). Each zone spans 1/2 degree in latitude and longitude and consists of nine 

coded cells (1/6 degree). 

For negative answer, we presented fishers with regional nautical charts (scale: 1 : 500,000 

to 1,000,000, Fig. A.1) with isobaths, depth points, and substrates. Participants on each 

vessel were asked to collectively draw a digital distribution map for each species they 

nominated on an iPad screen with iGIS tools (http://www.geometryit.com/igis/). For 

fishers who preferred to provide distribution information orally based on nautical charts or 

their own navigation devices, the field researcher took detailed notes to draw the map later 

in a GIS. Commercial vessels were equipped with navigation devices that demonstrated 

their GPS positions against the digital nautical chart and the government fishing-zone map 

on a screen. This facility helped participants to recall or draw seahorse distribution maps. 

For positive answer, we presented the fishing-zone map and asked the respondents to point 

out the locations. We then further asked habitat (depth range, substrate) and geographic 

information (longitude and latitude ranges) about the locations. If the respondents didn’t 

know this information, we will stop the interview and draw the map later in a GIS based 

on the fishing-zone data provided by the respondents. Otherwise, we jotted down the 

habitat and/or geographic data provided by the fishers, and validate the information with 

nautical charts later in a GIS. We only remained the maps that matched the nautical charts 

and refined the map based on the depth range and substrate information.  
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Finally, we overlaid all polygon maps for each species to seek out “suspicious” distribution 

data. We assume that distribution maps from one vessel should be cross-validated with 

another. Therefore, by overlaying all fishers’ maps and eradicating non-overlapped 

portions, we can generate a map that only contains overlapped polygon segments. This 

process can be realized in a GIS by using a set of tools. We first covert the polygon maps 

to raster maps by using Conversion Toolbox and then detect overlaps by using the Overlay 

in the Spatial Analyst Toolbox. Raster Calculator was then used to delete the non-

overlapped cells from the map. 
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Figure A.1. Part of China’s fishing-zone map, including Yellow Sea and East China Sea. 
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Literature mining for peer-reviewed literature data (PRL) 

We mined three sets of Chinese publications: 1) China Academic Journals Full-text 

Database (1994 onwards), 2) China Doctoral Dissertations Full-text Database (1984 

onwards), 3) China Masters’ Theses Full-text Database (1984 onwards). We used 

“Hippocampus” and “海马” (meaning seahorses in Chinese) as the “Topic” to search 

articles. We excluded brain, aquaculture, molecular, and medical studies; the Hippocampus 

is also a part of the brain (“海马体”, in Chinese). For all remaining papers, we checked 

their full-texts to extract taxonomy and distribution information of seahorses in China. 

Convert LEK and PRL polygons to regular cells 

We first generated a grid (cell size: 0.08333 degree, same as environmental predictors) by 

using the fishnet tool in a GIS. We then overlaid the fishnet with each polygon map from 

LEK or PRL. We used the grid cells to replace their overlaid polygon segments to represent 

distribution data with regular cells. Within each grid cell, the polygon segment with an area 

less than 5% of the grid cell were eliminated under the assumption that these segments 

were too small to be replaced by the defined cell and could be treated as noise. 

Comparison between Probability-based sampling and random sampling 

We followed Niamir et al. (2011) to conduct the comparison. We arbitrarily chose one 

species (H. kelloggi) as the test example, given that the computation complexity and the 

comparison results are more likely dependent on map resolution rather than species 

(Niamir et al. 2011). We conducted 30 replicates for both PBS and RS techniques on each 

dataset (LEK and PRL) to calculated model performance statistics (See Methods and 

Materials 2.6). We then used the Mann-Whitney-Wilcoxon test to compare model 

performances between the two techniques.  

We found the probability-based sampling (PBS) generally produced more robust models 

than the random sampling (RS). When tested with LEK data, PBS generated statistically 

better models than RS by measure of Specificity (true presence rate; Wilcoxon test, p < 

0.05, n = 30), but not AUC (mean or SD) or Sensitivity (true absence rate; all p > 0.05, n 

= 30). When tested on PRL data, PBS produced statistically better models than RS by 

measure of AUC (higher mean and lower SD, Wilcoxon test, p < 0.01 for both, n = 30), 
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but not Specificity or Sensitivity (p > 0.05 for both, n = 30). Additionally, the standard 

deviations of both Sensitivity and Specificity of PBS models were lower than those of RS 

models, indicating PBS could generate models with more consistent performance than RS.  

Original model predictors collected from various sources 

We collected a total of 21 original predictors and placed them into three categories.  

The first category was climate and geophysical parameters. We selected thirteen climatic 

predictors that have ecological relevance to seahorses from a global marine environmental 

database (Tyberghein et al. 2012), one parameter of depth from the global bathymetry data 

(GEBCO_2014 Grid, http://www.gebco.net), and one predictor from the global dataset of 

distance to the nearest coast (http://oceancolor.gsfc.nasa.gov). For the bathymetry data, 

over 12,200 soundings were provided with over 8,570 in waters of a depth of 200 m or 

shallower in the South China Sea provided by the East Asia Hydrographic Commission. 

The data set was also built on bathymetric contours of the whole China’s seas. We then 

created three variables (mean, minimum, and standard deviation) of depth based on the 

original bathymetry data. 

The second category contained the mean-sea-surface primary productivity in June and 

December (UNEP-WCMC, http://data.unep-wcmc.org/datasets), which was used as an 

index of food availability in determining seahorse distributions. The third category was a 

raster layer, macro-habitat, derived from five habitat types (coral reefs, mangroves, 

seagrass beds, estuaries, island waters). We explain below how it was generated. 

Generating macro-habitat data 

We downloaded polygon maps of the global coral reefs, seagrass beds, and mangroves 

from the UNEP-WCMC Ocean Dataset (http://data.unep-wcmc.org/datasets), and updated 

the seagrass data with latest published information on China’s seagrass distributions 

(Zheng et al. 2013). The polygon map of world estuaries was from the UNEP-WCMC 

Global Estuary Database (UBC-003-SAU-EstuarieK003-Polygons). For mangrove 

polygon layer, we assigned the nearest cells to represent its geographic occurrence since 

most mangrove polygons were onshore. Given there are many small islands offshore in 

China, we created a raster map for islands smaller than the resolution size of the mapping 



160 
 

cell (< 80 sq km). All these habitat data were first trimmed to fit the study region by using 

the 200-meter depth-range envelope, and then rasterized as binary data (0 for absence, 1 

for presence) with the same resolution (0.08333 degrees) in a GIS to generate five 

categorical predictors.  

We then combined these five raster layers into a categorical variable, macro-habitat, with 

a value ranging from 0 to 29. This process was realized by using Raster Calculator in the 

Spatial Analyst Toolbox following the below formula:  

Macro-habitat = "coral reef" + "estuary" * 2 + "islandwater" * 4 + "mangrove" * 8 + 

"seagrass" * 16 

Macro-habitat codes resulting from the above formula were given below: 

0: absence; 1: coral reef; 2: estuary; 3: coral reef+ estuary; 4: islandwater; 5: coral reef + 

islandwater; 6: estuary + islandwater; 7: coral reef + estuary + islandwater; 8: mangrove; 

9: mangrove + coral reef; 10: mangrove + estuary; 11: mangrove + coral reef+ estuary; 12: 

mangrove + islandwater; 13: mangrove + coral reef + islandwater; 14: mangrove + estuary 

+ islandwater; 15: mangrove + coral reef + estuary + islandwater; 16: seagrass; 17: seagrass 

+ coral reef; 18: seagrass + estuary; 19: seagrass + coral reef + estuary; 20: seagrass + 

islandwater; 21: seagrass + coral reef +islandwater; 22: seagrass + estuary +islandwater; 

23: seagrass + coral reef + estuary + islandwater; 24: seagrass + mangrove; 25: seagrass + 

mangrove + coral reef; 26: seagrass + mangrove + estuary; 27: seagrass + mangrove + coral 

reef + estuary; 28: seagrass + mangrove + islandwater; 29: seagrass + mangrove + coral 

reef + islandwater. 
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Appendix B Supplementary results for Chapter 2 

This appendix contains five supplementary results. Table B.1 refers to the four species that 

were reported by fishers by unable to be validated in the field. Table B.2 is a list of literature 

occurrences of seahorse species. Figures B.1 – B.3 show the original maps of species 

sightings, fishers knowledge, and literature. Figure B.4 depicts the model performance 

details for each species based on each dataset. Figure B.5 illustrates the predicted 

probability of seahorse distributions. Figure B.6 – B.13 show species response curves of 

the eight predictors. Figures B.14 & B.15 demonstrate morphological differences of the 

validated five species and the un-validated (suspicious) four species. Figure B.16 illustrates 

sighted seahorse with specific holdfast organisms. Figure B.17 depicts a sighted specimen 

in the field. The following paragraphs are information about morphological differences 

among species, species taxonomic errors and uncertainties of the literature occurrences, 

and the preliminary model performance using the species sightings to derive habitat 

suitability for downscaling process. 

 

Table B.1. Suspicious seahorse species identified by local fishers in China. 

Species Percentage of reports Number of reports 

Hippocampus histrix 9.4% 21 

Hippocampus barbouri 2.7% 6 

Hippocampus comes 1.8% 4 

Hippocampus coronatus 1.3% 3 
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Table B.2. Seahorse records in Chinese academic literature. 

Record name Valid name References Source type Institution code 

H.coronatus - Liu and Ning 2011 PRJ IOCAS 

H.coronatus - Song et al. 2010 PRJ MFRISD 

H.coronatus - Zhu 1999 PRJ PLA 

H.coronatus - Han 2013 MscT IZCAS 

H.histrix H. spinosissimus Han 2013 MscT IZCAS 

H.histrix H. spinosissimus Liu 2011 MscT SOU 

H.histrix - Jiang et al. 2014 PRJ ECSFRI 

H.histrix - Zhang et al. 2013 MscT JMU 

H.histrix - Zhao and Zhong 2005 PRJ ZJOU, SOU 

H.kelloggi H. kelloggi Han 2013 MscT IZCAS 

H.kelloggi H. kelloggi Liu 2011 MscT SOU 

H.kelloggi - Liu and Ning 2011 PRJ IOCAS 

H.kelloggi - Zhang et al. 2008 PRJ MFRIZJ, ZJOU 

H.kelloggi - Zhu 1999 MscT ZJOU 

H.kelloggi - Li et al. 1987 PRJ GXOI 

H.kelloggi H. kelloggi Yang 1989 PRJ XMU 

H.kelloggi - Zhao and Zhong 2005 PRJ ZJOU, SOU 

H.kelloggi - Zhao et al. 2012 PRJ ZJOU 

H.kelloggi H. kelloggi Lian 1990 PRJ MFRIFJ 

H.kuda - Han 2013 MscT IZCAS 

H.kuda H. kuda Liu 2011 MscT SOU 

H.kuda - Liu and Ning 2011 PRJ IOCAS 

H.kuda - Liu and Tian 1995 PRJ IOCAS 

H.kuda - Zhu 1999 PRJ PLA 

H.kuda H. kuda Li et al. 1987 PRJ GXOI 

H.mohnikei H. mohnikei Wan and Jiang 1998 PRJ YSFRI 

H.mohnikei H. mohnikei Liu and Ning 2011 PRJ IOCAS 

H.mohnikei H. mohnikei Liao et al. 2014 PRJ SOA 

H.mohnikei H. mohnikei Zhang et al. 2014 PRJ MEDL 

H.mohnikei H. mohnikei Zhang et al. 2010 PRJ ECSFRI 

H.mohnikei H. mohnikei Zhu 1999 PRJ PLA 
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Record name Valid name References Source type Institution code 

H.mohnikei H. mohnikei Piao 2005 MscT COU 

H.mohnikei H. mohnikei Li et al. 2013 PRJ MFRISD 

H.mohnikei H. mohnikei Li et al. 2014 PRJ 
MFRILN,MBE

L 

H.mohnikei H. mohnikei Li 1987 PRJ NKU 

H.mohnikei H. mohnikei Li et al. 1987 PRJ GXOI 

H.mohnikei H. mohnikei Yang 1989 PRJ XMU 

H.mohnikei H. mohnikei Mei et al. 2010 PRJ COU 

H.mohnikei H. mohnikei Jiang and Chen 1993 PRJ XMU 

H.mohnikei H. mohnikei Wang et al. 2006 PRJ ECSFRI 

H.mohnikei H. mohnikei Wang 2013 MscT COU 

H.mohnikei H. mohnikei Wang 2009 MscT COU 

H.mohnikei H. mohnikei Zhai et al. 2014 PRJ COU 

H.mohnikei H. mohnikei Zhao and Zhong 2005 PRJ ZJOU, SOU 

H.mohnikei H. mohnikei Zhao et al. 2012 PRJ ZJOU 

H.mohnikei H. mohnikei Zheng 2014 MscT SOU 

H.mohnikei H. mohnikei Qi 2013 MscT COU 

H.mohnikei H. mohnikei Han 2013 MscT IZCAS 

H.trimaculatus H. trimaculatus Han 2013 MscT IZCAS 

H.trimaculatus H. trimaculatus Liu 2011 MscT SOU 

H.trimaculatus H. trimaculatus Li et al. 1987 PRJ GXOI 

H.trimaculatus H. trimaculatus Xiao et al. 2013 PRJ SOA 
1Source type: PRJ, peer-reviewed journal; MscT, master thesis. 

2Institution: OUC, Ocean University of China; ECSFRI, East China Sea Fisheries Research 

Institute, Chinese Academy of Fisheries Sciences; GXOI, Guangxi Oceanography Institute; IOCAS, 

Institute of Oceanography, Chinese Academy of Sciences; IZCAS, Institute of Zoology, Chinese 

Academy of Sciences; JMU, Jimei University; MBEL, Marine Biological Resources and Ecology 

Key Lab of Liaoning Province; MEDL, Marine Ecological Environment and Disaster Prevention 

and Reduction Key Lab of Shangdong Province; MFRIFJ, Marine Fisheries Research Institute of 

Fujian Province; MFRILN, Academy of Marine Fisheries Sciences of Liaoning Province; MFRISD, 

Marine Fisheries Research Institute of Shandong Province; MFRIZJ, Marine Fisheries Research 

Institute of Zhejiang Province; NKU, Nankai University; PLA, Penglaige Aquarium; SOA, State 
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Oceanic Administration; SOU, Shanghai Ocean University; XMU, Xiamen University; YSFRI, 

Yellow Sea Fisheries Research Institute; ZJOU, Zhejiang Ocean University. 
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Figure B.1. Map of the original species sightings (“+”) of a) H. kelloggi, b) H. kuda, c) H. mohnikei, d) 

H. spinosissimus, e) H. trimaculatus. 
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Figure B.2. Map of the original species distributions of a) H. kelloggi, b) H. kuda, c) H. mohnikei, d) 

H. spinosissimus, and e) H. trimaculatus, based on fishers’ local ecological knowledge. Frequency 

indicates the number of visited vessels that agreed on the range maps. Only frequency larger than 

two (i.e. maps from more than two vessels overlapped at the same area) was considered as valid. 
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Figure B.3. Map of the original species distributions of a) H. kelloggi, b) H. kuda, c) H. mohnikei, d) 

H. spinosissimus, and e) H. trimaculatus, based on peer-reviewed literature. Frequency indicates the 

number of articles that agreed on the range map. 

 



169 
 

 

Figure B.4. Model performance measured with the a) AUC, b) Sensitivity, and c) Specificity of each 

Maxent model for each seahorse species based on three different datasets: PRL, peer-reviewed 

literature; LEK, local ecological knowledge; LEK&PRL, them both. The error bar for AUC on a) 

indicated standard deviations across 15 replicates. 
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Figure B.5. Presence-probability map of a) H. kelloggi, b) H. kuda, c) H. mohnikei, d) spinosissimus, 

and e) H. trimaculatus in China. Omission range or point refers to the range or point that was not 

represented in the derived presence/absence map, but was shown in original data. 
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Figure B.6. Species-temperature (mean sea surface temperature) response curves for the five 

seahorse species (H. kelloggi, H. kuda, H. mohnikei, H. spinosissimus, H. trimaculatus), with habitat 

suitability on y-axis and temperature on x-axis. 
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Figure B.7. Species-depth response curves for the five seahorse species (H. kelloggi, H. kuda, H. 

mohnikei, H. spinosissimus, H. trimaculatus), with habitat suitability on y-axis and depth on x-axis. 
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Figure B.8. Species-distance (distance to the nearest shore) response curves for the five seahorse 

species (H. kelloggi, H. kuda, H. mohnikei, H. spinosissimus, H. trimaculatus), with habitat suitability 

on y-axis and distance on x-axis. 
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Figure B.9. Species-calcite response curves for the five seahorse species (H. kelloggi, H. kuda, H. 

mohnikei, H. spinosissimus, H. trimaculatus), with habitat suitability on y-axis and calcite 

concentration on x-axis. 
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Figure B.10. Species-macrohabitat relations for the five seahorse species (H. kelloggi, H. kuda, H. 

mohnikei, H. spinosissimus, H. trimaculatus), with habitat suitability on y-axis and macrohabitat 

categories on x-axis. 
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Figure B.11. Species-productivity (mean primary productivity in December) response curves for the 

five seahorse species (H. kelloggi, H. kuda, H. mohnikei, H. spinosissimus, H. trimaculatus), with 

habitat suitability on y-axis and primary productivity on x-axis. 
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Figure B.12. Species-pH response curves for the five seahorse species (H. kelloggi, H. kuda, H. 

mohnikei, H. spinosissimus, H. trimaculatus), with habitat suitability on y-axis and pH on x-axis. 
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Figure B.13. Species-silicate response curves for the five seahorse species (H. kelloggi, H. kuda, H. 

mohnikei, H. spinosissimus, H. trimaculatus), with habitat suitability on y-axis and silicate 

concentration on x-axis. 
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Figure B.14. A sketch figure depicting five confirmed seahorse species (drawn to scale based on their 

common heights, pictures were from Lourie et al., 2004) 
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Figure B.15. A sketch map showing the four suspicious seahorse species claimed by some fishers 

(drawn to scale based on Lourie et al., 2004) 
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Figure B.16. Photos of a) a juvenile seahorse holding a branch of macro-algae, b) a sea fan shown by 

a fisher, and c) a clump of juvenile seahorses caught by a surface-trawler. 
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Figure B.17. Sighted specimens of Hippocampus kuda (a dried sample, male, height length ~ 11 

cm) at Nan’ao Fishing Port, Hong Kong SAR.  
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Morphological differences among the five confirmed species 

Hippocampus mohnikei is the smallest seahorse species among the identified ones, its snout 

length is also the shortest (relative to head length). This species was mostly found alone in 

the north. Local fishers often call it the “small seahorse” – “Xiao Hai Ma” (Chinese pinyin). 

Hippocampus trimaculatus has three iconic black spots on the back (more apparent on 

males) and the mostly caught seahorses in fisheries in the south, and local fishers call it the 

“spotted seahorses” – “Ban Hai Ma” (Chinese pinyin). Hippocampus kuda has relatively 

thick trunk and large body size but rarely occurs in fisheries especially commercial 

fisheries. Local fishers call it the “large seahorses” – “Da Hai Ma” (Chinese pinyin). 

Hippocampus kelloggi has the significantly largest body size and usually occur in deeper 

waters as told by fishers. We found this species usually has a gold-to-white color on 

females, and brown color on males. Local fishers call it the “golden seahorses” or “deep-

water seahorses” – “Huang Jing Hai Ma” or “Shen Shui Hai Ma” (Chinese pinyin). 

Hippocampus spinosissimus is the only spiny species among the four and local fishers call 

it “spiny seahorses” – “Ci Hai Ma” (Chinese pinyin).  

Misidentification of Hippocampus spinosissimus as Hippocampus histrix 

Hippocampus histrix was first recorded in China in the Ichthyography of South China Sea 

dating back to 1962 (Zhu and Cheng 1962), and currently in two PRL articles and three 

Master theses (Zhao and Zhong 2005, Liu 2011, Han 2013, Zhang 2013, Jiang et al. 2014). 

The recent identifications of H. histrix were all based on the above Ichthyography. We 

found that this is a misidentification of H. spinosissimus (another thorny seahorse species) 

by checking the specimen photos provided by two colleagues. The name H. histrix has 

been indiscriminately used for many spiny seahorses in history including H. spinosissimus, 

and the morphological differences between the two have only been described recently 

(Lourie et al. 2004), which were unaware to Chinese colleagues. 

Uncertainty of Hippocampus coronatus 

Hippocampus coronatus was first documented in China in the Fish of Yellow Sea and 

Bohai Sea (Zhang et al. 1994) and then in three academic articles and one Master Thesis 

(Zhu 1999, Liu and Ning 2011, Song et al. 2010, Han 2013). All authors identified 

specimens based on Zhang et al. (1994), but did not reserve the specimens. We only 
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obtained a photo of dried specimen of this species collected by the first recorder (Dr. Zhang 

Chun-ling, died in 1962) in the Bohai Sea with unclear source. This species hasn’t been 

sighted in Bohai Sea in recent years by a Chinese ichthyologist (Dr. Zhang Chun-Guang, 

pers. comm.). We did not sight this species at nine fishing ports we visited around the Bohai 

Sea, although some fishers claimed rare historic occurrence of this species. 

Preliminary model performance based on SS dataset 

Our model produced a large range of test AUC mean values (0.522 – 0.854) based on SS 

dataset alone for the identified five seahorse species in China. Among them, three species 

obtained a moderate model performance (0.7 < AUC < 0.9), while the other two derived 

low model performances (0.5 < AUC < 0.7). Hippocampus spinosissimus, which had the 

lowest number of sightings (n = 5), gained a model close to random performance when 

measured by testing AUC (0.522 ± 0.294). The variability in predictive ability (AUC 

standard deviation) for all models was high (0.057 – 0.275).  
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Appendix C Data collection and collation for Chapter 3 

This appendix presents a detailed description about data collection and collation process. 

It contains the following information: 1) Model predictor data, 2) Seahorse location data, 

3) Occurrence-data quality control, 4) Table C.1, and 5) References. 

Model predictor data 

I selected seven variables from twelve original ecological covariates relating to 

physiological suitability and primary productivity. Physiological suitability defines the 

physiological fitness of seahorses to its surroundings. I collected data for five 

environmental factors: depth, sea surface temperature (SST), salinity, dissolved oxygen, 

and pH. Primary productivity was used as an index of zooplankton availability for seahorse 

since the latter could not be obtained. I used surface chlorophyll a (Chlo-a) to estimate 

primary productivity, as they are usually highly correlated (Antoine et al., 1996). I only 

extracted data within 200 m depth as seahorses commonly live in shallow waters. I 

converted all these covariates to maps with a resolution of 1 km (using the Cylindrical 

Equal-area Projection). For datasets with coarser resolutions, I assigned values to unknown 

pixels with weighted mean values at known pixels based on the Inverse Distance Weighting 

(Cheung et al., 2009). All these processes were manipulated in an ArcMap. I selected seven 

variables from these twelve covariates to minimize collinearity based on Pearson 

correlation tests (|r| > 0.7, Dormann et al., 2013). These seven predictors were depth, pH, 

salinity, sea-surface-temperature mean, sea-surface-temperature range, chlorophyll a mean, 

and chlorophyll a range. I extracted depth from the latest global bathymetry data 

(GEBCO_2014 Grid, www.gebco.net) and derived other data from Bio-ORACLE, a global 

marine environmental dataset (Tyberghein et al., 2012).   

I then derived datasets of nine categories of macrohabitat. I first gathered existing global 

maps (polygons) of four macrohabitats - seagrass beds, mangroves, coral reefs, and 

estuaries – from the United Nations Environment Programme World Conservation 

Monitoring Centre (UNEP-WCMC, http://data.unep-wcmc.org/). I then gathered 

occurrence data (points) of five other habitats – soft corals, macro-algae, sponges, sea pens, 
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and hydrozoa – from Global Biodiversity Information Facility (GBIF, www.gbif.org) and 

Oceanic Biodiversity Information System (OBIS, www.iobis.org). I chose these habitat-

forming organisms based on the literature (Foster & Vincent, 2004) and information from 

iSeahorse (www.iseahorse.org) – a global citizen-science platform for gathering seahorse 

sightings and their habitat information. To control quality in location uncertainty/errors, I 

only used data that had been collected since 1950 for species (of the five taxa) with tube- 

or branch-like features (see details in Table C.1). I chose 1950 as it corresponds to the time 

when SCUBA diving became effectively used for underwater observations. This time 

period (1950s afterward) is also approximately consistent with other model-predictor 

datasets and the collected seahorse occurrences. 

For each of the nine macrohabitat categories, I created two types (binary vs. continuous) 

of variables. The binary variable was distributions of presences/absences (1/0) of each 

habitat. The continuous variable was transformed from binary predictor by using the 

Euclidean distance algorithm – distance to the nearest habitat. All these processes were 

conducted in an ArcMap.  

Theoretically, compared with the binary variables, continuous variables could be more 

resilient to some extent of mismatch between species occurrences and habitat locations due 

to poor resolution or locational uncertainty. For example, suppose one species was 

correlated with habitat A, but due to resolution issues many of their (i.e. species and 

habitats) occurrences were not matched in the same pixels (but very close to each other). 

Then the model based on binary predictors might detect no relationship or even a false-

negative relationship between the species and habitat A; while using the continuous 

predictors could still detect a tendency of species locating close to habitat A. Therefore, I 

expected that continuous variables would better inform species-habitat relationships. 

Seahorse location data  

I collected geo-referenced sightings of seahorses from eight databases: 1) GBIF, 2) OBIS, 

3) iSeahorse, 4) FishNet2 (www.fishnet2.net), 5) FishBase (www.fishbase.org), 6) Reef 

Life Survey (www.reeflifesurvey.com), 7) unpublished data from our Project Seahorse 
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team’s previous studies, and 8) data in peer-reviewed literature (PRL) drawn from the 

Zoological Record, Web of Science.  

Data in GBIF and OBIS came originally from various common sources, including museum 

collections and human observations. These human observations included data from citizen 

science databases, such as iNaturalist (www.inaturalist.org) and Diveboard 

(www.diveboard.com). The FishNet2 is a global database of fish collections in natural 

history museums, universities, and other institutions. FishBase is a global biodiversity 

information system on finfishes and sometimes also contains occurrences derived from 

other sources. iSeahorse is a global citizen-science platform developed specifically for 

collecting seahorse sightings, mainly from recreational divers and researchers. Reef Life 

Survey is another citizen-science database for collecting distribution data of reef species 

from recreational divers. 

To collect seahorse occurrence data from peer-reviewed literature, I searched published 

papers related to seahorses in Zoological Record database in the Web of Science 

(http://apps.webofknowledge.com/). I used “seahorse” OR “sea horse” OR “Hippocampus” 

NOT “brain” NOT “neuro” NOT “cell” as the Topic words to search in publications within 

the default year range (1864 – 2016). This search was conducted on August 30, 2016, and 

it resulted in a total of 994 articles. I then get access to the full text of each article and read 

the title and abstract first to quickly to get an idea if there is a possibility to find seahorse 

occurrences in the article. Papers about underwater surveys, species checklists, new records, 

and related fisheries studies have higher chances to contain detailed information about 

locations than studies focusing on genetics, aquaculture, medical use and trade. To 

facilitate the mining process in each paper, I used the key words “longitude”, “latitude”, 

“location”, “study site”, and “study area” to locate information about seahorse occurrences. 

I also checked the study-area map to find if there were any seahorse occurrence points that 

can be georeferenced from the map. These approaches were proved as helpful to save the 

time. 

To examine the utility of data from different sources, I then divided speices occurrences 

into three subsets: research-grade data, citizen-science data, and museum-collection data. 
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Research-grade (RG) data were those sourced from biologists, including (i) Project 

Seahorse’s unpublished data, (ii) PRL, and (iii) ‘research-grade’ data in iSeahorse. The 

‘research-grade’ data in iSeahorse are those occurrences validated by our Project Seahorse 

or provided directly from seahorse researchers. Citizen-science (CS) data were derived 

from (i) Reef Life Survey, (ii) GBIF data sourced from Diveboard (www.diveboard.com), 

and (iii) ‘casual observations’ in iSeahorse, which were from recreational divers. I found 

that museum collection (MC) data had ambiguous quality and could not easily be 

categorized as either RG or CS data. Instead, I treated them as an independent dataset and 

aimed to compare its utility with RG and CS data.  

Occurrence-data quality control  

The species data derived from multiple sources inevitably included some errors, sampling 

bias, and spatial autocorrelations (Guisan & Thuiller, 2005; Dambach & Rödder, 2011). 

For instance, data collected by citizen scientists could be biased to tourism sites. 

Taxonomic identification could be incorrect if the person who examined the specimen were 

not well-trained. Spatial errors or location uncertainty could also exist if the organisms 

were not well documented as, for example, when seahorses were not the target species for 

research or monitoring. 

I screened the collected species data by checking nomenclature and spatial errors and 

reduced spatial autocorrelations by spatial filtering for each species. First, I carefully 

checked species identifications of all iSeahorse sightings based on the available online 

photographs provided by the citizen scientists. To validate data from other databases, I 

adapted the instruction from Graham et al. 2004. I visually compared occurrence positions 

in an ArcMap to identify ‘outliers’ that were apparently isolated from other localities or far 

beyond the known geographic ranges based on the authors’ knowledge and Lourie et al. 

(2016). For the suspected outliers, I then checked the nomenclature and positions by 

tracking back to their original sources (e.g. museum specimens), where possible. Due to 

resolution issues of the bathymetry map, some occurrences may fall in ‘no-data’ cells of 

the bathymetry map, but they are still located in the sea. I filled these gaps in the bathymetry 

map (and all other predictor datasets) by assigning the value of their nearest cells or the 

mean if two or more cells were equidistant (Marcer et al., 2013). In other cases, some 
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occurrences may fall on the coast close to sea. Given the rarity of each sighting, I moved 

those occurrences within 5 km of the shore to the nearest pixel of bathymetry map. I 

designated occurrences that were farther inland as errors and deleted them.  

Table C.1. Description of the five biotic habitats used in modeling seahorse distributions. Note that 

only those taxa with a ‘tube shape’ or ‘branch shape’ were used to build the dataset, given seahorses 

require holdfasts to anchor themselves on the seafloor. 

Biotic habitats Description 

soft corals occurrences of Alcyonacea (sea fans), Isididae, Helioporacea (blue corals), 

Pseudopterogorgia and Antillogorgia (sea plumes). 

macroalgae occurrences of Ahnfeltia plicata, Pyropia columbina, Porphyra, Caulerpa, 

Ceramium, Codium, Corallina, Thalassodendron, Cymodocea, Furcellaria, 

Gelidiella, Chondrus, Osmundea, Laurencia, Kappaphycus, and Eucheuma. 

sponges occurrences of Aiolochroia crassa, Aplysina, Suberea spp., Agelas, Ircinia felix, 

Smenospongia aurea, Cervicornia cuspidifera, Axinella, Ptilocaulis, Svenzea zeai, 

Callyspongia, Haliclona, Amphimedon, Niphates erecta, Neopetrosia 

subtriangularis, Monanchora arbuscula, Desmapsamma anchorata, Clathria 

(Thalysias) curacaoensis, and Leucosolenia variabilis. 

sea pens occurrences of Pennatulacea. 

hydrozoa occurrences of Obelia, Tubularia, Sertularia argentea, Kirchenpaueriidae, Pennaria 

disticha, Aglaophenia pluma, and Thyroscyphus ramosus. 
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Appendix D Supplementary methods for Chapter 3 

This appendix presents a detailed description about model construction and data analyses 

process. It contains the following information: 1) Model settings, 2) Model comparisons, 

3) Model Group 1, 4) Model Group 2, 5) Ranking permutation importance, 6) Calculating 

geographic metrics for IUCN Red List assessment, and 7) References. 

Model settings 

In model-comparison group 1, for each species, I used the defined geographic range (i.e. 

modeling envelope, see 2.3 in the manuscript) to clip model predictor datasets. Given H. 

denise and H. bargibanti were known to be highly associated with particular taxa of 

gorgonian corals (Gomon, 1997; Lourie & Randall, 2003), I used a predictor based on such 

corals to replace the soft-coral predictor in their models. Highly correlated (|r| > 0.7) 

predictors in each dataset were excluded based on the Pearson correlation test. I chose 10-

fold cross-validation to evaluate each model (Merow et al., 2013). The cross-validation 

split species data into 10 independent subsets and the model was then trained and evaluated 

10 times. For each time, one of the 10 subsets was held out in turn as test data and the 

model was trained with the rest 9 subsets. I did group 1 only on species which had at least 

50 sightings. This manipulation ensured at least 5 occurrences were included each time in 

the test dataset for cross-validation, as a manner to derive reliable statistics. 

In model-comparison group 2, I used only data from species which have relatively 

sufficient sightings (n ≥ 30) from each category (CS/RG/MC) to construct models. I used 

the same amount of species data from each category to train each model, as a manner to 

eliminate the impact of data availability on model performance (Wisz et al., 2008). The 

number of training data was determined by data availability of CS of the modeled species, 

as CS had the lowest number of sightings. For the modeling group based on CS data, I used 

all sightings to train the models (hereafter CS models). For the modeling groups of RG and 

MC data, I randomly selected a subset of sightings, as many as CS, to train the models 

(hereafter RG models and MC models). The remaining set of RG data was used to test 

performance (i.e. presence predictive accuracy) of each model including those based on 

dataset combinations, given their known quality. 
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To eliminate the sampling bias in presence data, I derived pseudo-absences with the same 

sampling bias. To do so, I created a ‘bias file’ for each species based on a ‘congeneric-

species (or target-group) absences’ approach (Phillips et al., 2009; Mateo et al., 2010; 

Chapter 2). This approach limits Maxent to randomly select pseudo-absences within a 

buffer area (radius = 30 km) centered around the presences of all congeneric species (i.e. 

all seahorse species) located in the defined geographic range (Chapter 2). By doing so, the 

pseudo-absences would contain the same bias as in the presences. Therefore, the model 

will predict species presences in the locations that are truly suitable instead of areas that 

are heavily sampled. To diminish spatial autocorrelations among occurrences without 

sacrificing data too much, I rarefied the sightings with a threshold distance of 2 km between 

every two points. I used the SDMtoolbox in an ArcMap to fulfill the above process (Brown, 

2014).  

To set up each model, I used the ‘Cloglog’ transformation as the output format, and selected 

all features to fit the model. To eliminate the sampling bias in presence data, I selected the 

‘bias file’ as I generated above in ArcMap to derive pseudo-absences with the same 

sampling bias (Philips et al., 2009; Mateo et al., 2010; Chapter 2). I picked the 

regularization multiplier to control for over-parameterization (Crall et al., 2015; Chapter 

2). Other default settings in Maxent were not changed as they have performed well (Phillips 

et al., 2006).  

Model comparisons 

I used two statistics to measure model performance (i.e. ability to discriminate presences 

and absences) respectively for the above two comparison groups. Model performance in 

comparison group 1 was measured with the area under the curve (AUC) of the receiver-

operating characteristic (ROC) plot (Hanley & McNeil, 1982), which is one of outputs of 

the Maxent (i.e. test AUC). The AUC of the ROC plot measures model’s general accuracy 

of both presence and absence predictions. The value of AUC ranges from 0 to 1 with a 

qualitative description of model accuracy: 0.90 – 1.00 excellent, 0.80 – 0.90 good, 0.70 – 

0.80 fair, 0.60 – 0.70 poor, 0.50 – 0.60 fail (Swets, 1988). The second statistic was 

Sensitivity (accuracy of predicting presences, Altman and Bland, 1994), which is a 

threshold-dependent measure of prediction accuracy. I used the threshold that maximized 
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the sum of training sensitivity and specificity (hereafter, MSS threshold) to derive 

Sensitivity (Liu et al., 2013). I used Sensitivity rather than AUC to measure model 

performance in comparison group 2, given that model predictions were tested with only 

species occurrences.  

Model Group 1: the effect of habitat predictors 

To examine the utility of habitat predictors in comparison group 1, I calculated AUC and 

another two statistics: Habitat Variable Importance (HVI) and Predicted Area Ratio (PAR). 

They are all Maxent’s outputs averaged across 10 cross-validations. Habitat Variable 

Importance (HVI) was the sum of permutation importance (range from 0 to 100) of each 

habitat covariate included in the model. Predicted Area Ratio (PAR) was the proportion (0 

- 1) of the predicted area (based on the MSS threshold) to the modeling envelope. I used 

paired Wilcoxon-rank-sum tests to compare AUC and PAR among the three predictor 

datasets across species, and compare HVI between Dataset 2 and Dataset 3. HVI was not 

applicable for Dataset 1 as it didn’t include habitat covariates. My expectations were: 1) 

models based on Dataset 2 and 3 (which included habitat predictors) could derive higher 

AUC than models based on Dataset 1 (non-habitat predictors), 2) Dataset 3 (using 

continuous habitat predictors) would derive higher AUC than Dataset 2 (using binary 

habitat predictors), 3) models integrated habitat predictors would derive smaller PAR than 

models only integrated non-habitat predictors, 4) models based on Dataset 3 would result 

in higher HVI than models based on Dataset 2.  

Model Group 2: the effect of species-data sources 

I compared model performance and predictions among research-grade (RG), citizen-

science (CS) and museum-collection (MC) datasets. Model performance was measured 

with Sensitivity. Model prediction similarity were measured with two spatial agreement 

statistics: I Similarity Statistic (Warren et al., 2008) and Presence Agreement (Chapter 2). 

The I Similarity is a metric usually applied to measure the absolute spatial agreement 

between two probability predictions. The Presence Agreement was the ratio of overlapping 

area of two presence predictions to their spatial union. Both statistics range from 0 (no 

overlap) to 1 (identical). I calculated the I Similarity Statistic with the package ‘ENMeval’ 

in R (Muscarella et al., 2014). I derived the presence predictions from Maxent probability 
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outputs based on the MSS threshold, and calculated Presence Agreement based on the 

analyses in an ArcMap. In addition, I compared Sensitivity among four models: RG model, 

RG+CS model, RG+MC model, and ALL model. My expectations were that 1) models 

based on different datasets could differ on model performance and predictions, 2) RG 

models would have higher performance (i.e. Sensitivity) than CS and MC models, and 3) 

adding CS and/or MC to RG would improve model performance. 

Ranking permutation importance 

The ranking of permutation importance of variables starts from 1 (the highest value) and 

followed with continuous integers (2, 3, 4, …). For variables with same permutation 

importance, I assigned the same rank to them. For instance, suppose I have five variables, 

and their permutation importance are 30, 20, 20, 15, 15. Then, the ranks of these variables 

are respectively 1, 2, 2, 3, 3. Given some habitat types (e.g. hydrozoa) were absent in the 

modeling envelope of some species, these predictors were then not used in these models. I 

used zero to reflect the importance of these habitats, and thus assigned the lowest rank (i.e. 

largest integer) to them. For the predictor that was excluded because of collinearity, I 

assigned it the same rank of its covariate, which was most correlated with it (i.e. the highest 

Pearson correlation coefficient) and was included in the model. For instance, if sea surface 

temperature mean and its range are highly correlated, and only the mean is used in the 

model, I then assign the same rank of the mean to its range. I did this based on my initial 

modeling trials in which I replaced the variable with its highly-correlated one and derived 

almost the same rank for the latter. This is understandable as highly-correlated variables 

may contribute very similar information to the model. Therefore, I think it is cost-effective 

to directly assign the same rank to the highly correlated variables. 

Calculating geographic metrics for IUCN Red List assessment 

To evaluate conservation status, I first created the minimum convex polygon for each 

species based on species occurrences to derive the extent of occurrence (EOO, IUCN 

Criterion B1) at the 1 km resolution. I then applied the threshold that maximized the sum 

of training sensitivity and specificity to derive predictive presences from the presence-

probability map of each species (Liu et al., 2013). This allowed models to cut off the 

continuous probability into presence/absence map with the threshold at which true presence 
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rate and true absence rate are maximized, at the sacrifice of some presence omissions. I 

think it is a reasonable choice as there might be spatial uncertainties/errors hidden in my 

data. I then derived the area of occupancy (AOO, IUCN Criterion B2) by extracting the 

predicted presences from the EOO map (Marcer et al., 2013). The AOO was calculated at 

2 km resolution as recommended by IUCN (IUCN Standards and Petitions Subcommittee, 

2017). I undertook the above analyses in an ArcMap following the IUCN’s guidelines 

(IUCN Standards and Petitions Subcommittee, 2017). 
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Appendix E Supplementary results for Chapter 3 

This appendix presents supplementary tables and figures for the Results section in the manuscript. It 

contains a total of 5 tables (Tables E.1 – 3.5) and 13 figures (Figures E.1 – 3.13). 

Table E.1. Summary statistics of the 16 model predictors across all seahorse species globally. 

Predictor Minimum Maximum Mean Median 

depth (m) 1 199 25 13 

pH 7.127 8.461 8.191 8.21 

salinity (PSS) 16.5 41.41 34.69 35.08 

sea surface temperature mean (℃) 7.852 31.16 24.653 26.076 

sea surface temperature range (℃) 0.654 25.885 7.476 7.052 

Chlorophyll a mean (mg/cm3) 0.072 50.287 3.02 1.155 

Chlorophyll a range (mg/cm3) 0.025 38.602 3.303 1.3 

distance to nearest coral reef (km) 0 5815.85 620.14 643.03 

distance to nearest estuary (km) 0 2169.51 128.66 62.46 

distance to nearest hydrozoa (km) 0 6889.8 1182.3 662.3 

distance to nearest macroalgae (km) 0 1281.07 114.02 50.17 

distance to nearest mangrove (km) 0 4571.54 360.46 18.76 

distance to nearest sea pen (km) 0 2547.57 316.99 182.92 

distance to nearest soft coral (km) 0 1615.95 50.898 19.966 

distance to nearest sponge (km) 0 321.844 18.03 6.646 

distance to nearest seagrass bed (km) 0 2662.74 74.9 21.4 
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Table E.2. A summary of area under the curve (AUC, model predictive measure), habitat-

variable importance (HVI, cumulative permutation importance of all macrohabitat variables), 

and key macrohabitats (positively correlated with the seahorse species, listed in order of 

permutation importance), ranked by HVI. 

Species AUC HVI Key macrohabitats (in the order of importance) 

H. denise 1.00 99.8 soft coral (gorgonians) 

H. bargibanti 0.99 99.4 soft coral (Muricella) 

H. zebra 0.71 97.2 macroalgae, coral reef, soft coral 

H. plantifrons 0.71 86.0 macroalgae, seagrass 

H. sindonis 0.92 84.3 sponge, soft coral, hydrozoa 

H. minotaur 0.87 81.4 hydrozoa, sponge, mangrove 

H. kelloggi 0.78 80.4 sponge, coral reef 

H. capensis 0.99 77.4 estuary, macroalgae 

H. erectus 0.76 64.7 sponge, hydrozoa, soft coral, mangrove 

H. comes 0.89 61.4 sponge, soft coral, macroalgae 

H. jayakari 0.81 60.7 seagrass 

H. kuda 0.82 59.3 sponge, sea pen, seagrass, soft coral 

H. dahli 0.73 58.7 sponge, soft coral 

H. abdominalis 0.80 58.4 estuary, sponge, hydrozoa, macroalgae 

H. ingens 0.78 53.6 sponge, hydrozoa, coral reef, mangrove 

H. subelongatus 0.95 52.9 sea pen/coral reef, sponge/soft coral/macroalgae 

H. trimaculatus 0.78 52.4 sea pen, soft coral 

H. fisheri 0.70 51.0 sponge 

H. angustus 0.73 37.2 sponge, sea pen, macroalgae, mangrove 

H. camelopardalis 0.75 36.8 mangrove 

H. pontohi 0.91 33.8 sponge 

H. hippocampus 0.87 31.4 macroalgae, sponge, soft coral 

H. spinosissimus 0.84 30.6 sponge, soft coral, coral reef, sea pen 

H. coronatus 0.90 23.6 hydrozoa 
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Species AUC HVI Key macrohabitats (in the order of importance) 

H. whitei 0.92 21.9 mangrove, sponge 

H. histrix 0.87 21.7 macroalgae, soft coral, sponge, coral reef, seagrass 

H. barbouri 0.83 20.3 soft coral 

H. guttulatus 0.83 19.6 macroalgae 

H. reidi 0.89 19.5 sponge, macroalgae, sea pen 

H. zosterae 0.97 15.1 mangrove, macroalgae, seagrass 

H. breviceps 0.93 14.3 macroalgae, sponge, seagrass 

H. patagonicus 0.78 6.2 macroalgae 

H. mohnikei 0.89 3.9 sponge 

H. casscsio 0.56 - - 
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Table E.3. IUCN assessments and my estimate for 34 seahorse species that could be evaluated 

with geographic-range size. Note that my study only evaluated species against geographic-range 

size, and more information about fragmentation, fluctuation or decline were required to justify 

these categories (in bold). AUC, Area Under the Curve (i.e. model predictive accuracy); AOO, 

area of occupancy; EOO, extent of occurrence. IUCN categories: EN, Endangered; VU, 

Vulnerable; NT, Near Threatened; LC, Least Concern. The IUCN Criteria used to determine the 

conservation status were provided in the brackets (i.e. B1; B2): B1 refers to EOO thresholds, B2 

refers to AOO thresholds. EOO ≤20,000 or AOO ≤2,000 km2 corresponds to VU, EOO ≤5,000 or 

AOO ≤500 km2 corresponds to EN.  

Species 

IUCN 

assessment 
My geographic-range estimate 

AUC 
Current 

category 

Potential 

category 
AOO/km2 EOO/km2 

H. capensis EN EN (B1; B2) 64 558 0.99 

H. whitei EN - 57,356 9,799,059 0.92 

H. barbouri VU - 4,152 1,976,877 0.83 

H. comes VU - 29,880 5,297,952 0.89 

H. ingens VU - 52,560 5,531,471 0.78 

H. patagonicus VU - 176,284 1,549,217 0.78 

H. erectus VU - 204,396 48,686,396 0.76 

H. spinosissimus VU - 569,124 29,300,225 0.84 

H. histrix VU - 652,468 208,501,354 0.87 

H. kelloggi VU - 667,876 15,273,083 0.78 

H. mohnikei VU - 909,216 14,968,166 0.89 

H. kuda VU - 957,420 169,772,887 0.82 

H. trimaculatus VU - 1,928,620 40,659,171 0.78 

H. reidi NT - 398,832 35,618,844 0.89 

H. fisher LC EN (B2) 280 40,382 0.70 

H. sindonis LC EN (B2) 376 84,374 0.92 

H. plantifrons LC VU (B2) 560 180,716 0.71 

H. breviceps LC - 12,360 2,068,054 0.93 
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Species 

IUCN 

assessment 
My geographic-range estimate 

AUC 
Current 

category 

Potential 

category 
AOO/km2 EOO/km2 

H. jayakari LC - 13,036 110,929 0.81 

H. dahli LC - 13,836 266,333 0.73 

H. abdominalis LC - 21,776 2,995,183 0.8 

H. zosterae LC - 25,784 1,669,764 0.97 

H. pontohi LC - 134,948 10,015,702 0.91 

H. angustus LC - 573,012 9,045,917 0.73 

H. subelongatus DD EN (B1; B2) 396 428 0.95 

H. denise DD VU (B2) 832 10,483,181 1 

H. coronatus DD - 5,968 174,828 0.9 

H. minotaur DD - 6,824 828,499 0.87 

H. zebra DD - 16,708 2,378,512 0.71 

H. camelopardalis DD - 19,716 1,693,859 0.75 

H. bargibanti DD - 24,804 14,882,812 0.99 

H. guttulatus DD - 147,056 22,053,816 0.84 

H. hippocampus DD - 226,100 17,401,651 0.86 

H. casscsio DD - - 79,952 0.56 
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Table E.4. IUCN assessments and my estimate on locations for 8 rarely-sighted seahorse species. 

Note that my study only evaluated species against the number of locations, and more information 

about population threats were required to justify these categories (in bold). IUCN categories: VU, 

Vulnerable; DD, Data Deficient. IUCN Criterion D2 here refers to ‘number of locations ≤ 5’.  

Species 

IUCN 

assessment 
My estimate on locations 

Current 

category 

Potential 

category 

No. of 

locations 

H. algiricus VU - > 5 

H. colemani DD VU (D2) <5 

H. debelius DD VU (D2) <5 

H. jugumus DD VU (D2) <5 

H. paradoxus DD VU (D2) <5 

H. pusillus DD VU (D2) <5 

H. satomiae DD VU (D2) <5 

H. tyro DD VU (D2) <5 
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Table E.5. Matrix of permutation-importance rank of each predictor for the 33 seahorse species. Rank 1 was given to the highest value. 

Species Depth sponge 
SST 

mean 
pH 

macro 

-algae 

SST 

range 

man-

grove 

Chlo-

a 

range 

Chlo-

a 

mean 

coral 

reef 
salinity 

soft 

coral 

sea 

pen 

estuary 
sea-

grass 
hydrozoa 

H. abdominalis 1 4 9 9 5 7 9 6 8 9 9 2 11 3 10 5 

H. angustus 5 2 8 1 6 8 7 8 8 8 8 8 3 4 7 8 

H. barbouri 1 5 5 5 5 5 5 3 3 5 5 2 5 5 4 5 

H. bargibanti 3 6 6 6 6 6 2 5 5 2 6 1 6 6 4 4 

H. breviceps 1 3 6 6 2 4 10 8 10 10 9 7 10 6 5 10 

H. camelopardalis 1 4 2 4 4 4 2 3 3 2 4 4 2 4 4 4 

H. capensis 3 5 1 2 4 5 6 5 5 6 3 5 1 1 6 6 

H. comes 2 1 10 6 4 8 10 5 5 10 9 3 11 7 7 11 

H. coronatus 1 5 7 7 7 7 7 3 3 7 6 5 2 4 7 2 

H. dahli 6 1 4 4 6 6 5 2 2 6 3 3 6 6 5 6 

H. denise 3 4 4 2 4 4 4 4 4 4 4 1 4 4 4 5 

H. erectus 2 1 6 10 10 10 6 8 8 6 4 5 7 9 10 3 

H. fisher 1 2 4 3 6 7 5 7 7 3 2 7 2 2 3 5 

H. guttulatus 1 4 2 3 8 6 13 10 9 13 11 12 13 5 7 2 

H. hippocampus 1 4 2 10 3 2 2 7 8 11 9 6 11 5 8 2 

H. histrix 2 8 9 1 4 3 13 6 6 10 5 7 10 12 11 14 

H. ingens 1 3 12 11 13 4 9 10 10 7 11 12 2 8 6 5 
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Species Depth sponge 
SST 

mean 
pH 

macro 

-algae 

SST 

range 

man-

grove 

Chlo-

a 

range 

Chlo-

a 

mean 

coral 

reef 
salinity 

soft 

coral 

sea 

pen 

estuary 
sea-

grass 
hydrozoa 

H. jayakari 4 4 3 3 3 3 3 2 2 4 3 4 4 4 1 4 

H. kelloggi 6 1 5 7 3 5 8 4 4 8 9 9 10 2 9 10 

H. kuda 1 3 11 10 12 8 4 9 9 11 8 7 5 13 6 2 

H. minotaur 2 6 9 9 9 8 3 4 5 9 3 9 3 9 7 1 

H. mohnikei 4 6 3 2 11 3 3 1 1 3 5 9 7 10 8 11 

H. patagonicus 5 6 1 4 1 1 1 6 2 1 1 6 6 3 1 7 

H. plantifrons 5 5 4 4 1 3 5 5 5 2 5 5 5 4 2 6 

H. pontohi 4 6 8 5 3 10 6 7 7 9 1 9 12 2 11 12 

H. reidi 3 2 5 12 6 1 5 4 4 5 10 9 7 11 8 13 

H. sindonis 8 1 3 3 6 3 3 5 5 3 2 4 7 10 9 3 

H. spinosissimus 2 3 10 9 7 10 11 6 6 5 1 4 6 11 8 12 

H. subelongatus 2 3 1 1 3 2 6 4 4 1 5 3 1 5 5 6 

H. trimaculatus 3 5 13 2 1 11 9 10 10 13 12 7 4 6 8 14 

H. whitei 1 7 2 6 5 9 3 4 4 2 11 11 10 8 11 12 

H. zebra 8 7 6 6 1 8 8 8 8 4 8 5 3 8 2 9 

H. zosterae 1 7 6 4 3 6 2 11 11 6 8 10 11 9 5 6 

Mean rank 2.8 4.1 5.7 5.4 5.2 5.7 5.9 5.8 5.8 6.2 6.1 6.1 6.3 6.2 6.3 6.8 

 



 

 
 

 

Figure E.1 Distribution map of species richness of seahorse species in America. 

 



 

 
 

 

Figure E.2 Distribution map of species richness of seahorse species in Europe and Africa. 

 



 

 
 

 

Figure E.3 Distribution map of species richness of seahorse species in India and its surrounding 

countries. 

 

 



 

 
 

Figure E.4 Distribution map of species richness of seahorse species in East and North Asia. 

 



 

 
 

 

Figure E.5 Distribution map of species richness of seahorse species in Southeast Asia. 

 



 

 
 

 

Figure E.6 Distribution map of species richness of seahorse species in Australia. 

 

 



 

 
 

 

Figure E.7 Distribution map of species richness of seahorse species in Papua New Guinea, and the 

east of Australia (including Vanuatu, New Caledonia, New Zealand, and Fiji). 

 



 

 
 

 

Figure E.8 Distribution map of seahorse biodiversity hotspots of species richness = 4. 

 



 

 
 

 

Figure E.9 Distribution map of seahorse biodiversity hotspots of species richness = 5. 

 



 

 
 

 

Figure E.10 Distribution map of seahorse biodiversity hotspots of species richness = 6. 

 

 



 

 
 

 

Figure E.11 Distribution map of seahorse biodiversity hotspots of species richness = 7. 

 



 

 
 

 

Figure E.12 Distribution map of seahorse biodiversity hotspots of species richness = 8. 

 



 

 
 

 

Figure E.13 Distribution map of seahorse biodiversity hotspots of species richness = 9. 

 



 

 
 

Appendix F Supplementary discussion for Chapter 3 

This appendix presents a supplementary discussion about species-habitat relations and the 

limitation of using these habitat data in species distribution models in the present study. A list of 

references is also provided. 

Explanation for relationships between seahorse species and ecological variables 

Interestingly, I found that habitat-forming sponges (i.e. those with branches or pipe-like shapes) 

were generally more vital than other habitat categories in predicting presences of seahorses. I 

think this result could be explained by at least three reasons. First, unlike other habitats (e.g. 

seagrass), these sponges are more widely-spread, structurally robust, and long-lived. These 

advantages may ensure them much more constantly available, which are vital for sedentary fishes 

like seahorses. Second, these sponges are structurally suitable for seahorses to use as holdfasts, 

shelters, and camouflage. Third, sponges might also be rich in prey provision for seahorses. For 

example, sponges are particularly rich in caridean shrimps of genus Synalpheus (Duffy, 1996), 

which have been commonly found in the diet of adult seahorses, including H. abodominalis 

(Woods, 2002) and H. reidi (Castro et al., 2008). 

On the other hand, the generally low importance of other model predictors should be explained 

with caution. I found that the importance of hydrozoa was the lowest which was not surprising as 

hydrozoa were only present in the modeling envelopes of 13 out of the 33 species and thus likely 

less informative than many other predictors. The same reason might also explain the low rank of 

distance to the nearest sea pen, which was absent in 7 species’ ranges. In addition, seagrass beds, 

estuaries, coral reefs, and soft corals were more widely present, but their importance ranks were 

low. This may suggest that these low-rank habitats were less important than those sponges for the 

33 species, or they were superabundant and thus not the limiting factors for seahorse distributions 

(Aarts et al., 2013).  

Two reasons might explain the results that most species were weakly or even negatively correlated 

with chlorophyll a mean. For one thing, the sea-surface primary productivity, as represented by 

chlorophyll a mean, might be weakly and sometimes even negatively correlated with the benthic 



 

 
 

food availability for seahorses. For another, food availability might not be a limiting factor for 

seahorses, given benthic zooplanktons are not likely scarce resources.  

Limitations of including habitat data 

It should be noted that the habitat categories used in my study were not exclusive. For instance, 

sometimes seahorses are also found in (sandy or muddy) open-bottom habitats, and some artificial 

features including harbor swimming nets and aquaculture farms (Dias et al., 2002; Foster & 

Vincent, 2004; Clynick, 2008; Aylesworth et al., 2016). I didn’t include these habitats since they 

were unavailable for my global-scale modeling. But I encourage future SDM studies on seahorses 

at local or reginal scales to involve these habitat data if available to identify seahorse species-

habitat relationships.  
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Appendix G Supplementary methods for Chapter 4  

This Appendix contains the following supplementary information for the methods of the 

manuscript: 1) further explanations of the cumulative-human-impact (CHI) models; 2) 

description of anthropogenic pressures and how their intensities were estimated; 3) calculating 

ecosystem-scale CHI for seahorse species, and 4) sensitivity analyses. 

Further explanations of the CHI models 

Based on literature review, I found that the human impact of a given stressor i upon a given 

species j can be estimated by three commonly used variables: (1) the intensity (𝐼𝑖,𝑗 ) of stressor i 

across species j’s habitat (Halpern et al., 2008); (2) the exposure degree (𝐸𝐷𝑖,𝑗) of species j to 

stressor i (Certain et al., 2015), and (3) the sensitivity (𝑆𝑖,𝑗) of species j to stressor i (degree of 

intolerance and incapability of recovery; Eno et al., 2013; Certain et al., 2015). Here, I defined 

the ‘exposure degree (𝐸𝐷𝑖,𝑗)’ spatially and temporally: the proportion of the species’ habitats 

experiencing the impact (𝑃𝑆𝑖,𝑗), and the frequency of the impact (𝐹𝑖,𝑗, how often the stressor j 

occurs to species i). The ‘sensitivity (𝑆𝑖,𝑗)’ was determined by the nature of the impact (e.g., direct 

vs. indirect) and how species would respond to it (e.g., directly death vs. consistent stress).  

For the non-spatial model, I assumed that 1) there would be no human impact if any of the above 

variables (i.e., 𝐼𝑖,𝑗 , 𝑃𝑆𝑖,𝑗 ,  𝐹𝑖,𝑗 , 𝑆𝑖,𝑗) became zero, 2) species’ response to the impact was ‘linear’, 

and 3) interactions between different stressors’ impacts were ‘additive’. These assumptions were 

also common in previous CHI studies (Halpern and Fujita, 2013). I acknowledged that these 

assumptions might not be robust as ‘non-linear’ responses and ‘non-additive’ interactions 

commonly exist in nature (Crain et al., 2008; Coll et al., 2016), but this was understudied for 

seahorses. I made these assumptions to simplify the model and to examine whether a linear 

additive model is justifiable.  

I then developed a spatially-explicit CHI model to map the cumulative human impacts similar to 

a previous study on marine mammals (Maxwell et al., 2013). I defined that, in a given location m 

(here, a 1 km by 1 km pixel), the impact of stressor i on species j was determined by three 

components: (1) the intensity (𝐼𝑖,𝑗,𝑚) of stressor i in species j’s habitat location m, (2) the exposure 



 

 
 

degree (𝐸𝐷𝑖,𝑗,𝑚) of species j to stressor i in location m, and (3) the species sensitivity (𝑆𝑖,𝑗, same 

as the non-spatial model). I defined the ‘exposure degree’ (𝐸𝐷𝑖,𝑗,𝑚) as the product of the presence 

probability of species j in location m (𝑃𝑗,𝑚 ) and the frequency of stressor i occurring upon species 

j in location m (𝐹𝑖,𝑗,𝑚). Given that spatially-explicit maps of the frequency was unavailable in my 

study, I used the same frequency (𝐹𝑖,𝑗) as in the non-spatial model instead. By doing so, I assumed 

that the impact’s frequency of a stressor would not differ spatially. This assumption seemed to be 

very unlikely but I made it for the merit of simplicity. I also made the other assumptions as I did 

for the non-spatial model.  

Description of anthropogenic pressures and how their intensities were estimated in the 

study 

I identified 12 different anthropogenic stressors on seahorses. These stressors are: 1) demersal 

destructive fishing, 2) demersal, non-destructive, high-bycatch fishing, 3) pelagic high-bycatch 

fishing, 4) artisanal fishing, 5) habitat destruction caused by fishing, 6) coastal development, 7) 

(land-based) nutrient pollution, 8) ocean pollution, 9) noise pollution, 10) invasive species, 11) 

sea surface temperature abnormality, and 12) ocean acidification. They were derived from 

previous global-scale CHI study on marine ecosystems (Halpern et al. 2015). The dataset was 

modeled estimates and the normalized and log(X+1)-transformed values of intensity, rescaled 

from 0 – 1 by the variable’s maximum value (in 2013, the latest version; Halpern et al. 2015). 

Such transformation and rescaling were commonly applied to mitigate the effects of outliers on 

impact estimations and to make different stressors comparable (Halpern and Fujita, 2013; 

Geldmann et al., 2014; Andersen et al., 2017). 

These pressures were described under the framework of five major threats (Vincent et al., 2011). 

Detailed description is provided as follows.  

    Fishing 

    Fishing, or more precisely overfishing, is a major threat that caused the population decline of 

seahorses globally. Seahorses are typically found as bycatch in various commercial fishing gears 

including bottom (shrimp) trawls, gill and entangling nets, seines, and some small-scale fishing 

methods such as scoop net and traps (see a review in Vincent et al., 2011 and Lawson et al., 2017).  



 

 
 

    Here I estimated Fishing based on four types of anthropogenic pressures: 1) demersal 

destructive fishing, 2) demersal, non-destructive, high-bycatch fishing, 3) pelagic high-bycatch 

fishing, 4) artisanal fishing. Demersal destructive fishing contains bomb/chemical (all types), 

bottom trawl (all types), and dredge (all types). Demersal, non-destructive, high-bycatch fishing 

contains gillnet fixed, gillnet encircling, seine, beach seine, boat seine, trammel (all types), and 

trap (all types). Pelagic high-bycatch fishing contains driftnets and midwater trawl. Artisanal 

fishing refers to an estimate of traditional, small-scale fisheries that cannot distinguish between 

methods. I aim to use these four categories to estimate the vulnerability of seahorses to Fishing, 

as they represent the major fishing practices that can catch seahorses and have available data from 

Halpern et al. (2015). 

    Habitat change 

Seahorses live in some of the world’s most threatened habitats near shore. These habitats 

include seagrass beds, mangroves, coral reefs, sponge gardens, and macroalgae beds (Foster and 

Vincent 2004; Chapter 3). Habitat degradation/loss can certainly affect seahorse populations 

given that these habitats provide holdfasts, shelters, and food for them (see a review in Vincent 

et al., 2011). Human activities that can cause seahorse habitat change includes destructive fishing 

and coastal development, such as coastal engineering (e.g. marina development), boat anchoring, 

moorings, etc.  

I use two datasets to represent habitat change. The first one is habitat destruction caused by 

fishing. The second one is coastal development, which is an integration of two sub-datasets – 

modelled coastal population density and intensity of oil rigs (Halpern et al. 2015). The habitat 

destruction caused by fishing was measured by the intensity data of demersal destructive fishing 

(Halpern et al. 2015). The population density dataset was assessed by calculating the population 

size within a moving circular window around an arbitrary focal coastal cell of radius 10 km on 

the basis of 2011 LandScan data (Halpern et al. 2015). The oil rigs dataset was estimated based 

on the stable lights at night in the seas from NOAA’s National Geophysical Data Center, with 

ephemeral sources of lights (e.g. fires, mobile structures) eliminated (Halpern et al., 2015). Non-

flare areas were also masked out from the oil rigs layers to correct the errors (Halpern et al., 2015).  



 

 
 

Note: The impact of demersal destructive fishing SHOULD therefore be assessed TWICE 

based on the direct mortality of seahorses and its collateral damage on seahorse habitats, 

respectively. 

    Pollution 

    At least some seahorse species can be affected by pollution including chemical pollutants, 

eutrophication, hypoxia, and noise pollution (see a review in Vincent et al., 2011). Although 

examples of these impacts are rare in the field, there are experimental observations in aquaculture 

environment. For instance, lower light levels reduced prey capture rates by H. erectus (James and 

Heck, 1994). Hypoxic conditions arising from excessive fertilizer use in Chesapeake Bay, U.S.A., 

led to reductions in feeding by northern and dusky pipefishes (S. fuscus and S. floridae, 

respectively) that were predicted to affect health, growth and reproduction (Ripley & Foran, 2007). 

There are also evidences of hypoxia causing massive death of marine life such as in the Southeast 

Asia (Todd et al., 2010). Although seahorses may have high tolerance to hypoxia, there is a limit 

of tolerance for every species. Noise pollution may also affect seahorses, resulting from 

physiological stress effects (Anderson, 2009). Current studies have demonstrated that noise can 

increase respiration rate and reduce growth rate but may not necessarily reduce reproductive or 

feeding rates (Anderson, 2009; Magalhães, 2016).  

    To reflect the impact of pollution, I gathered data for two major types of pressures: 1) nutrient 

pollution (i.e. fertilizers), and 2) noise pollution (estimated by shipping intensity, fishing intensity 

(all kinds), oil rigs, plus human population density) from Halpern et al. (2015). 

    Invasive species 

    Invasive species may threaten seahorses through changing their habitats or competition and 

predation. For instance, fewer or no syngnathids were found in beds of invasive C. taxifolia than 

those in adjacent seagrass beds in estuaries in New South Wales, Australia (York et al., 2006). So 

far, the evidence of impact of invasion on seahorses is only speculated based on the suggested 

relation between the population decline of big-belly seahorses (H. abdominalis) and the invasion 

of invertebrates in Tasmania, Australia (Ross et al., 2004; Martin-Smith and Vincent, 2005).  



 

 
 

    I extracted the spatial data of invasive species from Halpern et al. (2015), which is an estimate 

based on cargo traffic at a port rather than the real distribution of invasive species.  

    Climate change 

    Climate change is an increasingly recognized threat on seahorses, as well as many other marine 

species. More frequent events of extreme temperatures and ocean acidification driven by climate 

change may impose instant and acute threats on seahorses. A combination of flooding and high 

littoral water temperatures of up to 32 ◦C resulted in the death of at least 3 × 103 H. capensis in 

the marginal areas of the Swartvlei Estuary in South Africa (Russell, 1994). Although some 

species (e.g. H. erectus and H. whitei) grew more rapidly at warmer water temperatures, there are 

presumably limits on seahorses’ capacity to cope (Wong & Benzie, 2003; Lin et al.,2008).  

    The tolerance to high temperature may also vary among species and life-history stages (Aurelio 

et al., 2013; Chapter 2). For instance, exposing to a future-scenario temperature of 30 ◦C has 

induced apparently less expression of heat-shock proteins and higher mortality rates on H. erectus 

compared with current temperature scenario in lab experiments (Johnson, 2017), while similar 

impacts have not been found on H. guttulatus (Aurelio et al., 2013). Moreover, newborn juveniles 

of H. guttulatus have shown to be more sensitive than the adults to ocean warming via heat-

induced hypermetabolism (Aurelio et al., 2013).  

    On the other hand, ocean acidification may cause hypercapnia that could reduce activity level, 

feeding and ventilation rates of H. guttulatus (Faleiro et al. 2015).  

I used two measures to estimate the impact of climate change on seahorses: 1) sea surface 

temperature abnormality, and 2) ocean acidification. Both datasets were derived from Halpern et 

al. (2015). 

Calculating ecosystem-scale CHI for seahorse species 

I downloaded the cumulative-human-impact map (year 2013) for global marine ecosystems from 

the online database (Halpern et al., 2015): http://ohi-science.org/data/. I then extracted the CHI 

map for each species from the global data layer by using species distribution-range map as the 

mask (from Chapter 3). This extracted CHI layer was then multiplied with the presence-

probability layer, and the sum of all grid values of the output layer was calculated. I then divided 

http://ohi-science.org/data/


 

 
 

this sum value by the sum of all grid values of the presence-probability layer to derive the CHI_e 

for each species. This operation corresponded to the equation 6 in the spatial model, and made 

the CHI_e comparable among species. All the above steps were conducted in ArcMap with the 

‘Extraction’, ‘Raster Calculator’, and ‘Zonal Statistics’ tools. 

Sensitivity analyses 

Previously the additive algorithm was used for the value of CHI in an overlapping pixel where 

different marine ecosystems or multiple species co-existed (Halpern et al., 2008; 2015; Coll et al., 

2012; Maxwell et al., 2013). Although the final map was suggested to be very similar to a map 

using the mean algorithm for the ecosystem-level study (Halpern et al., 2008), the influence of 

choosing different algorithms was not examined for species-level CHI models. Previous studies 

have displayed that species-rich areas were often overlaid with highly impacted regions (Coll et 

al., 2012; Lindegren et al., 2018). However, given the CHIs used in these studies was the sum of 

the CHIs of all species coexisting in this pixel, it would be not surprising if this pixel derived 

higher CHI than the other. Without excluding this artefact of methods for calculating CHI, one 

cannot conclude that high species richness is sympatric with high CHI. To address this issue, the 

mean algorithm can be used instead of the sum for overlapping cells.  

On the other hand, if additive algorithm was applied, the spatial patterns of CHI may be also 

sensitive to the number of species involved. In my case, the total number of threatened species is 

19, and only 16 species with spatial CHI map was involved in the mapping. Beside these 16 

threatened species, I also have CHI maps for another 17 non-threatened species. One might argue 

that the if these 17 species were also involved to represent a case for all species, the threat patterns 

might be different. Therefore, it was also necessary to examine this effect.  

I conduct the following sensitivity analyses to test the influence of species groups (threatened-

only vs. all species) and pixel algorithms (sum vs. average). I examined spatial relationships 

between seahorse species richness and their cumulative human impacts separately for the two 

groups of species. Two types of cumulative human impacts were generated and used in the 

comparisons. One is the sum of cumulative human impacts for all species (or threatened only) in 

a given pixel (hereafter, CHI_sum). I then divided this CHI_sum by species richness in each pixel 

to derive an average CHI value (hereafter, CHI_avg). I calculated Pearson’s correlation 



 

 
 

coefficients among the CHI_sum, CHI_avg, and species richness to examine whether they were 

highly correlated.  
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Appendix H Expert knowledge survey for Chapter 4 

This Appendix contains the following supplementary information for the methods of the manuscript:1) the 

approach to identifying and contacting seahorse experts; 2) expert-opinion survey protocol; 3) certainty-

weighted average model to estimate exposure-degree and sensitivity variables; and 4) results of the expert-

opinion surveys. 

The approach to identifying and contacting seahorse experts 

Experts were identified by searching the Web of Science for literature on biology, distribution, ecology, 

and threats for each seahorse species over the past decade (2008 – 2017). We also identified additional 

experts who studied seahorses in relevant fiends from the attendees to SyngBio 2017 (May 14 – 19th, 

2017) – the third meeting of researchers and other professionals working to understand the biology and 

threats of Syngnathid fishes (seahorses, pipefishes, pipehorses, and seadragons). We also requested these 

experts to pass our survey on to other colleagues. Finally, we invited a total of 72 seahorse biologists from 

23 countries to participate through emails and skypes (27th Oct. 2017 to 30th Jan. 2018). For those contacted 

by email at the early stage of the survey, each biologist was asked to read through an evaluation protocol 

and then conduct the evaluation in specifically-designed spreadsheets accordingly. Each person was given 

1.5 months to complete the evaluation, and a reminder was sent around one week ahead of the deadline. 

Given this didn’t work well, we then ask those who didn’t reply to our emails to accept an interview 

invitation on skype or phone. On skype or phone (~ 30 to 45 mins), we explained our protocol directly, 

and asked them questions related to threats on seahorse to help them be better prepared for the evaluation 

later after the skype or phone. In this case, we asked participants to send back the evaluations in a week. 

Expert-opinion survey protocol 

This document (including four tables) describes an easy-following protocol for assessing seahorse 

exposure degree and sensitivity to different anthropogenic pressures. For this survey, we will first ask you 

about your experience on studying seahorses (Part I). We then ask you to read the description of the 

exposure degree & sensitivity measures, and anthropogenic stressors we selected (Part II).  Finally, we ask 

you to follow this protocol to do the evaluation for each pair of species and pressure (that you are familiar 

with) in the excel table (sent along with this protocol).  

Please note that we are asking for your best estimates about the human impacts on seahorses within the 

past five years. Therefore, it should be under present-day context, rather than the projected impacts in the 



 

 
 

future. The survey is confidential, and your responses will be stored by us securely. The list of participants 

will be shared only among the two researchers involved in the project. 

    Part I. Your experience about seahorses 

We ask you to fill a form regarding your experience about seahorse species as shown below. It can 

inform you and us of which species you are able to evaluate. Please use the excel table (“E&S evaluation 

table”, see Table H.1) we sent to you along this protocol! Please do not miss any species you have studied 

or are familiar with. 

Table H.1. Expert background information table 

Species you have studied or are 

familiar with 

(e.g. Hippocampus erectus) 

For how long? 

(e.g. 5 years) 

Research field you 

know/study 

(e.g. biology; can be 

more than one field) 

Are you familiar with 

human impacts on 

this species? (e.g. 

Yes/No) 

Hippocampus   
  

 

Hippocampus      

Hippocampus      

 

    Part II. Exposure degree and sensitivity measures (10 minutes) 

    We defined exposure degree as the degree of exposure of the species to a given pressure; and sensitivity 

as the degree of intolerance and incapability to recover. 

 Please read through Tables H.2, H.3 & H.4. Here we describe how to estimate exposure degree and 

sensitivity of seahorses to 12 human stressors.  

Table H.2 contains two exposure degree measures: A. Frequency of impact; B. Proportion of 

population under impact. For each measure there are five levels of category. Meanwhile, for each 

evaluation, we ask you to provide a certainty category: very confident, confident, likely, or not sure. 

Table H.3 contains only one sensitivity index – the severity of the impact. However, the sensitivity 

can vary between adults and juveniles as they use different habitats. We discriminate the differences if it 

exists, and use three levels of severity: low, medium, and high. Again, we ask you to provide a certainty 

category for each evaluation. 



 

 
 

Table H.4 describes the 12 human-derived stressors we used for the evaluation on seahorse exposure 

degree and sensitivity. 

We provided an example of evaluation in Table H.5. Please use it as a reference to fill in your 

information in the excel. 

Table H.2. Exposure degree measures for seahorses. 

Exposure degree measure Category Descriptive notes 

A. Frequency of 

impact: How often does 

the impact occur on the 

population? 

never  - 

Rare infrequent enough to affect long-term dynamics of a given population or location 

occasional frequent but irregular in nature 

annual or 

regular 

frequent and often seasonal or periodic in nature 

persistent more or less constant year-round, lasting through multiple years or longer 

*certainty 
  

B. Proportion of 

population under impact: 

To what spatial extent 

does the impact 

distribute across the 

species’ habitats? 

very small extent ≤ 1 km2 (or 10% of the habitats) 

small 1 km2 (or 10% of the habitats) < extent ≤ 10 km2 (or 30% of the habitats) 

medium 10 km2 (or 30% of the habitats) < extent ≤100 km2 (or 50% of the habitats) 

large 100 km2 (or 50% of the habitats) < extent ≤ 1,000 km2 (or 80% of the habitats) 

very large extent > 1,000 km2 (or 80% of the habitats) 

*certainty  
  

* certainty: very confident, confident, likely, or not sure. 

 

 

 

 

 

 

 



 

 
 

Table H.3. Sensitivity metrics for seahorses. 

Sensitivity metric Category Descriptive notes 

Does the impact 

differ among life-

history stages? 

A. Mainly affects 

adults 

Some stressors mainly affect adult fishes 

B. Mainly affects 

juveniles 

Some stressors mainly affect juvenile fishes 

C. Affects all 

individuals equally 

Some stress may equally impact each individual if contacted 

If yes, then to what extent of severity does the pressure usually impose on the adults and juveniles 

separately? 

For adults Low only cause low-level physiological stress, like increased 

ventilation, but no significant impact on growth 

Medium induce significant decrease on growth or reproduction, but not 

lead to death 

High direct death 

*certainty  
  

For juveniles Low only cause low-level physiological stress, like increased 

ventilation, but no significant impact on growth 

Medium induce significant decrease on growth, but not lead to death 

High direct death 

*certainty  
  

If no, to what extent of 

severity does the 

pressure impose on 

the population? 

Low only cause low-level physiological stress, like increased 

ventilation, but no significant impact on growth 

Medium induce significant decrease on growth or reproduction, but not 

lead to death 

High direct death 

*certainty  
  

* certainty: very confident, confident, likely, or not sure. 

 

 



 

 
 

Table H.4. A list of human activities used in the evaluation on seahorse exposure degree & sensitivity. 

Dimension Category Description (Estimated by) Justification 

Fishing Demersal destructive 

fishing 

bomb/chemical (all types), bottom trawl (all types), 

dredge (all types) 

typically cause direct mortality especially adults 

Demersal, non-

destructive, high-

bycatch fishing 

gillnet fixed, gillnet encircling, seine, beach seine, 

boat seine, trammel (all types), trap (all types) 

typically cause direct mortality 

Pelagic high-bycatch 

fishing 

driftnets, midwater trawl typically cause direct mortality of juveniles and 

larvae 

Artisanal fishing an estimate that cannot distinguish between methods 

that do and do not modify habitat.  

assumed to cause overfishing in inshore shallow 

waters 

Habitat change Habitat destruction 

caused by fishing 

bomb/chemical (all types), bottom trawl (all types), 

dredge (all types) 

typically cause direct bottom habitat change  

Coastal development port volume, population density Coastal development can cause damage on 

seahorse habitats  

Pollution Nutrient pollution modeled based on fertilizer data induce hypoxia or derive toxic pollutants 

Ocean pollution mainly oil spills estimated by commercial shipping 

intensity plus port volume 

induce hypoxia or derive toxic pollutants 

Noise pollution estimated by the intensity of shipping & human 

population along the coast 

induce metabolic change and stress 



 

 
 

Dimension Category Description (Estimated by) Justification 

Invasive species Invasive species the amount of cargo at ports change habitat, competition and predation 

Climate change SST abnormality frequency of SST passes the long-term mean SST 

(i.e. threshold) 

increase metabolic rate 

Ocean acidification differences on the aragonite saturation state of the 

ocean between pre-industrial (circa 1870) and 

modern times (2000 - 2009) 

reduce activity level, feeding and ventilation 

rates， affect food availability 

 

 

 

 

 

 

 

 

 

 



 

 
 

Table H.5. An example of evaluation table for exposure degree & sensitivity assessment on H. kuda (faked), with evaluations in red and certainties 

in blue. 

Species: 

H. kuda 

Demersal 

destructive 

fishing 

Demersal, non-

destructive, 

high-bycatch 

fishing 

Pelagic 

high-

bycatch 

fishing 

Artisanal 

fishing 

 Habitat 

degradation 

or loss 

caused by 

fishing 

Coastal 

non-

fishing 

activities 

Nutrient 

pollution 

Ocean 

pollution 

Noise 

pollution 

Invasive 

species 

SST 

abnormality 

Ocean 

acidification 

Frequency of 

the impact 

Annual or 

regular 

Occasional Annual or 

regular 

Occasional Annual or 

regular 

Annual or 

regular 

Annual or 

regular 

Annual or 

regular 

rare Annual or 

regular 

Annual or 

regular 

Never occur 

Certainty Confident Confident Confident Confident Confident Confident Likely Likely Confident Confident Confident Confident 

Proportion of 

population that 

suffer 

Very small Small Very small Small Very small Very large Large Large Very small Medium Small Very small 

Certainty Confident Confident Confident Confident Confident Likely Likely Likely Confident Likely Confident Confident 

* Does impact 

differ among 

life-history 

stages? 

A. Mainly 

affects adults 

A. Mainly 

affects adults 

B. Mainly 

affects 

juveniles 

C. Affects 

all 

individuals 

equally 

A. Mainly 

affects 

adults 

C. Affects 

all 

individuals 

equally 

C. Affects all 

individuals 

equally 

C. Affects 

all 

individuals 

equally 

C. Affects 

all 

individuals 

equally 

C. Affects all 

individuals 

equally 

B. Mainly 

affects 

juveniles 

C. Affects all 

individuals 

equally 

If A or B, 

severity for 

adult 

High High  Low  
 

High  
 

 
  

Low  
 

Certainty Very confident Confident Confident 
 

Confident  
 

 
  

Confident 
 

If A or B, 

severity for 

juveniles 

Low  Low  High  Low   
 

 
  

Medium 
 

Certainty Confident Confident Confident  Confident  
 

 
  

Confident 
 

If C, severity for 

the population 

  
  

Low  Medium Low Low Low Medium  Medium 

Certainty        Likely  Likely Likely  Confident Likely  Confident 



 

 
 

Certainty-weighted average model to estimate exposure-degree and sensitivity 

variables 

Model equations: 

𝐹𝑖,𝑗 = 
∑ 𝐹𝑖,𝑗,𝑛×𝐶 (𝐹𝑖,𝑗,𝑛)𝑛

∑ 𝐶 (𝐹𝑖,𝑗,𝑛)𝑛
                                                                                     (7) 

𝑃𝑆𝑖,𝑗 = 
∑ 𝑃𝑆𝑖,𝑗,𝑛×𝐶 (𝑃𝑆𝑖,𝑗,𝑛)𝑛

∑ 𝐶 (𝑃𝑆𝑖,𝑗,𝑛)𝑛
                                                                                (8) 

𝑆𝑖,𝑗 = 
∑ 𝑆𝑖,𝑗,𝑛×𝐶 (𝑆𝑖,𝑗,𝑛)𝑛

∑ 𝐶 (𝑆𝑖,𝑗,𝑛)𝑛
                                                                                      (9)                               

   𝑆𝑖,𝑗,𝑛 =

 {

𝐴𝑆𝑖,𝑗,𝑛×𝐶 (𝐴𝑆𝑖,𝑗,𝑛) + 𝐽𝑆𝑖,𝑗,𝑛×𝐶 (𝐽𝑆𝑖,𝑗,𝑛)

𝐶 (𝐴𝑆𝑖,𝑗,𝑛)+ 𝐶 (𝐽𝑆𝑖,𝑗,𝑛)
, 𝑖𝑓 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑑𝑖𝑓𝑓𝑒𝑟𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎𝑑𝑢𝑙𝑡𝑠 𝑎𝑛𝑑 𝑗𝑢𝑣𝑒𝑛𝑖𝑙𝑒𝑠

𝑆𝐼𝑖,𝑗,𝑛, 𝑖𝑓 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑑𝑜𝑒𝑠𝑛′𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑠 𝑎𝑚𝑜𝑛𝑔 𝑙𝑖𝑓𝑒 ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑠𝑡𝑎𝑔𝑒𝑠
 

    𝐶 (𝑆𝑖,𝑗,𝑛) = {
𝐶 (𝐴𝑆𝑖,𝑗,𝑛)+ 𝐶 (𝐽𝑆𝑖,𝑗,𝑛)

2
, 𝑖𝑓 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑑𝑖𝑓𝑓𝑒𝑟𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎𝑑𝑢𝑙𝑡𝑠 𝑎𝑛𝑑 𝑗𝑢𝑣𝑒𝑛𝑖𝑙𝑒𝑠

𝐶 (𝑆𝐼𝑖,𝑗,𝑛), 𝑖𝑓 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑑𝑜𝑒𝑠𝑛′𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑠 𝑎𝑚𝑜𝑛𝑔 𝑙𝑖𝑓𝑒 ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑠𝑡𝑎𝑔𝑒𝑠
  

where 𝐹𝑖,𝑗,𝑛, 𝑃𝑆𝑖,𝑗,𝑛, and 𝑆𝑖,𝑗,𝑛 were subsequently the specific score of the three measures 

from a given expert n; and 𝐶 (𝐹𝑖,𝑗,𝑛) , 𝐶 (𝑃𝑆𝑖,𝑗,𝑛),  and 𝐶 (𝑆𝑖,𝑗,𝑛)  were respectively the 

certainty index of these scores given by expert n. Given species sensitivity to a given 

stressor may vary between adults and juveniles (Aurelio et al., 2013), we asked experts to 

evaluate adults and juveniles respectively if the sensitivity differ. When sensitivity was 

inconsistent and assessed for adults and juveniles separately, 𝐴𝑆𝑖,𝑗,𝑛 (adults’ sensitivity to 

the impact) and  𝐽𝑆𝑖,𝑗,𝑛 (juveniles’ sensitivity to the impact) were used with their certainty 

index: 𝐶 (𝐴𝑆𝑖,𝑗,𝑛) and 𝐶 (𝐽𝑆𝑖,𝑗,𝑛). When sensitivity was consistent and evaluated for the 

species collectively, 𝑆𝐼𝑖,𝑗,𝑛  (the sensitivity to all individuals) and its certainty index 

𝐶 (𝑆𝐼𝑖,𝑗,𝑛) were used.  

To understand the impacts of which anthropogenic stressors were poorly known by our experts, we 

compared the confidence index of expert evaluation (average of 𝐶 (𝐹𝑖,𝑗,𝑛) , 𝐶 (𝑃𝑆𝑖,𝑗,𝑛),  and 

𝐶 (𝑆𝑖,𝑗,𝑛)) on each stressor across the species (n = 42). 

 



 

 
 

Results of the expert knowledge surveys 

We obtained E&S evaluation results for a total of 24 species from 22 participants, who 

have conducted related seahorse studies on one or more species in 15 countries for 10±6 

years per species (Fig. H.1). Only two participants have also conducted the IUCN Red List 

assessment for seahorses. The mean certainty indexes of E&S evaluations differed 

significantly among different stressors (Kruskal-Wallis test P < 0.001), with demersal-

destructive fishing derived the highest mean value (3.0 ± 0.5) and climate change stressors 

(ocean acidifications and SST abnormality) obtained the lowest mean values (1.6 ± 0.5, 1.9 

± 0.5, respectively; Fig. H.2; see details about pairwise comparisons between stressors in 

Table H.6). The number of experts contributed evaluations for each species ranged from 

1 to 5, with averaged confidence levels from 2 to 4 (‘likely’ to ‘very confident’). 

Table H.6. Statistics significances (P-values) of Post-hoc pairwise Wilcox tests between 12 

anthropogenic stressors: AF, artisanal fishing; CD, coastal development; DDF, demersal destructive 

fishing; DNHF, demersal non-destructive high-bycatch fishing; HCF, habitat change caused by 

fishing; IS, invasive species; NUP, nutrient pollution; OA, ocean acidification; OP, ocean pollution; 

PHF, pelagic high-bycatch fishing.  

 AF CD DDF DNHF HCF IS NoP NuP OA OP PHF 

CD 1.000 - - - - - - - - - - 

DDF 0.454 * - - - - - - - - - 

DNHF 1.000 1.000 0.223 - - - - - - - - 

HCF 0.903 0.057 1.000 0.177 - - - - - - - 

IS * 0.231 **** 1.000 **** - - - - - - 

NoP * *** **** 0.310 **** 1.000 - - - - - 

NuP 0.074 0.618 **** 1.000 **** 1.000 0.310 - - - - 

OA **** **** **** **** **** **** *** **** - - - 

OP **** **** **** *** **** 0.732 1.000 **** 0.085 - - 

PHF 0.231 0.395 **** *** **** 1.000 1.000 1.000 *** 0.134 - 

SSTA **** **** **** * **** * 0.811 *** * 1.000 0.535 

* P < 0.05, **P < 0.01, ***P < 0.005, **** P < 0.001.



 

 
 

 

 

Figure H.1. Regions where participants studied seahorses with the number of participants for each region presented in parentheses. 



 

 
 

 

 

Figure H.2. Confidence index of experts knowledge on the 12 anthropogenic stressors: AF, artisanal 

fishing; CD, coastal development; CHI_n, cumulative human impact derived from the non-spatial 

model; CHI_s, cumulative human impact derived from the spatial model; DDF, demersal destructive 

fishing; DNHF, demersal non-destructive high-bycatch fishing; HCF, habitat change caused by 

fishing; IS, invasive species; NoP, noise pollution; NuP, nutrient pollution; OA, ocean acidification; 

OP, ocean pollution; PHF, pelagic high-bycatch fishing; SSTA, sea-surface-temperature abnormality. 

The stressors were ranged by the mean value across all species from lowest (left) to the highest 

(right). 
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Appendix I Supplementary results for Chapter 4 

This appendix contains supplementary information of results of the manuscript: 1) Fig. I.1. 

Scatterplot and linear model between the two cumulative human impact indexes derived 

from different models (spatial vs. non-spatial); 2) Fig. I.2. Global intensity maps of four 

major anthropogenic stressors; 3) Fig. I.3. Proportion of individual impact of eight major 

stressors to cumulative human impact (based on the non-spatial CHI model) on 19 

threatened seahorse species; 4) Fig. I.4. Spatial distributions of species richness and two 

versions of cumulative human impact (sum across species vs. average across species) for 

all seahorse species and threatened species only; 5) Fig. I.5. Cumulative human impacts on 

a) all seahorse species and b) marine ecosystems (across seahorse habitats); and 6) Fig. I.6. 

Difference on cumulative human impacts between the ecosystems and seahorse species. 

 



 

 
 

 

Figure I.1. Scatterplot and linear model between the two cumulative human impact indexes derived 

from different models (spatial vs. non-spatial). 



 

 
 

 

Fig. I.2. Global intensity maps of four major anthropogenic stressors: a) demersal destructive fishing, b) demersal, non-destructive, high-bycatch 

fishing, c) nutrient pollution, and d) ocean pollution. 



 

 
 

 

 

Fig. I.3. Proportion of individual impact of eight major stressors to cumulative human impact (based 

on the non-spatial CHI model) on 19 threatened seahorse species. Cos_dev, coastal development; 

DD_fish, demersal destructive fishing; DNH_fish, demersal, non-destructive, high-bycatch fishing; 

Habitat_fish, habitat change caused by fishing; Noi_poll, noise pollution; Nut_poll, nutrient 

pollution; Ocn_poll, ocean pollution; SST_abn, sea-surface-temperature abnormality. Other four 

stressors were not included as their impacts were consistently low (impact index < 0.3) and not truly 

important to species threatened status. These four stressors are pelagic high-bycatch fishing, 

artisanal fishing, invasive species, and ocean acidification.



 

 
 

  

Fig. I.4. Cumulative human impacts on a) all seahorse species and b) marine ecosystems (across 

seahorse habitats). The impact values were classified into five levels based on the Jenks Natural 

Breaks algorithm in ArcMap. Pearson’s correlation coefficient between the two maps was 0.50. 

 

 

 



 

 
 

 

Fig. I.5. Difference on cumulative human impacts between the ecosystems and seahorse species. The 

value was derived by deducting the CHI values on marine ecosystems by the CHI values on all 

seahorse species across seahorse habitats (1 km by 1 km pixels). Both CHIs (ecosystems vs. seahorse 

species) were rescaled from 0 – 1 by the maximum value before the comparison.  

 

 

 

 



 

 
 

Appendix J: Supplementary information for Chapter 5 

This appendix contains supplementary information for Chapter 5: 1) Prepare four types of 

opportunity cost data, 2) Set appropriate value for species penalty factor and boundary 

length modifier, 3) Threshold for determining priorities based on the solution frequency, 

4) Table J.1, and 5) Table J.2. 

Prepare four types of opportunity cost data 

My five types of cost data were derived from Halpern et al. (2015) and my Chapter 4. 

Among them, cumulative-human-impact (CHI) cost was derived from the CHI model 

developed by Chapter 4. This model measured the human impact of each species-stressor 

pair in seahorse habitats (pixel size: 1 x 1 km2) and summed them across 12 anthropogenic 

stressors including fishing, habitat destruction, pollution, invasion, and climate change. For 

habitat pixels shared by multiple species, I used the average of the CHI value of these 

species. For commercial fisheries cost, I used two types of fishing categories to estimate 

its intensity: demersal destructive fishing (e.g., bottom trawling and dredging), and 

demersal non-destructive fishing (e.g., seines and traps). These two fishing activities were 

major threats to seahorses suggested by Chapter 4. I obtained raw intensity data of each 

category from Halpern et al. (2015) and extracted the maps into my planning units and in 

ArcMap. These data were model estimates of annual catch (by weight) in each pixel (1 km 

by 1 km) based on FAO’s statistics and Sea Around Us Project’s estimates (see detailed 

description in the supplement information of Halpern et al., 2008 & 2015). I then added 

the intensity values of the two layers in each pixel in ArcMap. I then log(1+X)-transformed 

the value and rescaled the value from 0 – 1 by dividing each value by the maximum value 

across the planning units. For artisanal fishing, ocean pollution, and nutrient pollution, I 

derived the intensity estimates from Halpern et al. (2015). Again, these were model 

estimates based on relevant activities rather than observations. For instance, ocean-based 

pollution is a combination of the shipping and port volume. I extracted these intensity data 

into my planning units and then rescaled them from 0 – 1 respectively. 

 

 



 

 
 

Set appropriate values for species penalty factor and boundary length modifier 

Species penalty factor (SPF) and boundary length modifier (BLM) are crucial to getting 

good results from Marxan. Too high SPF would restrict Marxan’s performance, while too 

low SPF would allow Marxan to sacrifice the conservation goal which is unacceptable. On 

the other hand, BLM determines how much emphasis to be placed on the connectivity of 

resulting planning units. If a BLM was too high, then the Marxan would more likely to 

derive a priority system that were more compact but also more expensive. If a BLM was 

too low, the resulting priorities would be very scattered in space, which would also not 

acceptable. To find good values for the two factors, I conducted the following process 

based on previous guides. 

I first controlled my BLM as a generally reasonable value (= 1), which makes the product 

of BLM and my boundary length (here, single value = 1) equal to the largest opportunity 

cost (= 1). I then used a set of trial values of SPF (here, start from 10 and decrease by 2 

each time) to run the Marxan for 100 times per trial. I examined the penalty value for each 

trial until it became positive – conservation goal was not fully met. I then increased the 

SPF values slightly to find a good value that could meet conservation goal.  I then identified 

this SPF value, and did a set of trails to find appropriate BLM value. Again, I run Marxan 

for 100 times per trial. I start BLM from 0 and then increase the value by some increments 

(here I used 0.1, 0.5, 1, 10, 100) for each run. I collected the average cost and total boundary 

length from the output and plotted them to identify a tipping point where the cost increase 

dramatically.  

Finally, I chose a BLM = 0.5 and a SPF = 5 for the prioritization scenarios of Hippocampus 

barbouri, and a BLM = 0.3 and a SPF = 5 for H. abdominalis and H. minotaur, a BLM = 

0.7 and a SPF = 3 for H. histrix. 

Threshold for determining priorities based on the solution frequency 

I determined the priority units based on the solution frequency by using a threshold after 

multiple trials, ensuring the conservation targets were met with the minimum number of 

planning units. The first trial used the threshold that derives a network with equal number 

of the selected units to the best-solution map. For instance, if the best-solution map selected 

400 planning units, the initial threshold was the value at the top 400 in the solution-



 

 
 

frequency list. By doing so, I could derive a roughly ideal amount of planning units 

suggested by the best solution. I then check the derive solution against the conservation 

target to see if the target was met. If the target was not met, I then gradually decrease the 

threshold (i.e., smaller frequency) and repeat the checking until I found a minimum amount 

of planning units that met the target. In contrast, if the initial threshold generated a solution 

overpass the target, I then gradually increase the threshold (i.e., larger frequency) and 

repeat the same process.  

Table J.2. Summary of sources of China’s seahorse species records. 

Chinese name Scientific name *Reference code 

三斑海马 Hippocampus trimaculatus 1,2,7 

日本海马 Hippocampus mohnikei 1,3,7,8 

克氏海马 Hippocampus kelloggi 1,2,7,8 

库达海马 Hippocampus kuda 1,2,7 

棘海马 Hippocampus spinosissimus 1,2 

刺海马 Hippocampus histrix 2,7 

科氏海馬 Hippocampus colemani 2 

彭氏海马 Hippocampus pontohi 2 

花海马 Hippocampus sindonis 2 

巴氏豆丁海马 Hippocampus bargibanti 2 

冠海马 Hippocampus coronatus 3 

北部湾海马 Hippocampus casscsio 4 

鲍氏海马 Hippocampus barbouri 5，6 

虎尾海马 Hippocampus comes 6 

*Reference Code: 1, Chapter 2 of this thesis; 2, The Fish Database of Taiwan; 3, Zhang et al. 1994; 4, 

Zhang et al. 2016; 5, my own observations 2016, unpublished; 6, Dr. Lin Qiang 2017, South China Sea 

Institute of Oceanography, unpublished; 7, Zhu et al. 1962; 8, Zhu et al. 1963. 

 

 

 

 

 



 

 
 

Table J.2. Summary of sources of China’s marine ecological redline maps. 

Region source Website 

Tianjin 
China's Economics 

http://district.ce.cn/newarea/roll/201210/1

7/t20121017_23761214.shtml  

Fujian Urban planning information http://chinaup.info/2011/07/1433.html  

Zhejiang Zhejiang News https://zj.zjol.com.cn/news/671033.html  

Hainan South China Inspection Bureau, 

Ministry of Environmental 

Protection 

http://hndc.mep.gov.cn  

Shandong Qingdao Geo-Marine Engineering 

Survey 

http://www.qgmes.com.cn/Project.asp?Bi

gClassId=5&SmallClassId=21 

Guangdong Chinese colleague (Anonymity) - 

Guangxi Chinese colleague 

(Anonymity) 
- 

Hebei 
Sina News 

http://news.sina.com.cn/o/2018-03-

09/doc-ifyscerk9155497.shtml  

Jiangsu 
China News 

http://www.chinanews.com/gn/2017/04-

12/8197565.shtml  

Liaoning 
Wangyi Blog 

http://blog.163.com/special/0012sp/disapp

earcoastline.html  
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Appendix K: Supplementary results for Chapter 5 

This appendix contains supplementary results from Chapter 5: Table K.1 and Figures K.1 

– K.12. 

Table K.1. Consistency test (Cohen’s kappa statistic) between two types of priority solutions (solution 

frequency vs. best solution) within each of the five scenarios: AF-cost, conservation cost measured 

with artisanal fisheries and total boundary length; CF-cost, conservation cost measured with 

commercial fisheries (here, demersal non-selective fishing) and total boundary length; CHI-cost, 

conservation cost measured with cumulative human impact and total boundary length; NP-cost, 

conservation cost measured with nutrient pollution and total boundary length; SP-cost, conservation 

cost measured with shipping intensity and total boundary length. The kappa value ranges from -1 to 

1, with higher value indicating higher consistency. Here, all P-values < 0.001, suggesting the 

consistency between the two methods was not random.  

 
Kappa statistics (solution frequency vs. best selection) 

 
Australia Southeast Asia China 

AF-cost 0.862 0.805 0.680 

CF-cost 0.861 0.622 0.796 

CHI-cost 0.730 0.720 0.645 

NP-cost 0.758 0.793 0.806 

SP-cost 0.927 0.840 0.806 

 



 

 
 

 

Figure K.1. Priorities from the best solution derived from the Marxan software for the Hippocampus 

histrix in China. LPAs, lower-protection areas (spatial disagreements between the biological 

conservation and diverse human uses); GPAs, greater-protection areas (spatial agreements between 

the biological conservation and diverse human uses). The detailed information about multiple-use 

areas were not shown because there were many classifications and difficult to illustrate by colors. 

Specific information can be found from the figshare database under the project folder “Global 

Priorities for Seahorse Species”. 



 

 
 

 

Figure K.2. Priorities from the selection frequency derived from the Marxan software for the 

Hippocampus histrix in China. LPAs, lower-protection areas (spatial disagreements between the 

biological conservation and diverse human uses); GPAs, greater-protection areas (spatial agreements 

between the biological conservation and diverse human uses). The detailed information about 

multiple-use areas were not shown because there were many classifications and difficult to illustrate 

by colors. Specific information can be found from the figshare database under the project folder 

“Global Priorities for Seahorse Species”. 

 

 

 



 

 
 

 

Figure K.3. Priorities from the best solution derived from the Marxan software for the Southeast Asia 

seahorse species (Hippocampus barbouri). LPAs, lower-protection areas (spatial disagreements 

between the biological conservation and diverse human uses); GPAs, greater-protection areas (spatial 

agreements between the biological conservation and diverse human uses). The detailed information 

about multiple-use areas were not shown because of there were many classifications and difficult to 

illustrate by colors. Specific information can be found from the figshare database under the project 

folder “Global Priorities for Seahorse Species”. 



 

 
 

 

Figure K.4. Priorities from the selection frequency derived from the Marxan software for the 

Southeast Asia seahorse species (Hippocampus barbouri). LPAs, lower-protection areas (spatial 

disagreements between the biological conservation and diverse human uses); GPAs, greater-

protection areas (spatial agreements between the biological conservation and diverse human uses). 

The detailed information about multiple-use areas were not shown because there were many 

classifications and difficult to illustrate by colors. Specific information can be found from the figshare 

database under the project folder “Global Priorities for Seahorse Species”.



 

 
 

 

Figure K.5. Priorities for lower-protection areas (LPAs) from the best solution derived from the Marxan 

software for the two Australian seahorse species (Hippocampus abdominalis & H. minotaur). Lower-

protection areas refer to spatial disagreements between the biological conservation and diverse human 

uses. 



 

 
 

 

Figure K.6. Priorities for lower-protection areas (LPAs) from the selection frequency derived from the 

Marxan software for the two Australian seahorse species (Hippocampus abdominalis & H. minotaur). 

Lower-protection areas refer to spatial disagreements between the biological conservation and diverse 

human uses.



 

 
 

 

 

Figure K.7. Uncovered habitats (red) for the seahorse species endemic to Hawaii (Hippocampus 

fisheri), demonstrated with covered habitats of this and other species (H. histrix and H. kuda) by strict 

management areas (dark blue). 

 



 

 
 

Figure K.8. Uncovered habitats (red) for the seahorse species endemic to South Africa (Hippocampus 

capensis), demonstrated with covered habitats by strict management areas (dark blue). 

 

Figure K.9. Uncovered habitats (red) for the seahorse species endemic to West Australia 

(Hippocampus subelongatus), demonstrated with covered habitats by strict management areas (dark 

blue). 



 

 
 

 

Figure K.10. Uncovered habitats (red) for the seahorse species endemic to Australia (Hippocampus 

planifrons), demonstrated with covered habitats by strict management areas (dark blue) of this and 

other species (e.g. H. angustus). 

 



 

 
 

Figure K.11. Uncovered habitats (red) for the Hippocampus angustus and H. denise, demonstrated 

with covered habitats (by strict management areas in dark blue and by multiple-use areas in light 

green). 

 

Figure K.12. Uncovered habitats (red) for the seahorse species endemic to Southeast Asia 

(Hippocampus denise), demonstrated with covered habitats (by strict management areas in dark blue 

and by multiple-use areas in light green). 



 

 
 

 

Figure K.13. Uncovered habitats (red) for the seahorse species mainly found in Japan (Hippocampus 

sindonis), demonstrated with covered habitats (by strict management areas in dark blue and by 

multiple-use areas in light green) of this species and other species (e.g. H. coronatus). 

 

 

 

 

 

 

 

 


