
Hierarchical Summaries of Change in
Multidimensional Data

by

Alexandra Kim

B.Sc., Nazarbayev University, 2016

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate and Postdoctoral Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

January 2019

c© Alexandra Kim, 2019

The following individuals certify that they have read, and recommend to
the Faculty of Graduate and Postdoctoral Studies for acceptance, a thesis
entitled:

Hierarchical Summaries of Change in Multidimensional Data

submitted by Alexandra Kim in partial fulfillment of the requirements for
the degree of Master of Science in Computer Science.

Examining Committee:

Laks V.S. Lakshmanan, Computer Science
Supervisor

Ed Knorr, Computer Science
Supervisory Committee Member

ii

Abstract

Multidimensional data is prevalent in data warehousing and OLAP. Changes
to the data in a data warehouse are of particular interest to analysts as
well as knowledge workers since they may be instrumental in understanding
trends in a business or enterprise. At the same time, an explicit enumeration
of all changes to the fact tuples in a data warehouse is too verbose to be
useful; instead, a summary of the changes is more desirable since it allows
the user to quickly understand the trends and patterns. In this thesis, we
study the problem of summarizing changes in hierarchical multidimensional
data with non-overlapping but containable hyperrectangles. An advantage
of such summaries is that they naturally follow a tree structure and therefore
are arguably easy to interpret. Hierarchies are naturally present in data
warehouses and our constructed summaries are designed to leverage the
hierarchical structure along each dimension to provide concise summaries of
the changes.

We study the problem of generating lossless as well as lossy summaries of
changes. While lossless summaries allow the exact changes to be recovered,
lossy summaries trade accuracy of reconstruction for conciseness. In a lossy
summary, the maximum amount of lossiness per tuple can be regulated with
a single parameter α. We provide a detailed analysis of the algorithm, then
we empirically evaluate its performance, compare it to existing alternative
methods under various settings and demonstrate with a detailed set of ex-
periments on real and synthetic data that our algorithm outperforms the
baselines in terms of conciseness of summaries or accuracy of reconstruction
w.r.t. the size, dimensionality and level of correlation in data.

iii

Lay Summary

It is common for data warehouses to store multidimensional data that is nat-
urally hierarchical (e.g., geographic locations, store categories, etc.). Data
analysts exploring the data oftentimes try to find patterns of change between
two time snapshots, such as sales increase/decrease in the current month
compared to the previous month. This dissertation presents a method of
building tree-structured summaries of change data to facilitate exploration
and pattern discovery by the analysts and knowledge workers.

iv

Preface

This thesis is submitted in partial fulfillment of the requirements for a Master
of Science Degree in Computer Science at the University of British Columbia.
All work presented in this dissertation is original work of the author, per-
formed under the supervision of Prof. Laks V.S. Lakshmanan. The author
of the dissertation was the main author of this work and was also responsible
for the implementation and analysis of this work. Dr. Divesh Srivastava,
AT&T Labs-Research, and Prof. Lakshmanan were involved in the project
idea development, discussions and contributed to manuscript edits. Prof.
Ed Knorr provided feedback on the final write-up of the dissertation.

v

Table of Contents

Abstract . iii

Lay Summary . iv

Preface . v

Table of Contents . vi

List of Figures . viii

Acknowledgements . ix

1 Introduction . 1
1.1 Example . 1
1.2 Alternative Summary Methods 4
1.3 Contributions . 5

2 Related Work . 6
2.1 Lossless Reconstruction Summaries 6
2.2 Lossy Reconstruction Summaries 6
2.3 Identifying Extreme Aggregates 8
2.4 Summarizing All Aggregates 8
2.5 Other . 9

3 Problem Definition . 10
3.1 Preliminaries . 10
3.2 Problem Statement . 13

3.2.1 Lossless Case . 13
3.2.2 Lossy Case . 13

4 Algorithm . 15
4.1 Node Annotation . 15
4.2 Summary Construction . 17

vi

Table of Contents

4.3 Example . 18
4.4 Lossy Case . 19

5 Theoretical Analysis . 20
5.1 Run-time Analysis . 20
5.2 Optimality Analysis . 20

6 Empirical Evaluation . 23
6.1 Baselines . 23
6.2 Measuring Reconstruction Error 23
6.3 Setup . 24
6.4 Datasets . 24

6.4.1 US Census Educational Attainment Data 24
6.4.2 Synthetic Data . 25

6.5 Results . 25
6.5.1 Lossless Case . 25
6.5.2 Lossy Case . 28
6.5.3 Scalability . 31

7 Discussion . 38
7.1 TS Summary Options . 38
7.2 Missing Values . 38
7.3 Multiple Measures Propagation 39

8 Conclusions . 40

Bibliography . 41

vii

List of Figures

1.1 Example of a lattice containing change data 2
1.2 Lossless summary of the equipment store sales change 3
1.3 Lossy summary of the equipment store sales 3
1.4 Lossless summary of the equipment store sales by Karloff et al. 4
1.5 Lossy summary of the equipment store sales by Ruhl et al. . 5

3.1 Lattice including dimension nodes from the equipment store
example . 12

5.1 Tree node structure . 21

6.1 US Census dataset. Reconstruction error in lossless case . . . 26
6.2 US Census dataset. Summary size and running time in a

lossless case . 27
6.3 Synthetic dataset. Summary size and running time in a loss-

less case. 28
6.4 US Census dataset. Comparing TS and K in lossy summaries. 29
6.5 US Census dataset. Summary size, reconstruction error and

running time in a lossy case with different values of α. 30
6.6 US Census dataset. Summary size, reconstruction error and

running time in a lossy case, α = 0.1. 32
6.7 Synthetic dataset. Summary size, reconstruction error and

running time in a lossy case with different values of α. 33
6.8 Synthetic dataset. Summary size, reconstruction error and

running time in a lossy case, α = 0.1. 34
6.9 Normalized error histogram of TS and CA 35
6.10 Normalized summary size histogram for RND-T and STCK-T 35
6.11 Synthetic dataset. Summary size, reconstruction error and

running time in a correlated lossy case, α = 0.05. 36
6.12 Large synthetic dataset, 5M nodes, 1M leaves. Summary size,

reconstruction error and running time in a lossy case with
different values of α. 37

viii

Acknowledgements

This work would not have been possible without the patient and careful
guidance of my supervisor Prof. Laks V.S. Lakshmanan and our collabo-
rator, Dr. Divesh Srivastava, both of whom have helped me greatly during
the course of this work, both educationally and morally, providing feedback
and support whenever I needed it.

I would like to thank Prof. Ed Knorr for providing feedback on the
writing of this thesis; his attentiveness to detail helped greatly in making
this dissertation more readable and consistent.

I am also grateful to the Data Management and Mining Lab and all
of its members for insightful discussions, educational reading groups and
memorable moments that we have had during my journey at UBC. To all
graduate students at Tuesday Tea and UDLS, thank you for the meaningful
and fun conversations that helped keep me sane and optimistic during the
course of my program.

Last but not least, I would like to thank my boyfriend Amon and my
family for all their love and support.

ix

Chapter 1

Introduction

Common tasks of a data analyst include finding trends and patterns in data
[11]. This includes analyzing the changes in data between two time points,
such as comparing sales quantities of every product between two months
at a network of stores. The simplest approach is to enumerate all changes
(i.e., for every product and every store location), however such enumeration
quickly becomes too verbose and difficult to work with. A more concise
summary of change is desired in such scenarios.

A natural idea is to summarize the changes in the data. Given that a
data warehouse is equipped with hierarchies over each of its dimensions, we
could leverage these hierarchies for the purpose of constructing the sum-
maries. Previous works have attempted to summarize change with overlap-
ping or disjoint hyperrectangles and have faced hardness issues. We present
summaries consisting of non-overlapping but containable hyperrectangles
that concisely reflect change between the snapshots. This allows to con-
struct optimal-size summaries in polynomial time that are also conceivably
easier to interpret due to their natural tree-like structure.

Consider the following scenario.

1.1 Example

A data analyst at an outdoor equipment store is interested in seeing what
product types have undergone the most percentage increase/decrease in de-
mand in the past month. The analyst takes the ratio between new and old
sales across products and locations (see Figure 1.1).

We may see that the sales have undergone some moderate fluctuations.
Notably, across all locations, the store has sold more insect repellent prod-
ucts compared to the previous month. The sales of camping equipment have
slightly gone up at the Manhattan store and moderately decreased for the
Queens store. Additionally, there is a slight dip in sales of sleeping bags
at the Newark store and a similar decrease in sales of first aid kits at the
Manhattan branch. While manual inspection works well for small amounts
of data, it is not practical to draw such conclusions from mere inspection in

1

1.1. Example

the case a of large multidimensional data warehouse. In fact, even a detailed
listing of only {location, product} combinations where there was a consider-
able (upward or downward) change in demand can consist of thousands (if
not many more) of tuples and can be hard to assimilate for an analyst or a
knowledge worker.

0.9 1.0 1.0 1.0 1.3

0.8 0.8 1.0 1.0 1.3

1.1 1.1 0.9 1.0 1.2

All Products

Camping
Equipment

Outdoor
Protection

Sleeping Bags Tents First Aid Sunscreen
Insect

Repellents

All
Stores

New York City

Newark

Manhattan

Queens

Figure 1.1: Example. Change data as a ratio between new and old sales at
an outdoor equipment store.

If we enumerate all tuples where any change has occurred (i.e., the change
ratio is not 1) the size of such a summary is 9. However, by using hierar-
chical structure and allowing containment of the regions we can achieve
significantly smaller summaries. Such a summary is presented in Figure 1.2.
The summary contains 7 rectangles and is thus of size 7. This summary is
lossless, meaning that it is possible to reconstruct all original tuples exactly
by looking up the smallest rectangle containing the tuple.

So, we build summaries that exhibit the following semantics: for every
data tuple, its value is equal to the weight of the smallest ancestor rectangle
in which it is contained. This way, we leverage the hierarchical nature
of the data to maintain a smaller summary. Rectangles in this case are
hierarchy-constrained meaning that every rectangle corresponds to a roll-up
of data cube cells that the rectangle covers. Calculation of change values is
orthogonal to this approach and is mostly application based: an analyst
could decide to take a ratio or a difference between values in two time
snapshots, calculate the percentage change, or express changes in any other
sensible way. For the rest of this paper, we use ratios as our base change data.
In our discussions, we also assume that rectangles are hierarchy-constrained,
whenever hierarchies are present.

2

1.1. Example

Additionally, if we allow some minor loss of information we could get a
further decrease in summary size. If the data analyst is willing to tolerate 5%
reconstruction error per tuple, meaning that the reconstructed value is no
more than 5% off from the original value, we reduce the summary size from
7 to 5, as shown in Figure 1.3. The amount of error can be easily regulated
by tweaking the parameter α. For instance, if we allow a 10% error, the
summary size further decreases to 4. Such lossy summaries help to achieve
a significantly more compact size and may be favored by the analysts.

1.0

0.8

1.3

1.20.91.1

0.9 1.0 1.0 1.0 1.3

0.8 0.8 1.0 1.0 1.3

1.1 1.1 0.9 1.0 1.2

All Products

Camping
Equipment

Outdoor
Protection

Sleeping Bags Tents First Aid Sunscreen
Insect

Repellents

All
Stores

New York City

Newark

Manhattan

Queens

0.9

Figure 1.2: Summary of the outdoor equipment store sales data changes.
The weight of each rectangle is shown in its bottom right corner.

1.05

0.8

1.25

0.9

All Products

Camping
Equipment

Outdoor
Protection

Sleeping Bags Tents First Aid Sunscreen
Insect

Repellents

All
Stores

New York City

Newark

Manhattan

Queens

0.9

0.9 1.0 1.0 1.0 1.3

0.8 0.8 1.0 1.0 1.3

1.1 1.1 0.9 1.0 1.2

Figure 1.3: Summary of the outdoor equipment store sales data with max
loss of 5%.

3

1.2. Alternative Summary Methods

1.2 Alternative Summary Methods

While there has been substantial work on compressing and summarizing
multidimensional data cubes, there are two key papers which share our goal
and we briefly describe them next and compare our approach with theirs in
later sections.

Karloff et al. study a similar summarization problem in [8]. Their sum-
maries consist of hierarchy-constrained overlapping rectangles, and each tu-
ple’s original value is reconstructed by summing up weights of all rectangles
in which the tuple is contained. Although such formulation is versatile due
to allowed overlaps it leads to intractability: they show that finding optimal
summaries is NP-hard. However, they do propose an efficient randomized
2-approximation algorithm for this problem. Notably, they do not consider
d > 2 dimensions and it is unclear if their approach can be extended to
provide a constant factor approximation for d dimensions. In addition, they
only consider lossless summaries and it is an open problem whether it is
possible to use their framework to trade accuracy for summary size in a
principled manner, while providing a guaranteed approximation. The sum-
mary generated by Karloff et al.’s algorithm is shown in Figure 1.4. The
algorithm was run 100 times, and the summary size varied from 8 to 16
across runs.

0.8
0.2

0.3

All Products

Camping
Equipment

Outdoor
Protection

Sleeping Bags Tents First Aid Sunscreen
Insect

Repellents

All
Stores

New York City

Newark

Manhattan

Queens

0.1

0.4 -0.10.1

0.10.9
1.0

1.0 1.0
1.3

0.8 0.8 1.0 1.0 1.3

1.1 1.1 0.9 1.0 1.2

Figure 1.4: Lossless summary of the equipment store sales by Karloff et al.
[8]. The size of the summary is 8.

Ruhl et al. [13] study the problem of summarizing changes in multidi-
mensional data from a different perspective. Given a desired budget on the
size of the summary, their algorithm finds a summary whose size is under

4

1.3. Contributions

budget. Their summaries are inherently lossy and are not designed for re-
construction of original tuple values. The summaries correspond to sets of
non-overlapping hierarchy-constrained rectangles which are responsible for
the maximum change. The summary generated using Ruhl et al.’s approach
is shown in Figure 1.5.

1.1

0.8

1.20.9

All Products

Camping
Equipment

Outdoor
Protection

Sleeping Bags Tents First Aid Sunscreen
Insect

Repellents

All
Stores

New York City

Newark

Manhattan

Queens

0.95

1.09

1.09

0.9 1.0 1.0 1.0 1.3

0.8 0.8 1.0 1.0 1.3

1.1 1.1 0.9 1.0 1.2

Figure 1.5: Lossy summary of the equipment store sales by Ruhl et al.
[13]. The size of the summary is 7. The rectangle weights (in bottom right
corners) are the reconstructed average values. More on reconstruction in
Section 6.

1.3 Contributions

The contributions of this paper are as follows:

• We formulate the problem of obtaining summaries of multidimensional
data having dimension hierarchies.

• While previous work [8, 13] has faced hardness results, our formulation
allows us to develop an efficient polynomial-time optimal algorithm.

• Our algorithm naturally transitions from lossless to lossy summaries
with the ability to bound the worst case reconstruction error.

• We show empirically that summaries produced by our approach are
more concise than those by [8] that provide a randomized 2-approximation
guarantee, and have a smaller reconstruction error than [13] for sum-
maries of an equivalent size.

5

Chapter 2

Related Work

2.1 Lossless Reconstruction Summaries

Agarwal et al. study the problem of summarizing single-dimensional data
with tree structures [1]. Their goal is to assign weights to hierarchy-constrained
intervals, so that for every tuple, its original value is equal to the sum of
weights of all intervals it is a descendant of. They propose an efficient poly-
nomial time algorithm; however, the main constraint is that the algorithm
can be applied for data containing only one dimension.

Karloff et al. extend Agarwal et al.’s one-dimensional solution to two di-
mensions [8]. Their summaries consist of hierarchy-constrained overlapping
rectangles and while this class of summaries can be versatile due to allowed
overlap, it runs into hardness issues even in 2 dimensions. As of right now,
the algorithm can operate only in 2 dimensions. It provides a randomized
2-approximation to build lossless summaries.

Bu et al. [2] presented an MDL (minimum description length) prob-
lem in which there are “interesting” tuples, as well as tuples of no interest.
A description is a set of hierarchy-constrained overlapping rectangles that
are required to cover all interesting tuples and any number of uninterest-
ing tuples, however every found rectangle is counted towards the length of
the description. Mendelzon and Pu explore the MDL problem for various
structures [12]; of a particular interest to this work is MDL with hierarchies
in which a hierarchical structure is utilized to reduce the description length
whenever possible. They also study multidimensional hierarchies and intro-
duce three languages for describing subsets of the universe, all of which were
shown to be NP-complete even in a 2-dimensional case.

2.2 Lossy Reconstruction Summaries

The approach by Agarwal et al. discussed in 2.1 finds optimal weighting
schemes for a one-dimensional version of our problem and allows finding
both lossless and lossy summaries by regulating a per-node worst case re-

6

2.2. Lossy Reconstruction Summaries

construction error with a tolerance parameter ε [1].
El Gebaly et al. tackled a related summarization problem [3]. They

have developed the concept of explanation tables as a way to present concise
summaries of multidimensional relations with a binary outcome attribute.
To measure the goodness of the summary they use Kullback-Leibler (KL)
divergence between the true distribution of values and the maximum-entropy
estimate implied by the table. The goal is then to find a minimum number of
overlapping rectangles that satisfy a KL-divergence threshold τ , where each
rectangle is assigned the count and average of the values it covers. A related
problem on rule mining on a numeric measure attribute has been addressed
in [4]. They develop an efficient distributed rule mining framework for tall
and wide tables that outputs a desired number of rules that are found by
minimizing KL-divergence, similar to [3].

Lakshmanan et al. presented a work on summarizing regions of interest
in both numerical and hierarchical domains [9]. In that framework, each
data cell is marked as blue, red or white (semantically corresponding to
“include”, “exclude” and “don’t care”). The goal is to find the smallest set
of rectangles, covering all blue cells, none of the red cells, and the summary
may include white cells up to a certain budget. Although it is assumed that
cells in the summary are blue, some of them may in fact be white; that
introduces some notion of “accuracy” of the summary, and a zero budget
effectively corresponds to finding a lossless summary of the regions.

Jagadish et al. [6] study compression and pattern discovery by grouping
relational records into so-called fascicles, such that the range of each of the
k attributes, does not exceed some distance as defined by parameter t. In
pattern discovery, the goal is to find overlapping rectangles that cover at least
m tuples such that the quality of fascicles is maximized (smaller t and larger
k correspond to higher quality fascicles). Although reconstruction is not
explicitly addressed in this work, the amount of worst-case reconstruction
loss could be regulated with t.

Sarawagi introduces an advanced exploration operator for data cubes
designed to explain differences in data [14]. They introduce an information
theory formulation for reconstruction error and trade off the summary size
and the loss in accuracy. This approach was designed to automate a manual
search for change explanation. Here, instead a user is presented with a fixed
(but configurable) number of rows that best explain the change.

7

2.3. Identifying Extreme Aggregates

2.3 Identifying Extreme Aggregates

A considerable amount of research has also been done on summarizing ag-
gregate values. The main difference from our problem is that those works
usually focus on aggregates directly and do not aim to reconstruct the orig-
inal cell level data.

In their recent work, Ruhl et al. presented the Cascading Analysts (CA)
algorithm, designed for building concise summaries of hierarchical data [13].
Every tuple corresponds to a unique hyperrectangle and is assigned a weight
which is equal to the absolute sum of values of all tuples that it covers. A
larger weight corresponds to a larger change in the data. Given an input k,
the goal of CA is to find a bounded number (of up to k) of non-overlapping
rectangles, so that the sum of weights of the rectangles is maximized. Their
algorithm was shown to find an optimal solution in 2 dimensions and has
an approximation ratio of logd−2(n+ 1) for 3 and more dimensions, where n
is the total number of nodes in a lattice and d is the number of dimensions.
This approach is lossy, and although it may provide lossless summaries, these
scenarios are very rare, e.g., all tuples undergo the same amount of change.

Wen et al. explore ways to compactly represent query results [22]. They
designed a framework that allows interactive exploration of query results
by finding k non-overlapping rectangles (clusters) with maximum average
values covering top L tuples from the query output. Every rectangle is
required to be at least at a distance D from other rectangles, where D is
defined as a number of attributes that do not have the same value in the
domain.

Joglekar et al. study exploration and summaries of relational tables [7].
They group tuples by their aggregate attributes. Each group is represented
by a rule that describes the instantiated attributes and the aggregate value.
The goal is to find a set of rules of a maximum total score, which depends
on marginal coverage and specificity of the rule. The results are presented
in a table for a user to explore.

2.4 Summarizing All Aggregates

Vitter et al. [20, 21] present an approach for efficient multidimensional ag-
gregate computation based on the notion of wavelets; wavelet coefficients
are precomputed and stored. Queries are then answered approximately by
choosing the k most important wavelet coefficients. The amount of infor-
mation loss can be regulated by the parameter k.

8

2.5. Other

Related to the problem of data aggregate summarization lies the work
by Lakshmanan et al. [10] that presents a structure that they call a quotient
cube. Given an aggregate function, a quotient cube finds a reduced cube
lattice of the aggregate values by partitioning the lattice cells into clusters.

2.5 Other

Sismanis et al. [18] presented a dwarf cube – a data cube compressed by
eliminating prefix and suffix redundancies. That data structure stores data
with 100% precision and can be used to store a full cube or, alternatively,
precomputed aggregates whose computation is too costly to be done on the
fly. A dwarf cube can represent the actual data; however, does not aim to
provide a summary.

Exploration of data cubes has been addressed by Sarawagi et al. in [16]
where they present a tool for effective exploration and navigation of a data
cube which is also designed for finding exceptional values. First, aggregate
values of each group-by are computed bottom up. Then the algorithm goes
root-down finding the difference between expected and actual values at each
group-by. The group-by’s with largest differences are then highlighted in
a UI to signal significance to the user. In [15, 17], in addition to the data
cube operator introduced in [14], Sarawagi and Sathe present two more
navigational operators that automate the exploration process for a user,
helping her to see a bigger picture of the data changes using a maximum
entropy approach that finds interesting unvisited parts of the data cube.

9

Chapter 3

Problem Definition

In our work, we consider multidimensional datasets. This setting is very
common for data warehouses and data analysis applications. Every dimen-
sion of such data is typically organized in the form of a hierarchy; such
hierarchies may be modeled as trees or DAGs. In this work, we consider
tree hierarchies. For example, the Location dimension may be modeled us-
ing the Country→ Region→ Division→ State hierarchy. Other dimensions
such as Product, Demographics, Occupation, etc. may have their own hier-
archical structure. As a concrete example, consider a data warehouse over
the dimensions Product and Location, as in Figure 1.11. Having multiple
hierarchies naturally leads to a product space, i.e., a lattice defined by the
product of the dimension hierarchies. Each node of the lattice corresponds
to a vector of nodes of the component dimension hierarchies.

3.1 Preliminaries

Denote the number of dimensions by d and let L be the lattice structure
corresponding to the cross product of individual dimension hierarchies T i,
i.e., L = T 1×T 2× ...×T d. Let ~p = (p1, ..., pd) be a lattice node in L, where
pi is a corresponding tree node in T i. A lattice node ~p is said to be a parent
of a node ~q = (q1, ..., qd), if there is j ∈ [d] such that qj is a child of pj in
hierarchy T j and ∀i 6= j, pi = qi.

A lattice node ~p = (p1, ..., pd) for which ∀i ∈ [d], pi is a leaf in its corre-
sponding dimension hierarchy T i, is said to be a lattice leaf, also referred to
as a cell.

If two lattice nodes ~q and ~r share a common parent ~p, they are referred to
as siblings. Two siblings are called direct siblings, iff they share a common
parent and there is some j, s.t. rj 6= qj and ∀i, i 6= j, ri = qi. For exam-
ple, the nodes “Camping Equipment, All Stores”, “Outdoor Protection, All
Stores”, “All Products, NYC” and “All Products, Newark” in our previous
example are siblings since they all share the common parent “All Products,

1Real data warehouses may have many more dimensions.

10

3.1. Preliminaries

All Stores”. Among those, “Camping Equipment, All Stores” and “Outdoor
Protection, All Stores”, as well as the pair of “All Products, NYC” and “All
Products, Newark”, are the examples of direct siblings.

For each internal lattice node ~p, we partition ~p’s children into maximal
subsets of direct siblings. For convenience, we modify the classic lattice
structure by introducing a grouping node Dimj for every maximal set of
direct siblings which correspond to a given dimension j, j ∈ [d]. These
grouping nodes are assigned as parents of the subset that they are associated
with and are in turn the children of the original parent node ~p. We will refer
to these grouping nodes as dimension nodes.

Figure 3.1 depicts an (incomplete) structure of the lattice in the equip-
ment store example. The lattice nodes “Camping Equipment, All Stores”
and “Outdoor Protection, All Stores” are examples of direct siblings grouped
under the dimension node DimP of their parent “All Products, All Stores”,
which happens to be the root of the lattice. DimP and DimL are the
dimension nodes and the letters P and L stand for product and location
dimensions, respectively. Given a lattice node, it may be drilled down along
any dimension. The use of dimension nodes for grouping purposes makes
this drill-down explicit.

We use the modified lattice structure to define the notion of embedded
trees. An embedded tree is obtained by starting at the root, marking it, and
then alternating the following operations until no longer possible, i.e., leaves
are reached:

• For each marked internal lattice node, choose exactly one dimension
child and mark it.

• For each marked dimension node, choose all its (lattice) children and
mark them.

The structure induced by all marked nodes by the above process is an
embedded tree. We make use of embedded trees for constructing concise
summaries of multidimensional data. Note that in Figure 3.1, if we ignore
grayed out regions and dimension nodes, we obtain one of the embedded
trees of the lattice.

11

3.1.
P
relim

in
aries

All Products,
All Stores

Camping Equipment,
All Stores

Outdoor Protection,
All Stores

All Products,
NYC

DimP

All Products,
Newark

DimL

Camping Equipment,
Newark

Tents,
All Stores

Sleeping Bags,
All Stores

Camping Equipment,
NYC

DimP
DimL

…

DimP DimL

Camping
Equipment, Queens

Camping Equipment,
Manhattan

Tents,
Newark

Sleeping Bags,
Newark

DimP

DimLDimP

First Aid,
All Stores

Sunscreen,
All Stores

Insect Repellents,
All Stores

…

First Aid,
NYC

First Aid,
Newark

DimL

First Aid,
Manhattan

First Aid,
Queens

DimL

Insect Repellents,
NYC

Insect Repellents,
Newark

DimL

Insect Repellents,
Manhattan

Insect Repellents,
Queens

DimL

…

…

Figure 3.1: Lattice in the equipment store example. Grayed out regions are parts of the lattice outside of the
(not grayed out) embedded tree. Solid blue and dashed green borders correspond to regular and dimension nodes
respectively. Nodes with yellow background are the weighted nodes in the embedded summary tree from Figure
1.2.

12

3.2. Problem Statement

3.2 Problem Statement

Consider a multidimensional lattice with each cell associated with some data
value. This lattice could directly correspond to a data warehouse or it could
be the result of operations on a data warehouse, such as comparing two
snapshots and computing their ratios, differences, etc. Our goal is to find a
concise tree summary of such a lattice.

3.2.1 Lossless Case

We define a tree summary to be an embedded tree T of the lattice with
weights assigned to a selected subset of nodes such that:

• T spans all leaves of the lattice;

• the value of each lattice cell (i.e., leaf) is equal to the weight of the
closest weighted ancestor of the leaf in T .

Any such summary tree is said to be a valid summary of the lattice.
Clearly, there exist multiple such trees. Our goal is to find the most “concise”
tree summary. For purposes of defining the size of a summary, we associate
a unit cost with each weighted node of the summary tree. In other words,
the cost of a summary tree T is defined as:

cost(T) =
∑
t∈T

[wt 6= ∅],

where wt is the weight of a summary tree node t and [wt 6= ∅] is an indicator
function that is 1 iff node t has a weight wt assigned to it. Intuitively, the size
(cost) of a summary tree is the number of nodes which have an associated
weight. The goal is to find a valid embedded summary tree, so that the cost
of the tree is minimized.

The basic problem statement as described above, defines a case in which
summaries are lossless. That is, given a tree summary, it is possible to
reconstruct the original values at the lattice leaves exactly, by looking up
the closest weighted ancestor for each leaf.

3.2.2 Lossy Case

While in some cases it is preferable to have a lossless summary, it usually
comes at a high cost (i.e., the size of the summary). To mitigate the cost we

13

3.2. Problem Statement

introduce lossy summaries that trade reconstruction accuracy for concise-
ness. To do that we use the notion of an α-interval. We define a summary
tree T to be an α-approximate lossy summary of a lattice L, α ∈ [0, 1],
provided the following conditions are satisfied:

• For every leaf t of T , the weight of its closest weighted ancestor in T
is within the interval [(1− α) · val(t), (1 + α) · val(t)], where val(t) is
the original value associated with the leaf (cell).

Notice that the choice of α is orthogonal to our problem. In princi-
ple, each cell could have a different α value, based on its regular variation,
seasonality, etc. Lossless summaries correspond to the special case where
α = 0.

An α-approximate lossy summary naturally provides a bound on the
amount of information loss per node. We will establish the bound after
introducing the necessary reconstruction error metric in Section 6.2. The
cost of a lossy summary is defined in the same way as lossless summaries,
i.e., the number of tree nodes which have a weight associated with them.

The problem we study is, given a multidimensional dataset with corre-
sponding lattice structure L and a number α ∈ [0, 1], find an α-approximate
summary of L with the least possible cost.

14

Chapter 4

Algorithm

In this section we present our TS (Tree Summary) algorithm. The algorithm
runs in two steps. The first step finds promising weights for each of the
internal nodes of the lattice. Then, that information is used in the second
step to find the most concise summary.

4.1 Node Annotation

In order to keep track of what weights are best, we annotate all nodes
in a lattice. An annotation of a node ~p is a tuple (w,Dimj , c), where w
is a weight, Dimj is a dimension node of the node ~p, and c is the cost
corresponding to w and Dimj . The meaning of every annotation at node
~p is as follows. A subtree rooted at ~p could be assigned a weight of w and
expanded along dimension j with the total minimum cost of the subtree
of c. Each node can have multiple annotations; they will be referred to as
annotation sets.

Precomputing annotations is the first step in finding a tree summary.
Annotations for leaf nodes are trivial. The proposed weight of a leaf node
is simply its cell value, the cost is 1, and since leaves have no children, the
dimension node is none. Annotations for the internal nodes are computed
iteratively bottom up, by finding the most popular weight(s) among each
node’s children across all dimensions. The process is described in more detail
in Algorithm 1 below.

Here, weights(a~p) is the set of weights in annotations of ~p and cost(a~p) is
the cost of every w ∈ weights(a~p). Note, that we only propagate minimum
cost weights, so all weights in the set of annotations have the same cost.
On line 12, we find the weight w that can be found in annotations of the
largest number of children of ~p in the given dimension. Line 13 calculates
the cost associated with w; since root is always present in the summary we
charge a cost of 1 for the root of the subtree, and add the cost of the children
nodes, given that their parent’s weight is w. Finally, at line 16, out of all
annotations a~p the filter(·) function only leaves annotations with smallest
cost. We run Algorithm 1 by calling annotate(~r), where ~r is the root of

15

4.1. Node Annotation

Algorithm 1 The annotation algorithm annotate(~p)

Input: Lattice node ~p
1: if ~p is a cell then
2: Let a~p be the set of annotations of ~p
3: a~p ← {(val(~p),∅, 1)}
4: else
5: Let D be the set of dimension nodes of p
6: for each Dimj in D do
7: W = ∅
8: for each child ~q of Dimj do
9: annotate(~q)

10: W = W ∪ {weights(a~q)}
11: end for
12: w = argminw∈W |{~q ∈ Dimj : w 6∈ weights(a~q)}|
13: c = 1 +

∑
~q∈Dimj

(cost(a~q)− [w ∈ weights(a~q)])
14: a~p ← a~p ∪ (w,Dimj , c)

15: end for
16: a~p ← filter(a~p)

17: end if

16

4.2. Summary Construction

the lattice; the annotations of all nodes are then found recursively bottom
up.

4.2 Summary Construction

Algorithm 2 constructs a minimum weight summary by using the precalcu-
lated annotations from the previous step. We run the algorithm by calling
summarize(~r, t), where ~r is the root of the previously annotated lattice and
t is the root of the future summary tree, which at the start is just a single
node.

Algorithm 2 The algorithm for finding an optimal summary tree
summarize(~p, t)

Input: Lattice node ~p, tree node t
1: if ~p is the root of a lattice then
2: Pick any â ∈ a~p
3: Let wt be the assigned weight of t.
4: wt = â.weight
5: else
6: Let w′ be the weight of the closest weighted ancestor of t.
7: if ∃â ∈ a~p, s.t. w′ = â.weight then
8: wt = ∅
9: else

10: Pick any â ∈ a~p
11: wt = â.weight

12: end if
13: end if
14: for each child ~q of Dimj , j = â.dim do
15: Add a new node tchild as a child of t
16: summarize(~q, tchild)

17: end for

Algorithm 2 starts with the lattice root and works its way top down. It
chooses any annotation at the lattice root node and assigns that annotation’s
weight as the weight of the tree summary root (lines 2-4). For all other
nodes, we pick an annotation whose weight matches the weight of the closest
ancestor (line 7), and if no such annotation exists any other annotation is
chosen (line 10). Weight assignment for the current tree node happens on
lines 8 and 11. Finally, for every child ~q of the lattice node ~p in the dimension

17

4.3. Example

â.dim, we create a tree child tchild, and recursively do weight assignment on
its descendants (line 16).

4.3 Example

Now, let’s consider the lattice from our earlier equipment store example. We
show a detailed algorithm walk-through on the sublattice corresponding to
“Camping Equipment, All Stores”. First, we run the bottom-up annotating
algorithm. At the leaves, we will have the following annotations:

“Sleeping Bags, Manhattan” {(1.1,∅, 1)}
“Tents, Manhattan” {(1.1,∅, 1)}
“Sleeping Bags, Queens” {(0.8,∅, 1)}
“Tents, Queens” {(0.8,∅, 1)}
“Sleeping Bags, Newark” {(0.9,∅, 1)}
“Tents, Newark” {(1.0,∅, 1)}

For every internal node, Algorithm 1 finds the most popular weight(s)
among the node’s children annotations for every drill-down, and only leaves
the annotations that result into least cost for that node’s subtree. At the
next level of the lattice the annotations are as follows:

“Camping Equipment, Manhattan” {(1.1, DimP , 1)}
“Camping Equipment, Queens” {(0.8, DimP , 1)}
“Sleeping Bags, NYC” {(1.1, DimL, 2), (0.8, DimL, 2)}
“Tents, NYC” {(1.1, DimL, 2), (0.8, DimL, 2)}
“Camping Equipment, Newark” {(1.0, DimP , 2), (0.9, DimP , 2)}

Next, let’s calculate annotations for the node “Camping Equipment,
NYC” which is expandable in both dimensions. When we expand that
node along DimP , the size of the summary is 3; when we use DimL in-
stead, the size is 2 with the weights 1.1 and 0.8 being equally good. So, we
have {(1.1, DimL, 2), (0.8, DimL, 2)} for “Camping Equipment, NYC”. At
the node “Camping Equipment, All Stores”, there is a tie between four an-
notations {(0.8, DimL, 4), (0.9, DimL, 4), (1.0, DimL, 4), (1.1, DimL, 4)}, all
of them resulting in the same cost. It is important, however, to save all four
weights because without additional knowledge about the rest of the lattice,
it is impossible to evaluate which weight will ultimately lead to the least
cost of the summary.

18

4.4. Lossy Case

By repeating the same annotation procedure on the rest of the lattice, we
obtain the annotation for the second half of the lattice (“Outdoor Protection,
All Stores”) which is {(1.0, DimP , 4)}. Since the weight of 1.0 is included
in both nodes (“Camping Equipment, All Stores” and “Outdoor Protection,
All Stores”), at the root we will have {(1.0, DimP , 7)}, with the weight of
1.0 breaking the tie between all possible weights for the node “Camping
Equipment, NYC”. If we calculate annotations for the other drill-down from
root, namely “All Products, NYC” and “All Products, Newark” internal
nodes, we will discover that indeed DimP is the best dimension that the
root can be expanded on.

Now that we have found annotations for each node, we can start con-
structing the actual summary tree. We use the root’s annotation {(1.0, DimP , 7)},
assign the weight of 1.0 to the root and split on the product dimension. Go-
ing back to the node “Camping Equipment, All Stores”, we do not assign
any weight to it because the weight of the root (i.e., the closest weighted
ancestor) is already equal to one of the annotation weights of this node.
Whenever this condition does not hold, we override the weight of the clos-
est ancestor by assigning any weight from available node annotations. We
repeat the process for all remaining nodes. The output of Algorithm 2 is
shown in Figure 1.2. In Figure 3.1, weighted nodes of the summary tree are
highlighted in yellow.

4.4 Lossy Case

The algorithms remain generally the same for the lossy case, except for a
few minor modifications. Both algorithms 1 and 2 will have to be changed
accordingly. For example, w will now have to refer to the confidence interval,
instead of a single weight, and similarly, whenever we compare two weights
or check the membership of a weight in a set, we now seek the intersection
of the two weight intervals. In Algorithm 1, line 3 changes to a~p ← {([(1−
α) · val(~p), (1 +α) · val(~p)],∅, 1)}. In Algorithm 2, whenever given a choice,
we pick a middle point of an interval as the weight. So, â.weight is replaced
by (wstart + wend)/2, where â.weight = [wstart, wend].

19

Chapter 5

Theoretical Analysis

5.1 Run-time Analysis

Denote the number of nodes in the lattice by n and the number of dimen-
sions by d. Algorithm 1 finds annotations for n nodes (we only calculate
annotation sets for each node once) in each of the d dimensions. For each
node, the algorithm iterates through the node’s set of annotations to filter
out annotations with a suboptimal cost. In the worst case scenario, the
number of annotations is equal to the number of leaf descendants of the
node which is < n. Therefore, annotate(·) runs in O(n2d) time.

Now, let’s analyze the run time of Algorithm 2. We only iterate through
k nodes, since only k < n of the lattice nodes get considered during the tree
summary construction phase, where k is essentially the number of nodes
in the future summary tree. Then, for each node, the algorithm iterates
through the node’s annotations to find the best annotation given a parent’s
weight. As noted previously, the worst case number of annotations per
node is the number of that node’s leaf descendants and that is < n, so the
algorithm summarize(·) runs in O(n2) time.

5.2 Optimality Analysis

To show that the algorithm provides an optimal node weighting, we start
with presenting the blocking property of a tree data structure in the context
of weight assignment. In particular, we show that to find an optimal weight
(or a set of weights) of any internal node in a tree, it is sufficient to consider
weights (as provided by TS algorithm) of the tree’s immediate children only.

For clarity, what we refer to as a weighting scheme, is an embedded
summary tree in the lattice (i.e., an embedded tree where a selected set of
nodes is assigned weights).

Lemma 5.2.1. (Blocking Property) Let T ′ be any subtree embedded in the
lattice. Let T be a supertree in the lattice which contains T ′ as a subtree. Let
O be the set of optimal node weightings of T and S be the set of weightings

20

5.2. Optimality Analysis

of T ′ found by TS algorithm. Then, there exists a weighting scheme S ∈ S,
such that the weighting O∗∗ obtained by changing O∗ ∈ O so that it agrees
with S on nodes in T ′, has no more cost than O∗.

Proof. We show the above property by contradiction. Assume that there
is no such S ∈ S, and that O∗∗ has a larger cost than O∗. Since T ′ is the
only subtree that is different in O∗∗ and O∗, cost(T ′S) > cost(T ′O∗), ∀S ∈ S.
In other words, the cost of any weighting scheme S on T ′ is strictly greater
than the cost of the optimal weighting on T ′. Since TS propagates the most
popular weights, there exists some node q for which the optimal weight was
not the weight of the majority of q’s children.

Let p be q’s parent, by n let’s denote the number of q’s children, and by
k we use the number of children with the most popular weight(s). Assume
that {x} and {y} are the most popular weights. Let’s also denote a number
of children of some arbitrary weight {z} by m. Refer to the Figure 5.1.

q

p

{x} {z}… {z}

k m

n

{x} {y}{y}

k

… … …

Figure 5.1: Structure of the node q

The TS algorithm will choose any of the most popular weights x or y.
When wp = x (or y), the weight of node q is wq = 0 and the total cost of
q and its children combined is cost(qS) = n − k. In the opposite case, if
wp 6= x (and wp 6= y), wq will be set to x − wp (or y − wp), and the total
cost of q’s subtree is cost(qS) = n− k + 1.

We assumed that in O∗, q was assigned a weight different from all S ∈ S.
Let’s denote that weight by z. The total cost of q’s subtree is cost(qO∗) =
n−m if wp = z, and cost(qO∗) = n−m+ 1 if wp 6= z.

For any of the weights chosen by S ∈ S, k > m. Therefore, cost(qS) ≤
cost(qO∗). That means that TS performs at least as well as optimal; however,
by our assumption, cost(ST ′) > cost(O∗T ′), ∀S ∈ S, and that leads to a

21

5.2. Optimality Analysis

contradiction. Hence, ∃S ∈ S, such that O∗ agrees with S on subtree q.

Theorem 5.2.2. (Optimality) Let O∗ be some optimal weighting of a
lattice and S denote the set of TS weightings. Then for every node q in O∗,
∃S ∈ S, such that if we replace the subtree of qO∗ with qS the cost of O∗

does not increase.

Proof. Let’s assume that the claim is false and ∃q, ∀S ∈ S, so that replacing
qO∗ with qS results into a more expensive summary. It means there is some
node q for which O∗ chose a different weight and/or dimension node, than
any S ∈ S.

Let’s compare nodes in O∗ to those in S in the order of their shallowness.
We start at the root and go down the tree until we find the shallowest
node q that is different in both summaries. Assume that for summary node
q the corresponding lattice node is ~q and its annotations are as follows:
~q : {(wS , DimS , cost(~qS)), (wO∗ , DimO∗ , cost(~qO∗), ...}, where subscript S
refers to the TS choice, and subscript O∗ corresponds to the optimal choice.

TS stores all annotations of least cost (line 16 in Algorithm 1) and among
those it favors the annotations with the same weight as the weight of the
closest weighted ancestor (line 7 in Algorithm 2). This implies that there
are two possibilities for the optimal solution aO∗ = (wO∗ , DimO∗ , cost(~qO∗)
to not be included among TS annotations:

• aO∗ is not in ~q’s annotations, meaning that cost(~qS) < cost(~qO∗). In
that case, any weight wS is guaranteed to be at least as good as wO∗ ,
regardless of the weight of the closest weighted ancestor (which could
be wS , wO∗ , or neither).

• aO∗ is among ~q’s annotations but did not get chosen by TS. Since TS
picks wS that equals the closest weighted ancestor’s weight whenever
possible, any weight wS is guaranteed to result in at most the same
cost as wO∗ .

So, replacing qO∗ by qS doesn’t result in increasing cost. Thus, for any
node q, ∃S ∈ S, such that O∗ agrees with S on weighting scheme of q.

22

Chapter 6

Empirical Evaluation

In this section we assess the performance of the proposed algorithm using
real and synthetic data. We evaluate the accuracy of produced summaries by
calculating the reconstruction error, and confirm the worst-case error bound
(to be shown theoretically in Section 6.2). We compare the performance
of our algorithm with four baselines under varying settings, such as size,
number of dimensions and the amount of correlation in the data.

6.1 Baselines

In addition to TS, we run experiments on 4 baselines. The first two are the
approach by Karloff et al. (which we will denote by K) and the Cascading
Analysts (CA) algorithm. The third baseline is STCK-T which consists of
trees created by stacking dimensions in an exhaustive manner, and then
the average metrics are reported. The last baseline is RND-T that chooses
100 random trees embedded in the lattice; similarly we report the averages.
After constructing the trees in the last two baselines, we run the algorithm
by Agarwal et al. [1], which finds optimal summaries for single-dimensional
data.

Since CA needs both positive and negative values to operate, instead of
assigning ratios between two data snapshots to each leaf node, we assign a
logarithm of a ratio instead. During the reconstruction phase, we translate
the values back by taking an exponent of the reported values.

6.2 Measuring Reconstruction Error

To measure the accuracy of the constructed summaries we reconstruct the
original lattice cell values in the following way. For TS, the value of each
cell is reconstructed by taking the weight of the closest weighted ancestor
in the tree summary. For RND-T and STCK-T, a cell value is calculated
by taking a sum of weights along the root-to-leaf path of the corresponding
leaf node in the summary tree. For K, each cell is assigned the value equal

23

6.3. Setup

to the sum of all nodes (rectangles) that the cell is a descendant of. For CA,
since each node included in the summary contains an accumulated sum of
that node’s leaf descendants, we divide each summary node’s value by the
number of leaves it is an ancestor of, and assign that value to each of those
cells.

Let l denote a leaf node in the lattice, and let lorig and lrec correspond to
l’s original and reconstructed values, respectively. We measure the accuracy
of reconstruction by symmetric mean absolute percentage error (SMAPE),
as described in [5]:

error =
1

|L|
∑
l∈L

|lrec − lorig|
|lrec|+ |lorig|

,

where L is a set of all lattice cells. We have chosen this error metric, because
of its desirable properties of symmetry, bounded range and interpretability
due to its similarity with percentage metrics.

Now, having definitions of a confidence interval and the error metric, it is
straightforward to see that for TS, the amount of error per node is bounded
and can be expressed through α. In the worst case, when a node’s closest
weighted ancestor’s weight is equal to one of the end points of the confidence
interval, the error errorp of node p is expressed as:

errorp =
|val(p) · (1− α)− val(p)|
|val(p) · (1− α)|+ |val(p)|

=
α

2− α
.

In the similar fashion, we show the same bound for the other end of the
confidence interval (1 + α) · val(p).

6.3 Setup

Implementation of our algorithm and the alternative approaches by Karloff
et al. [8], Ruhl et al. [13] and Agarwal et al. [1], are coded in Java 8.
Experiments have been run on a 3.50 GHz Windows machine with 16 GB
of RAM.

6.4 Datasets

6.4.1 US Census Educational Attainment Data

The first dataset is by the US Census Bureau on levels of educational at-
tainment for different demographic groups 18 years old and over, across the

24

6.5. Results

United States [19]. It has four dimensions: geography, sex, age and level of
education. Geography is a hierarchy with 4 levels: entire country, 4 regions,
9 divisions and 50 states. All three of sex, age and education dimensions, are
two-level hierarchies, consisting of a root and leaf nodes. Sex has 2 values,
age has 5 distinct age groups and education contains 7 education levels. We
are using the 2016 and 2017 data, and summarize the change between the
two snapshots as ratios of values between the two years.

6.4.2 Synthetic Data

The rest of the test data is generated synthetically. First, we generate tree
hierarchies for each dimension by starting at the root and making a random
decision on whether or not a node has children, then we draw a number of
children from a normal distribution (µ = 5, σ = 2). We do so iteratively
until no more nodes are generated. Given the generated hierarchies we build
a lattice as a cross-product of trees.

For both the lossless and lossy case, we first find a random embedded tree
in a lattice and assign a value of 1 to the root. Then we go top down, and
each child q of a node p, is assigned a value drawn from a normal distribution
with the mean µ being set to the parent’s value assigned in the previous step
and a preset standard deviation σ = 0.1. The values at the leaf nodes of the
embedded tree are what is later assigned as lattice leaf values.

6.5 Results

The algorithm by Karloff et al. is constrained to only 2 dimensions. Since
randomization is used by the algorithm, all results are averaged across 100
independent runs. Similarly, RND-T results are averaged across 100 runs,
and STCK-T results are averaged across all possible permutations of dimen-
sion stacking. Unless otherwise stated, CA budget size k is set to be equal to
the size of the TS summary and is thus excluded from the size comparison.2

6.5.1 Lossless Case

We start with testing the performance and efficiency of all three approaches
in a lossless case. We run TS and Karloff’s et al. approach with α = 0. To
test CA, we run it two times: first we give it a budget of k that is equal to
the size of the tree summary, and the second time we set k to be equal to
the number of leaf nodes.

2In almost all cases, the final size of CA summary is equivalent to that of TS.

25

6.5. Results

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4

er
ro

r

number of dimensions

Error vs. dimensionality

CA average CA worst

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000

er
ro

r

lattice size

Error vs. lattice size

CA average CA worst

Figure 6.1: US Census dataset. Reconstruction error in lossless case

US Census data. First, we perform experiments on the US Census
Educational Attainment table. The number of dimensions was varied by
stacking demographics dimensions (sex, age and education). The size of the
lattice was varied with the size of the geographic dimension that was changed
to include either one, two, three or all four of the US regions. When varying
the size, the number of dimensions was locked at 2. Since it is impractical to
summarize continuous range data in a lossless setting, we round all values
to one decimal place.

We measured the reconstruction errors across all approaches. The errors
are shown in Figure 6.1. TS, K, and both tree baselines have a 0 reconstruc-
tion error and are not included in the plot. We confirmed that CA could
only find lossy summaries in both cases, when given a budget that is equal
to the TS summary size and the number of all lattice cells. We therefore
omit CA from further comparisons on a lossless case.

26

6.5. Results

0

500

1000

1500

2000

2500

1000 2000 3000 4000 5000

si
ze

lattice size

Summary size vs. lattice size

TS K RND-T STCK-T

0

500

1000

1500

2000

2500

1 2 3 4

si
ze

number of dimensions

Summary size vs. dimensionality

TS K RND-T STCK-T

0

10

20

30

40

1000 2000 3000 4000 5000

ru
n

n
in

g
ti

m
e

(m
s)

lattice size

Running time vs. lattice size

TS K RND-T STCK-T

0

20

40

60

80

1 2 3 4

ru
n

n
in

g
ti

m
e

(m
s)

number of dimensions

Running time vs. dimensionality

TS K RND-T STCK-T

Figure 6.2: US Census dataset. Summary size and running time in a lossless
case

In Figure 6.2, we compare TS to the remaining three approaches. An
interesting observation is that TS outperforms Karloff’s et al. in terms of
the summary size. In their paper they have shown that their algorithm is a
randomized 2-approximation from the optimal. So empirically, TS appears
to achieve a more concise hierarchical summary although its space is more
restrictive (allowing no overlaps except containment) than that of Karloff et
al.’s. When varying lattice size and number of dimensions, TS finds more
concise summaries than all of the other approaches, however it does come
with a higher execution cost.

Synthetic data. Next, we test TS and the three baselines on synthetic
data. The data was generated as described in Section 6.4.2. As previously,
the values have been rounded to one decimal place.

Besides varying the size and number of dimensions, we also test how the
algorithms perform in the presence of correlation. The idea is that in deeper
and more granular levels of the lattice, the entities are more similar to each
other. For example, given that San Francisco and San Jose are located in
the same geographical region, the sales of sunscreen at the two stores may
be more similar to each other than to the sales of sunscreen at a New York
store. To simulate this correlation, we reduce the value of the standard

27

6.5. Results

0

2000

4000

6000

8000

10000

5000 10000 15000 20000

si
ze

lattice size

Summary size vs. lattice size

TS K RND-T STCK-T

0

20

40

60

80

100

5000 7000 9000 11000 13000 15000 17000 19000 21000

ru
n

n
in

g
ti

m
e

(m
s)

lattice size

Running time vs. lattice size

TS K RND-T STCK-T

0

2000

4000

6000

8000

10000

1 2 3 4

si
ze

number of dimensions

Summary size vs. dimensionality

TS K RND-T STCK-T

0

20

40

60

80

100

1 2 3 4

ru
n

n
in

g
ti

m
e

(m
s)

number of dimensions

Running time vs. dimensionality

TS K RND-T STCK-T

1

10

100

1000

10000

0 0.2 0.4 0.6 0.8 1

si
ze

σ-step

Summary size vs. σ-step

TS K RND-T STCK-T

0

10

20

30

40

0 0.2 0.4 0.6 0.8 1

ru
n

n
in

g
ti

m
e

(m
s)

σ-step

Running time vs. σ-step

TS K RND-T STCK-T

Figure 6.3: Synthetic dataset. Summary size and running time in a lossless
case.

deviation as we go deeper in the embedded tree. For a parent node p with
SD σp and its child node q, σq = σp × σ-step, where 0 < σ-step ≤ 1.

The results are shown in Figure 6.3. Although TS computes in a reason-
able time (in the order of milliseconds), it takes longer than other baselines.
It does, however, find more concise summaries across all runs.

6.5.2 Lossy Case

Here, we test how the algorithms perform in a lossy setting, trading the
accuracy of reconstruction for conciseness. First we see how the summary
size changes when varying the α parameter.

28

6.5. Results

As mentioned earlier, the work by Karloff et al. [8] is only designed
for lossless summaries. However, it relies on the algorithm introduced by
Agarwal et al. [1] that solves the same problem of building hierarchical
summaries but in one-dimensional space. Agarwal et al. do have a natural
extension that allows for lossy but more concise summaries. An obvious
straightforward way to extend Karloff et al.’s work to produce lossy sum-
maries, is to use their base framework together with the extended algorithm
from Agarwal et al. However, no guarantees were presented in the original
paper. We compare TS with the modified Karloff’s et al. approach on a
range of alpha values in Figure 6.4. We can confirm with our empirical
results that no previous guarantees for the lossless case, hold anymore for
the lossy case in the case of that simple extension, and that the summary
size for K across all runs was significantly larger and thus incomparable to
other approaches. For this reason, we eliminate the K baseline from lossy
experiments.

0

500

1000

1500

2000

2500

3000

0 0.2 0.4 0.6 0.8

si
ze

α

Summary size vs. α

TS K

Figure 6.4: US Census dataset. Comparing TS and K in lossy summaries.

US Census data. First we vary the parameter α. The results are
shown in Figure 6.5. The summary size of TS is slightly smaller than the
tree baselines. CA is best in terms of average error, but it needs significantly
more time than any other method; it also does not perform well in terms
of the worst case error. TS and tree baselines have comparable average and
worst case errors. Note, that all three optimize for the worst case error and
have the same error bound guarantees; worst case error coincided across all
runs (up to 3-4 decimal places) and is thus reported with a single line in the
graphs.

We fix α = 0.1 and proceed comparing all four approaches in a lossy
setting in Figure 6.6, for varying lattice size and number of dimensions. TS
finds smaller summaries in all cases, and it improves its summary size when
increasing the number of dimensions. Although the size of CA is exactly the

29

6.5. Results

0

400

800

1200

1600

0 0.2 0.4 0.6 0.8

si
ze

α

Summary size vs. α

TS RND-T STCK-T

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8

er
ro

r

α

Error vs. α

TS average CA average
RND-T average CA worst
STCK-T average TS, RND-T and STCK-T worst

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

0 0.2 0.4 0.6 0.8

ru
n

n
in

g
ti

n
e

(m
s)

α

Running time vs. α

TS CA RND-T STCK-T

Figure 6.5: US Census dataset. Summary size, reconstruction error and
running time in a lossy case with different values of α.

same as that of TS, CA has larger errors and needs a considerably longer
execution time.

Synthetic data experiments are performed on the same synthetic datasets
as in the lossless case, but we use the generated data values directly, without
rounding. First we vary parameter α and show the results in Figure 6.7, and
then we fix the value of α = 0.1 and test the performance against lattice
size and number of dimensions in Figure 6.8. Since for a correlated case
we can expect smaller summaries, we changed α to 0.05 for more accurate
reconstruction. The results are shown in Figure 6.11.

Across all runs, TS is showing the best performance in terms of the
summary size. Since the summary size of TS is equal to the budget of
CA, we compare the two on the basis of reconstruction errors and running
time. In a few cases, particularly when α is set to bigger values, CA obtains
a better performance than TS. This is explained by the fact that with a
broader confidence interval, any value within the interval is treated the same
and can be assigned as weights, although the values closer to the interval
ends are clearly of a lower quality. As we reduce α, TS starts to outperform
CA in terms of both average and worst case errors. To better understand
the error distribution of the two, we show the error histogram for the case
when α = 0.1 in Figure 6.9. TS is also significantly faster than CA in all

30

6.5. Results

runs.
TS and tree baselines RND-T and STCK-T have the same parameter α

and an identical worst-case error bound. The three are mainly compared on
the basis of summary size and running time. TS has a bigger search space
and thus runs slower but succeeds at finding more concise summaries in all
cases. To have a clearer picture of the distributions of summary sizes for
TS, RND-T and STCK-T, we show a size histogram for a 4D case in Figure
6.10. Although all three methods share the same worst-case bound, in a
few cases the average error of the tree baselines is slightly lower than that
of TS. The intuition to this phenomenon is that given the same worst-case
bound, a bigger summary (as found by RND-T and STCK-T) contains more
information and results in a smaller average error during reconstruction.

6.5.3 Scalability

Typically, even a snapshot of a real world multidimensional warehouse con-
tains data of higher dimensionality and size. In this section, we are testing
the TS algorithm on a larger lattice (Figure 6.12).

We generated a 6D dataset in a similar fashion as earlier (σ = 0.1).
The generated lattice has nearly 5M nodes, among which 1M are leaf nodes.
TS exhibits a similar behavior to that in smaller examples. The summary
size grows significantly as we decrease α. The running time is not affected
as much. As α decreases, fewer nodes can be grouped under the same
annotation, and as a result, more annotations are created but it results in
only a slight increase in running time.

31

6.5. Results

0

200

400

600

800

1000

0 1000 2000 3000 4000 5000 6000

si
ze

lattice size

Summary size vs. lattice size

TS RND-T STCK-T

0

200

400

600

800

1000

1 2 3 4

si
ze

number of dimensions

Summary size vs. dimensionality

TS RND-T STCK-T

0.001

0.01

0.1

1

0 1000 2000 3000 4000 5000 6000

er
ro

r

lattice size

Error vs. lattice size

TS average CA average
RND-T average CA worst
STCK-T average TS, RND-T and STCK-T worst

0.001

0.01

0.1

1

1 2 3 4

er
ro

r

number of dimensions

Error vs. dimensionality

TS average CA average
RND-T average CA worst
STCK-T average TS, RND-T and STCK-T worst

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

0 1000 2000 3000 4000 5000 6000

ru
n

n
in

g
ti

m
e

(m
s)

lattice size

Running time vs. lattice size

TS CA RND-T STCK-T

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1 2 3 4

ru
n

n
in

g
ti

m
e

(m
s)

number of dimensions

Running time vs. dimensionality

TS CA RND-T STCK-T

Figure 6.6: US Census dataset. Summary size, reconstruction error and
running time in a lossy case, α = 0.1.

32

6.5. Results

0

1000

2000

3000

4000

5000

0 0.2 0.4 0.6 0.8 1

si
ze

α

Summary size vs. α

TS RND-T average STCK-T average

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

er
ro

r

α

Error vs. α

TS average CA average
RND-T average CA worst
STCK-T average TS, RND-T and STCK-T worst

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

0 0.2 0.4 0.6 0.8 1

ru
n

n
in

g
ti

m
e

(m
s)

α

Running time vs. α

TS CA RND-T STCK-T

Figure 6.7: Synthetic dataset. Summary size, reconstruction error and run-
ning time in a lossy case with different values of α.

33

6.5. Results

0

1000

2000

3000

4000

5000

0 5000 10000 15000 20000 25000

si
ze

lattice size

Summary size vs. lattice size

TS RND-T average STCK-T average

0

1000

2000

3000

4000

5000

1 2 3 4

si
ze

number of dimensions

Summary size vs. dimensionality

TS RND-T STCK-T

0.001

0.01

0.1

1

0 5000 10000 15000 20000 25000

er
ro

r

lattice size

Error vs. lattice size

TS average CA average
RND-T average CA worst
STCK-T average TS, RND-T and STCK-T worst

0.001

0.01

0.1

1

1 2 3 4

er
ro

r

number of dimensions

Error vs. dimensionality

TS average CA average
RND-T average CA worst
STCK-T average TS, RND-T and STCK-T worst

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

0 5000 10000 15000 20000 25000

ru
n

n
in

g
ti

m
e

(m
s)

lattice size

Running time vs. lattice size

TS CA RND-T STCK-T

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1 2 3 4

ru
n

n
in

g
ti

m
e

(m
s)

number of dimensions

Running time vs. dimensionality

TS CA RND-T STCK-T

Figure 6.8: Synthetic dataset. Summary size, reconstruction error and run-
ning time in a lossy case, α = 0.1.

34

6.5. Results

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
error

0.0

0.1

0.2

0.3

0.4

0.5

TS vs CA, error distribution
TS
CA

Figure 6.9: Normalized error histogram of TS and CA for synthetic lossy
experiments with α = 0.1.

1600 1800 2000 2200 2400 2600 2800 3000 3200
size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

RND-T and STCK-T vs TS, size distribution
TS
RND-T
STCK-T

Figure 6.10: Normalized summary size histogram for RND-T and STCK-T,
for synthetic lossy experiments with α = 0.1 in 4D.

35

6.5. Results

1

10

100

1000

10000

0 0.2 0.4 0.6 0.8 1

si
ze

σ-step

Summary size vs. σ-step

TS RND-T average STCK-T average

0.001

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1

er
ro

r

σ-step

Error vs. σ-step

TS average CA average
RND-T average CA worst
STCK-T average TS, RND-T and STCK-T worst

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

0 0.2 0.4 0.6 0.8 1

ru
n

n
in

g
ti

m
e

(m
s)

σ-step

Running time vs. σ-step

TS CA RND-T STCK-T

Figure 6.11: Synthetic dataset. Summary size, reconstruction error and
running time in a correlated lossy case, α = 0.05.

36

6.5. Results

1

10

100

1000

10000

100000

1000000

0 0.2 0.4 0.6 0.8 1

si
ze

α

Summary size vs. α

TS

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8

er
ro

r

α

Error vs. α

TS average TS worst

0

50

100

150

200

0 0.2 0.4 0.6 0.8 1

ru
n

n
in

g
ti

m
e

(s
)

α

Running time vs. α

TS

Figure 6.12: Large synthetic dataset, 5M nodes, 1M leaves. Summary size,
reconstruction error and running time in a lossy case with different values
of α.

37

Chapter 7

Discussion

7.1 TS Summary Options

In our study, we have chosen to summarize changes as ratios between values
in two snapshots because of the natural normalization which ratios provide.
For example, if the sales of item 1 at a particular store increased from 100 to
150, and the sales of item 2 increased from 1000 to 1500, the change of both
could be summarized as 1.5. While using differences instead of ratios may
not be favorable in this scenario, it may be more favorable in other cases,
e.g., when a user is interested in the absolute change. Similarly, instead
of ratios one could choose to use percentage change or some other change
metric. This provides some flexibility for an analyst to choose what feels
more natural.

7.2 Missing Values

When comparing changes between two snapshots, oftentimes there can be
cases of missing values in one or both of the snapshots. That might happen,
for example, if a store stops selling a particular item, or conversely, intro-
duces a new item to the market. Since it is a very common use case, we
need to specify a mechanism for dealing with missing values.

When values are missing from both snapshots the corresponding sum-
mary node is simply absent in the summary tree and therefore does not
affect the tree. However, when only a single value is missing from a pair of
snapshots it is not clear how change should be calculated. The summary,
however, should still contain information about what values are missing from
the data to present a complete summary. This problem can be addressed
by assigning special values to the nodes with missing information. The spe-
cial values cannot be grouped under any confidence intervals but only by
the same special value. The propagation will then occur in the same way
as described in Section 4. This is a simple way to deal with sparse data.
Since, empirically, sparsity hasn’t shown any interesting insights and none

38

7.3. Multiple Measures Propagation

of the other approaches have described a way to deal with sparsity, we omit
experiments performed on data with missing values.

7.3 Multiple Measures Propagation

There are situations in which one may want to track more than one measure.
For example, an analyst may be interested in a summary that contains both
temperature and pressure or wind speed, to see if there are any interesting
patterns. Similarly, if an analyst looks at the outcomes of some Internet
advertisement, perhaps they would be interested not only in the number of
ad clicks per demographic group, but the number of times a product was
sold after users clicked on the ad.

In that case, we could propagate weights for all measures simultaneously.
The definition of the cost function may be changed as below:

cost(T) =
∑
t∈T

M∑
m=1

[wtm 6= ∅],

where M is the number of measures and wtm is a weight of a tree node t for
measure m.

Instead of charging a unit cost for every measure in a node whose weight
is not 0, another possibility is to charge a cost for each node that has at least
one non-zero weight measure, as defined below. As opposed to the previous
cost function, this cost function encourages measures to find the best weights
jointly, potentially allowing us to see interesting patterns between measures
that could have not arisen previously.

cost(T) =
∑
t∈T

(

M∨
m=1

[wtm 6= ∅]).

Both approaches require more exploration to understand the pros and
cons of using joint versus individual summaries and to see if joint summaries
of multiple measures enable users to see other patterns, such as correlation
between measures.

39

Chapter 8

Conclusions

In this work we study the problem of summarizing multidimensional data.
We proposed an efficient algorithm (TS) that finds optimal tree-embedded
summaries in polynomial time. Our algorithm makes an effective use of
the hierarchical structure of the data by distributing weights along the hi-
erarchies and defining values at the leaf nodes as weights of their closest
weighted ancestors.

We evaluated our approach on real and synthetic data and compared it
to previous approaches and naive tree baselines. We found that TS produces
more concise summaries for three out of four baselines, and for the remaining
baseline (i.e., Cascading Analysts) that produces summaries of an equivalent
size, TS outperforms it in terms of the accuracy of reconstruction.

For future work, we plan to conduct a more detailed study and anal-
ysis of summaries involving multiple measures. It is yet unclear what are
the advantages and disadvantages of each of the two cost functions, briefly
introduced in the previous section. It would be also interesting to see the
utility of such multiple measure summaries and whether or not they enable
discovery of new data patterns, such as inter-measure correlation.

40

Bibliography

[1] Deepak Agarwal, Dhiman Barman, Dimitrios Gunopulos, Neal E.
Young, Flip Korn, and Divesh Srivastava. Efficient and effective ex-
planation of change in hierarchical summaries. In Proceedings of the
13th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’07, pages 6–15, New York, NY, USA, 2007.
ACM.

[2] Shaofeng Bu, Laks V. S. Lakshmanan, and Raymond T. Ng. MDL sum-
marization with holes. In Proceedings of the 31st International Con-
ference on Very Large Data Bases, VLDB ’05, pages 433–444. VLDB
Endowment, 2005.

[3] Kareem El Gebaly, Parag Agrawal, Lukasz Golab, Flip Korn, and Di-
vesh Srivastava. Interpretable and informative explanations of out-
comes. Proc. VLDB Endow., 8(1):61–72, September 2014.

[4] G. Feng, L. Golab, and D. Srivastava. Scalable informative rule min-
ing. In 2017 IEEE 33rd International Conference on Data Engineering
(ICDE), pages 437–448, April 2017.

[5] Rob J. Hyndman and Anne B. Koehler. Another look at measures of
forecast accuracy. International Journal of Forecasting, 22(4):679 – 688,
2006.

[6] H. V. Jagadish, J. Madar, and Raymond T. Ng. Semantic compres-
sion and pattern extraction with fascicles. In Proceedings of the 25th
International Conference on Very Large Data Bases, VLDB ’99, pages
186–198, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers
Inc.

[7] Manas Joglekar, Hector Garcia-Molina, and Aditya Parameswaran.
Smart drill-down: A new data exploration operator. Proc. VLDB En-
dow., 8(12):1928–1931, August 2015.

41

Bibliography

[8] Howard J. Karloff, Flip Korn, Konstantin Makarychev, and Yuval Ra-
bani. On parsimonious explanations for 2-d tree- and linearly-ordered
data. In Thomas Schwentick and Christoph Dürr, editors, 28th Interna-
tional Symposium on Theoretical Aspects of Computer Science, STACS
2011, March 10-12, 2011, Dortmund, Germany, volume 9 of LIPIcs,
pages 332–343. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2011.

[9] Laks V. S. Lakshmanan, Raymond T. Ng, Christine Xing Wang, Xi-
aodong Zhou, and Theodore J. Johnson. The generalized MDL ap-
proach for summarization. In Proceedings of the 28th International Con-
ference on Very Large Data Bases, VLDB ’02, pages 766–777. VLDB
Endowment, 2002.

[10] Laks V. S. Lakshmanan, Jian Pei, and Jiawei Han. Quotient cube: How
to summarize the semantics of a data cube. In Proceedings of the 28th
International Conference on Very Large Data Bases, VLDB ’02, pages
778–789. VLDB Endowment, 2002.

[11] Daniel T. Larose. Discovering Knowledge in Data: An Introduction to
Data Mining. Wiley-Interscience, New York, NY, USA, 2004.

[12] Alberto O. Mendelzon and Ken Q. Pu. Concise descriptions of sub-
sets of structured sets. In Proceedings of the Twenty-second ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS ’03, pages 123–133, New York, NY, USA, 2003. ACM.

[13] Matthias Ruhl, Mukund Sundararajan, and Qiqi Yan. The cascading
analysts algorithm. In Proceedings of the 2018 International Conference
on Management of Data, SIGMOD ’18, pages 1083–1096, New York,
NY, USA, 2018. ACM.

[14] Sunita Sarawagi. Explaining differences in multidimensional aggregates.
In Proceedings of the 25th International Conference on Very Large Data
Bases, VLDB ’99, pages 42–53, San Francisco, CA, USA, 1999. Morgan
Kaufmann Publishers Inc.

[15] Sunita Sarawagi. User-cognizant multidimensional analysis. The VLDB
Journal, 10(2-3):224–239, September 2001.

[16] Sunita Sarawagi, Rakesh Agrawal, and Nimrod Megiddo. Discovery-
driven exploration of OLAP data cubes. In Proceedings of the 6th In-
ternational Conference on Extending Database Technology: Advances

42

Bibliography

in Database Technology, EDBT ’98, pages 168–182, Berlin, Heidelberg,
1998. Springer-Verlag.

[17] Sunita Sarawagi and Gayatri Sathe. I3: Intelligent, interactive investi-
gation of OLAP data cubes. SIGMOD Rec., 29(2):589–, May 2000.

[18] Yannis Sismanis, Antonios Deligiannakis, Nick Roussopoulos, and Yan-
nis Kotidis. Dwarf: Shrinking the petacube. In Proceedings of the 2002
ACM SIGMOD International Conference on Management of Data,
SIGMOD ’02, pages 464–475, New York, NY, USA, 2002. ACM.

[19] U.S. Census Bureau. Sex by age by educational attainment for the
population 18 years and over (B15001), 2016-2017 American community
survey 1-year estimates. Data retrieved from American FactFinder,
https://factfinder.census.gov/.

[20] Jeffrey Scott Vitter and Min Wang. Approximate computation of mul-
tidimensional aggregates of sparse data using wavelets. SIGMOD Rec.,
28(2):193–204, June 1999.

[21] Jeffrey Scott Vitter, Min Wang, and Bala Iyer. Data cube approx-
imation and histograms via wavelets. In Proceedings of the Seventh
International Conference on Information and Knowledge Management,
CIKM ’98, pages 96–104, New York, NY, USA, 1998. ACM.

[22] Y. Wen, X. Zhu, S. Roy, and J. Yang. Interactive Summarization and
Exploration of Top Aggregate Query Answers. ArXiv e-prints, July
2018.

43

https://factfinder.census.gov/

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Figures
	Acknowledgements
	Introduction
	Example
	Alternative Summary Methods
	Contributions

	Related Work
	Lossless Reconstruction Summaries
	Lossy Reconstruction Summaries
	Identifying Extreme Aggregates
	Summarizing All Aggregates
	Other

	Problem Definition
	Preliminaries
	Problem Statement
	Lossless Case
	Lossy Case

	Algorithm
	Node Annotation
	Summary Construction
	Example
	Lossy Case

	Theoretical Analysis
	Run-time Analysis
	Optimality Analysis

	Empirical Evaluation
	Baselines
	Measuring Reconstruction Error
	Setup
	Datasets
	US Census Educational Attainment Data
	Synthetic Data

	Results
	Lossless Case
	Lossy Case
	Scalability

	Discussion
	TS Summary Options
	Missing Values
	Multiple Measures Propagation

	Conclusions
	Bibliography

