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Abstract

The performance density of modern hardware has forced the sharing of

hardware resources across applications for better utilization and efficiency.

Shared infrastructure, however, weakens isolation and risks interference,

which can result in degraded performance and security breaches. This the-

sis explores the tension between isolation and sharing with three prototype

systems: Xoar, Plastic, and Decibel. All three of these systems demonstrate

the value of software mediation in providing isolation on shared hardware

without sacrificing either hardware resource utilization or the performance

of the underlying devices.

Xoar, Plastic, and Decibel provide isolation for different hardware re-

sources: Xoar strengthens isolation between virtual machines, thereby al-

lowing underutilized processors to be shared; Plastic transparently mitigates

poor cache utilization and the performance artifacts caused by insufficient

cache line isolation across cores; and Decibel provides isolation in shared

non-volatile storage and guarantees throughput, even in the face of com-

peting workloads.
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Lay Summary

Computer hardware has become significantly faster and more capable over

the last decade. At the same time, the requirements of most software ap-

plications have not increased at nearly the same rate; consequently, a mod-

ern high-performance server running only a single application will remain

mostly idle. To combat this inefficiency, modern hardware is usually shared

across multiple applications. Unfortunately, while this sharing increases ef-

ficiency, it also increases the potential for applications to interfere with each

other. This thesis explores techniques to provide isolation on top of shared

hardware and describes systems that enable high resource utilization on

modern servers while benefiting applications by providing them access to

shared and isolated hardware resources at performance comparable to ded-

icated hardware.
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Chapter 1

Introduction

Modern server systems are extremely resource-dense. A high-end server to-

day contains tens to hundreds of cores, terabytes of memory, gigabits of

network bandwidth, and hundreds of terabytes of storage. As these re-

sources often outstrip the requirements of a single application, the desire

for efficient resource utilization necessitates sharing.

The need for sharing is most readily apparent in the case of datacenters.

Over the last several years, the demands of providing millions of users with

fast, reliable access to large Internet applications, such as Netflix, Dropbox,

and Spotify, has lead to these applications being developed as two distinct

parts: an application-specific component for handling user requests, and a

generic, infrastructure component that manages hardware resources to en-

sure the performance and availability of the application. This separation

has been formalized into separate businesses, with cloud providers, such

as Amazon, Microsoft, and Google, embracing the common operational as-

pects and developing and hosting managed infrastructure which presents

the abstraction of infinite, low-latency, always-available resources for these

applications to build on.

Public cloud providers host tens of thousands of competing applications

which have highly elastic resource requirements, and expect steady per-

formance and availability, even while scaling up and down. Datacenter

economics require that resources be shared across these applications, and

1



that providers rely on statistical multiplexing for efficient resource utiliza-

tion and to absorb sudden surges in demand for any application. Conversely,

shared infrastructure risks interference that results in degraded performance

or even a complete denial of service: applications that consume more than

their fair share of any resource affect all other applications sharing those

resources. Even more consequentially, information disclosure achieved by

exploiting the underlying platform or data leakage via shared hardware

channels can impact the confidentiality of applications.

This is not solely an issue at the scale of datacenters. As individual

servers become more powerful, sharing resources is inevitable even in small,

single-owner deployments. While having a single ownership domain may

ameliorate the security concerns around sharing, performance isolation is

still necessary to ensure that applications do not inadvertently impact one

another due to greedy, wasteful, or simply a flawed use of shared resources.

This represents a Catch-22: on the one hand, it is imperative to share

resources as a means of deriving value from fast and expensive hardware

resources. On the other, sacrificing isolation between applications through

sharing increases the likelihood of outages and breaches. This thesis targets

such resource-dense deployments and asserts that it is the responsibility of

the platform to resolve this tension and that it can provide both security and

performance isolation on shared hardware, while preserving the performance

of the underlying hardware and supporting existing applications with little to

no modification, through the proactive management of all shared resources.

The thesis explores this idea using three projects. Xoar [35] increases se-

curity and cross-tenant isolation for co-located virtual machines by reducing

the amount of trusted code in the virtualization platform, and by making all

resource sharing explicit. Plastic [117] targets compute cycles wasted due

to unnecessary memory contention and transparently mitigates false shar-

ing by forcing a cache-aware layout for hot data. Decibel [118] provides

isolation in consolidated storage and allows remote tenants to safely share

fast, non-volatile devices across remote tenants with low overhead.

The following three chapters are taken from the published versions of

the projects described above. As each chapter has been taken from an inde-
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pendent conference paper, it describes a system in isolation. The remainder

of this chapter is an attempt to contextualize these projects with an eye to

the broader research goals of the thesis.

1.1 Xoar (SOSP 2011)

Virtualization has been at the forefront of the shift towards consolidated

hardware by allowing providers to lease small slices of large-scale datacen-

ter resources to individual customers and to co-locate applications encap-

sulated within individual virtual machines. Virtualization not only balances

the operational efficiency required by providers with the need to present

applications the illusion of dedicated hardware, but also allows providers to

offer additional functionality, such as the ability to clone existing machines,

or automatically migrate them in response to hardware failures. This clean

separation of hosted applications from the underlying hardware is responsi-

ble for the popularity of virtual machines in cloud computing today.

Underlying this popularity is the trust that the provider’s virtualization

platform is secure enough to isolate co-located applications—a belief mostly

predicated on the relatively modest footprint of processor hypervisors and

the narrow interface they expose to virtual machines. Despite this, virtu-

alization platforms remain vulnerable as they are required to trust several

components in addition to the hypervisor. As an example, Xen relies on

a privileged commodity OS (typically an entire Linux or BSD instance) for

hardware support, device emulation, and the administrative and manage-

ment tool stack. This privileged OS has been a significant source of security

disclosures and vulnerabilities.

Xoar is a virtualization platform, based on Xen, that retrofits the mod-

ularity and isolation principles used in microkernels onto an existing plat-

form with little performance overhead. Designed as a drop-in replacement

for Xen, it does not require existing functionality to be sacrificed, operating

systems and applications to be modified, or components of the platform to

be rewritten from scratch.

Xoar deconstructs the privileged commodity OS in Xen into a set of

3



single-purpose components, each of which are restricted to the least priv-

ilege necessary, and have well-defined interfaces with tenant virtual ma-

chines, making any sharing of components explicit. Xoar allows providers

to log and audit tenants relying on these shared services, while tenants are

able to precisely specify the degree of sharing they are comfortable with and

opt-out of any disagreeable sharing configuration.

1.2 Plastic (EuroSys 2013)

Application performance is largely determined by memory latency, with pro-

cessors remaining idle for increasingly large fractions of execution waiting

for code and data to be loaded from memory [48, 82]. This has lead to

the development of complex, multi-level memory hierarchies with several

different types of caches that allow processors to mask access latencies for

frequently accessed data. While the number, size, latency, and exclusiv-

ity of caches vary across microarchitectures, they are largely a transparent,

hardware-managed performance optimization on modern server processors.

As hardware parallelism continues to increase, the degree of cache con-

tention rises dramatically. Cross-core contention takes multiple forms de-

pending on the workload and the microarchitecture; for instance, different

applications may compete for capacity in a shared cache, while multiple ap-

plications, or even threads within the same one, may compete for ownership

of specific cache lines containing shared data structures. As memory layouts

and access patterns affect contention, the hardware is unable to transpar-

ently provide either efficient cache utilization or workload isolation, and it

becomes the responsibility of the platform to treat caches like other shared

hardware resources, and manage them appropriately.

Plastic focuses on a particular class of memory contention called false

sharing, that occurs due to contention over a single cache line at the mi-

croarchitectural level. Architectural instruction sets isolate memory at the

granularity of a single byte or word, whereas the cache controller oper-

ates on entire cache lines. This granularity mismatch sometimes results in

specific data layouts where applications accessing discrete, unshared mem-
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ory locations trigger accesses to the same underlying shared cache line and

cause microarchitectural contention that impacts performance.

Broadly speaking, there are two approaches to mitigating false sharing:

modifying data layouts to remove contention, or modifying access patterns

to reduce the frequency of contention to the point that it is no longer detri-

mental to application performance. Plastic takes the former approach and is

capable of rapidly detecting, precisely identifying, and transparently repair-

ing false sharing in unmodified, running applications with little overhead by

remapping contended memory regions to independent cache lines.

Fine-grained memory virtualization using hardware extensions has been

explored extensively in Mondriaan [162]. Plastic provides a similar generic

memory virtualization facility, for sub-page granularity remapping, entirely

in software, and fronts it with a memory contention detector. The detection

and remapping-based strategy for false sharing adopted by Plastic is not

restricted to the platform, and has subsequently been used within language

runtimes to resolve instances of false sharing by leveraging the ability of the

runtime environment to pad and move existing live data structures [45].

1.3 Decibel (NSDI 2017)

Despite the arrival of high-speed, non-volatile storage devices in datacen-

ters, applications today are forced to pick between one of two extremes:

managed block storage that is a shared, globally accessible resource, but

is extremely limited in the performance guarantees it offers, and direct-

attached local storage devices that mirror the performance of the underlying

device, but are tightly coupled to a single host, cannot be shared, and are

only suitable for temporary storage. While applications have traditionally

opted for the simplicity of managed storage, the differences in absolute per-

formance and predictability of these storage classes have resulted in several

datacenter infrastructure applications, such as Cassandra and Kafka, opting

for direct-attached storage [37, 93, 109], despite its obvious shortcomings.

Disaggregating storage into a rack- or cluster-shared resource implicitly

decouples storage from a single host and presents system designers an op-
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portunity to offer these applications a useful new class of fast, shared stor-

age. Instead, early designs integrating disaggregated storage have focused

entirely on speed and produced specialized systems capable of driving stor-

age devices to the very edge of their performance envelope, at the cost of

functionality important for application-facing storage abstractions.

One such casualty is isolation: several of these systems bypass the pro-

cessor and software stack on the storage server entirely and expose devices

directly over low-latency hardware interconnects to applications [5, 30, 46].

By directly sharing physical devices, they lack the ability to interpose on ac-

cesses and require additional hardware support and complicated distributed

data paths to provide virtualization and performance isolation [68].

Decibel studies the functionality storage abstractions should provide these

applications and the feasibility of doing so using commodity networking and

storage hardware. It is predicated on the belief that, for multi-tenant stor-

age, as long as performance can be maintained, the operational simplicity

of centralizing control and enforcing isolation policies by mediating access

to storage using locally-attached compute is valuable.

To achieve this, Decibel proposes a lightweight storage abstraction that

resembles a virtualized network-attached disk, but focuses solely on pro-

viding isolation for shared devices, and demonstrates a runtime capable of

serving this isolated storage to remote tenants within a single rack over com-

modity Ethernet-based networking at a throughput and latency comparable

to local devices.
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Chapter 2

Breaking Up is Hard to Do:

Security and Functionality in a

Commodity Hypervisor

2.1 Introduction

Datacenter computing has shifted the criteria for evaluating system design

from one that prioritizes peak capacity and offered load, to one that empha-

sizes the efficiency with which computing is delivered [4, 9, 155, 160]. This

is particularly true for cloud hosting providers, who are motivated to reduce

costs and therefore to multiplex and over-subscribe their resources as much

as possible while still meeting customer service level objectives (SLOs).

While the efficiency of virtualization platforms remains a primary factor

in their commercial success, their administrative features and benefits have

been equally important. For example, hardware failures are a fact of life for

large hosting environments; such environments rely on functionality such as

live VM migration [33] for planned hardware replacements as well as un-

expected failures [22, 38]. Hardware diversity is also inevitable in a large

hosting facility; the use of hardware emulation and unified virtual devices

means that a single VM image can be hosted on hardware throughout the
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User A’s VM

Hypervisor

Control VM
aka Domain 0

User B’s VM

Monolithic Trust Domain

Administrative Tools

Live Migration

Device Drivers

Device Emulation

Trap/Hypercall API
Individual “Service” APIs

Administrative Network

Figure 2.1: The control VM is often a full operating system install, has privi-
lege similar to the hypervisor, and offers multiple services over numerous
interfaces to guest VMs.

facility without the need for device driver upgrades within customer VMs.

Administrative benefits aside, the largest reason for the success of virtualiza-

tion may be that it requires little or no change to existing applications. These

three factors (resource utilization, administrative features, and the support

of existing software) have allowed the emergence of large-scale hosting plat-

forms, such as those offered by Amazon and Rackspace, that customers can

trust to securely isolate their hosted virtual machines from those of other

tenants despite physical co-location on the same physical hardware.

Are hypervisors worthy of this degree of trust? Proponents of virtu-

alization claim that the small trusted computing base (TCB) and narrow

interfaces afforded by a hypervisor provide strong isolation between the

software components that share a host. In fact, the TCB of a mature vir-

tualization platform is larger than that of a conventional server operating

system. Even Type-1 hypervisors, such as Xen [8] and Hyper-V [84], rely

on a privileged OS to provide additional shared services, such as drivers

for physical devices, device emulation, and administrative tools. While the

external interfaces to these services broaden the attack surface exposed to

customer VMs, the internal interfaces between components within that OS
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are not as narrow or as carefully protected as those between components of

the hypervisor itself. This large control VM is the “elephant in the room”,

often ignored in discussing the security of these systems.

While TCB size may not be a direct representation of risk, the shared

control VM is a real liability for these systems. In Xen, for instance, this con-

trol VM houses a smorgasbord of functionality: device emulation and mul-

tiplexing, system boot, administrative toolstack, etc. Each of these services

is presented to multiple customer VMs over different, service-specific inter-

faces (see Figure 2.1). As these services are all part of a single monolithic

TCB, a compromise of any of them places the entire platform in danger.

The history of OS development shows us how to address the problem of a

large TCB: break it into smaller pieces, isolate those pieces from each other,

and reduce each one to the least privilege consistent with its task [149].

However, the history of OS deployment demonstrates that “secure by de-

sign” OSes often generate larger communities of readers than developers

or users. In this vein, from-scratch hypervisors [136, 139, 145] have shown

that particular security properties can be achieved by rearchitecting the plat-

form, but they do not provide the rich set of features necessary for deploy-

ment in commercial hosting environments.

The work described in this chapter avoids this compromise: we address

the monolithic TCB presented by the control VM without reducing function-

ality. Instead, we hold the features of a mature, deployed hypervisor as a

baseline and harden the underlying TCB. Our approach is to incorporate

stronger isolation for the existing components in the TCB, increasing our

ability to control and reason about exposure to risk. While full functionality

is necessary, it is not sufficient for commercial deployment. Our approach

adds only a small amount of performance overhead compared to our start-

ing point full-featured virtualization platform.

2.1.1 Contributions

The primary contribution of this chapter is to perform a component-based

disaggregation of a mature, broadly deployed virtualization platform in a
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manner that is practical to incorporate and maintain. Our work takes ad-

vantage of a number of well-established mechanisms that have been used

to build secure and reliable systems: the componentization of microkernels,

freshening of component state using microreboots [27], and the use of re-

covery boxes [6] to allow a small set of explicitly designated state to survive

reboots. The insight in this work is that these techniques can be applied

to an existing system along the boundaries that already exist between pro-

cesses and interfaces in the control VM.

We describe the challenges of decomposing Xen’s control VM into a set of

nine classes of service VMs while maintaining functional, performance, and

administrative parity. The resulting system, which we have named Xoar,

demonstrates a number of interesting new capabilities that are not possible

without disaggregation:

• Disposable Bootstrap. Booting the physical computer involves a great

deal of complex, privileged code. Xoar isolates this functionality in

special purpose service VMs and destroys these VMs before the system

begins to serve users. Other Xoar components are microrebooted to

known-good snapshots, allowing developers to reason about a specific

software state that is ready to handle a service request.

• Auditable Configurations. As the dependencies between customer

VMs and service VMs are explicit, Xoar is able to record a secure audit

log of all configurations that the system has been placed in as con-

figuration changes are made. We show that this log can be treated

as a temporal database, enabling providers to issue forensic queries,

such as asking for a list of VMs that depended on a known-vulnerable

component.

• Hardening of Critical Components. While a core goal of our work

has been to minimize the changes to source in order to make these

techniques adoptable and maintainable, some critical components are

worthy of additional attention. We identify XenStore, Xen’s service

for managing configuration state and inter-VM communication, as a
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sensitive and long-running component that is central to the security of

the system. We show how isolation and microreboots allow XenStore

to be rearchitected in a manner whereby an attacker must be capable

of performing a stepping-stone attack across two isolated components

in order to compromise the service.

We believe that Xoar represents a real improvement to the security of

these important systems, in a manner that is practical to incorporate today.

After briefly describing our architecture, we present a detailed design and

implementation. We end by discussing the security of the system and evalu-

ate the associated performance costs.

2.2 TCBs, Trust, and Threats

This section describes the TCB of an enterprise virtualization platform and

articulates our threat model. It concludes with a classification of relevant

existing published vulnerabilities as an indication of threats that have been

reported in these environments.

TCBs: Trust and Exposure: The TCB is classically defined as “the totality

of protection mechanisms within a computer system—including hardware,

firmware, and software—the combination of which is responsible for en-

forcing a security policy” [1]. In line with existing work on TCB reduction,

we define the TCB of a subsystem S as “the set of components that S trusts

not to violate the security of S” [69, 116].

Enterprise virtualization platforms, such as Xen, VMware ESX, and Hyper-

V, are responsible for the isolation, scheduling, and memory management of

guest VMs. Since the hypervisor runs at the highest privilege level, it forms,

along with the hardware, part of the system’s TCB.

Architecturally, these platforms rely on additional components. Device

drivers and device emulation components manage and multiplex access to

I/O hardware. Management toolstacks are required to actuate VMs run-

ning on the system. Further components provide virtual consoles, configu-

ration state management, inter-VM communication, and so on. Commodity
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virtualization platforms, such as the ones mentioned above, provide all of

these components in a monolithic domain of trust, either directly within

the hypervisor or within a single privileged virtual machine running on it.

Figure 2.1 illustrates an example of this organization as implemented in

Xen.

A compromise of any component in the TCB affords the attacker two

benefits. First, they gain the privileges of that component, such as access to

arbitrary regions of memory or control of hardware. Second, they can access

its interfaces to other elements of the TCB, which allows them to attempt to

inject malicious requests or responses over those interfaces.

Example Attack Vectors: We analyzed the CERT vulnerability database and

VM-ware’s list of security advisories, identifying a total of 44 reported vul-

nerabilities in Type-1 hypervisors.1 Of the reported Xen vulnerabilities, 23

originated from within guest VMs, 11 of which were buffer overflows al-

lowing arbitrary code execution with elevated privileges, while the other

eight were denial-of-service attacks. Classifying by attack vector showed 14

vulnerabilities in the device emulation layer, with another two in the virtual-

ized device layer. The remainder included five in management components

and only two hypervisor exploits. 21 of the 23 attacks outlined above are

against service components in the control VM.

Threat Model: We assume a well-managed and professionally administered

virtualization platform that restricts access to both physical resources and

privileged administrative interfaces. That is, we are not concerned with

the violation of guest VM security by an administrator of the virtualization

service. There are business imperatives that provide incentives for good

behavior on the part of hosting administrators.

There is no alignment of incentives, however, for the guests of a hosting

service to trust each other, and this forms the basis of our threat model. In
1There were a very large number of reports relating to Type-2 hypervisors, most of which

assume the attacker has access to the host OS and compromises known OS vulnerabilities—
for instance, using Windows exploits to compromise VMware Workstation. These attacks are
not representative of our threat model and are excluded.
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a multi-tenancy environment, since guests may be less than well adminis-

tered and exposed to the Internet, it is prudent to assume that they may

be malicious. Thus, the attacker in our model is a guest VM aiming to vi-

olate the security of another guest with whom it is sharing the underlying

platform. This includes violating the data integrity or confidentiality of the

target guest or exploiting the code of the guest.

While we assume that the hypervisor of the virtualization platform is

trusted, we also assume that the code instantiating the functionality of the

control VM will contain bugs that are a potential source of compromise.

Note that in the case of a privileged monolithic control VM, a successful

attack on any one of its many interfaces can lead to innumerable exploits

against guest VMs. Rather than exploring techniques that might allow for

the construction of a bug-free platform, our more pragmatic goal is to pro-

vide an architecture that isolates functional components in space and time

so that an exploit of one component is not sufficient to mount a successful

attack against another guest or the underlying platform.

2.3 Architecture Overview

Before explaining the design goals behind Xoar, it is worth providing a high-

level overview of the components to help clarify the complexities of the con-

trol plane in a modern hypervisor and to establish some of the Xen-specific

terminology that is used throughout the remainder of the chapter. While our

implementation is based on Xen, other commercial Type-1 hypervisors, such

as those offered by VMware and Microsoft, have sufficiently similar struc-

tures that we believe the approach presented in this chapter is applicable to

them as well.

2.3.1 The Xen Platform

The Xen hypervisor relies on its control VM, Dom0, to provide a virtualized

I/O path and host a system-wide registry and management toolstack.

13



Device Drivers: Xen delegates the control of PCI-based peripherals, such as

network and disk controllers, to Dom0, which is responsible for exposing a

set of abstract devices to guest VMs. These devices may either be virtualized,

passed through, or emulated.

Virtualized devices are exposed to customer VMs using a “split driver”

model [51]. A backend driver, having direct control of the hardware, ex-

poses virtualized devices to frontend drivers in the guest VMs. Frontend and

backend drivers communicate over a shared memory ring, with the backend

multiplexing requests from several frontends onto the underlying hardware.

Xen is involved only in enforcing access control for the shared memory and

passing synchronization signals. Access Control Lists (ACLs) are stored in

the form of grant tables, with permissions set by the owner of the memory.

Alternatively, Xen uses direct device assignment to allow VMs other than

Dom0 to directly interface with passed-through hardware devices. Dom0

provides a virtual PCI bus, using a split driver, to proxy PCI configuration

and interrupt assignment requests from the guest VM to the PCI bus con-

troller. Device-specific operations are handled directly by the guest. Direct

assignment can be used to move physical device drivers out of Dom0, in

particular for PCI hardware that supports hardware-based IO virtualization

(SR-IOV) [94].

Unmodified commodity OSes, on the other hand, expect to run on a

standard hardware platform with a BIOS and specific hardware components

that are supported with pre-packaged device drivers. In the absence of these

components, the platform can be emulated entirely in software. In Xen,

this device emulation layer is provided by a per-guest Qemu [13] instance,

running either as a Dom0 process or in its own VM [154]. It has privileges

to map any page of the guest’s memory in order to emulate DMA operations.

XenStore: XenStore is a hierarchical key-value store that acts as a system-

wide registry and naming service. It also provides a “watch” mechanism

that notifies registered listeners of any modifications to particular keys in

the store. Device drivers and the toolstack make use of this for inter-VM

synchronization and device setup.
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XenStore runs as a Dom0 process and communicates with other VMs via

shared memory rings. Since it is required in the creation and boot-up of a

VM, it relies on Dom0 privileges to access shared memory directly, rather

than using grant tables.

Despite the simplicity of its interface with VMs, the complex, shared

nature of XenStore makes it vulnerable to DoS attacks if a VM monopolizes

its resources [34]. Because it is the central repository for configuration state

in the system and virtually all components in the system depend on it, it

is a critical component from a security perspective. Exploiting XenStore

allows an attacker to deny service to the system as a whole and to perform

most administrative operations, including starting and stopping VMs, and

possibly abusing interfaces to gain access to guest memory or other guest

VMs.

Other systems (including previous versions of Xen) have used a com-

pletely message-oriented approach, either as a point-to-point implementa-

tion or as a message bus. Having implemented all of these at various points

in the past (and some of them more than once), our experience is that they

are largely isomorphic with regard to complexity and decomposability.

Toolstack: The toolstack provides administrative functions for the manage-

ment of VMs. It is responsible for creating, destroying, and managing the

associated resources and privileges of VMs. Creating a VM requires Dom0

privileges to map guest memory to load a kernel or virtual BIOS and to set

up initial communication channels with XenStore and the virtual console.

In addition, the toolstack registers newly created guests with XenStore.

System Boot: In a traditional Xen system, the boot process is simple: the

hypervisor creates Dom0 during boot-up, which proceeds to initialize hard-

ware and bring up devices and their associated backend drivers. XenStore

is started before any guest VM is created.
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Figure 2.2: Architecture of Xoar. The figure above shows all the classes of service VMs along with the dependencies
between them. For clarity, ephemeral dependencies (e.g., between the Builder and the VMs that it builds) are not
shown. As suggested in the figure, a Qemu service VM is instantiated for the lifetime of each guest.
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2.3.2 Xoar

Figure 2.2 shows the architecture of Xoar, and will be referred to throughout

the remainder of this chapter. In Xoar, the functionality of Xen’s control

VM has been disaggregated into nine classes of service VMs, each of which

contains a single-purpose piece of control logic that has been removed from

the original monolithic control VM. As is the case with the monolithic TCB,

some components may have multiple instances, each serving different client

VMs.

That these individual components may be instantiated more than once

is important, as it allows them to be used as flexible building blocks in the

deployment of a Xoar-based system. Figure 2.2 shows a single instance of

each component other than the QemuVM. Later in the chapter we will de-

scribe how multiple instances of these components, with differing resource

and privilege assignments, can partition and otherwise harden the system

as a whole.

From left to right, we begin with two start-of-day components that are

closely tied to booting the hypervisor itself, Bootstrapper and PCIBack. These

components bring up the physical platform and interrogate and configure

hardware. In most cases this functionality is required only when booting

the system and so these components are destroyed before any customer

VMs are started. This is a useful property in that platform drivers and PCI

discovery represent a large volume of complex code that can be removed

prior to the system entering a state where it may be exposed to attacks.

While PCIBack is logically a start-of-day component, it is actually created

after XenStore and Builder. XenStore is required to virtualize the PCI bus

and the Builder is the only component capable of creating new VMs on the

running system. PCIBack uses these components to create device driver VMs

during PCI device enumeration by using udev rules [92].

Three components are responsible for presenting platform hardware that

is not directly virtualized by Xen. BlkBack and NetBack expose virtualized

disk and network interfaces and control the specific PCI devices that have

been assigned to them. For every guest VM running an unmodified OS, there
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is an associated QemuVM responsible for device emulation.

Once the platform is initialized, higher-level control facilities like the

Toolstacks are created. The Toolstacks request the Builder to create guest

VMs. As a control interface to the system, toolstacks are generally accessed

over a private enterprise network, isolated from customer VM traffic.

As in Xen, a VM is described using a configuration file that is provided

to the toolstack. This configuration provides runtime parameters such as

memory and CPU allocations, and also device configurations to be provided

to the VM. When a new VM is to be created, the toolstack parses this con-

figuration file and writes the associated information into XenStore. Other

components, such as driver VMs, have watches registered which are trig-

gered by the build process, and configure connectivity between themselves

and the new VM in response. While Xoar decomposes these components

into isolated virtual machines, it leaves the interfaces between them un-

changed; XenStore continues to be used to coordinate VM setup and tear

down. The major difference is that privileges, both in terms of access to

configuration state within XenStore and access to administrative operations

in the hypervisor, are restricted to the specific service VMs that need them.

2.4 Design

In developing Xoar, we set out to maintain functional parity with the orig-

inal system and complete transparency with existing management and VM

interfaces, including legacy support, without incurring noticeable overhead.

This section discusses the approach that Xoar takes, and the properties that

were considered in selecting the granularity and boundaries of isolation.

Our design is motivated by these three goals:

1. Reduce privilege Each component of the system should have only

the privileges essential to its purpose; interfaces exposed by a compo-

nent, both to dependent VMs and to the rest of the system, should be

the minimal set necessary. This confines any successful attack to the

limited capabilities and interfaces of the exploited component.
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2. Reduce sharing Sharing of components should be avoided wherever

it is reasonable; whenever a component is shared between multiple

dependent VMs, this sharing should be made explicit. This enables

reasoning and policy enforcement regarding the exposure to risk in-

troduced by depending on a shared component. It also allows ad-

ministrators to securely log and audit system configurations and to

understand exposure after a compromise has been detected.

3. Reduce staleness A component should only run for as long as it needs

to perform its task; it should be restored to a known good state as

frequently as practicable. This confines any successful attack to the

limited execution time of the exploited component and reduces the

execution state space that must be tested and evaluated for correct-

ness.

To achieve these goals, we introduce an augmented version of the virtual

machine abstraction: the service VM. Service VMs are the units of isolation

that host the service components of the control VM. They differ from con-

ventional virtual machines in that only service VMs can receive any extra

privilege from the hypervisor or provide services to other VMs. They are

also the only components that can be shared in the system, aside from the

hypervisor itself.

Service VMs are entire virtual machines, capable of hosting full OSes

and application stacks. Individual components of the control VM, which are

generally either driver or application code, can be moved in their entirety

out of the monolithic TCB and into a service VM. The hypervisor naturally

assigns privilege at the granularity of the tasks these components perform.

As such, there is little benefit, and considerable complexity, involved in finer-

grained partitioning.

Components receiving heightened privilege and providing shared ser-

vices are targets identified by the threat model discussed in Section 2.2. By

explicitly binding their capabilities to a VM, Xoar is able to directly harden

the riskiest portions of the system and provide service-specific enhance-

ments for security. The remainder of this section discusses the design of
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assign_pci_device (PCI_domain, bus, slot)
permit_hypercall (hypercall_id)
allow_delegation (guest_id)

Figure 2.3: Privilege Assignment API

Xoar with regard to each of these three goals.

2.4.1 Privilege: Fracture the Monolithic TCB

A service VM is designated as such using a serviceVM block in a VM config

file. This block indicates that the VM should be treated as an isolated com-

ponent and contains parameters that describe its capabilities. Figure 2.3

shows the API for the assignment of the three privilege-related properties

that can be configured: direct hardware assignment, privileged hypercalls,

and the ability to delegate privileges to other VMs on creation.

Direct hardware assignment is already supported by many x86 hypervi-

sors, including Xen. Given a PCI domain, bus, and slot number, the hyper-

visor validates that the device is available to be assigned and is not already

committed to another VM, then allows the VM to control the device directly.

Hypercall permissions allow a service VM access to some of the privi-

leged functionality provided by the hypervisor. The explicit white-listing of

hypercalls beyond the default set available to guest VMs allows for least-

privilege configuration of individual service VMs. These permissions are

translated directly into Flask [144], a flexible, fine-grained policy engine

that assigns roles to different service VMs and restricts their ability to make

privileged hypercalls, and installed into the hypervisor.

Access to resources is restricted by delegating service VMs to only those

Toolstacks allowed to utilize those resources to support newly created VMs.

Attempts to use undelegated service VMs are blocked by the hypervisor, en-

abling coarse-grained partitioning of resources. In the private cloud ex-

ample presented at the end of this section, each user is assigned a private

Toolstack, with delegated service VMs, and has exclusive access to the un-

derlying hardware.
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resource = [ provider, parameters,
constraint_group=tag ]

Figure 2.4: Constraint Tagging API

2.4.2 Sharing: Manage Exposure

Isolating the collection of shared services in service VMs confines and re-

stricts attacks and allows an explicit description of the relationships between

components in the system. This provides a clear statement of configura-

tion constraints to avoid exposure to risk and enables mechanisms to reason

about the severity and consequences of compromises after they occur.

Configuration Constraints: A guest can provide constraints on the service

VMs that it is willing to use. At present, a single constraint is allowed,

as shown in Figure 2.4. The constraint_group parameter provides an

optional user-specified tag and may be appended to any line specifying a

shared service in the VM’s configuration. Xoar ensures that no two VMs

specifying different constraint groups ever share the same service VM.

Effectively, this constraint is a user-specified coloring that prevents shar-

ing. By specifying a tag on all of the devices of their hosted VMs, users can

insist that they be placed in configurations where they only share service

VMs with guest VMs that they control.

Secure Audit: Xoar borrows techniques from past forensics systems such as

Taser [54]. The coarse-grained isolation and explicit dependencies provided

by service VMs makes these auditing approaches easier to apply. Whenever

the platform performs a guest-related configuration change (e.g., the cre-

ation, deletion, pausing, or unpausing of a VM), Xoar logs the resulting

dependencies to an off-host, append-only database over a secure channel.

Currently, we use the temporal extension for Postgres.

Two simple examples show the benefit of this approach. First, the top

query in Figure 2.5 determines which customers could be affected by the

compromise of a service VM by enumerating VMs that relied on that par-

ticular service VM at any point during the compromise. Second, providers
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SELECT e1, e2 FROM log e1, log e2 WHERE
e1.name = e2.name AND
e1.action = ’create’ AND
e2.action = ’destroy’ AND
e1.dependency = ’NameOfCompromisedNetBack’ AND
overlaps(period_intersect(e1.time, e2.time),

compromise_period);

SELECT e1.name FROM log e1 WHERE
e1.dependency = ’NetBack’ AND
e1.dependency_version = vulnerable_version;

Figure 2.5: Temporal queries which search for guest VMs that depended on a
service VM that was compromised (top) or vulnerable (bottom).

frequently roll out new versions of OS kernels and in the event that a vul-

nerability is discovered in a specific release of a service VM after the fact,

the audit log can be used to identify all guest VMs that were serviced by it.

2.4.3 Staleness: Protect VMs in Time

The final feature of service VMs is a facility to defend the temporal attack

surface, preserving the freshness of execution state through the use of peri-

odic restarts. This approach takes advantage of the observation from work

on microreboots and “crash-only software” [27] that it is generally easier to

reason about a program’s correctness at the start of execution rather than

over long periods of time.

Microreboots: Virtual machines naturally support a notion of rebooting that

can be used to reset them to a known-good state. Further, many of the exist-

ing interfaces to control VM-based services already contain logic to reestab-

lish connections, used when migrating a running VM from one physical host

to another. There are two major challenges associated with microreboots.

First, full system restarts are slow and significantly reduce performance, es-

pecially of components on a data path such as device drivers. Second, not

all state associated with a service can be discarded since useful side-effects
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Calls from within the service VM:

vm_snapshot ()
recoverybox_balloc (size)

VM configuration for restart policy:

restart_policy ([(timer | event), parameters])

Figure 2.6: Microreboot API

boot and

initialization

request

processing

rollback (triggered by restart policy)

vm_snapshot()

Newly

Created VM

Snapshot

Image

Copy-on-

write 

recovery box recovery box

requests and
responses

rollback
activated

Figure 2.7: Rolling back to a known-good snapshot allows efficient microre-
boots of components.

that have occurred during that execution will also be lost.

Snapshot and Rollback: Instead of fully restarting a component, it is snap-

shotted just after it has booted and been initialized, but before it has com-

municated with any other service or guest VM. The service VM is modified

to explicitly snapshot itself at the time that it is ready to service requests

(typically at the start of an event loop) using the API shown in Figure 2.6.

Figure 2.7 illustrates the snapshot/rollback cycle. By snapshotting before

any requests are served over offered interfaces, we ensure that the image is

fresh. A complementary extension would be to measure and attest snapshot-

based images, possibly even preparing them as part of a distribution and

avoiding the boot process entirely.

We enable lightweight snapshots by using a hypervisor-based copy-on-

write mechanism to trap and preserve any pages that are about to be mod-

ified. When rolling back, only these pages and the virtual CPU state need

be restored, resulting in very fast restart times—in our implementation, be-
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tween 4 and 25 ms, depending on the workload.

Restart Policy: While it is obvious when to take the snapshot of a compo-

nent, it is less clear when that component should be rolled back. Intuitively,

it should be as frequently as possible. However, even though rollbacks are

quick, the more frequently a component is restarted, the less time it has

available to offer a useful service. Xoar specifies rollback policy in the ser-

vice VM’s configuration file and we currently offer two policies: notification-

based and timer-based. Restart policy is associated with the VM when it is

instantiated and is tracked and enforced by the hypervisor.

In our notification-based policy, the hypervisor interposes on message

notifications leaving the service VM as an indication that a request trans-

action has completed, triggering a restart. For low-frequency, synchronous

communication channels (e.g., those that access XenStore), this method iso-

lates individual transactions and resets the service to a fresh state at the end

of every processed request. In other words, every single request is processed

by a fresh version of the service VM.2

The overhead of imposing a restart on every request would be too high

for higher-throughput, concurrent channels, such as NetBack and BlkBack.

For these service VMs, the hypervisor provides a periodic restart timer that

triggers restarts at a configurable frequency.

Maintaining State: Frequent restarts suffer from the exact symptom that

they seek to avoid: the establishment of long-lived state. In rolling back a

service VM, any state that it introduces is lost. This makes it particularly

hard to build services that depend on keeping in-memory state, such as

configuration registries, and services that need to track open connections.

We address this issue by providing service VMs with the ability to allocate

a recovery box [6]. Originally proposed as a technique for high availability,

this is a block of memory that persists across restarts. Service VM code is

2This mechanism leaves open the possibility that an exploited service VM might not send
the event that triggers the rollback. To cover this attack vector, the hypervisor maintains a
watchdog timer for each notification-based service VM. If a timer goes off, the VM is rolled
back; if the restart is triggered normally, the timer is reset.
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modified to store any long-lived state in one of these allocations and to check

and restore from it immediately after a snapshot call. Memory allocated

using this technique is exempted from copy-on-write.

Maintaining state across restarts presents an obvious attack vector—a

malicious user can attempt to corrupt the state that is reloaded after every

rollback to repeatedly trigger the exploit and compromise the system. To

address this, the service treats the recovery box as an untrusted input and

audits its contents after the rollback. Xen also tracks the memory pages in

the allocation and forcibly marks all virtual addresses associated with them

as non-executable.

Driver VMs, like NetBack and BlkBack, automatically renegotiate both

device state and frontend connections in cases of failures or restarts, allow-

ing them to discard all state at every restart. In these performance-critical

components, however, any downtime significantly affects the throughput of

guests. This downtime can be reduced by caching a very small amount of

device and frontend state in a recovery box. The desired balance between

security and performance can be chosen, as discussed in Section 2.7.2.

Components like XenStore, on the other hand, maintain a large amount

of long-lived state for other components in the system. In such cases, this

state can be removed from the service VM altogether and placed in a sep-

arate “state” VM that is accessible through a special-purpose interface. In

Xoar, only XenStore, because of its central role in the correctness and secu-

rity of the system, is refactored in this way. Only the processing and logic

remain in the original service VM, making it amenable to rollbacks.

Per-request rollbacks force the attacker to inject exploit code into the

state and have it triggered by another VM’s interaction with XenStore. How-

ever, in the absence of further exploits, access control and guest ID authen-

tication prevent the injection of such exploit code into sections of the state

not owned by the attacking guest (see Section 2.5.2). Thus, an attack origi-

nating from a guest VM through XenStore requires an exploit of more than

one service VM.

25



User A’s VM
(HVM)

User B’s VM
(PV)

Qemu

XenStore

Xen

Interfaces Delegated-to

XenStore-
Logic

User A’s
Toolstack

XenStore-
State

Builder

NetBack
(eth 0)

BlkBack
(sda)

User B’s
Toolstack

NetBack
(eth 1)

BlkBack
(sdb)

Figure 2.8: Partitioned configuration: In the configuration above, users A and
B use isolated hardware and toolstacks and share interfaces only with
XenStore and Xen itself.

2.4.4 Deployment Scenarios

Public clouds, like Amazon Web Services, tightly pack many VMs on a single

physical machine, controlled by a single toolstack. Partitioning the platform

into service VMs, which can be judiciously restarted, limits the risks of shar-

ing resources among potentially vulnerable and exposed VMs. Furthermore,

dynamically restarting service VMs allows for in-place upgrades, reducing

the window of exposure in the face of a newly discovered vulnerability. Fi-

nally, in the case of compromise, secure audit facilities allow administrators

to reason, after the fact, about exposures that may have taken place.

Our design supports greater degrees of resource partitioning than this.

Figure 2.8 shows a more conservative configuration, in which each user is

assigned separate, dedicated hardware resources within the physical host

and a personal collection of service VMs to manage them. Users manage

their own service VMs and the device drivers using a private Toolstack with

resource service VMs delegated solely to it.
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Component P Lifetime OS Parent Depends

On

Functionality

Bootstrapper Y Boot Up nanOS Xen - Instantiate boot service VMs

XenStore N Forever (R) miniOS Bootstrapper - System configuration registry

Console N Forever Linux Bootstrapper XenStore Expose physical console as vir-
tual consoles to VMs

Builder Y Forever (R) nanOS Bootstrapper XenStore Instantiate non-boot VMs

PCIBack Y Boot Up Linux Bootstrapper XenStore
Builder
Console

Initialize hardware and PCI bus,
pass through PCI devices, and
expose virtual PCI config space

NetBack N Forever (R) Linux PCIBack XenStore
Console

Expose physical network device
as virtual devices to VMs

BlkBack N Forever (R) Linux PCIBack XenStore
Console

Expose physical block device as
virtual devices to VMs

Toolstack N Forever (R) Linux Bootstrapper XenStore
Builder
Console

Admin toolstack to manage VMs

QemuVM N Guest VM miniOS Toolstack XenStore
NetBack
BlkBack

Device emulation for a single
guest VM

Table 2.1: Components of Xoar. The “P” column indicates if the component is privileged. An “(R)” in the lifetime
column indicates that the component can be restarted. Console is only mentioned for the sake of completeness.
Since enterprise deployments typically disable console access, it is not part of the overall architecture.
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2.5 Implementation

This section explains how the design described in Section 2.4 was imple-

mented on the Xen platform. It begins with a brief discussion of how com-

ponent boundaries were selected in fracturing the control VM and then de-

scribes implementation details and challenges faced during the development

of Xoar.

2.5.1 Xoar Components

The division of service VMs in Xoar conforms to the design goals of Section 2.4;

we reduce components into minimal, loosely coupled units of functionality,

while obeying the principle of least privilege. As self-contained units, they

have a low degree of sharing and inter-VM communication (IVC), and can be

restarted independently. Existing software and interfaces are reused to aid

development and ease future maintenance. Table 2.1 augments Figure 2.2

by describing the classes of service VMs in our decomposition of Dom0.

While it is not the only possible decomposition, it satisfies our design goals

without requiring an extensive re-engineering of Xen.

Virtualized devices mimic physical resources in an attempt to offer a fa-

miliar abstraction to guest VMs, making them ideal service VMs. Despite the

lack of toolstack support, Xen has architectural support for driver VMs, re-

ducing the development effort significantly. PCIBack virtualizes the physical

PCI bus, while NetBack and BlkBack are driver VMs, exposing the required

device backends for guest VMs. Further division, like separating device

setup from the data path, yields no isolation benefits, since both components

need to be shared simultaneously. This would also add a significant amount

of IVC, conflicting with our design goals, and would require extensive mod-

ifications. Similarly, the serial controller is represented by a service VM

that virtualizes the console for other VMs. Further details about virtualizing

these hardware devices are discussed in Section 2.5.3 and Section 2.5.4.

Different aspects of the VM creation process require differing sets of

privileges; placing them in the same service VM violates our goal of re-

ducing privilege. These operations can largely be divided into two groups—
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those that need access to the guest’s memory to set up the kernel, etc., and

those that require access to XenStore to write entries necessary for the guest.

Breaking this functionality apart along the lines of least privilege yields the

Builder, a privileged service VM responsible for the hypervisor and guest

memory operations, and the Toolstack, a service VM containing the manage-

ment toolstack. While the Builder could be further divided into components

for sub-operations, like loading the kernel image, setting up the page tables,

etc., these would all need to run at the same privilege level and would incur

high synchronization costs. The Builder responds to build requests issued by

the Toolstack via XenStore. Once building is complete, the Toolstack com-

municates with XenStore to perform the rest of the configuration and setup

process.

2.5.2 XenStore

Our refactoring of XenStore is the most significant implementation change

that was applied to any of the existing components in Xen (and took the

largest amount of effort). We began by breaking XenStore into two in-

dependent service VMs: XenStore-Logic, which contains the transactional

logic and connection management code, and XenStore-State, which con-

tains the actual contents of the store. This division allows restarts to be

applied to request-handling code on a per-request basis, ensuring that ex-

ploits are constrained in duration to a single request. XenStore-State is a

simple key-value store and is the only long-lived VM in Xoar.

Unfortunately, partitioning and per-request restarts are insufficient to

ensure the security of XenStore. As XenStore-Logic is responsible for enforc-

ing access control based on permissions in the store itself, a compromise of

that VM may allow for arbitrary accesses to the contents of the store. We

addressed this problem with two techniques. First, access control checks

are moved into a small monitor module in XenStore-State; a compromise of

XenStore-Logic is now limited to valid changes according to existing permis-

sions in the store. Second, we establish the authenticity of accesses made

by XenStore-Logic by having it declare the identity of the VM that it is about
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to service before reading the actual request. This approach effectively drops

privilege to that of a single VM before exposing XenStore-Logic to any po-

tentially malicious request, and makes the identity of the request made to

XenStore-State unforgeable. The monitor refuses any request to change the

current VM until the request has been completed, and an attempt to do so

results in a restart of XenStore-Logic.

The monitor code could potentially be further disaggregated from XenStore-

State and also restarted on a per-request basis. Our current implementation

requires an attacker to compromise both XenStore-Logic and the monitor

code in XenStore-State in succession, within the context of a single request,

in order to make an unauthorized access to the store. Decoupling the moni-

tor from XenStore-State would add limited extra benefit, for instance possi-

bly easing static analysis of the two components, and still allow a successful

attacker to make arbitrary changes in the event of the two successive com-

promises; therefore we have left the system is it stands.

2.5.3 PCI: A Shared Bus

PCIBack controls the PCI bus and manages interrupt routing for peripheral

devices. Although driver VMs have direct access to the peripherals them-

selves, the shared nature of the PCI configuration space requires a single

component to multiplex all accesses to it. This space is used during device

initialization, after which there is no further communication with PCIBack.

We remove PCIBack from the TCB entirely after boot by destroying it, re-

ducing the number of shared components in the system.

Hardware virtualization techniques like SR-IOV [94] allow the creation

of virtualized devices, where the multiplexing is performed in hardware, ob-

viating the need for driver VMs. However, provisioning new virtual devices

on the fly requires a persistent service VM to assign interrupts and multiplex

accesses to the PCI configuration space. Ironically, although appearing to

reduce the amount of sharing in the system, such techniques may increase

the number of shared, trusted components.
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2.5.4 Driver VMs: NetBack and BlkBack

Driver VMs, like NetBack and BlkBack, use direct device assignment to di-

rectly access PCI peripherals like NICs and disk controllers, and rely on ex-

isting driver support in Linux to interface with the hardware. Each NetBack

or BlkBack virtualizes exactly one network or block controller, hosting the

relevant device driver and virtualized backend driver. The Toolstack links a

driver VM delegated to it to a guest VM by writing the appropriate frontend

and backend XenStore entries during the creation of the guest, after which

the guest and backend communicate directly using shared memory rings,

without any further participation by XenStore.

Separating BlkBack from the Toolstack caused some problems as the ex-

isting management tools mount disk-based VM images as loopback devices

with blktap, for use by the backend driver. After splitting BlkBack from

the Toolstack, the disk images need to be created and mounted in BlkBack.

Therefore, in Xoar, BlkBack runs a lightweight daemon that proxies requests

from the Toolstack.

2.5.5 Efficient Microreboots

As described in Section 2.4.3, our snapshot mechanism copies dirty memory

pages, i.e., pages that have been modified since the last good snapshot, as a

service VM executes and restores the original contents of these pages during

rollback, requiring a page allocation and deallocation and two copy opera-

tions for every dirtied page. Since many of the pages being modified are the

same across several iterations, rather than deallocating the master copies of

these pages after rollback, we retain them across runs, obviating the need

for allocation, deallocation, and one copy operation when the same page is

dirtied. However, this introduces a new problem: if a page is dirtied just

once, its copy will reside in memory forever. This could result in memory

being wasted storing copies of pages that are not actively required.

To address this concern, we introduced a “decay” value to the pages

stored in the snapshot image. When a page is first dirtied after a rollback, its

decay value is incremented by two, towards a maximum value. On rollback,
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each page’s decay value is decremented. When this count reaches zero, the

page is released.

2.5.6 Deprivileging Administrative Tools

XenStore and the Console require Dom0-like privileges to forcibly map shared

memory, since they are required before the guest VM can set up its grant ta-

ble mappings. To avoid this, Xoar’s Builder creates grant table entries for

this shared memory in each new VM, allowing these tools to use grant ta-

bles and function without any special privileges.

The Builder assigns VM management privileges to each Toolstack for the

VMs that it requests to be built. A Toolstack can only manage these VMs,

and an attempt to manage any others is blocked by the hypervisor. Similarly,

it can use only those service VMs that have been delegated to it. An attempt

to use an undelegated service VM, for example a NetBack, for a new guest

VM will fail. Restricting privileges this way allows for the creation of several

Toolstack instances that run simultaneously. Different users, each with a

private Toolstack, are able to partition their physical resources and manage

their own VMs, while still guaranteeing strong isolation from VMs belonging

to other users.

2.5.7 Developing with Minimal OSes

Bootstrapper and Builder are built on top of nanOS, a small, single-threaded,

lightweight kernel explicitly designed to have the minimum functionality

needed for VM creation. The small size and simplicity of these components

leave them well within the realm of static analysis techniques, which could

be used to verify their correctness. XenStore, on the other hand, demands

more from its operating environment, and so is built on top of miniOS, a

richer OS distributed with Xen.

Determining the correct size of OS to use is hard, with a fundamental

tension between functionality and ease of use. Keeping nanOS so rigidly

simple introduces a set of development challenges, especially in cases in-

volving IVC. However, since these components have such high privilege, we
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felt that the improved security gained from reduced complexity is a worth-

while trade-off.

2.5.8 Implicit Assumptions about Dom0

The design of Xen does not mandate that all service components live in

Dom0, however several components, including the hypervisor, implicitly

hard-code the assumption that they do. A panoply of access control checks

compare the values of domain IDs to the integer literal ‘0’, the ID for Dom0.

Many tools assume that they are running co-located with the driver back-

ends and various paths in XenStore are hard-coded to be under Dom0’s tree

The toolstack expects to be able to manipulate the files that contain VM disk

images, which is solved by proxying requests, as discussed in Section 2.5.4.

The hypervisor assumes Dom0 has control of the hardware and configures

signal delivery and MMIO and I/O-port privileges for access to the console

and peripherals to Dom0. In Xoar, these need to be mapped to the correct

VMs, with Console requiring the signals and I/O-port access for the console

and PCIBack requiring the MMIO and remaining I/O-port privileges, along

with access to the PCI bus.

2.6 Security Evaluation

Systems security is notoriously challenging to evaluate, and Xoar’s proves

no different. In an attempt to demonstrate the improvement to the state of

security for commodity hypervisors, this section will consider a number of

factors. First, we will evaluate the reduction in the size of the trusted com-

puting base; this is an approach that we do not feel is particularly indicative

of the security of a system, but has been used by a considerable amount of

previous work and does provide some insight into the complexity of the sys-

tem as a whole. Second, we consider how the attack surface presented by

the control VM changes in terms of isolation, sharing, and per-component

privilege in an effort to evaluate the exposure to risk in Xoar compared to

other systems. Finally, we consider how well Xoar handles the existing pub-

lished vulnerabilities first described in Section 2.2.
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Much of this evaluation is necessarily qualitative: while we have taken

efforts to evaluate against published vulnerabilities, virtualization on mod-

ern servers is still a sufficiently new technology with few disclosed vulnera-

bilities. Our sense is that these vulnerabilities may not be representative of

the full range of potential attacks.

In evaluating Xoar’s security, we attempt to characterize it from an at-

tacker’s perspective. One notable feature of Xoar is that for an adversary to

violate our security claim, more than one service VM must have a vulnerabil-

ity, and a successful exploit must be able to perform a stepping-stone attack.

We will discuss why this is true, and characterize the nature of attacks that

are still possible.

2.6.1 Reduced TCB

The Bootstrapper, PCIBack, and Builder service VMs are the most privi-

leged components, with the ability to arbitrarily modify guest memory and

control and assign the underlying hardware. These privileges necessarily

make them part of the TCB, as a compromise of any one of these compo-

nents would render the entire system vulnerable. Both Bootstrapper and

PCIBack are destroyed after system initialization is complete, effectively

leaving Builder as the only service VM in the TCB. As a result, the TCB

is reduced from Linux’s 7.6 million lines of code to Builder’s 13,500 lines of

code, both on top of the hypervisor’s 280,000 lines of code.3

2.6.2 Attack Surface

Monolithic virtualization platforms like Xen execute service components in a

single trust domain, with every component running at the highest privilege

level. As a result, the security of the entire system is defined by that of the

weakest component, and a compromise of any component gives an attacker

full control of the system.

Disaggregating service components into their own VMs not only provides

3 All lines of code were measured using David Wheeler’s SLOCCount from
http://www.dwheeler.com/sloccount/
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Permission Bootstrapper PCIBack Builder Toolstack BlkBack NetBack

Arbitrarily
X Xaccess

memory
Access

and X
virtualize

PCI
devices
Create
VMs

X X

Manage
VMs

X X X

Manage
X Xassigned

devices

Table 2.2: Functionality available to the service VMs in Xoar. Components
with access to no privileged hypercalls are not shown. In Xen, Dom0
possesses all of these functionalities.

strong isolation boundaries, it also allows privileges to be assigned on a per-

component basis, reducing the effect a compromised service VM has on the

entire system. Table 2.2 shows the privileges granted to each service VM,

which corresponds to the amount of access that an attacker would have on

successfully exploiting it.

Attacks originating from guest VMs can exploit vulnerabilities in the

interfaces to NetBack, BlkBack, or XenStore (see Table 2.3). An attacker

breaking into a driver VM gains access only to the degree that other VMs

trust that device. Exploiting NetBack might allow for intercepting another

VM’s network traffic, but not access to arbitrary regions of its memory. On

hosts with enough hardware, resources can be partitioned so that no two

guests share a driver VM.

Where components reuse the same code, a single vulnerability could

be sufficient to compromise them all. Service VMs like NetBack, BlkBack,

Console, and Toolstack run the same core Linux kernel, with specific driver

modules loaded only in the relevant component. As a result, vulnerabilities

in the exposed interfaces are local to the associated service VM, but vulnera-

35



Component Shared Interfaces

XenStore-Logic
XenStore-State, Console,

Builder, PCIBack,
NetBack, BlkBack, Guest

XenStore-State XenStore-Logic

Console XenStore-Logic

Builder XenStore-Logic

PCIBack XenStore-Logic, NetBack, BlkBack

NetBack XenStore-Logic, PCIBack, Guest

BlkBack XenStore-Logic, PCIBack, Guest

Toolstack XenStore-Logic

Guest VM XenStore-Logic, NetBack, BlkBack

Table 2.3: Interfaces shared between service VMs

bilities in the underlying framework and libraries may be present in multiple

components. For better code diversity, service VMs could use a combination

of Linux, FreeBSD, OpenSolaris, and other suitable OSes.

Highly privileged components like the Builder have very narrow inter-

faces and cannot be compromised without exploiting vulnerabilities in mul-

tiple components, at least one of which is XenStore. Along with the central

role it plays in state maintenance and synchronization, this access to Builder

makes XenStore an attractive target. Compromising XenStore-Logic may al-

low an attacking guest to store exploit code in XenStore-State, which, when

restoring state after a restart, re-compromises XenStore-Logic. The monitor-

ing code described in Section 2.5.2, however, prevents this malicious state

from being restored when serving requests from any other guest VM, ensur-

ing that they interact with a clean copy of XenStore.

2.6.3 Vulnerability Mitigation

With a majority of the disclosed vulnerabilities against Xen involving priv-

ilege escalation against components in Dom0, Xoar proves to be successful

in containing all but two of them. Table 2.4 taxonomizes the vulnerabilities
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Component Arbitrary Code Exec. DoS File System Access

Hypervisor 0 / 1 0 / 1 0 / 0

Device Emulation 8 / 8 3 / 3 3 / 3

Virtualized Drivers 1 / 1 1 / 1 0 / 0

XenStore 0 / 0 1 / 1 0 / 0

Toolstack 1 / 1 2 / 2 1 / 1

Table 2.4: Vulnerabilities mitigated in Xoar. The numbers represent total mit-
igated over total identified.

discussed in Section 2.2 based on the vulnerable component and the type of

vulnerability, along with the number that are successfully mitigated in Xoar.

The 14 device emulation attacks are completely mitigated, as the device

emulation service VM has no rights over any VM except the one the attacker

came from. The two attacks on the virtualized device layer and the three

attacks against the toolstack affect only those VMs that shared the same

BlkBack, NetBack, and Toolstack components. The vulnerability present in

XenStore did not exist in our custom version. Since Xoar does not modify the

hypervisor, the two hypervisor vulnerabilities remain equally exploitable.

One of the vulnerabilities in the virtualized drivers is against the block

device interface and causes an infinite loop, resulting in a denial of service.

Periodically restarting BlkBack forces the attacker to continuously recom-

promise the system. Since requests from different guests are serviced on

every restart, the device would continue functioning with low bandwidth,

until a patch could be applied to prevent further compromises.

2.7 Performance Evaluation

The performance of Xoar is evaluated against a stock Xen Dom0 in terms of

memory overhead, I/O throughput, and overall system performance. Each

service VM in Xoar runs with a single virtual CPU; in stock Xen Dom0 runs

with 2 virtual CPUs, the configuration used in the commercial XenServer [32]

platform. All figures are the average of three runs, with 95% confidence in-

tervals shown where appropriate.
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Component Memory Component Memory

XenStore-Logic 32 MB XenStore-State 32 MB
Console 128 MB PCIBack 256 MB
NetBack 128 MB BlkBack 128 MB
Builder 64 MB Toolstack 128 MB

Table 2.5: Memory requirements of individual components

Our test system was a Dell Precision T3500 server, with a quad-core

2.67 GHz Intel Xeon W3520 processor, 4 GB of RAM, a Tigon 3 Gigabit Eth-

ernet card, and an Intel 82801JIR SATA controller with a Western Digital

WD3200AAKS-75L9A0 320 GB 7200 RPM disk. VMX, EPT, and IOMMU vir-

tualization are enabled. We use Xen 4.1.0 and Linux 2.6.314 pvops kernels

for the tests. Identical guests running an Ubuntu 10.04 system, configured

with two VCPUs, 1 GB of RAM and a 15 GB virtual disk are used on both sys-

tems. For network tests, the system is connected directly to another system

with an Intel 82567LF-2 Gigabit network controller.

2.7.1 Memory Overhead

Table 2.5 shows the memory requirements of each of the components in

Xoar. Systems with multiple network or disk controllers can have several

instances of NetBack and BlkBack. Also, since users can select the service

VMs to run, there is no single figure for total memory consumption. In

commercial hosting solutions, console access is largely absent rendering the

Console redundant. Similarly, PCIBack can be destroyed after boot. As a

result, the memory requirements range from 512 MB to 896 MB, assum-

ing a single network and block controller, representing a saving of 30% to

an overhead of 20% on the default 750 MB Dom0 configuration used by

XenServer. All performance tests compare a complete configuration of Xoar

with a standard Dom0 Xen configuration.

4Hardware issues forced us to use a 2.6.32 kernel for some of the components.
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Figure 2.9: Disk performance using Postmark (higher is better). The x-axis
denotes (files x transactions x subdirectories).
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Figure 2.10: Network performance with wget (higher is better)

2.7.2 I/O performance

Disk performance is tested using Postmark, with VMs’ virtual disks backed

by files on a local disk. Figure 2.9 shows the results of these tests with

different configuration parameters.

Network performance is tested by fetching a 512 MB and a 2 GB file

across a gigabit LAN using wget, and writing it either to disk, or to /de-
v/null (to eliminate performance artifacts due to disk performance). The

results are shown in Figure 2.10.
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Figure 2.11: wget throughput while restarting NetBack at different time in-
tervals

Overall, disk throughput is more or less unchanged, and network through-

put is down by 1–2.5%. The combined throughput of data coming from the

network onto the disk increases by 6.5%; we believe this is caused by the

performance isolation of running the disk and network drivers in separate

VMs.

To measure the effect of microrebooting driver VMs, we ran the 2 GB

wget to /dev/null while restarting NetBack at intervals between 1 and

10 seconds. Two different optimizations for fast microreboots are shown.

In the first (marked as “slow” in Figure 2.11), the device hardware state

is left untouched during reboots; in the second (“fast”), some configura-

tion data that would normally be renegotiated via XenStore is persisted.

In “slow” restarts the device downtime is around 260 ms, measuring from

when the device is suspended to when it responds to network traffic again.

The optimizations used in the “fast” restart reduce this downtime to around

140 ms.

Resetting every 10 seconds causes an 8% drop in throughput, as wget’s

TCP connections respond to the breaks in connectivity. Reducing the interval

to one second gives a 58% drop. Increasing it beyond 10 seconds makes very

little difference to throughput. The faster recovery gives a noticeable benefit
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Figure 2.13: Apache Benchmark run on Dom0, Xoar, and Xoar with network
driver restarts at 10s, 5s, and 1s.

for very frequent reboots but is worth less than 1% for 10-second reboots.

2.7.3 Real-world Benchmarks

Figure 2.12 compares the time taken to build a Linux kernel, both in stock

Xen and Xoar, off a local ext3 volume as well as an NFS mount. The over-

head added by Xoar is much less than 1%.

The Apache Benchmark is used to gauge the performance of an Apache

web server serving a 10 KB static webpage 100,000 times to five simultane-

ous clients. Figure 2.13 shows the results of this test against Dom0, Xoar,

and Xoar with network driver restarts at 10, 5, and 1 second intervals. Per-
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formance decreases non-uniformly with the frequency of the restarts: an in-

crease in restart interval from 5 to 10 seconds yields barely any performance

improvements, while changing the interval from 5 seconds to 1 second in-

troduces a significant performance loss.

Dropped packets and network timeouts cause a small number of requests

to experience very long completion times; for example, for Dom0 and Xoar,

the longest packet took only 8–9 ms, but with restarts, the values range from

3000 ms (at 5 and 10 seconds) to 7000 ms (at 1 second). As a result, the

longest request interval is not shown in the figure.

Overall, the overhead of disaggregation is quite low. This is largely be-

cause driver VMs do not lengthen the data path between guests and the

hardware: the guest VM communicates with NetBack or BlkBack, which

drives the hardware. While the overhead of driver restarts is noticeable, as

intermittent outages lead to TCP backoff, it can be tuned by the administra-

tor to best match the desired combination of security and performance.

2.8 Related Work

With the widespread use of VMs, the security of hypervisors has been stud-

ied extensively and several attempts have been made to address the problem

of securing the TCB. This section looks at some of these techniques in the

context of our functional requirements.

Build a Smaller Hypervisor: SecVisor [136] and BitVisor [139] are exam-

ples of tiny hypervisors, built with TCB size as a primary concern, that use

the interposition capabilities of hypervisors to retrofit security features for

commodity OSes. While significantly reducing the TCB of the system, they

do not share the multi-tenancy goals of commodity hypervisors and are un-

suitable for such environments.

Microkernel-based architectures like KeyKOS [64] and EROS [137], its

x86-based successor, are motivated similarly to Xoar and allow mutually

untrusting users to securely share a system. Our Builder closely resembles

the factory in KeyKOS. While multiple, isolated, independently administered
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UNIX instances, rather like VMs, can be hosted on EROS, this requires mod-

ifications to the environment and arbitrary OSes cannot be hosted. More

recently, NOVA [145] uses a similar architecture and explicitly partitions the

TCB into several user-level processes within the hypervisor. Although capa-

ble of running multiple unmodified OSes concurrently, the removal of the

control VM and requirement for NOVA-specific drivers sacrifice hardware

support for TCB size. Also, it is far from complete: it cannot run Windows

guests and has limited toolstack support.

NoHype [87] advocates removing the hypervisor altogether, using static

partitioning of CPUs, memory, and peripherals among VMs. This would al-

low a host to be shared by multiple operating systems, but with none of

the other benefits of virtualization. In particular, the virtualization layer

could no longer be used for interposition, which is necessary for live mi-

gration [33], memory sharing and compression [62, 110], and security en-

hancements [31, 43, 100, 159].

Harden the Components of the TCB: The security of individual components

of the TCB can be improved using a combination of improved code quality

and access control checks to restrict the privileges of these components.

Xen’s XAPI toolstack is written in OCaml and benefits from the robustness

that a statically typed, functional language provides [135]. Xen and Linux

both have mechanisms to enforce fine-grained security policies [102, 133].

While useful, these techniques do not address the underlying concern about

the size of the TCB.

Split Up the TCB, Reduce the Privilege of Each Part: Murray et al. [116] re-

moved Dom0 userspace from the TCB by moving the VM builder into a sep-

arate privileged VM. While a step in the right direction, it does not provide

functional parity with Xen or remove the Dom0 kernel from the TCB, leav-

ing the system vulnerable to attacks on exposed interfaces, such as network

drivers.

Driver domains [51] allow device drivers to be hosted in dedicated VMs

rather than Dom0, resulting in better driver isolation. Qubes-OS [132] uses
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driver domains in a single-user environment, but does not otherwise break

up Dom0. Stub domains [154] isolate the Qemu device model for improved

performance and isolation. Xoar builds on these ideas and extends them to

cover the entire control VM.

2.9 Discussion and Future Work

This idea of partitioning a TCB is hardly new, with software partitioning

having been explored in a variety of contexts before. Microkernels remain

largely in the domain of embedded devices with relatively small and fo-

cused development teams (e.g., [90]), and while attempts at application-

level partitioning have demonstrated benefits in terms of securing sensitive

data, they have also demonstrated challenges in implementation and con-

cerns about maintenance [17, 24, 88, 128], primarily due to the mutability

of application interfaces.

While fracturing the largely independent, shared services that run in

the control VM above the hypervisor, we observe that these concerns do

not apply to nearly the same degree; typically the components are drivers

or application code exposing their dominant interfaces either to hardware

or to dependent guests. Isolating such services into their own VMs was a

surprisingly natural fit.

While it is tempting to attribute this to a general property of virtualiza-

tion, we also think that it was particularly applicable to the architecture of

Xen. Although implemented as a monolithic TCB, several of the components

were designed to support further compartmentalization, with clear, narrow

communication interfaces.

We believe the same is applicable to Hyper-V, which has a similar archi-

tecture to Xen. In contrast, KVM [89] converts the Linux kernel itself into a

hypervisor, with the entire toolstack hosted in a Qemu process. Due to the

tight coupling, we believe that disaggregating KVM this aggressively would

be extremely hard, more akin to converting Linux into a microkernel.
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2.9.1 Lessons

In the early design of the system our overall rule was to take a practical

approach to hardening the hypervisor. As usual, with the hindsight of having

built the system, some more specific guidelines are clear. We present them

here as “lessons” and hope that they may be applied earlier in the design

process of future systems.

Don’t break functionality: From the outset, the work described in this chap-

ter has been intended to be applied upstream to the open source Xen project.

We believe that for VM security improvements to be deployed broadly, they

must not sacrifice the set of functionality that has made these systems suc-

cessful, and would not expect a warm reception for our work from the main-

tainers of the system if we were to propose that facilities such as CPU over-

commit simply didn’t make sense in our design.

This constraint places enormous limitations on what we are able to do

in terms of hardening the system, but it also reduces the major argument

against accepting new security enhancements.

Don’t break maintainability: Just as the users of a virtualization platform

will balk if enhancing security costs functionality, developers will push back

on approaches to hardening a system that require additional effort from

them. For this reason, our approach to hardening the hypervisor has been

largely a structural one: individual service VMs already existed as inde-

pendent applications in the monolithic control VM and so the large, initial

portion of our work was simply to break each of these applications out into

its own virtual machine. Source changes in this effort largely improved the

existing source’s readability and maintainability by removing hard-coded

values and otherwise generalizing interfaces.

By initially breaking the existing components of the control VM out into

their own virtual machines, we also made it much easier for new, alternate

versions of these components to be written and maintained as drop-in re-

placements: our current implementation uses largely unchanged source for

most of the service VM code, but then chooses to completely reimplement
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XenStore. The original version of XenStore still works in Xoar, but the new

one can be dropped in to strengthen a critical, trusted component of the

system.

There isn’t always a single best interface: The isolation of components into

service VMs was achieved through multiple implementations: some service

VMs use a complete Linux install, some a stripped-down “miniOS” UNIX-

like environment, and some the even smaller “nanOS”, effectively a library

for building small single-purpose VMs designed to be amenable to static

analysis.

Preserving application state across microreboots has a similar diversity

of implementation: driver VMs take advantage of a recovery-box-like API,

while for the reimplementation of XenStore it became more sensible to split

the component into two VMs, effectively building our own long-lived recov-

ery box component.

Our experience in building the system is that while we might have built

simpler and more elegant versions of each of the individual components, we

probably couldn’t have used fewer of them without making the system more

difficult to maintain.

2.9.2 Future Work

The mechanism of rebooting components that automatically renegotiate ex-

isting connections allow many parts of the virtualization platform to be up-

graded in place. An old component can be shut down gracefully, and a new,

upgraded one brought up in its place with a minor modification of XenStore

keys. Unfortunately, these are not applicable to long-lived components with

state like XenStore and the hypervisor itself. XenStore could potentially

be restarted by persisting its state to disk. Restarting Xen under executing

VMs, however, is more challenging. We would like to explore techniques like

those in ReHype [95], but using controlled reboots to safely replace Xen, al-

lowing the complete virtualization platform to be upgraded and restarted

without disturbing the hosted VMs.

Although the overall design allows for it, our current implementation
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does not include cross-host migration of VMs. We are in the process of im-

plementing a new service VM that contains the live VM migration toolset to

transmit VMs over the network. While this component is not currently com-

plete, it has begun to demonstrate an additional benefit of disaggregation:

the new implementation strikes a balance between the implementation of a

feature that requires considerable privilege to map and monitor changes to

a VM’s memory in the control VM, and the proposal to completely internal-

ize migration within the guest itself [33]. Xoar’s live migration tool allows

the guest to delegate access to map and monitor changes to its memory to

a trusted VM, and allows that VM to run, much like the QemuVM, for as

long as is necessary. We believe that this technique will further apply to

other proposals for interposition-based services, such as memory sharing,

compression, and virus scanning.

2.10 Conclusion

Advances in virtualization have spurred demand for highly-utilized, low-

cost centralized hosting of systems in the cloud. The virtualization layer,

while designed to be small and secure, has grown out of a need to support

features desired by enterprises.

Xoar is an architectural change to the virtualization platform that looks

at retrofitting microkernel-like isolation properties to the Xen hypervisor

without sacrificing any existing functionality. It divides the control VM into

a set of least-privilege service VMs, which not only makes any sharing de-

pendencies between components explicit, but also allows microreboots to

reduce the temporal attack surface of components in the system. We have

achieved a significant reduction in the size of the TCB, and address a sub-

stantial percentage of the known classes of attacks against Xen, while main-

taining feature parity and incurring very little performance overhead.
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Chapter 3

Whose Cache Line Is It

Anyway? Operating System

Support for Live Detection and

Repair of False Sharing

3.1 Introduction

Cache contention on modern CPUs can lead to performance collapse. This

collapse is entirely workload dependent and cannot currently be mitigated

by the hardware providing the caching. As a result, there exist applications

that perform terribly on modern CPUs because they contend for cache lines.

Not only are existing systems unable to correct this, they are also unaware

of the very existence of such contention.

In modern CPUs, the design of processor caches is complicated by two

properties. First, rather than increasing frequencies, processors are becom-

ing more parallel. Second, cache coherence is still broadly held as a nec-

essary property of CPU implementations. Increasing parallelism means that

there are more threads operating on memory at once, while coherence de-

mands that all threads see a single, consistent view of that memory. Where
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concurrent accesses to the same cache line involve one or more writers,

exclusive access is required and the resulting cache coherence protocol in-

teractions necessitate expensive, synchronous notifications across multiple

cores and even physical sockets in the system.

Avoiding cache line contention should be treated as a systems problem.

The cache, after all, is a shared performance-critical resource and software

layers such as the VMM, OS, and language runtime occupy a useful vantage

point from which to mediate access. Unfortunately, identifying, understand-

ing and resolving cache contention is a challenging task on modern CPUs.

Once false sharing is identified, resolving it correctly requires a fine-grained

remapping mechanism to “split” a cache line in a manner that allows con-

current threads to achieve non-contending access—a facility that is not pro-

vided by page-granularity MMU hardware.

The VMM-based prototype system described in this chapter achieves

both of these goals. First, through a combination of hardware performance

counters and memory virtualization, we present a false sharing detection sys-

tem that is able to rapidly detect false sharing and identify the specific, rel-

evant byte-level regions of data that are contending. Second, to resolve the

contending accesses identified by our detector, we use both hardware page

protection and binary instrumentation to introduce a fine-grained memory

remapper. This facility extends conventional virtual memory support, which

works at a page granularity, with a byte-level remapping facility. Using this

interface, the system can elect to transparently move contending data struc-

tures in virtual memory into new locations in physical memory while code

actively executes on the original virtual addresses.

We demonstrate that it is possible to detect and repair false sharing in

a manner that works on existing hardware and applies to existing appli-

cation binaries. Our detection system has sufficiently low overheads as to

be deployed in both development and production environments, while the

remapping engine transparently and efficiently redirects memory accesses,

allowing data structures to be arbitrarily removed from the middle of a page

and placed elsewhere in memory. The resulting system is capable of identi-

fying and fixing false sharing in applications in under a second of execution,

49



resulting in a significant speedup for concurrent workloads.

3.2 Cache Coherence and Scalability

Cache coherent systems are parallel computing systems which, despite the

presence of private, per-core caches, present a single, unified view of mem-

ory to the entire system at any given point in time. The benefits of such con-

sistent, shared memory, especially in parallel programming, come at a scal-

ability cost to the extent that several highly-parallel architectures [70, 151]

and OSes [11] have explored system design in the absence of cache co-

herence. Still, many computer architects [106] and systems designers [21]

believe that existing systems can, in fact, continue to scale to much greater

degrees of parallelism.

Cache Coherence and the x86: Cache coherence on x86 processors is main-

tained using variants of the popular MESI state protocol [122]. In MESI,

every cache line has a state associated with it, while the cache directory

keeps track of the states and validity of different cache lines [65]. Simulta-

neous reads from multiple cores are supported by allowing multiple copies

of the same cache line to coexist in “Shared” state in the individual private

caches. Any write, however, causes the corresponding core to become the

owner of a cache line, which is put in “Exclusive” or “Modified” state in its

private cache, while all other copies are invalidated.

Subsequent requests from other cores are serviced by either the shared

on-socket cache or by main memory. For local lines, i.e., those shared be-

tween cores on the same socket, the resulting flushes of modified data from

private core caches are snooped for modified values, which are then written

back before completing the request. Requests for remote lines are forwarded

to the appropriate socket via the Quickpath Interconnect (QPI) [98].

Accesses to modified cache lines force a write-back to a location accessi-

ble to the requesting core: contention amongst on-socket cores updates the

on-socket cache, while cross-socket cores are forced to write-back to main

memory. As a result, latencies of accesses to contended memory vary signifi-
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struct {

   pthread_t tid;  POINT_T *points;

   int num_elems;  long long SX;

   long long SY;   long long SXX;

   long long SYY;  long long SXY;

} lreg_args ;

Despite different heap organizations and structure padding, 

both 32- and 64-bit binaries exhibit false sharing.

Allocation of lreg_args array on 64-bit binary

Allocation of lreg_args array on 32-bit binary
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Figure 3.1: False sharing in the linear_regression benchmark

cantly depending on the exact physical topology of the cores involved [112].

True and False Sharing: Cache coherent architectures optimize for parallel

workloads that tend to have large amounts of shared read-only data and

smaller amounts of private mutable state. Cache lines with multiple acces-

sors, at least one of which is a writer, experience expensive coherence misses

as the coherence protocol must negotiate between cores in order to preserve

consistency. True sharing occurs when concurrent accesses are to a single,

shared data structure, such as a lock or reference count. False sharing occurs

when independent data structures happen to reside on a single cache line;

here, the workload matches the assumption of shared reads and isolated

writes, but the granularity of isolation results in unnecessary contention.

The Phoenix [129] parallel benchmark suite’s linear regression test is a

popular example of false sharing [101, 166]. Figure 3.1 shows the lreg_args
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Figure 3.2: Effect of increased parallelism on performance

structure responsible for false sharing. An array of thread-indexed structures

(lreg_args[1..n]) store mutable intermediate per-thread state (SX, SY,
SXX, SYY, SXY) that is updated in a tight loop. This causes a high degree

of false sharing when a thread’s structure straddles cache lines and is co-

located with another thread’s structure. Figure 3.2 compares the program’s

scalability against a version modified to eliminate false sharing. While the

modified version scales nearly linearly, adding additional cores to the orig-

inal version often makes it slower, even in terms of absolute time. Another

access pattern causing false sharing, seen in the Linux kernel [21], has a sin-

gle frequently updated field in a structure surrounded by read-mostly data.

Besides the workload, false sharing depends on many dynamic proper-

ties in a system. Figure 3.1 shows the same source file compiled as both

32-bit and 64-bit binaries. Despite identical source and identical cache or-

ganization, the nature of false sharing is different: one case results in a

52-byte structure that tiles poorly across cache lines, whereas the other pro-

duces an ideally sized 64-byte structure, but then misaligns it because of

allocator metadata.
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False sharing is still a problem in today’s systems: False sharing has long

been recognized and studied as a problem on shared memory systems [20].

While compiler support can help in some cases, it is far from universal.1

Many instances of contention are properties of workload and simply can-

not be inferred statically. As evidence, recent years have seen significant

examples of false sharing in mature, production software. False sharing has

been seen in the Java garbage collector on a 256-way Niagara server [42],

within the Linux kernel [21], and in spinlock pools within the popular Boost

library [40, 107]. Transactional memory relying on cache line invalidations

to abort transactions [66] also performs poorly with false sharing [113].

These examples serve as the basis for CCBench, the microbenchmark suite

discussed in Section 3.6. That false sharing occurs in mature software is

an indication not of a lack of quality, but rather that workloads leading to

contention are often not seen in development and testing.

3.3 Design and Architecture

The system described in this chapter, called Plastic, provides system-level

support to dynamically detect and mitigate persistent false sharing in un-

modified application binaries. Plastic is a software implementation of a

byte-granularity memory remapping mechanism. It allows any arbitrary

byte range of virtual memory to be remapped from one physical location

in memory to another, while the target is still running.

Specifically designed to mitigate false sharing, it determines the exact

regions of virtual memory that currently exhibit contending accesses and

then transparently remaps them to physical addresses on independent cache

lines. Our approach is inspired by the sort of virtual-to-physical address

remapping that is already possible with paging hardware, but refines it to a

sufficiently fine granularity as to mitigate contention within a single cache

line.

Modern x86 hardware does not support remapping at this fine granu-

1 For example, gcc fixes false sharing in the Phoenix linear regression benchmark (see
Figure 3.1) at -O2 and -O3 optimization, while clang fails to even at the highest optimiza-
tion level.
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Figure 3.3: Plastic Architecture

larity. Plastic implements its own remapping system in software: provided

with a set of byte granularity memory remapping rules, it applies them to

a running system using live binary instrumentation. When false sharing is

identified, Plastic creates a copy of the contending data on a non-contended

cache line and uses dynamic instrumentation to redirect all accesses to that

new location in memory.

Plastic is currently implemented on the Xen virtualization platform [8],

where it takes advantage of memory interposition capabilities that are rel-

atively easy to extend. It is important to emphasize that our approach is

not specific to hypervisors: Plastic could be incorporated into an operating

system with equal benefit. We use the term “operating system” in the title

of this chapter to emphasize the more general opportunity for this class of

system support.

Processors mask access latencies using instruction pipelining and out-of-

order execution, thereby significantly reducing the impact of false sharing

when contending accesses are separated by even a few hundred instruc-
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tions. Plastic targets applications where performance is materially impacted

by false sharing; typically, long running applications with high-frequency,

parallel accesses to memory. To be practically deployable, it must function

with low overhead, and detect and mitigate false sharing quickly and effi-

ciently without requiring any changes to existing applications.

3.3.1 Architecture

Figure 3.3 shows Plastic’s architecture at a high level. The bulk of the sys-

tem resides in a user space tool running on a modified version of Xen. The

hypervisor serves two purposes. First, the machine’s hardware performance

counters are exposed to monitor coherence invalidations on individual pro-

cessor cores. Second, page protection interfaces are used to interpose on

memory accesses and to determine the exact byte ranges involved in false

sharing. Plastic’s execution involves two main responsibilities: detection

and remapping.

Detecting False Sharing: Detecting false sharing on x86 is a challenging

task, especially given the constraint of imposing low overhead on the sys-

tem. Plastic takes advantage of hardware performance counters to detect

memory contention by monitoring coherence invalidation events, which in-

dicate multiple cores competing for exclusive ownership of a cache line.

Proceeding from this observation, it performs a series of progressively more

expensive refinements, but applies them to increasingly specific regions of

execution. This approach, described in detail in Section 3.4, allows Plas-

tic to quickly detect false sharing and refine the diagnosis down to specific

byte-granularity regions of contended memory.

Remapping Small Memory Ranges: On current x86 hardware, a page of

memory—which is the smallest unit available to MMU hardware for remap-

ping memory—contains 64 64-byte cache lines. Isolation requests from our

false sharing detector are smaller regions within individual cache lines.

55



0x1000: Original 4K page 

cache line-length region

contending data structures

“hole” -- area with overlaid
mappings

0x1700

0x170c

0x1730

0x1000: Original 4K page 

0xf0000: Remapping data pool 

0x1700

0x170c

0x1730

0xf1000: underlay page 

0xf1700

0xf170c

0xf1730

0xf2000: isolated data 

0xf2000

0xf2280

1. Detector reports two byte ranges
     with false sharing 

Contention at: (addr, size)

(0x170c, 4), (0x1730, 8)

2. Detector requests remappings

remapper_isolate(0x170c, 4)

remapper_isolate(0x1730, 8)

3. Remapping rules installed

(0x1000, 0x70c) → (0xf1000)

(0x170c,   0x4) → (0xf2000)

(0x1710,  0x20) → (0xf1710)

(0x1730,   0x8) → (0xf2280)

(0x1738, 0xd1e) → (0xf1738) 

0x1700

0x170c

0x1730

NA:
All accesses

result in a
page fault and

trigger 
remapping.

Before remapping: After remapping:

Remapping allows 

the original data 

page to be composed 

from multiple byte-

granularity regions.

Figure 3.4: Byte-granularity remapping allows some data to be transparently isolated on separate cache lines.
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Plastic achieves fine-grained remappings as illustrated in Figure 3.4. Iso-

lation requests from the detector specify small regions of memory that should

be placed on an isolated cache line. The remapper responds to isolation re-

quests by providing sufficient remapping rules to describe the entire page

containing remapped data. The result is that the page becomes a compos-

ite of one or more small isolated data ranges that are mapped on top of an

underlay page. All of these data components reside in the remapping data

pool, and the original page of virtual address space is marked as “No Ac-

cess”, resulting in faults on any attempt to read or write data through that

range of virtual memory.

To make remapping efficient, demand faults on access to the original

page result in the analysis and modification of accessing code to interact

directly with the remapped data. Guard conditions in this modified code

redirect only references that interact with remapped data, and leave other

references interacting with original addresses in memory. By directly al-

tering the accessing code, Plastic avoids expensive faults on future accesses

while efficiently isolating the contending data onto independent cache lines.

Plastic’s remapper takes advantage of a design property that is almost

never available to dynamic instrumentation systems: the implementation

need not be complete with regard to instruction set semantics. Plastic is free

to modify code wherever capable of improving performance, however, as

our goal is strictly to improve performance in the system, the option al-

ways exists to do nothing. In cases where Plastic is unable to safely or

efficiently remap data ranges, it restores the data to the original page by

copying back the composite regions, invalidates all active remappings for

that data, and allows execution to continue against the original location.

This places both the code and data back in the original and unmodified

state. This observation, and the fact that page protection on the original

data ensures that remapping covers all accesses to the remapped data from

any code in the system, allow Plastic’s design and implementation to pursue

individual piece-wise optimizations based on workloads and access patterns

that demonstrably benefit from remapping.

Plastic requires the guest OS to maintain both the code and data cache
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Figure 3.5: The stages of detecting and diagnosing cache contention

regions within the virtual address space of the application. This is the only

requirement of Plastic on the guest and is achieved as an extension of the

balloon driver, an in-guest memory management driver commonly installed

in VMs. Under Windows, similar functionality can be obtained by the use of

user-space AppInit DLLs.

3.4 Detection Methodology

Identifying false sharing typically requires a costly analysis of memory access

patterns and to model those interactions within the cache hierarchy [60, 79,

166]. As shown in Figure 3.5, Plastic takes a multi-stage, sampling-based

approach [25] to avoid these costs. Using a series of progressively more

detailed (and consequentially higher-overhead) filters minimizes the impact

of continuous detection and focuses the higher cost analysis on data likely

to exhibit false sharing, based on information collected in earlier stages.

Starting from the left of the pipeline, we progressively refine the re-

sults, and begin by observing the presence of an abnormally large number

of coherence invalidations using performance counters. We then isolate the

pages where contention is occurring, before sampling memory accesses for

short periods with emulation to find the precise regions of memory respon-

sible for the contention.

3.4.1 Performance Counter Monitoring

Inputs: Running System

Outputs: Degree of contention in the system

Performance counters are special registers that store records of microar-

chitectural events, such as cache misses or branch prediction success rates,

and are traditionally not used by the operating system and software. Acting
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as free running counters, they can be used to investigate the performance

characteristics of the system with low overhead. Modern processors have

events to count messages at every level of the cache hierarchy, including

the invalidation messages sent from one core to another due to contended

accesses.

While coherence invalidations indicate the presence of false or true shar-

ing, it is hard to characterize its impact on performance solely using an

absolute count. This is because the performance impact of every invalida-

tion is not equal: invalidations caused by off-socket cores require data to be

fetched from main memory and are much more expensive than those from

on-socket cores. However, since invalidations essentially stall a core until

the data is fetched, contending on-socket cores can issue more requests,

and hence cause more invalidations, per second than off-socket cores. Addi-

tionally, out-of-order execution and pipelining allow processors to hide the

latency of such invalidations with useful execution.

Rather than using invalidation counts in isolation, Plastic quantifies their

effect on performance by calculating the number of invalidations per in-

struction executed. As suggested in Intel’s performance manuals, values

over a third of a percent signify potentially high degrees of contention [73].

Invalidations are counted using the SNOOP_RESPONSE_HITM event, which

counts the number of snoop requests to a particular core that “hit” a modi-

fied value in a private cache that now needs to be written back to maintain

coherency. Plastic uses per-guest virtualized counters within Xen to only

count invalidations that occur during guest execution. While cache line

granularity contention does not distinguish between true and false sharing,

an absence of such contention signifies the lack of significant false sharing

in the system.

3.4.2 Page Granularity Analysis

Inputs: Presence of high cache line contention

Outputs: Contended physical pages

Once cache line level contention is observed, true and false sharing
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are distinguished by determining the exact regions of memory accessed.

Rather than instrumenting all memory accesses in the system, Plastic first

determines contended pages by leveraging hardware page protection mech-

anisms.

As a hypervisor capable of running several unmodified guests simulta-

neously, Xen virtualizes memory and provides each guest the illusion of a

contiguous address space. Hypervisor managed page tables perform an ad-

ditional level of translation, either in software via shadow page tables or in

hardware with Extended Page Tables (EPT) or Nested Page Tables (NPT) on

Intel and AMD processors respectively.

Traditionally, Xen has a single set of hardware page tables per guest.

Plastic extends these page tables to be per-core, each capable of having dif-

fering permissions for the same page. Using these tables to determine pages

shared across cores is fairly trivial. Initially, all pages are set to “No Access”

in all the private per-core page tables. Any subsequent access causes that

core to fault, which promotes the permissions in its private page table and

records the page and access-type in a per-core bitmap. Operating systems

can perform similar analysis using per-thread page tables [14, 101].

Plastic periodically resets page permissions to determine the pages ac-

cessed by every core over several epochs. Since contended pages require at

least one writer and one or more other readers or writers, the list of such

pages for each sampling epoch is the intersection of the write bitmap of

each core with the access bitmaps of all other cores. Contended pages, how-

ever, need not signify cache line contention since both thread migrations

and non-overlapping heap objects on the same physical page could also be

responsible.

3.4.3 Byte Level Access Analysis

Inputs: Contended physical pages

Outputs: Accessed bytes along with the identity of accessors

Analyzing memory accesses at a byte granularity requires recording ev-

ery memory access. Plastic uses page table permissions to force a page fault
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Figure 3.6: Sharing status of a byte in the access log

on any access to a contended page; the fault handler restores these per-

missions before returning to the guest, while simultaneously setting up a

single-step breakpoint to force a trap as soon as the instruction is retired.

At this point, permissions are again reset, effectively forcing every memory

access on that page to fault, where it is logged for further analysis.

Access patterns, delineated on a per-core basis, are not necessarily good

indicators of sharing since migrating threads may access the same regions

of memory from different cores. Distinguishing accesses at a thread level re-

quires some knowledge of how threading libraries identify different threads;

for instance, since most threading use the fs(x86_64) or gs(x86) seg-

ment registers to select the descriptor for the Thread Local Storage (TLS),

Plastic simply logs the descriptor value as a thread identifier.

3.4.4 Remapping Rule Generation

Inputs: Byte level access log for contended pages

Outputs: Remapping rules for the page

Generating remapping rules involves identifying contended cache lines

by classifying individual bytes according to the number of accessors and the

access type. Plastic parses the entire byte-level access log and assigns one of

the states in Figure 3.6 to each byte. Contended cache lines have multiple
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accessors with at least one writer (RW or RWS bytes).

During rule generation, memory regions within contended cache lines

are grouped according to accessors. Multiple such groups are isolated from

one another, while the bytes within the same group are remapped together.

Groups with modified bytes (RW or RWS) are remapped to the isolated

page, while the others are remapped to the underlay page.

3.4.5 Contention Verification and Adaptation

As a dynamic property, false sharing can evolve over time and requires con-

stant monitoring and adaptation. Once the remapping rules are generated

and sent to the remapping engine, the detection engine returns to monitor-

ing performance counters for any contention in the system. Any detected

contention triggers the entire detection pipeline which generates additional

remapping rules as and when required.

Short lived false sharing may trigger detection and then subside be-

fore the actual remappings are applied. To avoid such scenarios, Plastic

re-samples performance counters before remapping. While not guarantee-

ing that the previously detected false sharing exists, this ensures that some

contention still exists before proceeding with the remappings.

3.5 Memory Remapping

Mitigating false sharing involves transparently and safely remapping all ac-

cesses to falsely shared regions of memory onto distinct cache line iso-

lated locations. Plastic enforces such remappings with a combination of

hardware-based page protection and dynamic binary instrumentation.

The remappings generated at the end of the detection pipeline only de-

scribe regions of contended memory without any mention of the correspond-

ing accessors—in other words, they indicate what memory regions are to be

remapped, but not where, in code, these remappings need to be applied.

In order to detect all accessors, Plastic revokes access permission to con-

tended pages and registers itself with the page fault handler for the entire

lifetime of the remapping. Memory accesses are redirected using dynamic
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Remapping rules
A:(0x170c,0x04) → (0xf2000)

B:(0x1710,0x20) → (0xf1710)

Faulting instruction
mov (%rsi), %rdx

Instrumented block in code cache
     push %rsi

gA:  cmp  0x170c, %rsi            ; Guard A: Range check accessed

     jb   gB                      ; address against upper and

     cmp  (0x170c + 0x04), %rsi   ; lower bounds. Jump to next

     ja   gB                      ; guard if outside the range.

     sub  (0xf2000 - 0x170c), %rsi; Guard activated: remap access

     jmp  inst                    ; Exit the guard ladder

gB:  cmp  0x1710, %rsi            ; Guard B

     jb   inst                           

     cmp  (0x1710 + 0x20), %rsi

     ja   inst

     sub  (0xf1710 - 0x1710), %rsi

inst:mov  (%rsi), %rdx            ; Original faulting instruction

     pop  %rsi

     jmp  0xdeadbeef

Page fault:  Run-time access 
to memory (via %rsi pointer) 
has been remapped.  Transfer 
control to the code cache.

Figure 3.7: Guard Condition for a Single Instruction

instrumentation by “correcting” the accessing instruction.

Despite modifying the instructions executed, Plastic ensures that the se-

mantics of the original code are preserved and the program remains safe at

all times: instrumented instructions behave identically to the original with

the exception of pointing to the remapped memory location.

3.5.1 Achieving Transparency

Plastic remaps arbitrary ranges of memory by redirecting memory accesses

within a live, executing binary without any semantic knowledge of the pro-

gram itself. While borrowing and adapting techniques from existing instru-

mentation and patching frameworks [15, 23, 103, 114, 119, 148], it does

face two significant challenges. First, instrumenting a live binary cannot

rely on any kind of load-time analysis; for example, several instrumenta-

tion frameworks [23, 103] generate a control flow graph and translate the

entire program into basic blocks before executing it. Second, the kind of

overheads acceptable in developer-facing diagnostic tools [114, 119] are

not acceptable in performance-critical scenarios.

Plastic combines two techniques to apply the desired remappings: fault
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driven redirection and guard conditions. Rather than rewriting the original

instruction stream, it maintains a separate code cache with instrumented in-

structions. The instrumentation, applied with the help of DynamoRIO’s [23]

disassembly library, modify the memory referenced by the instructions while

Plastic redirects execution flow in a way that oscillates between the original

code and the code cache.

Fault Driven Redirection: Plastic maintains a consistent view of remapped

memory for the entire system by redirecting every accessor to an instru-

mented version in the code cache. Statically identifying all accessors to a re-

gion of memory, however, is complicated, especially in the case of an already

executing binary. Furthermore, redirecting execution using branches [148]

is not possible on a variable instruction size architecture like x86 because

adding a jmp or call as a trampoline could overwrite subsequent instruc-

tions and leave the code in an inconsistent state.

Plastic avoids these issues by leaving the original code unchanged and

redirecting execution via faults on the data path. By revoking access per-

missions to contended pages, it forces any access to trigger a page fault and

maintains a mapping between the faulting instruction and the instrumented

code. Plastic then acts as a centralized dispatcher and redirects execution to

the code cache by updating the instruction pointer.

Redirecting execution via the fault path also has another benefit: unlike

code trampolines, instrumentation is restricted to instances of an instruction

that access contended data, while other instances remain unchanged. This

prevents cases where all callers of a library function suffer from instrumen-

tation overhead, even when required only by a single caller.

Guard Conditions: When copied to the code cache, faulting memory refer-

ences are replaced by code that includes, in addition to the original instruc-

tion, instrumentation to appropriately modify the address referenced by the

instruction. Figure 3.7 illustrates an example of one such code block.

As such instructions may access different addresses depending on the

context under which executed, updating the reference address to a fixed,
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remapped location is insufficient. Instead, within the code cache, the in-

struction is preceded by a “guard condition”, a set of checks similar to

XFI [47].

Guard conditions verify that the memory referenced has been remapped

and update the address according to the correct rule. References not match-

ing existing rules fall through all the checks and execute the unmodified,

original instruction, ensuring that program behaviour remains unchanged.

3.5.2 Optimizing Performance

Trampolining to the code cache via page faults is slow and routinely hitting

the fault path for every contended memory access is several orders of mag-

nitude slower than simply allowing false sharing to exist. Plastic attempts

to reduce faults by instrumenting entire code blocks rather than single in-

structions, whenever possible.

Almost all high-frequency, performance-impacting contended accesses,

including calls and inlined accessors, are wrapped by loops. Instrument-

ing entire loops within the code cache amortizes the fault cost over sev-

eral iterations. The primary exception to this case, i.e. high-frequency

contended accesses in straight line code, is code that is called repeatedly

through asynchronous event injection: syscalls, interrupts, and user-level

equivalents such as signal handlers. Plastic can be extended to optimize this

case by instrumenting the entire function and then rewriting function call

sites [119].

Code blocks are instrumented by guarding memory references to ensure

that they are correctly remapped. These code blocks terminate with a di-

rect jmp back to the next instruction in the original code. Branch target

offsets and rip-relative accesses are corrected to account for both the code

relocation and the added instrumentation instructions.

Identifying Code Blocks: To instrument an entire code block, rather than

an individual instruction, Plastic faces the challenge of identifying block

boundaries based only on an instruction pointer lying somewhere within

the block. Fortunately, modern processors have the ability to track both
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source and destination addresses for recently taken branches using a facility

called the Last Branch Record (LBR). Plastic identifies blocks by searching

this LBR at the time of a fault for recent branches that move backwards in

code and describe an address range containing the faulting instruction.

Despite the simplicity of this approach, it has proven to be very effec-

tive in practice: even with a typically 16-entry LBR history, Plastic is able to

identify loop boundaries that effectively allows it to amortize the overhead

of transferring execution to the code cache. Faulting instructions within

hot code blocks cause the entire block to be instrumented while other ac-

cesses are instrumented on a per-instruction basis, preserving remappings

for less-frequently accessors. In the future, we anticipate extending Plastic

to periodically sample the LBR in the background to better detect nested

loops and loop-embedded function calls.

Specialized Code Blocks: As implied by Figure 3.7, memory references within

the code cache require a guard condition for every applied remapping. This

approach, especially in the face of large numbers of mappings, is problem-

atic: threads typically access only a small subset of the remapped data,

similar to the example of adjacent private structures in Figure 3.1, and forc-

ing execution through a long ladder of conditional guards increases the

general-case overhead of remapping. Even worse, a small number of “strag-

gler” threads may end up falling through all the guard conditions; the cor-

responding increase in overhead delays the entire program and loses the

performance benefit for all other threads.

Plastic takes advantage of the locality of accesses within threads by not

instrumenting blocks to contain a comprehensive list of guard conditions.

Instead, individual thread-specific versions of a code block are generated

to contain exactly the guards necessary to handle the remapping of data

accessed by that specific thread. As a result, threads executing their special-

ized version evaluate as few conditionals as possible and fault on accesses

when an appropriate guard is missing. This fault may then result in the

generation of an alternate block containing the necessary additional guards.
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Transferring Execution: While transferring execution from the original code

to the code cache is trivial in the case of a single instruction, entire code

blocks pose two problems to execution transfer. First, rather than transfer-

ring execution to the start of the instrumented block, it has to be transferred

to the correct instruction within it. Second, for multi-threaded applications,

Plastic must safely migrate all threads concurrently executing within that

code block.

Plastic maintains mappings between the original code and the code cache

using the Translation Offset Index. During page faults, it selects a special-

ized block with guards for the faulting address and transfers execution to

the instruction corresponding to the faulting instruction in that block. The

offset index allows faults on any instruction in the original binary to be ap-

propriately redirected to the code cache. This is important because at the

time a remapping is applied, several worker threads may be executing dif-

ferent instructions within the code block being remapped.

Figure 3.8 illustrates this transfer for two threads, T1 and T2 that con-

tend on independent, thread-specific data. T1 accesses data described by

rule A and triggers a page fault that generates a specialized version of the

code block with guards for both rules A and C. The second guard is added

because it describes the common case of accesses to the remainder of the

original page. Meanwhile, T2 continues executing the original code until it

faults on a memory reference, in this case one associated with rule B; Plas-

tic then generates a new specialized block for rules B and C, and transfers

execution to it. In this regard, the combination of faults on data access and

offset index matching between the original and specialized versions of code

allow threads to be efficiently and safely redirected to the suitable special-

ized version.
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start:  cmp  %rdx, %rcx

        jnz  out

400826: mov  (%rbx) %rax

        

        addq $0x1, %rax

40082d: mov  %rax, (%rbx)

        

        dec  %rcx

        jmp  start

out:    ...

startAC:cmp  %rdx, %rcx

        jnz  out

632926: guard A on %rbx

        guard C on %rbx

        mov  (%rbx) %rax

        addq $0x1, %rax

632944: guard A on %rbx

        guard C on %rbx

        mov  %rax, (%rbx)

        dec  %rcx

        jmp  startAC

startBC:cmp  %rdx, %rcx

        jnz  out

633226: guard B on %rbx

        guard C on %rbx

        mov  (%rbx) %rax

        addq $0x1, %rax

633244: guard B on %rbx

        guard C on %rbx

        mov  %rax, (%rbx)

        dec  %rcx

        jmp  startBC
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B:(f3010, 0x10) →(de1080)

C:(f3020, 0x980)→(de2000)
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T2

T2

Fault on access to remapped memory.

Instruction cross-reference between 

original and translated code.

Control flows of threads 1

and 2 (T1 and T2) before 

and after faulting.

Figure 3.8: Control transfer on access fault from original binary, to specialized blocks in the code cache
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3.5.3 Safety of Instrumented Code

Plastic guarantees that applied code transformations do not alter program

functionality in any manner. To ensure this, it performs extremely simple

transformations: every faulting instruction in the original code has an iden-

tical counterpart in the code cache. Instrumentations simply modify the

referenced addresses and invariants that hold for the original execution also

hold for the version within the code cache.

Plastic leverages the insight that, as a performance optimization, it can

afford to be sound, but not complete, with respect to the instruction set.

While systems providing strong security guarantees [49, 165] have to con-

tend with several corner cases in x86, Plastic simply invalidates all the

remappings when it encounters instructions it cannot safely redirect.

Invalidating remappings is simplified by the fact that the original code

remains unchanged at all times. Data from the split pages is merged back to

the original which is then unprotected. Execution transfer is mirrored from

earlier—permission to the split pages is revoked and Plastic transfers acces-

sors from the code cache back to the corresponding accessors in the original

code. With both code and data restored to their original state, execution

continues unhindered.

Code Coverage: As discussed in Section 3.5.1, Plastic prevents stray acces-

sors from modifying the original data by marking the page as “No Access”

throughout the lifetime of the remapping. Guard conditions ensure that ac-

cesses to data lying outside the remapped region, even from within the code

cache, do not get arbitrarily remapped.

Thread Safety: Plastic serializes handling page faults for the data page and

the subsequent generation of instrumented code blocks. Such faults are

infrequent, so serialization does not significantly affect performance, while

simultaneously preventing race conditions due to concurrent accesses.

Leaked Pointers: Applications remain unaware of the remapped data ranges

and as such all accesses to these ranges originate from within the code
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cache. Improperly restoring register state, however, may reveal these ranges

to the original code. Such leaked pointers are dangerous: an application

may inadvertently manipulate them and attempt to access undefined re-

gions of memory. Plastic avoids leaked pointers by immediately restoring

the original memory address after executing the faulting instruction.

Unsupported Instructions: Plastic invalidates existing remappings on en-

countering memory references that it cannot redirect. A list of several such

instructions and the difficulties involved in their redirection follows. While

workarounds for several of these instructions exist, they are currently not

implemented in Plastic.

1. Repeat Prefixed Instructions: Instructions like rep movs and rep
cmps may access several bytes of memory, spanning both remapped

and non-remapped regions, using a single instruction. Plastic cannot

detect the ranges of memory involved and redirect accesses just by

modifying the parameters prior to execution. Instrumentation frame-

works like Pin [103] explicitly convert such instructions into loops to

overcome this issue.

2. Atomic Accesses: Memory accesses that straddle remap regions can-

not safely be redirected without changing the instruction into a set of

smaller granularity memory accesses. Examples of such scenarios in-

clude contiguous bytes updated by independent threads, causing them

to be remapped to independent cache lines, that are later read by a

single atomic 32 or 64-bit read.

3. mov %rXx, (%rXx): Directly modifying instructions that write their

address to their memory location lead to leaked pointers as remapped

addresses get written back to memory. Such instructions can be redi-

rected by using an extra register to hold the original address which is

written to the remapped memory region.

4. Register Indirect Branches: Indirect branches, such as jmp *%rXx
and call *%rXx, accessing function pointers tables located on pro-
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Figure 3.9: Linear regression running under Plastic

tected pages need to be redirected to the remapped pointer table.

Once the branch is taken, however, Plastic cannot restore the register

to its original value. Such branches can be replaced with rip-relative

branches referencing the remapped pointer table.

Lastly, there is the safety of the code cache itself to consider. The code

cache must reside in the address space of the application and remain acces-

sible at all times; its pages, however, are marked as read-only to prevent

modification from within the application. While an application may attempt

to jump into the middle of a block to avoid the guards, there is little value

in this as it would only hinder the application itself.

3.6 Evaluation

Plastic is evaluated on a dual socket, 8-core Nehalem system with 32 GB of

memory. Each processor is a 4-core 64-bit Intel Xeon E5506 with private,

per-core L1 and L2 caches and a shared, per-socket L3 cache. Plastic runs

on Xen 4.2 with a Linux Dom0. All tests are run on an 8-core guest with

virtual processors pinned to the corresponding physical core.

First, we describe the detailed execution of a false sharing workload un-

der Plastic, followed by a discussion of the memory overhead of the system.
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We then assess the performance impact of remappings within a code block

on other callers of the same code block. Finally, we evaluate Plastic’s perfor-

mance across a range of different workloads, compiled with gcc 4.4.3 at

the default optimization level. Reported performance results are the average

of twenty runs.

3.6.1 Functioning of Plastic

Detection Times and Execution under Plastic: Figure 3.9 represents execu-

tion of the linear_regression workload discussed earlier running un-

der Plastic and compares it with that of a source-fixed version of the same

program. Along with total benchmark progress, coherence invalidations are

also shown for the version with false sharing.

As the workload starts it immediately causes a significant number of co-

herence invalidations; correspondingly, its throughput is only a fraction of

that of the source-fixed version. At around 125 ms, the performance coun-

ters detect the presence of contention and activate the rest of the pipeline.

At around 500 ms, the remapping rules are synthesized and threads are

migrated to the code cache by 600 ms through a series of page faults. Exe-

cution remains within the code cache, as indicated by the absence of any fur-

ther faults. Consequently, throughput rises and the benchmark progresses

rapidly, while the coherence invalidations correspondingly drop to almost

zero indicating the lack of contention.

A single thread aggregating results from remapped data is responsible

for the page faults near the end of the execution. As these are non-high-

frequency accesses, Plastic remaps them on a per-instruction basis, resulting

in the high number of faults. Plastic continues to sample performance coun-

ters throughout execution for any further instances of contention; in this

case, however, no other contention is detected.

Comparing the throughput of the Plastic-fixed and source-fixed versions

helps precisely define the overhead of the extra instrumentation required for

remapping. Once execution is transferred to the code cache, the throughput

of the Plastic-fixed version is 110M/s compared to a throughput of 160M/s
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for the source-fixed version—a performance loss of 31%. The remaining dif-

ference in overall throughput is due to the false sharing before the remap-

pings are applied.

Memory Overhead: Plastic trades memory for higher performance by re-

quiring additional memory for the instrumented code and to pad and iso-

late contended cache lines. In practice we find that a reservation of 64

pages (256 KB) is sufficient for most remapping scenarios and does not sig-

nificantly reduce the VA space available to applications.

Impact of Remappings on Other Callers: A simple microbenchmark helps

verify the assertion in Section 3.5.1 that callers of code blocks not refer-

encing remapped data are unaffected: a function executes referencing non-

contended memory followed by an execution referencing contended mem-

ory that triggers remapping. Finally, the original execution is repeated. Non-

coherence misses are ignored since data resides on a single cache line. The

last execution has under 1% overhead compared to the first, demonstrating

the negligible impact on callers not accessing remapped data.

3.6.2 Performance Analysis

Plastic is evaluated by comparing the performance of several workloads run-

ning under Xen, normalized against their single threaded performance, with

and without Plastic. While this data, shown in Figure 3.10, ignores the vir-

tualization overhead, we find it to average 3% over the benchmarks.

Plastic samples contended pages for multiple 2 ms epochs, followed by

250 ms of emulation. Stage lengths can be varied if desired and, like in any

sampling, represent a trade-off between the speed and accuracy of detec-

tion. Nevertheless, we believe they are sufficient for most high-frequency

false sharing and are, in practice, able to accurately detect the exact regions

of false sharing in all the workloads evaluated.
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Name Description Examples Fixable?

fs_independent Multiple accessors to independent vari-
ables
(At least one writer)

Linear Regression in Phoenix [129]
spinlock_pool in Boost [107]
Bookeeping in the Java GC [42]

Yes

fs_mixed Shared read-only data co-located with
contended data

net_device struct in Linux [21] Yes

bitmask Bitmasks and flags page struct in Linux [21] No

true_share Shared read-write data Locks and global counters No

Table 3.1: Microbenchmarks in CCBench. The Fixable column denotes whether it can be fixed by simply remapping
memory.
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The CCBench: Performance artifacts due to memory contention in real work-

loads, like those in Section 3.2, often only manifest themselves at a not-yet-

common degree of scale. To replicate these effects with fewer cores, we have

developed CCBench, a suite of microbenchmarks that model their memory

access patterns on real workloads, but exacerbate their effects by contend-

ing at higher frequencies.

Table 3.1 briefly describes the different microbenchmarks and the real

workloads they emulate, while their performance is seen in Figure 3.10.

Including both true and false sharing workloads allows us to measure both

the performance improvement when Plastic is able to “fix” the problem as

well as the impact on performance when it is unable to do so.

fs_independent is a classical example of false sharing with multiple

readers and writers accessing independent values in a global array. It is

modeled after spinlocks in a lock pool [107] or the bytes used to represent

the dirtied status of pages during Java garbage collection [42]. Isolating the

sets of values accessed by a thread onto independent cache lines reduces

execution time from 18.4s to 5.1s, a speedup of 3.6x.

fs_mixed involves false sharing between a shared read-only data range

and a shared read-write range, with accessors equally distributed between

both data ranges. Read-mostly spinlocks in the net_device structure in

Linux contend with the transmission and receive queues in a similar man-

ner [21]. Remapping splits these data ranges and reduces execution time

from 18.7s to 11s, a modest performance improvement of 40%. Comparing

the performance of accessors now shows a bimodal distribution: accessors

to the read-only range are contention-free and display a speedup of 6.6x,

but overall program performance is limited by accessors to the read-write

range still suffering from some contention.

bitmask models bitmasks like the flags in the page structure in the

Linux kernel. A combination of read-only and read-write flags leads to false

sharing within a single byte, alleviated only by splitting the flags into dis-

crete versions [21]. From a byte-level perspective, however, bitmasks repre-

sent true sharing and do not benefit from remapping.

true_share simulates lock contention with concurrent reads and writes
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to the same memory location.

bitmask and true_share represent pathological scenarios for Plas-

tic: high degrees of true sharing that are impossible to distinguish from

false sharing without emulation. Despite this, due to the sampled nature

of emulation, both show little overhead and perform within 1% of normal

execution.

Shared Memory Benchmarks: Plastic’s effectiveness with real-world bench-

marks is evaluated against several applications from the Phoenix [129] and

PARSEC [16] benchmark suites. Both of these suites are specifically de-

signed for shared memory workloads and are representative of applications

from several different domains.

Plastic fixes significant amounts of false sharing in linear_regression,

showing a speedup of 5.4x compared to normal execution. For the remain-

ing workloads, Plastic imposes an average of 3% overhead, demonstrating

that it does not adversely impact workloads without false sharing.

As a live detector, Plastic prioritizes performance over completeness and

focuses on detecting high-impact false sharing. While this does lead to some

instances of false sharing remaining undetected, we quantify the degree

of false sharing in these instances by comparing against other detectors.

Sheriff [101] detects false sharing in streamcluster, swaptions, his-
togram, string_match, and word_count in addition to linear_reg
ression.

Out of these, streamcluster, swaptions, and word_count show

less than 5% degradation due to false sharing and do not have enough con-

tention to trigger the detection pipeline. False sharing in string_match
is caused due to the heap allocator. Not only is this not observed on our

system, but in practice it scales well up to 8 cores.

In contrast, while histogram definitely suffers from false sharing, the

performance impact is found to be only around 25% when compared against

a source-fixed version. This does not warrant remapping because, unlike

the case in linear_regression,fs_independent, and fs_mixed, the

benefit of mitigating false sharing no longer masks the remapping overhead
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discussed in Section 3.6.1.

The benchmark results highlight the differences in approach taken to

false sharing detection and mitigation by Sheriff [101] and Plastic. Sheriff

forces threads within a process to operate on private pages, set up using

copy-on-write semantics, and merges them at synchronization points. False

sharing is avoided simply by batching updates to contended memory re-

gions. linear_regression has little synchronization and exhibits a 9x

speedup. In contrast, Plastic has a low throughput detection phase prior to

applying the remappings and shows a speedup of 5.4x. By avoiding expen-

sive page copy operations, Plastic does an excellent job of uniformly impos-

ing low overhead on workloads that do not exhibit false sharing. In contrast,

Sheriff shows significant overheads in programs with frequent locking such

as fluidanimate and canneal.

We find that Plastic can quickly and accurately detect and correct false

sharing with low overhead. In cases where false sharing exists, but imposes

only a small overhead, it is able to correctly value its potential to improve

performance and do no harm. At the same time, Plastic can significantly

improve the execution of workloads where false sharing would otherwise

impose a crippling scalability limitation.

3.7 Related Work

Several existing systems study the cache subsystem and detect false sharing

in existing application workloads. Plastic also shares similarities in detection

mechanisms with race detectors and other systems designed to diagnose

memory contention issues apart from false sharing.

False Sharing: Sheriff [101] shares a similar goal to Plastic in transpar-

ently detecting and fixing false sharing in production environments. It splits

threads into separate, independent processes, each of which has private

page tables. Changes to memory are localized to a private copy of modi-

fied pages which are merged together at synchronization points. False shar-

ing is detected by identifying interleaved writes at a cache line granular-
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ity, while mitigation simply reduces the frequency of accesses to contended

cache lines.

Sheriff makes assumptions about the use of the pthread API for syn-

chronization and may break correctness if these assumptions are violated;

for instance, in the case of lock-free data structures. Similarly, locks and

other synchronization primitives located on the same page as contended

structures may prevent the successful mitigation of false sharing.

Zhao, et al. [166] use memory shadowing to track ownership of cache

lines and analyze thread-access patterns without full cache simulation. Us-

ing DynamoRIO [23] for instrumentation, they help detect cache contention

with around 5x overhead, and makes no attempt to mitigate the problem.

DProf [124] is a data profiler that associates access costs with data rather

than instructions. It helps developers identify memory regions frequently

experiencing high access costs, including due to true and false sharing,

but does not automatically distinguish between the causes or help mitigate

them.

Intel Performance Tuning Utility [75] uses performance counter mon-

itoring to identify contention, but does not distinguish between true and

false sharing. Unlike Plastic, it neither attempts to analyze the performance

effects of this contention, nor does it attempt to fix them in any way.

Several approaches for detecting cache contention model the cache in

software [60, 79, 150], and are clearly intended for development use only.

Pluto [60], a Valgrind based instrumentation engine, imposes around two

orders of magnitude overhead, while Cmp$im [79], which uses Pin [103] to

simulate the entire memory hierarchy and coherence algorithms in software,

runs at 4-10 MIPS.

Race Detection: Like detecting false sharing, race detection requires instru-

menting every memory access to log the ordering of accesses to shared mem-

ory. Aikido [120] uses hypervisor-based, per-thread shadow page tables to

identify contended pages for further analysis, in a manner similar to Plas-

tic. Greathouse, et al. [55] use coherence invalidations as a trigger for more

heavy-weight, software-based analysis to identify actual data races. As a
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race detector, however, they treat any such invalidation as suspicious and

perform further analysis, without analyzing its performance impact.

3.8 Discussion and Future Work

In order to maximize performance, Plastic leverages hardware facilities when-

ever possible, only resorting to software interposition when the required fea-

tures are not exposed by the hardware. Processors, however, are constantly

evolving and some additional features may further reduce overhead.

Performance counters operating in sampling mode, called Precise Event

Based Sampling (PEBS) or Instruction Based Sampling (IBS) on Intel and

AMD processors respectively, store processor state on sampled occurrences

of selected microarchitectural events. Sampling coherence invalidations

stores processor state when contended memory accesses occur. Unfortu-

nately, on Nehalem processors this does not include the memory address ac-

cessed. Recording this address, as proposed for future architectures, would

allow Plastic to identify contended memory regions directly in hardware.

Plastic relies on page-granularity protection to detect access to contended

memory, unfortunately resulting in faults for all accesses to that page. Hard-

ware watchpoints overcome this by detecting accesses at byte-granularity,

but are extremely limited in number. An unlimited number of watchpoints [56]

would help significantly reduce the number of faults.

Language runtimes that manage memory for their applications indepen-

dently of the OS could suffer unnecessary performance degradation due

to remapping. Plastic invalidates applied remappings to maintain program

safety, but does not currently extend this facility to monitor the performance

impact of the remapping and, if necessary, restore execution to the original

code. Plastic also cannot be disabled on a per-application basis, but could

be extended to provide this facility with support from the guest OS.

Lastly, dynamically fixing false sharing should be a last resort only for

when statically fixing the problem in source is not possible. Plastic’s detec-

tion engine could be extended with debug symbols to provide developers

source-level reports of the contending data structures.
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3.9 Conclusion

Plastic demonstrates that, by taking responsibility for monitoring and man-

aging coherence misses in its caches, a system can dynamically recover from

workloads that exhibit pathological false sharing. In order to achieve this,

the system tackled two challenging problems. First, the aggregation and

integration of a variety of monitoring and diagnosis techniques, including

hardware performance counters, shadow paging, and instruction emulation

to quickly and precisely identify false sharing with low overhead. Second,

the system demonstrated a sub-page granularity remapping facility that is

sufficiently high-performance as to show a speedup of 3–6x in cases of high-

rate false sharing.
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Chapter 4

Decibel: Isolation and Sharing

in Disaggregated Rack-Scale

Storage

4.1 Introduction

Rack-scale storage architectures such as Facebook’s Lightning [126] and

EMC’s DSSD [46] are dense enclosures containing storage class memo-

ries (SCMs)1 that occupy only a few units of rack space and are capable

of serving millions of requests per second across petabytes of persistent

data. These architectures introduce a tension between efficiency and per-

formance: the bursty access patterns of applications necessitate that storage

devices be shared across multiple tenants in order to achieve efficient utiliza-

tion [91], but the microsecond-granularity access latencies of SCMs render

them highly sensitive to software overheads along the datapath [30, 147].

This tension has forced a reconsideration of storage abstractions and

raised questions about where functionality, such as virtualization, isola-

tion, and redundancy, should be provided. How should these abstractions

1We use the term storage class memory through the rest of the chapter to characterize
high performance PCIe-based NVMe SSDs and NVDIMM-based persistent storage devices.
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evolve to support datacenter tenants without compromising efficiency, per-

formance, or overall system complexity?

Decibel is a thin virtualization platform, analogous to a processor hy-

pervisor, designed for rack-scale storage, that demonstrates the ability to

provide tenants with flexible, low-latency access to SCMs. Its design is mo-

tivated by the following three observations:

1. Device-side request processing simplifies storage implementations. By

centralizing the control logic necessary for multi-tenancy at processors ad-

jacent to storage devices, traditional storage systems impose latency over-

heads of hundreds of microseconds to few milliseconds under load [91].

In an attempt to preserve device performance, there has been a strong

trend towards bypassing the CPU altogether and using hardware-level de-

vice passthrough and proprietary interconnects to present SCMs as serverless

storage [5, 30, 68].

Serverless storage systems throw the proverbial baby out with the bath-

water: eliminating the device-side CPU from the datapath also eliminates

an important mediation point for client accesses and shifts the burden of

providing datapath functionality to client-based implementations [7, 29] or

to the devices themselves [2, 68, 163]. For isolation, in particular, client

implementations result in complicated distributed logic for co-ordinating

accesses [68] and thorny questions about trust.

2. Recent datacenter infrastructure applications have encompassed func-

tionality present in existing feature-rich storage abstractions. In addition to

virtualizing storage, storage volumes provide a rich set of functionality such

as data striping, replication, and failure resilience [26, 50, 71, 123]. Today,

scalable, cloud-focused data stores that provide persistent interfaces, such as

key-value stores, databases, and pub/sub systems, increasingly provide this

functionality as part of the application; consequently, the provision of these

features within the storage system represents a duplication of function and

risks introducing both waste and unnecessary overheads.

3. Virtualizing only the capacity of devices is insufficient for isolation

in multi-tenant environments. Extracting performance from SCMs is ex-

tremely compute-intensive [30, 121, 164] and sensitive to cross-core con-

83



tention [18]. As a result, storage systems require a system-wide approach

to virtualization and must ensure both adequate availability of compute,

network, and storage resources for tenant requests, and the ability to ser-

vice these requests in a contention-free manner. Further, unlike traditional

storage volumes that do not adequately insulate tenants from performance

interference [91], the system must provide tenants with predictable perfor-

mance in the face of multi-tenancy.

These observations guide us to a minimal storage abstraction that targets

isolation and efficient resource sharing for disaggregated storage hardware.

Decibel introduces Decibel volumes (referred to as dVols for short): vertical

slices of the storage host that bind SCMs with the compute and network

resources necessary to service tenant requests. As both the presentation of

fine-grained storage abstractions, such as files, objects, and key-value pairs,

and datapath functionality, such as redundancy and fault-tolerance, have

moved up the stack, dVols provide a minimal consumable abstraction for

shared storage without sacrificing operational facilities such as transparent

data migration.

To ensure microsecond-level access latencies, Decibel prototypes a run-

time that actively manages hardware resources and controls request schedul-

ing. The runtime partitions hardware resources across cores and treats dVols

as schedulable entities, similar to threads, to be executed where adequate

resources are available to service requests. Even on a single core, kernel

scheduling policies may cause interference, so Decibel completely bypasses

the kernel for both network and storage requests, and co-operatively sched-

ules request processing logic and device I/O on a single thread.

Decibel is evaluated using a commodity Xeon server with four directly-

connected enterprise PCIe NVMe drives in a single 1U chassis. Decibel

presents storage to remote tenants over Ethernet-based networking using

a pair of 40 GbE NICs and achieves device-saturated throughputs with a

latency of 220–450 µs, an overhead of approximately 20–30 µs relative to

local access times.
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Application Backend FT Ephem Year

Key-Value Stores

Riak LevelDB Y Y 2009
Voldemort BerkeleyDB Y N 2009
Hyperdex File Y Y 2011

Databases

Cassandra File Y Y 2008
MongoDB WiredTiger Y N 2009

CockroachDB RocksDB Y Y 2014
Pub/Sub Systems

Kafka File Y Y 2011
Pulsar BookKeeper Y Y 2016

Table 4.1: Examples of cloud data stores. FT denotes that replication and
fault-tolerance are handled within the data store and storage failures are
treated as node failures. Ephem indicates that users are encouraged to
install data stores over local, “ephemeral” disks—Voldemort and Mongo
suggest using host-level RAID as a convenience for recovering from drive
failures. Backend is the underlying storage interface; all of these systems
assume a local filesystem such as ext4, but several use a library-based
storage abstraction over the file system API.

4.2 Decibel and dVols

Scalable data stores designed specifically for the cloud are important in-

frastructure applications within the datacenter. Table 4.1 lists some popular

data stores, each of which treats VM or container-based nodes as atomic

failure domains and handles lower-level network, storage, and application

failures uniformly at the node level. As a result, several of these data stores

recommend deploying on “ephemeral”, locally-attached disks in lieu of reli-

able, replicated storage volumes [37, 93, 109].

These systems are designed to use simple local disks because duplicating

functionality such as data redundancy at the application and storage layers

is wasteful in terms of both cost and performance; for example, running a

data store with three-way replication on top of three-way replicated storage

results in a 9x write amplification for every client write. Further, running a

replication protocol at multiple layers bounds the latency of write requests
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to the latency of the slowest device in the replica set. The desire to minimize

this latency has led to the development of persistent key-value stores, such

as LevelDB and RocksDB, that provide a simple, block-like storage abstrac-

tion and focus entirely on providing high performance access to SCMs.

The dVol is an abstraction designed specifically for rack-scale storage

in response to these observations. As a multi-tenant system, Decibel faces

challenges similar to a virtual machine monitor in isolating and sharing an

extremely fast device across multiple tenants and benefits from a similar

lightweight, performance-focused approach to multiplexing hardware. Cor-

respondingly, a dVol is a schedulable software abstraction that encapsulates

the multiple hardware resources required to serve stored data. In taking

an end-to-end view of resource sharing and isolation rather than focusing

only on virtualizing storage capacity, dVols resemble virtual machines to a

greater degree than traditional storage volumes.

In borrowing from VMs as a successful abstraction for datacenter com-

putation, dVols provide the following properties for storage resources:

Extensible Hardware-like Interfaces: dVols present tenants with an

interface closely resembling a physical device and so avoid restricting appli-

cation semantics. dVols also offer tenants the ability to offload functionality

not directly supported by SCMs. For example, dVols support atomic up-

dates [36, 67] and compare-and-swap [156] operations.

Support for Operational Tasks: Decoupling storage from the under-

lying hardware provides a valuable point of indirection in support of data-

center resource management. In virtualizing physical storage, dVols support

operational tasks such as non-disruptive migration and provide a primitive

for dynamic resource schedulers to optimize the placement of dVols.

Visibility of Failure Domains: Unlike traditional volumes that abstract

information about the underlying hardware away, dVols retain and present

enough device information to allow applications to reason about failure do-

mains and to appropriately manage placement across hosts and devices.

Elastic Capacity: SCMs are arbitrarily partitioned into independent,

non-contiguous dVols at runtime and, subject to device capacity constraints,

can grow and shrink during execution without causing device fragmentation
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and a corresponding wastage of space.

Strong Isolation and Access Control: As multi-tenant storage runs

the risk of performance interference due to co-location, dVols allow tenants

to specify service-level objectives (SLOs) and provide cross-tenant isolation

and the throughput guarantees necessary for data stores. In addition, dVols

include access control mechanisms to allow tenants to specify restrictions

and safeguard against unauthorized accesses and information disclosure.

As the basis for a scalable cloud storage service, Decibel represents a

point in the design space that is between host-local ephemeral disks on one

hand, and large-scale block storage services such as Amazon’s Elastic Block

Store (EBS) on the other. Like EBS volumes, dVols are separate from the

virtual machines that access them, may be remapped in the face of failure,

and allow a greater degree of utilization of storage resources than direct

access to local disks. However, unlike volumes in a distributed block store,

each dVol in Decibel is stored entirely on a single physical device, provides

no storage-level redundancy, and exposes failures directly to the client.

4.3 The Decibel Runtime

Decibel virtualizes the hardware into dVols and multiplexes these dVols onto

available physical resources to ensure isolation and to meet their perfor-

mance objectives. Each Decibel instance is a single-host runtime that is re-

sponsible solely for abstracting the remote, shared nature of disaggregated

storage from tenants. Decibel can provide ephemeral storage directly to ten-

ants or act as a building block for a larger distributed storage system where

multiple Decibel instances are combined to form a network filesystem or an

object store [39, 152].

Decibel’s architecture is shown in Figure 4.1: it partitions system hard-

ware into independent, shared-nothing per-core runtimes. As achieving ef-

ficient resource utilization requires concurrent, wait-free processing of re-

quests and needs to eliminate synchronization and coherence traffic that is

detrimental to performance, Decibel opts for full, top-to-bottom system par-

titioning. Each per-core runtime has exclusive access to a single hardware
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queue for every NIC and SCM in the system and can access the hardware

without requiring co-ordination across cores.

Decibel relies on kernel-bypass libraries to partition the system and pro-

cesses I/O traffic within the application itself; a network stack on top of

the Intel Data Plane Development Kit (DPDK) [74] and a block layer on

top of the Intel Storage Plane Development Kit (SPDK) [77] provide direct

low-latency access to network and storage resources within the user space

application. Each per-core runtime operates independently and is uniquely

addressable across the network. Execution on each core is through a sin-

gle kernel thread on which the runtime co-operative schedules network and

storage I/O and request processing along with virtualization and other dat-

apath services.

Each per-core runtime services requests from multiple tenants for multi-

ple dVols, while each dVol is bound to a single core. The mapping from dVols

to the host and core is reflected in the network address directory, which is

a separate, global control path network service. As self-contained entities,

dVols can be migrated across cores and devices within a host or across hosts

in response to changes in load or performance objectives.

By forcing all operations for a dVol to be executed serially on a sin-

gle core, Decibel avoids the contention overheads that have plagued high-

performance concurrent systems [20, 28]. Binding dVols to a single core and

SCM restricts the performance of the dVol to that of a single core and device,

forcing Decibel to rely on client-side aggregation where higher throughput

or greater capacity are required. We anticipate that the runtime can be ex-

tended to split existing hot dVols across multiple cores [3] to provide better

performance elasticity.

Clients provision and access dVols using a client-side library that maps

client interfaces to remote RPCs. The library also handles interaction with

the network address directory, allowing applications to remain oblivious to

the remote nature of dVols. Legacy applications could be supported through

a network block device driver; however, this functionality is currently not

provided.
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Figure 4.1: dVol and per-core runtime architecture in Decibel
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vol_read (vol, addr, len) →data

vol_read_ex (vol, addr, len) →(data, meta)

vol_write (vol, addr, len, data) →status

vol_write_ex (vol, addr, len, data, meta) →status

vol_deallocate (vol, addr[], nchunks) →status

vol_write_tx (vol, addr, len, data) →status

vol_cmpxchg (vol, addr, old, new) →status

Figure 4.2: Datapath Interfaces for dVols. The last two provide functionality
not directly provided by SCMs in hardware.

4.3.1 Virtual Block Devices

Storage virtualization balances the need to preserve the illusion of exclu-

sive, locally-attached disks for tenants with the necessity of supporting op-

erational and management tasks for datacenter operators. The tenant inter-

faces to virtualized storage, enumerated in Figure 4.2, closely match that of

the underlying hardware with commands such as read, write, and deallo-

cate2 providing the same semantics as the corresponding NVMe commands.

Device Partitioning: dVols provide tenants a sparse virtual address space

backed by an SCM. As the storage requirements of tenants vary over time,

the capacity utilization of dVols constantly grows and shrinks during exe-

cution. Consequently, Decibel must manage the fine-grained allocation of

capacity resources across dVols.

One alternative for device partitioning is to rely on hardware-based NVMe

namespaces [163] which divide SCMs into virtual partitions that may be

presented directly to tenants. As implemented in modern hardware, names-

paces represent large contiguous physical regions of the device, making

them unsuitable for dynamically resizing workloads. Moreover, many NVMe

devices do not support namespaces at all, and where they are supported, de-

vices are typically limited to a very small number3 of namespace instances.

2We use the NVMe “deallocate” command, also termed “trim”, “unmap”, or “discard” in
the context of SATA/SAS SSDs.

3The maximum number supported today is 16, with vendors indicated that devices sup-

90



While the namespace idea is, in principle, an excellent abstraction at the

device layer, these limits make them insufficient today, and are one of the

reasons that Decibel elects to virtualize the SCM address space above the

device itself.

Decibel virtualizes SCMs at block-granularity. Blocks are 4K contiguous

regions of the device’s physical address space. While some SCMs support

variable block sizes, Decibel uses 4K blocks to match both existing storage

system designs and x86 memory pages. Blocks are the smallest writeable

unit that do not require firmware read-modify-write (RMW) cycles during

updates, and also generally the largest unit that can be atomically overwrit-

ten by SCMs for crash-safe in-place updates.

Address Virtualization: dVols map the virtual address space presented to

tenants onto physical blocks using a private virtual-to-physical (V2P) table.

Each dVol’s V2P table is structured as a persistent B+ tree, with fixed, block-

sized internal and leaf nodes, and is keyed by 64-bit virtual addresses; in-

ternal nodes store references to their children as 64-bit physical block ad-

dresses.

V2P mappings are stored as metadata on the SCM. Client writes are fully

persisted, including both data and V2P mappings, before being acknowl-

edged. Decibel performs soft-update-ordered [52] writes of data blocks and

metadata: where a write requires an update to the V2P table, data is always

written and acknowledged by the device before the associated metadata

write is issued. The current implementation is conservative, in that all V2P

transactions are isolated. There is opportunity to further improve perfor-

mance by merging V2P updates. Subsequent writes to allocated blocks do

not modify the V2P table and occur in-place, relying on the block-level write

atomicity of SCMs for consistency.

Several modern SCMs show little benefit for physically contiguous ac-

cesses, especially in multi-tenant scenarios with mixed reads and writes. As

a result, dVols do not preserve contiguity from tenant writes and split large,

variable-sized requests into multiple, block-sized ones. V2P mappings are

porting 128 namespaces are likely to be available over the next few years.
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Figure 4.3: Cached V2P Entry

also stored at a fixed, block-sized granularity. This trades request amplifi-

cation and an increase in V2P entries for simplified system design: Deci-

bel does not require background compaction and defragmentation services,

while V2P entries avoid additional metadata for variable-sized mappings.

Decibel aggressively caches the mappings for every dVol in DRAM. The

V2P table for a fully-allocated terabyte-sized device occupies approximately

6 GB (an overhead of 0.6%). While non-trivial, this is well within the limits

of a high performance server. Cached V2P entries vary from the on-device

format: as Figure 4.3 illustrates, physical addresses are block-aligned and

require only 52 bits, so the remaining 12 bits are used for entry metadata.

The Incoming and Write-out bits are used for cache management and sig-

nify that the entry is either waiting to be loaded from the SCM or that an

updated entry is being flushed to the SCM and is awaiting an acknowledge-

ment for the write. The Dirty bit indicates that the underlying data block

has been modified and is used to track dirtied blocks to copy during dVol

migrations. The Locked bit provides mutual exclusion between requests to

overlapping regions of the dVol: when set, it restricts all access to the map-

ping for any request context besides the one that has taken ownership of the

lock.

Block Allocation: Requests to allocate blocks require a consistent view of

allocations across the entire system to prevent races and double alloca-

tions. Decibel amortizes the synchronization overhead of allocations by

splitting them into reservations and assignment: each core reserves a fixed-

size, physically-contiguous collection of blocks called an extent from the de-

vice in a single operation and adds it to a per-core allocation pool (resem-

bling the thread cache in tcmalloc).
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Figure 4.4: Physical Partitioning of Storage Devices

As seen in Figure 4.4, SCMs are divided into multiple extents, which are

dynamically reserved by cores. The reservation of extents to cores is tracked

by a global, per-device allocator. Cores asynchronously request more extents

from the allocator once the number of available blocks in their local pool

falls below a certain threshold. This ensures that, as long as the device is

not full, allocations succeed without requiring any synchronization.

Assigning entire extents to dVols risks fragmentation and a wastage of

space. Instead, cores satisfy allocation requests from dVols by assigning

them blocks from any extent in their private pool at a single block granu-

larity. As individual blocks from extents are assigned to different dVols, the

split-allocation scheme eliminates both fragmentation and contention along

the datapath.

Internally, extents track the allocation status of blocks using a single

block-sized bitmap; as every bit in the bitmap represents a block, each extent

is 128 MB (4K×4K×8). Restricting the size of extents to the representation

capacity of a single block-sized bitmap allows the bitmap to atomically be

overwritten after allocations and frees.

dVols explicitly free blocks that are no longer needed using the deallo-

cate command, while deleting dVols or migrating them across devices im-
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Figure 4.5: Extended Logical Blocks (Block + Metadata)

plicitly triggers block deallocations. Freed blocks are returned to the local

pool of the core where they were originally allocated and are used to fulfil

subsequent allocation requests.

Data Integrity and Paravirtual Interfaces: SCMs are increasingly prone to

block errors and data corruption as they age and approach the endurance

limits of flash cells [134]. Even in the absence of hardware failures, SCMs

risk data corruption due to write-tearing: since most SCMs do not support

atomic multi-block updates, failures during these updates result in partial

writes that leave blocks in an inconsistent state.

Decibel provides additional services not directly available in hardware

to help prevent and detect data corruption. On each write, it calculates

block-level checksums and verifies them on reads to detect corrupted blocks

before they propagate through the system. dVols also support two addi-

tional I/O commands: multi-block atomicity to protect against write-tearing

and block compare-and-swap to allow applications that can only communi-

cate over shared storage to synchronize operations using persistent, on-disk

locks [156].

Several enterprise SCMs support storing per-block metadata alongside

data blocks and updating the metadata atomically with writes to the data.

The block and metadata regions together are called extended logical blocks

(shown in Figure 4.5). Block metadata corresponds to the Data Integrity

Field (DIF) provided by SCSI devices and is intended for use by the storage

system. Decibel utilizes this region to store a CRC32-checksum of every

block.

Block checksums are self-referential integrity checks that protect against

data corruption, but offer no guarantees about metadata integrity, as V2P
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entries pointing to stale or incorrect data blocks are not detected. Metadata

integrity can be ensured either by storing checksums with the metadata or

by storing backpointers alongside the data. To avoid updating the map-

pings on every write, Decibel stores backpointers in the metadata region of

a block. As the data, checksum, and backpointer are updated atomically,

Decibel overwrites blocks in-place and still remains crash consistent.

The metadata region is exposed to tenants through the extended, metadata-

aware read and write commands (see Figure 4.2) and can be used to store

application-specific data, such as version numbers and cryptographic capa-

bilities. As this region is shared between Decibel and tenants, the extended

read and write functions mask out the checksum and backpointer before

exposing the remainder of the metadata to tenants.

Since most SCMs are unable to guarantee atomicity for writes spanning

multiple blocks, Decibel provides atomic updates using block-level copy-on-

write semantics. First, new physical blocks are allocated and the data writ-

ten, following which the corresponding V2P entries are modified to point to

the new blocks. Once the updated mappings are persisted, the old blocks are

freed. As the V2P entries being updated may span multiple B-tree nodes, a

lightweight journal is used to transactionalize the update and ensure crash-

consistency.

To perform block-level CAS operations, Decibel first ensures that there

are no in-flight requests for the desired block before locking its V2P entry

to prevent access until the operation is complete. The entire block is then

read into memory and tested against the compare value; if they match, the

swap value is written to the block. Storage systems have typically used CAS

operations, when available, to co-ordinate accesses to ranges of a shared

device or volume without locking the entire device.

Provisioning and Access Control: Access control mechanisms restrict a ten-

ant’s view of storage to only the dVols it is permitted to access. Decibel uses

a lightweight, token-based authentication scheme for authorization and does

not protect data confidentiality via encryption, as such CPU-intensive facili-

ties are best left to either the clients or the hardware.
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vol_create () →(vol, token)

vol_restrict (vol, type, param) →status

vol_open (vol, token) →status

vol_change_auth (vol, token) →newtoken

vol_delete (vol, token) →status

Figure 4.6: Provisioning and Access Control Interfaces

Figure 4.6 enumerates the control plane interfaces, presented to ten-

ants, to provision dVols and manage access control policies for them. While

creating dVols, Decibel generates a random globally unique identifier and

token pair, which are returned to the tenant for use as a volume handle and

credentials for future access.

In addition to credential-based authorization, dVols can also restrict ac-

cess on the basis of network parameters, such as a specific IP address, or to

certain VLANs and VXLANs4. By forcing all traffic for a dVol onto a private

network segment, Decibel allows policies to be applied within the network;

for example, traffic can be routed through middleboxes for packet inspection

or rely on traffic shaping to prioritize latency-sensitive workloads.

4.3.2 Scheduling Storage

Virtualization allows tenants to operate as if deployed on private, local stor-

age, while still benefiting from the flexibility and economic benefits of device

consolidation within the datacenter. For practical deployments, preserving

only an interface resembling local storage is insufficient: the storage system

must also preserve the performance of the device and insulate tenants from

interference due to resource contention and sharing.

The need for performance isolation in multi-tenant storage systems has

led to the development of several algorithms and policies to provide fair

sharing of devices and guaranteeing tenant throughput [57–59, 85, 104,

141, 142, 153, 157, 158, 167] and for providing hard deadlines for re-

4Virtual Extensible LANs (VXLANs) provide support for L2-over-L4 packet tunneling and
are used to build private overlay networks.
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Figure 4.7: Throughput and Latency of Reads

1 2 4 8

T
h

ro
u

g
h

p
u

t 
(K

 I
O

P
S

)

0

25

50

75

100

125

150

Queue Depth

1 2 4 8

L
a

te
n

c
y
 (

u
s
)

0

50

100

150

200

250

300
Throughput

Avg. Latency

95th Percentile

Figure 4.8: Throughput and Latency of Writes

quests [58, 85, 158, 167]. Rather than prescribing a particular policy, Deci-

bel provides dVols as a policy enforcement tool for performance isolation.

SLOs: Throughput and Latency: Figure 4.7 and Figure 4.8 compare the

throughput and latency for both reads and writes of a single device, mea-

sured locally at different queue depths. The results lead us to two observa-

tions about performance isolation for SCMs:
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There is a single latency class for the entire device. Even for multi-queue

devices, request latency depends on overall device load. Despite the fact

that the NVMe specification details multiple scheduling policies across sub-

mission queues for QoS purposes, current devices do not sufficiently insu-

late requests from different queues to support multiple latency classes for

a single device. Instead Decibel allows the storage administrator to pick a

throughput target for every SCM, called the device ceiling, to match a desired

latency target.

Providing hard latency guarantees is not possible on today’s devices. Com-

paring average and 95th percentile latencies for the device, even at rela-

tively low utilization levels, reveal significant jitter, particularly in the case

of writes. Long tail latencies have also been observed for these devices in

real deployments [63]. This is largely due to the Flash Translation Layer

(FTL), a hardware indirection layer that provides background bookkeeping

operations such as wear levelling and garbage collection.

Emerging hardware that provides predictable performance by managing

flash bookkeeping in software is discussed in Section 4.5. In the absence of

predictable SCMs, Decibel focuses on preserving device throughput. dVols

encapsulate an SLO describing their performance requirements, either in

terms of a proportional share of the device or a precise throughput target.

Characterizing Request Cost: Guaranteeing throughput requires the sched-

uler to be able to account for the cost of every request before deciding

whether to issue it to the device. Request costs, however, are variable and a

function of the size and nature of the request, as well as the current load on

the SCM. For example, writes are significantly cheaper than reads as long as

they are being absorbed by the SCM write buffer, but become much more

expensive once the write buffer is exhausted.

The Decibel scheduler does not need to account for variable-sized ten-

ant requests as the address translation layer of the dVol converts them into

uniform 4K requests at the block layer. As a simplifying assumption, the

scheduler does not try and quantify the relative costs of reads and writes,

but instead requires both the device ceiling and SLOs to specify read and
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write targets separately. In the future, we intend to extend the scheduler to

provide a unified cost model for reads and writes [141].

Request Windows: At a specified device ceiling, Decibel determines the size

of the global request window for an SCM, or the total number of outstand-

ing requests that can be issued against the device. Each per-core runtime

has a private request window, where the sizes of all the individual request

windows are equal to that of the global request window for the device. The

size of the private request window for cores is calculated on the basis of

the SLO requirements of dVols scheduled to execute on that core. As dVols

are created, opened, moved, or destroyed, Decibel recalculates the private

window sizes, which are periodically fetched by the cores.

dVols submit requests to devices by enqueuing them in private software

queues. While submitting requests to the device, the per-core runtime se-

lects requests from the individual dVol queues until either the request win-

dow is full or there are no pending requests awaiting submission. The run-

time chooses requests from multiple dVols on the basis of several factors,

such as the scheduling policy, the dVol’s performance requirements, and

how many requests the dVols have submitted recently.

Execution Model: Per-core runtimes co-operatively schedule dVols on a sin-

gle OS thread: the request processor issues asynchronous versions of block-

ing syscalls and yields in a timely manner. Decibel polls NICs and SCMs on

the same thread to eliminate context switching overheads and to allow the

schedulers to precisely control the distribution of compute cycles between

servicing the hardware and the request processing within dVols.

Request processing within the dVol includes resolving virtualization map-

pings and performing access control checks; consequently, requests may

block and yield several times during execution and cannot be run to com-

pletion as in many memory-backed systems. The scheduler treats requests

and dVols as analagous to threads and processes—scheduling operates at

the request level on the basis of policies applying to the entire dVol. At any

given time the scheduler dynamically selects between executing the net-

99



work or storage stacks, and processing one of several executable requests

from multiple dVols.

Storage workloads are bursty and susceptible to incast [127]; as a result,

Decibel is periodically subject to bursts of heavy traffic. At these times,

the Decibel scheduler elastically steals cycles to prioritize handling network

traffic. It polls NICs at increased frequencies to ensure that packets are

not dropped due to insufficient hardware buffering, and processes incoming

packets just enough to generate ACKs and prevent retransmissions.

Prioritizing network I/O at the cost of request processing may cause

memory pressure due to an increase in the number of pending requests.

At a certain threshold, Decibel switches back to processing requests, even at

the cost of dropped packets. As dropped packets are interpreted as network

congestion, they force the sender to back-off, thus inducing back pressure in

the system.

Scheduling Policies: The scheduling policy determines how the per-core

runtime selects requests from multiple dVols to submit to the device. To

demonstrate the policy-agnostic nature of Decibel’s architecture, we proto-

type two different scheduling policies for dVols.

Strict Time Sharing (STS) emulates local storage by statically partition-

ing and assigning resources to tenants. It sacrifices elasticity and the ability

to handle bursts for more predictable request latency. Each dVol is assigned

a fixed request quota per scheduling epoch from which the scheduler selects

requests to submit to the device. dVols cannot exceed their quota even in the

absence of any competition. Further, dVols do not gain any credits during

periods of low activity, as unused quota slots are not carried forward.

Deficit Round Robin (DRR) [140] is a work conserving scheduler that

supports bursty tenant access patterns. DRR guarantees that each dVol is

able to issue its fair share of requests to the device, but does not limit a dVol

to only its fair share in the absence of competing dVols. Each dVol has an

assigned quota per scheduling epoch; however, dVols that do not use their

entire quota carry it forward for future epochs. As dVols can exceed their

quota in the absence of competition, bursty workloads can be accommo-
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dated.

By default, Decibel is configured with DRR to preserve the flexibility

benefits of disaggregated storage. This remains a configurable parameter

to allow storage administrators to pick the appropriate policies for their

tenants.

4.3.3 Placement and Discovery

Decibel makes the decision to explicitly decouple scheduling from the place-

ment of dVols on the appropriate cores and hosts in the cluster. This di-

vision of responsibilities allows the scheduler to focus exclusively on, as

seen earlier, providing fine-grained performance isolation and predictable

performance over microsecond timeframes on a per-core basis. Placement

decisions are made with a view of the cluster over longer timeframes in

response to the changing capacity and performance requirements of dVols.

Decibel defers placement decisions to an external placement engine called

Mirador [161]. Mirador is a global controller that provides continuous and

dynamic improvements to dVol placements by migrating them across cores,

devices, and hosts and plays a role analagous to that of an SDN controller

for network flows.

Storage workloads are impacted by more than just the local device; for

example, network and PCIe bandwidth oversubscription can significantly

impact tenant performance. Dynamic placement with global resource vis-

ibility is a response to not just changing tenant requirements, but also to

connectivity bottlenecks within the datacenter. Dynamic dVol migrations,

however, raise questions about how tenants locate and access their dVols.

dVol Discovery: Decibel implements a global directory service that maps

dVol identifiers to the precise host and core on which they run. Cores are

independent network-addressable entities with a unique <ip:port> iden-

tifier and can directly be addressed by tenants. The demultiplexing of tenant

requests to the appropriate dVol happens at the core on the basis of the dVol

identifier.

101



dVol Migration: The placement engine triggers migrations in response to

capacity or performance shortages and aims to find a placement schedule

that ensures that both dVol SLOs are met and that the free capacity of the

cluster is uniformly distributed across Decibel instances to allow every dVol

an opportunity to grow. Migrations can be across cores on the same host or

across devices within the same or different hosts.

Core migrations occur entirely within a single Decibel instance. dVols

are migrated to another core within the same host without requiring any

data movement. First, Decibel flushes all the device queues and waits for

in-flight requests to be completed, but no new dVol requests are admitted.

The dVol metadata is then moved to the destination core and the address di-

rectory updated. The client is instructed to invalidate its directory cache and

the connection is terminated; the client then connects to the new runtime

instance and resumes operations.

Device migrations resemble virtual machine migration and involve a back-

ground copy of dVol data. As the dVol continues to service requests, modi-

fied data blocks are tracked using the dirty bit in the V2P table and copied to

the destination. When both copies approach convergence, the client is redi-

rected to the new destination using the same technique as core migrations

and the remaining modified blocks moved in a post-copy pass.

Decibel originally intended to perform migrations without any client in-

volvement using OpenFlow-based redirection in the network and hardware

flow steering at the end-hosts. Due to the limited availability of match rules

at both switches and NICs today, Decibel opts to defer this functionality to

the client library.

4.3.4 The Network Layer

Decibel presents the dVol interface over asynchronous TCP/IP-based RPC

messages. Network flows are processed using a user space networking stack

that borrows the TCP state machine and structures for processing TCP flows,

such as the socket and flow tables, from mTCP [80] and combines them

with custom buffer management and event notification systems. Decibel
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offloads checksums to the hardware, but currently does not support TCP

segmentation offload.

Clients discover core mappings of dVols using the network address di-

rectory. As dVols are pinned to cores that have exclusive ownership over

them, tenants must direct requests to the appropriate core on the system.

Modern NICs provide the ability to precisely match specific fields in the

packet header with user-defined predicates and determine the destination

queue for that packet on the basis of provided rules. As each core has a

unique <ip:port>, Decibel uses such flow steering to distribute incoming

requests across cores directly in hardware.

For performance reasons, Decibel extends the shared-nothing architec-

ture into the networking layer. It borrows ideas from scalable user space

network stacks [12, 80, 105, 125, 131] and partitions the socket and flow

tables into local, per-core structures that can be accessed and updated with-

out synchronization.

Memory Management: Decibel pre-allocates large per-core regions of mem-

ory for sockets, flow tables, and socket buffers from regular memory and

mbufs for network packets from hugepages. mbufs are stored in lockless,

per-socket send and receive ring buffers; the latter is passed to DPDK which

uses them to DMA incoming packets. Decibel does not support zero-copy

I/O: incoming packet payloads are staged in the receive socket buffer for un-

packing by the RPC layer, while writes are buffered in the send socket buffer

before transmission. Zero-copy shows little benefit on processors with Direct

Data I/O (DDIO), i.e., the ability to DMA directly into cache [105]. Further,

once packets in mbufs are sent to the DPDK for transmission, they are auto-

matically freed and unavailable for retransmissions, making zero-copy hard

without complicating the programming interface.

Event Notifications and Timers: As request processing and the network stack

execute on the same thread, notifications are processed in-line via call-

backs. Decibel registers callbacks for new connections and for I/O events:

tcp_accept(), tcp_rcv_ready(), and tcp_snd_ready(). Send and
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Figure 4.9: Local and Remote Latency for 4K Requests

receive callbacks are analagous to EPOLLIN and EPOLLOUT and signify the

availability of data or the ability to transmit data. The callbacks themselves

do not carry any data but are only event notifications for the request proces-

sor to act on using the socket layer interfaces. Timers for flow retransmis-

sions and connection timeouts, similarly, cannot rely on external threads or

kernel interrupts to fire and instead are tracked using a hashed timer wheel

and processed in-line along with other event notifications.

Why not just use RDMA? Several recent high-performance systems have

exploited RDMA (Remote Direct Memory Access)—a hardware mechanism

that allows direct access to remote memory without software mediation—to

eliminate network overheads and construct a low-latency communication

channel between servers within a datacenter, in order to accelerate network

services, such as key-value stores [44, 81, 111] and data parallel frame-

works [61, 78].

RDMA’s advantage over traditional networking shrinks as request sizes

grow [81, 111], especially in the presence of low-latency, kernel-bypass

I/O libraries. Figure 4.9 compares local and remote access latencies, over

TCP/IP-based messaging, for SCMs when they are relatively idle (for min-
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imum latencies) and at saturation. For a typical storage workload request

size of 4K, conventional messaging adds little overhead to local accesses.

RDMA has traditionally been deployed on Infiniband and requires loss-

less networks for performance, making it hard to incorporate into existing

Ethernet deployments. On Ethernet, RDMA requires an external control

plane to guarantee packet delivery and ordering [61] and for congestion

control to ensure link fairness [168].

Decibel’s choice of traditional Ethernet-based messaging is pragmatic,

as the advantages of RDMA for storage workloads do not yet outweigh the

significant deployment overheads. As RDMA-based deployments increase in

popularity, and the control plane protocols for prioritizing traffic and han-

dling congested and lossy networks are refined, this may no longer hold

true. Consequently, Decibel’s architecture is mostly agnostic to the messag-

ing layer and is capable of switching to RDMA if required by the perfor-

mance of future SCMs.

4.4 Evaluation

Decibel is evaluated on a pair of 32-core Haswell systems, each with 2x40 GbE

X710 NICs and 4x800 GB P3700 NVMe PCIe SSDs, with one system act-

ing as the server and the other hosting multiple clients. Each machine has

64 GB RAM split across two NUMA nodes, while the 40 GbE interfaces are

connected via an Arista 7050 series switch. Both systems run a Linux 4.2

kernel, however, on the server Decibel takes exclusive ownership of both the

network and storage adapters. Clients are measured both using the default

kernel I/O stack and the DPDK-based network stack from Decibel.

At 4K request sizes, each P3700 is capable of up to 460K random read

IOPS, 100K random write IOPS, and 200K random mixed (at a 70/30 read

to write ratio) IOPS [76], making the saturated throughput of the system

up to 1.8M read IOPS and 800K mixed IOPS. Benchmarking flash-based

SSDs is non-trivial as there are a number of factors that may affect their

performance. First, the performance of a new SSD is not indicative of how

it would perform at steady state with fresh drives outperforming their steady
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Figure 4.10: Performance of Decibel for a 70/30 read-write workload. Com-
pared to local storage, Decibel has an overhead of 30 µs at device sat-
uration using a DPDK-based client.

state counterparts by a factor or two or three.

Even once steady state is reached, there is a great deal of variability in

performance. Transitions from sequential to random and vice versa impact

performance for several minutes, while the garbage collector can throttle

disk throughput for several seconds. The P3700s, in particular, perform well

past their rated write throughput for almost a minute following a period of

idleness [130]. The results reported here are the average across a 10 minute

run and follow industry standard guidelines for benchmarking [143]: first

the devices were pre-conditioned with several weeks of heavy usage and

then primed by running the same workload access pattern as the benchmark

for 10 minutes prior to the benchmark run.
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Figure 4.11: Performance of Decibel for an all reads workload. Compared
to local storage, Decibel has an overhead of less than 20 µs at device
saturation using a DPDK-based client.

Remote Overhead and Scalability: Decibel is evaluated for multi-core scala-

bility and to quantify the overhead of disaggregating SCMs when compared

to direct-attached storage. All the tests are run against all 4 devices in the

system, with clients evenly distributed across the cores. The clients are mod-

elled after fio and access blocks randomly across the entire address space.

Local clients execute as a single pinned client per-core with a queue depth of

32, while there are 2 remote clients per-core, each operating with a queue

depth of 16 requests.

In the Local configuration, clients run directly on the server and access

raw physical blocks from the SCMs without any virtualization. This local

configuration serves as a baseline to compare the overhead of Decibel. In Re-

mote, clients run separately from the server and request raw physical blocks
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across the network over TCP/IP. For Decibel, SCMs are virtualized into per-

client dVols. Each client has a single dVol that is populated until the SCM

is filled, after which they access and update blocks within the dVol. The

remote configuration measures pure network overhead when compared to

directly-attached SCMs, as well as the overhead of virtualization when com-

pared to Decibel. The Decibel (DPDK) configuration is identical to Decibel,

except that the clients bypass the kernel and use a DPDK-based network

stack.

Figure 4.10 compares the performance of all four configurations over 16

cores using a typical storage workload of random mixed 4K requests in a

70/30 read-write ratio. As device saturation is achieved, we do not evaluate

Decibel at higher degrees of parallelism.

Decibel is highly scalable and is able to saturate all the devices, while

presenting storage across the network with latencies comparable to local

storage. DPDK-based clients suffer from an overhead of less than 30 µs when

compared to local storage, while legacy clients have overheads varying from

30–60 µs depending on load.

SCMs offer substantially higher throughput for read-only workloads com-

pared to mixed ones making them more heavily CPU-bound. Figure 4.11

demonstrates Decibel’s ability to saturate all the devices for read-only work-

loads: the increased CPU load of processing requests is reflected in the gap

with the local workload at low core counts. As the number of cores increase,

the workload becomes SCM-bound; Decibel scales well and is able to satu-

rate all the devices. At saturation, the DPDK-based client has an overhead of

less than 20 µs, while legacy clients suffer from overheads of approximately

90 µs.

Once the devices are saturated, adding clients increases latency purely

due to queueing delays in software. All configurations saturate the devices

at less than 16 cores; hence the latency plots in Figure 4.10 and Figure 4.11

include queueing delays and do not accurately reflect end-to-end latencies.

Table 4.2 compares latencies at the point of device saturation: for both

workloads, Decibel imposes an overhead of 20–30 µs on DPDK-based clients

compared to local storage.
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Figure 4.12: Remote access latencies for Decibel at different degrees of device
utilization against DRAM-backed storage.

70/30 All Reads

Xput Lat Xput Lat

Local 750K 422 1.7M 203

Remote 740K 488 1.7M 283

Decibel 740K 490 1.7M 290

Decibel (DPDK) 750K 450 1.7M 221

Table 4.2: Performance for Workloads (Latency in µs)

Future SCMs, such as 3DXpoint [115], are expected to offer sub-µs laten-

cies for persistent memories and around 10 µs latencies for NVMe storage.

With a view towards these devices, we evaluate Decibel against a DRAM-

backed block device. As seen in Figure 4.12, DPDK-based clients have ac-

cess latencies of 12–15 µs at moderate load, which increases to 26 µs at NIC

saturation. Legacy clients have access latencies higher than 60 µs, demon-

strating that the kernel stack is a poor fit for rack-scale storage architectures.
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(a) No Isolation (FCFS)

(b) Strict Timesharing (STS)

(c) Deficit Round Robin (DRR)

Figure 4.13: Isolation of a single device across multiple workloads in Decibel.
Compared to the no isolation case in (a), the scheduling policies in (b)
and (c), provide clients 1 and 3 a fair share of the device, even in the
face of the bursty accesses of client 2.

dVol Isolation: Performance isolation in Decibel is evaluated by demon-

strating fair sharing of a device in two different scheduling policies when

compared with a First-Come, First-Served (FCFS) scheduler that provides

no performance isolation. Strict Timesharing (STS) provides static resource

partitioning, while in Deficit Round Robin (DRR), dVols are prevented from
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interfering with the performance of other dVols, but are allowed to consume

excess, unused bandwidth.

To illustrate performance isolation, Decibel is evaluated with three clients,

each with a 70/30 mixed random workload, against a single shared SCM.

Each client continuously issues requests to its own dVol, such that the dVol

has 30 outstanding requests at any time. The dVols are configured to have

an equal proportion, i.e., 30%, of the total device throughput, while the

device ceiling is set to 100% utilization.

As seen in Figure 4.13, each client receives a throughput of 60K, leaving

the device at 90% saturation. At the 3 minute mark, one of the clients

experiences a traffic burst for 3 minutes such that it has 90 simultaneous

in-flight requests. At 6 minutes, the burst subsides and the client returns to

its original load.

FCFS offers no performance isolation, allowing the burst to create queue-

ing overheads which impact throughput and latency of all other clients by

25%. After the burst subsides, performance returns to its original level. In

contrast, STS preserves the throughput of all the clients and prevents clients

from issuing any requests beyond their 30% reservation. As each dVol has

hard reservations on the number of requests it can issue, requests from the

bursty client are queued in software and see huge spikes in latency. The per-

formance of the other clients remains unaffected at all times, but the excess

capacity of the device remains unutilized.

DRR both guarantees the throughput of other clients and is work con-

serving: the bursty client consumes the unused bandwidth until the device

ceiling is reached, but not at the cost of the throughput of other clients.

Latency, however, for all the clients rises slightly—this is not because of

queueing delays, but because the device latency increases as it gets closer to

saturation.

4.5 Related Work

Network-Attached Storage: The idea of centralizing storage in consolidated

arrays and exporting disks over the network [86] is not a new one and
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has periodically been explored with changes in the relative performance of

CPU, networks, and disks. For spinning disk based systems, Petal [96] is

a virtualized block store that acts as a building block for a distributed file

system [152]. While Petal focuses on aggregating physical disks for perfor-

mance, Decibel is concerned with the performance challenges of building

isolated volumes for SCMs.

More recently, network-attached storage for flash devices has been used

in Corfu [7] and Strata [39]. Corfu presents a distributed log over virtual-

ized flash block-devices while storing address translations at the clients. As

the clients are trusted, co-operating entities, Corfu does not attempt to pro-

vide isolation between them. Strata focuses on providing a global address

space for a scalable network file system on top of network-attached storage,

and discusses the challenges in providing data plane services such as device

aggregation, fault tolerance, and skew mitigation in a distributed manner. In

contrast, Decibel is an example of the high-performance network-attached

storage such file systems rely on, and provides the services required for

multi-tenancy that cannot safely be implemented higher up the stack.

Network-attached Secure Disks (NASD) [53] explore security primitives

and capabilities to allow sharing storage devices without requiring security

checks at an external file manager on every request, while Snapdragon [2]

uses self-describing capabilities to verify requests and limit the blocks a re-

mote client has access to. SNAD [108] performs both tenant authentication

and block encryption at the storage server to restrict unauthorized accesses.

Partitioned Data Stores: VoltDB [146] and MICA [99] are both examples of

shared-nothing in-memory data stores, which explore vertical partitioning

of hardware resources to allow all operations to proceed without expensive

cross-core coordination. Architecturally, the per-core runtimes in Decibel re-

semble those in these systems with the addition of persistent storage devices

and the associated datapath services.

Chronos [83] is a more general framework for partitioning applications

by running several independent instances in parallel, fronted by a load bal-

ancer aware of the instance to partitioning mapping that can route requests
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accordingly.

Application Managed Flash: Several recent research storage systems have

proposed using open-channel SSDs for more predictable performance [19,

72, 97, 138]. These devices expose internal flash channels, dies, and planes

to the system and allow for application-managed software FTLs and cus-

tom bookkeeping policies. Of these systems, Flashblox has demonstrated

that providing strong isolation and supporting multiple latency classes on

a shared SCM requires extending full system partitioning to within the de-

vice. By binding device channels and dies directly to tenants in hardware

and providing per-tenant accounting for garbage collection, it removes mul-

tiple sources of performance interference and maintains low tail latencies in

the face of competing tenants.

Application-managed flash is largely complementary to Decibel and fo-

cuses largely on providing better and more flexible implementations of ser-

vices currently provided by the FTL. These systems intentionally maintain a

familiar block-like presentation for convenience and, as such, Decibel could

integrate with such systems to provide strong end-to-end performance iso-

lation.

4.6 Conclusion

SCMs represent orders of magnitude changes to the throughput, latency, and

density of datacenter storage, and have caused a reconsideration in how

storage is presented, managed, and accessed within modern datacenters.

Decibel responds to the performance realities of SCMs by providing dVols to

delegate storage to tenants within fully disaggregated storage architectures.

dVols focus exclusively on virtualizing storage and isolating multiple tenants

while ensuring that the storage is accompanied with a committed amount

of compute and network resources to provide tenants with predictable, low-

latency access to data.
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Chapter 5

Conclusion

This thesis describes how a software platform can share resources across

multiple parties, whether applications, virtual machines, or threads, without

sacrificing isolation by mediating all accesses to the underlying hardware.

Across the individual systems, which focus on different resources, a number

of common themes appear.

The Degree of Isolation: Isolation is, in itself, an amorphous term; conse-

quently, it is incumbent on the designers of the system to define the degree

of isolation they aim to provide. The systems described here are pragmatic

and restrict isolation to a level which can realistically be provided by the

platform without impacting performance. While all three systems signifi-

cantly increase isolation when compared to existing systems, they fall short

of the platonic ideal of complete resource isolation. This is largely due to

a lack of support from the underlying hardware, which makes providing a

greater degree of isolation extremely expensive.

Xoar increases isolation between virtual machines by securing the shared

virtualization platform and by restoring shared components to known-good

states between accesses from different tenants. It does not extend its isola-

tion to shared caches as that requires static partitioning and results in poor

cache utilization; consequently, virtual machines remain vulnerable to side-

channel attacks through the shared cache.
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Plastic provides byte-granularity memory virtualization and isolates in-

dependent locations that happen to be co-located on a single cache line.

Since providing sub-byte granularity isolation, as in the case of independent

bits in a bitfield, requires individual bytes to be divided and much heavier

weight mediation on every memory access, it quickly becomes prohibitive

and is not supported in Plastic.

Decibel isolates storage and is able to provide throughput guarantees for

tenants, but does not provide them any latency guarantees. This is because

the underlying jitter in storage devices requires that the device be operating

well below peak load and sacrificing significant amounts of throughput to

meet tight deadlines on tail latencies.

Lightweight Abstractions: Software-based interposition allows the platform

to extend hardware and provide isolated resource abstractions on top of de-

vices that provide no facilities for isolation. In providing isolation, however,

the platform should not lose sight of the fact that the rationale behind re-

source sharing in the first place is the performance of these devices, and

must not sacrifice performance.

For this reason, the thesis advocates for lightweight resource abstrac-

tions and takes a minimalistic approach in their design. Only functionality

that is required for isolation and is difficult to provide elsewhere is offered

by the abstraction, while all other functionality is deferred to either higher

layers of the stack or the application. This allows applications to opt-in

to the functionality they desire and layer it on top of the base abstraction,

instead of requiring every application to pay the cost of that additional func-

tionality. Decibel is the clearest example of this: by eschewing traditional

storage functionality, such as device aggregation and fault-tolerance, it pro-

vides near-device levels of performance. Xoar and Plastic leverage existing

lightweight abstractions (VMs and threads respectively) and augment them

to provide better isolation.
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The Evolution of Hardware: Most software systems are point in time solu-

tions designed with the limitations of the prevalent hardware in mind. As

both hardware and the challenges faced by systems evolve constantly, the

systems techniques required to address them must change accordingly.

Xoar deconstructs the virtualization platform to enable better reasoning

about shared software components. Recent hardware trends, however, have

reduced the responsibility of the virtualization platform by providing direct

hardware virtualization for I/O devices, interrupt handling, and timers. Di-

rect I/O virtualization has another benefit: it makes microrebooting shared

driver domains, which is incredibly challenging at the speed of modern I/O

devices, unnecessary.

Plastic is a composite of two independent systems: a low-overhead con-

tention detector and a fine-grained address virtualization engine. Con-

tention detection in Plastic took a pipelined approach because the perfor-

mance counters did not record everything necessary to precisely identify

regions of contended memory. On more recent microarchitectures, this is

no longer true, allowing false sharing to be precisely identified from the ex-

ecution traces accompanying contention misses. In retrospect, false sharing

is quite rare in production software and is perhaps not the best example

to demonstrate the value of runtime optimization of memory layouts. This

does not invalidate the idea of continuous monitoring and optimistic opti-

mization, as contention and other memory bottlenecks remain the greatest

challenge to multi-core scalability.

With I/O devices continuing to get faster, it is unclear if maintaining

software mediation without affecting performance, like in Decibel, will re-

main possible. Rather than obviating the need for isolation, however, faster

hardware will require even greater degrees of sharing to drive efficient uti-

lization. Hybrid architectures that combine hardware-enforced isolation on

every access with a software-based control plane for fine-grained control of

the enforcement mechanism could make it possible to bypass the processor

for most accesses without sacrificing isolation. Such hybrid architectures,

which require hardware-software co-design, provide one possible avenue

forward for platforms and are an exciting area for future research.
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5.1 The Future

The design of the systems described in this thesis was constrained by certain

assumptions about the prevailing computing landscape. We revisit these

assumptions in light of the evolution in both hardware and software re-

quirements over the last several years, with an eye to discussing interesting

directions for further exploration.

The Tyranny of Legacy: All of Xoar, Plastic, and Decibel were designed with

legacy in mind and support existing applications with little to no modifica-

tions. This was driven by the view that for a system to gain traction and

be practically deployable, it should not require additional effort from appli-

cation developers. In reality, this has turned out to be a largely pessimistic

stance: the success of paradigms such as MapReduce [41] and Function-as-

a-Service demonstrate the willingness of developers to completely rewrite

applications for a new programming model, assuming it provides sufficient

benefits in terms of simplicity or cost. Systems designed ground-up with

data centers and the cloud in mind should carefully weigh the costs of legacy

support and utilize the opportunity to make a clean break from abstractions

and interfaces that are poor fit and impede scalability and performance or

security and isolation.

Generality and Specialization: Historically, systems abstractions and opti-

mizations have been required to demonstrate generality by evaluating them

against a set of “representative” benchmarks such as those from SPEC. This

is largely a legacy of the large shared multi-user mainframes of the 80s and

90s; as multiple applications ran on the same OS instance, maximizing ag-

gregate performance across dissimilar applications was a worthy goal.

Modern deployment models are much more specialized with applica-

tions often running on bare metal or being hosted in virtual machines and

containers with private OS instances. Despite this, the vast majority of re-

cent systems, including Xoar and Plastic, continue to be built and evaluated

with generality in mind. This generality comes at a cost. As a significant pro-
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portion of total data center computation involves a small set of application

classes, such as data stores and databases, graph computation frameworks,

and machine learning toolkits, specializing systems for these specific appli-

cations is an increasingly attractive opportunity for future systems.

The Ability to Affect Change in Hardware: As processor fabrication tech-

nologies are reaching the limits of silicon semiconductors, processor vendors

are increasingly relying on instruction set features, rather than performance

improvements, to drive demand [10]. The addition of features to the in-

struction set is largely a function of the demands of software; for example,

several virtualization extensions have been added over the years in response

to the challenges faced by hypervisors in cloud environments, while trusted

computing extensions are to better support secure third-party hosting and

digital rights management. This is not limited to processors: the develop-

ment of programmable switches and flash devices, both of which allow cus-

tomization of several previously fixed bits of the I/O data path, is also due

to the demands of data center operators for greater flexibility, while Tensor

Processing Units (TPUs) are a response to machine learning workloads.

These are hugely exciting developments for systems researchers—never

before have they had so much input in the direction of new hardware! Fur-

ther, they also have much greater access to programmable hardware for

cheap prototyping, such as FPGAs. This combination affords them the op-

portunity to design and prototype systems that split functionality between

hardware and software and, for the first time, the ability to see these proto-

types through to production should they demonstrate their benefit.
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