
A Homotopy-Minimization Method for
Parameter Estimation in Differential

Equations and Its Application in
Unraveling the Reaction Mechanism of

the Min System
by

William Christopher Carlquist

BS in Biology, The University of Utah, 2008
BS in Mathematics, The University of Utah, 2008

M.Sc. in Mathematics, The University of British Columbia, 2012

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

The Faculty of Graduate and Postdoctoral Studies

(Mathematics)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

January 2019

c© William Christopher Carlquist 2018

The following individuals certify that they have read, and recommend to the Faculty of Graduate

and Postdoctoral Studies for acceptance, the dissertation entitled:

A Homotopy-Minimization Method for Parameter Estimation in Differential Equations and Its

Application in Unraveling the Reaction Mechanism of the Min System

submitted by William Christopher Carlquist in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

in Mathematics

Examining Committee:

Eric Cytrynbaum, Mathematics

Supervisor

Leah Keshet, Mathematics

Supervisory Committee Member

Colin Macdonald, Mathematics

University Examiner

Carl Michal, Physics and Astronomy

University Examiner

David Campbell, Statistics and Actuarial Science at Simon Fraser University

External Examiner

Additional Supervisory Committee Members:

Daniel Coombs, Mathematics

Supervisory Committee Member

ii

Abstract

A mathematical model of a dynamical process, often in the form of a system of differential

equations, serves to elucidate underlying dynamical structure and behavior of the process that

may otherwise remain opaque. However, model parameters are often unknown and may need to

be estimated from data for a model to be informative. Numerical-integration-based methods,

which estimate parameters in a differential equation model by fitting numerical solutions to

data, can demand extensive computation, especially for large stiff systems that require implicit

methods for stability. Non-numerical integration methods, which estimate parameters in a

differential equation model by fitting solution approximations to data, do not provide an impartial

measure of how well a model fits data, a measure required for the testability of a model. In

this dissertation, I propose a new method that steps back from a numerical-integration-based

method, and instead allows an optimal data-fitting numerical solution to emerge as part of

an optimization process. This method bypasses the need for implicit solution methods, which

can be computationally intensive, seems to be more robust than numerical-integration-based

methods, and, interestingly, admits conservation principles and integral representations, which

allow me to gauge the accuracy of my optimization.

The Escherichia coli Min system is one of the simplest known biological systems that

demonstrates diverse complex dynamic behavior or transduces local interactions into a global

signal. Various mathematical models of the Min system show behaviors that are qualitatively

similar to dynamic behaviors of the Min system that have been observed in experiments, but

no model has been quantitatively compared to time-course data. In this dissertation, I extract

time-course data for model fitting from experimental measurements of the Min system and fit

established and novel biochemistry-based models to the time-course data using my parameter

estimation method for differential equations. Comparing models to time-course data allows me to

make precise distinctions between biochemical assumptions in the various models. My modeling

and fitting supports a novel model, which suggests that a regular, ordered, stability-switching

mechanism underlies the emergent, dynamic behavior of the Min system.

iii

Lay Summary

In this dissertation, I develop a method to map experimental measurements onto mathematical

models that describe how the measured system changes in time and space. This mapping

allows me to test whether a mathematical model can explain experimental observations and

helps understand the underlying dynamic structure of a modeled system. After developing and

testing my method, I apply it to map experimental measurements of a protein system that

demonstrates interesting dynamic behavior onto established and novel mathematical models

that describe the protein systems’s temporal evolution. My modeling and data mapping inform

a novel mechanism that may underlie the dynamic behavior of the protein system.

iv

Preface

William Carlquist performed the research in this dissertation, designed and wrote the computer

programs for this dissertation, and wrote this dissertation. Eric Cytrynbaum provided research

discussion and feedback on the writing. Vassili Ivanov and Kiyoshi Mizuuchi provided the

previously published experimental data used in Chapter 4, Appendix F, and Appendix G. The

research in this dissertation is original and unpublished.

v

Table of Contents

Abstract . iii

Lay Summary . iv

Preface . v

Table of Contents . vi

List of Tables . x

List of Figures . xi

Acknowledgements . xiii

Dedication . xiv

1 Introduction . 1

1.1 Parameter Estimation in Differential Equations 1

1.2 The Min System . 4

1.3 Chapter Summaries . 8

2 A Homotopy-Minimization Method. 9

2.1 Introduction . 9

2.2 Method Overview . 9

2.3 Defining a Measure of Data Fitting, ry(p,x) . 12

2.4 Defining a Measure of Satisfying a Numerical Solution, r∆x(p,x) 12

2.4.1 Inclusion of a Smoothing Penalty in r∆x(p,x) 14

2.5 A Concrete Example of ry(p,x) and r∆x(p,x) Using a Model of FRAP 15

2.6 Extending the Homotopy on Refined Discretization Grids 15

2.6.1 Defining a Measure of Interpolated Data Fitting, rŷ(p,x) 16

2.7 Optimization Using Overlapping-Niche Descent 16

2.8 Properties of the Homotopy and Inspection of Overlapping-Niche Descent 18

3 Testing the Homotopy-Minimization Method. 21

3.1 Introduction . 21

vi

Table of Contents

3.2 A Model for MinD and MinE Interactions by Bonny et al (2013) 21

3.3 Synthetic Data Generation . 23

3.4 Details of Optimization Using Overlapping-Niche Descent 26

3.4.1 Defining ry(p,x), rŷ(p,x), and r∆x(p,x) 26

3.4.2 Domain Restrictions on Parameters and States 28

3.4.3 Niches . 29

3.4.4 Calculating Confidence Intervals . 29

3.5 Fitting Forms of the Bonny Model to Synthetic Data 30

3.5.1 Fitting the Spatially Homogeneous Bonny Model. 30

3.5.2 Fitting the Traveling Wave Bonny Model. 32

3.5.3 Fitting the Full Bonny Model. 33

3.6 Comparing . . . to a Numerical-Integration-Based Method 35

3.7 Noisy Data and Incomplete Modeling . 39

3.8 Overlapping-Niche Descent in Practice . 44

3.8.1 Convergence . 45

3.8.2 Consistency with the Conservation Principle and. 46

3.9 Discussion . 49

4 Fitting Models of the Min System to Time-Course Data 50

4.1 Introduction . 50

4.2 Choosing and Processing Data to Simplify Fitting 50

4.2.1 Extracting Spatially Near-Homogeneous Data 51

4.3 Fitting Models to the Near-Homogeneous Data 52

4.3.1 Modeling and Fitting Brief . 53

4.3.2 Models in Which MinE Acts Only as an Inhibitor 53

4.3.3 Models in Which MinE Acts as Both a Stabilizer and an Inhibitor 65

4.3.4 A Stability-Switching Mechanism. 80

4.3.5 Results Relating to Experimental Observations 82

4.4 Details of Optimization Using Overlapping-Niche Descent 83

4.4.1 Statistical Model . 83

4.4.2 Defining ry(p,x), rŷ(p,x), and r∆x(p,x) 84

4.4.3 Domain Restrictions on Parameters and States 85

4.4.4 Niches . 87

4.4.5 Calculating Confidence Intervals . 87

4.5 Discussion . 88

5 Conclusion . 90

5.1 Summary of Results . 90

5.2 Limitations of Overlapping-Niche Descent . 90

5.3 Extensions of the Homotopy-Minimization Method 91

vii

Table of Contents

5.4 Limitations in Fitting Models to Spatially Near-Homogeneous Min Data 91

5.5 Extensions of Fitting Models to Spatially Near-Homogeneous Min Data 92

Bibliography . 94

Appendices

A Extensions of the . . . Method Beyond Systems of First Order. 101

A.1 Extensions to Systems of Higher Order Ordinary Differential Equations 101

A.1.1 Defining ry(p,x), rŷ(p,x), and r∆x(p,x) 102

A.2 Extensions to Systems of Partial Differential Equations 103

A.2.1 Defining ry(p,x), rŷ(p,x), and r∆x(p,x) 104

B Properties of r(p,x;λ) . 107

B.1 Limiting Behavior of r̆(λ) . 108

B.2 Continuity of r̆(λ) . 109

B.3 Differentiability of r̆(λ) . 110

B.4 Conservation in r̆y(λ) . 112

B.5 Integral Representations of Limit Values . 115

B.6 Bounding Normalized Squared Residual Sums 123

C Overlapping-Niche Descent . 125

C.1 Defining Overlapping-Niche Descent . 125

C.2 Defining Descent . 127

C.2.1 Descent Scaling . 127

C.2.2 Descent Acceleration . 130

C.2.3 Descent on Restricted Domains . 132

C.3 Descent Prolongation . 133

D Computational Complexities . 138

D.1 Computational Complexity of r(p,x;λ) Descent 138

D.1.1 Formulation of r(p,x;λ) for Counting . 138

D.1.2 Defining Quantities for Counting . 138

D.1.3 Counting the Computational Complexity of r(p,x;λ) Descent 140

D.2 Computational Complexities of Numerical-Integration-Based Methods 150

D.2.1 Counting the Computational Complexity of r(q) Descent 150

D.2.2 Counting the Computational Complexity of Newton’s Method. 164

D.2.3 Counting the Computational Complexity of Gradient-Based Methods . . 179

D.3 Comparison of Computational Complexities . 186

D.3.1 Complexity Assumptions for Comparison 186

viii

Table of Contents

D.3.2 Comparison of Computational Complexities with Assumptions 188

E Details of Testing the Homotopy-Minimization Method. 193

E.1 Implementation of Overlapping-Niche Descent. 193

E.1.1 Generating Random Parameters and State Values 193

E.1.2 Parents and Offspring . 194

E.1.3 Selection and Random Perturbation . 194

E.1.4 Dykstra’s Method . 195

E.1.5 Initial values, Termination, Prolongation, and Computation 195

E.2 Details of SNSD . 195

E.3 Details Pertaining to the Implementation. 196

E.3.1 Selection in Overlapping-Niche Descent 196

E.3.2 Prolongation in Overlapping-Niche Descent 198

E.3.3 Convergence During Accelerated Descent 199

F Extracting Near-Homogeneous Data . 202

F.1 Data Information . 202

F.2 Aligning Data Tracks . 203

F.3 Preparing Aligned Data for Analysis . 206

F.3.1 Temporal Partition of Data . 206

F.3.2 Intensity Flattening . 207

F.3.3 Scaling Flattened Data . 211

F.4 Finding Spatially Homogeneous Data . 215

F.4.1 Spatially Near-Homogeneous Model Reductions 215

F.4.2 Finding Spatially Near-Homogeneous Data 217

F.4.3 Errors in Spatially Near-Homogeneous Data 223

F.4.4 Bounding Persistent and Bulk Densities 226

G Implementation of Overlapping-Niche Descent for Near-Homogeneous. . . . 229

G.1 Generating Random Parameter and State Values 229

G.2 Parents and Offspring . 230

G.3 Selection and Random Perturbation . 231

G.4 Dykstra’s Method . 231

G.5 Initial values, Termination, Prolongation, and Computation 232

ix

List of Tables

3.1 Values and definitions of parameters and constants in the Bonny model 22

3.2 Parameter estimates from . . . the spatially homogeneous Bonny model. 32

3.3 Parameter estimates from . . . the traveling wave Bonny model. 33

3.4 Parameter estimates from . . . the full Bonny model. 34

3.5 Values of ry(p̃, x̃) from overlapping-niche descent and SNSD 36

3.6 Values of r∆x(p̃, x̃) from overlapping-niche descent and SNSD 36

3.7 Mean time per iteration of descent from overlapping-niche descent and SNSD . . 38

3.8 Total descent time from overlapping-niche descent and SNSD 39

4.1 Parameters from the fit of the Modified Bonny Model. 58

4.2 Parameters from the fit of the Extended Bonny Model. 63

4.3 Removed-reaction fits of the Extended Bonny Model. 64

4.4 Parameters from the fit of the Symmetric Activation Model. 71

4.5 Parameters from the fit of the Asymmetric Activation Model. 78

4.6 Removed-reaction fits of the Asymmetric Activation Model. 79

x

List of Figures

1.1 Division-site regulation by the Min system . 4

1.2 MinE acting as an inhibitor of MinD membrane binding 7

2.1 Overlapping-Niche Descent . 17

3.1 Synthetic spatially-homogeneous data . 24

3.2 Synthetic traveling-wave data . 25

3.3 Synthetic traveling-wave-emergence data . 26

3.4 The fit of the spatially homogeneous Bonny model. 31

3.5 Observable-state errors for noisy-data and incomplete-model fits 41

3.6 Numerical solution errors for noisy-data and incomplete-model fits 43

3.7 Parameter variation over λ ∈ (0, 1) for noisy-data and incomplete-model fits . . . 44

3.8 Convergence of r̃(λ) during overlapping-niche descent 45

3.9 The evolution of r̃y(λ) and r̃∆x(λ) over generations. 46

3.10 Consistency in conservation of r̃(λ), r̃y(λ), and r̃∆x(λ) 47

3.11 Consistency in the integral representations of limλ→1− r̃y(λ) 48

3.12 Cumulative integral representations of limit values 49

4.1 Near-homogeneous MinD and MinE density data 52

4.2 The Modified Bonny Model . 55

4.3 The fit of the Modified Bonny Model to the near-homogeneous data 56

4.4 States from the fit of the Modified Bonny Model. 57

4.5 The Extended Bonny Model . 60

4.6 The fit of the Extended Bonny Model to the near-homogeneous data 61

4.7 States from the fit of the Extended Bonny Model. 62

4.8 The fit of the ωeE,d→de-null Extended Bonny Model. 65

4.9 The Symmetric Activation Model . 68

4.10 The fit of the Symmetric Activation Model to the near-homogeneous data 69

4.11 States from the fit of the Symmetric Activation Model. 70

4.12 The Asymmetric Activation Model . 75

4.13 The fit of the Asymmetric Activation Model to the near-homogeneous data . . . 76

4.14 States from the fit of the Asymmetric Activation Model. 77

4.15 Stability of MinD dimers on the supported lipid bilayer 80

xi

List of Figures

4.16 The stability-switching mechanism . 82

E.1 Selection from offspring types during overlapping-niche descent 197

E.2 Selection across niches during overlapping-niche descent 198

E.3 Descent prolongation during overlapping-niche descent 199

E.4 Convergence behavior of accelerated descent . 200

E.5 A comparison of optimization using accelerated descent. 201

F.1 The 330th data frame as an image. 203

F.2 Alignment preimage. 204

F.3 Relative c(s, t) values. 205

F.4 Alignment preimage and alignment image . 205

F.5 Aligned data. 206

F.6 Mean fluorescence intensities over space during temporal partition P0 208

F.7 Mean background intensities over time . 208

F.8 Gaussian profile data and best fitting Gaussian functions 210

F.9 Flattened MinD and MinE fluorescence intensities for image 224 211

F.10 Mean flattened fluorescence intensities over space during temporal partition P0. . 213

F.11 The decomposition of MinD fluorescence intensity. 214

F.12 Bulk MinD and MinE fluorescence intensities . 215

F.13 Relative inhomogeneity values of planar-fit MinD and MinE density data. 219

F.14 Scaled sums of maximal MinD and MinE relative inhomogeneity values. 220

F.15 Relative inhomogeneity values of planar-fit MinD and MinE density data 221

F.16 Planar-fit MinD density data . 222

F.17 Spatially near-homogeneous MinD and MinE density data profiles. 223

F.18 The spreads of MinD and MinE density data. 224

F.19 Densities within error of spatially near-homogeneous data 225

F.20 Estimating power laws in errors . 226

F.21 Spatially near-homogeneous data errors and power law approximations 226

F.22 MinD and MinE pulse-train density data . 227

xii

Acknowledgements

My research supervisor, Eric Cytrynbaum, introduced me to the Min system and collocation

methods. Throughout my research, he gave me the freedom to explore while providing meaningful

discussion to keep me from getting lost. I sincerely thank him. My supervisory committee

members, Leah Edelstein-Keshet and Daniel Coombs, encouraged me, provided helpful discussion,

and fostered an enriching MathBio group at UBC. I thank them. Vassili Ivanov and Kiyoshi

Mizuuchi kindly provided me with their experimental data, and I thank them. Without the love

and support from my family and my better half, Şule, I would not have started or completed

my PhD program. I cannot thank them enough.

xiii

for Şule

xiv

Chapter 1

Introduction

A mathematical model of a dynamical process serves to elucidate underlying dynamical structure

and behavior of the process that may otherwise remain opaque. Across different fields, notably

in Biology, systems of interest are becoming more interrelated, with a commensurate increase

in mathematical model complexity. Often, an explicit model for the evolution of a complex

dynamical process may not be known or may not exist. Alternatively, from experiment or

postulate, one may formulate an implicit model for the evolution of a complex dynamical process,

relating the state of the system to the change in the state of the system. Such models fall

into one of a variety of forms including difference equations, stochastic processes, and, most

ubiquitously, differential equations. A differential equation model of a complex dynamical

process, with a large number of states, parameters, and nonlinearities, often admits solutions

that are sensitive to changes in parameter values and often contains parameters that are not

directly measurable by experiment. As such, parameter values in a differential equation model

of a complex dynamical process are often unknown, and dynamical outcomes of the model are

not well characterized.

Fitting solutions of a differential equation model to data determines parameter values for a

model. For a good model, fitted parameter values will confer dynamical structure on the model

so that the model fits data well. In converse, the ability of a model to fit data provides testability

for a model. In this dissertation, I develop a parameter estimation method for differential

equations that accurately estimates model parameter values from data and accurately estimates

a model’s ability to fit data.

The Escherichia coli Min system is one of the simplest known biological systems that

demonstrates diverse complex dynamic behavior or transduces local interactions into a global

signal. As such, the Min system is currently one of the most reduced model systems for

understanding such behaviors. I apply my parameter estimation method for differential equations

to fit established and novel models of the Min system to time-course data. My modeling and

fitting reveals a novel mechanism that may underlie the dynamic behavior of the Min system.

1.1 Parameter Estimation in Differential Equations

Various parameter estimation methods exist for differential equations. Most commonly, nu-

merical solutions of differential equations are fit to data, as, generally, closed-form solutions to

differential equations are not known or do not exist for fitting. In numerical-integration-based

1

1.1. Parameter Estimation in Differential Equations

methods, parameter values are iteratively updated to minimize a measure of the difference

between numerical solution values and data [11]. Numerical-integration-based methods are

precise, in that numerical solution values are directly compared to data, so parameter esti-

mates correspond directly to the numerical solution that fits data best. However, complex

systems of differential equations admit a variety of parameter-dependent solution behaviors,

and bifurcations separate the numerical solution space into regions with qualitatively different

behaviors. Thus, to find parameter values of the optimal data-fitting numerical solution, initial

parameter-value estimates must be chosen for a numerical solution with the same qualitative

behavior as the optimal data-fitting numerical solution, as local search information is lost

across bifurcations. As such, numerical-integration-based methods require extensive parameter

search-space probing, which, in practice, is accomplished by combining global optimization

methods, such as genetic algorithms, with local numerical-integration-based methods [49] [78].

However, repeated numerical integration is computationally intensive, especially for large stiff

systems of differential equations that require implicit methods for stability, and excessively long

computational times in numerical-integration-based methods may surpass tractability.

Non-numerical integration methods for differential equation parameter estimation, such as

collocation methods, relax the exactness of using numerical solutions to increase reliability in

parameter estimation and to gain computational efficiency. Static collocation methods are the

computationally simplest form of collocation method and are used to estimate parameters in

systems of differential equations from data with measurements of all model states. In them, to

generate smooth solution proxies, focusing on fitting non-local data behavior, smooth splines

with fewer knots than data points are fit to data [71], or focusing on fitting local data behavior,

polynomials centered at data points are fit to data [43]. Then, parameter values in differential

equations are estimated by minimizing a measure of satisfying the system of differential equations

with the solution proxies as state values.

Dynamic collocation methods extend the idea of static collocation methods to estimate

parameters in systems of differential equations with unobserved states by incorporating a dynamic

basis representation for each state, a linear combination of basis functions, generally splines.

In them, under some smoothing penalty, basis representations of states are fit to data under a

fixed set of parameter values. Then, parameter values are re-estimated, either by minimizing a

measure of satisfying the system of differential equations with the basis representations as state

values [57] or by fitting basis representations of states, treated as implicit functions of model

parameters, to data [58], and the process is repeated. Generally, smoothing penalties in data

fitting consist of a weighted measure of satisfying the system of differential equations with the

basis representations as state values, where a small penalty weight biases fitting towards data

and a large penalty weight biases fitting towards a solution of the system of differential equations.

For reliable parameter estimation, the penalty weight is chosen relatively large. However, an

excessively large penalty weight obscures data fitting. Parameter estimates directly depend

on the penalty weight, so the penalty weight is chosen judiciously. Often, the penalty weight

2

1.1. Parameter Estimation in Differential Equations

is incrementally increased until some stopping criterion is met: when basis representations of

states begin to deform after stabilizing [58], parameter estimates become stable [77] then begin

to destabilize [9], or when a sharp decrease in data fitting accommodates a sharp increase in

satisfying the system of differential equations [7]. The penalty weight may also be chosen as

the penalty weight that minimizes data fitting error under some cross-validation criterion, such

as model based complexity [10] or error in satisfying the system of differential equations [79].

Alternatively, with a Bayesian approach, the posterior conditional probability density, given

the data, may be generated by assuming some prior probability distribution for the penalty

weight in addition to prior probability distributions for model parameters [79]. Or, multiple

posterior conditional probability densities may be simultaneously generated under different

penalty weights, with exchange, to more robustly estimate the posterior conditional probability

density for some large penalty weight [8].

The choice of method for parameter estimation in differential equations depends on the

data, the model, and the motivation for parameter estimation. If parameter estimation is

motivated by measuring the underlying parameter values of some dynamic process, then a

collocation method will often return reliable parameter estimates. However, non-numerical

integration methods, such as collocation methods, approximate parameter values of the optimal

data-fitting solution through an approximation of the optimal data-fitting solution. So, even

though parameter estimates may be similar to those of the optimal data-fitting numerical

solution, parameter estimates from non-numerical integration methods may admit numerical

solutions with significantly different behavior than the optimal data-fitting numerical solution,

especially in complex systems with sensitivity to parameters. Also, because non-numerical

integration methods approximate the optimal data-fitting solution, they do not assess how well

the optimal data-fitting numerical solution fits data. To reliably compare different models of

the same dynamic process, each model’s ability to fit the data must be assessed, requiring the

determination of the optimal data-fitting numerical solution. However, as mentioned previously,

calculating the optimal data-fitting numerical solution using a numerical-integration-based

method can require an excessively long computational time, especially with a large system of

differential equations that requires an implicit method for stability.

In this dissertation, I propose a method that extends the idea of collocation methods to allow

me to calculate the optimal data-fitting numerical solution and its parameters for a differential

equation model. It steps back from a numerical-integration-based method, and instead allows the

numerical solution to emerge as part of an optimization process. This method bypasses the need

to calculate numerical solutions with implicit methods, which can be computationally intensive,

seems to be more robust than numerical-integration-based methods, and, interestingly, admits

conservation principles and integral representations, which allow me to gauge the accuracy of

my optimization.

3

1.2. The Min System

1.2 The Min System

The Min system, consisting of three proteins, MinC, MinD, and MinE, dynamically orients the

site of cell division toward midcell in Escherichia coli. Local interactions of MinD and MinE

on the cell membrane drive a recurring, coordinated repositioning of MinD and MinE from

cell pole to cell pole [60]. MinC disrupts the aggregation of FtsZ into the Z-ring ([14], [3], [33],

[30], [55]), the contractile ring that divides the cell, and localizes to the cell membrane in the

presence of MinD ([35], [29], [30], [34], [42]). The pole-to-pole repositioning of MinD shuttles

MinC from cell pole to cell pole [29]. Over time, the average concentration of MinC is higher at

cell poles than at midcell, leading to greater inhibition of Z-ring formation at cell poles than at

midcell and dynamically orienting the site of cell division toward midcell ([80], [55]). Ultimately,

cell division at midcell produces viable, symmetric daughter cells. A schematic diagram of

division-site regulation by the Min system is shown in Figure 1.1.

Z-ring at midcell

symmetric daughter cells

Z-ring forms at midcell

MinC disrupts Z-ring formation

Min proteins

mean over time

Figure 1.1: Division-site regulation by the Min system. Min proteins oscillate from cell pole to
cell pole, with minimum concentrations over time at midcell (left). MinC inhibits the formation
of the Z-ring, causing the Z-ring to form at midcell (middle). The Z-ring at midcell contracts to
divide the cell into two symmetric daughter cells (right).

The Min system demonstrates interesting dynamic behavior in vivo and in vitro. In short

cells, MinD and MinE arrange into dynamic protein bands that stochastically switch together

from cell pole to cell pole [21]. As cells grow longer, stochastic pole-to-pole switching of MinD

and MinE stabilizes into regular pole-to-pole oscillations of MinD and MinE ([60], [23], [21]). In

cells devoid of FtsZ, cells continually grow, and regular pole-to-pole oscillations of MinD and

MinE form into stable pole-to-midcell oscillations of MinD and MinE ([60], [23]). However, the

oscillatory behavior of MinD and MinE in cells can be altered by changing the expression levels

of MinD and MinE. At low expression levels, MinD and MinE oscillate regularly from cell pole

to cell pole in short cells and from cell pole to midcell in long cells; at high induction levels,

MinD and MinE stochastically switch from cell pole to cell pole in short cells and from cell pole

4

1.2. The Min System

to midcell in long cells [69]. Generally, Escherichia coli cells are rod shaped. In round mutant

cells, MinD and MinE oscillate antipodally ([12],[68]), and in branched mutant cells, MinD and

MinE oscillate from branch to branch to branch [72]. On supported lipid bilayers in vitro, MinD

and MinE arrange into dynamic protein aggregates that oscillate [38] or form into traveling

waves ([45], [38], [44], [74], [73]), spiral waves ([45], [38], [44], [74], [73]), dynamic amoeba-like

shapes ([38], [73]), snake-like projections [38], mushroom-like shapes [73], and bursts [73]. The

oscillatory behavior of MinD and MinE in cells has been reproduced in artificial, rod-shaped,

membrane-clad compartments with dimensions on scales that are ten times longer than those

in living cells. In compartments with smaller aspect ratios, MinD and MinE oscillate from

compartment end to compartment end; in compartments with larger aspect ratios, MinD and

MinE oscillate from compartment end to compartment middle [82].

Both in vivo and in vitro, MinD and MinE form dynamic protein arrangements on spatial

scales that are thousands of times larger than the spatial scale of an individual MinD or

MinE protein, which are sustained on temporal scales that are much longer than the temporal

scale of an individual MinD or MinE interaction on the membrane. Biochemical experiments

have elucidated the functional role of the Min system and much of its underlying biochemical

basis. However, biochemical experiments only show small-scale snapshots of the reactions that

drive dynamic behavior on much larger spatial and temporal scales – crystal structures show

stable, static protein configurations and mutational analyses measure amino acid function with

respect to a particular functional assay. Protein visualizations, on the other hand, allow for

the observation of dynamic behavior, the collective outcome from local reactions, but provide

little insight into the local reactions themselves. As such, the direct connection between local

reactions and global, dynamic behavior in the Min system is unclear. Mathematical models

can predict dynamic outcomes for a set of reactions, and thus provide a means to connect

information about local reactions to global, dynamic behavior in the Min system.

Various mathematical models demonstrate dynamic behavior that is qualitatively similar

to experimental observations of the Min system. Most mathematical models have focused

on behavior of the Min system in vivo. On domains approximating short rod-shaped cells,

agent-based models demonstrate MinD and MinE densities that stochastically switch together

from domain pole to domain pole ([21], [4]). As short rod-shaped domains grow, MinD and MinE

densities transition from static to regular pole-to-pole oscillations in deterministic models [75]

that are sustained in both deterministic and stochastic models on mid-sized rod-shaped domains

([26], [48], [41], [64]). As mid-sized rod-shaped domains grow, regular pole-to-pole oscillations of

MinD and MinE densities transition into regular pole-to-mid-domain oscillations in deterministic

models ([48], [4], [75]) that are sustained in both deterministic and stochastic models on long

rod-shaped domains ([48], [36], [47], [70]). Additionally, deterministic and stochastic models

have qualitatively addressed various other aspects of in vivo oscillatory behavior in the Min

system: oscillatory behavior in round mutant cells ([37], [20], [22], [4]), oscillatory behavior

in branched mutant cells [72], oscillatory behavior in flattened, irregular cells [62], oscillatory

5

1.2. The Min System

behavior in dividing cells ([70], [65], [17], [75]), oscillatory behavior of MinE mutants ([13],

[1]), transitions in oscillation waveforms [75], midcell establishment through oscillation ([26],

[25], [40], [22]), and the dependence of oscillation period on protein numbers ([26], [36], [70],

[40]), cell length ([26], [70]), and temperature ([22], [75]). Several mathematical models have

focused on behavior of the Min system in vitro. On domains approximating supported lipid

bilayers, MinD and MinE densities form into traveling waves ([45], [54]) and spiral waves ([45],

[4]) in deterministic models. Additionally, deterministic and stochastic models have qualitatively

addressed MinD and MinE patterning in vitro on geometrically confined membranes [63] and

on micropatterned substrates [24].

Most mathematical models of the Min system are based on the biochemistry-based charac-

terization that MinE acts as an inhibitor of MinD membrane binding: cytosolic MinD monomers

bind to ATP and form dimers ([34], [81]), which bind to the membrane ([28], [34], [32], [42], [81],

[45]); MinE dimers bind to MinD dimers on the membrane ([28], [44]) and stimulate ATPase

activity in MinD dimers, causing MinD dimers to separate and dissociate from the membrane

([31], [28], [34], [42]). MinE acting as an inhibitor of MinD membrane binding is depicted in

Figure 1.2. Recent experiments have shown, however, that MinE can act to both stabilize

and inhibit MinD membrane binding, with MinE stabilizing MinD membrane binding at lower

relative concentrations of MinE to MinD and MinE inhibiting MinD membrane binding at

higher relative concentrations of MinE to MinD [73]. No mathematical model has accounted for

MinE’s dual role in MinD membrane binding and its biological implications remain unknown.

6

1.2. The Min System

MinD monomer
ATP

MinE dimer

ADP

Figure 1.2: MinE acting as an inhibitor of MinD membrane binding. Cytosolic MinD monomers
bind to ATP and form dimers, which bind to the membrane (left). MinE dimers bind to MinD
dimers on the membrane (center) and stimulate ATPase activity in MinD dimers, causing MinD
dimers to separate and dissociate from the membrane (right). This classic model does not
account for the dual stabilizing and inhibitory roles of MinE.

Various quantitative experimental measurements have been used to validate mathematical

models of the Min system: pole-to-pole oscillation period in vivo ([47], [70], [13], [5], [1], [22],

[4], [75]), distributions of residence times during stochastic pole-to-pole switching ([21], [4])

and regular pole-to-pole oscillations [21] in vivo, and traveling wave velocity and wavelength in

vitro [45]. However, no model has been quantitatively compared to time-course data. A large

variety of models demonstrate dynamic behavior that is qualitatively similar to experimental

observations without accounting for observed biological phenomena such as MinE’s dual role in

MinD membrane binding. A quantitative comparison of models to time-course data is the next

logical step in unraveling how proposed reactions contribute to Min system dynamics.

In this dissertation, I extract time-course data for model fitting from Ivanov and Mizuuchi’s in

vitro experimental measurements of the Min system [38]. I fit established and novel biochemistry-

based models to the time-course data using my parameter estimation method for differential

equations. Comparing models to time-course data allows me to make precise distinctions between

biochemical assumptions in the various models. My modeling and fitting supports a novel model

that accounts for MinE’s previously unmodeled dual role as a stabilizer and an inhibitor of

MinD membrane binding. It suggests that a regular, ordered, stability-switching mechanism

underlies the emergent, dynamic behavior of the Min system.

7

1.3. Chapter Summaries

1.3 Chapter Summaries

• In Chapter 2, I develop a method that allows me to calculate the optimal data-fitting

numerical solution and its parameters for a differential equation model without using

numerical integration. Additionally, I show that my method admits conservation principles

and integral representations that allow me to gauge the accuracy of my optimization.

• In Chapter 3, I test my method using a system of first order ordinary differential equations,

a system of second order ordinary differential equations, and a system of partial differential

equations. In doing so, I compare the performance of my method to that of an analogous

numerical-integration-based method, explore how my method can inform modeling insuffi-

ciencies and potential model improvements, and expound how conservation principles and

integral representations in my method gauge the accuracy of my optimization in practice.

• In Chapter 4, I briefly summarize extracting time-course data for model fitting from

experimental measurements of the Min system. I fit established and novel biochemistry-

based models to the time-course data using my method. In doing so, I explore how

individual reactions affect a model’s ability to describe the time-course data. Based on my

results, I interpret a novel mechanism that may underlie the dynamic behavior of the Min

system.

• In Chapter 5, I briefly summarize my results from the previous chapters and discuss

limitations and extensions of my method and fitting models of the Min system to time-

course data.

8

Chapter 2

A Homotopy-Minimization Method

for Parameter Estimation in

Differential Equations

2.1 Introduction

Non-numerical integration methods estimate parameters in a differential equation model by

fitting solution approximations to data. Often, non-numerical integration methods, such as

collocation methods, will return reliable parameter estimates. However, because non-numerical

integration methods approximate the optimal data-fitting solution, they do not provide an

impartial measure of how well a differential equation model fits data, a measure required

for the testability of a model. Numerical-integration-based methods estimate parameters

in a differential equation model by fitting numerical solutions to data. As such, numerical-

integration-based methods directly find the optimal data-fitting numerical solution and its

parameter for a differential equation model. However, numerical-integration-based methods

can demand extensive computation, especially for large stiff systems of differential equations

that require implicit methods for stability. In this chapter, I develop a method that allows me

to calculate the optimal data-fitting numerical solution and its parameters for a differential

equation model without using numerical integration. In doing so, my method bypasses the need

to calculate numerical solutions with implicit methods, which can be computationally intensive.

Additionally, in this chapter, I show that my method admits conservation principles and integral

representations that allow me to gauge the accuracy of my optimization.

2.2 Method Overview

Here, for simplicity in presentation, I explicate the method for a system of first order ordinary

differential equations. I extend the method to systems of higher order ordinary differential

equations and systems of partial differential equations in Sections A.1 and A.2.

A first order ordinary differential equation model of some dynamic process in t, with nx

states, x1, x2, . . . , xnx , np parameters, p1, p2, . . . , pnp , and ny observable states, y1, y2, . . . , yny ,

9

2.2. Method Overview

is defined by the system of equations,

Fi

(
t, p1, p2, . . . , pnp , x1, x2, . . . , xnx ,

dx1

dt
,
dx2

dt
, . . . ,

dxnx

dt

)
= 0, (2.1a)

yj = gj
(
p1, p2, . . . , pnp , x1, x2, . . . , xnx

)
, (2.1b)

where functions Fi, for i ∈ {1, 2, . . . , nx}, provide a model for the evolution of state values,

and the functions gj , for j ∈ {1, 2, . . . , ny}, define observable states. For some observed data

values, y1,k, y2,k, . . . , yny ,k, measured at times tk, for k ∈ {1, 2, . . . , nt}, I seek the parameters

p1, p2, . . . , pnp such that the functions xi(t, p1, p2, . . . , pnp), for i ∈ {1, 2, . . . , nx}, satisfy differen-

tial equation system (2.1a) and admit the observable state values that most closely approximates

the observed data, in some sense.

Generally, solutions to the system of equations (2.1a) are difficult or impossible to find in

closed form. However, using a numerical approximation method – finite difference, finite element,

etc – I can numerically approximate the value of solutions at time tk, for k ∈ {1, 2, . . . , nt}.
Because data may be sampled more sparsely than that required for the desired numerical

solution accuracy, I choose the numerical discretization {tk : k ∈ I∆} to be a refinement of

{tk : k ∈ {1, 2, . . . , nt}}, where the index set of the numerical discretization, I∆, is a super set

of {1, 2, . . . , nt}. In doing so, I index grid points in {tk : k ∈ I∆} that lie between adjacent

grid points in {tk : k ∈ {1, 2, . . . , nt}} with fractional indices that reflect their relative location

within the discretization. Once a numerical method is chosen, equation (2.1a) can be formulated

into a method-dependent system of equations for the discrete numerical solution values xi,k:

fi,k
(
t1, . . . , tnt , p1, . . . , pnp , x1,1, x2,1, . . . , xnx,1, x1,2, . . . , xnx,nt

)
=

fi,k(t,p,x) = 0, (2.2)

for all i ∈ {1, 2, . . . , nx} and for all k ∈ I∆.

Once a measure of the quality of the model’s fit to the data is chosen – least-squares, negative

log-likelihood, etc – I can define a functional ry(p,x) with the properties that (i) ry(p,x) ≥ 0,

(ii) ry(p,x) = 0 if and only if gj(p, x1,k, . . . , xnx,k) = yj,k for all j ∈ {1, 2, . . . , ny} and for all

k ∈ {1, 2, . . . , nt}, and (iii) ry(p1,x1) < ry(p2,x2) implies that (p1,x1) gives a better fit to the

data than does (p2,x2). I describe the construction of ry(p,x) using a normalized least-squares

measure in Section 2.3. Ultimately, I seek the parameters p̌, which minimize ry(p,x) subject to

the constraints fi,k(t,p,x) = 0 for all i ∈ {1, 2, . . . , nx} and for all k ∈ I∆, the parameters of

the numerical solution that fits the data best.

The structure of differential equation solutions can cause numerical-integration-based methods

to be inaccurate or inefficient. High dimensional, nonlinear systems of differential equations

with many parameters often contain bifurcations, which separate the solution space, and thus

the numerical solution space, into regions with different qualitative behavior. Bifurcations

effectively disconnect regions within the numerical solution space, obfuscating optimization

10

2.2. Method Overview

with a numerical-integration-based method. Also, numerical-integration-based methods require

repeated numerical integration, which can be computationally very expensive, especially for

differential equations that require implicit methods for stability. To ameliorate inaccuracies from

bifurcations and inefficiencies from calculating numerical solution values, rather than searching

for p̌ within the numerical solution space of differential equation system (2.1a), I search for p̌

within an extended space of discrete state values, including discrete state values outside of the

solution space of system (2.2). To do so, using some measure of satisfying the numerical solution

to differential equation system (2.1a), I can define a functional r∆x(p,x) with the properties that

(i) r∆x(p,x) ≥ 0, (ii) r∆x(p,x) = 0 if and only if fi,k(t,p,x) = 0 for all i ∈ {1, 2, . . . , nx} and

for all k ∈ I∆, and (iii) r∆x(p1,x1) < r∆x(p2,x2) implies that (p1,x1) satisfies the numerical

solution method better than (p2,x2) does. I describe the construction of r∆x(p,x) using a

normalized least-squares measure in Section 2.4. Then, I combine ry(p,x) and r∆x(p,x), with

proportionality value λ ∈ (0, 1), into a single functional,

ρ(p,x;λ) = (1− λ)ry(p,x) + λr∆x(p,x), (2.3)

a homotopy between ry(p,x) and r∆x(p,x), a continuous deformation from ry(p,x) to r∆x(p,x).

I note, for consistency in scale and units in ρ(p,x;λ), that I define ry(p,x) and r∆x(p,x) on

the same scale with the same units. As elaborated in Section 2.8, as λ→ 1− the parameters and

state values that minimize ρ(p,x;λ) approach the parameters and state values of the optimal

data-fitting numerical solution.

For λ = 1, ρ(p,x;λ) attains a minimum value of zero at all points where r∆x(p,x) = 0, the

infinite set of numerical solutions that correspond to the infinite set of all parameter combinations.

Thus, for λ near 1, an iterative method like gradient descent will converge to a minimum that sits

near some numerical solution with parameter values close to the initial set of parameter values.

As such, an iterative method like gradient descent will not likely converge to the global minimizer

of ρ(p,x;λ) for λ near 1. Instead, I minimize ρ(p,x;λ) over a broad range of λ values, and use

the minimization of ρ(p,x;λ) with smaller values of λ to direct the minimization of ρ(p,x;λ)

with λ near 1, an idea that is similar in spirit to homotopy methods, which start at a solution of

a simpler problem and sequentially step toward the solution of a more difficult problem that is

homotopic to the simpler problem [18]. However, rather than minimizing r(p,x;λ) sequentially

over an array of λ values, I simultaneously minimize r(p,x;λ) over an array of λ values, to avoid

error propagation from sequential minimization and to avoid excessive computation in ensuring

the global minimum of r(p,x;λ) for a smaller value of λ before beginning the minimization of

r(p,x;λ) for a larger value of λ. I outline my minimization technique in Section 2.7.

For λ ∈ (0, 1), the parameters and state values that minimize ρ(p,x;λ), p̆λ and x̆λ, allow

me to define useful functions, ρ̆(λ), r̆y(λ), and r̆∆x(λ), as follows:

ρ̆(λ) = (1− λ)r̆y(λ) + λr̆∆x(λ) = (1− λ)ry(p̆λ, x̆λ) + λr∆x(p̆λ, x̆λ). (2.4)

11

2.3. Defining a Measure of Data Fitting, ry(p,x)

The homotopy-minimum functions, ρ̆(λ), r̆y(λ), and r̆∆x(λ), are useful because they admit

conservative quantities, which allow me to gauge the progress and accuracy of my minimization

technique. I discuss details in Section 2.8.

2.3 Defining a Measure of Data Fitting, ry(p,x)

As an example and for use later, I define ry(p,x). In doing so, I consider the sum of weighted

squared differences as a measure of the difference between the jth observable model state and

the corresponding observed data values:

nt∑
k=1

wj,k
(
yj,k − gj(p, x1,k, x2,k, . . . , xnx,k)

)2
=

nt∑
k=1

wj,k
(
yj,k − gj(p,xk)

)2
, (2.5)

for some data-dependent weights wj,k. To simultaneously measure the difference between all

observable model states and all observed data values, I combine the sum of weighted squared

differences, for all observable states, j = 1, 2, . . . , ny, into the single functional ry(p,x). In doing

so, to combine weighted squared differences on mixed scales with mixed units, I normalized

each sum by the sum of weighted squared observed data values. To remove dependence on the

number of observable states, I divide the normalized sum by the number of observable states.

Thus,

ry(p,x) =
1

ny

ny∑
j=1

(
1∑nt

k=1wj,ky
2
j,k

nt∑
k=1

wj,k
(
yj,k − gj(p,xk)

)2)
. (2.6)

Without normalization, minimizing ρ(p,x;λ) biases fitting toward data on a larger scale at

the detriment of fitting data on a smaller scale. Normalization also removes dependence of

ry(p,x) on the number of data points. In cases where data-dependent weights, wj,k, correct

for disparities in scale and units, normalization standardizes the scale of ry(p,x). To give the

reader a sense of scale, for the homogeneous model, gj = 0 for all j ∈ {1, 2, . . . , ny}, of nontrivial

data, ry(p,x) = 1.

2.4 Defining a Measure of Satisfying a Numerical Solution,

r∆x(p,x)

As an example and for use later, I define r∆x(p,x). In doing so, I consider systems of first order

ordinary differential equations that are linear in derivatives of xi,

dxi
dt

= F̄i
(
t, p1, p2, . . . , pnp , x1, x2, . . . , xnx

)
, (2.7)

12

2.4. Defining a Measure of Satisfying a Numerical Solution, r∆x(p,x)

for i ∈ {1, 2, . . . , nx}. In terms of Fi as defined in equation (2.1a),

Fi =
dxi
dt
− F̄i

(
t, p1, p2, . . . , pnp , x1, x2, . . . , xnx

)
, (2.8)

for i ∈ {1, 2, . . . , nx}. I also consider finite difference numerical methods, of the form

∆xi,k =

Fi,k
({
F̄i(tk, p1, p2, . . . , pnp , x1,k, x2,k, . . . , xnx,k) : k ∈ I∆

})
= Fi,k(t,p,x), (2.9)

where xi,k are the numerical solution values, ∆xi,k is some method-dependent finite difference

discretization of dxi
dt at time tk, and Fi,k are some method-dependent functions of F̄i at time tk,

for all i ∈ {1, 2, . . . , nx} and for all k ∈ I∆. In terms of fi,k as defined in equation (2.2),

fi,k(t,p,x) = ∆xi,k − Fi,k(t,p,x), (2.10)

for all i ∈ {1, 2, . . . , nx} and for all k ∈ I∆. For example, with the backward Euler method,

∆xi,k =


0 if k ∈ {1}
xi,k − xi,k−
tk − tk−

if k ∈ I∆ \ {1},

Fi,k(t,p,x) =

{
0 if k ∈ {1}
F̄i (tk,p,xk) if k ∈ I∆ \ {1},

(2.11)

where k− is the index below k in I∆, for i ∈ {1, 2, . . . , nx}.
To be consistent in measure, scale, and units with ry(p,x) as defined in equation (2.6),

I measure the difference between all ∆xi,k and Fi,k by the mean normalized sum of squared

differences,

r∆x(p,x) =
1

nx

nx∑
i=1

 1∑
k∈I∆(∆xi,k)2

∑
k∈I∆

(
∆xi,k − Fi,k(t,p,x)

)2 . (2.12)

Normalizing by the sum of squared finite differences allows me to combine squared differences

for variables on mixed scales with mixed units. Without normalization, minimizing ρ(p,x;λ)

biases fitting toward discretizations in more rapidly changing states at the detriment of fitting

discretizations in more slowly changing states. Normalization also removes dependence of

r∆x(p,x) on the number of points in the discretization, and dividing by the number of states

removes dependence of r∆x(p,x) on the number of states. To give the reader a sense of scale,

for the homogeneous model, Fi,k = 0 for all i ∈ {1, 2, . . . , nx} and for all k ∈ I∆, of nonconstant

state values, r∆x(p,x) = 1. Thus, r∆x(p,x) is consistent in scale and units with ry(p,x) of

equation (2.6). For systems of first order ordinary differential equations that are nonlinear in

derivatives of xi, or for numerical methods other than finite difference methods, r∆x(p,x) should

13

2.4. Defining a Measure of Satisfying a Numerical Solution, r∆x(p,x)

be normalized similarly.

2.4.1 Inclusion of a Smoothing Penalty in r∆x(p,x)

Observable states are often the combination of multiple unobservable states. As such, it is

possible for observable states to fit observed data with jagged underlying state values. Because

of normalization by sums of squared finite differences in r∆x(p,x), jagged state values may

lead to relatively small values r∆x(p,x). As λ → 1−, jagged state values are dampened out

in the minimization of ρ(p,x;λ) = (1 − λ)ry(p,x) + λr∆x(p,x), as r∆x(p,x) approaches a

value of 0, which occurs if and only if state values approach a numerical solution. However,

for small λ, jagged state values may lead to smaller values of r∆x(p,x) than would less jagged

state values that are closer to a numerical solution. Jagged state values do not conform to the

dynamic structure of the differential equation model and, thus, do not meaningfully guide the

minimization of ρ(p,x;λ) for larger values of λ. To avoid jagged state values when minimizing

ρ(p,x;λ) for small values of λ, I incorporate multiplicative smoothing penalties, si(x), into

r∆x(p,x):

r∆x(p,x) =
1

nx

nx∑
i=1

 si(x)∑
k∈I∆(∆xi,k)2

∑
k∈I∆

(
∆xi,k − Fi,k(t,p,x)

)2 , (2.13a)

si(x) = αi + βi

(
4
∑

k∈I∆\{1,nt}
(
xi,k− − 2xi,k + xi,k+

)2∑
k∈I∆\{1,nt}

(
xi,k+ − xi,k−

)2
)γi

, (2.13b)

where k− and k+ are the indices below and above k in I∆; (xi,k− − 2xi,k + xi,k+)2 is a measure

of roughness around xi,k, the squared difference between the forward difference centered at xi,k,

xi,k+ − xi,k, and the backward difference centered at xi,k, xi,k − xi,k− ; (xi,k+ − xi,k−)2/4 is a

normalization measure of differences centered at xi,k, the squared mean value of the forward

difference centered at xi,k and the backward difference centered at xi,k; and αi > 0, βi ≥ 0,

and γi ≥ 0 are parameters that are chosen to ensure that state values do not jaggedly deviate

from the dynamic structure of the model and to set the scale of the smoothing penalty. To give

a sense of scale, I note that si(x) = 0 with αi = 0, βi = 1, and γi = 1 for xi,k evenly spaced

along a line with nonzero slope, and si(x) ranges from around 10 to 15 with αi = 0, βi = 1,

and γi = 1 for xi,k randomly sampled from the standard uniform distribution or the standard

normal distribution with k ∈ {1, 2, . . . , 103}. Thus, as an example, choosing αi = 1, βi = 102,

and γi = 2 for all i ∈ {1, 2, . . . , nx} would insignificantly modify r∆x(p,x) when state values are

close to colinear and would strongly penalize r∆x(p,x) when state values are close to random. I

note that, as αi > 0 for all i ∈ {1, 2, . . . , nx}, r∆x(p,x) = 0 if and only if ∆xi,k = Fi,k(t,p,x)

for all i ∈ {1, 2, . . . , nx} and all k ∈ I∆. As such, the inclusion of multiplicative smoothing

penalties in r∆x(p,x), as defined in equation (2.13), does not alter the parameters and state

values that minimize ρ(p,x;λ) as λ→ 1−.

14

2.5. A Concrete Example of ry(p,x) and r∆x(p,x) Using a Model of FRAP

2.5 A Concrete Example of ry(p,x) and r∆x(p,x) Using a

Model of FRAP

I provide a concrete example of ry(p,x) and r∆x(p,x) for a simple model of fluorescence

recovery after photobleaching (FRAP). For fluorescence intensity x1(t), recovery-level parameter

p1, timescale parameter p2, and observable state y1,

dx1

dt
=
p1 − x1

p2
, (2.14a)

y1 = g1(p1, p2, x1) = x1. (2.14b)

I consider some observed data values y1,k measured at times tk, for k ∈ {1, 2, . . . , nt}, and

discrete state values x1,k on an unrefined discretization grid, k ∈ I∆ = {1, 2, . . . , nt}. Thus, for

ry(p,x) as defined in equation 2.6 with unitary weights and r∆x(p,x) as defined in equation

2.12 using the backward Euler discretization as defined in equation 2.11,

ry(p,x) =
1∑nt

k=1 y2
1,k

nt∑
k=1

(
y1,k − x1,k

)2
, (2.15a)

r∆x(p,x) =

(
nt∑
k=2

(
x1,k − x1,k−1

tk − tk−1

)2
)−1 nt∑

k=2

(
x1,k − x1,k−1

tk − tk−1
− p1 − x1,k

p2

)2

. (2.15b)

2.6 Extending the Homotopy on Refined Discretization Grids

For ρ(p,x;λ) with small λ, on a refined discretization grid, where I∆ 6= {1, 2, . . . , nt}, deviations

in observable state values from observed data values carry a strong penalty at grid points with

indices in {1, 2, . . . , nt} and no penalty at grid points with indices in I∆ \ {1, 2, . . . , nt}. Thus,

the state values that minimize ρ(p,x;λ) with small λ may admit observable state values that

vary dramatically across adjacent indices in {1, 2, . . . , nt} and I∆ \ {1, 2, . . . , nt}. As λ increases

from 0 to 1, the state values that minimize ρ(p,x;λ) increasingly inherit smooth structure

from the solution to differential equation system (2.1a). Smoothness transfers from state values

to observable state values through the observation functions, gj . Thus, the state values that

minimize ρ(p,x;λ) with λ near 1 admit observable state values that vary smoothly across

adjacent indices in {1, 2, . . . , nt} and I∆ \ {1, 2, . . . , nt}. As such, on a refined discretization

grid, the parameters and state values that minimize ρ(p,x;λ) for small values of λ may not

meaningfully guide the minimization of ρ(p,x;λ) for larger values of λ. To address this, I extend

ρ(p,x;λ) to penalize deviations in observable state values from interpolated data values at grid

points with indices in I∆ \ {1, 2, . . . , nt}.
Using some interpolation method, I generate interpolated data, ŷj,k for j ∈ {1, 2, . . . , ny},

at grid points with indices in Iŷ = I∆ \ {1, 2, . . . , nt} from observed data values with indices

in {1, 2, . . . , nt}. Using some measure of the difference between observable model states and

15

2.7. Optimization Using Overlapping-Niche Descent

interpolated data values, I can define the functional rŷ(p,x) with the properties that (i)

rŷ(p,x) ≥ 0, (ii) rŷ(p,x) = 0 if and only if I∆ = {1, 2, . . . , nt} or gj(p, x1,k, . . . , xnx,k) = ŷj,k

for all j ∈ {1, 2, . . . , ny} and for all k ∈ Iŷ, and (iii) rŷ(p1,x1) < rŷ(p2,x2) implies that (p1,x1)

gives a better fit to the interpolated data than does (p2,x2). I describe the construction of

rŷ(p,x) under a normalized least-squares measure in Section 2.6.1. I extend ρ(p,x;λ) to include

rŷ(p,x) with proportionality value (1− λ)2:

r(p,x;λ) = ρ(p,x;λ) + (1− λ)2rŷ(p,x) =

(1− λ)ry(p,x) + (1− λ)2rŷ(p,x) + λr∆x(p,x), (2.16)

a homotopy between ry(p,x) + rŷ(p,x) and r∆x(p,x). The proportionality value of (1− λ)2

on rŷ(p,x) incrementally decreases the weighting of rŷ(p,x) relative to ry(p,x), as λ increases

from 0 to 1 in r(p,x;λ). I show in Section B.1 that if (p̌, x̌) minimizes ρ(p,x;λ) as λ→ 1− then

(p̌, x̌) also minimizes r(p,x;λ) as λ→ 1−. Thus, the inclusion of (1− λ)2rŷ(p,x) in ρ(p,x;λ)

penalizes deviations in observable state values from interpolated data values at smaller values of

λ, but does not alter the parameters and state values that minimize ρ(p,x;λ) as λ→ 1−.

2.6.1 Defining a Measure of Interpolated Data Fitting, rŷ(p,x)

As an example and for use later, I define rŷ(p,x) following the form of ry(p,x) in equation (2.6).

To do so, using some interpolation method, I generate interpolated data-dependent weights, ŵj,k

for j ∈ {1, 2, . . . , ny}, at grid points with indices in Iŷ from data-dependent weights with indices

in {1, 2, . . . , nt}. To be consistent in measure and scale with ry(p,x) as defined in equation

(2.6), I measure the difference between observable state values and interpolated data values at

grid points with indices in Iŷ by the mean normalized sum of squared differences:

rŷ(p,x) =
1

ny

ny∑
j=1

 σ̂∑
k∈Iŷ ŵj,kŷ

2
j,k

∑
k∈Iŷ

ŵj,k
(
ŷj,k − gj(p, x1,k, . . . , xnx,k)

)2 , (2.17)

where σ̂ > 0 is a scaling parameter that is chosen to set the weighting of rŷ(p,x) relative to

ry(p,x) as λ→ 0+. If I∆ = {1, 2, . . . , nt}, then I define rŷ(p,x) = 0, and r(p,x;λ) reduces to

ρ(p,x;λ).

2.7 Optimization Using Overlapping-Niche Descent

To synergistically minimize r(p,x;λ) over an array of λ values, I implement overlapping-niche

descent, a genetic algorithm directed by gradient-based descent, which is isomorphic to the

dynamics of an evolving ecological population that competes for multiple food sources in a

single environment, where an individual that successfully competes for one food source may

successfully compete for a similar food source. In overlapping-niche descent, a unique value of

16

2.7. Optimization Using Overlapping-Niche Descent

λ ∈ (0, 1) defines a niche, and a set of λ values spanning (0, 1) defines the set of niches in the

environment. Each niche supports a certain number of individuals, where each individual is

represented by a set of parameters and state values. As in other genetic algorithms, individuals

reproduce, with crossover and mutation, to generate new individuals and variability within the

parameter-state value search space. The likelihood of optimizing a function by random probing

decreases with an increasing number of variables, and r(p,x;λ) is a functional of many variables.

Thus, to accelerate optimization, after reproduction, individuals undergo gradient-based descent.

After descent, through selection, each niche sustains the individuals with the lowest values of

r(p,x;λ). Selection acts across niches, allowing individuals to spread from one niche to others,

for a cooperative transfer of information from data to the optimal data-fitting numerical solution

during optimization. I discuss details of overlapping-niche descent in Section C. The process of

overlapping-niche descent is depicted in Figure 2.1.

descent

selection

reproduction

�4�1 �2 �3 �5 . . .

Figure 2.1: Overlapping-Niche Descent. The parameters and state values that minimize r(p,x;λ)
as λ→ 1− are those of the optimal data-fitting numerical solution. Overlapping-niche descent
synergistically minimizes r(p,x;λ) over a broad range of λ values, λ1, λ2, . . . , to more robustly
minimize r(p,x;λ) as λ → 1−. In overlapping-niche descent, each value of λ defines a niche.
In each niche, r(p,x;λ) is locally minimized for a set of initial parameters and state values
(descent). From the full set of parameters and state values, the parameters and state values
with the lowest values of r(p,x;λ) are retained in each niche (selection). Then, a new set of
parameters and state values are generated in each niche from the full set of retained parameters
and state values (reproduction). After selection and reproduction, descent occurs again. Initial
points are shown with triangles, local minimums are shown with circles, and newly generated
points are shown with squares. Gradation from light gray to black is shown to emphasize the
transfer of information across niches during optimization.

Although similar in name, my overlapping-niche genetic algorithm, which cooperatively

optimizes over a range of similar problems, differs from multi-niche genetic algorithms, which

optimize a single problem to find multiple modes. Overlapping niche-descent is less similar in

name, but more similar in character to smooth functional tempering [8], a Bayesian, dynamic

17

2.8. Properties of the Homotopy and Inspection of Overlapping-Niche Descent

colocation method. Smooth functional tempering employs parallel MCMC (Markov Chain Monte

Carlo) chains, over a range of derivative-matching penalty weights. During sampling, parallel

chains may exchange parameters to more robustly sample posterior probability distributions in

chains with large derivative-matching penalty weights. Ultimately, smooth functional tempering

approximates the posterior probability distribution of a dynamic collocation basis with some

large derivative-matching penalty weight.

2.8 Properties of the Homotopy and Inspection of

Overlapping-Niche Descent

For λ ∈ (0, 1), the parameters and state values that minimize r(p,x;λ), p̆λ and x̆λ, allow me to

define useful functions, r̆(λ), r̆y(λ), r̆ŷ(λ), and r̆∆x(λ), as follows:

r̆(λ) = (1− λ)r̆y(λ) + (1− λ)2r̆ŷ(λ) + λr̆∆x(λ) =

(1− λ)ry(p̆λ, x̆λ) + (1− λ)2rŷ(p̆λ, x̆λ) + λr∆x(p̆λ, x̆λ). (2.18)

The homotopy-minimum functions, r̆(λ), r̆y(λ), r̆ŷ(λ), and r̆∆x(λ), are useful because they admit

conservative quantities, which allow me to gauge the progress and accuracy of overlapping-niche

descent.

From Theorem 1 in Appendix B,

lim
λ→0+

p̆λ, x̆λ = arg min
(
r∆x(p,x) : ry(p,x) = 0, rŷ(p,x) = 0

)
, (2.19)

lim
λ→1−

p̆λ, x̆λ = arg min
(
ry(p,x) : r∆x(p,x) = 0

)
. (2.20)

Equation (2.19) states that the parameters and state values that minimize r(p,x;λ) as λ→ 0+

are those closest to a numerical solution given that observable state values perfectly fit data;

equation (2.20) states that the parameters and state values that minimize r(p,x;λ) as λ→ 1−

are those of the numerical solution that fits observed data best. Thus, limλ→0+ r̆∆x(λ) is a

measure of how well data can satisfy a numerical solution, and limλ→1− r̆y(λ) is a measure of how

well a numerical solution can fit observed data. Generally, I am interested in finding limλ→1− p̆λ

and limλ→1− x̆λ. However, limλ→0+ p̆λ and limλ→0+ x̆λ are also informative, as they show how

badly data fails to be a numerical solution, and may thus provide insight into measurement

error, model inadequacies, and potential model improvements.

From Theorem 3 in Appendix B, if r̆y(λ), r̆ŷ(λ), and r̆∆x(λ) are differentiable at λ ∈ (0, 1),

then

(1− λ)
dr̆y(λ)

dλ
+ (1− λ)2dr̆ŷ(λ)

dλ
+ λ

dr̆∆x(λ)

dλ
= 0. (2.21)

Thus, changes in r̆y(λ), r̆ŷ(λ), and r̆∆x(λ) with respect to λ are coupled. If r̆y(λ), r̆ŷ(λ), and

18

2.8. Properties of the Homotopy and Inspection of Overlapping-Niche Descent

r̆∆x(λ) are differentiable at all but a finite number of points in (0, 1), then from Theorem 4 in

Appendix B,

2

∫ 1

0
r̆(λ)dλ =

∫ 1

0
r̆y(λ)dλ+

∫ 1

0
(1− λ2)r̆ŷ(λ)dλ =∫ 1

0
r̆∆x(λ)dλ−

∫ 1

0
(1− λ)2r̆ŷ(λ)dλ. (2.22)

Equation (2.22) defines a conservation in the coupled changes of r̆y(λ), r̆ŷ(λ), and r̆∆x(λ) across

λ ∈ (0, 1). In overlapping-niche descent, I minimize r(p,x;λ) over an array of λ values in (0, 1)

to find p̃λ and x̃λ, approximations of p̆λ and x̆λ, which allow me to define the functions r̃(λ),

r̃y(λ), r̃ŷ(λ), and r̃∆x(λ) such that

r̃(λ) = (1− λ)r̃y(λ) + (1− λ)2r̃ŷ(λ) + λr̃∆x(λ) =

(1− λ)ry(p̃λ, x̃λ) + (1− λ)2rŷ(p̃λ, x̃λ) + λr∆x(p̃λ, x̃λ). (2.23)

I can determine how well r̃y(λ), r̃ŷ(λ), and r̃∆x(λ) satisfy conservation in coupled functional

changes:

2

∫ 1

0
r̃(λ)dλ =

∫ 1

0
r̃y(λ)dλ+

∫ 1

0
(1− λ2)r̃ŷ(λ)dλ =∫ 1

0
r̃∆x(λ)dλ−

∫ 1

0
(1− λ)2r̃ŷ(λ)dλ. (2.24)

A failure to reasonably satisfy equation (2.24) indicates that r̃y(λ), r̃ŷ(λ), and/or r̃∆x(λ) differ

significantly from r̆y(λ), r̆ŷ(λ), and/or r̆∆x(λ), implying that overlapping-niche descent has not

been successfully or is incomplete.

Conservation in coupled functional changes, equation (2.22), relates r̆y(λ), r̆ŷ(λ), and r̆∆x(λ)

over a broad range of λ ∈ (0, 1). However, values of r̆y(λ), r̆ŷ(λ), and r̆∆x(λ) for λ near 0 and λ

near 1 do not significantly affect the values of integrals in equation (2.22). Thus, reasonably

satisfying equation (2.24) reveals little about the coupled changes of r̃y(λ), r̃ŷ(λ), and r̃∆x(λ)

for λ near 0 and λ near 1. From Theorem 5 in Appendix B, if r̆y(λ), r̆ŷ(λ), and r̆∆x(λ) are

differentiable at all but a finite number of points in (0, 1), then

lim
λ→0+

r̆∆x(λ) =

∫ 1

0

1

λ2
r̆y(λ)dλ+

∫ 1

0

1− λ2

λ2
r̆ŷ(λ)dλ, (2.25a)

lim
λ→1−

r̆y(λ) =

∫ 1

0

1

(1− λ)2
r̆∆x(λ)dλ−

∫ 1

0
r̆ŷ(λ)dλ. (2.25b)

Equation 2.25 defines integral representations of limit values, with limλ→0+ r̆∆x(λ) defined

entirely in terms of r̆y(λ) and r̆ŷ(λ), and limλ→1− r̆y(λ) defined entirely in terms of r̆ŷ(λ) and

r̆∆x(λ). I can determine how well r̃y(λ), r̃ŷ(λ), and r̃∆x(λ) satisfy the integral representations

19

2.8. Properties of the Homotopy and Inspection of Overlapping-Niche Descent

of limit values:

lim
λ→0+

r̃∆x(λ) =

∫ 1

0

1

λ2
r̃y(λ)dλ+

∫ 1

0

1− λ2

λ2
r̃ŷ(λ)dλ, (2.26a)

lim
λ→1−

r̃y(λ) =

∫ 1

0

1

(1− λ)2
r̃∆x(λ)dλ−

∫ 1

0
r̃ŷ(λ)dλ. (2.26b)

A failure to reasonably satisfy equation (2.26) indicates that r̃y(λ), r̃ŷ(λ), and/or r̃∆x(λ) differ

significantly from r̆y(λ), r̆ŷ(λ), and/or r̆∆x(λ), implying that overlapping-niche descent has not

been successfully or is incomplete.

I note that r(p,x;λ) reduces to ρ(p,x;λ) when rŷ(p,x) = 0, and thus, the aforementioned

properties of r(p,x;λ) apply to ρ(p,x;λ) with rŷ(p,x) = 0.

20

Chapter 3

Testing the Homotopy-Minimization

Method for Parameter Estimation in

Differential Equations

3.1 Introduction

In Chapter 2, I developed a method that allowed me to calculate the optimal data-fitting

numerical solution and its parameters for a differential equation model without using numerical

integration. Additionally, I showed that my method admits conservation principles and integral

representations that allow me to gauge the accuracy of my optimization. In this chapter, I test

my method using a system of first order ordinary differential equations, a system of second

order ordinary differential equations, and a system of partial differential equations. In doing so,

I compare the performance of my method to that of an analogous numerical-integration-based

method, explore how my method can inform modeling insufficiencies and potential model

improvements, and expound how conservation principles and integral representations in my

method gauge the accuracy of my optimization in practice.

As discussed in Section 1.2, the Min System, consisting of three proteins, MinD, MinE, and

MinC, regulates the site of cell division in Escherichia coli [15]. Experimentally, MinD and

MinE show interesting behaviors, such as emerging pole-to-pole oscillations in cells in vivo [60]

and traveling waves and spiral waves on supported lipid bilayers in vitro [45]. The Bonny model

[4], which models the interactions of MinD and MinE, admits solutions with behaviors that

are qualitatively similar to the dynamic patternings of MinD and MinE that are observed in

experiments [4]. I choose the Bonny model to test my method because of its biological relevance,

and because in different contexts it manifests as a first order ordinary differential equation

system, a second order ordinary differential equation system, and a system of partial differential

equations.

3.2 A Model for MinD and MinE Interactions by Bonny et al

(2013)

The Bonny model consists of five states, cD, cE , cd, cde, and ce, corresponding to concentrations

of bulk MinD, bulk MinE, membrane bound MinD, membrane bound MinD-MinE complex, and

21

3.2. A Model for MinD and MinE Interactions by Bonny et al (2013)

membrane bound MinE respectively. I describe the biology behind the Bonny model and its

formulation in detail in Section 4.3.2. I focus on a simplified version of the Bonny model with a

large, well mixed bulk, such that MinD and MinE bulk concentrations, cD and cE , are constant:

∂cd
∂t

= cD(ωD + ωdDcd)(cmax − cd − cde)/cmax − ωEcEcd − ωedcecd +Dd∇cd, (3.1a)

∂cde
∂t

= ωEcEcd + ωedcecd − (ωde,m + ωde,c)cde +Dde∇cde, (3.1b)

∂ce
∂t

= ωde,mcde − ωedcecd − ωece +De∇ce, (3.1c)

with parameters ωD, ωdD, ωE , ωed, ωde,m, ωde,c, ωe, cmax, Dd, Dde, and De and observable states

MinD = cd + cde and MinE = cde + ce. cd, cde, ce, MinD, and MinE are measured in µm−2.

Values and definitions of parameters and constants for the Bonny model in an in vitro context

are shown in Table 3.1.

value definition

Dd 3.00 · 10−1 µm2 s−1 diffusion coefficient of cd
Dde 3.00 · 10−1 µm2 s−1 diffusion coefficient of cde
De 1.80 · 100 µm2 s−1 diffusion coefficient of ce
cD 4.80 · 102 µm−3 bulk concentration of MinD
cE 7.00 · 102 µm−3 bulk concentration of MinE
cmax 2.75 · 104 µm−2 maximum value of cd + cde
ωD 5.00 · 10−4 µm s−1 rate of the reaction cD → cd
ωE 1.36 · 10−4 µm3 s−1 rate of the reaction cE + cd → cde
ωdD 3.18 · 10−3 µm3 s−1 rate of the reaction cD + cd → 2cd
ωde,c 1.60 · 10−1 s−1 rate of the reaction cde → cD + cE
ωde,m 2.52 · 100 s−1 rate of the reaction cde → cD + ce
ωe 5.00 · 10−1 s−1 rate of the reaction ce → cE
ωed 4.90 · 10−3 µm2 s−1 rate of the reaction cd + ce → cde

Table 3.1: Values and definitions of parameters and constants in the Bonny model. Values are
taken from the set of in vitro parameters in [4].

In the case of spatial homogeneity, where ∇cd = 0, ∇cde = 0, and ∇ce = 0, the Bonny model

reduces to a system of first order ordinary differential equations:

dcd
dt

= cD(ωD + ωdDcd)(cmax − cd − cde)/cmax − ωEcEcd − ωedcecd, (3.2a)

dcde
dt

= ωEcEcd + ωedcecd − (ωde,m + ωde,c)cde, (3.2b)

dce
dt

= ωde,mcde − ωedcecd − ωece. (3.2c)

The Bonny model admits traveling wave solutions. In the traveling wave coordinate system,

z = x − st, with spatial location x, time t, and nonzero traveling wave velocity s, where

22

3.3. Synthetic Data Generation

cd(x, t) = cd(z), cde(x, t) = cde(z), and ce(x, t) = ce(z), the Bonny model (3.1) reduces to a

system of second order ordinary differential equations:

dcd
dz

= −1

s

(
cD(ωD + ωdDcd)(cmax − cd − cde)/cmax − ωEcEcd − ωedcecd +Dd

d2cd
dz2

)
, (3.3a)

dcde
dz

= −1

s

(
ωEcEcd + ωedcecd − (ωde,m + ωde,c)cde +Dde

d2cde
dz2

)
, (3.3b)

dce
dz

= −1

s

(
ωde,mcde − ωedcecd − ωece +De

d2ce
dz2

)
. (3.3c)

3.3 Synthetic Data Generation

Instead of fitting a form of the Bonny model to experimental data, I generate synthetic data

from a numerical solution of the form of the Bonny model using the parameters in Table 3.1,

and fit parameters in the form of the Bonny model to the synthetic data. This allows me to test

my method within a controlled context, for a more concrete interpretation of my results.

The spatially homogeneous Bonny model (3.2) admits numerical solutions with oscillating

pulses in MinD and MinE concentrations. To generate synthetic spatially-homogeneous data, I

numerically solve the spatially homogeneous Bonny model (3.2) with the parameter values from

Table 3.1 and small but non-zero initial conditions, cd(0) = 5.83 µm−2, cde(0) = 1.34 ·10−1 µm−2,

and ce(0) = 1.58 · 10−1 µm−2, to introduce some uncertainty in the values of initial conditions

when fitting data. In doing so, I use the MATLAB ODE solver ODE15s with a relative

error tolerance of 10−12 and an absolute error tolerance of 10−12. I extract the synthetic

spatially-homogeneous data by sampling the numerical solution every 0.5 s and calculating

observable-state values. Synthetic spatially-homogeneous data is shown in Figure 3.1.

23

3.3. Synthetic Data Generation

Figure 3.1: Synthetic spatially-homogeneous data. Data is generated by numerically solving the
spatially homogeneous Bonny model (3.2) with the parameters from Table 3.1. Data is shown
with points, and dashed lines are shown to emphasize the underlying pulse behavior.

To generate synthetic traveling-wave data, I construct a temporal pulse profile by numerically

solving the spatially homogeneous Bonny model (3.2) with the parameter values from Table 3.1

and zero initial conditions. Then, I transform the temporal pulse profile into an initial pulse

profile in space, and numerically evolve the pulse profile according to the Bonny model (3.1)

with the parameter values from Table 3.1 and periodic boundary conditions. In doing so, I

use the method of lines with a symmetric second order finite difference discretization of the

Laplacian and RK4 time-stepping, on a grid with 1/8 µm between spatial grid points and 10−3 s

between temporal grid points. Over time, the pulse profile forms into a stable traveling wave

profile, with measured traveling wave velocity of s = −1.15 µm s−1. I extract the synthetic

traveling-wave data by sampling the stable traveling wave profile every 0.5 µm and calculating

observable-state values. Synthetic traveling-wave data is shown in Figure 3.2.

24

3.3. Synthetic Data Generation

Figure 3.2: Synthetic traveling-wave data. Data is generated by numerically evolving a pulse
with the full Bonny model (3.1) and the parameters from Table 3.1 until a stable traveling wave
forms. Data is shown with points, and dashed lines are shown to emphasize the underlying
traveling wave behavior.

The full Bonny model (3.1) demonstrates traveling wave emergence, the temporal evolution

from a pulse profile into a stable traveling wave profile. I extract the synthetic traveling-wave-

emergence data by sampling the numerical evolution of a pulse profile, as described above,

every 0.5 µm and every 0.5 s for the first 15 s of its numerical evolution and calculating

observable-state values. Synthetic traveling-wave-emergence data is shown in Figure 3.3.

25

3.4. Details of Optimization Using Overlapping-Niche Descent

(a) (b)

Figure 3.3: Synthetic traveling-wave-emergence data. Data is generated by numerically evolving
a pulse with the full Bonny model (3.1) and the parameters from Table 3.1 for 15 s. MinD data
is shown in (a), and MinE data is shown in (b). Gradation is from black, with a value of 0, to
white, with a value of 1.9 · 104 in (a) and 4.5 · 103 in (b).

3.4 Details of Optimization Using Overlapping-Niche Descent

Here, I describe structural components of overlapping-niche descent for forms of the Bonny

model. I describe details pertaining to the implementation of overlapping-niche descent in

Section E.1.

3.4.1 Defining ry(p,x), rŷ(p,x), and r∆x(p,x)

Preliminarily, for consistency with previous notation, I define: x1 = cd, x2 = cde, and x3 = ce;

p1 = Dd, p2 = Dde, p3 = De, p4 = cmax, p5 = ωD, p6 = ωE , p7 = ωdD, p8 = ωde,c, p9 = ωde,m,

p10 = ωe, and p11 = ωed; y1 = MinD and y2 = MinE; and g1 = x1 + x2 and g2 = x2 + x3. Thus,

nx = 3, np = 11, and ny = 2.

For the spatially homogeneous Bonny model (3.2), I define ry(p,x) as in equation (2.6),

rŷ(p,x) as in equation (2.17), and r∆x(p,x) as in equation (2.13a). In ry(p,x), I use unitary

data weights. In rŷ(p,x), I set σ̂ = 1, and generate interpolated data and interpolated data

weights using a piecewise cubic spline with not-a-knot end conditions. I discretize the spatially

homogeneous Bonny model (3.2) using the backward Euler method, a method with first order

26

3.4. Details of Optimization Using Overlapping-Niche Descent

accuracy. Thus, in r∆x(p,x),

∆xi,k =

 0 if k ∈ {1}
xi,k − xi,k−

∆t
if k ∈ I∆ \ {1},

Fi,k(t,p,x) =

{
0 if k ∈ {1}
F̄i (p, x1,k, x2,k, . . . , xnx,k) if k ∈ I∆ \ {1},

(3.4)

where k− is the index below k in I∆, ∆t is the grid spacing in {tk : k ∈ I∆}, and F̄i is as defined

in equation (2.7). In smoothing penalties, si(x), of r∆x(p,x), I set αi = 1, βi = 102, and γi = 2,

for all i ∈ {1, 2, . . . , nx}, to insignificantly modify r∆x(p,x) with a smooth set of state values

and to strongly penalize r∆x(p,x) with a jagged set of state values.

For the traveling wave Bonny model (3.3), I define ry(p,x) as in equation (A.7a), rŷ(p,x) as

in equation (A.7b), and r∆x(p,x) as in equation (A.7c), with t = z. In ry(p,x), I use unitary

data weights. In rŷ(p,x), I set σ̂ = 1, and generate interpolated data and interpolated data

weights using a piecewise cubic spline with not-a-knot end conditions. I discretize the traveling

wave Bonny model (3.3) using a central first order finite difference, a finite difference with second

order accuracy, and a symmetric second order finite difference, a finite difference with second

order accuracy. Thus, in r∆x(p,x),

∆1xi,k =

 0 if k ∈ {1, nz}
xi,k+ − xi,k−

2∆z
if k ∈ I∆ \ {1, nz},

∆2xi,k =


0 if k ∈ {1, nz}
xi,k+ − 2xi,k + xi,k−

∆z2 if k ∈ I∆ \ {1, nz},

Fi,k(t,p,x) =

{
0 if k ∈ {1, nz}
F̄i
(
p, x1,k, x2,k, . . . , xnx,k,∆

2xi,k
)

if k ∈ I∆ \ {1, nz},
(3.5)

where k− and k+ are the indices below and above k in I∆, ∆z is the grid spacing in {zk : k ∈ I∆},
and F̄i is as defined in equation (A.3). As with the spatially homogeneous Bonny model, I set

αi = 1, βi = 102, and γi = 2 in smoothing penalties, si(x), of r∆x(p,x), for all i ∈ {1, 2, . . . , nx},
to insignificantly modify r∆x(p,x) with a smooth set of state values and to strongly penalize

r∆x(p,x) with a jagged set of state values.

For the full Bonny model (3.1), I define ry(p,x) as in equation (A.14a), rŷ(p,x) as in

equation (A.14b), and r∆x(p,x) as in equation (A.14c), with u in time t and v in space s. In

ry(p,x), I use unitary data weights. In rŷ(p,x), I set σ̂ = 1, and generate interpolated data

and interpolated data weights using a two-dimensional piecewise cubic spline with not-a-knot

end conditions. I discretize the full Bonny model (3.1) using a Simpson method first order finite

difference in time, a finite difference with fourth order accuracy, and a symmetric second order

27

3.4. Details of Optimization Using Overlapping-Niche Descent

finite difference in space, a finite difference with second order accuracy. Thus, in r∆x(p,x),

∆1,0xi,k,l =

 0 if k ∈ {1, nt} or l ∈ {1, ns}
xi,k+,l − xi,k−,l

2∆t
if (k, l) ∈ I∆t \ {1, nt} × I∆s \ {1, ns},

∆0,2xi,k,l =


0 if l ∈ {1, ns}
xi,k,l+ − 2xi,k,l + xi,k,l−

∆s2 if l ∈ I∆s \ {1, ns},

Fi,k,l(t,p,x) =


0 if k ∈ {1, nt} or l ∈ {1, ns}

1∑
m=−1

bmF̄i
(
p,xk+m,l,∆

0,2xi,k+m,l

)
if (k, l) ∈ I∆t \ {1, nt} × I∆s \ {1, ns},

(3.6)

where k− and k+ are the indices below and above k in I∆t , l− and l+ are the indices below

and above l in I∆s , ∆t is the grid spacing in {tk : k ∈ I∆t}, ∆s is the grid spacing in

{sl : l ∈ I∆s}, b−1 = 1/6, b0 = 4/6, b1 = 1/6, F̄i is as defined in equation (A.10), and xk,l =

x1,k,l, x2,k,l, . . . , xnx,k,l. As with the spatially homogeneous Bonny model, I set αi = 1, βi = 102,

and γi = 2 in smoothing penalties, sti(x) and ssi (x), of r∆x(p,x), for all i ∈ {1, 2, . . . , nx}, to

insignificantly modify r∆x(p,x) with a smooth set of state values and to strongly penalize

r∆x(p,x) with a jagged set of state values.

3.4.2 Domain Restrictions on Parameters and States

Rate parameters, ωD, ωdD, ωE , ωed, ωde,m, ωde,c, and ωe, and diffusion coefficients, Dd, Dde, and

De, are only biologically relevant if nonnegative. Thus, I restrict rate parameters and diffusion

coefficients to nonnegative values:

p ≥ 0 for all p ∈ {ωD, ωdD, ωE , ωed, ωde,m, ωde,c, ωe, Dd, Dde, De}. (3.7)

Parameter cmax dictates the maximum concentration of membrane-bound MinD. Thus, I restrict

cmax to values greater than or equal to the maximum MinD data value, Dmax:

cmax ≥ Dmax. (3.8)

For the synthetic spatially-homogeneous data, Dmax = 1.88 · 104 µm−2; for the synthetic

traveling-wave data, Dmax = 1.72 · 104 µm−2; and for the synthetic traveling-wave-emergence

data, Dmax = 1.88 · 104 µm−2. Concentrations cd, cde, and ce are only biologically relevant if

nonnegative. Thus, I restrict cd, cde, and ce to nonnegative values:

ci,k ≥ 0 for all i ∈ {d, de, e} and k ∈ I∆, (3.9)

28

3.4. Details of Optimization Using Overlapping-Niche Descent

where cd,k, cde,k, and ce,k are the values of cd, cde, and ce at the kth index of the numerical

discretization. Details of overlapping-niche descent on restricted domains are described in

Section C.2.3.

3.4.3 Niches

I choose 101 values of λ, λk for k = 1, 2, . . . , 101, to define 101 niches. The bounds (B.68) and

(B.69), which state that r̆y(λ) ≤ ε̄ if λ ≤ ε̄/(1 + ε̄) and r̆∆x(λ) ≤ ε̄ if λ ≥ 1/(1 + ε̄) for some

tolerance ε̄, provide a meaningful guide for the choice of λk. Thus, based on the bounds (B.68)

and (B.69) with chosen ε̄ = b0, b−1, . . . , b−50 and base b such that b−50 = 10−6, I define λk for

k = 1, 2, . . . , 101 such that

λk =


b51−k

1 + b51−k if k ≤ 51

1

1 + b51−k if k > 51.

(3.10)

My choice of λk distributes the values of λk for k = 1, 2, . . . , 101 more densely near 0 and 1

and less densely near 0.5. For reference, λ1 ≈ 10−6, λ2 ≈ 1.3 · 10−6, λ51 = 0.5, λ52 ≈ 0.57,

λ100 ≈ 1− 1.3 · 10−6, and λ101 ≈ 1− 10−6.

3.4.4 Calculating Confidence Intervals

I calculate confidence intervals by bootstrapping, given the complex nonlinear relationship

between data noise and parameter noise that would not be adequately captured using a (Taylor

expansion based) delta method [39]. In doing so, I calculate observable-state residuals,

ε̃j,k = yj,k − gj(p̃, x̃1,k, . . . , x̃nx,k), (3.11)

where p̃ = p̃λ101 and x̃ = x̃λ101 , the parameters and state values that minimize r(p,x;λ101),

and x̃i,k is the value in x̃ from the ith state and the kth grid index, for i ∈ {1, 2, . . . , nx},
j ∈ {1, 2, . . . , ny}, and k ∈ {1, 2, . . . , nt}. By resampling residuals, I generate nb = 103 bootstrap

data sets :

yj,k = gj(p̃, x̃1,k, . . . , x̃nx,k) + ε̃j,l, (3.12)

where l is randomly sampled with replacement from {1, 2, . . . , nt}, for j ∈ {1, 2, . . . , ny} and

k ∈ I∆. I replace observed data values in r(p,x;λ) with bootstrap data values from the ith

bootstrap data set to construct the functional rbi (p,x;λ). Globally minimizing rbi (p,x;λ) using

overlapping-niche descent for all i ∈ {1, 2, . . . , nb} would be computationally prohibitive. Rather,

if residuals are not overly large, the optimal parameters and state values of rbi (p,x;λ) will

generally be fairly similar to p̃ and x̃. Thus, with p̃ and x̃ as initial parameters and state values,

I locally optimize rbi (p,x;λb) using accelerated descent, for all i ∈ {1, 2, . . . , nb}, with λb chosen

29

3.5. Fitting Forms of the Bonny Model to Synthetic Data

large enough to weight local optimization towards a numerical solution but not so large that p

and x are fixed near p̃ and x̃. Specifically, I choose

λb = arg min
{∣∣∣ry(p̃λ, x̃λ)− 103r∆x(p̃λ, x̃λ)

∣∣∣ : λ ∈ {λ1, λ2, . . . , λ101}
}
. (3.13)

From the nb local optimizations, I construct a distribution of values for each parameter. From

the distribution of values for parameter pj , I compute the 2.5th and 97.5th percentile values,

which I translate into the 95% confidence interval for parameter pj , for j ∈ {1, 2, . . . , np}.

3.5 Fitting Forms of the Bonny Model to Synthetic Data

To ascertain the efficacy of overlapping-niche descent, I fit forms of the Bonny model to synthetic

data.

3.5.1 Fitting the Spatially Homogeneous Bonny Model to the Synthetic

Spatially-Homogeneous Data

I fit the spatially homogeneous Bonny model (3.2) to the synthetic spatially-homogeneous data

using overlapping-niche descent, as described in Section 3.4, on a uniform grid with a grid

refinement factor of 1, n∆nt
−1 = 1 for n∆ the number or grid points and nt the number of

data points. I find that ry(p̃λ101 , x̃λ101) = 4.36 · 10−4, r∆x(p̃λ101 , x̃λ101) = 1.06 · 10−11, the mean

time per iteration of accelerated descent is 1.46 · 10−4 s, and the total accelerated descent

time is 7.38 · 10−1 minutes. I calculate the total accelerated descent time as the sum of the

maximal accelerated descent time in each generation, as I compute accelerated descent in parallel.

Observable-state values of x̃λ101 , the state values that minimize r(p,x;λ101), are shown in Figure

3.4.

30

3.5. Fitting Forms of the Bonny Model to Synthetic Data

Figure 3.4: The fit of the spatially homogeneous Bonny model to the synthetic spatially-
homogeneous data. Observable-state values are shown with solid lines and data values are shown
with points. The spatially homogeneous Bonny model fits the synthetic spatially-homogeneous
data fairly well. Fitting errors arise from a relatively course numerical discretization.

As is visible in Figure 3.4, the observable-state values of x̃λ101 visibly differ from synthetic

data values at some times. This discrepancy stems from a relatively inaccurate method on a

relatively coarse grid. On more refined grids, the observable-state values of x̃λ101 fit synthetic

data more accurately (shown in Section 3.6) and are visually indistinguishable from the synthetic

spatially-homogeneous data (not shown). Parameter estimates from the fit of the spatially

homogeneous Bonny model to the synthetic spatially-homogeneous data are shown in Table 3.2.

31

3.5. Fitting Forms of the Bonny Model to Synthetic Data

true value estimated value 95% confidence interval units

cmax 2.75 · 104 3.02 · 104 [2.96 · 104, 3.09 · 104] µm−2

ωD 5.00 · 10−4 0.00 · 100 [0.00 · 100, 2.56 · 10−3] µm s−1

ωE 1.36 · 10−4 1.20 · 10−4 [1.17 · 10−4, 1.22 · 10−4] µm3 s−1

ωdD 3.18 · 10−3 2.99 · 10−3 [2.91 · 10−3, 3.05 · 10−3] µm3 s−1

ωde,c 1.60 · 10−1 9.31 · 10−2 [8.64 · 10−2, 9.98 · 10−2] s−1

ωde,m 2.52 · 100 2.59 · 100 [2.56 · 100, 2.62 · 100] s−1

ωe 5.00 · 10−1 5.78 · 10−1 [5.69 · 10−1, 5.91 · 10−1] s−1

ωed 4.90 · 10−3 4.41 · 10−3 [4.35 · 10−3, 4.46 · 10−3] µm2 s−1

Table 3.2: Parameter estimates from the fit of the spatially homogeneous Bonny model to the
synthetic spatially-homogeneous data. Parameter estimates are generally fairly similar to true
parameter values.

3.5.2 Fitting the Traveling Wave Bonny Model to the Synthetic

Traveling-Wave Data

I fit the traveling wave Bonny model (3.3) to the synthetic traveling-wave data using overlapping-

niche descent, as described in Section 3.4, on a uniform grid with a grid refinement factor of 1,

n∆nt
−1 = 1 for n∆ the number or grid points and nt the number of data points. I find that the

observable-state values of x̃λ101 are visually indistinguishable from the synthetic traveling-wave

data shown in Figure 3.2, ry(p̃λ101 , x̃λ101) = 1.61 · 10−5, r∆x(p̃λ101 , x̃λ101) = 6.18 · 10−17, the

mean time per iteration of accelerated descent is 1.29 · 10−4 s, and the total accelerated descent

time is 2.69 · 10−1 minutes. I note that overlapping-niche descent requires a similar amount

of time to fit the traveling wave Bonny model to the synthetic traveling-wave data as it does

to fit the spatially homogeneous Bonny model to the synthetic spatially homogeneous data

(2.69 · 10−1 minutes vs. 7.38 · 10−1 minutes), even though the traveling wave Bonny model

is a boundary value problem and the spatially homogeneous Bonny model is an initial value

problem. Parameter estimates from the fit of the traveling wave Bonny model to the synthetic

traveling-wave data are shown in Table 3.3.

32

3.5. Fitting Forms of the Bonny Model to Synthetic Data

true value estimated value 95% confidence interval units

Dd 3.00 · 10−1 3.37 · 10−1 [3.31 · 10−1, 3.46 · 10−1] µm2 s−1

Dde 3.00 · 10−1 2.42 · 10−1 [2.30 · 10−1, 2.53 · 10−1] µm2 s−1

De 1.80 · 100 1.68 · 100 [1.65 · 100, 1.71 · 100] µm2 s−1

cmax 2.75 · 104 2.83 · 104 [2.81 · 104, 2.84 · 104] µm−2

ωD 5.00 · 10−4 1.36 · 10−3 [5.82 · 10−4, 1.97 · 10−3] µm s−1

ωE 1.36 · 10−4 1.39 · 10−4 [1.38 · 10−4, 1.40 · 10−4] µm3 s−1

ωdD 3.18 · 10−3 3.07 · 10−3 [3.06 · 10−3, 3.08 · 10−3] µm3 s−1

ωde,c 1.60 · 10−1 1.72 · 10−1 [1.69 · 10−1, 1.76 · 10−1] s−1

ωde,m 2.52 · 100 2.49 · 100 [2.48 · 100, 2.49 · 100] s−1

ωe 5.00 · 10−1 4.94 · 10−1 [4.87 · 10−1, 4.97 · 10−1] s−1

ωed 4.90 · 10−3 4.84 · 10−3 [4.84 · 10−3, 4.86 · 10−3] µm2 s−1

Table 3.3: Parameter estimates from the fit of the traveling wave Bonny model to the synthetic
traveling-wave data. Parameter estimates are closer to true parameter values than those shown
in Table 3.2.

Rate parameter estimates from fitting the traveling wave Bonny model to the synthetic

traveling-wave data (shown in Table 3.3) are generally somewhat more accurate with narrower

spreads than rate parameter estimates from fitting the spatially homogeneous Bonny model to

the synthetic spatially-homogeneous data (shown in Table 3.2). I suspect this occurs because,

on average, the traveling wave Bonny model fits the synthetic traveling-wave data somewhat

better than the spatially homogeneous Bonny model fits the synthetic spatially-homogeneous

data (ry(p̃λ101 , x̃λ101) = 1.61 · 10−5 vs. ry(p̃λ101 , x̃λ101) = 4.36 · 10−4).

3.5.3 Fitting the Full Bonny Model to the Synthetic

Traveling-Wave-Emergence Data

I fit the full Bonny model (3.1) to the synthetic traveling-wave-emergence data using overlapping-

niche descent, as described in Section 3.4, on a uniform grid with a grid refinement factor of

1, n∆tn∆snt
−1ns

−1 = 1 for n∆t and n∆s the number or temporal and spatial grid points and

nt and ns the number of temporal and spatial data points. I find that the observable-state

values of x̃λ101 are visually indistinguishable from the synthetic traveling-wave-emergence data

shown in Figure 3.3, ry(p̃λ101 , x̃λ101) = 1.29 · 10−6, r∆x(p̃λ101 , x̃λ101) = 1.98 · 10−16, the mean

time per iteration of accelerated descent is 6.03 · 10−3 s, and the total accelerated descent time

is 48.0 minutes. Parameter estimates from the fit of the full Bonny model to the synthetic

traveling-wave-emergence data are shown in Table 3.4.

33

3.5. Fitting Forms of the Bonny Model to Synthetic Data

true value estimated value 95% confidence interval units

Dd 3.00 · 10−1 2.98 · 10−1 [2.98 · 10−1, 2.99 · 10−1] µm2 s−1

Dde 3.00 · 10−1 3.04 · 10−1 [3.03 · 10−1, 3.05 · 10−1] µm2 s−1

De 1.80 · 100 1.83 · 100 [1.83 · 100, 1.83 · 100] µm2 s−1

cmax 2.75 · 104 2.75 · 104 [2.75 · 104, 2.75 · 104] µm−2

ωD 5.00 · 10−4 0.00 · 100 [0.00 · 100, 1.83 · 10−5] µm s−1

ωE 1.36 · 10−4 1.36 · 10−4 [1.35 · 10−4, 1.36 · 10−4] µm3 s−1

ωdD 3.18 · 10−3 3.18 · 10−3 [3.18 · 10−3, 3.18 · 10−3] µm3 s−1

ωde,c 1.60 · 10−1 1.59 · 10−1 [1.58 · 10−1, 1.59 · 10−1] s−1

ωde,m 2.52 · 100 2.52 · 100 [2.52 · 100, 2.52 · 100] s−1

ωe 5.00 · 10−1 5.00 · 10−1 [5.00 · 10−1, 5.01 · 10−1] s−1

ωed 4.90 · 10−3 4.85 · 10−3 [4.85 · 10−3, 4.85 · 10−3] µm2 s−1

Table 3.4: Parameter estimates from the fit of the full Bonny model to the synthetic traveling-
wave-emergence data. Parameter estimates are very similar to true parameter values except for
the parameter ωD, which seems to play a small role is the overall dynamics of the Bonny model.

Parameter estimates from fitting the full Bonny model to the synthetic traveling-wave-

emergence data (shown in Figure 3.4) are generally somewhat more accurate with narrower

spreads than parameter estimates from fitting the traveling wave Bonny model to the synthetic

traveling-wave data (shown in Table 3.3). I suspect this occurs because, on average, the

full Bonny model fits the synthetic traveling-wave-emergence data somewhat better than the

traveling wave Bonny model fits the synthetic traveling-wave data (ry(p̃λ101 , x̃λ101) = 1.29 · 10−6

vs. ry(p̃λ101 , x̃λ101) = 1.61 · 10−5).

Neither the spatially homogeneous Bonny model, the traveling wave Bonny model, nor the

full Bonny model accurately estimate the nonzero value ωD when fitting respective synthetic

data (see Tables 3.2, 3.3, and 3.4). Yet, the spatially homogeneous Bonny model (on grids more

refined than when n∆nt
−1 = 1), the traveling wave Bonny model, and the full Bonny model

very accurately fit respective synthetic data. Thus, it appears that, beyond allowing an initial

increase in cd from a homogeneous initial condition, ωD plays very little role in the overall

dynamics of the Bonny systems.

As shown for the spatially homogeneous Bonny model in Table 3.2, the traveling wave

Bonny model in Table 3.3, and the full Bonny model in Table 3.4, 95% confidence intervals

often do not include true parameter values. I suspect this occurs because errors in fitting

arise from discretization errors in the numerical methods. As such, residuals are small and

are not independent or identically distributed. Thus, when calculating confidence intervals by

bootstrapping as described in Section 3.4.4, bootstrap data sets do not significantly differ from

synthetic data and errors in bootstrap data sets do not accurately represent discretization errors

in the numerical methods. Thus, 95% confidence intervals are often fairly narrow and may not

include true parameter values.

34

3.6. Comparing . . . to a Numerical-Integration-Based Method

3.6 Comparing Overlapping-Niche Descent to a

Numerical-Integration-Based Method

I compare the performance of overlapping-niche descent to the performance of a numerical-

integration-based parameter optimization method. For a balanced comparison, I construct

a variant of overlapping-niche descent that omits r∆x(p,x) from the objective function and

instead solves the differential equation numerically at each step. It also uses a single niche,

so I refer to it as single-niche solution descent (SNSD). SNSD optimizes over parameters and

initial conditions to minimize ry(p,x), with numerical solution values x. Details of SNSD are

described in Section E.2.

To highlight scenarios in which overlapping-niche descent outperforms SNSD, I compare the

performance of overlapping-niche descent to the performance of SNSD on a set of differential

equations systems that vary only in the size of the system. I construct the Bonny × n model, a

differential equation system consisting of n independent copies of the spatially homogeneous

Bonny model (3.2), with 3n states, 8n parameters, and 2n observable states. Accordingly, I

generate synthetic spatially-homogeneous × n data using n copies of the synthetic spatially-

homogeneous data. I fit the Bonny × n model to the synthetic spatially-homogeneous × n data,

for n = 1, 2, . . . , 5, using overlapping-niche descent, as described in Section 3.4, and using SNSD.

For both, I use the backward Euler scheme on a set of uniform grids with grid refinement factors

of 1, 2, 3, and 4, n∆nt
−1 = 1, 2, 3, 4 for n∆ the number or grid points and nt the number of data

points. I construct ry(p,x), rŷ(p,x), and r∆x(p,x) for the Bonny × n model as described in

Section 3.4.1 for the spatially homogeneous Bonny model. ry(p,x) is normalized by the number

of observable states. Thus, for p̌ and x̌, the parameter and numerical solution values that

minimize ry(p,x), the value of ry(p̌, x̌) is identical for the Bonny × n model with all n ∈ N+.

In SNSD, I calculate numerical solutions using the backward Euler method, solve nonlinear

systems using Newton’s method with an absolute termination tolerance of 10−3, and solve

matrix equations using Gaussian elimination. Ultimately, I calculate p̃ and x̃, approximations

of p̌ and x̌. For overlapping-niche descent, p̃ = p̃λ101 and x̃ = x̃λ101 , the parameters and state

values that minimize r(p,x;λ101). Results are shown in Tables 3.5, 3.6, 3.7, and 3.8.

35

3.6. Comparing . . . to a Numerical-Integration-Based Method

overlapping-niche descent

n∆ = nt n∆ = 2nt n∆ = 3nt n∆ = 4nt
Bonny × 1 4.36 · 10−4 1.14 · 10−4 5.18 · 10−5 2.95 · 10−5

Bonny × 2 4.38 · 10−4 1.14 · 10−4 5.18 · 10−5 2.95 · 10−5

Bonny × 3 4.36 · 10−4 1.14 · 10−4 5.18 · 10−5 2.95 · 10−5

Bonny × 4 4.35 · 10−4 1.14 · 10−4 5.19 · 10−5 2.95 · 10−5

Bonny × 5 4.31 · 10−4 1.14 · 10−4 5.19 · 10−5 2.95 · 10−5

SNSD

n∆ = nt n∆ = 2nt n∆ = 3nt n∆ = 4nt
Bonny × 1 4.53 · 10−4 1.14 · 10−4 5.18 · 10−5 2.95 · 10−5

Bonny × 2 4.53 · 10−4 1.14 · 10−4 5.18 · 10−5 2.95 · 10−5

Bonny × 3 4.53 · 10−4 1.14 · 10−4 5.18 · 10−5 2.95 · 10−5

Bonny × 4 4.53 · 10−4 1.14 · 10−4 5.18 · 10−5 2.95 · 10−5

Bonny × 5 1.37 · 10−1 1.14 · 10−4 1.37 · 10−1 1.37 · 10−1

Table 3.5: Values of ry(p̃, x̃) from overlapping-niche descent and SNSD. p̃ and x̃ approximate p̌
and x̌, the parameters and state values of the optimal data-fitting numerical solution, for the fit
of the Bonny × n model, a differential equation system consisting of n independent copies of
the spatially homogeneous Bonny model (3.2), to the synthetic spatially-homogeneous × n data,
which consists of n copies of the synthetic spatially-homogeneous data, for n ∈ {1, 2, . . . , 5}.
Bold values are shown for emphasis. Values of ry(p̃, x̃) from overlapping-niche descent and
SNSD are similar except for n = 5 in the Bonny × n model when SNSD fails to find the optimal
data-fitting numerical solution.

overlapping-niche descent

n∆ = nt n∆ = 2nt n∆ = 3nt n∆ = 4nt
Bonny × 1 1.06 · 10−11 4.82 · 10−17 4.69 · 10−17 4.61 · 10−16

Bonny × 2 1.50 · 10−11 7.63 · 10−16 1.54 · 10−17 9.60 · 10−18

Bonny × 3 1.31 · 10−11 4.40 · 10−16 8.92 · 10−18 1.66 · 10−17

Bonny × 4 2.31 · 10−11 2.78 · 10−17 2.22 · 10−15 1.39 · 10−15

Bonny × 5 5.04 · 10−11 2.77 · 10−17 8.10 · 10−17 2.89 · 10−17

SNSD

n∆ = nt n∆ = 2nt n∆ = 3nt n∆ = 4nt
Bonny × 1 1.42 · 10−12 1.75 · 10−12 2.03 · 10−12 1.78 · 10−12

Bonny × 2 1.42 · 10−12 1.75 · 10−12 2.03 · 10−12 1.78 · 10−12

Bonny × 3 1.42 · 10−12 1.75 · 10−12 2.03 · 10−12 1.78 · 10−12

Bonny × 4 1.42 · 10−12 1.75 · 10−12 2.03 · 10−12 1.78 · 10−12

Bonny × 5 1.14 · 10−12 1.75 · 10−12 1.62 · 10−12 1.42 · 10−12

Table 3.6: Values of r∆x(p̃, x̃) from overlapping-niche descent and SNSD. Notation is as defined
in Table 3.5. Values of r∆x(p̃, x̃) from SNSD are nonzero because numerical solution values are
calculated implicitly using Newton’s method in SNSD. Values of r∆x(p̃, x̃) from overlapping-
niche descent are significantly less than values of r∆x(p̃, x̃) from SNSD except on unrefined
grids, where n∆ = nt.

36

3.6. Comparing . . . to a Numerical-Integration-Based Method

As shown in Table 3.5, ry(p̃, x̃) from overlapping-niche descent is essentially equal to ry(p̃, x̃)

from SNSD on each grid with n∆ = 2nt, 3nt, 4nt and for each Bonny × n model with n = 1, 2, 3, 4.

ry(p̃, x̃) from overlapping-niche descent is slightly less than ry(p̃, x̃) from SNSD on the grid with

n∆ = nt and for each Bonny × n model with n = 1, 2, 3, 4. However, each integral representation

of ry(p̃, x̃) from overlapping-niche descent, as defined in equation (2.26b), is similar to ry(p̃, x̃)

from SNSD (not shown), and each r∆x(p̃, x̃) from overlapping-niche descent is larger than

r∆x(p̃, x̃) from SNSD, as shown in Table 3.6. Thus, I expect larger λ in overlapping-niche

descent to decrease the value of r∆x(p̃, x̃) and increase the value of ry(p̃, x̃) to be commensurate

with ry(p̃, x̃) from SNSD. ry(p̃, x̃) from overlapping-niche descent are essentially equal on each

grid with n∆ = 2nt, 3nt, 4nt and for each Bonny × n model with n = 1, 2, 3, 4, 5. Somewhat

similarly, ry(p̃, x̃) from SNSD are essentially equal on each grid with n∆ = nt, 2nt, 3nt, 4nt and

for each Bonny × n model with n = 1, 2, 3, 4. However, ry(p̃, x̃) from SNSD is significantly

larger for the Bonny × n model with n = 5 than for n = 1, 2, 3, 4 on each grid with n∆ = nt,

n∆ = 3nt, and n∆ = 4nt. Also, as shown in Table 3.6, r∆x(p̃, x̃) from overlapping-niche descent

is no greater than r∆x(p̃, x̃) from SNSD on each grid with n∆ = 2nt, 3nt, 4nt and for each Bonny

× n model with n = 1, 2, 3, 4, 5. Therefore, collectively, overlapping-niche descent appears to

find p̌ and x̌, the parameter and numerical solution values that minimize ry(p,x), on each grid

with n∆ = nt, 2nt, 3nt, 4nt and for each Bonny × n model with n = 1, 2, 3, 4, 5. Whereas, SNSD

fails to find p̌ and x̌ on each grid with n∆ = nt, n∆ = 3nt, and n∆ = 4nt for the Bonny × n

model with n = 5. Ultimately, overlapping-niche descent appears to find the optimal data-fitting

numerical solution more robustly than SNSD.

A system of differential equations often admits a variety of parameter dependent solution

behaviors. Bifurcations separate the solution space, and thus the numerical solution space,

into regions with qualitatively different behaviors. In numerical-integration-based methods,

including SNSD, parameters and initial conditions entirely define numerical solutions. Thus, a

numerical-integration-based method can only find the optimal data-fitting numerical solution if

optimization begins with a set of parameters and initial conditions of a numerical solution with

the same qualitative behavior as the optimal data-fitting numerical solution.

As a system of differential equations increases in complexity, the system admits a greater

variety of solution behaviors with more bifurcations, and the likelihood of randomly finding a set

of parameters and initial conditions of a numerical solution with the same qualitative behavior

as the optimal data-fitting numerical solution decreases. Also, as the number of parameters

increases in a system of differential equations, simply by dimensional scaling, the likelihood of

randomly finding a set of parameters and initial conditions of a numerical solution with the

same qualitative behavior as the optimal data-fitting numerical solution decreases. Thus, in

SNSD, as n increases in the Bonny × n model, the likelihood of finding the parameters and

initial conditions of the optimal data-fitting numerical solution decreases.

In overlapping-niche descent, state values, beyond those of initial conditions, directly guide

optimization. Thus, even if random parameters and initial conditions are not those of a numerical

37

3.6. Comparing . . . to a Numerical-Integration-Based Method

solution with the same qualitative behavior as the optimal data-fitting numerical solution, state

values orient optimization towards the parameters and state values of a numerical solution

with the same qualitative behavior as data, positioning the optimization routine to potentially

find the parameters and state values of the optimal data-fitting numerical solution. This, I

believe, is why overlapping-niche descent is more robust than SNSD for the Bonny × n model

with n = 5. Accordingly, I expect overlapping-niche descent to be more robust than other

numerical-integration-based methods for the Bonny × n model with n = 5, and for complex

models in general.

overlapping-niche descent

n∆ = nt n∆ = 2nt n∆ = 3nt n∆ = 4nt
Bonny × 1 1.46 · 10−4 2.87 · 10−4 4.54 · 10−4 5.68 · 10−4

Bonny × 2 4.18 · 10−4 8.23 · 10−4 1.26 · 10−3 1.63 · 10−4

Bonny × 3 9.41 · 10−4 1.84 · 10−3 2.80 · 10−3 3.73 · 10−3

Bonny × 4 1.65 · 10−3 3.30 · 10−3 5.03 · 10−3 6.58 · 10−3

Bonny × 5 2.70 · 10−3 5.23 · 10−3 7.99 · 10−3 1.05 · 10−2

SNSD

n∆ = nt n∆ = 2nt n∆ = 3nt n∆ = 4nt
Bonny × 1 1.39 · 10−3 1.16 · 10−3 1.80 · 10−3 2.50 · 10−3

Bonny × 2 1.04 · 10−2 2.09 · 10−2 2.25 · 10−2 3.03 · 10−2

Bonny × 3 3.98 · 10−2 7.85 · 10−2 9.47 · 10−2 1.54 · 10−1

Bonny × 4 9.72 · 10−2 2.13 · 10−1 3.50 · 10−1 4.48 · 10−1

Bonny × 5 2.38 · 10−1 5.00 · 10−1 9.44 · 10−1 1.26

Table 3.7: Mean time per iteration of descent from overlapping-niche descent and SNSD. Notation
is as defined in Table 3.5. Times are shown in seconds. SNSD requires more time for an iteration
of descent than overlapping-niche descent, and the difference in required time increases as the
system of differential equations increases in size.

38

3.7. Noisy Data and Incomplete Modeling

overlapping-niche descent

n∆ = nt n∆ = 2nt n∆ = 3nt n∆ = 4nt
Bonny × 1 7.38 · 10−1 4.35 · 10−1 4.86 · 10−1 6.26 · 10−1

Bonny × 2 1.23 1.34 3.24 3.68
Bonny × 3 1.03 · 101 2.90 8.58 7.25
Bonny × 4 7.55 8.69 1.32 · 101 1.40 · 101

Bonny × 5 5.37 1.34 · 101 2.47 · 101 2.09 · 101

SNSD

n∆ = nt n∆ = 2nt n∆ = 3nt n∆ = 4nt
Bonny × 1 2.25 1.72 2.22 4.80
Bonny × 2 2.56 · 101 5.34 · 101 6.27 · 101 5.70 · 101

Bonny × 3 1.41 · 102 2.45 · 102 3.61 · 102 4.33 · 102

Bonny × 4 5.32 · 102 8.87 · 102 1.24 · 103 2.99 · 103

Bonny × 5 1.20 · 103 2.50 · 103 3.15 · 103 3.86 · 103

Table 3.8: Total descent time from overlapping-niche descent and SNSD. Notation is as defined
in Table 3.5. Times are shown in minutes. The total accelerated descent time is the sum of
the maximal accelerated descent time in each generation, as accelerated descent is calculated in
parallel. SNSD requires more time for descent than overlapping-niche descent, and the difference
in required time increases as the system of differential equations increases in size.

As shown in Tables 3.7 and 3.8 for the Bonny × 1 model, computational times, the mean time

per iteration of descent and the total descent time, of SNSD range from about 3 to about 10 times

larger than corresponding computational times of overlapping-niche descent. As n increases in

the Bonny × n model, differences in computational times between SNSD and overlapping-niche

descent increase. Notably, for the Bonny × 5 model, computational times of SNSD range from

about 90 to about 220 times larger than corresponding computational times of overlapping-niche

descent. I explore this result in Section D.1, where I count the computational complexity of

overlapping niche descent and a variety of numerical-integration-based methods, including SNSD.

Under relatively general assumptions, I find that overlapping-niche descent outperforms the

numerical-integration-based methods and the difference in performance increases with increasing

system size, especially with implicit methods and with partial differential equations.

3.7 Noisy Data and Incomplete Modeling

Real data is often noisy and models of real data are often incomplete. As such, I explore

differences in the character of fits for a complete model with noisy data and an incomplete model

with noiseless data. In doing so, I show how parameters and state values from overlapping-niche

descent as λ→ 0+ can inform model shortcomings and potential model improvements. I also

provide an example that shows how a parameter from overlapping-niche descent differs over

λ ∈ (0, 1) for a fit of a complete model to noisy data and a fit of an incomplete model to noiseless

data.

39

3.7. Noisy Data and Incomplete Modeling

To explore differences in the character of fits for a complete model with noisy data and an

incomplete model with noiseless data, I generate noisy data and an incomplete model. I can

easily add noise to synthetic data to generate noisy data. For an instructive example of an

incomplete model, I seek an incomplete variant of one of the forms of the Bonny model that

visibly, but not overly, alters the fit to synthetic data. Removing a reaction term from the

spatially homogeneous Bonny model leads to either no visible difference or a dramatic difference

in the fit to the synthetic spatially homogeneous data (not shown). Thus, I do not construct

an incomplete model by removing a reaction term from one of the forms of the Bonny model.

Instead, as the synthetic spatially homogeneous data and the synthetic traveling-wave data

are visibly different but not so dissimilar in shape, I generate an incomplete traveling wave

model by imposing zero diffusion in the traveling wave Bonny model (3.3), Dd = 0 µm2 s−1,

Dde = 0 µm2 s−1, and De = 0 µm2 s−1. For corresponding noisy data, I generate noisy

traveling-wave data by adding random errors to the synthetic traveling-wave data. For noisy

traveling-wave MinD data, I distribute random errors normally with a mean of zero and a

standard deviation that is 0.05 times the range of synthetic traveling-wave MinD data. For

noisy traveling-wave MinE data, I distribute random errors normally with a mean of zero and a

standard deviation that is 0.05 times the range of synthetic traveling-wave MinE data. In doing

so, I restrict noisy traveling-wave data to non-negative values for physical relevance.

Using overlapping-niche descent, as described in Section 3.4, on a uniform grid with a grid

refinement factor of 1, n∆nt
−1 = 1 for n∆ the number or grid points and nt the number of data

points, I fit the traveling wave Bonny model to the noisy traveling-wave data, and I fit the

incomplete traveling wave model to the synthetic traveling-wave data. Respectively, I find that

ry(p̃λ101 , x̃λ101) = 7.30 · 10−3 and ry(p̃λ101 , x̃λ101) = 3.13 · 10−3, r∆x(p̃λ101 , x̃λ101) = 3.40 · 10−15

and r∆x(p̃λ101 , x̃λ101) = 5.84 · 10−15, the mean times per iteration of accelerated descent are

1.28 · 10−4 s and 1.26 · 10−4 s, and the total accelerated descent times are 3.27 · 10−1 minutes

and 2.70 · 10−1 minutes. Observable-state values of x̃λ101 are shown in Figure 3.5.

40

3.7. Noisy Data and Incomplete Modeling

(a) (b)

(c) (d)

Figure 3.5: Observable-state errors for noisy-data and incomplete-model fits. For the fit of the
traveling wave Bonny model to the noisy traveling-wave data, the observable-state values of
x̃λ101 and data values are shown in (a) and differences in the observable-state values of x̃λ101

and data values are shown in (c). For the the fit of the incomplete traveling wave model to the
synthetic traveling-wave data, the observable-state values of x̃λ101 and data values are shown in
(b) and differences in the observable-state values of x̃λ101 and data values are shown in (d). In
(a) and (b), observable-state values are shown with solid lines and data values are shown with
points. Observable-state errors appear to be uncorrelated in z for the noisy-data fit and highly
correlated in z for the incomplete-model fit.

As is visible in Figure 3.5, for the traveling wave Bonny model fit to the noisy traveling-wave

data, differences in the observable-state values of x̃λ101 and data values appear to be mostly

uncorrelated in z (with a Durbin-Watson statistic in MinD of 1.39 and a Durbin-Watson statistic

in MinE of 2.12, where a Durbin-Watson statistic of 2 indicates no autocorrelation in residuals

and a Durbin-Watson statistic closer to 0 indicates a greater positive autocorrelation in residuals),

reflecting random error; whereas, for the incomplete traveling wave model fit to the synthetic

41

3.7. Noisy Data and Incomplete Modeling

traveling-wave data, differences in the observable-state values of x̃λ101 and data values appear to

be highly correlated in z (with a Durbin-Watson statistic in MinD of 0.52 and a Durbin-Watson

statistic in MinE of 0.38), reflecting modeling error. Differences in the observable-state values of

x̃λ101 and data values may indicate the existence of modeling error, but they provide little insight

into potential sources of the modeling error. Alternatively, I consider numerical discretizations

involving p̃λ1 and x̃λ1 , the parameters and state values closest to a numerical solution given

that observable state values (very nearly) match data. Differences in ∆1xi,k and Fi,k(t,p,x), as

defined in equation (3.5), for p = p̃λ1 and x = x̃λ1 are the minimal differences in ∆1xi,k and

Fi,k(t,p,x) imposed by data, as measured by r∆x(p,x), for all i ∈ {1, 2, . . . , nx} and all k in

I∆. Thus, differences in ∆1xi,k and Fi,k(t,p,x) for p = p̃λ1 and x = x̃λ1 may reveal model

shortcomings and point to changes in a model that can be made to bring the model closer to

data. I plot differences in ∆1xi,k and Fi,k(t,p,x) for p = p̃λ1 and x = x̃λ1 in Figure 3.6 for the

fit of the traveling wave Bonny model to the noisy traveling-wave data and for the fit of the

incomplete traveling wave model to the synthetic traveling-wave data, for the state xi = cde.

42

3.7. Noisy Data and Incomplete Modeling

(a) (b)

(c) (d)

Figure 3.6: Numerical solution errors for noisy-data and incomplete-model fits. Values are shown
for the state xi = cde. For the fit of the traveling wave Bonny model to the noisy traveling-wave
data, ∆1xi,k and Fi,k(t,p,x) for p = p̃λ1 and x = x̃λ1 are shown in (a) and ∆1xi,k−Fi,k(t,p,x)
for p = p̃λ1 and x = x̃λ1 is shown in (c). For the fit of the incomplete traveling wave model
to the synthetic traveling-wave data, ∆1xi,k and Fi,k(t,p,x) for p = p̃λ1 and x = x̃λ1 are
shown in (b) and ∆1xi,k − Fi,k(t,p,x) for p = p̃λ1 and x = x̃λ1 is shown in (d). In (a) and (b),
∆1xi,k is shown with dashed lines and Fi,k(t,p,x) is shown with solid lines. Numerical solution
errors appear to be uncorrelated in z for the noisy-data fit and highly correlated in z for the
incomplete-model fit.

Paralleling inferences drawn from Figure 3.5, as is visible in Figure 3.6, for the fit of

the traveling wave Bonny model to the noisy traveling-wave data, differences in ∆1xi,k and

Fi,k(t,p,x) for p = p̃λ1 and x = x̃λ1 appear to be mostly uncorrelated in z (with a Durbin-

Watson statistic of 1.43), reflecting random error; whereas, for the fit of the incomplete traveling

wave model to the synthetic traveling-wave data, differences in ∆1xi,k and Fi,k(t,p,x) for

p = p̃λ1 and x = x̃λ1 appear to be highly correlated in z (with a Durbin-Watson statistic of

43

3.8. Overlapping-Niche Descent in Practice

0.50), reflecting modeling error. Furthermore, for the fit of the incomplete traveling wave model

to the synthetic traveling-wave data, relatively large differences in ∆1xi,k and Fi,k(t,p,x) for

p = p̃λ1 and x = x̃λ1 occur near values of z where ∆1xi,k changes rapidly, indicating that the

modeling error could be Laplacian-dependent.

I provide an example that shows how a parameter from overlapping-niche descent differs

over λ ∈ (0, 1) for a fit of a complete model to noisy data and a fit of an incomplete model

to noiseless data. For the example, I plot values of ωde,m in p̃λ for λ ∈ {λ1, λ2, . . . , λ101} from

the fit of the traveling wave Bonny model to the noisy traveling-wave data and the fit of the

incomplete traveling wave model to the synthetic traveling-wave data in figure 3.7.

(a) (b)

Figure 3.7: Parameter variation over λ ∈ (0, 1) for noisy-data and incomplete-model fits. Values
of ωde,m in p̃λ for λ ∈ {λ1, λ2, . . . , λ101} from the fit of the traveling wave Bonny model to the
noisy traveling-wave data are shown in (a). Values of ωde,m in p̃λ for λ ∈ {λ1, λ2, . . . , λ101} from
the fit of the incomplete traveling wave model to the synthetic traveling-wave data are shown in
(b). I plot at λ(1− λ)−1 on a log scale to distinguish values of ωde,m in p̃λ near λ = 0 and near
λ = 1.

3.8 Overlapping-Niche Descent in Practice

In Sections 3.5, 3.6, and 3.7, I have simply shown overlapping-niche descent results. Here, I

explicate overlapping-niche descent in practice. I continue my discussion for details pertaining to

the implementation of overlapping-niche descent in practice in Section E.3. My discussion follows

overlapping-niche descent in the fitting of the full Bonny model (3.1) to the synthetic traveling-

wave-emergence data on a uniform grid with a grid refinement factor of 1, n∆tn∆snt
−1ns

−1 = 1

for n∆t and n∆s the number or temporal and spatial grid points and nt and ns the number of

temporal and spatial data points.

44

3.8. Overlapping-Niche Descent in Practice

3.8.1 Convergence

During overlapping-niche descent, I minimize r(p,x;λ) over an array of λ values in (0, 1) to

find p̃λ and x̃λ, which allows me to define the function r̃(λ) = (1 − λ)r̃y(λ) + λr̃∆x(λ) =

(1 − λ)ry(p̃λ, x̃λ) + λr∆x(p̃λ, x̃λ), as defined in equation (2.23). I note that rŷ(p,x) = 0 in

r(p,x;λ) for a grid refinement factor of 1, so the r̃ŷ(λ) term in r̃(λ) is omitted here. To illustrate

convergence in r̃(λ) over generations of overlapping-niche descent, I plot the relative change in

r̃(λ) over each generation of overlapping-niche descent in Figure 3.8.

Figure 3.8: Convergence of r̃(λ) during overlapping-niche descent. The relative change in
r̃(λ) over each generation of overlapping-niche descent is shown for niches defined by λ ∈
{λ1, λ2, . . . , λ101}. Values correspond to ∆rg,i,1, as defined in equation (C.1) of Section C.1,
for niche index i ∈ {1, 2, . . . , 101} and generation g > 2. Generally, r̃(λ) converges quickly for
smaller λ and more slowly for larger λ.

As is visible in Figure 3.8, generally, r̃(λ) converges sequentially in λ, in the order of increasing

λ. Interestingly, as shown in Section E.3, although r̃(λ) converges more readily for smaller

λ, selection in overlapping-niche descent from a niche with a larger value of λ contributes

to convergence in r̃(λ) at least as much as selection from a niche with a smaller value of λ.

Convergence in r̃(λ) is coupled to convergence in r̃y(λ) and r̃∆x(λ). To illustrate convergence in

r̃y(λ) and r̃∆x(λ), I plot the evolution of r̃y(λ) and r̃∆x(λ) over generations of overlapping-niche

descent in Figure 3.9.

45

3.8. Overlapping-Niche Descent in Practice

(a) (b)

(c) (d)

Figure 3.9: The evolution of r̃y(λ) and r̃∆x(λ) over generations of overlapping-niche descent, for
λ ∈ {λ1, λ2, . . . , λ101}. Values are shown in (a), (b), (c), and (d) for generations 1, 2, 5, and 17
of overlapping-niche descent. I plot at λ(1− λ)−1 on a log scale to distinguish values of r̃y(λ)
and r̃∆x(λ) near λ = 0 and near λ = 1.

3.8.2 Consistency with the Conservation Principle and Integral

Representations

For λ ∈ (0, 1), the parameters and state values that minimize r(p,x;λ), p̆λ and x̆λ, allow me

to define the function r̆(λ) = (1 − λ)r̆y(λ) + λr̆∆x(λ) = (1 − λ)ry(p̆λ, x̆λ) + λr∆x(p̆λ, x̆λ), as

defined in equation (2.18). I note that rŷ(p,x) = 0 in r(p,x;λ) for a grid refinement factor

of 1, so the r̆ŷ(λ) term in r̆(λ) is omitted here. r̆(λ), r̆y(λ), and r̆∆x(λ) satisfy a conservation

46

3.8. Overlapping-Niche Descent in Practice

principle of the form:

2

∫ 1

0
r̆(λ)dλ =

∫ 1

0
r̆y(λ)dλ =

∫ 1

0
r̆∆x(λ)dλ, (3.14)

as stipulated in equation (2.22). As such, I calculate and compare values of 2
∫ 1

0 r̃(λ)dλ,∫ 1
0 r̃y(λ)dλ, and

∫ 1
0 r̃∆x(λ)dλ to ensure that r̃(λ), r̃y(λ), and r̃∆x(λ) are consistent with the

conservation principle. In doing so, I numerically calculate integral values by integrating

piecewise cubic spline interpolants of integrand values with not-a-knot end conditions. I plot

values of 2
∫ 1

0 r̃(λ)dλ,
∫ 1

0 r̃y(λ)dλ, and
∫ 1

0 r̃∆x(λ)dλ for each generation of overlapping-niche

descent in Figure 3.10.

(a) (b)

Figure 3.10: Consistency in conservation of r̃(λ), r̃y(λ), and r̃∆x(λ). Values of 2
∫ 1

0 r̃(λ)dλ,∫ 1
0 r̃y(λ)dλ, and

∫ 1
0 r̃∆x(λ)dλ are shown for generations 1-17 in (a) and for generations 3-17 (for

a more focused view) in (b). Dashed lines are shown to delineate values. 2
∫ 1

0 r̃(λ)dλ,
∫ 1

0 r̃y(λ)dλ,

and
∫ 1

0 r̃∆x(λ)dλ converge to similar values over generations.

As is visible in Figure 3.10, 2
∫ 1

0 r̃(λ)dλ,
∫ 1

0 r̃y(λ)dλ, and
∫ 1

0 r̃∆x(λ)dλ converge to similar values

over generations of overlapping-niche descent, indicating that, ultimately, r̃(λ), r̃y(λ), and r̃∆x(λ)

are fairly consistent with the conservation principle.

r̆y(λ) and r̆∆x(λ) admit integral representations of limit values:

lim
λ→0+

r̆∆x(λ) =

∫ 1

0
λ−2r̆y(λ)dλ, (3.15)

lim
λ→1−

r̆y(λ) =

∫ 1

0
(1− λ)−2r̆∆x(λ)dλ, (3.16)

as stipulated in equation (2.25). As such, I calculate and compare values of r̃∆x(λ1) with∫ 1
0 λ
−2r̃y(λ)dλ and r̃y(λ101) with

∫ 1
0 (1 − λ)−2r̃∆x(λ)dλ to ensure that r̃y(λ) and r̃∆x(λ) are

47

3.8. Overlapping-Niche Descent in Practice

consistent with the integral representations of limit values. In doing so, I numerically calculate

integral values by integrating piecewise cubic spline interpolants of integrand values with not-a-

knot end conditions. I find that r̃∆x(λ1) ≈ 2.70 · 10−4 and
∫ 1

0 λ
−2r̃y(λ)dλ ≈ 2.72 · 10−4 for all

generations of overlapping-niche descent. I plot values of r̃y(λ101) and
∫ 1

0 (1− λ)−2r̃∆x(λ)dλ for

each generation of overlapping-niche descent in Figure 3.11.

(a) (b)

Figure 3.11: Consistency in the integral representations of limλ→1− r̃y(λ). Values of r̃y(λ101)

and
∫ 1

0 (1 − λ)−2r̃∆x(λ)dλ are shown for generations 1-17 in (a) and for generations 4-17
(for a more focused view) in (b). Dashed lines are shown to delineate values. r̃y(λ101) and∫ 1

0 (1− λ)−2r̃∆x(λ)dλ converge to similar values over generations.

As is visible in Figure 3.11, r̃y(λ101) and
∫ 1

0 (1− λ)−2r̃∆x(λ)dλ converge to similar values over

generations of overlapping-niche descent. I conclude that r̃y(λ) and r̃∆x(λ) are fairly consistent

with the integral representations of limit values.

I explore how r̃y(λ) and r̃∆x(λ) contribute to the integral representations of limit values for

different values of λ. Given the weighting λ−2, it would appear that
∫ 1

0 λ
−2r̃y(λ)dλ depends

on r̃y(λ) most heavily for λ near 0. However, r̃y(λ) is smallest for λ near 0. Similarly, given

the weighting (1− λ)−2, it would appear that
∫ 1

0 (1− λ)−2r̃∆x(λ)dλ depends on r̃∆x(λ) most

heavily for λ near 1. However, r̃∆x(λ) is smallest for λ near 1. Thus, the extent to which the

integral representations of limit values depend on r̃y(λ) and r̃∆x(λ) for different values of λ is

unclear. For clarification, I plot cumulative integrals of
∫ 1

0 λ
−2r̃y(λ)dλ and

∫ 1
0 (1−λ)−2r̃∆x(λ)dλ

in Figure 3.12.

48

3.9. Discussion

(a) (b)

Figure 3.12: Cumulative integral representations of limit values. The cumulative integral of∫ 1
0 λ
−2r̃y(λ)dλ is shown in (a). The cumulative integral of

∫ 1
0 (1− λ)−2r̃∆x(λ)dλ is shown in (b).∫ 1

0 λ
−2r̃y(λ)dλ and

∫ 1
0 (1− λ)−2r̃∆x(λ)dλ are rooted most heavily in small to intermediate λ.

As is visible in Figure 3.12,
∫ 1

0 λ
−2r̃y(λ)dλ depends on r̃y(λ) most heavily for small λ. Also,∫ 1

0 (1 − λ)−2r̃∆x(λ)dλ depends on r̃∆x(λ) most heavily for small to intermediate λ and for λ

near 1. Interestingly, despite the weighting of (1 − λ)−2,
∫ 1

0 (1 − λ)−2r̃∆x(λ)dλ depends on

r̃∆x(λ) more heavily for small to intermediate λ than for λ near 1. Thus,
∫ 1

0 λ
−2r̃y(λ)dλ and∫ 1

0 (1− λ)−2r̃∆x(λ)dλ are rooted in r̃y(λ) and r̃∆x(λ) for small to intermediate λ, which, as r̃(λ)

converges most readily for small to intermediate λ, implies that r̃y(λ) and r̃∆x(λ) for small to

intermediate λ provide a robust basis for the integral representations of limit values.

3.9 Discussion

In this chapter, I tested my method on synthetic data and a system of first order ordinary

differential equations, a system of second order ordinary differential equations, and a system of

partial differential equations. I found that my method accurately identified the optimal data-

fitting numerical solution and its parameters in all three contexts. I compared the performance

of my method to that of an analogous numerical-integration-based method, and found that my

method identified the optimal data-fitting numerical solution more robustly than the analogous

numerical-integration-based method, while requiring significantly less time to do so. I also

explored an example where my method informed modeling insufficiencies and potential model

improvements for an incomplete variant of a model. Finally, I showed that my optimization

routine converged to values that were consistent with my derived conservation principles and

integral representations.

49

Chapter 4

Fitting Models of the Min System to

Time-Course Data

4.1 Introduction

The Escherichia coli Min system is one of the simplest known biological systems that demon-

strates diverse complex dynamic behavior or transduces local interactions into a global signal. As

such, the Min system is currently one of the most reduced model systems for understanding such

behaviors. Various mathematical models of the Min system show behaviors that are qualitatively

similar to dynamic behaviors of the Min system that have been observed in experiments, but

no model has been quantitatively compared to time-course data. In this chapter, I briefly

summarize extracting time-course data for model fitting from experimental measurements of the

Min system and fit established and novel biochemistry-based models to the time-course data

using my method, which I developed in Chapter 2 and tested in Chapter 3. Comparing models

to time-course data allows me to make precise distinctions between biochemical assumptions in

the various models. My modeling and fitting supports a novel model that accounts for MinE’s

previously unmodeled dual role as a stabilizer and an inhibitor of MinD membrane binding. It

suggests that a regular, ordered, stability-switching mechanism underlies the emergent, dynamic

behavior of the Min system.

4.2 Choosing and Processing Data to Simplify Fitting

For data fitting, I use in vitro data from the experiments of Ivanov and Mizuuchi and focus on

regions that are as close to spatially homogeneous as possible. In vitro data poses fewer challenges

for time course comparison than in vivo data: in vitro geometry is a simple two-dimensional

plane, whereas in vivo geometry is a relatively complex three-dimensional rod shape; in vitro

measurements map a two-dimensional process to a two-dimensional image, whereas in vivo

measurements map a three-dimensional process to a two-dimensional image; in vitro data is less

coarse than in vivo data, as the spatial scale of pattern formation is larger in in vitro experiments

than in in vivo experiments; and in vitro behavior is less susceptible to stochastic effects than in

vivo behavior because in vitro experiments employ significantly higher concentrations of proteins

than in vivo experiments.

In the Ivanov and Mizuuchi in vitro experiments, buffer was rapidly flowed atop a supported

50

4.2. Choosing and Processing Data to Simplify Fitting

lipid bilayer to induce spatially uniform concentrations of reaction components in the buffer.

On the supported lipid bilayer, densities of MinD and MinE, which were measured using total

internal reflection microscopy (TIRF), oscillated near-homogeneously in space before forming into

traveling waves [38]. Details of the Ivanov and Mizuuchi experiments are described throughout

Appendix F. Deterministic models of the Min system are generally systems of partial differential

equations that describe how protein concentrations change in space and time. In Section

F.4.1, I show that the global behavior of a near-homogeneous process is described to leading

order by a system of ordinary differential equations, the spatially-homogeneous reduction of the

system’s partial differential equation description. For the Min system, the spatially-homogeneous

reduction is a description of how local reactions change Min protein concentrations in time. As

such, fitting an ordinary differential equation model of the Min system to near-homogeneous

time-course data provides a direct comparison of the model’s reaction-based outcomes and

experimental observations. Kindly, Ivanov and Mizuuchi have shared their data with me.

4.2.1 Extracting Spatially Near-Homogeneous Data

The Ivanov and Mizuuchi data requires some preprocessing before being able to extract near-

homogeneous data from it. Fluorescence intensities of fluorescently labeled MinD and MinE

are not spatially aligned in the Ivanov and Mizuuchi data. I align the Ivanov and Mizuuchi

data using the cross-correlation of similarly shaped structures in MinD and MinE fluorescence

intensity profiles. Details of data alignment are described in Section F.2. After aligning the

Ivanov and Mizuuchi data, I flatten the aligned data to correct for variability in MinD and MinE

fluorescent intensities from Gaussian illumination in microscopy. Details of data flattening are

described in Section F.3.2. The conversion from MinE fluorescence intensity to MinE density

was not directly measured in the Ivanov and Mizuuchi experiments. From bulk concentrations of

MinD and MinE and from properties of evanescent waves in total internal reflection microscopy

(TIRF), I calculate conversions from flattened MinD and MinE fluorescent intensities to MinD

and MinE densities. Details of calculating conversions from fluorescence intensities to densities

are described in Section F.3.3.

To extract near-homogeneous data, first, I find the MinD and MinE density data that is the

least inhomogeneous within a disk of 1000 pixels for all times within a spatially near-homogeneous

oscillation in the Ivanov and Mizuuchi data. Then, I calculate mean values of MinD and MinE

densities within the disk at each time. Details of extracting near-homogeneous data are described

in Section F.4.2. Near-homogeneous MinD and MinE density data is shown in Figure 4.1.

51

4.3. Fitting Models to the Near-Homogeneous Data

Figure 4.1: Near-homogeneous MinD and MinE density data. Data is extracted from mea-
surements made by Ivanov and Mizuuchi [38], in which densities of MinD and MinE oscillate
near-homogeneously in space on a supported lipid bilayer.

If I had included error bars in figure 4.1 representing standard errors of the mean, they would

not be visually distinguishable from the data. Details of errors in near-homogeneous MinD and

MinE density data are described in Section F.4.3. Interestingly, as detailed in Section F.4.3,

I find that errors in near-homogeneous MinD and MinE density data are related to values of

near-homogeneous MinD and MinE density data by power laws.

4.3 Fitting Models to the Near-Homogeneous Data

Local reactions somehow coordinate membrane binding and unbinding of the Min proteins in

a way that collectively generates the emergent, dynamic, global behavior of the Min system.

Fitting a model, in the form of an ordinary differential equation, to the near-homogeneous

time-course data provides me with a direct measure of how well the model’s reaction-based

outcomes describe the near-homogeneous data. As such, fitting models with a variety of proposed

Min-system reaction mechanisms to the near-homogeneous data allows me to make precise

52

4.3. Fitting Models to the Near-Homogeneous Data

distinctions between biochemical assumptions in the various models, helping to unravel the

specifics of the local Min-system reaction mechanism.

I fit models to the near-homogeneous data using my homotopy-minimization method, which

I developed in Chapter 2 and tested in Chapter 3, to find optimal data-fitting numerical

solutions for models. Some quantities related to model parameter values have been measured in

experiments. As such, during fitting, I restrict values of parameters using the experimentally

measured values, to confine some parameters to biologically realistic values. Details of fitting

are described in Section 4.4, and details of parameter restrictions based on experimental

measurements are described in Section 4.4.3.

4.3.1 Modeling and Fitting Brief

Among previously published models, the Bonny model [4] has demonstrated the most diverse

array of dynamic behaviors that are qualitatively similar to experimental observations of the

Min system in vivo and in vitro. To begin my investigation, in Section 4.3.2, I modify the Bonny

model to account for the details of the experimental protocol used by Ivanov and Mizuuchi and

fit the Modified Bonny Model to the near-homogeneous data. Then, I extend the Bonny model

to include new reactions based on experiments, data, and postulate and fit the Extended Bonny

Model to the near-homogeneous data. MinE has generally been thought to act as an inhibitor

of MinD membrane binding. The Modified Bonny Model and the Extended Bonny Model treat

MinE as such. Recently, however, it has been shown that MinE can act to both stabilize and

inhibit MinD membrane binding [73]. I build on the Extended Bonny Model, in Section 4.3.3,

to develop two models that could account for MinE’s dual role as a stabilizer and an inhibitor

of MinD membrane binding, the Symmetric Activation Model and the Asymmetric Activation

Model, and fit them to the near-homogeneous data. Ultimately, I find that my Asymmetric

Activation Model fits the near-homogeneous data best, suggesting, as described in Section 4.3.4,

that a regular, ordered, stability-switching mechanism underlies the emergent, dynamic behavior

of the Min system.

4.3.2 Models in Which MinE Acts Only as an Inhibitor

Biochemical analysis has characterized how MinD and MinE interact with the membrane and

each other. In the cytosol, MinD monomers bind to ATP and form dimers ([34], [81]) that

sandwich two ATP molecules [76]. MinD dimers bind to the phospholipid membrane ([28], [34],

[32], [42], [81], [45]) and cooperatively recruit other MinD dimers to the membrane [42]. MinE

dimers bind to MinD dimers on the membrane ([28], [44]), undergoing a conformational change

that allows MinE dimers to bind to the membrane [52]. MinE dimers stimulate ATPase activity

in bound MinD dimers, causing MinD dimers to separate and dissociate from the membrane

([31], [28], [34], [42]), leaving MinE dimers temporarily bound to the membrane ([27], [66], [73]).

Most mathematical models of the Min system, including the Bonny model, are based on a subset

of the aforementioned set of reactions.

53

4.3. Fitting Models to the Near-Homogeneous Data

The Modified Bonny Model

The Bonny model [4] demonstrates an array of dynamic behavior that is qualitatively similar to

many experimental observations of the Min system, including stochastic pole-to-pole switching

in short cells, regular pole-to-pole oscillations in mid-sized cells, oscillation splitting in growing

cells, regular pole-to-midcell oscillations in long cells, end-to-end oscillations in thick cells, and

spiral waves on a supported lipid bilayer. The Bonny model consists of three membrane-bound

states, cd, cde, and ce, corresponding to the membrane-bound concentrations of MinD dimers,

MinE dimers bound to MinD dimers, and MinE dimers respectively. Normally, the Bonny model

includes two cytosolic states, cD and cE , corresponding to the concentrations of MinD and

MinE dimers in the cytosol respectively. Because of spatially uniform concentrations of reaction

components in the buffer of the Ivanov and Mizuuchi experiments, I modify the Bonny model

such that cD and cE are constant. The Bonny model is a system of partial differential equations.

In the case of spatial homogeneity, the Bonny model reduces to a system of ordinary differential

equations. As such, for correspondence with the near-homogeneous data, I reduced the Bonny

model to a system of ordinary differential equations under spatially homogeneous conditions:

dcd
dt

= (ωD→d + ωdD→dcd)(cmax − cd − cde)/cmax − ωE,d→decd − ωd,e→decdce, (4.1a)

dcde
dt

= ωE,d→decd + ωd,e→decdce − ωde→D,Ecde − ωde→D,ecde, (4.1b)

dce
dt

= −ωd,e→decdce + ωde→D,ecde − ωe→Ece, (4.1c)

where cmax is the saturation concentration of MinD dimers on the membrane and ωu,v→x,y

denotes the reaction rate of cu and cv converting into cx and cy, for u, v, x, y ∈ {∅, D,E, d, de, e}.
When ωu,v→x,y has a superscript it indicates facilitation of the reaction by the superscripted

species. I note that ωD→d and ωdD→d have a multiplicative factor of cD built into them and

ωE,d→de has a multiplicative factor of cE built into it. Also, I note that I have changed parameter

notation in the Modified Bonny Model for consistency with upcoming models. In terms of

the original parameter notation, as used in Chapter 3, ωD→d = ωD · cD, ωdD→d = ωdD · cD,

ωE,d→de = ωE · cE , ωde→D,E = ωde,c, ωde→D,e = ωde,m, ωe→E = ωe, and ωd,e→de = ωed. The

Modified Bonny Model (4.1) is depicted in Figure 4.2.

54

4.3. Fitting Models to the Near-Homogeneous Data

ωD→d ωdD→d ωE,d→de ωde→D,E ωde→D,e ωd,e→de ωe→E

(a)

eded
D E

(b)

E, d ! de de ! D, E

de ! D, e d, e ! de e ! E

D ! d

(+d)

(c)

Figure 4.2: The Modified Bonny Model. Parameters characterizing reactions are shown in (a).
State variables are matched to protein states in (b). Reactions are depicted in (c). In (c),
reactants are shown on the left and products are shown on the right of panels. (+) indicates
facilitation in a reaction by the indicated species.

I fit the Modified Bonny Model (4.1) to the near-homogeneous data, as described in Section 4.4.

The resulting fit, state values, and parameter values are shown in Figure 4.3, Figure 4.4, and

Table 4.1 respectively.

55

4.3. Fitting Models to the Near-Homogeneous Data

Figure 4.3: The fit of the Modified Bonny Model to the near-homogeneous data. Data is shown
with points and model values are shown with lines.

As is visible in Figure 4.3, the Modified Bonny Model admits pulses in MinD and MinE that are

qualitatively similar in width and height to the MinD and MinE pulses of the near-homogeneous

data. However, the Modified Bonny Model is visibly an incomplete description of the dynamical

system underlying the near-homogeneous data. I seek experimentally-based alterations of the

Modified Bonny Model that allow for a better description of the dynamical system underlying

the near-homogeneous data.

56

4.3. Fitting Models to the Near-Homogeneous Data

Figure 4.4: States from the fit of the Modified Bonny Model to the near-homogeneous data.

57

4.3. Fitting Models to the Near-Homogeneous Data

parameter value 95% confidence interval units

Cd 3.18 · 102 [3.18 · 102, 3.18 · 102] µm−2

Ce 2.49 · 102 [2.26 · 102, 2.49 · 102] µm−2

cmax 5.48 · 103 [5.47 · 103, 5.65 · 103] µm−2

ωD→d 6.31 · 10−6 [8.48 · 10−3, 4.67 · 10−1] µm−2 s−1

ωdD→d 2.47 · 10−1 [2.20 · 10−1, 2.61 · 10−1] s−1

ωE,d→de 6.23 · 10−3 [5.73 · 10−3, 6.59 · 10−3] s−1

ωd,e→de 1.23 · 100 [1.21 · 100, 1.25 · 100] µm2 s−1

ωde→D,E 2.43 · 10−3 [1.55 · 10−3, 3.10 · 10−3] s−1

ωde→D,e 7.81 · 10−2 [7.20 · 10−2, 8.16 · 10−2] s−1

ωe→E 4.54 · 10−2 [4.03 · 10−2, 4.96 · 10−2] s−1

Table 4.1: Parameters from the fit of the Modified Bonny Model to the near-homogeneous
data. Cd and Ce are fitted data-motivated shifts in observable state values, data preprocessing
parameters described in Section F.4.4 that correspond to the constant concentrations of monomers
in the bulk and persistently bound monomers on the membrane, for MinD and MinE respectively.
Details of calculating confidence intervals are described in Section 4.4.5.

The Extended Bonny Model

The Bonny model assumes that cd, but not by cde, recruits cD to the membrane. In MinD and

MinE bursts on a supported lipid bilayer in vitro, increasing the MinE concentration increases

both the membrane-binding rate of MinD and the peak membrane density of MinD [73]. Thus,

the binding of MinE to MinD on the supported lipid bilayer does not seem to suppress MinD’s

ability to recruit bulk MinD to the supported lipid bilayer. As such, I extend the Modified

Bonny Model to allow cde to recruit cD to the membrane.

The Bonny model assumes that neither cde or ce recruits cE to bind to cd on the membrane.

In fact, I know of no model that incorporates the facilitated recruitment of cytosolic MinE to bind

to free MinD on the membrane. Without facilitated recruitment, a constant concentration of

cytosolic MinE binds to free MinD on the membrane with rate proportional to the concentration

of free MinD on the membrane. As shown in Figure 4.1, MinD decreases from a density of

∼10, 000 µm−2 to a density of ∼7, 000 µm−2 while MinE increases at a roughly constant rate

from a density of ∼2, 000 µm−2 to a density of ∼5, 000 µm−2. Thus, the MinE recruitment

rate does not trail off with decreasing MinD (as seen in the Bonny model in Figure 4.3), which

suggests that cytosolic MinE may be recruited to bind to free MinD on the membrane with

facilitation. Thus, I extend the Modified Bonny Model, allowing cde and ce to recruit cE to bind

to cd.

Despite MinE’s long-established role in inducing hydrolysis by MinD, in vitro experiments

show that MinD rapidly dissociates from the supported lipid bilayer in the absence of MinE

[38]. Furthermore, the residence time of MinD on the supported lipid bilayer increases from

11 s to at least 40.71 s as the concentration of MinD increases from 0.275 µM to 1.1 µM [44].

Without information on the mechanism of stabilization, I phenomenologically model the rate

58

4.3. Fitting Models to the Near-Homogeneous Data

“constant” of spontaneous cd dissociation by a reverse hill function,

ωd→Dc
ns
s

cns
s + (cd + cde)ns

, (4.2)

where ωd→D is the basal spontaneous dissociation rate of cd, cs is the half-max stabilization

concentration of cd + cde, and ns is the Hill coefficient. Thus, cd decreases from spontaneous cd

dissociation with rate

ωd→Dc
ns
s cd

cns
s + (cd + cde)ns

. (4.3)

In the absence of MinE in vitro, buffer flowed atop a MinD-saturated supported lipid bilayer

reveals that, initially, MinD spontaneously dissociates from the supported lipid bilayer at a

roughly constant rate [73]. Thus, from rate (4.3), for relatively large cd,

ωd→Dc
ns
s cd

cns
s + cns

d

≈ k, (4.4)

for some constant k, which occurs only if

cs << cd and ns = 1. (4.5)

Therefore, I extend the Modified Bonny Model, allowing the spontaneous dissociation of cd, at

the rate given by (4.2) with ns = 1.

I also consider the possibility of reversible reactions in the Extended Bonny Model. In

traveling waves of Min proteins on a supported lipid bilayer in vitro, MinE residence times are at

least 1.3 times as long as MinD residence times in all portions of the traveling waves [44]. Thus,

I do not consider reactions where MinE spontaneously dissociates from MinD on the supported

lipid bilayer. I do consider the other reverse reaction, the reaction of cde splitting into cd and ce.

I extend the Modified Bonny Model (4.1) such that

dcd
dt

= (ωD→d + ωdD→dcd + ωdeD→dcde)(cmax − cd̄ − cd − cde)/cmax

− (ωE,d→de + ωdeE,d→decde + ωeE,d→dece)cd − ωd,e→decdce + ωde→d,ecde

− ωd→Dcscd/(cs + cd̄ + cd + cde), (4.6a)

dcde
dt

= (ωE,d→de + ωdeE,d→decde + ωeE,d→dece)cd + ωd,e→decdce

− ωde→D,Ecde − ωde→D,ecde − ωde→d,ecde, (4.6b)

dce
dt

= −ωd,e→decdce + ωde→d,ecde + ωde→D,ecde − ωe→Ece, (4.6c)

where cmax is the saturation concentration of MinD dimers on the membrane, cd̄ is the constant

concentration of persistently bound MinD dimers on the membrane, an experimental artifact

59

4.3. Fitting Models to the Near-Homogeneous Data

discussed in Section F.4.4, and ωu,v→x,y denotes the reaction rate of cu and cv converting into cx

and cy, for u, v, x, y ∈ {∅, D,E, d, de, e}. When ωu,v→x,y has a superscript it indicates facilitation

of the reaction by the superscripted species. I note that ωzD→d has a multiplicative factor of

cD built into it for z ∈ {∅, d, de} and ωzE,d→de has a multiplicative factor of cE built into it for

z ∈ {∅, de, e}. I also note that I do not explicitly include cd̄ in the Modified Bonny Model (4.1),

as it is absorbed by cmax, ωD→d, and ωdD→d, but must include it in the Extended Bonny Model

because the structure of equation (4.6a) doesn’t allow it to be rescaled away. The Extended

Bonny Model (4.6) is depicted in Figure 4.5.

ωD→d ωdD→d •ωdeD→d ωE,d→de •ωdeE,d→de •ωeE,d→de
ωd,e→de ωde→D,E ωde→D,e •ωde→d,e •ωd→D ωe→E

(a)

eded
D E

(b)

de ! d, e d ! DD ! d E, d ! de

(+de) (+de)
(+e)

(c)

Figure 4.5: The Extended Bonny Model. Parameters characterizing reactions are shown in (a).
A parameter that characterizes a reaction that is not included in the Modified Bonny Model is
shown with a bullet (•) and the corresponding reaction is depicted in (c). All reactions from the
Modified Bonny Model are included in the Extended Bonny Model. State variables are matched
to protein states in (b). In (c), reactants are shown on the left and products are shown on the
right of panels. (+) indicates facilitation in a reaction by the indicated species.

I fit the Extended Bonny Model (4.6) to the near-homogeneous data, as described in Section

4.4. The resulting fit, state values, and parameter values are shown in Figure 4.6, Figure 4.7,

and Table 4.2 respectively.

60

4.3. Fitting Models to the Near-Homogeneous Data

Figure 4.6: The fit of the Extended Bonny Model to the near-homogeneous data. Data is
shown with points and model values are shown with lines. The Extended Bonny Model fits the
near-homogeneous data appreciably better than the Modified Bonny Model (compare to Figure
4.3).

Comparing Figures 4.3 and 4.6, the Extended Bonny Model describes the near-homogeneous data

visibly better than the Modified Bonny Model. Quantitatively, χ2, the weighted sum of squared

residuals, from the Modified Bonny Model is 3.53 times larger than χ2 from the Extended

Bonny Model, and the value of AIC, the Akaike information criterion, from the Modified Bonny

Model is 419 units larger than the value of AIC from the Extended Bonny Model. The Akaike

information criterion is a measure of a model’s ability to fit data that accounts for the number

of parameters in the model, based on information theory. For a set of competing models, the

model with the minimum AIC value is considered the best model.

61

4.3. Fitting Models to the Near-Homogeneous Data

Figure 4.7: States from the fit of the Extended Bonny Model to the near-homogeneous data.

62

4.3. Fitting Models to the Near-Homogeneous Data

parameter value 95% confidence interval units

Cd 3.18 · 102 [2.74 · 102, 3.18 · 102] µm−2

Ce 0.00 · 100 [0.00 · 100, 2.52 · 101] µm−2

cd̄ 7.50 · 10−8 [0.00 · 100, 1.18 · 101] µm−2

cmax 5.38 · 103 [5.32 · 103, 5.48 · 103] µm−2

cs 2.95 · 101 [1.03 · 101, 1.89 · 102] µm−2

ωD→d 3.26 · 10−2 [0.00 · 100, 1.26 · 10−1] µm−2 s−1

ωdD→d 4.88 · 10−1 [4.45 · 10−1, 5.35 · 10−1] s−1

ωdeD→d 6.48 · 10−2 [5.65 · 10−2, 7.69 · 10−2] s−1

ωE,d→de 9.08 · 10−5 [0.00 · 100, 5.96 · 10−4] s−1

ωdeE,d→de 0.00 · 100 [0.00 · 100, 6.15 · 10−7] µm2 s−1

ωeE,d→de 3.68 · 10−3 [3.32 · 10−3, 4.37 · 10−3] µm2 s−1

ωd,e→de 5.17 · 10−4 [4.59 · 10−4, 6.02 · 10−4] µm2 s−1

ωd→D 3.15 · 10−1 [2.17 · 10−1, 3.15 · 10−1] s−1

ωde→D,E 1.13 · 10−1 [1.04 · 10−1, 1.24 · 10−1] s−1

ωde→D,e 1.75 · 10−2 [1.54 · 10−2, 1.89 · 10−2] s−1

ωde→d,e 1.10 · 10−6 [0.00 · 100, 7.72 · 10−4] s−1

ωe→E 6.22 · 10−3 [5.61 · 10−3, 6.92 · 10−3] s−1

Table 4.2: Parameters from the fit of the Extended Bonny Model to the near-homogeneous data.
Cd and Ce are as described in Table 4.1. Details of calculating confidence intervals are described
in Section 4.4.5.

To determine how individual reactions affect the Extended Bonny Model’s ability to describe

the near-homogeneous data, individually, I remove non-necessary reactions from the Extended

Bonny Model and fit the resulting model to the near-homogeneous data, as described in Section

4.4. Results are shown in Table 4.3.

63

4.3. Fitting Models to the Near-Homogeneous Data

Null parameter χ2/χ2
∅ AIC−AIC∅

ωdD→d 2.85 · 101 1.14 · 103

ωdeD→d 1.32 · 100 8.53 · 101

ωdeE,d→de 1.00 · 100 −2.05 · 100

ωeE,d→de 2.62 · 100 3.26 · 102

ωd,e→de 7.96 · 100 6.99 · 102

ωd→D 1.10 · 100 2.56 · 101

ωde→D,E 2.63 · 100 3.27 · 102

ωde→D,e 1.03 · 100 5.89 · 100

ωde→d,e 1.00 · 100 −4.06 · 100

Table 4.3: Removed-reaction fits of the Extended Bonny Model to the near-homogeneous data.
A removed reaction is characterized by a null parameter. χ2 is the the weighted sum of squared
residuals, and AIC is the Akaike information criterion. χ2

∅ and AIC∅ are the values of χ2 and AIC
from the Extended Bonny Model without a removed reaction. χ2/χ2

∅ and AIC−AIC∅ measure
the affect of removing the reaction characterized by the null parameter from the Extended Bonny
Model on its ability to fit the near-homogeneous data; larger values of χ2/χ2

∅ and AIC−AIC∅
correspond to a larger decrease in fitting ability.

As shown in Table 4.3, the reactions characterized by the parameters ωdD→d, ω
de
D→d, ω

e
E,d→de,

ωd,e→de, and ωde→D,E each significantly (AIC−AIC∅ > 50) affect the Extended Bonny Model’s

ability to describe the near-homogeneous data. Of these, ωdeD→d and ωeE,d→de are not included in

the Modified Bonny Model. Notably, much of the Extended Bonny Model’s ability to describe

the near-homogeneous data better than the Modified Bonny Model comes from the recruitment

of cE to bind to cd by ce (through ωeE,d→de). The fit of the ωeE,d→de-null Extended Bonny Model

to the near-homogeneous data is shown in Figure 4.8.

64

4.3. Fitting Models to the Near-Homogeneous Data

Figure 4.8: The fit of the ωeE,d→de-null Extended Bonny Model to the near-homogeneous data.
Data is shown with points and model values are shown with lines. Removing the reaction
characterized by the parameter ωeE,d→de from the Extended Bonny Model significantly reduces
its ability to fit the near-homogeneous data (compare to Figure 4.6).

The Extended Bonny Model fits the near-homogeneous data better than the Modified

Bonny Model, but it is still an incomplete description of the dynamical system underlying the

near-homogeneous data, as can be seen in the visible deviations between data and model which

are larger than the noise in the data. Also, the Extended Bonny Model does not account for

experimental observations that MinE can act as both a stabilizer and an inhibitor of MinD

membrane binding.

4.3.3 Models in Which MinE Acts as Both a Stabilizer and an Inhibitor

With buffer and MinE flowed atop a MinD-saturated supported lipid bilayer, initially, MinD

dissociates from the supported lipid bilayer more slowly than with buffer alone. Later, as

concentrations of MinD and MinE on the supported lipid bilayer approach each other, MinD

dissociates from the supported lipid bilayer more quickly than with buffer alone [73]. Thus,

65

4.3. Fitting Models to the Near-Homogeneous Data

MinE seems to act as both a stabilizer and an inhibitor of MinD membrane binding. Accordingly,

the experimentally measured rate of MinD ATPase activity is sigmoidal in the concentration

of MinE, showing switch-like behavior [73]. I build on the Extended Bonny Model to develop

two models, the Symmetric Activation Model and the Asymmetric Activation Model, based

on experiments and postulate that could account for MinE’s dual role as a stabilizer and an

inhibitor of MinD membrane binding, and fit them to the near-homogeneous data.

The Symmetric Activation Model

It has been proposed that MinD and MinE may form a stable complex, with one MinE dimer

bound to one subunit of the MinD dimer, and an unstable complex, with one MinE dimer bound

to each subunit of the MinD dimer ([73], [54]). This symmetric activation could explain MinE’s

dual role as a stabilizer and an inhibitor of MinD membrane binding. I build on the Extended

Bonny Model (4.6) to develop the Symmetric Activation Model.

My Symmetric Activation Model consists of four supported-lipid-bilayer-bound states, cd, cde,

cede, and ce, respectively corresponding to the supported-lipid-bilayer-bound concentrations of

MinD dimers, MinD dimers bound to one MinE dimer, MinD dimers bound to two MinE dimers,

and MinE dimers. For symmetric activation, cde is the stable state and cede is the unstable state.

Thus, I exclude reactions from the Symmetric Activation Model where cde dissociates from the

supported lipid bilayer, and I include reactions in the Symmetric Activation Model where cede

dissociates from the supported lipid bilayer. In the Symmetric Activation Model, without reason

for restriction, I allow cd, cde, and cede to recruit cD, the concentration of bulk MinD dimers, to

the supported lipid bilayer, and I allow cde, cede, and ce to recruit cE , the concentration of bulk

MinE dimers, to bind to cd and cde. As in the Extended Bonny Model, I only consider reactions

where MinE does not spontaneously dissociate from MinD on the supported lipid bilayer. Thus,

in the Symmetric Activation Model, I include forward and reverse bimolecular reactions of cd,

cde, cede, and ce with all products in {cd, cde, cede, ce}. Also, as in the Extended Bonny Model, in

the Symmetric Activation Model, I include the spontaneous dissociation of cd with stabilization

66

4.3. Fitting Models to the Near-Homogeneous Data

by supported-lipid-bilayer-bound MinD dimers. I define the Symmetric Activation Model:

dcd
dt

= (ωD→d + ωdD→dcd + ωdeD→dcde + ωedeD→dcede)(cmax − cd̄ − cd − cde − cede)/cmax

− (ωE,d→de + ωdeE,d→decde + ωedeE,d→decede + ωeE,d→dece)cd

− ωd,e→decdce + ωde→d,ecde − ωd,ede→de,decdcede + ωde,de→d,edec
2
de

− ωd→Dcscd/(cs + cd̄ + cd + cde + cede), (4.7a)

dcde
dt

= (ωE,d→de + ωdeE,d→decde + ωedeE,d→decede + ωeE,d→dece)cd

− (ωE,de→ede + ωdeE,de→edecde + ωedeE,de→edecede + ωeE,de→edece)cde

+ ωd,e→decdce − ωde→d,ecde + 2ωd,ede→de,decdcede − 2ωde,de→d,edec
2
de

− ωde,e→edecdece + ωede→de,ecede, (4.7b)

dcede
dt

= (ωE,de→ede + ωdeE,de→edecde + ωedeE,de→edecede + ωeE,de→edece)cde

− ωd,ede→de,decdcede + ωde,de→d,edec
2
de + ωde,e→edecdece − ωede→de,ecede

− ωede→D,e,ecede − ωede→E,D,ecede − ωede→E,D,Ecede, (4.7c)

dce
dt

= ωde→d,ecde − ωd,e→decdce − ωde,e→edecdece

+ ωede→de,ecede + ωede→E,D,ecede + 2ωede→D,e,ecede − ωe→Ece, (4.7d)

where cmax is the saturation concentration of MinD dimers on the membrane, cd̄ is the constant

concentration of persistently bound MinD dimers on the membrane, an experimental artifact

discussed in Section F.4.4, and ωu,v→x,y denotes the reaction rate of cu and cv converting into

cx and cy, for u, v, x, y ∈ {∅, D,E, d, de, ede, e}. When ωu,v→x,y has a superscript it indicates

facilitation of the reaction by the superscripted species. I note that ωzD→d has a multiplicative

factor of cD built into it for z ∈ {∅, d, de, ede} and ωzE,d→de has a multiplicative factor of cE

built into it for z ∈ {∅, de, ede, e}. The Symmetric Activation Model is depicted in Figure 4.9.

67

4.3. Fitting Models to the Near-Homogeneous Data

ωD→d ωdD→d ωdeD→d •ωedeD→d ωE,d→de ωdeE,d→de
ωeE,d→de •ωedeE,d→de •ωE,de→ede •ωdeE,de→ede •ωeE,de→ede •ωedeE,de→ede
ωd,e→de ωde→d,e •ωde,e→ede •ωede→de,e ωd→D ωe→E

•ωde,de→d,ede •ωd,ede→de,de •ωede→D,e,e •ωede→E,D,e •ωede→E,D,E
Nωde→D,E Nωde→D,e

(a)

eded
D E

ede

(b)

E, d ! de

(+ede)

D ! d

(+ede)

de, e ! edeE, de ! ede

(+ede)
(+de)(+e)

ede ! de, e de, de ! d, ede d, ede ! de, de

ede ! D, e, e ede ! E, D, e ede ! E, D, E

(c)

Figure 4.9: The Symmetric Activation Model. Parameters characterizing reactions are shown in
(a). A parameter that characterizes a reaction that is not included in the Extended Bonny Model
is shown with a bullet (•) and the corresponding reaction is depicted in (c). A triangle (N) next
to a parameter indicates that the corresponding reaction from the Extended Bonny Model is
not included in the Symmetric Activation Model. State variables are matched to protein states
in (b). In (c), reactants are shown on the left and products are shown on the right of panels.
(+) indicates facilitation in a reaction by the indicated species.

I fit the Symmetric Activation Model (4.7) to the near-homogeneous data, as described in

Section 4.4. The resulting fit, state values, and parameter values are shown in Figure 4.10,

Figure 4.11, and Table 4.4 respectively.

68

4.3. Fitting Models to the Near-Homogeneous Data

Figure 4.10: The fit of the Symmetric Activation Model to the near-homogeneous data. Data is
shown with points and model values are shown with lines. The Symmetric Activation Model fits
the near-homogeneous data moderately better than the Extended Bonny Model (compare to
Figure 4.6).

Comparing Figures 4.6 and 4.10, the Symmetric Activation Model describes the near-homogeneous

data visibly somewhat better than the Extended Bonny Model. Quantitatively, χ2, the weighted

sum of squared residuals, from the Extended Bonny Model is 1.89 times larger than χ2 from the

Symmetric Activation Model, and the value of AIC, the Akaike information criterion, from the

Extended Bonny Model is 210 units larger than the value of AIC from the Symmetric Activation

Model. Although the Symmetric Activation Model does describe the near-homogeneous data

moderately better than the Extended Bonny Model, as discussed below, it does not agree well

with experiments. Whereas, the Asymmetric Activation Model (described below) fits the the

near-homogeneous data better than the Symmetric Activation Model and agrees well with

experiments. Therefore, I do not expound the Symmetric Activation Model further.

69

4.3. Fitting Models to the Near-Homogeneous Data

Figure 4.11: States from the fit of the Symmetric Activation Model to the near-homogeneous
data.

70

4.3. Fitting Models to the Near-Homogeneous Data

parameter value 95% confidence interval units
Cd 3.18 · 102 [2.90 · 102, 3.18 · 102] µm−2

Ce 1.91 · 102 [1.69 · 102, 2.03 · 102] µm−2

cd̄ 0.00 · 100 [0.00 · 100, 7.69 · 100] µm−2

cmax 5.38 · 103 [5.35 · 103, 5.44 · 103] µm−2

cs 5.31 · 101 [4.11 · 101, 6.71 · 101] µm−2

ωD→d 0.00 · 100 [0.00 · 100, 2.37 · 10−1] µm−2 s−1

ωdD→d 2.62 · 10−1 [2.47 · 10−1, 2.68 · 10−1] s−1

ωdeD→d 0.00 · 100 [0.00 · 100, 5.05 · 10−2] s−1

ωedeD→d 0.00 · 100 [0.00 · 100, 1.27 · 10−2] s−1

ωE,d→de 1.01 · 10−3 [2.49 · 10−4, 1.29 · 10−3] s−1

ωdeE,d→de 0.00 · 100 [0.00 · 100, 9.70 · 10−7] µm2 s−1

ωeE,d→de 8.17 · 10−4 [7.77 · 10−4, 8.61 · 10−4] µm2 s−1

ωedeE,d→de 0.00 · 100 [0.00 · 100, 1.00 · 10−6] µm2 s−1

ωE,de→ede 0.00 · 100 [0.00 · 100, 5.13 · 10−4] s−1

ωdeE,de→ede 0.00 · 100 [0.00 · 100, 2.80 · 10−6] µm2 s−1

ωeE,de→ede 8.11 · 10−2 [8.07 · 10−2, 8.16 · 10−2] µm2 s−1

ωedeE,de→ede 0.00 · 100 [0.00 · 100, 4.79 · 10−6] µm2 s−1

ωd,e→de 0.00 · 100 [0.00 · 100, 9.04 · 10−6] µm2 s−1

ωd,ede→de,de 1.69 · 10−4 [1.66 · 10−4, 1.70 · 10−4] µm2 s−1

ωd→D 3.15 · 10−1 [2.93 · 10−1, 3.15 · 10−1] s−1

ωde,de→d,ede 3.17 · 10−4 [3.13 · 10−4, 3.20 · 10−4] µm2 s−1

ωde,e→ede 6.74 · 10−3 [6.38 · 10−3, 7.14 · 10−3] µm2 s−1

ωde→d,e 0.00 · 100 [0.00 · 100, 1.55 · 10−4] s−1

ωe→E 1.55 · 10−2 [1.36 · 10−2, 1.66 · 10−2] s−1

ωede→D,e,e 1.67 · 10−4 [0.00 · 100, 5.56 · 10−4] s−1

ωede→E,D,E 2.29 · 10−1 [2.26 · 10−1, 2.31 · 10−1] s−1

ωede→E,D,e 4.12 · 10−2 [3.93 · 10−2, 4.20 · 10−2] s−1

ωede→de,e 3.08 · 10−7 [0.00 · 100, 9.00 · 10−4] s−1

Table 4.4: Parameters from the fit of the Symmetric Activation Model to the near-homogeneous
data. Cd and Ce are as described in Table 4.1. Details of calculating confidence intervals are
described in Section 4.4.5.

The Asymmetric Activation Model

Apart from a crystal structure showing two MinE fragments (containing 20 of 88 amino acids)

each bound to a subunit of the MinD dimer [52], there is no direct evidence for the Symmetric

Activation Model. Contrarily, a MinE dimer bound to one subunit of a MinD dimer stimulates

ATPase activity in both subunits of the MinD dimer [53], showing asymmetric rather than

symmetric activation of MinD by MinE. Furthermore, with ATPγS, a non-hydrolyzable analogue

of ATP, and a high concentration of MinE, the Symmetric Activation Model would predict

that the ratio of MinD to MinE on a lipid bilayer would be 1:2. However, experiments testing

precisely this scenario found a ratio of MinD to MinE of 1:1 [34] and 3:1 [42]. Additionally,

with ATPγS, MinD and MinE dissociate with a ratio of 1:1 from the supported lipid bilayer

71

4.3. Fitting Models to the Near-Homogeneous Data

[73], suggesting that, if dissociation occurs predominantly in the unstable MinD-MinE complex,

the ratio of MinD to MinE in the unstable MinD-MinE complex is 1:1. Therefore, experimental

outcomes support asymmetric rather than symmetric activation of MinD by MinE.

For asymmetric activation of MinD by MinE, MinD and MinE form an unstable complex

with one MinE dimer bound to one subunit of the MinD dimer ([52], [53]). There is no direct

evidence for the structure of a stable MinD-MinE complex. However, a crystal structure shows

a MinE dimer bridging two MinD dimers, with one MinD dimer rotated 90◦ with respect to

the other MinD dimer [52]. Because of the 90◦ rotation of one MinD dimer with respect to

the other MinD dimer, a MinE dimer bridging two MinD dimers has been considered more

of an experimental artifact than a biologically relevant state. I believe, however, that a MinE

dimer bridging two MinD dimers may reflect the stable MinD-MinE complex, and the 90◦

rotation of one MinD dimer with respect to the other MinD dimer may reflect the stabilization

mechanism. If the stable configuration of a MinE dimer bridging two MinD dimers requires a

90◦ rotation of one MinD dimer with respect to the other MinD dimer, then some strain would

likely exist within a MinE dimer that bridges two membrane-bound MinD dimers both with

membrane-targeting sequences oriented toward the membrane. I hypothesize that when a MinE

dimer binds to a second MinD dimer on the membrane, imposed strain alters the interaction

between the MinE dimer and the first MinD dimer, tempering MinE-stimulated ATPase activity.

Thus, I propose that MinD and MinE form a stable complex with one MinE dimer bridging two

MinD dimers.

Supporting my stabilization-by-bridging hypothesis, experiments show that removing the

dimerization domain of MinE removes switch-like behavior in the stimulation of MinD ATPase

activity by MinE: the rate of MinD ATPase activity as a function of WT MinE concentration

resembles a Hill equation with a Hill coefficient greater than one, while the rate of MinD

ATPase activity as a function of dimerization-domain-deficient MinE concentration resembles

a Hill equation with a Hill coefficient of one [73]. Refuting my stabilization-by-bridging hy-

pothesis, dimerization-domain-deficient MinE stabilizes MinD membrane binding in buffer-flow

experiments [73]. However, it stabilizes MinD membrane binding less than WT MinE. Also,

dimerization-domain-deficient MinE does not support dynamic pattern formation in vitro, and

the rate of MinD ATPase activity is lower with high concentrations of dimerization-domain-

deficient MinE than with high concentrations of WT MinE [73]. So, the stabilization of MinD

membrane binding could stem from a dimerization-domain-deficient disruption of the regular

MinD-MinE interaction, which tempers the stimulation of ATPase activity.

I build on the Extended Bonny Model (4.6) to develop the Asymmetric Activation Model.

My Asymmetric Activation Model consists of four supported-lipid-bilayer-bound states, cd, cde,

cded, and ce, respectively corresponding to the supported-lipid-bilayer-bound concentrations

of MinD dimers, MinE dimers with one MinD dimer bound, MinE dimers with two MinD

dimers bound, and MinE dimers with no MinD dimers bound. For asymmetric activation, cde

is the unstable state and cded is the stable state. Thus, I include reactions in the Asymmetric

72

4.3. Fitting Models to the Near-Homogeneous Data

Activation Model where cde dissociates from the supported lipid bilayer, and I exclude reactions

from the Asymmetric Activation Model where cded dissociates from the supported lipid bilayer.

As stated previously, a MinE dimer bound to one subunit of a MinD dimer is able to cause a

conformational change in the other subunit of the MinD dimer [53], and, with ATPγS and a

high concentration of MinE, the number of MinE dimers does not exceed the number of MinD

dimers on lipid bilayers ([34], [42]). Thus, in the Asymmetric Activation Model, I assume that

the binding of a MinE dimer to one subunit of a MinD dimer excludes other MinE dimers from

binding to the other subunit of the MinD dimer. As such, without reason for restriction, I allow

MinE-exclusion reactions in the Asymmetric Activation Model:

cE + cded → 2cde, (4.8a)

ce + cded → 2cde, (4.8b)

cde + cde → cded + ce, (4.8c)

where cE is the concentration of bulk MinE dimers. Also, without reason for restriction, in

the Asymmetric Activation Model, I allow cd, cde, and cded to recruit cD, the concentration

of bulk MinD dimers, to the supported lipid bilayer, and I allow cde, cded, and ce to recruit

cE to bind to cd and cded. As in the Extended Bonny Model, I only consider reactions where

MinE does not spontaneously dissociate from MinD on the supported lipid bilayer. Thus, in the

Asymmetric Activation Model, I include forward and reverse bimolecular reactions of cd, cde,

cded, and ce with all products in {cd, cde, cded, ce}. Also, as in the Extended Bonny Model, in the

Asymmetric Activation Model, I include the spontaneous dissociation of cd with stabilization by

73

4.3. Fitting Models to the Near-Homogeneous Data

supported-lipid-bilayer-bound MinD dimers. I define the Asymmetric Activation Model:

dcd
dt

= (ωD→d + ωdD→dcd + ωdeD→dcde + ωdedD→dcded)(cmax − cd̄ − cd − cde − 2cded)/cmax

− (ωE,d→de + ωdeE,d→decde + ωdedE,d→decded + ωeE,d→dece)cd

− ωd,de→dedcdcde + ωded→d,decded − ωd,e→decdce + ωde→d,ecde

− ωd→Dcscd/(cs + cd̄ + cd + cde + 2cded), (4.9a)

dcde
dt

= (ωE,d→de + ωdeE,d→decde + ωdedE,d→decded + ωeE,d→dece)cd

+ 2(ωE,ded→de,de + ωdeE,ded→de,decde + ωdedE,ded→de,decded + ωeE,ded→de,dece)cded

− ωd,de→dedcdcde + ωded→d,decded + ωd,e→decdce − ωde→d,ecde
− 2ωde,de→ded,ec

2
de + 2ωded,e→de,decdedce − ωde→D,Ecde − ωde→D,ecde, (4.9b)

dcded
dt

= −(ωE,ded→de,de + ωdeE,ded→de,decde + ωdedE,ded→de,decded + ωeE,ded→de,dece)cded

+ ωd,de→dedcdcde − ωded→d,decded + ωde,de→ded,ec
2
de − ωded,e→de,decdedce, (4.9c)

dce
dt

= ωde→d,ecde − ωd,e→decdce + ωde,de→ded,ec
2
de − ωded,e→de,decdedce

+ ωde→D,ecde − ωe→Ece, (4.9d)

where cmax is the saturation concentration of MinD dimers on the membrane, cd̄ is the constant

concentration of persistently bound MinD dimers on the membrane, an experimental artifact

discussed in Section F.4.4, and ωu,v→x,y denotes the reaction rate of cu and cv converting into

cx and cy, for u, v, x, y ∈ {∅, D,E, d, de, ded, e}. When ωu,v→x,y has a superscript it indicates

facilitation of the reaction by the superscripted species. I note that ωzD→d has a multiplicative

factor of cD built into it for z ∈ {∅, d, de, ded} and ωzE,d→de has a multiplicative factor of cE

built into it for z ∈ {∅, de, ded, e}. The Asymmetric Activation Model is depicted in Figure 4.12.

74

4.3. Fitting Models to the Near-Homogeneous Data

ωD→d ωdD→d ωdeD→d •ωdedD→d ωE,d→de
ωdeE,d→de •ωdedE,d→de ωeE,d→de •ωE,ded→de,de •ωdeE,ded→de,de

•ωeE,ded→de,de •ωdedE,ded→de,de ωd,e→de ωde→d,e •ωd,de→ded
•ωded→d,de ωde→D,E ωde→D,e •ωde,de→ded,e •ωded,e→de,de
ωd→D ωe→E

(a)

D E
eded ded

(b)

E, d ! de

(+ded)

D ! d

(+ded)

E, ded ! de, de

(+ded)

(+de) (+e)

d, de ! ded

ded ! d, de de, de ! ded, e ded, e ! de, de

(c)

Figure 4.12: The Asymmetric Activation Model. Parameters characterizing reactions are shown
in (a). A parameter that characterizes a reaction that is not included in the Extended Bonny
Model is shown with a bullet (•) and the corresponding reaction is depicted in (c). All reactions
from the Extended Bonny Model are included in the Asymmetric Activation Model. State
variables are matched to protein states in (b). In (c), reactants are shown on the left and
products are shown on the right of panels. (+) indicates facilitation in a reaction by the indicated
species.

I fit the Asymmetric Activation Model (4.9) to the near-homogeneous data, as described

in Section 4.4. The resulting fit, state values, and parameter values are shown in Figure 4.13,

Figure 4.14, and Table 4.5 respectively.

75

4.3. Fitting Models to the Near-Homogeneous Data

Figure 4.13: The fit of the Asymmetric Activation Model to the near-homogeneous data. Data is
shown with points and model values are shown with lines. The Asymmetric Activation Model fits
the near-homogeneous data appreciably better than the Symmetric Activation Model (compare
to Figure 4.10).

Comparing Figures 4.6, 4.10, and 4.13, the Asymmetric Activation Model describes the near-

homogeneous data visibly better than the Extended Bonny Model, even more so than the

Symmetric Activation Model. Quantitatively, χ2, the weighted sum of squared residuals, from

the Extended Bonny Model is 16.1 times larger than χ2 from the Asymmetric Activation Model,

and the value of AIC, the Akaike information criterion, from the Extended Bonny Model is 919

units larger than the value of AIC from the Asymmetric Activation Model. Comparatively, χ2

from the Extended Bonny Model is 1.89 times larger than χ2 from the Symmetric Activation

Model, and the value of AIC from the Extended Bonny Model is 210 units larger than the value

of AIC from the Symmetric Activation Model. As such, the Asymmetric Activation Model

describes the near-homogeneous data considerably better than the Symmetric Activation Model.

76

4.3. Fitting Models to the Near-Homogeneous Data

Figure 4.14: States from the fit of the Asymmetric Activation Model to the near-homogeneous
data.

77

4.3. Fitting Models to the Near-Homogeneous Data

parameter value 95% confidence interval units
Cd 7.47 · 101 [6.52 · 101, 8.58 · 101] µm−2

Ce 6.23 · 10−1 [0.00 · 100, 6.67 · 100] µm−2

cd̄ 1.08 · 10−2 [0.00 · 100, 1.42 · 101] µm−2

cmax 5.30 · 103 [5.28 · 103, 5.35 · 103] µm−2

cs 1.15 · 102 [8.11 · 101, 2.64 · 102] µm−2

ωD→d 8.77 · 10−5 [0.00 · 100, 9.66 · 10−2] µm−2 s−1

ωdD→d 3.73 · 10−1 [3.58 · 10−1, 3.96 · 10−1] s−1

ωdeD→d 2.00 · 10−1 [1.98 · 10−1, 2.02 · 10−1] s−1

ωdedD→d 4.20 · 10−1 [4.05 · 10−1, 4.29 · 10−1] s−1

ωE,d→de 3.28 · 10−3 [2.34 · 10−3, 3.42 · 10−3] s−1

ωdeE,d→de 2.11 · 10−9 [0.00 · 100, 2.41 · 10−6] µm2 s−1

ωdedE,d→de 8.50 · 10−10 [0.00 · 100, 8.21 · 10−7] µm2 s−1

ωeE,d→de 1.90 · 100 [1.88 · 100, 1.92 · 100] µm2 s−1

ωE,ded→de,de 1.86 · 10−13 [0.00 · 100, 7.57 · 10−4] s−1

ωdeE,ded→de,de 1.45 · 10−5 [1.35 · 10−5, 1.50 · 10−5] µm2 s−1

ωdedE,ded→de,de 2.10 · 10−5 [1.97 · 10−5, 2.11 · 10−5] µm2 s−1

ωeE,ded→de,de 1.64 · 10−1 [1.63 · 10−1, 1.65 · 10−1] µm2 s−1

ωd,de→ded 4.86 · 10−5 [4.75 · 10−5, 5.00 · 10−5] µm2 s−1

ωd,e→de 6.16 · 10−1 [6.11 · 10−1, 6.22 · 10−1] µm2 s−1

ωd→D 3.15 · 10−1 [2.25 · 10−1, 3.15 · 10−1] s−1

ωde,de→ded,e 6.59 · 10−4 [6.59 · 10−4, 6.59 · 10−4] µm2 s−1

ωde→D,E 2.00 · 10−1 [1.99 · 10−1, 2.02 · 10−1] s−1

ωde→D,e 3.40 · 10−6 [0.00 · 100, 5.66 · 10−4] s−1

ωde→d,e 6.64 · 10−2 [6.59 · 10−2, 6.68 · 10−2] s−1

ωded,e→de,de 9.34 · 100 [9.34 · 100, 9.34 · 100] µm2 s−1

ωded→d,de 1.52 · 10−13 [0.00 · 100, 1.91 · 10−3] s−1

ωe→E 5.39 · 10−2 [5.34 · 10−2, 5.45 · 10−2] s−1

Table 4.5: Parameters from the fit of the Asymmetric Activation Model to the near-homogeneous
data. Cd and Ce are as described in Table 4.1. Details of calculating confidence intervals are
described in Section 4.4.5.

To determine how individual reactions affect the Asymmetric Activation Model’s ability to

describe the near-homogeneous data, individually, I remove non-necessary reactions from the

Asymmetric Activation Model and fit the resulting model to the near-homogeneous data, as

described in Section 4.4. Results are shown in Table 4.6.

78

4.3. Fitting Models to the Near-Homogeneous Data

Null parameter χ2/χ2
∅ AIC−AIC∅

ωdD→d 3.80 4.36 · 102

ωdeD→d 5.71 5.82 · 102

ωdedD→d 1.98 2.30 · 102

ωdeE,d→de 1.00 −4.34 · 100

ωdedE,d→de 1.05 7.16 · 101

ωeE,d→de 8.43 7.09 · 102

ωE,ded→de,de 1.00 −7.20 · 10−1

ωdeE,ded→de,de 1.07 2.09 · 101

ωdedE,ded→de,de 1.12 3.35 · 101

ωeE,ded→de,de 1.13 3.48 · 101

ωd,de→ded 4.46 4.93 · 102

ωd,e→de 1.49 1.23 · 102

ωd→D 1.04 4.56 · 100

ωde,de→ded,e 2.11 2.43 · 102

ωde→D,E 5.81 5.82 · 102

ωde→D,e 1.04 1.13 · 101

ωde→d,e 1.05 1.33 · 101

ωded,e→de,de 4.71 5.09 · 102

ωded→d,de 1.01 2.29 · 100

Table 4.6: Removed-reaction fits of the Asymmetric Activation Model to the near-homogeneous
data. A removed reaction is characterized by a null parameter. χ2 is the the weighted sum of
squared residuals, and AIC is the Akaike information criterion. χ2

∅ and AIC∅ are the values of
χ2 and AIC from the Asymmetric Activation Model without a removed reaction. χ2/χ2

∅ and
AIC−AIC∅ measure the affect of removing the reaction characterized by the null parameter
from the Asymmetric Activation Model on its ability to fit the near-homogeneous data; larger
values of χ2/χ2

∅ and AIC−AIC∅ correspond to a larger decrease in fitting ability.

As shown in Table 4.3, the reactions characterized by the parameters ωdD→d, ω
de
D→d, ω

ded
D→d,

ωeE,d→de, ωd,de→ded, ωd,e→de, ωde,de→ded,e, ωde→D,E , and ωded,e→de,de each significantly (AIC −
AIC∅ > 50) affect the Asymmetric Activation Model’s ability to describe the near-homogeneous

data.

As is visible in Figure 4.14 and elaborated in Figure 4.15, at the front end of the pulse, a

large proportion of MinD dimers are in the semistable state, cd, or in the stable state, cded.

Whereas, at the back end of the pulse, a large proportion of MinD dimers are in the unstable

state, cde.

79

4.3. Fitting Models to the Near-Homogeneous Data

Figure 4.15: Stability of MinD dimers on the supported lipid bilayer. The total MinD dimer
concentration on the supported lipid bilayer is separated into the concentration of dimers in the
stable state, 2cded, the concentration of dimers in the semistable state, cd, and the concentration
of dimers in the unstable state, cde. Values of cd, cde, and cded, as shown in Figure 4.14, come
from the fit of the Asymmetric Activation Model to the near-homogeneous data. MinD dimers
are predominantly semi-stably and stably bound to the supported lipid bilayer at the front end
of the pulse and unstably bound to the supported lipid bilayer at the back end of the pulse.

4.3.4 A Stability-Switching Mechanism Underlying the Dynamic Behavior

of the Min System

Through the fit of the Asymmetric Activation Model to the near-homogeneous data, I interpret

a stability-switching mechanism that underlies the dynamic behavior of the Min system. My

discussion is based on the state values shown in Figure 4.14 and the characterization of significant

reactions from Table 4.6.

During the MinD upstroke, bulk MinD binds to the supported lipid bilayer in the protein

state d, which is semi-stably bound to the supported lipid bilayer, and recruits more bulk MinD

to the supported lipid bilayer through the significant reaction D + d → 2d (characterized by

80

4.3. Fitting Models to the Near-Homogeneous Data

ωdD→d). Bulk MinE binds to supported-lipid-bilayer-bound MinD in the protein state de, which

is unstably bound to the supported lipid bilayer. However, through the significant reaction

d+de→ ded (characterized by ωd,de→ded), a large concentration of d pushes de to react with d to

form ded, the protein state that is stably bound to the supported lipid bilayer. Simultaneously,

through the significant reaction d+ e→ de (characterized by ωd,e→de), a large concentration of

d pushes the protein state e to react with d to form de, which a large concentration of d pushes

to react with d to form ded. As more bulk MinE binds to supported-lipid-bilayer-bound MinD,

the concentration of d decreases and the concentration of de increases. Through the significant

reaction de+ de → ded+ e (characterized by ωde,de→ded,e) and the reactions de → D + e and

de→ d+ e (characterized by ωde→D,e and ωde→d,e), de generates e. Eventually, in catastrophe,

a period of destabilization with positive feedback, without d as a substrate, e binds to ded and

generates de through the significant reaction ded+ e→ de+ de (characterized by ωded,e→de,de),

de generates more e which generates more de, and de dissociates from the supported lipid

bilayer through the significant reaction de → D + E (characterized by ωde→D,E). Capping

catastrophe, e recruits bulk MinE to bind to any remaining d through the significant reaction

E+d+ e→ de+ e (characterized by ωeE,d→de), and e dissociates from the supported lipid bilayer

through the reaction e→ E (characterized by ωe→E). Collectively, a large concentration of d

reinforces stability of MinD on the supported lipid bilayer and suppresses the catastrophe switch,

e; a decrease in the concentration of d signals the switch from stability to catastrophe, causing

rapid MinD dissociation from the supported lipid bilayer. The aforementioned stability-switching

mechanism is depicted in Figure 4.16.

81

4.3. Fitting Models to the Near-Homogeneous Data

eded ded

(a)

stable

switch

catastrophe

upstroke

(b)

Figure 4.16: The stability-switching mechanism. Protein states are shown in (a). The stability-
switching mechanism is shown in (b). Relative concentration/affect is shown by size. The
semistable protein state d is predominant during pulse upstroke (top). Bulk MinE binds to d
to form the unstable protein state de, but a large concentration of d pushes de to react with
d to form the stable protein state ded (right). Meanwhile, a large concentration of d inhibits
the catastrophe switch, protein state e, by reacting with e to form de. The concentration of d
decreases and the switch in stability occurs (bottom). In a feedback loop, de generates e, the
catastrophe switch, which binds to ded to form more de (left); Min proteins rapidly dissociate
from the supported lipid bilayer in catastrophe.

4.3.5 Results Relating to Experimental Observations

The results from my modeling and fitting could explain some experimental observations. A

MinE mutant that stimulates MinD ATPase activity but is deficient in membrane binding, MinE

C1 [27], fails to stimulate dynamic pattern formation on a supported lipid bilayer in vitro [44].

Rather, MinD and MinE C1 form a stationary structure on the supported lipid bilayer with

MinD and MinE C1 profiles that are similar in shape to MinD and MinE profiles in traveling

waves, except that the MinE C1 profile lacks a sharp peak [44]. My results, from fitting both

the Extended Bonny Model and the Asymmetric Activation Model to the near-homogeneous

data, suggest that supported-lipid-bilayer-bound MinE recruits bulk MinE to bind to supported-

lipid-bilayer-bound MinD (ωeE,d→de is significant). As such, the lack of a sharp peak in the

82

4.4. Details of Optimization Using Overlapping-Niche Descent

MinE C1 profile could follow from the inability of MinE C1 to recruit bulk MinE C1 to bind to

supported-lipid-bilayer-bound MinD. My results, from fitting the Asymmetric Activation Model

to the near-homogeneous data, also suggest that supported-lipid-bilayer-bound MinE acts as

a catastrophe switch (ωded,e→de,de is significant). Thus, MinD and MinE C1 forming a stable,

stationary structure on the supported lipid bilayer could follow from the lack of a catastrophe

switch with the MinE C1 mutant.

MinE consists of three domains, conferring the functions of membrane binding, MinD

binding and the stimulation of ATPase activity, and dimerization ([46], [56], [35], [27], [52], [73]).

Membrane binding and dimerization play critical roles in MinE’s function, but the functional roles

of membrane binding and dimerization are somewhat unclear. During pole-to-pole oscillations

in vivo, the E ring, a concentrated band of MinE, follows a more diffuse band of MinD from

near midcell to cell pole, capping the MinD polar zone ([59], [23], [67]). A disruption in MinE

of membrane binding [27] or dimerization [61] inhibits E ring formation, allowing the extension

of MinD polar zones. Similarly, a disruption in MinE of membrane binding [44] or dimerization

[73] inhibits dynamic pattern formation on a supported lipid bilayer in vitro. It has been

thought that membrane binding allows a transition between MinD binding events, permitting a

MinE dimer to stimulate ATPase activity in multiple MinD dimers before dissociating from the

membrane ([52], [53]). The role of dimerization in MinE function is not understood. My results

suggest that the functional roles of membrane binding and dimerization are tightly coupled in a

stability-switching mechanism, with dimerization underlying stability and membrane binding

underlying catastrophe.

4.4 Details of Optimization Using Overlapping-Niche Descent

Here, I describe structural components of overlapping-niche descent for fits to the near-

homogeneous data. I describe details pertaining to the implementation of overlapping-niche

descent in Appendix G.

4.4.1 Statistical Model

For near-homogeneous MinD and MinE densities at time tk, y1,k and y2,k, and corresponding

observable model values, y1,k and y2,k,

yj,k = yj,k + εj,k, (4.10)

with errors εj,k, for j ∈ {1, 2} and k ∈ {1, 2 . . . , nt}. Errors, εj,k, consist of modeling errors and

data errors. As is visible in Figure F.19 of Section F.4.3, errors in near-homogeneous data are

small compared to the ranges of near-homogeneous data; errors range between roughly 5 µm−2

and 30 µm−2, as is visible in Figure F.21, and data ranges on the scale of 5 · 103 µm−2. I

expect modeling errors to significantly exceed the relatively small errors in near-homogeneous

83

4.4. Details of Optimization Using Overlapping-Niche Descent

data. Thus, I expect errors, εj,k, to consist primarily of modeling errors. Modeling errors are

inherently not independent or identically distributed, but without a better a priori distribution, I

assume that εj,k for k ∈ {1, 2 . . . , nt} are independent and identically distributed from a normal

distribution with a mean of 0, for each j ∈ {1, 2}. The range of near-homogeneous MinD

densities is larger than the range of near-homogeneous MinE densities. Thus, to remove bias in

fitting from differences in scale, I assume that errors, εj,k, are proportional to the range of yj,k

for k ∈ {1, 2 . . . , nt}, ȳj , for j ∈ {1, 2}. Therefore, collectively, I assume that

yj,k = yj,k + ȳj ε̄j,k, (4.11)

where ε̄j,k for j ∈ {1, 2} and k ∈ {1, 2 . . . , nt} are independent and identically distributed from

a normal distribution with a mean of 0 and a variance of σ̄2, N(0, σ̄2). Thus, the likelihood of

yj,k given yj,k and σ̄2, for j ∈ {1, 2} and k ∈ {1, 2 . . . , nt}, is

L(yj,k|yj,k, σ̄2 : j ∈ {1, 2}, k ∈ {1, 2 . . . , nt}) =

2∏
j=1

nt∏
k=1

1√
2πȳ2

j σ̄
2

exp

(
−(yj,k − yj,k)2

ȳ2
j σ̄

2

)
= C̄ exp

 1

σ̄2

2∑
j=1

nt∑
k=1

−(yj,k − yj,k)2

ȳ2
j

 , (4.12)

for constant C̄ > 0. The values of yj,k for j ∈ {1, 2} and k ∈ {1, 2 . . . , nt} that maximize

L(yj,k|yj,k, σ̄2 : j ∈ {1, 2}, k ∈ {1, 2 . . . , nt}) are those that minimize

2∑
j=1

nt∑
k=1

(yj,k − yj,k)2

ȳ2
j

. (4.13)

Thus, I measure the difference in observable model values from the near homogenous data by

the sum of weighted squared residuals in equation (4.13).

4.4.2 Defining ry(p,x), rŷ(p,x), and r∆x(p,x)

Preliminarily, for consistency with previous notation, I define: x1 = cd, x2 = cde, and x3 = ce for

the Modified Bonny Model and the Extended Bonny Model, x1 = cd, x2 = cde, x3 = cede, and

x4 = ce for the Symmetric Activation Model, and x1 = cd, x2 = cde, x3 = cded, and x4 = ce for

the Asymmetric Activation Model; y1 = the concentration of MinD monomers (µm−2) and y2 =

the concentration of MinE monomers (µm−2); for constant bulk and persistent lipid bilayer-

bound MinD and MinE densities, Cd and Ce, as described in Section F.4.4, g1 = 2(x1 +x2) +Cd

and g2 = 2(x2 + x3) + Ce for the Modified Bonny Model and the Extended Bonny Model,

g1 = 2(x1 + x2 + x3) + Cd and g2 = 2(x2 + 2x3 + x4) + Ce for the Symmetric Activation Model,

and g1 = 2(x1 + x2 + 2x3) + Cd and g2 = 2(x2 + x3 + x4) + Ce for the Asymmetric Activation

Model. Additionally, for each model, I uniquely identify each parameter with p1, p2, . . . , pnp .

As described in Section 4.4.1, I measure the difference in observable model values from the

84

4.4. Details of Optimization Using Overlapping-Niche Descent

near homogenous data by the sum of weighted squared residuals in equation (4.13). Thus, I

define ry(p,x) such that

ry(p,x) =
1∑ny

j=1

∑nt
k=1 ȳ−2

j y2
j,k

ny∑
j=1

nt∑
k=1

ȳ−2
j

(
yj,k − gj(p, x1,k, . . . , xnx,k)

)2
, (4.14)

where I normalize by
∑ny

j=1

∑nt
k=1 ȳ−2

j y2
j,k to match the scale of ry(p,x) in equation (2.6). I use

the data grid, with a data point every 3 s, as the numerical discretization grid. Thus, I define

rŷ(p,x) = 0. I define r∆x(p,x) as in equation (2.13a), and discretize models using a Simpson’s

method finite difference, a finite difference with fourth order accuracy. Thus, in r∆x(p,x),

∆xi,k =

 0 if k ∈ {1, nt}
xi,k+ − xi,k−

2∆t
if k ∈ I∆ \ {1, nt},

Fi,k(t,p,x) =


0 if k ∈ {1, nt}

1∑
m=−1

bmFi (p, x1,k+m, x2,k+m, . . . , xnx,k+m) if k ∈ I∆ \ {1, nt},
(4.15)

where k+ is the index above k in I∆, k− is the index below k in I∆, ∆t = 3 s is the grid

spacing in {tk : k ∈ I∆}, b−1 = 1/6, b0 = 4/6, b1 = 1/6, and Fi is as defined in equation

(2.7). In smoothing penalties, si(x), of r∆x(p,x), I set αi = 1, βi = 102, and γi = 2, for all

i ∈ {1, 2, . . . , nx}, to insignificantly modify r∆x(p,x) with a smooth set of state values and to

strongly penalize r∆x(p,x) with a jagged set of state values.

4.4.3 Domain Restrictions on Parameters and States

As described in Section F.4.4, I restrict nonnegative constant bulk and persistent lipid bilayer-

bound MinD and MinE densities, Cd and Ce, such that

0 ≤ Cd ≤ 317.88 µm−2, (4.16a)

0 ≤ Ce ≤ 249.25 µm−2. (4.16b)

The nonnegative concentration of persistent lipid bilayer-bound MinD dimers is necessarily no

larger than half the constant bulk and persistent lipid bilayer-bound MinD density. Thus, I

restrict cd̄ such that

0 ≤ cd̄ ≤ 158.94 µm−2. (4.17)

The parameter cmax dictates the maximum concentration of membrane-bound MinD dimers.

Thus, I restrict cmax to values greater than or equal to half the maximal near homogeneous

MinD density value, Dmax/2, where Dmax = 1.02 · 104 µm−2. Additionally, I assume cmax is on

85

4.4. Details of Optimization Using Overlapping-Niche Descent

the scale of Dmax/2, so I bound cmax above by 100 ·Dmax/2. Thus, I restrict cmax such that

Dmax/2 ≤ cmax ≤ 100 ·Dmax/2 (4.18)

As per condition (4.5), I assume that ns ≤ Dmax/2. Also, equation (4.3) can be undefined if

ns = 0, so I bound ns below by 1. Thus, I restrict ns such that

1 ≤ cs ≤ Dmax/2 (4.19)

Rate parameters, ωzu,v→x,y for u, v, x, y, z ∈ {∅, D,E, d, de, ede, ded, e}, are only biologically

relevant if nonnegative. Also, to restrict optimization within ranges of reactions that are

not overly fast, I restrict all rate parameters to no more than 10 units. Thus, I restrict rate

parameters such that:

0 ≤ p ≤ 10 up for all p ∈
{
ωzu,v→x,y : u, v, x, y, z ∈ {∅, D,E, d, de, ede, ded, e}

}
, (4.20)

where up is the units of parameter p. In experiments similar to those of Ivanov and Mizuuchi,

in the absence of MinE, MinD dimers dissociate from a supported lipid bilayer at a rate of

0.210 s−1 at low concentrations of supported lipid bilayer-bound MinD dimers [73]. Thus, for

nonzero ωd→D, I restrict ωd→D to within 50% of 0.210 s−1:

0.105 ≤ ωd→D ≤ 0.315 s−1 if ωd→D 6= 0. (4.21)

Additionally, in experiments similar to those of Ivanov and Mizuuchi, MinE-facilitated dissocia-

tion rates of MinD dimers from a supported lipid bilayer were found to be 0.14 s−1, 0.17 s−1,

and 0.18 s−1 with respective bulk MinE concentrations of 2.5 µM , 3 µM , and 4 µM [73]. Thus,

I restrict MinE-facilitated dissociation rates of MinD dimers from the supported lipid bilayer to

no less than 50% of 0.14 s−1 and no more than 150% of 0.18 s−1:

0.07 ≤ ωde→D,E + ωde→D,e ≤ 0.27 s−1, (4.22a)

for the Modified Bonny Model, the Extended Bonny Model, and the Asymmetric Activation

Model;

0.07 ≤ ωede→E,D,E + ωede→E,D,e + ωede→D,e,e ≤ 0.27 s−1, (4.22b)

for the Symmetric Activation Model;

Concentrations cd, cde, cede, cded, and ce are only biologically relevant if nonnegative. Thus,

I restrict cd, cde, cede, cded, and ce to nonnegative values:

ci,k ≥ 0 for all i ∈ {d, de, ede, ded, e} and k ∈ I∆, (4.23)

86

4.4. Details of Optimization Using Overlapping-Niche Descent

where cd,k, cde,k, cede,k, cded,k, and ce,k are the values of cd, cde, cede, cded, and ce at the kth index

of the numerical discretization. Details of overlapping-niche descent on restricted domains are

described in Section C.2.3.

4.4.4 Niches

I choose values of λ to define niches as in Section 3.4.3. For convenience, I repeat the discussion

from Section 3.4.3 below. I choose 101 values of λ, λk for k = 1, 2, . . . , 101, to define 101 niches.

The bounds (B.68) and (B.69), which state that r̆y(λ) ≤ ε̄ if λ ≤ ε̄/(1 + ε̄) and r̆∆x(λ) ≤ ε̄

if λ ≥ 1/(1 + ε̄) for some tolerance ε̄, provide a meaningful guide for the choice of λk. Thus,

based on the bounds (B.68) and (B.69) with chosen ε̄ = b0, b−1, . . . , b−50 and base b such that

b−50 = 10−6, I define λk for k = 1, 2, . . . , 101 such that

λk =


b51−k

1 + b51−k if k ≤ 51

1

1 + b51−k if k > 51.

(4.24)

My choice of λk distributes the values of λk for k = 1, 2, . . . , 101 more densely near 0 and 1

and less densely near 0.5. For reference, λ1 ≈ 10−6, λ2 ≈ 1.3 · 10−6, λ51 = 0.5, λ52 ≈ 0.57,

λ100 ≈ 1− 1.3 · 10−6, and λ101 ≈ 1− 10−6.

4.4.5 Calculating Confidence Intervals

I calculate confidence intervals as in Section 3.4.4. For convenience, I repeat the discussion

from Section 3.4.4 below. I calculate confidence intervals by bootstrapping, given the complex

nonlinear relationship between data noise and parameter noise that would not be adequately

captured using a (Taylor expansion based) delta method [39]. In doing so, I calculate observable-

state residuals,

ε̃j,k = yj,k − gj(p̃, x̃1,k, . . . , x̃nx,k), (4.25)

where p̃ = p̃λ101 and x̃ = x̃λ101 , the parameter and state values that minimize r(p,x;λ101),

and x̃i,k is the value in x̃ from the ith state and the kth grid index, for i ∈ {1, 2, . . . , nx},
j ∈ {1, 2, . . . , ny}, and k ∈ {1, 2, . . . , nt}. By resampling residuals, I generate nb = 103 bootstrap

data sets:

yj,k = gj(p̃, x̃1,k, . . . , x̃nx,k) + ε̃j,l, (4.26)

where l is randomly sampled with replacement from {1, 2, . . . , nt}, for j ∈ {1, 2, . . . , ny} and

k ∈ I∆. I replace observed data values in r(p,x;λ) with bootstrap data values from the ith

bootstrap data set to construct the functional rbi (p,x;λ). Globally minimizing rbi (p,x;λ) using

overlapping-niche descent for all i ∈ {1, 2, . . . , nb} would be computationally prohibitive. Rather,

87

4.5. Discussion

if residuals are not overly large, the optimal parameters and state values of rbi (p,x;λ) will

generally be fairly similar to p̃ and x̃. Thus, with p̃ and x̃ as initial parameters and state values,

I locally optimize rbi (p,x;λb) using accelerated descent, for all i ∈ {1, 2, . . . , nb}, with λb chosen

large enough to weight local optimization towards a numerical solution but not so large that p

and x are fixed near p̃ and x̃. Specifically, I choose

λb = arg min
{∣∣∣ry(p̃λ, x̃λ)− 103r∆x(p̃λ, x̃λ)

∣∣∣ : λ ∈ {λ1, λ2, . . . , λ101}
}
. (4.27)

From the nb local optimizations, I construct a distribution of values for each parameter. From

the distribution of values for parameter pj , I compute the 2.5th and 97.5th percentile values,

which I translate into the 95% confidence interval for parameter pj , for j ∈ {1, 2, . . . , np}.

4.5 Discussion

In this chapter, I briefly summarized extracting time-course data for model fitting from experi-

mental measurements of the Min system. Then, I fit established and novel biochemistry-based

models to the time-course data using my parameter estimation method for differential equations.

Comparing models to the time-course data allowed me to make precise distinctions between

biochemical assumptions in the various models. My modeling and fitting supported a novel

model that accounts for MinE’s previously unmodeled dual role as a stabilizer and an inhibitor

of MinD membrane binding. It suggests specific biological functions for MinE membrane binding

and dimerization, which play critical but somewhat unclear roles in Min system dynamics.

In my supported model, MinD and MinE form an unstable complex on the membrane, where

one MinE dimer is bound to one MinD dimer, and a stable complex on the membrane, where

one MinE dimer bridges two MinD dimers. Acting as an instability switch, MinE dimers that

are unbound to MinD on the membrane bind to stable MinD-MinE complexes to form unstable

MinD-MinE complexes. Pushing the system towards stability, MinD dimers that are unbound

to MinE on the membrane bind to unstable MinD-MinE complexes to form stable MinD-MinE

complexes and bind to membrane-bound MinE dimers to inhibit the instability switch. As such,

the concentration of MinD dimers that are unbound to MinE on the membrane modulates local

stability or catastrophe in the aggregation of MinD and MinE on the membrane. MinE only

associates with the membrane by binding to membrane-bound MinD, and MinE binding to

membrane-bound MinD decreases the concentration of MinD dimers that are unbound to MinE

on the membrane, which, when concentrations are sufficiently low, signals a switch from local

stability to catastrophe in the aggregation of MinD and MinE on the membrane. Ultimately, my

supported model suggests a regular, ordered, stability-switching mechanism that may underlie

the emergent, dynamic behavior of the Min system.

To be reliable, a biological signal should be regular and ordered; to be informative, a

biological signal should be sensitive to variability in its stimuli. My proposed stability-switching

mechanism is regular and ordered, with a switch between stability and catastrophe, which

88

4.5. Discussion

would provide sensitivity to local variation in Min system dynamics. As such, my proposed

stability-switching mechanism could provide a reliable signal that fluidly transduces local Min

system dynamics into a global cellular signal.

89

Chapter 5

Conclusion

5.1 Summary of Results

• In Chapter 2, I developed a method that allowed me to calculate the optimal data-fitting

numerical solution and its parameters for a differential equation model without using nu-

merical integration. Additionally, I showed that my method admits conservation principles

and integral representations that allow me to gauge the accuracy of my optimization.

• In Chapter 3, I tested my method on synthetic data and a system of first order ordinary

differential equations, a system of second order ordinary differential equations, and a

system of partial differential equations. I found that my method accurately identified

the optimal data-fitting numerical solution and its parameters in all three contexts. I

compared the performance of my method to that of an analogous numerical-integration-

based method, and found that my method identified the optimal data-fitting numerical

solution more robustly than the analogous numerical-integration-based method, while

requiring significantly less time to do so. I also explored an example where my method

informed modeling insufficiencies and potential model improvements for an incomplete

variant of a model. Finally, I showed that my optimization routine converged to values

that were consistent with my derived conservation principles and integral representations.

• In Chapter 4, I briefly summarized extracting time-course data for model fitting from

experimental measurements of the Min system and fit established and novel biochemistry-

based models to the time-course data using my method. Comparing the models to

time-course data allowed me to make precise distinctions between biochemical assumptions

in the various models. My modeling and fitting supported a novel model that accounts for

MinE’s previously unmodeled dual role as a stabilizer and an inhibitor of MinD membrane

binding. It suggests that a regular, ordered, stability-switching mechanism underlies the

emergent, dynamic behavior of the Min system.

5.2 Limitations of Overlapping-Niche Descent

I designed my method for global optimization with complex systems of differential equations.

When computing descent in parallel on a computer cluster, my method has shown itself to be

fairly computationally efficient. However, my method, as specified, could be computationally

90

5.3. Extensions of the Homotopy-Minimization Method

prohibitive when computing descent in serial on a single computer. When testing my method,

I found that for a relatively complex system of differential equations, the Bonny model with

spatially homogeneous conditions, as defined in Equation 3.2, overlapping-niche descent would

converge to the optimal data-fitting numerical solution in several generations using only a few

niches. However, with only a few niches, conservation principles and integral representations are

inaccurately calculated using numerical integration, and thus are not informative in gauging

the accuracy and progress of optimization. Alternatively, for more robust optimization when

computing descent in serial on a single computer, I suggest applying overlapping-niche descent

with many niches but only applying descent to several chosen individuals in each generation.

This approach will be slower than applying descent to all individuals in each generation

when computing descent in parallel on a computer cluster, but selection across niches will

still contribute to the synergistic minimization amongst individuals in different niches, and

conservation principles and integral representations will be accurately calculated.

5.3 Extensions of the Homotopy-Minimization Method

In Section 3.7, I demonstrated how parameters and state values from overlapping-niche descent as

λ→ 0+ could inform model shortcomings and potential model improvements. My demonstration

was a proof of concept that was qualitative in nature, requiring model improvements to be inferred

simply by looking at a graph. The premise of my demonstration could be extended to develop a

systematic method for informing model shortcomings and potential model improvements. Such

a method would be a valuable tool for refining models.

My homotopy-minimization method, with conservation principles, integral representations,

and overlapping-niche descent, applies to any differentiable function of the form h(v;λ) =

(1− λ)h1(v) + λh2(v), where minh1(v) = 0 and minh2(v) = 0, with variable vector v. Thus,

the method naturally extends to a wide class of optimization problems. For example, where h1(v)

is a measure of how well state values fit data and h2(v) is a measure of how well state values

satisfy a system of difference equations, my method naturally extends to find the parameter

values of the solution to the system of difference equations that fits data best. More generally,

my homotopy-minimization method naturally extends to any constrained optimization problem

that minimizes h1(v) subject to constraints that can be formulated in a functional, h2(v).

5.4 Limitations in Fitting Models to Spatially

Near-Homogeneous Min Data

In Chapter 4, I fit models to spatially near-homogeneous Min data to compare how well models

could describe the data. My fitting suggested that the Asymmetric Activation Model, as

discussed in Section 4.3.3, could describe the near-homogeneous data best. In Section 4.3.3, I

explored which reactions in the Asymmetric Activation Model were indispensable for describing

91

5.5. Extensions of Fitting Models to Spatially Near-Homogeneous Min Data

the near-homogeneous data and found that quite a few reactions were superfluous. In doing so,

I found that the Asymmetric Activation Model would admit numerical solutions that fit data

almost identically well for a fairly large range of parameter values (not shown). As such, my

asymmetric activation model requires refinements in included reactions and parameter estimates

for biological realism. Fitting the Asymmetric Activation Model to the near-homogeneous data

with pairwise null reactions would allow me to determine how well pairwise reductions of the

Asymmetric Activation Model could describe the near-homogeneous data. Such an analysis

would allow me to determine the most reduced form of the Asymmetric Activation Model

that describes the near-homogeneous data well. As discussed in Section 4.4.3, I was able to

confine some parameters to biologically realistic values by using parameter restrictions from

experimental measurements. New experimental measurements, such as the dissociation rate

of MinD at various concentrations from the supported lipid bilayer in the absence of MinE,

will hopefully provide new parameter restrictions, which will allow me to confine parameter

estimates to more biologically realistic values in future fitting of the Asymmetric Activation

Model to the near-homogeneous data.

5.5 Extensions of Fitting Models to Spatially

Near-Homogeneous Min Data

To unravel the local reaction mechanism of the Min system, I focused on fitting ordinary

differential equation models to spatially near-homogeneous Min data. My modeling and fitting

supported the Asymmetric Activation Model, which suggests that a regular, ordered, stability-

switching mechanism underlies the emergent, dynamic behavior of the Min system. However,

it is still unclear how local asymmetric activation reactions collectively contribute to dynamic

pattern formation in Min protein bands on spatial scales that are much larger than the size of

an individual Min protein. To address this, I would extend the Asymmetric Activation Model

from a system of ordinary differential equations to a system of partial differential equations

that describe how Min protein concentrations evolve in space and time. Then, using my

homotopy-minimization method, I would fit the extended model to experimental measurements

of traveling-wave Min protein bands on a supported lipid bilayer. Such modeling and fitting

could aid in unraveling how the Min system transduces local interactions into a global signal.

My homotopy-minimization method could provide a novel computational assay for site-

directed mutagenesis experiments, allowing me to map dynamic function in proteins to specific

amino acids. In this homotopy-minimization mapping method, I would alter a single protein

residue by site directed mutagenesis. Then, using reproducible experiments, like those of Ivanov

and Mizuuchi, I would measure dynamic protein behavior. Ultimately, I would fit a model to

the measurements, like fitting the Asymmetric Activation Model to the near-homogeneous data,

and would map changes in parameters from those fitted with the wild type protein to the amino

acid that I mutated. Other site-directed mutagenesis assays measure disruption of a specific

92

5.5. Extensions of Fitting Models to Spatially Near-Homogeneous Min Data

protein function and often require deleterious mutations, which dramatically affect protein

function. This homotopy-minimization mapping method would simultaneously map effects from

a mutation across multiple functional states of a protein and would require mutations that only

mildly alter protein function. It could also provide insight into dynamic protein function that is

otherwise difficult to assay, such as cooperative binding. Ultimately, this homotopy-minimization

mapping method could provide a useful bridge between modeling and experiments that could

contribute to our understanding of the dynamic structure of proteins.

93

Bibliography

[1] Satya Nanda Vel Arjunan and Masaru Tomita. A new multicompartmental reaction-diffusion

modeling method links transient membrane attachment of E. coli MinE to E-ring formation.

Systems and synthetic biology, 4(1):35–53, 2010.

[2] Daniel Axelrod, Thomas P Burghardt, and Nancy L Thompson. Total internal reflection

fluorescence. Annual review of biophysics and bioengineering, 13(1):247–268, 1984.

[3] Erfei Bi and J Lutkenhaus. Cell division inhibitors SulA and MinCD prevent formation of

the FtsZ ring. Journal of bacteriology, 175(4):1118–1125, 1993.

[4] Mike Bonny, Elisabeth Fischer-Friedrich, Martin Loose, Petra Schwille, and Karsten Kruse.

Membrane binding of mine allows for a comprehensive description of min-protein pattern

formation. PLoS Comput Biol, 9(12):e1003347, 2013.

[5] Peter Borowski and Eric N Cytrynbaum. Predictions from a stochastic polymer model for

the MinDE protein dynamics in Escherichia coli. Physical Review E, 80(4):041916, 2009.

[6] James P. Boyle and Richard L. Dykstra. A method for finding projections onto the

intersection of convex sets in hilbert spaces. In Richard Dykstra, Tim Robertson, and

Farroll T. Wright, editors, Advances in Order Restricted Statistical Inference, pages 28–47,

New York, NY, 1986. Springer New York.

[7] D.A. Campbell and O. Chkrebtii. Maximum profile likelihood estimation of differential equa-

tion parameters through model based smoothing state estimates. Mathematical Biosciences,

246(2):283 – 292, 2013.

[8] David Campbell and Russell J. Steele. Smooth functional tempering for nonlinear differential

equation models. Statistics and Computing, 22(2):429–443, 2012.

[9] David A. Campbell, Giles Hooker, and Kim B. McAuley. Parameter estimation in differential

equation models with constrained states. Journal of Chemometrics, 26(6):322–332, 2012.

[10] Jiguo Cao and James O. Ramsay. Parameter cascades and profiling in functional data

analysis. Computational Statistics, 22(3):335–351, 2007.

[11] J.P. Chandler, Doyle E. Hill, and H.Olin Spivey. A program for efficient integration of rate

equations and least-squares fitting of chemical reaction data. Computers and Biomedical

Research, 5(5):515 – 534, 1972.

94

Bibliography

[12] Brian D Corbin, XuanChuan Yu, and William Margolin. Exploring intracellular space:

function of the Min system in roundshaped Escherichia coli. The EMBO journal, 21(8):1998–

2008, 2002.

[13] Eric N Cytrynbaum and Brandon DL Marshall. A multistranded polymer model explains

MinDE dynamics in E. coli cell division. Biophysical journal, 93(4):1134–1150, 2007.

[14] PA De Boer, Robin E Crossley, and Lawrence I Rothfield. Roles of MinC and MinD in the

site-specific septation block mediated by the MinCDE system of Escherichia coli. Journal

of Bacteriology, 174(1):63–70, 1992.

[15] Piet A.J. de Boer, Robin E. Crossley, and Lawrence I. Rothfield. A division inhibitor and a

topological specificity factor coded for by the minicell locus determine proper placement of

the division septum in e. coli. Cell, 56(4):641 – 649, 1989.

[16] Frank Deutsch and Hein Hundal. The rate of convergence of dykstra’s cyclic projections

algorithm: The polyhedral case. Numerical Functional Analysis and Optimization, 15(5-

6):537–565, 1994.

[17] Barbara Di Ventura and Victor Sourjik. Selforganized partitioning of dynamically localized

proteins in bacterial cell division. Molecular systems biology, 7(1):457, 2011.

[18] Daniel M. Dunlavy and Dianne P. O’Leary. Homotopy optimization methods for global

optimization. United States. Dept. of Energy, 2005.

[19] Richard L. Dykstra. An algorithm for restricted least squares regression. Journal of the

American Statistical Association, 78(384):837–842, 1983.

[20] David Fange and Johan Elf. Noise-induced Min phenotypes in E. coli. PLoS Comput Biol,

2(6):e80, 2006.

[21] Elisabeth Fischer-Friedrich, Giovanni Meacci, Joe Lutkenhaus, Hugues Chaté, and Karsten

Kruse. Intra-and intercellular fluctuations in Min-protein dynamics decrease with cell

length. Proceedings of the National Academy of Sciences, 107(14):6134–6139, 2010.

[22] Jacob Halatek and Erwin Frey. Highly canalized MinD transfer and MinE sequestration

explain the origin of robust MinCDE-protein dynamics. Cell Reports, 1(6):741–752, 2012.

[23] Cynthia A Hale, Hans Meinhardt, and Piet AJ de Boer. Dynamic localization cycle of the

cell division regulator MinE in Escherichia coli. The EMBO journal, 20(7):1563–1572, 2001.

[24] Max Hoffmann and Ulrich S Schwarz. Oscillations of Min-proteins in micropatterned

environments: a three-dimensional particle-based stochastic simulation approach. Soft

Matter, 10(14):2388–2396, 2014.

95

Bibliography

[25] Martin Howard and Andrew D Rutenberg. Pattern formation inside bacteria: fluctuations

due to the low copy number of proteins. Physical Review Letters, 90(12):128102, 2003.

[26] Martin Howard, Andrew D Rutenberg, and Simon de Vet. Dynamic compartmentalization

of bacteria: accurate division in E. coli. Physical review letters, 87(27):278102, 2001.

[27] ChengWei Hsieh, TiYu Lin, HsinMei Lai, ChuChi Lin, TingSung Hsieh, and YuLing Shih.

Direct MinE–membrane interaction contributes to the proper localization of MinDE in E.

coli. Molecular microbiology, 75(2):499–512, 2010.

[28] Zonglin Hu, Edward P Gogol, and Joe Lutkenhaus. Dynamic assembly of MinD on

phospholipid vesicles regulated by ATP and MinE. Proceedings of the National Academy of

Sciences, 99(10):6761–6766, 2002.

[29] Zonglin Hu and Joe Lutkenhaus. Topological regulation of cell division in Escherichia coli

involves rapid pole to pole oscillation of the division inhibitor MinC under the control of

MinD and MinE. Molecular microbiology, 34(1):82–90, 1999.

[30] Zonglin Hu and Joe Lutkenhaus. Analysis of MinC reveals two independent domains

involved in interaction with MinD and FtsZ. Journal of bacteriology, 182(14):3965–3971,

2000.

[31] Zonglin Hu and Joe Lutkenhaus. Topological regulation of cell division in E. coli: spatiotem-

poral oscillation of MinD requires stimulation of its ATPase by MinE and phospholipid.

Molecular cell, 7(6):1337–1343, 2001.

[32] Zonglin Hu and Joe Lutkenhaus. A conserved sequence at the Cterminus of MinD is required

for binding to the membrane and targeting MinC to the septum. Molecular microbiology,

47(2):345–355, 2003.

[33] Zonglin Hu, Amit Mukherjee, Sebastien Pichoff, and Joe Lutkenhaus. The MinC component

of the division site selection system in Escherichia coli interacts with FtsZ to prevent

polymerization. Proceedings of the National Academy of Sciences, 96(26):14819–14824,

1999.

[34] Zonglin Hu, Cristian Saez, and Joe Lutkenhaus. Recruitment of MinC, an inhibitor of

Z-ring formation, to the membrane in Escherichia coli: role of MinD and MinE. Journal of

bacteriology, 185(1):196–203, 2003.

[35] Jian Huang, Chune Cao, and Joe Lutkenhaus. Interaction between FtsZ and inhibitors of

cell division. Journal of Bacteriology, 178(17):5080–5085, 1996.

[36] Kerwyn Casey Huang, Yigal Meir, and Ned S Wingreen. Dynamic structures in Escherichia

coli: spontaneous formation of MinE rings and MinD polar zones. Proceedings of the

National Academy of Sciences, 100(22):12724–12728, 2003.

96

Bibliography

[37] Kerwyn Casey Huang and Ned S Wingreen. Min-protein oscillations in round bacteria.

Physical biology, 1(4):229, 2004.

[38] Vassili Ivanov and Kiyoshi Mizuuchi. Multiple modes of interconverting dynamic pattern

formation by bacterial cell division proteins. Proceedings of the National Academy of

Sciences, 107(18):8071–8078, 2010.

[39] M. Joshi, A. Seidel-Morgenstern, and A. Kremling. Exploiting the bootstrap method for

quantifying parameter confidence intervals in dynamical systems. Metabolic Engineering,

8(5):447 – 455, 2006.

[40] Rex A Kerr, Herbert Levine, Terrence J Sejnowski, and Wouter-Jan Rappel. Division

accuracy in a stochastic model of Min oscillations in Escherichia coli. Proceedings of the

National Academy of Sciences of the United States of America, 103(2):347–352, 2006.

[41] Karsten Kruse. A dynamic model for determining the middle of Escherichia coli. Biophysical

journal, 82(2):618–627, 2002.

[42] Laura L Lackner, David M Raskin, and Piet AJ de Boer. ATP-dependent interactions

between Escherichia coli Min proteins and the phospholipid membrane in vitro. Journal of

bacteriology, 185(3):735–749, 2003.

[43] Hua Liang and Hulin Wu. Parameter estimation for differential equation models using a

framework of measurement error in regression models. Journal of the American Statistical

Association, 103(484):1570–1583, 2008. PMID: 19956350.

[44] Martin Loose, Elisabeth Fischer-Friedrich, Christoph Herold, Karsten Kruse, and Petra

Schwille. Min protein patterns emerge from rapid rebinding and membrane interaction of

mine. Nat Struct Mol Biol, 18(5):577–583, 05 2011.

[45] Martin Loose, Elisabeth Fischer-Friedrich, Jonas Ries, Karsten Kruse, and Petra Schwille.

Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science,

320(5877):789–792, 2008.

[46] Lu-Yan Ma, Glenn King, and Lawrence Rothfield. Mapping the MinE site involved in

interaction with the MinD division site selection protein of Escherichia coli. Journal of

Bacteriology, 185(16):4948–4955, 2003.

[47] Giovanni Meacci and Karsten Kruse. Min-oscillations in Escherichia coli induced by

interactions of membrane-bound proteins. Physical Biology, 2(2):89, 2005.

[48] Hans Meinhardt and Piet AJ de Boer. Pattern formation in Escherichia coli: a model

for the pole-to-pole oscillations of Min proteins and the localization of the division site.

Proceedings of the National Academy of Sciences, 98(25):14202–14207, 2001.

97

Bibliography

[49] Hongyu Miao, Carrie Dykes, Lisa M. Demeter, and Hulin Wu. Differential equation modeling

of hiv viral fitness experiments: Model identification, model selection, and multimodel

inference. Biometrics, 65(1):292–300, 2009.

[50] Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of

convergence o (1/k2). Doklady an SSSR, 269(3):543–547, 1983.

[51] Brendan O’Donoghue and Emmanuel Candès. Adaptive restart for accelerated gradient

schemes. Foundations of Computational Mathematics, 15(3):715–732, 2015.

[52] Kyung-Tae Park, Wei Wu, Kevin P Battaile, Scott Lovell, Todd Holyoak, and Joe Lutken-

haus. The Min oscillator uses MinD-dependent conformational changes in MinE to spatially

regulate cytokinesis. Cell, 146(3):396–407, 2011.

[53] KyungTae Park, Wei Wu, Scott Lovell, and Joe Lutkenhaus. Mechanism of the asymmetric

activation of the MinD ATPase by MinE. Molecular microbiology, 85(2):271–281, 2012.

[54] Zdeněk Petrášek and Petra Schwille. Simple membrane-based model of the Min oscillator.

New Journal of Physics, 17(4):043023, 2015.

[55] Sebastien Pichoff and Joe Lutkenhaus. Escherichia coli division inhibitor MinCD blocks

septation by preventing Z-ring formation. Journal of bacteriology, 183(22):6630–6635, 2001.

[56] Sébastien Pichoff, Benedikt Vollrath, Christian Touriol, and JeanPierre Bouché. Deletion

analysis of gene minE which encodes the topological specificity factor of cell division in

Escherichia coli. Molecular microbiology, 18(2):321–329, 1995.

[57] A.A. Poyton, M.S. Varziri, K.B. McAuley, P.J. McLellan, and J.O. Ramsay. Parameter esti-

mation in continuous-time dynamic models using principal differential analysis. Computers

and Chemical Engineering, 30(4):698 – 708, 2006.

[58] J. O. Ramsay, G. Hooker, D. Campbell, and J. Cao. Parameter estimation for differential

equations: a generalized smoothing approach. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 69(5):741–796, 2007.

[59] David M. Raskin and Piet A.J. de Boer. The MinE ring: An FtsZ-independent cell structure

required for selection of the correct division site in E. coli. Cell, 91(5):685 – 694, 1997.

[60] David M Raskin and Piet AJ de Boer. Rapid pole-to-pole oscillation of a protein required

for directing division to the middle of escherichia coli. Proceedings of the National Academy

of Sciences, 96(9):4971–4976, 1999.

[61] S. L. Rowland, X. Fu, M. A. Sayed, Y. Zhang, W. R. Cook, and L. I. Rothfield. Membrane

redistribution of the Escherichia coli MinD protein induced by MinE. Journal of Bacteriology,

182(3):613–619, 2000.

98

Bibliography

[62] Jeff B Schulte, Rene W Zeto, and David Roundy. Theoretical prediction of disrupted min

oscillation in flattened Escherichia coli. PloS one, 10(10):e0139813, 2015.

[63] Jakob Schweizer, Martin Loose, Mike Bonny, Karsten Kruse, Ingolf Mönch, and Petra

Schwille. Geometry sensing by self-organized protein patterns. Proceedings of the National

Academy of Sciences, 109(38):15283–15288, 2012.

[64] Supratim Sengupta, Julien Derr, Anirban Sain, and Andrew D Rutenberg. Stuttering Min

oscillations within E. coli bacteria: a stochastic polymerization model. Physical biology,

9(5):056003, 2012.

[65] Supratim Sengupta and Andrew Rutenberg. Modeling partitioning of Min proteins between

daughter cells after septation in Escherichia coli. Physical biology, 4(3):145, 2007.

[66] Yu-Ling Shih, Kai-Fa Huang, Hsin-Mei Lai, Jiahn-Haur Liao, Chai-Siah Lee, Chiao-Min

Chang, Huey-Ming Mak, Cheng-Wei Hsieh, and Chu-Chi Lin. The N-terminal amphipathic

helix of the topological specificity factor MinE is associated with shaping membrane

curvature. PloS one, 6(6):e21425, 2011.

[67] YuLing Shih, Xiaoli Fu, Glenn F King, Trung Le, and Lawrence Rothfield. Division site

placement in E. coli: mutations that prevent formation of the MinE ring lead to loss of the

normal midcell arrest of growth of polar MinD membrane domains. The EMBO journal,

21(13):3347–3357, 2002.

[68] YuLing Shih, Ikuro Kawagishi, and Lawrence Rothfield. The MreB and Min cytoskeletallike

systems play independent roles in prokaryotic polar differentiation. Molecular microbiology,

58(4):917–928, 2005.

[69] Oleksii Sliusarenko, Jennifer Heinritz, Thierry Emonet, and Christine JacobsWagner.

Highthroughput, subpixel precision analysis of bacterial morphogenesis and intracellular

spatiotemporal dynamics. Molecular microbiology, 80(3):612–627, 2011.

[70] Filipe Tostevin and Martin Howard. A stochastic model of Min oscillations in Escherichia

coli and Min protein segregation during cell division. Physical biology, 3(1):1, 2005.

[71] J. M. Varah. A spline least squares method for numerical parameter estimation in differential

equations. SIAM Journal on Scientific and Statistical Computing, 3(1):28–46, 1982.

[72] Archana Varma, Kerwyn Casey Huang, and Kevin D Young. The Min system as a general

cell geometry detection mechanism: branch lengths in Y-shaped Escherichia coli cells affect

Min oscillation patterns and division dynamics. Journal of bacteriology, 190(6):2106–2117,

2008.

[73] Anthony G Vecchiarelli, Min Li, Michiyo Mizuuchi, Ling Chin Hwang, Yeonee Seol, Keir C

Neuman, and Kiyoshi Mizuuchi. Membrane-bound MinDE complex acts as a toggle switch

99

that drives Min oscillation coupled to cytoplasmic depletion of MinD. Proceedings of the

National Academy of Sciences, 113(11):E1479–E1488, 2016.

[74] Anthony G Vecchiarelli, Min Li, Michiyo Mizuuchi, and Kiyoshi Mizuuchi. Differential

affinities of MinD and MinE to anionic phospholipid influence Min patterning dynamics in

vitro. Molecular microbiology, 93(3):453–463, 2014.

[75] James C Walsh, Christopher N Angstmann, Iain G Duggin, and Paul MG Curmi. Molecular

interactions of the Min protein system reproduce spatiotemporal patterning in growing and

dividing Escherichia coli cells. PloS one, 10(5):e0128148, 2015.

[76] Wei Wu, KyungTae Park, Todd Holyoak, and Joe Lutkenhaus. Determination of the

structure of the MinD–ATP complex reveals the orientation of MinD on the membrane

and the relative location of the binding sites for MinE and MinC. Molecular microbiology,

79(6):1515–1528, 2011.

[77] Hongyu Zhao Xin Qi. Asymptotic efficiency and finite-sample properties of the generalized

profiling estimation of parameters in ordinary differential equations. The Annals of Statistics,

38(1):435–481, 2010.

[78] Hongqi Xue, Hongyu Miao, and Hulin Wu. Sieve estimation of constant and time-varying

coefficients in nonlinear ordinary differential equation models by considering both numerical

error and measurement error. Annals of statistics, 38(4):2351–2387, 01 2010.

[79] Xiaolei Xun, Jiguo Cao, Bani Mallick, Arnab Maity, and Raymond J. Carroll. Parameter

estimation of partial differential equation models. Journal of the American Statistical

Association, 108(503):1009–1020, 2013.

[80] XuanChuan Yu and William Margolin. FtsZ ring clusters in min and partition mutants:

role of both the Min system and the nucleoid in regulating FtsZ ring localization. Molecular

microbiology, 32(2):315–326, 1999.

[81] Huaijin Zhou, Ryan Schulze, Sandra Cox, Cristian Saez, Zonglin Hu, and Joe Lutkenhaus.

Analysis of MinD mutations reveals residues required for MinE stimulation of the MinD

ATPase and residues required for MinC interaction. Journal of Bacteriology, 187(2):629–638,

2005.

[82] Katja Zieske and Petra Schwille. Reconstitution of self-organizing protein gradients as

spatial cues in cell-free systems. Elife, 3:e03949, 2014.

100

Appendix A

Extensions of the

Homotopy-Minimization Method

Beyond Systems of First Order

Ordinary Differential Equations

Here, I extend the parameter estimation method described for systems of first order ordinary

differential equations in Sections 2.2 and 2.6 to systems of higher order ordinary differential

equations and systems of partial differential equations.

A.1 Extensions to Systems of Higher Order Ordinary

Differential Equations

A higher order ordinary differential equation model of some dynamic process in t, with nx

states, x1, x2, . . . , xnx , np parameters, p1, p2, . . . , pnp , and ny observable states, y1, y2, . . . , yny ,

is defined by the system of equations,

Fi

(
t, p1, . . . , pnp , x1, . . . , xnx ,

dx1

dt
,
d2x1

dt2
,
d3x1

dt3
, . . . ,

dx2

dt
,
d2x2

dt2
, . . .

)
= 0, (A.1a)

yj = gj
(
p1, p2, . . . , pnp , x1, x2, . . . , xnx

)
. (A.1b)

For some observed data values, y1,k, y2,k, . . . , yny ,k, measured at at tk, for k ∈ {1, 2, . . . , nt}, I

extend the method described for first order ordinary differential equation models in Sections

2.2 and 2.6, to find the parameters p1, p2, . . . , pnp of the numerical solution to the differential

equation model with the observable state values that most closely approximate the observed data,

in some sense. As with first order ordinary differential equation models, once a numerical method

is chosen, equation (A.1a) can be formulated into a method-dependent system of equations for

the discrete numerical solution values xi,k:

fi,k
(
t1, . . . , tnt , p1, . . . , pnp , x1,1, x2,1, . . . , xnx,nt

)
= fi,k(t,p,x) = 0, (A.2)

101

A.1. Extensions to Systems of Higher Order Ordinary Differential Equations

for all i ∈ {1, 2, . . . , nx} and for all k ∈ I∆, the index set of the numerical discretization. Using

some interpolation method, I generate interpolated data, ŷj,k for j ∈ {1, 2, . . . , ny}, at grid points

with indices in Iŷ = I∆ \ {1, 2, . . . , nt} from observed data values with indices in {1, 2, . . . , nt}.
As with first order ordinary differential equation models, I define the functionals ry(p,x),

rŷ(p,x), and r∆x(p,x) with the properties that (i) ry(p,x) ≥ 0, rŷ(p,x) ≥ 0, and r∆x(p,x) ≥ 0;

(ii) ry(p,x) = 0 if and only if gj(p, x1,k, . . . , xnx,k) = yj,k for all j ∈ {1, 2, . . . , ny} and for all

k ∈ {1, 2, . . . , nt}, rŷ(p,x) = 0 if and only if I∆ = {1, 2, . . . , nt} or gj(p, x1,k, . . . , xnx,k) = ŷj,k

for all j ∈ {1, 2, . . . , ny} and for all k ∈ Iŷ, and r∆x(p,x) = 0 if and only if fi,k(t,p,x) = 0 for all

i ∈ {1, 2, . . . , nx} and for all k ∈ I∆; and (iii) ry(p1,x1) < ry(p2,x2) implies that (p1,x1) gives

a better fit to the data than does (p2,x2), rŷ(p1,x1) < rŷ(p2,x2) implies that (p1,x1) gives

a better fit to the interpolated data than does (p2,x2), and r∆x(p1,x1) < r∆x(p2,x2) implies

that (p1,x1) satisfies the numerical solution method better than (p2,x2) does. Then, I combine

ry(p,x), rŷ(p,x), and r∆x(p,x) into the single functional r(p,x;λ) = (1 − λ)ry(p,x) + (1 −
λ)2rŷ(p,x) + λr∆x(p,x). I describe the construction of ry(p,x), rŷ(p,x), and r∆x(p,x) using

a normalized least-squares measure in Section A.1.1. As with first order ordinary differential

equation models, minimizing r(p,x;λ) as λ→ 1− is equivalent to minimizing ry(p,x) subject

to the constraints fi,k(t,p,x) = 0 for all i ∈ {1, 2, . . . , nx} and for all k ∈ I∆, and finds the

parameters and state values of the optimal data-fitting numerical solution.

A.1.1 Defining ry(p,x), rŷ(p,x), and r∆x(p,x)

As with first order ordinary differential equation models, I consider systems of higher order

ordinary differential equations that are linear in first derivatives of xi,

dxi
dt

= F̄i

(
t, p1, . . . , pnp , x1, . . . , xnx ,

d2x1

dt2
,
d3x1

dt3
, . . . ,

d2x2

dt2
, . . .

)
, (A.3)

for i ∈ {1, 2, . . . , nx}. In terms of Fi as defined in equation (A.1a),

Fi =
dxi
dt
− F̄i

(
t, p1, . . . , pnp , x1, . . . , xnx ,

d2x1

dt2
,
d3x1

dt3
, . . . ,

d2x2

dt2
, . . .

)
, (A.4)

for i ∈ {1, 2, . . . , nx}. Also, as with first order ordinary differential equation models, I consider

finite difference numerical methods, of the form

∆1xi,k =

Fi,k
({
F̄i(tk,p, x1,k, . . . , xnx,k,∆

2x1,k,∆
3x1,k, . . . ,∆

2x2,k, . . .) : k ∈ I∆

})
=

Fi,k(t,p,x), (A.5)

where xi,k are numerical solution values, ∆nxi,k is some method-dependent finite difference

discretization of dnxi
dtn at tk, and Fi,k are some method-dependent functions of F̄i at tk, for all

102

A.2. Extensions to Systems of Partial Differential Equations

i ∈ {1, 2, . . . , nx} and for all k ∈ I∆. In terms fi,k as defined in equation (A.2),

fi,k(t,p,x) = ∆1xi,k − Fi,k(t,p,x). (A.6)

Thus, using a normalized least-squares measure, as described for first order ordinary differential

equation models in Sections 2.3, 2.4.1, and 2.6.1,

ry(p,x) =
1

ny

ny∑
j=1

(
1∑nt

k=1wj,ky
2
j,k

nt∑
k=1

wj,k
(
yj,k − gj(p, x1,k, . . . , xnx,k)

)2)
, (A.7a)

rŷ(p,x) =
1

ny

ny∑
j=1

 σ̂∑
k∈Iŷ ŵj,kŷ

2
j,k

∑
k∈Iŷ

ŵj,k
(
ŷj,k − gj(p, x1,k, . . . , xnx,k)

)2 , (A.7b)

r∆x(p,x) =
1

nx

nx∑
i=1

 si(x)∑
k∈I∆(∆1xi,k)2

∑
k∈I∆

(
∆1xi,k − Fi,k(t,p,x)

)2 , (A.7c)

si(x) = αi + βi

(
4
∑

k∈I∆\{1,nt}
(
xi,k− − 2xi,k + xi,k+

)2∑
k∈I∆\{1,nt}

(
xi,k+ − xi,k−

)2
)γi

, (A.7d)

for some data-dependent weights, wj,k, some interpolated data-dependent weights, ŵj,k, scaling

parameter σ̂, as discussed in Section 2.6.1, and smoothing-penalty parameters, αi > 0, βi ≥ 0,

and γi ≥ 0, as discussed in Section 2.4.1, where k− and k+ are the indices below and above k in

I∆.

A.2 Extensions to Systems of Partial Differential Equations

For simplicity in notation, I present a partial differential equation model with two independent

variables. Although, the method naturally extends to models with any finite number of

independent variables.

A partial differential equation model of some dynamic process in u and v, with nx states,

x1, x2, . . . , xnx , np parameters, p1, p2, . . . , pnp , and ny observable states, y1, y2, . . . , yny , is defined

by the system of equations,

Fi

(
u, v, p1, . . . , pnp , x1, . . . , xnx ,

∂x1

∂u
,
∂x1

∂v
,
∂2x1

∂2u
,
∂2x1

∂u∂v
, . . . ,

∂x2

∂u
,
∂x2

∂v
, . . .

)
= 0, (A.8a)

yj = gj
(
p1, p2, . . . , pnp , x1, x2, . . . , xnx

)
. (A.8b)

For some observed data values, y1,k,l, y2,k,l, . . . , yny ,k,l, measured at (uk, vl), for k ∈ {1, 2, . . . , nu}
and l ∈ {1, 2, . . . , nv}, I extend the method described for first order ordinary differential equation

models in Sections 2.2 and 2.6, to find the parameters p1, p2, . . . , pnp of the numerical solution to

the differential equation model with the observable state values that most closely approximate

the observed data, in some sense. As with first order ordinary differential equation models, once

103

A.2. Extensions to Systems of Partial Differential Equations

a numerical method is chosen, equation (A.8a) can be formulated into a method-dependent

system of equations for the discrete numerical solution values xi,k,l:

fi,k,l
(
u1, . . . , unu , v1, . . . , vnv , p1, . . . , pnp , x1,1,1, x2,1,1, . . . , xnx,nu,nv

)
=

fi,k,l(u,v,p,x) = 0, (A.9)

for all i ∈ {1, 2, . . . , nx} and for all (k, l) ∈ I∆u × I∆v , the index set of the numerical discretiza-

tion. Using some interpolation method, I generate interpolated data, ŷj,k,l for j ∈ {1, 2, . . . , ny},
at grid points with indices in Iŷu × Iŷv = I∆u \ {1, 2, . . . , nu} × I∆v \ {1, 2, . . . , nv} from

observed data values with indices in {1, 2, . . . , nu} × {1, 2, . . . , nv}. As with first order ordi-

nary differential equation models, I define the functionals ry(p,x), rŷ(p,x), and r∆x(p,x)

with the properties that (i) ry(p,x) ≥ 0, rŷ(p,x) ≥ 0, and r∆x(p,x) ≥ 0; (ii) ry(p,x) = 0

if and only if gj(p, x1,k,l, . . . , xnx,k,l) = yj,k,l for all j ∈ {1, 2, . . . , ny} and for all (k, l) ∈
{1, 2, . . . , nu}×{1, 2, . . . , nv}, rŷ(p,x) = 0 if and only if I∆u×I∆v = {1, 2, . . . , nu}×{1, 2, . . . , nv}
or gj(p, x1,k,l, . . . , xnx,k,l) = ŷj,k,l for all j ∈ {1, 2, . . . , ny} and for all (k, l) ∈ Iŷu × Iŷv ,

and r∆x(p,x) = 0 if and only if fi,k,l(u,v,p,x) = 0 for all i ∈ {1, 2, . . . , nx} and for all

(k, l) ∈ I∆u × I∆v ; and (iii) ry(p1,x1) < ry(p2,x2) implies that (p1,x1) gives a better fit to the

data than does (p2,x2), rŷ(p1,x1) < rŷ(p2,x2) implies that (p1,x1) gives a better fit to the

interpolated data than does (p2,x2), and r∆x(p1,x1) < r∆x(p2,x2) implies that (p1,x1) satisfies

the numerical solution method better than (p2,x2) does. Then, I combine ry(p,x), rŷ(p,x), and

r∆x(p,x) into the single functional r(p,x;λ) = (1− λ)ry(p,x) + (1− λ)2rŷ(p,x) + λr∆x(p,x).

I describe the construction of ry(p,x), rŷ(p,x), and r∆x(p,x) using a normalized least-squares

measure in Section A.2.1. As with first order ordinary differential equation models, mini-

mizing r(p,x;λ) as λ → 1− is equivalent to minimizing ry(p,x) subject to the constraints

fi,k,l(u,v,p,x) = 0 for all i ∈ {1, 2, . . . , nx} and for all (k, l) ∈ I∆u × I∆v , and finds the

parameters and state values of the optimal data-fitting numerical solution.

A.2.1 Defining ry(p,x), rŷ(p,x), and r∆x(p,x)

As with first order ordinary differential equation models, I consider systems of partial differential

equations that are linear in first derivatives of xi with respect to u,

∂xi
∂u

= F̄i

(
u, v, p1, . . . , pnp , x1, . . . , xnx ,

∂x1

∂v
,
∂2x1

∂2u
,
∂2x1

∂u∂v
, . . . ,

∂x2

∂v
, . . .

)
, (A.10)

for i ∈ {1, 2, . . . , nx}. In terms of Fi as defined in equation (A.8a),

Fi =
∂xi
∂u
− F̄i

(
u, v, p1, . . . , pnp , x1, . . . , xnx ,

∂x1

∂v
,
∂2x1

∂2u
,
∂2x1

∂u∂v
, . . . ,

∂x2

∂v
, . . .

)
, (A.11)

104

A.2. Extensions to Systems of Partial Differential Equations

for i ∈ {1, 2, . . . , nx}. Also, as with first order ordinary differential equation models, I consider

finite difference numerical methods, of the form

∆1,0xi,k,l =

Fi,k,l
({
F̄i(uk, vl,p, x1,k,l, . . . , xnx,k,l,∆

0,1x1,k,l,∆
2,0x1,k,l, . . .) : k, l ∈ I∆u , I∆v

})
= Fi,k,l(u,v,p,x), (A.12)

where xi,k,l are numerical solution values, ∆n,mxi,k,l is some method-dependent finite difference

discretization of ∂n+mxi
∂un∂vm at (uk, vl), and Fi,k,l are some method-dependent functions of F̄i at

(uk, vl), for all i ∈ {1, 2, . . . , nx} and for all (k, l) ∈ I∆u × I∆v . In terms fi,k,l as defined in

equation (A.9),

fi,k,l(u,v,p,x) = ∆1,0xi,k,l − Fi,k,l(u,v,p,x). (A.13)

Thus, using a normalized least-squares measure, as described for first order ordinary differential

equation models in Sections 2.3, 2.4.1, and 2.6.1,

ry(p,x) =

1

ny

ny∑
j=1

(
1∑nu

k=1

∑nv
l=1wj,k,ly

2
j,k,l

nu∑
k=1

nv∑
l=1

wj,k,l
(
yj,k,l − gj(p, x1,k,l, . . . , xnx,k,l)

)2)
, (A.14a)

rŷ(p,x) =

1

ny

ny∑
j=1

 σ̂∑
k∈Iŷu

∑
l∈Iŷv

ŵj,k,lŷ
2
j,k,l

∑
k∈Iŷu

∑
l∈Iŷv

ŵj,k,l
(
ŷj,k,l − gj(p, x1,k,l, . . . , xnx,k,l)

)2 ,

(A.14b)

r∆x(p,x) =

1

nx

nx∑
i=1

 sui (x) + svi (x)

2
∑

k∈I∆u

∑
l∈I∆v

(∆1,0xi,k,l)2

∑
k∈I∆u

∑
l∈I∆v

(
∆1,0xi,k,l − Fi,k,l(u,v,p,x)

)2 , (A.14c)

sui (x) = αi + βi

4
∑

k∈I∆u\{1,nu}
∑

l∈I∆v

(
xi,k−,l − 2xi,k,l + xi,k+,l

)2∑
k∈I∆u\{1,nu}

∑
l∈I∆v

(
xi,k+,l − xi,k−,l

)2
γi

, (A.14d)

svi (x) = αi + βi

4
∑

k∈I∆u

∑
l∈I∆v\{1,nv}

(
xi,k,l− − 2xi,k,l + xi,k,l+

)2∑
k∈I∆u

∑
l∈I∆v\{1,nv}

(
xi,k,l+ − xi,k,l−

)2
γi

, (A.14e)

for some data-dependent weights, wj,k,l, some interpolated data-dependent weights, ŵj,k,l, scaling

parameter σ̂, as discussed in Section 2.6.1, and smoothing-penalty parameters, αi > 0, βi ≥ 0,

and γi ≥ 0, as discussed in Section 2.4.1, where k− and k+ are the indices below and above k in

I∆u and l− and l+ are the indices below and above l in I∆v .

I note that under the linear indexing m = (k, l) ∈ I∆u × I∆v = I∆, with t = u × v and

105

A.2. Extensions to Systems of Partial Differential Equations

nt = nunv, r(p,x;λ) constructed from the functionals in equation (A.14) is equivalent in form

to r(p,x;λ) of equation (D.1). Thus, the computational complexity count from Section D.1

applies to descent on r(p,x;λ) with PDEs.

106

Appendix B

Properties of r(p,x;λ)

Here, I derive properties imposed on r(p,x;λ) by minimization. For λ ∈ (0, 1), the parameters

and state values that minimize r(p,x;λ), p̆λ and x̆λ, allow me to define functions, r̆(λ), r̆y(λ),

r̆ŷ(λ), and r̆∆x(λ), as follows:

r̆(λ) = (1− λ)r̆y(λ) + (1− λ)2r̆ŷ(λ) + λr̆∆x(λ) =

(1− λ)ry(p̆λ, x̆λ) + (1− λ)2rŷ(p̆λ, x̆λ) + λr∆x(p̆λ, x̆λ). (B.1)

For any λ ∈ (0, 1), no set of parameters and state values can further minimize r(p,x;λ). Thus,

for all λ ∈ (0, 1) and for all ε such that λ+ ε ∈ (0, 1),

r̆(λ) = (1− λ)r̆y(λ) + (1− λ)2r̆ŷ(λ) + λr̆∆x(λ) =

(1− λ)ry(p̆λ, x̆λ) + (1− λ)2rŷ(p̆λ, x̆λ) + λr∆x(p̆λ, x̆λ) ≤
(1− λ)ry(p̆λ+ε, x̆λ+ε) + (1− λ)2rŷ(p̆λ+ε, x̆λ+ε) + λr∆x(p̆λ+ε, x̆λ+ε) =

(1− λ)r̆y(λ+ ε) + (1− λ)2r̆ŷ(λ+ ε) + λr̆∆x(λ+ ε)

⇐⇒
(1− λ)r̆y(λ) + (1− λ)2r̆ŷ(λ) + λr̆∆x(λ) ≤

(1− λ)r̆y(λ+ ε) + (1− λ)2r̆ŷ(λ+ ε) + λr̆∆x(λ+ ε) (B.2)

and

r̆(λ+ ε) = (1− λ− ε)r̆y(λ+ ε) + (1− λ− ε)2r̆ŷ(λ+ ε) + (λ+ ε)r̆∆x(λ+ ε) =

(1− λ− ε)ry(p̆λ+ε, x̆λ+ε) + (1− λ− ε)2rŷ(p̆λ+ε, x̆λ+ε) + (λ+ ε)r∆x(p̆λ+ε, x̆λ+ε) ≤
(1− λ− ε)ry(p̆λ, x̆λ) + (1− λ− ε)2rŷ(p̆λ, x̆λ) + (λ+ ε)r∆x(p̆λ, x̆λ) =

(1− λ− ε)r̆y(λ) + (1− λ− ε)2r̆ŷ(λ) + (λ+ ε)r̆∆x(λ)

⇐⇒
(1− λ− ε)r̆y(λ+ ε) + (1− λ− ε)2r̆ŷ(λ+ ε) + (λ+ ε)r̆∆x(λ+ ε) ≤

(1− λ− ε)r̆y(λ) + (1− λ− ε)2r̆ŷ(λ) + (λ+ ε)r̆∆x(λ). (B.3)

From these relations, I can determine some properties of the imposed structure on r̆(λ).

107

B.1. Limiting Behavior of r̆(λ)

B.1 Limiting Behavior of r̆(λ)

Theorem 1.

lim
λ→0+

r̆(λ) = lim
λ→0+

min r(p,x;λ) = 0,

lim
λ→0+

p̆λ, x̆λ = arg min
(
r∆x(p,x) : ry(p,x) = 0, rŷ(p,x) = 0

)
,

lim
λ→1−

r̆(λ) = lim
λ→1−

min r(p,x;λ) = 0,

lim
λ→1−

p̆λ, x̆λ = arg min
(
ry(p,x) : r∆x(p,x) = 0

)
.

Proof. By construction, min (ry(p,x) + rŷ(p,x)) = 0, where observable state values match

observed data and interpolated data. Thus,

lim
λ→0+

r̆(λ) = lim
λ→0+

min r(p,x;λ) =

lim
λ→0+

min
(
(1− λ)ry(p,x) + (1− λ)2rŷ(p,x) + λr∆x(p,x)

)
=

min
(
ry(p,x) + rŷ(p,x)

)
= 0. (B.4)

Thus,

lim
λ→0+

arg min r(p,x;λ) ∈ {p,x : ry(p,x) + rŷ(p,x) = 0} =⇒

lim
λ→0+

arg min r(p,x;λ) ∈ {p,x : ry(p,x) = 0, rŷ(p,x) = 0}, (B.5)

which implies that

lim
λ→0+

p̆λ, x̆λ = lim
λ→0+

arg min r(p,x;λ) =

lim
λ→0+

arg min
(
r(p,x;λ) : ry(p,x) = 0, rŷ(p,x) = 0

)
=

lim
λ→0+

arg min
(
λr∆x(p,x) : ry(p,x) = 0, rŷ(p,x) = 0

)
=

lim
λ→0+

arg min
(
r∆x(p,x) : ry(p,x) = 0, rŷ(p,x) = 0

)
=

arg min
(
r∆x(p,x) : ry(p,x) = 0, rŷ(p,x) = 0

)
. (B.6)

By construction, min r∆x(p,x) = 0, where parameters and state values satisfy the chosen

numerical solution method. Thus,

lim
λ→1−

r̆(λ) = lim
λ→1−

min r(p,x;λ) =

lim
λ→1−

min
(
(1− λ)ry(p,x) + (1− λ)2rŷ(p,x) + λr∆x(p,x)

)
=

min r∆x(p,x) = 0. (B.7)

108

B.2. Continuity of r̆(λ)

Thus,

lim
λ→1−

arg min r(p,x;λ) ∈ {p,x : r∆x(p,x) = 0}, (B.8)

which implies that

lim
λ→1−

p̆λ, x̆λ = lim
λ→1−

arg min r(p,x;λ) =

lim
λ→1−

arg min
(
r(p,x;λ) : r∆x(p,x) = 0

)
=

lim
λ→1−

arg min
(
(1− λ)ry(p,x) + (1− λ)2rŷ(p,x) : r∆x(p,x) = 0

)
=

lim
λ→1−

arg min
(
ry(p,x) + (1− λ)rŷ(p,x) : r∆x(p,x) = 0

)
=

lim
λ→1−

arg min
(
ry(p,x) : r∆x(p,x) = 0

)
=

arg min
(
ry(p,x) : r∆x(p,x) = 0

)
. (B.9)

B.2 Continuity of r̆(λ)

Theorem 2. r̆(λ) is continuous for λ ∈ (0, 1).

Proof. From equation (B.3),

(1− λ)r̆y(λ+ ε) + (1− λ)2r̆ŷ(λ+ ε) + λr̆∆x(λ+ ε) ≤
(1− λ)r̆y(λ) + (1− λ)2r̆ŷ(λ) + λr̆∆x(λ) + ε

(
r̆y(λ+ ε)− r̆y(λ)

)
+

2ε(1− λ)
(
r̆ŷ(λ+ ε)− r̆ŷ(λ)

)
+ ε2

(
r̆ŷ(λ)− r̆ŷ(λ+ ε)

)
+ ε
(
r̆∆x(λ)− r̆∆x(λ+ ε)

)
, (B.10)

which, in conjunction with equation (B.2), implies that

(1− λ)r̆y(λ) + (1− λ)2r̆ŷ(λ) + λr̆∆x(λ) ≤
(1− λ)r̆y(λ+ ε) + (1− λ)2r̆ŷ(λ+ ε) + λr̆∆x(λ+ ε) ≤

(1− λ)r̆y(λ) + (1− λ)2r̆ŷ(λ) + λr̆∆x(λ) + ε
(
r̆y(λ+ ε)− r̆y(λ)

)
+

2ε(1− λ)
(
r̆ŷ(λ+ ε)− r̆ŷ(λ)

)
+ ε2

(
r̆ŷ(λ)− r̆ŷ(λ+ ε)

)
+ ε
(
r̆∆x(λ)− r̆∆x(λ+ ε)

)
, (B.11)

109

B.3. Differentiability of r̆(λ)

for all λ ∈ (0, 1) and for all ε such that λ+ ε ∈ (0, 1). Thus,

r̆(λ) = lim
ε→0

(
(1− λ)r̆y(λ) + (1− λ)2r̆ŷ(λ) + λr̆∆x(λ)

)
≤

lim
ε→0

(
(1− λ)r̆y(λ+ ε) + (1− λ)2r̆ŷ(λ+ ε) + λr̆∆x(λ+ ε)

)
=

lim
ε→0

(
(1− λ− ε)r̆y(λ+ ε) + (1− λ− ε)2r̆ŷ(λ+ ε) + (λ+ ε)r̆∆x(λ+ ε)

)
=

lim
ε→0

r̆(λ+ ε) ≤

lim
ε→0

(
(1− λ)r̆y(λ) + (1− λ)2r̆ŷ(λ) + λr̆∆x(λ) + ε

(
r̆y(λ+ ε)− r̆y(λ)

)
+

2ε(1− λ)
(
r̆ŷ(λ+ ε)− r̆ŷ(λ)

)
+ ε2

(
r̆ŷ(λ)− r̆ŷ(λ+ ε)

)
+ ε
(
r̆∆x(λ)− r̆∆x(λ+ ε)

))
= (1− λ)r̆y(λ) + (1− λ)2r̆ŷ(λ) + λr̆∆x(λ) = r̆(λ), (B.12)

which implies that

lim
ε→0

r̆(λ+ ε) = r̆(λ). (B.13)

Therefore, r̆(λ) is continuous for λ ∈ (0, 1).

B.3 Differentiability of r̆(λ)

Theorem 3. For λ ∈ (0, 1) such that r̆y(λ), r̆ŷ(λ), and r̆∆x(λ) are differentiable,

(1− λ)
dr̆y(λ)

dλ
+ (1− λ)2dr̆ŷ(λ)

dλ
+ λ

dr̆∆x(λ)

dλ
= 0,

and

dr̆(λ)

dλ
= r̆∆x(λ)− r̆y(λ)− 2(1− λ)r̆ŷ(λ).

Proof. From Equations (B.2) and (B.3), for all λ ∈ (0, 1) and for all ε such that λ+ ε ∈ (0, 1),

λ
(
r̆∆x(λ)− r̆∆x(λ+ ε)

)
≤

(1− λ)
(
r̆y(λ+ ε)− r̆y(λ)

)
+ (1− λ)2

(
r̆ŷ(λ+ ε)− r̆ŷ(λ)

)
, (B.14a)

(1− λ)
(
r̆y(λ+ ε)− r̆y(λ)

)
+ (1− λ)2

(
r̆ŷ(λ+ ε)− r̆ŷ(λ)

)
≤

λ
(
r̆∆x(λ)− r̆∆x(λ+ ε)

)
+ ε
(
r̆y(λ+ ε)− r̆y(λ)

)
+ 2ε(1− λ)

(
r̆ŷ(λ+ ε)− r̆ŷ(λ)

)
+

ε2
(
r̆ŷ(λ)− r̆ŷ(λ+ ε)

)
+ ε
(
r̆∆x(λ)− r̆∆x(λ+ ε)

)
, (B.14b)

110

B.3. Differentiability of r̆(λ)

which implies that

λ
(
r̆∆x(λ)− r̆∆x(λ+ ε)

)
≤

(1− λ)
(
r̆y(λ+ ε)− r̆y(λ)

)
+ (1− λ)2

(
r̆ŷ(λ+ ε)− r̆ŷ(λ)

)
≤

λ
(
r̆∆x(λ)− r̆∆x(λ+ ε)

)
+ ε
(
r̆y(λ+ ε)− r̆y(λ)

)
+ 2ε(1− λ)

(
r̆ŷ(λ+ ε)− r̆ŷ(λ)

)
+

ε2
(
r̆ŷ(λ)− r̆ŷ(λ+ ε)

)
+ ε
(
r̆∆x(λ)− r̆∆x(λ+ ε)

)
. (B.15)

Thus, for ε > 0,

λ
r̆∆x(λ)− r̆∆x(λ+ ε)

ε
≤

(1− λ)
r̆y(λ+ ε)− r̆y(λ)

ε
+ (1− λ)2 r̆ŷ(λ+ ε)− r̆ŷ(λ)

ε
≤

λ
r̆∆x(λ)− r̆∆x(λ+ ε)

ε
+
(
r̆y(λ+ ε)− r̆y(λ)

)
+ 2(1− λ)

(
r̆ŷ(λ+ ε)− r̆ŷ(λ)

)
+

ε
(
r̆ŷ(λ)− r̆ŷ(λ+ ε)

)
+
(
r̆∆x(λ)− r̆∆x(λ+ ε)

)
. (B.16)

For λ where r̆y(λ), r̆ŷ(λ), and r̆∆x(λ) are differentiable, and thus also continuous, relation (B.16)

implies that

−λdr̆∆x(λ)

dλ
= lim

ε→0+

(
λ
r̆∆x(λ)− r̆∆x(λ+ ε)

ε

)
≤

lim
ε→0+

(
(1− λ)

r̆y(λ+ ε)− r̆y(λ)

ε
+ (1− λ)2 r̆ŷ(λ+ ε)− r̆ŷ(λ)

ε

)
=

(1− λ)
dr̆y(λ)

dλ
+ (1− λ)2dr̆ŷ(λ)

dλ
≤

lim
ε→0+

(
λ
r̆∆x(λ)− r̆∆x(λ+ ε)

ε
+
(
r̆y(λ+ ε)− r̆y(λ)

)
+ 2(1− λ)

(
r̆ŷ(λ+ ε)− r̆ŷ(λ)

)
+ε
(
r̆ŷ(λ)− r̆ŷ(λ+ ε)

)
+
(
r̆∆x(λ)− r̆∆x(λ+ ε)

))
= −λdr̆∆x(λ)

dλ
, (B.17)

which implies that where r̆y(λ), r̆ŷ(λ), and r̆∆x(λ) are differentiable,

−λdr̆∆x(λ)

dλ
= (1− λ)

dr̆y(λ)

dλ
+ (1− λ)2dr̆ŷ(λ)

dλ
. (B.18)

r̆(λ) is differentiable where r̆y(λ), r̆ŷ(λ), and r̆∆x(λ) are differentiable, with value,

dr̆(λ)

dλ
= (1− λ)

dr̆y(λ)

dλ
+ (1− λ)2dr̆ŷ(λ)

dλ
+ λ

dr̆∆x(λ)

dλ
−

r̆y(λ)− 2(1− λ)r̆ŷ(λ) + r̆∆x(λ), (B.19)

111

B.4. Conservation in r̆y(λ)

which, in conjunction with equation (B.18), implies that

dr̆(λ)

dλ
= r̆∆x(λ)− r̆y(λ)− 2(1− λ)r̆ŷ(λ). (B.20)

B.4 Conservation in r̆y(λ)

Theorem 4. If r̆y(λ), r̆ŷ(λ), and r̆∆x(λ) are differentiable at all but a finite number of points

in (0, 1), then

2

∫ 1

0
r̆(λ)dλ =

∫ 1

0
r̆y(λ)dλ+

∫ 1

0
(1− λ2)r̆ŷ(λ)dλ =∫ 1

0
r̆∆x(λ)dλ−

∫ 1

0
(1− λ)2r̆ŷ(λ)dλ.

Proof. On any open interval (a, b) ∈ (0, 1) over which r̆y(λ), r̆ŷ(λ), and r̆∆x(λ) are differentiable,

and thus where r̆(λ) is differentiable, from equation (B.20), the fundamental theorem of calculus,

and continuity of r̆(λ) by Theorem 2,

lim
ε→0+

(∫ b−ε

a+ε

dr̆(λ)

dλ
dλ

)
= lim

ε→0+

(∫ b−ε

a+ε
r̆∆x(λ)− r̆y(λ)− 2(1− λ)r̆ŷ(λ)dλ

)
=⇒

lim
ε→0+

(
r̆(λ)

∣∣∣b−ε
a+ε

)
= lim

ε→0+

(∫ b−ε

a+ε
r̆∆x(λ)− r̆y(λ)− 2(1− λ)r̆ŷ(λ)dλ

)
=⇒

r̆(b)− r̆(a) =

∫ b

a
r̆∆x(λ)− r̆y(λ)− 2(1− λ)r̆ŷ(λ)dλ. (B.21)

Assuming that r̆y(λ), r̆ŷ(λ), and r̆∆x(λ) are differentiable at all but a finite number of points,

λ̂1 < λ̂2 < · · · < λ̂n̂, then from equation (B.21),

lim
ε→0+

(
r̆(λ̂1)− r̆(ε) +

n̂∑
i=2

(
r̆(λ̂i)− r̆(λ̂i−1)

)
+ r̆(1− ε)− r̆(λ̂n̂)

)
=

lim
ε→0+

(∫ λ̂1

ε
r̆∆x(λ)− r̆y(λ)− 2(1− λ)r̆ŷ(λ)dλ+

n̂∑
i=2

∫ λ̂i

λ̂i−1

r̆∆x(λ)− r̆y(λ)− 2(1− λ)r̆ŷ(λ)dλ+∫ 1−ε

λ̂n̂

r̆∆x(λ)− r̆y(λ)− 2(1− λ)r̆ŷ(λ)dλ

)
=⇒

lim
ε→0+

(
r̆(1− ε)− r̆(ε)

)
= lim

ε→0+

(∫ 1−ε

ε
r̆∆x(λ)− r̆y(λ)− 2(1− λ)r̆ŷ(λ)dλ

)
, (B.22)

112

B.4. Conservation in r̆y(λ)

which, in conjunction with Equations (B.4) and (B.7), imply that

0 =

∫ 1

0
r̆∆x(λ)− r̆y(λ)− 2(1− λ)r̆ŷ(λ)dλ ⇐⇒∫ 1

0
r̆y(λ)dλ+ 2

∫ 1

0
(1− λ)r̆ŷ(λ)dλ =

∫ 1

0
r̆∆x(λ)dλ. (B.23)

Equation (B.23) defines the conserved quantity in the minimum deformation from data to the

best fitting numerical solution. Additionally,∫ 1

0
r̆(λ) =

∫ 1

0
(1− λ)r̆y(λ) + (1− λ)2r̆ŷ(λ) + λr̆∆x(λ)dλ =∫ 1

0
r̆y(λ) + (1− λ2)r̆ŷ(λ)dλ+

∫ 1

0
λ
(
r̆∆x(λ)− r̆y(λ)− 2(1− λ)r̆ŷ(λ)

)
dλ. (B.24)

On any open interval (a, b) ∈ (0, 1) over which r̆y(λ), r̆ŷ(λ), and r̆∆x(λ) are differentiable, and

thus where r̆(λ) is differentiable, from equation (B.20), integration by parts, and continuity of

r̆(λ) by Theorem 2, ∫ b

a
λ
(
r̆∆x(λ)− r̆y(λ)− 2(1− λ)r̆ŷ(λ)

)
dλ =

lim
ε→0+

(∫ b−ε

a+ε
λ
(
r̆∆x(λ)− r̆y(λ)− 2(1− λ)r̆ŷ(λ)

)
dλ

)
=

lim
ε→0+

(∫ b−ε

a+ε
λ
dr̆(λ)

dλ
dλ

)
= lim

ε→0+

(
λr̆(λ)

∣∣∣b−ε
a+ε
−
∫ b−ε

a+ε
r̆(λ)dλ

)
=

br̆(b)− ar̆(a)−
∫ b

a
r̆(λ)dλ. (B.25)

Assuming that r̆y(λ), r̆ŷ(λ), and r̆∆x(λ) are differentiable, and thus r̆(λ) is differentiable, at all

113

B.4. Conservation in r̆y(λ)

but a finite number of points, λ̂1 < λ̂2 < · · · < λ̂n̂, then, from equation (B.25),∫ 1

0
λ
(
r̆∆x(λ)− r̆y(λ)− 2(1− λ)r̆ŷ(λ)

)
dλ =

lim
ε→0+

(∫ 1−ε

ε
λ
(
r̆∆x(λ)− r̆y(λ)− 2(1− λ)r̆ŷ(λ)

)
dλ

)
=

lim
ε→0+

(∫ λ̂1

ε
λ
(
r̆∆x(λ)− r̆y(λ)− 2(1− λ)r̆ŷ(λ)

)
dλ+

n̂∑
i=2

∫ λ̂i

λ̂i−1

λ
(
r̆∆x(λ)− r̆y(λ)− 2(1− λ)r̆ŷ(λ)

)
dλ+∫ 1−ε

λ̂n̂

λ
(
r̆∆x(λ)− r̆y(λ)− 2(1− λ)r̆ŷ(λ)

)
dλ

)
=

lim
ε→0+

(
λ̂1r̆(λ̂1)− εr̆(ε)−

∫ λ̂1

ε
r̆(λ)dλ+

n̂∑
i=2

(
λ̂ir̆(λ̂i)− λ̂i−1r̆(λ̂i−1)−

∫ λ̂i

λ̂i−1

r̆(λ)dλ

)
+

(1− ε)r̆(1− ε)− λ̂n̂r̆(λ̂n̂)−
∫ 1−ε

λ̂n̂

r̆(λ)dλ

)
=

lim
ε→0+

(
(1− ε)r̆(1− ε)− εr̆(ε)−

∫ 1−ε

ε
r̆(λ)dλ

)
= −

∫ 1

0
r̆(λ)dλ, (B.26)

as, from equation (B.7), limλ→1− r̆(λ) = 0. Therefore, from Equations (B.24) and (B.26),∫ 1

0
r̆(λ)dλ =

∫ 1

0
r̆y(λ)dλ+

∫ 1

0
(1− λ2)r̆ŷ(λ)dλ−

∫ 1

0
r̆(λ)dλ =⇒

2

∫ 1

0
r̆(λ)dλ =

∫ 1

0
r̆y(λ)dλ+

∫ 1

0
(1− λ2)r̆ŷ(λ)dλ, (B.27)

which, in conjunction with equation (B.23), implies that

2

∫ 1

0
r̆(λ)dλ =

∫ 1

0
r̆y(λ)dλ+

∫ 1

0
(1− λ2)r̆ŷ(λ)dλ =∫ 1

0
r̆∆x(λ)dλ− 2

∫ 1

0
(1− λ)r̆ŷ(λ)dλ+

∫ 1

0
(1− λ2)r̆ŷ(λ)dλ ⇐⇒

2

∫ 1

0
r̆(λ)dλ =

∫ 1

0
r̆y(λ)dλ+

∫ 1

0
(1− λ2)r̆ŷ(λ)dλ =∫ 1

0
r̆∆x(λ)dλ−

∫ 1

0
(1− λ)2r̆ŷ(λ)dλ. (B.28)

I note, when r̆ŷ(λ) = 0, equation (B.28) implies that

2

∫ 1

0
r̆(λ)dλ =

∫ 1

0
r̆y(λ)dλ =

∫ 1

0
r̆∆x(λ)dλ. (B.29)

114

B.5. Integral Representations of Limit Values

B.5 Integral Representations of Limit Values

Theorem 5. If r̆y(λ), r̆ŷ(λ), and r̆∆x(λ) are differentiable at all but a finite number of points

in (0, 1), then

lim
λ→0+

r̆∆x(λ) =

∫ 1

0

1

λ2
r̆y(λ)dλ+

∫ 1

0

1− λ2

λ2
r̆ŷ(λ)dλ,

lim
λ→1−

r̆y(λ) =

∫ 1

0

1

(1− λ)2
r̆∆x(λ)dλ−

∫ 1

0
r̆ŷ(λ)dλ.

Proof. From equation (B.18), where r̆y(λ) and r̆∆x(λ) are differentiable,

dr̆∆x(λ)

dλ
= −1− λ

λ

dr̆y(λ)

dλ
− (1− λ)2

λ

dr̆ŷ(λ)

dλ
, (B.30)

Assuming that r̆∆x(λ) is differentiable at all but possibly a finite number of points, λ̂1 < λ̂2 <

· · · < λ̂n̂, then, from the fundamental theorem of calculus,∫ 1

0

dr̆∆x(λ)

dλ
dλ = lim

ε→0+

(∫ 1−ε

ε

dr̆∆x(λ)

dλ
dλ

)
=

lim
ε→0+

(∫ λ̂1−ε

ε

dr̆∆x(λ)

dλ
dλ+

n̂∑
i=2

∫ λ̂i−ε

λ̂i−1+ε

dr̆∆x(λ)

dλ
dλ+

∫ 1−ε

λ̂n̂+ε

dr̆∆x(λ)

dλ
dλ

)
=

lim
ε→0+

(
r̆∆x(λ)

∣∣∣λ̂1−ε

ε
+

n̂∑
i=2

(
r̆∆x(λ)

∣∣∣λ̂i−ε
λ̂i−1+ε

)
+ r̆∆x(λ)

∣∣∣1−ε
λ̂n̂+ε

)
=

lim
ε→0+

(
−r̆∆x(ε)−

n̂∑
i=1

(
r̆∆x(λ)

∣∣∣λ̂i+ε
λ̂i−ε

)
+ r̆∆x(1− ε)

)
, (B.31)

which, as limλ→1− r̆∆x(λ) = 0 (B.7), implies that

∫ 1

0

dr̆∆x(λ)

dλ
dλ = − lim

λ→0+
r̆∆x(λ)−

n̂∑
i=1

lim
ε→0+

(
r̆∆x(λ)

∣∣∣λ̂i+ε
λ̂i−ε

)
. (B.32)

Assuming that r̆y(λ) is differentiable at all but possibly a finite number of points, λ̂1 < λ̂2 <

115

B.5. Integral Representations of Limit Values

· · · < λ̂n̂, then, from integration by parts,

−
∫ 1

0

1− λ
λ

dr̆y(λ)

dλ
dλ = − lim

ε→0+

(∫ 1−ε

ε

1− λ
λ

dr̆y(λ)

dλ
dλ

)
=

− lim
ε→0+

(∫ λ̂1−ε

ε

1− λ
λ

dr̆y(λ)

dλ
dλ+

n̂∑
i=2

∫ λ̂i−ε

λ̂i−1+ε

1− λ
λ

dr̆y(λ)

dλ
dλ+∫ 1−ε

λ̂n̂+ε

1− λ
λ

dr̆y(λ)

dλ
dλ

)
=

− lim
ε→0+

(
1− λ
λ

r̆y(λ)
∣∣∣λ̂1−ε

ε
+

∫ λ̂1−ε

ε

1

λ2
r̆y(λ)dλ+

n̂∑
i=2

(
1− λ
λ

r̆y(λ)
∣∣∣λ̂i−ε
λ̂i−1+ε

+

∫ λ̂i−ε

λ̂i−1+ε

1

λ2
r̆y(λ)dλ

)
+

1− λ
λ

r̆y(λ)
∣∣∣1−ε
λ̂n̂+ε

+

∫ 1−ε

λ̂n̂+ε

1

λ2
r̆y(λ)dλ

)
=

lim
ε→0+

(
1− ε
ε

r̆y(ε)

)
− lim
ε→0+

(
ε

1− ε r̆y(1− ε)
)

+

n̂∑
i=1

lim
ε→0+

(
1− λ
λ

r̆y(λ)
∣∣∣λ̂i+ε
λ̂i−ε

)
−
∫ 1

0

1

λ2
r̆y(λ)dλ =

lim
ε→0+

(
1− ε
ε

r̆y(ε)

)
+

n̂∑
i=1

lim
ε→0+

(
1− λ
λ

r̆y(λ)
∣∣∣λ̂i+ε
λ̂i−ε

)
−
∫ 1

0

1

λ2
r̆y(λ)dλ. (B.33)

As limλ→0+ r̆y(λ) = 0 (B.4), from L’Hôpital’s rule,

lim
ε→0+

(
1− ε
ε

r̆y(ε)

)
= lim

λ→0+

(
1− λ
λ

r̆y(λ)

)
= lim

λ→0+

(
(1− λ)

dr̆y(λ)

dλ
− r̆y(λ)

)
=

lim
λ→0+

dr̆y(λ)

dλ
. (B.34)

From equation (B.18),

0 = lim
λ→0+

(
−λdr̆∆x(λ)

dλ

)
= lim

λ→0+

(
(1− λ)

dr̆y(λ)

dλ
+ (1− λ)2dr̆ŷ(λ)

dλ

)
=

lim
λ→0+

dr̆y(λ)

dλ
+ lim
λ→0+

dr̆ŷ(λ)

dλ
. (B.35)

By construction, r̆y(λ) ≥ 0 and r̆ŷ(λ) ≥ 0, ∀λ ∈ (0, 1); from equation (B.4), limλ→0+ r̆y(λ) = 0

and limλ→0+ r̆ŷ(λ) = 0. Thus, by L’Hôpital’s rule,

0 ≤ r̆y(λ)

λ
=⇒ 0 ≤ lim

λ→0+

r̆y(λ)

λ
= lim

λ→0+

dr̆y(λ)

dλ
(B.36a)

0 ≤ r̆ŷ(λ)

λ
=⇒ 0 ≤ lim

λ→0+

r̆ŷ(λ)

λ
= lim

λ→0+

dr̆ŷ(λ)

dλ
, (B.36b)

116

B.5. Integral Representations of Limit Values

which, in conjunction with equation (B.35), implies that

lim
λ→0+

dr̆y(λ)

dλ
= 0 (B.37a)

lim
λ→0+

dr̆ŷ(λ)

dλ
= 0. (B.37b)

Equations (B.34) and (B.37a) imply that

lim
ε→0+

(
1− ε
ε

r̆y(ε)

)
= 0, (B.38)

which, in conjunction with equation (B.33), implies that

−
∫ 1

0

1− λ
λ

dr̆y(λ)

dλ
dλ =

n̂∑
i=1

lim
ε→0+

(
1− λ
λ

r̆y(λ)
∣∣∣λ̂i+ε
λ̂i−ε

)
−
∫ 1

0

1

λ2
r̆y(λ)dλ. (B.39)

Assuming that r̆ŷ(λ) is differentiable at all but possibly a finite number of points, λ̂1 < λ̂2 <

· · · < λ̂n̂, then, from integration by parts,

−
∫ 1

0

(1− λ)2

λ

dr̆ŷ(λ)

dλ
dλ = − lim

ε→0+

(∫ 1−ε

ε

(1− λ)2

λ

dr̆ŷ(λ)

dλ
dλ

)
=

− lim
ε→0+

(∫ λ̂1−ε

ε

(1− λ)2

λ

dr̆ŷ(λ)

dλ
dλ+

n̂∑
i=2

∫ λ̂i−ε

λ̂i−1+ε

(1− λ)2

λ

dr̆ŷ(λ)

dλ
dλ+∫ 1−ε

λ̂n̂+ε

(1− λ)2

λ

dr̆ŷ(λ)

dλ
dλ

)
=

− lim
ε→0+

(
(1− λ)2

λ
r̆ŷ(λ)

∣∣∣λ̂1−ε

ε
+

∫ λ̂1−ε

ε

1− λ2

λ2
r̆ŷ(λ)dλ+

n̂∑
i=2

(
(1− λ)2

λ
r̆ŷ(λ)

∣∣∣λ̂i−ε
λ̂i−1+ε

+

∫ λ̂i−ε

λ̂i−1+ε

1− λ2

λ2
r̆ŷ(λ)dλ

)
+

(1− λ)2

λ
r̆ŷ(λ)

∣∣∣1−ε
λ̂n̂+ε

+

∫ 1−ε

λ̂n̂+ε

1− λ2

λ2
r̆ŷ(λ)dλ

)
=

lim
ε→0+

(
(1− ε)2

ε
r̆ŷ(ε)

)
− lim
ε→0+

(
ε2

1− ε r̆ŷ(1− ε)
)

+

n̂∑
i=1

lim
ε→0+

(
(1− λ)2

λ
r̆ŷ(λ)

∣∣∣λ̂i+ε
λ̂i−ε

)
−
∫ 1

0

1− λ2

λ2
r̆ŷ(λ)dλ =

lim
ε→0+

(
(1− ε)2

ε
r̆ŷ(ε)

)
+

n̂∑
i=1

lim
ε→0+

(
(1− λ)2

λ
r̆ŷ(λ)

∣∣∣λ̂i+ε
λ̂i−ε

)
−
∫ 1

0

1− λ2

λ2
r̆ŷ(λ)dλ. (B.40)

117

B.5. Integral Representations of Limit Values

From L’Hôpital’s rule, as limλ→0+ r̆ŷ(λ) = 0 (B.4), and from equation (B.37b),

lim
ε→0+

(
(1− ε)2

ε
r̆ŷ(ε)

)
= lim

λ→0+

(
(1− λ)2

λ
r̆ŷ(λ)

)
=

lim
λ→0+

(
(1− λ)2dr̆ŷ(λ)

dλ
− 2(1− λ)r̆ŷ(λ)

)
= lim

λ→0+

dr̆ŷ(λ)

dλ
= 0, (B.41)

which, in conjunction with equation (B.40), implies that

−
∫ 1

0

(1− λ)2

λ

dr̆ŷ(λ)

dλ
dλ =

n̂∑
i=1

lim
ε→0+

(
(1− λ)2

λ
r̆ŷ(λ)

∣∣∣λ̂i+ε
λ̂i−ε

)
−
∫ 1

0

1− λ2

λ2
r̆ŷ(λ)dλ. (B.42)

From equation (B.15), for all λ ∈ (0, 1) and for all ε such that λ+ ε ∈ (0, 1),

0 ≤ (1− λ)
(
r̆y(λ+ ε)− r̆y(λ)

)
+

(1− λ)2
(
r̆ŷ(λ+ ε)− r̆ŷ(λ)

)
+ λ

(
r̆∆x(λ+ ε)− r̆∆x(λ)

)
≤

ε
(
r̆y(λ+ ε)− r̆y(λ)

)
+ 2ε(1− λ)

(
r̆ŷ(λ+ ε)− r̆ŷ(λ)

)
+

ε2
(
r̆ŷ(λ)− r̆ŷ(λ+ ε)

)
+ ε
(
r̆∆x(λ)− r̆∆x(λ+ ε)

)
. (B.43)

Thus, for all λ ∈ (0, 1),

0 = lim
ε→0

0 ≤ lim
ε→0

(
(1− λ)

(
r̆y(λ+ ε)− r̆y(λ)

)
+

(1− λ)2
(
r̆ŷ(λ+ ε)− r̆ŷ(λ)

)
+ λ
(
r̆∆x(λ+ ε)− r̆∆x(λ)

))
≤

lim
ε→0

(
ε
(
r̆y(λ+ ε)− r̆y(λ)

)
+ 2ε(1− λ)

(
r̆ŷ(λ+ ε)− r̆ŷ(λ)

)
+

ε2
(
r̆ŷ(λ)− r̆ŷ(λ+ ε)

)
+ ε
(
r̆∆x(λ)− r̆∆x(λ+ ε)

))
= 0 =⇒

lim
ε→0

(
(1− λ)

(
r̆y(λ+ ε)− r̆y(λ)

)
+ (1− λ)2

(
r̆ŷ(λ+ ε)− r̆ŷ(λ)

)
+

λ
(
r̆∆x(λ+ ε)− r̆∆x(λ)

))
= 0 ⇐⇒

lim
ε→0±

(
(1− λ)

(
r̆y(λ+ ε)− r̆y(λ)

)
+ (1− λ)2

(
r̆ŷ(λ+ ε)− r̆ŷ(λ)

)
+

λ
(
r̆∆x(λ+ ε)− r̆∆x(λ)

))
= 0 =⇒

(1− λ) lim
ε→0±

(
r̆y(λ+ ε)− r̆y(λ)

)
+ (1− λ)2 lim

ε→0±

(
r̆ŷ(λ+ ε)− r̆ŷ(λ)

)
+

λ lim
ε→0±

(
r̆∆x(λ+ ε)− r̆∆x(λ)

)
= 0, (B.44)

118

B.5. Integral Representations of Limit Values

and consequently, for all λ ∈ (0, 1),

(1− λ) lim
ε→0+

(
r̆y(λ+ ε)− r̆y(λ− ε)

)
+

(1− λ)2 lim
ε→0+

(
r̆ŷ(λ+ ε)− r̆ŷ(λ− ε)

)
+

λ lim
ε→0+

(
r̆∆x(λ+ ε)− r̆∆x(λ− ε)

)
=

(1− λ) lim
ε→0+

(
r̆y(λ+ ε)− r̆y(λ) + r̆y(λ)− r̆y(λ− ε)

)
+

(1− λ)2 lim
ε→0+

(
r̆ŷ(λ+ ε)− r̆ŷ(λ) + r̆ŷ(λ)− r̆ŷ(λ− ε)

)
+

λ lim
ε→0+

(
r̆∆x(λ+ ε)− r̆∆x(λ) + r̆∆x(λ)− r̆∆x(λ− ε)

)
=

(1− λ) lim
ε→0+

(
r̆y(λ+ ε)− r̆y(λ)

)
+ (1− λ) lim

ε→0+

(
r̆y(λ)− r̆y(λ− ε)

)
+

(1− λ)2 lim
ε→0+

(
r̆ŷ(λ+ ε)− r̆ŷ(λ)

)
+ (1− λ)2 lim

ε→0+

(
r̆ŷ(λ)− r̆ŷ(λ− ε)

)
+

λ lim
ε→0+

(
r̆∆x(λ+ ε)− r̆∆x(λ)

)
+ λ lim

ε→0+

(
r̆∆x(λ)− r̆∆x(λ− ε)

)
=

(1− λ) lim
ε→0+

(
r̆y(λ+ ε)− r̆y(λ)

)
+ (1− λ) lim

ε→0−

(
r̆y(λ)− r̆y(λ+ ε)

)
+

(1− λ)2 lim
ε→0+

(
r̆ŷ(λ+ ε)− r̆ŷ(λ)

)
+ (1− λ)2 lim

ε→0−

(
r̆ŷ(λ)− r̆ŷ(λ+ ε)

)
+

λ lim
ε→0+

(
r̆∆x(λ+ ε)− r̆∆x(λ)

)
+ λ lim

ε→0−

(
r̆∆x(λ)− r̆∆x(λ+ ε)

)
=(

(1− λ) lim
ε→0+

(
r̆y(λ+ ε)− r̆y(λ)

)
+ (1− λ)2 lim

ε→0+

(
r̆ŷ(λ+ ε)− r̆ŷ(λ)

)
+

λ lim
ε→0+

(
r̆∆x(λ+ ε)− r̆∆x(λ)

))
−(

(1− λ) lim
ε→0−

(
r̆y(λ+ ε)− r̆y(λ)

)
+ (1− λ)2 lim

ε→0−

(
r̆ŷ(λ+ ε)− r̆ŷ(λ)

)
+

λ lim
ε→0−

(
r̆∆x(λ+ ε)− r̆∆x(λ)

))
= 0− 0 = 0 ⇐⇒

(1− λ) lim
ε→0+

(
r̆y(λ+ ε)− r̆y(λ− ε)

)
+ (1− λ)2 lim

ε→0+

(
r̆ŷ(λ+ ε)− r̆ŷ(λ− ε)

)
+

λ lim
ε→0+

(
r̆∆x(λ+ ε)− r̆∆x(λ− ε)

)
= 0. (B.45)

Assuming that r̆y(λ), r̆ŷ(λ), and r̆∆x(λ) are differentiable at all but a finite number of points,

λ̂1 < λ̂2 < · · · < λ̂n̂, then, from equation (B.30),∫ 1

0

dr̆∆x(λ)

dλ
dλ = −

∫ 1

0

1− λ
λ

dr̆y(λ)

dλ
dλ−

∫ 1

0

(1− λ)2

λ

dr̆ŷ(λ)

dλ
dλ, (B.46)

119

B.5. Integral Representations of Limit Values

which, in conjunction with Equations (B.32), (B.39), and (B.42) implies that

− lim
λ→0+

r̆∆x(λ)−
n̂∑
i=1

lim
ε→0+

(
r̆∆x(λ)

∣∣∣λ̂i+ε
λ̂i−ε

)
=

n̂∑
i=1

lim
ε→0+

(
1− λ
λ

r̆y(λ)
∣∣∣λ̂i+ε
λ̂i−ε

)
−
∫ 1

0

1

λ2
r̆y(λ)dλ+

n̂∑
i=1

lim
ε→0+

(
(1− λ)2

λ
r̆ŷ(λ)

∣∣∣λ̂i+ε
λ̂i−ε

)
−
∫ 1

0

1− λ2

λ2
r̆ŷ(λ)dλ. (B.47)

From equation (B.45), for λ̂ ∈ (0, 1),

lim
ε→0+

(
1− λ
λ

r̆y(λ)
∣∣∣λ̂+ε

λ̂−ε

)
+ lim
ε→0+

(
(1− λ)2

λ
r̆ŷ(λ)

∣∣∣λ̂+ε

λ̂−ε

)
=

1− λ̂
λ̂

lim
ε→0+

(
r̆y(λ)

∣∣∣λ̂+ε

λ̂−ε

)
+

(1− λ̂)2

λ̂
lim
ε→0+

(
r̆ŷ(λ)

∣∣∣λ̂+ε

λ̂−ε

)
= − lim

ε→0+

(
r̆∆x(λ)

∣∣∣λ̂+ε

λ̂−ε

)
, (B.48)

which, in conjunction with equation (B.47), implies that

− lim
λ→0+

r̆∆x(λ)−
n̂∑
i=1

lim
ε→0+

(
r̆∆x(λ)

∣∣∣λ̂i+ε
λ̂i−ε

)
=

−
n̂∑
i=1

lim
ε→0+

(
r̆∆x(λ)

∣∣∣λ̂i+ε
λ̂i−ε

)
−
∫ 1

0

1

λ2
r̆y(λ)dλ−

∫ 1

0

1− λ2

λ2
r̆ŷ(λ)dλ =⇒

lim
λ→0+

r̆∆x(λ) =

∫ 1

0

1

λ2
r̆y(λ)dλ+

∫ 1

0

1− λ2

λ2
r̆ŷ(λ)dλ. (B.49)

Similarly, from equation (B.18), where r̆y(λ), r̆ŷ(λ), and r̆∆x(λ) are differentiable,

dr̆y(λ)

dλ
= − λ

1− λ
dr̆∆x(λ)

dλ
− (1− λ)

dr̆ŷ(λ)

dλ
. (B.50)

Assuming that r̆y(λ) is differentiable at all but possibly a finite number of points, λ̂1 < λ̂2 <

· · · < λ̂n̂, then, from the fundamental theorem of calculus,∫ 1

0

dr̆y(λ)

dλ
dλ = lim

ε→0+

(∫ 1−ε

ε

dr̆y(λ)

dλ
dλ

)
=

lim
ε→0+

(∫ λ̂1−ε

ε

dr̆y(λ)

dλ
dλ+

n̂∑
i=2

∫ λ̂i−ε

λ̂i−1+ε

dr̆y(λ)

dλ
dλ+

∫ 1−ε

λ̂n̂+ε

dr̆y(λ)

dλ
dλ

)
=

lim
ε→0+

(
r̆y(λ)

∣∣∣λ̂1−ε

ε
+

n̂∑
i=2

(
r̆y(λ)

∣∣∣λ̂i−ε
λ̂i−1+ε

)
+ r̆y(λ)

∣∣∣1−ε
λ̂n̂+ε

)
=

lim
ε→0+

(
−r̆y(ε)−

n̂∑
i=1

(
r̆y(λ)

∣∣∣λ̂i+ε
λ̂i−ε

)
+ r̆y(1− ε)

)
, (B.51)

120

B.5. Integral Representations of Limit Values

which, as limλ→0+ r̆y(λ) = 0 (B.4), implies that

∫ 1

0

dr̆y(λ)

dλ
dλ = lim

λ→1−
r̆y(λ)−

n̂∑
i=1

lim
ε→0+

(
r̆y(λ)

∣∣∣λ̂i+ε
λ̂i−ε

)
. (B.52)

Assuming that r̆∆x(λ) is differentiable at all but possibly a finite number of points, λ̂1 < λ̂2 <

· · · < λ̂n̂, then, from integration by parts,

−
∫ 1

0

λ

1− λ
dr̆∆x(λ)

dλ
dλ = − lim

ε→0+

(∫ 1−ε

ε

λ

1− λ
dr̆∆x(λ)

dλ
dλ

)
=

− lim
ε→0+

(∫ λ̂1−ε

ε

λ

1− λ
dr̆∆x(λ)

dλ
dλ+

n̂∑
i=2

∫ λ̂i−ε

λ̂i−1+ε

λ

1− λ
dr̆∆x(λ)

dλ
dλ+∫ 1−ε

λ̂n̂+ε

λ

1− λ
dr̆∆x(λ)

dλ
dλ

)
=

− lim
ε→0+

(
λ

1− λr̆∆x(λ)
∣∣∣λ̂1−ε

ε
−
∫ λ̂1−ε

ε

1

(1− λ)2
r̆∆x(λ)dλ+

n̂∑
i=2

(
λ

1− λr̆∆x(λ)
∣∣∣λ̂i−ε
λ̂i−1+ε

−
∫ λ̂i−ε

λ̂i−1+ε

1

(1− λ)2
r̆∆x(λ)dλ

)
+

λ

1− λr̆∆x(λ)
∣∣∣1−ε
λ̂n̂+ε

−
∫ 1−ε

λ̂n̂+ε

1

(1− λ)2
r̆∆x(λ)dλ

)
=

lim
ε→0+

(
ε

1− ε r̆∆x(ε)

)
− lim
ε→0+

(
1− ε
ε

r̆∆x(1− ε)
)

+

n̂∑
i=1

lim
ε→0+

(
λ

1− λr̆∆x(λ)
∣∣∣λ̂i+ε
λ̂i−ε

)
+

∫ 1

0

1

(1− λ)2
r̆∆x(λ)dλ =

− lim
ε→0+

(
1− ε
ε

r̆∆x(1− ε)
)

+
n̂∑
i=1

lim
ε→0+

(
λ

1− λr̆∆x(λ)
∣∣∣λ̂i+ε
λ̂i−ε

)
+

∫ 1

0

1

(1− λ)2
r̆∆x(λ)dλ. (B.53)

As limλ→1− r̆∆x(λ) = 0 (B.7), from L’Hôpital’s rule,

lim
ε→0+

(
1− ε
ε

r̆∆x(1− ε)
)

= lim
λ→1−

(
λ

1− λr̆∆x(λ)

)
= lim

λ→1−

(
−λdr̆∆x(λ)

dλ
− r̆∆x(λ)

)
=

− lim
λ→1−

dr̆∆x(λ)

dλ
. (B.54)

From equation (B.18),

− lim
λ→1−

dr̆∆x(λ)

dλ
= lim

λ→1−

(
−λdr̆∆x(λ)

dλ

)
=

lim
λ→1−

(
(1− λ)

dr̆y(λ)

dλ
+ (1− λ)2dr̆ŷ(λ)

dλ

)
= 0, (B.55)

121

B.5. Integral Representations of Limit Values

which, in conjunction with equation (B.54), implies that

lim
ε→0+

(
1− ε
ε

r̆∆x(1− ε)
)

= 0, (B.56)

which, in conjunction with equation (B.53), implies that

−
∫ 1

0

λ

1− λ
dr̆∆x(λ)

dλ
dλ =

n̂∑
i=1

lim
ε→0+

(
λ

1− λr̆∆x(λ)
∣∣∣λ̂i+ε
λ̂i−ε

)
+

∫ 1

0

1

(1− λ)2
r̆∆x(λ)dλ. (B.57)

Assuming that r̆ŷ(λ) is differentiable at all but possibly a finite number of points, λ̂1 < λ̂2 <

· · · < λ̂n̂, then, from integration by parts,

−
∫ 1

0
(1− λ)

dr̆ŷ(λ)

dλ
dλ = − lim

ε→0+

(∫ 1−ε

ε
(1− λ)

dr̆ŷ(λ)

dλ
dλ

)
=

− lim
ε→0+

(∫ λ̂1−ε

ε
(1− λ)

dr̆ŷ(λ)

dλ
dλ+

n̂∑
i=2

∫ λ̂i−ε

λ̂i−1+ε
(1− λ)

dr̆ŷ(λ)

dλ
dλ+∫ 1−ε

λ̂n̂+ε
(1− λ)

dr̆ŷ(λ)

dλ
dλ

)
=

− lim
ε→0+

(
(1− λ)r̆ŷ(λ)

∣∣∣λ̂1−ε

ε
+

∫ λ̂1−ε

ε
r̆ŷ(λ)dλ+

n̂∑
i=2

(
(1− λ)r̆ŷ(λ)

∣∣∣λ̂i−ε
λ̂i−1+ε

+

∫ λ̂i−ε

λ̂i−1+ε
r̆ŷ(λ)dλ

)
+

(1− λ)r̆ŷ(λ)
∣∣∣1−ε
λ̂n̂+ε

+

∫ 1−ε

λ̂n̂+ε
r̆ŷ(λ)dλ

)
=

lim
ε→0+

(
(1− ε)r̆ŷ(ε)

)
− lim
ε→0+

(
εr̆ŷ(1− ε)

)
+

n̂∑
i=1

lim
ε→0+

(
(1− λ)r̆ŷ(λ)

∣∣∣λ̂i+ε
λ̂i−ε

)
−
∫ 1

0
r̆ŷ(λ)dλ =

lim
ε→0+

r̆ŷ(ε) +

n̂∑
i=1

lim
ε→0+

(
(1− λ)r̆ŷ(λ)

∣∣∣λ̂i+ε
λ̂i−ε

)
−
∫ 1

0
r̆ŷ(λ)dλ, (B.58)

which, as limλ→0+ r̆ŷ(λ) = 0 (B.4), implies that

−
∫ 1

0
(1− λ)

dr̆ŷ(λ)

dλ
dλ =

n̂∑
i=1

lim
ε→0+

(
(1− λ)r̆ŷ(λ)

∣∣∣λ̂i+ε
λ̂i−ε

)
−
∫ 1

0
r̆ŷ(λ)dλ. (B.59)

Assuming that r̆y(λ), r̆ŷ(λ), and r̆∆x(λ) are differentiable at all but a finite number of points,

λ̂1 < λ̂2 < · · · < λ̂n̂, then, from equation (B.50),∫ 1

0

dr̆y(λ)

dλ
dλ = −

∫ 1

0

λ

1− λ
dr̆∆x(λ)

dλ
dλ−

∫ 1

0
(1− λ)

dr̆ŷ(λ)

dλ
dλ, (B.60)

122

B.6. Bounding Normalized Squared Residual Sums

which, in conjunction with Equations (B.52), (B.57), and (B.59) implies that

lim
λ→1−

r̆y(λ)−
n̂∑
i=1

lim
ε→0+

(
r̆y(λ)

∣∣∣λ̂i+ε
λ̂i−ε

)
=

n̂∑
i=1

lim
ε→0+

(
λ

1− λr̆∆x(λ)
∣∣∣λ̂i+ε
λ̂i−ε

)
+

∫ 1

0

1

(1− λ)2
r̆∆x(λ)dλ+

n̂∑
i=1

lim
ε→0+

(
(1− λ)r̆ŷ(λ)

∣∣∣λ̂i+ε
λ̂i−ε

)
−
∫ 1

0
r̆ŷ(λ)dλ. (B.61)

From equation (B.45), for λ̂ ∈ (0, 1),

lim
ε→0+

(
λ

1− λr̆∆x(λ)
∣∣∣λ̂+ε

λ̂−ε

)
+ lim
ε→0+

(
(1− λ)r̆ŷ(λ)

∣∣∣λ̂+ε

λ̂−ε

)
=

λ̂

1− λ̂
lim
ε→0+

(
r̆∆x(λ)

∣∣∣λ̂+ε

λ̂−ε

)
+ (1− λ̂) lim

ε→0+

(
r̆ŷ(λ)

∣∣∣λ̂+ε

λ̂−ε

)
= − lim

ε→0+

(
r̆y(λ)

∣∣∣λ̂+ε

λ̂−ε

)
(B.62)

which, in conjunction with equation (B.61), implies that

lim
λ→1−

r̆y(λ)−
n̂∑
i=1

lim
ε→0+

(
r̆y(λ)

∣∣∣λ̂i+ε
λ̂i−ε

)
=

−
n̂∑
i=1

lim
ε→0+

(
r̆y(λ)

∣∣∣λ̂i+ε
λ̂i−ε

)
+

∫ 1

0

1

(1− λ)2
r̆∆x(λ)dλ−

∫ 1

0
r̆ŷ(λ)dλ

=⇒ lim
λ→1−

r̆y(λ) =

∫ 1

0

1

(1− λ)2
r̆∆x(λ)dλ−

∫ 1

0
r̆ŷ(λ)dλ. (B.63)

B.6 Bounding Normalized Squared Residual Sums

From equation (B.2), for ε ∈ (0, 1),

(1− λ)r̆y(λ) ≤ (1− λ)r̆y(λ) + (1− λ)2r̆ŷ(λ) + λr̆∆x(λ) ≤
(1− λ)r̆y(ε) + (1− λ)2r̆ŷ(ε) + λr̆∆x(ε), (B.64a)

λr̆∆x(λ) ≤ (1− λ)r̆y(λ) + (1− λ)2r̆ŷ(λ) + λr̆∆x(λ) ≤
(1− λ)r̆y(1− ε) + (1− λ)2r̆ŷ(1− ε) + λr̆∆x(1− ε), (B.64b)

123

B.6. Bounding Normalized Squared Residual Sums

which implies, in conjunction with Equations (B.6) and (B.9), that

(1− λ)r̆y(λ) ≤
lim
ε→0+

(
(1− λ)r̆y(ε) + (1− λ)2r̆ŷ(ε) + λr̆∆x(ε)

)
= λ lim

ε→0+
r̆∆x(ε), (B.65a)

λr̆∆x(λ) ≤ lim
ε→0+

(
(1− λ)r̆y(1− ε) + (1− λ)2r̆ŷ(1− ε) + λr̆∆x(1− ε)

)
=

(1− λ) lim
ε→0+

r̆y(1− ε) + (1− λ)2 lim
ε→0+

r̆ŷ(1− ε). (B.65b)

Thus,

r̆y(λ) ≤ λ

(1− λ)
lim
ε→0+

r̆∆x(ε), (B.66a)

r̆∆x(λ) ≤ (1− λ)

λ

(
lim
ε→0+

r̆y(1− ε) + (1− λ) lim
ε→0+

r̆ŷ(1− ε)
)
≤

(1− λ)

λ

(
lim
ε→0+

r̆y(1− ε) + lim
ε→0+

r̆ŷ(1− ε)
)
, (B.66b)

and for reasonable models, with numerical solutions that fit data at least twice as well as the

homogeneous model, where limε→0+ r̆y(1 − ε) ≤ 1/2 and limε→0+ r̆ŷ(1 − ε) ≤ 1/2, and with

differential equation values that fit discretized data at least as well as the homogeneous model,

where limε→0+ r̆∆x(ε) ≤ 1,

r̆y(λ) ≤ λ

(1− λ)
, (B.67a)

r̆∆x(λ) ≤ (1− λ)

λ
. (B.67b)

Thus, for any data and any reasonable model of the data, to ensure that r̆y(λ) does not exceed

some tolerance, ε̄, λ should be chosen small enough, such that

λ ≤ ε̄

1 + ε̄
, (B.68)

and to ensure r̆∆x(λ) does not exceed some tolerance, ε̄, λ should be chosen large enough, such

that

λ ≥ 1

1 + ε̄
. (B.69)

124

Appendix C

Overlapping-Niche Descent

Overlapping-niche descent, a genetic algorithm directed by gradient-based descent, synergistically

minimizes r(p,x;λ) over a broad range of λ values. Here, I describe overlapping-niche descent

in full.

C.1 Defining Overlapping-Niche Descent

In overlapping-niche descent, I define an environment that contains nniche niches, each defined

by a unique value of λ, λ1 < λ2 < · · · < λnniche
∈ (0, 1). Individuals, points of parameters and

state values, inhabit the environment. Initially, in the first generation, I randomly generate

parameters and state values in all individuals. In generation g, the ith niche sustains ng,i

individuals, (pg,i,j ,xg,i,j) for j = 1, 2, . . . , ng,i. Starting from (pg,i,j ,xg,i,j), I locally minimize

r(p,x;λi) to determine (p̆g,i,j , x̆g,i,j), for i = 1, 2, . . . , nniche and j = 1, 2, . . . , ng,i, using the

descent method described in Section C.2.

I decompose the number of sustained individuals in each niche, ng,i, into the number of

sustained parents, n̂i, which remains fixed over generations, and the number of sustained off-

spring, ňg,i, which may change over generations. From
{
{p̆g,i,j , x̆g,i,j}: i ∈ {1, 2, . . . , nniche}, j ∈

{1, 2, . . . , ng,i}
}

, I select the n̂i individuals with the n̂i least values of r(p,x;λi) to occupy the n̂i

parent spaces of the ith niche in the g + 1th generation, for i = 1, 2, . . . , nniche; I allow individuals

to occupy parent spaces in multiple niches, to permit cross-niche minimization, but do not allow

individuals to occupy multiple parent spaces in the same niche, to maintain diversity in the

parameter-state value search space. I enumerated individuals occupying the n̂i parent spaces

of the ith niche from 1 to n̂i, such that r(pg+1,i,1,xg+1,i,1;λi) ≤ r(pg+1,i,2,xg+1,i,2;λi) ≤ · · · ≤
r(pg+1,i,n̂i

,xg+1,i,n̂i
;λi), for i = 1, 2, . . . , nniche. Thus, for the jth parent space of the ith niche, I

calculate the relative change in r(p,x;λ) over the g + 1th generation:

∆rg+1,i,j =
r(pg,i,j ,xg,i,j ;λi)− r(pg+1,i,j ,xg+1,i,j ;λi)

r(pg,i,j ,xg,i,j ;λi)
∈ [0, 1]. (C.1)

I decompose the number of sustained offspring in each niche, ňg,i, into the number of

high momentum offspring, ňmg,i, the number of cross-niche offspring, ňcg,i, the number of sexual

offspring, ňsg,i, and the number of random offspring, ňrg,i. I generate high momentum offspring

to accelerate convergence rates in the descent method for individuals that occupy a parent space

in some niche. The individual that occupies the jth parent space in the ith niche also occupies

125

C.1. Defining Overlapping-Niche Descent

the jth high momentum offspring space in the ith niche. Thus, ňmg,i = n̂i for i = 1, 2, . . . , nniche.

I describe details of high momentum offspring in Section C.2.2.

An individual occupying a parent space in one niche may be close to a global minimum in

another niche. I generate cross-niche offspring to synergistically minimize r(p,x;λ) across niches.

From the set of individuals not selected from the kth niche and occupying a parent space not in the

kth niche,
{
{p̆g,i,j , x̆g,i,j}: i ∈ {1, 2, . . . , nniche}\{k}, j ∈ {1, 2, . . . , ng,i}

}⋂{{pg+1,i,j ,xg+1,i,j}:
i ∈ {1, 2, . . . , nniche}\{k}, j ∈ {1, 2, . . . , n̂i}

}
, I randomly select an individual to occupy the lth

cross-niche offspring space in the kth niche, with the probability of selection proportional to an

individual’s fitness within the kth niche, 1/r(pg+1,i,j ,xg+1,i,j ;λk)
qfit , where the parameter qfit

dictates the strength of selection.

I generate sexual offspring to search for global minima beyond functional basins sur-

rounding local minima. From the set of individuals occupying a parent space in some niche,{
{pg+1,i,j ,xg+1,i,j}: i ∈ {1, 2, . . . , nniche}, j ∈ {1, 2, . . . , n̂i}

}
, I randomly select two, not necessar-

ily distinct, sexual parents to produce the lth sexual offspring in the kth niche, with the probability

of selection proportional to an individual’s fitness within the kth niche, 1/r(pg+1,i,j ,xg+1,i,j ;λk)qfit .

To produce the lth sexual offspring in the kth niche, I randomly combine and perturb parameters

and state values from both sexual parents, a process that is isomorphic to chromosomal crossover

and mutation in biological sexual reproduction. I treat each parameter and all states like

separate chromosomes, independent structural units of information, and implement crossover

and mutation in each chromosomal-like unit. For each parameter, a sexual offspring inherits

a parameter value, with random perturbation, from one of its sexual parents, which I choose

randomly with equal probability. For each sexual offspring, I choose a crossover location ran-

domly from two to the number of elements in the numerical discretization, I∆, with equal

probability. A sexual offspring inherits all state values, with random perturbations, at grid

points preceding its crossover location from one its sexual parents, which I choose randomly with

equal probability, and inherits all remaining state values, with random perturbations, from its

other sexual parent. For effective and efficient global minimization, searches for global minima

around local minima should start broad, and should narrow as individuals approach global

minima. Naturally, as individuals approach global minima, r(pg+1,i,j ,xg+1,i,j ;λk)
qfit decreases

significantly with decreasing |λi − λk|, increasing the likelihood of similarity in sexual parent

pairings. Concomitantly, as individuals approach global minima, random perturbations in

inherited parameters and state values should decrease. I measure convergence in the jth parent

space of the ith niche by ∆rg+1,i,j (C.1). As ∆rg+1,i,j decreases, I decrease random perturbations

in parameters and state values inherited from individual (pg+1,i,j ,xg+1,i,j).

Parameters and state values in individuals likely do not initially cover the parameter-

state value domain, and progressively cover less of the domain with successive generations of

overlapping-niche descent. I generate random offspring, with random parameters and state

values, to continually probe diverse regions of the parameter-state value domain for global

minima.

126

C.2. Defining Descent

Ultimately, I terminate overlapping-niche descent when the relative change in r(p,x;λ) over

the g + 1th generation is less than some tolerance, ε∆r, in all parent spaces of all niches,

∆rg+1,i,j < ε∆r,∀i ∈ {1, 2, . . . , nniche} and ∀j ∈ {1, 2, . . . , n̂i}. (C.2)

C.2 Defining Descent

r(p,x;λ) is a high dimensional system for models of complex behavior. The likelihood of

randomly selecting the parameters and state values of a local minimum of r(p,x;λ) decreases

with increasing dimensionality, particularly with limited parameter and state value estimates.

Thus, I use directed minimization to find local minimums of r(p,x;λ).

Calculating the gradient of r(p,x;λ) requires calculating n(p) + n(x) partial derivatives,

where n(v) denotes the number of elements in vector v. Thus, an iteration of minimization

oriented by the gradient of r(p,x;λ) is relatively computationally efficient. Alternatively,

r(p,x;λ) is minimizable using Newton’s method or a variant of Newton’s method, such as the

Gauss-Newton method. However, beyond calculating partial derivatives, an iteration of Newton’s

method or a variant of Newton’s method requires solving a (n(p) + n(x))× (n(p) + n(x)) linear

system of equations, which can require from O(n(p) + n(x))2 operations to solve using an

iterative method, such as the generalized minimal residual method, and up to O(n(p) + n(x))3

operations to solve using Gaussian elimination. Thus, the computational time of an iteration

of r(p,x;λ) minimization using Newton’s method or a variant of Newton’s method increases

superlinearly in the number of parameters and state values. Whereas, the computational time of

an iteration of r(p,x;λ) minimization oriented by its gradient increases linearly in the number

of parameters and state values. Thus, in minimizing r(p,x;λ), to maintain computational

feasibility for complex models with a large number of parameters and state values, I implement

minimization oriented by the gradient of r(p,x;λ) rather than using Newton’s method or a

variant of Newton’s method.

C.2.1 Descent Scaling

The most straightforward direction for r(p,x;λ) minimization is down the gradient, the direction

of the negative gradient, the direction in which r(p,x;λ) decreases most rapidly. However,

individual parameters affect r(p,x;λ) more extensively than individual state values, as a single

parameter spans many differences between differential equation values and finite difference

values or many differences between observable state values and data values, while a single state

value spans only several differences between differential equation values and finite difference

values, several differences between observable state values and data values, and several finite

difference normalization values. Also, as in models with both linear and nonlinear terms,

parameters vary in the degree to which they affect differences between differential equation

values and finite difference values. Thus, partial derivatives of r(p,x;λ) vary dramatically in

127

C.2. Defining Descent

scale, in ways that do not inform distances to local minimum of r(p,x;λ). So, a move down

the gradient of r(p,x;λ), to a lower value of r(p,x;λ), is a leading order move down directions

of affect-dominating variables, with lower order moves down the directions of other variables,

requiring many iterations for significant changes in affect-nondominating variables. I seek a more

efficient r(p,x;λ) minimizing direction, one in which directional movement relates to distance

from a local minimum.

For the vector v = (p,x), with nv = n(p) + n(x) elements, the directional derivative

of r(v;λ), in the direction of the Hadamard product between some gradient scaling vector

s = (s1, s2, . . . , snv) and the negative gradient of r(v;λ), −s ◦ ∇r(v;λ) = −
(
s1 · ∂v1r(v;λ),

s2 · ∂v2r(v;λ), . . . , snv · ∂vnv
r(v;λ)

)
, is given by

−
nv∑
i=1

si

(
∂r(v;λ)

∂vi

)2

.

Thus, if s is a vector with positive elements, then r(v;λ) decreases in the direction of −s◦∇r(v;λ),

at all points where ∇r(v;λ) 6= 0. As such, positive elements of s can be chosen to orient a more

efficient minimization direction than down the gradient of r(v;λ). Ideally, elements of s should

be chosen such that
∣∣si · ∂vir(v;λ)

∣∣ is the distance along vi to the nearest local minimum of

r(v;λ). Then, a single step in the direction of −s ◦ ∇r(v;λ) would lead directly to the nearest

local minimum of r(v;λ). In practice, such distances are unknown, but can be approximated. A

local minimum of a function occurs at a point where all partial derivatives of the function are

zero. For improved efficiency over gradient descent, the computation burden of approximating

distances to a local minimum of r(v;λ) should not exceed the amount of computation required

for a commensurate number of gradient descent iterations. Rather than a computationally

expensive search for the location where all partial derivatives of r(v;λ) are zero, I more coarsely

and computationally efficiently approximate the distance along vi to the point where all partial

derivatives of r(v;λ) are zero as the distance to the zero of the linearization of ∂vir(v;λ), with

all variables constant but vi, equivalent to the one-dimensional Newton-method approximate

distance to a zero of ∂vir(v;λ) along vi:

d̃i =

∣∣∣∣∂r(v;λ)

∂vi

∣∣∣∣ ∣∣∣∣∂2r(v;λ)

∂v2
i

∣∣∣∣−1

. (C.3)

Near a local minimum of r(v;λ), d̃i fairly accurately estimates the distance to the local minimum

along vi, as r(v;λ) is continuous. Far from a local minimum of r(v;λ), d̃i does not accurately

estimate the distance to the local minimum along vi, but does inform the scale of the distance

to the local minimum along vi better than the value of ∂vir(v;λ) alone. Near a critical point

of r(v;λ), if ∂vivir(v;λ) > 0, then d̃i is an approximate distance to a local minimum of r(v;λ)

along vi. For i such that ∂vivir(v;λ) > 0, I calculate the ith element of the gradient scaling

128

C.2. Defining Descent

vector s, si, by equating
∣∣si · ∂vir(v;λ)

∣∣ and d̃i. Thus,

si =
∂2r(v;λ)

∂v2
i

−1

. (C.4)

Near a critical point of r(v;λ), if ∂vivir(v;λ) < 0, then d̃i is an approximate distance to a local

maximum of r(v;λ) along vi. For i such that ∂vivir(v;λ) ≤ 0, I choose si to be the search scale

from the previous iteration of descent, rather than calculating si by equating
∣∣si · ∂vir(v;λ)

∣∣
and d̃i, which does not reflect the scale of the distance to a local minimum of r(v;λ) along vi

and could impede descent. For the first iteration of descent, if ∂vivir(v;λ) ≤ 0, I choose the

value of si to be si,0, some very small value or zero. It may be beneficial to assign a nonzero

value to si,0, under certain restrictions on variables, as discussed in Section C.2.3. If si = 0 and

∂vir(v;λ) 6= 0, then near a local minimum of r(v;λ), descent in other variables should lead to a

new set of variable values where ∂vivir(v;λ) > 0, and thus si > 0. If descent is not possible or a

descent sequence does not lead to a set of variable values where ∂vivir(v;λ) > 0, then, near a

local minimum of r(v;λ), some crossover and mutation event should eventually produce a set

of variable values where ∂vivir(v;λ) > 0, allowing unperturbed local minimization to continue.

Collectively, denoting vj and sj as the vectors v and s in the jth iteration of descent, with ith

elements vi,j and si,j , I define si,j , for j ≥ 1 and i ∈ {1, 2, . . . , nv}, such that

si,j =


∂2r(vj ;λ)

∂v2
i,j

−1

if
∂2r(vj ;λ)

∂v2
i,j

> 0

si,j−1 if
∂2r(vj ;λ)

∂v2
i,j

≤ 0.

(C.5)

Thus, I orient r(vj ;λ) descent in the direction of

v↓j = −sj ◦ ∇r(vj ;λ) = −
(
s1,j

∂r(vj ;λ)

∂v1,j
, s2,j

∂r(vj ;λ)

∂v2,j
, . . . , snv ,j

∂r(vj ;λ)

∂vnv ,j

)
. (C.6)

Because of rough distance approximations to a local minimum of r(v;λ), an extra scaling

parameter of v↓j , σj , is required to fine-tune descent. Thus, r(v;λ) descent occurs by moving away

from the point vj , in the direction of σjv
↓
j , to the new point vj+σjv

↓
j . σj must be chosen such that

r(vj+σjv
↓
j ;λ) < r(vj ;λ), and should be chosen large enough to avoid an excess number of descent

iterations. To choose σj , I begin with a value of σj = 1. If r(vj+2v↓j ;λ) < r(vj+v↓j ;λ) < r(vj ;λ),

I expand σj , continuing to double σj until r(vj + 2σjv
↓
j ;λ) ≥ r(vj + σjv

↓
j ;λ). If, however,

r(vj + v↓j ;λ) ≥ r(vj ;λ) or r(vj + 2v↓j ;λ) ≥ r(vj + v↓j ;λ), I contract σj , continuing to half σj

until r(vj + 2−1σjv
↓
j ;λ) ≥ r(vj + σjv

↓
j ;λ) < r(vj ;λ) or until σj contracts below some specified

tolerance εσ.

129

C.2. Defining Descent

Descent maps vi,j to vdi,j :

vdi,j = vi,j − σjsi,j
∂r(vj ;λ)

∂vi,j
. (C.7)

Under the variable scaling

v̂i,j = s
−1/2
i,j vi,j ,∀i ∈ {1, 2, . . . , nv}, (C.8)

Equation (C.7) becomes

vdi,j = s
1/2
i,j v̂i,j − σjsi,js

−1/2
i,j

∂r(v̂j ;λ)

∂v̂i,j
= s

1/2
i,j

(
v̂i,j − σj

∂r(v̂j ;λ)

∂v̂i,j

)
, (C.9)

as

∂r(vj ;λ)

∂vi,j
=
∂r(v̂j ;λ)

∂v̂i,j

dv̂i,j
dvi,j

= s
−1/2
i,j

∂r(v̂j ;λ)

∂v̂i,j
. (C.10)

Thus, a step of descent is equivalent to a step of gradient descent under the variable scaling in

equation (C.8).

C.2.2 Descent Acceleration

With very little extra computational burden, Nesterov’s method significantly increases the

convergence rate of gradient descent in functional minimization [50]. In Nesterov’s method,

movement from the point of values in the jth iteration, along the direction of the change in

values over the jth iteration, generates an intermediary point of values. Then, movement from

the intermediary point of values, down the gradient of the functional, generates the point of

values in the j + 1th iteration. Although Nesterov’s method converges to a local minimum of

a functional, it is not a descent method, as the functional value may increase during some

iterations. Restarting Nesterov’s method when functional values would increase during an

iteration ensures descent during every iteration and accelerates the method’s rate of convergence

[51]. To minimize r(v;λ), I apply Nesterov’s method with increasing-functional restart from

130

C.2. Defining Descent

[51], with variable scaling, strict descent, and termination-tolerance restart modifications:

θj =

 1 if j = 1 or δj = 0 or τj = 1

θj−1

(
−θj−1 + (θ2

j−1 + 4)1/2
)
/2 otherwise,

(C.11a)

βj =

{
0 if j = 1 or δj = 0 or τj = 1

θj−1(1− θj−1)/(θ2
j−1 + θj) otherwise,

(C.11b)

vj =

{
uj if j = 1 or δj = 0 or τj = 1

uj + βj(uj − uj−1) otherwise,
(C.11c)

uj+1 =

{
vj + σjv

↓
j if r(vj + σjv

↓
j ;λ) < r(uj ;λ)

uj otherwise,
(C.11d)

δj+1 =

{
1 if r(uj+1;λ) < r(uj ;λ)

0 otherwise,
(C.11e)

τj+1 =

{
1 if σj < εσ or

(
r(uj ;λ)− r(uj+1;λ)

)
/r(uj ;λ) < εr

0 otherwise,
(C.11f)

where uj is the vector of parameter and states values in iteration j ≥ 1, θj tempers the iterational

increase from 0 to 1 in βj , the proportion along the iterational change in uj , which generates

the intermediary point vj ; δj is the strict descent indicator, and τj is the termination tolerance

indicator. Accelerated descent begins with scaled gradient descent, and restarts if either strict

descent does not occur, δj = 0, or a termination tolerance is met, τj = 1. A termination tolerance

is met if either the fine-tuning scaling parameter, σj , contracts below the specified tolerance, εσ,

or the iterational relative change in r(uj ;λ) falls below the specified tolerance, εr. Ultimately,

accelerated descent terminates in iteration j if a termination tolerance is met after restart,

βj−1 = 0 and τj = 1, during an iteration of scaled gradient descent. Alternatively, accelerated

descent terminates in iteration j if the number of strict descent iterations reaches some specified

maximum number of strict descent iterations, nmax, which occurs when
∑j

i=2 δi = nmax.

To maintain momentum in convergence over generations of accelerated descent, an individual

that occupies a parent space in a niche begins accelerated descent with θj−1 and uj−1 from its

last iteration of accelerated descent in the previous generation, rather than beginning accelerated

descent with a restart. To overcome stagnating convergence, for an individual that occupies a

parent space in a niche, I extend momentum from its last iteration of accelerated descent to

its last generation of accelerated descent, in a high momentum offspring. Thus, the individual

that occupies the lth high momentum offspring space in the kth niche of the gth generation

begins accelerated descent with θj−1 from its last iteration of accelerated descent in the g − 1th

generation, and begins accelerated descent with uj−1 = (pg−1,k,l,xg−1,k,l), the parameters and

state values of the individual that occupies the lth parent space in the kth niche of the g − 1th

generation.

131

C.2. Defining Descent

C.2.3 Descent on Restricted Domains

When parameters and states are defined on a restricted domain, accelerated descent trajectories

must be confined to the restricted domain. Generally, accelerated descent would restart when

uj or vj would leave the restricted domain, and the gradient scaling vector, sj , with scaling

parameter, σj , would be chosen to ensure that uj+1 remains within the restricted domain. Less

onerously, when the restricted domain is a closed convex set, I can simply project accelerated

descent trajectories onto the restricted domain.

From the Bourbaki-Cheney-Goldstein inequality, for some point x and a closed convex set C,

〈x− PC(x), PC(x)− y〉 ≥ 0 for all y ∈ C, where

PC(u) = arg min{‖v − u‖ : v ∈ C} (C.12)

and 〈·, ·〉 denotes the standard inner product. Thus, for a functional f(u), x0 ∈ C, and

x = x0 − σ∇f(x0) for some σ > 0, if PC(x) 6= x0, then

〈x− PC(x), PC(x)− x0〉 ≥ 0 ⇐⇒
〈x0 − σ∇f(x0)− PC(x), PC(x)− x0〉 ≥ 0 ⇐⇒
〈σ∇f(x0) + PC(x)− x0, PC(x)− x0〉 ≤ 0 ⇐⇒

〈σ∇f(x0), PC(x)− x0〉+ 〈PC(x)− x0, PC(x)− x0〉 ≤ 0 =⇒
〈∇f(x0), PC(x)− x0〉 ≤ −σ−1 〈PC(x)− x0, PC(x)− x0〉 < 0 =⇒〈

∇f(x0), PC
(
x0 − σ∇f(x0)

)
− x0

〉
< 0, (C.13)

and, if PC(x) = x0, then

〈x− x0,x0 − y〉 ≥ 0 ∀y ∈ C ⇐⇒
〈x0 − σ∇f(x0)− x0,x0 − y〉 ≥ 0 ∀y ∈ C ⇐⇒
〈−σ∇f(x0),x0 − y〉 ≥ 0 ∀y ∈ C ⇐⇒
〈∇f(x0),y − x0〉 ≥ 0 ∀y ∈ C. (C.14)

Inequality (C.13) implies that the non-invariant projection of a gradient descent trajectory onto

a closed convex set is a strictly decreasing direction of a functional. Inequality (C.14) implies

that a functional does not decrease locally in a closed convex set when the projection of a

gradient descent trajectory onto the closed convex set is invariant. Therefore, the projection of

gradient descent trajectories onto a closed convex set preserves convergence to a local minimum

of a functional in the closed convex set.

The projection of a scaled descent trajectory, vj + σjv
↓
j , onto a closed convex set is not

necessarily a decreasing direction of r(v;λ). However, from equation (C.9), scaled descent is

equivalent to gradient descent under the variable transformation in equation (C.8). Therefore,

132

C.3. Descent Prolongation

to ensure descent, when parameters and states are restricted to a closed convex set, I project

scaled descent trajectories onto the restricted domain under the variable transformation in

equation (C.8). I note that if si,j = 0 for some variable, vi, the projection of a scaled descent

trajectory onto the restricted domain may not be defined under the variable transformation in

equation (C.8). In such cases, assigning si,0 some very small, positive value ensures that si,j 6= 0.

Additionally, to confine accelerated descent intermediary points, vj , to the restricted domain, I

project accelerated descent intermediary points onto the restricted domain. Accelerated descent

restarts upon reaching a termination tolerance. Thus, accelerated descent ultimately terminates

during an iteration of scaled gradient descent, preserving convergence to a local minimum of

r(v;λ) on a restricted domain.

Often, a closed convex set C is generated from the union of nc simpler closed convex sets

C1, C2, . . . , Cnc . In such cases, I employ Dykstra’s method [19] to calculate the projection of a

point x onto C = C1 ∩ C2 ∩ · · · ∩ Cnc :

xji =


x if i = 0

PCj (x
nc
i−1 − dji−1) if i > 0 and j = 1

PCj (x
j−1
i − dji−1) if i > 0 and j > 1,

(C.15a)

where PCj (u) = arg min{‖v − u‖ : v ∈ Cj} and (C.15b)

dji =


0 if i = 0

xji − (xnc
i−1 − dji−1) if i > 0 and j = 1

xji − (xj−1
i − dji−1) if i > 0 and j > 1,

(C.15c)

for i ∈ {0, 1, 2, . . . } and j ∈ {1, 2, . . . , nc}. ‖xji − PC(x)‖ → 0 as i → ∞ and xji converges

monotonically to PC(x) in i and j [6]. Commonly, a linear inequality may restrict points to a

closed half-space. When all Cj are closed half-spaces, the sequence {xnc
i } converges linearly to

PC(x) [16]. I terminate Dykstra’s method when |xnc
i,k − xnc

i−1,k| < εc|xnc
i−1,k| or |xnc

i,k − xnc
i−1,k| < εc̄

for all elements xnc
i,k in xnc

i , given some relative termination tolerance εc > 0 and some absolute

termination tolerance εc̄ > 0.

C.3 Descent Prolongation

Accelerated descent terminates if the number of strict descent iterations reaches nmax. Individuals

occupying parent spaces in niches have been descending for multiple generations of overlapping-

niche descent. Thus, for nmax not exceedingly large, an individual that occupies an offspring

space in some niche may terminate accelerated descent with a higher value of r(v;λ) than

an individual that occupies a parent space in the same niche, even though the individual

that occupies the offspring space could ultimately converge to a lower value of r(v;λ) than

the individual that occupies the parent space. In preliminary tests with randomly generated

parameter and states values, I have found that following initial, rapid sublinear convergence,

133

C.3. Descent Prolongation

accelerated descent trajectories generally converge linearly or superlinear in periods between

accelerated descent restart. I prolong accelerated descent for an individual that converges

linearly or superlinearly to a value of r(v;λ) below the least value of r(v;λ) in its niche.

Theorem 6. For a strictly decreasing sequence (bk)∞k=0 converging linearly or superlinearly to b,

if

bn+2m < b̃+
(bn+m − b̃)2

bn − b̃
, (C.16)

then b may be less than b̃, and if

bn+2m > b̃+
(bn+m − b̃)2

bn − b̃
, (C.17)

then b > b̃, for m ∈ N. Also, if b > b̃ and

bn+m − b
bn − b

< ρ, (C.18)

for some ρ ∈ (0, 1/2), then there exists some n ∈ N such that

bn+2m > b̃+
(bn+m − b̃)2

bn − b̃
(C.19)

for all n > N .

Proof. For a strictly decreasing sequence (ak)
∞
k=0 that converges linearly to a,

an+1 − a = µ(an − a), (C.20)

for some µ, where 0 < µ < 1. Thus, for m ∈ N,

an+m − a = µ(an+m−1 − a) = µ2(an+m−2 − a) = · · · = µm(an − a), (C.21)

from which it follows that

an+2m − a = µ2m(an − a) =
(
µm
)2

(an − a) =

(
an+m − a
an − a

)2

(an − a) =

(an+m − a)2

an − a
⇐⇒ an+2m = a+

(an+m − a)2

an − a
. (C.22)

Thus, for a strictly decreasing sequence (bk)
∞
k=0,

b̃n+2m = b̃+
(bn+m − b̃)2

bn − b̃
(C.23)

134

C.3. Descent Prolongation

is the linear-convergence estimate of bn+2m, with estimate, b̃, to the limit of the sequence, b.

∂b̃n+2m

∂b̃
=

(
bn − bn+m

bn − b̃

)2

> 0. (C.24)

Thus, if (bk)
∞
k=0 is converging linearly to b < b̃, then

bn+2m = b+
(bn+m − b)2

bn − b
< b̃+

(bn+m − b̃)2

bn − b̃
= b̃n+2m, (C.25)

from which it follows that if (bk)
∞
k=0 is converging superlinearly to b < b̃, then

bn+2m < b+
(bn+m − b)2

bn − b
< b̃+

(bn+m − b̃)2

bn − b̃
= b̃n+2m; (C.26)

if (bk)
∞
k=0 is converging linearly to b > b̃, then

bn+2m = b+
(bn+m − b)2

bn − b
> b̃+

(bn+m − b̃)2

bn − b̃
= b̃n+2m, (C.27)

from which it follows that if (bk)
∞
k=0 is converging sublinearly to b > b̃, then

bn+2m > b+
(bn+m − b)2

bn − b
> b̃+

(bn+m − b̃)2

bn − b̃
= b̃n+2m. (C.28)

For (bk)
∞
k=0 converging superlinearly to b > b̃, I determine when b > b̃n+2m, which implies that

bn+2m ≥ b > b̃n+2m. For δ = b− b̃ and εn = bn − b,

b > b̃n+2m = b̃+
(bn+m − b̃)2

bn − b̃
⇐⇒ b > b− δ +

(εn+m + δ)2

εn + δ
⇐⇒

ε2
n+m + 2δεn+m − εnδ < 0 ⇐⇒ εn+m ∈

(
−δ −

√
δ2 + εnδ,−δ +

√
δ2 + εnδ

)
. (C.29)

As εn+m ≥ 0, equation (C.29) holds, for εn > 0, if and only if

εn+m < −δ +
√
δ2 + εnδ ⇐⇒

εn+m

εn
<
−δ +

√
δ2 + εnδ

εn
, (C.30)

135

C.3. Descent Prolongation

which necessarily holds for large enough m, as limm→∞ εn+m = 0.

∂

∂εn

(−δ +
√
δ2 + εnδ

εn

)
=
−(2δ2 + εnδ) + 2δ

√
δ2 + εnδ

2ε2
n

√
δ2 + εnδ

, (C.31a)

(2δ2 + εnδ)
2 = 4δ4 + 4εnδ

3 + ε2
nδ

2 > 4δ4 + 4εnδ
3 =

(
2δ
√
δ2 + εnδ

)2
=⇒

2δ2 + εnδ > 2δ
√
δ2 + εnδ =⇒

∂

∂εn

(−δ +
√
δ2 + εnδ

εn

)
< 0. (C.31b)

By L’Hôpital’s rule,

lim
εn→0+

−δ +
√
δ2 + εnδ

εn
= lim

εn→0+

δ

2
√
δ2 + εnδ

=
1

2
, (C.32)

lim
εn→∞

−δ +
√
δ2 + εnδ

εn
= lim

εn→∞

δ

2
√
δ2 + εnδ

= 0, (C.33)

and equation (C.31b),

0 <
−δ +

√
δ2 + ε0δ

ε0
< · · · < −δ +

√
δ2 + εnδ

εn
<
−δ +

√
δ2 + εn+1δ

εn+1
< · · · < 1

2
. (C.34)

Thus, for any ρ ∈ (0, 1/2) and m large enough that εn+m/εn < ρ, there exists some N ∈ N such

that inequality (C.30) holds for all n > N , which implies that bn+2m > b̃n+2m for all n > N .

Example 1. For m such that 3εn+m < εn and N such that n > N implies that εn < 3δ,

εn+m

εn
<

1

3
=
−δ +

√
δ2 + 3δ2

3δ
<
−δ +

√
δ2 + εnδ

εn
, (C.35)

for n > N , which implies that bn+2m > b̃n+2m for n > N .

Collectively, if (bk)
∞
k=0 converges linearly or superlinearly to b < b̃, then bn+2m < b̃n+2m for

all m,n ∈ N; if (bk)∞k=0 converges to b > b̃, then for sufficiently, but not exceedingly large m ∈ N,

bn+2m > b̃n+2m, for all n ∈ N greater than some N . Therefore, for (bk)
∞
k=0 converging linearly

or superlinearly to b, if bn+2m < b̃n+2m, then b may be less than b̃, and if bn+2m > b̃n+2m, then

b is greater than b̃.

For r̆λ, the least value of r(v;λ) amongst all individuals inhabiting the environment at the

onset of accelerated descent, I prolong accelerated descent if the limj→∞ r(uj ;λ) may be less

than σ̆r̆λ, where I choose σ̆ ∈ [0, 1] to specify the stringency of prolongation. Thus, if the number

of strict descent iterations has reached nmax and r(uj ;λ) > r̆λ, following Theorem 6, I prolong

136

C.3. Descent Prolongation

accelerated descent, up to n̂pro strict descent iterations, if

r(uj ;λ) < σ̆r̆λ +
(r(uj−mpro ;λ)− σ̆r̆λ)2

r(uj−2mpro ;λ)− σ̆r̆λ
(C.36)

or if a restart occurred between iterations j − 2mpro and j, for some sufficiently, but not

exceedingly large, chosen value of mpro. If r(uj ;λ) ≤ r̆λ and r(uj−1;λ) > r̆λ, I prolong

accelerated descent by ňpro strict descent iterations, to remove bias from an uneven number of

strict descent iterations in selection, when comparing individuals with values of r(v;λ) that fall

below r̆λ.

137

Appendix D

Computational Complexities

Here, I calculate and compare computational complexities of r(p,x;λ) descent and a variety of

numerical-integration-based methods.

D.1 Computational Complexity of r(p,x;λ) Descent

D.1.1 Formulation of r(p,x;λ) for Counting

Descent is the most computationally intensive portion of overlapping-niche descent. Here, I

count the computation complexity required for an iteration of r(p,x;λ) descent. I consider

r(p,x;λ) in the form

r(p,x;λ) =
1− λ
ny

ny∑
j=1

nt∑
k=1

dyj,k

(
gj,k(p,x)

)
+

(1− λ)2

ny

ny∑
j=1

∑
k∈Iŷ

dŷj,k

(
gj,k(p,x)

)
+

λ

nx

nx∑
i=1

hi(x)
∑
k∈I∆

d∆i,k

(
fi,k(t,p,x)

)
, (D.1)

where gj,k(p,x) = yj,k − gj(p, x1,k, . . . , xnx,k), with difference measures dyj,k
, dŷj,k

, and d∆i,k
,

and auxiliary functions hi(x), which may contain a smoothing penalty and numerical method

normalization. For example, with ry(p,x) as defined in Section 2.3, rŷ(p,x) as defined in Section

2.6.1, and r∆x(p,x) as defined in Section 2.4.1,

dyj,k
(u) =

wj,k∑nt
k=1wj,ky

2
j,k

u2, dŷj,k
(u) =

σ̂ŵj,k∑
k∈Iŷ ŵj,kŷ

2
j,k

u2,

d∆i,k
(u) = u2, hi(x) =

si(x)∑
k∈I∆(∆xi,k)2

. (D.2)

D.1.2 Defining Quantities for Counting

Preliminarily, I define quantities for the computational complexity counting of r(p,x;λ) descent.

I consider computationally simple difference measures, which require O(1) operations to calculate

138

D.1. Computational Complexity of r(p,x;λ) Descent

a function value and O(1) operations to calculate a partial derivative value. Thus, calculating

dyj,k
(u), dŷj,k

(u), d∆i,k
(u) requires O(1) operations,

∂dyj,k
(u), ∂dŷj,k

(u), ∂d∆i,k
(u) requires O(1) operations,

∂2dyj,k
(u), ∂2dŷj,k

(u), ∂2d∆i,k
(u) requires O(1) operations, (D.3)

for i ∈ {1, 2, . . . , nx}, j ∈ {1, 2, . . . , ny}, and k ∈ I∆. I note that dyj,k
(u) and dŷj,k

(u) in

equation (D.2) are computationally simple after initially calculating and storing
∑nt

k=1wj,ky
2
j,k

and
∑

k∈Iŷ ŵj,kŷ
2
j,k. On average, gj,k(p,x) requires ng operations to calculate a function value,

ng1 operations to calculate a first order partial derivative value, and ng2 operations to calculate

a second order partial derivative value. Thus, I consider gj,k(p,x) such that calculating

gj,k(p,x) requires O(ng) operations,

∂gj,k(p,x) requires O(ng1) operations,

∂2gj,k(p,x) requires O(ng2) operations, (D.4)

for j ∈ {1, 2, . . . , ny} and k ∈ I∆. On average, fi,k(t,p,x) requires nf operations to calculate

a function value, nf1 operations to calculate a first order partial derivative value, and nf2

operations to calculate a second order partial derivative value. Thus, I consider fi,k(t,p,x) such

that calculating

fi,k(t,p,x) requires O(nf) operations,

∂fi,k(t,p,x) requires O(nf1) operations,

∂2fi,k(t,p,x) requires O(nf2) operations, (D.5)

for i ∈ {1, 2, . . . , nx} and k ∈ I∆. Auxiliary functions, hi(x), modify
∑

k∈I∆ d∆i,k
◦ fi,k(t,p,x)

and, generally, are computationally simpler than
∑

k∈I∆ fi,k(t,p,x). Thus, I consider hi(x) that

are no more computationally complex than
∑

k∈I∆ fi,k(t,p,x), with partial derivatives that are

no more computationally complex than corresponding partial derivative of
∑

k∈I∆ fi,k(t,p,x).

Calculating
∑

k∈I∆ fi,k(t,p,x) requires O(nfn∆) operations, where n∆ is the number of elements

in I∆. fi,k(t,p,x) depend on xl,m for only a small fraction of k in I∆, at k in I∆m ⊂ I∆. Thus,

calculating a first order partial derivative of
∑

k∈I∆ fi,k(t,p,x) with respect to xl,m requires

O(nf1nδ) operations, and calculating a second order partial derivative of
∑

k∈I∆ fi,k(t,p,x)

with respect to xl,m requires O(nf2nδ) operations, where nδ is the number of elements in I∆m .

Therefore, calculating

hi(x) requires O(≤ nfn∆) operations,

∂hi(x) requires O(≤ nf1nδ) operations,

∂2hi(x) requires O(≤ nf2nδ) operations, (D.6)

139

D.1. Computational Complexity of r(p,x;λ) Descent

for i ∈ {1, 2, . . . , nx}. On average, discretized differential equation values, Fi,k(t,p,x), require

nF operations to calculate a function value, nF1 operations to calculate a first order partial

derivative value, and nF2 operations to calculate a second order partial derivative value. Thus, I

consider Fi,k(t,p,x) such that calculating

Fi,k(t,p,x) requires O(nF) operations,

∂Fi,k(t,p,x) requires O(nF1) operations,

∂2Fi,k(t,p,x) requires O(nF2) operations, (D.7)

for i ∈ {1, 2, . . . , nx} and k ∈ I∆. In computational complexity counting, I consider O(ng),

O(ng1), O(nf), O(nf1), O(nf2), O(nF), O(nF1), O(nF2) ≥ O(1) and ng2 = 0 or O(ng2) ≥ O(1).

D.1.3 Counting the Computational Complexity of r(p,x;λ) Descent

Theorem 7. An iteration of r(p,x;λ) descent requires

O
(
nσn∆(ngny + nfnx)

)
+O

(
n∆np(ng1ny + nf1nx + ng2ny + nf2nx)

)
+

O
(
n∆nx(ng1ny + nf1nxnδ + ng2ny + nf2nxnδ)

)
(D.8)

operations, with O(nσ) line-search test points.

Proof. In each iteration of descent, I calculate values of r(p,x;λ). Calculating r(p,x;λ), as in

equation (D.1), is equivalent in computational complexity to calculating

dyj,k

(
gj,k(p,x)

)
for all (j, k) ∈ {1, . . . , ny} × {1 . . . , nt},

dŷj,k

(
gj,k(p,x)

)
for all (j, k) ∈ {1, . . . , ny} × Iŷ,

hi(x) for all i ∈ {1, . . . , nx},
d∆i,k

(
fi,k(t,p,x)

)
for all (i, k) ∈ {1, . . . , nx} × I∆, (D.9)

which, respectively, require

O(1) ◦O(ng)× nynt = O(ngnynt),

O(1) ◦O(ng)× ny(n∆ − nt) = O
(
ngny(n∆ − nt)

)
,

O(≤ nfn∆)× nx = O(≤ nfn∆nx),

O(1) ◦O(nf)× nxn∆ = O(nfnxn∆) (D.10)

operations to calculate, as stipulated in Equations (D.3), (D.4), (D.5), and (D.6). Thus, in total,

140

D.1. Computational Complexity of r(p,x;λ) Descent

calculating r(p,x;λ) requires

O(ngnynt) +O
(
ngny(n∆ − nt)

)
+O(≤ nfn∆nx) +O(nfnxn∆) =

O(ngnyn∆) +O(nfnxn∆) = O
(
n∆(ngny + nfnx)

)
(D.11)

operations.

In each iteration of descent, I calculate first order and un-mixed second order partial

derivatives of r(p,x;λ) with respect to all parameters.

∂r(p,x;λ)

∂pl
=

1− λ
ny

ny∑
j=1

nt∑
k=1

∂dyj,k

∂gj,k

∂gj,k(p,x)

∂pl
+

(1− λ)2

ny

ny∑
j=1

∑
k∈Iŷ

∂dŷj,k

∂gj,k

∂gj,k(p,x)

∂pl
+

λ

nx

nx∑
i=1

hi(x)
∑
k∈I∆

∂d∆i,k

∂fi,k

∂fi,k(t,p,x)

∂pl
, (D.12)

∂2r(p,x;λ)

∂p2
l

=

1− λ
ny

ny∑
j=1

nt∑
k=1

(
∂2dyj,k

∂g2
j,k

(∂gj,k(p,x)

∂pl

)2
+
∂dyj,k

∂gj,k

∂2gj,k(p,x)

∂p2
l

)
+

(1− λ)2

ny

ny∑
j=1

∑
k∈Iŷ

(
∂2dŷj,k

∂g2
j,k

(∂gj,k(p,x)

∂pl

)2
+
∂dŷj,k

∂gj,k

∂2gj,k(p,x)

∂p2
l

)
+

λ

nx

nx∑
i=1

hi(x)
∑
k∈I∆

(
∂2d∆i,k

∂f2
i,k

(∂fi,k(t,p,x)

∂pl

)2
+
∂d∆i,k

∂fi,k

∂2fi,k(t,p,x)

∂p2
l

)
. (D.13)

Calculating ∂r(p,x;λ)/∂pl, as in equation (D.12), for all l ∈ {1, 2, . . . , np} requires calculating

141

D.1. Computational Complexity of r(p,x;λ) Descent

partial derivative values,

∂dyj,k

∂gj,k
for all (j, k) ∈ {1, . . . , ny} × {1 . . . , nt},

∂gj,k(p,x)

∂pl
for all (j, k, l) ∈ {1, . . . , ny} × {1 . . . , nt} × {1 . . . , np},

∂dŷj,k

∂gj,k
for all (j, k) ∈ {1, . . . , ny} × Iŷ,

∂gj,k(p,x)

∂pl
for all (j, k, l) ∈ {1, . . . , ny} × Iŷ × {1 . . . , np},

∂d∆i,k

∂fi,k
for all (i, k) ∈ {1, . . . , nx} × I∆,

∂fi,k(t,p,x)

∂pl
for all (i, k, l) ∈ {1, . . . , nx} × I∆ × {1 . . . , np}, (D.14)

which, respectively, require

O(1) ◦O(I0)× nynt = O(nynt),

O(ng1)× nyntnp = O(ng1nyntnp),

O(1) ◦O(I0)× ny(n∆ − nt) = O
(
ny(n∆ − nt)

)
,

O(ng1)× ny(n∆ − nt)np = O
(
ng1ny(n∆ − nt)np

)
,

O(1) ◦O(I0)× nxn∆ = O(nxn∆),

O(nf1)× nxn∆np = O(nf1nxn∆np), (D.15)

operations to calculate, as stipulated in Equations (D.3), (D.4), and (D.5), where I0 indicates

values that have been calculated previously and O(I0) = 1. Apart from calculating partial

derivative values, calculating ∂r(p,x;λ)/∂pl, as in equation (D.12), for all l ∈ {1, 2, . . . , np} is

equivalent in computational complexity to calculating

∂dyj,k

∂gj,k

∂gj,k(p,x)

∂pl
for all (j, k, l) ∈ {1, . . . , ny} × {1 . . . , nt} × {1 . . . , np},

∂dŷj,k

∂gj,k

∂gj,k(p,x)

∂pl
for all (j, k, l) ∈ {1, . . . , ny} × Iŷ × {1 . . . , np},

∂d∆i,k

∂fi,k

∂fi,k(t,p,x)

∂pl
for all (i, k, l) ∈ {1, . . . , nx} × I∆ × {1 . . . , np},

hi(x) · I0 for all (i, l) ∈ {1, . . . , nx} × {1 . . . , np}, (D.16)

142

D.1. Computational Complexity of r(p,x;λ) Descent

which, respectively, require

O(1) ◦O(I0)× nyntnp = O(nyntnp),

O(1) ◦O(I0)× ny(n∆ − nt)np = O
(
ny(n∆ − nt)np

)
,

O(1) ◦O(I0)× nxn∆np = O(nxn∆np),

O(1) ◦O(I0)× nxnp = O(nxnp) (D.17)

operations to calculate. Thus, from computational complexity counts (D.15) and (D.17),

calculating ∂r(p,x;λ)/∂pl for all l ∈ {1, 2, . . . , np} requires

O(nynt) +O(ng1nyntnp) +O
(
ny(n∆ − nt)

)
+O

(
ng1ny(n∆ − nt)np

)
+

O(nxn∆) +O(nf1nxn∆np) +O(nyntnp) +O
(
ny(n∆ − nt)np

)
+O(nxn∆np)+

O(nxnp) = O
(
n∆np(ng1ny + nf1nx)

)
(D.18)

operations.

Calculating ∂2r(p,x;λ)/∂p2
l , as in equation (D.13), for all l ∈ {1, 2, . . . , np} requires calcu-

lating partial derivative values,

∂2dyj,k

∂g2
j,k

for all (j, k) ∈ {1, . . . , ny} × {1 . . . , nt},

∂2gj,k(p,x)

∂p2
l

for all (j, k, l) ∈ {1, . . . , ny} × {1 . . . , nt} × {1 . . . , np},

∂2dŷj,k

∂g2
j,k

for all (j, k) ∈ {1, . . . , ny} × Iŷ,

∂2gj,k(p,x)

∂p2
l

for all (j, k, l) ∈ {1, . . . , ny} × Iŷ × {1 . . . , np},

∂2d∆i,k

∂f2
i,k

for all (i, k) ∈ {1, . . . , nx} × I∆,

∂2fi,k(t,p,x)

∂p2
l

for all (i, k, l) ∈ {1, . . . , nx} × I∆ × {1 . . . , np}, (D.19)

which, respectively, require

O(1) ◦O(I0)× nynt = O(nynt),

O(ng2)× nyntnp = O(ng2nyntnp),

O(1) ◦O(I0)× ny(n∆ − nt) = O
(
ny(n∆ − nt)

)
,

O(ng2)× ny(n∆ − nt)np = O
(
ng2ny(n∆ − nt)np

)
,

O(1) ◦O(I0)× nxn∆ = O(nxn∆),

O(nf2)× nxn∆np = O(nf2nxn∆np), (D.20)

143

D.1. Computational Complexity of r(p,x;λ) Descent

operations to calculate, as stipulated in Equations (D.3), (D.4), and (D.5). Apart from

calculating partial derivative values, calculating ∂2r(p,x;λ)/∂p2
l , as in equation (D.13), for all

l ∈ {1, 2, . . . , np} is equivalent in computational complexity to calculating

∂2dyj,k

∂g2
j,k

(∂gj,k(p,x)

∂pl

)2
for all (j, k, l) ∈ {1, . . . , ny} × {1 . . . , nt} × {1 . . . , np},

∂dyj,k

∂gj,k

∂2gj,k(p,x)

∂p2
l

for all (j, k, l) ∈ {1, . . . , ny} × {1 . . . , nt} × {1 . . . , np},

∂2dŷj,k

∂g2
j,k

(∂gj,k(p,x)

∂pl

)2
for all (j, k, l) ∈ {1, . . . , ny} × Iŷ × {1 . . . , np},

∂dŷj,k

∂gj,k

∂2gj,k(p,x)

∂p2
l

for all (j, k, l) ∈ {1, . . . , ny} × Iŷ × {1 . . . , np},

∂2d∆i,k

∂f2
i,k

(∂fi,k(t,p,x)

∂pl

)2
for all (i, k, l) ∈ {1, . . . , nx} × I∆ × {1 . . . , np},

∂d∆i,k

∂fi,k

∂2fi,k(t,p,x)

∂p2
l

for all (i, k, l) ∈ {1, . . . , nx} × I∆ × {1 . . . , np},

hi(x) · I0 for all (i, l) ∈ {1, . . . , nx} × {1 . . . , np}, (D.21)

which, respectively, require

O(1) ◦O(I0)× nyntnp = O(nyntnp),

Ig2 ·O(1) ◦O(I0)× nyntnp = O(Ig2nyntnp),

O(1) ◦O(I0)× ny(n∆ − nt)np = O
(
ny(n∆ − nt)np

)
,

O(1) ◦O(I0)× ny(n∆ − nt)np = O
(
ny(n∆ − nt)np

)
,

O(1) ◦O(I0)× nxn∆np = O(nxn∆np),

O(1) ◦O(I0)× nxn∆np = O(nxn∆np),

O(1) ◦O(I0)× nxnp = O(nxnp) (D.22)

operations to calculate, where

Ig2 =

{
0 if ng2 = 0

1 if O(ng2) ≥ 1
. (D.23)

Thus, from complexity counts (D.20) and (D.22), calculating ∂2r(p,x;λ)/∂p2
l for all l ∈

144

D.1. Computational Complexity of r(p,x;λ) Descent

{1, 2, . . . , np} requires

O(nynt) +O(ng2nyntnp) +O
(
ny(n∆ − nt)

)
+O

(
ng2ny(n∆ − nt)np

)
+

O(nxn∆) +O(nf2nxn∆np) +O(nyntnp) +O(Ig2nyntnp)+

O
(
ny(n∆ − nt)np

)
+O

(
ny(n∆ − nt)np

)
+O(nxn∆np) +O(nxn∆np)+

O(nxnp) = O(ng2nyn∆np) +O(nf2nxn∆np) +O(nyn∆np) =

O
(
n∆np(ng2ny + nf2nx)

)
(D.24)

operations. I note that computational complexity count (D.24) holds when ng2 = 0, as ny ≤ nx.

In each iteration of descent, I calculate first order and un-mixed second order partial

derivatives of r(p,x;λ) with respect to all state values.

∂r(p,x;λ)

∂xl,m
=

1− λ
ny

ny∑
j=1

nt∑
k=1

∂dyj,k

∂gj,k

∂gj,k(p,x)

∂xl,m
+

(1− λ)2

ny

ny∑
j=1

∑
k∈Iŷ

∂dŷj,k

∂gj,k

∂gj,k(p,x)

∂xl,m
+

λ

nx

nx∑
i=1

hi(x)
∑
k∈I∆

∂d∆i,k

∂fi,k

∂fi,k(t,p,x)

∂xl,m
+

λ

nx

nx∑
i=1

∂hi(x)

∂xl,m

∑
k∈I∆

d∆i,k

(
fi,k(t,p,x)

)
,

∂2r(p,x;λ)

∂x2
l,m

=

1− λ
ny

ny∑
j=1

nt∑
k=1

(
∂2dyj,k

∂g2
j,k

(∂gj,k(p,x)

∂xl,m

)2
+
∂dyj,k

∂gj,k

∂2gj,k(p,x)

∂x2
l,m

)
+

(1− λ)2

ny

ny∑
j=1

∑
k∈Iŷ

(
∂2dŷj,k

∂g2
j,k

(∂gj,k(p,x)

∂xl,m

)2
+
∂dŷj,k

∂gj,k

∂2gj,k(p,x)

∂x2
l,m

)
+

λ

nx

nx∑
i=1

hi(x)
∑
k∈I∆

(
∂2d∆i,k

∂f2
i,k

(∂fi,k(t,p,x)

∂xl,m

)2
+
∂d∆i,k

∂fi,k

∂2fi,k(t,p,x)

∂x2
l,m

)
+

λ

nx

nx∑
i=1

2
∂hi(x)

∂xl,m

∑
k∈I∆

∂d∆i,k

∂fi,k

∂fi,k(t,p,x)

∂xl,m
+
∂2hi(x)

∂x2
l,m

∑
k∈I∆

d∆i,k

(
fi,k(t,p,x)

) . (D.25)

Observable-state functions, gj,k, depend only on the state values at grid index k; auxiliary

functions, hi(x), depend only on state values in the ith state; and fi,k(t,p,x) depend on xl,m

145

D.1. Computational Complexity of r(p,x;λ) Descent

for only a small fraction of k in I∆, at k in I∆m ⊂ I∆. Thus,

∂r(p,x;λ)

∂xl,m
=

1− λ
ny

ny∑
j=1

∂dyj,m

∂gj,m

∂gj,m(p,x)

∂xl,m
+

(1− λ)2

ny

ny∑
j=1

∂dŷj,m

∂gj,m

∂gj,m(p,x)

∂xl,m
+

λ

nx

nx∑
i=1

hi(x)
∑

k∈I∆m

∂d∆i,k

∂fi,k

∂fi,k(t,p,x)

∂xl,m
+

λ

nx

∂hl(x)

∂xl,m

∑
k∈I∆

d∆i,k

(
fi,k(t,p,x)

)
, (D.26)

∂2r(p,x;λ)

∂x2
l,m

=

1− λ
ny

ny∑
j=1

(
∂2dyj,m

∂g2
j,m

(∂gj,m(p,x)

∂xl,m

)2
+
∂dyj,m

∂gj,m

∂2gj,m(p,x)

∂x2
l,m

)
+

(1− λ)2

ny

ny∑
j=1

(
∂2dŷj,m

∂g2
j,m

(∂gj,m(p,x)

∂xl,m

)2
+
∂dŷj,m

∂gj,m

∂2gj,m(p,x)

∂x2
l,m

)
+

λ

nx

nx∑
i=1

hi(x)
∑

k∈I∆m

(
∂2d∆i,k

∂f2
i,k

(∂fi,k(t,p,x)

∂xl,m

)2
+
∂d∆i,k

∂fi,k

∂2fi,k(t,p,x)

∂x2
l,m

)
+

λ

nx

2
∂hl(x)

∂xl,m

∑
k∈I∆m

∂d∆i,k

∂fi,k

∂fi,k(t,p,x)

∂xl,m
+
∂2hl(x)

∂x2
l,m

∑
k∈I∆

d∆i,k

(
fi,k(t,p,x)

) . (D.27)

Calculating ∂r(p,x;λ)/∂xl,m, as in equation (D.26), for all l ∈ {1, 2, . . . , nx} and all m in I∆

requires calculating partial derivative values,

∂gj,m(p,x)

∂xl,m
for all (j, l,m) ∈ {1, . . . , ny} × {1 . . . , nx} × I∆,

∂fi,k(t,p,x)

∂xl,m
for all (i, k, l,m) ∈ {1, . . . , nx} × I∆m × {1 . . . , nx} × I∆,

∂hl(x)

∂xl,m
for all (l,m) ∈ {1 . . . , nx} × I∆, (D.28)

which, respectively, require

O(ng1)× nynxn∆ = O(ng1nynxn∆),

O(nf1)× nxnδnxn∆ = O(nf1nxnδnxn∆),

O(≤ nf1nδ)× nxn∆ = O(≤ nf1nδnxn∆) (D.29)

operations to calculate, as stipulated in Equations (D.4), (D.5), and (D.6). Apart from

calculating partial derivative values, calculating ∂r(p,x;λ)/∂xl,m, as in equation (D.26), for all

146

D.1. Computational Complexity of r(p,x;λ) Descent

l ∈ {1, 2, . . . , nx} and all m in I∆ is equivalent in computational complexity to calculating

∂dyj,m

∂gj,m

∂gj,m(p,x)

∂xl,m
for all (j, l,m) ∈ {1, . . . , ny} × {1 . . . , nx} × I∆,

∂dŷj,m

∂gj,m

∂gj,m(p,x)

∂xl,m
for all (j, l,m) ∈ {1, . . . , ny} × {1 . . . , nx} × I∆,

∂d∆i,k

∂fi,k

∂fi,k(t,p,x)

∂xl,m
for all (i, k, l,m) ∈ {1, . . . , nx} × I∆m × {1 . . . , nx} × I∆,

hi(x) · I0 for all (i, l,m) ∈ {1, . . . , nx} × {1 . . . , nx} × I∆,

∂hl(x)

∂xl,m
· I0 for all (l,m) ∈ {1 . . . , nx} × I∆, (D.30)

which, respectively, require

O(1) ◦O(I0)× nynxn∆ = O(nynxn∆),

O(1) ◦O(I0)× nynxn∆ = O(nynxn∆),

O(1) ◦O(I0)× nxnδnxn∆ = O(nxnδnxn∆),

O(1) ◦O(I0)× nxnxn∆ = O(nxnxn∆),

O(1) ◦O(I0)× nxn∆ = O(nxn∆) (D.31)

operations to calculate. Thus, from complexity counts (D.29) and (D.31), calculating ∂r(p,x;λ)/∂xl,m

for all l ∈ {1, 2, . . . , nx} and all m in I∆ requires

O(ng1nynxn∆) +O(nf1nxnδnxn∆) +O(≤ nf1nδnxn∆) +O(nynxn∆)+

O(nynxn∆) +O(nxnδnxn∆) +O(nxnxn∆) +O(nxn∆) =

O
(
n∆nx(ng1ny + nf1nxnδ)

)
(D.32)

operations. Calculating ∂2r(p,x;λ)/∂x2
l,m, as in equation (D.27), for all l ∈ {1, 2, . . . , nx} and

all m in I∆ requires calculating partial derivative values,

∂2gj,m(p,x)

∂x2
l,m

for all (j, l,m) ∈ {1, . . . , ny} × {1 . . . , nx} × I∆,

∂2fi,k(t,p,x)

∂x2
l,m

for all (i, k, l,m) ∈ {1, . . . , nx} × I∆m × {1 . . . , nx} × I∆,

∂2hl(x)

∂x2
l,m

for all (l,m) ∈ {1 . . . , nx} × I∆, (D.33)

147

D.1. Computational Complexity of r(p,x;λ) Descent

which, respectively, require

O(ng2)× nynxn∆ = O(ng2nynxn∆),

O(nf2)× nxnδnxn∆ = O(nf2nxnδnxn∆),

O(≤ nf2nδ)× nxn∆ = O(≤ nf2nδnxn∆) (D.34)

operations to calculate, as stipulated in Equations (D.4), (D.5), and (D.6). Apart from

calculating partial derivative values, calculating ∂2r(p,x;λ)/∂x2
l,m, as in equation (D.27), for

all l ∈ {1, 2, . . . , nx} and all m in I∆ is equivalent in computational complexity to calculating

∂2dyj,m

∂g2
j,m

(∂gj,m(p,x)

∂xl,m

)2
for all (j, l,m) ∈ {1, . . . , ny} × {1 . . . , nx} × I∆,

∂dyj,m

∂gj,m

∂2gj,m(p,x)

∂x2
l,m

for all (j, l,m) ∈ {1, . . . , ny} × {1 . . . , nx} × I∆,

∂2dŷj,m

∂g2
j,m

(∂gj,m(p,x)

∂xl,m

)2
for all (j, l,m) ∈ {1, . . . , ny} × {1 . . . , nx} × I∆,

∂dŷj,m

∂gj,m

∂2gj,m(p,x)

∂x2
l,m

for all (j, l,m) ∈ {1, . . . , ny} × {1 . . . , nx} × I∆,

∂2d∆i,k

∂f2
i,k

(∂fi,k(t,p,x)

∂xl,m

)2
for all (i, k, l,m) ∈ {1, . . . , nx} × I∆m × {1 . . . , nx} × I∆,

∂d∆i,k

∂fi,k

∂2fi,k(t,p,x)

∂x2
l,m

for all (i, k, l,m) ∈ {1, . . . , nx} × I∆m × {1 . . . , nx} × I∆,

hi(x) · I0 for all (i, l,m) ∈ {1, . . . , nx} × {1 . . . , nx} × I∆,

∂hl(x)

∂xl,m
· I0 for all (l,m) ∈ {1 . . . , nx} × I∆,

∂2hl(x)

∂x2
l,m

· I0 for all (l,m) ∈ {1 . . . , nx} × I∆, (D.35)

148

D.1. Computational Complexity of r(p,x;λ) Descent

which, respectively, require

O(1) ◦O(I0)× nynxn∆ = O(nynxn∆),

Ig2 ·O(1) ◦O(I0)× nynxn∆ = O(Ig2nynxn∆),

O(1) ◦O(I0)× nynxn∆ = O(nynxn∆),

Ig2 ·O(1) ◦O(I0)× nynxn∆ = O(Ig2nynxn∆),

O(1) ◦O(I0)× nxnδnxn∆ = O(nxnδnxn∆),

O(1) ◦O(I0)× nxnδnxn∆ = O(nxnδnxn∆),

O(1) ◦O(I0)× nxnxn∆ = O(nxnxn∆),

O(1) ◦O(I0)× nxn∆ = O(nxn∆),

O(1) ◦O(I0)× nxn∆ = O(nxn∆) (D.36)

operations to calculate. Thus, from complexity counts (D.34) and (D.36), calculating ∂2r(p,x;λ)/∂x2
l,m

for all l ∈ {1, 2, . . . , nx} and all m in I∆ requires

O(ng2nynxn∆) +O(nf2nxnδnxn∆) +O(≤ nf2nδnxn∆) +O(nynxn∆)+

O(Ig2nynxn∆) +O(nynxn∆) +O(Ig2nynxn∆) +O(nxnδnxn∆)+

O(nxnδnxn∆) +O(nxnxn∆) +O(nxn∆) +O(nxn∆) =

O(ng2nynxn∆) +O(nf2nxnδnxn∆) +O(nynxn∆) =

O
(
n∆nx(ng2ny + nf2nxnδ)

)
(D.37)

operations. I note that computational complexity count (D.37) holds when ng2 = 0, as ny ≤ nx.

In each iteration of descent, I generate O(nσ) line-search test points, one for each value of

σj . Generating each test point requires an update of all parameters and state values, requiring

O(np + nxn∆) operations. I consider r(p,x;λ) with fewer parameter values than state values.

Thus, np < nxn∆, which implies that O(np +nxn∆) = O(nxn∆). From complexity count (D.11),

calculating r(p,x;λ) at each line-search test point requires O(n∆(ngny + nfnx)) operations.

Thus, updating all parameters and state values at all line-search test points, calculating r(p,x;λ)

at all line-search test points, calculating first order and un-mixed second order partial derivatives

of r(p,x;λ) with respect to all parameters, and calculating first order and un-mixed second

order partial derivatives of r(p,x;λ) with respect to all state values requires

O(nσnxn∆) +O
(
nσn∆(ngny + nfnx)

)
+

O
(
n∆np(ng1ny + nf1nx)

)
+O

(
n∆np(ng2ny + nf2nx)

)
+

O
(
n∆nx(ng1ny + nf1nxnδ)

)
+O

(
n∆nx(ng2ny + nf2nxnδ)

)
=

O
(
nσn∆(ngny + nfnx)

)
+O

(
n∆np(ng1ny + nf1nx + ng2ny + nf2nx)

)
+

O
(
n∆nx(ng1ny + nf1nxnδ + ng2ny + nf2nxnδ)

)
(D.38)

149

D.2. Computational Complexities of Numerical-Integration-Based Methods

operations, with partial derivative complexity counts from (D.18), (D.24), (D.32), and (D.37).

Therefore, an iteration of r(p,x;λ) descent requires

O
(
nσn∆(ngny + nfnx)

)
+O

(
n∆np(ng1ny + nf1nx + ng2ny + nf2nx)

)
+

O
(
n∆nx(ng1ny + nf1nxnδ + ng2ny + nf2nxnδ)

)
(D.39)

operations.

D.2 Computational Complexities of

Numerical-Integration-Based Methods

Comparatively, I count the computational complexity required to minimize r(q), where

r(q) =
1

ny

ny∑
j=1

nt∑
k=1

dyj,k

(
gj,k(q,x)

)
:

fi,k(t,q,x) = 0 for all i ∈ {1, 2, . . . , nx} and for all k ∈ I∆, (D.40)

with q consisting of nq elements, q1, q2, . . . , qnq , which correspond to model parameters p1, p2, . . . , pnp

and variable initial conditions and boundary values, and where gj,k(p,x) = yj,k−gj(p, x1,k, . . . , xnx,k)

with difference measure dyj,k
. As in counting the computation complexity required for an it-

eration of r(p,x;λ) descent, I define quantities for counting computational complexities as in

Section D.1.2.

D.2.1 Counting the Computational Complexity of r(q) Descent

Theorem 8. For an explicit numerical solution method, an iteration of r(q) descent requires

O
(
nσ(nfnxn∆ + ngnynt) + nyntng1(nx + nq)

)
+O

(
nyntng2(nxnx + nqnx)

)
+

O
(
≥ nxn∆(nF1nx + nF1nq + nF2nxnx + nF2nxnq + nxnxnq)

)
(D.41)

operations, with O(nσ) line-search test points. For an implicit numerical solution method, an

iteration of r(q) descent requires

O
(
nσnNnxn∆(nf + nf1nxnδ) + nσngnynt

)
+

O
(
nM (nq + nσnN) + nyntng1(nx + nq)

)
+O

(
nyntng2(nxnx + nqnx)

)
+

O
(
≥ nxn∆(nF1nx + nF1nq + nF2nxnx + nF2nxnq + nxnxnq)

)
(D.42)

operations, with O(nM) operations in solving matrix equations for each of O(nN) iterations of

Newton’s method applied to fi,k(t,q,x) = 0, for all i ∈ {1, 2, . . . , nx} and k ∈ I∆.

Alternatively, for an explicit numerical solution method, an iteration of r(q) descent with

150

D.2. Computational Complexities of Numerical-Integration-Based Methods

partial derivative approximation by finite difference requires

O
(
(nσ + nq)(nfnxn∆ + ngnynt)

)
(D.43)

operations, and, for an implicit numerical solution method, an iteration of r(q) descent with

partial derivative approximation by finite difference requires

O
((
nσ + nq

)(
nNnxn∆(nf + nf1nxnδ) + nNnM + ngnynt

))
(D.44)

operations.

Proof. In each iteration of descent, I calculate values of r(q). For an explicit numerical solution

method, fi,k(t,q,x) = 0 is an explicit system of equations in x, and solving fi,k(t,q,x) = 0

simply requires evaluating fi,k(t,q,x). Thus, to determine x, solving

fi,k(t,q,x) = 0 for all (i, k) ∈ {1, . . . , nx} × I∆ (D.45)

requires

O(nf)× nxn∆ = O(nfnxn∆) (D.46)

operations, as stipulated in equation (D.5). After calculating x, calculating r(q) requires

calculating

1

ny

ny∑
j=1

nt∑
k=1

dyj,k

(
gj,k(q,x)

)
, (D.47)

which is equivalent in computational complexity to calculating

dyj,k

(
gj,k(q,x)

)
for all (j, k) ∈ {1, . . . , ny} × {1, . . . , nt}, (D.48)

which requires

O(1) ◦O(ng)× nynt = O(ngnynt) (D.49)

operations to calculate, as stipulated in Equations (D.3) and (D.4). Thus, from complexity

counts (D.46) and (D.49), calculating r(q) requires

O(nfnxn∆) +O(ngnynt) = O(nfnxn∆ + ngnynt) (D.50)

operations with an explicit numerical solution method.

In each iteration of descent, I calculate first order and un-mixed second order partial

151

D.2. Computational Complexities of Numerical-Integration-Based Methods

derivatives of r(q) with respect to all parameters,

∂r(q)

∂ql
=

1

ny

ny∑
j=1

nt∑
k=1

∂dyj,k

∂gj,k

(
nx∑
m=1

∂gj,k
∂xm,k

∂xm,k
∂ql

+
∂gj,k
∂ql

)
, (D.51a)

∂2r(q)

∂q2
l

=
1

ny

ny∑
j=1

nt∑
k=1

∂2dyj,k

∂g2
j,k

(
nx∑
m=1

∂gj,k
∂xm,k

∂xm,k
∂ql

+
∂gj,k
∂ql

)2

+

∂dyj,k

∂gj,k

(
nx∑
m=1

((nx∑
n=1

∂2gj,k
∂xn,k∂xm,k

∂xn,k
∂ql

+
∂2gj,k

∂ql∂xm,k

)∂xm,k
∂ql

+
∂gj,k
∂xm,k

∂2xm,k
∂q2

l

)
+

nx∑
m=1

∂2gj,k
∂xm,k∂ql

∂xm,k
∂ql

+
∂2gj,k
∂q2

l

)]
. (D.51b)

Partial derivatives of state values with respect to parameters are generally calculated by

numerically solving the sensitivity equations, which are generated by applying the chain rule to

the differential equation system.

In the case of an initial value problem, dxi/dt = Fi(t,q, x1, . . . , xnx) for i ∈ {1, 2, . . . , nx},
applying the chain rule to Fi(t,q, x1, . . . , xnx) generates the sensitivity equations,

d

dt

(
∂xi
∂ql

)
=

∂

∂ql

(
dxi
dt

)
=

nx∑
j=1

∂Fi
∂xj

∂xj
∂ql

+
∂Fi
∂ql

, (D.52a)

d

dt

(
∂2xi
∂q2

l

)
=

∂2

∂q2
l

(
dxi
dt

)
=

nx∑
j=1

[(
nx∑
k=1

∂2Fi
∂xk∂xj

∂xk
∂ql

+
∂2Fi
∂ql∂xj

)
∂xj
∂ql

+
∂Fi
∂xj

∂2xj
∂q2

l

]
+

nx∑
j=1

∂2Fi
∂xj∂ql

∂xj
∂ql

+
∂2Fi
∂q2

l

=

nx∑
j=1

[(
nx∑
k=1

∂2Fi
∂xk∂xj

∂xk
∂ql

)
∂xj
∂ql

+ 2
∂2Fi
∂xj∂ql

∂xj
∂ql

+
∂Fi
∂xj

∂2xj
∂q2

l

]
+
∂2Fi
∂q2

l

, (D.52b)

two systems of differential equations, one in ∂xi/∂ql and one in ∂2xi/∂q
2
l for i ∈ {1, 2, . . . , nx}.

From Equations (D.52a) and (D.52b), using the forward Euler method, the simplest explicit

numerical method for initial value problems, I can calculate ∂xi,m/∂ql and ∂2xi,m/∂q
2
l for

i ∈ {1, 2, . . . , nx} and m ∈ I∆ such that

∂xi,m+1

∂ql
=
∂xi,m
∂ql

+
1

tm+1 − tm

 nx∑
j=1

∂Fi,m
∂xj,m

∂xj,m
∂ql

+
∂Fi,m
∂ql

 , (D.53a)

∂2xi,m+1

∂q2
l

=
∂2xi,m
∂q2

l

+
1

tm+1 − tm

(
. . .

nx∑
j=1

[(
nx∑
k=1

∂2Fi,m
∂xk,m∂xj,m

∂xk,m
∂ql

)
∂xj,m
∂ql

+ 2
∂2Fi,m
∂xj,m∂ql

∂xj,m
∂ql

+
∂Fi,m
∂xj,m

∂2xj,m
∂q2

l

]
+
∂2Fi,m
∂q2

l

)
,

(D.53b)

152

D.2. Computational Complexities of Numerical-Integration-Based Methods

where Fi,m = Fi(tm,q, x1,m, . . . , xnx,m).

Solving system (D.53a) for i ∈ {1, 2, . . . , nx}, m ∈ I∆, and l ∈ {1, 2, . . . , nq} requires

calculating partial derivative values,

∂Fi,m
∂xj,m

for all (i, j,m) ∈ {1, . . . , nx} × {1, . . . , nx} × I∆,

∂Fi,m
∂ql

for all (i,m, l) ∈ {1, . . . , nx} × I∆ × {1, . . . , nq}, (D.54)

which, respectively, require

O(nF1)× nxnxn∆ = O(nF1nxnxn∆),

O(nF1)× nxn∆nq = O(nF1nxn∆nq) (D.55)

operations to calculate, as stipulated in equation (D.7). Apart from calculating partial derivative

values, solving system (D.53a) for all i ∈ {1, 2, . . . , nx}, m ∈ I∆, and l ∈ {1, 2, . . . , nq} is

equivalent in computational complexity to calculating

∂Fi,m
∂xj,m

∂xj,m
∂ql

for all (i, j,m, l) ∈ {1, . . . , nx} × {1, . . . , nx} × I∆ × {1, . . . , nq},

∂Fi,m
∂ql

for all (i,m, l) ∈ {1, . . . , nx} × I∆ × {1, . . . , nq}, (D.56)

which, respectively, require

O(1) ◦O(I0)× nxnxn∆nq = O(nxnxn∆nq),

O(I0)× nxn∆nq = O(nxn∆nq) (D.57)

operations to calculate, where I0 indicates values that have been calculated previously and

O(I0) = 1. Therefore, from complexity counts (D.55) and (D.57), in total, solving systems

(D.53a) for all i ∈ {1, 2, . . . , nx}, m ∈ I∆, and l ∈ {1, 2, . . . , nq}, the first order sensitivity

equations for an initial value problem using the forward Euler method, requires

O(nF1nxnxn∆) +O(nF1nxn∆nq) +O(nxnxn∆nq) +O(nxn∆nq) =

O
(
nxn∆(nF1nx + nF1nq + nxnq)

)
(D.58)

operations. The forward Euler method applied to an initial value problem is the computationally

least expensive explicit numerical solution method. Thus, in general, solving the first order

sensitivity equations with an explicit numerical solution method requires

O
(
≥ nxn∆(nF1nx + nF1nq + nxnq)

)
(D.59)

operations.

153

D.2. Computational Complexities of Numerical-Integration-Based Methods

Similarly, solving system (D.53b) for i ∈ {1, 2, . . . , nx}, m ∈ I∆, and l ∈ {1, 2, . . . , nq}
requires calculating partial derivative values,

∂2Fi,m
∂xk,m∂xj,m

for all (i, j, k,m) ∈ {1, . . . , nx} × {1, . . . , nx} × {1, . . . , nx} × I∆,

∂2Fi,m
∂xj,m∂ql

for all (i, j,m, l) ∈ {1, . . . , nx} × {1, . . . , nx} × I∆ × {1, . . . , nq},

∂2Fi,m
∂q2

l

for all (i,m, l) ∈ {1, 2, . . . , nx} × I∆ × {1, 2, . . . , nq}, (D.60)

which, respectively, require

O(nF2)× nxnxnxn∆ = O(nF2nxnxnxn∆),

O(nF2)× nxnxn∆nq = O(nF2nxnxn∆nq),

O(nF2)× nxn∆nq = O(nF2nxn∆nq) (D.61)

operations to calculate, as stipulated in equation (D.7). Apart from calculating partial derivative

values, solving systems (D.53b) for all i ∈ {1, 2, . . . , nx}, m ∈ I∆, and l ∈ {1, 2, . . . , nq} is

equivalent in computational complexity to calculating

∂2Fi,m
∂xk,m∂xj,m

∂xk,m
∂ql

for all (i, j, k,m, l) ∈ {1, . . . , nx}3 × I∆ × {1, . . . , nq},

I0 ·
∂xj,m
∂ql

for all (j,m, l) ∈ {1, . . . , nx} × I∆ × {1, . . . , nq},

∂2Fi,m
∂xj,m∂ql

∂xj,m
∂ql

for all (i, j,m, l) ∈ {1, . . . , nx}2 × I∆ × {1, . . . , nq},

∂Fi,m
∂xj,m

∂2xj,m
∂q2

l

for all (i, j,m, l) ∈ {1, . . . , nx}2 × I∆ × {1, . . . , nq},

∂2Fi,m
∂q2

l

for all (i,m, l) ∈ {1, . . . , nx} × I∆ × {1, . . . , nq}, (D.62)

which, respectively, require

O(1) ◦O(I0)× nxnxnxn∆nq = O(nxnxnxn∆nq),

O(1) ◦O(I0)× nxn∆nq = O(nxn∆nq),

O(1) ◦O(I0)× nxnxn∆nq = O(nxnxn∆nq),

O(1) ◦O(I0)× nxnxn∆nq = O(nxnxn∆nq),

O(I0)× nxn∆nq = O(nxn∆nq) (D.63)

operations to calculate. Therefore, from complexity counts (D.61) and (D.63), in total, solving

systems (D.53b) for all i ∈ {1, 2, . . . , nx}, m ∈ I∆, and l ∈ {1, 2, . . . , nq}, the un-mixed second

154

D.2. Computational Complexities of Numerical-Integration-Based Methods

order sensitivity equations for an initial value problem using the forward Euler method, requires

O(nF2nxnxnxn∆) +O(nF2nxnxn∆nq) +O(nF2nxn∆nq) +O(nxnxnxn∆nq)+

O(nxn∆nq) +O(nxnxn∆nq) +O(nxnxn∆nq) +O(nxn∆nq) =

O
(
nxnxn∆(nF2nx + nF2nq + nxnq)

)
(D.64)

operations. The forward Euler method applied to an initial value problem is the computationally

least expensive explicit numerical solution method. Thus, in general, solving the un-mixed

second order sensitivity equations with an explicit numerical solution method requires

O
(
≥ nxnxn∆(nF2nx + nF2nq + nxnq)

)
(D.65)

operations.

After solving the first order sensitivity equations, calculating ∂r(q)/∂ql, of equation (D.51a),

for all l ∈ {1, 2, . . . , nq} requires calculating partial derivative values,

∂gj,k
∂xm,k

for all (j, k,m) ∈ {1, . . . , ny} × {1, . . . , nt} × {1, . . . , nx},

∂gj,k
∂ql

for all (j, k, l) ∈ {1, . . . , ny} × {1, . . . , nt} × {1, . . . , nq},

∂dyj,k

∂gj,k
for all (j, k) ∈ {1, . . . , ny} × {1, . . . , nt}, (D.66)

which, respectively, require

O(ng1)× nyntnx = O(ng1nyntnx),

O(ng1)× nyntnq = O(ng1nyntnq),

O(1) ◦O(I0)× nynt = O(nynt) (D.67)

operations to calculate, as stipulated in Equations (D.3) and (D.4). After solving the first order

sensitivity equations and calculating partial derivative values, calculating ∂r(q)/∂ql, of equation

(D.51a), for all l ∈ {1, 2, . . . , nq} is equivalent in computational complexity to calculating

∂gj,k
∂xm,k

∂xm,k
∂ql

for all (j, k, l,m) ∈

{1, . . . , ny} × {1, . . . , nt} × {1, . . . , nq} × {1, . . . , nx},
∂gj,k
∂ql

for all (j, k, l) ∈ {1, . . . , ny} × {1, . . . , nt} × {1, . . . , nq},

∂dyj,k

∂gj,k
· I0 for all (j, k) ∈ {1, . . . , ny} × {1, . . . , nt}, (D.68)

155

D.2. Computational Complexities of Numerical-Integration-Based Methods

which, respectively, require

O(1) ◦O(I0)× nyntnqnx = O(nyntnqnx),

O(I0)× nyntnq = O(nyntnq),

O(1) ◦O(I0)× nynt = O(nynt) (D.69)

operations to calculate. Thus, from complexity counts (D.67) and (D.69), after solving the first

order sensitivity equations, calculating ∂r(q)/∂ql for all l ∈ {1, 2, . . . , nq} requires

O(ng1nyntnx) +O(ng1nyntnq) +O(nynt) +O(nyntnqnx) +O(nyntnq)+

O(nynt) = O
(
nynt(ng1nx + ng1nq + nqnx)

)
(D.70)

operations. Therefore, from complexity counts (D.59) and (D.70), in total, calculating ∂r(q)/∂ql

for all l ∈ {1, 2, . . . , nq} requires

O
(
≥ nxn∆(nF1nx + nF1nq + nxnq)

)
+O

(
nynt(ng1nx + ng1nq + nqnx)

)
=

O
(
≥ nxn∆(nF1nx + nF1nq + nxnq)

)
+O

(
nyntng1(nx + nq)

)
(D.71)

operations with an explicit numerical solution method, as ny ≤ nx and nt ≤ n∆.

After solving the un-mixed second order sensitivity equations, calculating ∂2r(q)/∂q2
l , of

equation (D.51b), for all l ∈ {1, 2, . . . , nq} requires calculating partial derivative values,

∂2dyj,k

∂g2
j,k

for all (j, k) ∈ {1, . . . , ny} × {1, . . . , nt},

∂2gj,k
∂xn,k∂xm,k

for all (j, k,m, n) ∈ {1, . . . , ny} × {1, . . . , nt} × {1, . . . , nx}2,

∂2gj,k
∂xm,k∂ql

for all (j, k, l,m) ∈

{1, . . . , ny} × {1, . . . , nt} × {1, . . . , nq} × {1, . . . , nx},
∂2gj,k
∂q2

l

for all (j, k, l) ∈ {1, . . . , ny} × {1, . . . , nt} × {1, . . . , nq}, (D.72)

which, respectively, require

O(1) ◦O(I0)× nynt = O(nynt),

O(ng2)× nyntnxnx = O(ng2nyntnxnx),

O(ng2)× nyntnqnx = O(ng2nyntnqnx),

O(ng2)× nyntnq = O(ng2nyntnq) (D.73)

operations to calculate, as stipulated in Equations (D.3) and (D.4). After solving the un-

156

D.2. Computational Complexities of Numerical-Integration-Based Methods

mixed second order sensitivity equations, and calculating partial derivative values, calculating

∂2r(q)/∂q2
l , of equation (D.51b), for all l ∈ {1, 2, . . . , nq} is equivalent in computational com-

plexity to calculating

∂2dyj,k

∂g2
j,k

· I0
2 for all (j, k) ∈ {1, . . . , ny} × {1, . . . , nt},

∂2gj,k
∂xn,k∂xm,k

∂xn,k
∂ql

for all (j, k, l,m, n) ∈

{1, . . . , ny} × {1, . . . , nt} × {1, . . . , nq} × {1, . . . , nx}2,
∂2gj,k

∂ql∂xm,k
for all (j, k, l,m) ∈

{1, . . . , ny} × {1, . . . , nt} × {1, . . . , nq} × {1, . . . , nx},

I0 ·
∂xm,k
∂ql

for all (k, l,m) ∈ {1, . . . , nt} × {1, . . . , nq} × {1, . . . , nx},

∂gj,k
∂xm,k

∂2xm,k
∂q2

l

for all (j, k, l,m) ∈

{1, . . . , ny} × {1, . . . , nt} × {1, . . . , nq} × {1, . . . , nx},
∂2gj,k

∂xm,k∂ql

∂xm,k
∂ql

for all (j, k, l,m) ∈

{1, . . . , ny} × {1, . . . , nt} × {1, . . . , nq} × {1, . . . , nx},
∂2gj,k
∂q2

l

for all (j, k, l) ∈ {1, . . . , ny} × {1, . . . , nt} × {1, . . . , nq},

∂dyj,k

∂gj,k
· I0 for all (j, k) ∈ {1, . . . , ny} × {1, . . . , nt}, (D.74)

which, respectively, require

O(1) ◦O(I0)× nynt = O(nynt),

Ig2 ·O(1) ◦O(I0)× nyntnqnxnx = O(Ig2nyntnqnxnx),

Ig2 ·O(I0)× nyntnqnx = O(Ig2nyntnqnx),

O(1) ◦O(I0)× ntnqnx = O(ntnqnx),

O(1) ◦O(I0)× nyntnqnx = O(nyntnqnx),

Ig2 ·O(1) ◦O(I0)× nyntnqnx = O(Ig2nyntnqnx),

Ig2 ·O(I0)× nyntnq = O(Ig2nyntnq),

O(1) ◦O(I0)× nynt = O(nynt) (D.75)

157

D.2. Computational Complexities of Numerical-Integration-Based Methods

operations to calculate, where

Ig2 =

{
0 if ng2 = 0

1 if O(ng2) ≥ 1.
(D.76)

Thus, from complexity counts (D.73) and (D.75), after solving the un-mixed second order

sensitivity equations, calculating ∂2r(q)/∂q2
l for all l ∈ {1, 2, . . . , nq} requires

O(nynt) +O(ng2nyntnxnx) +O(ng2nyntnqnx) +O(ng2nyntnq) +O(nynt)+

O(Ig2nyntnqnxnx) +O(Ig2nyntnqnx) +O(ntnqnx) +O(nyntnqnx)+

O(Ig2nyntnqnx) +O(Ig2nyntnq) +O(nynt) =

O
(
nynt(ng2nxnx + ng2nqnx + Ig2nqnxnx + nqnx)

)
(D.77)

operations. Therefore, from complexity counts (D.65) and (D.77), in total, calculating ∂2r(q)/∂q2
l

for all l ∈ {1, 2, . . . , nq} requires

O
(
≥ nxnxn∆(nF2nx + nF2nq + nxnq)

)
+

O
(
nynt(ng2nxnx + ng2nqnx + Ig2nqnxnx + nqnx)

)
=

O
(
≥ nxnxn∆(nF2nx + nF2nq + nxnq)

)
+O

(
nyntng2(nxnx + nqnx)

)
(D.78)

operations with an explicit numerical solution method, as ny ≤ nx and nt ≤ n∆.

In each iteration of r(q) descent, I generate O(nσ) line-search test points, one for each

value of σj . Generating each test point requires an update of all parameter values, requiring

O(nq) operations. From complexity count (D.50), for an explicit numerical solution method,

calculating r(q) at each line-search test point requires O(nfnxn∆ + ngnynt) operations. Thus,

for an explicit numerical solution method, updating all parameter values and calculating r(q) at

each line-search test point requires

O(nq) +O(nfnxn∆ + ngnynt) = O(nfnxn∆ + ngnynt) (D.79)

operations, as I consider r(q) with fewer parameter values than state values, nq < nxn∆. As

such, for an explicit numerical solution method, updating all parameter values and calculating

r(q) at all line-search test points, calculating first order partial derivatives of r(q) with respect

to all parameters, and calculating un-mixed second order partial derivatives of r(q) with respect

158

D.2. Computational Complexities of Numerical-Integration-Based Methods

to all parameters requires

O
(
nσ(nfnxn∆ + ngnynt)

)
+

O
(
≥ nxn∆(nF1nx + nF1nq + nxnq)

)
+O

(
nyntng1(nx + nq)

)
+

O
(
≥ nxnxn∆(nF2nx + nF2nq + nxnq)

)
+O

(
nyntng2(nxnx + nqnx)

)
=

O
(
nσ(nfnxn∆ + ngnynt) + nyntng1(nx + nq)

)
+O

(
nyntng2(nxnx + nqnx)

)
+

O
(
≥ nxn∆(nF1nx + nF1nq + nF2nxnx + nF2nxnq + nxnxnq)

)
(D.80)

operations, with partial derivative complexity counts from (D.71) and (D.78). Therefore, for an

explicit numerical solution method, an iteration of r(q) descent requires

O
(
nσ(nfnxn∆ + ngnynt) + nyntng1(nx + nq)

)
+O

(
nyntng2(nxnx + nqnx)

)
+

O
(
≥ nxn∆(nF1nx + nF1nq + nF2nxnx + nF2nxnq + nxnxnq)

)
(D.81)

operations.

For implicit numerical solution methods, fi,k(t,q,x) = 0 is an implicit system of equations in

x and discretized sensitivity equations are implicit systems of equations in discretized sensitivity

values, ∂xi,m/∂ql and ∂2xi,m/∂q
2
l . Otherwise, r(q) descent with an implicit numerical solution

method is identical to r(q) descent with an explicit numerical solution method. Generally,

fi,k(t,q,x) = 0 is a nonlinear system of equations that is solved numerically using Newton’s

method. Each iteration of Newton’s method to solve fi,k(t,q,x) = 0 requires calculating the

values of fi,k(t,q,x) and the values of first order partial derivatives of fi,k(t,q,x) with respect

to xl,m, for all i ∈ {1, 2, . . . , nx}, k ∈ I∆, l ∈ {1, 2, . . . , nx}, and m ∈ I∆. Calculating

fi,k(t,q,x) for all (i, k) ∈ {1, 2, . . . , nx} × I∆ (D.82)

requires

O(nf)× nxn∆ = O(nfnxn∆) (D.83)

operations, as stipulated in equation (D.5). fi,k(t,q,x) depend on xl,m for only a small fraction

of k in I∆, at k in I∆m ⊂ I∆. Calculating

∂fi,k(t,q,x)

∂xl,m
for all (i, k, l,m) ∈ {1, . . . , nx} × I∆m × {1, . . . , nx} × I∆ (D.84)

requires

O(nf1)× nxnδnxn∆ = O(nf1nxnδnxn∆) (D.85)

operations, as stipulated in equation (D.5). Additionally, each iteration of Newton’s method to

159

D.2. Computational Complexities of Numerical-Integration-Based Methods

solve fi,k(t,q,x) = 0 requires solving matrix equations, requiring a total of O(nM) operations.

Thus, in conjunction with complexity counts (D.83) and (D.85), each iteration of Newton’s

method to solve fi,k(t,q,x) = 0 requires

O(nxn∆nf) +O(nf1nxnδnxn∆) +O(nM) =

O(nxn∆nf + nf1nxnδnxn∆ + nM) (D.86)

operations. Solving fi,k(t,q,x) = 0 requires O(nN) iterations of Newton’s method. Thus, for an

implicit numerical solution method, numerically solving fi,k(t,q,x) = 0 to determine x requires

O(nNnxn∆nf + nNnf1nxnδnxn∆ + nNnM) (D.87)

operations. From complexity count (D.49), After calculating x, calculating r(q) requires

calculating

1

ny

ny∑
j=1

nt∑
k=1

dyj,k

(
gj,k(q,x)

)
,

which requires O(ngnynt) operations to calculate. Thus, from complexity counts (D.49) and

(D.87), calculating r(q) requires

O(nNnxn∆nf + nNnf1nxnδnxn∆ + nNnM) +O(ngnynt) =

O
(
nNnxn∆(nf + nf1nxnδ) + nNnM + ngnynt

)
(D.88)

operations with an implicit numerical solution method.

The sensitivity equations are generated by applying the chain rule to the differential equation

system, and are thus linear in sensitivity values, ∂xi/∂ql and ∂2xi/∂q
2
l . As such, discretized sen-

sitivity equations are generally linear in discretized sensitivity values, ∂xi,m/∂ql and ∂2xi,m/∂q
2
l .

Thus, beyond the calculations required to solve the discretized sensitivity equations with

an explicit numerical solution method, solving the discretized sensitivity equations with an

implicit numerical solution method requires solving matrix equations. Both first order and

un-mixed second order discretized sensitivity equations with respect to ql are identical in size to

fi,k(t,q,x) = 0. Thus, calculating matrix equations in solving first order discretized sensitivity

equations with respect to ql requires a total of O(nM) operations, and calculating matrix

equations in solving un-mixed second order discretized sensitivity equations with respect to

ql requires a total of O(nM) operations. As such, calculating matrix equations in solving first

order discretized sensitivity equations with respect to ql for all l ∈ {1, 2, . . . , nq} requires a total

of O(nqnM) operations, and calculating matrix equations in solving un-mixed second order

discretized sensitivity equations with respect to ql for all l ∈ {1, 2, . . . , nq} requires a total of

O(nqnM) operations. Therefore, in general, in conjunction with complexity count (D.59), solving

160

D.2. Computational Complexities of Numerical-Integration-Based Methods

the first order sensitivity equations with an implicit numerical solution method requires

O
(
≥ nxn∆(nF1nx + nF1nq + nxnq)

)
+O(nqnM) (D.89)

operations, and, in conjunction with complexity count (D.65), solving the un-mixed second

order sensitivity equations with an implicit numerical solution method requires

O
(
≥ nxnxn∆(nF2nx + nF2nq + nxnq)

)
+O(nqnM) (D.90)

operations. From complexity count (D.70), after solving the first order sensitivity equations,

calculating ∂r(q)/∂ql for all l ∈ {1, 2, . . . , nq} requires O(nynt(ng1nx+ng1nq+nqnx)) operations.

Therefore, from complexity counts (D.89) and (D.70), in total, calculating ∂r(q)/∂ql for all

l ∈ {1, 2, . . . , nq} requires

O
(
≥ nxn∆(nF1nx + nF1nq + nxnq)

)
+O(nqnM)+

O
(
nynt(ng1nx + ng1nq + nqnx)

)
=

O
(
≥ nxn∆(nF1nx + nF1nq + nxnq)

)
+O

(
nqnM + nyntng1(nx + nq)

)
(D.91)

operations with an implicit numerical solution method, as ny ≤ nx and nt ≤ n∆. From

complexity count (D.77), after solving the un-mixed second order sensitivity equations, calculating

∂2r(q)/∂q2
l for all l ∈ {1, 2, . . . , nq} requires O(nynt(ng2nxnx + ng2nqnx + Ig2nqnxnx + nqnx))

operations. Therefore, from complexity counts (D.90) and (D.77), in total, calculating ∂2r(q)/∂q2
l

for all l ∈ {1, 2, . . . , nq} requires

O
(
≥ nxnxn∆(nF2nx + nF2nq + nxnq)

)
+O(nqnM)

O
(
nynt(ng2nxnx + ng2nqnx + Ig2nqnxnx + nqnx)

)
=

O
(
≥ nxnxn∆(nF2nx + nF2nq + nxnq)

)
+O(nqnM) +O

(
nyntng2(nxnx + nqnx)

)
(D.92)

operations with an implicit numerical solution method, as ny ≤ nx and nt ≤ n∆.

In each iteration of r(q) descent, I generate O(nσ) line-search test points, one for each

value of σj . Generating each test point requires an update of all parameter values, requiring

O(nq) operations. From complexity count (D.88), for an implicit numerical solution method,

calculating r(q) at each line-search test point requires O(nNnxn∆(nf + nf1nxnδ) + nNnM +

ngnynt) operations. Thus, for an implicit numerical solution method, updating all parameter

values and calculating r(q) at each line-search test point requires

O(nq) +O
(
nNnxn∆(nf + nf1nxnδ) + nNnM + ngnynt

)
=

O
(
nNnxn∆(nf + nf1nxnδ) + nNnM + ngnynt

)
(D.93)

operations, as I consider r(q) with fewer parameter values than state values, nq < nxn∆. As

161

D.2. Computational Complexities of Numerical-Integration-Based Methods

such, for an implicit numerical solution method, updating all parameter values and calculating

r(q) at all line-search test points, calculating first order partial derivatives of r(q) with respect

to all parameters, and calculating un-mixed second order partial derivatives of r(q) with respect

to all parameters requires

O
(
nσnNnxn∆(nf + nf1nxnδ) + nσnNnM + nσngnynt

)
+

O
(
≥ nxn∆(nF1nx + nF1nq + nxnq)

)
+O

(
nqnM + nyntng1(nx + nq)

)
+

O
(
≥ nxnxn∆(nF2nx + nF2nq + nxnq)

)
+O(nqnM) +O

(
nyntng2(nxnx + nqnx)

)
= O

(
nσnNnxn∆(nf + nf1nxnδ) + nσngnynt

)
+

O
(
nM (nq + nσnN) + nyntng1(nx + nq)

)
+O

(
nyntng2(nxnx + nqnx)

)
+

O
(
≥ nxn∆(nF1nx + nF1nq + nF2nxnx + nF2nxnq + nxnxnq)

)
(D.94)

operations, with partial derivative complexity counts from complexity counts (D.91) and (D.92).

Therefore, for an implicit numerical solution method, an iteration of r(q) descent requires

O
(
nσnNnxn∆(nf + nf1nxnδ) + nσngnynt

)
+

O
(
nM (nq + nσnN) + nyntng1(nx + nq)

)
+O

(
nyntng2(nxnx + nqnx)

)
+

O
(
≥ nxn∆(nF1nx + nF1nq + nF2nxnx + nF2nxnq + nxnxnq)

)
(D.95)

operations.

Alternatively, I can approximate partial derivatives of r(q) with respect to parameters by

finite differences, rather than by solving the sensitivity equations. Most simply,

∂r(q)

∂ql
≈ r(q + hlel)− r(q)

hl
, (D.96a)

∂2r(q)

∂q2
l

≈ r(q + hlel)− 2r(q) + r(q− hlel)
h2
l

, (D.96b)

where el is the lth standard basis vector and hl is some small perturbation in parameter

ql. Approximating ∂r(q)/∂ql and ∂2r(q)/∂q2
l , as in Equations (D.96a) and (D.96b), for all

l ∈ {1, 2, . . . , nq} is equivalent in computational complexity to calculating

r(q + hlel) for all l ∈ {1, 2, . . . , nq},
r(q),

r(q− hlel) for all l ∈ {1, 2, . . . , nq}, (D.97)

which, from complexity count (D.50), for an explicit numerical solution method, respectively,

162

D.2. Computational Complexities of Numerical-Integration-Based Methods

require

O(nfnxn∆ + ngnynt)× nq = O
(
nq(nfnxn∆ + ngnynt)

)
,

O(I0),

O(nfnxn∆ + ngnynt)× nq = O
(
nq(nfnxn∆ + ngnynt)

)
, (D.98)

operations to calculate, and, from complexity count (D.88), for an implicit numerical solution

method, respectively, require

O
(
nNnxn∆(nf + nf1nxnδ) + nNnM + ngnynt

)
× nq =

O
(
nNnxn∆nq(nf + nf1nxnδ) + nNnMnq + ngnyntnq

)
,

O(I0),

O
(
nNnxn∆(nf + nf1nxnδ) + nNnM + ngnynt

)
× nq =

O
(
nNnxn∆nq(nf + nf1nxnδ) + nNnMnq + ngnyntnq

)
(D.99)

operations to calculate. Thus, for an explicit numerical solution method, approximating

∂r(q)/∂ql and ∂2r(q)/∂q2
l by finite difference for all l ∈ {1, 2, . . . , nq} requires

O
(
nq(nfnxn∆ + ngnynt)

)
+O(I0) +O

(
nq(nfnxn∆ + ngnynt)

)
=

O
(
nq(nfnxn∆ + ngnynt)

)
(D.100)

operations, and for an implicit numerical solution method, approximating ∂r(q)/∂ql and

∂2r(q)/∂q2
l by finite difference for all l ∈ {1, 2, . . . , nq} requires

O
(
nNnxn∆nq(nf + nf1nxnδ) + nNnMnq + ngnyntnq

)
+O(I0)+

O
(
nNnxn∆nq(nf + nf1nxnδ) + nNnMnq + ngnyntnq

)
=

O
(
nNnxn∆nq(nf + nf1nxnδ) + nNnMnq + ngnyntnq

)
(D.101)

operations.

For an explicit numerical solution method, updating all parameter values and calculating

r(q) at all of the O(nσ) line-search test points, as calculated for each line-search test point

in complexity count (D.79), and approximating first order and un-mixed second order partial

derivatives of r(q) with respect to all parameters by finite difference, as calculated in complexity

count (D.100), requires

O(nσnfnxn∆ + nσngnynt) +O
(
nq(nfnxn∆ + ngnynt)

)
=

O
(
nfnxn∆(nσ + nq) + ngnynt(nσ + nq)

)
=

O
(
(nσ + nq)(nfnxn∆ + ngnynt)

)
(D.102)

163

D.2. Computational Complexities of Numerical-Integration-Based Methods

operations. For an implicit numerical solution method, updating all parameter values and

calculating r(q) at all of the O(nσ) line-search test points, as calculated for each line-search test

point in complexity count (D.93), and approximating first order and un-mixed second order

partial derivatives of r(q) with respect to all parameters by finite difference, as calculated in

complexity count (D.101), requires

O
(
nσnNnxn∆(nf + nf1nxnδ) + nσnNnM + nσngnynt

)
+

O
(
nNnxn∆nq(nf + nf1nxnδ) + nNnMnq + ngnyntnq

)
=

O
(
nNnxn∆(nσ + nq)(nf + nf1nxnδ) + nNnM (nσ + nq) + ngnynt(nσ + nq)

)
=

O
((
nσ + nq

)(
nNnxn∆(nf + nf1nxnδ) + nNnM + ngnynt

))
(D.103)

operations. Therefore, from complexity count (D.102), for an explicit numerical solution method,

an iteration of r(q) descent with partial derivative approximation by finite difference requires

O
(
(nσ + nq)(nfnxn∆ + ngnynt)

)
(D.104)

operations, and from complexity count (D.103), for an implicit numerical solution method, an

iteration of r(q) descent with partial derivative approximation by finite difference requires

O
((
nσ + nq

)(
nNnxn∆(nf + nf1nxnδ) + nNnM + ngnynt

))
(D.105)

operations.

D.2.2 Counting the Computational Complexity of Newton’s Method to

Minimize r(q)

On an unrestricted domain, a local minimum of r(q) occurs where ∂r(q)/∂pl = 0 for all

l ∈ {1, 2, . . . , nq}. Thus, a local minimum of r(q) is calculable by applying Newton’s method to

find a solution to the system ∂r(q)/∂pl = 0 for all l ∈ {1, 2, . . . , nq}.

Theorem 9. For an explicit numerical solution method, an iteration of r(q) minimization by

Newton’s method requires

O
(
nfnxn∆ + nyntng1(nx + nq)

)
+O

(
nyntng2(nxnx + nqnx + nqnq)

)
+

O
(
≥ nxn∆(nF1nx + nF1nq + nF2nxnx + nF2nxnq + nF2nqnq + nxnxnq + nxnqnq)

)
(D.106)

operations. For an implicit numerical solution method, an iteration of r(q) minimization by

164

D.2. Computational Complexities of Numerical-Integration-Based Methods

Newton’s method requires

O
(
nNnxn∆(nf + nf1nxnδ) + nM (nqnq + nN) + nyntng1(nx + nq)

)
+

O
(
nyntng2(nxnx + nqnx + nqnq)

)
+

O
(
≥ nxn∆(nF1nx + nF1nq + nF2nxnx + nF2nxnq + nF2nqnq + nxnxnq + nxnqnq)

)
(D.107)

operations, with O(nM) operations in solving matrix equations for each of O(nN) iterations of

Newton’s method applied to fi,k(t,q,x) = 0, for all i ∈ {1, 2, . . . , nx} and k ∈ I∆.

Alternatively, for an explicit numerical solution method, an iteration of r(q) minimization

by Newton’s method with partial derivative approximation by finite difference requires

O
(
nqnq(nfnxn∆ + ngnynt)

)
(D.108)

operations, and, for an implicit numerical solution method, an iteration of r(q) minimization by

Newton’s method with partial derivative approximation by finite difference requires

O
(
nNnxn∆nqnq(nf + nf1nxnδ) + nNnMnqnq + ngnyntnqnq

)
(D.109)

operations.

Proof. In each iteration of r(q) minimization by Newton’s method, I calculate numerical solution

values, x. For an explicit numerical solution method, fi,k(t,q,x) = 0 is an explicit system of

equations in x, and solving fi,k(t,q,x) = 0 simply requires evaluating fi,k(t,q,x). Thus, to

determine x, solving

fi,k(t,q,x) = 0 for all (i, k) ∈ {1, . . . , nx} × I∆ (D.110)

requires

O(nf)× nxn∆ = O(nfnxn∆) (D.111)

operations, as stipulated in equation (D.5).

In each iteration of r(q) minimization by Newton’s method, I calculate first order and second

165

D.2. Computational Complexities of Numerical-Integration-Based Methods

order partial derivatives of r(q) with respect to all parameters,

∂r(q)

∂ql
=

1

ny

ny∑
j=1

nt∑
k=1

∂dyj,k

∂gj,k

(
nx∑
m=1

∂gj,k
∂xm,k

∂xm,k
∂ql

+
∂gj,k
∂ql

)
, (D.112a)

∂2r(q)

∂qm∂ql
=

1

ny

ny∑
j=1

nt∑
k=1

[
∂2dyj,k

∂g2
j,k

(
nx∑
s=1

∂gj,k
∂xs,k

∂xs,k
∂qm

+
∂gj,k
∂qm

)(
nx∑
s=1

∂gj,k
∂xs,k

∂xs,k
∂ql

+
∂gj,k
∂ql

)
+

∂dyj,k

∂gj,k

(
nx∑
s=1

((nx∑
t=1

∂2gj,k
∂xt,k∂xs,k

∂xt,k
∂qm

+
∂2gj,k

∂qm∂xs,k

)∂xs,k
∂ql

+
∂gj,k
∂xs,k

∂2xs,k
∂qm∂ql

)
+

nx∑
s=1

∂2gj,k
∂xs,k∂ql

∂xs,k
∂qm

+
∂2gj,k
∂qm∂ql

)]
. (D.112b)

Partial derivatives of state values with respect to parameters are generally calculated by

numerically solving the sensitivity equations, which are generated by applying the chain rule to

the differential equation system.

In the case of an initial value problem, dxi/dt = Fi(t,q, x1, . . . , xnx) for i ∈ {1, 2, . . . , nx},
applying the chain rule to Fi(t,q, x1, . . . , xnx) generates the sensitivity equations,

d

dt

(
∂xi
∂ql

)
=

∂

∂ql

(
dxi
dt

)
=

nx∑
j=1

∂Fi
∂xj

∂xj
∂ql

+
∂Fi
∂ql

, (D.113a)

d

dt

(
∂2xi
∂qm∂ql

)
=

∂2

∂qm∂ql

(
dxi
dt

)
=

nx∑
j=1

[(
nx∑
k=1

∂2Fi
∂xk∂xj

∂xk
∂qm

+
∂2Fi

∂qm∂xj

)
∂xj
∂ql

+
∂Fi
∂xj

∂2xj
∂qm∂ql

]
+

nx∑
j=1

∂2Fi
∂xj∂ql

∂xj
∂qm

+
∂2Fi
∂qm∂ql

, (D.113b)

two systems of differential equations, one in ∂xi/∂ql and one in ∂2xi/∂qm∂ql for i ∈ {1, 2, . . . , nx}.
From Equations (D.113a) and (D.113b), using the forward Euler method, the simplest explicit

numerical method for initial value problems, I can calculate ∂xi,s/∂ql and ∂2xi,s/∂qm∂ql for

166

D.2. Computational Complexities of Numerical-Integration-Based Methods

i ∈ {1, 2, . . . , nx} and s ∈ I∆ such that

∂xi,s+1

∂ql
=
∂xi,s
∂ql

+
1

ts+1 − ts

 nx∑
j=1

∂Fi,s
∂xj,s

∂xj,s
∂ql

+
∂Fi,s
∂ql

 , (D.114a)

∂2xi,s+1

∂qm∂ql
=

∂2xi,s
∂qm∂ql

+
1

ts+1 − ts

(
. . .

nx∑
j=1

[(
nx∑
k=1

∂2Fi,s
∂xk,s∂xj,s

∂xk,s
∂qm

+
∂2Fi,s

∂qm∂xj,s

)
∂xj,s
∂ql

+
∂Fi,s
∂xj,s

∂2xj,s
∂qm∂ql

]
+

nx∑
j=1

∂2Fi,s
∂xj,s∂ql

∂xj,s
∂qm

+
∂2Fi,s
∂qm∂ql

)
, (D.114b)

where Fi,s = Fi(ts,q, x1,s, . . . , xnx,s).

Solving system (D.114a) for i ∈ {1, 2, . . . , nx}, l ∈ {1, 2, . . . , nq}, and s ∈ I∆ requires

calculating partial derivative values,

∂Fi,s
∂xj,s

for all (i, j, s) ∈ {1, . . . , nx} × {1, . . . , nx} × I∆,

∂Fi,s
∂ql

for all (i, l, s) ∈ {1, . . . , nx} × {1, . . . , nq} × I∆, (D.115)

which, respectively, require

O(nF1)× nxnxn∆ = O(nF1nxnxn∆),

O(nF1)× nxnqn∆ = O(nF1nxnqn∆) (D.116)

operations to calculate, as stipulated in equation (D.7). Apart from calculating partial derivative

values, solving system (D.114a) for all i ∈ {1, 2, . . . , nx}, l ∈ {1, 2, . . . , nq}, and s ∈ I∆ is

equivalent in computational complexity to calculating

∂Fi,s
∂xj,s

∂xj,s
∂ql

for all (i, j, l, s) ∈ {1, . . . , nx} × {1, . . . , nx} × {1, . . . , nq} × I∆,

∂Fi,s
∂ql

for all (i, l, s) ∈ {1, . . . , nx} × {1, . . . , nq} × I∆, (D.117)

which, respectively, require

O(1) ◦O(I0)× nxnxnqn∆ = O(nxnxnqn∆),

O(I0)× nxnqn∆ = O(nxnqn∆) (D.118)

operations to calculate, where I0 indicates values that have been calculated previously and

O(I0) = 1. Therefore, from complexity counts (D.116) and (D.118), in total, solving systems

(D.114a) for all i ∈ {1, 2, . . . , nx}, l ∈ {1, 2, . . . , nq}, and s ∈ I∆, the first order sensitivity

167

D.2. Computational Complexities of Numerical-Integration-Based Methods

equations for an initial value problem using the forward Euler method, requires

O(nF1nxnxn∆) +O(nF1nxnqn∆) +O(nxnxnqn∆) +O(nxnqn∆) =

O
(
nxn∆(nF1nx + nF1nq + nxnq)

)
(D.119)

operations. The forward Euler method applied to an initial value problem is the computationally

least expensive explicit numerical solution method. Thus, in general, solving the first order

sensitivity equations with an explicit numerical solution method requires

O
(
≥ nxn∆(nF1nx + nF1nq + nxnq)

)
(D.120)

operations.

Similarly, solving system (D.114b) for i ∈ {1, 2, . . . , nx}, l ∈ {1, 2, . . . , nq}, m ∈ {1, 2, . . . , nq},
and s ∈ I∆ requires calculating partial derivative values,

∂2Fi,s
∂xk,s∂xj,s

for all (i, j, k, s) ∈ {1, . . . , nx} × {1, . . . , nx} × {1, . . . , nx} × I∆,

∂2Fi,s
∂xj,s∂ql

for all (i, j, l, s) ∈ {1, . . . , nx} × {1, . . . , nx} × {1, . . . , nq} × I∆,

∂2Fi,s
∂qm∂ql

for all (i, l,m, s) ∈ {1, 2, . . . , nx} × {1, 2, . . . , nq} × {1, 2, . . . , nq} × I∆, (D.121)

which, respectively, require

O(nF2)× nxnxnxn∆ = O(nF2nxnxnxn∆),

O(nF2)× nxnxnqn∆ = O(nF2nxnxnqn∆),

O(nF2)× nxnqnqn∆ = O(nF2nxnqnqn∆) (D.122)

operations to calculate, as stipulated in equation (D.7). Apart from calculating partial derivative

values, solving systems (D.114b) for all i ∈ {1, 2, . . . , nx}, l ∈ {1, 2, . . . , nq}, m ∈ {1, 2, . . . , nq},

168

D.2. Computational Complexities of Numerical-Integration-Based Methods

and s ∈ I∆ is equivalent in computational complexity to calculating

∂2Fi,s
∂xk,s∂xj,s

∂xk,s
∂qm

for all (i, j, k,m, s) ∈ {1, . . . , nx}3 × {1, . . . , nq} × I∆,

∂2Fi,s
∂qm∂xj,s

for all (i, j,m, s) ∈ {1, . . . , nx}2 × {1, . . . , nq} × I∆,

I0 ·
∂xj,s
∂ql

for all (j, l, s) ∈ {1, . . . , nx} × {1, . . . , nq} × I∆,

∂Fi,s
∂xj,s

∂2xj,s
∂qm∂ql

for all (i, j, l,m, s) ∈ {1, . . . , nx}2 × {1, . . . , nq}2 × I∆,

∂2Fi,s
∂xj,s∂ql

∂xj,s
∂qm

for all (i, j, l,m, s) ∈ {1, . . . , nx}2 × {1, . . . , nq}2 × I∆,

∂2Fi,s
∂qm∂ql

for all (i, l,m, s) ∈ {1, . . . , nx} × {1, . . . , nq}2 × I∆, (D.123)

which, respectively, require

O(1) ◦O(I0)× nxnxnxnqn∆ = O(nxnxnxnqn∆),

O(I0)× nxnxnqn∆ = O(nxnxnqn∆),

O(1) ◦O(I0)× nxnqn∆ = O(nxnqn∆),

O(1) ◦O(I0)× nxnxnqnqn∆ = O(nxnxnqnqn∆),

O(1) ◦O(I0)× nxnxnqnqn∆ = O(nxnxnqnqn∆),

O(I0)× nxnqnqn∆ = O(nxnqnqn∆) (D.124)

operations to calculate. Therefore, from complexity counts (D.122) and (D.124), in total, solving

systems (D.114b) for all i ∈ {1, 2, . . . , nx}, l ∈ {1, 2, . . . , nq}, m ∈ {1, 2, . . . , nq}, and s ∈ I∆, the

second order sensitivity equations for an initial value problem using the forward Euler method,

requires

O(nF2nxnxnxn∆) +O(nF2nxnxnqn∆) +O(nF2nxnqnqn∆)+

O(nxnxnxnqn∆) +O(nxnxnqn∆) +O(nxnqn∆)+

O(nxnxnqnqn∆) +O(nxnxnqnqn∆) +O(nxnqnqn∆) =

O
(
nxn∆(nF2nxnx + nF2nxnq + nF2nqnq + nxnxnq + nxnqnq)

)
(D.125)

operations. The forward Euler method applied to an initial value problem is the computationally

least expensive explicit numerical solution method. Thus, in general, solving the second order

sensitivity equations with an explicit numerical solution method requires

O
(
≥ nxn∆(nF2nxnx + nF2nxnq + nF2nqnq + nxnxnq + nxnqnq)

)
(D.126)

operations.

169

D.2. Computational Complexities of Numerical-Integration-Based Methods

After solving the first order sensitivity equations, calculating ∂r(q)/∂ql, of equation (D.112a),

for all l ∈ {1, 2, . . . , nq} requires calculating partial derivative values,

∂gj,k
∂xm,k

for all (j, k,m) ∈ {1, . . . , ny} × {1, . . . , nt} × {1, . . . , nx},

∂gj,k
∂ql

for all (j, k, l) ∈ {1, . . . , ny} × {1, . . . , nt} × {1, . . . , nq},

∂dyj,k

∂gj,k
for all (j, k) ∈ {1, . . . , ny} × {1, . . . , nt}, (D.127)

which, respectively, require

O(ng1)× nyntnx = O(ng1nyntnx),

O(ng1)× nyntnq = O(ng1nyntnq),

O(1) ◦O(I0)× nynt = O(nynt) (D.128)

operations to calculate, as stipulated in Equations (D.3) and (D.4). After solving the first order

sensitivity equations and calculating partial derivative values, calculating ∂r(q)/∂ql, of equation

(D.112a), for all l ∈ {1, 2, . . . , nq} is equivalent in computational complexity to calculating

∂gj,k
∂xm,k

∂xm,k
∂ql

for all (j, k,m, l) ∈

{1, . . . , ny} × {1, . . . , nt} × {1, . . . , nx} × {1, . . . , nq},
∂gj,k
∂ql

for all (j, k, l) ∈ {1, . . . , ny} × {1, . . . , nt} × {1, . . . , nq},

∂dyj,k

∂gj,k
· I0 for all (j, k) ∈ {1, . . . , ny} × {1, . . . , nt}, (D.129)

which, respectively, require

O(1) ◦O(I0)× nyntnxnq = O(nyntnxnq),

O(I0)× nyntnq = O(nyntnq),

O(1) ◦O(I0)× nynt = O(nynt) (D.130)

operations to calculate. Thus, from complexity counts (D.128) and (D.130), after solving the

first order sensitivity equations, calculating ∂r(q)/∂ql for all l ∈ {1, 2, . . . , nq} requires

O(ng1nyntnx) +O(ng1nyntnq) +O(nynt) +O(nyntnxnq) +O(nyntnq)+

O(nynt) = O
(
nynt(ng1nx + ng1nq + nxnq)

)
(D.131)

operations. Therefore, from complexity counts (D.120) and (D.131), in total, calculating

170

D.2. Computational Complexities of Numerical-Integration-Based Methods

∂r(q)/∂ql for all l ∈ {1, 2, . . . , nq} requires

O
(
≥ nxn∆(nF1nx + nF1nq + nxnq)

)
+O

(
nynt(ng1nx + ng1nq + nxnq)

)
=

O
(
≥ nxn∆(nF1nx + nF1nq + nxnq)

)
+O

(
nyntng1(nx + nq)

)
(D.132)

operations with an explicit numerical solution method, as ny ≤ nx and nt ≤ n∆.

After solving the second order sensitivity equations, calculating ∂2r(q)/∂qm∂ql, of equation

(D.112b), for all l ∈ {1, 2, . . . , nq} and m ∈ {1, 2, . . . , nq} requires calculating partial derivative

values,

∂2dyj,k

∂g2
j,k

for all (j, k) ∈ {1, . . . , ny} × {1, . . . , nt},

∂2gj,k
∂xt,k∂xs,k

for all (j, k, s, t) ∈ {1, . . . , ny} × {1, . . . , nt} × {1, . . . , nx}2,

∂2gj,k
∂xs,k∂ql

for all (j, k, l, s) ∈ {1, . . . , ny} × {1, . . . , nt} × {1, . . . , nq} × {1, . . . , nx},

∂2gj,k
∂qm∂ql

for all (j, k, l,m) ∈ {1, . . . , ny} × {1, . . . , nt} × {1, . . . , nq}2, (D.133)

which, respectively, require

O(1) ◦O(I0)× nynt = O(nynt),

O(ng2)× nyntnxnx = O(ng2nyntnxnx),

O(ng2)× nyntnqnx = O(ng2nyntnqnx),

O(ng2)× nyntnqnq = O(ng2nyntnqnq) (D.134)

operations to calculate, as stipulated in Equations (D.3) and (D.4). After solving the second order

sensitivity equations and calculating partial derivative values, calculating ∂2r(q)/∂qm∂ql, of

equation (D.112b), for all l ∈ {1, 2, . . . , nq} and m ∈ {1, 2, . . . , nq} is equivalent in computational

171

D.2. Computational Complexities of Numerical-Integration-Based Methods

complexity to calculating

∂2dyj,k

∂g2
j,k

· I0 for all (j, k) ∈ {1, . . . , ny} × {1, . . . , nt},

∂2gj,k
∂xt,k∂xs,k

∂xt,k
∂qm

for all (j, k,m, s, t) ∈

{1, . . . , ny} × {1, . . . , nt} × {1, . . . , nq} × {1, . . . , nx}2,
∂2gj,k

∂qm∂xs,k
for all (j, k,m, s) ∈

{1, . . . , ny} × {1, . . . , nt} × {1, . . . , nq} × {1, . . . , nx},

I0 ·
∂xs,k
∂ql

for all (k, l, s) ∈ {1, . . . , nt} × {1, . . . , nq} × {1, . . . , nx},

∂gj,k
∂xs,k

∂2xs,k
∂qm∂ql

for all (j, k, l,m, s) ∈

{1, . . . , ny} × {1, . . . , nt} × {1, . . . , nq}2 × {1, . . . , nx},
∂2gj,k
∂xs,k∂ql

∂xs,k
∂qm

for all (j, k, l,m, s) ∈

{1, . . . , ny} × {1, . . . , nt} × {1, . . . , nq}2 × {1, . . . , nx},
∂2gj,k
∂qm∂ql

for all (j, k, l,m) ∈ {1, . . . , ny} × {1, . . . , nt} × {1, . . . , nq}2,

∂dyj,k

∂gj,k
· I0 for all (j, k) ∈ {1, . . . , ny} × {1, . . . , nt}, (D.135)

which, respectively, require

O(1) ◦O(I0)× nynt = O(nynt),

Ig2 ·O(1) ◦O(I0)× nyntnqnxnx = O(Ig2nyntnqnxnx),

Ig2 ·O(I0)× nyntnqnx = O(Ig2nyntnqnx),

O(1) ◦O(I0)× ntnqnx = O(ntnqnx),

O(1) ◦O(I0)× nyntnqnqnx = O(nyntnqnqnx),

Ig2 ·O(1) ◦O(I0)× nyntnqnqnx = O(Ig2nyntnqnqnx),

Ig2 ·O(I0)× nyntnqnq = O(Ig2nyntnqnq),

O(1) ◦O(I0)× nynt = O(nynt) (D.136)

operations to calculate, where

Ig2 =

{
0 if ng2 = 0

1 if O(ng2) ≥ 1.
(D.137)

Thus, from complexity counts (D.134) and (D.136), after solving the second order sensitivity

172

D.2. Computational Complexities of Numerical-Integration-Based Methods

equations, calculating ∂2r(q)/∂qm∂ql for all l ∈ {1, 2, . . . , nq} and m ∈ {1, 2, . . . , nq} requires

O(nynt) +O(ng2nyntnxnx) +O(ng2nyntnqnx) +O(ng2nyntnqnq) +O(nynt)+

O(Ig2nyntnqnxnx) +O(Ig2nyntnqnx) +O(ntnqnx) +O(nyntnqnqnx)+

O(Ig2nyntnqnqnx) +O(Ig2nyntnqnq) +O(nynt) =

O
(
nynt(ng2nxnx + ng2nqnx + ng2nqnq + Ig2nqnxnx + Ig2nqnqnx + nqnqnx)

)
(D.138)

operations. Therefore, from complexity counts (D.126) and (D.138), in total, calculating

∂2r(q)/∂qm∂ql for all l ∈ {1, 2, . . . , nq} and m ∈ {1, 2, . . . , nq} requires

O
(
≥ nxn∆(nF2nxnx + nF2nxnq + nF2nqnq + nxnxnq + nxnqnq)

)
+

O
(
nynt(ng2nxnx + ng2nqnx + ng2nqnq + Ig2nqnxnx + Ig2nqnqnx + nqnqnx)

)
=

O
(
≥ nxn∆(nF2nxnx + nF2nxnq + nF2nqnq + nxnxnq + nxnqnq)

)
+

O
(
nyntng2(nxnx + nqnx + nqnq)

)
(D.139)

operations with an explicit numerical solution method, as ny ≤ nx and nt ≤ n∆.

In each iteration of r(q) minimization by Newton’s method, updating parameter values

requires solving an nq × nq matrix equation, which requires O(n3
q) operations using Gaussian

elimination. Thus, for an explicit numerical solution method, calculating first order partial

derivatives of r(q) with respect to all parameters, calculating second order partial derivatives

of r(q) with respect to all parameters, updating parameter values, and updating numerical

solution values requires

O
(
≥ nxn∆(nF1nx + nF1nq + nxnq)

)
+O

(
nyntng1(nx + nq)

)
+

O
(
≥ nxn∆(nF2nxnx + nF2nxnq + nF2nqnq + nxnxnq + nxnqnq)

)
+

O
(
nyntng2(nxnx + nqnx + nqnq)

)
+O(n3

q) +O(nfnxn∆) =

O
(
nfnxn∆ + nyntng1(nx + nq)

)
+O

(
nyntng2(nxnx + nqnx + nqnq)

)
O
(
≥ nxn∆(nF1nx + nF1nq + nF2nxnx + nF2nxnq + nF2nqnq + nxnxnq + nxnqnq)

)
(D.140)

operations, as nq < nxn∆, the number of parameters is less than the number of state values, with

partial derivative complexity counts from (D.132) and (D.139) and numerical solution complexity

count from (D.111). Therefore, for an explicit numerical solution method, an iteration of r(q)

minimization by Newton’s method requires

O
(
nfnxn∆ + nyntng1(nx + nq)

)
+O

(
nyntng2(nxnx + nqnx + nqnq)

)
O
(
≥ nxn∆(nF1nx + nF1nq + nF2nxnx + nF2nxnq + nF2nqnq + nxnxnq + nxnqnq)

)
(D.141)

operations.

For implicit numerical solution methods, fi,k(t,q,x) = 0 is an implicit system of equations in

173

D.2. Computational Complexities of Numerical-Integration-Based Methods

x and discretized sensitivity equations are implicit systems of equations in discretized sensitivity

values, ∂xi,s/∂ql and ∂2xi,s/∂qm∂ql. Otherwise, r(q) minimization by Newton’s method with

an implicit numerical solution method is identical to r(q) minimization by Newton’s method

with an explicit numerical solution method. Generally, fi,k(t,q,x) = 0 is a nonlinear system

of equations that is solved numerically using Newton’s method. Each iteration of Newton’s

method to solve fi,k(t,q,x) = 0 requires calculating the values of fi,k(t,q,x) and the values

of first order partial derivatives of fi,k(t,q,x) with respect to xl,m, for all i ∈ {1, 2, . . . , nx},
k ∈ I∆, l ∈ {1, 2, . . . , nx}, and m ∈ I∆. Calculating

fi,k(t,q,x) for all (i, k) ∈ {1, 2, . . . , nx} × I∆ (D.142)

requires

O(nf)× nxn∆ = O(nfnxn∆) (D.143)

operations, as stipulated in equation (D.5). fi,k(t,q,x) depend on xl,m for only a small fraction

of k in I∆, at k in I∆m ⊂ I∆. Calculating

∂fi,k(t,q,x)

∂xl,m
for all (i, k, l,m) ∈ {1, . . . , nx} × I∆m × {1, . . . , nx} × I∆ (D.144)

requires

O(nf1)× nxnδnxn∆ = O(nf1nxnδnxn∆) (D.145)

operations, as stipulated in equation (D.5). Additionally, each iteration of Newton’s method to

solve fi,k(t,q,x) = 0 requires solving matrix equations, requiring a total of O(nM) operations.

Thus, in conjunction with complexity counts (D.143) and (D.145), each iteration of Newton’s

method to solve fi,k(t,q,x) = 0 requires

O(nxn∆nf) +O(nf1nxnδnxn∆) +O(nM) =

O
(
nxn∆(nf + nf1nxnδ) + nM

)
(D.146)

operations. Solving fi,k(t,q,x) = 0 requires O(nN) iterations of Newton’s method. Thus, for an

implicit numerical solution method, numerically solving fi,k(t,q,x) = 0 to determine x requires

O
(
nNnxn∆(nf + nf1nxnδ) + nNnM

)
(D.147)

operations.

The sensitivity equations are generated by applying the chain rule to the differential equa-

tion system, and are thus linear in sensitivity values, ∂xi/∂ql and ∂2xi/∂qm∂ql. As such,

discretized sensitivity equations are generally linear in discretized sensitivity values, ∂xi,s/∂ql

174

D.2. Computational Complexities of Numerical-Integration-Based Methods

and ∂2xi,s/∂qm∂ql. Thus, beyond the calculations required to solve the discretized sensitiv-

ity equations with an explicit numerical solution method, solving the discretized sensitivity

equations with an implicit numerical solution method requires solving matrix equations. Both

first order and second order discretized sensitivity equations with respect to ql are identical

in size to fi,k(t,q,x) = 0. Thus, calculating matrix equations in solving first order discretized

sensitivity equations with respect to ql requires a total of O(nM) operations, and calculating

matrix equations in solving second order discretized sensitivity equations with respect to ql

requires a total of O(nM) operations. As such, calculating matrix equations in solving first

order discretized sensitivity equations with respect to ql for all l ∈ {1, 2, . . . , nq} requires a total

of O(nqnM) operations, and calculating matrix equations in solving second order discretized

sensitivity equations with respect to ql and qm for all l ∈ {1, 2, . . . , nq} and m ∈ {1, 2, . . . , nq}
requires a total of O(nqnqnM) operations. Therefore, in general, in conjunction with complexity

count (D.120), solving the first order sensitivity equations with an implicit numerical solution

method requires

O
(
≥ nxn∆(nF1nx + nF1nq + nxnq)

)
+O(nqnM) (D.148)

operations, and, in conjunction with complexity count (D.126), solving the second order sensi-

tivity equations with an implicit numerical solution method requires

O
(
≥ nxn∆(nF2nxnx + nF2nxnq + nF2nqnq + nxnxnq + nxnqnq)

)
+O(nqnqnM) (D.149)

operations. From complexity count (D.131), after solving the first order sensitivity equations,

calculating ∂r(q)/∂ql for all l ∈ {1, 2, . . . , nq} requires O(nynt(ng1nx+ng1nq+nxnq)) operations.

Therefore, from complexity counts (D.148) and (D.131), in total, calculating ∂r(q)/∂ql for all

l ∈ {1, 2, . . . , nq} requires

O
(
≥ nxn∆(nF1nx + nF1nq + nxnq)

)
+O(nqnM)+

O
(
nynt(ng1nx + ng1nq + nxnq)

)
=

O
(
≥ nxn∆(nF1nx + nF1nq + nxnq)

)
+O

(
nqnM + nyntng1(nx + nq)

)
(D.150)

operations with an implicit numerical solution method, as ny ≤ nx and nt ≤ n∆. From complexity

count (D.138), after solving the second order sensitivity equations, calculating ∂2r(q)/∂qm∂ql

for all l ∈ {1, 2, . . . , nq} and m ∈ {1, 2, . . . , nq} requires O(nynt(ng2nxnx + ng2nqnx + ng2nqnq +

Ig2nqnxnx + Ig2nqnqnx + nqnqnx)) operations. Therefore, from complexity counts (D.149) and

(D.138), in total, calculating ∂2r(q)/∂qm∂ql for all l ∈ {1, 2, . . . , nq} and m ∈ {1, 2, . . . , nq}

175

D.2. Computational Complexities of Numerical-Integration-Based Methods

requires

O
(
≥ nxn∆(nF2nxnx + nF2nxnq + nF2nqnq + nxnxnq + nxnqnq)

)
+O(nqnqnM)+

O
(
nynt(ng2nxnx + ng2nqnx + ng2nqnq + Ig2nqnxnx + Ig2nqnqnx + nqnqnx)

)
=

O
(
≥ nxn∆(nF2nxnx + nF2nxnq + nF2nqnq + nxnxnq + nxnqnq)

)
+O(nqnqnM)+

O
(
nyntng2(nxnx + nqnx + nqnq)

)
(D.151)

operations with an implicit numerical solution method, as ny ≤ nx and nt ≤ n∆.

In each iteration of r(q) minimization by Newton’s method, updating parameter values

requires solving an nq × nq matrix equation, which requires O(n3
q) operations using Gaussian

elimination. Thus, for an implicit numerical solution method, calculating first order partial

derivatives of r(q) with respect to all parameters, calculating second order partial derivatives

of r(q) with respect to all parameters, updating parameter values, and updating numerical

solution values requires

O
(
≥ nxn∆(nF1nx + nF1nq + nxnq)

)
+O

(
nqnM + nyntng1(nx + nq)

)
+

O
(
≥ nxn∆(nF2nxnx + nF2nxnq + nF2nqnq + nxnxnq + nxnqnq)

)
+O(nqnqnM)+

O
(
nyntng2(nxnx + nqnx + nqnq)

)
+O(n3

q)+

O
(
nNnxn∆(nf + nf1nxnδ) + nNnM

)
=

O
(
nNnxn∆(nf + nf1nxnδ) + nM (nqnq + nN) + nyntng1(nx + nq)

)
+

O
(
nyntng2(nxnx + nqnx + nqnq)

)
+

O
(
≥ nxn∆(nF1nx + nF1nq + nF2nxnx + nF2nxnq + nF2nqnq + nxnxnq + nxnqnq)

)
(D.152)

operations, as nq < nxn∆, the number of parameters is less than the number of state values, with

partial derivative complexity counts from (D.150) and (D.151) and numerical solution complexity

count from (D.147). Therefore, for an implicit numerical solution method, an iteration of r(q)

minimization by Newton’s method requires

O
(
nNnxn∆(nf + nf1nxnδ) + nM (nqnq + nN) + nyntng1(nx + nq)

)
+

O
(
nyntng2(nxnx + nqnx + nqnq)

)
+

O
(
≥ nxn∆(nF1nx + nF1nq + nF2nxnx + nF2nxnq + nF2nqnq + nxnxnq + nxnqnq)

)
(D.153)

operations.

Alternatively, I can approximate partial derivatives of r(q) with respect to parameters by

176

D.2. Computational Complexities of Numerical-Integration-Based Methods

finite differences, rather than by solving the sensitivity equations. Most simply,

∂r(q)

∂ql
≈ r(q + hlel)− r(q)

hl
, (D.154a)

∂2r(q)

∂qm∂ql
≈ r(q + hlel)− r(q)− r(q + hlel − hmem) + r(q− hmem)

hmhl
, (D.154b)

where el is the lth standard basis vector and hl is some small perturbation in parameter ql.

After calculating x, calculating r(q) requires calculating

1

ny

ny∑
j=1

nt∑
k=1

dyj,k

(
gj,k(q,x)

)
, (D.155)

which is equivalent in computational complexity to calculating

dyj,k

(
gj,k(q,x)

)
for all (j, k) ∈ {1, . . . , ny} × {1, . . . , nt}, (D.156)

which requires

O(1) ◦O(ng)× nynt = O(ngnynt) (D.157)

operations to calculate, as stipulated in Equations (D.3) and (D.4). Thus, from complexity

counts (D.111) and (D.157), calculating r(q) requires

O(nfnxn∆) +O(ngnynt) = O(nfnxn∆ + ngnynt) (D.158)

operations with an explicit numerical solution method, and, from complexity counts (D.147)

and (D.157), calculating r(q) requires

O
(
nNnxn∆(nf + nf1nxnδ) + nNnM

)
+O(ngnynt) =

O
(
nNnxn∆(nf + nf1nxnδ) + nNnM + ngnynt

)
(D.159)

operations with an implicit numerical solution method.

Approximating ∂r(q)/∂ql and ∂2r(q)/∂qm∂ql, as in Equations (D.154a) and (D.154b), for all

l ∈ {1, 2, . . . , nq} and m ∈ {1, 2, . . . , nq} is equivalent in computational complexity to calculating

r(q + hlel) for all l ∈ {1, 2, . . . , nq},
r(q),

r(q + hlel − hmem) for all (l,m) ∈ {1, 2, . . . , nq}2 \ {(l,m) : l = m}
r(q− hmem) for all m ∈ {1, 2, . . . , nq}, (D.160)

which, from complexity count (D.158), for an explicit numerical solution method, respectively,

177

D.2. Computational Complexities of Numerical-Integration-Based Methods

require

O(nfnxn∆ + ngnynt)× nq = O
(
nq(nfnxn∆ + ngnynt)

)
,

O(nfnxn∆ + ngnynt),

O(nfnxn∆ + ngnynt)× (nqnq − nq) = O
(
nqnq(nfnxn∆ + ngnynt)

)
,

O(nfnxn∆ + ngnynt)× nq = O
(
nq(nfnxn∆ + ngnynt)

)
, (D.161)

operations to calculate, and, from complexity count (D.159), for an implicit numerical solution

method, respectively, require

O
(
nNnxn∆(nf + nf1nxnδ) + nNnM + ngnynt

)
× nq =

O
(
nNnxn∆nq(nf + nf1nxnδ) + nNnMnq + ngnyntnq

)
,

O
(
nNnxn∆(nf + nf1nxnδ) + nNnM + ngnynt

)
,

O
(
nNnxn∆(nf + nf1nxnδ) + nNnM + ngnynt

)
× (nqnq − nq) =

O
(
nNnxn∆nqnq(nf + nf1nxnδ) + nNnMnqnq + ngnyntnqnq

)
,

O
(
nNnxn∆(nf + nf1nxnδ) + nNnM + ngnynt

)
× nq =

O
(
nNnxn∆nq(nf + nf1nxnδ) + nNnMnq + ngnyntnq

)
(D.162)

operations to calculate. Thus, for an explicit numerical solution method, approximating

∂r(q)/∂ql and ∂2r(q)/∂qm∂ql by finite difference for all l ∈ {1, 2, . . . , nq} and m ∈ {1, 2, . . . , nq}
requires

O
(
nq(nfnxn∆ + ngnynt)

)
+O(nfnxn∆ + ngnynt)+

O
(
nqnq(nfnxn∆ + ngnynt)

)
+O

(
nq(nfnxn∆ + ngnynt)

)
=

O
(
nqnq(nfnxn∆ + ngnynt)

)
(D.163)

operations, and for an implicit numerical solution method, approximating ∂r(q)/∂ql and

∂2r(q)/∂qm∂ql by finite difference for all l ∈ {1, 2, . . . , nq} and m ∈ {1, 2, . . . , nq} requires

O
(
nNnxn∆nq(nf + nf1nxnδ) + nNnMnq + ngnyntnq

)
+

O
(
nNnxn∆(nf + nf1nxnδ) + nNnM + ngnynt

)
+

O
(
nNnxn∆nqnq(nf + nf1nxnδ) + nNnMnqnq + ngnyntnqnq

)
+

O
(
nNnxn∆nq(nf + nf1nxnδ) + nNnMnq + ngnyntnq

)
=

O
(
nNnxn∆nqnq(nf + nf1nxnδ) + nNnMnqnq + ngnyntnqnq

)
(D.164)

operations.

In each iteration of r(q) minimization by Newton’s method, updating parameter values

requires solving an nq × nq matrix equation, which requires O(n3
q) operations using Gaussian

178

D.2. Computational Complexities of Numerical-Integration-Based Methods

elimination. Thus, for an explicit numerical solution method, approximating first order and

second order partial derivatives of r(q) with respect to all parameters by finite difference,

updating parameter values, and updating numerical solution values requires

O
(
nqnq(nfnxn∆ + ngnynt)

)
+O(n3

q) +O(nfnxn∆) =

O
(
nqnq(nfnxn∆ + ngnynt)

)
(D.165)

operations, as nq < nxn∆, the number of parameters is less than the number of state values,

with partial derivative approximation complexity count from (D.163) and numerical solution

complexity count from (D.111); and for an implicit numerical solution method, approximating

first order and second order partial derivatives of r(q) with respect to all parameters by finite

difference, updating parameter values, and updating numerical solution values requires

O
(
nNnxn∆nqnq(nf + nf1nxnδ) + nNnMnqnq + ngnyntnqnq

)
+O(n3

q)+

O
(
nNnxn∆(nf + nf1nxnδ) + nNnM

)
=

O
(
nNnxn∆nqnq(nf + nf1nxnδ) + nNnMnqnq + ngnyntnqnq

)
(D.166)

operations, as nq < nxn∆, the number of parameters is less than the number of state values,

with partial derivative approximation complexity count from (D.164) and numerical solution

complexity count from (D.147). Therefore, from complexity count (D.165), for an explicit

numerical solution method, an iteration of r(q) minimization by Newton’s method with partial

derivative approximation by finite difference requires

O
(
nqnq(nfnxn∆ + ngnynt)

)
(D.167)

operations, and from complexity count (D.166), for an implicit numerical solution method, an

iteration of r(q) minimization by Newton’s method with partial derivative approximation by

finite difference requires

O
(
nNnxn∆nqnq(nf + nf1nxnδ) + nNnMnqnq + ngnyntnqnq

)
(D.168)

operations.

D.2.3 Counting the Computational Complexity of Gradient-Based

Methods to Minimize r(q)

In methods such as the Gauss-Newton method, Levenberg-Marquardt method, and quasi-Newton

methods, rather than generating the Hessian matrix by calculating second order partial derivative

values, ∂2r(q)/∂qm∂ql for all l ∈ {1, 2, . . . , nq} and m ∈ {1, 2, . . . , nq}, as in Newton’s method,

the Hessian matrix is approximated using first order partial derivative values, ∂r(q)/∂ql for all

l ∈ {1, 2, . . . , nq}. Thus, an iteration of a method that approximates the Hessian using ∂r(q)/∂ql

179

D.2. Computational Complexities of Numerical-Integration-Based Methods

for all l ∈ {1, 2, . . . , nq} requires at least as many operations as the number of operations required

to calculate ∂r(q)/∂ql for all l ∈ {1, 2, . . . , nq}.

Theorem 10. For an explicit numerical solution method, calculating first order partial deriva-

tives of r(q) with respect to all parameters requires

O
(
nfnxn∆ + nyntng1(nx + nq)

)
+O

(
≥ nxn∆(nF1nx + nF1nq + nxnq)

)
(D.169)

operations, and, for an implicit numerical solution method, calculating first order partial deriva-

tives of r(q) with respect to all parameters requires

O
(
nNnxn∆(nf + nf1nxnδ) + nM (nq + nN) + nyntng1(nx + nq)

)
+

O
(
≥ nxn∆(nF1nx + nF1nq + nxnq)

)
(D.170)

operations, with O(nM) operations in solving matrix equations for each of O(nN) iterations of

Newton’s method applied to fi,k(t,q,x) = 0, for all i ∈ {1, 2, . . . , nx} and k ∈ I∆.

Alternatively, for an explicit numerical solution method, approximating first order partial

derivatives of r(q) with respect to all parameters by finite difference requires

O
(
nq(nfnxn∆ + ngnynt)

)
(D.171)

operations, and, for an implicit numerical solution method, approximating first order partial

derivatives of r(q) with respect to all parameters by finite difference requires

O
(
nNnxn∆nq(nf + nf1nxnδ) + nNnMnq + ngnyntnq

)
(D.172)

operations.

Proof. For an explicit numerical solution method, fi,k(t,q,x) = 0 is an explicit system of

equations in x, and solving fi,k(t,q,x) = 0 simply requires evaluating fi,k(t,q,x). Thus, to

determine x, solving

fi,k(t,q,x) = 0 for all (i, k) ∈ {1, . . . , nx} × I∆ (D.173)

requires

O(nf)× nxn∆ = O(nfnxn∆) (D.174)

operations, as stipulated in equation (D.5).

I calculate first order partial derivatives of r(q) with respect to all parameters,

∂r(q)

∂ql
=

1

ny

ny∑
j=1

nt∑
k=1

∂dyj,k

∂gj,k

(
nx∑
m=1

∂gj,k
∂xm,k

∂xm,k
∂ql

+
∂gj,k
∂ql

)
. (D.175)

180

D.2. Computational Complexities of Numerical-Integration-Based Methods

Partial derivatives of state values with respect to parameters are generally calculated by

numerically solving the sensitivity equations, which are generated by applying the chain rule to

the differential equation system.

In the case of an initial value problem, dxi/dt = Fi(t,q, x1, . . . , xnx) for i ∈ {1, 2, . . . , nx},
applying the chain rule to Fi(t,q, x1, . . . , xnx) generates the sensitivity equations,

d

dt

(
∂xi
∂ql

)
=

∂

∂ql

(
dxi
dt

)
=

nx∑
j=1

∂Fi
∂xj

∂xj
∂ql

+
∂Fi
∂ql

, (D.176)

a system of differential equations in ∂xi/∂ql for i ∈ {1, 2, . . . , nx}. From Equations (D.176), using

the forward Euler method, the simplest explicit numerical method for initial value problems, I

can calculate ∂xi,m/∂ql for i ∈ {1, 2, . . . , nx} and m ∈ I∆ such that

∂xi,m+1

∂ql
=
∂xi,m
∂ql

+
1

tm+1 − tm

 nx∑
j=1

∂Fi,m
∂xj,m

∂xj,m
∂ql

+
∂Fi,m
∂ql

 , (D.177)

where Fi,m = Fi(tm,q, x1,m, . . . , xnx,m). Solving system (D.177) for i ∈ {1, 2, . . . , nx}, l ∈
{1, 2, . . . , nq}, and m ∈ I∆ requires calculating partial derivative values,

∂Fi,m
∂xj,m

for all (i, j,m) ∈ {1, . . . , nx} × {1, . . . , nx} × I∆,

∂Fi,m
∂ql

for all (i, l,m) ∈ {1, . . . , nx} × {1, . . . , nq} × I∆, (D.178)

which, respectively, require

O(nF1)× nxnxn∆ = O(nF1nxnxn∆),

O(nF1)× nxnqn∆ = O(nF1nxnqn∆) (D.179)

operations to calculate, as stipulated in equation (D.7). Apart from calculating partial derivative

values, solving system (D.177) for all i ∈ {1, 2, . . . , nx}, l ∈ {1, 2, . . . , nq}, and m ∈ I∆ is

equivalent in computational complexity to calculating

∂Fi,m
∂xj,m

∂xj,m
∂ql

for all (i, j, l,m) ∈ {1, . . . , nx} × {1, . . . , nx} × {1, . . . , nq} × I∆,

∂Fi,m
∂ql

for all (i, l,m) ∈ {1, . . . , nx} × {1, . . . , nq} × I∆, (D.180)

which, respectively, require

O(1) ◦O(I0)× nxnxnqn∆ = O(nxnxnqn∆),

O(I0)× nxnqn∆ = O(nxnqn∆) (D.181)

181

D.2. Computational Complexities of Numerical-Integration-Based Methods

operations to calculate, where I0 indicates values that have been calculated previously and

O(I0) = 1. Therefore, from complexity counts (D.179) and (D.181), in total, solving systems

(D.177) for all i ∈ {1, 2, . . . , nx}, l ∈ {1, 2, . . . , nq}, and m ∈ I∆, the first order sensitivity

equations for an initial value problem using the forward Euler method, requires

O(nF1nxnxn∆) +O(nF1nxnqn∆) +O(nxnxnqn∆) +O(nxnqn∆) =

O
(
nxn∆(nF1nx + nF1nq + nxnq)

)
(D.182)

operations. The forward Euler method applied to an initial value problem is the computationally

least expensive explicit numerical solution method. Thus, in general, solving the first order

sensitivity equations with an explicit numerical solution method requires

O
(
≥ nxn∆(nF1nx + nF1nq + nxnq)

)
(D.183)

operations.

After calculating x and solving the first order sensitivity equations, calculating ∂r(q)/∂ql,

of equation (D.175), for all l ∈ {1, 2, . . . , nq} requires calculating partial derivative values,

∂gj,k
∂xm,k

for all (j, k,m) ∈ {1, . . . , ny} × {1, . . . , nt} × {1, . . . , nx},

∂gj,k
∂ql

for all (j, k, l) ∈ {1, . . . , ny} × {1, . . . , nt} × {1, . . . , nq},

∂dyj,k

∂gj,k
for all (j, k) ∈ {1, . . . , ny} × {1, . . . , nt}, (D.184)

which, respectively, require

O(ng1)× nyntnx = O(ng1nyntnx),

O(ng1)× nyntnq = O(ng1nyntnq),

O(1) ◦O(I0)× nynt = O(nynt) (D.185)

operations to calculate, as stipulated in Equations (D.3) and (D.4). After calculating x,

solving the first order sensitivity equations, and calculating partial derivative values, calculating

∂r(q)/∂ql, of equation (D.175), for all l ∈ {1, 2, . . . , nq} is equivalent in computational complexity

182

D.2. Computational Complexities of Numerical-Integration-Based Methods

to calculating

∂gj,k
∂xm,k

∂xm,k
∂ql

for all (j, k,m, l) ∈

{1, . . . , ny} × {1, . . . , nt} × {1, . . . , nx} × {1, . . . , nq},
∂gj,k
∂ql

for all (j, k, l) ∈ {1, . . . , ny} × {1, . . . , nt} × {1, . . . , nq},

∂dyj,k

∂gj,k
· I0 for all (j, k) ∈ {1, . . . , ny} × {1, . . . , nt}, (D.186)

which, respectively, require

O(1) ◦O(I0)× nyntnxnq = O(nyntnxnq),

O(I0)× nyntnq = O(nyntnq),

O(1) ◦O(I0)× nynt = O(nynt) (D.187)

operations to calculate. Thus, from complexity counts (D.185) and (D.187), after calculating x

and solving the first order sensitivity equations, calculating ∂r(q)/∂ql for all l ∈ {1, 2, . . . , nq}
requires

O(ng1nyntnx) +O(ng1nyntnq) +O(nynt) +O(nyntnxnq) +O(nyntnq)+

O(nynt) = O
(
nynt(ng1nx + ng1nq + nxnq)

)
(D.188)

operations. Therefore, from complexity counts (D.174), (D.183), and (D.188), in total, calculating

∂r(q)/∂ql for all l ∈ {1, 2, . . . , nq} requires

O(nfnxn∆) +O
(
≥ nxn∆(nF1nx + nF1nq + nxnq)

)
+

O
(
nynt(ng1nx + ng1nq + nxnq)

)
=

O
(
nfnxn∆ + nyntng1(nx + nq)

)
+O

(
≥ nxn∆(nF1nx + nF1nq + nxnq)

)
(D.189)

operations with an explicit numerical solution method, as ny ≤ nx and nt ≤ n∆.

For implicit numerical solution methods, fi,k(t,q,x) = 0 is an implicit system of equations in

x and discretized sensitivity equations are implicit systems of equations in discretized sensitivity

values, ∂xi,m/∂ql. Generally, fi,k(t,q,x) = 0 is a nonlinear system of equations that is solved

numerically using Newton’s method. Each iteration of Newton’s method to solve fi,k(t,q,x) = 0

requires calculating the values of fi,k(t,q,x) and the values of first order partial derivatives

of fi,k(t,q,x) with respect to xl,m, for all i ∈ {1, 2, . . . , nx}, k ∈ I∆, l ∈ {1, 2, . . . , nx}, and

m ∈ I∆. Calculating

fi,k(t,q,x) for all (i, k) ∈ {1, 2, . . . , nx} × I∆ (D.190)

183

D.2. Computational Complexities of Numerical-Integration-Based Methods

requires

O(nf)× nxn∆ = O(nfnxn∆) (D.191)

operations, as stipulated in equation (D.5). fi,k(t,q,x) depend on xl,m for only a small fraction

of k in I∆, at k in I∆m ⊂ I∆. Calculating

∂fi,k(t,q,x)

∂xl,m
for all (i, k, l,m) ∈ {1, . . . , nx} × I∆m × {1, . . . , nx} × I∆ (D.192)

requires

O(nf1)× nxnδnxn∆ = O(nf1nxnδnxn∆) (D.193)

operations, as stipulated in equation (D.5). Additionally, each iteration of Newton’s method to

solve fi,k(t,q,x) = 0 requires solving matrix equations, requiring a total of O(nM) operations.

Thus, in conjunction with complexity counts (D.191) and (D.193), each iteration of Newton’s

method to solve fi,k(t,q,x) = 0 requires

O(nxn∆nf) +O(nf1nxnδnxn∆) +O(nM) =

O
(
nxn∆(nf + nf1nxnδ) + nM

)
(D.194)

operations. Solving fi,k(t,q,x) = 0 requires O(nN) iterations of Newton’s method. Thus, for an

implicit numerical solution method, numerically solving fi,k(t,q,x) = 0 to determine x requires

O
(
nNnxn∆(nf + nf1nxnδ) + nNnM

)
(D.195)

operations.

The sensitivity equations are generated by applying the chain rule to the differential equation

system, and are thus linear in sensitivity values, ∂xi/∂ql. As such, discretized sensitivity

equations are generally linear in discretized sensitivity values, ∂xi,m/∂ql. Thus, beyond the

calculations required to solve the discretized sensitivity equations with an explicit numerical

solution method, solving the discretized sensitivity equations with an implicit numerical solution

method requires solving matrix equations. First order discretized sensitivity equations with

respect to ql are identical in size to fi,k(t,q,x) = 0. Thus, calculating matrix equations in

solving first order discretized sensitivity equations with respect to ql requires a total of O(nM)

operations. As such, calculating matrix equations in solving first order discretized sensitivity

equations with respect to ql for all l ∈ {1, 2, . . . , nq} requires a total of O(nqnM) operations.

Therefore, in general, in conjunction with complexity count (D.183), solving the first order

sensitivity equations with an implicit numerical solution method requires

O
(
≥ nxn∆(nF1nx + nF1nq + nxnq)

)
+O(nqnM) (D.196)

184

D.2. Computational Complexities of Numerical-Integration-Based Methods

operations. From complexity count (D.188), after calculating x and solving the first order

sensitivity equations, calculating ∂r(q)/∂ql for all l ∈ {1, 2, . . . , nq} requires O(nynt(ng1nx +

ng1nq + nxnq)) operations. Therefore, from complexity counts (D.195), (D.196), and (D.188), in

total, calculating ∂r(q)/∂ql for all l ∈ {1, 2, . . . , nq} requires

O
(
nNnxn∆(nf + nf1nxnδ) + nNnM

)
+O

(
≥ nxn∆(nF1nx + nF1nq + nxnq)

)
+

O(nqnM) +O
(
nynt(ng1nx + ng1nq + nxnq)

)
=

O
(
nNnxn∆(nf + nf1nxnδ) + nM (nq + nN) + nyntng1(nx + nq)

)
+

O
(
≥ nxn∆(nF1nx + nF1nq + nxnq)

)
(D.197)

operations with an implicit numerical solution method, as ny ≤ nx and nt ≤ n∆.

Alternatively, I can approximate partial derivatives of r(q) with respect to parameters by

finite differences, rather than by solving the sensitivity equations. Most simply,

∂r(q)

∂ql
≈ r(q + hlel)− r(q)

hl
, (D.198)

where el is the lth standard basis vector and hl is some small perturbation in parameter ql.

After calculating x, calculating r(q) requires calculating

1

ny

ny∑
j=1

nt∑
k=1

dyj,k

(
gj,k(q,x)

)
, (D.199)

which is equivalent in computational complexity to calculating

dyj,k

(
gj,k(q,x)

)
for all (j, k) ∈ {1, . . . , ny} × {1, . . . , nt}, (D.200)

which requires

O(1) ◦O(ng)× nynt = O(ngnynt) (D.201)

operations to calculate, as stipulated in Equations (D.3) and (D.4). Thus, from complexity

counts (D.174) and (D.201), calculating r(q) requires

O(nfnxn∆) +O(ngnynt) = O(nfnxn∆ + ngnynt) (D.202)

operations with an explicit numerical solution method, and, from complexity counts (D.195)

and (D.201), calculating r(q) requires

O
(
nNnxn∆(nf + nf1nxnδ) + nNnM

)
+O(ngnynt) =

O
(
nNnxn∆(nf + nf1nxnδ) + nNnM + ngnynt

)
(D.203)

185

D.3. Comparison of Computational Complexities

operations with an implicit numerical solution method.

Approximating ∂r(q)/∂ql, as in equation (D.198), for all l ∈ {1, 2, . . . , nq} is equivalent in

computational complexity to calculating

r(q + hlel) for all l ∈ {1, 2, . . . , nq},
r(q), (D.204)

which, from complexity count (D.202), for an explicit numerical solution method, respectively,

require

O(nfnxn∆ + ngnynt)× nq = O
(
nq(nfnxn∆ + ngnynt)

)
,

O(nfnxn∆ + ngnynt) (D.205)

operations to calculate, and, from complexity count (D.203), for an implicit numerical solution

method, respectively, require

O
(
nNnxn∆(nf + nf1nxnδ) + nNnM + ngnynt

)
× nq =

O
(
nNnxn∆nq(nf + nf1nxnδ) + nNnMnq + ngnyntnq

)
,

O
(
nNnxn∆(nf + nf1nxnδ) + nNnM + ngnynt

)
(D.206)

operations to calculate. Thus, for an explicit numerical solution method, approximating

∂r(q)/∂ql by finite difference for all l ∈ {1, 2, . . . , nq} requires

O
(
nq(nfnxn∆ + ngnynt)

)
+O(nfnxn∆ + ngnynt) =

O
(
nq(nfnxn∆ + ngnynt)

)
(D.207)

operations, and for an implicit numerical solution method, approximating ∂r(q)/∂ql by finite

difference for all l ∈ {1, 2, . . . , nq} and m ∈ {1, 2, . . . , nq} requires

O
(
nNnxn∆nq(nf + nf1nxnδ) + nNnMnq + ngnyntnq

)
+

O
(
nNnxn∆(nf + nf1nxnδ) + nNnM + ngnynt

)
=

O
(
nNnxn∆nq(nf + nf1nxnδ) + nNnMnq + ngnyntnq

)
(D.208)

operations.

D.3 Comparison of Computational Complexities

D.3.1 Complexity Assumptions for Comparison

In Theorems 7, 8, 9, and 10, I calculate computational complexities with general ng, ng1 , ng2 ,

np, nF , nF1 , nF2 , nf , nf1 , nf2 , nδ, nσ, nN , and nM . To compare computational complexities, I

186

D.3. Comparison of Computational Complexities

consider more specific ng, ng1 , ng2 , np, nF , nF1 , nF2 , nf , nf1 , nf2 , nδ, nσ, nN , and nM . Often,

observable-state functions, gj,k(p,x), are linear combinations of state values. Thus, I consider

O(ng) = O(nx),

O(ng1) = O(1),

O(ng2) = O(0). (D.209)

Often, a discretized differential equation, Fi,k(t,p,x), is a sum of nonlinear parameter and

discretized state-value combinations, with O(nx) nonlinear combinations of O(nx) parameters

in interconnected systems, for each i ∈ {1, 2, . . . , nx}. Thus, I consider

O(np) = O(n2
x),

O(nF) = O(nx),

O(nF1) = O(1),

O(nF2) = O(1). (D.210)

Generally, calculating numerical discretizations, fi,k(t,p,x), requires a similar number of opera-

tions as calculating discretized differential equation values, Fi,k(t,p,x). Thus, I consider

O(nf) = O(nx),

O(nf1) = O(1),

O(nf2) = O(1). (D.211)

Generally, the number of elements in I∆m is similar to the order of the differential equation,

ordinarily of O(1). Therefore, I consider

O(nδ) = O(1). (D.212)

operations. I consider O(1) line-search test points in each iteration of descent and O(1) iterations

of Newton’s method to solve fi,k(t,q,x) = 0 for all i ∈ {1, 2, . . . , nx} and k ∈ I∆. Thus,

O(nσ) = O(1),

O(nN) = O(1), (D.213)

Often, initial conditions and boundary values are not fixed, and are fitted along with model

parameters to data. Thus, for ni initial points in I∆ and nb boundary points in I∆, I consider

O(nq) = O(np + nxni + nxnb). (D.214)

187

D.3. Comparison of Computational Complexities

For clarity, I note that ni = 1 and nb = 0 for initial value ordinary differential equations and

ni = 0 and nb = 2 for boundary value ordinary differential equations.

Calculating xn+1, the nxn∆ state values, xl,m for all l ∈ {1, 2, . . . , nx} and m ∈ I∆, in the

n+ 1th iteration of Newton’s method applied to solving the system f(x) = 0, fi,k(t,q,x) = 0

for all i ∈ {1, 2, . . . , nx} and k ∈ I∆, requires calculating

J(xn)(xn+1 − xn) = −f(xn), (D.215)

where J(x) is the nxn∆ × nxn∆ Jacobian matrix of f(x). For locally implicit numerical solution

methods, such as the backward Euler method for ordinary differential equations, matrix equation

(D.215) is separable into n∆ submatrix equations, each of size nx×nx. For interconnected models,

generally, ∂fi,k(t,q,x)/∂xl,m 6= 0 if m = k. Thus, for interconnected models, each nx × nx
submatrix of J(xn) is a full matrix, and solving each of the n∆ full submatrix equations requires

O(n3
x) operations using Gaussian elimination. For globally implicit numerical solution methods,

matrix equation (D.215) is not separable into smaller matrix equations. Although, J(xn) is large

and sparse, so solving matrix equation (D.215) with an iterative method, such as the generalized

minimal residual method, is computationally more efficient than solving matrix equation (D.215)

with a direct method, such as Gaussian elimination. fi,k(t,q,x) depends on xl,m for only a

small fraction of k in I∆, at k in I∆m ⊂ I∆. Thus, for interconnected models, fi,k(t,q,x)

depends on O(nδnx) values of xl,m, and J(xn) contains O(n∆nx × nδnx) = O(n∆n
2
xnδ) nonzero

elements. In each iteration of the generalized minimal residual method, multiplication by J(xn)

requires O(n∆n
2
xnδ) operations. The generalized minimal residual method may may require up

to O(n∆nx) iterations to exactly solve matrix equation (D.215), but will generally converge in

significantly fewer iterations. Therefore, for all implicit numerical solution methods, I consider

O(nM) = O(≥ n∆n
3
x). (D.216)

D.3.2 Comparison of Computational Complexities with Assumptions

Computational Complexity of r(p,x;λ) Descent with Assumptions

From assumptions (D.209), (D.210), (D.211), (D.212), and (D.213) and Theorem 7, an iteration

of r(p,x;λ) descent requires

O
(
n∆(nxny + nxnx)

)
+O

(
n∆np(ny + nx)

)
+O

(
n∆nx(ny + nx)

)
=

n∆npnx = n∆n
3
x (D.217)

operations, as ny ≤ nx ≤ np.

188

D.3. Comparison of Computational Complexities

Computational Complexity of r(q) Descent with Assumptions

From assumptions (D.209), (D.210), (D.211), (D.212), (D.213), (D.214), and (D.216) and

Theorem 8, an iteration of r(q) descent requires

O
(
nxnxn∆ + nxnynt + nynt(nx + nq)

)
+

O
(
≥ nxn∆(nx + nq + nxnx + nxnq + nxnxnq)

)
=

O(≥ n∆nqn
3
x) = O

(
≥ n∆(nx + ni + nb)n

4
x

)
(D.218a)

operations with an explicit numerical solution method, as ny ≤ nx and nt ≤ n∆; an iteration of

r(q) descent requires

O
(
nxn∆nx + nxnynt

)
+O

(
nMnq + nynt(nx + nq)

)
+

O
(
≥ nxn∆(nx + nq + nxnx + nxnq + nxnxnq)

)
=

O(≥ n∆nqn
3
x) +O(nMnq) =

O
(
≥ n∆(nx + ni + nb)n

4
x

)
+O

(
≥ n∆n

4
x(nx + ni + nb)

)
=

O
(
≥ n∆(nx + ni + nb)n

4
x

)
(D.218b)

operations with an implicit numerical solution method, as ny ≤ nx and nt ≤ n∆; an iteration of

r(q) descent requires

O
(
nq(nxnxn∆ + nxnynt)

)
= O(n∆nqn

2
x) = O

(
n∆(nx + ni + nb)n

3
x

)
(D.218c)

operations with an explicit numerical solution method and partial derivative approximation by

finite difference, as ny ≤ nx and nt ≤ n∆; and an iteration of r(q) descent requires

O
(
nq(nxn∆nx + nM + nxnynt)

)
= O(n∆nqn

2
x) +O(nMnq) =

O
(
n∆(nx + ni + nb)n

3
x

)
+O

(
≥ n∆n

4
x(nx + ni + nb)

)
=

O
(
≥ n∆(nx + ni + nb)n

4
x

)
(D.218d)

operations with an implicit numerical solution method and partial derivative approximation

by finite difference, as ny ≤ nx and nt ≤ n∆. Comparing computational counts (D.217) and

(D.218), for an explicit numerical solution method, an iteration of r(q) descent requires at least

nx + ni + nb times as many operations as an iteration r(p,x;λ) descent, and, for an implicit

numerical solution method, an iteration of r(q) descent requires at least (nx + ni + nb)nx times

as many operations as an iteration r(p,x;λ) descent. For ODEs, where ni + nb ≤ 2, r(p,x;λ)

descent is computationally more efficient than r(q) descent, and the difference in computational

efficiency increases with an increasing number of model states, markedly for implicit numerical

solution methods. Generally, in PDE models of data, the number of initial points and/or the

number of boundary points greatly exceeds the number of states, nx << ni+nb. Thus, for PDEs,

189

D.3. Comparison of Computational Complexities

r(p,x;λ) descent is computationally far more efficient than r(q) descent, and the difference in

computational efficiency grows with an increasing number of data points and/or model states,

markedly for implicit numerical solution methods.

Computational Complexity of Newton’s Method to Minimize r(q) with

Assumptions

From assumptions (D.209), (D.210), (D.211), (D.212), (D.213), (D.214), and (D.216) and

Theorem 9, an iteration of r(q) minimization by Newton’s method requires

O
(
nxnxn∆ + nynt(nx + nq)

)
+

O
(
≥ nxn∆(nx + nq + nxnx + nxnq + nqnq + nxnxnq + nxnqnq)

)
=

O(≥ n∆n
2
qn

2
x) = O

(
≥ n∆(nx + ni + nb)

2n4
x

)
(D.219a)

operations with an explicit numerical solution method, as ny ≤ nx ≤ nq and nt ≤ n∆; an

iteration of r(q) minimization by Newton’s method requires

O
(
nxn∆nx + nMnqnq + nynt(nx + nq)

)
+

O
(
≥ nxn∆(nx + nq + nxnx + nxnq + nqnq + nxnxnq + nxnqnq)

)
=

O(≥ n∆n
2
qn

2
x) +O(nMn

2
q) =

O
(
≥ n∆(nx + ni + nb)

2n4
x

)
+O

(
≥ n∆n

5
x(nx + ni + nb)

2
)

=

O
(
≥ n∆(nx + ni + nb)

2n5
x

)
(D.219b)

operations with an implicit numerical solution method, as ny ≤ nx ≤ nq and nt ≤ n∆; an

iteration of r(q) minimization by Newton’s method requires

O
(
nqnq(nxnxn∆ + nxnynt)

)
= O(n∆n

2
qn

2
x) =

O
(
n∆(nx + ni + nb)

2n4
x

)
(D.219c)

operations with an explicit numerical solution method and partial derivative approximation

by finite difference, ny ≤ nx and nt ≤ n∆; and an iteration of r(q) minimization by Newton’s

method requires

O(nxn∆nqnqnx + nMnqnq + nxnyntnqnq) = O(n∆n
2
qn

2
x) +O(nMn

2
q) =

O
(
n∆(nx + ni + nb)

2n4
x

)
+O

(
≥ n∆n

5
x(nx + ni + nb)

2
)

=

O
(
≥ n∆(nx + ni + nb)

2n5
x

)
(D.219d)

operations with an implicit numerical solution method and partial derivative approximation by

finite difference, as ny ≤ nx and nt ≤ n∆. Comparing computational counts (D.217) and (D.219),

for an explicit numerical solution method, an iteration of r(q) minimization by Newton’s method

190

D.3. Comparison of Computational Complexities

requires at least (nx + ni + nb)
2nx times as many operations as an iteration r(p,x;λ) descent,

and, for an implicit numerical solution method, an iteration of r(q) minimization by Newton’s

method requires at least (nx + ni + nb)
2n2

x times as many operations as an iteration r(p,x;λ)

descent. Newton’s method generally converges quadratically. For ODEs, where ni+nb ≤ 2, with

few model states, superior convergence of Newton’s method may compensate for its relatively

large computational burden, but, with an increasing number of model states, r(p,x;λ) descent

becomes increasingly more computationally efficient than r(q) minimization by Newton’s method,

markedly for implicit numerical solution methods. For PDEs, where nx << ni + nb, r(p,x;λ)

descent is computationally far more efficient than r(q) minimization by Newton’s method, and

the difference in computational efficiency grows with an increasing number of data points and/or

model states, markedly for implicit numerical solution methods.

Computational Complexity of Gradient-Based Methods to Minimize r(q) with

Assumptions

To minimize r(q), gradient-based methods, such as gradient descent, the Gauss-Newton method,

Levenberg-Marquardt method, and quasi-Newton methods, require calculating all first order

partial derivatives of r(q). From assumptions (D.209), (D.210), (D.211), (D.212), (D.213),

(D.214), and (D.216) and Theorem 10, calculating all first order partial derivatives of r(q)

requires

O
(
nxnxn∆ + nynt(nx + nq)

)
+O

(
≥ nxn∆(nx + nq + nxnq)

)
=

O(≥ n∆nqn
2
x) = O

(
≥ n∆(nx + ni + nb)n

3
x

)
(D.220a)

operations with an explicit numerical solution method, as ny ≤ nx and nt ≤ n∆; calculating all

first order partial derivatives of r(q) requires

O
(
nxn∆nx + nMnq + nynt(nx + nq)

)
+O

(
≥ nxn∆(nx + nq + nxnq)

)
=

O(≥ n∆nqn
2
x) +O(nMnq) =

O
(
≥ n∆(nx + ni + nb)n

3
x

)
+O

(
≥ n∆n

4
x(nx + ni + nb)

)
=

O
(
≥ n∆(nx + ni + nb)n

4
x

)
(D.220b)

operations with an implicit numerical solution method, as ny ≤ nx and nt ≤ n∆; approximating

all first order partial derivatives of r(q) by finite difference requires

O
(
nq(nxnxn∆ + nxnynt)

)
= O(n∆nqn

2
x) =

O
(
n∆(nx + ni + nb)n

3
x

)
(D.220c)

191

D.3. Comparison of Computational Complexities

operations with an explicit numerical solution method, as ny ≤ nx and nt ≤ n∆; and approxi-

mating all first order partial derivatives of r(q) by finite difference requires

O(nxn∆nqnx + nMnq + nxnyntnq) = O(n∆nqn
2
x) +O(nMnq) =

O
(
n∆(nx + ni + nb)n

3
x) +O

(
≥ n∆n

4
x(nx + ni + nb)

)
=

O
(
≥ n∆(nx + ni + nb)n

4
x

)
(D.220d)

operations with an implicit numerical solution method, as ny ≤ nx and nt ≤ n∆. Comparing

computational counts (D.217) and (D.220), for an explicit numerical solution method, calculating

all first order partial derivatives of r(q) requires at least nx + ni + nb times as many operations

as an iteration r(p,x;λ) descent, and, for an implicit numerical solution method, calculating all

first order partial derivatives of r(q) requires at least (nx + ni + nb)nx times as many operations

as an iteration r(p,x;λ) descent. In some cases, gradient-based methods that approximate

the Hessian using first order partial derivative values, such as the Gauss-Newton method,

Levenberg-Marquardt method, and quasi-Newton methods, may converge somewhat faster

than descent. In such cases, for ODEs, where ni + nb ≤ 2, with few model states, superior

convergence of gradient-based methods may compensate for relatively larger computational

burdens, but, with an increasing number of model states, r(p,x;λ) descent becomes increasingly

more computationally efficient than r(q) minimization by gradient-based methods, markedly

for implicit numerical solution methods. For PDEs, where nx << ni + nb, r(p,x;λ) descent is

computationally far more efficient than r(q) minimization by gradient-based methods, and the

difference in computational efficiency grows with an increasing number of data points and/or

model states, markedly for implicit numerical solution methods.

Conclusion

Overall, from assumptions (D.209), (D.210), (D.211), (D.212), (D.213), (D.214), and (D.216)

and Theorems 7, 8, 9, and 10, r(p,x;λ) descent is computational more efficient than r(q)

minimization. More specifically, for ODEs, with few model states, r(p,x;λ) descent may be

somewhat more computationally efficient than r(q) minimization, and, with an increasing

number of model states, r(p,x;λ) descent becomes increasingly more computationally efficient

than r(q) minimization, markedly for implicit numerical solution methods. Also, for PDEs,

r(p,x;λ) descent is computationally far more efficient than r(q) minimization, and the difference

in computational efficiency grows with an increasing number of data points and/or model states,

markedly for implicit numerical solution methods.

192

Appendix E

Details of Testing the

Homotopy-Minimization Method for

Parameter Estimation in Differential

Equations

E.1 Implementation of Overlapping-Niche Descent for Forms

of the Bonny Model

Here, I describe details pertaining to the implementation of overlapping-niche descent for forms

of the Bonny model. I describe related structural components of overlapping-niche descent in

Section 3.4.

E.1.1 Generating Random Parameters and State Values

Initially in overlapping-niche descent, I randomly generate parameters and state values. Also, as

discussed in Section C.1, throughout overlapping-niche descent, I randomly generate parameters

and state values in random offspring. Given no prior parameter value estimates, I randomly

generate rate parameters over a broad range of scales:

p ∼ up · 10U(−6,1) for all p ∈ {ωD, ωdD, ωE , ωed, ωde,m, ωde,c, ωe}, (E.1)

where U(a, b) is the uniform probability distribution over the interval (a, b), and up is the units

of parameter p. I expect cmax to be within one or two orders of magnitude of the maximal MinD

data value, Dmax. Thus I randomly generate cmax such that

cmax ∼ Dmax · 10U(0,2). (E.2)

Naively, I guess that fitted diffusion coefficients are within one or two orders of magnitude of

10 µm2 s−1. Thus, I randomly generate diffusion coefficients such that

p ∼ 10 µm2 s−1 · 10U(−2,2) for all p ∈ {Dd, Dde, De}. (E.3)

193

E.1. Implementation of Overlapping-Niche Descent. . .

For reference, the parameter values used to generate synthetic data are shown in Table 3.1. I

randomly generate state values so that observable state values match observed or interpolated

data exactly. Thus, for MinD and MinE observed or interpolated data values, D and E, with ce

as a free state, I randomly generate state values such that

ce ∼ U(max{0, E −D}, E),

cde = E − ce,
cd = D − E + ce. (E.4)

E.1.2 Parents and Offspring

The function of parents and offspring in overlapping-niche descent is described in Section C.1.

Accordingly, to the ith niche in generation g, I allocate one sustained parent, n̂i = 1, one high

momentum offspring, ňmg,i = 1, one cross-niche offspring, ňcg,i = 1, and one random offspring,

ňrg,i = 1, for each i ∈ {1, 2, . . . , 101} and each generation of overlapping-niche descent, g ≥ 1. In

the first two generations of overlapping-niche descent, g ≤ 2, I allocate two sexual offspring to

each niche, ňsg,i = 2 for all i ∈ {1, 2, . . . , 101}. After the second generation of overlapping-niche

descent, I adaptively change the number of sexual offspring that I allocate to each niche, enlarging

less convergent niches and shrinking more convergent niches for greater efficiency in optimization.

Specifically, I allocate one sexual offspring to the ith niche, and randomly allocate the remaining

101 sexual offspring to the ith niche with probability proportional to ∆rg,i,1, the measure of

convergence in the (first) parent space of the ith niche in generation g, as defined in equation

(C.1), for each i ∈ {1, 2, . . . , 101} and g > 2.

E.1.3 Selection and Random Perturbation

I choose the natural default value for the selection strength parameter, qfit = 1, for qfit as

described in Section C.1. For a sexual offspring that inherits parameter p from individual

(pg,i,j ,xg,i,j), I perturb the value of the parental parameter, p̂, such that

p ∼
(
p̂ · 10N(0,max{∆rg,i,j ,10−2}2) | p ≥ pmin

)
, (E.5)

where N(µ, σ2) is the normal distribution with mean µ and variance σ2, ∆rg,i,j is the measure of

convergence in the jth parent space of the ith niche in generation g, as defined in equation (C.1),

and pmin is the restricted lower bound on parameter p as discussed in Section 3.4.2. A standard

deviation of max{∆rg,i,j , 10−2} ensures some small but significant perturbation in parameter p

when ∆rg,i,j is small. Similarly, for a sexual offspring that inherits state value x from individual

(pg,i,j ,xg,i,j), I perturb the value of the parental state value, x̂, such that

x ∼
(
x̂+ x̂ ·N

(
0,max{∆rg,i,j , 10−2}2

) ∣∣ x ≥ 0
)
. (E.6)

194

E.2. Details of SNSD

Details pertaining to sexual offspring are described in Section C.1.

E.1.4 Dykstra’s Method

As discussed in Section C.2.3, during overlapping-niche descent, I project parameters and

state values onto a restricted domain using Dykstra’s method. For forms of the Bonny model,

restrictions on parameters and state values, linear inequalities (3.7), (3.8), and (3.9), are all

mutually independent. Thus, Dykstra’s method, as discussed in Section C.2.3, will converge in

one projection cycle, when projecting parameters and state values onto the domain bounded

by (3.7), (3.8), and (3.9). As such, for Dykstra’s method, I have no need to define the relative

termination tolerance, εc or the absolute termination tolerance, εc̄.

E.1.5 Initial values, Termination, Prolongation, and Computation

I choose the initial gradient scaling value si,0 = 0, for all i in the indexed set of all parameters

and state values. Details pertaining to si,0 are described in Section C.2.1. I choose the maximum

number of strict descent iterations to be relatively but not excessively large, nmax = 104, to

ensure sufficient convergence to a local minimum of r(p,x;λ) while avoiding overburdensome

computation. I choose a very small contraction termination tolerance, εσ = 10−30, and a very

small relative-change termination tolerance, εr = 10−30, to continue accelerated descent through

nmax strict descent iteration unless local minimization is essentially complete. Details pertaining

to nmax, εσ, and εr are described in Section C.2.2. For descent prolongation, I choose: σ̆ = 1, for

non-stringent descent prolongation, mpro = 103, a factor of 10 less than nmax; n̂pro = nmax = 104;

and ňpro = nmax = 104. Details pertaining to σ̆, mpro, n̂pro, and ňpro are described in Section

C.3. I choose the overlapping-niche descent termination tolerance to be relatively but not

exceedingly small, ε∆r = 10−3, for reliable convergence in all niches while avoiding an excessive

number of overlapping-niche descent generations. Details pertaining to ε∆r are described in

Section C.1. I compute genetic algorithm calculations using MATLAB. I compute accelerated

descent calculations in parallel using C++ on the Calcul Québec server Guillimin, which uses

Intel Xeon X5650 Westmere processors and has 6 cores per CPU.

E.2 Details of SNSD

Here, I describe details of SNSD, single-niche solution descent. SNSD optimizes over parameters

and initial conditions to minimize ry(p,x) with numerical solution values x. SNSD follows

the genetic algorithm of overlapping-niche descent as described in Section C.1, but consists of

a single niche. To be consistent with overlapping-niche descent as described in Section 3.4.3,

SNSD sustains 101 parents, 101 one high momentum offspring, 303 sexual offspring, and 101

random offspring. SNSD follows the accelerated descent routine of overlapping-niche descent

as described in Section C.2, except state values are determined by numerically solving the

differential equation system. Also, state values are implicit functions of parameters and initial

195

E.3. Details Pertaining to the Implementation. . .

conditions. So, partial derivatives of ry(p,x) with respect to parameters and initial conditions

are calculated in part by numerically solving the sensitivity Equations (D.52) to determine

partial derivatives of state values with respect to parameters and initial conditions.

E.3 Details Pertaining to the Implementation of

Overlapping-Niche Descent in Practice with the Full

Bonny Model

Here, I continue the discussion of Section 3.8, to explicate details pertaining to the implementation

of overlapping-niche descent in practice. My discussion follows overlapping-niche descent in

the fitting of the full Bonny model, as defined in Equation 3.1, to the synthetic traveling-wave-

emergence data, as shown in Figure 3.3, on a uniform grid with a grid refinement factor of 1,

n∆tn∆snt
−1ns

−1 = 1 for n∆t and n∆s the number or temporal and spatial grid points and nt

and ns the number of temporal and spatial data points.

E.3.1 Selection in Overlapping-Niche Descent

As discussed in Section C.1, overlapping-niche descent employs various types of offspring. To

illustrate how offspring types contribute to convergence in overlapping-niche descent, I map

selection from offspring types in Figure E.1.

196

E.3. Details Pertaining to the Implementation. . .

(a) (b)

(c) (d)

Figure E.1: Selection from offspring types during overlapping-niche descent. White indicates
that (pg,i,1,xg,i,1), the individual in the (first) parent space of the ith niche in generation g as
described in Section C.1, was selected from a high momentum offspring in (a), a cross-niche
offspring in (b), a sexual offspring in (c) and a random offspring in (d).

As is visible in Figure E.1, in early generations of overlapping-niche descent, sexual offspring and

random offspring contribute to convergence in smaller values of λ while high momentum offspring

and sexual offspring contribute to convergence broadly in λ, and in subsequent generations

of overlapping-niche descent, high momentum offspring and sexual offspring contribute to

convergence in larger values of λ.

To illustrate how cross-niche optimization contributes to convergence in overlapping-niche

descent, I map selection from niches in Figure E.2.

197

E.3. Details Pertaining to the Implementation. . .

(a)

(b) (c)

Figure E.2: Selection across niches during overlapping-niche descent. The individual in the
(first) parent space of the ith niche in generation g, (pg,i,1,xg,i,1), was selected from the niche
shown by grayscale in (a) and was generated from parents(s) in the niche(s) shown by grayscale
in (b) and (c). In (b) and (c), a blue value indicates that the selected individual was a random
offspring and thus not generated from a parent in any niche.

As is visible in Figure E.2, cross-niche optimization ubiquitously contributes to convergence

throughout overlapping-niche descent, and selection or generation from a parent from a niche

with a larger value of λ contributes to convergence at least as much as selection or generation

from a parent from a niche with a smaller value of λ. Interestingly, although r̃(λ) converges

more readily for smaller λ, selection or generation from a parent from a niche with a larger value

of λ contributes to convergence in r̃(λ) for smaller λ.

E.3.2 Prolongation in Overlapping-Niche Descent

As discussed in Section C.3, I prolong accelerated descent for an individual that appears to be

converging to a value of r(p,x;λ) below the least value of r(p,x;λ) in its niche. To illustrate how

198

E.3. Details Pertaining to the Implementation. . .

descent prolongation contributes to convergence in overlapping-niche descent, I map selection

from individuals with prolonged accelerated descent in Figure E.3.

Figure E.3: Descent prolongation during overlapping-niche descent. The number of strict descent
iterations are shown for the individual that was selected to occupy the (first) parent space of
the ith niche in generation g, (pg,i,1,xg,i,1). Descent prolongation occurs when the number of
strict descent iterations exceeds nmax = 104.

As is visible in Figure E.3, descent prolongation ubiquitously contributes to convergence through-

out overlapping-niche descent.

E.3.3 Convergence During Accelerated Descent

As discussed in Section C.2, overlapping-niche descent includes accelerated descent, a variant

of accelerated scaled gradient descent. Generally, accelerated descent follows a trajectory with

rapid, sublinear convergence that develops into periods of superlinear convergence, which are

punctuated by restarts. The number of strict descent iterations with sublinear convergence, the

number of strict descent iterations with superlinear convergence, and convergence rates vary

with initial parameters and state values and with λ. I show convergence plots that exemplify

the convergence behavior of accelerated descent in Figure E.4.

199

E.3. Details Pertaining to the Implementation. . .

(a) (b)

Figure E.4: Convergence behavior of accelerated descent. Rapid, sublinear convergence that
develops into periods of superlinear convergence is shown in (a), for accelerated descent that
begins with a random offspring and converges to (p̃λ22 , x̃λ22). Periods of superlinear convergence
that are punctuated by restarts is shown in (b), for accelerated descent that begins with a high
momentum offspring and converges to (p̃λ8 , x̃λ8). I calculate relative errors as (r(p,x;λ) −
r(p̃λ, x̃λ;λ))/(p̃λ, x̃λ;λ). Rather than misrepresenting relative errors near (p̃λ, x̃λ), I omit
relative errors in the last 103 strict descent iterations of accelerated descent.

For reference, gradient descent and Nesterov’s accelerated gradient method generally converge

sublinearly, with respective upper bounds on errors of O(n−1) and O(n−2) for iteration number

n [50], and Newton’s method generally converges quadratically.

To demonstrate the importance of scaling in accelerated descent, as discussed in Section

C.2.1, I apply accelerated descent without scaling, si,j = 1 for all i ∈ {1, 2, . . . , nv} and

j ≥ 1 in equation (C.5), to the randomly generated individuals from the first generation of

overlapping-niche descent and compare results from the optimization to analogous results from

the optimization with accelerated descent. In doing so, for a balanced comparison, I only

compare results for individuals with nmax = 104 strict descent iterations during both accelerated

descent and accelerated descent without scaling, where nmax is the maximum number of strict

descent iterations described in Section C.2.2 and specified in Section E.1.5. Results are shown

in Figure E.5.

200

E.3. Details Pertaining to the Implementation. . .

(a) (b)

(c)

Figure E.5: A comparison of optimization using accelerated descent and accelerated descent
without scaling. Final-to-initial ratios of r(p,x;λ) are shown for accelerated descent in (a)
and for accelerated descent without scaling in (b). A histogram of values for the ratio of the
final value of r(p,x;λ) from accelerated descent to the final value of r(p,x;λ) from accelerated
descent without scaling is shown in (c). In (a), (b), and (c), I show results for the randomly
generated individuals in the first generation of overlapping-niche descent with nmax = 104 strict
descent iterations during both accelerated descent and accelerated descent without scaling and
omit other results.

As is visible in Figure E.5, uniformly in all niches, accelerated descent dramatically outperforms

accelerated descent without scaling. More precisely, in accordance with the histogram in panel

(c) of Figure E.5, for the randomly generated individuals in the first generation of overlapping-

niche descent (with nmax = 104 strict descent iterations during both accelerated descent and

accelerated descent without scaling), I find a median value for the ratio of the final value

of r(p,x;λ) from accelerated descent to the final value of r(p,x;λ) from accelerated descent

without scaling of 6.86 · 10−8.

201

Appendix F

Extracting Near-Homogeneous Data

Here, I discuss details of data preprocessing and extracting spatially near-homogeneous time-

course data from Ivanov and Mizuuchi’s in vitro experimental measurements of the Min system

[38].

F.1 Data Information

In the Ivanov and Mizuuchi experiments, in a 25 µm deep flow chamber, a buffer with 1.06 µM

fluorescently labeled EFGP-MinD, 1.36 µM fluorescently labeled Alexa647-MinE, and 2.5 mM

ATP was flowed at an average rate of 0.5 mm s−1 atop a supported lipid bilayer. On the

supported lipid bilayer, densities of MinD and MinE, which were measured using total internal

reflection microscopy (TIRF), oscillated near-homogeneously in space then formed into traveling

waves. According to the Ivanov and Mizuuchi Supporting Information, rapid buffer flow

compensated for local changes in the concentrations of reaction components in the buffer, as the

buffer flow rate was three orders of magnitude faster than the typical traveling wave speed of

MinD and MinE densities on the supported lipid bilayer and Taylor dispersion in the laminar

flow was estimated to take place on a time scale that was about two orders of magnitude faster

than the typical wave period of MinD and MinE densities on the supported lipid bilayer.

I analyze Ivanov and Mizuuchi’s raw data, from the file Movie1.stk, using MATLAB, and

the function tiffread2 to import data. The data contains 2401 grayscale frames. Each frame is

512× 512 pixels, and is a dual image, with the fluorescence intensity signals of EGFP-MinD

on the left and the fluorescence intensity signals of Alexa647-MinE on the right. For visual

clarification, an image of the 330th data frame is shown in (a) of Figure F.1 and an enhanced

(through the MATLAB function imadjust) image of the 330th data frame is shown in (b) of

Figure F.1.

202

F.2. Aligning Data Tracks

(a) (b)

Figure F.1: The 330th data frame as an image (a) and as an enhanced image (b).

F.2 Aligning Data Tracks

As is visible in (b) of Figure F.1, similarly shaped structures in MinD and MinE fluorescence

intensity profiles seem to be aligned in rotation and scale, but not vertically. Also, MinD

and MinE fluorescence intensity profiles require horizontal alignment because both signals are

merged into a single image. I translationally align EGFP-MinD fluorescence intensity profiles

and Alexa647-MinE fluorescence intensity profiles using structures in the 330th data frame as

location markers. I denote the intensity value of the ith vertical pixel from the top and the jth

horizontal pixel from the left in the 330th merged data frame by m330
i,j , for i ∈ {1, 2, . . . , 512} and

j ∈ {1, 2, . . . , 512}. I select a square alignment preimage sufficiently within the interior of the

MinE fluorescence intensity profile (shown in Figure F.2), which contains a unique arrangement

of structures that are shaped similarly in both the MinD and MinE fluorescence intensity profiles.

203

F.2. Aligning Data Tracks

Figure F.2: Alignment preimage [(p, q) = (65, 295), l = 106].

The alignment preimage has upper-left vertex (p, q) = (65, 295) with side length l = 106 pixels. I

compare the similarity between the alignment preimage in the MinE fluorescence intensity profile

with an equally-sized alignment image in the MinD fluorescence intensity profile by normalized

cross-correlation. For a square alignment image in the MinD fluorescence intensity profile with

upper-left vertex (s, t) and side length l, the normalized cross-correlation between the alignment

preimage and the alignment image is given by:

c(s, t) =

l−1∑
i=0

l−1∑
j=0

(m330
p+i,q+j − µp,q)(m330

s+i,t+j − µs,t)

 l−1∑
i=0

l−1∑
j=0

(m330
p+i,q+j − µp,q)2

 1
2
 l−1∑
i=0

l−1∑
j=0

(m330
s+i,t+j − µs,t)2

 1
2

, (F.1)

with alignment preimage and image mean values µp,q and µs,t:

µp,q =
1

l2

l−1∑
i=0

l−1∑
j=0

m330
p+i,q+j , (F.2a)

µs,t =
1

l2

l−1∑
i=0

l−1∑
j=0

m330
s+i,t+j . (F.2b)

The MinD fluorescence intensity profile appears to end at the 252nd horizontal pixel. Thus, for

side length l = 106, square alignment images with upper-left vertices (s, t) ∈ {1, 2, . . . , 407} ×
{1, 2, . . . , 147} are contained entirely within the MinD fluorescence intensity profile. I calculate

204

F.2. Aligning Data Tracks

c(s, t) for all (s, t) ∈ {1, 2, . . . , 407} × {1, 2, . . . , 147}; relative values are shown in Figure F.3.

Figure F.3: Relative c(s, t) values for (s, t) ∈ {1, 2, . . . , 407} × {1, 2, . . . , 147}. Values increase
with gradation from black to white.

For (s, t) ∈ {1, 2, . . . , 407}× {1, 2, . . . , 147}, c(s, t) has a maximum value of 0.56 at (92, 43). The

alignment preimage in the MinE fluorescence intensity profile and the alignment image in the

MinD fluorescence intensity profile with upper-left vertex (s, t) = (92, 43) are shown in Figure

F.4.

Figure F.4: Alignment preimage [(p, q) = (65, 295), l = 106] and alignment image [(s, t) =
(92, 43), l = 106].

Thus, I align pixel (65, 295) in the MinE fluorescence intensity profile with pixel (92, 43) in the

205

F.3. Preparing Aligned Data for Analysis

MinD fluorescence intensity profile, a shift of (27,−252) pixels. I apply the same shift to align

all MinD and MinE fluorescence intensity data that has a one-to-one correspondence under

the shift. Therefore, I assign value m330
i+27,j to aligned MinD fluorescence intensity data element

d̈330
i,j , and I assign value m330

i,j+252 to aligned MinE fluorescence intensity data element ë330
i,j , for

i ∈ {1, 2, . . . , 485} and j ∈ {1, 2, . . . , 252}. I align MinD and MinE fluorescence intensity data

identically in all data frames. During many data frames, MinD fluorescence intensity in the

two right-most vertical pixels is significantly less than fluorescence intensity in neighboring

pixels, and MinE fluorescence intensity in the three left-most vertical pixels is significantly more

than fluorescence intensity in neighboring pixels. Thus, I remove the three left-most and two

right-most vertical pixels from aligned MinD and MinE fluorescence intensity data. Therefore,

for data frame t, I define aligned MinD and MinE fluorescence intensity data elements ḋti,j
and ėti,j to be data elements d̈ti,j+3 = mt

i+27,j+3 and ëti,j+3 = mt
i,j+252+3, for i ∈ {1, 2, . . . , 485},

j ∈ {1, 2, . . . , 247}, and t ∈ {1, 2, . . . , 2401}. An enhanced image of aligned MinD and MinE

fluorescence intensity data is shown in Figure F.5.

Figure F.5: Aligned data from the 330th data frame as an image.

F.3 Preparing Aligned Data for Analysis

F.3.1 Temporal Partition of Data

Aligned MinD and MinE fluorescence intensity data contains the temporal evolution of six

pulses, over roughly the entire spatial domain of the data, that slowly develop into persistent

traveling wave fronts. I temporally partition aligned MinD and MinE fluorescence intensity

206

F.3. Preparing Aligned Data for Analysis

data, by temporal index, such that

{1, 2, . . . , 2401} =
10⋃
k=0

Pk =

{1, . . . , 224} ∪ {225, . . . , 343} ∪ {344, . . . , 546} ∪ {547, . . . , 719}∪
{720, . . . , 894} ∪ {895, . . . , 1064} ∪ {1065, . . . , 1259} ∪ {1260, . . . , 1388}∪

{1389, . . . , 1539} ∪ {1540, . . . , 1677} ∪ {1678, . . . , 2401},

where P0 contains temporal indices before the first global pulse in MinD and MinE fluorescence

intensity; P1, P2, . . . , P6 each contain temporal indices of a single, roughly global MinD and MinE

fluorescence intensity spike then fall; and P7 contains the temporal indices of the beginning of

MinD and MinE fluorescence intensity traveling wave formation, which further develops during

the temporal indices of P8 and P9, and persists through the temporal indices of P10. I denote

aligned MinD and MinE fluorescence intensity data elements di,j and ei,j , in the lth ordered

index of the kth temporal partition, as dk,li,j and ek,li,j , for i ∈ {1, 2, . . . , 485}, j ∈ {1, 2, . . . , 247},
k ∈ {0, 1, . . . , 10}, and l ∈ {1, 2, . . . , n(Pk)}, where n(Pk) denotes the cardinality of Pk.

F.3.2 Intensity Flattening

Bulk MinD and MinE, in the solution buffer, reach the middle of the flow cell, the site of

fluorescence intensity measurements, during temporal partition P0. Before bulk proteins reach

the middle of the flow cell, MinD and MinE fluorescence intensities consist entirely of background

noise. After bulk proteins reach the middle of the flow cell, MinD and MinE fluorescent intensities

consist of background noise, bulk proteins, and some membrane-bound proteins. Mean MinD

and MinE fluorescence intensity values over space, for each data frame in P0, are shown in

Figure F.6.

207

F.3. Preparing Aligned Data for Analysis

Figure F.6: Mean fluorescence intensities over space during temporal partition P0. Intensity
values are in camera units (c.u.).

As is visible in Figure F.6, MinD and MinE fluorescence intensities consist entirely of background

noise from image 1 to image 56. After image 56, MinD fluorescence intensity increases slightly,

then MinD and MinE fluorescence intensities increase dramatically, presumably when bulk

proteins reach the middle of the flow cell. Mean MinD and MinE fluorescence intensities over

time, from image 1 to image 56, are shown in Figure F.7.

(a) (b)

Figure F.7: Mean background intensities over time. MinD fluorescence intensity is shown in (a)
and MinE fluorescence intensity is shown in (b).

As is visible in Figure F.7, background noise intensities are roughly uniform in space. MinD and

MinE background fluorescence intensities, in all pixels, from image 1 to 56, have mean values

µbd = 102.9 c.u. and µbe = 102.8 c.u. and standard deviations σbd = 12.3 c.u. and σbe = 12.2 c.u.,

where camera unit is abbreviated as c.u..

208

F.3. Preparing Aligned Data for Analysis

After bulk proteins reach the middle of the flow cell, MinD and MinE fluorescence intensities

no longer appear roughly uniform in space. According to the Ivanov and Mizuuchi Supporting

Information, “The illumination had a Gaussian shape in the field of view with a measured

horizontal and vertical half maximum widths of 65× 172 µm at 488 nm ”, where 488 nm refers

to the wavelength of MinD fluorescence excitation. The Gaussian spreads of MinD and MinE

fluorescent intensities are visibly different. Thus, MinD and MinE fluorescence intensities require

flattening to remove asymmetries in data acquisition. The Gaussian function, in two spatial

dimensions x and y, has the form

g(x, y;A, x0, y0, kx, ky) = A exp
(
−
(
kx(x− x0)2 + ky(y − y0)2

))
, (F.3)

with scaling factor A, center point (x0, y0), and spread characterizing parameters kx and ky.

The sum of Gaussian functions with identical center point and spread is a Gaussian function

that retains the center point and spread. For static illumination sources, the Gaussian center

points and spreads of MinD and MinE fluorescence intensity remain constant throughout data

acquisition. During P0, after bulk proteins reach the middle of the flow cell, apart from apparent

Gaussian profiles, MinD and MinE fluorescence intensities appear to be roughly uniform in

space. Thus, roughly, each MinD and MinE image contains spatially uniform background noise

and a Gaussian intensity profile with static center point and spread. To generate MinD and

MinE Gaussian profile data, initially, I subtract mean background intensity values, µbd and µbe,

from MinD and MinE fluorescence intensity data, for image 85, when bulk proteins appear to

have saturated the entire spatial domain of the data, through image 224, the final image in P0.

Then, for each image from 85 to 224, I normalize translated MinD and MinE data by the mean

translated MinD and MinE value in the image. Finally, I generate MinD and MinE Gaussian

profile data by calculating the mean normalized translated MinD and MinE value, from image 85

to 224, at each image pixel. Ultimately, generated MinD and MinE Gaussian data are roughly

Gaussian, with mean values of 1. According to the Ivanov and Mizuuchi Supporting Information,

the side length of each pixel is 6−1 µm. Thus, for a a horizontal half maximum width of 65 µm,

kx = ln(2) · (6 · 65 pixels)−2 ≈ 4.56 · 10−6 pixels−2, and for a vertical half maximum widths of

172µm, ky = ln(2) · (6 · 172 pixels)−2 ≈ 6.51 · 10−7 pixels−2. Using the MATLAB function

lsqcurvefit, I determine the parameters A, x0, y0, kx, and ky that minimize the sum of squared

differences between the Gaussian function and generated MinD and MinE Gaussian profile data,

with initial parameter estimates A0 = 1, k0
x = ln(2) ·(6 ·65 pixels)−2, k0

y = ln(2) ·(6 ·172 pixels)−2,

and (x0
0, y

0
0) = (123, 242), the center of the spatial domain. I compute MinD Gaussian parameters,

Ad = 1.43, kdx = 2.49 · 10−5 pixels−2, kdy = 3.27 · 10−6 pixels−2, xd0 = 186.0, and yd0 = 431.5,

and MinE Gaussian parameters, Ae = 1.26, kex = 1.50 · 10−5 pixels−2, key = 2.53 · 10−6 pixels−2,

xe0 = 196.3, and ye0 = 371.2. MinD and MinE Gaussian profile data and best fitting Gaussian

functions are shown in Figure F.8.

209

F.3. Preparing Aligned Data for Analysis

(a) (b)

Figure F.8: Gaussian profile data and best fitting Gaussian functions. Generated Gaussian data
is shown on the left and the best fitting Gaussian function is shown on the right, for MinD in
(a) and MinE in (b).

Using fitted Gaussian parameters, I flatten all aligned MinD and MinE fluorescence intensity

data to correct for Gaussian intensity profiles:

d̄k,li,j =
Ad

g
(
j, i;Ad, xd0, y

d
0 , k

d
x, k

d
y

)(ḋk,li,j − µbd), (F.4)

ēk,li,j =
Ae

g
(
j, i;Ae, xe0, y

e
0, k

e
x, k

e
y

)(ėk,li,j − µbe), (F.5)

for i ∈ {1, 2, . . . , 485}, j ∈ {1, 2, . . . , 247}, k ∈ {0, 1, . . . , 10}, and l ∈ {1, 2, . . . , n(Pk)}. Confirm-

ing the assumption, during P0, after bulk proteins reach the middle of the flow cell, flattened

MinD and MinE fluorescence intensities appear to be roughly uniform in space. Flattened MinD

and MinE fluorescence intensities are shown for image 224, the final image in P0, in Figure F.9.

210

F.3. Preparing Aligned Data for Analysis

(a) (b)

Figure F.9: Flattened MinD and MinE fluorescence intensities for image 224. Flattened MinD
fluorescence intensity is shown in (a) and flattened MinE fluorescence intensity is shown in (b).

F.3.3 Scaling Flattened Data

According to the Ivanov and Mizuuchi Supporting Information, by comparing the fluorescence

intensity of EGFP-MinD with the fluorescence intensity of ParA-GFP, a protein with no affinity

for the lipid bilayer, a EGFP-MinD fluorescence intensity of 7, 000 c.u. was found to correspond,

approximately, to a surface density of 1.25 · 104 µm−2. The Alexa647-MinE fluorescence

intensity was not directly calibrated, but was estimated by direct comparison to experiments

with similar dynamic outcomes involving MinE-EGFP and nonfluorescent MinD. Peak MinE-

EGFP fluorescence intensities were found to be two to four times less than peak fluorescence

intensities of EGFP-MinD, and the peak-to-peak ratio of 2.6 was used to normalize Alexa647-

MinE data. I calibrate MinD and MinE fluorescence intensities from flattened fluorescence

intensity data in temporal partition P0.

MinD and MinE fluorescence intensities were measured using total internal reflection mi-

croscopy (TIRF). In TIRF, a light beam undergoes total internal reflection at the interface of a

solution with a solid surface, producing an evanescent wave that excites fluorescent molecules

near the solid surface [2]. The evanescent electric field intensity, I, decays with distance, z, from

the solid surface:

I(z) = I0e
−z/d, (F.6a)

d =
λ0

4π

(
n2

1 sin2 θ − n2
2

)− 1
2 , (F.6b)

where I0 is the electric field intensity at z = 0, λ0 is the light wavelength in a vacuum, n1 is

the refractive index of the solid surface, n2 is the refractive index of the solution, and θ is the

angle of incidence [2]. According to the Ivanov and Mizuuchi Supporting Information, for MinD

211

F.3. Preparing Aligned Data for Analysis

fluorescence excitation, using a laser with a wavelength of 488 · 10−3 µm, the penetration depth

of the evanescent wave, dd, was 128 · 10−3 µm. The penetration depth of the evanescence wave

was not explicitly characterized for MinE fluorescence excitation. From equation (F.6b) and dd,

for the experiment,

1

4π

(
n2

1 sin2 θ − n2
2

)− 1
2 =

128

488
. (F.7)

MinE fluorophores were excited using a laser with a wavelength of 633 · 10−3 µm. Thus, for

MinE fluorescence excitation, the penetration depth of the evanescent wave, de, was 633 · 10−3 ·
128 · 488−1 µm ≈ 166 · 10−3 µm.

Pixelated MinD and MinE fluorescence intensities, Id and Ie, are the sums of bulk fluorescence

intensities, ID and IE , and lipid bilayer-bound fluorescence intensities, Id and Ie. ID and IE are

proportional to the number of excited MinD and MinE fluorophores in solution, and Id and Ie

are proportional to the number of excited MinD and MinE fluorophores on the lipid bilayer; for

MinD and MinE solution concentrations, cD and cE , and lipid bilayer-bound concentrations, cd

and ce, in the 25 µm deep flow cell,

Id = ID + Id :



ID =µd · a · εd · Id0
∫ 25

0
cDe

−z/dddz

=µd · a · εd · Id0 · cD · dd(1− 1.5 · 10−85)

≈µd · a · εd · Id0 · cD · dd

Id =µd · a · εd · Id0 · cd,

(F.8a)

Ie = IE + Ie :



IE =µe · a · εe · Ie0
∫ 25

0
cEe

−z/dedz

=µe · a · εe · Ie0 · cE · de(1− 3.9 · 10−66)

≈µe · a · εe · Ie0 · cE · de

Ie =µe · a · εe · Ie0 · ce,

(F.8b)

with MinD and MinE evanescent field intensities at z = 0, Id0 and Ie0 , excitation scales, εd and εe,

measurement scales, µd and µe, and pixel area, a. Thus, for camera unit (c.u.) to concentration

(µm−2) conversion factors, αd =
(
µd · a · εd · Id0)−1 and αe =

(
µe · a · εe · Ie0)−1, to numerical

precision,

cD · dd = αdID, (F.9a)

cd = αdId, (F.9b)

cE · de = αeIE , (F.9c)

ce = αeIe. (F.9d)

212

F.3. Preparing Aligned Data for Analysis

Flowed bulk MinD and MinE protein concentrations are roughly constant in time. During P0, in

all data frames after bulk proteins reach the middle of the flow cell, flattened MinD and MinE

fluorescent intensities appear roughly uniform in space, as shown in Figure F.9. Mean flattened

MinD and MinE fluorescence intensity values over space, for each data frame in P0, are shown

in Figure F.10.

Figure F.10: Mean flattened fluorescence intensities over space during temporal partition P0.

As is visible in Figure F.10, when bulk proteins reach the middle of the flow cell, MinD and MinE

fluorescence intensities transiently peak, level off, then MinD fluorescence intensity gradually

increases in time and MinE fluorescence intensity remains roughly constant in time. With

no initial lipid bilayer-bound MinD and MinE and roughly constant bulk MinD and MinE

concentrations, just after bulk proteins reach the middle of the flow cell, MinE fluorescence

intensity, while roughly constant in time, consists almost entirely of bulk MinE protein fluorophore

excitation. During a period with very little lipid bilayer-bound MinE and a roughly constant

bulk MinD concentration, models of the evolution of lipid bilayer-bound MinD concentration, as

defined in Equations (4.1), (4.6), (4.7), and (4.9) of Section 4.3, reduce to the form

dcd
dt

= (ωD→d + ωdD→dcd)(cmax − cd)/cmax −
ωd→Dc

ns
s cd

cns
s + cns

d

, (F.10)

where cde, ce ≈ 0 and ωd→D = 0 in equation (4.1), cde, ce ≈ 0 and ns = 1 in equation (4.6),

cde, cede, ce ≈ 0 and ns = 1 in equation (4.7), and cde, cded, ce ≈ 0 and ns = 1 in equation

(4.9). For small cd, where cd is very small compared to cmax and cs, (cmax − cd)/cmax ≈ 1 and

cns
s /(c

ns
s + cns

d) ≈ 1. Thus, models of the evolution of lipid bilayer-bound MinD concentration

reduce to the form

dcd
dt

= β1 + β2cd, (F.11)

213

F.3. Preparing Aligned Data for Analysis

where β1 = ωD→d and β2 = ωdD→d − ωd→D, which has solution

cd(t) = −β1

β2
+

(
cd,0 +

β1

β2

)
eβ2(t−t0), (F.12)

with concentration cd,0 at time t = t0. Converting to camera units, Id(t) = cd(t)/αd, equation

(F.12) becomes

Id(t) = −γ1

β2
+

(
Id,0 +

γ1

β2

)
eβ2(t−t0), (F.13)

where γ1 = β1/αd and Id,0 = cd,0/αd. Mean flattened MinE fluorescence intensity values over

space appear to be roughly constant from image 122 through image 204. After image 204, mean

flattened MinE fluorescence intensity values over space increase slightly. Thus, to decompose

MinD fluorescence intensity, Id(t), which I approximate as the mean flattened MinD fluorescence

intensity over space, into roughly constant bulk MinD fluorescence, ID(t), and lipid bilayer-bound

MinD fluorescence, Id(t), I determine Id(t) characterizing parameters, γ1, β1, and Id,0, that

minimize the variance in MinD bulk fluorescence intensity, ID(t) = Id(t)− Id(t), from image 122

through image 204, using the MATLAB function lsqcurvefit with initial parameter estimates

of 10−3. I find that, for t0 = 122 index, γ1 = 3.37 · 10−2 c.u. index−1, β1 = 3.36 · 10−2 index−1,

and Id,0 = 2.24 · 10−1 c.u. minimize the variance in ID(t). The decomposition of Id(t) into ID(t)

and Id(t) is shown in Figure (F.11).

Figure F.11: The decomposition of MinD fluorescence intensity into bulk fluorescence intensity
and lipid bilayer-bound fluorescence intensity.

Bulk MinD fluorescence intensity, ID(t), and bulk MinE fluorescence intensity, IE(t), which

I approximate as the mean flattened MinE fluorescence intensity over space, from image 122

through image 204, are shown in Figure (F.12).

214

F.4. Finding Spatially Homogeneous Data

Figure F.12: Bulk MinD and MinE fluorescence intensities. Mean values are shown with dashed
lines.

For camera unit to concentration conversion factors, αd and αe, from equation (F.9d),

αd = cD · dd · ID−1, (F.14a)

αe = cE · de · IE−1. (F.14b)

ID
−1 and IE

−1 have mean values 1.392 · 10−2 c.u. and 2.796 · 10−2 c.u. and standard deviations

4.9 · 10−4 c.u. and 9.8 · 10−4 c.u.. The flowed buffer contains 1.06 µM = 6.383 · 102 µm−3 MinD

and 1.36 µM = 8.190 · 102 µm−3 MinE. Thus, αd and αe have mean values 1.137 µm−2 c.u.−1

and 3.802 µm−2 c.u.−1 and standard deviations 0.040 µm−2 c.u.−1 and 0.133 µm−2 c.u.−1. I

approximate αd and αe by mean values, αd = 1.137 µm−2 c.u.−1 and αe = 3.802 µm−2 c.u.−1.

Comparatively, Ivanov and Mizuuchi measured αd, approximately, as 1.786 µm−2 c.u.−1. I scale

flattened MinD and MinE fluorescence intensity data to generate MinD and MinE density data:

dk,li,j = αd · d̄k,li,j , (F.15)

ek,li,j = αe · ēk,li,j , (F.16)

for i ∈ {1, 2, . . . , 485}, j ∈ {1, 2, . . . , 247}, k ∈ {0, 1, . . . , 10}, and l ∈ {1, 2, . . . , n(Pk)}.

F.4 Finding Spatially Homogeneous Data

F.4.1 Spatially Near-Homogeneous Model Reductions

A partial differential equation description of some dynamic process with m states, u1, u2, . . . , um,

in n-dimensional space, x = x1, x2, . . . , xn, and time, t, is characterized by the system of

215

F.4. Finding Spatially Homogeneous Data

equations:

∂ui(x, t)

∂t
=

fi

(
x, t, u1, . . . , um,

∂u1

∂x1
, . . . ,

∂u1

∂xn
,
∂2u1

∂x1∂x1
, . . . ,

∂2u1

∂x1∂xn
, . . . ,

∂u2

∂x1
, . . .

)
, (F.17)

for some functions fi and i ∈ {1, 2, . . . ,m}. If u1, u2, . . . , um evolve near-homogeneously over

some spatial domain, Ω, then

ui(x, t) = µi(t) + εgi(x, t), (F.18)

with spatially homogeneous state-evolution µi(t), small scaling factor ε ≥ 0, and local state-

variation gi(x, t), for x ∈ Ω and i ∈ {1, 2, . . . ,m}. As ε → 0+, ui(x, t) → µi(t), and thus all

partial derivatives of u1, u2, . . . , um with respect to x1, x2, . . . , xn converge to a value of zero.

Hence,

lim
ε→0+

∂ui(x, t)

∂t
=

lim
ε→0+

fi

(
x, t, u1, . . . , um,

∂u1

∂x1
, . . . ,

∂u1

∂xn
,
∂2u1

∂x1∂x1
, . . . ,

∂2u1

∂x1∂xn
, . . . ,

∂u2

∂x1
, . . .

)
=

fi (x, t, µ1, . . . , µm, 0, . . . , 0, 0, . . . , 0, . . . , 0, . . .) = fµi (t, µ1, . . . , µm) , (F.19)

for x ∈ Ω and i ∈ {1, 2, . . . ,m}. For fi analytic in ε,

fi

(
x, t, u1, . . . , um,

∂u1

∂x1
, . . . ,

∂u1

∂xn
,
∂2u1

∂x1∂x1
, . . . ,

∂2u1

∂x1∂xn
, . . . ,

∂u2

∂x1
, . . .

)
=

fi

(
x, t, µ1 + εg1, . . . , µm + εgn, ε

∂u1

∂x1
, . . . , ε

∂g1

∂xn
, ε

∂2g1

∂x1∂x1
, . . . , ε

∂2g1

∂x1∂xn
, . . .

)
=

fµi (t, µ1, . . . , µm) +O(ε), (F.20)

for x ∈ Ω and i ∈ {1, 2, . . . ,m}. Thus,

∂ui(x, t)

∂t
=
dµi(t)

dt
+ ε

∂gi(x, t)

∂t
= fµi (t, µ1, . . . , µm) +O(ε), (F.21)

for x ∈ Ω and i ∈ {1, 2, . . . ,m}. Hence, to leading order,

dµi(t)

dt
= fµi (t, µ1, . . . , µm) (F.22)

for x ∈ Ω and i ∈ {1, 2, . . . ,m}. Therefore, the global behavior of a near-homogeneous process

is described to leading order by a system of ordinary differential equations, the spatially-

homogeneous reduction of the system’s partial differential equation description.

216

F.4. Finding Spatially Homogeneous Data

F.4.2 Finding Spatially Near-Homogeneous Data

I assume that near-homogeneous MinD and MinE densities at consecutive measurements result

from near-homogeneous MinD and MinE density evolutions. MinD and MinE densities are

linear combinations of unobserved state densities; I assume that near-homogenous MinD and

MinE densities result from linear combinations of near-homogeneous unobserved state densities.

Therefore, as discussed in Section F.4.1, I model sequentially near-homogeneous MinD and

MinE densities by spatially-homogeneous partial differential equation model reductions.

Classifying near-homogeneous MinD and MinE densities requires a measure of data homogene-

ity, or, alternatively, a measure of data inhomogeneity. I measure data relative inhomogeneity,

h, by the ratio of the data standard deviation to the data mean, the ratio of data variation to

data uniformity. For strictly positive data, h ≥ 0, and h = 0 if and only if data is constant.

Thus, h is a well defined measure of MinD and MinE density inhomogeneity. For density data

ck,l, from the lth data frame of the kth temporal partition, I calculate the relative inhomogeneity

of ck,l over D(i, j, r), a disk with center at the middle of the (i, j)th pixel and radius r:

hr ◦ ck,li,j = h
(
ck,l|D(i,j,r)

)
=

(
µr ◦ ck,li,j

)−1

(
r∑

m=−r

r∑
n=−r

ρi+m,j+n
πr2

(
ck,li+m,j+n − µr ◦ c

k,l
i,j

)2
) 1

2

, (F.23a)

with mean value of ck,l over D(i, j, r),

µr ◦ ck,li,j = µ
(
ck,l|D(i,j,r)

)
=

r∑
m=−r

r∑
n=−r

ρi+m,j+n
πr2

ck,li+m,j+n, (F.23b)

where ck,li+m,j+n is the value of ck,l at the (i+m, j + n)th pixel, and ρi+m,j+n is the fraction of

the (i+m, j + n)th pixel contained within D(i, j, r).

MinD and MinE densities appear to globally vary over areas of hundreds to hundreds of

thousands of pixels, with local pixel-to-pixel variation. Local pixel-to-pixel variation increases

relative inhomogeneity, obscuring measurements of underlying global density variation. Surfaces

are locally well approximated by tangent planes. Thus, I locally fit MinD and MinE densities by

planes to approximate global MinD and MinE density surfaces. For density data ck,l, I calculate

the plane over a disk D(i, j, r) that fits ck,l best in the least squares sense, and determine the

value of the plane at the middle of the (i, j)th pixel:

p
(
ck,l|D(i,j,r)

)
= β̂x(x− i) + β̂y(y − j) + β̂0, (F.24a)

(β̂x, β̂y, β̂0) = arg min
(βx,βy ,β0)

r∑
m=−r

r∑
n=−r

ρi+m,j+n
(
βxm+ βyn+ β0 − ck,li+m,j+n

)2
, (F.24b)

gr ◦ ck,li,j = g
(
ck,l|D(i,j,r)

)
= p
(
ck,l|D(i,j,r)

)∣∣∣
(x,y)=(i,j)

= β̂0, (F.24c)

217

F.4. Finding Spatially Homogeneous Data

where ρi+m,j+n is the fraction of the (i+m, j+n)th pixel contained within D(i, j, r); I determine

β̂y, β̂x, β̂0 by solving the weighted normal equations.

I choose the local density planar-fitting disk radius, r̊, such that D(i, j, r̊) covers 100 square

pixels, the lower end of the visible MinD and MinE global density variation scale. I choose

the relative inhomogeneity disk radius, r̄, such that D(i, j, r̄) covers 1000 square pixels, an

order of magnitude more pixels than D(i, j, r̊) covers. Thus, r̊ = (100/π)1/2 pixels ≈ 5.6 pixels

and r̄ = (1000/π)1/2 pixels ≈ 17.8 pixels. In an experiment similar to that of Ivanov and

Mizuuchi, Loose et al measured the motilities of MinD and MinE in traveling protein waves on

the lipid bilayer. They found that motilities varied along the wave, but were well characterized

by diffusion in sections of the wave, with maximal MinD and MinE diffusion coefficients of

0.374± 0.022 µm2 s−1 and 0.320± 0.023 µm2 s−1 [44]. Thus, maximal MinD and MinE root

mean squared displacements, over the time between measurements, 3 s, are approximately

(4 · 0.374 µm2 s−1 · 3 s)1/2 · 6 pixels µm−1 ≈ 12.7 pixels and (4 · 0.320 µm2 s−1 · 3 s)1/2 ·
6 pixels µm−1 ≈ 11.8 pixels. Therefore, r̄ is on the scale of MinD and MinE mobilities between

measurements. I calculate the relative inhomogeneity of planar-fit MinD and MinE density data:

hr̄ ◦ gr̊ ◦ dk,li,j and hr̄ ◦ gr̊ ◦ ek,li,j , (F.25)

for i ∈ {R̄+ 1, R̄+ 2, . . . , 485− R̄} and j ∈ {R̄+ 1, R̄+ 2, . . . , 247− R̄}, where R̄ = dr̄+ r̊− 1/2e,
the ceiling of r̄ + r̊ − 1/2, and for k ∈ {0, 1, . . . , 10} and l ∈ {1, 2, . . . , n(Pk)}.

During temporal partition P0, MinD and MinE densities consist mainly of bulk proteins

in the well-mixed, flowed solution buffer. Thus, to determine basal relative inhomogeneity

scales, I calculate mean relative inhomogeneity values of planar-fit MinD and MinE density

data, centered at mid data pixel (243, 124), from image 122 through image 204 of temporal

partition P0, the images of bulk fluorescence intensity estimation (as discussed in Section F.3.3);

relative inhomogeneity values are shown in Figure F.13; I find mean MinD and MinE relative

inhomogeneity values µhd = 0.0837 and µhe = 0.1148, with standard deviations of σhd = 0.0129

and σhe = 0.0188.

218

F.4. Finding Spatially Homogeneous Data

Figure F.13: Relative inhomogeneity values of planar-fit MinD and MinE density data in temporal
partition P0, hr̄◦gr̊◦dk,li,j and hr̄◦gr̊◦ek,li,j for (i, j) = (243, 124), k = 0, and l ∈ {122, 123, . . . , 204}.
Mean values are shown with dashed lines.

To find planar-fit MinD and MinE density data that is uniformly homogenous, on basal relative

inhomogeneity scales, throughout a temporal partition, I measure the scaled sum of maximal

MinD and MinE relative inhomogeneity values in each temporal partition:

Hk
i,j =

max
{
hr̄ ◦ gr̊ ◦ dk,li,j : l ∈ {1, . . . , n(Pk)

}
µhd

+
max

{
hr̄ ◦ gr̊ ◦ ek,li,j : l ∈ {1, . . . , n(Pk)

}
µhe

, (F.26)

for i ∈ {R̄ + 1, R̄ + 2, . . . , 485 − R̄}, j ∈ {R̄ + 1, R̄ + 2, . . . , 247 − R̄}, and k ∈ {0, 1, . . . , 10}.
Values of Hk

i,j are shown in Figure F.14 for temporal partitions P0 (images 122 through 204),

P5, and P9.

219

F.4. Finding Spatially Homogeneous Data

(a) (b) (c)

Figure F.14: Scaled sums of maximal MinD and MinE relative inhomogeneity values in temporal
partitions P0 (images 122 through 204), P5, and P9. Hk

i,j are shown for k = 0 in (a), k = 5 in

(b), and k = 9 in (c), for i ∈ {R̄+ 1, R̄+ 2, . . . , 485− R̄} and j ∈ {R̄+ 1, R̄+ 2, . . . , 247− R̄}.
Values increase with gradation from black, with a value of 1.89, to white, with a value of 24.1.

As is visible in Figure F.14: in temporal partition P0, consisting mainly of bulk flow, planar-

fit MinD and MinE densities are uniformly homogeneous at all spatial location; in temporal

partition P5, during a MinD and MinE density pulse, planar-fit MinD and MinE densities

are uniformly homogeneous at some spatial locations; and in temporal partition P9, during

MinD and MinE density traveling waves, planar-fit MinD and MinE densities are uniformly

inhomogeneous at all spatial locations.

The minimum value ofHk
i,j occurs at the (436, 204)th pixel of temporal partition P5, H5

436,204 =

1.89. Relative inhomogeneity values of planar-fit MinD and MinE density data, at pixel (436, 204),

during temporal partition P5, are shown in Figure F.15. For comparison, relative inhomogeneity

values of planar-fit MinD and MinE density data, at mid data pixel (243, 124), during temporal

partition P9, are also shown in Figure F.15.

220

F.4. Finding Spatially Homogeneous Data

(a) (b)

Figure F.15: Relative inhomogeneity values of planar-fit MinD and MinE density data. hr̄◦gr̊◦dk,li,j
and hr̄ ◦ gr̊ ◦ ek,li,j are shown, for (i, j) = (436, 204), k = 5, and l ∈ {1, 2, . . . , 170}, in (a), and for
(i, j) = (243, 124), k = 9, and l ∈ {1, 2, . . . , 138}, in (b).

Comparatively, {
max

{
hr̄ ◦ gr̊ ◦ d5,l

436,204 : l ∈ {1, 2, . . . , n(P5)}
}

=0.87 · µhd
max

{
hr̄ ◦ gr̊ ◦ e5,l

436,204 : l ∈ {1, 2, . . . , n(P5)}
}

=1.02 · µhe ,
(F.27a)

{
max

{
hr̄ ◦ gr̊ ◦ d9,l

243,124 : l ∈ {1, 2, . . . , n(P9)}
}

=5.39 · µhd
max

{
hr̄ ◦ gr̊ ◦ e9,l

243,124 : l ∈ {1, 2, . . . , n(P9)}
}

=2.59 · µhe .
(F.27b)

Thus, relative inhomogeneity values of planar-fit MinD and MinE density data, centered at pixel

(436, 204), during temporal partition P5, do not significantly exceed basal relative inhomogeneity

scales, whereas relative inhomogeneity values of planar-fit MinD and MinE density data, centered

at pixel (243, 124), during temporal partition P9, significantly exceed basal relative inhomogeneity

scales. The maximum relative inhomogeneity value of planar-fit MinD density data, centered at

pixel (436, 204), during the MinD density pulse upstroke in P5, occurs at frame 21; the maximum

relative inhomogeneity value of planar-fit MinD density data, centered at pixel (243, 124), during

temporal partition P9, occurs at frame 52, when the MinD density traveling wave front passes

through D(243, 124, r̄). For comparison, planar-fit MinD density data, over D(436, 204, r̄) at

frame 21 of temporal partition P5 and over D(243, 124, r̄) at frame 52 of temporal partition P9,

are shown in Figure F.16.

221

F.4. Finding Spatially Homogeneous Data

(a) (b)

Figure F.16: Planar-fit MinD density data. Planar-fit MinD density data over D(436, 204, r̄)
at frame 21 of temporal partition P5 is shown in (a), and planar-fit MinD density data over
D(243, 124, r̄) at frame 52 of temporal partition P9 is shown in (b). Density data is overlaid on
top of planar-fit density data with reduced opacity.

I consider planar-fit MinD and MinE density data over D(436, 204, r̄) during P5 to be

near-homogeneous. Thus, I consider MinD and MinE density data over D(436, 204, r̄) during

P5 to represent near-homogeneous processes with local pixel-to-pixel noise, and I approximate

spatially homogeneous MinD and MinE density data by mean MinD and MinE density data

over D(436, 204, r̄) during P5,

dl = µr̄ ◦ d5,l
436,204, (F.28a)

el = µr̄ ◦ e5,l
436,204, (F.28b)

for l ∈ {1, 2, . . . , n(P5)}. Spatially near-homogeneous MinD and MinE density data profiles, dl

and el for l ∈ {1, 2, . . . , n(P5)}, are shown in Figure F.17.

222

F.4. Finding Spatially Homogeneous Data

Figure F.17: Spatially near-homogeneous MinD and MinE density data profiles, dl and el for
l ∈ {1, 2, . . . , n(P5)}.

F.4.3 Errors in Spatially Near-Homogeneous Data

To show the spreads of MinD and MinE density data over D(436, 204, r̄) during P5, I plot

normalized histograms of MinD and MinE density data over D(436, 204, r̄) for each frame of P5

in Figure F.18.

223

F.4. Finding Spatially Homogeneous Data

(a) (b)

Figure F.18: The spreads of MinD and MinE density data over D(436, 204, r̄) during P5.
Normalized histograms of density data over D(436, 204, r̄) for each frame of P5 are shown for
MinD in (a) and MinE in (b). Each histogram is normalized by the maximum count in the
histogram. Gradation is from white, with a count of 0, to black, with the maximum count in
the histogram.

I approximate spatially near-homogeneous density data by mean density data. Thus, I

calculate errors in approximating spatially near-homogeneous data by the standard error of the

mean; for MinD and MinE density data over D(436, 204, r̄) during P5,

dσl = (πr̄2)
− 1

2

(
r̄∑

m=−r̄

r̄∑
n=−r̄

ρ436+m,204+n

πr̄2

(
d5,l

436+m,204+n − µr̄ ◦ d5,l
436,204

)2
) 1

2

, (F.29a)

eσl = (πr̄2)
− 1

2

(
r̄∑

m=−r̄

r̄∑
n=−r̄

ρ436+m,204+n

πr̄2

(
e5,l

436+m,204+n − µr̄ ◦ e5,l
436,204

)2
) 1

2

, (F.29b)

for l ∈ {1, 2, . . . , n(P5)}, where ρi+m,j+n is the fraction of the (i+m, j + n)th pixel contained

within D(i, j, r). I show densities within dl ± dσl and el ± eσl in Figure F.19.

224

F.4. Finding Spatially Homogeneous Data

Figure F.19: Densities within error of spatially near-homogeneous data. Densities within dl± dσl
are shown in green, and densities within el ± eσl are shown in red, for l ∈ {1, 2, . . . , n(P5)}

Interestingly, I find that dσl and eσl are related to dl and el by power laws, dσl ≈ kddl
rd

and eσl ≈ keel
re for constants kd, rd, ke, and re. I fit log(kd) + rd log(dl) to log(dσl) and

log(ke) + re log(el) to log(eσl) for l ∈ {1, 2, . . . , n(P5)} using least squares, as shown in Figure

F.20, to find kd = 0.153, rd = 0.570, ke = 0.330, and re = 0.532.

225

F.4. Finding Spatially Homogeneous Data

(a) (b)

Figure F.20: Estimating power laws in errors. The least squares fit of log(kd) + rd log(dl) to
log(dσl) is shown in (a) and the least squares fit of log(ke) + re log(el) to log(eσl) is shown in (b),
for l ∈ {1, 2, . . . , n(P5)}. Log-errors are shown with points and fits are shown with lines.

I plot dσl with kddl
rd and eσl with keel

re , with fit kd, rd, ke, and re, in Figure F.21.

(a) (b)

Figure F.21: Spatially near-homogeneous data errors and power law approximations. dσl and
kddl

rd are shown in (a), and eσl and keel
re are shown in (b), for l ∈ {1, 2, . . . , n(P5)}

F.4.4 Bounding Persistent and Bulk Densities

In MinD and MinE density data, higher densities than surrounding areas persist over time in

some small regions, a phenomena likely related to the experimental observation that, in the

226

F.4. Finding Spatially Homogeneous Data

absence of MinE, a fraction of lipid bilayer-bound MinD resists membrane dissociation when

washed with buffer, as discussed in the Ivanov and Mizuuchi Supporting Information. MinD and

MinE densities consist of bulk densities, persistent lipid bilayer-bound densities, and transient

lipid bilayer-bound densities. Thus, I include terms that account for bulk and persistent lipid

bilayer-bound densities in mathematical models.

MinD and MinE pulse-train density data, generated by calculating mean values of MinD

and MinE density data over D(436, 204, r̄) during temporal partitions P4, P5, P6, and P7, is

shown in Figure F.22.

Figure F.22: MinD and MinE pulse-train density data. Temporal indexing corresponds to frame
indexing in temporal partition P5, as in Figure F.17.

As discussed previously, MinD and MinE pulse-train density generating data is near homogeneous

during P5. MinD and MinE pulse-train density generating data is near homogeneous during

P4, P6, and P7, except during MinD pulse upstrokes (with maximum planar-fit MinD relative

inhomogeneity values of 2.17 · µhd , 3.10 · µhd , and 5.24 · µhd and maximum planar-fit MinE relative

inhomogeneity values of 1.10 ·µhe , 1.20 ·µhe , and 2.28 ·µhe). As is visible in Figure F.22, consecutive

MinD and MinE density pulses are similar in dynamic behavior, apart from relatively small

227

F.4. Finding Spatially Homogeneous Data

differences in peak density values and pulse periods, which may result from spatial asymmetries

during pulse upstrokes. Repeatedly in the pulse train, MinD and MinE densities sharply increase

during pulse upstrokes, peak, sharply decrease, slowly decay, level off to minimal values, then

slightly increase before pulse upstrokes. I find minimal MinD and MinE density data between

successive MinD pulse-train density peaks, the MinD and MinE density data with least means

over 17 consecutive data indices, 1/10 the number of data indices in P5. Between the first and

second, second and third, and third and fourth MinD pulse-train density peaks, minimal MinD

and MinE densities are roughly constant, with minimal MinD density means of 277.16 µm−2,

302.79 µm−2 and 317.88 µm−2, minimal MinD density standard deviations of 3.18 µm−2,

4.59 µm−2, and 4.18 µm−2, minimal MinE density means of 240.68 µm−2, 243.20 µm−2, and

249.25 µm−2, and minimal MinE density standard deviations of 6.58 µm−2, 6.99 µm−2, and

7.68 µm−2. Mean minimal MinD and MinE densities increase during the pulse train, but by

relatively insignificant amounts on the scales of MinD and MinE density pulses.

Bulk MinD and MinE densities are roughly constant during the pulse-train. Given the

similarities in dynamic behavior and minimal values of successive MinD and MinE density

pulses, persistent and transient lipid bilayer-bound MinD and MinE densities likely attain

similar minimal values during successive pulses of the pulse train. Thus, as persistent lipid

bilayer-bound densities are inherently temporally non-decreasing, persistent lipid bilayer-bound

MinD and MinE densities are likely roughly constant, on the scales of MinD and MinE density

pulses, during temporal partition P5. As such, for spatially near-homogeneous MinD and MinE

density data, I model the sums of bulk and persistent lipid bilayer-bound MinD and MinE

densities as constants, Cd and Ce. MinD and MinE densities consist of bulk densities, persistent

lipid bilayer-bound densities, and transient lipid bilayer-bound densities. Thus, minimal MinD

and MinE densities are upper bounds of persistent lipid bilayer-bound MinD and MinE densities.

As such, I impose upper bounds on Cd and Ce, as the maximum values of minimal MinD and

MinE density means, 317.88 µm−2 and 249.25 µm−2.

228

Appendix G

Implementation of

Overlapping-Niche Descent for

Near-Homogeneous Data Fitting

Here, I describe details pertaining to the implementation of overlapping-niche descent for model

fitting to the near-homogeneous data. I describe related structural components of overlapping-

niche descent in Section 4.4.

G.1 Generating Random Parameter and State Values

Initially in overlapping-niche descent, I randomly generate parameters and state values. Also, as

discussed in Section C.1, throughout overlapping-niche descent, I randomly generate parameters

and state values in random offspring. In accordance with bounds on Cd, Ce, and cd̄ (4.16) and

(4.17), I randomly generate values of Cd, Ce, and cd̄ such that

Cd ∼ 317.88 · U(0, 1) µm−2, (G.1a)

Ce ∼ 249.25 · U(0, 1) µm−2, (G.1b)

cd̄ ∼ 158.94 · U(0, 1) µm−2, (G.1c)

where U(a, b) is the uniform probability distribution over the interval (a, b). I expect that cmax

is within one or two orders of magnitude of half the maximal near homogeneous MinD density

value, Dmax/2. Thus, in accordance with bounds on cmax (4.18), I randomly generate cmax such

that

cmax ∼ Dmax/2 · 10U(0,2). (G.2)

Additionally, I expect that cs is within one or two orders of magnitude of Dmax/2. Thus, in

accordance with bounds on cs (4.19), I randomly generate cs such that

cs ∼ Dmax/2 · 10U(−2,0). (G.3)

229

G.2. Parents and Offspring

Given no prior parameter value estimates, I randomly generate rate parameters over a broad

range of scales:

p ∼ 10U(−9,1) up for all p ∈
{
ωzu,v→x,y : u, v, x, y, z ∈ {∅, D,E, d, de, ede, ded, e}

}
, (G.4)

where up is the units of parameter p.

I choose random state values to match near homogeneous data exactly. For near-homogeneous

MinD and MinE data values, D and E, D̄ = (D − Cd)/2, and Ē = (E − Ce)/2, with ce as a

free state, I generate random state values for the modified Bonny et al model and the extended

Bonny et al model such that

ce ∼ U(max{0, Ē − D̄}, Ē),

cde = Ē − ce,
cd = D̄ − Ē + ce. (G.5)

With cede and ce as free states, I generate random state values for the symmetric activation

model such that

cede, ce ∼ U
({
cede + ce ≥ Ē − D̄, 2cede + ce ≤ Ē : cede ≥ 0, ce ≥ 0

})
,

cde = Ē − 2cede − ce,
cd = D̄ − Ē + cede + ce, (G.6)

where U({·}) is the uniform probability distribution over the set {·}. With cded and ce as free

states, I generate random state values for the asymmetric activation model such that

cded, ce ∼ U
({
ce − cede ≥ Ē − D̄, cede + ce ≤ Ē : cded ≥ 0, ce ≥ 0

})
,

cde = Ē − cded − ce,
cd = D̄ − Ē − cded + ce, (G.7)

G.2 Parents and Offspring

I choose parents and offspring as in Section E.1.2. For convenience, I repeat the discussion

from Section E.1.2 below. The function of parents and offspring in overlapping-niche descent is

described in Section C.1. Accordingly, to the ith niche in generation g, I allocate one sustained

parent, n̂i = 1, one high momentum offspring, ňmg,i = 1, one cross-niche offspring, ňcg,i = 1, and

one random offspring, ňrg,i = 1, for each i ∈ {1, 2, . . . , 101} and each generation of overlapping-

niche descent, g ≥ 1. In the first two generations of overlapping-niche descent, g ≤ 2, I

allocate two sexual offspring to each niche, ňsg,i = 2 for all i ∈ {1, 2, . . . , 101}. After the second

generation of overlapping-niche descent, I adaptively change the number of sexual offspring

that I allocate to each niche, enlarging less convergent niches and shrinking more convergent

230

G.3. Selection and Random Perturbation

niches for greater efficiency in optimization. Specifically, I allocate one sexual offspring to the ith

niche, and randomly allocate the remaining 101 sexual offspring to the ith niche with probability

proportional to ∆rg,i,1, the measure of convergence in the (first) parent space of the ith niche in

generation g, as defined in equation (C.1), for each i ∈ {1, 2, . . . , 101} and g > 2.

G.3 Selection and Random Perturbation

I choose the natural default value for the selection strength parameter, qfit = 1, for qfit as

described in Section C.1. For a sexual offspring that inherits parameter p from individual

(pg,i,j ,xg,i,j), I perturb the value of the parental parameter, p̂, such that

p ∼


(
p̂+ p̂ ·N

(
0,max{∆rg,i,j , 10−2}2

) ∣∣ pmin ≤ p ≤ pmax

)
if p ∈ {Cd, Ce, cd̄}(

p̂ · 10N(0,max{∆rg,i,j ,10−2}2) | pmin ≤ p ≤ pmax

)
otherwise,

(G.8)

where N(µ, σ2) is the normal distribution with mean µ and variance σ2, ∆rg,i,j is the measure of

convergence in the jth parent space of the ith niche in generation g (C.1), pmin is the restricted

lower bound on parameter p as discussed in Section 4.4.3, and pmax is the restricted upper

bound on parameter p as discussed in Section 4.4.3. A standard deviation of max{∆rg,i,j , 10−2}
ensures some small but significant perturbation in parameter p when ∆rg,i,j is small. Similarly,

for a sexual offspring that inherits state value x from individual (pg,i,j ,xg,i,j), I perturb the

value of the parental state value, x̂, such that

x ∼
(
x̂+ x̂ ·N

(
0,max{∆rg,i,j , 10−2}2

) ∣∣ x ≥ 0
)
. (G.9)

Details pertaining to sexual offspring are described in Section C.1.

G.4 Dykstra’s Method

For fits to near-homogeneous data, restrictions on parameters and state values, inequalities (4.16),

(4.17), (4.18), (4.19), (4.20), (4.21), (4.22), and (4.23), can be written as a collection of linear

inequalities. Thus, during accelerated descent, I employ projection using Dykstra’s method, as

discussed in Section C.2.3. For Dykstra’s method, I choose a small relative termination tolerance,

εc = 10−6, and a smaller absolute termination tolerance, εc̄ = 10−12. To avoid overly slowing

accelerated descent from a large number of projections, I prematurely terminate accelerated

descent if the number of iterations in Dykstra’s method exceeds 104.

231

G.5. Initial values, Termination, Prolongation, and Computation

G.5 Initial values, Termination, Prolongation, and

Computation

I choose values as in Section E.1.5. For convenience, I repeat the discussion from Section

E.1.5 below (details relating to computation differ from those in Section E.1.5). I choose

the initial gradient scaling value si,0 = 0, for all i in the indexed set of all parameters and

state values. Details pertaining to si,0 are described in Section C.2.1. I choose the maximum

number of strict descent iterations to be relatively but not excessively large, nmax = 104, to

ensure sufficient convergence to a local minimum of r(p,x;λ) while avoiding overburdensome

computation. I choose a very small contraction termination tolerance, εσ = 10−30, and a very

small relative-change termination tolerance, εr = 10−30, to continue accelerated descent through

nmax strict descent iteration unless local minimization is essentially complete. Details pertaining

to nmax, εσ, and εr are described in Section C.2.2. For descent prolongation, I choose: σ̆ = 1, for

non-stringent descent prolongation, mpro = 103, a factor of 10 less than nmax; n̂pro = nmax = 104;

and ňpro = nmax = 104. Details pertaining to σ̆, mpro, n̂pro, and ňpro are described in Section

C.3. I choose the overlapping-niche descent termination tolerance to be relatively but not

exceedingly small, ε∆r = 10−3, for reliable convergence in all niches while avoiding an excessive

number of overlapping-niche descent generations. Details pertaining to ε∆r are described in

Section C.1. I compute genetic algorithm calculations using MATLAB. I compute accelerated

descent calculations in parallel using C++ on the Calcul Québec server Guillimin, the WestGrid

server Orcinus, the Compute Canada server Cedar, and the Compute Canada server Graham.

232

