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Abstract 

The interactions between humans, the environment, and intestinal microbiota form a 

tripartite relationship fundamental to the overall health of the host. Disruptions in this delicate 

balance between the microbiota and host immunity are implicated in various chronic diseases 

including inflammatory bowel disease (IBD). IBD encompassing ulcerative colitis and Crohn’s 

disease are idiopathic, relapsing chronic inflammatory disorders of the intestinal tract with 

annual health care burdens of over $1.8 billion in Canada. There is no known cure for IBD, as 

so, novel therapeutic in its prevention and management are of great interest. Recently, physical 

activity (PA) has been proposed as a potential therapy in combating IBD. Here we show that 

higher aerobic fitness in humans is associated with increased bacterial diversity in the gut and 

higher abundances of butyrate, a type of short-chain fatty acid produced by resident bacteria 

with known anti-inflammatory properties. We confirm these findings in animal models showing 

that voluntary wheel running (VWR) in mice increases butyrate production. Additionally, VWR 

mice show increased microbial diversity, decreased expression of pro-inflammatory (TNF-α, 

TGF-β, and IFN-γ) and increased expression of anti-inflammatory (IL-10) cytokines suggestive 

of the potential to be primed against the damaging effects of chronic inflammation. These 

enhancements however were absent in a life-long model of mucin2 deficient (MUC2-/-) murine 

colitis and VWR offered no protection in these mice against disease symptoms. Taken together, 

these suggest that the benefits of PA against IBD are preventative in nature and cannot reverse 

existing disease states like those found in IBD. We further showed that certain PA-derived 

changes in the intestines such as microbial community changes, upregulation of IL-10, and 

attenuation of IFN-γ are dependent on the amount of PA while reduction of anti-inflammatory 

cytokines TNF-α and TGF-β can occur even under low running conditions. In summary, we 

showed that PA can beneficially modulate the intestinal environment in healthy hosts, leading to 

a primed anti-inflammatory state likely effective in IBD management during remission. 
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Lay Summary 

Physical activity (PA) is associated with a myriad of health benefits in a variety of 

diseases. The role of PA in inflammatory bowel diseases (IBD) however is not known. In this 

work we explore the relationship between PA and intestinal health by examining different 

components of the gut environment such as the microbial population and inflammatory 

signaling. We found that PA can beneficially alter the intestinal environment in healthy mice but 

does not reverse existing symptoms of IBD. We conclude that PA is a promising adjunctive 

therapy in prevention and reemission maintenance of IBD.  
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Chapter 1: Introduction1 

The overall goal of this thesis was to explore the role of physical activity (PA) in 

modulating intestinal health. In this chapter I first provide an overview of the functional anatomy 

of the intestinal tract and the role of their microbiota in health and disease, with emphasis on 

inflammatory bowel diseases. Next, I introduce our current understanding of factors that 

influence the intestinal microbiome, methods and limitations of microbiome studies, followed by 

a review of existing literature regarding the role of PA in intestinal health and the gut microbiome 

and highlight any knowledge gaps in the field. I then conclude by describing how this thesis 

attempts to fill in these gaps by outlining the specific goals and objectives of each chapter. 

1.1 Anatomy of the Intestines 

The human intestine or gut is a multilayered and multifunctional organ which holds 

tremendous influence over the host’s health. The anatomy and function of the intestines varies 

from their proximal origin at the stomach through their distal point at the anus, however the 

overall ultrastructure of the tract remains relatively similar (Figure 1). The outer region of the 

intestine is primarily made up of two smooth muscle layers collectively referred to as muscularis 

externa, which is involved in transport of food down the intestinal tract via peristalsis. 

Innervating between these two muscle layers is a mesh-like network of neurons and ganglia 

referred to as the myenteric (or Auerbach’s) plexus, a major component of the enteric nervous 

system (ENS). The myenteric plexus can act autonomically without communication with the 

central nervous system (CNS), such as during peristalsis of the colon, however normal functions 

require continuous bidirectional communication with the CNS, predominantly via the vagus 

                                                 

1 Figure 1 is copied here with permission. The original image was published in: Estaki M, Quin C, Gibson 
DL (2015) “Diet And Dysbiosis” in Luigi Nibali and Brian Henderson (ed.), The Human Microbiota And 
Chronic Disease- Dysbioses As A Cause Of Human Pathology. Chapter 30, 1st Edition. Wiley Blackwell, 
2015 
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nerve. The myenteric plexus transmits messages from the CNS to the intestines and is involved 

in various processes such as motor activity, absorption, vascular blood flow, and secretion of 

mucus and digestive juices by further signaling to other organs such as the gallbladder or 

pancreas (Yoo & Mazmanian, 2017). The next layer known as the submucosa is rich in blood 

and lymphatic vessels and is the main source of metabolic supply to the gut. The submucosa 

contains the other branch of the ENS referred to as the submucosal (or Meissner’s) plexus 

which derives from extensions of the myenteric plexus. Neurons and ganglia from the 

submucosal plexus further extend through the next layer, the mucosal layer, forming a direct 

channel of communication with the intestinal epithelial cells (IECs). For example, 

neurotransmitters released by the ENS bind to goblet cells and can stimulate or suppress 

mucus secretion (Birchenough, Nyström, Johansson, & Hansson, 2016; Gustafsson et al., 

2012) as well as regulate the rate by which these cells allow passage of antigens across the 

IEC to be sampled by the immune system (McDole et al., 2012). The mucosal layer is the inner 

most layer that houses more lymphocytes than the rest of the body and thus is considered a 

major component of the body’s immune system. The mucosal region consists of another thin 

layer of muscle referred to as muscularis mucosa, lamina propria, epithelium, and finally the 

mucus layer lining the lumen wall which is in direct contact with the trillions of symbiotic 

microbes that reside within the intestinal tract. The single celled layer of the epithelium is made 

up of IECs which are the major constituents of the gut covering an estimated 300 m2 folded into 

villi, microvilli, and crypts. One major difference between the small and large intestine is in the 

composition of this epithelial barrier. IECs in the small intestine can differentiate into seven cell 

lineages (enterocytes, Paneth cells, goblet cells, enteroendocrine cells, Tuft cells, M cells, or 

cup cells) whereas a healthy colon contains only enterocytes, goblet cells, and Tuft cells. The 

goblet cells secrete heavy glycosylated proteins known as mucin which form a thick two-tiered 

mucus layer covering the lumen of the large intestine or a single layer in the small intestine 

(Pullan et al., 1994). Regulation of mucus production involves highly complex interactions 
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between the IECs, immune cells, the intestinal bacteria, food metabolites, and the ENS 

(Sharkey & Savidge, 2014). Germ-free rodents have smaller and fewer number of goblet cells 

and display an overall thinner mucus layer compared to their conventional counterparts 

(Ishikawa et al., 1989; Szentkuti, Riedesel, Enss, Gaertner, & Von Engelhardt, 1990), a 

phenotype that can be rescued by introduction of bacteria or their byproducts (Petersson et al., 

2011). In the small intestine where majority of nutritional uptake takes place, the mucosal layer 

is loose and porous to allow for food particles to reach the IEC. This means that the mucosal 

layer is penetrable by the microbes, however they are largely kept away from the IECs by 

antimicrobial peptides (AMPs) secreted into the apical side by Paneth cells (Ermund, Schütte, 

Johansson, Gustafsson, & Hansson, 2013). In the large intestine where uptake of water and 

sodium chloride occurs, the inner mucus layer is dense, firmly attached to the epithelium, and 

mainly impenetrable to the bacteria creating a relatively sterile environment. In contrast, the 

outer layer is loose and easily dislodged, therefore it is continuously regenerated (McGuckin, 

Lindén, Sutton, & Florin, 2011); this outer layer houses the majority of the commensal microbes 

of the colon. The mucus layer is made of several different types of mucins which are found in 

varying composition throughout the intestinal tract, however the predominant mucin across both 

small and the large intestine is the MUC2 type (Johansson & Hansson, 2016). Upon its release 

from the goblet cells, MUC2 mucin granulae are exposed to the increased pH and decreased 

calcum ion levels of the gut environment allowing water to rush in and causing massive 

expansion of these multimers (Ambort et al., 2012). This newly formed gel-like mucin sheet is 

attached to the epithelium as the inner mucus layer and replaces the overlaying layer by 

dislodging it further towards the lumen. This rapid and continuous process of mucus layer 

replacement is crucial to maintaining intestinal health with a new layer of mucus being produced 

approximately every hour (Johansson, 2012).  
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Figure 1. Functional anatomy of the intestine 

The host cells, intestinal microbes, and the environment (i.e. food) form a complex tripartite relationship 

that is essential to human health. See text for details. SCFA, short-chain fatty acids; BCFA, branched-

chain fatty acids; NH3, ammonia; APC, antigen presenting cells; DC, dendritic cells 

 

1.2 Intestinal immunity and homeostasis 

In addition to acting as a physical barrier, IECs are also capable of mounting 

immunological responses which are essential in gut homeostasis. Pattern recognition receptors 

(PRRs) present on the IECs sense danger motifs referred to as microbial-associated molecular 

patterns (MAMPs) and respond by initiation of downstream inflammatory responses. PRRs 

including the toll-like receptors (TLRs) and NOD-like receptors (NLR) are particularly important 

as they can recognize different components of bacteria cells. Due to the large number of 

commensal bacteria in the lumen, surface TLRs such as TLR-2, TLR-4, and TLR-5 are primarily 
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expressed on the basolateral side of the epithelial layer in order to prevent improper activation 

of inflammatory responses (Oppong et al., 2013). Inappropriate translocation of commensal 

bacteria or intrusion of pathogens across the epithelium is detected by IECs and signifies a 

threat. In response, IECs initiate the innate immune system by recruiting highly phagocytic 

neutrophils which are the first line of defense in charge of killing the foreign bacteria. This is 

followed by arrival of larger phagocytic macrophages (type M1 and M2 associated with ‘killing’ 

and ‘repair’ phenotypes, respectively) which are also responsible for elimination of neutrophils to 

prevent secondary damage to the host. Another type of antigen presenting cell (APC), dendritic 

cells (DCs), now act as the bridge between the innate and adaptive immune system. DCs 

interact directly with goblet cells to allow for passage of luminal ligands across the epithelium 

(McDole et al., 2012). Dendrites extending from DCs then reach through the epithelium and 

continuously sample luminal ligands. The detection of MAMPs by DCs induces maturation of B 

cells and naïve T cells (Th0) into various effector T cells. B cells mature to immunoglobulin A 

(IgA) secreting effector cells which tag potential pathogens for removal while another subset 

become memory cells as part of the adaptive immune system. The Th0 differentiate to CD8+ 

presenting cytotoxic T cell (Tc) which induce apoptosis in infected cells, or CD4+ presenting T 

helper (Th) cells which promote various inflammatory responses by release of cytokines into the 

extracellular environment. Differentiation of Th0 cells into various Th subtypes depends on their 

exposure to specific cytokines. For example, Th0 differentiation in the presence of interleukin- 

(IL-)12 leads to Th1 subtypes involved in intracellular immunity and IL-4 leads to Th2 types 

involved in extracellular immunity. A combination of transforming growth factor beta (TGF-β), IL-

6, IL-21, and IL-23 contribute to Th17 development which is associated with tissue 

inflammation, clearance of extracellular pathogens, and autoimmunity. Th0 cell differentiation 

into Th17 cells is also dependent on the presence of the transcription factor retinoic acid-related 

orphan receptors gamma (RORγ). Another type of effector cell, the regulatory T cells (Tregs) 

are activated under the presence of TGF-β. Tregs are immunosuppressive in that they inhibit T-
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cell mediated actions towards the end of an immune response to prevent excessive 

inflammation. One important aspect of the intestinal environment is tolerance to commensal 

bacteria as to avoid immune activation in response to innocuous antigens (Rimoldi, 2005). The 

host can differentiate between commensal and pathogenic bacteria, while the commensal 

bacteria can develop resilience to host inflammation. While the exact mechanisms behind 

commensal vs. pathogen recognition is not fully understood, it involves elaborate and 

interconnected regulatory mechanisms. For example, commensal bacteria in the gut develop 

resistance to host AMPs (Cullen et al., 2015) to a much higher degree than pathogens, allowing 

them to survive the AMP-rich luminal environment. Secretory IgA in lumen bind to microbial 

cells, blocking their access to interact with the IECs, however they preferentially bind to 

pathogenic bacteria (Mantis, Rol, & Corthésy, 2011). Commensal bacteria produce metabolic 

byproducts such as short-chain fatty acids (SCFAs) that are beneficial to IECs and thus do not 

elicit inflammatory responses, while toxins produced by pathogenic bacteria are recognized by 

host cells and recruit strong pro-inflammatory responses. These SCFAs can also diffuse across 

the IEC and interact directly with the enteric nervous and immune system (Yoo & Mazmanian, 

2017). Finally, the host can differentially regulate suppression of inflammatory cascades in 

response to commensal bacteria. In this regard, Tregs play an important role in suppressing 

overactive immune responses by production of IL-10 and TGF-β which in turn inhibit production 

of pro-inflammatory cytokines such tumor-necrosis factor alpha (TNF-α), interferon gamma 

(IFN-γ), and IL-1. IL-10 can further suppresses T-cell proliferation of both Th1 and Th2 cells by 

downregulating release of IL-12 and IL-4 by APCs, inhibit maturation of DCs, and limit the 

release of pro-inflammatory cytokines in mast cells (Taylor, Verhagen, Blaser, Akdis, & Akdis, 

2006). IL-10 is also integral in preserving the mucosal integrity by preventing protein misfolding 

and ER stress in goblet cells (Hasnain et al., 2013). TGF-β on the other hand contributes to 

apoptosis of self-reactive clones, cell growth, and Th differentiation, making it an important 

component of intestinal healing during injury (Beck et al., 2003). Highlighting the importance of 
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these cytokines in intestinal homeostasis is the observation of chronic intestinal inflammation in 

mice with defective or complete absence of signaling in these cytokines (Gorelik & Flavell, 2000; 

Kühn, Löhler, Rennick, Rajewsky, & Müller, 1993). Due the fact that MAMPs vary across 

bacteria species and can recruit different T-cell mediated response by the host, the composition 

of the intestinal microbiota can significantly control the type of immune responses in the host. 

1.3 Intestinal microbiota 

Virtually every surface of the human body exposed to the external environment, 

including the intestines, is inhabited by a myriad of bacteria, archaea, viruses, fungi, and 

unicellular eukaryotes. This panoply of microorganisms that coexist within their host is referred 

to as the ‘microbiota’, while the catalogue of these taxa and their associated genes is referred to 

as the ‘microbiome’ (Ursell, Metcalf, Parfrey, & Knight, 2012). A growing body of evidence from 

recent years link disruptions of the intestinal microbiome, termed dysbiosis, in pathogenesis of 

various chronic inflammatory diseases such as type 2 diabetes, obesity, colorectal cancer, 

atherosclerosis, non-alcohol fatty liver disease, irritable bowel syndrome, and inflammatory 

bowel disease (IBD) [reviewed in (Y. K. Chan, Estaki, & Gibson, 2013)]. Most of our 

understanding of the intestinal microbiome comes from studies focusing only on the bacterial 

community, the bacteriome. This imbalanced perspective is due in part to lack of 

comprehensive databases and technical challenges with surveying other groups such as 

viruses, and the incorrect view that only bacteria significantly contribute to host health. The 

intestinal bacteriome is predominately (~ 95 %) composed of strict anaerobes residing within the 

oxygen-restricted mucosal layer, and to a much lesser extent, facultative anaerobes and 

aerobes. Starting from the stomach through to the colon, the number of bacterial cells increase 

exponentially moving from the proximal to the distal tract. The colon alone is estimated to harbor 

over 70 % of all the human microbial cells which are estimated to outnumber total human cells 

by 1.3:1 and weigh roughly ~ 0.3% of host’s total mass (Sender, Fuchs, & Milo, 2016). More 
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impressively, over 2 million genes have been catalogued from the human microbiome to date 

(Qin et al., 2010), a number which vastly outnumbers the host’s own ~19,000 protein-coding 

genes (Ezkurdia et al., 2014). Of the ~50 bacterial phyla discovered to date (P. D. Schloss & 

Handelsman, 2004), two dominate the human gut: the Bacteroidetes and the Firmicutes, while 

the remaining niches are colonized to a much lesser extend by Proteobacteria, Verucomicrobia, 

Actinobacteria, Fusobacteria, and Cyanobacteria (Eckburg, 2005). It is generally thought that 

about 500 to 1,000 species of bacteria colonize a healthy human intestine (Xu & Gordon, 2003) 

with a high degree of individual variability in both diversity and composition. Bacterial 

composition also differs longitudinally along the intestinal tract corresponding to the primary 

function of each site, i.e., the small intestine is mainly involved in digestion and nutrient 

absorption whereas the large intestine is largely responsible for fermentation, water retention, 

and waste processing. 

1.4 Microbiota in health and disease 

The intestinal microbiome plays an important role in various physiological functions of 

the host such as digestion and absorption of nutrients from partially digested food, vitamin 

synthesis, production of SCFAs, immunomodulation, defense against pathogens, and even 

behavior (De Palma, Collins, Bercik, & Verdu, 2014). The resident bacteria act as a protective 

barrier against opportunistic pathogens by out-competing them for food and niche as well as 

excluding them physically by forming slime-like polymers known as biofilm (N. Kamada et al., 

2012). They further induce the production of AMPs which have bactericidal properties similar to 

antibiotics, though they are less effective against the commensals themselves. During digestion, 

the intestinal bacteria are required for the breakdown of complex carbohydrates like starch and 

cellulose into SCFAs such as acetate, propionate, and butyrate which are the primary food 

source of the enterocytes (Bugaut, 1987). Butyrate in particular has been shown to possess 

therapeutic potential in IBD by enhancing IEC integrity and inhibiting inflammation by 
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upregulating Treg production. Up to 10% of the dietary energy in humans is estimated to derive 

from activities of their microbiota (McNeil, 1984). In addition, intestinal bacteria are essential in 

production of various vitamins such as vitamin K and certain B-vitamins that are otherwise not 

available to the host. 

The microbiota’s ability to train the immune system begins during the early 

developmental stages of the host and utilizes the immaturity of the neonate immune system. 

During these stages of life, skewed regulatory rather than inflammatory responses are favored 

in the host, thereby allowing the establishment of the microbiota (PrabhuDas et al., 2011). 

Continuous exposure to commensal MAMPs, such as TLR ligands, condition the gut IECs to 

become hypo-responsive to these interactions in later years (Chassin et al., 2010). As 

discussed previously, commensal bacterial can induce host tolerance to bacterial and food 

ligands by recruitment of Tregs. These actions however depend on bacterial lineages such that 

different species can invoke different immune responses. For example, polysaccharide A 

derived from Bacteroides fragilis, a prominent human symbiont was shown to induce IL-10 

producing Tregs leading to reduced intestinal inflammation (Mazmanian, Round, & Kasper, 

2008). Similarly, other groups of the human microbiota such as the Clostridiales, specifically 

within the IV and XIVa clusters have also been shown to recruit TGF-β-dependent regulation of 

Tregs (Atarashi et al., 2011). The activation of other regulatory pathways have also been 

observed, for example the segmented filamentous bacteria (SFB) and Cytophaga-Flavobacter-

Bacteroidetes phyla appear to favor induction of Th17 cells under normal homeostatic 

conditions (Ivanov et al., 2008, 2009). Given the major influence of the intestinal microbiota on 

host immunity, there is great interest in characterizing a healthy microbiome and equally 

important ones associated with diseases. 

Though attempts at identifying a healthy ‘core microbiome’ have been largely 

unsuccessful, a healthy gut microbiota is generally thought to consist of a highly diverse 

ecosystem of anaerobic microbes with high tolerance to physiological stresses. Dysbiosis refers 
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to a deviation away from this state, often resulting in low species diversity, fewer beneficial 

microbes, or the overabundance of pathobionts. Studies in mice lacking a microbiota (germ-

free) have consistently shown exacerbated disease phenotypes such as inflamed intestines, 

reduced intestinal peristalsis, IEC morphology defects, decreased antibody production, and 

overall higher mortality rates in response to infectious insults and chemical models of murine 

colitis [reviewed in (Round & Mazmanian, 2009)]. 

1.5 Factors influencing the microbiota 

The intestinal microbiota, much like any other living ecosystem, experiences fluctuations 

in growth and adaptations for survival. While this plasticity and innate ability to adapt to change 

is important for homeostasis, it is highly individualized and so prevents generalization of the 

effects of intrinsic and extrinsic factors that impose on the community’s structure. So, while 

numerous factors have been identified with potential to alter the human microbiome, the exact 

nature of their influence is not consistent across the literature. In this section I briefly discuss 

some of these known factors. 

Colonization of the intestinal microbiota begins rapidly at birth and thereafter until a 

stable microbiome is acquired by 2-4 years (Koenig et al., 2011). Factors with immediate 

consequences at birth include: mode of delivery, transfer of skin, exposure to vaginal and 

colonic bacteria, and presence of microbial populations in the environment from the father, 

doctors, nurses and the birthing area. Children delivered by Cesarean section have altered 

microbial diversity (Azad et al., 2013) and are at increased risked of various illnesses including 

asthma, obesity, allergies, and IBD (Neu & Rushing, 2011). Breast-feeding also plays an 

important role in the development of the infant immune system by delivery of not only essential 

nutrients but also beneficial microbes. The mother’s breastmilk microbiota acts as a biological 

blue-print for establishing the infant’s resident bacteria, with insufficient breastmilk exposure 

being associated with higher risk of auto-immune diseases in later years (Toscano, De Grandi, 
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Grossi, & Drago, 2017). The proper development of a child’s immune system during the early 

developmental years is strongly attributed to the presence of a healthy microbiota and sufficient 

exposure to their biosphere. For example, children raised in farms have lower prevalence of 

various diseases such as hay fever, asthma, wheeze, and atopic sensitization compared to 

those raised in cities (Riedler et al., 2001; Von Ehrenstein et al., 2000). 

The discovery of antibiotics is regarded as one of the greatest discoveries of the 20th 

century having saved millions of lives since their medicinal integration. Antibiotics are used to 

eradicate pathogens in the body, though their non-discriminatory mode of attack can 

concomitantly eradicate commensal bacteria leaving the gut vulnerable to colonization by other 

opportunistic species. It is generally thought that antibiotic-induced changes in the microbiota 

are normalized within weeks of cessation, however recent evidence in contrast to this dogma is 

emerging (Jakobsson et al., 2010; Jernberg, Löfmark, Edlund, & Jansson, 2010). In particular, 

antibiotics exposure during childhood has been associated with increased incidences of IBD in 

later years (Kronman, Zaoutis, Haynes, Feng, & Coffin, 2012), suggesting that dysbiosis may be 

one component of susceptibility to IBD. Changes in gut microbial populations are not only 

limited to antibiotic drugs. Increasing evidence points towards the involvement of nonantibiotic 

drugs such as antidiabetics, proton pump inhibitors, and nonsteroidal anti-inflammatory drugs, 

on gut microbiota [reviewed in (Maier et al., 2018)]. For example, a recent study testing the 

effects of 835 non-antibiotic drugs on commensal bacteria, found that 203 (24 %) of them could 

inhibit growth of some bacterial species (Maier et al., 2018). Strikingly, these species further 

displayed adaptation similar to bacterial resistance suggesting the potential risk of non-

antibiotics in antibiotic resistance. 

Perhaps the most influential environmental factor in microbiota dynamics is diet. The 

symbiotic relationship between the microbiota and host has co-evolved over many millennia and 

continues to evolve today. For example, the transition from hunter-gatherer lifestyle of the 

Paleolithic era to carbohydrate-rich farming style of the Neolithic period was accompanied by a 
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drastic phylogenic shift in oral microbes towards more cariogenic communities (Adler et al., 

2013). Evidence suggests that long term dietary choices play an important role in shaping the 

intestinal ecology in humans [reviewed in (Y. K. Chan et al., 2013)]. For example, high red meat 

consumption is associated with a predominantly Bacteroides enriched microbiota compared to 

high Prevotella species dominance in vegetarians (Liszt et al., 2009). High fat diets common in 

North America are generally thought to promote dysbiosis through direct antimicrobial activity of 

bile secreted during high fat feeding (Islam et al., 2011). Further evidence suggests that the type 

of fat rather than total fat intake appears to be the key contributing factor in fat-induced 

dysbiosis (Ghosh et al., 2013). More recently, the therapeutic use of probiotics (living 

organisms) and prebiotics (food for probiotics) in promotion of localized and systemic health has 

become immensely popular. While generally positive results have been reported from the 

experimental use of probiotics in gastrointestinal diseases, no conclusive clinical trials support 

these claims. Furthermore, evidence for the use of probiotics in systemic diseases are even 

more variable and scarce. 

While it is widely believed that the environment is mostly responsible for the composition 

of gut microbiota, recent evidence suggests host genetics may also play a part. For example, 

studies of monozygotic and dizygotic twins have shown more similar microbiota within 

monozygotic twins, specifically with certain taxa such as family Christensenellaceae, 

Ruminococcaceae, and Lachnospiraceae having higher hereditary components (Goodrich et al., 

2014). The specific genes and pathways that may be involved in these compositional changes 

however remain unknown. 

1.6 Current methods and challenges in studying the microbiome 

Developments in sequencing technologies have rapidly evolved in the past 15 years 

leading to massive advances in our understanding of microbial populations across various 

biospheres including the human intestine. Prior to introduction of high-throughput sequencing 
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(HTS) technologies, studying microbial populations were primarily based on culture-dependent 

techniques. While helpful in studying the specific functions, traits, and behaviors of individual 

species or similar clades of microbes, these techniques were vastly limited in their ability to 

discover novel microbial populations, especially those not easily cultured in the lab. The use of 

HTS circumvents these limitations by amplifying and examining slow-evolving hypervariable 

regions of DNA which allow for high resolution classification of microbes without dependency on 

culturing methods. By far the most common regions targeted for microbial studies are the 16S 

ribosomal RNA (rRNA) for bacteria and archaea, the internal transcribed spacer (ITS) between 

the 16S and 23S rRNA region for fungi, and the 18S rRNA for eukaryotes. With growing power 

and reducing cost of genomic data, the application of HTS to existing branches of health 

sciences are becoming standard practice. For example, analyzing fecal bacteriome of IBD 

patients has been shown to be effective in predicting patients’ response rates to infliximab 

therapy, a common anti-TNF-α therapy, with 87.5% and 79.1% accuracy for CD and UC, 

respectively (Zhou et al., 2018). Although vastly powerful, there remains several important 

challenges with HTS systems which require expertise considerations at various steps such as 

experimental design, wet lab techniques, and bioinformatics analyses. At the experimental 

design level, great care must be taken to avoid introduction of bias across experimental groups. 

For example, in animal models, identical mouse strains raised in different animal facilities, 

different rooms within the same facility, or even different cages within the same room can all 

lead to detectable differences in the intestinal microbiota (Kim et al., 2017). The inoculation of 

mice at birth is sensitive to the maternal microbiome, this is referred to as the ‘maternal effect’ 

and is a common confounding factor in microbiome studies when members of an experimental 

group all derive from the same litter (Goodrich et al., 2014). To mitigate these factors, when 

possible, researchers should randomize the allocation of littermates across experimental 

groups. Factors such as standard rodent food composition, water (tap vs. autoclaved vs. 

acidified), and exposure to chronic noise can also influence the microbiome and  should be 
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considered in a study’s design (Cui et al., 2018; Franklin & Ericsson, 2017; Wolf et al., 2014), 

especially if comparison to previous reports are desired. Sample collection and storage methods 

also can heavily influence HTS data (Gorzelak et al., 2015). For example, the microbial 

populations of the intestinal tissues can drastically change even within the same tissue, i.e. 

proximal vs. distal colon (Sekirov, Russell, Antunes, & Finlay, 2010a), thus the exact location of 

sampling sites should be reported for meaningful comparisons. In human fecal samples, the 

bacterial population of the outer region differs than the internal region (Gorzelak et al., 2015) 

and so should also be considered. Further bias is introduced during DNA extraction and 

amplification arising from differences in molecular techniques, reagent contamination, and 

human error. Collectively, these and other factors during the amplification and sequencing 

processes lead to the phenomenon referred to as ‘batch effect’ which is discussed in detail in 

Chapter 5. Another important point of consideration is the choice of primers to target various 

specific regions of the 16S rRNA (Tremblay et al., 2015). For example, primers spanning the 

V3-V4 region of the 16S rRNA can detect important bacteria within the vaginal microbiota such 

as Gardnerella vaginalis, Bifidobacterium bifidum, and Chlamydia trachomatis, while the V1-V2 

region is unable to detect these within the same samples (Graspeuntner, Loeper, Künzel, 

Baines, & Rupp, 2018). These and many other factors highlight the need for thorough and 

careful considerations of various components of experimental designs prior to sequencing, 

however, other challenges also exist following sequencing. Numerous bioinformatics pipelines 

have been developed for processing of HTS data which are often made available as open-

source, task-specific, stand-alone programs, and/or offered within larger software suites such as 

QIIME (Caporaso et al., 2010) and mothur (Patrick D Schloss et al., 2009). These tools are 

often designed to primarily deal with specific challenges within particular niches of HTS data 

analysis and so are typically benchmarked within those types of experiments. While this may 

produce favorable results in certain experiments, their inappropriate use across other types of 

data may produce erroneous or unmeaningful results. For example, the accuracy of predictions 
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of the functional traits of microbial communities using an extended ancestral-state 

reconstruction algorithm (Langille et al., 2013) is heavily dependent on the completeness of the 

reference databases. This means that in well characterized samples such as mouse and human 

microbiomes, such algorithms have higher predictive power compared to poorly characterizes 

environments such as deep ocean waters. As with experimental design, the choice of 

bioinformatic steps also holds tremendous potential for introduction of bias that often leads to 

apparent inconsistencies across similar experiments (also discussed in further detail in Chapter 

5). While general patterns in microbiome data, especially those with large effect size remain 

consistent across studies, identification and reproduction of subtle changes in individual taxa 

remains a challenge. This is largely due to lack of standardization in this field, however these 

obstacles are rapidly being resolved with advances in the field. Another inherent limitation of 

studying microbial communities using HTS technologies is that the observed taxon abundances 

are compositional in nature and only offer estimates of relative abundances. This means that 

the true abundance changes of one taxa in a community influences the observed estimates of 

relative abundances of all other taxon. This may lead investigators to erroneously report 

changes in other taxa even though the true abundance of these groups were not altered. For a 

comprehensive review of this topic the reader is referred to the work in (Gloor, Macklaim, 

Pawlowsky-Glahn, & Egozcue, 2017) and for statistical tools designed to deal with 

compositional dataset see Fernandes et al. (2014). Further, compositional data offer no 

information regarding the microbial loads of samples, meaning that the inter-sample differences 

in cell density of observed communities, which hold biologically relevant information, are not 

considered. Recently, the adjunct use of flow-cytometry with HTS has been proposed as one 

approach in estimating the absolute quantities of microbial taxa instead of relative abundances 

(Props et al., 2017; Vandeputte et al., 2017). Using this quantitative approach, Vandeputte et al. 

(2017) showed that reduced community richness, a well-documented observation in patients 

with Crohn’s disease, is significantly underestimated using relative abundances. 
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1.7 Inflammatory bowel disease 

Inflammatory bowel disease (IBD), encompassing UC and CD, are idiopathic, relapsing 

chronic inflammatory disorders of the gastrointestinal tract (GIT). Inflammation associated with 

CD can affect any part of the GIT while UC is local to the colon. Canada has amongst the 

highest incidence of IBD in the world with over an estimated 250,000 -or 1 in 150- diagnosed 

cases leading to annual health care costs of over $1.8 billion (Crohn’s and Colitis Canada, 

2008). In Europe, over 2 million people suffer from the disease (Ng et al., 2018). While exact 

prevalence of IBD across the globe, especially in developing countries, is not known, in 

developed countries it is estimated to affect over 0.3% of the population (Ng et al., 2018). Once 

considered a disease of Westernized countries, IBD incidences are rapidly rising globally, 

including in developing countries in Asia and Africa (M’Koma, 2013). India, once thought to be 

generally free of IBD has now amongst the highest incidence and prevalence rates in Asian 

countries (Kedia & Ahuja, 2017), though incidence in North America are still magnitudes of 

order higher. Approximately 25 % of patients with IBD are diagnosed prior to 20 years of age 

(Baldassano & Piccoli, 1999) with 18% before the age of 10 (Abramson et al., 2010). A 

combination of genetic, immunological, and environmental factors are implicated in the 

pathogenesis of IBD, however its etiology remains unknown. Genome-wide association studies 

of IBD patients have identified over 230 disease related loci (de Lange et al., 2017) though they 

account only for a fraction of the expected heritability of IBD suggesting numerous undiscovered 

genes. These loci represent a wide range of phenotypic traits including epithelial barrier 

integrity, phagocyte defects, T and B cell differentiation signaling, microbe recognition, and 

mucosal homeostasis to name a few (de Lange et al., 2017). In Crohn’s disease the most 

common gene variation occurs in the nucleotide-binding oligomerization domain-containing 

protein 2 (NOD2) involved in cytoplasmic sensing of microbial products, followed by IL-23 

receptors involved in mediating Th17 and Natural killer cell responses (Cho & Brant, 2011). The 
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UC-associated risk loci are predominantly related to maintenance of epithelial barrier and 

antigen pattern recognition (e.g. TLRs) (Sarlos et al., 2014). Amongst IBD patients, defects in 

function of IL-10 and its receptors are also common (Tremelling et al., 2007), prompting the 

study of IL-10-/- mice which develop spontaneous colitis under the presence of intestinal 

microbiota. The environment undoubtedly plays a crucial role in IBD pathogenesis, with factors 

such as smoking, air pollution, nutrition, exercise, stress, drugs, and psychological elements all 

being implicated (Loftus, 2004). These factors, albeit in varying modes and degrees, can 

induced improper immunological responses by the host leading to increased susceptibility to 

disease onset. Among these, smoking has the most replicated relationship across all 

epidemiological studies of IBD. Smoking increases the risk of CD while unexplainably protects 

against UC development and is associated with lower relapse rates (Birrenbach & Böcker, 

2004). Clinical symptoms of IBD may vary depending on patient and disease severity but often 

include abdominal pain, diarrhea, weight loss, and gastrointestinal bleeding. There is no known 

cure for IBD and symptoms are either targeted pharmaceutically with amino-salicylates, 

corticosteroids, immunomodulators, antibiotics, and biological therapies or through dietary 

interventions such as specific nutritional management and elemental diets. In CD pediatric 

populations, exclusive enteral nutrition (EEN), which is defined as a complete provision of 

nutritional requirements through liquid formula for 6-8 weeks, is regarded as efficacious as 

corticosteroid therapy and is the first-choice treatment for inducing remission in this group (Assa 

& Shamir, 2017). The EEN intervention however, appears to be less effective in adult CD when 

compared to corticosteroids (Wall, Day, & Gearry, 2013).These therapies can be financially 

burdensome, temporarily efficacious, and have undesirable side-effects. As so, novel therapies 

in prevention, management, and treatment of IBD is increasing in demand. In this regard, PA 

has emerged as one possible solution. 
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1.8 Animal models of IBD 

Animal models are crucial in dissecting the mechanisms underlying IBD and have 

proven invaluable in discovery of novel therapeutic interventions. There are at least 66 different 

animal models of IBD reported to date [reviewed in (Mizoguchi, 2012)] with majority of them 

developed in mice. Each model provides unique insights into various aspects of the disease; 

however, no single model fully captures the complexity of IBD in humans. Animal IBD models 

can be categorized into one of four groups: congenial mutants, adoptive cell-transfer, genetically 

engineered, or chemically-induced models. This section will briefly discuss the latter two groups 

of these models as these make up the most common types of murine IBD.  

Chemical incitants are considered fast, effective, and economic strategies to induce 

intestinal injury and inflammation in mice. Amongst these, the most commonly used chemical is 

dextran sulfate sodium (DSS) and to a lesser extent, 2,4,6-trinitrobenzene sulfonic acid (TNBS), 

oxazolone, acetic acid, and azoxymethane are also used. Chemically-induced models of colitis 

primarily represent acute disease states and are important in studying innate responses to 

intestinal injury. As cessation of the toxic chemical such as DSS and TNBS leads to 

spontaneous reversal of clinical symptoms, these models can also be used in studying intestinal 

tissue recovery and repair. Administration of 1-5% DSS in drinking water for 5-9 days in mice is 

commonly used to induce Th1 and Th2 mediated colitis, however a more chronic disease state 

can also be produced by repeated intervals of DSS administration and cessation. DSS colitis is 

caused by direct disruption of the intestinal epithelial barrier and subsequent exposure of 

luminal antigens to the lamina propria. Interestingly however, unlike other models of murine IBD, 

the enteric bacteria contribute to the suppression of acute colitis in this model as germ-free mice 

have been shown to develop lethal colitis (Kitajima, Morimoto, Sagara, Shimizu, & Ikeda, 2001). 

DSS colitis is characterized by ulcers, loss of epithelial crypts, and infiltration of granulocytes, 

resembling human UC and can occur in the absence of T cells mediating adaptive immunity 
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(Kiesler, Fuss, & Strober, 2015). A hallmark of DSS inflammation is increased levels of TNF-α 

as well as IL-6 and IL-1a which are also implicated in human IBD (Gkouskou, Deligianni, 

Tsatsanis, & Eliopoulos, 2014). One important limitation of this model is that disease severity is 

strongly influenced by the total volume of the chemical toxin ingested. As mice drink DSS water 

ad libitum, variability in drinking habits can significantly alter disease outcomes. This is 

especially problematic in experimental models such as VWR where water intake can be 

significantly influenced by total energy expenditure. 

In genetically engineered models, the gene(s) of interest are manipulated to either be 

knocked out (KO), impaired, or continuously overexpressed. In contrast to chemically-induced 

colitis, these models typically represent a chronic state of inflammation, with the underlying 

disease presence right from birth, though visible clinical symptoms may not manifest until 

several months of page. Amongst these, the IL-10-/- model is perhaps the most widely used KO 

model which is associated with impairment of the adaptive immune system. As discussed 

previously, IL-10 is a regulatory cytokine largely produced by Tregs and is a major player in 

downregulation of Th1 cytokines thus preventing accumulation of pro-inflammatory events 

leading to chronic intestinal inflammation and injury. Under conventional environments, IL-10-/- 

mice develop spontaneous colitis at around 3 months of age (Kühn et al., 1993). In this model 

the enteric microbiota and microbial antigens drive the disease through TLR-dependent 

signaling, as evident by the absence of colitis in IL-10-/- mice raised under germ-free conditions 

(Sellon et al., 1998a). The main limitation of this model in relation to studying PA, is that anti-

inflammatory events through IL-10 regulation, such as previously described with PA (Packer, 

Hoffman-Goetz, & Ward, 2010), may be prohibited from displaying their full therapeutic 

potential. Another common genetic model of mouse colitis involves targeting the secretory 

MUC2 protein. As the predominant component of the colonic mucosa, MUC2 is integral in 

maintaining epithelial integrity and preventing direct interaction of microbial antigens with the 

IEC. The inflammation in this model is associated with intestinal lymphocytes, IL-1β, and TNF-α 
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expression (Van der Sluis et al., 2006) which can be detected as early as one months of age. 

Colitis in MUC2-/- animals manifests primarily in the distal colon and involves both the innate and 

adaptive immune system. Further, the mucosal defense factor resistin-like molecule-beta 

(RELM-β) has been shown to be involved in the development of this model by inducing 

dysbiosis (Morampudi et al., 2016). Importantly, the severity of colitis in this model is dependent 

on regulation of IL-10, as MUC2-/- + IL-10-/- double KO mice are shown to have exaggerated 

colitis symptoms compared to either individual KO models alone (van der Sluis et al., 2008). 

This model then provides an appropriate environment to study the potential effects of PA on IBD 

through both downregulation of proinflammatory cytokines as well as upregulation of key anti-

inflammatory cytokine such as IL-10. 

1.9 Physical activity and IBD 

PA is defined as “any bodily movement produced by the contraction of skeletal muscles 

that increases energy expenditure above a basal level”, whereas exercise refers to “a 

subcategory of physical activity that is planned, structured, repetitive, and purposive in the 

sense that the improvement or maintenance of one or more components of physical fitness is 

the objective” (Booth, Roberts, & Laye, 2012a). While there are no exercise guidelines for IBD 

patients, PA is recommended to IBD patients to combat secondary complications such as loss 

of bone mineral density, psychological stress management, and weight loss, however its 

protective role in IBD pathogenesis is not known (Hashash & Binion, 2017). Recent 

epidemiological studies suggested a link between PA and reduced risk of IBD onset in the pre-

illness period (Hlavaty et al., 2013; Khalili et al., 2013; Melinder et al., 2015), however these 

studies are unable to disentangle this relationship from the possibility that physical inactivity 

instead, is associated with higher IBD risk. In addition, most IBD patients are generally less 

active than healthy controls due to severity and sociocultural complications of disease 

symptoms (D. Chan, Robbins, Rogers, Clark, & Poullis, 2014; Narula & Fedorak, 2008; Wiroth 
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et al., 2005). A limited number of studies have shown the potential of PA to modestly reduce 

severity of chemically-induced colitis (J. M. Allen et al., 2017; Bilski et al., 2015; Marc D Cook et 

al., 2013a; Saxena et al., 2012). Interestingly, the mode, intensity, and volume of PA appears to 

be important in these models. For example, Cook et al. showed that four weeks of voluntary 

wheel running (VWR) in mice prior to DSS-induction had no protective effects on clinical 

diseases scores, but did reduce expression of pro-inflammatory cytokines TNF-α and IL-6. 

Interestingly, they observed that forced treadmill running (FTR) for the same duration, 

exacerbated clinical symptoms leading to increased morbidity and mortality. In contrast, Saxena 

et. al 2012, showed that FTR in mice showed no change in clinical symptoms of DSS-induced 

colitis but reduced inflammatory cytokines such as TNF-α, IL-6, and IL1-β. In rats, FTR did not 

protect against TNBS-induced colitis, however was associated with increased tissue healing 

following insult cessation (Bilski et al., 2015). While these studies clearly differ significantly in 

various aspects such as mode of PA, strains and sex of animals, and experimental model of 

colitis, one often underappreciated factor is the variance in total volume of PA. For example, the 

volume of physical movement in VWR models far exceeds those in FTR with mice moving 2-8 

km/night on a voluntary basis. In contrast, a typical treadmill training program in mice [as used 

in (M D Cook et al., 2015)] consists of 40 min/day x 5 d/week of running at a speed of 8-12 

meters/min which sums to ~ 400 meters/day. In addition, forced running has been shown to 

induce stress in mice (Moraska, Deak, Spencer, Roth, & Fleshner, 2000) leading to 

physiological adaptations much different than those associated with VWR. In a follow-up study 

to Cook et al. it was shown that VWR and FTR had differentially altered gut microbiota in mice 

(Jacob M Allen et al., 2015) suggesting a possible link between the microbiota composition and 

IBD severity in these experiments. 
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1.10 Microbiota in IBD 

Evidence in recent years implicate a pivotal role of the intestinal microbiota in pathology 

of IBD though causality has not been established. Patients with IBD show significant decreased 

microbial diversity, especially in the dominant Firmicutes and Bacteroidetes phyla, and 

increased abundances of pathobionts (Manichanh, 2006). A twin study of IBD cohorts showed 

that UC patients house higher levels of pathobionts from the Actinobacteria and Proteobacteria 

phyla compared to their healthy siblings (Lepage et al., 2011). IBD patients show higher levels 

of pro-inflammatory cytokines in response to commensal bacteria alluding to a hyper sensitive 

and less tolerogenic gut phenotype (Nobuhiko Kamada et al., 2008). One hallmark feature of 

IBD pathology is the disruption of the intestinal epithelium layer. In ileal CD the production of 

key AMPs is decreased allowing bacteria to come in direct contact with the epithelium and 

prompt inflammatory responses. Left unchecked, this leads to further break down of the 

epithelial layer, increased bacterial translocation, and further exaggeration of inflammatory 

responses by the host (Wehkamp, 2004; Wehkamp et al., 2005). Interestingly, in colonic CD 

and UC the reverse is true where the atypical presence of Paneth cells in the colon leads to 

excessive production of AMPs leading to reduced abundances of commensal bacteria 

(Shanahan, Carroll, & Gulati, 2014). In this scenario, foreign opportunistic bacteria can now 

colonize the newly available niches and employ immunogenic responses which ultimately lead 

to barrier dysfunction. In light of these and other findings linking the microbiota to intestinal 

diseases, novel therapies that aim to manipulate the intestinal microbes have been advocated 

as novel tools in the fight against IBD. 

1.11 Physical activity and microbiota 

Recently, the potential role of PA as a modulator of human microbiota has gained 

popularity. This concept was first explored by Matsumoto et al. in 2008 whereby they reported 

changes in cecal microbiota of rats following VWR and accompanying increase in butyrate 
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abundance (Matsumoto et al., 2008). Using gel electrophoresis profiling of the bacterial 

communities, they showed that these changes were attributed to changes in the gut bacteria. 

Not until the popularization of high-throughput sequencing (HTS) technologies however, did this 

topic advance in a significant manner. In 2014, Evans et al. using HTS showed that 5 weeks of 

VWR in mice indeed correlated with significant shifts in gut bacterial composition, often shifting 

towards a high Firmicutes to Bacteroidetes ratio (Evans et al., 2014). Not long after, Hsu et al. 

further highlighted the crucial role of the microbiota in physical work when they showed germ-

free mice exhibiting significantly worsened exercise performance in a swimming model of PA 

(Hsu et al., 2015). Perhaps even more interesting was the finding that when littermates of these 

germ-free mice were inoculated with single species of bacteria, they showed significant 

improvements in their endurance capacity. These differences were attributed, in part, to 

modulation of the mice’s anti-oxidant system activity. Since then, several other studies in 

rodents have emerged, though not all report similar findings. For example, Lamourerux et al. 

found only limited changes in VWR mice (Lamoureux, Grandy, & Langille, 2017), while Zhang et 

al. showed no significant changes in mice with access to free-wheels throughout their whole 

lives (C. Zhang et al., 2013). Others showed that PA-induced changes of the microbiome are 

dependent on the background diet (Evans et al., 2014) and age of the animals (Mika et al., 

2015). Our current knowledge of PA and microbiota in humans is currently limited to a handful 

of studies, with only one providing evidence with regards to causality (Jacob M. Allen et al., 

2018). Clarke et al. first showed that the fecal bacteriome of elite rugby players was more 

similar to each other than population-matched non-athletes (Clarke et al., 2014). They showed 

increased diversity richness and abundances of genus Akkermansia in elite athletes. Work from 

our group (shown in Chapter 2) further showed that changes in bacterial community richness 

are positively correlated with cardiorespiratory fitness and that these changes are true 

regardless of sex, age, body mass index (BMI), or dietary patterns (Estaki et al., 2016). Most 

recently, Allen et al. showed that a six weeks endurance exercise training program elicited 
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beneficial changes in microbiota of lean, but not obese females and that these changes were 

reversed with exercise cessation (Jacob M. Allen et al., 2018). 

1.12 Thesis outline and objectives 

In this section, I will introduce the research questions initially proposed in this thesis with 

regards to the knowledge gap of the field at the time of their conception. The overall questions 

posed by this work was whether PA can alter the intestinal microbiota and whether such 

changes are beneficial to the host, in the context of intestinal inflammation.  

At the time of this project’s inception, no prior studies in humans, and only one in 

animals had been reported regarding the role of PA and microbiota. Therefore, in Chapter 2 we 

designed a simple cross-sectional study to explore structural microbial patterns amongst 

humans with varying cardiorespiratory fitness levels using HTS. A secondary objective of this 

study was to confirm earlier observations by Matsumoto et al. that showed higher levels of the 

SCFA butyrate following wheel running in rats. We reasoned that if the microbiome of fit 

individuals did indeed align with known traits of a healthy community (as discussed earlier), this 

would warrant further investigation in the use of PA as a novel strategy to mitigate primary 

complications of dysbiosis-associated diseases such as IBD. 

Having established an association between aerobic fitness and gut health from our first 

cross-sectional study, we set out to test the hypothesis that PA can protect against IBD by 

altering the microbiome. While other reports had surfaced suggesting a protective role of VWR 

in chemically-induced models of murine colitis (Bilski, Brzozowski, Mazur-Bialy, Sliwowski, & 

Brzozowski, 2014; Marc D Cook et al., 2013b; Saxena et al., 2012), the role of the microbiome 

remained to be elucidated. In Chapter 3 we aimed to investigate two primary objectives: 1) 

establish causality in the microbial patterns observed from our human study, and 2) determine 

whether such changes are protective against a spontaneous model of murine colitis.  
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In Chapter 4 we make a case for explaining discrepancies reported across the literature 

on the effects of PA and intestinal bacteria. We introduce a model of low-volume wheel running 

in mice by which we attempted to reveal whether the volume of physical work affects the 

observed changes in the colonic bacteriome.  

Finally, in Chapter 5 I synthesize the findings from all previous chapters, present overall 

conclusions drawn from these studies, and offer a prospectus for future studies. 
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 Chapter 2: Aerobic fitness and microbiota in humans2 

2.1 Background 

The interactions between humans, their environment, and intestinal microbiota form a 

tripartite relationship that is fundamental to the physiological homeostasis and overall health of 

the host (Sekirov, Russell, Antunes, & Finlay, 2010b). The human intestinal microbiota aid their 

host in several important biological functions such as: digestion, absorption, stimulating immune 

responses, and protection against enteropathogens, to name a few. The bacteria break down 

partially digested complex carbohydrates via fermentation and produce short-chain fatty acids 

(SCFAs) such as butyrate, acetate, and propionate as by-products. These SCFAs act as the 

primary food source of the colonocytes which consume up to 10% of the dietary energy 

expenditure in humans. In particular, butyrate has been shown to play a critical role in overall 

gut homeostasis and health (Leonel & Alvarez-Leite, 2012). Lasting disturbances in the 

microbial community composition, termed dysbiosis, can have deleterious health effects in the 

host [reviewed in (Y. K. Chan et al., 2013)]. Gut microbiome diversity has emerged as a 

candidate indicator of overall host health. Low community richness has been correlated with 

metabolic markers such as adiposity, insulin resistance, and overall inflammatory phenotypes 

(Le Chatelier et al., 2013), as well as gastrointestinal (GI) conditions such as inflammatory 

bowel disease (Ott et al., 2004), Clostridium-difficile infection (Chang et al., 2008), colorectal 

cancer (Ahn et al., 2013), and irritable bowel syndrome (Giamarellos-Bourboulis et al., 2015). 

As a result, considerable research in recent years has focused on understanding and 

developing strategies to promote overall GI health via community manipulation in attempt to 

resolve dysbiosis-associated diseases.  

                                                 

2 A version of Chapter 2 has been published. Estaki M, Pither J, Baumeister P, Little JP, Gill SK, Ghosh 
S, Ahmadi-Vand Z, Marsden KR, Gibson DL. Cardiorespiratory fitness as a predictor of intestinal 
microbial diversity and distinct metagenomic functions. Microbiome. 8;4(1):42 
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Various extrinsic variables such as stress, probiotic and antibiotics use, alcohol 

consumption, and diet have been identified as factors that can instigate changes in the 

microbiome (Sekirov et al., 2010b; Sommer & Bäckhed, 2013). The link between physical 

activity and gut microbiota however is currently not well understood. Matsumoto et al. first 

identified increases in butyrate levels in cecum of physically active rats which they suggested 

was a result of compositional changes in butyrate-producing bacteria (Matsumoto et al., 2008). 

Evans et al. explored the effects of voluntary wheel running in mice fed low or high fat diets and 

found that microbial communities clustered based on both diet and physical activity (Evans et 

al., 2014).  Allen et al. further showed that the mode of physical activity, for example forced 

treadmill running versus volunteer wheel running differently altered the microbiota (Jacob M 

Allen et al., 2015). Recently, Clarke et al. also found clustering of bacterial communities 

between professional rugby players and high/low body mass index (BMI) controls (Clarke et al., 

2014). They further identified increases in bacterial community richness in these elite athletes 

compared to both control groups. In their study however, extreme dietary differences, especially 

high protein intakes amongst the athletes, confounded interpretations regarding the specific role 

of physical activity and microbial changes.  

To better isolate how physical fitness may moderate microbial diversity, we analyzed the 

fecal microbiota of individuals with varied fitness levels with comparable diets. We used peak 

oxygen uptake (VO2peak), the gold standard of cardiorespiratory fitness (CRF), as an indicator 

of physical fitness. We asked the questions a) does taxonomical richness vary with CRF alone, 

b) do variations in CRF drive changes of specific taxa in a predictable manner, and c) do such 

changes significantly influence the microbiota’s contribution to functional pathways?  We show 

that VO2peak, independent of diet, correlates with increased microbial diversity and production 

of fecal butyrate amongst physically fit participants. 
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2.2 Methods 

Study design - Healthy young adults between 18 and 35 years old were recruited. Exclusion 

criteria included: antibiotic treatment within the previous 6 months, current drug utilization, or 

active acute or chronic diseases. All participants were verbally interviewed on their dietary 

habits and CRF was determined using a peak oxygen uptake (VO2peak) cycle test. Participants 

were then provided a stool collection kit with instructions and were asked to provide a sample 

within a week following their lab visit.  

Ethics, consent, and permissions - This study was conducted according to the Declaration of 

Helsinki guidelines and all procedures were approved by University of British Columbia Clinical 

Research Ethics Board. 

Nutritional data collection - Nutritional data, including supplements, was collected by means 

of a 24 hr dietary recall interview and assessed by a research nutritionist using FoodWorks 

nutrient analysis software (version 16.0). Food items described by participants that were not 

available in the software were manually added as needed. On average over 100 food categories 

per participant was produced by the FoodWorks software. A manual screening was applied to 

select categories of interest based on a priori interest and existing literature showing a 

significant interaction between those categories and intestinal microbiota. The selected 24 food 

categories data are available in the uploaded metadata mapping file.  

Cardiorespiratory fitness testing - Participants initially completed a physical activity readiness 

questionnaire (PAR-Q) to rule out any contraindications to vigorous exercise. A continuous 

incremental ramp maximal exercise test on an electronically braked cycle ergometer (Lode 

Excalibur, the Netherlands) was used to determine peak oxygen uptake (VO2peak) and peak 

power output (Wpeak). Expired gas was collected continuously by a metabolic cart 

(Parvomedics TrueOne 2400, Salt Lake City, Utah, USA) calibrated with gases of known 

concentration. The test started at 50 Watts and increased by 30 Watts/min. The test was 
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terminated upon volitional exhaustion or when revolutions per minute fell below 50. VO2peak 

was defined as the highest 30-sec average for VO2 (in ml/kg/min). Criteria for achieving 

VO2peak were: i) respiratory exchange ratio >1.15; ii) plateau in VO2; iii) reaching age-predicted 

HRpeak (220-age); and/or iv) volitional exhaustion. Following VO2peak assessment, participants 

were categorized to either low (LOW), average (AVG), or high (HI) fitness based on their sex 

and age according to a modified Heyward normal VO2max reference chart (Table 1). 

Stool collection and storage - Participants were provided with a home stool collection kit 

including a sterile 120 ml polypropylene container (Starplex, Etobicoke, Ontario), sterile tongue 

depressor and gloves, and an ice box. Participants were instructed to avoid alcohol for 3 days 

prior to stool collection. Stool samples were immediately stored in the participant’s freezer 

overnight and transported on ice to the lab and stored in -80 ºC until further analysis. Frozen 

portions from the inner area of the samples were scrapped using sterile razor blades for DNA 

extraction and short-chain fatty acids analysis. 
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Table 1. Heyward's 2006 normal VO2max reference chart 

Subjects characterized as “Superior” or “Excellent” according to the Heyward classification were grouped 

under the “HI” group, “Fair” and “Good” subjects were placed into the “AVG” group, and “Poor” was 

renamed to “LO”. 

 

 

Short-chain fatty acids analysis - SCFA (acetic, propionic, heptanoic, valeric, caproic, and 

butyric acid) were analyzed from the feces by gas chromatography (GC) as described 

previously (Brown et al., 2016). In brief, ~ 50 mg of stool was homogenized with isopropyl 

alcohol, containing 2-ethylbutyric acid at 0.01% v/v as internal standard, at 30 Hz for 13 minutes 

using metal beads. Homogenates were centrifuged twice, and the cleared supernatant was 

injected to Trace 1300 Gas Chromatograph, equipped with Flame-ionization detector, with 
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AI1310 auto sampler (Thermo Fisher Scientific) in splitless mode. Data was processed using 

Chromeleon 7 software. An aliquot of 50 mg of stool was freeze dried to measure the dry 

weight, and measurements are expressed as mass % (g of SCFA per g of dry weight stool). 

High-throughput sequencing - DNA was extracted from feces using QIAmp DNA Stool Mini 

Kit (Qiagen) according to the manufacturer’s instructions following 3 x 30s of homogenization 

using metal beads on a Retsch MixerMill MM 400 homogenizer. Metagenomic sequencing 

libraries were prepared according to the Illumina MiSeq system instructions. In brief, the V3 and 

V4 region of the 16S bacterial rRNA gene was amplified using recommended primers 

(Klindworth et al., 2013) (IDT, Vancouver, Canada): Forward 5' 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG, and Reverse 

5’ GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC, 

which create amplicons of ~460 bp.  Amplicons were cleaned using AMPure XP beads step 

then adapters and dual-index barcodes (Nextera XT) were attached to the amplicons to facilitate 

multiplex sequencing. After another clean-up step, libraries were validated on an agarose gel, 

quantified, normalized, and sent to The Applied Genomic Core (TAGC) facility at the University 

of Alberta (Edmonton, Canada) for sequencing using the Illumina MiSeq platform. The resulting 

~ 16,000,000 paired-end reads were merged using PEAR software (J. Zhang, Kobert, Flouri, & 

Stamatakis, 2014) and screened to exclude sequences containing one or more base calls with a 

Phred score < 20. Rarefaction curves demonstrated that sufficient sampling depth had been 

reached amongst all samples (Figure 2). All sequence reads and associated metadata file are 

available from the Sequence Read Archive (accession number#: SRP068480). 
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Figure 2. Sampling depth rarefaction curves 

Rarefaction curves of all subjects at 97% similarity levels shown as a function of Shannon diversity index 

and number of sequence tags sampled. 
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Bioinformatics  - Bioinformatics analyses on the demultiplexed paired reads were conducted 

using QIIME 1.8.0 software suites (Caporaso et al., 2010). Reads were clustered at 97% identity 

using the uclust method into operational taxa units (OTUs) then aligned to the most recent 

available version (2013/08) of Greengenes bacterial database (McDonald et al., 2012). 

Singleton and doubletons were removed and the produced OTU table was normalized using 

PICRUSt (phylogenetic investigation of communities by reconstruction of unobserved states) 

(Langille et al., 2013) to adjust for different 16S rRNA gene copy numbers. Uneven variance as 

a result of differential sample sequencing depth was stabilized using the cumulative sum scaling 

(CSS) method of metagenomeSeq package in R. Alpha diversity indexes, rarefaction curves, 

OTU tables, and distance metrics were also generated using QIIME.  

Statistical analysis - All statistical analyses were performed using R version 3.2.0 unless 

stated otherwise. All data and annotated R scripts, which include detailed description of all 

statistical analyses used, methods for model variable selection, and checking of model 

assumptions are available publicly at https://osf.io/js86c/. 

The groups’ age and VO2peak data were tested for normality using Shapiro-Wilk test and a one-

way analysis of variance (ANOVA) with Tukey’s multiple-comparison test used to compare 

mean differences amongst groups. Kruskal-Wallis non-parametric test was used for comparing 

BMI as this dataset failed normality tests even after several transformation attempts.  For 

comparison of dietary intake amongst groups, a permutational multivariate ANOVA 

(PERMANOVA) with 999 random permutations was used. Due to the inherent high variability of 

dietary data we further searched for dietary patterns amongst groups by looking at a principal 

component analysis (PCA) plot of participants’ dietary scores using the ggbiplot package. 

To facilitate comparisons with previous work, we first compared average alpha diversity among 

the three fitness categories using a one-way ANOVA, followed by a Tukey’s multiple-

comparison. To simultaneously evaluate the role of CRF alongside other potential predictors of 

alpha diversity (sex, age, BMI, and dietary components), we performed a multiple regression 
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analysis. Given our comparatively low sample size (n = 39), and the general rule that multiple 

regressions should include at least 10 observations per predictor variable, we first screened 

potential predictors that were continuous variables using a Spearman correlation matrix. Those 

that showed a significant correlation with alpha diversity were retained for entry in the multiple 

regression model. Multicollinearity was checked using the variable inflation factor (VIF) index 

with a maximum cut off score of 10.  

Microbial communities in fecal samples were ordinated using the Bray-Curtis, weighted 

and unweighted UniFrac distance metrics. Principal coordinate analysis (PCoA) based on the 

Bray-Curtis dissimilarity metric was made using cmdscale function of ‘stats’ package in R, while 

PCoA based on the weighted and unweighted UniFrac distances were made using EMPeror 

tool (Vázquez-Baeza, Pirrung, Gonzalez, & Knight, 2013). Redundancy analysis (RDA), 

implemented using the ‘vegan’ package version 2.2-1 in R, was used to assess variation in 

microbial composition in relation to the constraining variables: sex, age, BMI, and dietary 

components. Abundance data at each taxonomical resolution (phyla, class, order, family, and 

genus) were first Hellinger-transformed. Variable selection in RDA was implemented using the 

ordistep function using both forward and backward stepwise inclusion.  Predictors selected by 

this method at each classification level are presented in Table 6. To identify genera that 

significantly contributed to total variance we evaluated Spearman correlations between the 

transformed genera abundance data and the first 2 RDA axes. OTUs with a significant 

correlation coefficient (evaluated at Bonferroni adjusted alpha level) were drawn on the RDA 

plots with type II scaling. Classification of relative abundance data according to the previously 

described enterotypes (Arumugam et al., 2011) was carried out using the Calinski-Harabasz 

(CH) index as described online (http://enterotype.embl.de/enterotypes.html).  

The normalized genus abundance OTU table was used to predict the microbiome’s 

metagenomic functions using PICRUSt’s extended ancestral-state reconstruction approach. A 

new abundance matrix of predicted functional categories based on the Kyoto Encyclopedia of 

http://enterotype.embl.de/enterotypes.html
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Genes and Genomes (KEGG) database was created. We constructed a biplot from the output of 

a principal components analysis (PCA) of functional categories data and visually assessed 

clustering patterns based on CRF groupings. Next, to isolate the influence of specific predictor 

variables, an RDA was also performed using these functional categories as response variables 

and the same variables and selection methods previously described.  

Similarly, to determine the role of our exploratory variables in explaining variance in fecal 

SCFAs, an RDA was performed using SCFAs abundance data as the response variables. 

2.3 Results 

Diet was not a confounding factor across fitness groups - Twenty-two males and nineteen 

females participated in the study. Two female participants were removed from sequencing 

analysis due to technical errors. Table 2 represents a summary of the 39 participants’ 

characteristics and dietary intake. Age distribution was similar across all groups. The LOW 

group had a marginally higher BMI (25.5, SD 3.9) compared to the AVG (23.5, SD .5) and HI 

(22.8, SD 1.5) groups, however the difference was not statistically significant. BMI of AVG and 

HI groups fall within the ‘normal weight’ range (18.5 - 24.9) as defined by Health Canada, while 

the LOW group is marginally above the ‘overweight’ threshold of 25. The results of the 

PERMANOVA (Table 3) showed no main differences (permutation P= 0.56) across any 

nutritional classes based on fitness groups. PCA plot (Figure 3) of dietary patterns amongst the 

different fitness groups also showed no distinct clusters, further supporting comparable dietary 

patterns amongst fitness groups. 
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                LOW (n=14)                  AVG (n=12)                 HI (n=13) 

Mean  (SD) Median (IQR) Mean  (SD) Median (IQR) Mean (SD) Median (IQR) 
Age (years) 25.5 (3.3) 25.5 (23-27.8) 24.3 (3.7) 24.5 (21.8-26) 26.2 (5.5) 28 (21-31) 

BMI (kg/m²) 25.5 (3.9) 24.9 (23.2-27.8) 23.5 (.5) 23.4 (22.1-23.8) 22.8 (1.5) 22.4 (21.9-24) 

VO
2
peak 33 (4.8)* 33.3 (30.7-26.3) 41.9 (4.3)* 41.2 (38.5-44.2) 54.8 (5.6)* 52.4 (51.3-60.9) 

Dietary components 

      

Energy (kcal) 2477.5 (1168.4) 2119.5 (1537.2-3565) 2230 (605.4) 2092 (1793-2561) 2458.3 (668.3) 2647 (2060-2714) 

Protein (g) 128.7 (88.5) 104.8 (55.4-182.7) 110.2 (53.7) 90 (80-134.6) 111.2 (49.7) 97.5 (84-127.2) 

Carbohydrate(g) 278.9 (97.5) 294.7 (201.7-347.6) 245.2 (90.4) 245.2 (182.1-275.2) 276.9 (80.2) 268.5 (248.3-310.8) 

Fat (g) 95.4 (61.9) 74.1 (46.5-121.3) 95.8 (29.1) 85.6 (78.4-113.6) 105.3 (41.1) 111.9 (84.2-131.30 

Saturated Fat (g) 37.7 (30) 25.2 (16.9-62.2) 32 (29.1) 31.2 (26.5-34.5) 31.6 (14.7) 32.6 (21.2-36) 

MUFA (g) 30.7 (19.9) 27.6 (14.1-36.9) 35 (14.4) 34.9 (27.6-40.8) 38.6 (16.5) 36.4 (28.5-46.9) 

PUFA (g) 15 (6.8) 15.1 (9.3-20) 20.2 (11.7) 17.9 (11.1-26.7) 23.3 (10.7) 22.6 (15.4-28.2) 

Trans fat (mg) 730 (960) 358(28.5-89.3) 580 (440) 552 (243.7-896.8) 500 (530) 407 (87-501) 

Omega 3 (mg) 2260 (1470) 1958 (-1166-3068) 2990 (2320) 1958 (1307-4779) 3110 (3600) 1535 (1200-1942) 

Omega 6 (mg) 1790 (3320) 418 (28.8-1624) 1010 (1040) 438 (283.3-1672) 3820 (4250) 2477 (198-4951) 

Sugar (g) 96.7 (59.1) 68.9 (54.8-134.2) 83.2 (43.9) 80.2 (67-95.5) 103.6 (38.4) 97.4 (81.7-121.7) 

Fiber (g) 28.4 (11.7) 22.5 (20.2-34.7) 31.3 (30.2) 23.2 (17.3-29.4) 36.5 (20.2) 28.8 (24.2-40.2) 

Cholesterol (mg) 358 (348.7) 263.6 (59.4-453.4) 346.5 (194.6) 288.6 (196.1-466.1) 443.1 (269.3) 442.6 (186.3-638.6) 

Butyrate  (mg) 470 (740) 212.5 (39.8-578) 690 (690) 573.5 (283.5-929) 480 (470) 366 (194-518) 

Table 2. Summary of group characteristics and dietary intake 

* denotes a significant (Bonferroni adjusted P<0.01) pair-wise difference amongst the other two groups. 

Macronutrients amongst groups were compared by PERMANOVA as described in the text. 
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df SS MS F-Model Pr 

Fitness 2 0.053 0.027 0.7 0.56 

Residuals 36 1.38 0.038 
  

Total 38 1.43 
   

Table 3. Summary of PERMANOVA for dietary intake across fitness groups 

df, degrees of freedom; SS, sum of squares; MS, mean of squares; Pr, Permutation based P value 

 

 

 

Figure 3. Dietary patterns amongst fitness groups 

Scores of the two first components of the principal component analysis of dietary data for all 39 subjects 

are presented. Each circle represents one participant; colored based on their CRF fitness levels. A lack of 

distinct clustering amongst groups suggests comparable dietary patterns amongst groups. 
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CRF is correlated with increased microbial diversity - Species diversity of each participant 

(alpha diversity) was determined using several indexes: species richness (SR), chao1, 

Shannon, Simpson, and Faith’s phylogenetic diversity. As all the alpha diversity indexes were 

highly correlated (Figure 5) and produced qualitatively identical results, SR was chosen as a 

proxy in the regression model. After screening of potential predictors via Spearman correlation 

analysis, 3 variables were included in the multiple regression model: VO2peak, sex, and relative 

fat intake. Of these, only VO2peak was a significant predictor of alpha diversity (Table 4), with 

SR significantly (P = 0.011) associated with increasing VO2peak (Radj
2=0.204, coefficient 

estimate = 5.36; t = 2.17) (Figure 4). 

 

Figure 4. Correlation between VO2peak and Species Richness 

Result of a multiple regression model showing a significant association between VO2peak and SR when 

holding all other variables constant. Shaded area represents 95% confidence intervals. 
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Figure 5. Correlation between alpha diversity matrices 

A correlation matrix using Spearman’s r showing strong correlation between all alpha diversity matrices 

used. Species Richness (S) was thus used as a proxy for the response variable in the multiple regression 

model.  
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Table 4. Multiple regression results of SR 

Result of multiple regression test showing VO2peak as the only significant variable in predicting species 

richness (SR). The B coefficient represents the amount of change in SR along its 95% confidence 

intervals per unit change of VO2peak (ml/kg/min).  The standardized coefficients show VO2peak as the 

strongest variable to influence SR variability. 

 

 

CRF levels do not promote distinct clustering of beta diversity data - Overall, 14 phyla and 

207 genera were represented across all participants (Table 5). The HI group showed the 

highest diversity composed of 186 genera compared to 161 and 143 in the AVG and LOW 

groups, respectively. PCoA plots constructed using Bray-Curtis (Figure 6), weighted and 

unweighted UniFrac dissimilarity indices (Figure 7) did not show group clustering based on 

fitness levels. Clustering of our dataset based on the CH index favored a 2 cluster partitioning 

(Figure 8) rather than the proposed 3 enterotypes (Arumugam et al., 2011). 

  

Variables Unstandardized 
Coefficients 

Standardized 
Coefficients 

t P 

 
B Std. Error Beta 

  

VO2peak 5.36 2.47 0.37 2.17 0.037* 

Relative fat 
intake 

432.46 250.10 0.26 1.72 0.094 

Sex ♂ 24.70 51.23 0.08 7.54 0.63 

Model adjusted R² = 0.20          P-value=0.01             *denotes statistical significance 
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LOW 

 (n=14) 

AVG 

(n=12) 

HI 

(n=13) 

Total 

(n=39) 

Phylum 13 12 11 14 

Class 28 25 24 31 

Order 43 42 43 52 

Family 74 78 87 100 

Genus 143 161 186 207 

Table 5. Taxa representation among subjects 

The HI group show the highest diversity at the genus and family level, followed by AVG then LO groups. 

 

 

 

 

Figure 6. Beta diversity amongst fitness groups 

PCoA plot of genus abundance data based on Bray-Curtis dissimilarity measure show no clear clustering 

when grouped according to CRF levels. 
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Figure 7. Beta diversity amongst fitness groups 

Three dimensional PCoA plots of genus abundance data transformed with weighted (A) and unweighted 

(B) UniFrac dissimilarity matrices show no clear clustering based on CRF levels. 
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Figure 8. Optimal clustering selection of bacterial data 

The number of optimal clustering of all data was determined using the Calinski-Harabasz (CH) index. 

Optimal number of clusters did not identify the classical 3 enterotypes but rather favored a 2-cluster 

partitioning. 

 

 

Protein intake and age but not CRF constrain beta diversity - The global RDA model which 

included sex, age, and protein as explanatory variables was significant (P = 0.005) as assessed 

by Monte Carlo Permutation Procedure (MCPP) (1000 permutations) and yielded an Radj
2 of 

0.053.  Though small, this value is typical of RDA analyses of highly diverse assemblages (Wu 

et al., 2011). Overall, 12.7% of the variance was attributed to these explanatory variables. The 

first and second axes (Figure 9) accounted for 7.9% and 2.3% of the variation, respectively. The 

RDA indicated that VO2peak did not significantly constrain beta diversity at any taxonomic 

resolution, whereas total protein intake was significant at each resolution tested (Table 6). In 

addition, age, sex, and the omega6-omega3 ratio (n6:n3) were also marginally significant 

constraining variables, though only at specific taxa resolutions. In Figure 9B, we highlight 19 

genera that were significantly correlated with one or both of the first two RDA axes. Amongst 

those, Bacteroides was strongly associated with protein intake along RDA2 while Odoribacter, 

Rikenellaceae, Oscillospira, and an unclassified RF39 were most strongly correlated with age 
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along RDA1. Other genera strongly aligned with RDA1, but not strongly correlated with any 

explanatory variables, included Blautia, and unclassified genera from Lachnospiraceae, 

Christiensenelliaceae, Ruminococcaceae, and Clostridiales. 

 

Variables included Radj² anova.P 

Phyla Protein 0.061 0.011 

Class Protein+Age+Sex 0.088 0.008 

Order Protein+Age 0.050 0.010 

Family Protein+Age+Sex+n6:n3 0.104 0.003 

Genus Protein+Age+Sex 0.052 0.005 

Predicted metagenomic function VO2peak+Sex+Fiber+Sugar 0.055 0.063 

Short-chain fatty acids VO2peak+Sex+Age+Carb 0.102 0.001 

Table 6. Predictor variables included in the RDA models 

A manual pre-screening of dietary variables based on existing literature and categories of interest was 

initially carried. Next, a combination of ‘both’ forward and backward stepwise inclusion selection method 

using vegan’s ordistep function was used on the remaining 23 variables plus VO2peak, Sex, BMI, and 

Age. 
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Figure 9. Bacterial RDA correlation biplots constrained by selected explanatory variables 

The sites and explanatory variables (A) and genera (B) plots are presented separately for clarity, however 

they are derived from the same RDA model, note the difference in axes scales. RDA1 and RDA2 

representing over 10% of the constrained variance in beta diversity are plotted. The global model’s p-

value was calculated using the Monte Carlo Permutation Procedure (MCPP). In plot A subjects are color 

coded according to their CRF levels for illustrative purposes only as groupings were not included in the 

model. Black circles represent centroids for the categorical variable Sex.   
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CRF is associated with distinct microbiome functions rather than specific bacterial taxa - 

Bacterial phylogeny is sufficiently linked to their functional capabilities and can be used to 

computationally predict the functional composition of the community metagenome (Langille et 

al., 2013). Since CRF did not constrain variation in bacterial composition, we explored whether 

the functions of the microbiome were associated with CRF. Similar to the beta diversity 

analyses, no clear group clustering emerged based on CRF classification alone (Figure 10). The 

RDA however, showed that VO2peak, sex, fiber, and sugar intake collectively significantly 

constrained variation in functional categories (MCPP P=0.063, Radj
2=0.055) (Table 6). Overall, 

15.5% of the total variation was accounted for by these explanatory variables, of which 11% and 

2.2% were accounted by the first and second axes, respectively (Figure 11). Of the 274 

functional categories observed across all participants we identified 65 significant categories. 

The RDA plots illustrate a pattern of VO2peak and fiber intake constraining variation amongst 

participants with high CRF levels. VO2peak was most strongly correlated with sporulation, 

bacterial motility proteins including proteins involved in flagella assembly, and chemotaxis while 

negatively correlated with lipopolysaccharide (LPS) biosynthesis and LPS biosynthesis proteins. 

Total sugar intake was strongly correlated with the transporters, ABC transporters, and 

transcription factors while inversely associated with membrane & intracellular structural 

molecules and pores ion channels. Sex of participants did not play a significant role in any of the 

described parameters. Given the importance of SCFAs in gut health, we had a priori interest in 

‘fatty acid biosynthesis’ despite its exclusion from the RDA selection process. We found 

VO2peak to be positively correlated (P=0.046, Spearman’s rho=0.322) with fatty acid 

biosynthesis (Figure 12). Thus, to understand which SCFAs correlated with VO2peak we 

quantified fecal SCFAs via GC. 
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Figure 10. Ordination of predicted metagenomic functions data 

PCA plot of centered functional category abundance data showing no clear clustering of groups based on 

their CRF levels. Plots were created using STAMP (Statistical Analysis of Metagenomic Profiles) tool. 
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Figure 11. RDA correlation biplots of predicted functions constrained by explanatory variables 

The sites and explanatory variables (A) and genera (B) plots are presented separately for clarity however 

they are derived from the same RDA model, note the difference in axes scales. RDA1 and RDA2 

representing over 13% of the constraint variance in the data are plotted. The global model’s p-value was 

calculated using the Monte Carlo Permutation Procedure (MCPP). In plot A subjects are color coded 

according to their CRF for illustrative purposes only as groupings were not included in the model. Black 

circles represent centroids for the categorical variable Sex. 
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Figure 12. Correlation between VO2peak and fatty acid biosynthesis 

Spearman correlation plot showing a positive correlation between VO2peak and the functional category 

‘fatty acid biosynthesis’. rho, Spearman’s correlation coefficient. 
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CRF is positively correlated with fecal butyric acid - Figure 13 represents the RDA triplot 

corresponding to fecal SCFAs as constrained by our exploratory variables. The global model 

selected sex, age, carbohydrate intake, and VO2peak as significant (MCPP P = 0.001) 

constraining variables yielding an Radj
2 of 0.102. Overall, 30.1% of the constrained variation 

could be explained by these factors of which 17.9% and 11.9% were accounted for by RDA1 

and RDA2, respectively. Along RDA1, age was strongly positively correlated with valeric acid 

and to a lesser degree with hepatonoic and caproic acid; both which were strongly inversely 

correlated with carbohydrate intake. Along RDA2, VO2peak was strongly correlated with butyric 

acid which is represented mainly across HI and AVG fitness participants. Proprionic and acetic 

acid on the other hand were inversely correlated to VO2peak and were represented across an 

area with more LOW fitness participants. Sex of the participants as represented by centroids on 

the triplot did not play a major role in observed variance. 
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Figure 13. RDA correlation triplots of SCFAs abundance constrained by selected explanatory 

variables 

RDA1 and RDA2 representing over 29% of the constraint variance in SCFA data are plotted. Subjects are 

color coded according to their CRF for illustrative purposes only as groupings were not included in the 

model. Black circles represent centroids for the categorical variable Sex. The global model’s p-value was 

calculated using the Monte Carlo Permutation Procedure (MCPP). 

2.4 Discussion 

CRF is considered a better predictor of mortality than clinical variables as well as 

established risk factors such as smoking, diabetes, and hypertension (Kodama, 2009; Myers et 

al., 2002). Its role as a possible indicator of intestinal microbial diversity however, has not been 

investigated. Our regression model showed that ~ 20% of variation in gut bacterial alpha 
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diversity could be explained by VO2peak alone; in fact, VO2peak stood as the only variable that 

significantly contributed to increased alpha diversity. The primary findings from this study 

suggest that CRF is an excellent predictor of gut microbial diversity in healthy humans, 

outperforming several other variables including sex, age, BMI, and dietary components. While 

no specific bacterial taxa abundance could be predicted in relation to CRF levels, the overall 

function of the microbiome in high CRF individuals seems to favor an increase in chemotaxis 

related genes and decreased LPS biosynthetic pathways. In addition, a strong positive 

correlation was observed between fitness levels and fecal butyric acid, a SCFA associated with 

gut health (Leonel & Alvarez-Leite, 2012).  

A recent study by Clarke et al. showed increased gut community richness amongst 

professional rugby players compared to sedentary BMI-matched and non-matched populations 

(Clarke et al., 2014). Due to extreme dietary differences amongst their groups however, the 

contribution of physical fitness could not be isolated from possible diet-driven influences. For 

example, it has been shown that increased species richness as a result of voluntary wheel 

running in mice is only robust under high-fat but not low-fat feeding conditions (Evans et al., 

2014), highlighting the importance of the background diet. In our study we minimized the 

potential influence of diet as a confounding factor by examining LOW, AVG, and HI fitness 

participants with no significant differences in a comprehensive number of dietary variables. In 

addition, we quantify fitness using VO2peak, a measure of capacity for aerobic work and the 

gold standard of CRF. In their study, Clarke et al. highlighted the importance of protein intake by 

showing its positive correlation with alpha diversity. Interestingly, the magnitude of this 

correlation was comparable to our correlation coefficient between VO2peak and alpha diversity 

in the absence of a correlation between protein intake and alpha diversity. This may suggest 

that the reported correlation between protein and alpha diversity may have been a secondary 

product of increased CRF amongst the elite athletes. The mechanisms by which physical 

activity may promote a rich bacterial community are not known but likely involve a combination 
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of intrinsic and extrinsic factors. For example, physically active individuals are more likely to be 

exposed to their environmental biosphere and follow an overall healthy lifestyle and as so 

harbor a richer microbiota. Simultaneously, intrinsic adaptations to endurance training can lead 

to changes in the GI tract, for example: decreased blood flow, tissue hypoxia, and increased 

transit and absorptive capacity (Gisolfi, 2000; Rosa et al., 2005). These and other potential 

adaptation mechanisms such as change in gut pH are likely to create an environmental setting 

allowing for richer community diversity. 

Beta diversity analysis of our cohort did not show distinct clustering of bacterial 

communities based on fitness categories. This contrasts with previous reports (Evans et al., 

2014), which showed distinct clustering resulting from wheel running in mice, as well as those 

by Clarke et al. who showed clustering of rugby players’ microbiota (Clarke et al., 2014). In 

addition to extreme dietary differences, several mechanisms may explain these discrepancies. 

Community clustering amongst cohabited animals or the ‘cage-effect’ is known to show high 

community structure concordance (Lees et al., 2014; McCafferty et al., 2013), it is therefore 

plausible that this phenomena extends to humans. As team members are likely to spend 

extended periods of time together on and off the field, there is an increased likelihood of 

microbial exchange leading to distinct similar bacterial profiles. Participants in the current study 

on the other hand did not belong to a common organization and did not show any detectable 

dietary differences. Other components of fitness not accounted for in the current study such as 

anaerobic capacity and resistance muscle training may also influence community composition, 

though to date no existing work has examined these parameters in relation to gut microbiota. 

Total protein intake was consistently seen as a significant contributor to beta diversity at 

each taxonomic rank tested, while sex and age were only influential beyond the phyla level. 

Unlike dietary carbohydrates and fats, which are commonly studied, the role of protein in the 

context of intestinal microbiota is considerably less understood. Protein-rich diets have been 

associated with prevalence of Bacteroides genus (Wu et al., 2011). Echoing this, results from 
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our RDA analysis showed a strong correlation between protein intake and Bacteroides without 

bias towards any specific fitness groups. Excessive fermentation of dietary protein in the GI tract 

is generally considered detrimental due to the production of toxic by-products such as amines, 

phenols, indoles, thiols, and ammonia (Macfarlane & Macfarlane, 2012; Rist, Weiss, Eklund, & 

Mosenthin, 2013). Further research however is needed to determine the synthesis kinetics and 

clinical consequence of these by-products during increased nutritional status and metabolic 

demands such as during prolonged exercise training. The RDA results further showed 

significant contribution of members of the Ruminococcaceae and Lachnospiraceae, two of the 

most abundant families in gut environments (Jalanka-Tuovinen et al., 2011), in explaining 

community diversity. These plant degraders persist in fibrolytic gut communities and are 

considered an important component of a healthy gut, while their depletion has been observed in 

IBD patients (Frank et al., 2007; Fujimoto et al., 2013). Ruminococcaceae and Bacteroides were 

anticorrelated, likely reflecting the persistence of these groups in plant carbohydrate- versus 

protein-rich gut environments, respectively. Interestingly, an unclassified member of the 

Christensenellaceae family was seen significantly correlated with age; this was true despite the 

limited range of our participants’ age (18-35 years). Though there is limited published work 

regarding its role, a recent study identified Christensenellaceae as the most heritable member of 

the gut microbiota and highlighted their role in promoting a lean phenotype (Goodrich et al., 

2014).  

An increase in CRF demands various phenotypic and metabolic adaptations by the host 

which subsequently may require adaptation by the commensal bacteria. The results of our RDA 

showed that despite VO2peak not constraining beta diversity in a predictable manner, it is 

however a driving force in changing the metagenomic functions of the microbiome. Functional 

categories most strongly correlated with VO2peak were related to bacterial motility (categories: 

bacterial motility proteins, flagella assembly, and bacterial chemotaxis), sporulation, and to a 

lesser extend the two-component system which enables bacterial communities to sense and 
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respond to environmental factors. One possible mechanism behind these associations may 

derive from the observation that butyrate, which was more abundant amongst fit participants, 

can modulate neutrophil chemotaxis (Bocker et al., 2003; Vinolo et al., 2011) . VO2peak was 

inversely correlated with LPS biosynthesis and LPS biosynthesis proteins which were more 

aligned amongst less fit participants. LPS is a major component of the cell wall of Gram-

negative bacteria and is considered an endotoxin when present in the blood. By binding to 

extracellular toll-like receptor 4 (TLR4) found on of many cell types, LPS elicits strong 

inflammatory responses that may be detrimental to the host. Continuous low-level translocation 

of LPS into circulation can induce chronic low-level inflammatory states that are associated with 

development of obesity and other metabolic syndromes (Monteiro & Azevedo, 2010). These 

inflammatory states are thought to derive, to some extend from inflammatory responses to blood 

LPS which is elevated in sedentary humans (Lira et al., 2010). Exercise training attenuates 

inflammation in part by reducing elevated blood LPS (Lira et al., 2010). The inverse relationship 

between VO2peak and LPS biosynthesis pathways observed in the current study therefore 

extends previous research, suggesting a beneficial consequence of increased physical activity 

to derive from decreased LPS biosynthesis. The findings here suggest that the gut microbiota 

adapt to metabolic demands of a physically active lifestyle, anchored around a set of 

physiological functions.  

Production of SCFAs is the primary result of carbohydrate fermentation under anaerobic 

conditions in the gut. Butyric acid or butyrate is the most commonly studied of these SCFAs 

regarding intestinal health. As the primary food source of colonocytes, butyrate plays an 

important role in gut homeostasis and health. It has been shown to possess anti-cancer and 

anti-inflammatory properties (Hamer et al., 2007), and be involved in gut motility (Hurst, Kendig, 

Murthy, & Grider, 2014; Scheppach, 1994) energy expenditure (Gao et al., 2009), intestinal 

permeability (Kanauchi et al., 1999), and appetite control (Sleeth, Thompson, Ford, Zac-

Varghese, & Frost, 2010), while a decrease in butyrate levels has been suggested in etiology of 
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ulcerative colitis (Kumari, 2013). We observed a strong positive correlation between VO2peak 

and fecal butyrate levels, which could not be accounted for by ingested dietary butyrate or its 

substrate, fiber. This suggests that the microbial profiles of physically fit individuals favor 

butyrate producing taxa leading to increased fecal butyrate. This is in accordance with 

Matsumoto et al. (2008) who observed increases in butyrate levels in cecum of rats exposed to 

5 weeks of wheel running (Matsumoto et al., 2008).  

The primary findings from this study suggest that aerobic fitness may predict gut 

microbial diversity in healthy humans and that dietary protein plays a significant role in microbial 

community composition. We further observed that adaptation of the microbiota to demands of 

increasing physical fitness is anchored around a set of functional cores rather than specific 

bacterial groups. In particular, the microbiome profile of fit individuals favors butyrate production, 

a common indicator of gut health. Overall, our findings are consistent with a role for physical 

activity in promoting gut intestinal health via associated changes in the microbial community 

composition. These findings warrant further research in the use of aerobic exercise prescription 

as an adjuvant therapy in prevention and treatment of dysbiosis-associated diseases. 
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Chapter 3: Effects of PA on gut health in murine colitis 

3.1 Background 

Inflammatory bowel diseases (IBD) encompassing Crohn’s disease (CD) and Ulcerative 

colitis (UC) are idiopathic, relapsing chronic diseases characterized by chronic inflammation of 

the gastrointestinal tract. While pathology varies between UC and CD, both burden patients with 

common debilitating clinical symptoms such as diarrhea, rectal bleeding, abdominal pain, and 

weight loss. The etiology of IBD is not known, however a combination of genetic, immunological, 

and environmental factors is implicated in its development. Most recently, the contribution of the 

intestinal microbiota in IBD pathogenesis has risen as an active area of research (Sheehan, 

Moran, & Shanahan, 2015). This hypothesis is primarily driven by observations that IBD patients 

have reduced gut microbial diversity (Harris & Chang, 2018) and are more likely to have been 

prescribed antibiotics in the 2-5 years preceding diagnosis (Shaw, Blanchard, & Bernstein, 

2011). In animal models, this is further supported by findings that mice genetically predisposed 

to colitis (IL-10-/-) are resistant to disease onset while kept under germ-free conditions (Sellon et 

al., 1998b).  

The human intestinal tract is continuously exposed to the trillions of microbes residing 

within the mucosal layer of the lumen. Under homeostatic conditions, these microbes are 

tolerated by the host as they provide essential functions such as digestion of complex 

carbohydrates, protection against enteric pathogens, and production of beneficial short-chain 

fatty acids (SCFAs), to name a few. Separating the luminal microbes from the intestinal 

epithelial cells (IEC) is a mucosal bilayer largely composed of the highly glycosylated protein 

mucin 2 (MUC2). In the colon, the loosely structured outer mucus layer allows for colonization of 

microbes in a nutrient-rich environment, while the dense inner layer segregates them from the 

IEC (Faderl, Noti, Corazza, & Mueller, 2015). To colonize the mucosal layer, microbes must 

tolerate its specific biological conditions such as absence of oxygen, alkaline pH, and 
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physiological temperatures. In this sense, fluctuations in mucosal health can dictate community 

dynamics of the microbiota (Faderl et al., 2015). Conversely, mucus phenotypes can also be 

influenced by microbial composition (Rodríguez-Piñeiro & Johansson, 2015). Inflamed tissues of 

UC patients often display structural defects or thinning of the mucosal barrier (Fyderek et al., 

2009) that lead to heightened exposure of microbes to host cells. In a healthy gut, a small 

portion of luminal microbes inevitably infiltrate the inner mucosal layer and come in direct 

contact with the IEC. These microbes are generally eliminated by the host innate immune 

system without development of immunological memory. For example, antimicrobial peptides 

(AMPs) secreted by the specialized intestinal Paneth cells may impose their microbicidal actions 

directly on the luminal side while antigen-presenting cells recruit activation of pro-inflammatory 

cascades to eliminate such invading cells in the submucosa. In an unhealthy gut with a 

compromised mucosal layer, the excessive exposure of microbial antigens to the host cells 

prompts a chronic state of inflammation and apoptosis leading to further loss of IEC integrity 

and thus further exposure and injury. MUC2 deficient mice (MUC2-/-) or those with missense 

mutation impairing the release of MUC2, develop spontaneous colitis (Van der Sluis et al., 

2006). Interestingly, symptoms severity and timing in MUC2-/- littermates varies across animal 

facilities (personal observation), further suggesting the role of microbes in this model.  

With incidences of IBD rising globally, there is an increasing demand for novel therapeutics. 

Physical activity (PA) has been proposed as both a primary and an adjunct therapy for 

prevention and treatment of various chronic diseases (Booth, Roberts, & Laye, 2012b) with IBD 

having been recently marked as a new candidate (Bilski et al., 2016). Studies of PA in rodents 

have shown ameliorated symptoms of chemically-induced colitis (Bilski et al., 2015; Marc D 

Cook et al., 2013b; Saxena et al., 2012; Szalai et al., 2014) that appear to be dependent on the 

colitis model and type of PA. These studies however, only assess the role of PA as a preventive 

measure leading up to induction of acute colitis via a chemical toxin. As so the potential benefits 

of PA succeeding disease onset is not known.   
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In this study we aimed to advance this knowledge gap by utilizing the MUC2-/- model of 

chronic colitis. In our facility, MUC2-/- mice are born with an underlying predisposition to 

intestinal inflammation that show rapid progression of disease symptoms from an early age. 

MUC2 -/- mice generally display clinical symptoms of colitis following weaning (~ 1 month) and 

histological analysis as early as two months of age indicates a moderate-level colitis, reaching 

high-severity by 4 months (Morampudi et al., 2016). We hypothesized that introduction of 

MUC2-/- mice to VWR would reduce the severity and delay the onset of disease symptoms. 

Having recently shown a significant correlation between aerobic fitness and overall microbial 

diversity (Estaki et al., 2016) we hypothesized further that these PA-associated protections 

would be mediated through changes of intestinal microbiota and their metabolites. 

3.2 Methods 

Animals - All procedures involving the care and handling of the mice were approved by the 

UBC Committee on Animal Care, under the guidelines of the Canadian Council on the Use of 

Laboratory Animals. Four-week-old male C57BL/5 mice were purchased from Charles River 

(Vancouver, CA) and kept under specific pathogen-free conditions. MUC2-/- mice, generated 

also on a C57BL/5 genetic background, were bred inhouse in our facility with the founding 

colonies having been kindly donated by Dr. Bruce Vallance from the Child and Family Research 

Institute (UBC Vancouver). All animals were housed in a temperature-controlled room (22 + 

2°C) on a 12h light/dark cycle with access to acidified water and irradiated food (PicoLab 

Rodent Diet 20-5053, Quebec, CA) ad libitum. At 5 weeks of age, using a random number 

generator, animals were assigned to individual cages under one of four groups (n=8) for 6 

weeks: wild-type mice with access to a free running wheel (VWR) or a locked wheel (SED), and 

MUC2-/- mice with access to free wheel (MVWR) or a locked wheel (MSED). Due to technical 

issues with the running wheels, a second cohort of animals were purchased and assigned to 

VWR. We chose to start wheel running immediately following weaning at 5 weeks of age, which 
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in MUC2-/- animals is delayed compared to WT, in attempt to maximize their PA prior to disease 

progression into a severe state. In our hand these animals begin to develop severe clinical 

symptoms of colitis around 3 months of age, which may overmine any protective effects of PA. 

The running wheels (Columbus Instruments, dimeter 10.16 cm, width 5.1 cm) recorded total 

number of revolutions at 1 hr intervals for the duration of the experiment. Body weights, food, 

and water intake were measured weekly at approximately at the same time during the light 

cycle. Food weight measurements consisted of subtracting the week’s remaining pellets on the 

cage lids and bottoms from that week’s starting weight.  

Tissue collection - For fecal sample collection, mice were kept in isolation in a sterile and 

DNA-zap treated containers until defecation. Fecal pellets were then snap-frozen in liquid 

nitrogen then stored in -80 °C until further analysis. Fecal samples were collected on day 1 

immediately following assignment to individual cages, and again on the final experiment day 

immediately preceding tissue collection. Whole blood was collected via intracardial puncture 

while under isoflurane inhalation, followed by termination by cervical dislocation. The cecum 

was isolated, its content removed, and tissue frozen in liquid nitrogen. Colon tissues were 

collected as follows: starting from distal end, three ~1.5 cm sections were collected with the 

most distal section being fixed in formalin for histological staining, the middle section was stored 

in RNAlater (Theromo Fisher Scientific) for RNA extraction, and the most proximal section was 

snap-frozen in liquid nitrogen for use in DNA extraction. All frozen samples were then stored in -

80 °C until further use.  

Clinical and Histopathological Scoring - Disease progression in MUC2-/- animals was 

assessed based on an in-house clinical symptom scoring system (Appendix A). Briefly, each 

animal was graded weekly based on the following: observed behavior from a distance, 

stool/rectal bleeding, stool consistency, weight loss, and hydration, with each parameter being 

assigned a score of 0-4. Humane endpoint was set as a total accumulative score of ≥12, rectal 
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prolapse, or a weight loss of >20% body weight for 2 consecutive days. No animals reached 

humane end-point in this study. 

For histopathological scoring, colon cross-sections were fixed in 10% neutral-buffered 

formalin at 4°C overnight, washed 3 times with phosphate buffered saline (PBS, pH 7.4), 

transferred to 70% ethanol and sent for paraffin-embedded sectioning and hematoxylin and 

eosin (H&E) staining at Wax-it Histology Services (Vancouver, Canada). Tissue slides were 

coded throughout the microscopy analyses and investigators blinded to the groupings. H&E 

stained sections were viewed under 200x magnification on an Olympus IX81 microscope and 

the full image stitched together using MetaMorph® software. Stitched images were imported 

into ImageJ  (Schneider, Rasband, & Eliceiri, 2012) (v. 1.51r) for scoring. Disease severity in 

colonic cross sections from the MUC2-/- animals were assessed using a previously described 

scoring system (Bergstrom et al., 2010). In brief, averaged scores were quantified using the 

following criteria:  

1. Edema, as compared to a healthy WT control: 0 = no change; 1 = mild (<10%); 

2 = moderate (10-40%); 3 = profound (>40%) 

2. Epithelial hyperplasia, average height of crypts as a percentage above the height of a 

healthy control where 0 = no change; 1 = 1–50%; 2 = 51–100%; 3 = >100% 

3. Epithelial integrity, shedding and shape of the epithelial layer as compared to healthy 

control where: 0 = no change; 1 = <10 epithelial cells shedding per lesion; 2 = 11–20 

epithelial cells shedding per lesion; 3 = epithelial ulceration; 4 = epithelial ulceration with 

severe crypt destruction  

4. Cell infiltration, presence of immune cells in submucosa: 0 = none; 1= mild (2-43); 

2 = moderate (44-86); 3= severe (87-217). 

The maximum score resulting from this system is 13. 

 



62 

Reverse Transcriptase-qPCR - The mRNA gene expression for tumor-necrosis factor alpha 

(TNFα), interferon-gamma (IFNγ), resistin-like molecule beta (Relm-β), regenerating islet-

derived protein 3 (RegIII-γ), transforming growth factor beta (TGF-β), chemokine C-X-C motif 

ligand 9 (Cxcl9), and claudin 10 (Cldn10) were measured in colon tissues. Total RNA was 

purified from tissues using Qiagen RNEasy kits (Qiagen) according to the manufacturer’s 

instructions with an additional initial bead beating step (3x30 seconds, 30 Hz) on a Retsch 

MixerMill MM 400 homogenizer. Next, cDNA was synthesized using an iScript cDNA Synthesis 

Kit (Bio-Rad) in 10 μl reactions. The RNA and cDNA products’ purity and quantity were 

assessed by a NanoDrop spectrophotometer (Thermo Scientific). The cDNA products were 

normalized to ~ 40 ng/µl with DNAse free sterile water prior to qPCR reactions. 

A total of 10 µl RT-qPCR reactions consisted of: 0.2 µl of each forward and reverse primers 

(10mM), 5 µl of Sso Fast Eva Green Supermix (Bio-Rad), 3.6 µl DNAse free water, and 1 µl of 

cDNA template. Reactions were run in triplicates using the Bio-Rad CFX96 Touch thermocycler 

and analyzed using Bio-Rad CFX Maestro software 1.1 (v4.1). The median quantitation cycle 

(Cq) value from each sample was used to calculate the 2–∆∆Ct based on the reference gene 

TATA box binding protein (Tbp). A list of all the primer sets, their melting temperature, 

efficiencies, and detailed thermocycler protocol used in this study are described in Appendix B. 

Short-chain fatty acids - SCFAs (acetic, propionic, heptanoic, valeric, caproic, and butyric 

acid) were analyzed from cecal tissues by gas chromatography (GC) as described previously in 

Chapter 2. Half of the cecal tissue was freeze dried to measure the dry weight, and 

measurements are expressed as μmol/g dry weight (d.w). 

DNA extraction and 16S rRNA amplicon preparation - DNA was extracted from fecal 

samples using the QIAmp DNA Stool Mini Kit (Qiagen) according to the manufacturer’s 

instructions following 3 x 30 s of beat beating. The QIAmp PowerFecal kit was used to extract 

colonic DNA which utilizes garnet bead beating instead of metal beads which yields a higher 

ratio of bacteria:host final DNA concentration. Amplicon libraries were prepared according to the 
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Illumina16S Metagenomic Sequencing Library Preparation manual. In brief, the V3-V4 

hypervariable region of the 16S bacterial rRNA gene was amplified using recommended 

degenerate primer sets 341F: CCTACGGGNGGCWGCAG, and 805R 

GACTACHVGGGTATCTAATCC, which create an amplicon of ~460 bp. Amplicons were purified 

using AMPure XP beads and adapters and dual-index barcodes (Nextera XT) were attached to 

the amplicons to facilitate multiplex sequencing. Following another clean-up step, libraries were 

quality controlled on an Experion automated electrophoresis system (Bio-Rad), and sent to The 

Applied Genomic Core (TAGC) facility at the University of Alberta (Edmonton, Canada) where 

they were normalized using fluorometric method (Qubit, Thermo Fisher Scientific) and 

sequenced using the Illumina MiSeq platform with a V3 reagent kits allowing for 2 x 300 bp 

cycles.  

Bioinformatics - All bioinformatics processes were performed within the QIIME2 platform 

(Caporaso et al., 2010) using the various build-in wrappers described below. All used software 

packages, versions, and parameters are available under the ‘provenance’ section of the QIIME2 

feature-table artifact which will be made available online. This file can be viewed locally on a 

browser by drag and dropping the file onto https://view.qiime2.org/. Paired-end sequences 

obtained from the sequencing machines underwent quality-filtering, dereplication, chimera 

removal, denoising, and merging using the DADA2 (Callahan et al., 2016) plugin with default 

settings. The output of this process is a feature table of amplicon sequence variants (ASV) that 

is a higher resolution analogue of traditional observational taxonomic unit (OTU) tables. A Naïve 

Bayes classifier that was trained on the specific region targeted by our primer sets using the 

most recent available version of the Greengenes (13_8) was used to assign taxonomy at the 

genus level. For analyses encompassing phylogenetic information, a phylogenetic tree was 

constructed using a SATé-enabled phylogenetic placement (SEPP) technique as implemented 

in the q2-fragment-insertion plugin (Janssen et al., 2018) with default settings. To predict the 

functional repertoire and phenotype of the microbiome, we used BugBase (Ward et al., 2017) 

https://view.qiime2.org/
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which utilizes PICRUSt’s (Langille et al., 2013) extended ancestral-state reconstruction 

algorithm for metagenome composition prediction. As these tools require features to be 

classified against Greengenes taxonomy, we used QIIME2’s VSEARCH (Rognes, Flouri, 

Nichols, Quince, & Mahé, 2016) plugin to pick closed-reference OTUs from our denoised 

feature table at 97% similarity threshold against the 97% Greengenes OTUS database. 

Statistical Analysis - All statistical analyses were performed using R version 3.5.1unless 

stated otherwise. During week 3, the VWR animals were exposed to 72 hrs of interruptions in 

their light:dark cycle due to an electrical malfunction in the room. The exact nature of this 

interruption is not known but likely consisted of irregular or an overall lack of dark cycle. Though 

short in duration, this may have affected the nature of wheel running between these groups, and 

as such further analyses were conducted in a 4 groups x 1 level factorial design rather than a 2 

x 2 design. 

Wheel running - Wheel running data was first analyzed across the 6 weeks time using linear 

mixed-effects regression (LMER) using the lme4 package (Bates, Mächler, Bolker, & Walker, 

2014) with individual animals set as the random effect. Homoscedasticity and linearity of the 

models were assessed using diagnostic plots of the residuals. The total distance ran between 

groups was compared using a Kruskal-Wallis non-parametric test as the data did not meet the 

assumptions of normal distribution. 

Body weights and food/water intake - To account for natural differences in starting body 

weights, total weight gained relative to starting body weights was calculated at each week. Body 

weights, food and water intake comparisons across the 6 weeks were assessed using repeated 

measures utilizing LMER as before with ‘week’ also added as a random effect to the model to 

account for possible sources of variation due to different animal handlers and weight-scales 

used during the experiment. A Tukey HSD post-hoc test with the Benjamini-Hochberg (BH) P 

adjustment method was used when an overall significance (set as P<0.05) in the models were 

detected. 
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Clinical and Histopathological Scoring - Clinical and histopathological scores in MUC2-/- 

animals were compared using a cumulative link model (CLM) with a logit link using the ordinal 

package. This proportional odds type test is more appropriate for ordinal data type than classic 

linear regressions. For clinical scores, the model included week and group as the fixed effects, 

and individual animals as the random effects. For histopathological scores, the total average 

score of the MSED and MVWR groups were compared without a random effect variable. 

Colon mRNA gene expression - Colonic mRNA gene profiles were first explored using an 

ordination method to visualize overall group profiles. The Euclidean distances of Hellinger-

transformed relative gene expression values were ordinated onto a principle component 

analysis (PCA) plot. Group differences were assessed using a permutational multivariate 

analysis of variance PERMANOVA test in the vegan package, and pairwise differences 

calculated using pairwiseAdonis with BH adjustment for multiple testing. For differential 

abundance testing of each cytokine, a multivariable generalized linear model (GLM) test was 

carried out using the mvabund package (Wang, Naumann, Wright, & Warton, 2012). This fits 

separate GLMs to each cytokine while accounting for the inter-correlation amongst them and 

adjusting for multiple testing. The negative binomial distribution assumption was selected for the 

model and the mean-variance plot was used to assess the model fit. A Kruskal-Wallis post-hoc 

test was carried on individual genes when significance was detected in the overall model. 

Pairwise comparisons across groups was carried out using Conover’s test for multiple 

comparisons within the PMCMRplus package.  

Short-chain fatty acids - As with the cytokine analyses concentrations of various cecal SCFA 

were assessed using a multi-GLM test. With the global model showing a significant group effect, 

post-hoc tests were carried out on individual SCFA identified as significant from the univariate 

results from the global model.  
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Microbial Analysis - Community structural patterns of fecal bacteria across samples (β 

diversity) were explored in QIIME2 by calculating the Bray-Curtis and weighted-UniFrac 

distances across samples and plotting them onto a PCoA space using Emperor interactive 

graphic tool (Vázquez-Baeza et al., 2017). To reveal possible group differences, a 

PERMANOVA (Anderson, 2001) test was conducted across all groups and time-points using a 

rarefied feature-table at a depth of 9930. Pairwise testing was then followed using a Kruskal-

Wallis test with a BH adjustment to control for false discovery rate (FDR). In addition, a 

generalized Hotelling’s test on centered log ratio (clr)-transformed feature tables was used to 

compare the average microbiome composition between paired samples, as implemented in the 

GHT package (Zhao, Zhan, Guthrie, Mitchell, & Larson, 2018). This test has the advantage of 

accounting for the paired relationship of microbiome samples across time and does not require 

rarefying as it works with relative abundance data. 

The overall within sample diversity (α diversity) was calculated based on the species 

richness, Shannon index, and Faith’s phylogenetic diversity (PD) indexes, which capture the 

overall richness, evenness, and phylogenetic diversity of the communities, respectively. For 

each group, the difference between a sample’s week 6 and week 0 diversity score was 

calculated and used to determine whether the change differed from zero (Wilcoxon test) and 

other groups (ANOVA plus Tukey HSD).  

Differential abundance testing between individual taxa was performed using ALDEX2 

package (Fernandes et al., 2014). This approach also utilizes clr-transformation and has been 

shown to be superior to stand-alone multi-glms approaches in reducing false-positives (Weiss et 

al., 2017), and further appropriately accounts for the compositional nature of these types of 

datasets which is absent in stand-alone GLM methods. To reduce noise in the test, low 

abundant taxa were filtered based on the requirement that the average abundance of each taxa 

across all samples must be > 1. 
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BugBase was used to determine high-level phenotypes of bacterial communities based 

on the following default traits: Gram negative vs. Gram positive, biofilm forming, mobile element 

containing, oxidative stress tolerance, pathogenic potential, and oxygen utilizing. Pre- and post-

treatment differences in relative abundances of these elements were tested in each group using 

a Kruskal-Wallis test with BH adjustment of P values to control FDR. 

Boxplots in figures show the median plus IQR range. Whiskers in bars represent 1.5 x IQR 

range as per R base default settings. 

3.3 Results 

Wheel running - One animal from each group unexplainably did not run on the wheels, as so 

they were excluded from the analyses. The WT group ran an average (SD) of 46.6 (18.4) km in 

total throughout the 6 weeks, while the MUC2-/- animals ran slightly less at 40.7 km (21.5) which 

correspond to ~ 1.3 and 1.1 km/day, respectively. While the WT showed generally higher levels 

of wheel running, especially during the first three weeks, the differences were not statistically 

significant (Figure 14A) likely due to the highly variable nature of running data.  

Bodyweights, food and water intake - Weight gain was not significantly different across 

activity levels, however as expected MUC2-/- mice gained less weight throughout the 6 weeks 

(Figure 14B). The mean (± SE) total weight gain of each group was: SED 33.12 ± 2.66 %, VWR 

26.98 ± 2.14%, MSED 19.18 ± 1.96%, and MVWR 19.59 ± 2.99% grams relative to their starting 

body weights. By the final week, there was a trend towards VWR animals having gained less 

total weight compared to their SED counterpart, however this did not reach statistical 

significance. Food intake was not statistically different between groups across the 6 weeks 

(Figure 14C). MUC2-/- mice drank significantly more water than WT animals (Beta coefficient 

(B): 5.4, P<0.001) throughout the 6 weeks. Wheel running was associated with increased water 

intake in WT (B: 5.3; P<0.01) and to a lesser extend in MUC2-/- mice (B:1.9; P<0.86) (Figure 

14D) 
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Figure 14. Weight gain, activity, food, and water intake 

Longitudinal measurements of A) total accumulated distance ran, B) relative weight gain compared to 

starting weight, C) total weekly food intake, and D) total weekly water intake. Linear mixed models were 

used with week and animals set as random effects. There were no significant effects of wheel running in 

any of the parameters. * indicates a significant (P<0.05) main effect between phenotypes. 
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Histopathological and clinical scores 

The result of the overall CML showed a modest but significant difference in clinical scores 

between MVWR and MSED groups (B: -1.67; P<0.01) across the 6 weeks, implying reduced 

disease symptoms in the running animals. However, post-hoc tests carried out at each week 

showed no significant difference between groups, though the difference between groups (B: -

2.0, P=0.063) appeared to be increasing gradually through week 6 (Figure 15A). 

Histopathological scores based on H&E sections showed no differences between groups 

(Figure 15B). 

 

Figure 15. Assessment of colitis symptoms 

Comparison of A) clinical scores across 6 weeks, and B) histopathological scores in MUC2-/- animals. C) 

Representative colon images of H&E stained sections from MSED (top row) and MVWR (bottom row) 

mice. No significant differences were observed between groups in either measurements. Values are 

means ±SE 
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Short-chain fatty acids - The results of the global GLM indicated a significant group effect 

(Test statistic: 14.83, P<0.01) while the univariate tests showed significant differences in 

acetate, propionate, butyrate, and valerate across groups. Post-hoc analyses on these SCFAs 

as well as total SCFA were carried out with results shown in Figure 16, and Table 7. Total SCFA 

concentration was significantly higher in VWR mice than all other groups, while SED mice had 

similar total SCFA compared to both MUC2-/- groups. VWR also had significantly higher total 

acetate and butyrate than all the other groups and higher propionate than SED. Overall, the 

major difference between MUC2-/- and WT animals was the significantly reduced levels of 

butyrate in MUC2-/- mice and inversely, higher levels of propionate, valerate, caproate, and 

heptanoate were similar across all groups. In terms of relative abundance, the main differences 

between MUC and WT was the higher propionate and lower butyrate proportions in MUC2-/- 

animals. Importantly, the proportion of butyrate in VWR mice (~12 %) was significantly higher 

than those in SED (~7.9 %). 

 

Pairs Total SCFA Acetate Propionate Butyrate Valerate 

SED-VWR ↓ ↓ ↓ ↓ n.s 

MSED-MVWR n.s n.s n.s n.s n.s 

SED-MSED n.s n.s ↓ ↓ n.s 

VWR-MVWR ↑ ↓ ↓ ↓ n.s 

Table 7. Pairwise comparison results of SCFAs 

N.s, not significant; arrows represent a statistically significant (adjusted P<0.05) different between the 

corresponding pair. The direction of the arrow refers to the level of the first group relative to the second. 
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Figure 16. Cecal SCFAs composition 

Cecal tissues analysed for SCFAs composition using gas chromatography. The bottom and top of 

boxes are the first and third quartiles, the middle band inside the boxes is the median, 

the whiskers contain the upper and lower 1.5 interquartile range (IQR). * denotes significantly different 

(adjusted P<0.05) than all other groups. † different compared to their MUC2-/- counterpart. SCFA, short-

chain fatty acid 
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Colon mRNA gene expression - The exploratory PCA plot showed clear separation of the WT 

vs. MUC2 animals along the first principal component (PC1) axis which accounted for 41.7% of 

the variation. Further clustering between the SED and VWR groups but not between MSED and 

MVWR was observed along PC2, which accounted for an additional 17.7% of the variance. The 

result of the PERMANOVA test confirmed these observations revealing a clear separation 

amongst groups (F, 10.513; P <0.01). The pairwise comparison test shows a statistically 

significant separation between all pairs except between MSED and MVWR. The global multi-

GLM model showed a significant difference (adjusted P = 0.001) across groups with the 

univariate tests showing a significant difference in all genes across groups. The results of the 

pairwise comparison of each cytokine between relevant groups is shown in Table 8. Notably, 

VWR mice had significantly lower TNF-α, TGF-β, IFN-γ, and RegIII-γ compared to SED mice 

(Figure 17); no changes were detected between MVWR and MSED animals. MUC2-/- animals 

had increased concentrations of IL-10, RELM-β, CXCL9, RegIII-γ, and TNF-α compared to their 

WT counterparts. 

 

Pairs RELM-β TGF-β CLDN10 CXCL9 IFN-γ RegIII-γ TNF-α 

SED-VWR n.s ↑ n.s n.s ↑ ↑ ↑ 

MSED-MVWR n.s n.s n.s n.s n.s n.s n.s 

SED-MSED ↓ n.s n.s ↓ n.s ↓ ↓ 

VWR-MVWR ↓ n.s ↓ ↓ ↑ ↓ ↓ 

 

Table 8. Results of group pairwise comparison of colonic mRNA gene expression 

N.s, not significant; arrows represent a statistically significant (adjusted P<0.05) different between the 

corresponding pair. The direction of the arrow refers to the level of the first group relative to the second. 
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Figure 17. Colonic mRNA gene expression 

The relative mRNA gene expression of selected pro- and-anti-inflammatory mediators in colon. * denotes 

significantly different (adjusted P<0.05) than all other groups. † different compared to their MUC2 -/- 

counterpart.  
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Bacterial community analysis. Beta diversity: The PERMANOVA test showed a significant 

difference between MUC2-/- and WT animals across the Bray-Curtis dissimilarity (Pseudo F, 

38.8; P <0.001) and weighted-UniFrac (Pseudo F, 105.5; P<0.001) distances, corresponding to 

clear clustering observed between these groups on the PCoA plots (Figure 18). Importantly 

however, in both matrices there was a significant (Bray-Curtis Pseudo-F 3.99, p<0.01; 

weighted-UniFrac Pseudo-F 5.742, p<0.05) distance between SED and VWR animals prior to 

treatment assignment (Figure 19). This fact strongly suggests the presence of a batch effect in 

our experiment which is likely explained by the fact that the VWR animals were purchased at 

different times compared to the other groups and their microbiome sequenced on a separate 

MiSeq run. As batch-effects are a well-known issue in short-read sequencing experiments (W. 

W. Bin Goh, Wang, & Wong, 2017), differences across groups are then likely confounded by 

this. Therefore, in all proceeding analysis examining the role of wheel running, groups are only 

compared to themselves across time rather than across groups. Pairwise analysis of each 

group comparing their week 0 to week 6 profiles showed no differences in MUC2-/- animals 

(Figure 20), however significant differences were observed in WT animals. A significant shift in 

community structure of VWR animals based on the Bray-Curtis distances was observed by 

week 6 (Pseudo F, 2.38; P<0.01) (Figure 19). SED animals also showed a significant, albeit to a 

much lesser degree, shift at week 6 (Pseudo F, 1.88; P<0.01), suggesting a slight change in 

overall structure of the microbiome as a function of time in WT animals. Differences based on 

the weighted-UniFrac phylogenetic distances (Figure 19) however showed a significant shift in 

VWR but not SED animals by week 6 (Pseudo F, 8.87, P<0.01). Changes in community 

structures were also analyzed using the more sensitive GHT test which accounts for shifts in 

each community’s profile using a paired design, rather than comparing the group centroids. 

Results from the GHT agreed with the PERMANOVA results showing a significant shift in 

microbiome of SED and VWR (P<0.05 and P<0.01, respectively) but not in MSED and MVWR 

groups.  
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Figure 18. Fecal bacterial profiles colored by phenotypes 

PCoA plots of A) Bray-Curtis dissimilarity and B) weighted UniFrac distances showing a significant 

separation of communities by phenotype across time. No significant separation is present as a function of 

time. 

 

 

 

Figure 19. WT mice bacterial profiles colored by activity 

PCoA plot of A) Bray Curtis Dissimilarity and B) weighted-UniFrac phylogenetic distances in WT animals. 

VWR animals show a significant shift across time in both distance matrices while SED animals show a 

smaller but significant shift in the Bray-Curtis dissimilarity plot only. Pseudo-F statistic and Permutation P 

values correspond to the global model. See text for details regarding pairwise differences. 
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Figure 20. MUC2-/- mice bacterial profiles colored by activity 

A plot of A) Bray-Curtis dissimilarity distances, B) weighted-UniFrac distances in MUC2-/- animals. No 

significant separation was identified as a function of treatment or time. 

 

 

Univariate differential abundance testing comparing week 0 and week 6 from each group 

showed changes in both VWR and MVWR but not in SED and MSED groups. In MVWR mice, 

the relative abundance of only one taxa, an unclassified genus belonging to the Bacteroidales 

order, was lower by 18.7 folds from ~1.2 to 0.07 % total relative abundance. In the VWR group, 

the only detectable change by week 6 was the lower relative abundance of two taxa, both 

belonging to the family Ruminococcaceae. These were the species Anaerotruncus colihominis 

which was reduced from 4.4 to 2.02% relative abundance, and an unclassified genus which was 

modestly lower from 5.5 to 4.3% by week 6. 

Alpha diversity - WT mice had significantly higher (P < 0.001) overall diversity than MUC2-/- 

animals in all examined diversity indexes: observed species (H test statistic: 12.2), Shannon (H: 

27.8), and Faith’s PD (H: 32.7) (Figure 21D). No significant change in any diversity measures 

was detected in any group after 6 weeks (Figure 21A-C). The average change of observed 

species over time in VWR group however was significantly higher than that of SED (difference 

~262, P <0.05).  
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Figure 21. Change is alpha diversity indexes 

The plots show the differences in diversity scores between week 6 and week 0 in A) Observed species, 

B) Shannon (H’), and Faith’s PD. Group differences were compared to the null hypothesis of zero change 

as well as to other groups. D) Faith’s PD differences in MUC2-/- and WT animals regardless of wheel 

running. 

 

 

Predicted phenotypic traits - BugBase’s prediction of each community’s phenotypic traits 

suggest major differences between WT and MUC2-/- animals (Table 9). Bacterial communities in 

MUC2-/- mice were composed of significantly higher abundances of Gram negative, aerobic, and 

facultative anaerobic bacteria with a higher potential for biofilm formation. Their communities 

also housed less bacteria with mobile elements and had an overall lowered tolerance for 

oxidative stress. At week 6, only VWR mice showed significant changes in their bacterial 

phenotypes compared to week 0. Their communities showed lower average abundances of 

mobile-containing (~12 %, P<0.05) and Gram-positive (~14 %, P<0.001) bacteria (Figure 22). 
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Figure 22. BugBase's predicted phenotypic traits 

BugBase was used to predict the relative abundance of bacteria corresponding to A) those containing a 

mobile element, and B) Gram positive bacteria. A statistically significant difference (adjusted P <0.05) 

was detected across phenotypes in both traits. VWR group was statistically lower at week 6 compared to 

week 0 in both traits. 

  



79 

 

Table 9. BugBase's phenotypic trait predictions 

n.s = no significant difference, yes=a significant (adjusted P<0.05) difference was detected between the 

described pairs. The arrow indicates the direction of the change. 

 

 

3.4 Discussion 

MUC2-/- vastly differ than WT in their colonic cytokine, SCFA, and microbial profiles - 

MUC2-/- mice displayed clinical and histological symptoms of moderate colitis corresponding to 

the expected severity of this model at 11 weeks of age in our facilities (personal observations). 

The colonic gene expression of inflammatory cytokine TNF-α, and the mucosal defense factor 

RELM-β, as well as antimicrobial peptide RegIII-γ were upregulated in MUC2-/- animals, as 

observed previously (Morampudi et al., 2016). Notable, the anti-inflammatory cytokine IL-10 was 

overexpressed in MUC2-/- compared to WT. While in a healthy state, the expression of IL-10 

may be associated with increased tolerance to inflammatory events, in MUC2-/- animals, this 

upregulation is essential in the host’s efforts at suppressing the excessive inflammation resulting 

from continuous exposure to bacterial ligands. Indeed, MUC2-/- + IL-10-/- double knock-out mice 
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show highly exacerbated colitic symptoms (van der Sluis et al., 2008) compared to deletion of 

either genes separately. The increase in IL-10 has also been previously observed in chemical 

models of colitis (Marc D Cook et al., 2013b; Szalai et al., 2014). We further detected significant 

overexpression of CXCL9 in MUC2-/- animals. CXCL9 is a chemokine involved in regulating 

leukocyte trafficking likely in response to exposure of bacterial ligands to host cells. CXCL9 

overexpression has also been reported in IBD patients (Singh, Venkataraman, Singh, & Lillard 

Jr., 2007). Overall, the cytokine profile of MUC2-/- animals reflect those expected in human IBD.   

MUC2-/- mice born without a mucosal layer house drastically less diverse and different 

bacterial community than WT mice, as evident by the clear clustering of this group from WT in 

our PCoA plots. The dominating taxa in WT mice were generally of the Bacteroides, 

Clostridiales, and Lachnospiraceae, while MUC2-/- animals were dominated by members of the 

S24-7 family and Akkermansia muciniphilia species of the Verrucomicrobia phyla. A.muciniphilia 

is perhaps the most surprising finding in this group as this species is known -and named- for its 

ability to degrade mucin, and is vastly considered as a beneficial bacteria in a variety of chronic 

diseases including IBD (Lopez-Siles et al., 2018; Naito, Uchiyama, & Takagi, 2018; Reunanen 

et al., 2015). The implications of this finding are beyond the scope of the current study; 

however, it does warrant the reassessment of the characterization of A.muciniphilia as a mucin 

loving species to one that thrives in the absence of mucin. The bacterial phenotypic traits of 

MUC2-/- animals were predicted to be higher in abundances of Gram negative, aerobic, and 

biofilm forming groups compared to WT mice. Lastly, the cecal SCFA of MUC2-/- mice were 

composed of significantly less butyrate and higher propionate concentrations compared to SED 

animals. The increased propionate levels in these animals is likely associated with the high 

abundances of A.muciniphilia, a prominent propionate producer (Rajilić-Stojanović, Shanahan, 

Guarner, & de Vos, 2013; Reichardt et al., 2014). Overall, we found the MUC2-/- model of colitis 

to capture many components of human IBD, especially those with impaired mucosal integrity. 
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Wheel running in MUC2-/- mice does not reduce severity of chronic colitis   

Contrary to our primary hypothesis, we found that 6 weeks of wheel running in MUC2-/- 

mice did not significantly affect severity of clinical symptoms, histopathological scores, colonic 

expression of inflammatory cytokines, or abundances of cecal SCFAs, and only influenced the 

abundance of a single low abundant taxon in these animals. These findings contrast others that 

show protective effects of VWR or FTR in chemically-induced models of colitis (Bilski et al., 

2015; Marc D Cook et al., 2013b; Saxena et al., 2012; Szalai et al., 2014). The fundamental 

difference between those studies and ours is in the model of colitis used. Previously, VWR was 

initiated in healthy animals prior to disease induction with chemical toxins, whereas in our study, 

wheel running is imposed over an existing disease state as a therapeutic intervention. This 

would suggest that PA prior to disease onset primes various components of intestinal health, 

enhancing its tolerance to injury. The effects of PA following disease-onset on the other hand, 

are either abolished or are overmined by stronger disease signaling. This is supported by our 

findings that wheel running in WT but not MUC2-/- animals lead to significantly lower levels of 

pro-inflammatory colonic cytokines, increased anti-inflammatory IL-10, and increased levels of 

beneficial SCFAs. 

  

VWR significantly attenuates pro-inflammatory, and upregulates anti-inflammatory 

cytokines in WT mice 

VWR mice, in the presence of the mucin2 gene, showed downregulation of inflammatory 

cytokines TNF-α, IFN-γ, and TGF-β compared to SED animals, all of which have been 

implicated in IBD (Strober & Fuss, 2011). TNF-α is perhaps the most studied cytokine in relation 

to IBD as it plays a crucial role in innate and adaptive immunity and is directly involved in 

apoptotic processes in the intestines (Popa, Netea, van Riel, van der Meer, & Stalenhoef, 

2007). It is found in significantly higher abundances in IBD patients (Komatsu et al., 2001) as 

well as murine colitis (Mueller, 2002), making its regulation an obvious target for disease 
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management. In fact, TNF-α inhibition using monoclonal antibodies is the most common target 

of biological therapies for moderate to severe IBD. The role of IFN-γ in colitis pathogenesis is 

less consistent across the literature, however its overproduction has been shown in CD (Fais et 

al., 1994; Sasaki, Hiwatashi, Yamazaki, Noguchi, & Toyota, 1992) and UC patients (Verma, 

Verma, & Paul, n.d.). In DSS-induced colitis models, neutralization antibodies against IFN-γ 

significantly reduced disease severity (Obermeier et al., 1999), while IFN-γ-/- mice were 

completely protected from disease symptoms (Ito et al., 2006). Anti-IFN-γ antibody treatments in 

human IBD are less effective however, with their efficacy dependent on baseline C-reactive 

protein levels (Abraham, Dulai, Vermeire, & Sandborn, 2017), highlighting the need for 

treatment personalization. TGF-β is pleiotropic cytokine that is ubiquitously produced by many 

cells and is involved in various immune functions including both anti- and pro-inflammatory 

actions. These include suppression of immune responses through recruitment of Tregs which in 

turn produce IL-10, but TGF-β can also elicit potent Th17 responses to combat extracellular 

bacteria (Ihara, Hirata, & Koike, 2017). TGF-β is found in higher concentrations in intestines of 

IBD patients (Babyatsky, Rossiter, & Podolsky, 1996; McCabe, Secrist, Botney, Egan, & Peters, 

1993), due to increased exposure of microbial ligands to host epithelial cells. Inversely, the 

attenuated levels of this cytokine in our VWR animals then may reflect a decrease in bacterial 

antigen exposure to the IEC suggesting reduced levels of host-microbe interactions in the 

mucosa. Alternatively, reduced TGF-β could also indicate reduced Treg activity in VWR mice, 

however, the increase in Treg derived IL-10 in these animals does not support this notion. IL-10 

is an anti-inflammatory cytokine ubiquitously secreted by Tregs and is the primary driver of 

immunosuppressant actions in the intestines. Polymorphism in IL-10 promoter have been linked 

to IBD, making IL-10 supplementation a potential target for IBD therapy, however, clinical 

studies of IL-10 therapy to date have not been significantly effective (Asadullah, Sterry, & Volk, 

2003). The significant increase in IL-10 in VWR mice suggests higher Treg activity which is 

associated with reduced inflammation. This is in agreement with others who showed a 
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significant increase in murine intestinal IL-10 following treadmill running or swimming (Hoffman-

Goetz, Spagnuolo, & Guan, 2008; Viloria et al., 2011). However, it is unclear whether this 

reflects a beneficial increase in anti-inflammatory events, or simply an adaptive response to 

changes in the microbial composition. Gram-negative bacteria preferentially stimulate IL-10 

production and are associated with higher virulence due to increases in abundance of LPS 

bound to Gram-negative bacterial walls (Hessle, Andersson, & Wold, 2000). The higher 

expression of IL-10 in VWR animals then is likely correlated with increased abundance of Gram-

negative bacteria observed in these mice. Further investigations are needed to determine the 

consequence of these changes. 

Taken together, the reduction of these pro-inflammatory cytokines and increase in anti-

inflammatory IL-10 in VWR animals suggests a primed anti-inflammatory state in healthy but not 

diseased intestines marking them as important targets for prevention and remission 

maintenance therapy. 

 

VWR significantly augments SCFAs content in WT but not MUC2-/- mice 

SCFAs are metabolic by-products of bacterial fermentation of dietary fibers in the colon 

and are involved in various physiological processes of the host. Aberrant intestinal SCFAs 

content has been implicated in various diseases such as irritable bowel syndrome, 

cardiovascular disease, certain cancer types, and IBD (Floch & Hong-Curtiss, 2002; Tedelind, 

Westberg, Kjerrulf, & Vidal, 2007; Venter, Vorster, & Cummings, 1990). The most abundant of 

these, acetate, propionate, and butyrate (>95%), are markedly decreased in IBD patients 

(Huda-Faujan et al., 2010), while their exogenous delivery can reduce inflammation via 

inhibition of TNF-α release from neutrophils (Segain et al., 2000; Tedelind et al., 2007). Overall, 

increases in these SCFAs, especially butyrate, appear to positively influence IBD (Plöger et al., 

2012). We found an overall higher abundance of total cecal SCFAs, acetate, butyrate, and 

propionate in response to wheel running in WT but not MUC2-/- animals. This is in accordance 
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with other reports showing higher butyrate concentrations in wheel running rats (Matsumoto et 

al., 2008) and exercised humans (Jacob M. Allen et al., 2018), as well our findings from Chapter 

2 showing a positive association between higher butyrate levels and VO2peak. The increase in 

these SCFAs may simply reflect higher energy demands of colonocytes which utilize SCFAs as 

their primary energy substrate. Interestingly, when we analyzed SCFAs content in relative 

terms, we saw a significant increase in relative abundance of butyrate, but not acetate, or 

propionate. This suggests a preference in VWR animals for production of butyrate and its 

accompanying anti-inflammatory properties. These findings further support the patterns of anti-

inflammatory priming in these animal, suggesting an overall healthier intestinal environment in 

VWR mice. The mechanisms behind PA-induced changes in SCFAs are not known, however 

the microbiota is likely to play an important part. SCFAs affect microbiota dynamics as they are 

directly involved in chemical balance and pH regulation of the intestines (van Hoek & Merks, 

2012). Bacterial composition in turn can also affect SCFAs production, establishing a 

bidirectional affiliation. 

 

VWR has limited but significant effects on the intestinal bacteria composition 

Comparisons of the overall bacterial community in MUC2-/- animals showed no 

differences as a function of time or wheel running. In WT animals however, a significant shift in 

the weighted UniFrac distances in VWR but not in SED animals was observed. The Bray-Curtis 

distances at week 0 and week 6 were also significantly different in VWR animals, however, SED 

also showed a significant shift, albeit to a lesser extent, indicating time as an influential factor in 

community composition when using this metric. Univariate analyses of individual taxa however, 

were not able to detect changes in any features in the SED animals, the observed community 

shift was then, presumably, not mediated through any one specific bacteria. The VWR group on 

the other hand had significantly reduced abundances of Anaerotruncus colihominis species and 

an unknown genus, also from the Ruminococcaceae family at week 6. Interestingly, and 
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perhaps counterintuitively, members of the Gram-positive Ruminococcaceae family are known 

butyrate producers (Vital, Howe, & Tiedje, 2014) which would advocate a lower capacity for 

butyrate production in VWR animals. This suggests then, that the elevated SCFAs levels 

observed in VWR mice is likely derived from subtle changes across multiple other taxa in which 

our statistical tests were unable to detect. These patterns of change do not align with previous 

reports of impacted taxa in response to PA. For example, Allen et al. (2017) showed increases 

in Ruminococcus genera among various others in their wheel running mice, while Lamoureux et 

al. (2017) showed a decrease in Ruminococceae family in forced-treadmill running but not VWR 

mice. These differences are likely a result of differences in animal vendors, facilities, DNA 

extraction methods and sequencing, bioinformatics analysis, as well as statistical testing 

methods. This topic is discussed in more detail in Chapter 5. Alpha diversity was not 

significantly different across time in any groups, however the rate in change of observed species 

in VWR animals was significantly higher than those of SED. This suggests the intestinal milieu 

of VWR mice tolerate colonization of a more diverse consortium of bacteria; the mechanism 

behind this is not known.  

Overall, wheel running had limited influence on the bacterial population, and the current 

experiment likely lacked sufficient power to detect subtle changes of all influenced taxa. 

Analyzing the bacterial consortia based on their phenotypic traits however, revealed additional 

information regarding the effect of wheel running on the overall community. Following wheel 

running, WT mice had significant reduction (-14%) in total abundance of Gram-positive bacteria. 

This is supported by the observed decreases in members of the Gram-positive Ruminococceae 

in these mice, as well as the attenuated expression of RegIII-γ, an antimicrobial peptide that 

specifically targets the surface peptidoglycan layer of Gram-positive bacteria. The implications 

of this phenotypic shift in microbiota of healthy individuals is not known but may provide a clue 

for understanding the adaptations of the intestinal environment to the physiological stresses of 

PA. Furthermore, mirroring the shift in Gram-positive phenotype was the lowered relative 



86 

abundances of bacteria containing mobile elements. These refer to microevolutionary processes 

such as transposons i.e. segments of DNA with the ability to move locations within the genome, 

and bacterial plasmids which are involved in horizontal gene transfer. These events are typically 

associated with sharing of virulence factor across bacterial cells and increased resistance to 

antibiotics. The higher abundances of mobile elements in these mice is likely not indicative of 

antibiotic-resistance but rather associated with higher abundances of Gram-negative bacteria 

representing more mobile-elements. The results of these predictions should be interpreted with 

caution however, as these mobile elements can rapidly become population specific within an 

individual thus precluding inference across similar experimental groups (Brito et al., 2016). 

 

Summary 

In contrast to our hypothesis we found that 6 weeks of wheel running did not ameliorate 

any symptoms of colitis in MUC2-/- animals, nor did it influence any components of the intestinal 

environment in these animals. However, we found that wheel running in healthy WT animals 

imposed various physiological effects on the gut, including downregulation of pro-inflammatory 

and upregulation of anti-inflammatory cytokine gene expression, and increased concentration of 

total SCFAs including butyrate, acetate, and propionate. In addition, wheel running lead to a 

shift in bacterial community structure corresponding to both a higher overall diversity and higher 

abundances of Gram-negative bacteria. As these physiological changes have been associated 

with protection against chronic inflammatory diseases such as IBD, we conclude that PA prior to 

disease onset can prime the intestines, enhancing their tolerance to injury. These benefits 

however are lost when PA is imposed on an existing disease state. Overall, the findings here 

suggest that PA in humans may be an important preventative therapy against intestinal 

diseases such as IBD. 

 



87 

Chapter 4: Low volume wheel running and associated intestinal adaptations3 

4.1 Background 

With rapid improvements of high-throughput sequencing technologies and the 

concurrent cost reduction of these methods, the study of human microbiota in health and 

diseases has moved away from culture-dependent methods allowing for rapid and novel 

discoveries. We have reached an inflection point of human microbiome research where we 

transition from exploration and association to application and causation. For example, an 

individual’s unique intestinal bacterial population has been established as an important predictor 

of the host’s response to various pharmaceutical interventions (Bisanz, Spanogiannopoulos, 

Pieper, Bustion, & Turnbaugh, 2018; Petrosino, 2018). While this can lead to discovery of 

disease subsets and shift the paradigm towards personalized medicine, there is further potential 

in manipulating the host microbiome towards either healthier states as a prevention method 

against dysbiosis-associated diseases, or towards a more responsive state to augment drug 

intervention outcomes. To this end, PA has been proposed as a potential modulator of the 

human microbiota (Campbell & Wisniewski, 2017; Codella, Luzi, & Terruzzi, 2018). In Chapter 

3, we showed that PA in healthy mice led to significant changes in the intestinal environment, 

including reduction of pro-inflammatory and increase in anti-inflammatory cytokines, increased 

production of SCFAs, as well as a limited but significant shift in the bacterial community 

composition. The PA-derived changes in gut microbiota have been directly linked with protection 

against chemically-induced models of murine colitis (Barlow, Yu, & Mathur, 2015). In their study, 

Allen et al. transplanted microbiome of voluntary-wheel running (VWR) mice into germ-free 

recipients and induced dextran-sodium sulphate (DSS) colitis following a 4-week colonization 

                                                 

3 A portion of the data from this experiment has been published. Spielman LJ, Estaki M, Ghosh S, Gibson 
DL, Klegeris A. The effects of voluntary wheel running on neuroinflammatory status: Role of monocyte 
chemoattractant protein-1. Mol Cell Neurosci. 79:93-102 
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period. They showed significant protection against colitis symptoms in recipient mice only when 

their donor was physically active but not if they were sedentary. This study elegantly showed the 

benefits of VWR against murine colitis to be both mediated through the microbiome and 

transferable across hosts. Several other studies have also shown PA to either correlate with 

changes in the microbiota (Bressa et al., 2017; Clarke et al., 2014; Estaki et al., 2016; Petersen 

et al., 2017; Yuan et al., 2018) or directly alter them (Jacob M. Allen et al., 2018; Jacob M Allen 

et al., 2015; Evans et al., 2014; Mika et al., 2015; Petriz et al., 2014).   

In rodent studies using voluntary PA such as that in Chapter 3, the volume of wheel 

running drastically differs across studies, ranging from ~ 2.5-10 km/day. Mice in our previous 

experiment yielded significant and beneficial physiological changes in their gut environment. 

Unexpectedly however, these animals ran considerably less than expected based on previous 

reports. The healthy WT cohort ran an average of ~1.3 km/day, almost half the distance ran by 

the next lowest report amongst these studies (Lamoureux et al., 2017), which are themselves 

considered below average in these strains (J. Goh & Ladiges, 2015). VWR models are well 

known for their individual variability, however the minimum daily running distances typically 

exceeds 5 km, far above the distances we observed. This raises an important question as 

whether the microbial changes associated with PA are volume-dependent or are rooted in 

physiological adaptations independent of work load. For example, does access to a free-wheel 

alone initiate adaptation responses associated with increased work and energy expenditure, or 

does the volume of work itself invoke such changes? To better understand the role of PA load in 

relation to changes in the intestinal microbiota and health, we chose to manipulate total running 

in our VWR models. In this study we chose to focus on a model of low-VWR as the effects of 

higher volumes have already been reported, and, increasing movement loads in VWR models is 

not possible. We hypothesized that low levels of wheel running are insufficient to instigate 

microbial or immunological adaptations in the gut. 



89 

4.2 Methods 

Animals - All procedures involving the care and handling of the mice were approved by the 

UBC Committee on Animal Care, under the guidelines of the Canadian Council on the Use of 

Laboratory Animals. Female C57BL/5 mice were purchased from Charles River (Vancouver, 

Canada) and kept under specific pathogen-free conditions until ~ 6 weeks of age. All animals 

were housed in a temperature-controlled room (22 + 2°C) on a 12h light/dark cycle with access 

to tap water and irradiated food ad libitum. Wheels used in this experiment were same as those 

reported in Chapter 3, however to produce a model of low physical activity, the wheel’s axels 

were tightened to limit the ease of their movement. This method allows the mice to participate in 

voluntary running however at a significantly reduced rate. Using a random number generator, 

animals were then assigned to individual cages with either free access to a voluntary wheel 

(VWR) or without wheel access (SED) for ~ 6 weeks, n=8/group. Animals were acclimated to 

the wheels 3 days prior to start of the wheel running measurements. Body weights and food and 

water intake were measured weekly for the duration of the experiment. Food weight 

measurements consisted of a week’s remaining pellets on the cage lid, plus any stashed away 

pellets in the cage bottoms.  

Tissue Collection - Mice were anaesthetized with isoflurane and blood was collected via 

intracardial puncture followed by immediate termination by cervical dislocation. Whole blood 

was kept on ice for ~30 minutes then centrifuged (1800 g) for 10 minutes at 4°C to separate 

serum which was aliquoted and kept in -80°C until further analysis. Colon and ileum tissues 

were collected as follows: starting from distal end, three ~1.5 cm sections from each tissue were 

collected with the most distal section being fixed in formalin for histological staining, the middle 

section was stored in RNAlater (Thermo Fisher Scientific) for RNA extraction, and the most 

proximal section was snap-frozen in liquid nitrogen and stored -80°C for DNA extraction.  
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Histology - Colon cross-sections were fixed in formalin for 24 hrs, washed with phosphate 

buffered saline (PBS, pH 7.4), transferred to 70% ethanol and sent for paraffin-embedded 

sectioning and Hematoxylin and eosin (H&E) staining at Wax-it Histology Services (Vancouver, 

Canada). Tissue slides were coded throughout the microscopy analyses and investigators 

blinded to the groupings. H&E stained sections were viewed under 200x magnification on an 

Olympus IX81 and the full image stitched together using Metamorph® software. Stitched 

images were imported into ImageJ (Schneider et al., 2012) (v. 1.51r) for further analyses. To 

compare the overall structural size and health of colon sections between groups and we 

compared total relative size of the muscularis externa, total number of goblet cells in a section, 

and average crypt lengths. 

RT-qPCR - The mRNA gene expression for tumor-necrosis factor alpha (TNF-α), interferon-

gamma (IFN-γ), resistin-like molecule beta (Relm-β), regenerating islet-derived protein 3 

(RegIII-γ), transforming growth factor beta (TGF-β), chemokine C-X-C motif ligand 9 (Cxcl9), 

and claudin 10 (Cldn10) were measured in colon tissues. Total RNA was purified from tissues 

using Qiagen RNEasy kits (Qiagen) according to the manufacturer’s instructions with an 

additional initial bead beating step (3x30 seconds, 30 Hz) on a Retsch MixerMill MM 400 

homogenizer. Next, cDNA was synthesized using an iScript cDNA Synthesis Kit (Bio-Rad) in 10 

μl reactions. The RNA and cDNA products’ purity and quantity were assessed by a NanoDrop 

spectrophotometer (Thermo Scientific). The cDNA products were normalized to ~ 40 ng/µl with 

DNAse free sterile water prior to qPCR reactions. A total of 10 µl RT-qPCR reactions consisted 

of: 0.2 µl of each forward and reverse primers (10mM), 5 µl of Sso Fast Eva Green Supermix 

(Bio-Rad), 3.6 µl DNAse free water, and 1 µl of cDNA template. Reactions were run in triplicates 

using the Bio-Rad CFX96 Touch thermocycler and analyzed using Bio-Rad CFX Maestro 

software 1.1 (v4.1). The median quantitation cycle (Cq) value from each sample was used to 

calculate the 2–∆∆Ct based on the reference gene TATA box binding protein (Tbp). A list of all the 
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primer sets, their melting temperature, efficiencies, and detailed thermocycler protocol used in 

this study are described in Appendix B.  

DNA extraction and 16S rRNA amplicon preparation - DNA was extracted from colon and 

ileum tissues using QIAmp DNA Stool Mini Kit (Qiagen) according to the manufacturer’s 

instructions following 3 x 30 s of homogenization using metal beads on a Retsch MixerMill MM 

400 homogenizer. Amplicon libraries were prepared according to the Illumina16S Metagenomic 

Sequencing Library Preparation manual. In brief, the V3-V4 hypervariable region of the 16S 

bacterial rRNA gene was amplified using recommended degenerate primer sets 341F: 

CCTACGGGNGGCWGCAG, and 805R GACTACHVGGGTATCTAATCC, which create an 

amplicon of ~460 bp. Amplicons were purified using AMPure XP beads and adapters and dual-

index barcodes (Nextera XT) were attached to the amplicons to facilitate multiplex sequencing. 

Following another clean-up step, libraries were quality controlled on an Experion automated 

electrophoresis system (Bio-Rad), and sent to The Applied Genomic Core (TAGC) facility at the 

University of Alberta (Edmonton, Canada) where they were normalized using fluorometric 

method (Qubit, Thermo Fisher Scientific) and sequenced using the Illumina MiSeq platform with 

a V3 reagent kits allowing for 2 x 300 bp cycles. 

Bioinformatics - All bioinformatics processes were performed within the QIIME2 platform 

(Caporaso et al., 2010) using the various build-in wrappers described below. All used software 

packages, versions, and parameters are available under the ‘provenance’ tabs of the QIIME2 

artifacts will be made available online. This file can be viewed locally on a browser by drag and 

dropping the file onto https://view.qiime2.org/. Poor quality scores of sequences on the 3’ ends 

precluded sufficient overlap for appropriate merging of paired-end sequences. We therefore 

proceeded our analyses with the forward reads only, trimmed to an equal length of 200 bp. 

Sequencing were denoised using Deblur (Amir et al., 2017) with default settings. The output of 

this process is a feature table of amplicon sequence variants (ASV) that is a higher resolution 

analogue of traditional OTU tables. A Naïve Bayes classifier that was trained on the specific 

https://view.qiime2.org/
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region targeted by our primer sets using the most recent available version of the Greengenes 

(13_8) was used to assign taxonomy at the genus level. For microbial analyses encompassing 

phylogenetic information, MAFFT-aligned (Katoh & Standley, 2013) sequences were used to 

produce a phylogeny tree using FastTree2 (Price, Dehal, & Arkin, 2010) with default settings. To 

predict the functional repertoire and phenotype of the microbiome, we used BugBase (Ward et 

al., 2017) which utilizes PICRUSt’s (Langille et al., 2013) extended ancestral-state 

reconstruction algorithm for metagenome composition prediction. As these tools require 

features to be classified against Greengenes taxonomy, we used QIIME2’s VSEARCH (Rognes 

et al., 2016) plugin to pick closed-reference OTUs from our denoised feature table at 97% 

similarity threshold against the 97% Greengenes OTUS database. 

Statistical Analysis - All statistical analyses were performed using R version 3.5.1 unless 

stated otherwise. All scripts available upon request. 

Body weights and food/water intake - To account for natural differences in starting body 

weights, total weight gained relative to starting body weights was calculated at each week. Body 

weights, food and water intake comparisons across the 6 weeks were assessed using repeated 

measures using linear mixed-effects regressions (LMER) using the lme4 package with individual 

animals assigned as the random effect. Significance was set at P<0.05. 

Morphological parameters - Morphological parameters were compared across groups using a 

Welch’s t-test or a Wilcoxon rank sum test if the data did not meet assumptions of normality. 

Colon mRNA gene expression analysis - Given that we showed an attenuation of VWR on 

the colonic cytokines IL-10, TNF-α, TGF-β, IFN-γ, and RegIII-γ, from our previous study we 

analyzed these a priori cytokines separately without power adjustments for multiple testing to 

maximize discovery power. We used a 1-way analysis of variance (ANOVA) or a non-parametric 

Kruskal-Wallis test when data did not meet assumptions of the parametric tests. The remaining 

colonic mRNA genes CXCL9, CLDN10, and RELM-β were analyzed together using a 

multivariable generalized linear model (GLM) test carried out in the mvabund package (Wang et 
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al., 2012). This fits separate GLMs to each cytokine while accounting for the inter-correlation 

amongst them and adjusting for multiple testing. The negative binomial distribution assumption 

was selected for the model and the mean-variance plot was used to visually assess the model 

fit.  

Microbial Analysis - Community structural patterns of colon and ileum bacteria across samples 

(β diversity) were explored in QIIME2 by calculating the Bray-Curtis and weighted-UniFrac 

distances across samples and plotting them onto a PCoA space using Emperor interactive 

graphic tool (Vázquez-Baeza et al., 2017). We first plotted both colon and ileum samples onto 

the same PCoA space, to look for obvious community structural patterns. Colon and ileum 

samples, as expected showed clear separation. However, 6 ileum samples (4 from VWR, 2 from 

SED) were dropped due to insufficient sequence coverages (<1300). As a result, we separated 

the colon samples and all proceeding analyses were carried on these samples alone. New 

PCoA plots were constructed using rarefied (4,577) distance matrices and group differences 

were tested using a PERMANOVA (Anderson, 2001) test. The overall within sample diversity (α 

diversity) was calculated based on the species richness, Shannon (H’) index, and Faith’s 

phylogenetic diversity (PD) indexes, which capture the overall richness, evenness, and 

phylogenetic diversity of the communities, respectively. Group differences were tested as 

before. 

Differential abundance testing between individual genera was performed using the Analysis of 

Composition (ANCOM) wrapped in q2-plugin (Mandal et al., 2015). This approach utilizes 

centered log-ratio transformation to account for the compositional nature of these types of 

datasets. To reduce noise in the test, low abundant taxa were filtered based on the requirement 

that each taxon must be observed at least 50 times and be present in at least 1/3 of all samples. 

BugBase was used to determine high-level phenotypes of bacterial communities based on the 

following default traits: Gram negative vs. Gram positive, biofilm forming, mobile element 

containing, oxidative stress tolerance, pathogenic potential, and oxygen utilizing. Group 
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differences in relative abundances of these elements were tested in each group using a 

Kruskal-Wallis test. 

4.3 Results 

Wheel running, body weights, and food/water intake - VWR mice ran a mean (SD) total of 

5.36 (4.6) km across the 6 weeks corresponding to ~130 (110) meters per day, showing that we 

successfully limited the movement of these mice to about 1/10th the distance produced in the 

previous experiment. The average daily food and water intake were not statistically different 

between groups (Figure 23B). The relative total weight gained throughout the experiment 

however, was significantly higher in VWR animals (P<0.05, F-value=4.8). By the end of the 

experiment, SED animals had gained on average (± SE) 18.24 ± 1.6 % of their starting body 

weight, while VWR mice gained 24.09 ± 1.7 % (Figure 23A). 
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Figure 23. Weight gain and food intake 

Effects of VWR on A) relative body weight gain and B) average daily food intake. Weight gain is 

calculated as the total weekly weight gained, as percentage of each animal’s own starting body weight. 

There was a significant group (P<0.05, F-value=4.8), time (P<0.001, F-value=291.2), and group x time 

interaction (P<0.05, F=5.4) effect. VWR mice gained significantly more weight throughout the experiment. 

Average daily food-intake is calculated based on weekly food intake measurements divided by number of 

days in that period. Values are shown as means ± SE 
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Colon morphology - Morphological assessments of colons across groups showed no 

significant differences between total number of goblet cells counted, total muscularis externa 

area, or average crypt lengths (Fig 24). 

 

 

Figure 24. Morphological assessments of colons 

Measurements of morphological parameters in the colon were measured using microscopy. A) total 

goblet cell counts in whole section, B) total area of muscularis externa area, C) average length all crypt 

lengths, D) Representative H&E sections of SED (top) and VWR (bottom) mice. The bottom and top of 

boxes are the first and third quartiles, the middle band inside the boxes is the median, 

the whiskers contain the upper and lower 1.5 interquartile range (IQR). No differences were observed 

between any groups in any of the measured parameters. 
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mRNA gene expression analysis - The result of our multi-GLM tests revealed no significant 

group differences between colonic mRNA genes expression of CXCL9, CLDN10, and RELM-β 

(data not shown). Univariate analysis of our a priori cytokines are showed in Figure 23. We 

detected significantly lower relative expression of TNF-α (P<0.05, F-value=7.62), and TGF-β 

(P<0.05, F-value=5.77) in VWR animals compared to SED (Figure 23A-B). CXCL9, CLDN10, 

IFN-γ, IL-10, and RegIII-γ were not different between groups. 

 

 

Figure 25. mRNA expression of colonic genes 

The relative mRNA gene expression of selected pro- and-anti-inflammatory mediators in colon. * denotes 

significant difference (P<0.05) between groups.  
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Microbial analysis - The PCoA plots of the Bray-Curtis and weighted-UniFrac distances 

showed no clear clustering between VWR and SED groups (Figure 26), and no group 

differences were detected by the PERMANOVA test. Differential abundance testing of each 

genera between groups using ANCOM revealed no differences in any taxa between groups. 

Similarly, the phenotypic traits of the microbial communities, as predicted by BugBase were not 

significantly different between groups. The overall within sample diversities (α diversity) species 

richness, and Faith’s PD were similar between groups, however Shannon’s diversity was 

significantly (P<0.05, F=5.8) higher in VWR groups. VWR group also showed marginally higher   

observed OTUs (Figure 27) though this was not statistically significant (F: 4.01, P<0.06). 
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Figure 26. PCoA plots of colonic bacterial communities 

Ordination plots of A) Bray-Curtis and B) weighted-UniFrac distances of bacterial communities showing 

no clear clustering between groups, as confirmed by PERMANOVA test. Green=VWR, Red=SED. 
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Figure 27. Alpha diversity measures of colonic bacterial communities 

Comparison of within sample diversity A) observed OTUs, B) Shannon’s (H’), and C) Faith’s PD. * 

denotes a statistically significant difference between groups. 
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4.4 Discussion 

The role of PA as a modulator of the intestinal microbiota has recently been established. 

We previously showed that healthy VWR mice have a significantly different intestinal 

environment than their SED counterparts with regards to expression of inflammatory cytokines, 

productions of SCFAs, and the overall bacterial community diversity and traits. These changes 

were true despite the observation that our animals ran significantly less than previous studies 

(Jacob M Allen et al., 2015; Evans et al., 2014; Lamoureux et al., 2017) showing PA-associated 

changes in mice microbiota. In this study we asked the question, can low volumes of PA also 

produce significant changes in the gut environment? By tightening the axels on our wheels, we 

were able to produce a low-volume model of VWR which corresponded to about 1/10th of typical 

distances we saw in Chapter 3, which recruited beneficial changes in the gut. In agreement with 

our hypothesis, low VWR did not significantly alter the overall composition of the colonic 

bacteria or the phenotypic trait profiles. The overall diversity evenness (Shannon H’) of VWR 

mice was significantly higher than SED, and a marginal increase was also observed in number 

of observed OTUs in this group. These findings follow a similar pattern to those in the previous 

chapter, with VWR mice housing a higher number of unique taxa, suggesting that even low 

VWR can lead to increased overall diversity. The mechanism behind this observation is not 

clear, however, lower mRNA expression of TNF-α and TGF-β in the colon of low VWR mice 

may provide a clue. As with normal running VWR mice in Chapter 3, a gut environment with 

lower expression of these cytokines may either reflect an enhanced tolerance to commensal 

bacterial ligands, allowing for increased bacterial colonization, or an enhanced mucosal barrier, 

preventing the interaction of bacterial antigens with the host cells. In contrast to findings from 

Chapter 3, low VWR did not induce production of the immunosuppressive IL-10 or 

downregulation of the inflammatory IFN-γ cytokines. This is perhaps not surprising considering 

the absences of changes in the overall microbial community composition in VWR mice as both 
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IL-10 and IFN-γ modulation are dependent on interactions with microbial antigens. In Chapter 3, 

we suggested the increased expression of IL-10 in VWR mice may be correlated to the 

increased abundance of Gram negative bacteria as these bacteria favor recruitments of IL-10. 

The findings here then may further support this observation as a lack of microbial changes was 

associated with absence of IL-10 modulation, however, the possibility that these responses rely 

on higher volumes of PA cannot be eliminated. As the increase in TNF-α and TGF-β has been 

implicated in patients with active intestinal inflammation (Babyatsky et al., 1996; Komatsu et al., 

2001; McCabe et al., 1993), our findings here suggest that even low volumes of PA may offer 

some protection against intestinal diseases such as IBD. Interestingly, low VWR mice gained 

weight at a significantly higher rate than SED animals, despite no differences in their food and 

water intake habits. Given the increased energy expenditure required from wheel running, the 

intuitive hypothesis would be that VWR mice would either have higher food intake or gain similar 

or less weight than their SED counterparts. Indeed, in the experiments by Lamoureux et al. 

(2017) mice gained similar weight across 8 weeks of wheel running while consuming 

significantly more food. Allen et al. (2015) also reported VWR mice with average daily running 

distances of ~5.8 km had similar weight changes as SED animals across 6 weeks; food intake 

was not reported. One plausible explanation for this finding would be an increase in energy 

harvesting efficiency of the intestinal bacteria. For example, an increase in the Firmicutes to 

Bacteroidetes ratio has been, albeit with some controversy, associated with increased weight-

gain (Barlow et al., 2015; Koliada et al., 2017). We examined the Firmicutes:Bacteroidetes 

across our animals and found no differences between groups. In addition to this, the lack of 

microbial compositional changes across any taxa in this experiment suggests the increased 

weight-gain is independent of the microbiome. Alternatively, low PA may be initiating energy 

storage events such as lipogenesis through hormonal regulation in VWR animals in anticipation 

of future expenditure. Further investigations are necessary to determine the mechanism behind 
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this observation. This study has some key limitations which are discussed in detail in the 

following Chapter.  

Summary 

In agreement with our hypothesis, we found that low levels of PA are not sufficient to 

induce detectable changes in the overall composition of the gut microbiota. However, even at 

low volumes, PA is associated with reduced intestinal expression of the inflammatory cytokines 

TNF-α and TGF-β, which in turn may reflect an enhanced tolerance to bacterial colonization in 

the gut. This may support our findings that VWR mice harbored a higher overall diversity of 

bacteria than SED animals. Overall, the findings here suggest that PA even at very low volumes 

may be beneficial in intestinal health and may be effective in protecting against future injury 

such as those associated with IBD or used as an adjunct therapy in IBD management. This is 

particularly relevant in human IBD as patients with active disease are limited in their ability to 

perform regular levels of PA due to disease complications. 
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Chapter 5: Conclusion 

5.1 Summary and general discussion 

The primary focus of this thesis was to explore the link between PA and intestinal health. 

More specifically, we were interested in the effects of PA on the microbiome and its potential 

benefits against intestinal injury such as those found in IBD. In reviewing the literature prior to 

this work, I found only one relevant study; Matusomoto et al. in 2008 had shown an increase of 

cecal butyrate concentrations, an important SCFA with anti-inflammatory properties, in VWR 

rats. Given that this topic was otherwise virtually unexplored we first set out to simply establish a 

link between PA and the microbiome. In Chapter 2, using high-throughput sequencing methods 

we characterized the fecal bacteriome of healthy humans with quantified CRF levels 

representing a wide spectrum of lifestyles ranging from sedentary to elite athletes. We found 

that CRF was associated with increased overall bacterial diversity regardless of age, sex, BMI, 

or dietary intake. The composition of bacterial communities did not follow any obvious trends, 

however, the predicted functions of fit individuals appeared to favor SCFAs production. Indeed, 

when we analyzed the abundances of fecal SCFAs, and in agreement with Matusomoto et al 

(2008), we noticed a positive association between CRF and butyrate. Taken together, we 

cautiously, but optimistically interpreted the findings that endurance exercise was associated 

with improved intestinal health. Following this, we set to establish causality using a rodent 

model and further determine whether PA-associated changes were in fact beneficial to the host.  

In Chapter 3, we showed that 6 weeks of wheel running in healthy mice recruited various 

physiological changes in their intestine, including downregulation of pro-inflammatory gene 

expression, increased total concentration of SCFAs, propionate, butyrate, as well as limited but 

significant changes to the overall bacterial communities. The VWR mice showed an increase in 

species richness following wheel running and reduced abundance of two members of the Gram-

positive Ruminococcaceae family. Interestingly however, equal volume of wheel running in 
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MUC2-/- animals (representing a life-long model of murine colitis), did not elicit any protection. 

Our finding here contrasted with other reports that showed PA protected against chemically-

induced models of colitis (Bilski et al., 2015; Marc D Cook et al., 2013b; Saxena et al., 2012; 

Szalai et al., 2014). We speculated that these differences likely derive from the possibility that in 

the earlier reports using chemically-induced colitis, PA primes a healthy intestine, better 

equipping it to tolerate the chemical injury, while in MUC2-/- animals, PA is imposed over an 

existing disease state. We concluded then that the benefits of PA are dependent on the 

underlying health of the intestine, or at least require the presence of a complete mucosal layer. 

With regards to human health, findings from this chapter suggest that a physically active lifestyle 

encompassing an aerobic training component can enhance the intestinal milieu. This warrants 

further investigation in the role of PA as 1) a preventative measure for human IBD and 2) as an 

adjunct therapy for remission maintenance. It should be emphasized however that regular 

exercise is recommended to IBD patients even during active disease to combat secondary 

complications of IBD, as described in Chapter 1. 

In the final research chapter, we looked at the effects of low wheel running on the 

intestinal microbiota and health. This question was developed in response to an unexpected 

observation in Chapter 3 where we noticed that the volume of wheel running in our animals was 

significantly less than those previously reported in the literature. While wheel running is 

inherently variable across facilities, strains, and even littermates (J. Goh & Ladiges, 2015), our 

findings however more likely reflected the type of wheel used in our experiment. For example, 

the type of material, diameter size, footing, and the angle of the wheels can all significantly 

affect running distances (Reebs, St-Onge, & Reebs, 2005; Walker & Mason, 2018). In 

consulting with veterinarians, commercial vendors, pet-stores, and other experienced users, I 

hypothesized that our animals ran considerably less due to the smaller size of our wheels. I 

contacted the various groups involved in the mentioned studies and obtained detailed 

information regarding their rodent wheels. While every group had used a different wheel, all 
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reported diameter sizes larger than ours. Therefore, I concluded that the lower running behavior 

was not the result of possible confounding factors such as equipment malfunctions or 

undetected environmental stressors. Interestingly, even with considerably lower volume of 

running, our mice had experienced significant physiological adaptations. We therefore set out to 

test whether the benefits of PA were volume-dependent or were rooted in the physiological or 

psychological benefits of having access to any degree of additional movements. In Chapter 4 

we tested the effects of low-VWR on mice intestinal health, by tightening wheel axels to limit 

their movement. To my knowledge, this method has not been previously reported. In agreement 

with our hypothesis we showed that low volumes of wheel running did not induce changes in the 

intestinal microbiota; however, similar to the normal VWR mice, the gene expression of the pro-

inflammatory TNF-α and TGF-β were significantly reduced. These findings suggest that the 

effects of PA on the intestines are multifaceted and likely mediated through various 

physiological pathways. For examples, while a minimal PA threshold appears to be needed to 

recruit microbial changes, even very low physical movements can alter intestinal immunity, 

independent of the microbiome.  

The combined findings from the works of this thesis suggests that PA can modulate the 

intestinal environment under normal conditions in a volume-sensitive manner, and that this 

‘priming’ may be protective against inflammation-associated intestinal diseases. There are 

however other implications in a broader sense. For example, manipulating the microbiota 

through regular physical activity may have the additional benefit of enhancing the host’s 

response to various pharmaceutical drugs that are bio-transformed through the gut. From a 

veterinarian and animal husbandry perspective, these findings add to the growing body of 

literature suggesting that sedentary animals represent a model of compromised health rather 

than a healthy one (Booth & Lees, 2006). The current dogma views inactive animals as healthy 

‘controls’ in an experiment, however, from an evolutionary perspective, animals are fitted to be 

continuously active. The findings here support the notion that sedentary mice are associated 
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with a state of heightened inflammation. This has substantial biological implications with regards 

to animal-based research and ethical implications in the food industry where animals are often 

raised in captivity. 

5.2 Limitations 

As described, the findings from this work have significant implications across a variety of 

fields, however, as with any experiment, these findings are bound by certain limitations. In this 

section I will highlight the most important limitations as they pertain to proper interpretation of 

results and future work.  

Of the three primary studies described here, results from Chapter 2 are the most 

sensitive to its limitations. Perhaps the most important of these is the integration of numerous 

environmental variables into complex models with a relatively small sample size. Given the 

observational nature of this study, combined with the complexity of nutritional information, we 

were subject to the “curse of multidimensionality”, and were required to limit our analyses to a 

subset of the variables measured. We used expert opinion, review of the literature, and a set of 

a priori factors to initially remove various dietary components from our nutritional data; further 

reduction was then made using objective modelling until an acceptable number of variables 

remained. Given our biased preference over certain dietary components, and removal of other 

potentially meaningful variables, many important relationships may have been overlooked. This 

is primarily a problem of low sample size and may be resolved with more thorough sampling 

efforts. Another critical consideration is the accuracy of dietary recall surveys. In our study we 

used a supervised 24-hrs dietary recall survey which are prone to various biases such as 

underreporting and memory loss (Shim, Oh, & Kim, 2014). While significant improvements have 

been made to resolve these issues, for example the use of food tracking mobile applications, 

email reminders, food journals, etc., the implementation of these methods are laborious, 

expensive, and may impede recruitment efforts.  
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The limitations of the work described in Chapter 3 are technical in nature. First and 

foremost, the presence of a batch effect as described previously precluded meaningful 

comparison of the bacterial community data across groups. As we were limited by the number 

of available running wheels, inevitably one cohort of animals had to be ran separately. In our 

experiment, VWR mice were purchased at a different date than the other three groups and 

amplicon preparation and 16S sequencing of these samples were performed separately. This 

undoubtedly resulted in the well-known phenomenon of ‘batch effect’ associated with Omics 

data (W. W. Bin Goh et al., 2017), which results in detection of significantly different microbial 

populations in samples that should otherwise be similar. This was evident in our initial PCoA 

plots showing a clear clustering effect between the VWR and SED animals. While recent efforts 

have been made to correct for these batch-effects (Davis, Proctor, Holmes, Relman, & 

Callahan, 2017; Gibbons, Duvallet, & Alm, 2018), these post-hoc correction methods depend on 

inter-run samples or gnotobiotic mock communities, both absent in our design. To circumvent 

this issue and eliminate erroneous interpretation of the microbial data, I chose to only examine 

fecal bacterial communities of each group across time, rather than across other groups. Future 

experiments should consider the problem of batch effects and follow appropriate designs to 

minimize them. This batch-effect can be extended beyond the microbial data into other 

measures such as SCFAs and cytokines. Given that the microbiota is tightly integrated with 

regulation of both SCFAs production and cytokine expression, we cannot eliminate the 

possibility that the reported VWR differences were linked to the pre-existing difference in this 

group’s bacteriome. We were fortunate, however, to be provided insight into this problem: in the 

VWR cohort, one animal unexpectedly did not run on the wheel throughout the experiment and 

its SCFAs and cytokine abundances closely resembled those of SED animals, and not VWR 

animals. Though based on only one observation this suggests that wheel running indeed was 

the instigator of those changes.  
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In Chapter 4, we were limited by our access to only colon and ileum tissues, meaning 

that baseline comparison of fecal bacterial data, and cecal SCFA were not possible. The 

absence of pre-treatment samples significantly reduces the sensitivity of our analyses as subtle 

individual community changes across time are not detectable. Rather, only major separations of 

the two groups’ communities with a high effect size would be detectable. A general 

consideration for all future microbial experiments would be to include longitudinal information of 

the community to increase sensitivity and discovery power. 

One of the most difficult challenges facing HTS data, in particular 16S surveys, are the 

inconsistencies in changes to abundance of taxa across studies measuring the same 

interventions. For example, across all studies reporting on taxonomic changes associated with 

PA, I found almost no overlap between reported outcomes when examining the change in 

individual taxa/OTUs. While variability in experimental design itself, as well as factors involved 

in the previously described ‘batch-effect’ contribute to these discrepancies, there is additional 

subjectivity introduced at data processing and analyses steps. For example, older studies relied 

on clustering of sequences into OTUs with arbitrarily selected similarity thresholds. These 

methods often produced highly inflated OTU counts and unreliable reconstruction of known 

communities (Edgar, 2017). Newer denoising methods such as DADA2 (Callahan et al., 2016) 

and Deblur (Amir et al., 2017) used in Chapter 3 and 4, respectively, allow for inference of exact 

sequence variants using error models to resolve sequence ambiguity down to the level of 

single-nucleotide differences. Comparison of these approaches to the same data-set can yield 

significantly different outcomes when comparing individual taxon (personal experience). There 

are numerous other steps throughout the bioinformatics processes that require human input, 

each with potential to considerably alter the outcome. In a typical 16S survey analyses such as 

those presented in this thesis, there are at least 8 crucial steps that introduce user bias: choice 

of quality control parameters, denoising vs. OTU picking methods, sequence alignment, 

phylogenetic tree building approach, normalization for unequal sampling depth, reference 
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databases, taxonomic assignment, filtering of low abundant features, and choice of statistical 

testing/modelling. Given that additional options exist at each step, a single data set can yield 

significantly different results based on these subjective choices. These outcomes are 

particularly sensitive when utilizing high-precision methods such as differential abundance 

testing, therefore comparison of individual taxa across studies should be interpreted with 

caution. For metanalysis of these data, a thorough re-analysis of the data using identical 

bioinformatics processes is strongly recommended. 

5.3 Future work 

The field of ‘exercise microbiology’ is in its infancy, with countless questions waiting to 

be answered. In this section I will conclude this work by offering recommendations for future 

continuation of this work.  

First and foremost, it is important to highlight the bidirectional nature of the PA-

microbiota relationship. In this work we focused on the effects of PA on the bacterial community, 

however the reverse relationship also likely exists, i.e. can the microbiota alter physical 

performance and behavior. An interesting approach to this question could use fecal 

transplantation of VWR or SED mice into germ-free mice and measure the recipients’ propensity 

to wheel running. Alternatively, previously identified bacteria associated with higher fitness 

levels could be introduced as cultured probiotics to examine PA behavior and performance. In 

Chapter 3, I proposed that the benefits of PA are dependent on the underlying health of the 

intestinal environment and/or the presence of a complete mucosal layer. Given that MUC2-/- 

mice are born with an underlying disease state, I would recommend future works to develop a 

new colitis model through inhibition of the MUC2 gene with monoclonal antibodies, allowing for 

temporal control over disease onset. This would further allow for induction of active disease-

remission cycles, an important characteristic of human IBD. In Chapter 4 we provided evidence 

that the benefits of PA on the intestinal environment might be independent of the microbiota. 
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Confirming this relationship could occur through carrying wheel running experiments in germ-

free mice, followed by colitis induction. Protection against intestinal damage would confirm a 

protective effect of VWR on host intestinal cells. For a more mechanistic insight, isolated 

epithelial cells of VWR mice could be challenged with endotoxins in vitro and compared with 

SED mice. Finally, the field has primarily focused on the effects of aerobic exercise on intestinal 

microbiota, while resistance training has been entirely omitted. With considerable differences in 

physiological adaptations of resistance training, it would be interesting to examine all previous 

parameters with this model of exercise instead. One important limitation in studying intestinal 

mucosal microbiome through fecal samples derives from the well-documented distinction 

between these sample types (Zoetendal et al., 2002). Unlike mucosal samples, fecal samples 

are easy to collect and allow for repeated surveying of microbial communities through time. 

However, the mucosal-associated microbes are likely to be more biologically informative as they 

more closely reflect the established colonies that directly interact with the host. Future studies 

should consider the potential differences in PA-derived changes between these two distinct 

microbial communities and survey both. Finally, as with all in vivo models of human diseases, a 

major limitation exists in the translation of knowledge from preclinical to clinical studies. The use 

of animal models in studying diseases is essential in understanding the underlying mechanisms 

that allow scientists to develop appropriate strategies for prevention, diagnosis, and treatments. 

Animal models have numerous advantageous over human studies which make them invaluable 

for research. For example, animal models allow for a highly controlled environment and 

genetically consistent subjects that are often absent in human studies. Exclusive to animal 

studies, genetic manipulation of desired genes allow scientist to discover genetic components of 

diseases and better identify at-risk populations. In addition, the rapid turnover rate of rodents 

allows scientists to detect age-related aspects of disease pathology within a short timeframe. 

Though the complexities of human and mouse physiology are relatively similar, the differences 

between them are still considerable and should be acknowledged whenever inferring from 
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preclinical findings to clinical settings. To confirm the relevance of results from this work, future 

studies should be carried in humans. As the findings from Chapter 3 suggest, PA is likely more 

beneficial in modulating intestinal health prior to disease onset. To confirm this hypothesis, a 

large cohort of healthy humans with sedentary or active lifestyles that are screened as high-risk 

for IBD should be monitored longitudinally for several years to compare incidences and severity 

of IBD. Alternatively, exercise prescription in populations with existing IBD may be a more direct 

comparison to the study reported here. 

5.3 Concluding remarks 

In conclusion, results from this thesis provide promising insights into the use of PA as a 

means to combat IBD. Combining these and previous findings from others, it is clear that PA 

can positively influence the intestinal environment, shifting it towards a state of heightened 

tolerance towards injury. While the data from our chronic colitis model did not show protection 

resulting from wheel running, these should be interpreted with caution as the MUC2-/- animals 

do not reflect the severity of common IBD phenotype. For example, IBD patients with defective 

mucosal integrity, show intermittent patches of healthy and unhealthy tissue which suggests that 

the observed effects of PA in healthy tissues may still be imposed on those healthy regions. In 

this sense, PA even following disease onset may be beneficial in humans by inhibiting the 

advancement of disease into healthy regions. From a personal perspective, having lived with 

UC for almost a decade, the benefits of PA reach beyond primary disease management. The 

improvements in quality of life due to various components such as stress reduction, improved 

body image, increased appetite, and involvement in social interactions all contribute to a holistic 

approach to IBD management. My final recommendations based on scientific evidence 

presented here, in the literature, as well as personal anecdotal experiences is for 

implementation of PA, to the extent that it does not cause further distress, in all IBD patients as 

management therapy. 
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I would like to conclude this ‘last lesson’ of graduate school by paying tribute to the very 

first lesson I was taught in it. “You are never truly ready for an experiment, until it’s over”. 
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Appendix A 

 

MUC2-/- animal monitoring sheet  
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Appendix B 

 

List of RT-qPCR primers used for the studies outlined in this thesis. Tm refers to the primer 

melting temperature. Length (bp) refers to primer length in base pairs. Primer names ending 

with ‘-F’ refer to forward primers, and primer names ending in ‘-R’ refer to reverse primers. 

 


